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Foreword

Numerous fascinating breakthroughs in biotechnology have generated large
volumes and diverse types of high throughput data that reveal different aspects
of biological processes at the whole genome level. However, these data are highly
complex and demand the development of sophisticated statistical tools, integrated
with biological knowledge and implemented as computational algorithms.

This volume collects a number of statistical developments from leading
researchers to survey the many active research topics in computational biology
and promote the visibility of this fast evolving research area. Introductory back-
ground material can be found in books on computational statistics, such as the
Springer handbook edited by Gentle et al. (2004).

The present book aims to serve as an introduction and reference on statistical
methods in computational biology. It addresses students and researchers in statis-
tics, computer science, and biological and biomedical research. We hope that most
of the common topics in the field are covered in this book, and that its publica-
tion will further bridge computational statistics and computational biology to allow
researchers to mine massive and diverse data sets to eventually better understand
complex biological mechanisms.

The editors would like to acknowledge the encouragement and support of
Wolfgang Härdle, Wen-Hsiung Li, and Wing Hung Wong for this project. We thank
the authors and reviewers for their efforts and patience over the past two years. We
also appreciate the web site constructed by Sebastian Stark, the latex assistance of
Tung-Hung Chueh, and the general help of Springer staff, including Niels Peter
Thomas, Alice Blanck and many others. Last but not the least, we acknowledge
the generous support of our families while completing this challenging project. We
hope that this handbook can provide a useful resource book for scholars that are
interested in this exciting new area!

October 2010
Henry Horng-Shing Lu (National Chiao Tung University, Taiwan)
Bernhard Scholkopf (Max Planck Institute for Biological Cybernetics, Germany)
Hongyu Zhao (Yale University, U. S. A.)
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Part I
Sequence Analysis



Chapter 1
Accuracy Assessment of Consensus Sequence
from Shotgun Sequencing

Lei M. Li

Abstract The significance of any genetic or biological implication based on DNA
sequencing depends on its accuracy. The statistical evaluation of accuracy requires
a probabilistic model of measurement error. In this chapter, we describe two sta-
tistical models of sequence assembly from shotgun sequencing respectively for the
cases of haploid and diploid target genome. The first model allows us to convert
quality scores into probabilities. It combines quality scores of base-calling and the
power of alignment to improve sequencing accuracy. Specifically, we start with
assembled contigs and represent probabilistic errors by logistic models that takes
quality scores and other genomic features as covariates. Since the true sequence is
unknown, an EM algorithm is used to deal with missing data. The second model
describes the case in which DNA reads are from one of diploid genome, and our
aim is to reconstruct the two haplotypes including phase information. The statisti-
cal model consists of sequencing errors, compositional information and haplotype
memberships of each DNA fragment. Consequently, optimal haplotype sequences
can be inferred by maximizing the probability among all configurations conditional
on the given assembly. In the meantime, this probability together with the coverage
information provides an assessment of the confidence for the reconstruction.

1.1 Introduction

Shotgun sequencing is a genome sequencing strategy. Starting with a whole genome,
or a large genomic region, short random fragments are generated and sequenced
using Sanger four-dye dideoxy or other techniques [1]. In Sanger sequencing each
fragment is base-called from its chromatogram, i.e. a vector times series of four

L.M. Li
Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy
of Sciences, Beijing 100190, P.R. China
e-mail: lilei@amss.ac.cn
and
Computational Biology and Mathematics, University of Southern California, Los Angeles, CA
90089, USA

H. Horng-Shing Lu et al. (eds.), Handbook of Statistical Bioinformatics,
Springer Handbooks of Computational Statistics, DOI 10.1007/978-3-642-16345-6 1,
c� Springer-Verlag Berlin Heidelberg 2011
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4 L.M. Li

fluorescence intensities, and a sequence of A, C, G, and T, is inferred. Enough frag-
ments should be sequenced so that almost all positions in the genome or region are
covered multiple times just by chance. In shotgun sequencing projects, the sequence
coverage is usually between 5 and 10. This redundancy improves the quality of
the reconstructed genome. The sequence assembly in shotgun sequencing usually
follows a three-step procedure: overlap-layout-consensus. That is, the base-called
sequences are assembled into a contig using an ad hoc alignment algorithm that
compares both strands and detects overlap between fragments. Quality values are
taken into account during the alignment to eliminate low quality reads. Finally,
a consensus sequence is constructed from this alignment by comparing different
reads for each position. The procedure is exemplified by the Phred/Phrap suite of
software, see [5, 6].

The accuracy of the consensus sequence depends on the coverage – namely, by
how many independent observations we have for each nucleotide base-pair in the
genome – and the performance of base-calling algorithm. The quality values of base-
calling play a crucial role in the construction of consensus. If they are misleading
or interpreted incorrectly, the consensus sequence will be less reliable. The Phred
quality scores for base-calling are defined from sequencing traces in such a way that
they have a probabilistic interpretation. This is achieved by training a model on a
large amount of data. However, sample preparations and sequencing machines may
work under different conditions in practice and quality scores need to be adjusted.
Also the information given by quality scores is incomplete in the sense that they do
not tell us error patterns. We do observe that each nucleotide base has its specific
error pattern that varies across the range of quality values.

Churchill and Waterman [3] proposed another model to define a consensus. It
is based on an assembly without assuming the availability of quality values. The
parameters in the model include composition probabilities and sequencing error
rates and are estimated by an E-M algorithm based on the alignment. The consensus
is defined by the probability of the target sequence conditional on observations. This
offers an evaluation of reliability of the estimated target sequence.

In the first half of this chapter, we describe an accuracy assessment method that
combines quality scores of base-calling and the idea in Churchill and Waterman [3]
to improve sequencing accuracy. Specifically, we start with assembled contigs and
quality scores to build up complete probabilistic error models. One option is to rep-
resent the error pattern of each nucleotide by a multinomial model. Since the true
sequence is unknown, we develop an EM algorithm to deal with missing data. In a
more sophisticated mixture of logistic model, we take quality scores as covariates.
To parsimoniously represent the nonlinear effect of quality scores, we adopt simple
piecewise linear functions in the regression model. The model is trained by a pro-
cedure combining an EM algorithm, the BIC criterion and backward deletion. The
training results in calibration of quality values that lead to more accurate consensus
construction.

Even though the objective of shotgun sequencing has been to determine a haploid
consensus sequence, fragments are from the diploid genome in an eukaryotic organ-
ism. In this diploid reconstruction problem, the origins of fragments are unknown.
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It is necessary to differentiate polymorphisms from sequencing errors, and then to
infer the phases between adjacent polymorphisms. The diploid shotgun sequencing
problem was formulated in [10] by a graph theoretic approach. To deal with errors
seen in fragments, they defined several combinatorial problems such as Minimum
Fragment Removal (MFR), Minimum Snip Removal (MSR) and Longest Haplotype
Reconstruction (LHR). Further development along this direction can be found in
[17]. Unlike haploid problem, in which it is sufficient to provide the quality measure
of each consensus base, the reconstruction of diploid genome need to consider mul-
tiple loci jointly because the phase between polymorphisms should be considered in
accuracy assessment.

In the second half of this chapter, we describe a probabilistic model for the
sequence assembly from a diploid genome sequencing project. Consequently, the
probabilities of different haplotypes (conditional on the assembly layout) can be
calculated and the optimal consensus sequences can be inferred by maximizing this
probability. In the meantime, this probability together with the coverage information
provides an assessment of the confidence for the reconstruction.

1.2 Adjustment of Quality Scores from Alignment
and Improvement of Sequencing Accuracy

1.2.1 Sequencing Data

The first source of data in this chapter comes from the Campylobacter jejuni whole-
genome shotgun sequencing project [20]. The raw data, generated on ABI 373 and
377 automated sequencers were downloaded from the Sanger Center (ftp.sanger.
ac.uk/pub/pathogens/cj). The total length of the genome sequence is 1,641,481 bp.
There are 33,824 reads and the average coverage is ten folds. The sequence assembly
was obtained by Phrap (see http://www.phrap.org). We tested our methods on the
first 100 kb of the reference sequence and the corresponding reads. The coverage of
the C. jejuni sequencing project is unusually high, so we randomly removed some
reads to decrease the average coverage from ten-fold to six-fold. Since the reference
sequence was obtained on reads of ten-fold, we will assume that it is close to the
true sequence later when we calculate single base discrepancy (SBD).

To test our methods on data obtained using another sequencing technology,
we analyzed data from an Arabidopsis thaliana re-sequencing project carried
out at USC (http://walnut.usc.edu/2010) using Beckman Coulter CEQ automated
sequencers. These data were obtained as part of a polymorphism survey, and thus
contain different haplotypes. Since we are only interested in sequencing error, we
selected about 500 kb of raw data from non-polymorphic regions.

ftp.sanger.ac.uk/pub/pathogens/cj
ftp.sanger.ac.uk/pub/pathogens/cj
http://www.phrap.org
http://walnut.usc.edu/2010
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Chromosome A G C C T A G A T T C

direct A G C C C A G A � � �

direct A G C C T A G N T � �

reverse QN QG QC QC QT QA QG QA QT QT QG
reverse Q� QG QC QC QT QA QG QA Q� QT QC

direct � � N C T A G A T T C

Fig. 1.1 An illustrative example of the problem. The bases with a tilde sign represent their
complementary bases

1.2.2 Setup

Throughout the chapter, we represent random variables by capital letters and
their values by small letters. First, reads are aligned into an assembly matrix. We
introduce two alphabets: A D fA;C;G; T;�g and B D fA;C;G; T;�; N; �g,
where � denotes an internal gap, N denotes any ambiguous determination of a
base, and the null symbol � is for non-aligned positions beyond the ends of a frag-
ment. Each fragment is either in direct or in reverse complemented orientation. To
deal with the issue of orientation, we introduce a complementary operation Q on the
alphabet B as follows: QA D T , QT D A, QG D C , QC D G, Q� D �, and Q� D �. An
illustrative example of assembly matrices is shown in Fig. 1.1.

We denote the target sequence by S D S1S2 : : : Sn, where Sj takes any value
from the alphabet A . Random fragments generated from the template are aligned
by an assembler. This results in an assembly matrix fXij gm�n. The elements of
the fragment assembly matrix, denoted by xij , take values from the alphabet B.
Each row in fXij g contains the ordered sequence of bases and possible gaps in a
particular fragment. The column index j D 1; : : : ; n runs from the leftmost base in
the assembly to the rightmost. We represent the orientation of the i -th fragment in
the assembly by

ri D
�
0 fragment i is in direct orientation,
1 fragment i is in reverse orientation.

The observations fXij g are subject to measurement error. We denote the true base
of fragment i at position j by Yij 2 A . Therefore

Yij D
�
Sj if ri D 0 ;
QSj if ri D 1 :

We denote the compositional probability by ˛a D Pr.Sj D a/; a 2 A .
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1.2.3 Phred Quality Scores

After appropriate preprocessing, each sequencing chromatogram contains a series
of peaks of four colors. The rationale of base-calling is that each peak represents
one base, and the order of peaks from the four channels is consistent with the order
of nucleotide bases on the underlying DNA fragment. In addition to base-calling,
Phred also assigns each base-call a quality score q taking integer values from 0 to
Q (Q is 64 for Phred scores) [5]. Quality scores are based on trace features such
as peaking spacing, uncalled/called peak ratio and peak resolution. The model that
defines quality scores was so trained on a large amount of sequencing traces that the
scores could be interpreted as probabilities. Mathematically, the score is defined by

qij D �10 log10 "ij ; where "ij D Pr.Yij ¤ xij jXij D xij /; (1.1)

namely, "ij is the error probability of base-calling. Randomly select one position
from an assembly and let Y and X be its true base and called base respectively. Let
E be the event that the base-calling is incorrect, namely, E D fX ¤ Y g. Then the
correct calling probability given base a is: 1 � " D Pr.Y D ajX D a/, where
a 2 A . Notice that

Pr.X D ajY D a/ D Pr.Y D ajX D a/Pr.X D a/
Pr.Y D a/ D .1 � "/Pr.X D a/

Pr.Y D a/ :

If the assumption of unbiased base-calling is valid, namely, Pr.X D a/DPr.Y D a/,
then we have Pr.X D ajY D a/ D Pr.Y D ajX D a/ D 1 � ". Consequently, we
are able to interpret the Phred scores as probabilities by:

Pr.Xij D xij jYij D xij / D Pr.Yij D xij jXij D xij / DD 1 � 10�qij =10 :

Even though Phred scores are valuable information for the construction of con-
sensus, they are not the complete picture of measurement error. In general, for
a ¤ b 2 A , we have

Pr.X D bjY D a/DPr.X D bjY D a;E /Pr.E jY D a/ D Pr.X D bjY D a;E / �":

Denote sequencing error rates conditional on event E by w.bja/ D Pr.X D bjY D
a;E / for a ¤ b, and we arrange them in the following table:

w A C G T -
A w.C jA/ w.GjA/ w.T jA/ w.�jA/
C w.AjC/ w.GjC/ w.T jC/ w.�jC/
G w.AjG/ w.C jG/ w.T jG/ w.�jG/
T w.AjT / w.C jT / w.GjT / w.�jT /
� w.Aj�/ w.C j�/ w.Gj�/ w.T j�/

,
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where fw.bja/g satisfy

X
b2A ;b¤a

w.bja/ D 1 and w.bja/ � 0 for b ¤ a:

The sequencing error rates relate to the conditional probabilities as follows.

Pr.X D bjY D a/ D
�
"w.bja/ if a ¤ b ;
1 � " if a D b : (1.2)

Since Phred scores provide only partial information about sequencing error rates, we
need to estimate the rest. For the sake of simplicity, we skip the issue of fragment
orientation when we describe the sequencing error models.

1.2.4 Conditional Sequencing Error Model

Our perspective is to incorporate Phred quality scores into the Churchill-Waterman
model [3]. We first adopt the parameterization in (1.2) to model sequencing error,
and refer to it as the conditional sequencing error model. The parameters � in this
model include the composition probability f˛ag and the conditional sequencing
error rates fw.bja/g. The likelihood of the assembly and underlying sequence is
given by

� nY
jD1

mY
iD1

Pr.Xij D xij jSj I �/
�
�

nY
jD1

Pr.Sj I �/

D
� nY

jD1

mY
iD1

Œ.1 � "ij /
f1.SjDxij /g � .w.xij jsj / � "ij /

f1.Sj¤xij /g�
�
�

nY
jD1

Pr.Sj I �/ :

Since fSj g are missing, we estimate the parameters by the E-M algorithm. The
following form of log-likelihood is easy for imputing the sufficient statistics.

X
a2A

8<
:

X
b2A =fag

� mX
iD1

nX
jD1

1.xij D b; Sj D a/ � logŒw.bja/ �ij �

�

C
� mX

iD1

nX
jD1

1.xij D a; Sj D a/ � log.1 � �ij /

�
C

nX
jD1

1.Sj D a/ log˛a

9=
; :

(1.3)
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1.2.5 Mixture of Logistic Model

From a regression perspective, we take Phred scores as a covariate. Denote

�.bja; qij / D Pr.Xij D bjSj D aI qij /; a; b 2 A : (1.4)

We assume that base-calling error rates follow a logistic form:

log

�
�.bja; q/
�.aja; q/

�
D ˇa;b;0 C

LX
lD1

ˇa;b;l hl .q/ ; b 2 A =fag ;

where each covariate hl .q/ is a function of quality score q and takes the form

hl .q/ D .q � ol/C D
�
0 ; if q � ol ;

q � ol ; otherwise:

Notice that each function has a knot ol , where 0 � o1 < o2; : : : < oL < Q.
Thus each regressor is a piecewise linear function of quality score. It allows us to
approximate any potential nonlinear effect. Equivalently, base-calling rates can be
represented as:

8̂<
:̂
�.bja; q/ D expfˇa;b;0CPL

lD1 ˇa;b;l hl .q/g
1CPc2A =fag

expfˇa;c;0CPL
lD1 ˇa;c;l hl .q/g ; b 2 A =fag;

�.aja; q/ D 1

1CPc2A =fAg
expfˇa;c;0CPL

lD1 ˇa;c;l hl .q/g :

Similarly to (1.3), this parameterization leads to the following form of log-likelihood
function for the assembly and the underlying sequence, up to a term only relating to
parameters.

X
a2A

� X
b2A =fag

mX
iD1

nX
jD1

1.xij D b; Sj D aI qij /

� log
efˇa;b;0C

PL
lD1 ˇa;b;l hl .qij /g

1CPc2A =fag efˇa;c;0CPL
lD1 ˇa;c;l hl .qij /g

C
mX

iD1

nX
jD1

1.xij D a; Sj D aI qij /

� log
1

1CPc2A =fag efˇa;c;0CPL
lD1 ˇa;c;l hl .qij /g

C
nX

jD1

1.Sj D a/ log˛a

�
;

where � represents all the unknown parameters.
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1.2.6 Parameter Estimation and E-M Training Algorithm

In both the conditional sequencing error model and the logistic model, the under-
lying sequence fsj g is unknown. Its reconstruction relies on the estimates of
parameters in the models. On the other hand, algorithms of estimating parame-
ters are well established when fsj g are known. Thus we use the E-M algorithm
to train the model iteratively. In the E-step, we impute the sufficient statistic from
observations at the current parameter value; In the M-step, we update the maximum
likelihood estimate using the current imputed values of missing data. In the case of
the conditional sequencing error model, the parameters are estimated by counting
frequencies. In the case of the logistic model, the likelihood can be decomposed
into five independent logistic regression models; see [18]. Consequently, we run
re-weighted least squares to estimate the parameters [23].

1.2.7 Consensus and Quality Values

According to the logistic model, the distribution of nucleotides at each position is
given by:

Pr.Sj D ajfXij D xij gI fqij g/

D ˛a

Qm
iD1

�
.1 � ri / � �.xij ja; qij /C ri � �. Qxij j Qa; qij /

	
P

b2A ˛b

Qm
iD1

�
.1 � ri / � �.xij jb; qij /C ri � �. Qxij j Qb; qij /

	 :

As shown in the formula, the issue of orientation can generally be dealt with by the
orientation indicators frig and the complementary operator Q . In our convention, we
observe Qxij directly when a fragment is in reverse orientation. After we plug in the
estimated value of � , we define the consensus at one position and its quality score
by maximizing the above probability.

1.2.8 Parsimonious Representation and Model Selection

Although we can include piecewise linear functions at all possible knots in the logis-
tic regression model (1.4), we seek a parsimonious model for several purposes. First,
we would like to avoid potential over-fitting, especially when the size of assembly
is not large. Second, a parsimonious model may give us insights into quality scores.

The selection of knots is nothing but a model selection problem. To compare
different models, we need an evaluation criterion. Based on quality scores, each
fitted model defines a set of error rates, which in turn can be used to construct a
consensus. If the truth is known, we can calculate single base discrepancy (SBD)
for a model, see [7]. SBD is thus one criterion for model comparison.
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A practical solution to model selection ought to be self-evident from data. One
such criterion is BIC (Bayesian information criterion) [22]. It is defined as

BIC D �log-likelihood of assemblyC 1

2
.# parameter/ log.# observation/ :

Namely, BIC penalizes log-likelihood by model complexity in terms of number of
parameter. For a logistic model with L knots, we have 20.LC 1/ parameters. We
calculate the BIC score for each model, and choose the one that minimizes the quan-
tity. The idea is to trade off goodness of fit and model complexity. Computationally,
it is intensive to evaluate every model. We adopt the backward deletion strategy used
in regression analysis to search for the optimal model [23]. This is motivated by the
fact that backward deletion strategy coupled with BIC leads to consistent model
estimates in the case of linear regression [2].

1.2.9 Bias of Quality Scores

If we do not specify data source otherwise, the results reported hereafter are based
on the Campylobacter jejuni sequencing data explained earlier. In the conditional
sequencing error model, quality scores are interpreted as error probabilities of base-
calling. The model that defines the Phred scores is determined from a training data
set, see [5,6]. When the model is applied to sequencing traces obtained under differ-
ent working conditions, scores may deviate from probabilities to some extent. We
examine this issue on sequencing reads from one BAC. After alignment, we count
incorrect base-calls for each value of quality scores – Phred scores take integer val-
ues from 0 to 64. The observed score for predicted quality score q is calculated from
the assembly by:

qobs.q/ D �10 � log10

�
Errq

Errq C Corrq

�
;

where Errq , Corrq are respectively the number of incorrect and correct base-calls
at quality score q. In Fig. 1.2 we plot the observed scores against predicted Phred
scores. When scores are above 55, essentially no error are observed. When scores
are below 20, the prediction is fairly consistent. When scores are between 20 and 55,
Phred scores overestimate probabilities. Thus calibration is desired for the purpose
of improving accuracy of base-calling. Next we apply the logistic model to the data.
Let

�0ij D Pr.Sj ¤ xij jXij D xij ; qij I �/;
where � represents all the parameters. Under the assumption of unbiased base-
calling, we have:

�0ij D 1 � Pr.Xij D xij jSj D xij ; qij I �/ D 1 � �.xij jxij ; qij /:



12 L.M. Li

Fig. 1.2 Observed
sequencing error rates vs.
predicted error rates by Phred
Quality Score

Fig. 1.3 Observed
sequencing error rates vs.
predicted error rates by a
mixture of logistic model

Then we can assign a new quality score to each base-call xij :

q0ij D �10 � log10 �
0
ij :

The bias of this adjusted quality score can be examined by:

qobs.q
0/ D �10 � log10

�
Errq0

Errq0 C Corrq0

�
;

where Errq0 and Corrq0 are respectively the number of incorrect and correct base-
calls at adjusted quality score q0. We plot the observed against the corrected quality
score in Fig. 1.3. Compared with Fig. 1.2, we see that the corrected quality score is
more consistent with the observed quality score. After adjustment, no error occurs
above score value 42.

The CEQ software coming along with Beckman sequencers offer quality values
similar to Phred scores; see [24]. However, their scores are trained from a smaller
data set compared to Phred. Like Fig. 1.2 we plot the observed scores against pre-
dicted CEQ scores in Fig. 1.4. The overestimate pattern is seen across almost the
entire region. Then we apply the adjustment procedure to correct for the obvious
bias. The training data set is about 500 kb. In Fig. 1.5 we plot the observed against
the corrected quality scores.
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Fig. 1.4 Observed
sequencing error rates vs.
predicted error rates by CEQ
Quality Score

Fig. 1.5 Observed
sequencing error rates vs.
predicted error rates by a
mixture of logistic model

1.2.10 Score-Dependent Error Patterns

In the conditional sequencing error model, we assume that the error patterns, or
the conditional error rates, are constant regardless of quality scores. To check the
assumption, we compare the frequencies of each type of sequencing errors at each
quality value ranging from 0 to 64. That is, given a assembly, we calculate the
empirical conditional error rates as follows,

wobs.bjaI q/ D
P

i;j 1.xij D b; sj D a; qij D q/P
c2A =fag

P
i;j 1.xij D c; sj D a; qij D q/ ; a; b 2 A :

When the true base is A, we plot these conditional error rates against quality scores
in Fig. 1.6. It indicates that error patterns do depend on quality scores. After we
fit a logistic model to the assembly, the conditional error probabilities as a func-
tion of quality scores are shown in Fig. 1.7. When quality scores are above 55, no
sequencing error is observed. Thus conditional error patterns make sense only for
scores below 55. Many sequencing projects use the Q20 rule as a rough measure of
the effective length of a DNA read; see [19] for more discussions. Scores below 20
indicate low quality regions. As we can see, error patterns change significantly at
around 20–24. Since we do not have many bases with high scores, the inference in
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Fig. 1.6 Observed
score-wise conditional error
rates. The true base is A

Fig. 1.7 Conditional error
rates predicted from a logistic
model. The true base is A

the high quality range is less reliable than that in the low quality range. When quality
score are below 20, C and G are similar to each other; when the scores are beyond
24, a totally different error pattern is observed. This by-product of the parsimonious
model offers another perspective of the Q20 rule.

1.2.11 Comparison of Different Methods

We have introduced a conditional sequencing model and a logistic model. In the
literature two quite different methods exist to estimate sequencing error rates. On
the one hand, the method proposed by Churchill and Waterman [3] relies only on
an assembly but not quality scores, and we refer to it as the simple probability
model. On the other hand, we can use Phred scores and simply assign equal error
chances among bases. Hereafter we refer to it as the simple quality score method. In
Table 1.1, we compare the performance of these methods on the C. jejuni data set.
The majority rule defines the consensus by choosing the most frequent nucleotide
at each position. Compared with the majority rule, the simple probability model
reduces errors by one quarter, not resorting any other information other than the
assembly itself. The simple quality score method cuts errors to more than half.
The gain is from the training data set that defines Phred scores. The conditional
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Table 1.1 Comparison of different methods. The majority rule is a straightforward counting strat-
egy; The simple probability model is the method proposed by Churchill and Waterman [3]; The
simple quality score method uses Phred scores and assigns equal error chances among bases; Con-
ditional Sequencing model uses Phred scores and estimate error pattern from data by an E-M
algorithm; Logistic Model predicts sequencing errors by Phred scores

Method Single base discrepancy Log-likelihood of assembly

Majority rule 810
Simple probability 591 �339,704
Simple quality score 367 �292,781
Conditional sequencing error 358 �281,411
Logistic (5 knots) 346 �272,341

sequencing error model reduces errors further. And the best result, 346 SBDs, is
achieved by the logistic model with five knots. BIC selects a logistic model with
three knots that has 348 SBDs. The likelihood scores of these models are also shown
in Table 1.1. The likelihood of a model measures its goodness of fit to the data. For
the same data set, we slightly perturb the Phred scores associated with the called
bases, and errors resulted from the simple quality score method increase substan-
tially from 367 to 517 while the performance of logistic method remains almost the
same.

1.3 Reconstruction of Diploid Consensus Sequences
and its Accuracy Assessment

One of the main goals in genome sequencing projects is to determine a haploid
consensus sequence even when clone libraries are constructed from homologous
chromosomes. However, it has been noticed that haplotypes can be inferred from
genome assemblies by investigating phase conservation in sequenced reads. Next
we describe a method that directly seeks to infer haplotypes, a diploid consensus
sequence, from the genome assembly of an organism,

1.3.1 The Probabilistic Model

Consider n potential polymorphic sites andm fragments. The notation in this section
is slightly different from that in last section. We denote two target chromosomes by
S D fSk1Sk2 : : : Skn; k D 1; 2g. Each letter takes values from the alphabet A D
fA;C;G;T;�;Mg, where � denotes an internal gap, and M denotes any sequence
of two or more nucleotide bases. For simplicity, we assume that the genotypes are
independently and identically sampled from the composition probabilities

�.a; b/ D Pr.S1;j D a; S2;j D b/ D Pr.S1;j D b; S2;j D a/; a; b 2 A :
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The origins of the fragments are denoted by F D fFi ; i D 1; : : : ; mg, and they
appear according to Bernoulli trials:

Fi D
�
1 with prob �1 D � ;
2 with prob �2 D 1 � � :

We denote the true bases of the assembly matrix by Y D fYij ; i D 1; : : : ; m; j D
1; : : : ; ng, and they relate to the target haplotype by: Yij D SFi ; j , i D 1; 2. The
observations X D fXij ; i D 1; : : : ; m; j D 1; : : : ; ng are the measurement of Y
via the following random error model:

�ij .bja/ D Pr.Xij D bjYij D a/; a 2 A ; b 2 B;

where B D fA;C;G;T;�;M;�g, the null symbol � denotes any ambiguous deter-
mination of a base or positions beyond the ends of a fragment. The errors can be
categorized as single-nucleotide replacement, single-nucleotide insertion, deletion,
and errors involving multiple nucleotides. Sometimes we drop the subscript of �
when no confusion is incurred. We have assumed that measurement errors occur
independently with identical distribution across the assembly because the notation
is complicated without the assumption. The random fragments are generated either
in the direct or reversed orientation. To deal with the issue, we introduce the com-
plementary letters as follows: QA D T, QT D A, QG D C, QC D G, QM D M, Q� D �,
and Q� D �. In Fig. 1.8, we illustrate the data structure by a hypothetical example.
For the sake of notational simplicity, we skip the issue of orientation and non-
polymorphic sites. The two target chromosomes are shown at the top and bottom
respectively. Six fragments are aligned in the middle.

In reality only the assembly matrix fxij g is observed while the information of
S and F is missing. Thus we need to estimate S and F based on the observations.
Technically, the estimation of S can be based on its conditional distribution given
data: Pr.SjX/. According to the Bayes’ rule, we have

Pr.SjX/ D Pr.X;S/
Pr.X/

; (1.5)

Chromosome 1 A G C C M A G A T T C

Origin 1 A G A C M A G A � � �

2 C C T A � G C T A � �

1 � G C C M A G A T T �

2 C C T A � T C T A G T

2 � C T A � G C T � G T

1 � � � C M A G A C T C

Chromosome 2 C C T A � G C T A G T

Fig. 1.8 An illustrative example of the problem. The two target chromosomes are shown at the
top and bottom respectively. The fifth polymorphic site “M”, in this case, represents “CCC”. Six
fragments are aligned in the middle. In reality, the targets and origins of fragments are not observed
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where Pr.X/ DPS Pr.X;S/. The formula to compute Pr.X;S/ is given by

Pr.X;S/ D Pr.S/ Pr.XjS/ D Œ
mY

iD1

Pr.S1j ; S2j /�Œ

mY
iD1

2X
kD1

�k

nY
jD1

Pr.Xij jSkj /� :

(1.6)
We define the most probable haplotypes by: maxS Pr.SjX/. It is possible that we
cannot determine all the phase information because the coverage and origins of frag-
ments are not strictly uniform across the entire clone. Thus we look for relatively
shorter haplotype segments that exceed some level of confidence. The calculation
of the confidence score for a given haplotype configuration is also based on (1.5)
and (1.6). However, the marginal probability Pr.X/ is the sum of joint probabili-
ties over all haplotypes. The complexity of a straightforward algorithm is O.52n/.
Next we develop an algorithm of linear complexity with respect to the number of
polymorphic sites.

1.3.2 A Markov Structure

We start off with one locus and then move along the chromosome recursively. Sup-
pose we have dealt with k � 1 loci and are considering the k-th locus. We notice
that only fragments that cover the position are relevant. Denote the index set of
those fragments covering the k-th locus by ˝.k/. We note that only these frag-
ments are relevant for the calculation. Let 	.k/ D Sk

jD1˝.j /. We decompose
˝.k/ into four subsets: 
1.k/ includes those fragments covering the k-th locus
but neither the .k � 1/-th nor the .k C 1/-th; 
2.k/ includes those fragments cov-
ering both the .k � 1/-th and k-th locus but not the .k C 1/-th; 
3.k/ includes
those fragments covering both the k-th and .k C 1/-th locus but not the .k � 1/-
th; 
4.k/ includes those fragments covering the .k � 1/-th, k-th and .k C 1/-th
locus. We write � .k/ D 
3.k/

S

4.k/. An illustration of the definition is

shown in Fig. 1.9. It is easy to check that � .k/ D 
2.k C 1/S
4.k C 1/, and
	.k C 1/ D 	.k/

S

1.k C 1/S
3.k C 1/. Figure 1.10 shows how the index

sets evolve as the calculation moves along a clone.
If we compute likelihood iteratively along the chromosome, then we need the

dependence structure of ˝.k C 1/ on 	.k/. According to the definition of � .k/,
we have the following.

Proposition 1 fSk;1 D a1; Sk;2 D a2 ; Fi D fi ; i 2 � .k/g is a Markov chain.

It is interesting to see that the dimension of this state vector varies across loci. We
define

˛k.a1; a2Ifi ; i 2 � .k//
D Pr.Xij D xij ; j D 1; : : : ; k; i D 1; : : : ; mISk;1 D a1; Sk;2 D a2I
Fi D fi ; i 2 � .k// :
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�

�

Sequence
SNP (k-1)-th k-th (k+1)-th

Λ1(k)

Λ2(k)

Λ3(k)

Λ4(k)

Fig. 1.9 Definition of four index sets. � .k/ D 
3.k/
S

4.k/D 
2.k C 1/S
4.k C 1/

k k+1

Λ1(k) Λ1(k+1)

Λ2(k) Λ2(k+1) fragments starting
at k+1-th loci

Λ3(k) Λ3(k+1)

Λ4(k) Λ4(k+1)

Fig. 1.10 An illustration of the recursive structure of the index sets. Formula (1.7) uses this
structure

The hidden Markov model is widely used in many areas such as speech recog-
nition and computational biology because fast algorithms exist for modeling and
decoding. For example, the likelihood of data for a hidden Markov model can
be evaluated by the forward-backward algorithm, whose complexity is linear with
respect to time. The above definition is motivated by the forward-backward algo-
rithm in the hidden Markov model. Based on the above Markov structure, we can
recursively compute ˛k.a1; a2Ifi ; i 2 � .k// as follows.

Theorem 1

˛kC1.a1; a2Ifi ; i 2 � .k C 1// D �.a1; a2/

"
2Y

hD1

�

P
j 2�3.kC1/ 1.FjDh/

h

#
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2
4 Y

j2�1.kC1/

Œ�1 �.xj;kC1ja1/C �2 �.xj;kC1ja2/�

3
5

2
4 Y

j2�3.kC1/

�.xj;kC1jafj
/

3
5
2
4 Y

j2�4.kC1/

�.xj;kC1jafj
/

3
5

2
4 X

fjD1;2; j2�2.kC1/

2
4 Y

j2�2.kC1/

�.xj;kC1jafj
/

3
5 X

b1;b2

˛k.b1; b2Ifj ; j 2 � .k//
3
5

(1.7)

Please notice that if
2.kC1/ is empty, then we skip the corresponding summation
in the formula. If at position d , the set � .d/ is empty, then we have

Pr.Xij D xij ; i D 1; : : : ; m; j D 1; : : : ; d / D
X

a1;a2

˛d .a1; a2/ : (1.8)

The proof can be found in [8]. Despite the appearance of the formula, we can prove
the following result.

Proposition 2 The complexity of the algorithm defined by (1.7) and (1.8) is lin-
ear with respect the number of polymorphic sites. The expected complexity is
proportional to e� , where � is the average coverage.

This is true because in each step of the recursion we deal with one more locus
by (1.7) and keep the state variables f˛k.a1; a2Ifi ; i 2 � .k//g in memory. The
memory size is thus the state dimension, which is not constant along a chromo-
some. Denote the coverage variable by K . Approximately, it follows a Poisson
distribution with the parameter �. On average, the memory size is proportional to
EŒ2K � D EŒelog 2 K � D e� according to the moment generating function of Poisson
distribution.

The peak memory usage is an important issue in practice. Of course, we can
keep the active coverage in some manageable range by randomly skipping some
fragments. Next we evaluate the worst case by the Poisson distribution

Pr.K � m/ D
1X

jDm

�j e��

j Š
:

Let W1;W2; � � � ;Wm be independent and exponentially-distributed random vari-
ables with parameter �. According to the structure of the Poisson process, [21],
the above quantity equals

Pr.K � m/ D Pr.W1 CW2 C � � � CWm � 1/ D
Z 1

o

�mtm�1e��t

.m � 1/Š dt ;
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namely, an incomplete Gamma integral. In the case of Ciona intestinalis shotgun
sequencing, � is seven, and Pr.K � 20/ D 0:000044, Pr.K � 23/ � 10�6. Thus it
is very unlikely that the memory requirement exceeds 220. Our simulations justify
this analysis.

1.3.3 Sequencing Error Rates and Quality Scores

The values of �ij .bja/ are crucial in our reconstruction procedure. If we assume
that base-calling is independent and identically distributed across the assembly and
�ij .bja/ D �.bja/, then we can apply an E-M procedure similar to that in [3] to
estimate them.

Another approach makes use of the quality scores provided by some base-calling
algorithms [5]. We can connect these scores to our model if a valid probabilistic
interpretation is available. First we consider the cases of SNPs. Write

"ij D Pr.Base-call ¤ ajTrue base D a/:

The quality scores are usually given in the following transformed form:

qij D �10 log10 "ij :

Approximately we have

�ij .bja/ D
�
1 � "ij a D b ;
"ij!.bja/ a ¤ b:

The error-bias parameters f!.bja/; a ¤ b; a 2 A ; b 2 Bg can either be set
to some constants or can be estimated from data. In the case of complex indels, we
align an observed sequence with a template, and calculate �ij .bja/ by multiplying
scores from each position. In the haploid case, the last section provided a method to
calibrate quality scores and estimate conditional error probability using mixture of
logistic regressions.

1.3.4 Reconstruction of Diploid Genome

The conditional probability Pr.SjX/ plays a key role in our reconstruction, and we
term it as confidence score. Due to the computational complexity, we proposed a
pairwise strategy to find the most probable haplotype configuration [14]. That is, we
start by considering each adjacent pair. To determine the haplotype for two loci, we
check the odds ratio of the two most probable states and the pairwise confidence
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score. In addition to forward linking of adjacent loci, we also check confidence
scores and adjust solutions in a backward fashion.

Algorithm 1 Reconstruction of haplotype segments

1. For each locus, we report the most probable genotype according to the single
confidence score.

2. For each adjacent pair, we report the most probable haplotypes according to the
odds ratio and pairwise confidence score.

3. Link the haplotype phases obtained in Step 2 and construct haplotype segments.
If inconsistent adjacent pairs occur, then we consider these sites jointly.

4. Evaluate the overall confidence score for each haplotype segment.
5. If the confidence score is below a threshold, we check the pair of loci with the

smallest pairwise confidence score obtained in step 2. Then we compute the over-
all confidence score by flipping the phase between these two loci. If the score
exceeds the threshold, we stop; otherwise we break the segment into two. In this
case, we repeat the step 4 and 5 respectively to these two segments.

In the case that the nominal frequency value is known, we can still use its estimated
value in the calculation of confidence scores to achieve adaptive reconstruction and
consequently to improve accuracy of reconstruction.

1.3.5 Mate-Pair Information and Second-Stage Bridging

The above model applies to the case of two-end sequencing if we assign the letter �
to those un-called bases in the middle of each fragment. However, when we evaluate
the overall confidence score by (1.7) and (1.8), a clone remains active even at those
polymorphic sites between the two ends. This may increase the coverage by several
folds. We notice that the mate-pair information does not provide much extra help in
regions (scaffolds) of high coverage. Thus we skip the mate-pair information in the
first round of Algorithm 1. If two contigs are connected by at least one clone through
mate-pair fragments after the first round, then we apply the algorithm to the two con-
tigs and “bridging” clones, trying to determine the phase. We present some details
in what follows. Suppose one contig consists of two haplotype segments S .L/

1 and

S
.L/
2 , another contig consists of S .R/

1 and S .R/
2 . Two possible phase configurations

between the two non-overlapping contigs are shown in Fig. 1.11 and we denote them
by C1 and C2 respectively. Suppose some clones overlap with one contig at one end
and overlap with another at the other end. Denote these clones by Z D fZi ; i 2 I g.
For each cloneZi , denote by Ji;L the index set of those polymorphic sites that over-

lap with S .L/
1 and S .L/

2 . Similarly we define Ji;R for the polymorphic sites on Zi at
the other end. Thus Zi D fZij ; j 2 Ji;Lg [ fZij ; j 2 Ji;Rg. Then

Pr.ZjC1/ D
Y
i2I

Pr.Zi jC1/; Pr.ZjC2/ D
Y
i2I

Pr.Zi jC2/ ;
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Fig. 1.11 Bridge two contigs by mate-pair fragments. Two possible configurations are shown

where

Pr.Zi jC1/ D 1

2

Y
j2Ji;L

Pr.Zij jS .L/
1j /

Y
j2Ji;R

Pr.Zij jS .R/
1j /

C 1

2

Y
j2Ji;L

Pr.Zij jS .L/
2j /

Y
j2Ji;R

Pr.Zij jS .R/
2j /

Pr.Zi jC2/ D 1

2

Y
j2Ji;L

Pr.Zij jS .L/
1j /

Y
j2Ji;R

Pr.Zij jS .R/
2j /

C 1

2

Y
j2Ji;L

Pr.Zij jS .L/
2j /

Y
j2Ji;R

Pr.Zij jS .R/
1j / :

Based on the calculation, we make the following decision according to a threshold
larger than one: 8̂̂

<̂
ˆ̂̂:

accept C1 if Pr.ZjC1/
Pr.ZjC2/

> threshold ;

accept C2 if Pr.ZjC2/
Pr.ZjC1/

> threshold ;

no decision if otherwise :

We iterate this bridging step to extend haplotype segments.
To evaluate the confidence score of any extended contig, we regard a “bridging”

clone as one single fragment by including its mate-pair information. We emphasize
that the two mate-pair fragments of a clone are not considered jointly if they fall in
the same contig because the extra phase information is negligible in this case. Only
the two mate-pair fragments from a “bridging” clone are treated as linked in formula
(1.7). Thus coverage is not an issue any more.
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1.3.6 Inference of Haplotype Frequency

Next our focus turns to the issue of haplotype frequency. For any fixed value of �, the
recursive algorithm (1.7) and (1.8) allows us to efficiently compute the probability
of the fragment assembly, or the likelihood as called in the inference theory. Denote
the log-likelihood of the observed assembly by

L.�/ D log Pr.XI�/ ;

where X is the assembly matrix. By maximizing the log-likelihood with respect to
the haplotype frequency parameter in the range from 0 to 1/2, we can obtain its
estimate. In general, the maximum likelihood estimate is asymptotically efficient
under regularity conditions. In other word, it is one of the most accurate estimates
in the large sample scenario. Alternatively, if we have several hypothetical values
for the haplotype frequency known from a genomic or genetic context, say, � D
0; 1=4; 1=3; 1=2, then we can select the value that achieves the largest likelihood. In
real genome assembly, we can use the estimate of haplotype frequency to monitor
the existence of misalignment of “bad” fragments.

1.3.7 An Example

Ciona intestinalis is an important organism to study the origins of chordates and
vertebrates. A draft of its protein-coding portion has been reported [4], Its high
polymorphism rate, about 1.2% as reported, makes it an ideal case for reconstructing
haplotypes from shotgun sequencing. To evaluate the proposed methodology, we
simulated contigs according to the parameters obtained from Ciona sequencing.

The simulation was based on the stochastic model proposed in [11]. Denote the
clone length by H . According to the random model, the number of polymorphic
sites in the clone, denoted by N.H/, is a Poisson random variable with the param-
eter �H , where 1=� measure the average inter-arrival distance between adjacent
polymorphic sites. Conditional on the total number, the positions of polymorphic
sites are uniformly distributed along the interval Œ0;H�. We generated random frag-
ments (1.8 � 120 K bp) according to their proportions in the Ciona intestinalis [4]
and simulated two-end sequencing of the fragments. The average sequencing read
was 650 bp, and coverage was seven. To match the polymorphism rate of Ciona
intestinalis, the expected inter-arrival time between potential adjacent loci was set
to be 66 bp. The sequencing error rates were about 4%.

We reconstructed haplotype segments by applying Algorithm 1. In step 2, we
scanned each adjacent pair of loci for significant haplotypes. The threshold was set
as follows: the pairwise confidence score is larger than 0.5 and the odds ratio of
the top two most probable cases is larger than 1.1. We reported outcomes under
two haplotype frequencies, 0.5 and 0.25. The results are shown in Table 1.2. In the
case of r D 0:5, the true positive rate was 97.05%. The percentage of correctly
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Table 1.2 The reconstruction result from a simulation based on Ciona intestinalis. The polymor-
phism rate is 1.2%. The total size of scaffolds is about 60 M bp. To determine the significance of
pairwise comparison, we set the thresholds for pairwise confidence to be 0.5 and odds ratio of the
two most probable cases to be 1.1. The number of polymorphisms in the final report includes sin-
gletons, namely, those single sites that cannot be connected to others. In this case, we report their
genotypes. The true positive rates are for those reported sites, either genotypes or haplotypes. The
last two accounts are the percentage of correctly detected pairs among all the polymorphic sites
generated and average lengths of haplotype segments

Haplotype frequency � D 1=2 � D 1=2 � D 1=4

Mate-pair information w/o mate-pair w/i mate-pair w/i mate-pair

Total # polymorphism 674,246 674,246 671,359
# polymorphism reported (including singleton) 618,034 618,034 554,442
True positive rate (all reported) 97.5% 97.1% 96.1%
Percentage of correctly detected sites 89.4% 89.0% 79.4%
Average segment length 45.4 70.4 31.1

Table 1.3 The reconstruction result from a simulation of a polymorphism rate 0.3%, cf. Table 1.2

Haplotype frequency � D 1=2 � D 1=2 � D 1=4

Mate-pair information w/o mate-pair w/i mate-pair w/i mate-pair

Total # polymorphism 179,686 179,686 180,294
# polymorphism reported (including singleton) 165,188 165,188 151,501
True positive rate (all reported) 98.2% 96.0% 94.5%
Percentage of correctly detected sites 90.3% 88.3% 79.4%
Average segment length 5.1 33.9 19.4

detected pairs among all is 88.96%. We also include results for the case of r D 0:5
without mate-pair information. In the case of haplotype frequency r D 0:25, the
performance was still satisfactory considering the coverage and sequencing error
rates.

1.3.8 A Simulation of Human Diploid Genome

The performance of the method on genomes of less dense polymorphisms is tested
by another simulation. We simulate a situation of a polymorphism rate 0.3%, which
can be found in some regions of Homo sapiens. The results are shown in Table 1.3.

1.3.9 Length of Haplotype Segment and Two-End Sequencing

The gain of two-end sequencing of variable size fragments and the proposed bridg-
ing strategy using mate-pair information can be measured by the average length of
haplotype segment. In the simulation of the Ciona intestinalis genome, on average
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Table 1.4 Error patterns. The polymorphism rate is 1.2% as in Ciona intestinalis

Truth Error type � D 1=2 � D 1=4

Reconstructed Percentage

Heterozygote Heterozygote, one match 1.2 2.8
Heterozygote Wrong phase 1.7 1.2

Total 3.0 3.9

each haplotype segment contains 70.36 polymorphic sites while it contains only
45.43 polymorphic sites without mate-pair information. In the case of 0.3% poly-
morphic rates, on average each haplotype segment contains 33.87 polymorphic sites
while it contains only 5.06 polymorphic sites without mate-pair information. This
shows that two-end sequencing strategy offers significant haplotype information and
the bridging strategy works well.

1.3.10 Error Patterns

We categorize false positive errors in Table 1.4. As we can see, phase errors are rare.
Some errors are of partial genotypes. Namely, one base in a genotype is mistaken
and the other one is correct.

1.3.11 Confidence Scores for Haplotype Segments

The accuracy assessment of haplotype estimation is exemplified in Fig. 1.12. The
estimated haplotype segments can be evaluated by the scores coupled with them. We
checked the consistency of observed probability scores versus nominal scores calcu-
lated by equation (1.8) and recursion (1.7) in Fig. 1.13. When the confidence score is
larger than 0.5, the empirical results are quite consistent with expected ones. When
the confidence score is smaller than 0.5, the empirical error rates are slightly lower
than the nominal ones. This is due to the fact that we reject some phases in the pair-
wise comparison step using a threshold of 0.5. We can correct the bias in the range
of low probability by a straightforward empirical method. We also check confidence
scores of each haplotype segment versus number of polymorphic sites. Most of the
errors occurred in short segments with less than four polymorphic sites due to factors
such as low coverage and relatively large distance from other polymorphic sites.

1.3.12 Gibbs Sampling Algorithm

A more delicate Gibbs Sampling algorithm was used in [9] to maximize the condi-
tional probability Pr.SjX/. We sketch the basic idea as follows. As a matter of fact,
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� Segment 7 starts at 144 and ends at 201 - size: 58 - confidence score: 0.9960188778

Template 1: ATACCTCGTTCCGAATGCGAATACCGCTCAATAC
Template 2: TCCATAATGGTAC – TACACCGGTGTATCTCCGGT
Template 1 (continue): TGAACCTGTAAACCAACGCGTAGA
Template 2 (continue): ACTCGAGAAGTCTGTGAATTGTAG

� Segment 8 starts at 202 and ends at 230 - size: 29 - confidence score: 0.9752074893

Template 1: TAATTACCATAGTGACATCAGTTCAATTT
Template 2: ACGCCGTACCCTCCTA–AGCAAAACGACA

� Segment 9 starts at 231 and ends at 254 - size: 24 - confidence score: 0.6125626073

Template 1: ATGCCAACATTCTCCCCGCAGCTA
Template 2: –GAAATTGTGGTGTTAATTGAGAT

Fig. 1.12 Examples of accuracy assessment. The haplotype segments with positions, sizes, and
confidence scores are produced by our program
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Fig. 1.13 Observed error rates vs. nominal scores calculated by equation (1.8) and recursion (1.7)

the conditional distribution Pr.SjF;X/ is essentially the one-chromosome problem
solved in Churchill and Waterman [3]. We can compute Pr.S;FjX/ by alternating
the following steps:

1. generate s.lC1/ from Pr.SjF D f .l/;X D x/;
2. generate f .lC1/ from Pr.FjS D s.lC1/;X D x/.
As we mentioned earlier, the distribution of Pr.FjS D s;X D x/ is also difficult to
obtain. A remedy is to replace Step 2 by a series of sampling. That is, we update
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one fragment membership while keeping other fragment memberships unchanged,
and carry out the operation through all the fragments.

1.3.13 Diploid Genome of Ciona intestinalis and Comparative
Genomic Studies

We applied the method to reconstruct the diploid genome using the whole-genome
shotgun sequencing data, see http://genome.jgi-psf.org/ciona4/ciona4.download.
ftp.html. Namely, we first align reads to the published reference sequence, and
then apply Algorithm 1 to each scaffold. Figure 1.14 shows a part of one scaffold,
in which nine fragments were aligned; the two targets are shown at the top. Four
polymorphic sites including an indel CCC/--- were observed in this region of
about 40 nucleotides. This is quite typical in Ciona intestinalis genome [4].

We successfully applied the above probabilistic framework and the Gibbs sam-
pling algorithm to reconstruct the diploid genome of Ciona intestinalis from the
shotgun sequencing reads obtained from JGI. The new genomic knowledge is
achieved without any additional penny in wet lab work. According to our recon-
struction, 85.4% of predicted gene sequences are continuously covered by single
haplotype segments. We estimate the polymorphism rate of Ciona intestinalis to
be 1.2 and 1.5%, according to two different polymorphism counting schemes. The
result shows that heterozygosity number in a window of 200 bp is well fitted by
a geometric Poisson distribution. After the publication of the Ciona intestinalis
diploid genome [9], the diploid genome sequences of an individual human were
reported in [12] using a different method.

We also conducted a comparative analysis with Ciona savignyi, and discovered
interesting patterns of conserved DNA elements in chordates, see [9]. Most con-
served elements found in exons are relatively long, while many highly conserved yet

scaffold_1611 #1 aaCgagataatagaatTagaagtgt---atcttcccca-Ccct-t
#2 aaTgagataatagaatAagaagtgtCCCatcttcccca-Acct-t

aaCgagataatagaatTagaagtgt---atcttcccca-Ccct-t
aaCgagataatagaatTagaagtgt---atcttcccca-Ccct-t
aaCgagataatagaatTagaagtgt---atcttcccca-Ccct-t
aaCgagataatagaatTagaagtgt---atcttcccca-Ccct-t
aaTgagataatagaatAagaagtgtCCCatcttcccca-Acct-t
aaCgagataatagaatTagaagtgt---atcttccccacCcct-t
aaTgagataatagaatAagaagtgtCCCatcttcccca-Acct-t
-aCgagataatagaatTagaagtgt---atcttcccca-Ccct-t

atTagaagtgt---atcttcccca-Ccctgt

Fig. 1.14 Part of a scaffold from Ciona intestinalis. Nine fragments were aligned and four poly-
morphic sites were observed. Nonpolymorphic and polymorphic sites are represented by small and
large letters respectively. The two targets are shown at the top

http://genome.jgi-psf.org/ciona4/ciona4.download.ftp.html
http://genome.jgi-psf.org/ciona4/ciona4.download.ftp.html
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relatively short elements are found in intergenic regions. These insights can hardly
be obtained without an accurate haplotype estimation.

1.4 Discussion

1.4.1 Alignment Algorithm

We have observed that different alignment algorithms may produce slightly dif-
ferent assembly matrices. Our adjustment of scores is adaptive to alignment in the
sense that it optimizes performance based on each assembly. When a new alignment
procedure is used, adjustment may change correspondingly.

Phrap (see http://www.phrap.org) examines all individual sequences at a given
position, and generally uses the highest quality sequence to build the consensus.
Phrap also uses the quality information of individual sequences to estimate the
quality of the consensus sequence. In comparison, our method can be used with any
other assembly algorithms. The reconstruction of consensus and definition of qual-
ity value are based on a probabilistic model. It can adjust potential bias of quality
scores in base-calling.

1.4.2 Computing Complexity

In the logistic model, the inner loop computes the parameters in logistic regressions
by either the Fisher scoring method or by the Newton-Raphson method. Both meth-
ods converge quadratically. The outer loop is an E-M procedure, and in general a
E-M algorithm converges at a linear rate. Thus the computing complexity hinges
on the E-M algorithm. Specifically, let �, L, D1, D2 be the coverage, number of
knots, number of the Newton iterations, number of the E-M iterations, respectively,
then the complexity is about O..n� C L3D1/D2/, where n is the size of the tar-
get DNA. Similarly, the complexity for the conditional sequencing error model is
O.n�D/, whereD is the number of the E-M iterations.

1.4.3 Repeat Patterns

We have checked the errors that are left uncorrected by the procedure described in
this chapter. Almost all of them are from regions with repeat patterns. They can be
single-nucleotide, di-nucleotide, or tri-nucleotide repeats. Situations become even
more subtle if two repeats are next to another. In one example, an A is in the mid-
dle of four Cs and is missed. In these cases, it is not appropriate to assume that the

http://www.phrap.org
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sequencing error pattern is independent of local contexts. We are considering more
sophisticated models to deal with regions with repeats. Li and Speed [13, 16] pro-
posed a parametric deconvolution procedure to improve accuracy of sequencing for
regions with repeats.

1.4.4 Size of Training Data Set

We have applied our method to data sets of different sizes. The larger the data set, the
more knots are selected in the optimal model. We can achieve satisfactory training
with an assembly of size 30 kb and a coverage of six. The result is not sensitive to
the “quality” of quality scores. In comparison, the training of Phred scores requires
several hundred million base-calls, and it has been carried out on the sequencing
traces generated from ABI sequencers. It is difficult to obtain reliable quality scores
for other sequencers by the Phred training method if only limited base-calling data
are available. In this situation, we can apply the method proposed in this chapter to
adjust preliminary quality scores obtained under roughly the same condition and get
probabilistically meaningful quality scores. Earlier we reported one such example
that calibrates Beckman CEQ quality scores using 500 kb from an Arabidopsis re-
sequencing project.

1.4.5 Next Generation Sequencing

Quite some yet different new sequencing technologies have emerged recently.
Although the details of the chemistry, physics and molecular biology vary from
one scheme to another, some parts of the mathematical and statistical analysis in
the measurement problems more or less remain unchanged. For example, the color
correction method exploited in the Solexa sequencing adopts the one we originally
developed for Sanger sequencing [15].

The calibration of quality scores and the framework presented in the first
half is applicable to the new-generation sequencing systems, particularly to Illu-
mina/Solexa reads, in which miscalls are the primary base call errors. The Solexa
system produces four scores corresponding to four bases at one position. In fact,
from quality scores our logistic model generates probabilistic calls that include
four components, see Fig. 1.7. The method has several advantages. First we can
allow mismatches in aligning each read to a target genome. Second, based on the
probabilistic model, we can evaluate the chance of each alignment and this may
lead to more accurate results. Even though the reads from SBS systems are short,
the diploid genome framework described in the second half of the chapter is also
applicable to the new generation sequencing, especially with the availability of
paired-end reads.
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Chapter 2
Statistical and Computational Studies
on Alternative Splicing

Liang Chen

Abstract The accumulating genome sequences and other high-throughput data
have shed light on the extent and importance of alternative splicing in functional reg-
ulation. Alternative splicing dramatically increases the transcriptome and proteome
diversity of higher organisms by producing multiple splice variants from different
combinations of exons. It has an important role in many biological processes includ-
ing nervous system development and programmed cell death. Many human diseases
including cancer arise from defects in alternative splicing and its regulation. This
chapter reviews statistical and computational methods on genome-wide alternative
splicing studies.

2.1 Introduction

Alternative pre-mRNA splicing is a prevalent post-transcriptional gene regula-
tion mechanism which has been estimated to occur in more than 90% of human
genes [1,2]. During alternative splicing, multiple transcript isoforms produced from
a single gene can lead to protein isoforms with distinct functions, which greatly
expands proteomic diversity in higher eukaryotes. The alternative splicing of multi-
ple pre-mRNAs is tightly regulated and coordinated, and is an essential component
for many biological processes including nervous system development and pro-
grammed cell death. The phenomenon of alternative splicing was first discovered in
concept in 1978 [3], and was then verified experimentally in 1987 [4]. Alternative
splicing was previously thought as a relatively uncommon form of gene regulation.
With the accumulation of Expressed Sequence Tags (EST) and mRNA data sets,
genome-wide studies on alternative splicing demonstrated that as many as 60%
of the human genes were alternatively spliced [5–8]. The percentage was further
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increased to 90% which was estimated by the most recent high-throughput sequenc-
ing technology [1, 2]. In addition, there is striking variation in alternative splicing
across different tissues or different developmental stages [5]. These results indicate
that alternative splicing plays an important role in increasing functional complexity
in higher organisms rather than the exception in gene expression. With the availabil-
ity of multiple genome sequences and high-throughput techniques, it is feasible to
study alternative splicing on a genomic scale. Here we present an overview of the
statistical and computational studies on alternative splicing, and important findings
and challenges are highlighted and discussed.

2.2 Types of Alternative Splicing

Alternative splicing events can be classified into cassette exon, mutually exclusive
exons, retained intron, alternative 50 splice sites, alternative 30 splice sites, alterna-
tive promoters, and alternative poly-A sites (Fig. 2.1). The most common type of
alternative splicing is including or skipping a cassette exon in the mature mRNA.
A pair of exons can be mutually exclusively spliced with only one exon included in
the mature mRNA but not both. The excision of an intron can be suppressed, which
results in the retention of the entire intron. And exons can be extended or short-
ened through the use of alternative 50 or 30 splice sites. Strictly speaking, alternative
promoters and alternative poly-A sites are alternative selection of transcription start
sites or poly-A sites and are not due to alternative splicing per se. Among these

Cassette exon Mutually exclusive exons

Retained intron

Alternative 5’splice sites Alternative 3’splice sites

Alternative promoters Alternative poly-A sites

Fig. 2.1 Types of alternative splicing events
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alternative splicing events, intron retention is generally the most difficult type to
detect because it is hard to distinguish from experimental artifacts. For instance,
incompletely spliced transcripts contain intron fragments, which could be mistak-
enly considered as intron retention. Many genes have multiple alternative splicing
events with complex combinations of exons, producing a family of diverse transcript
isoforms. For example, in Drosophila melanogaster, gene Dscam can potentially
produce 38,016 different mature mRNAs by different combinations of 95 cassette
exons [9–11].

2.3 Global Identification of Alternative Splicing Events

2.3.1 Identifying Alternative Splicing by Sequence Alignment

One way to identify alternative splicing events is based on the alignment of ESTs
with genomic and mRNA sequences. EST sequences are short fragments of tran-
scribed cDNA sequences, usually 300–400 base pair (bp). They are produced by
shotgun sequencing of one or both strands of a cloned mRNA. About 61 million
ESTs have been deposited in the public dbEST database (dated as April, 2009, all
species). A number of programs have been developed to align ESTs against the
complete genome sequences efficiently. For example, BLAT is a “BLAST-Like
Alignment Tool” which uses a hashing and indexing algorithm [12]. It is about
500 times faster than BLAST for mRNA/DNA alignments. Given the alignments of
ESTs and genomic sequences, we can mark the locations of exons and introns. The
comparisons of exon-intron structures further distinguish the alternative splicing
events. Sometimes, an EST can be mapped to multiple genomic positions with high
alignment scores. These genome alignments can be further corrected by considering
consensus splice sites. For example, alignment tools SIM4 [13], GMAP [14], and
SPA [15] consider GT: : :AG consensus splice sites to generate valid alignments.
Although the sequence alignment approaches have made much progress in alter-
native splicing detection, challenges remain in dealing with non-canonical splice
junctions, detection of small exons, high EST sequencing errors, bias inherent to
EST preparation, and so on. Other limitations include the insufficient sequence cov-
erage for some transcripts and the biased sampling to a limited number of cell and
tissue types.

After the identification of individual alternative splicing events, a more compli-
cated task is the construction of full-length alternatively spliced transcripts. “Splice
graph” has been introduced to facilitate the construction of full-length transcript
isoforms [16–19]. The splice graph represents a gene as a directed acyclic graph in
which exons are represented as vertices and each splice junction is represented as
a directed edge between two exons (see example in Fig. 2.2). Splice variants can
be inferred by graph algorithms to traverse the graph from a start vertex with no
incoming arcs to an end vertex with no outgoing arcs. A large number of potential
splice variants can be enumerated from a splice graph, but many of them may be
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A B C D E F

A B C D E F

Gene structure

Alignment 1

Alignment 2

Alignment 3

Alignment 4

Alignment 5

Splice graph

Fig. 2.2 Splice graph constructed from EST alignments to reference genome. The underlying true
gene structure and the observed evidence alignments are also shown

artificial constructs without biological relevance because exons are not randomly
joined to produce all possible transcript isoforms. Several methods have been pro-
posed to select or prioritize candidate transcripts which are most likely to exist
given the sequence observations. For example, AIR is an integrated software sys-
tem for gene and alternative splicing annotation [16]. It assigns different scores to
different splicing variants based on its support by evidence such as mapping quality,
the length of alignment, accuracy of splice signals, and the level of fragmentation
of evidence alignments. High-scoring splice variants were further selected for the
annotation. ECgene algorithm assesses each possible splice variant based on the
sequence quality and the number of cDNA alignments [18]. Xing et al. applied
the Expectation-Maximization algorithm to identify the most likely traversals based
on the observed number of alignments along the gene [19]. The performance of
these methods is limited by the contamination of ESTs with genomic fragments,
alignment errors, and so on.

2.3.2 Identifying Alternative Splicing by Sequence Content
and Conservation

Because mRNA alternative splicing is a highly regulated process, comparative
genomics can provide us clues about whether there is an alternative exon in sites
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with high selection pressure. Alternative methods have been proposed to predict
alternatively spliced exons based on machine learning algorithms incorporating
features such as sequence content and sequence conservation. Leparc et al. used
splice-site sequence Markov models and a Bayesian classifier to identify cassette
exons from intron sequences [20]. With additional information from sequence con-
servation and phosphorylation or protein-binding motifs, they successfully predicted
and experimentally confirmed 26 novel human cassette exons which are involved in
intracellular signaling. Sorek et al. assembled 243 alternative and 1,753 constitutive
exons that are conserved between human and mouse [21, 22]. They identified sev-
eral features differentiating between alternatively spliced and constitutively spliced
exons. Specifically, alternative exons tend to be smaller, have length that is a mul-
tiple of 3 (to preserve the protein reading frame), have higher sequence identity
between human and mouse sequences, and have higher conservation in the flanking
intronic regions. The most important features are the ones based on the sequence
similarity between human and mouse. Yeo et al. used sequence features to distin-
guish alternative splicing events conserved in human and mouse [23]. Chen et al.
used the Random Forests algorithm to predict skipped exons using features like
position-specific conservation scores [24]. The training data was based on the high-
quality annotation of the Encyclopedia of DNA Elements (ENCODE) regions. The
pilot project of the ENCODE has rigorously identified functional elements in the 1%
region of the human genome. The GENCODE consortium of the ENCODE project
has manually prepared a high-quality annotation for transcripts in the ENCODE
regions. Chen et al. assembled the lists of skipped exons, constitutive exons and
introns as training sets. Using the Random Forest algorithm [25], they were able
to identify skipped exons based on the sequence content and conservation fea-
tures [24]. The Random Forests consist of many decision trees and each tree is
constructed by a bootstrap sample from the original data. A decision tree can be
treated as a set of Boolean functions of features and these conjunctions of features
partition training samples into groups with homogenous class labels. The output of
the Random Forests for each test sample is the class with majority votes from these
trees. The Random Forests generates an internal unbiased estimate of classification
error based on the out-of-bag data during the Forests building process. There is no
need for cross-validation or a separate test data.

As shown in Fig. 2.3, there are dramatic differences in the conservation scores of
the flanking regions of alternative exons and constitutive exons. Alternative exons
have higher conservation level in the flanking intronic regions compared to consti-
tutive exons. These more conserved regions provide good candidates for functional
regulatory motifs. The enriched sequence motifs in these regions may participate
in the alternative splicing modulation which could be different from the regular
splicing process.

Besides the flanking intronic regions, the exonic regions are also involved in the
splicing regulation. However, the comparative genomics studies on exonic regions
are more complicated, because additional selective pressure is imposed on the cod-
ing sequence in order to preserve the protein sequence. It has been shown that the
evolution rate is lower for exon regions near the intron-exon boundaries than the
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Fig. 2.3 Position-specific conservation for the flanking intronic regions of constitutive exons
(black) and alternative exons (grey) (Adapted from [24]). Y axis is the average conservation score
at each position. The error bar indicates the standard error of the mean. Constitutive exons and
alternative exons were assembled from the high-quality annotation of the ENCODE project. The
conservation score is the PhastCon score from the UCSC Genome Browser (http://genome.ucsc.
edu/)

middle part of exons, by estimating the non-synonymous substitution rate and the
synonymous substitution rate from the alignment of human-mouse sequences [26].
The SNP density is the lowest near the splice sites, which also indicates that exon
regions near the splice sites are under higher selection pressure [27]. These findings
suggest that the exon regions near the junctions are involved in splicing regulation.
Further studies are needed to distinguish the selection pressure on alternative exons,
constitutive exons, and amino acid constrains.

2.3.3 Identify Alternative Splicing by Microarray

Although the sequence alignment and the comparative genomics approaches have
made much progress in the prediction of alternative splicing events, they give us
only a qualitative rather than a quantitative view of alternative splicing. They only
provide evidence about the existence of an alternative splicing event, but cannot give

http://genome.ucsc.edu/
http://genome.ucsc.edu/
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information about its temporal and spatial regulation nor the degree of alternative
splicing.

The highly parallel nature of microarray platforms makes it possible to iden-
tify and quantify all of alternative splicing for a specific tissue, developmental
stage, or disease versus normal conditions of the cell. Traditional microarrays are
spotted with EST-derived cDNAs or 30-clustered oligonucleotide sequences rep-
resenting the total transcript abundance. These microarrays are not suitable for
alternative splicing studies and special probes need to be designed instead. For
example, splice junction arrays bear probes spanning annotated exon-exon junc-
tions for individual splice variant. Johnson et al. designed a set of five Agilent
microarrays containing �125,000 different 36-nucleotide (nt) junction probes to
monitor the exon-exon junctions of 10,000 multi-exon Human RefSeq genes across
52 tissues and cell lines [5]. Boutz et al. used splice junction arrays to monitor
the reprogrammed alternative splicing during neuronal development [28]. Besides
splice junction arrays, alternative arrays uses “exon-centric” probes. For instance,
in the design of Affymetrix exon arrays, gene annotations from databases were
assembled to infer transcript clusters and exon clusters. A transcript cluster roughly
corresponds to a gene. In many cases, an exon cluster represents a true biological
exon and it acts as one probe selection region. In other cases, an exon cluster repre-
sents the union of multiple overlapping exons possibly due to alternative splice sites.
Such exon clusters were further fragmented into multiple probe selection regions
according to the hard edges (e.g., splice sites). Multiple probes were designed for
each probe selection region as a probe set. The Affymetrix human exon array (1.0
ST) contains approximately 1.4 million probe sets interrogating over one million
exon clusters. Analysis of alternative splicing in 16 human tissues with these arrays
identified a large number of tissue-specific exons [29]. Yeo et al. used Affymetrix
exon arrays to identify the differential alternative splicing between human embry-
onic stem cells and neural progenitor cells [30]. More recent microarrays include
both junction probes and exon body probes. Castle et al. designed probes targeting
on exons or junctions to monitor 203,672 exons and 178,351 exon-exon junctions
in 17,939 human genes across 48 diverse human tissues and cell lines [31]. In addi-
tion, tiled oligonucleotide arrays spanning whole chromosomes or genomes provide
comprehensive coverage and avoid the need of prior information about exons. How-
ever, this approach is expensive and needs extremely large number of probes. These
microarray designs are summarized in Fig. 2.4. In principle, all data analysis tools
developed for standard gene microarrays can be used in the analysis of alternative
splicing microarrays. The special challenge is how to distinguish splicing signal
from transcription signal. The methods outlined below present some tools that have
been used on the alternative splicing microarray data analysis.

2.3.3.1 Splicing Index

For the alternative splicing microarray analysis, the most straightforward approach
is the splicing index calculation [32]. In the splicing index approach, exon inclusion
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Splice junction array

Exon tiling array

Exon array with junction
and exon probes

Tiling array

Fig. 2.4 Alternative splicing microarrays. Black dot lines represent junction probes. Black solid
lines represent exon probes. For tiling arrays, probes are designed along the genome disregarding
gene structure (grey lines)

rates under two conditions are compared to identify differential alternative splic-
ing events. Gene-level normalized exon intensity is defined as the ratio of the exon
intensity to the gene intensity. For example, the normalized intensity (NI) for exon
i in experiment j is:

NIij D Eij =Gj (2.1)

where Eij is the estimated intensity level for exon i in experiment j and Gj is
the estimated gene intensity. “Gene intensity” here represents the overall transcript
abundance of a gene which may include a family of transcript isoforms. “Gene
intensity” can be estimated by dynamic weighting of the most informative probes.
It is robust to outliers due to alternative splicing. Thus, the contributions from
alternative exons to “gene intensity” are trivial.

A significant difference in the normalized exon intensity indicates that this exon
has different inclusion or exclusion rates (relative to the gene level) between two
conditions. The splicing index for experiment 1 and experiment 2 is defined as:

Splicing index D log2.NIi1=NIi2/: (2.2)

Therefore, an extreme value of splicing index indicates a differential alternative
splicing event.
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2.3.3.2 ANOSVA

Analysis of splice variation (ANOSVA) uses a statistical testing principle to detect
putative splicing variation from expression data [33]. It is based on a two-way
analysis of variance (ANOVA) model:

yijkl D �C ˛i C ˇj C ij C error; (2.3)

where yijkl is the observed log intensity of probe k of probe set i (or exon i ), mea-
sured in experiment j of experiment set l ; � is the baseline intensity level for all
probes in all experiments; ˛i is the average probe affinity of probe set i ; ˇj is the
experiment effect; and ij is the interaction term for probe set i and experiment j .
A large change in splicing will result in a large interaction term ij . However, due
to the limited number of replicates for exon-array experiments and the resultant lim-
ited statistical power, it is difficult to identify interactions. Meanwhile, a significant
interaction term does not necessarily mean a large change in splicing, because the
unfitness of the single-concentration model without the interaction term may be sim-
ply due to the high noise level. Preliminary evaluation of ANOSVA on exon array
data did not yield good performance (Alternative Transcript Analysis Methods for
Exon Arrays Whitepaper, Affymetrix). Therefore, ANOSVA should be used with
caution.

2.3.3.3 FIRMA

Instead of estimating the interaction term ij explicitly, FIRMA (Finding isoforms
using robust multichip analysis) [34] frames the problem of detecting alternative
splicing as a problem of outlier detection. In FIRMA, yijk represents log intensity of
probe k of exon i measured in experiment j (signal has been background-corrected
and normalized). It is modeled as:

yijk D cj C pk C error; (2.4)

where cj is the experiment effect and pk is the probe effect. The residual from the
fitted model is:

rijk D yijk � Ocj C Opk: (2.5)

The residual describes the discrepancy of probe intensity in a given experiment from
the expected expression and gives a measure of the hidden interaction term ij . The
final score statistic is:

Fij D mediank2exon j .rijk=s/: (2.6)

The standard error, s, is calculated by the median absolute deviation (MAD) of the
residuals. Compared with ANOSVA, FIRMA can detect alternative splicing with-
out replicates. And the interaction term is not directly inferred and reflected by a
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robust measure of the residuals instead. FIRMA assumes that the interaction term
has limited effect so that c and p are still well estimated in the model without the
interaction term.

2.3.3.4 DECONV

The above methods target on each individual exon to determine whether it is dif-
ferentially spliced or not. They do not require the whole exon-intron structure of a
gene. A gene may have multiple positions of alternative splicing and the resulted
multiple (>2) splice variants can coexist in the same condition. Another challeng-
ing task is to estimating the relative abundance of each variant in one condition.
Wang et al. developed a gene structure-based splice variant deconvolution method
(DECONV) to estimate the splice variant’s concentration [35]. DECONV assumes
that there is linear relationship between the probe intensity and the target transcript
concentration as proposed by Li and Wong [36]. In the reduced model of Li and
Wong,

yij D PMij �MMij D aixj C "ij ; (2.7)

where yij is the intensity level for probe i in experiment j , ai is the probe affinity,
and xj is the target transcript concentration. DECONV extends the model for
multiple splice variants case:

Y D A �G � TC E; (2.8)

where Y is an I by J matrix with yij representing the intensity for probe i in experi-
ment j , A D diag.a11; : : : ; aII / is the diagonal matrix of unknown affinities for
all of the probes included in the gene; matrix T D fTkj g represents the unknown
concentration of the k-th splice variant in the j -th experiment; the property matrix
G D fgikg relates probes with different splice variants according to whether the
probe belongs to the transcript or not.

gik D 1 if probe i belongs to splice variant k, (2.9)

D 0 if probe i does not belong to splice variant k.

And E is the error term. To estimate the unknown A and T, they minimize the
function:

f .A;T/ D .kY � AGTk2/2; (2.10)

under the constraints:

IX
iD1

a2
i i D constant; (2.11)

ai i � 0; (2.12)

tkj � 0: (2.13)
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The maximum likelihood estimation framework is finally used by iteratively fixing
A and solving for T, then fixing T and solving for A until convergence. DECONV
works well for genes with two transcript isoforms, but is less than perfect for genes
with three or more isoforms. DECONV requires the complete information about the
number and the structure of all possible splice variants for a gene. It is not intended
for the discovery of new splice variants.

2.3.3.5 SPACE

A similar algorithm, SPACE (splicing prediction and concentration estimation), was
proposed to predict the structures and the abundances of transcript isoforms from
microarray data [37]. Besides matrices A and T, they also treated the gene structure
matrix G as unknown. A “non-negative matrix factorization” method was applied
to handle the non-negative constraints and factorize Y into W and H:

YIJ �WIK �HKJ: (2.14)

Remember that Y � A � G � T, so H gives the relative concentration of each splice
variant and W contains information of both probe affinity and gene structure. Specif-
ically, they used the maximum value of each row of the W matrix as the affinity of
the corresponding probe.

ai i D maxk.Wik/ (2.15)

G D A�1W:

Here G will be a matrix whose entries are between 0 and 1. There is a slight change
in the definition of G:

gik D 1 if probe i belongs to splice variant k, (2.16)

D 0 if probe i does not belong to splice variant k,

D ˛ if probe i partially hybridizes with splice variant k.

The authors reported that the estimation of isoform structure and abundance depends
on the number of experiments. When there are only a few experiments (e.g., 5), the
estimation error tends to be high. They also mentioned that the model works better
if the array includes more probes that are able to distinguish different isoforms or if
several different experimental conditions with high variability are considered.

2.3.3.6 GenASAP

Shai et al. developed the GenASAP (Generative model for the alternative splic-
ing array platform) algorithm to infer the expression levels of transcript isoforms
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Fig. 2.5 Custom microarray design for cassette exons. Dot lines represent junction probes. Solid
lines represent exon body probes

including or excluding a cassette exon [38]. This was designed specifically for a
custom microarray in which an exon-skipping event is represented by three exon
body probes and three junction probes (see Fig. 2.5). The probe intensity xi can be
written as:

xi D �i1s1 C �i2s2 C "i ; (2.17)

where xi is one of the six intensity values for the six specially designed probes, s1
and s2 are the two unknown concentrations of the transcript isoforms, �i1 and �i2

are the affinity between probe i and the two transcript isoforms, and "i is the error
term. To account for the scale-dependent noise and the outliers, the above model is
changed to:

xi D .r.�i1s1 C �i2s2 C "i //
1�oi .�i /

oi ; (2.18)

where r is the scale factor accounting for noise levels at the measured intensity, �i

is a pure noise component for the outlier, and oi is the binary indicator whether
the probe measurement is an outlier or not. The conditional probability can be
written as:

P.XjS; r;O/ D
Y

i

N .xi I r.�i1s1 C �i2s2/; r
2 i /

1�oi N .xi I "i ; �i /
oi ; (2.19)

where N .xI�; �2/ indicates the density of point x under normal distribution with
mean � and variance �2. The variance of probe intensity is r2 i . The mean and
variance for outliers are "i and �i . And it assumes independence among probes. The
authors used a truncated normal distribution (ˇ � 0) to satisfy the non-negative
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constraint on isoform abundance and maximized the lower bound of the log likeli-
hood instead of the log likelihood itself during their variational EM learning because
the exact posterior cannot be computed.

GenASAP performs well on the abundance estimation and outperforms many
supervised methods. It has been successfully applied to the analysis of alternative
splicing in mammalian cells and tissues [39, 40]. But it is specific to the focused
probe design. In addition, if a gene has more than one alternative exon and more
than two transcript isoforms consequently, GenASAP cannot distinguish isoforms
which all include the tested cassette exon, neither can it further distinguish isoforms
which all exclude the tested cassette exon.

2.3.4 Identify Alternative Splicing by High Throughput
Sequencing

Recently, high-throughput sequencing based approach (RNA-Seq) has also been
developed to map and quantify transcriptomes. Poly(A)CmRNAs are purified from
cells and fragmented to small size (e.g., �200 bp). Then they are converted into
cDNA and sequenced by the high-throughput sequencing techniques. Sequence
tags or reads (usually about 25� 50 bp for Solexa and SOLid or 250� 400 bp for
454, and the length expected to increase slightly) from the sequencing machines
are mapped to genes and used as a quantitative measure of the expression level.
RNA-seq has been successfully applied to yeast [41,42], Arabidopsis thaliana [43],
mouse [44, 45], and human [1, 2, 46, 47]. For RNA-seq data, inclusion or exclusion
rate of an exon was calculated based on the exon body reads, the flanking inclusion
junction reads, and the exclusion junction reads. For example, Wang et al. used the
“percent spliced in”(PSI or � ) values to determine the fraction of mRNA containing
an exon [1]. The PSI value was estimated as the ratio of the density of inclusion reads
(i.e. reads per position in regions supporting the inclusion isoform) to the sum of the
densities of inclusion and exclusion reads. Pan et al. used the inclusion and exclu-
sion junction reads to quantify the transcript percentage [2]. In their study, the results
from RNA-seq data are consistent with results which are from custom microarrays
mentioned in GeneASAP. The correlation is 0.8 when applying a threshold of 20 or
more reads in one experiment that match at least one of the three splice junctions
representing inclusion or skipping of a cassette exon. The correlation increases to
0.85 when a threshold of 50 or more junction reads is applied.

Besides the analysis at the individual exon level, Jiang and Wong developed a
method to estimate the transcript isoform abundance from RNA-seq data [48]. This
is achieved by solving a Poisson model. Suppose a gene has m exons with lengths
L D .l1; : : : ; lm/ and n transcript isoforms with expressions 	 D .�1; : : : ; �n/. If
two isoforms share part of an exon, the exon was split into several parts and each
part was treated as an exon respectively. The count of reads falling a specific region
s (e.g., an exon or an exon-exon junction) is the observed data Xs. Let w be the
total number of mapped reads. Then X follows a Poisson distribution with mean �.
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When s is exon j , � D lj w
Pn

iD1 cij �i where cij is 1 if isoform i contains exon
j and 0 otherwise. When s is an exon-exon junction, � D lwPn

iD1 cij cik�i where
l is the length of the junction region, and j and k are indices of the two exons
involved in the junction. Assuming the independence among different regions, the
joint log-likelihood function can be written as:

log.L .	jxs ; s 2 S// D
X
s2S

log.L .	jxs//: (2.20)

The isoform abundance �’s can be obtained by the maximum likelihood estimate
(MLE). When the true isoform abundance � is not on the boundary of the param-
eter space, the distribution of O	 can be approximated asymptotically by a normal
distribution with mean 	 and covariance matrix equal to the inverse Fisher infor-
mation matrix I.	/�1. However, in one experimental condition, many isoforms are
lowly expressed and the likelihood function is truncated at �i D 0. The constraints
�i � 0 for all i make the covariance matrix estimated by I.	/�1 unreliable. Instead,
they developed a Bayesian inference method based on importance sampling form
the posterior distribution of �’s. They utilized the RefSeq mouse annotations and
applied their model to a RNA-seq data set. Their results have good consistency with
RT-PCR experiments (Pearson’s correlation coefficient >0.6).

Instead of estimating the isoform abundance in each experiment, Zheng and
Chen proposed a hierarchical Bayesian model, BASIS (Bayesian analysis of splic-
ing isoforms), to identify differentially expressed transcript isoforms between two
experiments. BASIS can be applied to both tiling array data and RNA-seq data [49].
For each probe i that appears in at least one transcript isoform of gene g, consider
the linear model:

�ygi D
X

�ˇgjxgij C�"gi ; (2.21)

where�ygi is the intensity difference between two conditions for probe i of gene g
(�ygi D y1

gi �y2
gi , the intensity is background corrected and normalized),�ˇgj is

the expression difference between two conditions for the j -th transcript isoform of
gene g, xgij is the binary indicator of whether probe i belongs to isoform j ’s exon
region, and�"gi is the error term. Within one data set, g ranges from 1 toG, where
G is the total number of genes; i ranges from 1 to ng where ng is the total number
of probes for gene g; and j ranges from 1 to sg where sg is the total number of
transcript isoforms for gene g. The total �"gi ’s (g D 1; : : : ; G and i D 1; : : : ; ng )
are divided into 100 bins. Each bin contains thousands of probes with similar values.
Because probe intensity variance is dependent on probe intensity mean, probes in the
same bin exhibit similar variances. The same model can be specified for RNA-seq
data with y representing the read coverage over each position.

A hierarchical Bayesian model is constructed as:

�Yg j�ˇg ;˙ g � Nng
.Xg�ˇg ;˙g/; g D 1; : : : ; GI

˙ g 	 diag.�g1; : : : ; �gng
/; �gi D ım if probe (or position) i of gene g 2 binmI
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ım � IG.�=2; ��=2/; m D 1; : : : ; 100I
�ˇg j�g � Nsg

.0;Rg/I
Rg 	 diag.�g1; : : : ; �gsg

/; �gj D �gj if gj D 0 and �gj D  gj if gj D 1I

f .�g/ D
sgY

jD1

p�gj .1 � p/1��gj I

where �Yg , �ˇg , and Xg are matrices with elements described before, �g is a
latent variable, Nng

and Nsg
stand for multivariate normal distributions, and IG

stands for the inverse gamma distribution. Given the isoform amount differences
(�ˇg ) and the probe arrangements (Xg), the probe intensity (or read coverage)
differences (�Yg) follow a multivariate normal distribution with mean Xg�ˇg and
variance ˙ g . For the variance ˙g , specifically, if a probe (or position) is assigned to
bin m, the variance of the intensity (or coverage) difference is ım. ım itself is a ran-
dom variable following an inverse gamma distribution. gj is an indicator whether
the j -th isoform is differentially expressed. When gj D 0, the isoform difference
�ˇgj � N .0; �gj / and when gj D 1, �ˇgj � N .0;  gj /. Here N stands
for normal distribution. �gj was set as a small value so that when gj D 0, �ˇgj

is small enough to be estimated as 0.  gj was set as a large value so that when
gj D 1,�ˇgj is large enough to be included in the final model. Therefore, the
latent variable  can perform variable selection for the linear model. The errors for
probes belonging to the same gene can be heteroscedastic and assigned to different
bins. In the prior distributions for parameters �ˇ; ı;� , there are hyperparameters
.�;  ; �; p/. Model parameters were inferred based on an ergodic Markov chain
generated by the Gibbs sampler.

In summary, a latent variable was introduced to perform direct statistical selec-
tion of differentially expressed isoforms. BASIS has the ability to borrow informa-
tion across different probes (or positions) from the same genes and different genes.
It can handle the heteroscedasticity of probe intensity or sequence read coverage,
and has been successfully applied to a whole-genome human tiling array data and
a mouse RNA-seq data. The authors also found that the power of BASIS is related
to gene structure [49]. Specifically, if a gene has more probes (or positions), the
power of BASIS is larger. If the difference among isoforms is larger, the power
of BASIS is larger. BASIS does not rely on the percentage of isoform-specific posi-
tions, and it considers the joint behavior of positions. The model also depends on the
completeness of the known splicing patterns of each gene. The authors utilized the
Alternative Splicing and Transcript Diversity database [50]. As information accu-
mulates and novel transcript isoforms are discovered, a more accurate and complete
alternative splicing annotation database will further improve results derived from
BASIS.
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2.4 Alternative Splicing Regulation in Eukaryotes

The splicing of pre-mRNA transcripts is carried out by spliceosomes which are
large ribonucleoprotein complexes with more than 100 core proteins and five small
nuclear RNAs [51, 52]. Besides the core splicing factors, there are additional trans-
acting splicing regulators. Consequently, in addition to the core splicing signals
including the 50 splice site (50 ss), the 30 splice site (30 ss), and the branch point
sequence (BPS), there is a large amount of splicing regulatory elements for both
constitutive exons and alternative exons. These splicing regulatory elements (SREs)
can be further classified as exonic splicing enhancers (ESEs), exonic splicing
silencer (ESSs), intronic splicing enhancers (ISEs), or intronic splicing silencers
(ISSs) based on their locations and functions. Due to the selective constraints,
enhancers are expected to play predominant roles in the efficient constitutive splic-
ing, and silencers are expected to play predominant roles in the control of alternative
splicing [53]. Large-scale screens of exonic SREs have been conducted experi-
mentally and computationally. Fewer screens for intronic SREs were performed
although intronic SREs may have a more prominent role in the alternative splicing
regulation because the intronic regions flanking alternative exons are more con-
served than those flanking constitutive exons. Motif discovery methods commonly
used in transcription factor binding motif identification, in principle, can also be
used for the splicing regulatory motif finding. Compared with transcription factor
binding sites, the SREs are usually shorter, more degenerate, and have less informa-
tion content. This poses additional challenges to predict SREs. Similar as the DNA
motifs for transcription factor binding, multiple copies of SREs for a single exon
will increase their effect on splicing regulation [54–58]. Experimental approaches
like cross-linking/immunoprecipitation (CLIP), RNP immunoprecipitation (RIP),
and genomic SELEX were applied to identify the binding sites of RNA-binding pro-
teins. Those approaches can be further extended to genome-wide studies of SREs.
However, similar as transcription factors, the binding of splicing regulators may not
necessarily lead to the regulation.

In the process of alternative splicing, splicing regulators bind to various pre-
mRNAs and affect a large number of exons. Meanwhile the splicing pattern of a
specific exon is determined by multiple pre-mRNA-binding proteins [59,60]. There-
fore, it is particularly interesting and challenging to study how the splicing of a
group of exons is co-regulated; how the splicing of an exon is combinatorially con-
trolled by multiple regulators; and what are the general rules of “splicing code”
(a set of rules that can predict the splicing patterns of pre-mRNAs [60, 61]). In a
recent study of alternative splicing across tissues, association links between genes
and exons were identified through partial correlation studies [62]. This method was
named pCastNet (partial Correlation analysis of splicing transcriptome Network).
These association links can provide information about the regulation relationship
between genes and the splicing of exons. It will help us to understand the gene
regulation at an exon-level resolution.

We first introduce some notations. If the Pearson correlation coefficient is
denoted as rab between variable a and variable b, the first-order partial correlation
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coefficient between a and b conditioning on c is:

rab�c D rab � racrbcq
.1 � r2

ac/.1 � r2
bc
/

(2.22)

The second-order partial correlation coefficient between a and b conditioning on c
and d is:

rab�cd D rab�c � rad �crbd �cq
.1 � r2

ad �c/.1 � r2
bd �c/

(2.23)

In pCastNet, three types of associations will be considered for a pair of genes:
gene-gene (GG) association, exon-gene (EG) association, and exon-exon (EE)
association. For GG association, the Pearson correlation coefficient is calculated
between gene 1 (g1) and gene 2 (g2) and denoted as rg1g2

. For EG association,
considering an exon (e1) of gene 1 and gene 2 (g2), besides the Pearson correla-
tion coefficient re1g2

, the first-order partial correlation coefficient between e1 and
g2 conditioning on gene 1 (g1) is also calculated as re1g2�g1

. The partial correlation
can be interpreted as the association between e1 and g2 after removing the effect of
g1. If the partial correlation is high, the association between e1 and g2 is not due
to the correlation between g1 and g2. For EE association, the correlation between
an exon (e1) of gene 1 and an exon (e2) of gene 2 is calculated as re1e2

. The partial
correlations re1e2�g1

, re1e2�g2
, and the second-order partial correlation coefficient

re1e2�g1g2
can also be calculated to exclude the possibility that the EE correlation

is due to the EG or the GG correlation. In summary, if the p-value for rg1g2
is

significant, a GG link between gene 1 and gene 2 can be declared. If the p-values
for both re1g2

and re1g2�g1
are significant, an EG link between e1 and g2 can be

declared and the association is not due to GG association. If the p-values for re1e2
,

re1e2�g1
,re1e2�g2

, and re1g2�g1g2
are significant, an EE link between the two exons e1

and e2 can be declared, and the association is not due to GG or EG associations.
The authors used the approach proposed by Efron [63] to control the expected

FDR conditioning on a dependence effect parameterA. The sparseness of a network
was estimated according to the conditional FDR and a threshold on the sparse-
ness was then chosen. The sparseness of a network is defined as the percentage of
true links among all possible node pairs. The threshold selection has several advan-
tages: first, the corresponding correlation thresholds are data dependent; second, we
can derive an accurate estimate of the number of falsely declared links taking into
consideration the dependence among hypotheses; and third, we can integrate prior
information about the sparseness of networks if this information is available.

By applying pCastNet to exon arrays in 11 human tissues, the authors found
that gene pairs with exon-gene or exon-exon links tend to have similar functions or
are present in the same pathways. More interestingly, gene pairs with exon-gene or
exon-exon links tend to share cis-elements in promoter regions and microRNA
binding elements in 30 untranslated regions, which suggests the coupling of
co-alternative-splicing, co-transcription-factor-binding, and co-microRNA-binding.
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2.5 Alternative Splicing, Genetic Variation, and Disease

Because of its important role in gene regulation, malfunction of alternative splicing
has contributed to many human diseases [64–66]. Among point mutations associated
with human genetic diseases in the Human Gene Mutation Database, about 9.5% of
them are within splice sites and may cause RNA splicing defects [67]. In addition,
many disease mutations that target synonymous and nonsynonymous amino acid
codon positions often affect the exon splicing and cause function defects. It was
estimated that as many as 50% of disease mutations in exons affect splicing [68].
Differential alternative splicing studies have been performed in many diseases such
as cancers. For instances, altered transcript isoform levels have been detected for
many genes in prostate and breast cancer without significant changes in total tran-
script abundance [69, 70]. In addition, a study of Hodgkin lymphoma tumors using
custom alternative splicing microarrays found that the relative abundance of alterna-
tively spliced isoforms correlates with transformation and tumor grade [71]. These
studies suggest that alternative splicing profiling may provide additional tools for
tumor diagnosis.

Kwan et al. also studied the heritability of alternative splicing in healthy peo-
ple [72]. They investigated the alternative splicing variation among humans using
exon array profiling in lymphoblastoid cell lines derived from the CEU HapMap
population. Through family-based linkage studies and allelic association studies,
they identified marker loci linked to particular alternative splicing events. They
detected both annotated and novel alternatively spliced variants, and that such
variation among individuals is heritable and genetically controlled.

2.6 Online Resources

At the end of this chapter, we provide a list of online databases for alternative
splicing in Table 2.1. These databases collect alternative splicing events in different
organisms or study the effect of alternative splicing on protein structures, RT-PCR,
and so on.

2.7 Summary

Alternative splicing has been realized as one of the most important gene regula-
tory mechanisms. The related research has been reinvigorated by the availability
of large amount of sequence data and high-throughput technologies. Nevertheless,
many important questions regarding the function, the mechanism, and the regulation
of alternative splicing remain unanswered. The statistical and computational analy-
sis of alternative splicing has also emerged as an important and relatively new field.
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Table 2.1 Online databases for alternative splicing

Database Description Link

ASTD [50] human, mouse, and rat http://www.ebi.ac.uk/astd/main.html
PALSdb [73] human, mouse, and worm http://ymbc.ym.edu.tw/palsdb/
SpliceInfo [74] human http://spliceinfo.mbc.nctu.edu.tw/
ASmodeler [75] human, mouse, and rat http://genome.ewha.ac.kr/ECgene/

ASmodeler/
ECgene [76] human, mouse, rat, dog,

zebrafish, fruit fly, chick,
rhesus, and C. elegans

http://genome.ewha.ac.kr/ECgene/

ASG [77] human http://statgen.ncsu.edu/asg/
DEDB [78] fruit fly http://proline.bic.nus.edu.sg/dedb/
EuSplice [79] 23 eukaryotes http://66.170.16.154/EuSplice
ASPicDB [80] human http://t.caspur.it/ASPicDB/
HOLLYWOOD [81] human and mouse http://hollywood.mit.edu
AS-ALPS [82] the effects of alternative splicing

on protein structure,
interaction and network in
human and mouse

http://as-alps.nagahama-i-bio.ac.jp

SpliceCenter [83] the impact of alternative splicing
on RT-PCR, RNAi,
microarray, and peptide-based
studies

http://discover.nci.nih.gov/splicecenter

SpliVaP [84] changes in signatures among
protein isoforms due to
alternative splicing

http://www.bioinformatica.crs4.org/
tools/dbs/splivap/

They will provide valuable information about the precisely regulated alternative
splicing process and help us to advance our knowledge about the post-transcriptional
regulation.
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Chapter 3
Statistical Learning and Modeling of TF-DNA
Binding

Bo Jiang and Jun S. Liu

Abstract Discovering binding sites and motifs of specific TFs is an important
first step towards the understanding of gene regulation circuitry. Computational
approaches have been developed to identify transcription factor binding sites from
a set of co-regulated genes. Recently, the abundance of gene expression data, ChIP-
based TF-binding data (ChIP-array/seq), and high-resolution epigenetic maps have
brought up the possibility of capturing sequence features relevant to TF-DNA inter-
actions so as to improve the predictive power of gene regulation modeling. In this
chapter, we introduce some statistical models and computational strategies used to
predict TF-DNA interactions from the DNA sequence information, and describe
a general framework of predictive modeling approaches to the TF-DNA binding
problem, which includes both traditional regression methods and statistical learning
methods by selecting relevant sequence features and epigenetic markers.

3.1 Introduction

The linear biopolymers, DNA, RNA, and proteins, are the three central molecu-
lar building blocks of life. DNA is an information storage molecule. All of the
hereditary information of an individual organism is contained in its genome, which
consists of sequences of the four DNA bases (nucleotides), A, C, G, and T. RNA
has a wide variety of roles, including a small but important set of functions. Pro-
teins, which are chains of 20 different amino acid residues, are the action molecules
of life, being responsible for nearly all the functions of all living beings and form-
ing many of life’s structures. All protein sequences are coded by segments of the
genome called genes. How genetic information flows from DNA to RNA and then to
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protein is regarded as the central dogma of molecular biology. Genome sequencing
projects with emergence of microarray techniques have resulted in rapidly grow-
ing and publicly available databases of DNA and protein sequences, structures,
and genome-wide expression. One of the most interesting questions scientists try
to answer is to understand the mechanism of transcribing DNA sequence informa-
tion into messenger RNA (mRNA), which is used as templates to produce protein
molecules, and other types of RNA molecules. This process is generally known as
the transcriptional regulation of genes.

A substantial portion of a cell’s morphological and functional attributes is deter-
mined at the level of gene transcription. In eukaryotes, transcription is initiated by
the binding of RNA polymerase II to the core promoters of genes, which reads
the sequence of one strand of the DNA and synthesizes mRNA. The efficiency of
transcription is regulated by proteins called transcription factors (TFs) binding to
their recognition sites located mostly upstream of the genes (promoter regions), but
also not infrequently downstream or intronic regions. Transcription factor binding
sites (TFBSs) are short sequence segments (�8–20 base pairs long) located near
genes’ transcription start sites (TSSs). TFBSs usually show a conserved pattern,
which is often called a TF binding motif (TFBM). Discovering binding sites and
motifs of specific TFs is an important first step towards the understanding of gene
regulation circuitry. In the past two decades, computational approaches have been
developed to identify TFBSs from a set of genes that are possibly co-regulated or
are mutual orthologs from different species. The gene co-regulation information can
be obtained from analyzing mRNA expression microarrays, and orthologous genes
can be detected via comparative genomics approaches. Recently, the abundance
of gene expression data, ChIP-based TF-binding data (ChIP-array/seq), and high-
resolution epigenetic maps have brought up the possibility of capturing sequence
features relevant to TF-DNA interactions so as to improve the predictive power of
gene regulation modeling.

In this chapter, we describe some statistical methods and models used to pre-
dict TF-DNA interactions from the DNA sequence information. Section 3.2 gives
an overview of experimental methods for identifying TF binding sites. Section 3.3
introduces statistical models and computational strategies for finding TF binding
motifs from experimental data. Section 3.4 describes a general framework of pre-
dictive modeling approaches to the TF-DNA binding problem, which includes both
traditional regression methods and statistical learning methods by selecting relevant
sequence features and epigenetic markers. Section 3.5 concludes the chapter with a
brief discussion.

3.2 Experimental Methods for Identifying TF-DNA Interactions

The initial determination of the binding site of a specific TF to a DNA site is
achieved using laboratory assays such as electrophoretic mobility shift assays
and DNase footprinting. However, these experiments can only locate TFBSs on
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a gene-by-gene and site-by-site basis, and are laborious, time-consuming, and
unsuitable for large scale studies.

With the availability of complete genome sequences, biologists can now use tech-
niques such as DNA gene expression microarrays to measure the expression level
of each gene in an organism under various conditions. A collection of expressions
of each gene measured under various conditions is called the gene expression pro-
file. Genes can be divided into clusters according to similarities in their expression
profiles-genes in the same cluster respond similarly to environmental and develop-
mental changes and thus may be co-regulated by the same TF or the same group
of TFs. On the other hand, the complete genome sequences of many organisms
permit comprehensive comparative analysis of genome structures. By utilizing the
fact that the genes that code for the same protein in related species are likely to
be similarly regulated, cross-species comparison provides another means to identify
multiple genes that are likely to be regulated similarly. Computational approaches
have been developed to search for TFBSs in the upstream of genes in particu-
lar clusters revealed by microarray expression analyses or comparative genomic
analyses.

Recent years have seen rapid innovations of TF binding assays such as ChIP-
array/seq and protein binding microarray technology. Chromatin immunoprecipita-
tion followed by microarray (ChIP-array) or massively parallel DNA sequencing
(ChIP-seq) technology can measure where a particular TF binds to DNA in the
whole genome under a given experimental condition at a resolution from a few hun-
dred bases (ChIP-array) to few tens of bases (ChIP-seq). Although computational
analysis is still required to pinpoint the short binding sites of the transcription factor
from all potential TF binding regions, the newly developed technologies can help
quantify the specificity with which TFs recognize their DNA target sites. To allow
for high-throughput characterization of the DNA binding site sequence specificities
of TFs in a rapid and universal manner, a novel DNA microarray-based in vitro
technology, termed protein binding microarrays (PBMs), has been developed [2]. In
PBM assay, epitope-tagged TFs were bound directly to double strand DNA spotted
on a compact, universal microarray that contains all possible sequence variants of a
given length. PBM assays permit the discovery of subtle preferences in transcription
factor binding sites (including interdependencies among different positions) and can
be used with transcription factors from any species regardless of the level to which
its genome has been characterized. However, PBM also has limitations itself. For
example, some transcription factors have to be modified after translation process in
order to potentially interact with DNA and PBM cannot capture such interactions as
an in vitro assay.

Although transcription factors are known to have a high affinity to specific DNA
sequences, DNA sequence alone is a poor predictor of genome wide transcription
factor binding locations. The structure of chromatin is likely to play a significant
role in defining the precise genomic locations that are accessible to transcription
factors for binding. Detailed nucleosome occupancy maps have been generated by
ChIP-array [27] or by ChIP-seq experiments [16]. The characterization of nucleo-
some occupancy dynamics with DNA sequences and the hierarchical organization of
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chromatin enable us to infer cell-type and condition dependent TF-DNA interactions
and their regulatory roles.

3.3 Generative Models for Discovering TF Binding Motifs

The goal of statistical motif finding is to look for common sequence segments asso-
ciated with regulatory or binding response measurements such as gene expression
values or ChIP-array/seq fold changes. In this section, we will introduce a few gen-
erative models of binding motifs, and the block-motif model, a statistical model that
can be handled efficiently by Gibbs sampling to discover TF binding motifs enriched
in a set of sequences. The basic framework can be further extended to integrate com-
parative genomic information, and to jointly model the binding of multiple TFs to
account for their synergistic interactions. Finally, we describe a computational strat-
egy to discover binding motifs from ChIP-array technology by optimizing a scoring
function derived from a generative model.

3.3.1 Motif Formulations and General Discovery Strategies

There are two ways of discovering novel binding sites of a TF: scanning methods
and de novo methods. In a scanning method, one uses a motif representation result-
ing from experimentally determined binding sites to scan the genome sequence to
find more matches. In de novo methods, one attempts to find novel motifs that are
“enriched” in a set of sequences. This section focuses on the latter class of methods.
The de novo methods can also be divided into two classes, according roughly to
two general data formulations for representing a motif: the consensus sequence or a
position-specific weight matrix (PSWM).

The simplest method for finding a motif is to check for the over-representation of
every oligonucleotide of a given length (i.e., every k-mer). However, binding sites of
a TF are usually “very badly spelled”, and can tolerate many “typos”. Hence, degen-
erated IUPAC symbols for ambiguous bases are frequently used in the consensus
analysis. Unlike consensus analysis, which only reflects most frequently occurred
base types at each motif position without an explicit account of frequencies, statis-
tical models based on a probabilistic representation of the preference of nucleotides
at each position is generally more informative. In principle, TF can and does bind
to any DNA sequence with a probability dependent on the binding energy. Thus,
it is desirable to model TF/DNA interaction based on statistical mechanics, which
provides a theoretical support for the use of a probabilistic representation. The most
widely used statistical model of motif is the PSWM, or a product multinomial dis-
tribution [19]. The columns of a PSWM describe the occurrence frequencies of the
four nucleotides in the corresponding motif position. Figure 3.1 shows a convenient
graphical representation of the PSWM: the sequence logo plot, in which the height
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Fig. 3.1 A sequence logo plot from the PSWM of a GATA binding factor

of each column is proportional to its information content and the size of each letter
is proportional to its frequency at that position.

In general, there are two types of approaches for statistical binding motif dis-
covery based on different representations of motifs: those proceed by enumerating
regular expressions, such as YMF [23] and those proceed by iteratively updating
PSWM, such as Consensus [11], MEME [1], and Gibbs motif sampler [15, 18].

3.3.2 A Block-Motif Model for Finding Motifs
in a Set of Sequences

Our focus here is the discovery of binding motifs in a given set of DNA sequences.
The main motivation is that repetitive patterns in the upstream regions of co-
regulated genes may correspond to functional sites to which certain TF binds so
as to control gene expressions.

The problem of motif finding can be formulated as a Bayesian missing data prob-
lem under the block-motif model [19] as shown in Fig. 3.1. The model says that
at “missing” locations, A D .a1; a2; : : : ; ak/, there are repeated occurrences of a
motif. So the sequence segments at these locations should look similar to each other.
In other parts of the sequence, the residues (or base pairs) are modeled as indepen-
dent and identically distributed observations from a multinomial distribution (these
background residues can also be modeled as a kth order Markov chain). The back-
ground frequency �0 D .�0;A; �0;C ; �0;G ; �0;T / can be assumed known, or estimated
from the data in advance because the motif site positions are only a very tiny fraction
of all the sequence positions. For a motif of width w, we let 	 D .�1;�2; : : : ;�w/,
where each describes the base frequency at position j of the motif, and the matrix
	 is the PSWM for the motif. For a particular sequence s of length n, given motif
location a, the likelihood can be written as:

p.sj	;�0; a/ D p.sŒ1W.a�1/�j�0/ 
 p.sŒaW.aCw�1/�j	/ 
 p.sŒ.aCw/Wn�j�0/

D p.sŒ1Wn�j�0/ 
 p.sŒaW.aCw�1/�j	/
p.sŒaW.aCw�1/�j�0/

:
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Fig. 3.2 A schematic plot of the block-motif model

Suppose we are given a set of sequences S D .s1; s2; : : : ; sk/, which share a com-
mon repeated motif. By integrating out 	 after incorporating the prior, we can get
the likelihood for alignment vector:

p.SjA/ D
Z (

kY
iD1

p.si jA; 	;�0/

)
d	:

By assuming a uniform prior on A, two different Gibbs sampling algorithms can
be used to sample from the posterior distribution of A: iterative sampling and pre-
dictive updating. The procedure of iterative sampling proceeds by iterating between
sampling	.t/ from p.	jA;S/ and drawing A.t/ from p.Aj	.t/;S/. The predictive
updating (PU) procedure is based on a “collapsed Gibbs sampler” that integrates out
	 and iteratively updates the aj . More precisely, one can pretend that binding sites
in all but the j th sequence have been found, and predict the binding site’s location
in the j th sequence by drawing a.t/

j from the predictive distribution:

p.aj jA.t�1/
j ;S/ /

wY
iD1

qi;sj;aj Ci�1

q0;sj;aj Ci�1

;

where qi;x D .ci;x C bx/=.
P

x.ci;x C bx//, ci;x is the count of nucleotide type x at
position i , c0;x is the count of nucleotide type x in all non-site positions, and bx is
the “pseudo-count” for nucleotide x.

The above model is not satisfactory in several aspects. First, some sequences
often have multiple motif sites and some other sequences do not have any site at
all. Thus, it is more reasonable to view the dataset as a long sequence that houses
an unknown number of TF binding sites. The above model can be modified by
adding an indicator (possible taking more than two values corresponding to multi-
ple TFs) to each position of the sequences, and following the same predictive update
strategy. Second, the distribution of the known TF binding site locations (e.g., dis-
tances between binding sites and the translation start site) can be formulated as an
informed alignment prior. Third, non-coding sequences are often heterogeneous in
compositions, in which case one needs to use higher-order Markov model or incor-
porate position-specific background model. In addition, the width w of a motif was
assumed to be known and fixed; we may instead view w as an additional model
parameter (in this case jointly sampling from posterior distribution is not easy since
the dimensionality of 	 changes with w).

Further modeling efforts can also be made to incorporate biological consider-
ations. The assumption in the product multinomial model is that all columns of
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a weight matrix are independent. Zhou and Liu [30] extended the independent
weight matrix model to include one or more correlated column pairs. A Metropolis-
Hastings step was added to the original Gibbs sampling algorithm so as to delete or
add a pair of correlated columns periodically.

The main difficulties with motif finding in higher eukaryotes include the
increased volume of the sequence search space, with proximal TFBSs a few kilo-
bases away from the TSSs; the increased occurrence of low-complexity repeats;
the increased complexity in regulatory controls due to TF-TF interactions; and
shorter and less-conserved TFBSs. Despite these challenges, there are two possible
redeeming factors: (i) many eukaryotic genomes have been or are being sequenced,
and comparative genomic analysis can be extremely powerful; and (ii) most eukary-
otic genes are controlled by a combination of a few factors with the corresponding
binding sites forming homotypic or heterotypic clusters known as “cis-regulatory
modules”.

3.3.3 Comparative Genomic Approach for TF Binding Sites
Discovery

Transcription factor binding sites across species are more conserved than ran-
dom background due to functional constraints. With the advent of whole genome
sequencing, computational phylogenetic footprinting methods, involving cross-
species comparison of DNA sequences, have emerged. Traditional “horizontal”
approach requires a set of co-regulated genes to identify common motifs. In con-
trast, phylogenetic footprinting is a “vertical” approach, which uses orthologous
genes in related species to identify common motifs for this gene across multiple
species.

McCue et al. [21] introduced a phylogenetic footprinting method with applica-
tion in proteobacterial genomes. The method begins with E.coli annotated gene, and
applies tBlastn with stringent criteria to identify orthologous genes in eight other
gamma proteobacterial species. Upstream intergenic regions from nine species are
extracted, and a Gibbs motif sampler with the following important extensions is uti-
lized. First, a motif model that accounts for palindromic patterns in TF-binding sites
is employed. Because DNA sequences tend to have varying composition, a position-
specific background model, estimated with a Bayesian segmentation algorithm, is
used to contrast with the motif PSWM. Furthermore, the empirical distribution of
spacing between TF-binding sites and the translation start site, observed from the
E.coli genome sequence, is incorporated to improve the algorithm’s focus on more
probable locations of binding sites. Lastly, the algorithm is configured to detect 0, 1
or 2 sites in each upstream region in a data set. The algorithm is applied to a study
set of 184 E.coli genes whose promoters contain documented binding sites for 53
different TFs. Among the 184 most probable motif predictions, 146 corresponds to
known binding sites. The remaining data sets contain several predictions with larger
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maximum a posteriori probability (MAP) values than the true sites, suggesting the
possibility of undocumented regulatory sites in these data.

3.3.4 Hidden Markov Models for Cis-regulatory Module
Discovery

Transcription regulation is controlled by coordinated binding of one or more tran-
scription factors in the promoter regions of genes. In many species, especially
higher eukaryotes, transcription factor binding sites tend to occur as homotypic
or heterotypic clusters, also known as cis-regulatory modules (CRMs). The num-
ber of sites and distances between the sites, however, vary greatly in a module.
One approach to locating CRMs is by predicting novel motifs and looking for
co-occurrences [23]. However, since individual motifs in the cluster may not be
well-conserved, such an approach often leads to a large number of false negatives.
To cope with these difficulties, one can use Hidden Markov Models (HMMs) to
capture both the spatial and contextual dependencies of the motifs in a CRM and
use MCMC sampling to infer the CRM models and locations [24, 32]. Gupta and
Liu [10] introduced a competing strategy, which first uses existing de novo motif
finding algorithms and/or transcription factor (TF) databases to compose a list of
putative binding motifs, � D f	1; : : : ; 	Dg, where D is in the range of 50–100,
and then simultaneously update these motifs and estimate the posterior probability
for each of them to be included in the CRM.

Let S denote the set of n sequences with lengths, L1; L2; : : : ; Ln, respectively,
corresponding to the upstream regions of n co-regulated genes. Assume that the
CRM consists of K (<D) different kinds of TFs with distinctive PSWMs. Both
the PSWMs and K are unknown and need be inferred from the data. Let a D
faij I i D 1; : : : ; nI j D 1; : : : ; Li g, where aij denotes the location of the j th motif
site (irrespective of motif type) in the i th sequence.

Associated with each site is its type indicator Ti;j , with Ti;j taking one of
the K values and let T D .Ti;j /. The dependence between Ti;j and Ti;jC1 is
modeled by a K 
 K transition matrix �. The distance between neighboring TF
binding sites in a CRM, di;j D ai;jC1 � ai;j , is assumed to follow the distribu-
tion Q.d I�;w/ D .1 � �/d�wC1� .d D w;wC 1; : : :/. The background sequence
follows a multinomial distribution with unknown parameter � D .�A; �C ; �G ; �T /.
Finally, let u be a binary vector indicating which motifs are included in the module,
i.e., u D .u1; : : : ; uD/

T , where uj D 1 if the j th motif type is present in the mod-
ule, and 0 otherwise. By construction, juj D K . The set of PSWMs for the CRM is
then 	 D f	j W uj D 1g.

Since now we restrict our inference of CRM to a subset of �, the probabil-
ity model for the observed sequence data can be written out explicitly as in [10].
To implement the Bayesian analysis, we can prescribe a joint prior distribution on
the unknown parameters, ˝ D f�;�; �;�g, and a prior probability of � for each
uj D 1. A Gibbs sampling approach was developed in [24] to sample both˝ and u
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from their joint posterior distribution. But given the flexibility of the model and the
size of the parameter space for an unknown u, it is unlikely that a standard MCMC
approach can converge to a good solution in a reasonable amount of time. If we
ignore the ordering of sites T and assume components of a to be independent, this
model is reduced to the original motif model, which can be updated through the
previous Gibbs sampling procedure.

The following strategy was developed in [10]. With a starting set of putative
binding motifs �, one iterates the following Monte Carlo sampling steps: (i) Given
the current collection � of motif PSWMs (or sites), sample motifs into the CRM;
(ii) Given the CRM configuration and the PSWMs, update the motif site locations
through Gibbs sampling; and (iii) Given motif site locations, update the corre-
sponding PSWMs and other parameters. Since the construction of a CRM in this
formulation is by using an indicator variable �, it is natural to use a genetic-type
algorithm to speed up computation. So an evolutionary Monte Carlo [17] strategy
was implemented for the module inference, and very good results were obtained for
a range of examples.

3.3.5 Motif Discovery in ChIP-Array Experiments

Chromatin immunoprecipitation followed by mRNA microarray analysis (ChIP-
array) has become a popular procedure for studying genome-wide protein-DNA
interactions and transcription regulation. However, it can only map the probable
protein-DNA interaction loci within 1–2 kilo-bases resolution. Liu et al. [20] intro-
duced a computational method, Motif Discovery scan (MDscan), that examines the
ChIP-array selected sequences and searches for DNA sequence motifs representing
the protein-DNA interaction sites. MDscan combines the advantages of two widely
adopted motif search strategies, word enumeration and position-specific weight
matrix updating, and incorporates the ChIP-array ranking information to accelerate
searches and enhance their success rates.

Consider a set of n DNA sequences selected from ChIP-array experiments,
ranked according to their ChIP-array enhancement scores, from the highest to the
lowest. MDscan first scrutinizes the top t (e.g., 5–50) sequences in the ranking to
form a set of promising candidates. Assuming the protein-binding motif to be of
width w, MDscan enumerates each non-redundant w-mer (seed) that appears in both
strands of the top t sequences and searches for all w-mers in the top t sequences with
at least m base pairs matching the seed (calledm-matches). Them is determined so
that the chance that two randomly generated w-mers are m-matches of each other
is smaller than a certain threshold, such as 2%. For each seed, MDscan finds all the
m-matches in the top t sequences and uses them to form a motif weight matrix. If
the expected number of bases per motif site in the top sequences can be estimated,
the following approximate maximum a posteriori scoring function can be used to
evaluate a matrix:
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where xm is the number of m-matches aligned in the motif, pi;j is the frequency of
nucleotide j at position i of the motif matrix and p0.s/ is the probability of generat-
ing them-match s from the background model. A Markov background model is used
and estimated from all the intergenic regions of a genome. When the expected num-
ber of sites in the top sequences is unknown, the motif matrix can also be evaluated
by:
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After computing the scores for all the w-mer motifs established in this step, the
highest 10–50 “seed” candidate motifs are retained for further improvement in the
next step. In the motif improvement step, every retained candidate motif weight
matrix is used to scan all the w-mers in the remaining sequences. A new w-mer is
added into a candidate weight matrix if and only if the motif score of that matrix is
increased. Each candidate motif is further refined by re-examining all the segments
that are already included in the motif matrix during the updating step. A segment is
removed from the matrix if doing so increases the motif score. The aligned segments
for each motif usually stabilize within ten refinement iterations. MDscan reports the
highest-scoring candidate motifs as the protein-DNA interaction motif. With minor
modifications, MDScan can be also applied to the TF-DNA affinities measured by
protein binding microarrays to discover TF binding motifs.

Jensen et al. [13] provided a perspective of the motif finding problem from the
viewpoint of optimizing a scoring function. Several scoring functions were derived
based on both Bayesian and non-Bayesian arguments, and compared together with
the scoring function used by MDScan. Simulation analyses and a real-data exam-
ple showed that scoring functions resulting from proper posterior distributions, or
approximations to such distributions, showed the best performance and can be used
to improve upon existing motif-finding programs.

3.4 Predictive Models for TF-DNA Interaction

As introduced in the previous section, a widely used model for characterizing the
common sequence pattern of a set of TFBSs is the PSWM. Although statistical mod-
els being employed are already quite intricate, the predictive accuracies of these
PSWM-based methods for TFBSs and CRMs are still not fully satisfactory. It is
extremely difficult to build more complicated generative models that are both sci-
entifically and statistically sound. First, the data used to estimate model parameters
are limited to only several to several tens of known binding sites. With this little
information, it is hardly feasible to fit a complicated generative model that is useful
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for prediction. Second, the detailed mechanism of TF-DNA interaction, which is
likely gene-dependent, has not been understood well enough so as to suggest faith-
ful quantitative models. For example, it is well-known that nucleosome occupancy
and histone modifications play important roles in gene regulation in eukaryotes, but
it is not clear how to incorporate them into a TF-DNA binding model. The predic-
tive modeling approach described in this section explores from a different angle to
address such complications.

3.4.1 Joint Analysis of Sequence Motifs and Expression
Microarrays

A highly successful tactic for TF motif discoveries is to cluster genes based on
their expression profiles, and search for enriched sequence patterns in the sequences
upstream of tightly clustered genes. When noise is introduced into the cluster
through spurious correlations, however, such an approach may result in many false
positives.

Bussemaker et al. [3] proposed a novel method for TFBM discovery via the asso-
ciation of gene expression values with abundance of certain oligomers. They first
conducted word enumeration and then used regression to check whether the genes
whose upstream sequences contain a set of words have significant changes in their
expression.

Conlon et al. [5] presented an alternative approach, MotifRegressor, operating
under the assumption that, in response to a given biological condition, the effect
of a TF binding motif is approximately linear, the strongest among genes with the
most dramatic increase or decrease in mRNA expression. The method combines the
advantages of matrix-based motif finding and oligomer motif-expression analysis,
resulting in a high sensitivity and specificity. MDscan introduced in the previous
section is first used to generate a large set of candidate motifs that are enriched
(maybe only slightly; it is not necessary to be stringent here) in the promoter regions
(DNA sequences) of genes with the highest fold change in mRNA level relative to
a control condition. How well the upstream sequence of a gene g matches a motif
m, in terms of both degree of matching and number of sites, is determined by the
following likelihood-ratio function:

Sm;g D log2

2
4 X

x2Xm;g

P.x from �m/=P.x from �0/

3
5;

where �m is the probability matrix of width, �0 represents the third-order Markov
model estimated from all of the intergenic sequences (or all the sequences in the
given dataset), and Xm;g is the set of all w-mers in the upstream sequence of
gene g. For each motif reported by MDscan, MotifRegressor first fits the simple
linear regression:
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Yg D ˛ C ˇmSm;g C �g ;

where Yg is the log2-expression value of gene g and �g is the gene-specific error
term. The baseline expression ˛ and the regression coefficient ˇm will be esti-
mated from the data. A significantly positive or negative ˇm indicates that motif
m (and its corresponding binding TF) is very likely associated with the observed
gene expression changes.

The candidate motifs with significant p-values (P � 0:01) for the simple linear
regression coefficientˇm are retained and used by the stepwise regression procedure
to fit a multiple regression model:

Yg D ˛ C
MX

mD1

ˇmSm;g C �g :

Stepwise regression begins with only the intercept term, and adds at each step
the motif that gives the largest reduction in residual error. After adding each new
motif m, the model is checked to remove the ones whose effects have been suffi-
ciently explained by m. The final model is reached when no motif can be added
with a statistically significant coefficient. Since the above procedure involves three
steps: motif finding, simple linear regression, and stepwise regression, it is infeasi-
ble to compute statistical significance of the final regression result analytically. A
permutation-type testing procedure was implemented instead.

There are some additional challenges that require for more sophisticated meth-
ods than linear regression, such as nonlinear relationship, large number of possible
variables, and the generation of meaningful variables. Machine learning strategies
like the boosting method [12] have been used to build more accurate binding model
for transcription factors. Zhong et al. [29] proposed to use regularized sliced inverse
regression (RSIR) to select relevant motifs. RSIR assumes that gene i ’s transcription
rate yi and its sequence motif scores xi D .xi;1; : : : ; xi;M /

T are related as:

yi D f .ˇT
1 xi ; : : : ;ˇ

T
k xi ; �i /;

where f .�/ is an unknown (and possibly nonlinear) function, ˇlD.ˇl;1; : : :; ˇl;M /
T ,

are vectors of linear coefficients, and �i represents the noise. The number k is called
the dimension of the model. A linear regression model is a special one-dimensional
case of this model. RSIR estimates both k and the ˇl values without estimating f .�/.
Since many entries of the ˇl;j values are close to zero, which implies that the cor-
responding motif scores contribute very little, only those motifs whose coefficient
ˇl;j is significantly nonzero are retained. Compared with linear regression, RSIR
is efficient in computation, very stable for data with high dimensionality and high
collinearity, and improves motif detection sensitivities and specificities by avoiding
inappropriate model specifications.
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3.4.2 Modeling TF-DNA Interaction and Genome-wide
Occupancy Data

To give a physical view of the predictive modeling approach for TF-DNA bind-
ing, consider a reversible reaction of the TF to a short piece of DNA schematically
represented by

TFCDNA• TF-DNA:

The rates depend on the DNA sequence s. LetKbind.s/ andKdiss.s/ be the sequence-
dependent rate constants for TF binding and for TF dissociation, respectively. If the
binding free energy of a TF to a short stretch of DNA with sequence s is G.s/, then

Kbind.s/

Kdiss.s/
D K exp.�ˇG.s//;

where ˇ D 1=kBT , with kB being the Boltzmann constant and K a constant.
When such a sequence is in a solution containing the transcription factor with the
concentration vTF , the equilibrium probability of it being bound to a TF molecule is

p.s/ D ŒTF-DNA�

ŒTF-DNA�C ŒDNA�
D Kbind.s/vTF

Kbind.s/vTF CKdiss.s/

D K exp.�ˇG.s//vTF

K exp.�ˇG.s//vTF C 1 ;

which can be rewritten in the form of an inverse logit function:

p.s/ D 1

expf.G.s/� �/=kBT g C 1 ;

recognized as the Fermi-Dirac distribution, where � is the chemical potential set
by the TF concentration � D kBT ln.KvTF /. The Fermi-Dirac form of binding
probability tells us that a sequence with binding energy well below the chemical
potential (which depends on the factor concentration) is almost always bound to a
factor. On the other hand, if the binding energy is well above the chemical poten-
tial, the sequence is rarely bound, with the binding probability approximated by
expf.G.s/��/=kBT g. Djordjevic et al. [6] constructed energy matrix for the DNA
binding proteins in E.coli from the known binding sites based on this model.

Recent technologies such as and ChIP-array and protein binding microarrays
(PBM) provide direct and quantitative information about the TF occupancy of large
genomic regions. For each DNA segment s there are two microarray intensities. The
test intensity I test

s is equal to a background intensity ˛test times a term that is propor-
tional to the approximate binding probability (occupancy) expf.G.s/ � �/=kBT g
by the TF, either because the amount of TF bound to the probe contributes directly
to the signal intensity (PBM) or because it determines the proportion at which an
immunoprecipitated TF-DNA fragment is present in the sample (ChIP-array). The
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control intensity I control
s is only the result of background signal ˛control. Thus,

I test
s

I control
s

/ ˛test

˛control
expf.G.s/� �/=kBT g:

Based on this model with a simple assumption that each base within a contiguous
DNA string s contributes independently to the overall Gibbs free energyG.s/, Foat
et al. [7] developed the MatrixREDUCE algorithm, which uses ChIP-array data for
a TF and associated nucleotide sequences to discover the sequence specific binding
affinity of the TF. More recently, Kinney et al. [14] presented a likelihood-based
approach for inferring physical models of TF-DNA binding energy from the data
produced by PBM and ChIP-array data.

The observed intensity ratio gives a noisy measure of the enrichment of the TF-
DNA complex. Assuming an additive error � on the logarithmic scale, we obtain:

log intensity ratio (LIR) D log.I test
s =I control

s / D ˇ0 C ˇ1G.s/C �;

where G.s/ is the energy score of binding site for the TF in the sequence. Suppose
that Y is the observed log-ChIP-intensity and that G.s/ can be written as a function
f of the extracted sequence features x D X1; : : : ; Xp, and then the model becomes:

Y D f .X/C �:

The model above serves as the basis for the predictive modeling framework.

3.4.3 Selecting Sequence Features to Predict TF-DNA
Interactions

By treating gene expression or ChIP-array intensity values as response variables and
a set of candidate motifs (in the form of PSWMs) and/or other sequence features
as potential predictors, predictive modeling approaches infer a statistical relation-
ship between genomic sequences and gene expression or ChIP-binding intensities
through a regression framework, and influential sequence features are identified by
variable selection. Zhou and Liu [31] presented a systematic study of predictive
modeling approaches to the TF-DNA binding problem and examined a few con-
temporary statistical learning methods for their power in expression/ChIP-intensity
prediction and in selection of relevant sequence features.

A critical step that determines whether the method will be ultimately successful
for a real problem is to extract sequence features, that is, to transform the sequence
data into vectors of numerical values. Three categories of sequence features of a
DNA sequence have been entertained: the generic, the background, and the motif
features. Generic features include the GC content, the average conservation score of
a sequence and the sequence length. Background features count the occurrences of
all the 2-mers and 3-mers in a DNA sequence. Motif features of a DNA sequence are
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derived from a precompiled set of TF-binding motifs, each represented by a PSWM.
The compiled set includes both known motifs from TF databases and new motifs
found from the positive ChIP sequences in the data set of interest using a de novo
motif search tool. A heterogeneous (i.e., segmented) Markov background model was
fitted for a sequence to account for the heterogeneous nature of genomic sequences.
Intuitively, this model assumes that the sequence in consideration can be segmented
into an unknown number of pieces and, within each piece, the nucleotides follow a
homogeneous first-order Markov chain, and finally a motif score for a sequence was
defined similar to the likelihood-ratio function used in MotifRegressor.

Zhou and Liu [31] examined a few state-of-the-art learning methods including
stepwise linear regression, neural networks, multivariate adaptive regression splines
(MARS) [9], support vector machines (SVM) [25], boosting [8], and Bayesian
additive regression trees (BART) [4]. These methods are applied to both simu-
lated datasets and two whole-genome ChIP-array datasets. They found that, with
proper learning methods, predictive modeling approaches can significantly improve
the predictive power and identify more biologically interesting features, such as TF-
TF interactions. A special attention is paid to the Bayesian learning strategy BART,
which was demonstrated to have the best overall performance.

In contrast to PSWM-based generative models constructed from biophysics
heuristics, predictive modeling approaches aim to learn from the data a flexible
model to approximate the conditional distribution of the response variable given the
potential predictors. In doing so, they are able to not only pick up relevant sequence
features, but also incorporate other genomic features such as nucleosome occupancy
and histone modification markers.

3.4.4 Integrating Epigenetic Features to Predict TF-DNA
Interactions

Gene activities in eukaryotic cells are regulated by a concerted action of and inter-
action between transcription factors and chromatin structure. The basic repeating
unit of chromatin is the nucleosome, an octamer containing two copies each of
four core histone proteins. Although relatively little is known about the hierarchical
organization of chromatin, nucleosome is now believed to have a role in regulat-
ing transcription by controlling access of transcription factors to the genome. It has
been shown that regulatory elements such as promoters and enhancers are associ-
ated with distinct chromatin signatures and conversely such chromatin signatures
could be used to predict the regulatory elements. Narlikar et al. [22] described a
motif discovery algorithm that employs an informative prior over DNA sequence
positions based on a discriminative view of nucleosome occupancy. When a Gibbs
sampling algorithm is applied to yeast sequence-sets identified by ChIP-array, the
correct motif is found in 52% more cases with informative prior than with the com-
monly used uniform prior. This improvement is expected to be more dramatic as
high-resolution genome-wide experimental nucleosome occupancy data becomes
increasingly available.
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While nucleosome occupancy in promoter regions typically occludes transcrip-
tion factor binding, thereby repressing global gene expression, the role of histone
modification is more complex. Histone tails can be modified in various ways,
including acetylation, methylation, phosphorylation, and ubiquitination. Even the
regulatory role of histone acetylation, the best characterized modification to date, is
still not fully understood. It is thus important to assess the global impact of histone
acetylation on gene expression, especially the combinatory effect of histone acety-
lation sites and the confounding effect of sequence dependent gene regulation and
histone occupancy. Yuan et al. [28] proposed a statistical approach to to evaluate
the regulatory effect of histone acetylation by combining available genome-wide
data from histone acetylation, nucleosome occupancy and transcriptional rate. The
combined transcriptional control by TFBMs, nucleosome occupancy, and histone
acetylation is modeled as follows:

yi D ˛ C
X

j

ˇj xi;j C
X

k

�kzi;k C ıwi C �i ;

where yi is the transcription rate of gene i , the xi;j values are the three histone
acetylation levels (corresponding to H3K9, H3K14 and H4, respectively), the zi;k

values are the corresponding scores to the selected motifs, and wi is the nucleosome
occupancy level. A simple regression of transcription rates against histone acetyla-
tion without considering any other factors gave anR2 of 0:2049, implying that about
20% of the variation of the transcription rates is attributable to histone acetylation.
In contrast, the comprehensive model with all the variables bumped up the R2 to
0:3535, indicating that the histone acetylation does have a significant effect on the
transcription rate, although not as high as that in the naı̈ve model.

Recent mapping of histone modifications using ChIP-array or ChIP-seq tech-
nologies provides an opportunity for predicting TFBSs using an alternative
approach. Won et al. [26] proposed an integrated approach that combines sequence
information and chromatin signatures to predict binding sites of individual TFs.
The proposed method integrates the sequence information and ChIP-seq signals
of histone modifications at promoters or enhancers using a hidden Markov model
(HMM) that was designed to capture characteristic patterns of these signals.

3.5 Summary

This chapter has reviewed a few statistical models used in predicting TF-DNA inter-
actions based on genomic features, the corresponding statistical formulations, and
related computational strategies. Two main modeling strategies have been discussed
here. For a generative modeling approach, separate statistical models are fitted to
TF-bound (positive) and background (negative) sequences, and then the posterior
odds ratio or the likelihood ratio is applied to construct prediction rules. In con-
trast, a predictive modeling approach targets at prediction by modeling directly
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the conditional distribution of TF-binding given extensively extracted sequence fea-
tures. These two approaches have their own respective advantages. If the underlying
data generation process is unclear or difficult to model, predictive approaches have
the advantage to construct an informative conditional distribution from the train-
ing data. On the other hand, generative models are usually built with more explicit
assumptions that help us understand the underlying science and can capture key
characteristics of a biological or physical system.

Our main goal here is to introduce several effective statistical tools for combing
high-throughput experimental data (expression microarray, ChIP-array/seq, pro-
tein binding microarray) with genomic sequence and epigenetic data to tackle the
protein-DNA binding problem. Along this direction, we have introduced a general
framework to explore and characterize potentially influential factors. The finding
that an integrated model can significantly improve the predictive power indicates
potentially important yet less understood roles different genomic factors play in
TF-DNA interactions. With the rapid accumulation of large-scale genomic data,
we believe that more flexible statistical methods integrating generative and predic-
tive models will be very useful for studying a large class of biological problems
including TF-DNA interaction.
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Chapter 4
Computational Promoter Prediction
in a Vertebrate Genome

Michael Q. Zhang

Abstract Computational prediction of vertebrate gene promoters from genomic
DNA sequences is one of the most difficult problems in computational genomics,
but it is essential for understanding genome organization, improving gene anno-
tation and for further comprehensive studies of gene expression and regulation
networks. The advent of new genomic technologies has ushered forth the era of
deeper understanding of molecular biology at systems level, more accurate and
diverse large-scale molecular data have been fueling the development of new
predictive methods and computational tools in this rapidly moving field. In this
chapter, I will give an introduction on structure and function of promoters in typi-
cal vertebrate genes, as well as experimental methods for determining them. I then
describe generic statistical methods for promoter prediction and a few computa-
tional approaches as examples. I will further review and update on more recent
advances in promoter prediction methodologies and give a future prospect in the
conclusion.

4.1 Biological Background on Promoter Structure
and Function

In this chapter, we mainly focus on protein coding gene promoters. We will briefly
mention miRNA gene promoters in the end because they have become increasingly
important and majority of them are also transcribed by polymerase II.

According to the central dogma, during gene expression process, each protein
gene in the genome must be first transcribed into pre-mRNA transcripts before
they can be further processed into mRNAs and transported out of the nucleus into
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cytoplasm for protein translation. The first base pair in the DNA corresponding
to the beginning of a pre-mRNA transcript is called TSS (Transcriptional Start
Site), the promoter that can “drive” the transcription of its target gene is loosely
defined by a piece of DNA region (500� 2 kb) around the TSS. We need to make
three remarks: (1) Since a typical promoter can drive transcription at multiple TSSs
(strictly speaking, each promoter can drive a distribution of TSSs), for simplicity,
when we say a TSS, it should generally be understood as a typical or the median
of the TSS distribution. (2) Each gene can have multiple promoters (actually most
of the human genes do), different promoters must have minimum inter-distance
(�500 bp in human) apart and we will briefly discuss alternative promoter prediction
in the end. (3) Some people also refer more extended region (2� 10 kb) as promot-
ers that also contain the enhancers that can activate (or de-repress) the promoter.
Since the enhancers that are required for precise in vivo gene expression pattern can
be even farther away and in both upstream and downstream of TSS, computation-
ally it is convenient (and often necessary) not to include any such distal enhancers
as part of promoter definition. Even with 2 kb definition, a promoter may already
contain some functional enhancers. People often refer (200 bp–1 kb) promoters as
the proximal promoters.

4.2 Core-Promoter Structure and Function

Computationally, it often refers (�80–100 bp) region centered at a TSS as the core-
promoter. It can be defined operationally in vitro by a minimum piece of DNA
that is required for the assembly of the pre-initiation complex (PIC) and can drive a
reporter gene transcription specifically from the TSS at a basal level. Since promoter
is the cis-control and regulatory region for the target gene, the most distinguishing
property is that it contains many transcription factor binding sites (TFBSs). In partic-
ular, a core-promoter is often “packed” by such functional elements, many of which
are bounded by general transcription factors (GTFs). Some core-promoter ele-
ments are well-known, including the TATA box, the initiation (Inr), the downstream
promoter element (DPE), the TFIIB recognition elements (BRE), the motif-ten-
element (MTE), downstream core element (DCE), XCPE1 and XCPE2, the latter
ones are not present in a large number of genes. Each such element has a spe-
cific, albeit degenerate, DNA sequence pattern (motif), together they form the basis
for promoter recognition molecularly through protein-DNA interactions. The func-
tion of core-promoter is to recruit polymerase II at TSS and to initiate target gene
expression in response to regulatory signals.
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4.3 Typical Experimental Methods for Identification
of Promoters

4.3.1 Nuclease S1 Protection and Primer Extension Assays

These methods are considered as highly accurate experimental assays for TSS map-
ping. The endonuclease S1 is an enzyme from the mold Aspergillus oryzae which
cleaves single-stranded RNA and DNA but not double-stranded molecules. In order
to map the TSS for a gene by nuclease S1 protection, a genomic DNA clone sus-
pected of containing the start site is required. The DNA clone is then digested with
a suitable restriction endonuclease to generate a fragment that is expected to contain
the TSS. As shown in Fig. 4.1a, hybridization to the cognate mRNA and S1 nuclease
digestion defines the distance of the TSS from the unlabeled end of the restriction
fragment. If more precise localization is required, the labeled DNA fragment in the
heteroduplex can be sequenced.

The primer extension method is very similar to the nuclease S1 protection
method. In this case, the chosen restriction fragment must be shorter than the mRNA
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Fig. 4.1 Nuclease S1 protection (a) and primer extension (b)
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and the overhang is filled in using reverse transcriptase (Fig. 4.1b). Again a more
accurate location is possible by sequencing the labeled DNA strand.

4.3.2 50-RACE-PCR and Cage -Tagging

One popular method of obtaining cDNA end sequences is the RACE (rapid ampli-
fication of cDNA ends) technique. RACE-PCR is an anchor PCR modification of
RT-PCR. The rationale is to amplify sequences between a single previously char-
acterized region in the mRNA (cDNA) and an anchor sequence that is coupled to
the 50 or the 30 end. A primer is designed from the known internal sequence and the
second primer is selected from the relevant anchor sequence (see Fig. 4.2, similarly,
30 RACE-PCR may be used to map 30UTR end of a mRNA).

CAGE (Cap Analysis Gene Expression) relies on a cap-trapper system to cap-
ture full-length RNAs while avoiding rRNA and tRNA transcripts. First, an oligodT
primer is used to reverse-transcribe poly-A terminated RNAs. Alternatively, a

Fig. 4.2 RACE-PCR methods
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Fig. 4.3 Deep-CAGE sequencing (Dr. Piero Carninci at Riken, Japan, gave me one of his slide
from his talk)

random primer can be used for RNAs without a poly-A tail, which may constitute
almost half of the transcriptome. RNA/DNA double-stranded hybrids that contain a
mature mRNA are selected by biotinylating their 50 cap structure, allowing capture
by streptavidin-coated magnetic beads. Ligation of a linker sequence containing an
MmeI recognition site to the 50 end of the full-length cDNA creates a restriction
site about 20 nucleotides downstream, producing a short CAGE tag starting at the 50
end of mRNAs. These tags are amplified by PCR. Traditionally such amplified short
tags are concatenated (like SAGE tags) for conventional Sanger or 454 sequencing,
more recently they are directly sequenced by next-generation sequencer, such as
Illumina/Solexa sequencer.

4.3.3 ChIP-chip and ChIP-seq

TSS may also be approximately localized by mapping promoter binding proteins
(e.g. polII itself, TAF1, H3K4me3). ChIP-on-chip (also known as ChIP-chip) is a
technique that combines chromatin immunoprecipitation (“ChIP”) with microarray
technology (“chip”). Like regular ChIP, ChIP-on-chip is used to investigate inter-
actions between proteins and DNA in vivo. Specifically, it allows the identification
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of the cistrome, sum of binding sites, for DNA-binding proteins on a genome-wide
basis. Whole-genome analysis can be performed to determine the locations of bind-
ing sites for almost any protein of interest. As the name of the technique suggests,
such proteins are generally those operating in the context of chromatin. The most
prominent representatives of this class are transcription factors, replication-related
proteins, like ORC, histones, their variants, and histone modifications. The goal
of ChIP-on-chip is to localize protein binding sites which may help in identifying
functional elements in the genome. ChIP-Seq technology is currently seen primarily
as an alternative to ChIP-chip which requires a hybridization array. This neces-
sarily introduces some bias, as an array is restricted to a fixed number of probes.
Sequencing, by contrast, is thought to have less bias, although the sequencing bias
of different sequencing technologies is not yet fully understood. Massively parallel
sequence analyses are used in conjunction with whole-genome sequence databases
to analyze the interaction pattern of any protein with DNA (see [15]).

4.4 Computational Methods for Promoter Prediction

The simplest method for promoter prediction is to sequence and to map a full length
cDNA by alignment to the genome, this has been used as the “gold standard” for
bench-marking or validating all de novo promoter prediction results in large-scale
genomic studies. Since many cDNAs are not known, computational prediction is
still valuable in practice; even if we can map experimentally all promoters some
day, we still would not understand what determine a functional promoter unless we
have mathematical models that can accurately predict it. The de novo identification
of promoters has been a challenging problem. A two-step approach to promoter
recognition and TSS mapping may be necessary: initial identification of a func-
tional promoter in a roughly 2-kilobase (kb) region and further prediction of a TSS
within a 50 bp region. The first step is on a larger scale, in which coarse-grained
measures such as CpG islands, nucleosome binding, chromatin modification, down-
stream coding propensity, and transcription factor density should be very useful. The
second step is on a finer scale that needs more detailed features, such as distance-
specific TFBS correlations, to best discriminate the precise TSS region from its
surroundings. Recent advances in experimental technologies provide an ideal situa-
tion to revisit this two-step strategy. For example, results from Pol II ChIP-chip or
H3K4me3 ChIP-seq analysis can help to focus the search. A core promoter predic-
tion program can be subsequently used to map the TSS finely. With progress in both
experimental and computational technologies, the accuracy and resolution of TSS
predictions can be further improved by combining these complementary methods.

By now, many computational methods for promoter prediction have been pro-
posed. The underlying principle of these methods is that promoter regions have
some characteristic features (both genetic and epigenetic) that make them distinct
from nonpromoters. Predictive models using these features to discriminate promot-
ers from nonpromoters are built largely by machine learning or statistical methods
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and then used to search/scan for new promoters in an input DNA sequence. Many
of these methods are reviewed and compared in several recent reports [1, 2, 21, 22].
Although there has been much success in locating the TSSs for CpG-related promot-
ers, the performance for non-CpG-related promoters (about 25% of known genes) is
still not satisfactory because of the diverse nature of vertebrate promoter sequences.
Here we choose to introduce three machine learning based methods: Eponine [7],
ARTS [18] and CoreBoost [23].

4.4.1 Eponine

In Eponine model, the authors generalize a position weight matrix (PWM) by a
linear “convolution” over all possible positions with respect to the TSS:

F.i; S/ D log
C1X

jD�1
P.j / �W.aC i C j IS/

where P.j / is a discrete probability distribution; W.x; S/ is a PWM, aligning
the first column to position, relative to the TSS; and i is the position of the true
TSS during training, and is varied along the length of the sequence when scanning
a sequence with the trained model. Since linear combination of such positioned
matrix scores is equivalent to the well known generalized linear model (GLM) form
[14] and such models can be trained using established relevance vector machine
(RVM, [19]) procedures, the authors built Eponine classification models by their
own implementation of RVM. In order to analyze promoters, it is necessary to
explore an extremely large model space of possible weight matrices and position
distributions. To facilitate this, the RVM implementation was expanded to allow
sampling from this large rule space. The working set is initialized with weight
matrices of lengths 4–8, selected at random, and with random, Gaussian position
distributions. As rules in the initial working set are discarded by the pruning algo-
rithm, new examples are added. These may be produced by the same logic used to
initialize the working set, or represent small changes to existing rules. In Eponine
implementation, the allowed sampling moves are as follows: (1) adjust the center
position of a distribution; (2) adjust the width parameter of a position distribution;
(3) adjust the weights in a DNA weight matrix; (4) construct a new DNA probability
distribution at random, then add it as a column at one end (randomly chosen) of a
weight matrix; and (5) remove a column from one end of a weight matrix. This gives
a hybrid machine-learning approach, combining the RVM with elements of a Monte
Carlo sampling approach. Using this hybrid method, a model can be efficiently built
from a large space of potential candidate rules.

Eponine models trained on 599 selected mouse full length cDNAs can give
simple interpretations (Fig. 4.4). These models consist of four elements: (1) a
diffuse preference for CpG enrichment downstream of the start site. This corre-
sponds with the observation that most promoters are associated with a CpG island;
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Fig. 4.4 Schematic of Eponine core promoter model, showing the constraint distributions and
weight-matrix consensus sequences (the triangle points to the position of TSS) [7]
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and relative position, where long matches contribute more significantly [18]

(2) a TATAAA motif, with a tightly focused distribution centered at position �30
relative to the transcription start site. This corresponds to the widely reported TATA
box and (3 and 4) two GC-rich matrices closely flanking the TATA box.

4.4.2 ARTS

ARTS identifies the TSS through constructing special sub-kernels of Support Vector
Machines (SVMs) to combine (both position specific and non-specific) k-mers and
other structure features such as twisting angles and stacking energies of the DNA
sequence. ARTS consists of five sub-kernels: (1) the extended Weighted Degree
kernel with shift (WDs) to capture core promoter sequence elements near a TSS
that can have variable lengths and distances to the TSS (Fig. 4.5); (2) a spectrum
kernel on a few hundred bps upstream of the TSS to capture certain k-mers that
are over- or under- represented (“content sensors”); (3) a similar spectral kernel for
the do
(4) tw
TSS (
dinucl

AR
sub-ke
that ca
on DN
wnstream 50UTRs as well as further downstream introns and coding regions;
o linear kernels to capture three-dimensional DNA structure patterns near the
one for twisting angles and another for stacking energies, both depending on
eotides and smoothed by sliding windows).
TS uses a linear (equally weighted) combination of these five (normalized)
rnels as the final model. All considered kernels correspond to a feature space
n be extremely high dimensional. For instance in the case of the WD kernel
A sequences of length 100 with the maximum k-mer length K D 20, the



4 Computational Promoter Prediction in a Vertebrate Genome 81

corresponding feature space is 1014 dimensional (one feature per position and possi-
ble k-mer, 1 � k � K). The authors solved such technical challenges by developing
novel and efficient training and evaluation algorithms using suffix trees and made
such computational expensive SVM application practically possible. They claimed
ARTS finds about 35% true positives at a false positive rate of 1=1;000, where
the other methods (McPromoter, Eponine and FirstEF) find only about 18%. Since
ARTS uses only downstream genic sequences as the negative set (non-promoters),
and therefore it may get more false-positives from upstream non-genic regions. Fur-
thermore, like Eponine, ARTS does not distinguish if a promoter is CpG-island
related or not and it is not clear how ARTS may perform on non-CpG-island related
promoters.

4.4.3 CoreBoost

Boosting [6, 9, 13, 17] has been applied successfully to a wide variety of classifica-
tion problems. It combines many weak classifiers to boost the performance of the
final classifier. If we denote the training data as .x1; y1/; : : : ; .xn; yn/, which are
independently and identically distributed realizations of random variables .X; Y /,
where X is the feature vector in Rp, Y is the class label from the set f�1; 1g, and n
is the sample size. Denote f .x/ a binary classifier:

f W Rp ! f�1; 1g

The classifier that minimizes the misclassification risk P.f .X/ ¤ Y / is called
Bayes classifier:

f .X/ D
�
1 P.Y D 1jX/ > P.Y D �1jX/
�1 otherwise.

Denote the ensemble of weak classifiers as follows:

F.x/ D
MX

mD1

cmfm.x/

where fm.x/ is the mth weak classifier and cm are constants. At each iteration m,
the observations misclassified at the .m � 1/th iteration are given higher weights
for the current iteration. The final ensemble is a weighted majority vote of M weak
classifiers (sign [F.x/]). CoreBoost uses stumps as weak classifiers. A stump is a
special type of decision tree [3] with only two terminal nodes. The boosting algo-
rithm sequentially builds a series of stumps, each trained on reweighted samples.
The ensemble of trees has been shown to perform much better than single tree or
trees trained independently. For the re-weighting and aggregation, we implement the
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Fig. 4.6 LogitBoost algorithm with trees

LogitBoost algorithm [6], which minimizes the negative of binomial log-likelihood
as the loss function. This loss function decreases linearly with yF.x/ for misclassi-
fied samples and thus is more robust when mislabelled training data are present.
The LogitBoost algorithm with decision trees as weak classifiers is outlined in
Fig. 4.6. The number M of weak classifiers is determined by using cross-validation.
Let y� D .y C 1/=2, taking values from f0; 1g. LogitBoost directly estimates the
posterior class probability:

P.Y D 1jX D x/ D eF .x/

eF .x/ C e�F .x/

This is used in the calculation of probability profiles in CoreBoost.



4 Computational Promoter Prediction in a Vertebrate Genome 83

4.4.3.1 Multiclass Classification Using Binary Classifiers

In the application of LogitBoost to the prediction of promoters, there are three
classes of outcomes: the promoter (P), its immediate upstream sequence (U), and
its immediate downstream sequence (D). Instead of the usual way of combining the
upstream and downstream sequences into one class, one can reduce this three-class
problem to two binary ones: one comparing the promoter class against the upstream
and the other comparing it against the downstream. The reason is that upstream and
downstream sequences are very different from each other. Separate classifiers can
pick up the most discriminative features for classifying promoters against upstream
or downstream sequences. If we denote the following as the probability of Y belong-
ing to the promoter class based on the binary classifier discriminating promoters
from the upstream and from the downstream, respectively:

p1 D P.Y 2 P jX;P;U / and p2 D P.Y 2 P jX;P;D/

The probability p of Y belonging to promoter class in the three-class setting can
be calculated as follows:

P.Y 2 P jX;P;U;D/ D P.Y 2 P jX/
P.Y 2 P jX/C P.Y 2 U jX/C P.Y 2 DjX/

D 1
1

p1
C 1

p2
� 1 D

p1p2

p1C p2 � p1p2

CoreBoost uses both immediate upstream and downstream fragments as negative
sets and trains separate classifiers for each before combining the two. Exten-
sive experiments showed that better classification accuracy results from use of
two binary classifiers rather than one combining the upstream and downstream
sequences. It has a false positive rate of 1=5;000 at the sensitivity level of finding
35% true positives. The training sample consists of 300 bp fragments .�250;C50/,
hence it is more localized than ARTS which has training sample of 2 kb fragments
.�1kb;C1kb/. The ideal application of TSS prediction algorithms is to combine
them with gene prediction algorithms and/or with the ChIP-chip or chip-seq PIC
mapping data.

4.5 New Advances and Future Challenges

Although much progress has been made in promoter prediction and cis-regulatory
motif discovery, false-positives are still the main problem when scanning through
the whole genome. Fundamentally this is because the information about chromatin
structure is still missing in all our sequenced-based models! Protein-DNA binding
specificity is partly determined by the local energetic and partly determined by high-
order chromatin structures, which dictates on how much of the genome is accessible
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to the DNA binding protein [4]. Without knowing which regions of chromatin are
open or closed (and to what degree), researchers have to assume the whole genome
is accessible for binding, which is obviously wrong and will lead to more false pos-
itives (and false negatives because of the extra noises). This is clearly shown by
recent genome-wide ChIP-chip/ChIP-seq data as well as DNase I Hypersensitivity
mapping data. There is a necessity for higher order prediction algorithms that are
capable of predicting chromatin states based upon, perhaps, genome-wide epige-
netic measurements, CpG-islands and repeat characteristics in addition to genomic
sequences. It is fortunate that such kinds of data are rapidly being generated and
the corresponding analysis tools are also coming along. For instance, CoreBoost has
recently been further extended to include epigenomic data (e.g. histone modification
ChIP-seq data, Fig. 4.7), the new program, called CoreBoostHM [20], has success-
fully been applied to identify promoters for both protein coding and miRNA genes.

Recent genome-wide studies have revealed much more complex structures of
the mammalian core promoters [16], future challenge may be to develop hierarchi-
cal models to determine accessible regions in chromatin DNA [5] and to develop a
TSS distribution models for different classes of accessible promoters [11]. To fur-
ther understand the tissue- or developmental regulation of the transcriptome, many
more studies are required to predict alternative promoters, bidirectional promot-
ers, antisense transcriptions, and ncRNAs promoters. Hopefully, combining new
technologies (e.g. ChIP-seq and RNA-seq) in promoter models will soon help in
defining mechanisms that regulate RNA polymerase II transcription in vivo [12].
Finally, comparative modeling will shed more lights on evolution of promoters and
their intimate relationship with transposons [8].

Fig. 4.7 Histone modification signals near TSS for CpG related and non-CpG related promot-
ers [23]
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Chapter 5
Discovering Influential Variables:
A General Computer Intensive Method
for Common Genetic Disorders�
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and Shaw-Hwa Lo

Abstract We describe a general backward partition method for discovering which
of a large number of possible explanatory variables influence a dependent vari-
able Y. This method, based on a variant pioneered by Lo and Zheng, and variations
have been used successfully in several biological problems, some of which are dis-
cussed here. The problem is an example of feature or variable selection. Although
the objective, to understand which are the influential variables, is often not the same
as classification, the method has been successfully applied to that problem too.
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5.1 Introduction

Advances in technology have led to an increasing availability in all scientific fields
of high dimensional data, in which are buried important information. Developing
effective methods of extracting hidden information from the vast amounts of messy
and noisy data is a pressing challenge to statisticians.

In this chapter, we survey a general computer intensive approach, based on a
method introduced in Lo and Zheng [17,18], for detecting which, of a large numbers
of explanatory variables, have importance influence on a dependent variable Y . One
feature of this approach consists of avoiding a difficult analysis involving hundreds
or thousands of markers/explanatory variables in favor of a simple but effective
analysis repeated many times. Another advantage is that, as opposed to other meth-
ods depending mainly on marginal signals from explanatory variables, this method
detects and makes use of both marginal and interactive information to yield effec-
tive detections. For example, Lo and Zheng introduced a multi-locus method – the
backward haplotype-transmission association (BHTA) algorithm – an efficient com-
putationally intensive method of detecting important genes involved in complex
human disorders [17, 18]. This method, using haplotype transmission information
on multiple markers for affected subjects and their parents, was applied to an inflam-
matory bowel disease (IBD) data set. In the application of their 2004 paper, a total
of 235 case-parent trios and 402 markers (variables) were included in the analysis.
The findings of this application confirmed many previously identified IBD suscepti-
bility loci reported in the literature and also included four novel loci (not previously
reported) with exceptionally strong signals. It is worth noting that these four loci
would not have been detected if only standard marginal methods were used. Fur-
thermore, a recent genome-wide association study (GWAS), based on 3,230 cases
and 4,829 controls, reported 30 SNP regions associated with the IBD [1].1 It is inter-
esting to note that, the four loci reported in Lo and Zheng [18] overlapped with four
of the regions reported in Barrett et al. [1]. Given that the ratio of sample size and
resolution in the two studies is large (the 2008 UK study is about 13-fold larger
than that of the 2004 study), we believe that the BHTA has indicated the potential to
extract hidden but valuable information by dint of considering interactions among
markers, genes and variables.

The object of this chapter is to provide a comprehensive review on the devel-
opment of a general framework with various data analyses, focusing on genetic
applications and classifications. Section 5.2 provides a brief background on the sub-
ject of handling high-dimensional genetic data. Section 5.3 gives a review of the
proposed general framework. Section 5.4 presents two real applications, focusing on
the detection of gene-gene interactions and construction of association networks. We
also introduce an important extension towards classification problems in Sect. 5.5.
We conclude in Sect. 5.6 with a discussion of future directions and offer our views
on current methodology issues in analyzing high dimensional genetic data.

1 They actually used more subjects.
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5.2 Background

5.2.1 Challenges from Current High-Dimensional Genetic Data

Technology developments in the past two decades have led to a rapid increase of
data in genetics. Current genetic data are unprecedentedly high in dimension and
are thus challenging to analyze. This is a trend likely to continue for decades to fol-
low. We believe that current (and future) data contain vast amounts of information,
and if analyzed and extracted effectively, would significantly improve our under-
standing of human life and causes of diseases. A number of common features are
shared by these emerging genetic data. First, they are high dimensional – the number
of variables and features can range from several hundreds to hundreds of thousands;
Second, the sample sizes are usually quite small (in the tens) or moderate (several
hundreds), and typically much smaller than the number of variables; Third, despite
a large number of variables and features, most variables contribute noise rather than
real signals, while only a small fraction of variables (1–2%, for instance) and their
combinations are responsible for different outcomes of interest. Finally, for genetic
data, the outcomes of certain activities are likely to be jointly determined by an
unknown group of influential variables and features; these variables are correlated
among themselves and thus require special attention in the statistical analysis. Con-
sequently, methods that allow joint analysis incorporating interactive information
among all variables become highly desirable.

5.2.2 Methods for Detecting Influential Variables

The most common practice today still remains the marginal analysis of the large
number of variables in a genetic data set. New methods have emerged to address
high dimensional data. In fact, most of the new methods addressing high dimen-
sional data include a class of classification methods, with an aim for better pre-
diction. Classification tasks have been concentrated primarily on searching for an
accurate classifier rather than offering a better understanding of what and how the
final classes are decided by groups of influential variables and their interactions
[5, 7, 27]. We believe that such fundamental understanding is important, especially
in genetic and medical applications where statistical and computational findings can
usually provide further insights to reconfirm existing knowledge (such as interaction
between proteins) or to form new hypotheses when compared with current beliefs.

In the following, we briefly summarize current classification (or related feature
selection) methods and discuss their limitations for identifying influential genetic
factors.
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5.2.2.1 Ranking Genetic Factors Using Marginal Statistics

Most studies in biomedical research choose to use marginal procedures (such as t-
test, correlation coefficient, �2 test of independence, etc) that evaluate the influence
(importance) of a given single variable (factor) one at at time [6,7,12,26,27]. Infor-
mation on joint influence or interactions between factors that is crucial for genetic
reasoning is therefore ignored and lost. Not only do these methods suffer from a loss
of efficiency due to their partial use of information, but they also offer little insight
on the genetic contributions (and possible genetic models) of the genes identified.

5.2.2.2 Ranking Sets of Genetic Factors Based on Classification Accuracy

In most current classification driven genetic applications, much attention has been
paid to evaluating prediction accuracy (e.g., [20]). It has also been proposed to rank
a set of variables based on their ability to predict Y . The multifactor-dimensionality
reduction (MDR) proposed in Ritchie et al. [23, 24] searches for susceptibility dis-
ease loci based on searching for a set of genetic factors that is most predictive of
the disease outcome as evaluated by cross-validation. Such procedures address one
of the needs in genetic/medical research, in terms of outcome prediction, but may
fail to identify some of the important influential genetic factors on the outcome.
This is because for a classification study on a sample of hundreds of observations,
a good classifier does not necessarily depend on finding the variables that are most
influential.

High dimensional machine learning methods such as support vector machines
(SVM, e.g., [15, 30]), neural nets (NN, e.g., [13]) and random forests (e.g., [29])
have been used in genetic studies of high dimensional data [19]. They often show
excellent prediction performance. However, it is usually hard to interpret the results
in the genetic context. In particular for SVM and NN methods, the different non-
linear kernels used in the trained classifiers make it difficult to evaluate the results
and generate testable genetic hypotheses. The method of random forests proposed
in Breiman [2] has an embedded evaluation of each variable’s importance. How-
ever, the algorithm is based on classification tree methods, which may not be easily
associated with genetic interpretation.

5.2.3 The Development of Our Partition-Based Framework

Lo and Zheng introduced a multi-locus method for the case-parent trio data [17].
The case-parent trio design uses genetic information of an affected case and his/her
parents to infer what genetic variants were transmitted to the case and what were
not. By comparing the transmitted and untransmitted alleles, one can evaluate the
association between genetic markers and the disease. To implement the multi-locus
approach, they proposed to use a new information measure, Haplotype Transmission
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Disequilibrium (HTD), for multiple markers based on the jointly transmitted and
untransmitted genetic variants (i.e., haplotypes) and a screening algorithm, Back-
ward Haplotye-Transmission Association (BHTA), based on HTD.

Family data such as that of the case-parent trio design are relatively harder and
more expensive to collect, especially for diseases with late onsets. Recently, more
attention has been focused on population-based case-control studies with a few thou-
sand subjects in both groups. To accommodate such data, Zheng et al. proposed the
backward genotype-trait association (BGTA) method, with a Genotype-Trait Distor-
tion (GTD) score for capturing the information on the disease in multiple markers
[31]. BGTA and its extensions have been applied to IBD [31], rheumatoid arthritis
[4, 9, 21], breast cancer [16] and prostate cancer. In these studies influential genetic
loci (represented by markers, usually) with significant interactions among them
were detected. Chernoff et al. established the general theory and method frame-
work based on the partitions and summarized all previously published methods as
special cases [3].

With these methods, we can detect most influential variables and their interac-
tions, and subsequently exposing the genetic and medical reasonings behind the
classification of the symptoms. Our publications since 2002 represent a series of
realistic statistical and computational efforts for a better understanding of genetic
activities.

There are several major characteristics (in order of importance) of our approach.
First, substantial portions of interactions among subgroups of lower dimensional
spaces were captured and variables with weak signals were screened out. Sec-
ond, our procedures consistently produce the information generated from influential
variables and their interactions (or associations). An association network/genetic
pathway as a standard output can then be easily constructed based on the aggregated
information. Third, more efficient multi-stage procedures are studied.

5.3 Methodology Framework

In this section, we introduce a general framework of theory and methods. This is
followed by a number of specialized methods with various applications.

We first introduce some notation. Let the potentially (candidate) influential vari-
ables be Xs , 1 � s � S , which may have an influence on a dependent variable Y
studied using a sample of n observations, ZD (X, Y ) where X D .X1; X2; : : : ; XS /.
For clarity and simplicity, we shall use binary valued predicting/explanatory vari-
ables in the general discussion of this section. The extension to multilevel X
variables is straightforward, as illustrated by the special case – the backward
genotype-trait association (BGTA) method – introduced in Sect. 5.3.5, where the
X ’s have three levels. It is commonly assumed that Y may be slightly or negligibly
influenced by each of the individual variables of Xs, but may be profoundly influ-
enced by the confluence of appropriate values within one or a few groups of these
variables.
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5.3.1 Evaluation of a Set of Variables’ Influence on Y

Consider a subset of k binary valued variables from X1; X2; : : : :; XS . For simplic-
ity, we shall use fX1; X2; : : : :; Xkg to denote this subset. These k selected variables
define a partition˘� of the sample of n observations intom D 2k subsets which we
shall call partition elements fA1; A2; : : : ; Amg corresponding to the possible values
of these k binary variables. Each partition element Aj corresponds to a possibly
empty subset of nj of the Y values and

Pm
jD1 nj D n. Each nonempty partition

element Aj yields a mean value NYj and the overall mean NY DPm
jD1 nj

NYj =n. The
central influence measure of our approach is defined as

I˘� D
mX

jD1

nj
2. NYj � NY /2: (5.1)

If I˘� is large, we suspect that some of the k variables may have an influence on Y .
Suppose that we now introduce another binary variableX0, which leads to a more

refined partition ˘ D fAjl W 1 � j � 2k; l D 0; 1g where Aj 0 corresponds to that
part of Aj where X0 D 0 and Aj1 corresponds to that part of Aj where X0 D 1.

Now let njl be the number of elements inAjl and nj D nj 0Cnj1 be the number
of elements in Aj . The measure I˘� is now replaced by

I˘ D
X

njl
2. NYjl � NY /2 (5.2)

and

DI D 1

2
.I˘ � I˘�/ (5.3)

can be regarded as a measure of how much X0 contributes in influence on Y in the
presence of .X1; X2; : : : ; Xk/: It is easy to see that

DI D �
X

nj 0nj1. NYj1 � NY /. NYj 0 � NY /: (5.4)

Thus, DI tends to be negative when both means in the refined partition elements
tend to be on the same side of NY . We would expect that if the new variable
contributes influence on Y , that DI would tend to be positive.

Using the above properties ofDI , we can then start with an initial set of markers
and iteratively eliminate variables that do not contribute to the influence on Y , one
at a time. More specifically, if we commence with k C 1 variables, we consider the
effect, i.e., DI , of using the coarser partition obtained by eliminating one of the
k C 1 variables. The variable with the smallest DI is then eliminated; we repeat
this procedure on the remaining k variables. We may repeat until we are satisfied by
some criterion, (e.g., all the DI are positive), that most of the remaining variables
are good candidates for being influential (a local optimal subset). These remaining
variables are retained.
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Two cases are of special interest in genetic applications. One is that discussed
earlier where the data consist of a sample of n independent observations. The other
is the case where data are ascertained based on Y values. We consider here the
results for n independent observations. For the latter case, the readers are referred
to [3, Appendix A1].

First, we review and extend slightly our notation. The partition element Ajk

yields njk observations with expectation �jk D E.Y jX 2 Ajk/, variance �2
jk

,

and sample mean NYjk . Then n DPjk njk . Also,

Q� D n�1
X
jk

.njk�jk/; (5.5)

Q�j D n�1
j .nj 0�j 0 C nj1�j1/: (5.6)

and Q�2 D n�1
P

jk njk�
2
jk
: We have used the tilde over the Greek letters � and �

to emphasize those cases where these are conditional means and variances given
the sample frequencies defined by n D fnjkg, but not parameters of the underlying
distribution. We let the unconditional mean of Y be � D E.Y /.

Let
"j D nj1

nj

.�j1 � Q�/� nj 0

nj

.�j 0 � Q�/:

A careful calculation yields

E.DI jn/ D �H1 CH2 � n�1G; (5.7)

where

H1 D 1

4

X
n2

j . Q�j � Q�/2; (5.8)

H2 D 1

4

X
n2

j "
2
j and (5.9)

G D
X

nj 0nj1. Q�2 � �2
j 0 � �2

j1/: (5.10)

Thus the conditional expectation of DI , given the observable frequencies,
involves three terms that consist of a heuristic decomposition explaining how the
effects might change when variables are removed from current consideration. The
first two terms are positive. The first, H1, is related to the effect of .X1; :::; Xm/ on
Y in the presence of X0. The second term,H2, depends on the "j which are related
to the effect of X0 on Y in the presence of .X1; :::; Xm/. The third term, n�1G, is
relatively small and can be estimated (and removed) from the data. In the extreme
case where X0 has no effect on Y in the presence of .X1; :::; Xm/, the n2

j "
2
j term

equals .nj1 � nj 0/
2. Q�j � Q�/2, and the conditional expectation of DI is negative

(by neglecting G). The greater the effect of X0 in the presence of .X1; :::; Xm/, the
more positive DI tends to be. In the other extreme case where Q�j D � for all j ,
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and hence .X1; :::; Xm/ has no effect on Y , H1 will be zero and the conditional
expectation ofDI will be always positive, depending mainly on the marginal effect
of X0. Here the distribution of X did not play a major role. The results are relevant
if the data arise from an experiment designed to select the explanatory variables in
a systematic fashion.

5.3.2 Searching for Influential Variables in Random Subsets

In Sect. 5.3.1, we outlined the general statistic I used for evaluating a local subset
of potentially influential variables. Often in reality, the number of variables and pos-
sible interactions in a large-scale study are much larger than that in a training set.
The small/moderate number of observations causes a serious problem of sparseness
when many variables are simultaneously evaluated. In these cases the real signals are
diluted and swamped by the tremendous amount of noise generated by many unin-
formative variables. In order to measure the true signals due to influential variables
and avoid the problems due to computational complexities, we must not consider
too many variables at a time.

Within the learning scope posed by the sample size of the data, we concentrate
on a small percentage of variables at a time. Our learning process will explore a
large number of random subspaces (an idea similar to that of the random forests
[2]). Within each random initialized subspace (a subset of variables), we search for
the local cluster of variables that show high influence on the outcome Y , guided
by DI . It is likely that the resulting local optimal set is empty, indicating that no
influential variable is found in this random subspace. Both the local cluster and its
final I -score (denoted by Ipeak) are recorded. Heuristically, the larger the Ipeak
score is the more influential of the identified local optimal cluster (of variables) is.

5.3.3 Resuscitation of Variables with Weak Marginal Signals

When the number of possible explanatory variables is very large, it may be com-
putationally unfeasible to consider the interactions of pairs. Most methods reduce
to considering only marginal effects to eliminate most of the available variables.
In its original form the backward partition also can not expect to detect interac-
tions if there are a limited number of influential variables. On the other hand if it
is feasible to use some method, marginal or pairwise effects, to reduce the number
of candidates, such a method may doom influential variables with little marginal
effect. It is possible to resuscitate these “dead” variables by using the backward par-
tition method where the random groups have some candidates drawn from the “live”
variables and some from the “dead” ones.
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5.3.4 Evaluation of Significance and Issue of Multiple
Comparisons

In Chernoff et al. [3] we showed that the asymptotic distribution of I under the null
hypothesis is a weighted sum of Chi-square random variables with one degree of
freedom. This distribution can be derived using simulations or approximated by nor-
mal distributions when the number of partitions is large. For small data sets and large
p values, this asymptotic distribution seems to work well. However, when the num-
ber of variables is large. the approximation of tail probabilities using the asymptotic
distribution is problematic and leads to inaccurate p values for the most significant
results. Therefore we recommend using permutations to evaluate the number of false
positives due to chance and allow us to report estimated special form of false dis-
covery rate (FDR) with our findings as we explained and demonstrated in our PNAS
paper, [16].

Furthermore, when the joint effects of influential variables are weak, one cannot
expect to reach statistical significance level after correction for multiple comparison
in a single study. Instead, some clusters of variables with potential biological con-
nections may be expected (with appropriate FDR, of course) and further replications
studies are essential to confirm the findings (using independent datasets).

5.3.5 Special Case I: The Backward Genotype-Trait Association
(BGTA) Method

We demonstrate in this section that the BGTA is indeed a special case of our general
method.

Consider k biallelic markers under study. In a case-control genetic study, the
genotype of each marker is used, which takes three values. Therefore, k markers
define 3k possible multi-marker genotypes. The BGTA algorithm is primarily based
on a key statistic, the genotype-trait distortion (GTD) score based on the counts of
these genotypes in the cases and controls:

GTD D
3kX

iD1

�
ni;a

na

� ni;u

nu

�2

; (5.11)

where na and nu are the number of cases and controls in the study, ni;a and ni;u are
the counts of genotype i among the cases and controls respectively [31].

GTD measures the joint effect of a set of markers on the disease trait under study.
It is easy to show that [3, Appendix S1]
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where Y is the affection status of the individuals, 1 if infected and 0 otherwise.
Therefore, BGTA is a special case of the general partition-base framework.

Guided by the GTD score, the BGTA algorithm carries out a backward screening
of the k markers and removes markers that lead to an increase to the GTD value.
When the algorithm stops, it retains a BGTA irreducible set of markers (or cluster),
removing any marker from which will contribute to a lower GTD score.

5.3.6 Special Case II: Linkage Analysis

The multilocus approach proposed by Lo and Zheng [17] has also been extended
to a quite different disease mapping strategy, called linkage analysis [11]. Linkage
analysis, similar to association analysis, is used to find regions in the genome that
may harbor disease susceptibility loci. However, the goal in a linkage analysis is
to identify broad regions linked to disease; follow-up association studies in those
linked regions may identify particular variants associated with the trait.

A popular family design for linkage analysis is the affected sib-pair design using,
for each family, two affected siblings and their parents. Linkage evidence is based
on co-segregation of genetic materials from the parents to the affected siblings. The
approach taken by Ionita and Lo [11] is a model-free linkage method, and the funda-
mental piece of information that we use is that of identity-by-descent (IBD) sharing.
More precisely, two alleles, one from each of the sibs, are shared IBD, if they rep-
resent the same ancestral allele. Each parent transmits one allele to each of the sibs,
and, under the null hypothesis of no linkage to disease, an IBD sharing of 0 or 1
is equally likely. For a marker, let n0 be the total number of 0 IBD sharing in the
dataset, and n1 the corresponding number of 1 IBD sharing. This definition extends
to multiple markers in a straightforward fashion and creates a partition as defined in
our general framework.

As with the general approach by Lo and Zheng [17], the core of our method is
the definition of a linkage measure that quantifies the linkage information contained
in a set of markers. We define this multilocus measure as follows:

– For one marker,H1 D w1.n1 � n0/
2.

– For two markers,H12 D w2

�
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�n1
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– For k markers:
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sharing at loci i1 : : : ik�1, and wi is a weight, wi D 2i

2i�1
. This is equivalent to

the average general influence measure I defined in (2) on the partitions based
the multimarker identity-by-descent sharing status on all possible subsets of the
k markers.

H defined above enjoys desirable properties similar to those of HTD in Lo
and Zheng [17] and the general influence measure I defined in (2). It increases
when noninformative markers are removed from the set and decreases when impor-
tant markers are deleted. Ionita and Lo showed that this multilocus method may
have increased power over traditional single-locus approaches, if the underlying dis-
ease model is indeed multilocus [11]. In an application to an Inflammatory Bowel
Disease dataset, we have detected several of the susceptibility loci reported in the
literature, in addition to a few novel regions.

5.4 Case Studies

In this section, we summarize two published studies on common human disorders
using methods under the framework outlined in the previous section.

5.4.1 Inflammatory Bowel Disease

The inflammatory bowel disease (IBD) consists principally of ulcerative colitis (UC)
and Crohn’s disease (CD) – two chronic idiopathic inflammatory diseases of the
gastrointestinal tract with overlapping features and shared complications. Epidemi-
ological studies have shown that relatives of individuals with CD or UC are at
increased risk for developing one or the other form of IBD, which suggests that at
least some susceptibility genes will be shared by UC and CD. For a comprehensive
review of IBD, readers are referred to [14, Chap. 15].

There have been multiple susceptibility loci with relevance to IBD etiology
reported repeatedly in the literature since 1996, based on results from more than
two dozen studies. These include IBD1 (16q12), IBD2 (12p13), IBD3 (6p21), IBD4
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(14q11) and IBD7 (1p36). This suggested that the disease might be due to a number
of genes with modest marginal effects.

In [18], Lo and Zheng applied the BHTA method [17] to a data set of 112 nuclear
families with more than two Crohn’s disease patients (89 with two patients, 20 with
three patients and 3 with four patients), which is approximately 66% of the original
dataset used in Rioux et al. [22] where linkage to IBD5 and IBD6 was reported.
Among the patients, only those with parents on file can be used in BHTA algorithm,
thus a total of 235 patient-parent trios were finally included in the analysis. Four
hundred and two markers across the genome were evaluated in the screening.

The data had about 20% missing values. This is a more severe problem for mul-
tilocus methods like that of Lo and Zheng [17] than to single-marker methods.
Conditioning on the observed genetic information within each family under study,
the missing genetic information was imputed based on a random inheritance model
under the null hypothesis. Multiple imputations were used to remove the effects of
a single imputation. Screening results were the average of the screening outcomes
on ten randomly fully imputed data sets.

Using BHTA, accounting for both joint and marginal effects, 48 (out of total 402)
important markers that are potentially related to the disease susceptibility were iden-
tified. These 48 markers spread across many of the 23 Chromosomes (see Fig. 5.1)
and overlap with all previously reported IBD loci, except IBD 6 (see Table 5.1),
despite the fact that Rioux et al. [22] found no signal near IBD1, 2, 4 and 7. The dis-
crepancy of the findings between these two studies provides convincing evidence in
favor of the use of methods that take into account interactions and extract maximum
amount of information available in the data.

Among the selected markers, the four markers that were most frequently
returned, D1S549(1q32), D5S1470(5p15), D8S592(8q24), D21S1466(21q22),point
to four novel loci, none of which have been reported in the present literature. Given
that these signals were extremely strong, Lo and Zheng [18] suggested that “further
research on these regions could be very fruitful.” In [1], Barrett et al. used data
from three studies on Crohn’s disease and carried out an independent genomewide
investigation using more than 500,000 SNP markers [1]. A total of 3,230 cases
and 4,829 controls were used. They further used another independent data set of
similar size to validate their results. They identified 30 significant SNP regions.
The four novel regions (1q32.1, 5p15, 8q24, and 21q22) reported in Lo and Zheng
[18] are among these regions with combined p-values 1:43 
 10�11, 6:82 
 10�27,
4:50 
 10�9 and 1:41 
 10�9, respectively.

5.4.2 Breast Cancer

Breast cancer (MIM 114480) is another common and complex human disorder with
several putative predisposing genes identified. It is generally believed that the risk
of sporadic breast cancer is attributed to a complicated combined action of multiple
genetic and environmental factors. From the National Cancer Institute, the Cancer
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Fig. 5.1 IBD results (Reproduced with permission from Lo and Zheng [18])
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Table 5.1 Returned markers on IBD loci
IBD locus Selected marker

IBD 1 (16q12) D16S769
IBD 2 (12p13) D12S1052
IBD 3 (6p21) DRB1
IBD 4 (14q11) D14S297
IBD 5 (5q31) CAh816a

IBD 6 (19p13)
IBD 7 (1p36) D1S1612
a21 out 74 markers around IBD5 locus are selected

Genetic Markers of Susceptibility (CGEMS, http://cgems.cancer.gov/data/) initia-
tive collected data on 1,145 cases of sporadic breast cancer and 1,142 controls and
carried out a whole-genome association study using approximately 550,000 SNP
markers [10]. In Lo et al. [16], a candidate gene study was carried out on selected
SNPs from the CGEMS breast cancer data.

More specifically, 304 SNPs from 18 genes selected from the breast cancer lit-
erature were analyzed [16]. Since the SNPs markers are densely distributed on the
genome, the genotypes of close-by SNPs are associated. Additionally, even though
SNPs are useful in identifying mutations within genes, it is more geneticly rele-
vant to study the interaction among genes as functional units. Therefore, Lo et al.
aggregated statistics calculated on the SNP level into gene-based measures of both
marginal effect and interaction effects [16]. First, GTD scores were calculated on
each SNP individually and on each SNP pair. For each gene, its marginal effect
would be the average GTD score of the SNPs that fall within the range of this
given gene. Lo et al. observed that all SNPs and all SNP pairs have rather weak
signals, indicating that none of these genetic loci or their pairwise interaction play
a substantial role in deciding the risk of sporadic breast cancer [16]. Therefore, the
significance of the excess signal from a SNP-SNP interaction were evaluated, con-
ditioning on the SNPs’ marginal signal. For each SNP pair, say .M1;M2/, a new
statistic was calculated:

r.M1;M2/ D GTD.M1;M2/ �GTD.M1/ _ GTD.M2/

GTD.M1/ _GTD.M2/
;

where “_” stands for maximum of the two values. This ratio measures the excess
signal contained in two SNPs’ interaction, compared to the strength of their marginal
signals. The measure of gene-gene interaction is then the average of these SNP-pair
level ratios.

Due to similar concerns of inter-SNP dependence as in Examples 2 and 3, the
significance of the gene-gene interactions was evaluated using permutations and
16 significant pairs were found. These findings do not mean that these genes have
strong joint effects on the risk of breast cancer. Rather, their interactions were found
to have significantly more contribution to the risk of breast cancer than expected

http://cgems.cancer.gov/data/


5 Discovering Influential Variables: A General Computer Intensive Method 101

Fig. 5.2 Gene association
network for a breast cancer
candidate gene study
(Example 3) (Reproduced
from Lo et al. [16])

by chance, after controlled for their marginal signals. Based on these results, an
association network was constructed as shown in Fig. 5.2.

For this study, instead of studying significant joint effects of genes (or SNP mark-
ers), gene-gene interaction with significant more effects on a disease’s risk than the
genes marginally were identified. This represents an alternative definition of “inter-
action” in such genetic epidemiology studies and provide a powerful method to find
interactions that are significant but have moderate effects. Such interactions should
be common for human disorders with complex disease etiology and may explain
partly the limited success in finding disease-predisposing genes for such disorders.

5.5 Classification in Microarray Data Analysis: An Extension

This section contains a brief summary on how to apply the influence measure, HTD
statistic, and the BHTA screening algorithm introduced in Lo and Zheng [17, 18]
and Chernoff et al. [3] to classification problems. The details are given in Wang
et al. [28]. The proposed classification method is intended to have two desirable
properties. First, the classification rule derived from the method has a low error rate.
Secondly, in the process of constructing the classification rule, influential variables
responsible for the response are identified. That is, not only is the classification
result accurate but also the classification rule contains important information for
understanding the phenomenon under study.

5.5.1 Method Description

The method consists of four parts: feature selection, generating return sets from
selected features, turning return sets into classifiers, and assembling classifiers to
form the classification rule.
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5.5.1.1 Feature Selection

Direct application of the BHTA to select influential variables may miss some key
variable combinations when the number of variables is extremely large. We will
calculate the influence score for each variable combination of a fixed size and select
variables appearing frequently among the high-scoring combinations. Some details
are given below.

It is necessary to first decide on the size of combinations. The larger the size, the
higher the order of interactions we can detect, but the computation time increases by
a factor depending on the total number of variables. For example, if we have 5,000
variables, then there are 12.5 million pairs and more than 20 billion triples. Although
the influence scores of triples can provide information on third order interactions,
the computational cost is more than 1,000 times that for pairs, which provide only
information about second order interactions.

Simulated and real data sets have suggested that once a group size is chosen, The
peak I values after reduction for a large sample of groups have a distribution where
the cumulative grows rapidly until some relatively large values are reached. Those
large values suggest a threshold, below which we should neglect the groups. We
then look at the retention frequencies for the retained variables in the satisfactory
groups, and rate these variables by how often they are retained in these groups. The
cumulative of these frequencies also tends to yield a similar threshold, indicating a
reduced set of variables worth analyzing.

5.5.1.2 Generate Return Sets

We now apply the BHTA algorithm to the selected high-frequency variables. There
are two parameters to be determined before BHTA can be applied: the starting
size and the number of repetitions. The starting size refers to how many variables
we select from the high-frequency-variable pool so that BHTA algorithm can be
applied. The starting size depends on the number of training cases. If the start-
ing size is too large, then most cells (or partition elements) in the partition by the
set of variables after dropping one, contain at most one training case. In this case,
the HTD scores before and after dropping one variable differ very little. Therefore,
the algorithm basically does random dropping in the first few steps and there is
a substantial chance of dropping an influential variable and thus of missing a key
variable-combination. The ideal starting size is such that one can expect several
cells with two or more cases after dropping one variable.

The second quantity to be determined is the number of repetitions for the BHTA,
which depends on the number of training cases also. The number of training cases
determines the maximum size of return sets that can be supported. For example, if
we have 100 training cases, then they can support a return set of size 4, when each
explanatory variable is binary. Each return set of size 4 has 24 D 16 cells. Thus, on
the average, each cell contains more than five training cases. The HTD statistic is
reliable following the rule of thumb that the chi-square statistic is dependable, if on
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the average each cell contains five or more observations. Hence the return set of size
4 is well supported by the training set of 100 cases and we want to make sure that
the BHTA algorithm is repeated sufficient number of times so that combinations of
size 4 are covered rather completely.

After determining the starting size and the number of repetitions, we can run the
BHTA algorithm. The return sets generated from BHTA will undergo two filtering
procedures to eliminate inferior ones. For details on filtering procedures and the
determination of staring sizes and the number of repetitions, please see [28].

5.5.1.3 Turning Return Sets into Classifiers

There are several ways to construct classifiers from return sets. A classification tree
classifies a test case using only information from the cell containing the test case. It
classifies a case based on a few training cases and cannot “borrow strength” from
other cells. When explanatory variables are continuous, we lose information from
the tree classifier when we discretize variables. However, if all variables are discrete,
it seems better to use tree classifiers.

The SVM is sensitive to tuning parameter selection. It usually was not as effec-
tive as logistic regression in datasets that we tested. Given the popularity of SVM
and its elegant theoretical properties, this is quite surprising. In the preliminary
study, the logistic regression sometimes produced unreliable results when there was
a perfect separating hyperplane or when the AIC was several times larger than the
usual values. Linear discriminant analysis (LDA) is numerically more stable, but the
training-set error rate is usually larger than for logistic regression in the microarray
datasets we studied.

The classifier selection situation we faced here is quite different from that
elsewhere. The characteristics of the situation are (a) there may exist high-order
interactions among variables without lower-order interactions; (b) the classifier
needs to complement well classifiers from other return sets. Our classifier selection
strategy is formulated with this unique perspective in mind.

5.5.1.4 Assemble Classifiers to Form the Classification Rule

The previous section describes how to construct classifiers from return sets. We
now describe how to combine classifiers to form a classification rule. In machine
learning, the method that fits our objective best is termed boosting; see, e.g., [8].
The AdaBoost minimizes an exponential loss function to find a sequence of basis
functions along with optimal weights to form an additive representation of the clas-
sification rule. The basis functions here are classifiers obtained from return sets. For
details on the boosting algorithm under the current setting, please see [28].

Sometimes, the classifier constructed from a return set has zero error rate in the
training set. The weight for such a “perfect” classifier is not well-defined according
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to the boosting method. We resolved the issue in a heuristic manner: taking the
number of wrongs to be 1/2 instead of 0.

5.5.2 Real Data Examples

This section contains three real-data examples. The first two are microarray gene
expression datasets for breast cancer. They are from van ’t Veer et al. [27] and
Sotiriou et al. [25], which originally contain 24,187 genes and 97 patients, and 7,650
genes and 99 patients, respectively. The purpose for the van ’t Veer et al. [27] is to
classify female breast cancer patients into relapse and non-relapse types using gene
expression data, while that of Sotiriou et al. [25] is to classify tumor subtypes.

In the van ’t Veer et al. dataset, after initial screening, 4,917 genes were kept
for the classification task [27]. Following van ’t Veer et al. [27], 78 cases out of
97 are used as the training sample (34 relapse, 44 non-relapse) and 19 (12 relapse
and 7 non-relapse) as the test sample. Our method yields 10.5% error on the test
sample, which corresponds to the best error rate reported in the literature. To test
the stability of our method, we further randomly selected 10 test samples of size 10
each. The remaining 97 � 10 D 87 cases were used as the training samples. That
is, we randomly split the data set into two groups of 10 and 87 cases, respectively.
Construct the classification rule using the proposed method on the group of 87 cases
and then test the classification rule on the other ten cases. The whole procedure is
repeated ten times and the average error rate based on the ten test samples is 10%.

The Sotiriou et al. dataset contains 7,650 genes on 99 patients [25]. The task
is to classify tumors according to their estrogen receptor (ER) status using gene
expression information. This is different from the objective of van ’t Veer et al. [27],
where the goal is to discriminate relapse patients from non-relapse ones. We ran-
domly selected 10 patients as the test set and keep the remaining 89 as the training
set. The error rate is around 7% based on six test sets of size 10 each.

The third dataset is from [7], which consists of 7,129 genes, 38 samples in the
training set and 34 samples in the test set. The purpose is to classify acute leukemia
into two subtypes: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML). Our classification rule missclassifies one test case, which matches the best
result in the literature.

In all three examples, the classification rule is constructed using only the infor-
mation from the training sample and no information whatsoever from the test sets;
see [28] for details.

5.5.3 Summary of the Classification Method

The proposed classification method has several distinguishing features. First, the
error rates in several real-data examples are at least as good as the best results in
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the literature or even better. Secondly, the variables included in the classification
rule are selected using the influence measure I , which is effective in identifying
influential variables. Thirdly, the error rate estimates are well calibrated and free of
selection bias.

5.6 Conclusion

Most of the methods in use today for determining which of many possible explana-
tory variables influence a dependent variable, are based on the marginal effect of
each candidate variable. These methods fail to take into account the possibility
that an influential variable has little marginal effect, but can be very effective when
interacting with another variable.

There is a small class of methods that try to take these interactions into account.
They tend to be of limited use when the number of candidate variables is very large
and most of the influential variables have little marginal effect.

The backward partition method and its variants have proven to be very effec-
tive in producing results in several important biological problems. Although this
method is not primarily directed toward the classification problem, the results of
this method when applied toward classification have given results at least as good
as those published.
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Chapter 6
STORMSeq: A Method for Ranking Regulatory
Sequences by Integrating Experimental Datasets
with Diverse Computational Predictions

Jim C. Huang and Brendan J. Frey

Abstract We present STORMSeq (STructured ranking of Regulatory Motifs and
Sequences), a novel probabilistic method for sequence search in which we learn
to rank sequences using heterogeneous experimental datasets and the outputs of
diverse computational prediction methods. By formulating the problem of sequence
search as one of ranking, STORMSeq largely avoids issues of model misspec-
ification and complex inference which arise when modelling different types of
datasets in the presence of many hidden variables. The framework allows one
to compare orderings over sequences conveyed by diverse types of data, though
the data measurements and scoring systems may be difficult to compare to one
another. We demonstrate STORMSeq in the contexts of scoring sequences bound
by transcription factors and for the problem of finding microRNA targets in human
retinoblastomas where in the latter case we can combine mRNA and microRNA
expression with protein abundances and sequence data. We will show for both of
these problems that (a) by accounting for the dependencies inherent in learning
to rank and (b) by incorporating multiple datasets with computational predictions,
we can improve the accuracy with which we rank sequences compared to standard
methods. Our method is general and can be applied to a wide variety of other prob-
lems in which heterogeneous data sets are available, such as ranking therapeutic
drug targets and discovery of genetic associations to disease.
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6.1 Introduction

The problem of sequence search, such as discovering transcription factor (TF) bind-
ing sites, microRNA targets and structural genetic variants, remains a significant
challenge in genomics. Several de novo computational methods have been devel-
oped with the aim of searching for overrepresented sequences using sequence data
[2, 12]. Due to the degeneracy of such sequences, such methods often require the
use of sequence conservation in order to minimize false positive rates. To address
this, computational methods have recently begun to account for additional features
such as the accessibility of target sequences due to RNA secondary structure [14],
contextual features [7] or other types of quantitative profiling data [5, 9, 19, 20]. As
newer methods for discovering sequences and new profiling technologies continue
to emerge, the issue of how to update existing sequence search methods to account
for multiple types of data remains a significant challenge. In addition to account-
ing for several types of data, incorporating the large number of computational
predictions already available will also be desirable.

6.1.1 Previous Work

In recent years, many different methods have been proposed to address the prob-
lem of integrating together large heterogeneous datasets in the context of sequence
search. For example, probabilistic generative models have been proposed in which
sequence search consists of inference and learning [9, 19] given sequence and
expression data. Although such methods explicitly model the impact of sequences
on gene expression while accounting for uncertainty, a major challenge is to account
for newer datasets as well as new sources of regulatory variability. Each additional
dataset to be analyzed is likely to introduce a significant number of additional
parameters and hidden variables, dramatically increasing the cost and complexity
of inference and learning under the generative framework. Thus, as the number of
types and sizes of data continue to increase, it is likely that both model misspec-
ification and prohibitive computational complexity will hamper the practicality of
probabilistic models with latent variables for discovering sequences. Owing to the
difficulty in developing purely sequence-based models of regulatory sequences, a
major challenge is then to incorporate additional data types under a unified tractable
and principled framework.

6.1.2 Sequence Search as a Problem of Learning to Rank

A strategic approach to the above problem can be obtained by noting that the prob-
lem of sequence search is inherently a problem of learning to rank, whereby we are
given a large number of possible sequences and only some relatively small number
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are of biological significance. Furthermore, there is often a well-defined notion of
preference between sequences. An example of this arises when searching for tran-
scription factor sites, whereby some sites are more strongly bound than others by
certain transcription factors. Thus when discovering sequences, it is desirable to
explicitly model the fact that sequences do not fall into two distinct categories of
positives and negatives but instead have different degrees of significance attached
to them, so that a plausible model should assign a higher score for sequences with
higher importance.

Some methods have in fact formulated the problem of sequence search as one
of ranking, so that they assign a score to each sequence with the implicit assump-
tion that high-scoring sequences are more likely to be bona fide than low-scoring
ones. The idea of discovering sequences using an explicit ranking formulation has
been explored previously by [3,5,20] in the context of using the orderings obtained
from microarray intensities to learn position-specific scoring matrices (PSSMs) for
transcription factor binding sites (TFBS). This was shown to significantly improve
predictive accuracy with respect to other model-based methods, as no assumptions
on the functional relationship between measured intensities and sequences needed
to be made in order to learn to rank sequences. The improved accuracy of such
ranking-based methods with respect to model-based methods then suggests that a
good method for discovering sequences would be one specifically tailored to the
problem of learning to rank.

Given the above methods for ranking sequences, our goal here is to expand on
previous work along three directions. First, we address the presence of statistical
dependence relationships between variables in the problem of ranking, since the
rank of one sequence can only be determined given the ranks of all sequences.
Second, the scoring function used by the previous methods of [3, 5, 20] was param-
eterized by a PSSM and so only accounted for sequence inputs. Here we will allow
for ranking functions which can account for rich feature spaces obtained from quan-
titative measurements such as expression profiling data. Lastly, by formulating the
sequence search problem as one of ranking, we can leverage information across
several experimental datasets and diverse prediction methods via the orderings over
sequences that each provides. Under the framework of learning to rank, orderings
provided by diverse computational methods and those provided by experimental
data are all comparable and readily accounted for, even if measured/predicted values
between different prediction methods may be difficult to compare. Thus, given that
we observe many different partial orderings provided by diverse datasets and predic-
tion methods, our aim will be to predict orderings over sequences so that sequences
which are often highly ranked across different experiments and prediction methods
should also be highly ranked by our method. The proposed framework of rank-
ing then offers three significant advantages over previous approaches for sequence
search. First, the framework makes minimal assumptions about the relationships
between sequences and measured/predicted labels for the sequences and so largely
avoids the issue of model misspecification. Second, it allows us to leverage order-
ings provided by heterogeneous datasets and prediction methods which may have
little overlap with one another in the sequences they contain, but are nevertheless
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informative when combined together under a single model. Lastly, predictive accu-
racy is improved by explicitly modelling the dependencies involved in learning to
rank.

To model the statistical dependencies in learning to rank, we can take advantage
of the structured ranking learning framework which was recently proposed in [11].
This probabilistic framework for learning to rank is based on a novel class of prob-
abilistic graphical models called cumulative distribution networks [8,10], or CDNs.
In learning to rank in a structured setting where we account for dependence relation-
ships between model variables, or structured ranking learning, the goal is to learn
a ranking function under a structured loss functional which accounts for the statis-
tical dependence relationships involved in predicting pairwise preferences between
sequences, as misranking one sequence affects how we rank other sequences. In the
context of discovering sequences, we can then interpret a set of prediction meth-
ods and a set of experimental measurements as observations which convey partial
orderings over some subset of the sequences of interest. Thus we present STORM-
Seq, a method formulated which scores sequences given a set of features and a
set of orderings over subsets of the sequences to be ranked. Our method general-
izes the RankMotifCC method of [5] to a structured learning setting where we can
(a) account for the dependencies in the problem of ranking, (b) incorporate rich
feature spaces such as quantitative measurements of mRNA and protein expression
in addition to sequence data, and (c) account for diverse computational prediction
methods as additional data. The outline of the method is illustrated in Fig. 6.1. We
will apply the proposed framework to the problems of scoring transcription factor
binding sites and microRNA targets, although the framework is general enough to
be applied to a wide variety of bioinformatics problems, such as ranking therapeutic
drug targets, finding genetic associations or scoring protein-protein interactions.

6.2 STORMSeq: STructured Ranking of Regulatory Motifs
and Sequences

We will begin by describing the problem of structured ranking learning for discov-
ering sequences using the framework of [11]. Suppose we wish to score sequences
in the set S . Let s˛ be a particular sequence in S which is indexed by ˛. Here,
a sequence is any segment of nucleotides or amino acids for which one can extract
features. For example, in the case where we wish to discover microRNA targets, a
‘sequence’ may correspond to the entire 30 untranslated region (30UTR) for a par-
ticular gene, so that one has access to the sequence of the 30UTR, as well as other
features for the 30UTR sequence. These can include its level of expression across
many tissues/cell types, the abundance of proteins which are translated from the
sequence preceding the 30UTR and the expression of a microRNA which putatively
targets a site in the 30UTR sequence. This is illustrated in Fig. 6.2a: for each node
˛, we are provided with a corresponding sequence s˛ and a set of features x˛ which
will aid in learning to rank the sequences.
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Fig. 6.1 The STructured ranking of Regulatory Motifs and Sequences (STORMSeq) method.
Given multiple independent observations conveying various orderings over sequences and given
the observed sequences and input features extracted for each observation (e.g.: mRNA, microRNA
and protein measurements, sequence context features), STORMSeq learns a ranking function such
that the probability of generating the observed orderings is maximized

Suppose now that we are given a set of N observations D D fD1; : : : ;DN g,
where each observation Dn provides an ordering of the sequences in some subset
Sn � S . Here, an observation contains a partial ordering of the sequences to be
ranked. For example, in the context of scoring microRNA targets, orderings might
be provided by gene expression values in microRNA overexpression experiments
[9] or they can be provided by scores output by computational prediction methods
[7, 16, 18]. The orderings over sequences in an observation can then be viewed as a
set of pairwise preference relationships between sequences, which we will denote
using ˛ � ˇ. For a given observation, we can then represent the ordering between
sequences as a directed graph in which a directed edge e D .˛ ! ˇ/ is drawn
between two nodes ˛; ˇ if sequence s˛ was preferred to sequence sˇ within obser-
vation Dn. We will denote this directed graph as the order graph Gn D .Vn; En/

for observation Dn, where En is the set of all edges in the order graph and each
node ˛ 2 Vn corresponds to a unique sequence s˛ 2 Sn. An example of such
an order graph is shown in Fig. 6.2b. Thus the nth observation consists of the set
Dn D fGn; fs˛; x˛g˛2Vn

g, so that our data consists of a collection of indepen-
dent observations D D fD1; : : : ;DN g. One immediate advantage of the proposed
framework is that orderings over sequences can be compared between observations
despite the fact that measured/predicted values between observations may not be
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Fig. 6.2 The STructured ranking of Regulatory Motifs and Sequences (STORMSeq) method. (a)
Feature extraction. For each sequence s˛ to be ranked, we assign a corresponding node ˛ and a
set of corresponding features which are relevant to ranking the sequence. For the example shown,
the sequence s˛ may correspond to the sequence for the entire 30 untranslated region (30UTR) of
a gene, so that the feature vector x˛ include the expression of the gene carrying the sequence,
the abundance of protein produced from the coding region for the gene carrying the sequence and
the expression of a putative microRNA which targets the sequence; (b) An observation consisting
of an order graph over three nodes where each node ˛; ˇ;  in the order graph corresponds to a
unique sequence s˛; sˇ; s to be ranked, and each directed edge expresses a preference relationship
between two nodes. An order graph can be readily established from log p-value scores, expres-
sion ratios or other available statistics which provide an indication of the relevance or importance
of a given sequence. In this example the order graph corresponds to the ordering ˛ � ˇ �  .
Each edge in the order graph then corresponds to preference variables �˛ˇ; �ˇ ; �˛ ; (c) The cor-
responding cumulative distribution network (CDN) defined over the preference variables specified
by the observation of (b). The CDN models the joint CDF over the preference variables and allows
us to compactly specify dependencies between preferences so we can perform structured ranking
learning [11]
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comparable. Furthermore, the orderings conveyed by different observations can be
partial and can be defined over different subsets of sequences.

To combine the different orderings together, we now define a ranking function
�.˛/ W Vn ! R which assigns real-valued scores to sequences. If we model the
stochastic score �˛ of a given node ˛ as

�˛ D �.˛/C �˛ ; (6.1)

where �˛ is a random variable specific to node ˛, then we can define the preference
event ˛ � ˇ as being equivalent to the following:

˛ � ˇ, �˛ˇ 	 �ˇ � �˛ � �.˛/ � �.ˇ/: (6.2)

Here, �˛ˇ is a preference variable between ˛; ˇ. Thus for each edge .˛; ˇ/ in the
order graph Gn, we assign a corresponding continuous-valued preference variable
�˛ˇ which should satisfy the above inequality in order for the preference relation
˛ � ˇ to be observed. Now we can define the quantity r.eI �;Dn/ D �.˛/ � �.ˇ/
and collect these into a vector r 	 r.DnI �/ 2 RjEnj of pairwise differences, where
jEnj is the number of edges in the order graph. Similarly, let �e 	 �˛ˇ be the
preference variable defined along edge e in the order graph Gn. Having defined the
preference variables, we must now select an appropriate loss measure for learning
the ranking function. For a given observation Dn, we will choose the loss measure
to be the negative log-probability of observing the preference relationships between
sequences in order graph Gn. From Eq. 6.2, this will take the form of a probability
measure over events of the type �e � r.eI �;Dn/ so that we obtain

P ŒEnjVn; �� D P

" \
e2En

Œ�e � r.eI �;Dn/�

#
D F�



r.DnI �/

�
; (6.3)

where F� is the joint CDF over the preference variables �e . Thus, for a given obser-
vation Dn, any probability over the set of preference events �˛ˇ � r.eI �;Dn/

will take on the form of a joint CDF F�



r
�

over the preference variables � 	
f�˛ˇ g.˛;ˇ/2En

, where the CDF F� is evaluated at r.DnI �/.
Given multiple independent observations D D fD1; : : : ;DN g, we can then

define a structured loss functional L .D I �; F�/ as the log-probability of indepen-
dently generating the observed orderings in D , so that

L .D I �; F�/ 	 �
NX

nD1

logF�



r
�

(6.4)

where each term in the loss functional is the log of a joint CDF. Whilst each of these
log-CDF terms is defined over many preference variables with a high degree of
dependence amongst variables, we can nevertheless represent each term compactly
as a cumulative distribution network (CDN) [8, 10], which is a graphical model
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representing the joint CDF of several random variables (see Appendix). An exam-
ple of a possible CDN representing a joint CDF over three pairwise preferences is
shown in Fig. 6.2c.

Having defined the structured loss functional L .D I �; F�/, the problem of
learning to rank sequences from observationsD1; : : : ;DN will then consist of min-
imizing the loss functional with respect to the ranking function � and the CDF F� .
Let � denote the vector of parameters which parameterize both the ranking function
� and the joint CDF F� , so that we can write the structured loss as a function of
� , or

L .D I�/ 	 L .D I �; F�/ D
NX

nD1

L .DnI�/ D �
NX

nD1

logF�



r.DnI�/

�
: (6.5)

In order to optimize L .D I�/ with respect to � , we will assume that we can com-
pute the gradientr�L .DnI�/ for each observationDn. Given the gradient, we can
then proceed to optimize the structured loss functional using a stochastic gradients
descent (SGD) algorithm whereby for each observation Dn, we construct a CDN
for order graph Gn and we update the parameters of the model according to the
rule �  � � �r�L .DnI�/, where � is a learning rate parameter for the SGD
algorithm. This leads to an efficient method for learning to rank, as we only need to
store the CDN for a single observation for the purpose of computing a gradient and
updating the model parameters: this is illustrated graphically in Fig. 6.3.

6.2.1 Ranking using Sequence and Quantitative Features

In order to adapt the above framework to the problem of ranking sequences, we will
use a ranking function �.˛/ which has the general form

�.˛/ D �seq.s˛ IM/C �quant.x˛Iw/ (6.6)

where �seq; �quant are functions which assign scores to the sequence s˛ and its cor-
responding feature vector x˛. Here, it is possible to specify different parametric
forms for �.˛/ which assign scores to sequences under various assumptions. In
order to score any given node ˛ based on sequence s˛ alone, we will consider
the sum of contributions of subsequences of s˛ under the assumption that each
subsequence contributes independently to the overall score for s˛ (see Appendix).
We will choose �quant to be a linear function of the quantitative features, so that
�quant.x˛Iw/ D wT x˛. Given these parameterizations, a sequence s˛ will have a
higher score if both �seq and �quant assign high scores to s˛.

The proposed framework of learning the ranking function from observations
is then summarized as follows: given a training set of observations consisting of
sequences to be ranked, associated quantitative features and a partial ordering
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Fig. 6.3 Illustration of the STORMSeq framework. For each observation Dn, we construct a
CDN defined over preference variables corresponding to edges in the order graph Gn (top).
For this example, we have an order graph defined over four nodes and six preference vari-
ables. The CDN then models the joint CDF over the six preference variables as a product of

functions: here the model consists of a product of three functions so that F�

�
r.DnI�/


D

�˛.r˛;ı; r˛;ˇ; r˛; /�ˇ.r˛;ˇ; rˇ; ; rˇ;ı/�.r˛; ; rˇ; ; r;ı/. Once the CDN has been constructed, we
can perform stochastic learning of parameters by computing the gradient of the log-CDF mod-
eled by the CDN and then updating the vector of parameters � (bottom). We can then repeat this
process for each observation and for a number T of epochs, or passes through the training set

over the sequences, we wish to learn a ranking function �.˛/ which maximizes
the probability of generating the observed orderings by assigning higher scores
to those sequences which are most consistently highly ranked in the obser-
vations fD1; : : : ;Dng. In order to learn �.˛/, we can compute the gradients
rM�seq.s˛ IM/;rw�quant.x˛Iw/ (see Appendix) in order to perform gradient-based
learning. The ranking function is such that we can account for sequence data in
addition to other quantitative features such as expression measurements. The use of
CDNs to represent the structured loss functional for learning to rank then allows
us to account for the fact that learning to rank is inherently a problem in which
one must account for the presence of statistical dependence relationships between
model variables.

We emphasize at this juncture that STORMSeq has been formulated in a gen-
eral way so that it is applicable to many different problems in which we wish to
learn a ranking function using multiple instances of orderings, sequence data and
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other quantitative features. To illustrate how STORMSeq might be used in prac-
tice, we will apply it to two problems of sequence search. In the first of these
problems, we will score sequences bound by transcription factors using the pro-
tein binding microarray data of [3]. In the second, we will score targets of the let-7b
microRNA in human retinoblastomas using both microRNA overexpression data
[9] and other quantitative features such as protein abundance and mRNA expres-
sion levels of targets. Before we proceed, it will be instructive to study the relation
between STORMSeq and a previous method for learning to rank sequences from
orderings over sequences obtained from microarray measurements.

6.2.2 The RankMotifCC Model as a Cumulative Distribution
Network

It is worth noting that in the RankMotifCC model of [5], the objective being min-
imized corresponds to the log-CDF over preferences under the assumption that
preference variables are mutually independent. More precisely, in RankMotifCC
the loss function is given by L .�/ D logF�.r.Dn//, where the probability over all
pairwise preferences ˛ � ˇ is represented by a product over logistic functions of
r˛ˇ D �.˛/ � �.ˇ/ so that

F�.r.Dn// 	 P
�
� � r.Dn/

	 DY
s

1

1C exp.��rs/

D
Y
˛�ˇ

1

1C exp

 � �
�.˛/ � �.ˇ/�� (6.7)

with �.˛/ D �seq.s˛/ and � > 0. Thus the above loss function can be represented
using a disconnected CDN model where each function node corresponds to the
CDN function �s.rs/ D



1 C exp.��rs/

��1
and all pairwise object preferences

are modeled as being independent of one another.

6.3 Results

6.3.1 Discovering Transcription Factor Binding Profiles

We will first apply the proposed structured ranking learning framework to the prob-
lem of ranking sequences using measurements from a protein binding microarray
(PBM) experiment. We obtained PBM data from the Supplementary Material sec-
tion of [3], which consisted of measured intensities of 35-mer probes bound by
five different transcription factors Cbf1, Ceh-22, Oct-1, Rap1, Zif268 across two
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experimental replicate arrays Array 1 and Array 2. The PBM data consisted of inten-
sity measurements y˛ for a set of sequences fs˛ 2 S g, where each probe on the
array is indexed by ˛ and s˛ denotes the nucleotide sequence of a given probe on the
array. We used the array labeled Array 1 as our training data and the probe measure-
ments from Array 2 as test data. The goal here is to then learn a ranking function
which assigns scores to probe sequences under the assumption that higher scores
should indicate an increased probability of a TF binding to a sequence.

We applied the STORMSeq method and evaluated the resulting ranking func-
tion on the test set. In order to compare STORMSeq to similar methods, we also
ran the MatrixREDUCE [6], MDScan [17], Prego [20] and RankMotifCC meth-
ods on the same training data and evaluated these on the same test data using the
settings specified by [5] (see Appendix for details). Here we applied STORMSeq
without using additional quantitative features to provide a fair comparison to the
other methods which rank sequences using only sequence data. The performance of
all five methods for the above five TFs are summarized in Fig. 6.4a and 6.4b using
precision versus recall curves, as well as Normalized Discounted Cumulative Gain
[13] curves which account for how well a method ranks high-intensity sequences
(see Appendix). The use of the NDCG metric here is well-suited to the problem at
hand, as the truncation level n can be interpreted as the number of sequences to be
further validated or analyzed, so that a higher NDCG value is obtained if the most
significant sequences appear at the top of the list in their correct order of signifi-
cance. Here, the significance of a sequence is determined by the strength with which
a transcription factor binds to it, so that the highest score should be assigned to the

Fig. 6.4 (a) Precision versus recall using five different methods for the Cbf1, Ceh-22, Oct-1,
Rap1, Zif268 transcription factors studied in [3,5]. The methods shown are MatrixREDUCE (red),
MDScan (cyan), Prego (green), RankMotifCC (black) and STORMSeq (blue); (b) The corre-
sponding curves showing Normalized Discounted Cumulative Gains (NDCG) versus the truncation
level, or the number of top-ranking sequences. Both (a) and (b) show that by ranking in a struc-
tured learning setting using STORMSeq, we generally improve predictive accuracy, in terms of
precision, recall and NDCG, with respect to the other unstructured learning methods shown here
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Fig. 6.5 Motifs found by the MatrixREDUCE, MDScan, Prego, RankMotifCC and STORMSeq
methods (rows) for each of the TFs

most strongly bound sequence. Figure 6.4a and 6.4b demonstrate that by ranking
in a structured learning setting and by making no particular assumption about the
relationship between sequence s and measured PBM intensities, we increase pre-
dictive accuracy as measured by precision, recall and NDCG compared to the other
unstructured prediction methods such as RankMotifCC. In particular, according to
the NDCG metric, our method of ranking also has increased accuracy in terms of the
ranking itself, so that sequences with higher intensities are more likely to be ranked
higher by STORMSeq than by the other models.

The corresponding PSSMs found by each of the above methods are shown in
Fig. 6.5. As can be seen, the PSSMs learned by STORMSeq are consistent with
those found by the other methods as well as with PSSMs previously reported
for this dataset [3, 5]. It is worth noting here that the consensus sequence for
RAP1 found by our method, as well as the consensus reported by the Prego and
MDScan methods agree with the First 6 base positions of the widely published
motif ACACCC [21]. Also, observe that while the PSSMs obtained by STORM-
Seq can be degenerate at many positions for various TFs, the improved performance
of STORMSeq over these methods suggests that these methods are likely to under-
estimate the degeneracy of the motifs to be discovered as a consequence of model
misspecification.

One reviewer has pointed out that the particular sequence ranking function used
above is not designed to allow for gaps in motifs [4]. One advantage of the struc-
tured ranking learning framework is that the user can choose from many ranking
functions for any given problem, so that the user can specify a ranking function
which accounts for the presence of gaps, or other specific features of the motifs
to be found. In the case where we wish to learn a PSSM for gapped motifs, we
can constrain the degenerate positions in the PSSM by constraining the entropy of
the nucleotide frequency at these positions: we provide an example of this in the
Appendix.

Having applied the structured ranking learning framework to the problem of
discovering transcription factor binding sites, we will also demonstrate the useful-
ness of STORMSeq for discovering microRNA targets, which also consist of short
nucleotide sequences which regulate the activity of genes.
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6.3.2 Discovering microRNA Targets

In addition to learning to rank transcription factor binding sites, we will also demon-
strate the usefulness of STORMSeq for ranking microRNA targets. MicroRNAs
consist of molecules of 22–25 nucleotides which target mRNA transcripts through
complementary base-pairing to short target sites, in a fashion analogous to the oper-
ation of transcription factors. However, unlike transcription factors, microRNAs are
generally inhibitory in their activity, so that microRNA activity generally represses
the activity of their target genes either by reducing the abundance of their target
mRNA transcripts or by repressing translational activity of their target mRNAs
[1, 9]. There is substantial evidence that microRNAs are an important component
of the cellular regulatory network, providing a post-transcriptional means to control
the amounts of mRNA transcripts and their protein products [1, 7, 9, 14]. As a con-
sequence of their important role in gene regulation, many previous methods have
been proposed for performing genome-wide discovery of targets of microRNAs
[7, 9, 16, 18].

We will focus here on the let-7b microRNA and a dataset profiling the expres-
sion of human mRNAs in WERI-Rb1 retinoblastoma samples after the transfection
of a synthetic RNA duplex of the mature let-7b hairpin [9]. Under the assumption
that microRNA regulation is causes reduced mRNA expression, pairwise preference
relationships between sequences were asserted using the same criteria as in [5],
but using negative log-expression-ratios of expression from the let-7b transfections.
Thus, the score of a sequence should correspond to the amount of down-regulation
by let-7b. We constructed our dataset in a fashion similar to that used in the pre-
vious example for transcription factor binding sites (see Appendix). In contrast to
the previous problem which had relatively few sources of data variability, here we
are provided with in vivo expression measurements of genes which may have sev-
eral different regulators, some of which may themselves be regulated by let-7b.
The problem of scoring microRNA targets is therefore representative of the type of
problem more commonly encountered in genomics, where the goal is to discover
sequences in the presence of many sources of in vivo regulatory variability. The
hypothesis here is that we can leverage additional information in the form of inde-
pendent quantitative measurements and computational predictions in order to better
account for the variability in orderings over sequences.

To learn to rank microRNA targets, we used human 30UTR sequence data, mouse
mRNA expression, mouse let-7b expression and mouse protein abundance data
[1, 15, 22] across brain, heart, liver, lung and placenta tissue pools, whereby the
mouse mRNAs were selected as homologs of the human mRNAs in the above
WERI-Rb1 assay. Furthermore, the expression for the let-7b microRNA in the
above tissue pools corresponds to that of mouse homolog for let-7b (see Appendix).
Here we selected sequences which have associated mouse mRNA and protein
measurements.

In addition to expression features, we would also like to account for other contex-
tual sequence features, such as microRNA site accessibility. To this end, we ran the
PITA [14] algorithm for computing an accessibility score for each 30UTR sequence
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given the mature let-7b sequence. This score, which we will here denote as��G, is
a function of the accessibility of a target site given the most likely secondary struc-
ture of the target mRNA. Combined with the above mRNA, microRNA and protein
abundance features, this yielded a total of 16 quantitative features for each sequence
to be scored. Thus for this problem, each 30UTR sequence corresponds to a putative
let-7b-target interaction so that let-7b putatively targets at least one target site in the
30UTR sequence. The above 16 features thus form the feature vector x˛ which we
will use for learning to rank microRNA targets.

6.3.2.1 Incorporating Diverse Computational Predictions

In addition to the above features, we would like to also incorporate computational
target predictions for let-7b from the PicTar [16], TargetScan [7] and RNA22 [18]
sequence-based target prediction methods. In order to assign scores to candidate
microRNA targets, each of these methods makes use of various criteria such as
conservation and contextual sequence features. The scores output by these pre-
diction methods can be then used to generate an order graph over sequences, so
that each method provides a partial ordering over some subset of microRNA-target
interactions (see Appendix).

Given all of the above, we applied STORMSeq under three settings, where (a) we
only used sequence data for learning to rank targets, (b) we only used quantitative
features (mRNA and microRNA expression, protein abundance and��G), and (c)
we also used information provided by diverse computational prediction methods in
addition to both sequence and quantitative features (see Appendix). To assess the
out-of-sample predictive performance of our method, we selected a random sample
of 250 positive sequences for our training data and the remainder for the test data.
Similarly, we selected 250 sequences from the negative group for our training set
and the rest for the test data. We thus formed five independent training/test splits in
this fashion (see Appendix). For each of the five train/test datasets, we computed
precision and recall for each of these experimental settings. The resulting preci-
sion and recall curves, averaged over the five test sets, are shown in Fig. 6.6. As
can be seen, incorporating sequence data, quantitative features and computational
predictions together under one model yields an improvement in predictive accu-
racy compared to using sequence alone or sequence in tandem with quantitative
features. This indicates that by leveraging multiple sources of information about
microRNA regulation, we can significantly increase the accuracy with which we
discover microRNA targets.

For further validation, we show the cumulative distribution of ��G scores
for the top and bottom 100 targets ranked according to STORMSeq (Fig. 6.7a).
We expect a priori that sequences with lower ��G score are more likely to be
bound by a targeting microRNA than not. As can be seen, high-scoring targets
have a significantly lower average ��G value than low-scoring targets (P <

10�20, Wilcoxon-Mann-Whitney test), demonstrating that the targets discovered
by STORMSeq are likely to be genuinely targeted by let-7b. Furthermore, the
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Fig. 6.6 Precision versus recall for different STORMSeq learning configurations using expression
data for mRNAs in response to let-7b transfection [9]. By incorporating additional sources of
sequence information, sequence context and quantitative profiling features, STORMSeq achieves
higher accuracy (blue) than using 7-mer counts to predict downregulation (black), using sequence
data alone (green) or sequence data combined with quantitative features without computational
predictions as additional data (red)

protein abundances for the top and bottom 100 targets differed significantly as well
(Fig. 6.7b, P D 7:73 
 10�4), adding support for the hypothesis that the targets
which receive a high score under STORMSeq are bona fide, as microRNA activ-
ity generally leads to lower protein abundance and mRNA transcript abundance
[1, 7, 9, 14].

To assess the use of purely sequence-based methods for this problem, we also
ran the MEME [2] and AlignACE [12] algorithms using default settings on the
250 positive sequences for each training set and examined the resulting PSSMs
reported by both algorithms. The PSSMs obtained from these methods can then be
used to rank sequences. We found that for all five training/test datasets, none of the
PSSMs discovered by MEME and AlignACE led to any significant ability to rank
let-7b targets (data not shown), suggesting that without additional information in the
form of sequence conservation or quantitative measurements, de novo approaches
to scoring sequences are significantly more likely to find poor models by virtue of
either using only sequence information or by virtue of model misspecification.

6.4 Discussion

We have presented the STORMSeq method for learning to rank regulatory
sequences by combining heterogeneous datasets and diverse computational predic-
tion methods. The explicit formulation of sequence search as a problem of ranking
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Fig. 6.7 (a) Cumulative frequency plots of the ��G scores on the top and bottom 100 tar-
gets as ranked by STORMSeq. High-scoring STORMSeq targets generally have higher target
site accessibility and so have a lower ��G value compared to low-scoring targets (P < 10�20,
Wilcoxon-Mann-Whitney); (b) Cumulative frequency plots of protein abundances for top and bot-
tom 100 targets as ranked by STORMSeq. High-scoring STORMSeq targets have significantly
lower target protein abundance (P D 7:73 � 10�4) as a result of microRNA repressive activity

accounts for the fact that different sequences can have multiple levels of signifi-
cance and any method for ranking should correctly order sequences by assigning
a high score to biologically significant sequences. In particular, by accounting for
the statistical dependence relationships which exist in learning to rank, STORMSeq
improves predictive performance over other unstructured methods for learning to
rank. In addition, STORMSeq largely avoids many of the issues of model mis-
specification and complex inference which may arise when modelling multiple
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heterogeneous datasets. As STORMSeq is formulated in fairly general terms, it can
also be applied to other problems of sequence search such as ranking drug targets,
discovering genetic associations or scoring protein-protein interactions, although
we have not focused on such applications here.

In the case of ranking microRNA-target interactions we have shown that incorpo-
rating diverse computational predictions increases predictive accuracy as measured
by precision and recall. It should be noted that one must exercise care in what addi-
tional sources of computational predictions are incorporated into the analysis. We
found that by incorporating computational prediction methods which had inherently
low accuracy, we could in fact decrease the predictive accuracy of our method (data
not shown). In our case, particular computational prediction methods were included
in our analysis on the basis of a previous study conducted in [9] which gauged the
predictive accuracy of a variety of microRNA-target prediction methods according
to a variety of metrics. We caution that in the case in which data is relatively limited
in size, including computational predictions from methods which have low accu-
racy can adversely impact the accuracy of STORMSeq. A possible extension to the
framework proposed here is to allow for outlier detection so that the model can
discount the impact of outlier observations.

One reviewer pointed out that the optimization problem being solved is generally
non-convex and may assign high probability to different orderings over sequences.
Although the underlying ranking may not be unique for a given class of ranking
functions and/or loss functionals, there may be a large number of partial orderings
over sequences which are consistent with an underlying (and possibly unidentifi-
able) total ordering over sequences. Thus, although many orderings may be possible
and STORMSeq may learn one of these, those which are most useful in practice are
those orderings in which the relevant sequences are correctly ranked, while less of
a penalty should be assigned whether we have correctly ranked the less relevant
sequences. Thus the issue of whether the ranking of relevant sequences is identifi-
able may be of concern, so that standard techniques for avoiding poor local minima
must be used and the solutions obtained from multiple restarts should be compared
with one another.

An important issue which arises often in practice concerns the tractability of the
proposed framework. In a setting in which one is given a large number of sequences
to be ranked for a single observation, the number of edges in an order graph may in
the worst case reachO.n4/, where n is the number of objects in the observation. As
storing and processing such a large observation may be intractable, we have made
use of the mean absolute deviation (MAD) criterion for asserting preference rela-
tionships (see Appendix), which has the effect of reducing the number of pairwise
preferences to be modeled. One can devise similar schemes to reduce the number
of pairwise preferences to be modeled, as many of these will represent pairwise
ordering constraints between very highly relevant sequences and irrelevant ones.
We have also found that one can randomly break up an observation defined over
many sequences into a set of multiple observations defined over smaller subsets of
the sequences. Each of these observations could then be tractably modeled using
the proposed method. In addition or as an alternative to the above, one can choose
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a CDN graph which is tractable and amenable to fast computations. An advantage
of the proposed framework is that it is possible to use sparser CDN graphs which
tradeoff the presence of dependencies between pairwise preferences for tractability
and speedups in computation time.

We have applied STORMSeq to the problems of scoring sequences bound by
transcription factors and scoring microRNA targets, whereby performing structured
learning and combining different data types with computational predictions was
shown to improve predictive accuracy. In the case of ranking microRNA targets,
features relating to expression patterns in mouse proved to increase the ranking
accuracy of scoring targets in human retinoblastomas. This suggests that STORM-
Seq may also be useful for problems in comparative genomics as a principled means
for combining diverse datasets from different species. Other interesting extensions
of the STORMSeq would include scaling the proposed framework to genome-wide
detection of regulatory sequences as well as using richer representations for the
ranking function which could account for direct interactions between the sequences
to be ranked.
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Appendix

Cumulative Distribution Networks

The CDN [8, 10] is an undirected bipartite graphical model in which the joint CDF
F.z/ over a set of random variables is modeled as a product over functions defined
over subsets of these variables. More formally, for variable set Z, the joint CDF is
given by

F.z/ D
Y
s2S

�s.zs/; (6.8)

where S is a set of function indices and for s 2 S , �s.zs/ is defined over some subset
of the variables in Z. For detailed derivations of the properties of CDNs, including
marginal and conditional independence properties, we refer the reader to [10]. The
CDN framework provides us with a means to compactly represent multivariate joint
CDFs over many variables: in the next section we will formulate a loss functional
for learning to rank which takes on such a form.

A Structured Loss Functional for Learning to Rank

Let the ranking function �.˛/ 	 �.˛I a/ be parameterized by the parameter vector
a so that r.DnI �/ 	 r.DnI a/. For a given order graph Gn, the structured loss
functional is then given by
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L .DnI�/ 	 L .DnI a; �/ D � logF�



r.GnI a/

� D � log�.r.DnI a// (6.9)

where � D �a �	 is the set of parameters. Here we can choose from a wide variety of
CDN topologies and functional forms for the CDN functions, such as the particular
CDN used in [11]. We will represent the joint CDF using a single CDN function
�.r/ set to a multivariate sigmoidal function so that

�.r/ D 1

1CPe exp.��r.eI a;Dn//
; � > 0: (6.10)

For the given CDN and ranking functions, the learning problem for the current
observationDn then becomes

min
a;�

X
n

log

 
1C

X
e2En

exp

 � �r.eI a;Dn/

�!
s.t. � > 0: (6.11)

In order to solve the above optimization problem, we will use a stochastic gradi-
ent descent algorithm which will require us to compute the gradient raL .DnI�/
for each observationDn. This is given by

raL .DnI�/ D ��


r.DnI a/

� X
e2En

exp.��r.eI a;Dn//rar.eI a;Dn/;

with

rar.eI a;Dn/ D ra�.˛I a/ � ra�.ˇI a/
(6.12)

The derivative with respect to the CDN function weight w is then given by

@�

h
L .DnI�/

i
D �

X
e2En

r.eI a;Dn/ exp

 � �r.eI a;Dn/

�
�.r/ (6.13)

With the above gradients, we can then proceed to construct a CDN for each
observation Dn and updating the parameters of the model according to the rule
�  � � �r�L .DnI�/, where � is a learning rate parameter.

Ranking Functions for Sequence and Quantitative Features

Suppose we are given a sequence s˛ of lengthL˛ which we would like to score. Let
skWkCK�1

˛ be a subsequence of s˛ of lengthK starting at position k and let sj
˛ be the

symbol observed at position j in sequence s˛. Given a PSSM M of lengthK (where
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Mk;b is equal to the probability of emitting symbol b at position k of the PSSM)
we can define the score for sequence s˛ as the probability that a transcription factor
binds to at least one subsequence of lengthK in s˛ according to the PSSM, so that

�seq.s˛ IM/ D log
�
1 �

L˛�KY
kD0

.1 � P.skC1WkCK
˛ jM//


(6.14)

where P.skC1WkCK
˛ jM/ D QkCK

jDkC1Mj;s
j
˛

is the probability of binding to sub-

sequence skC1WkCK
˛ according to M. The derivative of the ranking function

�seq.s˛ IM/ with respect to the parameterMk;b is equal to

@�seq.s˛ IM/
@Mk;b

D 1 � exp


�seq.s˛ IM/

�
exp



�seq.s˛IM/

�



 X

i

P.siC1WiCK
˛ jM/

1 � P.siC1WiCK
˛ jM/



ŒsiCk

˛ D b� � P.bjM/�
!

(6.15)

We can then collect these derivatives into a vector to form the gradient rM�seq

.s˛ IM/.
In the case where we are provided with quantitative features in the form of a

feature vector x˛, we can define the ranking function �quant.x˛Iw/ to be a linear
function given by rw�quant.x˛Iw/ D x˛. Once we have computed both gradients,
we can evaluate

ra�.˛I a/ D
� rM�seq.s˛ IM/
rw�quant.x˛Iw/

�
: (6.16)

Ranking Functions for Discovering Gapped Motifs

In the case in which we wish to allow for gaps, we can posit a ranking function of
the same form as in Eq. 6.14, but with an additional constraint that for degenerate
positions j in the PSSM M, we have Mj;a D 0:25 for a 2 fA;C;G; T g. This
constraint is equivalent to forcing certain positions to be contribute the same score
to the total sequence score regardless of what nucleotides occur at these positions.
Alternatively, we could regularize each degenerate position of the PSSM by adding
some constant Cj to each entry Mj;a, where Cj is chosen so that for position j is
a distribution that is close to being uniform. For the former constraint, we would
simply update the entries of the PSSM for only non-degenerate positions. For the
latter constraint, we can regularize the appropriate entries of M during the learning
process by simply adding Cj after each update of the PSSM. An example of the
PSSM for such a gapped motif is shown in Fig. 6.8. It is worth noting that the length
of the gap, or number of degenerate positions in the PWM, can either be specified
by the user or it can be selected via cross-validation, as with the length of the PWM.
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Fig. 6.8 An example of a
gapped motif
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Fig. 6.9 An example of an order graph over four nodes ˛; ˇ; ; ı corresponding to the ordering
˛ � ˇ �  � ı, with CDNs representing two different loss functions corresponding to different
independence assumptions about pairwise preferences. Whereas the RankMotifCC method of
[5] corresponds to an unstructured learning method which assumes independence of preference
variables, STORMSeq models the dependencies between preferences by introducing connections
between preference variables in the corresponding CDN

The RankMotifCC Method as a Disconnected CDN

For the RankMotifCC model of [5], the corresponding probability over all pair-
wise preferences ˛ � ˇ is modeled by a product over logistic functions of

�.˛/ � �.ˇ/ so that F�.r.Dn// 	 P Œ� � r.Dn/� D
Y

s

1

1C exp.��rs/ DY
˛�ˇ

1

1C exp

� �
�.˛/ � �.ˇ/�� with �.˛/ corresponding to the sequence rank-

ing function �seq above. This can thus be represented as a completely disconnected
CDN where each function node corresponds to �s.rs/ D 1

1Cexp.��rs/
and all pair-

wise object preferences are modeled as being independent of one another. This is
illustrated in Fig. 6.9 for an example with four sequences s˛ ; sˇ ; s� ; sı to be ranked
in which we represent the corresponding joint CDF using two different CDNs.
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Settings for STORMSeq

We ran STORMSeq for 100 epochs, or passes through the training observations,
using a stochastic gradients optimization method. The learning rate was set to
� D 0:1 with a decay rate of 1=t at the end of each epoch t . In order to pro-
vide regularization on the CDN width parameter �, we set a constraint � � 1. In the
case where we learn a PSSM M, we enforce the constraints that Mk;b > 0 8 k; b
and

P
b Mk;b D 1 8k D 1; : : : ; K . In the case where we learn weights w, we

set an additional L1-norm constraint of kwk1 � 50. All computational runs were
performed in triplicate and the best optimum achieved on training data was selected
for evaluation on test data using criteria described in the sections below. Additional
details on the learning method are provided in [11].

Methods for Ranking Sequences Bound by Transcription Factors

Data was downloaded from the Supplementary Material section of [3], which con-
sisted of measured intensities y˛ for a set of sequences fs˛ 2 S g. The dataset
contained five experiments across two microarrays (Array 1 and Array 2) profiling
the binding of the transcription factors Cbf1, Ceh-22, Oct-1, Rap1, Zif268. We used
the array labeled Array 1 as the source of our training data, and the probe sequences
from Array 2 as the source of our test data. We normalized the microarray inten-
sity data in both sets by first shifting microarray intensities such that the minimum
intensity was equal to one, then applying a log-transformation, as in [5]. We labelled
the 250 probe sequences which had the highest measured intensity as positives and
the 250 sequences with the lowest normalized intensities as negatives. We then con-
structed the order graph over these 500 sequences based on preferences assessed
using the criteria used by [5] where we compute the median absolute deviation m
of the 500 normalized intensities and asserted ˛ � ˇ if y˛ > yˇ C 3� and at
least one of s˛ ; sˇ were labelled as positive sequences as described above, where
� D m=0:6745, where 0:6745 is the median absolute deviation of the standard
normal.

Using the above sequence ranking function �.s˛IM/ for a given PSSM length
K , we ran STORMSeq and RankMotifCC using three random initializations each,
whereby we selected the model which maximized the Spearman correlation with
the training data, as per [5]. For each initialization, the PSSM M was initialized to
a set of random positive values and then normalized so that

P
b Mk;b D 1 8 k D

1; : : : ; K . The MatrixREDUCE, MDScan and Prego methods were run on the train-
ing data as specified in [5], and the resulting PSSM models were selected using the
same Spearman correlation metric as above. For all models, we varied K from 7
to 13 and selected the value of K which optimized the above Spearman correlation
criteria.
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Methods for Ranking microRNA Targets

We focused on the human genes in the let-7b transfection experiment which (a) had
30UTR sequence data provided by Ensembl and (b) were provided with both mRNA
expression and protein abundance data in 3,636 paired mRNA-protein expression
profiles obtained from cDNA microarray and mass-spectrometry across brain, heart,
liver, lung and placenta tissue pools in mouse [15, 22]. This yielded a total of 799
human 30UTR sequences to be scored. We then selected the 400 sequences with
the lowest log-expression ratios as positives and labelled the other 399 genes as
negatives. To assess the out-of-sample predictive performance of our method, we
selected a random sample of 250 positive sequences for our training data and the
remainder for the test data. Similarly, we selected 250 sequences from the nega-
tive group for our training set and the rest for the test data. We thus formed five
independent training/test splits in this fashion. Preferences were then assessed as
described above for the PBM data. Once we obtained the training and test datasets,
we ran STORMSeq with K D 7 on each of the training datasets and selected the
best model out of three random restarts via the Spearman correlation between the
learned ranking function scores and the rankings seen in the training data.

In conjunction with the above data, we used the expression let-7b across brain,
heart, liver, lung and placenta tissue pools [1] with the mRNA/protein profiles men-
tioned above. Additionally, the��G accessibility score was computed by the PITA
algorithm [14] using the mRNA sequences for each of the mouse mRNAs in the
data from [22] and using the mature mouse let-7b sequence for the default algorithm
settings provided in [14].

We downloaded microRNA target predictions for the let-7b microRNA from the
Supplementary Data resources for the TargetScan [7], PicTar [16] and RNA22 [18]
algorithms. The set of TargetScan predictions contains both conserved and non-
conserved targets and the set of RNA22 targets contains both target predicted from
50UTR and 30UTR sequences. We mapped all predictions to the above mouse mRNA
and microRNA labels. Pairwise preference relationships were established for a given
30UTR sequence by summing over microRNA target site scores within the given
30UTR sequence and sorting scores. For a given prediction method, the preference
˛ � ˇ was established between two 30UTR’s s˛; sˇ if s˛ had a higher score than sˇ
and at least one of s˛ ; sˇ were labelled as positive sequences as described above.

Assessing Ranking Performance

To assess predictive performance of any given ranking method, we scored each
node ˛ using the ranking function �.˛/ learned by the method. Given the order-
ing obtained from � and given positive/negative labels for the nodes being ranked,
we can then compute Precision and Recall as
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Precision D TP

TPC FP

Recall D TP

TPC FN

where TP, FP, FN correspond to the number of true positives, false positives and
false negatives respectively.

We also used the Normalized Discounted Cumulative Gains [13] metric, which
is commonly in use in information retrieval research. The NDCG accounts for the
fact that highly relevant sequences should be ranked higher by a given method, so
more weight should be placed on correctly ranking highly relevant sequences than
marginally relevant ones. The formula for computing the NDCG for truncation level
n, or the number of top-ranking sequences, is

NDCG.n/ D Zn

nX
jD1

2r.j / � 1
cj

(6.17)

where r.j / is an observed label indicating the level of importance of the sequence
(e.g.: amount of downregulation from a microRNA) and Zn is a constant to ensure
that NDCG.n/ D 1 for the perfect ranking, so that higher NDCG indicates increased
ability to predict the ordering of sequences. The weights fc1; : : : ; cng are an increas-
ing sequence of real-valued positive numbers which allow us to penalize errors
made in the top of the ranked list whilst discounting errors made for less relevant
sequences. Here we chose cj D log2.1 C j / 8j D 1; : : : ; n. The advantage of
the NDCG metric is that it does not assume that sequences are to be classified
as positive or negative and it accounts for both multiple label values and the fact
that highly important sequences should be ranked first. This contrasts with the use
of Area Under the ROC Curve, or AUC, which weighs misranking errors equally
regardless of where they occur in a ranked list. The NDCG can be also seen as an
approximation to the cost of experimentally validating or analyzing sequences at the
top of the list which are not biologically relevant.

In the case of where we are scoring sequences bound by transcription factors, we
set the labels r.j / to be the normalized array intensities, shifted to be non-negative
and scaled to obtain a maximum label of 1. For the purpose of evaluating on let-7b
targets, we set the above relevance labels to be the negative log-expression-ratios
of each putative target, shifted to be non-negative and scaled to obtain a maximum
label of 1.
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Chapter 7
Mixture Tree Construction and Its Applications

Grace S.C. Chen, Mingze Li, Michael Rosenberg, and Bruce Lindsay

Abstract A new method for building a gene tree from Single Nucleotide Polymor-
phism (SNP) data was developed by Chen and Lindsay (Biometrika 93(4):843–860,
2006). Called the mixture tree, it was based on an ancestral mixture model. The
sieve parameter in the model plays the role of time in the evolutionary tree of the
sequences. By varying the sieve parameter, one can create a hierarchical tree that
estimates the population structure at each fixed backward point in time. In this chap-
ter, we will review the model and then present an application to the clustering of the
mitochondrial sequences to show that the approach performs well. A simulator that
simulates real SNPs sequences with unknown ancestral history will be introduced.
Using the simulator we will compare the mixture trees with true trees to evaluate
how well the mixture tree method performs. Comparison with some existing meth-
ods including neighbor-joining method and maximum parsimony method will also
be presented in this chapter.

7.1 Introduction

There are two major families of methods for building phylogenetic trees: character-
based and distance-based. For the character-based methods, the Maximum Parsi-
mony (MP), the method of Maximum Likelihood (ML), and Bayesian methods are
the most well-known ones.
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Among these methods, the Parsimony method was introduced by Edwards and
Cavalli-Sforza [3], and is one of the first methods to be used to infer phylogeny. A
phylogeny having fewer changes to account for the way a group of sequences has
evolved is preferable. In other words, the most parsimonious explanation for the
observed data is sought. In the method of Maximum Parsimony [2] the tree with
the shortest branch lengths is the best. The steps to create this tree are as follows.
First, informative sites, or sites where at least two different states occur in at least
two taxa, are identified. A subset of trees (or all trees for less than a dozen taxa) is
evaluated using a heuristic approach, and the tree with the shortest branch length is
chosen.

For cases where there are large amounts of evolutionary changes in different
branches of a tree, the method of Maximum Likelihood (ML) is to be preferred.
Maximum Likelihood was created by Ronald A. Fisher [6–8] and later applied
to gene frequency data for phylogenies by Edwards and Cavalli-Sforza [4] and to
nucleotide sequences by Felsenstein [5]. This computationally intensive but flexi-
ble method searches for the tree with highest probability of producing the observed
data. The likelihood of each residue in an alignment is calculated based on some
model of the substitution process.

Unlike ME and MP, the ML and Bayesian methods make use of all of the
information contained within an alignment of DNA sequences. Both ML and
Bayesian methods rely on a likelihood function, L(Parameter)DConstant 
 Prob
[Data—Parameter(s)], where the constant is arbitrary and the probability of observ-
ing the data conditioned on the parameter is calculated using stochastic models [10].
In ML, the combination of parameters that maximizes the likelihood function is the
best estimate. In Bayesian analysis, the joint probability distribution of the param-
eters is calculated. The posterior probability distribution for the parameters is the
likelihood function times the prior probability distribution of the parameters divided
by a function of the data. However, unlike ML, Bayesian methods treat parameters
as random variables.

Minimum Evolution (ME) is a distance-based approach. In this method, the tree
is fit to the data, and the branch lengths are determined using the unweighted least
squares method. In this method, distance measures that correct for multiple hits at
the same sites are used, and a topology showing the smallest value of the sum of all
branches is chosen as an estimate of the correct tree.

When there are a large number of taxa, ME is time consuming, so the neighbor-
joining method can be used instead. The Neighbor Joining (NJ) method [17] is a
clustering method that minimizes the sum of the branch lengths (this is an approxi-
mation to the ME method). The algorithm begins with a star-like structure. Pairwise
comparisons are made to determine the most closely related sequences that are con-
nected by a single node, called neighbors. Neighbors form a clade, and the process
repeats until the topology is complete.

The NJ and the ME tree are generally the same, but when the number of taxa
is small the difference between the trees can be considerable [12]. If a long DNA
or amino acid sequence is used, the ME tree is preferable. When the number of
nucleotides or amino acids used is relatively small, the NJ method generates the
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correct topology more often than does the ME method [13, 18]. MEGA uses the
close-neighbor-interchange search to examine the neighborhood of the NJ tree to
find the potential ME tree.

Unlike NJ, the Unweighted Pair-Group Method with Arithmetic mean (UPGMA)
assumes a molecular clock that is constant. This simple distance-based clustering
algorithm is significantly less accurate than Neighbor Joining. Each sequence is
assigned to its own cluster then new clusters are formed based on having a minimal
distance between them. The UPGMA trees are always rooted, and the total branch
length from the root to any tip is equal (i.e., the tree is ultrametric). Finding the root
requires an outgroup or is given at the midpoint of the longest distance connecting
two taxa in the tree.

In this chapter, we will review the mixture tree model and algorithm proposed by
Chen and Lindsay [1] in Sect. 7.2 and then in Sect. 7.2.2 present an application to the
clustering of the mitochondrial sequences to show that the approach performs well.
A simulator that simulates real SNPs sequences with unknown ancestral history
will be introduced. Using the simulator we will compare the mixture trees with true
trees to evaluate how well the algorithm performs. Comparison with some existing
methods including neighbor-joining method, and the maximum parsimony method
will also be presented in Sect. 7.3.

7.2 Mixture Tree Algorithm

In this section, we will briefly reviewed the Ancestral mixture model and the
Mixture Tree algorithm introduced in the paper Chen and Linsay [1].

7.2.1 Ancestral Mixture Model

The ancestral mixture model implements K-component mutation kernel mixture
density to estimate the most common ancestor and the evolving history(phylogeny)
of the observed binary DNA sequences. Suppose we observed a sample of binary
DNA sequences X1;X2; : : : ;Xn of length L for a fixed mutation rate p. As all the
sequences are binary, we can code one state 0 and the opposite 1. If we assume that
they evolved from a single ancestor of length L, say �1, and we define �1j as the
j th site of �1, the mutation kernel density for X is defined as

�.xj�1; p/ D
LY

jD1

p.xj��1j /2

.1 � p/1�.xj��1j /2 D pD.x;�1/.1 � p/L�D.x;�1/;

where D.x;�1/ DPL
jD1.xj � �1j /

2 is the number of disagreements between the
site of x and the corresponding site of �1.
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If the observed sample is evolving from K different ancestors, say �1;�2; : : : ;

�K , and we consider # as a random variable with distribution Q, where Q is
a discrete distribution with K points of support which are the K ancestors, and
pr.# D �k/ D �k , where �k � 0 and

PK
kD1 �k D 1; then we suppose X is gener-

ated by first generating # D �k fromQ; and generating X D x from �.xj�k; p/: #

is unobserved, and such X is said to have an ancestral mixture model: X � A.Q;p/:
The density of X, when Q is discrete, is:

f .xIQ;p/ D
KX

kD1

�kp
D.x;�k/.1 � p/L�D.x;�k/;

which is called a ‘Q-mixture of mutation kernels’.

7.2.1.1 Mixture Tree Algorithm

In order to find the MLE of �j and �j , where j D 1; : : : ; K , an EM algorithm

is employed. Give a value Q.1/ D .�
.1/
1 ; �

.1/
2 ; : : : ; �

.1/

k�1
;�

.1/

1
; : : : ;�

.1/

K
/for the

mixture, standard EM calculations give

�
.tC1/
j D

Pn
iD1 ı.j jxiI�.t/;�.t//

n
;

where

ı.j jxI�.t/;�.t// D �j 
 �.xj�j /PK
jD1 �j 
 �.xj�j /

We then reupdate the ı weights using the new � before update �. During the
E-step, the expected percentage of category 1 occurrences at site s in component j
as

�js D
Pn

iD1 ı.j jxiI�.tC1/; �.t// 
 xisPn
iD1 ı.j jxiI�.tC1/; �.t//

and in the M-step, we find the MLE of the parameter by ‘voting’ according to

O�.tC1/
js D

8<
:
1 �js >

1
2
;

0 �js <
1
2
;

either �js D 1
2
:

A tie in the third case in this structure of the model is extremely rare and it makes
no difference in the EM likelihood.
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7.2.1.2 An Alternative Revised Algorithm

The EM algorithm employed in the mixture models has computational problem such
as small weight �i problem. It is nature to propose an alternative revised EM that
the weights �i is not updated. We will call such revised EM the ‘FixEM’. Later on,
we will compare EM with FixEM in the simulation section.

7.2.2 An Example

In this section we will compare the mixture tree (MT) method with the Neighbor-
joining tree and Maximum Parsimony tree in a visual way and give an example of
the mixture tree structure by using the real data set in the paper [20]. This dataset
can be downloaded from Genbank. There are 530 mtDNA sequences(population) in
HVS1 region with different length and they are collected from people living in 17
locations(sub-populations) in East Asia who belong to two official ethnic groups,
Miao and Yao, and the sample sizes within each location are different. Before con-
structing the trees using different methods, we did some necessary manipulations to
the sequences:

1. Aligned all the sequences using MEGA4 with default setting.
2. Deleted those sites with gaps
3. Deleted those sites that are not binary
4. When applying mixture algorithm, deleted those sites that are identical

7.2.2.1 Trees Based on the Sample Contains One Random
Sequence from Each Sub-population

After applying the above manipulations to all sequences, we constructed trees using
four different methods: NJ, MP, ML and MixtureTree algorithm. It is time consum-
ing and resulting tree structure is quite complex if we use all sequences. Therefore,
one sequence from each location was randomly chosen and used when constructing
trees. Note that the numbers of sequences in the locations are different and some
sequences in the location have duplicates, however, sequences from different loca-
tions are different. After random selection of one sequence from each location, we
have a sample which contains 17 different sequences. Base on the sample, we use
MEGA4 to construct the NJ and MP trees which are presented in Figs. 7.1 and 7.2,
respectively. Also, we use PHYLIP to construct the ML tree presented in Fig. 7.3.
We then deleted all non-binary sites in all sequences then construct the mixture tree.
The mixture method uses the frequency of a sequence in the population to assign a
weight; here the weights are ones. The mixture tree is constructed and presented in
Fig. 7.4.
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Fig. 7.1 The NJ tree for one sample of the data in Wen et al. [20]

Fig. 7.2 The MP tree for one sample of the data in Wen et al. [20]
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Fig. 7.3 The ML tree for one sample of the data in Wen et al. [20]

7.2.2.2 Trees Based on the Sample Contains all Sequences in the Population

We can also construct trees based on the full set of manipulated sequences in the
population by using NJ, MP, ML, and the MT method. The NJ and MP trees can
be constructed in MEGA4 and the ML tree can be constructed in PHYLIP. The
resulting mixture tree is presented in Fig. 7.4.

7.3 Comparison

7.3.1 Simulator

The simulator we used in comparison of different tree reconstructed methods is
ms [9], which is a program to generate samples under a variety of neutral models.
A variety of assumptions about migration, recombination rate and population size
can be set to generate the designated samples. The samples are generated using the
standard coalescent approach in which the random genealogy of the sample is first
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Fig. 7.4 The Mixture Tree for one sample of the data in Wen et al. [20]

generated and then mutations are randomly placed on the genealogy. The simulator
can be run under the Unix-Like operating system like Linux.

The basic command line is:

ms nsam nreps -t �

where

� nsam the number of copies of the locus in each sample;
� nreps the number of independent samples to generate.
� � the mutation parameter, � D .4N0�/, where N0 is the diploid population size

and where � is the neutral mutation rate for the entire locus.
� -t � set value of 4N0�.

In order to output the gene trees, the option�T needs to be added in basic command.
Also, -s j needs to be added, if one wants to make samples with fixed number of
segregating sites, j .
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Fig. 7.5 The Mixture Tree for all samples of the data

7.3.2 Comparison

For a set of parameters(�, s), we simulate a sample of size 200 with no identical
sequences in each observation and no tie in the corresponding gene tree. Once we
have the simulated distinct sequences (suppose it is saved in tree1.fas) and no tie
in the gene tree (suppose it is saved in tree1.nwk), we do the following steps to
complete the comparison:

� Change the format of tree1.fas to the format which can be used in the mixture
tree algorithm and save it as tree1.txt;

� Run the mixture tree algorithm with sliding-scale 0.001 using tree1.txt and obtain
the mixture tree tree1mm.nwk;
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� Substitute A for 0, G for 1 in tree1.fas and reconstruct the Neighbor-joining
(tree1NJ.nwk) and Maximum Parsimony tree(tree1MP.nwk) using MEGA4;

� Using the function unroot, read.tree and dist.topo in the package ape in R
to compare the distance between tree1.nwk and tree1mm.nwk, tree1NJ.nwk,
tree1MP.nwk, respectively. Record them.

If there is a tie in the mixture tree, Neighbor-joining tree, and Maximum Parsimony
tree during any steps above, we will discard the whole set of sequences.

In order to determine the extent of topological differences between the gene
tree(tree1.nwk) and the trees created using the other methods (NJ, MP, and MT),
Rzhestky and Nei [16] method is implemented. This method is based on the Penny
and Hendy’s [14] method of sequence partitioning, which provides equivalent
numerical values to those obtained using the Robinson and Foulds’ [15] method
but is simpler to compute. For unrooted bifurcating trees, this distance is twice the
number of interior branches at which sequence partitioning is different between
the two trees compared. The topological distance can be thought of as the small-
est number of transformations required to obtain the simulated tree topology from
the tree constructed using the mixture algorithm. The Rzhestky and Nei method is
a modification of this distance to take multichotomies into account. These values
were standardized by dividing by twice the total number of internal branches. An
unrooted bifurcating tree with n haplotypes has n � 3 interior branches. Thus, the
maximum possible value is 2.n� 3/. The topological distances were measured and
standardized.

7.3.3 Summary of the Analysis

The maximum distance between two trees, given the number of lineage n, using
Rzhestky and Nei [16] method, the maximum distance between two trees is 2.n�3/.
So it is reasonable to standardize the distances by dividing each distance by the max-
imum distance. With different number of different SNPs sequences, the maximum
distance between two trees would vary under the Rzhestky and Nei method. The
results of the analysis are summarized in Tables 7.1, 7.2, and 7.3.

In the summary Tables 7.1, 7.2, and 7.3, we will call the mixture trees recon-
structed via the FixEM algorithm the ‘FixMixture’, the mixture trees reconstructed
via the traditional EM algorithm the ‘Mixture’. The ‘NJ’ means the trees are

Table 7.1 Comparison Results for simulated data with mutation rate 0.0000025 and sample
size 200
Mutation rate 0:0000025 Length: 20 No. of Sequences: 5 Samplesize: 200

FixMixture Mixture NJ MP

Sum of distance 142 136 156 124

Sum of std. distance 35:5 34 39 31
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Table 7.2 Comparison Results for simulated data with mutation rate 0.00000375 and sample
size 200
Mutation rate 0:00000375 Length: 10 No. of Sequences: 5 Samplesize: 200

FixMixture Mixture NJ MP

Sum of distance 188 168 208 194

Sum of std. distance 47 42 52 48:5

Table 7.3 Comparison Results for simulated data with mutation rate 0.000005 and sample
size 200
Mutation rate 0:000005 Length: 10 No. of Sequences: 5 Samplesize: 200

FixMixture Mixture NJ MP

Sum of distance 198 146 192 184

Sum of std. distance 49:5 36:5 48 46

reconstructed by the ‘Neighbor-Joining’ algorithm. The ‘MP’ means the trees are
reconstructed by the ‘Maximum Parsimony’ algorithm. The ‘Sum of Distance’ is
the sum of the Rzhestky and Nei distance of all the units in the sample between mix-
ture tree or Neighbor-joining tree or Maximum Parsimony tree and true gene tree,
respectively. The ‘Sum of Std. Distance’ is the sum of Rzhestky and Nei distance of
all units in the sample between three different kind trees and gene tree divided by
the maximum distance of that unit in the sample, respectively. The ‘Length’ is the
length of the simulated sequences in the sample. ‘No. of Sequences’ is the number
of sequences in one sample. Please note again that the ‘sum of (Std.)distances’ are
the sum of distance between the tree reconstructed by one of these three algorithms
and the true gene tree of each unit in the sample. It is obvious that the smaller the
distance between two types of trees, the more similar they are. So we can see that the
‘Mixture’ algorithm performed better than at least one algorithm among other tree
algorithms in these tables. Sometimes ‘Fix Mixture’ algorithm performed equally
better than ‘Mixture’ algorithm, sometimes not. Also, we can see that other two
methods are more stable than ‘Mixture’ algorithm and ‘FixMixture’ algorithm, and
it is probably due to the fact that ‘Mixture’ and ‘FixMixture’ algorithms embed a
more complicated statistical model and take the frequency of each sequence into
account when it constructs the tree.

7.4 Discussion

In this chapter we have given an overview of a new method for tree reconstruction
called the mixture tree. It provides an estimator of population structure at each point
in the past based on a mutational clock. The estimators, unlike some competing
methods, are unique. Linking these estimators together over time provides a tree
that describes how the population might have evolved. Such a tree can also be used
to infer the likely coalescence of lineages, although indirectly. In this chapter we
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demonstrated how the output of this analysis creates a tree very similar to estab-
lished methods in the phylogeny literature, and how it can provide a method that is
competitive with, but not superior to those competitive methods. In fact, we believe
the greater strength of the method lies not in tree construction for distinct phylo-
genies, but because it provides a clustering method, as well as density estimator,
for studies of population structure based on samples from a single population. The
theorems are developed in the paper of Lindsay et al. [11] and will be further inves-
tigated in the future. Moreover, the current algorithm is based on Bernoulli mixture,
which only consider binary sequences. In the future, we will extend it to handle
sequences with multiple category and different mutation rates for different types.
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Chapter 8
Experimental Designs and ANOVA
for Microarray Data

Richard E. Kennedy and Xiangqin Cui

Abstract Microarray experiments are complex, multistep processes that represent
a considerable investment of time and resources. Proper experimental design and
analysis are critical to the success of a microarray experiment, and must be consid-
ered early in the planning of the experiment. Many aspects of experimental design
from low-throughput experiments, such as randomization, replication, and block-
ing, remain applicable to microarray experiments as well. Similarly, the analysis of
variance (ANOVA) remains a valid approach for analyzing data from most microar-
ray experiments. However, the high-dimensional nature of microarrays introduces
additional considerations into the design and analysis. This chapter provides an
overview of the unique statistical challenges presented by microarrays and describes
computational methods for implementing these statistical algorithms.

8.1 Experimental Design

Experimental design is defined as the planning of an experiment with the goal of
making the experiment more efficient, obtaining the most information with the least
expenditure of time, effort, and resources. Proper experimental design is vital to the
success of any microarray experiment. Experimental design has long been a subject
of study by statisticians, who have developed a considerable literature regard-
ing sound design principles. Much of this literature is devoted to low-throughput
experiments such as clinical trials, but the underlying concepts translate well into
microarray technologies. This section will briefly review the principles of exper-
imental design as they apply to microarray experiments; the reader is referred to
general texts on the topic for a more detailed treatment.
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8.1.1 Randomization

The first principle of experimental design is randomization, in which the exper-
imental subjects should be randomly assigned to the treatments or conditions to
be studied [21]. The purpose of randomization is to eliminate unknown factors
that potentially affect results. After a properly performed randomization, the only
difference between the experimental groups is the treatment assignment, so that
differences in outcome can be attributed to the treatment. The multiple steps in
microarray experiments may complicate the process. Besides randomizing samples
to the treatments, other factors should also be randomized to avoid bias. For exam-
ple, the arrays should be randomized in respect to the samples to avoid array order
or array batch bias. The order of performing labeling, hybridizations, and scanning
may also be randomized to avoid the process timing effect. However, in some cases,
it may not be possible to randomize samples to treatments or condition, such as in a
comparison of mutant versus wild type mice. In other cases, there are known vary-
ing factors present but randomization may not be possible. One such example would
be processing batch effect; such an effect occurs but it is not feasible to process all
arrays in one batch. In this case, the blocks would be the processing batches and
randomization would occur within blocks, as described in later sections.

8.1.2 Replication

Replication is another basic principle of experimental design. The definition of repli-
cation is the independent repetition of the same experimental process and/or the
independent acquisition of biological observations, so that their error variability can
be estimated for evaluating the statistical significance of the observed phenomenon
[33]. Such error estimation is essential for applying statistical estimation and infer-
ence techniques. Replication makes it possible to estimate the variability associated
with the results, which cannot be done with a single occurrence. The estimated vari-
ation from replicates permits inference not only about the results that were obtained
but also the results that would be obtained if the experiment were repeated in the
future.

There is a clear distinction between replications and repeated measurements.
To fully understand what a true replicate is requires an understanding of the term
experimental unit. A true replicate is simply a replicated experimental unit. An
experimental unit is defined as the unit that is directly exposed and randomly
assigned to the treatment independent of other units [33]. In contrast, repeated
measurements refers to taking several measurements from a single occurrence of
a phenomenon.

In microarray technology, researchers often use the terms biological and tech-
nical replicates to distinguish replication at different levels [8, 53]. Biological
replicates are considered true replicates; while technical replicates are replicates at
a lower level than the biological ones, often measurements from the same RNA
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sample [42, 53]. Because of the complexity of microarray technology, there are
potentially many different levels of technical replicates. For example, Fig. 8.1 shows
a microarray experiment that has three levels of replication: the first level is at the
cell culture level. Four independent cell cultures are established and each receives
one of two treatments. Two RNA samples are obtained from each cell culture and
each sample is measured with two one-color arrays. In this experiment, the indepen-
dent cell cultures are biological replicates. The replicates at RNA samples and arrays
are technical replicates which are similar to the repeated measurements. They are
less useful for identifying significantly expressed genes between the two treatments.
However, technical replicates are essential in experiments designed for evaluat-
ing the technology and in identifying the sources of variation [56]. The variability
between the duplicated arrays estimates the variability of the procedure after RNA
extraction, and the variability between the duplicated RNA samples estimates the
variability from both RNA extraction and the array hybridization.

As shown in Fig. 8.1, there could be multiple levels of replications in one
experiment. Although biological replicates are the most important replication for
identifying differentially expressed genes, increasing technical replicates can be a
wise choice in certain circumstances. For example, if samples are difficult or expen-
sive to obtain, increased technical replicates will help more accurately measure
the gene expression of a relatively small number of samples, especially when the
technical variability is larger than the biological variability [10].

8.1.3 Pooling

Pooling is the process of combining several samples into a single sample prior to
analysis. Pooling of biological replicates has the potential to reduce biological vari-
ability by measuring the average change instead of individual change. Therefore, it
is a very appealing process to investigators when biological samples are inexpensive
and readily available. Theoretically, pooling can reduce the biological variability to
1
n

, where n is the number of individual biological replicates in each pool. However,
this ideal is almost never achieved. One reason is that the pooling process itself
has variability [41, 57]. The pool is never a perfect mix of equal amounts for each
individual. More importantly, pooling is at the original scale (RNA or tissue level),

Fig. 8.1 Different levels of
replication in a microarray
experiment

Treatments

Cell cultures

RNA samples

Arrays

[1-color]
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while variance is often calculated on the log signal intensity level [25, 57]. Despite
the limitations of pooling, it can be beneficial in improving the power of the experi-
ment with the same numbers of arrays [27,57]. When the ratio of biological variance
to the technical variance is large, the gains from pooling become substantial. Pooling
is more beneficial when a small number of arrays and a small number of pools are
used for each treatment, although too small a number of pools make the estimate of
biological variability unreliable. The decision is not only based on the reduction
of the number of arrays but also the cost of individual biological replicates, the ratio
of biological and technical variances, and other limits. In certain studies where the
amount of RNA extracted from a sample is small, pooling is necessary to obtain
enough RNA for one microarray hybridization.

8.1.4 Blocking

Another experimental design principle that is heavily applied to the microarray tech-
nology is blocking. Blocking is a way to reduce the effect of variation in factors that
are identified but uninteresting. Experimental units are grouped into blocks. It is
believed that experimental units within a block are more homogenous than those
between different blocks if the blocking is efficient. The treatments or conditions
are therefore compared within a block. Blocking originated from field experiments
in agriculture where different areas of the field differ in many aspects. To test crop
varieties for yield, Fisher [20] divided the field into blocks, within which the field
was uniform. Different varieties were then planted randomly within each block. The
number of experimental units in each block is called block size. The ideal situation
is that the block size is equal to the number of varieties or treatments to be com-
pared, but this is not always achieved. A complete block design has the same number
of units in each block, which equals the number of treatments to be compared (or
treatment combinations in multi-factorial design). All treatment comparisons can be
made within each block. Comparisons across blocks provide the information of the
between block variabilities. An incomplete block design has a block size smaller
than the number of treatments (or treatment combinations in multi-factorial design).
In this case, not all comparisons can be made within each block. Constructing a
balanced incomplete block design is a complicated mathematical problem, although
methods for constructing such designs have been described [9, 33, 54, 55].

8.1.4.1 Blocking in Microarray Technology

Block design fits naturally with the two-color microarray platform, where each array
is a block of size two for any gene. Investigators have long recognized the variability
from spot to spot across arrays due to the differences in DNA quantity, spot mor-
phology, hybridization condition, and scanning settings. Therefore, comparisons are
not made between the intensity of one spot to that of another spot for the same gene
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on a different array. Instead, two paired samples are labeled with different dyes on
one array because the two channels of the same spot are more comparable (homo-
geneous). This feature of the two-color microarray fits into a block design with a
block size of two [8, 30, 31]. When there are only two samples to compare, a com-
plete block design results; if there are more than two samples, an incomplete block
design results.

The two dyes (Cy3 and Cy5) enable the comparison within a spot. However, each
dye has a gene-specific bias, with some genes showing a higher affinity to one dye
than the other. When the two samples labeled with different dyes are compared, the
higher signal intensity from one dye at a spot may not necessarily mean a higher
level of expression of the corresponding gene in the sample labeled by that dye.
Rather, the higher signal could come from the higher affinity of that gene for one
dye. It has been estimated that about 40% of genes show significant gene-specific
dye bias [16]. The gene-specific dye bias cannot be removed through whole chip
normalization; it can only be removed by balancing the dyes within treatments when
testing for treatment effect. When comparing two samples, the two samples should
be labeled in pairs with dye labeling reversed. This pairing strategy is called dye
swapping.

8.1.4.2 Reference Designs

For complex experiments, the most intuitive design is the reference design, where
all experimental samples are labeled with one dye and compared to a reference
sample labeled with the other dye (Fig. 8.2). The ratios of the experimental samples
to the reference sample are analysed for treatment or condition effect. Dye bias
is eliminated in this design because all experimental samples are labeled with the
same dye. The reference sample is often a universal reference or the pool of all
other samples. However, it can be individual biological replicates from one (most
often the baseline) condition, such as in a time series experiment discussed below.
In such cases, there will be different choices for reference samples that fit different
experimental goals [45, 53].

8.1.4.3 Loop Designs

Although the use of a universal reference in the reference design corrects for dye
bias, it does not contribute to the measurement of the treatment effect, which is often
the goal of the experiment. Recognizing this inefficiency, Kerr and Churchill [30]
proposed the loop design for comparing multiple samples based on the similarity in
blocking structure between microarray and conventional field trials (Fig. 8.2). This
design does not involve a reference sample but simply pairs the biological samples
on arrays. To make all possible comparisons, the samples are connected in a loop.
A graphical representation of such a microarray experiment may be depicted using
an arrow to represent an array, with the head pointing to one dye and the tail pointing
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Fig. 8.2 Array and graphical representations of the reference design and loop designs for com-
paring three samples. In the array representation, the arrays are represented by rectangles. The
samples used for hybridization on the array are indicated by letters in the rectangles. The dyes are
represented by colors of the letters, green for the Cy3 dye and red for the Cy5 dye. In the graphical
representation, array is represented by arrow with head pointing to the Cy3 dye and tail pointing
to the Cy5 dye. The samples are the nodes of the graphs

to the other. The loop design can balance dyes and achieve a higher efficiency than a
reference design when multiple samples are compared. However, construction of a
loop design can be more complicated than construction of a reference design if there
are different treatments and multiple biological replicates for each treatment. As
shown in Fig. 8.3, one strategy is to use one loop for each set of biological replicates
when there are equal numbers of biological replicates across treatments [1, 8].

Comparisons between reference and loop designs have shown that both designs
have advantages and disadvantages. The reference design is straightforward to
implement and extend. The comparison between any two samples in a reference
design is within two steps, so the comparisons are equally efficient. The disadvan-
tage of reference design is that half of the measurements are made on the reference
sample, so it is not very efficient in the use of arrays. In contrast, the overall effi-
ciency of a loop design is higher than that of a reference design [1,8,29,30,48,53].
For example, for the two designs shown in Fig. 8.2, the average variance of the refer-
ence design is 2, but it is only 0.67 for the loop design [53]. However, the efficiency
of some comparisons can be low when the loop becomes larger [14,30]. In addition,
it is rather complicated to construct a loop design to achieve optimal efficiency when
there are multiple samples [1,30,48]. It is not obvious how to extend a loop design,
although proposed methods for doing so have been described [1]. Finally, the loop
design is less robust to missing or poor quality chips [2]. If one of the chips in the
loop is lost or of poor quality, comparisons among the remaining chips in the loop
can still be made, but the measurement error increases significantly. In contrast, the
remaining comparisons in the reference design are unaffected by the loss of a single
chip, unless the reference itself is defective [7].
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Fig. 8.3 Array and graphical representations of designs with biological replicates. The three treat-
ments are represented by three letters. Biological replicates within treatments are represented by
the combination of letters and numbers. In the array presentation, arrays are represented by rect-
angles and dyes are represented by colors, green for the Cy3 dye and red for the Cy5 dye. In
the graphical representation, arrays are represented by arrows with head pointing to the Cy3 dye
and tail pointing to the Cy5 dye. For the same number of arrays, the balanced block design can
accommodate four biological replicates, while the other two designs can only accommodate two
biological replicates

8.1.4.4 Balanced Incomplete Block (BIB) Design

Another design for complex experiments is the balanced incomplete block design,
where each biological replicate is labeled once and samples from different treat-
ments are paired on arrays with dyes balanced in respect to treatments (Fig. 8.3).
Similar to the loop design, a reference sample is not used in the BIB design. The
difference between a balanced block design and loop design is how many times a
biological sample is labeled. In a block design, each sample is labeled once, and the
balance of dyes is achieved at the treatment level. In a loop design, each sample is
labeled twice by both dyes, and the balance of dyes is achieved at the sample level.
Because balanced block design can incorporate more biological samples without
using technical replicates for the same number of arrays, it can be more efficient in
testing for the treatment effect than a loop design. However, block design cannot be
used for classifying individual samples because the cross array comparison is often
not possible due to the large variation [14, 15]. Loop designs and reference designs
can be used for classifying individual samples.
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8.1.4.5 Other Potential Blocking Factors

Besides the pairing of samples on two-color microarrays, there are other appli-
cations of blocking in microarray experiments. For example, if the arrays in an
experiment come from different lots, the array lot may be treated as a blocking
factor by hybridizing an equal number of samples from each treatment within each
lot. Similarly, if the number of arrays is too large to process in a single batch, the
batch can be treated as a block by processing the same number of arrays from each
treatment in each batch. If two technicians are working on the same experiment,
the technician may be treated as a blocking factor, with each person processing a
full set of samples from each treatment. In these cases, the variation of array lots,
processing batches, and technicians will be blocked out and the results will be less
biased.

8.1.5 Row-Column Designs

Although block designs are commonly used in microarray studies, the alternative
row-column design has also been proposed. Block designs are intended to have only
one source of variation besides treatment, i.e., the blocks. Row-column designs are
intended to have two sources of variation, i.e., the rows and columns. Modeling
two sources of variation instead of one can reduce the experimental error in anal-
yses. In the microarray setting, the row-column design may naturally be applied
to two-color arrays, with rows representing dyes and the columns slides. The most
familiar example of the row-column design is the Latin Square, in which the number
of rows and columns both equal the number of treatments. The row-column design
may be reduced to a block design by ignoring the rows (dyes) and considering only
the columns (slides) as blocks. The row-column design may be more efficient than
block designs, particularly for larger studies [2,7], but at the cost of increased com-
plexity. To offset this, some authors have developed published tables for moderately
sized experiments, and provided design principles for larger studies [2, 7, 37]. The
analysis of studies with row-column designs is also more complicated than analy-
sis of block designs, although both can be accomplished using currently available
software packages.

8.1.6 Experimental Design for Classification Studies

Microarray technology is commonly used in the clustering and classification studies,
especially in the classification of tumors [39, 42]. A clustering study is often used
to examine the gene expression level across individual samples and to assess simi-
larities or dissimilarities across genes and across individuals. Classification studies
are used to predict the classes of samples based on the expression of a subset of
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genes that are selected from the training set of samples. The experimental designs
for these applications are different from those used for identifying differentially
expressed genes across treatments, conditions, or classes. In clustering and classi-
fication studies, there are often no biological replicates, and individual samples are
the main interest. In addition, there are often many more individual samples to be
compared.

The design for clustering and classification is often very simple when one-color
microarray is used, with one array for each sample. For two-color microarrays,
the pairing scheme must be considered. Unlike experiments to compare classes or
treatments, the application of loop and block designs is limited in clustering and
classification experiments [15]. The reference design is the primary choice due to
its practical advantage and extendibility. The loop design can be used, but may be
complicated and inefficient. The balanced incomplete block design is not applica-
ble due to the lack of dye balance and confounding of individual effects with array
effects.

8.1.7 Experimental Design for Time Course Experiments

Time course experiments, which profile gene expression at different times or devel-
opmental stages, are used to reveal the dynamics of gene expression [4]. The design
of a time series microarray experiment has some similarity to the design of experi-
ments for comparing different classes of samples. The reference design, loop design,
and direct comparison are the building blocks of designs for a time series experi-
ment. However, the comparisons of interest have a greater role in the selection of
designs for a time course experiment. If the comparison of interest is the consec-
utive time point in the series, direct comparison of neighboring points will be the
most efficient use of the arrays [53]. On the other hand, if the comparison of the
initial time point to all other time points is the most important comparison, direct
comparison between the initial time point and the remaining points is beneficial.
This design is very similar to a reference design, except that the reference sample
is of interest and biological replicates are desired for this reference sample. In addi-
tion, dye balance needs to be considered between the reference and other samples.
This becomes an alternative reference design [45]. If all comparisons are of interest,
the alternative reference design, the interwoven loop design, and the combination
of both (carriage wheel design) are some choices [32]. The alternative reference
design has the advantage of equal efficiency for any comparisons between the base-
line point and the other points, or among the other points, although it may be less
efficient than other more direct comparisons in overall efficiency. The interwoven
loop design uses multiple loops connecting the samples to avoid time points that
are too far away in one loop. The carriage wheel design is especially suitable for
experiments that are intended to compare not only adjacent time points but also the
initial point and all other points. This design uses the initial point as the reference
and connects the rest of the time points consecutively into a loop [32].
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8.1.8 Experimental Design for eQTL Studies

A more recent application of microarray is in the mapping of quantitative trait loci
(QTL). The conventional analysis of QTL uses quantitative phenotypic traits, such
as blood pressure or body weight, which are measured from each individual in a
genetically segregating family of individuals in pedigrees. In recent years, microar-
rays have been used to profile the gene expression of each individual in a QTL
mapping population [13,23]. The expression of each gene is then treated as a quan-
titative trait for QTL mapping. The design of this type of experiment is complex,
with design issues related to the QTL mapping aspect and design issues related
to the microarray aspect. For the microarray aspect, one array is simply used for
each individual for a one-color microarray platform. For a two-color microarray
platform, the pairing of samples on each array must be considered. Although the
type of QTL population can vary from study to study, such as model organism back
cross, recombinant inbred lines, or family pedigrees, the principles for pairing the
samples on arrays are the same. The first thing to be clear about is the objective of
the experiment and to identify the main interest effects to be mapped. The second is
to pair the most dissimilar samples regarding the interested effect on the same array
in a block design. The most dissimilar samples can often be identified based on the
marker genotypes. The reference and loop designs are also applicable, but are less
efficient for mapping genetic factors controlling the expression of each gene [6,22].

8.1.9 Experimental Design for ChIP-Chip Studies

Chromatin immunoprecipitation (ChIP) is used to identify protein binding sites
on chromosomal DNA. A crosslinking agent, such as formaldehyde, is used to
immobilize DNA-binding proteins to their active site on chromatin. After the DNA
is sheared, the target DNA-protein fragments are selected using techniques such
as immunoprecipitation or affinity purification. The crosslinking is then reversed,
allowing the bound DNA fragments to be analyzed. This process enriches the DNA
fragments for regions to which the target protein are bound. Recently, microarrays
have been used to perform ChIP on a genome-wide scale (ChIP-chip). Rather than
analyzing only a few DNA regions for enrichment using ChIP, intensity measure-
ments from a ChIP-chip experiment examine the enrichment of thousands of regions
simultaneously. These types of studies have specific requirements for both the selec-
tion of microarrays and the design of the experiment [5]. Expression microarrays,
which target genic regions of the DNA, are often unsuitable for measuring protein
binding, which typically occurs in intergenic regions. Similarly, cDNA probes may
be problematic as the intergenic regions may be spliced out of the transcript. Thus,
the microarray platform for ChIP-chip experiments is often designed specifically
to target promoter regions of genes, or similar regions of DNA-protein interaction.
An alternative is the tiling array, which has probes for sequences regularly spaced
along the chromosome, rather than targeting specific genes. Another consideration
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Fig. 8.4 Array and graphical representations of ChIP-chip experiment design. The three treat-
ments are represented by three letters. Biological replicates within treatments are represented by
the combination of letters and numbers. In the array presentation, arrays are represented by rect-
angles and dyes are represented by colors, green for the Cy3 dye and red for the Cy5 dye. In the
graphical representation, arrays are represented by arrows with head pointing to the Cy3 dye and
tail pointing to the Cy5 dye

in the design of ChIP-chip studies is the selection of the hybridization reference and
the control experiment. The hybridization reference controls for nonspecific binding
and enrichment in the analysis of signals from the DNA fragments. Usually sheared
genomic DNA from the experimental organism is the choice for a hybridization ref-
erence, and comparison of the intensities between the sample and the hybridization
reference tests are used to detect regions of enrichment due to DNA-protein binding.
The control experiment is intended to correct for variation due to sources other than
protein binding to a DNA region, such as nonspecific antibody interactions. Most
experiments use a mock immunoprecipitate (IP), in which the ChIP experiment is
performed with the omission of the antibody or the substitution of a nonspecific
antibody. Thus the typical design for ChIP-chip experiments, depicted in Fig. 8.4,
involves indirect comparisons among experimental conditions. Finally, dye swaps
to control for dye bias are uncommon in ChIP-chip studies; fortunately, preliminary
evidence indicates that the effect of dye bias on this type of experiment is small [38],
though this needs further confirmation.

8.2 Analysis of Variance

8.2.1 The General Linear Model

The earliest and simplest approach for determining differential expression in
microarray experiments was to examine the fold change, which is the ratio of
the intensity values for a gene in the two conditions of interest. However, inves-
tigators quickly realized that fold change was an inadequate measure, as it does
not account for the variability of expression measurements [52]. Statistical tests of
hypotheses are necessary to assess the reliability of findings from microarray exper-
iments [19]. Many different types of analyses are suitable for microarray data, but
variants of the general linear model are among the most widely used, particularly
for assessing differential expression [24]. The general linear model is not specific
to microarrays, but is a nonspecific methodology that serves as the “workhorse”
of most statistical analyses. The formulation of the general linear model assumes
that the measured or dependent variable can be explained by a set of predictor or
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independent variables plus random (measurement) error. The general linear model
further assumes this relationship is linear; that is, the relationship between the
measured and predictor variables is a straight line if there is only one predictor, or
the equivalent of a straight line if there are multiple predictors. Finally, the random
or measurement error is assumed to follow the familiar normal distribution. These
assumptions greatly simplify the mathematics and computational algorithms for
analysis of the general linear model. In the context of microarrays, the independent
variables would be the intensity measurement for the gene of interest, while the
predictor variables would be a set of explanatory variables such as age, race, or
disease status. The typical microarray experiment involves the measurement of
multiple genes simultaneously, which may be manipulated mathematically as a vec-
tor, or group of related numbers. Standard statistical texts on linear models provide
more information on vector algebra and the computational details of analyzing the
general linear model, which are beyond the scope of this chapter.

The most common implementation of the general linear model in microarray
experiments is the analysis of variance (ANOVA), which compares gene intensities
among multiple classes or groups. In this case, the predictor variables denote class
membership (such as normal versus diseased, or treated versus untreated) of each
gene on each chip. The predictor variables in the ANOVA model are also called
factors or effects. The general linear model also subsumes the familiar t-test, which
limits comparisons to two classes and thus represents a more specific case of the
ANOVA model. The general linear model subsumes linear regression as well, which
examines the relationship between gene intensities and quantitative measures. In lin-
ear regression, the predictor variables do not denote categories of class membership,
but measurements of numerical quantities such as age, height, or weight. Regression
models for microarray data have been developed [40], but are not commonly used
and will not be dealt with further in this chapter. There is a considerable volume of
literature on the use of general linear models in the analysis of experiments, and the
reader is referred to standard texts on the subject for more detailed coverage. How-
ever, the nature of microarray experiments raises specific analytical issues, which
will be considered in the remainder of this section.

8.2.2 Fixed Versus Random Effects

The factors, or effects, in the ANOVA model may be broadly classified as fixed or
random. For fixed effects, all levels of the effect are assumed to be enumerated in
the experiment, and repetition of the experiment would result in the same levels
being present. Examples would include gender (male and female) and dye labels
(red and green), which do not change from experiment to experiment. In models
incorporating only fixed effects, all of the variation is assumed to be due to random
or measurement error. For random effects, the levels in the experiment represent a
random sample from a population of possible levels. Thus, not all levels are present
in the experiment, and repetition of the experiment would result in different levels
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being used. Arrays would be a primary example, as the arrays used in an experiment
represent a random sample from the larger population of arrays that could have been
used. While fixed effects models have only a single source of variation due to mea-
surement error, the random selection of levels in a random effects model introduces
an additional source of variation into the model. Analysis of random effects mod-
els incorporates this additional source of variation by requiring that the distribution
of the random factors be specified, with the normal distribution commonly used.
Because the random effects are assumed to be drawn from a larger population of
possible effects, the inferences from a random effects model may be more appropri-
ately generalized than inferences from a fixed effects model. For example, if array is
analyzed as a fixed effect, the implicit assumption is that there is a single array effect
that is constant across experiments. Such an assumption may be implausible based
on array technology, where the manufacturing process may introduce differences
among batches of arrays. This would mean that the inferences from the analysis can
only properly be applied to arrays having the same array effect, and not to arrays
having different characteristics. However, if array is analyzed as a random effect, the
assumption is that the array effect varies across experiments. Because the random
effects model accounts for the variation due to these differences, the inferences from
the analysis can be applied not only to the arrays used in the experiment but also to
arrays with different characteristics used in other experiments. In general, effects
such as arrays should be analyzed as random effects for this reason. The use of a
random effects model also allows for the factors to be correlated with each other,
which is not possible with a fixed effects model. For example, the effects of a drug
administered at different time points in an experiment, which would likely be cor-
related, can be captured using a random effects model. An ANOVA model that has
both fixed and random effects is called a mixed model. The designation of factors as
fixed or random is not always straightforward and can have substantial influence on
the results obtained.

8.2.3 Error Specification

The handling of random or measurement error requires special consideration when
using ANOVA for microarray data. A standard ANOVA model assumes that the
errors are homogenous. In terms of a microarray experiment, this would mean
that the variation due to measurement error is identical across probesets, which is
implausible biologically as the amount of variation between genes is usually con-
siderable [49]. Furthermore, when using a single global variance, rankings based on
the p-values of the t or F tests under the general linear model reduce to rankings
based on the fold change [11], which has already been noted to be problematic. An
alternative would be to allow errors to be completely heterogenous, so that each gene
has its own random or measurement error. This would mean that the variation due to
measurement error is unique for each gene, which would be biologically justifiable.
However, this also means information about the variation for a gene can only be
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obtained from measurements of that particular gene; in contrast, information about
variation for the homogenous variance model can be obtained from measurements
of all genes, since each is assumed to have identical variation. This leads to the for-
mer having very low statistical power to detect significant differences compared to
the latter, which makes the heterogenous variance approach unsuitable for analyses.
Thus, the most common approach is to combine the two into a “moderated” vari-
ance estimate. This allows the variance to differ by gene, but borrows information
across genes to increase statistical power.

A number of approaches have been proposed for borrowing information across
genes. A common approach is to estimate the variation using Bayes or empirical
Bayes procedures, which allow one to impose specific relationships among the vari-
ances [3, 17, 26, 34, 36, 43]. This is implemented in the limma package available
from Bioconductor [44]. Non-Bayesian methods for moderating the variance have
also been developed. The t-test in the SAM software (http://www-stat.stanford.edu/
	tibs/SAM/) adds a small bias constant to the gene-specific variances to attenuate
the effect of small variances [47]. Although this does moderate the variances, it fails
to utilize information across genes. Other researchers suggest that the gene-specific
variances be considered as a sample from a common distribution, which shares sim-
ilarities to the Bayesian approach but leads to different estimators [49]. Finally, Cui
and colleagues [12] describe a shrinkage estimator for the gene-specific variances
based on the James-Stein estimator.

8.2.4 Computational Issues

There are several computational issues in the analysis of the general linear model.
Most of these are not specific to microarray and have been described in detail else-
where [28, 35]. However, one topic of special interest in microarray experiments
is the calculation of test statistics and the computation of p-values. As all mea-
surements are subject to error, the purpose of a statistical analysis is to quantify
the variation in an experiment, and to determine if this variation may be plausibly
attributed to the factor of interest (such as drug treatment) or to random error. In the
ANOVA model, this is done by comparing the variation between groups to the vari-
ation within a group; the latter is assumed to be due to random error, while the
former is due to the factor of interest. If the variation between groups is similar to
the variation within groups, this implies that the factor of interest does not contribute
significantly to the observed variation in the experiment, while variation between
groups exceeding variation within groups implies that the factor does contribute
significantly. A formal comparison of the between-group and within-group varia-
tion uses a test statistic, which is based on the ratio of the two types of variation;
most analyses in ANOVA use the familiar F statistic. When using a mixed effects
model with multiple sources of variation, the formulation of the test statistic may
become complicated in selecting the appropriate variation to use in the computation,
but the principle of testing remains the same.

http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/
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After a test statistic is computed, it is convenient to convert it to a p-value.
Genes with p-values falling below a prescribed level may be regarded as significant.
Reporting p-values as a measure of evidence allows some flexibility in the interpre-
tation of a statistical test by providing more information that a simple dichotomy of
significant or not significant at a predefined level. Traditionally, p-values are found
by reference to a statistical distribution table or by use of mathematical formulas.
Both methods rely on the assumption that the test statistic follows a particular dis-
tribution (such as the F distribution), so that the test statistic can be compared to
the expected value based on the mathematical description of the distribution. Thus,
if the assumption that the test statistic follows a particular distribution is incorrect,
the inferences made using that test statistic may also be incorrect. Furthermore, if a
test statistic cannot be shown to follow a particular distribution, calculation of the
p-value using mathematical formulas may be impossible.

8.2.4.1 Permutation Analysis

Permutation analysis does not require the assumption that the test statistic follows
a particular distribution, but the experiment should be large enough that a sufficient
number of permutations can be obtained. Permutation analysis relies on the assump-
tion that, under the null hypothesis, all conditions would be expected to be equal. In
a microarray experiment, this would mean that, under the null hypothesis of no dif-
ferential expression, a gene should have similar intensity values on all of the arrays
being examined. Because of this principle of exchangeability, the samples may be
shuffled between the groups or conditions of interest. If the null hypothesis is true,
then shuffling the samples should not significantly change the test statistic; if the test
statistic does change significantly, this is evidence that the null hypothesis is false.
In a microarray experiment, the samples would be shuffled between groups (such as
treated versus untreated). If no differential expression has occurred, the test statis-
tic should not be significantly altered by this shuffling; a significant change in the
test statistic would be evidence of differential expression. By repeatedly shuffling
over all possible combinations of samples, any changes in the test statistic can be
quantified to determine if the change is greater than what would be expected from
random variation. Permutation analysis requires that sufficient samples be avail-
able for constructing the combinations; if too few samples are available, shuffling
the samples does not give an adequate picture of the possible changes in the test
statistic. A minimum of about 6 replicates per condition (yielding a total of 924 dis-
tinct permutations) is recommended for a two-sample comparison. Pooling the test
statistics of all genes in the permutation analysis has been proposed to overcome
the limitation of small sample sizes [46]. However, this approach assumes that the
distribution of the null statistics of differentially and non-differentially expressed
genes is the same. The variability of the permuted test statistics is increased when
differentially expressed genes are included in the permutation, which may lead to
conservative p-values that miss true positives [50, 51]. Permutation over a subset
of genes, which are intended to contain only non-differentially expressed genes,
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would reduce the conservativeness of the p-values. The differentially and non-
differentially expressed genes are generally not known, and such a classification
is often the goal of a microarray experiment. Thus, various methods have been
proposed to identify the gene subset for permutation analysis [18, 50, 51].

8.2.4.2 Bootstrapping

For large experiments, bootstrapping may be used instead of permutation analy-
sis. While the latter examines all possible combinations of samples, bootstrapping
selects a random set with replacement from the samples, and the test statistic is then
calculated using the randomly selected set. By repeatedly resampling sets from the
sample and computing the test statistic, an approximate distribution of the test statis-
tic can be obtained. A p-value may then be calculated as the proportion of resampled
test statistics from the bootstrap that exceed the test statistic obtained from the
experiment. As with permutation analysis, bootstrapping requires sufficient samples
for performing the resampling procedure. While permutation analysis examines all
possible combinations of samples, bootstrapping examines only a resampled set of
observations from the samples. Thus, bootstrapping also must have sufficient repe-
titions of the resampling to give an adequate picture of changes to the test statistic.

8.2.4.3 Limitations

Both permutation analysis and bootstrapping do not require the assumption that the
test statistic follow a particular theoretical distribution, instead basing tests of signif-
icance on the empirical distribution obtained from shuffling and resampling. How-
ever, both require that the principle of exchangeability be met, which assumes there
are no differences except for random error between samples under the null hypothe-
sis. This assumption is frequently overlooked in analyses and can lead to erroneous
conclusions. Finally, both permutation analysis and bootstrapping are computa-
tionally intensive because of the large number of combinations or resampling that
must be constructed and individually analyzed. This may make these procedures
unsuitable in experiments where the individual analysis is time-consuming.

8.3 Conclusions

Microarray experiments are complex, multistep processes that represent a con-
siderable investment of time and resources. Many aspects of experimental design
and analysis from low-throughput experiments, such as clinical trials, remain
applicable to microarray experiments as well. However, the high-dimensional nature
of microarrays introduces additional considerations into the design and analysis.
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Proper experimental design and analysis are critical to the success of a microarray
experiment, and must be considered early in the planning of the experiment.
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Chapter 9
The MicroArray Quality Control (MAQC)
Project and Cross-Platform Analysis
of Microarray Data�

Zhining Wen, Zhenqiang Su, Jie Liu, Baitang Ning, Lei Guo,
Weida Tong, and Leming Shi

Abstract As a powerful tool for genome-wide gene expression analysis, DNA
microarray technology is widely used in biomedical research. One important appli-
cation of microarrays is to identify differentially expressed genes (DEGs) between
two distinct biological conditions, e.g. disease versus normal or treatment versus
control, so that the underlying molecular mechanism differentiating the two condi-
tions maybe revealed. Mechanistic interpretation of microarray results requires the
identification of reproducible and reliable lists of DEGs, because irreproducible lists
of DEGs may lead to different biological conclusions. Many vendors are providing
microarray platforms of different characteristics for gene expression analysis, and
the widely publicized apparent lack of intra- and cross-platform concordance in
DEGs from microarray analysis of the same sets of study samples has been of great
concerns to the scientific community and regulatory agencies like the US Food and
Drug Administration (FDA). In this chapter, we describe the study design of and the
main findings from the FDA-led MicroArray Quality Control (MAQC) project that
aims to objectively assess the performance of different microarray platforms and the
advantages and limitations of various competing statistical methods in identifying
DEGs from microarray data. Using large data sets generated on two human refer-
ence RNA samples established by the MAQC project, we show that the levels of
concordance in inter-laboratory and cross-platform comparisons are generally high.
Furthermore, the levels of concordance largely depend on the statistical criteria used
for ranking and selecting DEGs, irrespective of the chosen platforms or test sites.
Importantly, a straightforward method combining fold-change ranking with a non-
stringent P-value cutoff produces more reproducible lists of DEGs than those by
t-test P-value ranking. Similar conclusions are reached when microarray data sets
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from a rat toxicogenomics study are analyzed. The availability of the MAQC refer-
ence RNA samples and the large reference data sets provides a unique resource for
the gene expression community to reach consensus on the “best practices” for the
generation, analysis, and applications of microarray data in drug development and
personalized medicine.

9.1 Microarray Platforms for Genome-Wide Gene
Expression Analysis

DNA microarray technology has been widely used in biomedical research as a high-
throughput tool for simultaneously detecting the expression of thousands of genes
[20, 32, 36]. By arraying tens of thousands of gene-specific DNA oligonucleotide
probes on a solid surface such as a glass, plastic or silicon chip, a DNA microar-
ray can hybridize the target sample from a well-defined condition to accomplish the
equivalent number of genetic tests in parallel. Many microarray systems (platforms)
are available and generally have quite different technical characteristics and fabri-
cation procedures. In a recent review article [36], Shi and colleagues summarized
the commonly used microarray platforms into three categories: (1) in situ synthesis
of oligonucleotide probes on microarrays (e.g. Affymetrix GeneChipr microarrays
with photolithography synthesis and Agilent’s microarrays using inkjet synthesis);
(2) spotting of pre-synthesized oligonucleotide probes on microarrays (e.g. GE
Healthcare’s CodeLink system, Applied Biosystems’ Genome Survey Microarrays,
and many forms of custom microarrays printed on glass slides with different sets of
pre-synthesized oligonucleotides); and (3) deposition of pre-synthesized oligonu-
cleotide probes on microsphere or bead based microarrays (Illumina’s BeadChip
microarrays). Different microarray platforms produce different types of errors and
require different types of quality control and data analysis.

The Affymetrix GeneChip microarrays are arguably the most widely used plat-
form in gene expression studies. By using photolithography, the DNA oligonu-
cleotide probes are fabricated on a quartz wafer coated with a light-sensitive chem-
ical. Each probe is usually 25 nucleotides long. The whole manufacturing process
integrates semiconductor fabrication, solid-phase chemical synthesis, combinatorial
chemistry, and molecular biology [6, 20]. Affymetrix GeneChip microarrays use
22 probes (or 11 pairs of probes), called a probeset, to measure the expression of
a transcript. Half of the probes are perfect matches (PM) to a transcript and the
other half are mismatches (MM) to the corresponding PM probes. A PM probe pro-
vides the fluorescence measurement for the target sample binding to it, whereas the
paired MM probe provides the means for estimating non-specific fluorescence in
the measurement. Many algorithms (e.g. MAS 5.0, dCHIP, RMA, PLIER, and other
variants) are available to summarize probe-level data into probeset-level data that
correlate with transcript abundance [16].

Agilent manufactures its microarrays using Hewlett-Packard’s non-contact inkjet
printing technology for in situ oligonucleotide synthesis [13]. Nucleotides are
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printed on a glass wafer, which is coated with a hydrophobic surface with exposed
hydroxyl groups, by using the standard phosphoramidite synthesis. Each time only
one nucleotide is printed at the location of the probe. This nucleotide printing pro-
cess includes de-tritylation, oxidation and washing, and is repeated 60 times in order
to create oligonucleotide probes 60 bases in length. The Agilent platform can be
used in a two-color or one-color hybridization mode.

GE Healthcare’s CodeLink microarray platform [29] utilizes a 3D-Link acti-
vated slides for arraying 30-mer probes. The Human Whole Genome Bioarray gives
coverage of the human genome with over 50,000 transcripts and ESTs, including
about 45,000 well-characterized human gene and transcript targets. The CodeLink
products were discontinued in April, 2007.

Applied Biosystems uses standard phosphoramidite chemistry and solid-phase
synthesis to pre-synthesize 60-mer oligonucleotides as probes for its microarrays
[43]. The probes are deposited and covalently bound at the 30 end onto the microar-
ray’s derivatized nylon substrate that is, in turn, bound to a glass slide. A CCD
camera is used for acquisition of chemiluminescent signals.

Illumina’s BeadChip microarray is based on random self-assembly microspheres
that are placed beforehand in millions of highly ordered microwells [10]. Different
microarray types from Illumina contain microspheres targeting different numbers
of transcripts, e.g. the HumanRef-8 Expression BeadChip measures more than
24,000 transcripts, whereas the Human-6 Expression BeadChip detects more than
48,000 transcripts. The HumanRef-8 and the Human-6 Expression BeadChips
are considered as “arrays of arrays” because there are eight microarrays on one
HuamnRef-8 chip and six microarrays on one Human-6 chip, thereby allowing
researchers to simultaneously hybridize multiple samples on one chip at a more
affordable cost per sample.

As a powerful tool for genome-wide gene expression analysis, DNA microar-
rays have been identified by the US FDA’s Critical Path Initiative (http://www.
fda.gov/oc/initiatives/criticalpath/) as a methodology to advance drug development
and personalized medicine through the identification of biomarkers. Indeed, many
microarray based pharmacogenomics data sets have been submitted by the indus-
try to the US FDA [8]. One important application of microarrays is to identify
differentially expressed genes (DEGs) between two distinct biological conditions,
e.g. disease versus normal, treatment versus control, or safety versus adverse reac-
tions, so that the underlying molecular mechanism differentiating the two conditions
maybe revealed [36].

9.2 Statistical Methods for Identifying Differentially
Expressed Genes (DEGs)

Although DEGs are important to the genomics analysis with microarrays, it is
still a pendent problem regarding how to best determine what genes are signifi-
cantly differentially expressed between two groups of samples. The reliability of

http://www.fda.gov /oc/initiatives/criticalpath/
http://www.fda.gov /oc/initiatives/criticalpath/
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gene expression measurement can be influenced by many factors such as tech-
niques, instruments, and statistical methods. Any errors from these aspects can
render microarray data unreliable or invalid. Therefore, it is not surprising that many
statistical methods have been proposed to identify DEGs. The essence of identify-
ing DEGs from microarray data is to rank all genes (transcripts) measured by the
microarray according to a defined criterion and to set a more-or-less arbitrary cutoff
of that criterion for gene selection [39]. Here, we briefly describe three frequently
used gene selection methods in microarray data analysis.

9.2.1 Welch’s T-Test P Value

The P value from Welch’s t-test is one of the most widely used statistical methods
for identifying DEGs. The null hypothesis of the test is that the two sample groups
(e.g. control group and treatment group) come from the same sample population,
and the t distribution is used to test this hypothesis. The statistic t is defined by
Eq. 9.1:

t D x1 � x2r
s2

1

N1
C s2

2

N2

(9.1)

where x1, x2 are the sample mean of groups 1 and 2, respectively; s1, s2 are the
sample variance of groups 1 and 2, respectively; and N1, N2 are the number of
samples in groups 1 and 2, respectively.

The Welch’s t-test yields a P value that can be defined by Eq. 9.2:

p D 1 �
Z t

�t

� .FC1
2
/

� .F
2
/

1p
F 
 �

1

.1C t2

F
/

F C1
2

dt (9.2)

where F is the degree of freedom and can be estimated by Eqs. 9.3 and 9.4 with an
assumption of equal or unequal variance, respectively:

F D N1 �N2 � 2 (9.3)

F D .s2
1=N1 C s2

2=N2/
2

.s2
1=N1/2=.N1 � 1/C .s2

2=N2/2=.N2 � 1/ (9.4)

Given a P value threshold, such as 0.05, we can assume that the null hypothesis
is true when the P value is greater than the threshold and the null hypothesis is false
when the P value is less than the threshold. For each gene in a microarray study,
a P value can be calculated by testing its expression in two sample groups. Genes
with a P value less than the threshold are considered differentially expressed.
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9.2.2 Fold Change (FC)

The fold change (or ratio) measures the magnitude of differential gene expression
and is commonly used by biologists for analyzing gene expression data because
of its simplicity and biological relevance [32]. In practice, there are two ways to
calculate fold change. The first one is described by Eq. 9.5:

log2 FCi D 1

N1

N1X
jD1

log2 xij;1 � 1

N2

N2X
jD1

log2 xij;2 (9.5)

where xij;1 and xij;2 are the raw expression intensity values of the ith gene for the
jth replicate in groups 1 and 2, respectively. N1 and N2 are the number of samples
in groups 1 and 2, respectively.

The second definition of fold change is given by Eq. 9.6:

log2 FCi D log2

 
1

N1

PN1

jD1 xij;1

1
N2

PN2

jD1 xij;2

!
(9.6)

where xij;g and Ng (g D 1; 2) are the raw expression intensity values of the ith gene
for the jth replicate and the number of samples in groups 1 and 2, respectively. For
the same data set, the log2FC values calculated by Eqs. 9.5 and 9.6 for the same gene
are usually very close. Equation 9.5 is commonly used when the gene expression
data are already presented in a log2 transformed form so that the difference of the
group means is the log2FC value.

After calculating the log2FC value for each gene, we can rank all the genes by the
absolute of their log2FC values (jlog2FCj) with descending order and select those
genes whose jlog2FCjvalues are greater than a given fold change cutoff, such as a
FC of 2.0 or jlog2FCjof 1.

9.2.3 Significance Analysis of Microarrays (SAM)

Significance Analysis of Microarrays (SAM), proposed by Tusher and colleagues in
2001 [41], is a statistical method by combining the gene specific t-test with a statistic
di for each gene to determine whether the gene expression of a gene is significantly
different between two groups of samples. The calculation procedure is based on a
permutation analysis of gene expression data and can be presented in the following
steps:

Suppose the raw expression data is xij , where i D 1; 2; : : : ; p genes and j D
1; 2; : : : ; n samples. The respond data is yj , j D 1; 2; : : : ; n.
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1. Calculate a statistic di by Eq. (9.7):

di D ri

si C s0 (9.7)

For the ithgene, ri is the difference of the group means (i.e. log2FC ) for two-
class comparisons; si is the standard deviation; and s0 is an exchangeability factor.

1. Order the di values by their magnitudes.
2. Take k subsets of permutations of the response values y. For each permutation

calculate the ordered d values.
3. Set a threshold and determine a gene as significantly differentially expressed

when the absolute value of the test statistic d for that gene minus the mean test
statistic d for that gene is greater than the threshold.

4. Estimate the false discovery rate based on the expected versus the observed
values.

The R-package of SAM can be downloaded from the website: http://www-stat.
stanford.edu/	tibs/SAM/.

9.3 The Challenge: Apparent Lack of Reproducibility
of Differentially Expressed Genes (DEGs)

The critical issue regarding the reproducibility of DNA microarray results in terms
of DEGs has been raised in the literature [40] and greatly publicized [21]. That is,
with the same sets of testing RNA samples, the lists of DEGs identified from dif-
ferent platforms or laboratories or from different gene selection methods showed
little overlap. For instance, only four common DEGs were found when analyz-
ing identical sets of RNA samples with three commercial microarray platforms,
Affymetrix, Agilent, and Amersham (i.e. GE Healthcare). Between the two lists of
about 200 stem cell-specific genes separately identified by Ramalho-Santos et al.
[30] and Ivanova et al. [17] with the Affymetrix platform under similar experimen-
tal conditions, only six DEGs were found in common. From the 138 and 425 DEGs
identified from Affymetrix and CodeLink platforms, respectively, in a neurotoxico-
logical study by Miller et al. [28], the number of overlapped DEGs is only 11. All
these studies use t-test P values to rank genes and create DEG lists by setting a P
threshold. The percentage of overlapping genes (POG) is used as the measure of
inter-site or cross-platform reproducibility of DEGs.

With criticisms and concerns about the reproducibility of microarrays appeared
in the peer-reviewed journals [7, 14, 21, 26, 27, 40], the growing negative percep-
tion about the reliability of microarray platforms had been widespread and caused
much discussion. Some explanations and solutions have been proposed to address
the apparent lack of reproducibility of DEG lists from microarray data. Ein-Dor
et al. suggested increasing the sample size [5]; Allison et al. discussed the pros and

http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/
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cons of different statistical methods for selecting differentially expressed genes [1];
Mecham et al. increased the consistency and reproducibility in microarray results by
mapping probe sequences across platforms [22]; Hoffman et al. improved the quality
of expression profiling by fully standardizing sample preparation and hybridization
procedures [12].

Shi et al. [33] reanalyzed the data published by Tan et al. [40] and concluded that
the lack of reproducibility of the DEG lists greatly depends on the choice of statisti-
cal methods for selecting DEGs. Using the same data set with different data analysis
and gene selection criteria, the cross-platform concordance was largely improved.
Specifically, when the DEG lists were determined by simply using either SAM or
fold change (FC) with noise filtering, the cross-platform concordance was increased
by five to nine folds. These observations raised the awareness that microarray
cross-platform reproducibility in terms of DEGs is sensitive to the choice of gene
selection methods and in fact became a major motivator for the launch of the MAQC
project [33].

9.4 The MicroArray Quality Control (MAQC) Project

Many vendors are providing microarray platforms of different characteristics for
gene expression analysis, and the widely publicized apparent lack of intra- and
cross-platform concordance in DEGs from microarray analysis of the same sets of
study samples has been of great concerns to the scientific community and the US
Food and Drug Administration (FDA). The FDA-led MicroArray Quality Control
(MAQC) project aims to objectively assess the performance of different microar-
ray platforms and the advantages and limitations of various competing statistical
methods in identifying DEGs from microarray data. As illustrated in Fig. 9.1,
in this chapter we describe the study design of and the main findings from the
MAQC project by using large data sets generated on human reference RNA sam-
ples established by the MAQC project. We show that the levels of concordance
in inter-laboratory and cross-platform comparisons are generally high. Further-
more, the levels of concordance largely depend on the statistical criteria used for
ranking and selecting DEGs, irrespective of the chosen platforms or test sites.
Importantly, a straightforward method combining fold-change ranking with a non-
stringent P-value cutoff produces more reproducible lists of DEGs than those by
t-test P-value ranking. These conclusions are verified when microarray data sets
from a rat toxicogenomics study are analyzed.

It should be noted that microarray results can be presented in several ways includ-
ing absolute intensity (signal), relative intensity (ratio or fold change), DEGs, Gene
Ontology, or pathways. In this chapter, we focus on inter-site and cross-platform
data comparisons in terms of DEGs because they usually form the foundation of
biological interpretation of microarray results by biologists and the apparent lack
of reproducibility in DEGs has been used as evidence to question the reliability of
microarray technology.
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Fig. 9.1 The experimental design of the MAQC project and main microarray data sets and
analyses used in this chapter

9.4.1 The MAQC Study Design: Two Reference RNA Samples,
Five Microarray Platforms, Three Test Sites per Platform,
and Five Replicates per Test Site

For the purpose of objectively assessing the performance of DNA microarrays and
the advantages and limitations of various data analysis methods for identifying
DEGs, the MAQC project was launched in 2005 and is a truly community-wide
effort involving 137 participants from 51 organizations [34]. In the project, as shown
in Fig. 9.1, two high-quality, distinct human reference RNA samples, along with
two mixtures of defined ratios, were prepared for assessing the repeatability of gene
expression microarray data within a specific site, the reproducibility across multiple
sites, and the concordance across multiple platforms [34]. Each microarray platform
was tested at three independent test sites and each RNA sample was replicated five
times at each test site. The two RNA samples are a Universal Human Reference
RNA (UHRR) from Stratagene and a Human Brain Reference RNA (HBRR) from
Ambion. Although these two samples do not directly represent a relevant biological
study such as control versus treatment, the MAQC data sets with the two refer-
ence RNA samples indeed provide important technical insights into the capabilities
and limitations of the microarray technology and the corresponding data analysis
approaches.

The major microarray platforms tested in the MAQC project included Applied
Biosystems (ABI), Affymetrix (AFX), Agilent Technologies (AG1), GE Healthcare
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(GEH), and Illumina (ILM), and cover a wide range of technical characteristics,
as summarized in Table 9.1. Compared to what are presented in this chapter, the
original MAQC project included more platforms, more test sites, and more sample
types. The entire MAQC data sets are available from NCBI GEO (GSE5350) or at
the MAQC Web site (http://edkb.fda.gov/MAQC/MainStudy/upload/).

9.4.2 Probe-Sequence Based Mapping to the RefSeq
Reference Transcriptome

Different microarray platforms are based on distinct probe-design strategies and
manufacturing processes and are targeting different subsets of the whole human
transcriptome. To allow for cross-platform comparison of gene expression results,
the first challenging task is to identify the subset of genes (transcripts) that are
commonly measured by all microarray platforms under comparison. The anno-
tation information provided by the microarray vendors is usually based on dif-
ferent mapping strategies from probes to genes (transcripts). Thus, the MAQC
project requested the probe sequences from each platform provider and mapped
the probe sequences to the same transcriptome reference database, i.e. the March 8,
2006 version of human RefSeq release containing about 24,000 curated accessions
(http://www.ncbi.nlm.nih.gov/RefSeq). For a probe to be considered as a match to a
transcript, its sequence was required to perfectly match the sequence of the database
entry. Probes matching only the reverse strand of a transcript were excluded as well
as probes matching more than one gene. For the Affymetrix platform, an exact
match of 80% of the probes within a probeset (usually 9 probes out of 11) was
required. As shown in Table 9.1, each of the high-density microarray platforms
measures a similar number of RefSeq transcripts (20,230–22,161) and a similar
number of Entrez genes (15,429–16,990). Finally, 15,615 RefSeq entries are mea-
sured on all of the high-density microarray platforms, representing 12,091 unique
Entrez genes. To simplify the inter-site and cross-platform comparisons, we created
a “one-probe-to-one-gene” list with 12,091 probes from each platform and the cor-
responding 12,091 reference sequences from 12,091 different genes. Results shown
below on the MAQC reference data sets are based on these 12,091 “common” genes.

9.4.3 Percentage of Overlapping Genes (POG) for Assessing
Reproducibility of DEGs

The Percentage of Overlapping Genes (POG) [33, 34, 37] was used as a metric for
assessing the reproducibility in two types of comparisons: (1) inter-site comparison
using data from the three test sites with the same platform; and (2) cross-platform
comparison between ABI, AFX, AG1, GEH, and ILM using data from their fist test
sites.

http://edkb.fda.gov/MAQC/MainStudy/upload/
http://www.ncbi.nlm.nih.gov/RefSeq


180 Z. Wen et al.

T
ab

le
9.

1
Su

m
m

ar
y

of
m

aj
or

m
ic

ro
ar

ra
y

ge
ne

ex
pr

es
si

on
pl

at
fo

rm
s

us
ed

in
th

e
M

A
Q

C
pr

oj
ec

ta
nd

pr
ob

e-
se

qu
en

ce
ba

se
d

m
ap

pi
ng

to
R

ef
Se

q

M
an

uf
ac

tu
re

r
Pl

at
fo

rm
C

od
e

D
et

ec
tio

n
m

et
ho

d
Ty

pe
Pr

ob
e

le
ng

th
N

um
be

r
of

pr
ob

e(
se

t)
s

N
um

be
r

of
an

al
yz

ed
pr

ob
e

se
qu

en
ce

s

N
um

be
r

of
m

ap
pe

d
pr

ob
es

N
um

be
r

of
R

ef
Se

q
N

M
ac

ce
ss

io
ns

m
ap

pe
d

to
pr

ob
es

N
um

be
r

of
E

nt
re

z
ge

ne
ID

’s
m

ap
pe

d
to

pr
ob

es

A
pp

lie
d

B
io

sy
st

em
s

H
um

an
G

en
om

e
Su

rv
ey

M
ic

ro
ar

ra
y

v2
.0

A
B

I
C

he
m

ilu
m

in
es

ce
nc

e
Pr

es
yn

th
es

iz
ed

O
lig

os
60

32
,8

78
32

,8
78

18
,5

47
21

,9
63

16
,7

63

A
ff

ym
et

ri
x

H
G

-H
13

3
Pl

us
2.

0
G

en
eC

hi
p

R �
A

FX
Fl

uo
re

sc
en

ce
In

si
tu

sy
nt

he
si

s
25

54
,6

75
54

,6
75

24
,6

94
21

,3
18

15
,9

65

A
gi

le
nt

Te
ch

no
lo

gi
es

W
ho

le
H

um
an

G
en

om
e

O
lig

o
M

ic
ro

ar
ra

y,
G

41
12

A

A
G

1
Fl

uo
re

sc
en

ce
In

si
tu

sy
nt

he
si

s
60

43
,9

31
41

,0
00

22
,6

77
21

,8
90

16
,4

93

G
e

H
ea

lth
ca

re
C

od
eL

in
kT

M

H
um

an
W

ho
le

G
en

om
e

G
E

H
Fl

uo
re

sc
en

ce
Pr

es
yn

th
es

iz
ed

O
lig

os
30

54
,3

59
53

,4
23

16
,8

81
20

,2
30

15
,4

29

Il
lu

m
in

a
H

um
an

-6
B

ea
dC

hi
p,

48
k

v1
.0

IL
M

Fl
uo

re
sc

en
ce

Pr
es

yn
th

es
iz

ed
O

lig
os

on
B

ea
dC

hi
p

50
47

,2
93

47
,2

82
20

,1
40

22
,1

61
16

,9
90

N
at

io
na

l
C

an
ce

r
In

st
itu

te

O
pe

ro
n

H
um

an
O

lig
o

Se
tv

3
N

C
I

Fl
uo

re
sc

en
ce

Pr
es

yn
th

es
iz

ed
O

lig
os

39
–7

0
37

,6
35

35
,2

35
21

,5
55

20
,9

87
15

,8
99

U
ni

on
26

4,
49

3
12

5,
21

6
23

,9
71

18
,1

14
In

te
rs

ec
tio

n
15

,6
15

12
,0

91
N

ot
es

:
T

he
nu

m
be

r
of

pr
ob

es
fo

r
w

hi
ch

m
ap

pi
ng

w
as

at
te

m
pt

ed
m

ay
sl

ig
ht

ly
di

ff
er

fr
om

th
e

nu
m

be
r

of
pr

ob
es

ar
ra

ye
d

(T
ab

le
9.

1)
be

ca
us

e
of

th
e

re
m

ov
al

of
co

nt
ro

l
pr

ob
es

an
d

re
pl

ic
at

e
sp

ot
s.

A
n

ex
ac

t
se

qu
en

ce
m

at
ch

w
as

re
qu

ir
ed

an
d

pr
ob

es
th

at
m

at
ch

m
or

e
th

an
on

e
ge

ne
w

er
e

ex
cl

ud
ed

.
Fo

r
th

e
A

FX
pl

at
fo

rm
,

th
er

e
ar

e
ge

ne
ra

ll
y

11
pe

rf
ec

t-
m

at
ch

pr
ob

es
pe

r
pr

ob
es

et
,

an
d

ea
ch

pr
ob

e
w

as
m

ap
pe

d
in

di
vi

du
al

ly
.

A
n

ex
ac

t
m

at
ch

of
80

%
of

th
e

pr
ob

es
in

a
pr

ob
es

et
w

as
re

qu
ir

ed
fo

r
th

e
pr

ob
e

se
t

to
qu

al
if

y
as

a
pe

rf
ec

t
m

at
ch

.T
he

co
m

m
on

se
t

of
12

,0
91

ge
ne

s
is

re
pr

es
en

te
d

on
th

e
si

x
hi

gh
-d

en
si

ty
m

ic
ro

ar
ra

y
pl

at
fo

rm
s

an
d

us
ed

fo
r

cr
os

s-
pl

at
fo

rm
co

m
pa

ri
so

n.
T

he
tw

o-
co

lo
r

m
ic

ro
ar

ra
y

da
ta

fr
om

th
e

N
C

I
pl

at
fo

rm
ar

e
no

t
us

ed
in

th
is

ch
ap

te
r.

A
dd

it
io

na
l

m
ic

ro
ar

ra
y

an
d

al
te

rn
at

iv
e

ge
ne

ex
pr

es
si

on
pl

at
fo

rm
s

w
er

e
us

ed
in

th
e

M
A

Q
C

pr
oj

ec
t[

34
];

ho
w

ev
er

,f
or

si
m

pl
ic

it
y

of
de

sc
ri

pt
io

n
th

ey
ar

e
no

td
is

cu
ss

ed
in

th
is

ch
ap

te
r.



9 The MicroArray Quality Control (MAQC) Project 181

For two lists of DEGs, POG is calculated as follows: POG D 100  .DD C
UU/=2L, where DD and UU are the number of commonly down- or up-regulated
genes, respectively, from the two DEG lists, and L is the number of genes selected
from the up- or down-regulation directionality. To overcome the confusion of differ-
ent numbers for the denominator, in our POG calculations we deliberately selected
an equal number of up-regulated and down-regulated genes, L. The POG graphs
shown in this chapter are essentially the same as the CAT (correspondence at the
top) plots introduced by Irizarry et al. [15] except that in the current POG graphs
the x-axis is in log-scale so that the details when fewer genes are selected can be
more easily seen.

The number of DEGs from a given study can vary as the threshold for gene
selection can be chosen arbitrarily. Therefore, we calculated POG values for many
different cutoffs. The number of genes available for ranking and selection in one
direction, L, varies from 1 to 6,000 (with a step of one) or when there are no more
genes in one regulation direction, corresponding to 2L varying from 2 to 12,000.
If a gene is selected by two test sites or platforms but is in different regulation
directionalities, it is considered as discordant. Therefore, in reality POG can hardly
reach 100%.

We considered six gene ranking (selection) methods: (1) FC (fold change rank-
ing); (2) FC P0.05 (FC-ranking with P cutoff of 0.05); (3) FC P0.01 (FC-ranking
with P cutoff of 0.01); (4) P (P-ranking, simple t-test assuming equal variance); (5)
P FC2 (P-ranking with FC cutoff of 2); (6) P FC1.4 (P-ranking with FC cutoff of
1.4). The platform manufacturers’ recommended normalization methods are used
for data pre-processing: PLIER16 for Affymetrix, median scaling for ABI, Agilent,
and GE Healthcare, and quantile normalization for ILM.

9.4.4 Inter-Site Concordance with Data from MAQC
Reference RNA Samples

Figure 9.2 plots the inter-site POG versus the number of genes selected as differen-
tially expressed. Since there are three possible inter-site comparisons for the same
platform (S1–S2, S1–S3, and S2–S3, where S D Site) and six gene selection meth-
ods, there are 18 POG lines for each platform in the inter-site comparison. It is clear
that for some gene selection methods the inter-site reproducibility heavily depends
on the number of genes chosen as differentially expressed (when x-axis moves from
the left to the right). In addition, the gene ranking criterion also greatly impacts
the perceived POG: Gene selection using FC-ranking leads to higher POG than
P-ranking. The inter-site POG from FC-ranking is near 90% for as few as 20 genes
for most platforms, and remains almost the same level as the number of selected
genes increases. In contrast, the inter-site POG from P-ranking is in the range of
20–40% for as many as 100 genes, and then approaches 90% only after several
thousand genes are selected. Because microarray technology is widely used for iden-
tify biomarkers consisting of a relatively small number of genes, P-ranking could



182 Z. Wen et al.

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

1 102 4 20 50 400 3000100 1000 100006

1 102 4 20 50 400 3000100 1000 100006 1 102 4 20 50 400

fc
fc⏐p<1.0e-2
fc⏐p<5.0e-2
p
pf⏐c>2-0.5
pf⏐c>2-1.0

3000100 1000 100006

1 102 4 20 50 400 3000100 1000 100006 1 102 4 20 50 400 3000100 1000 100006

FC ranking

P ranking

FC ranking

Number of differentially expressed genes (2L)

In
te

r-
si

te
 C

on
co

rd
an

ce
 (

%
)

Inter-site Concordance
“12,091” data set 

+: S1-S2
x: S1-S3

: S2-S3

FC ranking

P ranking P ranking

ABI

GEH ILM

FC ranking FC ranking

P ranking
P ranking

AFX AG1

a

d

b

d

c

Fig. 9.2 Concordance of inter-site comparisons with data generated on MAQC reference RNA
samples A and B. Each panel represents results of inter-site consistency for a commercial platform
in terms of overlap of DEGs. For each platform and each gene selection method, there are three
possible inter-site comparisons: S1-S2, S1-S3, and S2-S3. Therefore, each panel consists of 18
POG lines that are colored based on gene ranking/selection method. The x-axis represents the
number of selected DEGs, and the y-axis is the percentage (%) of genes common to the two gene
lists derived from two test sites at a given number of DEGs. (Reproduced with permission from
Shi L et al. [37])

leave the impression that microarray data are not reproducible between different test
laboratories when smaller numbers of genes are selected as differentially expressed.

9.4.5 Cross-Platform Concordance with Data from MAQC
Reference RNA Samples

Figure 9.3 shows the dependence of cross-platform concordance on the number
of genes selected as differentially expressed and on the gene selection methods.
For each gene selection method, there are ten (10 D 5 
 4=2) cross-platform
pairs for comparison between the five platforms. Similar to inter-site comparisons
shown in Fig. 9.2, P-ranking leads to lower cross-platform POG than FC-ranking.
When FC is used to rank and select DEGs from each platform, the cross-platform
POG is around 70–85%, depending on the platform pair and the number of DEGs
selected. The decrease in concordance from inter-site comparison (Fig. 9.2) to
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Fig. 9.3 Cross-platform concordance of DEG lists based on data from MAQC reference RNA
samples A and B. For each platform, the data from test site 1 are used for cross-platform compari-
son. Each POG line corresponds to comparison of the DEGs from two microarray platforms using
one of the six gene selection methods. The x-axis represents the number of selected DEGs, and
the y-axis is the percentage (%) of genes common to the two gene lists derived from two platforms
at a given number of DEGs. POG lines circled by the blue oval are from fold change based gene
selection methods, whereas POG lines circled by the teal oval are from P based gene selection
methods. (Reproduced with permission from Shi L et al. [37])

cross-platform comparison (Fig. 9.3) reflects the inherent technological differences
between different microarray platforms in addition to inter-site differences.

For the analysis of a typical microarray data set, the number of DEGs is deter-
mined by setting a more-or-less arbitrary cutoff of the ranking criterion. To illustrate
the typical level of concordance of DEGs from inter-site and cross-platform compar-
isons, we considered a typical scenario where a gene is considered as differentially
expressed when the t-test P value is <0.001 and the fold change is 2. The DEG
list from each test site is compared with the lists from the other two test sites of the
same platform and those from test sites using other microarray platforms. The per-
centage of overlap in DEGs in each comparison is displayed in Fig. 9.4. The gene
list overlap is more than 60% for each pair of platforms. Many test site pairs achieve
80% or more overlap within and between platforms.
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Fig. 9.4 Percentage of overlapped DEGs between two different test sites or platforms. The DEGs
are selected from each test site from the 12,091 commonly measured genes with fold change value
>2 and P value<0.001. The agreement between any two test sites using the same platform is about
90%, whereas the concordance between any two test sites using different platforms is at least 60%.
Note that this graph is not symmetrical along the diagonal line because the percentage of test site
Y genes on the list from test site X (the upper right triangle) can be different from the percentage
of test site X genes on the test site Y list (the lower left triangle)

Among the 12,091 “common” genes measured by all genome-wide microar-
ray platforms within the MAQC project, 906 genes were also analyzed by the
“gold standard” TaqMan PCR gene expression assays [2, 34]. The concordance in
DEGs between microarrays and TaqMan was around 80%, indicating a high level of
reliability of microarray data [37]. Consistent with inter-site and cross-microarray
platform comparisons, the POGs comparing microarrays with TaqMan also depend
on the choice of the ranking criteria for gene selection, and FC ranking results in
markedly higher POG than ranking by P alone, especially for short gene lists [37].

9.4.6 Gene Selection Methods Determine the Level
of Reproducibility of Microarray Results

Figure 9.5a shows how inter-site reproducibility is impacted by the choice of differ-
ent statistical methods including FC-ranking, t-test statistic, and SAM when results
using MAQC reference RNA samples from Affymetrix test sites 1 and 2 are com-
pared. The POG for SAM is greatly improved over that of t-test statistic, but does
not exceed the level of POG based on FC-ranking. Similar findings (Fig. 9.5b) are
observed using the rat toxicogenomics data set of Guo et al. [11].
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Fig. 9.5 The level of inter-site concordance depends on the choice of gene selection meth-
ods. Panel a: Affymetrix data generated on MAQC reference RNA samples A and B; Panel b:
Affymetrix data generated from a rat toxicogenomics study (comfrey treatment versus controls).
The x-axis represents the number of selected DEGs, and the y-axis is the percentage (%) of genes
common to the two gene lists derived from two test sites at a given number of DEGs. (Reproduced
with permission from Shi L et al. [37] and Guo L et al. [11])
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9.4.7 The Rat Toxicogenomic Study: A Validation
of Reproducibility of Microarray Results

The high concordance of the five microarray platforms in the MAQC project
described above and the impact of gene selection methods on the reproducibility
of the resulting DEG lists are obtained using the two human reference RNA sam-
ples that lack explicit biological connections. Questions remain whether microarray
data from different laboratories or platforms will achieve similar results when real-
world biological RNA samples are used. In order to validate the consistency across
different microarray platforms and test laboratories and to further investigate the
impact of different statistical approaches on the reproducibility of DEG lists, we
generated a rat toxicogenomics data set. Briefly, 36 RNA samples are isolated from
the kidney and/or liver of rats exposed to one of the three botanical carcinogens,
namely aristolochic acid (AA), riddelliine (RDL), and comfrey (CFY) [4, 23–25],
representing six treatment/tissue groups: kidney from aristolochic acid-treated rats,
kidney from vehicle control rats, liver from aristolochic acid-treated rats, liver from
riddelliine-treated rats, liver from comfrey-treated rats, and liver from vehicle con-
trol rats. There are six biological replicates within each treatment/tissue group. For
the purpose of cross-platform comparison, these 36 samples are hybridized to four
microarray platforms: Affymetrix, Agilent, Applied Biosystems, and GE Health-
care. In addition, the Affymetrix platform is tested at two different sites to evaluate
the level of inter-site reproducibility. PLIER16 data are used for Affymetrix and
median scaled data are used for ABI, Agilent, and GE Healthcare.

The reproducibility between the two test sites using the Affymetrix platform
is shown in Fig. 9.6. For each treatment versus tissue-type matched control com-
parison, the inter-site concordance in DEGs is as high as 80–90% when DEGs
are selected by FC ranking and the number of genes selected as differentially
expressed ranges from a few to �2,000. With more genes considered as differen-
tially expressed, the inter-site concordance began to decline because more genes
with smaller fold change values are included in the gene lists. On the contrary, the
concordance of the gene lists is low when the t-test P value is used for ranking and
selecting DEGs, in particular when a smaller number of genes are selected.

Cross-platform concordance is assessed using comfrey (CFY) treatment versus
control as an example. The probe sequences of the four rat microarrays were mapped
to the rat RefSeq database (March 2006) using the same criteria described above for
the human microarrays, resulting in 5,112 genes commonly measured by the four rat
microarray platforms. The trend of the results is similar: fold change ranking gen-
erates more reproducible DEG lists across platforms (Fig. 9.7). The cross-platform
concordance is 50–70% and increases to 70–80% when “flagged” (i.e. undetectable)
genes are excluded from the analysis.

One important task in microarray data analysis is to provide mechanistic inter-
pretation to the DEGs. Using the rat toxicogenomics data set, the MAQC project
demonstrated that more reproducible DEG lists lead to more consistent biological
interpretation of microarray results in terms of gene ontology terms or pathways
enriched by the DEGs [11]. These results indicate that the biological interpretation
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Fig. 9.6 Inter-laboratory concordance of DEG lists selected from four treatment-to-control com-
parisons. Panel a: liver from aristolochic acid (AA) treatment versus liver control; Panel b: liver
from comfrey (CFY) treatment versus liver control; Panel c: liver from riddelliine (RDL) treatment
versus liver control, and Panel d: kidney from aristolochic acid (AA) treatment versus kidney con-
trol. The x-axis indicates the number of genes selected as differentially expressed and the y-axis
represents the overlap percentage of the DEG lists from two test sites. (Reproduced with permission
from Guo L et al. [11])
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Fig. 9.7 Cross-platform concordance of DEG lists based on data from a rat toxicogenomics study.
For each comfrey treatment to control comparison, the percentage of overlap of differentially
expressed genes was calculated using different selection methods from the 5,112 genes commonly
measured by the four platforms (ABI, AFX, AG1, and GEH). The x-axis represents the number
of genes selected as differentially expressed, and the y-axis details the overlap (%) of two gene
lists for a given number of differentially expressed genes. The results depicted are derived from the
comfrey-treated comparisons for each platform, but similar results were generated with the other
treatment comparisons. Differentially expressed genes are selected from either the entire common
gene list (panel a) or after filtering of low intensity or non-detectable genes and identifying the
subset of common genes that were detectable by both comparisons (panel b). (Reproduced with
permission from Guo L et al. [11])

of microarray data will be more reproducible when DEGs are selected with fold
change based ranking that produces more stable DEG lists.

9.5 Conclusions and Discussion

Microarray technology has had a profound impact on biological research par-
tially due to its ability to identify differentially expressed genes that may be
used to develop potential biomarkers, elucidate molecular mechanisms, and group
similar samples based on gene signatures. Therefore, the reproducibility and relia-
bility of the DEG lists created by gene selection criteria are critical for biological
interpretation. To address the issue of microarray reproducibility, we have designed
an experiment with well-controlled conditions and performed inter-site and cross-
platform comparisons in the MAQC project using different statistical methods for
gene selection.

Most of the previous studies questioning the reproducibility and reliability of
microarrays for gene expression analysis are based on the statistical significance



9 The MicroArray Quality Control (MAQC) Project 189

(P value) alone instead of the actual measured quantity of differential expression
(fold change or ratio) for selecting DEGs. The reliance on only P value to cre-
ate DEGs lists has resulted in the apparent irreproducibility between test sites
and between microarray platforms. Our results from analyzing data sets from the
MAQC human reference RNA samples and the rat toxicogenomics study samples
indicate that a straightforward approach of fold change ranking combined with a
non-stringent P value cutoff can successfully generate reliable DEG lists. Further-
more, compared to P value ranking, this joint method can minimize the impact of
normalization methods on the reproducibility of DEGs lists. That is, the DEG list
from P value ranking based gene selection methods is more susceptible to the choice
of normalization methods [11]. We recommend a straightforward approach of fold
change ranking combined with a non-stringent P value cutoff as a baseline practice
for microarray data analysis to generate reproducible lists of DEGs. The fold change
criterion ensures the reproducibility of DEGs and the P value criterion controls false
positives.

Many statisticians including those originally involved in analyzing the MAQC
data sets were puzzled by the finding that fold-change ranking combined with a non-
stringent P-value cutoff produced more reliable lists of DEGs than P value alone
based methods. However, if we consider microarrays as one bioanalytical measure-
ment technique, then the MAQC finding is in fact not unexpected. For differential
gene expression measurements, what is actually being measured by microarrays
is the difference in gene expression levels for the same gene between two sam-
ple groups. For a biologist, the difference is of course the fold change (or ratio)
of the expression levels between the two groups. Whether the detected fold change
is statistically significant or relies on the P value of a statistical test such as t-test.
For genes meeting a statistical significance threshold (e.g. P< 0.05), a larger fold
change is easier to be more reliably detected by microarrays because the signal (fold
change) is stronger. On the other hand, the P value reflects the signal-to-noise ratio.
Even though the signal (fold-change) may be reproducible between laboratories or
platforms, the noise in microarray measurements are difficult to characterize and
can vary dramatically between laboratories or platforms. That is, noise cannot be
reproduced. Therefore, it is not surprising that the P values are not as reproducible
as the fold changes between laboratories or platforms. It should be pointed out that
genes with the largest fold changes are not necessarily the most biologically impor-
tant ones in a specific study. In fact, those with small fold changes may play a critical
role; but, unfortunately, such genes are hard to be identified by microarray or other
gene expression technologies, because the signal (fold change) is too low compared
to the detection limit of the measurement technology.

Statistical metrics such as sensitivity and specificity are routinely used in assess-
ing the performance of gene selection methods where a pre-defined “truth” about
differentially gene expression is required. However, it could be argued that every
gene in a microarray study is differentially expressed depending on the chosen
threshold, because a gene can rarely have exactly the same expression level in two
sample groups. Thus, one critical step in a microarray study is to identify a subset of
genes that are more reliably detectable as differentially expressed. Reproducibility
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is a critical dimension to consider along with sensitivity and specificity when defin-
ing a gene list, but it is seldom emphasized. Because irreproducibility has rendered
microarray technology vulnerable to criticism, the analyses in the MAQC project
emphasized on reproducibility of the gene lists.

The levels of inter-site and cross-platform concordance reached in the MAQC
project are not necessarily achievable in other studies. We note that data quality
is critically important to ensure data reproducibility. In addition, the degree of dif-
ferences between the two groups of samples being compared plays an important
role in determining the level of concordance. Genes with small magnitude of dif-
ferential gene expression (i.e. fold change) in a microarray platform are less likely
to be consistently identified as differentially expressed in another laboratory or by
another platform, and under such scenarios of noisy data, no gene selection meth-
ods can guarantee a high level of reproducibility of DEGs [37]. Many biologically
important genes in brain tissues may only exhibit small levels of differential expres-
sion. Therefore, we routinely use more than one microarray platform to increase
the reliability of the identified DEGs using non-stringent P and fold change cutoffs
to select DEGs from each platform. Understandably, in such real-life studies many
genes with small fold changes close to the detection limit of microarray technolo-
gies are considered as DEGs on a single platform. However, we reason that genes
with small fold changes but of truly biological significance should be more likely to
be detected as DEGs by two independent microarray technologies (e.g. Affymetrix
and Agilent), thereby decreasing false positives in microarray analysis. With the
cost for microarray analysis per sample continues to fall, using multiple microar-
ray platforms to reliably detect differentially expressed genes is becoming more and
more feasible.

The two human reference RNA samples used in the MAQC project are com-
mercially available and have been widely used by the gene expression community
to evaluate the performance of new technologies such as nanostring [9] or next-
generation sequencing [42] and to ensure laboratory proficiency. The availability
of the large reference microarray and TaqMan data sets from the MAQC project
provide a unique resource to the scientific community to objectively assess the
advantages and limitations of different data analysis approaches [18].

The MAQC project, while positively received by the community [31, 38], also
stimulated criticism about the appropriate ways to identify differentially expressed
genes [3, 19, 31, 35, 38]. Disagreements among scientists should provide part of the
energy and process to move to consensus on the “best practices” for the generation,
analysis, and application of microarray data. This is precisely the goal of the MAQC
project toward personalized medicine that is the future of healthcare.
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Chapter 10
A Survey of Classification Techniques
for Microarray Data Analysis

Wai-Ki Yip, Samir B. Amin, and Cheng Li

Abstract With the recent advance of biomedical technology, a lot of ‘OMIC’
data from genomic, transcriptomic, and proteomic domain can now be collected
quickly and cheaply. One such technology is the microarray technology which
allows researchers to gather information on expressions of thousands of genes all
at the same time. With the large amount of data, a new problem surfaces – how to
extract useful information from them.

Data mining and machine learning techniques have been applied in many com-
puter applications for some time. It would be natural to use some of these techniques
to assist in drawing inference from the volume of information gathered through
microarray experiments.

This chapter is a survey of common classification techniques and related meth-
ods to increase their accuracies for microarray analysis based on data mining
methodology. Publicly available datasets are used to evaluate their performance.

10.1 Summary and Outline

Microarray is a new and important technology in exploring certain kinds of biolog-
ical data. This chapter provides some of the background in bioinformatics and the
technology behind microarray chip. It also provides the motivations and challenges
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behind the methodology used to explore the vast amount of data generated using
microarray.

This chapter focuses on one particular area – supervised learning or classifica-
tion. In general, microarray prediction is a multi-class classification problem. In
order to simplify complexity, we narrow our discussion only to 2-class. Six of
the commonly used classification techniques are described here: Decision Tree,
k-Nearest-Neighbor, Discriminant Analysis, naive Bayesian classifiers, Support
Vector Machine and Artificial Neural Network. For each of the method, we pro-
vide a basic description of the theory, a brief summary of the method’s advantages
and disadvantages, and a short survey of recent research in the area. Accuracy as a
measurement metric is introduced followed by descriptions of techniques used for
improving accuracy, such as Bagging and Boosting. Various validation techniques
such as Cross Validation and Bootstrap, are discussed. Real data sets are used as
examples for evaluating the classification techniques.

A number of software packages are now available to analyze microarray data
sets and five such packages are described here – BRB-Array Tools, Bioconductor,
GenePattern, PAM, and dChip.

Finally, a discussion about remaining issues and challenges is presented.

10.2 The Bioinformatic Revolution – The Challenges
of the Biomedical Data

Bioinformatics is a new area of research that applies mathematics, computer infor-
mation technology to the field of molecular biology. It helps to solve any theoretical
and practical problems that arises from analyzing biological data. It includes special
data management techniques to manage large amount of data generated, specialized
computational algorithms to find answers quickly, and statistical methods to analyze
the data appropriately.

For the last few decades, advance and rapid developments in both molecular
biology and computer technologies led to the generation of a large amount of
information. The most notable example is the Human Genome Project [1]. With
its completion in 2003, it has identified all of the approximately 20,000–25,000
genes in human, determined the sequences of the three billion chemical base pairs
that make up human DNA, and stored this information in databases which is now
available for all researchers.

With the explosion of genomic data, data mining (also known as knowledge dis-
covery) techniques have been applied to “mine knowledge” from these data. The
knowledge gleaned from these data could be invaluable in understanding the under-
lying biological processes and so it can help us to diagnose more precisely medical
problems such as cancer, and to predict the outcome of various therapies [2].



10 A Survey of Classification Techniques for Microarray Data Analysis 195

10.3 DNA Microarray Technology and Data Analysis

DNA microarray technology is developed to allow researchers to collect a very large
number of gene expressions at the same time. Genes are expressed under different
conditions and times and made into proteins. The instructions are transcribed from
the DNA in the genes that reside in the nucleus by messenger RNA (mRNA) and
the actual assembly of the protein occurs in the ribosome of the cell. As a result, the
state of the cell is correlated with changes in the level of mRNAs. By measuring the
level of mRNA, the state of the cell can be determined and inference about what is
happening in the cell can be made [3].

DNA microarray is a chip made of silicon or glass as in Affymetrix array or
microscopic beads as in Illumina array where thousands of strands of complimen-
tary DNA (cDNA) molecules or oglinucleotides are implanted and lay out in a grid
fashion. A mixture of mRNAs derived from the cells are then allowed to hybridize
(bind) to the probe sequences on the chip. The level of hybridization is detected
through fluorescence dyes with imaging software from chip manufacturers. It is
expected that the concentration level of each mRNA is proportional to the inten-
sity of hybridization detected. Researchers can now investigate the expressions of
thousands of genes all at the same time. By comparing the results against a control
(normal cell), the researcher can now quantify changes in gene expression levels.

Since researchers want to have a global view of gene expression, a large number
of genes are usually included for microarray experiment. It introduces a chal-
lenge that is unique to microarray gene expression data – a large number of gene
expressions (in thousands) with a relatively small number of samples (at most sev-
eral hundreds). There may be more “false positives” happening due to chance.
Thus robust methods for validating the models and evaluating their accuracies are
needed [4].

Microarray data are usually presented as a heatmap. An example is shown in
Fig. 10.1. Due to the large number of genes involved, the array is arranged with
samples in the column and genes in the rows. Both samples and genes are arranged
according to an hierarchical clustering method. The red indicates high gene expres-
sion level while the blue indicates low gene expression level. The heatmap gives a
visual summary of genetic profiles from samples.

There are many applications of microarray experiments such as establishing
genome-wide DNA methylation maps and measure DNA copy numbers across the
genome. The most prominent application is in cancer research. In 1999, a group of
scientists led by Golub published the pioneer work using gene expression to clas-
sify cancer [6]. With DNA samples from leukemia patients, 50 genes were selected
from a total of 6817 genes as informative genes. Based on the data, the computer
program is trained to classify (supervised learning) two kinds of leukemias – acute
myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Then classifi-
cation of new leukemia cases was performed using individual gene selection and a
voting algorithm. The study also applied an unsupervised learning technique, self
organizing maps (SOMs), to discover the distinction between AML and ALL, as
well as the distinction between B-cell and T-cell ALL.
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Fig. 10.1 The heatmap figure is showing unsupervised clustering of 15 healthy donor plasma cell
samples (yellow) and 69 new myeloma samples (red) from the NCBI GEO dataset GSE6477 [5].
Following data normalization, gene filtering by dChip was carried out using variance (SD/mean)
range between 1.4 and 1000 and minimum probeset level expression of 20 in at least 50% of
samples to get 460 genes. 1�correlation cluster algorithm was used using average linkage method
with gene-level and sample-level function enrichment p-values of 0.001 and 0.01 respectively

A similar approach by Shipp et al. was published in 2002 [7]. The same tech-
nique was applied first to train the classifier to distinguish Diffuse Large B-Cell
Lymphoma (DLBCL) treatment outcome. The derived class predictor was also able
to predict if a patient with DLBCL will be cured or not.

These and other subsequent studies demonstrate the viability of using gene
expression for developing models for cancer classifications and discovery. The
importance of Microarray Analysis can be visualized by looking at the trend of the
number of publications in major biomedical journals for the last 10 years as shown
in Fig. 10.2.

In general, there are two kinds of machine learning: unsupervised learning (clus-
tering, class discovery) and supervised learning (classification). In unsupervsed
learning, samples are allowed to group together according to some criteria with-
out any guidance. New classes may be discovered by looking at how the samples
are grouped together naturally. Self Organizing Maps (SOM), Principal Component
Analysis (PCA) or Hierarchical Clustering are such techniques. There are quite a
lot of research in that area as well and will not be discussed here. Instead, this chap-
ter focuses on supervised learning when samples with known outcomes are used to
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Fig. 10.2 The graph shows the number of articles cited in Index Medicus related to microarray
based classification methods in the last 10 years. The result is obtained by searching the PubMed
database for articles published between 1999 and 2009 with titles containing the word ‘microarray’

teach the classifer. Once the training or teaching is done, the classifer can be used
to predict the outcome on future input data.

After collecting gene expression data, the first step is to preprocessing the data
so that they are ready for analysis. There are many data preprocessing techniques
and a good description can be found in [2]. Two extremely important ones are data
imputation for missing data and normalization which will discuss briefly here.

In microarray experiments, fluorescent intensities, which are related to gene
expression levels, are measured. Comparing the intensities directly may be biased
because there could be systematic variations due to scanning parameters settings
and differentials in dyes usage. Normalization can be used to eliminate these sys-
tematic effects so that the data after normalization reflect the true differentials in
gene’s expression levels. A simple normalization procedure transforms the data so
that each gene expression has mean zero and variance of one across. By doing so, all
the genes are weighted equally in the classification. The location and scale param-
eters can be estimated by using the mean and standard deviation of the sample.
A more robust estimator such as the median can also be used. Some authors rec-
ommends general adaptive and robust normalization procedures such as the robust
local regression to correct for some of these artifacts [2].

The next step is to do data analysis which may include the following steps [7]:

1. Class definition – define a class label based on morphology, tumor class or some
treatment outcome information and this is usually done before data analysis and
during data collection;

2. Feature selection – select a set of non-redundant genes that are most relevant (or
highly correlated) to the classes in question based on some separation statistics;

3. Classification – build, train and validate a classifier using existing data set based
on the classification; then use the classifier to predict outcomes based on gene
expression;
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4. Model selection – build several models using different sets of features and
chose the final model based on some criteria to minimize the total error in
cross-validation;

5. Model evaluation – evaluate prediction results, and apply other measures such as
ROC curves or Kaplan-Meier survival plots for evaluation;

6. Cluster – identify new biological disease cases or make refinement on existing
classification.

Note that this is idealization of the process. Some of the steps may not be always
separable. In fact, part 4 and 5 are usually included in part 3 for model selection and
evaluation. For example, classifiers such as support vector machines have feature
selection built directly together with the training process. After validation, the model
is applied to an independent set of test data for an unbaised assessment. Classifiers
such as support vector machine have feature selection built directly together with
the training process.

10.4 Classification Techniques for Microarray Analysis

This chapter discusses only classification techniques and related methods to increase
the accuracies. The main goal is to come up with a ‘reliable’ classifer that can be
used to predict the sample classes based on gene expression data.

This section describes common classification methods. This is by no means
an exhaustive list. Reader can learn more about machine learning techniques in
the classic textbook Data Mining: Concepts and Techniques by Jiawei Han and
Micheline Kamber [8] or the online lecture notes by Professor Andrew Moore
[9]. This chapter will cover six classification methods that are most commonly
used and have implementations in stable software packages such as R and those
described in Sect. 10.8. The simpler ones are presented first and are followed by
more sophisticated ones. Here are the six classification methods:

1. Decision Trees
2. K-Nearest Neighbor
3. Discriminant Analysis
4. Support Vector Machines
5. Artificial Neural Network
6. Naive Bayesian Classifiers/Bayesian Network

Theoretically, it can be shown with simplified assumptions, the classification
techniques are different schemes of finding the class label that maximize the like-
lihood of data for the frequentist approach or the posterior probability for the
Bayesian approach given the observation.

The following general notation is used. It is assumed that data is presented as
a set of tuples .O;L/ where O is an observation comprising of many attributes
(genes) at once and L is the class label (e.g., disease outcome). Sometimes, in order
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to reduce complexity, only a subset of attributes, F , is considered. The process of
selecting the attribute subset F from O is called feature selection. For microarray
analysis, O is usually expression level from many different genes, F is a subset of
O called the feature set, and L is the disease or treatment outcome. Training set, T ,
refers to the set of tuples used to train the classifier and the testing set, V , refers to
the set of tuples used to validate the learned classifer. The count of the number of
elements in the set O is denoted by jOj.

10.4.1 Decision Trees

Decisions can easily be represented in a form of a tree. In its basic form, a decision
tree is a tree structure comprising internal nodes and leaves where each internal
node denotes a test on an attribute or integration of several attributes; each branch
represents an outcome of the test; and each leaf node holds a class label.

The decision tree is being built by learning from the training set T . Once the
decision tree is built, it gives you the knowledge repository for prediction for any
future input. Since the construction of some decision tree classifiers require only
limited knowledge of the subject matter or setting any parameters, therefore, it is
appropriate for exploratory knowledge discovery. In fact, it is like a game of 20
questions. It generates a model that is both predictive and descriptive. Since the
knowledge is encoded in a tree structure, one can query the tree for how exactly it
arrives at every decision. An example of a decision tree is shown in Fig. 10.3 which
is the result of learning from Shipp’s DLBCL data set.

Statisticians Breiman, Friedman, Olshen and Stone and a machine learning
researcher, Ross Quinlan independently developed the algorithm. The technique
is also known as Classification and Regression Tree (CART). An implementation
is available in R under the rpart package. Reader can learn more by reading the
textbook Classification and Regression Trees by Breiman et al. [10].

The following is a simplified recursive algorithm for binary attribute selection to
generate a decision tree:

Fig. 10.3 The decision tree to predict cancer outcome using 500 genes as the feature set from
Shipp’s DLBCL dataset. The algorithm selected just 2 genes out of 500 as predictors. The number
of observations for cured/fatal are shown beneath each leaf node
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Input:

1. T , set of training tuples with observations and their associated class labels
2. A, set of candidate attributes
3. an attribute selection method

Output: A decision Tree
Method: generate decision tree .T; A/

1. create a node N ;
2. if tuples in T are all with the same class label, C , then return N as a leaf node

labeled with the class label C ;
3. if all attributes in the attribute list are used, then return N as a leaf node labeled

with the majority class label in T ;
4. apply attribute selection method to find the ‘best’ splitting criterion based on T ;
5. label nodeN with splitting criterion;
6. mark the attribute in A used for splitting;
7. for each outcome j of splitting criterion let Tj be the set of data tuples in T

satisfying outcome j ; if Tj is empty then attach a leaf labeled with the majority
class in T to node N else recursively apply the algorithm to the subset Tj and
attach the node return by generate decision tree.Tj ; A/ to node N ;

8. return N ;

Different attribute selection methods can be applied to decide how to pick the best
split for the attribute set. Let D be a subset of T of learning tuples being evaluated.
Let pi be the probability that a tuple in D that has class label l and is estimated by
number of tuples in class l divided by total number of tuples in D. The following
are some of the common measures for binary attributes:

1. Information gain – use the entropy function, info.D/ D �Ppi log2.pi / as
the criteria. Since the decision based on A is binary, the set D can be parti-
tioned into two sets Di and Dj . Define Info.D;A/ D jDi j=jDj 
 Info.Di / C
jDj j=jDj 
 Info.Dj /. Information gain is Info.D/ � Info.D;A/. Pick A such
that the information gain is largest.

2. Gini index – uses the gini index measure defined as 1 �P.pi /
2. Since the deci-

sion based on A is binary, the set D can be partitioned into two sets Di and Dj .
Define Gini.D;A/ D jDi j=jDj 
 Gini.Di / C jDj j=jDj 
 Gini.Dj /. Pick the
attribute, A, as the splitting criteria such that Gini.D/� Gini.D;A/ is largest.

The advantages of using decision tree are

1. it is simple to use; and
2. it is easily understandable as it explains how it arrives at its conclusion.

The disadvantages are

1. it usually overfits the data;
2. it does not compare favorably with other machine learning techniques in terms

of accuracy; and
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3. it is hard to grow and reorganize the tree with new information. Overfitting the
data is a problem as the algorithm tries to fit all data including noises as well.
Tree pruning, which will not be described here, are techniques to remove the
least reliable branches.

Since accuracy is a problem, regression trees classification technique is used
commonly together with accuracy boosting techniques (described in later section).
Random Forest, Adaboost are just some of the ensemble techniques. With accuracy
boosting ensemble techniques and tree pruning improvements, microarray data can
now be analyzed with high accruacy. Subject matter knowledge can be applied to
prune the trees to avoid overfitting. It is the only techniques discuss here that can
explain how it arrives at the prediction.

Early work to apply decision trees technique for cell and tumor classification
using gene expression data was done by Zhang et al. [11]. They introduced a deter-
ministic procedure to form forests of classification trees. Their performance in terms
of error rates were compared with alternative techniques.

Recent research claims to produce tree based ensemble methods that produce
highly accurate results for microarray data by using Partial Least-Squares (PLS)
regression as a feature selection method [12]. The paper suggests a two stage
dimensionality reduction scheme:

1. Removal of irrelevant genes using discretization method;
2. Feature selection using PLS.

The number of features are selected through the SIMPLS algorithm, an alterna-
tive estimation method for partial least squares regression components proposed by
de Jong. For validation, it uses both ten-fold as well as leave-one-out-cross valida-
tions. The results using four different decision tree methods: Simple C4.5, Random
Forest, C5.0 Adaboost, and MML(Minimum Message Length) Oblique Forest are
produced. Seven publicly available cancer data sets, Leukemia, Breast cancer, Cen-
tral nervous system, Colon tumor, Lung cancer, Prostate cancer, and Prostate cancer,
are used. It shows that the Partial Least-Squares (PLS) regression method is an
appropriate feature selection method and tree-based ensemble models can deliver
accurate classification models for microarray data.

Recently, a successful optimization technique is proposed for decision tree clas-
sifiers by using hist index to prune attributes, approximating computations that
measure entropy, and reusing subtrees from previous runs [13]. The algorithm is
applied to three public cancer data sets – leukemia (from Golub), colon and breast.
In all cases, the CPU consumption drops significantly. In addition, the paper also
noticed that smaller tree seems to have higher accuracy rate as well.

10.4.2 k-NN (k-Nearest-Neighbor)

The k-NN method is a classification algorithm by gathering information from its
neighbors. It belongs to a class of learning techniques known as lazy learner [8].
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A lazy learner simply stores the training tuples with minimal processing. When the
test tuple is presented, the learner examines and then classifies the test tuple based
on its similarity to the stored training tuples. The most common class label among
the k nearest neighbors to the test tuple. This type of classifer is also known as
instance-based learner because of the way it stores all the instances of the training
set. This technique is inherently computationally intensive as most of the work is
done at the time of classification.

The k-nearest-neighbor method has been around since the early 1950s. Because
of its heavy computational requirement, the method is not actively in use until com-
puters are widely available. It classifies by comparing a given test tuple with training
tuples that are similar to it where similarity (or closest) is defined by some distance
measure – usually the Euclidean distance. The class label that is most common to the
test tuple’s k nearest training tuples is assigned. There are no specific rules to choose
what is the best k. This is usually chosen by the intuition of the researchers. Miss-
ing values and categorical variables can be handled easily by assuming maximum
possible differences.

An implementation of k-NN algorithm in R can be found in the class package.
The following are a list of common distance functions used [2]. Let x and y are

members (genes) of the feature set, F , and xi and yi are the i-th components of x
and y respectively.:

1. Euclidean – dist.x; y/ D pP.xi � yi /2

2. Manhattan – dist.x; y/ DP jxi � yi j
3. Mahalanobis – dist.x; y/ D p

.xi � yi /S�1.xi � yi /T where S is the sample
covariance matrix of the variables.

The advantages of using k-NN are

1. it is simple to use;
2. it is easily understandable;
3. it allows better control as user can pick an appropriate distance function; and
4. it can incorporate new information easily.

The disadvantages are

1. it is not as accurate in prediction as other complicated machine learning; and
2. it is computationally intensive.

Since it is easy to use and understand and there is no prior knowledge needed of
the data, k-NN has been used frequently as a comparison to other machine learn-
ing techniques when applied to microarray data. Surprisingly, it works pretty well
although not as good, but not far from the best score when compared with the more
sophisticated methods.

As presented earlier, the k-NN technique was applied early on by Margaret Shipp
on her tumor classification work [7]. k-NN was used to predict the outcome of dif-
fuse large B-cell lymphoma. The results was used to compared with other techniques
such as SVM.

Recent research involves exploring feature standardization and fuzzification to
improve accuracies based on receiver operating characteristic (ROC) curves [14].
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10.4.3 Discriminant (linear/quadratic)

Linear discriminant analysis (LDA) is a statistical and machine learning method by
finding the best linear combination of features which separate two or more classes of
objects when each measurement of the covariates is continuous. The combination
can then be used as a classifier, or, more commonly, for dimensionality reduction
before classification in the second stage.

Discriminant function analysis is based on the assumption that the variable for
each group is normally distributed within each class k with mean D �k and stan-
dard deviationD Sk . And the joint distribution is a multivariate normal distribution
N.�k; Sk/ where �k denotes the expected value and Sk denotes the covariance
matrix of the feature in class k. Take the case when k D 2, the Bayes optimal solu-
tion is to predict points as being from the second class if the likelihood ratio is below
some threshold T, i.e.:

..x � �1/S
�1
1 .x � �1/

0 C logjS1j/� ..x � �2/S
�1
2 .x � �2/

0 C logjS2j/ < T

This classifier is known as the quadratic discrminant analysis (QDA). If further
assumptiion is made that all the standard deviations are the same, the criteria can
be reduced to a linear combination of just the observations. The resulting classifier
is known as the linear discriminant analysis (LDA). Based on assumptions on the
variance-covariance matrices of the variables, there are variants of the discriminant
analysis: diagonal quadratic discriminant analysis (DQDA) – when all the class den-
sities have their variance-covariance matrices as diagonal matrices, diagonal linear
discriminant analysis (DLDA) – when the all class densities variance-covariance
matrices are the same diagonal matrix [2].

The advantages are:

1. it is a well-known statistical technique that has been proven to work over the
years;

2. it is easy to implement (because of its linear nature); and
3. it has good performance in practice (high bias, but low variance leads to good

estimates.

The disadvantages are:

1. it assumes that the underlying model is multivariate normal distribution; and
2. the traditional LDA may not be suitable for microarray analysis because

for a large number of genes as performance degrades rapidly due to over-
parameterization and high variance parameter estimators.

An implementation of lda and qda can be found in library MASS in R.
As presented earlier, Golub et al. [6] proposed a weighted gene voting scheme

for classification. This method is a variant of DLDA and is considered as one of the
first applications of a classification method to gene expression data [2].

The technique is very flexible and has been extended to deal with some of
its shortingcomings. LDA can be adapted to Microarray data easily with various
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shrinkage approaches. The newer extensions (see below) can easily handle high
dimensiion data with small sample size common in Microarray experiments. The
following are two such methods from recent research:

A new variant of LDA, sequential DLDA (SeqDLDA), has been proposed. It
is based on Diagonal LDA (DLDA) combined with an independent gene selection
(filtering) – one gene is sequentially added each time and the linear discriminant
(LD) recomputed using the DLDA model at each iteration. Classical DLDA adds
the gene with highest t-test score without checking the resulting model. SeqDLDA
improves on the method by finding the gene that better improves class separa-
tion after recomputing the model measured using a robustified t-test score. The
new method was used in several 2-class cancer datasets (neuroblastoma, prostate,
leukemia, colon) using ten-fold cross-validation. The misclassification rate is sig-
nificantly reduced in some of the data set [15].

The shrunken centroids regularized discriminant analysis (SCRDA) is another
new variant [16]. The method generalizes the idea of the nearest shrunken centroids
of Prediction Analysis of Microarray (PAM) into the classical discriminant anal-
ysis. It is specially suited for microarray data as it is designed for classification
problems in high dimension data with low sample size. Using both simulation study
and real life data, SCRDA perform uniformly well in the multivariate classification
problems.

10.4.4 Support Vector Machines

Support vector machines (SVM) is one of the most promising sophisticated machine
learning techniques. The technique was first proposed by Vladimir Vapnik and
Alexei Chervonenkis in 1970s [17].

The idea can best be explained in a simple case when the data are linearly sep-
arable, i.e., a line (or a hyperplane) that can be drawn to clearly separate the data
into two classes. The goal of the algorithm is to find that line (or hyperplane). Con-
straints are based on margin which is the shortest distance of vectors to this line
(or hyperplane). The shortest distance from vectors of one class to the dividing line
(or hyperplane) should be the same as the short distance from vectors of another
class. The maximum marginal hyperplane is the hyperplane that has the maximum
margin.

Not all data are linearly separable. That is, a line (or a hyperplane) cannot be
drawn through the data such that one class of data is completely on one side and the
other class is on the other. In those cases, a kernel function can be used to transform
the data to a higher dimension so that the transformed data points in the higher
dimension can be linearly separable. Kernel function is being applied cleverly to the
algorithm to avoid computational burden.

The following are commonly used kernel functions:

1. Polynomial of degree p � .x � y C 1/p
2. Gaussian radial basis (RBF) – exp.�jx � yj2=2�2/

3. Sigmoidal – tan�1.�x � y � d/
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By default, a linear polynomial function is used. In addition, user can also specify
the more advance classification parameter – the C-classification, the �-classification,
or the one-classification.

The advantages are:

1. it is highly accurate;
2. it is less prone to overfitting;
3. it can model very complex, nonlinear data; and
4. it provides a compact description of the learned model.

The disadvantages are:

1. learning can be computational intensive; and
2. it takes skills to pick the right kernel functions for the right problems with the

right parameters.

An implementation of SVM can be found in the library e1071 in R. Due to
its generality, SVM has been applied to many areas. Since SVM can easily deal
with complex high dimension data, it has been applied successfully to microarray
analysis. It is a very active area as researchers are trying to come up with proper
methodology to pick the right classification parameter and the appropriate kernel
function.

Michael Brown et al. were the first to publish an analysis of microarray gene
expression data by using support vector machines [18]. It stated many mathemat-
ical features about SVMs that make them attractive for gene expression analysis,
including their flexibility in choosing a similarity function, sparseness of solution
when dealing with large data sets, the ability to handle large feature spaces, and the
ability to identify outliers. Several SVMs were tested, as well as some other super-
vised learning methods, and find that the SVMs best identify sets of genes with a
common function using expression data.

In [19], the paper proposes a gene selection method based on RFE (recursive
feature elimination). This becomes the dominant SVM feature selection method.
Experimentally, the researchers demonstrated that the genes selected by the tech-
niques yield better classification performance and are biologically relevant to cancer.

In [20], the paper proposes a variation of SVM – R-SVM (recursive SVM) to
perform feature selection and classifcation with noisy data. Using simulated data,
the paper claims to have 5–20% improvement over SVM-RFE (recursive feature
elimination, the predominant SVM method). The method is being applied to two
proteomic datasets – human breast cancer and mouse liver cirrhosis. It demonstrates
the viability of the method for proteomic and microarray analysis especially when
the data is noisy.

In [21], the paper proposed a variation of SVM – SCADSVM which performs
feature selection and classification simultaneous. It is applied to three breast cancer
data sets (Stanford, Rosetta, Singapore). The result is lower error rate with cross
validation when compare with other SVMs and t-statistics. It uses ten-fold to tune
the SVM parameter and then it uses two fold to train and one fold to test for the
classifers. (i.e., train on Stanford and Rosetta, test on Singapore).
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In [22], the paper proposes an extension to SVM-RFE (recursive feature elimina-
tion) to do multiclass classification by simultaneously considering all classes during
the gene selection stages. A total of six data sets are used – all with multiple (>2)
classes. Cross validation shows that the proposed extensions work well.

10.4.5 Neural Networks

Neural networks were originally proposed by psychologists and neurologists who
tried to develop and test computational analogues of neurons. Like neurons in a
human being, a neural network is a set of connected input/output units. To model an
actual neuron, each connection has a weight associated with it. When the threshold
in one this unit is reach, the connection is fired and the signal propagates to the next
unit. The network learns by adjusting the weights so that the correct class label of
the input tuples is obtained.

There are many kinds of neural networks and neural network algorithms. The
simplest kind is the multi-layer feed-forward neural network which contains an input
layer, one or more hidden layers, and one output layer. The signal can only prop-
agate forward from the input layer through the hidden layers to the output layer.
Backpropagation is the most commonly used algorithm to train this kind of neural
network.

The most important aspect of neural network is the network topology which is
supplied by the user. To set up a multi-layer feed-forward network topology, the user
needs to specify the number of units in each layers (input, hidden and output), the
number of hidden layers, and the connections of all the units. Input may need to be
normalized. There is no rule to pick the best parameters. It is an iterative process of
trial and error to find the best neural network.

Once the neural network is set up, the user can supply training tuples. Back-
propagation learns by iteratively processing the training data set by comparing the
network’s prediction for each tuple with the actual known target value. For each
training tuple, the weights of each unit are modified so as to minimize the mean
squared error between the network’s prediction and the actual target value. These
modifications are made in the backwards direction, that is, from the output layer,
through each hidden layer back up to the first hidden layer. The weights of each
unit should eventually converge although there is no guarantee theoretically. The
learning process stops then.

An implementation of neural network in R can be found in the neural package.
A single single-hidden-layer neural network implementation is also available in the
nnet package which comes with the base R.

The advantages are:

1. it is highly tolerant of noisy data;
2. it is capability of classifying patterns on which they have not been trained;
3. it is well-suited for continuous-valued data; and
4. it is successful on a wide range of real-world data (including microarray

datasets.)
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The disadvantages are:

1. it involves long learning time;
2. it requires a number of parameters that are typically best determined empirically;

and
3. it is difficult to interpret the symbolic meaning behind the learned weights and

hidden units in the network.

Since microarray data usually carries a lot of noise, ANN seems to be the right
classifier. To set up the neural network properly, prior knowledge of the problem
must be used. Experiments are conducted to obtain some of the weights used in the
network units. So, the difficulties in training the neural network and in interpret-
ing the inherent meaning of internal parameters make it hard to use in analyzing
Microarray data. The first application of neural networks to microarray data clas-
sificiation is published by J. Khan et al. [23]. After the ANN was trained using
the small, round blue-cell tumors (SRBCTs) as a model, it correctly classified all
samples and identified the genes most relevant to the classification. The experi-
ment demonstrated the potential for using these methods for tumor diagnosis and
the identification of candidate targets for therapy.

The following are some of the recent research neural network:
In [24], the paper explores using Artificial Neural Network (ANN) trained on

microarray data from DLBCL lymphoma patients to predict long term survival for
cancer patients. The resulting classifier has been able to predict the long-term sur-
vival of individual patients with 100% accuracy. The paper concludes that artificial
neural networks are a superior tool for analyzing microarray.

Also, it has been reported that the researchers at the National Cancer Institute
(NCI), have used artificial neural networks (ANNs) and DNA microarrays to suc-
cessfully predict the clinical outcome of patients diagnosed with neuroblastoma
(NB) [25]. Out of 25,000 genes, the ANN classifier identified a minimal set of 19
genes whose expression levels were closely associated with this clinical outcome.

10.4.6 Naive Bayesian/Bayesian Network

Bayesian classifiers are based on Bayes statistical theory. They are used to compute
class membership probabilities, that is the probability that a given tuple belongs to
a particular class.

The foundation of Bayesian classification is based on the famous Bayes theo-
rem. Its accuracy and speed are quite extraordinary when applied to large data sets.
Bayesian classifiers are useful because they actually provide theoretical justification
for many other classifiers if the theory is set in the Bayesian context. It can be shown
that many machine learning algorithms actually output the maximum a posteriori
hypothesis.
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Bayes Theorem

P.H jX/ D P.X jH/ 
 P.H/
P.X/

:

where
P.H jX/ is the a posteriori probability ofH conditioned on X .
X are known observations and P.H/ is the prior probability.
P.X jH/ and P.H/ are usually estimated from the given data.
Suppose that there are m classes, C1; C2; : : : Cm. Given a tuple,X D .x1; x2; : : : ;

xn/, the classifier predicts that X belongs to the class having the highest a posterior
probability, conditioned on X .

P.Ci jX/ D P.X jCi / 
 P.Ci /

P.X/
:

The objective then is to maximize P.X jCi / because P.X/ is fixed. Since the
prior probability for Ci ’s, i.e., P.Ci / s are not known, they are assumed to be iden-
tical. For the Naive Bayesian Classification, further assumption is made that the
class conditionals are independent (i.e., given the class label of a tuple, the val-
ues of the attributes are assumed to be conditionally independent of one another).
So, P.X jH/ is calculated by simply multiplying all the conditionals together, i.e.,
P.X jH/ D P.x1jCi / 
 � � � 
 P.xnjCi / where all the P.xi jCi / can be estimated
from the training tuples. For prediction when given a tuple X , we just need to find
the class Cj such that P.X jCj /P.Cj / is the maximum with the values that are
estimated from training. If the class conditional independence assumption is not
true, a more complicated method, Bayesian belief networks, can be used. The net-
work specifies the joint conditional probability distributions. A belief network is
represented by two data structures – a directed acyclic graph (DAG) and a set of
conditional probability tables (CPT). Each node in the DAG represents a random
variable that may correspond to the actual attributes given in the data or to some
“hidden attributes” believed to form a relationship. If nodes are connected by an arc,
it means that they are probabilistic dependent. The CPT at each node, Y , enumerates
the conditional distribution P.Y jParents.Y //.

The network provides a complete representation of the existing joint probability
distribution by the formula [8]:

P.X/ D
Y

P.xi jParents.Yi //

for all i and Yi is the variable at each node.
The network is either given or learnt from the training set. The training algorithm

is far more complicated than the naive Bayesian classifier and is beyond the scope
of this chapter. Each node in the network is a class label although some of them
may be “hidden”. With the network, we can find the probability of each class based
on the input tuple, X . We classify the input tuple to the class that has the highest
posteriori probability.
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There is no package in R for a naive Bayesian classifier. An implementation of
Bayesian network can be found in package deal in R.

The advantages are:

1. its representational power as it gives the actual probabilities of the classification
based on the input; and

2. it provides theoretical basis for other classifiers.

The disadvantages are:

1. it is difficult to train the network;
2. it is difficult to explain especially the hidden variables; and
3. it could be computational intensive (Bayesian network).

Bayesian network is the only technique here that models not only the relation-
ship between input and class labels but also the joint distribution of the class labels
and input. As a result, it can successfully predict outcome even when only par-
tial information is available. However, the conditional probabilities are not trivial
to compute. The interpretation of the network is not obvious. So, it is difficult to
apply Bayesian network for Microarray analysis. Early work of applying Bayesian
networks to analyze expression data was done by Friedman [26]. A framework built
on the use of Bayesian networks for representing statistical dependencies was used
for discovering genes interactions. A method for recovering gene interactions from
microarray data was described.

The following are some recent publications applying Naive Bayesian classifier:
In [27], the paper applies the naive Bayesian classifier to classify genes for house-

keeping or tissue specific for human, mouse or fruit fly based only on physical and
functional characteristics of genes already available in databases, like exon length
and measures of chromatin compactness. The classifier has achieved a 97% success
rate in classification of human housekeeping genes (93% for mouse and 90% for
fruit fly). The result is validated with a ten-fold random sampling cross validation.

In [28], the paper develop techniques that address the complexities of learning
Bayesian nets. It reduces the Bayesian network learning problem to the problem of
learning multiple subnetworks, each consisting of a class label node and its set of
parent genes. This model is more appropriate for the gene expression domain than
are other structurally similar Bayesian network classification models. Two other
significant contributions are the construction of classifiers from multiple, competing
Bayesian network hypotheses and algorithmic methods for normalizing and binning
gene expression data in the absence of prior expert knowledge. The classifiers are
validated on out-of-sample test sets and attain a classification rate in excess of 90%
for two publicly available datasets. The results are comparable to, or better than,
other classification methods.

In [29], the paper extends a Naive Bayes Model to take into account within sam-
ple heterogeneity. It demonstrates that explicitly dealing with heterogeneity can
improve classification accuracy on a TMA prostate cancer dataset. The approach
is validated by simulated data and the TMA dataset by applying 100 times a ten fold
cross-validation procedure with different fold randomization and then by computing
the average results.
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10.5 Accuracy Enhancements to Classification

The accuracy of some of the classification techniques can be improved with two
general techniques: bagging and boosting. Both of them are called ensemble meth-
ods as they base the result on a combination of the results from different models. The
final result is a composite model usually has better overall classification/prediction
accuracy.

10.5.1 Bagging

Bagging is another term for bootstrap aggregation [30]. It deploys bootstrapping
procedures repetitively to come up with different training tuples to be used in
training.

The user specifies the number of models needed in the ensemble (say, n). The
bootstrap procedures are applied to resample with replacement the training tuples.
Since it is resampling with replacement, some training tuples may be duplicated.
The training process is being applied to the bootstrapped training set to come up
with a model. The process is repeated n times. The end result is n different models.

Random Forest is an example for using such scheme. It is an ensemble of tree
classifiers where bagging is used to produce the training set. Then, a random feature
set is chosen to decide how to split the tree.

The composite model for classification is applying all n models to the input tuple.
Each model votes with equal weights and the majority wins.

The bagged classifier often has significantly greater accuracy than a single clas-
sifier. It is more robust to noise. Application of bagging to cluster analysis can
substantially improve clustering accuracy and yields information on the accuracy
of cluster assignments for individual observations. In addition, bagged clustering
procedures are more robust to the variable selection scheme, i.e., their accuracy is
less sensitive to the number and type of variables used in the clustering [31, 32].

10.5.2 Boosting

Similar to bagging, boosting also deploy boostrapping procedures to come up with
n different models. However, it includes a modification in the training step. Each
training tuple is assigned a weight. Initially, the weights are the same for each tuple.
Then, it increases or decreases base on whether it was misclassified during the train-
ing process for the previous model. For classification, each model’s prediction on
the outcome when presented with an input is weighted according to how well it
performs. The weight is usually set to

log.1 � error.Mi //=.error.Mi /
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where error.Mi / is the error rate of the i-th model. The class with the maximum
score after each model votes and weighted accordingly is the ‘winner’.

The following common scheme is used in Adaboost. The initial weight for the
training tuples are all equal. Iteratively, it will produce the model (Mi ) for the i-th
round. Sampling with replacement is done but the selection is based on the weight
of the training tuples. So, the misclassified ones from previous rounds have more
chances of being selected. The classifiers from later rounds are more apt to handle
more difficult tuples.

Because the algorithm focus on misclassified tuples, the resulting models often
overfit with noisy data. Occasionally, the boosted model may be less accurate than
a single model.

In general, both bagging and boosting improved accuracy over a single model.
But, there are some studies that suggest that Adaboost may not work well with
microarray data. An improvement is suggested in the paper Boosting and Microar-
ray Data [33] to increase its performance.

10.5.3 BagBoosting

More recent research, as shown in the paper [31], demonstrates that when bagging
is used as a module in boosting, the resulting classifier consistently improves the
predictive performance and the probability estimates of both bagging and boosting
on real and simulated gene expression data. The overhead for this quasi-guaranteed
improvement is a bigger computing effort.

10.6 Evaluating the Accurracy of a Classifier

The validation methods are especially important for microarray data because of the
small sample size. The following techniques are commonly used to measure the
accuracy and reliability of the classifier:

10.6.1 Holdout and Random Subsampling

The concept of holdout is simple – randomly partition the data into two independent
sets, a training set and a test set. Commonly, 2/3 of the data are allocated to training
and 1/3 for testing. This automatically reduces the sample size used for training and
small sample size is always difficult to train unbiased classifier.

A revised variation is to repeat the process k times and the average of the
accuracies obtained with each iteration will be used.
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10.6.2 Cross validation/Leave One Out Validation

In k-fold cross-validation, the initial data set is randomly partitioned into k mutually
exclusive subsets (or folds). Each of which are of approximately equal size. Then,
we iterate k times using each fold as the hold out for validation. So, each fold is
used equal number of times for training and one time for testing. For classification,
the accuracy is the correct number of classification for k iterations divided by the
total number of tuples.

Leave-one-out-cross-validation (LOOCV) is a special case of k-fold with k set
to the number of initial tuples. So, only 1 sample is left for testing each time. The
study by Golub et al. [6] on leukemia and Shipp et al. on DLBCL [7] use LOOCV to
validate their models. Ten-fold cross validation is commonly used in many studies
as well.

10.6.3 Bootstrap

Instead of partitioning the learning tuples, the bootstrap methodology samples the
initial data set with replacement. So, duplicate tuples can appear in the training set.
Tuples that are not selected will form the testing set.

Iteratively, we generate n different models by resampling with replacement the
initial data set n times for the training data set. Testing is done on the samples that
are not picked for training. The accuracy of the overall model can be shown to be
about [2]

Acc.M/ D
X

.0:632 
 Acc.Mi /test set C 0:368 
 Acc.Mi /t rain set /

where Acc.Mi /test set is the accuracy of the model obtained with bootstrap sample
i when it is applied to test set i and Acc.Mi /t rain set is the accuracy of the model
obtained with bootstrap sample i when it is applied to the training set i. The bootstrap
process works well even with small data sets.

It should be noted that cross-validation after selection of differentially expressed
genes from the full data set could result in a highly biased estimate of prediction
accuracy. Thus, it is very important to cross-validate all steps of predictor construc-
tion in estimating the error rate. Furthermore, additional studies are needed before a
classifier can be used in clinical setting [34].

10.7 Comparing Accuracies of Classification Techniques

There are various aspects of the classification of techniques that can be examined.
One of the most important performance measurements is accuracy. This section
looks at the accuracy of the five commonly used classification techniques: decision
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trees, k-NN, support vector machines, discriminant analysis and artificial neural net-
work using the corresponding packages available in R. Since there is no R package
for the naive Bayesian classifier, it is not included in this comparison. No special
tuning and ensemble techniques are applied to increase the prediction accuracies
for any particular methods. The main purpose here is not to advocate a particular
method but rather to show that accuracies vary significantly based on the param-
eters chosen. It is the responsibility of the investigator to pick and compare the
appropriate methods and the corresponding parameters for a particular study. Other
metrics such as Receiver Operating Characteristics (ROC) curves can also be used
to evaluate the methods.

10.7.1 Data Set

To compare the efficacy of classification methods, we apply them to two separate
publicly available data sets:

1. Diffuse Large B-Cell Lymphoma Outcome Prediction – Expression data of a total
of 6817 genes from 58 patients with DLBCL (32 cured and 26 fatal/refractory)
are used to predict the outcome of clinical treatment. http://www.broad.mit.edu/
publications/broad987s

2. Classification of Bipolar Disorder – Postmortem samples of 61 patients (30 dis-
ease and 31 healthy controls) are used to predict bipolar disorder. http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5388

10.7.2 Experimental Design

We adopt the neighborhood analysis based on the noise to signal ratio

abs.�cured � �fatal /=.�cured C �fatal /

as the criterion for feature selection where� and � denote the mean and the standard
deviation of the respective class label fatal, cured for the Shipp dataset. For the
biopolar dataset, the class label will be disease and healthy. The top n genes with
the highest noise to signal ratio are picked as input to the classification engine. It is
the same technique used in both Golub [6] and Shipp [7] studies. For validation, we
use the LOOCV scheme to assess the accuracy. The following is the measure being
used in the table below:

accuracy D correct positive predictionC correct negative prediction

total number of cases

http://www.broad.mit.edu/publications/broad987s
http://www.broad.mit.edu/publications/broad987s
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5388
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5388
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positive prediction – prediction for “cured” among real “cured” cases
negative prediction – prediction for “fatal/refractory” among real “fatal/

refractory” cases.
The LOOCV method is used for the two datasets – one sample is left out and the

rest is used as training. The left out sample is used to validate the resulting machine.
The process is repeated for all remaining samples. The accuracy as defined above is
calculated, plotted in the line graphs (Figs. 10.4 and 10.5) and tabulated in the tables
(Tables 10.1 and 10.2) below.

Fig. 10.4 The line graph for LOOCV accuracy of Shipp’s dataset by various classification
methods

Fig. 10.5 The line graph for LOOCV accuracy of the bipolar dataset by various classification
methods
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Table 10.1 Overall accuracy of DLBCL outcome prediction

SVM k-NN CART ANN DA
SVM(Linear) SVM(RBF) kNN-1 kNN-5 kNN-10 CART ANN LDA

10 0.48 0.45 0.52 0.56 0.48 0.17 0.60 0.48
20 0.45 0.52 0.45 0.36 0.41 0.33 0.59 0.40
30 0.62 0.59 0.52 0.38 0.41 0.26 0.55 0.47
40 0.67 0.60 0.54 0.48 0.47 0.47 0.53 0.52
50 0.74 0.62 0.50 0.60 0.53 0.49 0.52 0.52
60 0.69 0.62 0.53 0.59 0.50 0.41 0.52 0.60
70 0.72 0.62 0.55 0.60 0.45 0.41 0.53 0.76
80 0.71 0.59 0.55 0.59 0.48 0.41 0.53 0.71
90 0.66 0.55 0.53 0.52 0.48 0.49 0.53 0.59
100 0.57 0.52 0.48 0.52 0.47 0.45 0.48 0.52
500 0.66 0.53
1,000 0.62
2,000 0.43

Table 10.2 Overall accuracy of bipolar disorder outcome prediction

SVM k-NN CART ANN DA
SVM(Linear) SVM(RBF) kNN-1 kNN-5 kNN-10 CART ANN LDA

10 0.58 0.56 0.60 0.51 0.56 0.38 0.39 0.54
20 0.65 0.57 0.59 0.54 0.62 0.41 0.33 0.64
30 0.62 0.51 0.52 0.54 0.59 0.48 0.23 0.61
40 0.67 0.44 0.51 0.49 0.51 0.46 0.18 0.54
50 0.64 0.51 0.48 0.48 0.51 0.54 0.28 0.58
60 0.54 0.52 0.48 0.46 0.48 0.57 0.34 0.48
70 0.54 0.49 0.52 0.46 0.51 0.59 0.31 0.57
80 0.61 0.48 0.49 0.49 0.44 0.69 0.30 0.67
90 0.59 0.49 0.49 0.49 0.44 0.69 0.30 0.67
100 0.59 0.51 0.46 0.48 0.46 0.67 0.31 0.54
500 0.56 0.33
1,000 0.6
2,000 0.43

10.7.3 Validation Results

10.7.3.1 DLBCL Study

The highest accuracy is from LDA with 70 genes as predictors, and its accuracy can
get up to 0.76. It is closely followed by SVM with linear kernel. With 50 genes as
predictors, the accuracy goes up to 0.74. K-NN can only achieve prediction accuracy
of 0.60 with 40 genes as predictors. The result differs slightly from the original
paper. That could be due to how computation are being done. For example, the
original paper uses proprietary software that uses a gradient descent method using
noise to signal as criteria to select features that tie in with the classification using
SVM. Our computation just use the default method provided by the R package.
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10.7.3.2 Bipolar Disorder Study

The LDA and SVM are methods that can achieve above 60% accuracy in some
cases. However, none of the classification method do a very good job at prediction
for this particular dataset.

10.7.4 Observations

1. The accuracy varies over a large range as the parameters change. In general, it
is difficult to obtain the maximum accuracy just by trial and error. Some sort of
automatic optimization technique such as gradient descent is needed to obtain the
optimal accuracy. The gradients of the function at the current point are estimated
and the algorithm moves along the gradient with the steepest descent in order to
find a local minimum.

2. There seems to be a delicate balance between feature selection and classification.
Different feature selection algorithm will lead to different accuracies.

3. For prediction accuracy, LDA and SVM seems to perform consistently better than
the other techniques. However, if ensemble and tuning techniques are applied,
the result may be quite different. So, it is likely that investigators choose certain
classifier based on their knowledge of the subject matter and familiarity on how
to tune the classifier to produce good results.

10.8 Summary of Microarray Classification Software Packages

10.8.1 BRB-ArrayTools

http://linus.nci.nih.gov/BRB-ArrayTools.html
BRB-ArrayTools [35, 36] is a comprehensive Microsoft Excel based GUI pack-

age for visualization and statistical analysis of microarray gene expression data.
Designed and maintained by NIH, it encompasses several modules for microar-
ray class prediction as well as many other utilities, like survival analysis, time
course analysis. It offers class prediction by either single or multiple methods such
as compound covariate predictor, Bayesian compound covariate, Diagonal LDA,
KNN, SVM and PAM modules. Furthermore, class performance can be optimized
by changing several parameters, i.e. gene list, leave-one-out-cross-validation, recur-
sive feature elimination and 0.632C bootstrap options. ArrayTools is a freeware for
academic use with active user support and development team which provides easy-
to-use Excel based functionality with robust features to perform microarray raw
data processing under one platform. BRB-ArrayTools does not provide command
line package and it depends on the R-Excel and R-COM server software. For proper

http://linus.nci.nih.gov/BRB-ArrayTools.html
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design and analysis of DNA microaray investigations, one can look at the book by
Simon et al. [37, 38].

10.8.2 Bioconductor

www.bioconductor.org
Packages: MLInterfaces, CMA, MCRestimate
Bioconductor [39, 40] is a R-dependant, open-source collection of software

packages for high throughput genome analysis. Designed primarily for profes-
sional bioinformaticians, its command line ability together with active open-source
development gives great flexibility in data analysis. Depending on the type of
package used, it provides many classification and validation methods such as Leave-
One-Out-Cross-Validation, K-NN, Monte-Carlo cross-validation, Bootstrap, SVM,
Neural Networks, LDA. The CMA package has 21 methods to choose from for clas-
sification and has an option to automatically adapt methods to user-submitted data
format. Class performance can be fine-tuned using flexible coding for gene filtering,
clustering and classification methods. However, with multiple methods to analyze,
caution should be ensured to validate results on independent data set rather selecting
the best performing method.

10.8.3 GenePattern

http://www.broadinstitute.org/cancer/software/genepattern/desc/expression.html#
pred

Designed and maintained at Broad Institute, Gene Pattern [41–43] is a popular
free software package for microarray data analysis. Its class prediction module pro-
vides GUI for widely used classification methods, i.e. classification and regression
trees (CART), K-nearest neighbors (K-NN), Probabilistic Neural Network (PNN),
Weighted Voting, and Support Vector Machines (SVM). Unlike Bioconductor, Gene
Pattern does not require proficiency in coding. However, many built-in modules
work on public server which requires user to upload data in a specified format over
internet which could be troublesome for large dataset. Optionally, modules can be
installed on local servers.

10.8.4 PAM – Prediction Analysis for Microarrays

http://www-stat.stanford.edu/	tibs/PAM/
PAM is another popular free package for sample classification using nearest

shrunken centroid method [44] and added cross-validation support. It has an Excel

www.bioconductor.org
http://www.broadinstitute.org/cancer/software/genepattern/desc/expression.html#pred
http://www.broadinstitute.org/cancer/software/genepattern/desc/expression.html#pred
http://www-stat.stanford.edu/~tibs/PAM/
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based plugin and a R package with very easy to use interface, especially automatic
gene selection. Even though sample classification is based on only one method, its
class prediction performance is nearly matching to that using SVM and it has the
lowest average error rate.

10.8.5 dChip

www.dchip.org
http://www.dchip.org/lda.htm
DNA-Chip Analyzer (dChip) is a Windows software package for probe-level

(e.g. Affymetrix platform) and high-level analysis of gene expression microarrays
and SNP microarrays [45,46]. dChip uses Linear discriminant analysis (LDA) anal-
ysis in R for class prediction. Being a GUI software, dChip provides relatively easy
and speedier way of sample classification with further improvement in class pre-
diction performance using Leave-One-Out-Cross-Validation method and ability to
filter gene signatures using gene filtering and ANOVA functions. Class prediction
function requires R installation and command line support is not included at present.

The dChip class prediction dialog window (Fig. 10.6) can be viewed by selecting
AnalysisnClassify Samples from menu bar. It provides easy GUI to define classes
(on the right side) from available samples in the left side of window. Samples whose

Fig. 10.6 dChip Class
Prediction Dialog Box

www.dchip.org
http://www.dchip.org/lda.htm
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class is known can be added by clicking “Select by category” option and speci-
fying particular category, i.e. treatment responders, non-responders, etc. Samples
not added in any of the class will be regarded as “unknown” samples and their
class labels will be predicted after LDA is performed. LDA is performed by pro-
viding user-defined gene list obtained from either AnalysisnCompare Samples or
AnalysisnFilter genes functions. AnalysisnCompare Samples method gives a list
of differential expressed genes between known sample classes and therefore it is
preferable method to get higher prediction power in test dataset. To validate the
classification performance, check “Perform cross-validation” option and specify the
gene list method using filtering or ANOVA function of dChip. Final results of LDA
will be stored in an lda result file; an icon will appear in left side panel of dChip,
and clicking it will show an LDA scatter plot (see dChip online manual).

10.9 Discussion and Conclusions

The bioinformatics revolution has generated such optimism that in early 2000s,
several popular magazines, Wired [47] and The Scientist, [48] reported microar-
ray as the future prognostic tool for many of the life-threatening diseases. Wired
even pronounced the end of cancer as we know it. Unfortunately, the good news
was premature. A more realistic assessment was discussed in the Fall 2006 Issue of
Biomedical Computation Review [49].

Since the groundbreaking research 10 years ago by Golub et al. [6], there have
been many additional studies applying to many other different data sets using many
different kinds of machine learning techniques for classification. The results are
mixed. The accuracy rate depends on the data set. More importantly, some of
the results are not reproducible. Tibshirani thought that “a good proportion of the
microarray analyses was wrong” [49]. As mentioned earlier, since we only have
a limited number of samples but large number of genes, most methods tend to
show a relatively high number of false positives as well. So, clinically, we have
not been able to apply any of the models we have selected. Further research efforts
are needed.

In general, the following questions still need to be answered:

1. Which is the best machine learning classification technique? It is clear from
the literature that no one specific technique stands out as the winner. We don’t
understand under what conditions should we apply which technique.

2. Are sophisticated classifiers better than simple ones? Some research shows that
simple and sophisticated classifiers seem to produce similar results. Even though
the sophisticated classifiers produce better results consistently, the simple ones
are not far behind. Do all the fine tuning and additional computational needs
worth the few percentages of accuracy?

3. What combination of techniques work best? Since we are dealing with a large
number of genes, there are multiple selection process in the steps to arrive at a
model with a manageable number of genes. It seems that different supervising
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and unsupervising techniques can be applied to produce results that are highly
accurate. We need to understand various combination of choices when we do the
analysis.

4. How to choose some of the parameters? The accuracies achieved by some of the
sophisticated techniques require us to adjust certain parameters. For example,
we have to pick the appropriate kernel function for SVM; we have to pick k
for k-NN; and so on. How do we know we pick the best one or even the right
one ? We need a better approach to parameter selection than just trial and error.
Dividing data to training, validation, and test sets enables us to select parameters
using training and validation data, and apply the best classifier to the test data for
an unbiased accuracy estimate.

5. What is the sample size needed to train a classifier? Another parameter that we
need to quantify is the sample size. Some research has been done in this area [50].
Since we only have limited number of samples in these experiments, we need to
quantify clearly the power of these tests so that we can establish a confidence
level when they are in use.

6. Can we apply the research result for clinical usage? Do we need a new approach
to the problem? Right now, we cannot apply directly what we have right now for
practical clinical usage yet. It is not clear how we are going to get there either.
The papers published recently continue to refine machine learning techniques to
achieve higher accuracies. But, it is not clear that we have convinced ourselves
that it is ready for clinical use. So far we are looking at the details at the gene
expression level trying to piece thing together. Do we need a new approach? Are
we sure that we are looking at the right objects and abstractions?

7. Research results are not completely reproducible. One of the tenets of scien-
tific progress is the ability to accurately reproduce results. We need to establish
proper protocol so that results are reproducible so that we trust the results. Dudoit
and Fridlyand concluded that “the tumor classification error rates reported in the
literature are generally biased downward, i.e., overestimate the accuracy with
which biological and clinical outcomes can be predicted based on expression
measures” [2]. Even more alarming is that the analysis may not be done cor-
rectly [34]. How can we trust the outcome when we apply this to the prediction
of life-threatening diseases? Stricter research protocols are needed so that we can
establish credibility from our analysis.

8. In this chapter, the overall accuracy is used as the metric to evaluate the efficacy
of the methods. However, other metrics are as important. Two other commonly
used metrics are false positive rate and false negative rate. Consider a real patient
classified as normal (false negative), missing the treatment; or a normal person
classified as patient (false positive), causing worries and unnecessary treatment.
The investigators must weigh these metrics according to their needs when decide
which methods to use.

Genomic data from microarray and other sources contain much information
about cells. Data mining techniques will certainly help to glean valuable information
from the data. However, we have yet to arrive at a methodology to consistently clas-
sify and predict life-threatening diseases. The information is buried there – we just
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need to find them. Much progress has been made for the last decade and much is
still needed. New technologies such as microRNA profiling and high-throughput
sequencing also pose new challenges and opportunities to the genomics-based
classification research.
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Chapter 11
Statistical Analysis of Single Nucleotide
Polymorphism Microarrays in Cancer Studies

Pierre Neuvial, Henrik Bengtsson, and Terence P. Speed

Abstract In this chapter, we focus on statistical questions raised by the identifi-
cation of copy number alterations in tumor samples using genotyping microarrays,
also known as Single Nucleotide Polymorphism (SNP) arrays. We define the copy
number states formally, and show how they are assessed by SNP arrays. We identify
and discuss general and cancer-specific challenges for SNP array data preprocess-
ing, and how they are addressed by existing methods. We review existing statistical
methods for the detection of copy number changes along the genome. We describe
the influence of two biological parameters – the proportion of normal cells in the
sample, and the ploidy of the tumor – on observed data. Finally, we discuss existing
approaches for the detection and calling of copy number aberrations in the partic-
ular context of cancer studies, and identify statistical challenges that remain to be
addressed.
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INRA, France
e-mail: pierre@stat.berkeley.edu

H. Bengtsson
Department of Statistics, University of California, Berkeley, USA
and
Department of Epidemiology & Biostatistics, University of California, San Francisco, USA
e-mail: hb@stat.berkeley.edu

T.P. Speed (B)
Department of Statistics, University of California, Berkeley, USA
and
Bioinformatics Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
e-mail: terry@stat.berkeley.edu

H. Horng-Shing Lu et al. (eds.), Handbook of Statistical Bioinformatics,
Springer Handbooks of Computational Statistics, DOI 10.1007/978-3-642-16345-6 11,
c� Springer-Verlag Berlin Heidelberg 2011

225

pierre@stat.berkeley.edu
hb@stat.berkeley.edu
terry@stat.berkeley.edu


226 P. Neuvial et al.

11.1 From Biological Questions to Statistical Challenges

Each normal human cell has 23 pairs of chromosomes. For each of them,
one chromosome has been inherited from each biological parent. Tumor cells
harbor numerous structural alterations of their DNA including point mutations,
translocations, small insertion or deletion events, larger scale copy number
changes, amplifications, and loss of heterozygosity (LOH), which corresponds
to the loss of the contribution of one parent in a genomic region. These alterations
can affect genes and regulatory transcripts, which may result in cellular modifica-
tions including angiogenesis, immune evasion, metastasis, and altered cell growth,
death and metabolism [1]. They are thought to be associated with diagnostic and
prognostic factors [2].

An immediate goal of copy number studies in cancer research is to estimate the
underlying copy number state (to be defined more formally in the next section) at
each position along the genome of a tumor sample. Microarray-based technologies
have been used for more than a decade to quantify copy numbers at a large number
of genomic loci [2–4]. In particular, genotyping microarrays (SNP arrays) are a
technology of choice because they combine a high density of markers along the
genome (in the order of millions for the current generation) with the ability to assess
both changes in total copy number and loss of heterozygosity in a single assay.
This is what make them particularly relevant to cancer studies, where both pieces of
information are needed to understand the underlying copy number state of the tumor.

In this chapter, we review statistical challenges raised by the analysis of SNP
array data in cancer studies. We focus on the analysis of one tumor sample. Identi-
fying copy number states from a tumor sample requires detecting changes in copy
number signals, and calling regions, that is, assigning a copy number state to each
region detected. The main ingredient for the detection part is the fact that DNA copy
number is locally constant along the genome: locus-level estimates can thus be com-
bined in region-level estimates. However, for this property of local constancy to be
fully exploited, SNP array data first have to be pre-processed so that locus-level
estimates for a given sample are comparable across loci. For the calling step to be
performed satisfactorily, biological factors that influence the estimated copy num-
ber levels – tumor ploidy and normal contamination – have to be understood and
acknowledged for.

11.1.1 Outline

We begin by defining the copy number states of interest in cancer studies, and show-
ing how estimates can be obtained from preprocessed SNP array data for each locus
(Sect. 11.2). We then describe current methods for SNP array data preprocessing,
with a focus on specific challenges for copy number studies in cancers (Sect. 11.3).
In Sect. 11.4 we review statistical methods that have been proposed to combine
locus-level copy number estimates (as obtained after preprocessing) to detect copy
number changes along the genome. In Sect. 11.5 we describe the influence of tumor
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ploidy and normal contamination on observed signals and their interpretation. In
Sect. 11.6 we show how the methods described in Sect. 11.4 have been applied
to SNP array data in cancer studies, by accounting for or taking advantage of the
characteristics of the data described in Sect. 11.5. We conclude by identifying
ongoing challenges for the statistical analysis of SNP array data in cancer studies
(Sect. 11.7).

11.2 Minor and Major Copy Numbers in Cancer Studies

We define the copy number state of a tumor at a given genomic locus j as a pair
of numbers .j ; j /, where j � 0 and j � 0 are respectively the smaller and
the larger of the two parental copy numbers at this locus. By definition we have
j � j , and j D j C j is the total copy number. The quantities j and j are
called minor and major copy numbers, respectively. Note that j , j , and j need
not be whole numbers, especially because of the possible presence of normal cells
in the tumor sample. This point is explained in detail in Sect. 11.5.

The two-dimensional vector .j ; j / does not characterize parental copy num-
bers at locus j in the tumor. Indeed, the information of which of minor or major copy
numbers corresponds to the maternal chromosome at locus j , and which one cor-
responds to the paternal chromosome is missing from .j ; j /, and it may change
across loci. In short, because of the constraint j � j , minor and major copy
numbers (CNs) are not phased in terms of parental copy numbers.

The remainder of this section is organized as follows. In Sect. 11.2.1 we focus on
true copy number signals, that is, the actual copy numbers in the biological samples.
We demonstrate that knowing true minor and major copy numbers is enough to
characterize copy number events of interest in cancer studies. In Sect. 11.2.2 we
show that true copy numbers, including minor and major copy numbers, can be
estimated from SNP array data at the locus level. Notation used in the chapter is
summarized in Sect. 11.2.3.

11.2.1 Information Relevant to Copy Number Studies in Cancers

Table 11.1 summarizes the copy number states relevant to cancer studies in terms
of minor and major copy numbers. They are described as the conjunction of infor-
mation regarding total copy numbers and (loss of) heterozygosity. For example,
knowing the total copy number in a region of LOH . D 0/ allows us to distin-
guish between hemizygous deletions .; / D .0; 1/, that is, single copy deletions,
from LOH when the total copy number is two .0; 2/, so-called copy-neutral LOH
or acquired uniparental disomy. Conversely, among regions of neutral copy num-
ber . D 2/, regions of copy-neutral LOH .0; 2/ can be distinguished from normal
regions .1; 1/ based on the LOH status of the region. This is distinction is important
for data interpretation, as copy-neutral LOH is a known mechanism through which
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Table 11.1 Minor and major copy number states of interest for cancer studies, presented as the
conjunction of information regarding total copy number (columns) and heterozygosity status (rows)

Deletion Neutral Gain

Loss of heterozygosity .0; 1/ .0; 2/ .0;  / with  
 3
Heterozygosity .0; 0/ .1; 1/ . ;  / with 1 �  �  and  C  > 2

a recessive tumor suppressor gene can be expressed with no apparent change in total
copy number [5].

Regions of LOH are characterized by the absence of one of the two parental
chromosomes, that is, by a null minor copy number: j D 0. However, (loss of)
heterozygosity is a binary concept which can be insufficient (even when combined
with total copy numbers) to fully characterize subtle copy number events such as
complex gains, as in the lower right cell of Table 11.1 which corresponds to a copy
number gain with retention of heterozygosity. For example, .1; 3/ and .2; 2/ are
two states that fall into this category, with the same total copy number. However,
the biological interpretation of these two states can be quite different: .2; 2/ is a
balanced duplication of a chromosomal region, while .1; 3/ corresponds to an allele-
specific amplification, which can typically pinpoint regions containing oncogenes.

This example illustrates the need for a quantitative measure to characterize allelic
imbalance between parental copy numbers at a given locus, rather than a binary
variable (retention or loss of heterozygosity). Several closely related measures have
been proposed to quantify allelic imbalance in cancers [6–8]. These measures can
be written in terms of minor and major copy numbers and quantify the distance to
the heterozygous status. In this chapter, we denote the allelic imbalance at locus j
by ıj 2 Œ0; 1�, and use the following definition:

ıj D
j � j

j C j

: (11.1)

In the above example, .; / D .2; 2/ yields ı D 0 (allelic balance or heterozy-
gosity), while .1; 3/ yields ı D 1=2 (partial loss of heterozygosity). Note how a
hemizygous deletion .0; 1/ and a copy-neutral LOH .0; 2/ both yield ı D 1.

11.2.2 What can be Estimated from SNP Array Data

Single Nucleotide Polymorphisms (SNPs) are genomic positions where the DNA
sequence varies at a substantial rate across individuals of some population. For most
SNPs only two (out of four) variants are observed. These variants are called alleles
and arbitrarily denoted by A and B . SNP arrays are a microarray-based technology
which targets both alleles of a large number of SNPs. Although they were originally
developed for genotyping studies, they have also been proved quite useful for copy
number studies, especially in cancers.
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Current generations of SNP arrays (Affymetrix GenomeWideSNP 6 and Illu-
mina Human1M-Duo) interrogate approximately one million SNPs, that is, of the
order of 10% of the total number of known human SNPs. They also incorporate
copy number probes, which measure total copy numbers at non-polymorphic loci
for increased resolution of copy number studies. We refer to [9] for a more com-
prehensive review on SNP array technologies. Specific characteristics of SNP array
assays that are relevant to the data analysis and particularly to data preprocessing
are explained in more detail in Sect. 11.3.

For the present section it is sufficient to note that SNP array data (after prepro-
cessing as explained in Sect. 11.3) can be summarized by a two-dimensional vector
.cj ; bj /j2J of locus-level estimates, where J denotes the set of J loci targeted
by the microarray. When j is a SNP, cj is the sum of the contribution of the two
alleles at j called allele-specific copy numbers, and bj is the corresponding fraction
of signal coming from allele B at j . Following [6, 10, 11], bj will be called allele
B fraction. The corresponding allele A fraction is aj D 1 � bj . The corresponding
allele-specific copy numbersA andB can therefore be written as .aj cj ; bj cj /j2J .
When j is a copy number probe, cj is the total intensity signal at j , while bj and
aj are not defined.

Figure 11.1 shows Affymetrix GenomeWideSNP 6 data 50 Mb-long genomic
region on Chromosome 2 of an ovarian tumor sample from the Cancer Genome
Atlas (TCGA). TCGA is a collaborative initiative to provide a high-throughput
molecular characterization of a large number of tumors from different cancer types,
with the goal to improve biological understanding and clinical treatment of these
cancers [12,13]. These data have been preprocessed using an allele-specific version
of the CRMAv2 method [14], called AS-CRMAv2, followed by the TumorBoost
method [15] for normalization of raw allele-specific copy numbers.

Previous copy number analyses led by TCGA have shown that this tumor has two
copy number transitions in this region. The first one occurs at �124.2 Mb, between
a normal region: .; / D .1; 1/ and a region of single chromosome gain: .; / D
.1; 2/. The second transition occurs at �140.9 Mb, between a region of single gain
and a region of copy-neutral LOH: .; / D .0; 2/.

11.2.2.1 Obtaining Locus-Level Estimates of Minor and Major
Copy Numbers, and Allelic Imbalances

For any configuration of the paternal and maternal genotypes at SNP j , true allelic
ratios ˛j and ˇj satisfy

.˛j ; ˇj / 2
n
0; j =j ; j =j ; 1

o
; (11.2)

with the constraint ˛j C ˇj D 1. In particular, if SNP j is heterozygous in the
germline, then by definition the alleles inherited from the two parents at this locus
differ, and the minimum and maximum allelic ratios satisfy min.˛j ; ˇj / D j =j

and max.˛j ; ˇj / D j =j . Therefore, minor and major copy numbers may be
estimated as the locus level by
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Fig. 11.1 Locus-level estimates from Affymetrix GenomeWideSNP 6 data in three copy number
regions on chromosome 2 of a TCGA ovarian tumor sample: normal .1; 1/, gain .1; 2/ and copy-
neutral LOH .0; 2/. Top panel, total copy numbers (cj ) along chromosome 2. Middle panel, allelic
ratios (bj ) along chromosome 2. Transitions between the three copy number states are indicated by
dashed gray vertical lines in the top and middle panels. Bottom panels, allele-specific copy num-
bers: (aj cj ; bj cj ) in each of the three regions. Gray: SNPs called homozygous in the paired normal
sample, and copy number probes; black: SNPs called heterozygous in a paired normal sample (not
shown). The data were preprocessed using AS-CRMAv2 [14] followed by TumorBoost [15]

(
cj D cj �min.aj ; bj /

cj D cj �max.aj ; bj /
: (11.3)

The true allelic imbalance as defined in Eq. 11.1 may then be written as ıj D
1 � 2 �min.˛j ; ˇj /, and the corresponding locus-level estimate becomes

dj D 1 � 2 �min.aj ; bj /: (11.4)
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Table 11.2 Notation: true copy numbers and corresponding locus-level estimates from SNP arrays

True Locus-level estimate Locus type

Total copy number j cj SNP and CN
Allele A fraction ˛j aj SNP
Allele B fraction ˇj D 1� ˛j bj D 1� aj SNP
Minor copy number j D j �min.˛j ; ˇj / cj D cj �min.aj ; bj / Heterozygous SNP
Major copy number j D j �max.˛j ; ˇj / cj D cj �max.aj ; bj / Heterozygous SNP
Allelic imbalance ıj D .j � j /=j dj D 1� 2 �min.aj ; bj / Heterozygous SNP

11.2.3 Notation

The notation used in this chapter for true copy number signals (Greek letters) and
the corresponding locus-level estimates (Roman letters) is gathered in Table 11.2.

11.3 Preprocessing

The goal of this section is to explain how locus-level estimates for total copy num-
bers .cj / and allelic ratios (aj and bj D 1 � aj ), as defined in Sect. 11.2, can
be obtained from the observed signal intensities retrieved from SNP array exper-
iments. We focus on the two main SNP array platforms, which are manufactured
by Affymetrix [16, 17] and Illumina [18–20]. The first steps that have to be carried
out for low-level analysis of microarray data consist in correcting data for sources
of unwanted variation, in order to make observed signals comparable across sam-
ples for a given locus. These steps are described in Sect. 11.3.1. We note that the
methods described in this section are generally technology-specific, but not spe-
cific to cancer studies – they are relevant to any SNP array data analysis. In cancer
studies however, the observed signals also need to be comparable across loci for
a given sample, so that downstream analysis methods can take advantage of the
local constancy of the signal along the genome to combine locus-level estimates into
region-level estimates. This question is addressed in Sect. 11.3.2. Note that because
the methods developed in Sect. 11.3.2 rely on reference samples for the estimation
of copy numbers, their application requires making signal intensities comparable
across samples (as explained in Sect. 11.3.1) in the first place. Section 11.3.2 is not
technology-specific; however it is only relevant to copy number studies in cancers.

11.3.1 Making Signals Comparable Across Samples

SNP arrays were originally developed and used for genotyping purposes in genome-
wide association studies (GWAS). Genotype calls are generally estimated inde-
pendently for each SNP, by comparing the distribution of allelic signals across
samples. Necessarily, preprocessing methods for SNP arrays were initially focused
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on making signals comparable across samples. In this section, we briefly review
the design principles of existing methods addressing this point. As Affymetrix and
Illumina assays are quite different, these methods are mostly platform-specific.

11.3.1.1 Affymetrix

A variety of preprocessing methods have been suggested for Affymetrix SNP arrays,
e.g. (implicit or explicit) background correction, allelic-crosstalk calibration, probe-
sequence normalization, PCR fragment-length normalization, several distribution-
based normalization methods, and various methods summarizing probe-level signals
into locus-level estimates.

Correction of PCR and Sequence Related Effects

Affymetrix genotyping assays involve a Polymerase Chain Reaction (PCR) amplifi-
cation step [16,17]. In the assays where restriction enzymes are used to fragment the
target DNA, the locus-specific copy number estimates may be correlated with the
fragment length. Since the fragments are known from the genome annotation it is
straightforward to estimate and correct for such effects [14,21–24]. Moreover, it has
been reported that observed intensities are also correlated to the GC content [21,24].
More complex relationships with the nucleotide sequences of the probes [14, 23]
have been observed as well.

As these parameters may vary across assays and between hybridizations, they
need to be corrected for in order to make comparisons across samples meaningful
and more precise. Existing approaches typically involve non-linear regression of
signal intensities on PCR fragment length, GC content and nucleotide position [14,
21–24].

Generic Probe-Level Normalization

Generic probe-level normalization is a crucial step of microarray preprocessing
which aims at making probe signals comparable between samples. For Affymetrix
data, methods originally developed for the preprocessing of expression microarray
data – lowess normalization [25], invariant-set normalization [26] or quantile nor-
malization [27], have been successfully applied to SNP array data. These approaches
explicitly constrain probe-levels signals to be comparable across arrays.

Correction for Allelic Crosstalk

It has been recently shown that most of the non-biological differences between
the distribution of probe-level signals across samples could be attributed to allelic
crosstalk (including an offset correction), that is, cross-hybridization between
probes targeting the two alleles of a SNP [24,28]. One advantage of allelic crosstalk
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calibration is that it effectively makes probe-level signals comparable across sam-
ples without imposing constraints on intensity distributions [14, 24]. It can also be
applied to each array separately.

Summarization of Probe-Level Signals

Summarization combines normalized probe-level signals into locus-level estimates
by fitting a log-additive or multiplicative model of the intensities. These mod-
els were first developed for the analysis of oligonucleotide expression microar-
rays [26,27] and later adapted to SNP arrays [23,29,30]. Related multi-array models
that explicitly model allelic crosstalk at the summarization step have also been
suggested [28, 31].

A common feature of Affymetrix SNP arrays is that each SNP is associated with
a set of 25 nucleotide-long probe sequences. Half of these probe sets target allele A
and the other half target alleleB . However, the technology has evolved substantially
across generations of SNP arrays, as a result of an effort from both the manufac-
turer and the scientific community [9]. With the latest generation of SNP arrays
(GenomeWideSNP 5 and 6), all probes targeting a given allele-specific or total copy
number locus are technical replicates. With this simplified probe set design, using
the median of replicated probes within an array as a summary has been shown [14]
to perform as good as or better than previously proposed summarization models that
required several arrays to be used.

11.3.1.2 Illumina

Almost all studies performed using Illumina data use the preprocessing method
provided by Illumina’s BeadStudio software [10, 32], which is an affine transfor-
mation of the original data that corrects for offset and signal compression (or allelic
crosstalk), and scales the data based on control points. The parameters for this affine
transformation are estimated independently for each sample, for each sub-bead pool.
As the Infinium assay does not involve PCR amplification, correction for sequence
effects is not needed for Illumina SNP arrays.

Recent works demonstrated that the signals after BeadStudio normalization suf-
fer from a dye bias [33]: the distribution of normalized signals differ substantially
between the two types of fluorescent dyes (Cy3 and Cy5) that are used in the
Infinium II assay [34]. The correction method proposed by [33] consists in applying
quantile normalization [27] to the normalize the two dyes. Importantly, this is still
done independently for each array.

11.3.2 Making Signals Comparable Across Probes

Signal intensities at a given locus j can be assumed to be proportional to the cor-
responding true copy numbers, but the proportionality coefficient is unfortunately
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locus specific and unknown [26,27,35]. These coefficients are known as locus affini-
ties. In copy number studies, true copy numbers are expected to be locally constant
along the genome. This property is exploited by downstream segmentation meth-
ods to detect copy number changes along the genome, as explained in Sects. 11.4
and 11.6. It is therefore fundamental for these downstream analyses that these locus
affinities be canceled beforehand, in order to make copy number signals comparable
across neighboring loci. This section describes how existing methods address this
question for total copy number and allelic signals.

11.3.2.1 Total Copy Numbers

As locus affinities are not sample-specific, they can be effectively canceled from
total signals by dividing the observed(summarized) signal intensity yj at locus j

by an observed reference signal intensity, y.R/
j , at the same locus, which is obtained

from a sample or a pool of samples for which the true copy number at locus j ,  .R/
j ,

is known:

cj D  .R/
j

yj

y
.R/
j

: (11.5)

In general the reference is chosen to be copy-number neutral (“copy neutral”),
that is, so that  .R/

j D 2 for j 2 J . There are several choices of total reference

signal y.R/
j , depending on the study design [36,37]. For instance, in a paired tumor-

normal study, the reference signal at a given locus may be the corresponding total
signal from a matched normal tissue sample or normal blood sample, whereas in a
tumor study without matched normals, it may be the corresponding robust average
(e.g. a median) of all samples in the study. If some of the samples in the study are
normal samples, their robust average may be used as a reference instead.

It is in general better to use a reference from the same lab as the test sam-
ple, and possibly from the same batch of arrays. This is illustrated by Fig. 11.2,
where three different sets of cytogenetically normal samples were used as refer-
ences for the same tumor SNP array. The tumor SNP array is from a breast cancer
cell line hybridized at the Lawrence Berkeley National Laboratory (LBNL). All
samples were hybridized on the Affymetrix GenomeWideSNP 6 platform, nor-
malized using CRMAv2 [14]. Copy number profiles were segmented using the
Circular Binary Segmentation (CBS) method [38]. The figures were generated using
ChromosomeExplorer within the aroma.affymetrix framework [39].

The signals in the three panels of Fig. 11.2 are of similar amplitude: the dif-
ference between copy number estimates (black segments) between two successive
copy number regions is comparable across panels. Therefore, signal to noise ratios
can be compared on the basis of the corresponding noise levels. We quantified the
noise level (along the whole genome) for each choice of a reference using a robust
first-order standard deviation estimator [40, 41]:
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Fig. 11.2 Influence of the choice of a reference sample on the signal to noise ratio in total copy
number signals. Three different sets of normal references are used to estimate total copy numbers
for the same tumor SNP array hybridized at the Lawrence Berkeley National Laboratory (LBNL):
197 samples from another lab (top panel), 36 arrays from LBNL (middle panel), and 22 arrays
from LBNL, and the same batch as the tumor sample (bottom panel). Dots: locus-level estimates;
segments: region-level estimates after segmentation by CBS [42]
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b�� D 1p
2
� ˚�1.3=4/ �median

j
.jzj �median

j 0

.zj 0/j/; (11.6)

where zj D cjC1�cj for j D 1; : : : ; J�1. The scaling factors 1=
p
2 � 0:7071 and

˚�1.3=4/ � 1:4826makeb�� a consistent estimator of the cj under the assumption
that cj , and hence zj , is Gaussian and i.i.d. Because this estimator relies on the first
order differences zj , it is robust against change points and can therefore be used
without knowing where the true change points are.

The noise level is high when samples from a different lab are used as references
(top panel: b�� D 0:60), even when the number of samples is large (197). It is
substantially smaller when references from the same lab (LBNL in this particular
example) are used (middle panel:b�� D 0:44), even in a much smaller number (36).
It is even lower when references from the same batch of arrays (bottom panel:b�� D
0:37): in this example, the reference set consisted of only 22 arrays hybridized on
the same day as the tumor sample.

11.3.2.2 Allelic Ratios

Allelic ratios for a given SNP j are usually estimated as the ratio of the signal
intensity of one allele relative to the total signal intensity. For B allele fractions, this
yields

bj D yjB

yj

; (11.7)

where yj D yjA C yjB , and yjA and yjB are the observed signal intensities for
allele A and B, respectively. Note that contrary to total signals, no external reference
is needed at this stage: allelic ratios can be estimated from a single hybridization.
However, these estimates have been reported to suffer from systematic deviations
from their corresponding true values [10, 15, 20, 43]. One possible explanation for
this effect is that locus affinities are not only locus-specific but allele-specific, so that
they may not be adequately canceled by the ratio in Eq. 11.7. Several approaches
have been developed to normalize raw allelic ratios based on paired or unpaired
normal reference hybridizations, greatly improving the signal to noise ratio for
downstream analyses for Illumina data [10, 20], or both Affymetrix and Illumina
data [15]. This is illustrated by Fig. 11.3 for the TumorBoost method [15].

11.4 Copy Number Change Detection: From Locus-Level
to Region-Level Estimates

Copy number profiles in tumors are consequences of genomic events at the regional
scale, such as small or large deletions or gains. Therefore, true copy number signals
can safely be modeled as locally constant in tumor samples. This assumption is one
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Fig. 11.3 Improved signal to noise ratio after normalization by the TumorBoost method [15]. Top:
raw allelic ratios as in Eq. 11.7. Bottom: TumorBoost-normalized allelic ratios, using allelic ratios
from of a paired normal hybridization. Data is taken from the same tumor sample and chromosome
as in Fig. 11.1

of the bases of all the algorithms that have been proposed for detecting copy number
changes from microarray data. The goal of this section is to explain how locus-level
copy number estimates (obtained after preprocessing as described in Sect. 11.3) can
be combined to detect copy number changes along the genome.

The methods described in this section can be used to segment total, minor and
major copy numbers, or allelic imbalances: these applications are discussed in
Sect. 11.6. For simplicity of notation and vocabulary, we will loosely refer to copy
numbers and use the notation c for locus-level estimates, and  for the corresponding
true values.

Two main types of methods have been developed and are used in practice:
change-point models and Hidden Markov Models (HMM). In the context of copy
number analyses, they were initially applied to microarray technologies that only
assess total signals, in particular array Comparative Genomic Hybridization (array-
CGH) [3]. The practical performance of these methods has been reviewed in [44,45].
The present section provides an up to date statistical review of currently avail-
able methods for copy number segmentation using change point or Hidden Markov
Models.

For simplicity, we will only use genomic positions j D 1; 2; : : : ; J correspond-
ing to the ordering of loci, rather than the physical location (in basepairs) of the
loci, in the following discussion and equations. This is also the most commonly
used approach in existing methods. Incorporating physical locations as well intro-
duces another level of complexity to the notation and the models that is unnecessary
for the overview presented here.
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11.4.1 Change-Point Models

We assume that there exists a partition of the genome into K segments, k D
1; 2; : : : ; K , such that true copy numbers are constant in each segment. Specifi-
cally, there exists an index vector of K C 1 loci t.K/ D .tk/0�k�K called change
points, such that 1 D t0 < t1 < � � � < tK�1 < tK D J , and an associated vector
of K region-level true copy numbers � D .�k/1�k�K such that true copy numbers
� D .j /j2J are constant equal to �k in the interval Œtk�1; tk/. That is,

j D �k I 8j 2 Œtk�1; tk/;8k 2 f1; : : : ; Kg: (11.8)

Letting k.j / be the largest index k such that tk � j , the observation c D .cj /j2J
may then be modeled as

cj D �k.j / C "j ; (11.9)

where the errors ."j /j2J are independent and identically distributed (i.i.d.), and
generally assumed to be Gaussian (N .0; �2)). When the number K of segments
and the vector t.K/ D .t0; : : : ; tK/ of change point locations are known, the log-
likelihood `.K; t.K/;�I c/ of the model described by Eq. 11.9 is additive in each
segment:

`.K; t.K/;�I c/ D J log.2��2/C 1

�2

KX
kD1

X
j2Œtk�1;tk/



cj � �k.j /

�2
: (11.10)

In this idealized situation, the maximum likelihood estimator of each �k is the
empirical mean of the observed signals within the kth segment. In practice though,
both K and t.K/ are unknown, which gives rise to a model selection problem
(choosing K), and a combinatorial problem: choosing t.K/ for a given K . Indeed,
the number of possible configurations for t.K/ is



K�1
J�1

�
, that is,O.JK�1/, which is

prohibitively large in realistic situations whereK is in the dozens and J is currently
of the order of 105–106.

11.4.1.1 Heuristics

The first approach taken to address these issues has been to combine a Bayesian
Information Criterion (BIC) penalization for the choice of K with a genetic pro-
gramming algorithm for the choice of t.K/ [46]. Three main directions have been
explored to improve on this early attempt. The most widely used method in prac-
tice, known as Circular Binary Segmentation, implements a greedy approach which
recursively looks for the best partition of the data into two (or three) segments [38].
The depth of the recursion is determined by the significance of the change points,
which implicitly determines K . This step has been made faster using permutation
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techniques in a second version of the method [42], which has been used to pro-
duce the segmentation obtained in Fig. 11.4. A modified BIC criterion has also been
proposed to estimate K directly [47].

11.4.1.2 Exact Solutions

Second, several methods have been proposed that solve the original problem exactly.
First, one can take advantage of the additivity of the log-likelihood in the seg-
ments and use dynamic programming to reduce the complexity of the exhaustive
search for the best t.K/ for a given K from O.JK�1/ to O.K �J 2/. This idea
has been combined with an adaptive penalization method [48] to build a quadratic
(O.K �J 2/) change point detection algorithm [49]. Such a method cannot be used
to segment DNA copy number profiles from the latest generations of microarrays,
for which more than 106 loci can be interrogated. A pruned dynamic program-
ming algorithm has been proposed recently that recovers the optimal solution much
faster [50]. Although its worst case complexity is still O.K �J 2/, in practical situa-
tions it is almost linear in J , which makes it quite appealing for current copy number
segmentation problems.

11.4.1.3 Convex Relaxations

A third direction uses convex relaxation, which is a classical approach in statistical
machine learning. It consists in replacing a non-convex optimization problem by
a slightly different, but convex, version of the problem, which can be solved effi-
ciently. Two regression methods based on Lasso-type penalties have been applied to
the problem of detecting changes in DNA copy number signals [51, 52].

The first method [51] is an adaptation of the Fused Lasso [53], which solves the
constrained optimization problem

min
.�j /1�j �J

JX
jD1



cj � j

�2
s.t.

J�1X
jD1

jjC1 � j j � v and
JX

jD1

jj � 2j � u:

(11.11)
Formally, this method constrains the `1 norm of the jumps in � , which can be seen
as a convex relaxation of constraining the number of jumps (that is, the `0 norm of
the jumps). In words, the mean amplitude of the changes in estimated copy-number
levels (jjC1�j j) is not allowed to be too large. Moreover, this model incorporates
a sparsity constraint on jj � 2j enforcing that most loci correspond to the copy-
neutral state, where 2 represents the copy number of the copy-neutral state. For non-
diploid copy-neutral state, this copy-number level should be adjusted accordingly.
The complexity of the algorithm proposed in [51] is (at best) quadratic in the number
of data points, that is O.J 2/, which is too expensive for recent data sets.
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The second method [52] is a relaxed version of Eq. 11.11 where only the ampli-
tudes of the changes are constrained, resulting in the constrained optimization
problem

min
.�j /1�j �J

JX
jD1



cj � j

�2
s.t.

J�1X
jD1

jjC1 � j j � v: (11.12)

This optimization problem can be written as a Lasso-type regression problem and
can therefore be solved in O.K3C J �K2/ using a Least Angle Regression (LARS)
algorithm [54] to select the first K change points. The authors of [52] suggest to
prune the obtained set t.K/ of candidate change points by running the aforemen-
tioned dynamic programming algorithm on the set of partitions consisting of subsets
ofK 0 < K points in t.K/. Because this set is much smaller than the original search-
ing space, this pruning step has a low complexity of O.K3/. Finally, they define a
heuristic for choosingK based on the magnitude of the increments of the empirical
risk when a change point is added.

11.4.2 Hidden Markov Models

Hidden Markov Models (HMMs) assume that the observed copy numbers c D
.cj /j2J are emitted by an underlying Markov chain according toH hidden region-
level true copy number states � D f�1; : : : ; �H g. A HMM of order 1 is defined
by a specific set � of hidden states, and transition probabilities .p.u; v// for
.u; v/ 2 f1; : : : ;H g2, such that

P .jC1 D �vjj D �u/ D p.u; v/ I 8j 2 f1; : : : ; J g: (11.13)

HMM naturally incorporate and take advantage of the fact that different regions can
have the same true copy number, which is not the case of change-point models as
the one described by Eq. 11.9. Several HMM-based methods have been proposed
for estimating total copy numbers. These methods mainly differ in the assumptions
that are made for the dynamics of the underlying Markov chain, and the approaches
used for the estimation of the hidden states.

The earliest approach assumes that the state sequence is a discrete Markov chain
[55]. The number of hidden states is estimated using model selection. More recently,
a Bayesian HMM approach with four (H D 4) hidden states has been proposed
[56]. Because it relies on Bayesian estimation procedures, it provides not only a seg-
mentation of the original observations but also confidence intervals for (the index
location of) each copy number change point. However, because the posterior dis-
tribution is analytically intractable, posterior inference in this model is performed
using simulation-based methods.
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The underlying copy number process can also be modeled as a continuous-valued
Markov jump process [57]. This type of model is appealing for applications to tumor
samples as it does not require the number of hidden states (H ) to be specified in
advance. Moreover, contrary to [56], the posterior distribution of the hidden vari-
ables in [57] can be computed explicitly, which implies that posterior estimates,
including confidence assessment of a given segmentation, are available without
simulations.

In contrast to change-point methods, HMM-based approaches rely on assump-
tions on the distribution of the underlying copy number state sequence, and the
distribution of the size of copy number regions. Although such assumptions may be
unrealistic in the context of cancer studies, a number of state of the art methods for
estimating copy numbers from SNP array data use HMMs, as will be explained in
Sect. 11.6.

11.5 Purity and Ploidy

Figure 11.4 displays the same data as in Fig. 11.1 after segmentation of total copy
numbers by the Circular Binary Segmentation algorithm [38, 42], and estimation of
total, minor and major copy numbers as well as allelic ratios in regions of constant
total copy numbers.

As explained in Sect. 11.2, TCGA has shown that the copy number states
observed in the genomic region displayed in Fig. 11.1 are a normal diploid region
.1; 1/, a single gain .1; 2/ and a copy-neutral LOH .0; 2/.

However, it is not straightforward to infer these copy number states only by look-
ing at Fig. 11.4: the observed region-level copy number estimates do not reflect the
true copy numbers in the tumor cells of the sample. First, the total copy number is
slightly greater than 2 in the normal diploid region. Then, the difference between
successive region-level total copy numbers is substantially smaller than the true
difference (one copy number unit). Even more strikingly, allele B fractions in the
region of copy-neutral LOH (rightmost region) are far from the expected values of
0 or 1.

In this section we explain that these observations are not due to imperfections of
the preprocessing method or the microarray assay itself, as they reflect two biolog-
ical features of the data: the ploidy of the tumor, and the presence of normal cells
(and possibility of several cytogenetically distinct kinds of tumor cells) in what is
usually called a tumor sample. For simplicity we will assume that the reference used
in the estimation of locus-specific copy numbers (as explained in Sect. 11.3.2) is a
cytogenetically normal sample (either normal tissue, or normal blood extract) from
the same individual as the tumor. Methods that take these biological parameters into
account in the estimation of copy number states are discussed in Sect. 11.6.
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Fig. 11.4 Locus and region-level estimates. Input data is the same as in the top panels of Fig. 11.1.
Two main change points in total copy numbers (top panel) have been detected by the CBS algo-
rithm [38, 42], and are reported in both panels as dashed gray vertical lines. Top panel: locus-level
total copy number estimates (gray dots), and total (black), major (blue) and minor (green) region-
level copy number estimates after change point detection. Bottom panel: locus-level (gray dots) and
region-level alleleB fractions estimates after change point detection (black lines) for heterozygous
SNPs. Regions of allelic imbalance (unequal parental copy numbers) are highlighted in red

11.5.1 Pure Tumor Samples

In Fig. 11.5 we have represented the true copy numbers in a sample assumed to
contain only one kind of tumor cells and having the same copy number states as
those observed in Fig. 11.4: a normal .1; 1/ region, followed by a region of gain of
a single copy .1; 2/, and by a region of copy-neutral LOH .0; 2/.

By Eq. 11.2, true allele B fractions satisfy ˇj 2
n
0; j =j ; j =j ; 1

o
, and the

pattern of allelic ratios observed in Fig. 11.5 can be interpreted as follows. In a
region of allelic balance (left region), where the two parental copy numbers are iden-
tical (and not zero), the two heterozygous states merge into ˇj D 1=2 and there are
three distinct states: ˇj 2 f0; 1=2; 1g. In a region of allelic imbalance with retention
of heterozygosity (middle region) where the two parental copy numbers are differ-
ent and neither are zero, ˇj can take four distinct values: ˇj 2 f0; 1=3; 2=3; 1g for
a gain of a single copy of DNA. In a region of LOH (right region), where the minor
copy number is 0, heterozygous states disappear and we observe two distinct states:
ˇj 2 f0; 1g. The only type of scenario not represented in Fig. 11.5 is the case of
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Fig. 11.5 Assumed true total copy numbers and allelic rations in the tumor cells depicted in Figure
11.1. Top panel: total (solid), major (dashed) and minor (dot-dashed) copy numbers. Bottom panel:
allele B fractions: homozygous SNPs (dashed) and heterozygous SNPs (solid)

homozygous deletions, where both parental copy numbers are null and true allele B
fractions are not defined.

11.5.2 Contamination by Normal Cells

In practice however, “tumor samples” are generally a mixture of a tumor cells and
a normal cells. In this situation, Eq. 11.2 still holds, but the observed parental copy
numbers need not be whole numbers anymore. They are a mixture of the unknown
parental copy numbers in the tumor, and the parental copy numbers in normal cells,
which are typically but not always .1; 1/. The exceptions are so-called copy num-
ber polymorphisms (CNPs) [58–60]. For simplicity, we will in what follows only
consider SNPs that are diploid in the normal cells.

Assuming that normal cells are diploid, and denoting by � 2 Œ0; 1� the proportion
of normal cells in the sample, then the true minor and major copy numbers in the
sample are given by

(
j D .1 � �/?

j C �
j D .1 � �/?

j C �
(11.14)

where ?
j and ?

j are the true minor and major copy numbers of the tumor cells from
the sample at locus j , as if there were no normal cells. Note that these true copy
numbers need not be whole numbers either, as the tumor cells of a DNA sample
may themselves be a mixture of several tumoral populations (or clones), each with
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Fig. 11.6 Influence of contamination by normal cells on true copy numbers: comparing 0% con-
tamination (pure tumor as in Figure 11.5, gray lines) with 54% contamination (black lines). Top
panel: true total (solid), major (dashed) and minor (dot-dashed) copy numbers. Bottom panel: true
allele B fractions: homozygous SNPs (dashed) and heterozygous SNPs (solid)

distinct whole-number copy number profiles. The corresponding total copy numbers
and allelic imbalances (when j is a heterozygous SNP) are given by

8<
:
j D .1 � �/?

j C 2�
ıj D �?

j
��?

j

�?
j
C2�=.1��/

(11.15)

True allele B fractions satisfy ˇj 2
˚
0; 1=2� ıj =2; 1=2C ıj =2; 1

�
. The influence

of normal contamination on true total copy numbers and allelic ratios is shown in
Fig. 11.6. Normal contamination moves the observed allelic ratios towards those of
the corresponding normal genotypes, and the observed total copy numbers towards
the copy number of normal cells. A major difference with the case of no normal
contamination is that one still observes heterozygous states in regions of LOH in
the tumor: indeed, in regions of LOH, the minor copy number is 0 in tumor cells
(? D 0), and we have

ˇ 2
�
0I �

.1 � �/? C 2� I
.1 � �/? C �
.1 � �/? C 2� I 1

�
; (11.16)

which corresponds to four distinct modes for allelic ratios. This is illustrated by
Fig. 11.6 (right) in the particular situation of copy-neutral LOH, where ? D 2,
leading to ˇ 2 f0I �=2I 1� �=2I 1g.

From a modeling point of view, it is worth noting that normal cell contamina-
tion is a particular case of contamination, because it may be estimated and corrected
for based on either diploid assumptions or explicit measurements of a matched nor-
mal (germline) sample. Simply speaking, it is in many cases possible to remove the
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normal component in the tumor-normal mixture. This is rarely possible for other
types of cell contaminations, as they are generally not directly measured. In particu-
lar, the problem of identifying different tumor clones from one heterogeneous tumor
sample is a harder one.

11.5.3 Tumor Ploidy

As explained in Sect. 11.3.2, the total copy number at locus j is generally estimated
relative to a reference as in Eq. 11.5, in order to cancel locus-specific affinities. We
can actually interpret c as an estimator of the true copy number in the tumor sample
if the same number of cells were hybridized to the microarray in the tumor and in
the normal assay.

This assumption does not necessarily hold, because of copy number alterations
in the tumor. Indeed, the experimental protocol constrains the amount of DNA, not
the number of cells, to be the same for each sample assayed [11, 36]. For example,
a purely tetraploid tumor with two copies of the genome and no other chromoso-
mal alteration could not be distinguished from a cytogenetically normal (diploid)
sample, as the genomic material hybridized on the SNP array is the same in both
situations. We refer to [35, Sect. 4.4] for further discussion on this issue.

In this chapter we define the ploidy � of a biological sample as the total amount
of genomic DNA in this sample relative to that of a normal sample. Therefore,
ploidy as defined here needs not be a whole number, because of chromosomal gains
and losses and as the tumor sample may be a mixture of normal cells and tumor
cells or one or more types of tumor cells with different patterns of genomic alter-
ation. Figure 11.7 illustrates the influence of tumor ploidy on SNP array signals
when using Eq. 11.5 to estimate total copy numbers, that is, when assuming that
the average true copy number in the normal is 2. Ploidy acts as a scaling factor for
total, minor and major copy numbers. Allelic signals as defined in Eq. 11.7 are not
affected.

11.5.4 Combined Influence of Purity and Ploidy

As a result of the combined influence of purity and ploidy on the actual composition
of a biological sample, the true minor and major copy numbers at a SNP j may be
written as

j D 1

�

h
.1 � �/?

j C �
i

(11.17)

j D
1

�

�
.1 � �/?

j C �
	

(11.18)

The corresponding true total copy numbers and allelic ratios are given by:
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Fig. 11.7 Influence of tumor ploidy on true copy numbers in absence of normal contamination:
comparing ploidy 2 (as in Figure 11.5, gray lines) to ploidy 2.5 (black lines). Top panel: true total
(solid), major (dashed) and minor (dot-dashed). Bottom panel: true allele B fractions: homozygous
SNPs (dashed) and heterozygous SNPs (solid)

j D 1

�

�
.1 � �/?

j C 2�
	

(11.19)

ıj D
?

j � ?
j

?
j C 2�=.1� �/

(11.20)

As explained above, we note that allelic imbalances .ıj / are only affected by nor-
mal contamination, not by ploidy. Figure 11.8 illustrates the combined influence of
purity and ploidy by comparing the true total copy numbers and allelic ratios for a
pure tumor without normal contamination (as in Fig. 11.5) with a non-diploid tumor
with normal contamination according to Eqs. 11.19 and 11.20.

When accounting for both purity and ploidy, the copy number patterns become
quite similar to those observed with real data. This is illustrated by the comparison
between the true copy numbers in Fig. 11.8 and locus- and region-level copy number
estimates in Fig. 11.4. For this particular sample, TCGA reported 54% of normal
cells and ploidy 1.8; these estimates were used to produce Fig. 11.8.

11.6 Estimation of Copy Number States in Cancer Studies

Copy number studies in cancer research aim at identifying the unknown copy num-
ber state in a tumor sample, as defined in Sect. 11.2. As explained above, the word
identification actually covers two different statistical questions: detecting changes
in copy number signals, and calling regions, that is, assigning a copy number state
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Fig. 11.8 Combined influence of tumor ploidy and normal cell contamination on true copy num-
bers: comparing ploidy 2 and no normal contamination (as in Fig. 11.5, gray lines) with ploidy
1.8 and 54% normal contamination (black lines). Top panel: true total (solid), major (dashed)
and minor (dot-dashed). Bottom panel: true allele B fractions: homozygous SNPs (dashed) and
heterozygous SNPs (solid)

to each region detected. Because SNP arrays interrogate allele-specific signals, they
can be used for both detection and calling.

Segmentation can be performed regardless of purity and ploidy, although these
two biological parameters do influence the detection power of any given segmen-
tation method, through the distance between true region-level copy number states.
However, both purity and ploidy have to be acknowledged in order to call copy
number states in the tumor cells of a given sample.

11.6.1 Existing Methods

A number of methods for analyzing SNP array data were developed in the context
of Copy Number Variation (CNV) studies in normal samples: VanillaICE [61], Pen-
nCNV [62], QuantiSNP [63], and BirdSuite [64]. Most of them are based on HMMs.
Because these methods are dedicated to, and well-designed for CNV studies, their
model states do not adequately describe the copy number states in Table 11.1. More
specifically, either they do not consider allele-specific amplifications [62,63], or the
distinction between normal and copy-neutral LOH [61], or they are only designed
to detect rare CN aberrations [64]. Moreover, their states generally do not account
for possible tumor heterogeneity or contamination by normal cells.

Table 11.3 lists methods that actually combine total and allele-specific signals in
order to call copy number states (as defined in Table 11.1) in cancer studies. They
are described in terms of the type of information they take into account and the type
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Table 11.3 Existing methods for copy number studies in cancers using SNP arrays. Settings: has
the method been developed for studies with available paired normal samples, or not? Last two
columns: does the method explicitly account for ploidy, purity?

Name Settings Detection method Ploidy Purity

MCP [8] unpaired HMM on ı no no
Gardina [11] unpaired HMM on “genotypes” yes no
BAFsegmentation [6] paired or unpaired segmentation of ı no yes
SOMATICs [7] unpaired segmentation of ı no yes
AsCNAR/CNAG [36] unpaired HMM on ı no yes
OverUnder [65] unpaired 2� 1d smoothing yes no
PSCBS [66] paired two-way segmentation no no
GAP [67] unpaired 2� 1d segmentation yes yes
Lamy [68] paired HMM on .; ı/ no yes
PSCN [69] unpaired HMM on .; ı/ no no
PICNIC [43] unpaired HMM on .; ı/ yes no
genoCNA [70] unpaired HMM on .; ı/ no yes

of method they use for detecting copy number changes, whether their application
requires the availability of a paired normal reference, and whether they explicitly
account for tumor purity and ploidy as discussed in Sect. 11.5.

We have shown in Sect. 11.2 that SNP array signals were two-dimensional by
nature, and that both dimensions were needed to call copy number states as defined
in Table 11.1. All methods cited in Table 11.3 indeed make use of both dimen-
sions at the calling step, but not necessarily at the detection step. These methods
can be classified in terms of the type of input data they are using at the detec-
tion step, as indicated by the horizontal lines in Table 11.3. We note here that
although raw allelic signals typically have several modes in a region of constant
copy number (as explained in Sect. 11.2), direct segmentation methods can be
used to detect changes in allelic signals from SNPs that are heterozygous in the
germline [6, 7, 66, 67].

Methods from the first group use only one piece of information for detection [6–
8, 11, 36]. As these methods are mostly interested in loss of heterozygosity, they all
take allelic imbalances (or genotypes) and not total copy numbers, as an input for
the detection step. Methods from the second group combine both pieces of infor-
mation, either by independent smoothing [65] or segmentation [67] of each piece
of information, or by segmentation of total signals followed by segmentation of
allelic signals [66]. In particular, GAP [67] is to our knowledge the only method
that explicitly accounts for both purity and ploidy. Finally, methods from the third
group perform truly joint detection of copy number changes [43,68–70]. In the next
section, we show that such joint approaches can be more powerful to detect copy
number changes.
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Fig. 11.9 At a fixed resolution, total copy numbers and allelic signals have comparable power
to detect copy number changes. ROC curves for the two copy number change points studied in
Fig. 11.1: left panel, between a normal region (1, 1) and a single gain (1, 2); right panel, between
a single gain (1, 2) and a region of copy-neutral LOH (0, 2). Affymetrix GenomeWideSNP 6 data

11.6.2 Joint Detection Provides more Power to Detect Copy
Number Changes

In this section, we demonstrate that there is substantial statistical power to gain by
considering both pieces of information for the detection step. Figure 11.9 shows
that total and allelic signals have comparable power to detect the two change points
studied throughout this chapter: a transition between a diploid normal state .1; 1/
and a gain .1; 2/ (left panel), and a transition between a gain .1; 2/ and a region of
copy-neutral LOH .0; 2/ (right panel). For each type of signal studied in Fig. 11.9
is a ROC curve used to measure the separation between two copy number states at
a change point of known location based on this signal. We refer to [14, 15, 41] for a
comprehensive description of this evaluation.

Allelic signals have a lower density than total signals as copy number probes
only measure total copy numbers, and because only SNPs that are heterozygous
in the germline are informative in terms of allelic imbalances. However, these ROC
curves can be compared across signals because the evaluation is performed at a fixed
resolution for each change point. Each resolution corresponds to a different num-
ber of markers for allelic and total signals. The change point between states .1; 1/
and .1; 2/ is detected slightly better with total signals (solid black line) than with
allelic signals: allelic imbalances (solid gray) or major (dashed) copy numbers. As
expected, the change point is not detected by minor copy numbers (dot-dashed), as
there is no change in true minor copy numbers. The change point between .1; 2/ and
.0; 2/ is detected with similar or higher power using allelic signals than using total
signals. Similar patterns are observed for other types of change points, suggesting
that there is substantial detection power to gain in using both total and allelic signals
for the detection of copy number changes.
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11.6.3 Comparison Between Existing Joint Methods

Four methods based on HMM perform truly joint TCN and AI analyses: PIC-
NIC [43], PSCN [69], genoCNA [70], and the method proposed in [68]. One
advantage of HMM-based methods is that they can incorporate different probe types
(SNPs and copy number probes) naturally, although in practice this seems to have
been done only in PICNIC [43].

As discussed in Sect. 11.4, HMMs with discrete hidden state spaces perform the
detection and calling steps at the same time, and are necessarily limited in terms of
number of copy number states, that is, they cannot adapt to the intrinsic number of
copy number states of a given problem. To our knowledge, PSCN [69] is currently
the only method for joint TCN and AI analysis which is based on a continuous
hidden state space. Conversely, one drawback of this type of approach is that it
does not give a hard segmentation of the data in copy number states. Instead, copy
numbers are estimated at each particular location and the method has to be combined
with some thresholding in order to actually provide a segmentation of the original
data. Moreover, downstream analyses are needed to estimate and/or call minor and
major copy numbers.

We advocate the development of a joint direct segmentation method, that could
take fully advantage of the two dimensions of SNP array data, as the above HMM
do, but without assuming a particular form for the distribution of the copy num-
ber states sequence or the distribution of the size of copy number regions. Such a
method could rely on the same type of models as those developed for joint direct
segmentation of several copy number profiles [72–74].

11.7 Concluding Remarks

In this chapter, we have underlined key aspects the analysis of SNP array data,
including the influence of purity and ploidy on the observed data, and explained how
they should be accounted for in the identification of copy number states. Although
existing methods adequately address several of the challenges we focused on in this
chapter, a few questions remain to be solved besides the above-mentioned devel-
opment of a joint direct segmentation method. For the problem of detecting copy
number changes, most existing methods assume that the errors follow a Gaussian
distribution, although microarray data may be more heavy tailed. Current statistical
models can be extended to other types of error distribution, but the main difficulty
resides in developing efficient practical implementations.

For calling copy number states, although the effects of purity and ploidy are now
widely acknowledged, methods to account for them – and also for tumor hetero-
geneity, that is, the possible presence of several tumoral clones in the tumor sample –
will probably have to be improved and adapted to different types of cancers.
A critical assessment of such methods is desirable, and would require producing
validation data where purity and ploidy are known.
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We have focused on the identification of copy number changes for one sample
from one SNP array platform. In conclusion, we indicate statistical questions that
arise in more general settings: when several samples are considered at a time, when
one sample has been assayed on several platforms, and with newer copy number
technologies.

11.7.1 Identifying Recurrent Allele-Specific Events

Even though some of the preprocessing methods described in Sect. 11.3 require sev-
eral microarrays, currently available methods for identifying copy number states
from SNP arrays analyze each tumor sample separately. However, the joint analysis
of several samples from the same tumor type should be more powerful if the same
biological events can be shared by several samples, as already demonstrated for total
copy numbers for array-CGH data [72–75]. Extensions of such methods to allelic
signals remain to be developed.

11.7.2 Combining Allele-Specific Signals Across Platforms

When the same sample is analyzed by two different platforms, combining signals
across platforms should lead to improved detection of copy number alterations. This
has been demonstrated for total copy numbers [41,76] but still has to be investigated
for allelic signals.

11.7.3 High-Throughput Sequencing

Currently, high-throughput sequencing technologies are more expensive than SNP
arrays for whole genome allele-specific copy number studies, because accurate esti-
mation of allelic ratios from read count data requires high sequencing coverage. The
rapid evolution of these technologies suggests that allele-specific copy number stud-
ies will be cost-effective in the near future, leading to new statistical issues that will
need to be addressed.
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74. Picard, F., Lebarbier, É., Budinaská, E., & Robin, S. (2011). Joint segmentation of multivariate
Gaussian Processes using mixed linear models. Computational Statistics and Data Analysis,
55, 1160–1170.

75. Shah, S. P., Lam, W. L., Ng, R. T., & Murphy, K. P. (2007, July). Modeling recurrent DNA
copy number alterations in array-CGH data. Bioinformatics, 23(13), i450–i458.

76. Zhang, N. R., Senbabaoglu, Y., & Li, J. Z. (2009, November). Joint estimation of DNA copy
number from multiple platforms. Bioinformatics, 26(2), 153–160.



Chapter 12
Computational Analysis of ChIP-chip Data

Hongkai Ji

Abstract Chromatin immunoprecipitation coupled with genome tiling array
hybridization, also known as ChIP-chip, is a powerful technology to identify
protein-DNA interactions in genomes. It is widely used to locate transcription
factor binding sites and histone modifications. Data generated by ChIP-chip pro-
vide important information on gene regulation. This chapter reviews fundamental
issues in ChIP-chip data analysis. Topics include data preprocessing, background
correction, normalization, peak detection and motif analysis. Statistical models and
principles that significantly improve data analysis are discussed. Popular software
tools are briefly introduced.

12.1 Introduction

ChIP-chip (or ChIP-on-chip) [32] is a recently developed approach to study
genome-wide protein-DNA interactions. It has been widely used to locate tran-
scription factor binding sites [7–9] and histone modifications in genomes [5]. The
word “ChIP-chip” stands for Chromatin ImmunoPrecipitation (ChIP) followed by
DNA microarray (chip) hybridization. The workflow of this technology is illus-
trated in Fig. 12.1. Briefly, a protein of interest is cross-linked with the DNA
(chromatin) it binds to. The cells are lysed and the chromatin is sheared into small
fragments either by sonication or by cutting with restriction enzymes. The protein
of interest, together with the bound chromatin fragments, are precipitated using
a protein-specific antibody. This is a procedure known as chromatin immuno-
precipitation (ChIP). Next, chromatin fragments are dissociated from the protein
via reverse cross-linking. Fragmented DNA is purified, amplified, denatured and
labeled with fluorescent tags, creating a sample called ChIP sample. The length

H. Ji
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe
Street, Baltimore, MD 21205
e-mail: hji@jhsph.edu

H. Horng-Shing Lu et al. (eds.), Handbook of Statistical Bioinformatics,
Springer Handbooks of Computational Statistics, DOI 10.1007/978-3-642-16345-6 12,
c� Springer-Verlag Berlin Heidelberg 2011

257

hji@jhsph.edu


258 H. Ji

Fig. 12.1 Workflow of ChIP-chip
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of DNA fragments in the ChIP sample ranges from 500 to 1,000 base pairs (bp).
Control samples are prepared by skipping the immunoprecipitation or replacing the
protein-specific antibody with a non-specific one. Compared to control samples,
ChIP samples are enriched in DNA fragments bound by the protein of interest.
Both ChIP and control samples can then be hybridized to tiling arrays. These are
specially designed microarrays that use 25–60 bp long oligonucleotide probes to
measure the abundance of particular molecules in a DNA sample. The probes are
selected from a reference genome assembly to cover the entire or targeted regions of
the genome, with an average probe spacing (i.e. distance between two neighboring
probes) ranging from a few to a few hundred base pairs. After hybridizing ChIP
and control samples to tiling arrays, locations in the genome that are bound by
the protein of interest are highlighted by contiguous stretches of probes for which
fluorescence intensities in ChIP samples are significantly higher than intensities in
control samples. Using this technology, one can map transcription factor binding
sites and histone modifications in complex genomes in a more unbiased manner.
ChIP-chip data collected at various time points and in various cell types provide
critical information for unraveling the complex gene regulatory programs in the
genome. Eventually, this knowledge will help us understand human diseases better
and find better disease treatment strategies.

Data produced by ChIP-chip experiments are vast and noisy. Extracting mean-
ingful information from these data requires a multiple-step procedure. First, raw
intensities produced by array hybridization need to be extracted, outliers and sys-
tematic biases need to be removed, and probes in the array need to be mapped back
to the genome. This procedure is referred to as data preprocessing. Second, loca-
tions of protein-DNA interactions need to be detected by separating biologically
relevant signals from noise. This procedure is called “peak detection” or “signal
detection”. Third, if an experiment studies transcription factor (TF) binding, there
is a need to identify DNA sequence motifs that are recognized by the TF. Informa-
tion on binding motifs is useful for subsequent experiments. For example, they can
be used to design knock-out experiments to verify functions of a cis-regulatory ele-
ment. In this chapter, methods dealing with these various topics will be reviewed. In
particular, Sect. 12.2 provides an overview of data preprocessing. A detailed discus-
sion on two topics of preprocessing, normalization and background correction, will
be given in Sect. 12.3. Section 12.4 introduces methods for signal detection (i.e.
detecting protein-DNA interactions). Methods for identifying transcription factor
binding motifs are discussed in Sect. 12.5. Section 12.6 will conclude the Chapter
by discussing several open issues and challenges in the ChIP-chip data analysis.

To date, three major tiling array platforms are widely used in ChIP-chip studies:
Affymetrix, NimbleGen, and Agilent. The Affymetrix arrays use 25 bp oligonu-
cleotides as probes. Each array can contain about six million probes with a 35 bp
probe spacing (i.e. the average distance between two neighboring probes is 35 bp).
The entire human genome can be tiled using seven arrays that contain 42 million
probes in total. The NimbleGen arrays use 50–75 bp oligonucleotide probes. Each
array contains up to 2.1 million probes. With a 100 bp probe spacing, the entire
human genome can be covered by ten arrays. The Agilent arrays use 60 bp long
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probes. Each array can place 244,000 probes. Both NimbleGen and Agilent allow
flexible custom array design, whereas Affymetrix provides the lowest cost per probe
and highest genomic resolution [29]. Data processing methods differ between plat-
forms. Our disucssion is mainly focused on processing of the Affymetrix tiling
arrays. In spite of this, many statistical principles discussed below are general and
applicable to the other array platforms as well.

12.2 Data Preprocessing

Following sample hybridization, the arrays are scanned by laser to excite fluores-
cence. Fluorescence intensities of all probes are stored as images. After image
processing, the intensity value of each probe is summarized by a number. For
Affymetrix tiling arrays, these numbers (i.e. probe intensities) are written into CEL
files which are used by most computational biologists as the starting point of data
analysis. The scanned images sometimes contain visible artifacts (Fig. 12.2). If
one is unlucky, these artifacts could involve a significant proportion of probes. As
they may seriously affect signal detection, data analysts are advised to examine
the scanned images before carrying out any analyses. If significant artifacts exist,
one should remove or exclude them from subsequent analyses. To visually examine
the images, one can either use the vendor provided software tools that come with the
scanner, or use the free and open source software CisGenome [15] available at the
following website http://www.biostat.jhsph.edu/	hji/cisgenome.

To remove blob-like defects in array images, Song et al. developed Microar-
ray Blob Remover (MBR) [35] (Fig. 12.2). This tool uses a two step algorithm to

a b

Fig. 12.2 Image artifacts. (a) The white area on the top shows an example of blob-like defects in
array images. (b) MBR detects blob-like defects by first using a square to perform a coarse scan
across the image and then using a circle to perform scan at a finer scale

http://www.biostat.jhsph.edu/~hji/cisgenome
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automatically detect spatially clustered probes with high intensities. In the first step
of the algorithm, a sliding square that covers 100 
 100 probes is used to scan the
image with a step size of 50 probes. If more than half of the probes in the square
have intensities exceeding a cutoff, the square will be labeled and will be exam-
ined further in the next step. The cutoff is chosen to be the kth percentile (default
k D 90) of all probe intensities on the array. In the second step, squares labeled in
the first step are analyzed at a finer scale. A circle of radius 20 is used to scan the
squares with a step size of two probes. If more than p percent (default p D 90) of
the probes in the circle have intensities exceeding the .k � 5/th percentile of overall
probe intensities, then all probes in the circle will be labeled as outliers. The original
data files (i.e. CEL files) will be updated to record the outlier information. Down-
stream analysis tools can then choose to exclude these outliers from analyses. MBR
can be used to remove blob defects that occupy less than 10% of the array area. It
has been shown that removing these artifacts improves detection of protein-DNA
interactions. If the artifacts cover more than 10% of the probes, the authors of MBR
suggest replacing the array by a new hybridization.

After removing image artifacts, the next step of preprocessing is to remove
other systematic biases from the array data. There are two major types of biases.
First, distributions of probe intensities generally vary across arrays. Some arrays
are brighter than the others and have higher overall intensities. This is illustrated
by boxplots in Fig. 12.3a which shows the probe intensity distributions of several
arrays from a single ChIP-chip study. The difference could be attributed to a num-
ber of factors, including differences in scanner settings, amounts of reagents, room
temperatures, and technician’s experience levels, etc. This represents a bias that
needs to be removed before meaningful comparisons across samples can be made.
A procedure that removes this bias by matching the distribution of probe intensities
across different array samples is called a normalization procedure.

The second type of bias is probe specific bias. Fig. 12.4a provides an example
to illustrate this bias. The top six tracks in the figure show log2 probe intensities
of three ChIP samples and three control samples in a typical ChIP-chip experi-
ment. Probe intensities across different arrays have been normalized using quantile

a b c

Fig. 12.3 Data normalization. (a) Distributions of raw log2 probe intensities of four different array
samples. (b) Distributions after quantile normalization. (c) Distributions after MAT background
correction
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a

b

Fig. 12.4 Probe effects. (a) A ChIP-chip study for locating transcription factor binding sites of
GLI3 protein. Affymetrix Mouse Promoter 1.0 R arrays were used. IP1-IP3, CT1-CT3: quantile
normalized ChIP and control probe intensities at log2 scale. Log2(FC): log2(IP/CT) fold change.
IP1 MAT-IP3 MAT: MAT background corrected probe intensities for IP1-IP3. (b) Probes are
grouped into bins by GC content. Log probe intensities (logPM) from a typical array sample are
shown for each bin. The plot shows that mean and variance of probe intensities are probe sequence
dependent. Plot (a) is reproduced from [21]. Plot (b) is kindly provided by X. Shirley Liu
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normalization (which will be introduced in Sect. 12.3.1). A biologically verified
transcription factor binding site is indicated by the peak shown in the log2(FC)
track which displays average log2 fold changes between the ChIP and control inten-
sities. The figure clearly suggests that different probes tend to exibihit different
intensity levels. Many probes outside the binding region have higher intensity val-
ues than probes inside the binding region (e.g. compare probes highlighted by the
boxes). The trend is indeed consistent across different data sets [21]. These probe-
specific behaviors, also known as probe effects [12, 20, 24, 38], are often dependent
on probe sequences. To illustrate this, Fig. 12.4b grouped probes into bins based
on their GC content. Probes with similar GC content were assigned to the same
bin. Log probe intensities for each bin are shown for a typical array sample. The
figure shows that GC-rich probes tend to have bigger intensities and bigger vari-
ability than AT-rich probes. As a result, GC-rich probes are more likely to show
big fold changes in a comparison between two random samples. Removing this bias
by appropriately modeling the probe effects can increase sensitivity and specifity
of subsequent signal detection. A procedure that models and removes the probe
effects is called a background correction procedure. A couple of methods have been
proposed for normalization and background correction. Section 12.3 will provide a
detailed discussion on this topic.

The final step of data preprocessing involves mapping the probes back to the
genome. Each probe has a X-Y coordinate representing its physical location on
the microarray. However, this coordinate does not tell you where in the genome
this probe comes from. In order to know where protein-DNA interactions occur
in the genome, one has to map the array coordinates to the genomic coordinates.
Most array vendors provide this map. For example, the BPMAP files provided by
Affymetrix contain information on genomic locations that each probe aligns to.
Most signal detection tools use this information to convert X-Y coordinates in CEL
files into genomic coordinates. Sometimes, the vendor provided map is based on an
old genome assembly. If one wishes to perform analysis on the newest version of
the genome, one may realign all probes on the array to the new assembly using tools
such as xMAN [25] or SeqMap [18].

12.3 Background Correction and Normalization

Quantile normalization [6], MAT (Model based Analysis of Tiling arrays) [20] and
TileProbe [21] are three major approaches for tiling array normalization and back-
ground correction. Quantile normalization attempts to normalize probe intensities
across multiple arrays, whereas MAT and TileProbe are two background correction
procedures that can be applied to detect signals even when a study does not contain
control samples.
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12.3.1 Quantile Normalization

Quantile normalization was initially designed for processing gene expression arrays.
Now it has also been widely used in tiling array analysis. This method uses a simple
transform to force different array samples to have a common probe intensity distri-
bution. Let xij denote the raw intensity of probe i in array sample j . The quantile
normalization first sorts probe intensities xij and arrange them from the smallest to
the biggest within each sample j . Let x.k/j denote the kth quantile of the probe
intensities in sample j . The method computes the average of the kth quantiles
across samples, y.k/ D

PJ
jD1 x.k/j =J , where J is the total number of samples.

Then for each j , the probe intensity that corresponds to x.k/j is replaced by y.k/.
For example, if probe i in sample j has the intensity xij D x.k/j , then xij is replaced
by y.k/. If the same probe has an intensity xij0 D x.k0/j 0 in sample j 0, then xij0 is
replaced by y.k0/. After this transform, probe intensity distributions of all array sam-
ples become the same. Figure 12.3b shows the quantile normalized probe intensities
for arrays in Fig. 12.3a. It clearly illustrates that after normalization, the systematic
bias associated with different samples are removed.

An implicit assumption used by quantile normalization is that the majority of
probes correspond to DNA species that do not change across samples. This assump-
tion is reasonable in most ChIP-chip studies. This approach does not try to remove
probe effects. Therefore, protein-DNA interactions can only be detected by com-
paring ChIP and control samples, through which probe specific behaviors can be
properly controlled. If there were no control samples, looking at the quantile nor-
malized ChIP intensities alone would incorrectly define locations of transcription
factor binding sites, as shown by the first seven tracks in Fig. 12.4a.

12.3.2 MAT

It is known that the probe effects are closely related to probes’ thermodynamic
properties which are probe sequence dependent. Using this fact, the MAT method
attempts to explain background probe intensities using probe sequences. It is
assumed that most probes on an array measure background noise, which is reason-
able in most ChIP-chip studies. With this assumption, MAT uses millions of probes
on an array to fit a regression:

log.PMi / D ˛niT C
25X

jD1

X
k2fA;C;Gg

ˇjkIijk C
X

k2fA;C;G;T g
kn

2
ik C ılog.ci /C �i

(12.1)
Here, PMi represents intensity of a perfect match probe i ; nik is the number of
nucleotide k in probe i ; Iijk indicates whether the j th nucleotide of probe i is k
(Iijk D 1) or not (Iijk D 0); ci is the number of times the sequence of probe i occurs
in the genome; ˛, ˇjk , k and ı are regression coefficients; and �i is the probe
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specific error. The model contains 81 regression coefficients. With millions of data
points available, these coefficients can be robustly determined.

The regression is fit to each individual sample. Using the fitted parameters, log
probe intensity of probe i can be predicted. Let Omi denote the predicted intensity of
probe i . Probes are grouped into affinity bins based on Omi , each containing approx-
imately 3,000 probes with similar Omi values. Let si be the standard deviation of
the affinity bin containing probe i . The MAT corrected probe intensities are then
defined as:

ti D log.PMi /� Omi

si
(12.2)

This procedure removes a significant fraction of sequence dependent probe behav-
iors. Figure 12.3c shows that for samples used in Fig. 12.3a, the distribution of MAT
corrected probe intensities ti have similar empirical distributions. In fact, the dis-
tributions are similar enough so that further normalization across samples is not
needed [20].

MAT can be applied to individual samples. A single ChIP sample suffices the
MAT analysis. The last three tracks of Fig. 12.4a show that after removing sequence
dependent background by MAT, protein-DNA interaction signals can be detected
even without control samples. This makes MAT a very attractive tool in pilot studies
for which the main purpose is to test antibodies, or in studies that involve profiling
a large number of biological samples in different cell types. In both scenarios, it is
desirable to keep the cost low such as by using fewer samples.

12.3.3 TileProbe

The MAT model can remove a significant fraction of probe effects, however, it does
not remove all probe effects. The top four tracks of Fig. 12.5 show MAT background
corrected probe intensities for two ChIP and two control samples. Existence of resid-
ual probe effects is obvious in that a continuous run of probes show positive MAT
corrected probe intensities not only in the ChIP samples but also in the control sam-
ples. The track named “MedianMAT All-GEO-Arrays” in the same figure displays
the median MAT corrected probe intensities of all array samples stored in the GEO
database [4], which shows that the residual probe effects are consistent across differ-
ent studies. Existence of residual probe effects could be explained by several factors.
First, MAT uses an unsaturated model that includes only the main effects of probe
sequence and a few squared terms as covariates. As a result, it cannot explain probe
effects due to higher order interactions between nucleotides at different positions
within a probe. Second, not all probe effects are sequence dependent (e.g. the phys-
ical location of a probe in the array may also contribute to the probe effects). As a
result, the prediction of probe effects based on probe sequences may not be perfect.

The residual probe effects in the MAT corrected probe intensities could directly
affect the subsequent detection of biological signals. For example, in Fig. 12.5, if
one only had the ChIP samples in the first two tracks, MAT would report a high
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Fig. 12.5 Residual probe
effects after MAT correction.
Data from a ChIP-chip study
using Affymetrix Mouse
Promoter 1.0 R arrays are
shown. IP MAT, CT MAT:
MAT corrected probe
intensities for ChIP and
control samples respectively.
MedianMAT All-GEO-
Arrays: median MAT
corrected probe intensities
across hundreds of samples
stored in GEO database.
IP TileProbe, CT TileProbe:
TileProbe background
corrected probe intensities

confidence peak. However, the comparison with control samples clearly illustrates
that this region is a false positive. This example suggests that by removing the resid-
ual probe effects, one should be able to further improve the sensitivity and specificity
of subsequent analysis.

Based on this observation, Judy and Ji developed another approach, TileProbe
[21], to model probe effects. TileProbe takes advantage of the diverse and large num-
ber of samples stored in the GEO database and uses these publicly available data to
obtain a robust model for MAT residual probe effects. To build the probe effect
model for a particular array platform, TileProbe first applies MAT to each individ-
ual array sample collected from the GEO database. This database contains more
than a hundred samples per platform for the commonly used array platforms. After
this step, a MAT corrected intensity is attached to each probe for each sample.
Next, all array samples are grouped according to studies and experimental condi-
tions. For example, if a study (determined by the GEO series number) contains
three ChIP samples and three control samples, the six samples will be divided into
two groups: an IP group and a control group. Assume that there are G groups in
total and group g (g 2 f1; 2; : : : ; Gg) containsKg replicate samples. Let tigk denote
the MAT corrected probe intensity of probe i in the kth replicate of group g, and
Ntig D P

k tigk=Kg . TileProbe models the residual probe effects in tigk using two
quantities �i and �i which are determined as follows:

�i D median
˚
tigk; g 2 f1; 2; : : : ; Gg and k 2 ˚1; 2; : : : Kg

��
(12.3)
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!2
i D

PG
gD1

PKg

kD1
.tigk � Ntig/2PG

gD1.Kg � 1/
(12.4)

�2
i D .1 � B/!2

i CB!2 (12.5)

Here !2 is the mean of all !2
i , and B 2 Œ0; 1� is a shrinkage factor computed using

the variance shrinkage estimator in formula (12.13) which will be introduced in
Sect. 12.4.2.2. In other words, TileProbe uses �i , the median MAT corrected probe
intensity across all samples, to model the magnitude of each residual probe effect.
This assumes that, at each probe, most samples used for building the probe model
do not contain biologically relevant signals. The assumption holds when a large
number of diverse samples, representing different experimental systems (e.g. dif-
ferent transcription factors in ChIP-chip experiments) and different conditions, are
used for building the model. In addition, the probe specific variability is modeled
by �i . The shrinkage estimator in formula (12.5) is used to avoid unstable variance
estimates when the available degrees of freedom

P
g.Kg � 1/ are small.

Using Eqs. 12.3–12.5, a probe effect model can be built for each array platform.
When a new data set generated by the same platform needs to be analyzed, one can
first apply MAT correction (i.e. formulas 12.1 and 12.2) to each sample, u. Next,
the MAT corrected probe intensity, tiu for probe i and sample u, is standardized as
follows:

yiu D tiu � �i

�i

(12.6)

The yiu statistic is the TileProbe background corrected probe intensity, which can
be used as input for subsequent peak detection. If there is good reason to believe
that the estimate of �i is not stable, a simplified version of TileProbe may be used
in which yiu D tiu � �i . In the following sections, this simplified version is denoted
as TPM, and the original version with variance standardization (i.e. formula 12.6) is
denoted as TPV.

Applying TileProbe solves the issues caused by residual probe effects. The bot-
tom four tracks in Fig. 12.5 show TileProbe corrected probe intensities. Compared
to the MAT corrected intensities, the residual probe effects no longer exist. Using
TileProbe does not require availability of control samples.

12.3.4 Comparison of Normalization and Background
Correction Methods

Quantile normalization, MAT and TileProbe were compared in a recent study [21].
The study analyzed four different ChIP-chip data sets stored in the GEO database.
These data represent four transcription factors and two different array platforms
(Affymetrix Mouse Promoter 1.0 R and Affymetrix Human Tiling 2.0R array 6).
The data were first processed using the three methods described above, then a
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Fig. 12.6 Comparisons of quantile normalization, MAT and TileProbe. After peak detection,
enrichment ratios of the relevant binding motifs among the top 200, 400, . . . , etc. binding regions
are shown. The ratio was determined by comparing the percentage of ChIP-chip peaks that con-
tained at least one motif site to the percentage of negative control peaks that contained 
 1 motif
site. TPV: TileProbe-TPV; TPM: TileProbe-TPM; QN: quantile normalization

common peak detection protocol (i.e. the MAT peak calling algorithm that will be
introduced in Sect. 12.4.2.3) was applied to detect TF binding regions. After ranked
lists of binding regions were reported, enrichment of transcription factor binding
motifs in the predicted binding regions were compared. Figure 12.6 displays the
results for two data sets (Gli3 and ER). Each data set was analyzed under four
different analytical conditions: 1IP 0CT (i.e. using one ChIP sample and no con-
trol sample), 1IP 1CT, 3IP 0CT, and 3IP 3CT. The results indicate that TileProbe
outperformed MAT when there were no control samples. Without control samples,
quantile normalization was not applicable. When control samples were available,
all three algorithms performed similarly, but quantile normalization and TileProbe
slightly outperformed MAT.

12.4 Signal Detection

After preprocessing, probes are sorted based on their genomic coordinates, and sys-
tematic bias is removed from probe intensities. We are now ready to detect locations
of protein-DNA interactions. Since the DNA fragments in ChIP samples are longer
than probe spacing, each fragment can cover multiple probes. As a result, a bona
fide protein-DNA interaction is typically indicated by a continuous run of probes
that show increased intensities in ChIP samples compared to the background noise
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(see e.g. Fig. 12.4). When designing signal detection algorithms, this spatial corre-
lation could be used to improve the methods’ discriminating power. A good method
should also take into account that a ChIP-chip experiment can produce tens of mil-
lions of data points. For example, a study involving three ChIP and three control
samples on Affymetrix human genome tiling arrays contains �250 million data
points. Practically, it is important to be able to process the huge data sets within
reasonable time. Finally, ChIP-chip experiments are expensive. Most studies gen-
erate only a small number of biological replicates (�3). This poses a challenge on
estimating biological variability. Efficiently using information in the small replicate
studies is therefore important. Up to now, many methods have been developed for
locating signals in ChIP-chip data. This section reviews four major classes of them,
including a method based on non-parametric test, moving average methods, meth-
ods based on Hidden Markov Models (HMM), and methods that use peak shape or
kernel deconvolution.

12.4.1 Wilcoxon Rank-Sum Test

The Affymetrix Tiling Array Analysis Software (TAS) uses a non-parametric
approach to detect signals [22]. This method first defines a bandwidth B . For each
probe, a local data set is formed by collecting all probe intensities (from both ChIP
and control samples) within ˙B base pairs. Probe intensities (PM or PM-MM)
within the local window are sorted and a rank-sum test is performed. The p-value
obtained from the test is attached to the probe in question. After applying this
procedure to all probes, probes with p-values smaller than a user-chosen cutoff
are marked as positive probes. Positive probes are used to construct protein-DNA
binding regions by merging neighboring probes into a single region if their distance
�max gap base pairs. Regions shorter than min run base pairs are excluded, and the
remaining regions are reported as protein-DNA interactions. Compared to the other
methods, this non-parametric approach is not the most powerful one. However, it
does not require parametric assumptions used by the other methods and is robust
to deviations from those assumptions. This method requires a sorting operation for
each window, which is time-consuming when a large data set is analyzed.

12.4.2 Moving Average Methods

Moving average is one of the most commonly used methods in ChIP-chip data
analysis. Many popular software tools are based on moving average.

12.4.2.1 Average T-statistics

Keles et al. [23] uses a simple moving average based on t-statistics. Assume that
there are I probes in the tiling array, J different types of DNA samples, and Kj
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replicates for the j th type of sample. In most ChIP-chip studies, J D 2 (correspond-
ing to ChIP and control); j D 1 denotes the ChIP sample, and j D 2 denotes the
control sample. Let Xijk denote the normalized (or background corrected) and log-
transformed intensity of probe i in the kth replicate of sample j . Assume that probes
are indexed according to their genomic coordinates (i.e. i and iC1 are two neighbor-
ing probes in the genome).X ij DPk Xijk=Kj , and s2

ij D
P

k.Xijk�X ij/
2=.Kj�1/.

The method in [23] first computes a t-statistic for each probe:

ti D X i1 �X i2q
s2

i1=K1 C s2
i2=K2

(12.7)

For each probe i , it then collects 2W flanking probes (W on the left and W on the
right) and computes a moving average statistic using 2W C 1 t-statistics.

mi D
PiCW

kDi�W tk

2W C 1 (12.8)

Next, probes with mi bigger than a cutoff are used to define protein-DNA interac-
tions, and a procedure similar to TAS (see Sect. 12.4.1) is used to construct regions
to be reported.

To choose an appropriateW , a cross-validation procedure was proposed. In order
to control type I errors,mi are converted to p-values. A nested-Bonferroni procedure
was developed to control family wise error rate. This procedure considers correla-
tion among the mi statistics and is less conservative than Bonferroni adjustment.
Readers are referred to [23] for a detailed description.

12.4.2.2 TileMap Moving Average

Most ChIP-chip experiments have a limited number of replicates. With small
degrees of freedom, variance estimates are unstable. There are millions of probes.
Just by chance, some of them have small sample variances (i.e. s2

ij � 0). These
probes tend to have big ti values, however they do not represent real biological
signals. This is a major source of noise when applying the method described in
Sect. 12.4.2.1 to make signal calls. TileMap moving average solves this problem
by using a technique called “variance shrinking”. This method employs a hierar-
chical model to describe the data. The model allows one to pool information from
all probes on the array to estimate the variance associated with individual probes.
The same technique has been used in analyzing differentially expressed genes in
microarray studies [3, 10, 34].

In TileMap, it is assumed that

Xijkj�ij; �
2
i

ind:� N.�ij; �
2
i / (12.9)
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�ij
ind:/ 1 (12.10)

�2
i j�0; !

2
0

i:i:d:� Inv� �2.�0; !
2
0 / (12.11)

Define � D P
j .Kj � 1/, s2

i D
P

j

P
k.Xijk � X ij/

2=�, s2 D P
i s

2
i =I and

S DPi Œs
2
i � s2�2. TileMap first estimates �2

i using a closed-form empirical Bayes
shrinkage estimator:

O�2
i D .1 � OB/s2

i C OBs2 (12.12)

where OB is an estimator for var.s2
i j�2

i /=var.s2
i / and is computed using

OB D min.1;
2

� C 2
I � 1
I
C 2

� C 2.s
2/2

I � 1
S

/ (12.13)

The shrinkage estimator pools information from all s2
i to estimate �2

i . It introduces
additional degrees of freedom to variance estimates. Small s2

ij are pulled away from
zero. The variance estimates are more stable and can have a smaller ensemble mean
square error when all �2

i are considered jointly.
Once O�2

i is obtained, TileMap replaces Eq. 12.7 by:

ti D X i1 �X i2q
.1=K1 C 1=K2/ O�2

i

(12.14)

Formula (12.14) is then plugged into formula (12.8) to compute the moving average
statistics, which will be used to find protein-DNA interactions.

Variance shrinking greatly improves the statistical power of signal detection.
Figure 12.7a illustrates how this method works in a ChIP-chip study involving tran-
scription factor GLI1. When log2 ratios between ChIP and control probe intensities
were plotted, there were no clear peaks. Using the t-statistics in formula (12.7),
some weak signals emerged. However, given the high level of noise, it remains
unclear whether they are real peaks or not. When formulas (12.12–12.14) were used
to compute the t-statistics with variance shrinking, three peaks became clear, and
the signals were further improved after taking the moving average. The peak indi-
cated by the arrow was actually tested in [36] using transgenic experiments and was
verified to be a functional cis-regulatory element.

Figure 12.7b compares TileMap moving average with the moving average with-
out variance shrinking. A cMyc dataset with 6 ChIP samples and 12 control samples
was analyzed. First, all 18 samples were analyzed using the non-shrinking method,
and the regions reported were treated as gold standard. Next, a subset of data con-
taining only two ChIP and two control samples were selected to serve as test data.
The non-shrinking method was applied to analyze the reduced data set. The test data
were further reduced by excluding half of the probes, and the shrinking method was
applied to this further reduced data set to detect signals. The shrinking and non-
shrinking methods were then compared in terms of how many gold standard regions
they found among the top predictions. The evaluation was repeated by choosing
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Fig. 12.7 Variance shrinking improves signal detection. (a) Analysis of a ChIP-chip data set for
transcription factor GLI1. Each dot is a probe. From bottom to top, the four tracks are log2 fold
change between IP and control, t-statistics without variance shrinking, t-statistics with variance
shrinking, and TileMap moving average. (b) Comparison of shrinking and non-shrinking methods
using a cMyc data set. The figure shows the number of gold standard regions reported by the two
methods among their top 10, 20, . . . , etc. predictions

different combinations of array samples to form the test data. Figure 12.7b shows
the average performance. Although the gold standard was constructed in favor of
non-shrinking method and the non-shrinking method used twice as many probes,
the shrinking method outperformed the non-shrinking one significantly.

TileMap moving average is computationally efficient since it does not require
sorting data repeatedly as TAS. In order to control false discovery rate (FDR), an
unbalanced mixture subtraction (UMS) method was proposed. This method con-
trols FDR at the probe level and is empirically very conservative. Other options for
estimating FDR, including a permutation method and a method that estimates FDR
using the left tail of the empirical distribution of mi , are also provided. The left-
tail method, which will be introduced in the next section, estimates FDR at region
level. In other words, instead of reporting what percentage of probes in the reported
regions are expected to be false, it estimates what percentage of reported regions are
expected to be false. Details of these methods are presented in [15, 16].

12.4.2.3 MAT

MAT uses a robust version of moving average as its peak calling algorithm. It uses
a W bp sliding window to scan the genome. The default value of W is 600 bp.

If a study contains ChIP sample(s) only, MAT computes a MATscore for each
window. The MATscore is defined as follows:

MATscore.window k/ D pnk 
 TM.ti in window k/ (12.15)



12 Computational Analysis of ChIP-chip Data 273

Here ti is the MAT background corrected intensities determined by Eq. 12.2; TM.:/
is the trimmed mean of all ti within the window; nk is the number of data points in
the window. The trimmed mean removes the top 10% and bottom 10% of ti values.
If a window contains < l probes (usually l D 10), then the window is excluded
from the analysis. By using the trimmed mean, MAT is robust to isolated outlier
probes, i.e. probes that have high ti values but are surrounded by probes with no
enrichment signals.

If control samples are available, the MATscore is replaced by:

MATscore.window k/ D pnk;ChIP 

TM.ti from ChIP samples/ � TM.ti from control samples/

�control
(12.16)

Here, nk;ChIP is the number of data points from the ChIP samples in the window.
�control is the standard deviation of ti in control samples. The MAT authors recom-
mend that �control only be used when there are at least three replicate control samples.
If this condition is not satisfied, it is recommended that the difference between the
ChIP and control TM values should be used instead [20].

Once MATscores are computed, one can collect all probes for which MATscores
are bigger than certain cutoff. These probes are used to construct protein-DNA bind-
ing regions. To determine the false discovery rate, it is assumed that the MATscore
follows a symmetric distribution centered at zero when no protein-DNA interac-
tions exist. Under this assumption, one can flip the sign of MATscores and repeat
the signal detection procedure using the same cutoff. All regions reported in the
second analysis are false positives. They provide an estimate of the expected num-
ber of false discoveries. The ratio (No. of expected false positives / No. of detected
protein-DNA interactions) then provides an estimate of FDR. MAT requires one to
sort data within local windows in order to compute the trimmed mean, therefore it
requires more computation than TileMap moving average.

12.4.3 Hidden Markov Models

Hidden Markov Model (HMM) is another popular method in ChIP-chip analysis.
In the simplest two-state HMM, it is assumed that each probe has two possible
states: a non-enriched (or background) state represented by 0, and an enriched (or
protein-DNA interaction) state represented by 1. For probe i , the intensities associ-
ated with state 0 and 1 are governed by emission probability distributions fi0.x/ and
fi1.x/ respectively. The transition between state 0 and 1 is governed by a transition
probability matrix. With these assumptions, once the model parameters are given,
the standard forward-backward algorithm can be applied to compute the posterior
probabilities that probes are in state 1. Probes with these posterior probabilities
bigger than certain cutoff (e.g. 0.5) then define protein-DNA interactions. A nice
introduction to HMM and the forward-backward algorithm can be found in [11].
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In a tool called HMMTiling [26], the emission probability fi0.x/ is assumed to
be a normal distribution N.�i ; �

2
i /. �i and �2

i are estimated using control samples
from previous ChIP-chip studies. fi1.x/ is assumed to be N.�i C 2�i ; .1:5�i /

2/.
The transition probability from 0 to 1 and from 1 to 0 is assumed to be J=K , where
J is a prior estimate of the number of potential protein-DNA interactions, and K is
the total number of probes.

TileMap also provides a HMM routine to detect protein-DNA interactions.
Instead of modeling probe intensities directly, TileMap HMM first summarizes
enrichment information at each probe using formula (12.14). It is assumed that
under state 0 and 1, the emission probability for ti is f0.t/ and f1.t/ respectively.
f0.t/ and f1.t/ are estimated using the unbalanced mixture subtraction approach.
Because TileMap HMM models the probe level summary statistics instead of probe
intensities, it can be easily generalized to analyze a multiple condition experiment.
To analyze such experiments, one only needs to replace the t-statistic in formula
(12.14) by the posterior probability of a user-specified pattern computed under the
hierarchical model (12.9–12.11).

In the two-state HMM described above, duration of the enriched state follows
a geometric distribution a priori. This assumption is not ideal because the DNA
fragment lengths in real ChIP samples have a distribution with a mode centered
around 300–500 bp. Incorporating a more appropriate length distribution may help
discriminate signals from noise better, which requires development of new model
frameworks.

12.4.4 Peak Shape and Kernel Deconvolution

Signals in ChIP-chip data often have characteristic shapes. For example, the
log2(IP/control) fold changes around transcription factor binding sites are usually
triangle- or bell-shaped (see Fig. 12.7). The shape provides additional information
for detecting signals from noise.

Zheng et al. [39] developed a Mpeak method that tries to use the peak shape infor-
mation in the ChIP-chip analysis. Mpeak uses a Poisson point process to describe
the procedure that generates the ChIP data. It is assumed that a genome sequence
contain M potential binding sites B1, . . . , BM . The probability that binding site
Bm is bound by protein is pm. When the sequence is sheared, the probability that
a cut occurs between a small interval .x; x C �x/ is �.x/�x. After cutting, the
genome sequence becomes a set of non-overlapping fragments. The probability that
a protein-bound site is immunoprecipitated by antibody is ˛. For simplicity, one can
first consider data that only contain one binding site Bm. Assume that its coordi-
nate is 0. Sufficient and necessary conditions for a probe at x > 0 to be covered by
a ChIP fragment is that the fragment covers both 0 and x (i.e. there is no cutting
point between 0 and x), Bm is bound by the protein, and immunoprecipitated by the
antibody. Based on the Poisson process assumption,
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The probability that x is covered by a ChIP fragment, p.x/, therefore can be repre-
sented by logp.x/ D log.pm˛/ �

R x

0
�.s/ds for x > 0. If �.x/ D a for x > 0,

then logp.x/ D c � ax where c D log.pm˛/. Similarly for x < 0, if �.x/ D b,
then logp.x/ D c C bx. Together, this implies that logp.x/ has a triangle shape
determined by:

logp.x/ D c C bxI.x < 0/� axI.x � 0/ (12.18)

where I.:/ is an indicator function which is equal to one if its argument is true and
equal to 0 otherwise. Each DNA sample contains many copies of genome sequences,
and they all undergo a similar procedure. If it is assumed that probe intensities (after
appropriate normalization and transformation) are proportional to logp.x/, then
the model provides a probabilistic explanation of why the observed signals look
like triangles. Real data contain more than one binding sites. For multiple binding
site data, one can modify p.x/ slightly to reflect the joint effects of all binding sites
(see [39] for details). If the binding sites are not close and do not interfere with each
other, the triangle model can be used to describe the observed peak shape reasonably
well. Based on this model, Mpeak attempts to fit triangle-shaped regressions to data
around each probe. Locations of binding sites can then be determined according to
the goodness of fit.

The Poisson point process used by Mpeak is an idealized model to describe data.
In many data sets, peaks are not triangular. To deal with these data, Qi et al. [31]
proposed the joint binding deconvolution (JBD) method. This approach relies on
empirically determined DNA fragment length distribution which can be obtained
using experimental techniques. Once this distribution is available, it is used to derive
an influence function that describes the signal strength at various distances from a
binding site. The influence function is able to capture shapes other than triangles.
It is used as a kernel to deconvolve the observed data. Locations and strength of
binding sites are inferred based on the deconvolution results. Using this approach,
one can identify binding sites at a resolution higher than the probe spacing.

Mpeak and JBD were originally designed for processing NimbleGen and Agilent
arrays. Although they are not directly designed for Affymetrix array data, the ideas
behind them are general and should be applicable to all array platforms.

12.4.5 Methods Evaluation

Developing powerful signal detection algorithms for ChIP-chip data analysis is
important. Equally important is to have an objective approach to evaluate dif-
ferent algorithms. For the purpose of evaluation, one needs to know where true
protein-DNA interactions are, and one needs to have objective criteria to measure
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algorithms’ performance. Having a comprehensive list of true protein-DNA inter-
actions is difficult. To circumvent this difficulty, Johnson et al. [19] generated a
spike-in data set for testing ChIP-chip signal detection algorithms. The spike-in
samples were created by mixing 100 cloned promoter sequences (i.e. spike-ins, each
about 500 bp) with human genomic DNA. The spike-in clones were added at differ-
ent concentration levels. The samples were hybridized to Affymetrix, Agilent and
NimbleGen ENCODE arrays by different labs. With about 100 true signals known,
data generated by this study provide a good benchmark for evaluating ChIP-chip
signal detection algorithms.

Using the spike-in data, Johnson et al. [19] compared the receiver operating char-
acteristic (ROC) curve of a number of signal detection tools. Later, the results were
supplemented by [15] adding the ROC curve of TileMap. Figure 12.8 shows the area
under the ROC curve (AUC) for the compared algorithms designed for Affymetrix
tiling array analysis. A bigger AUC value indicates better sensitivity and specificity.
Based on this criterion, TileMap and MAT performed best. In addition to a ranked
list of predictions, each tool also provides a cutoff that defines how many peaks
should be reported. To assess the cutoffs chosen by different tools, [19] defined the
optimal cutoff as the point on the ROC curve that is closest to the upper left corner
(i.e. the point with coordinate (0,1)) of the sensitivity-specificity plot. The distance
between the algorithm-chosen cutoff and the optimal cutoff is called E-O distance. A
small E-O distance means that the cutoff chosen by the algorithm is neither too con-
servative nor too optimistic. When different tools were compared in terms of their
E-O distances, MAT and TileMap again performed among the best. Similar compar-
isons of AUC and E-O distances were also performed for Agilent and NimbleGen
arrays. Readers can find details and results in [19] and [15]. These studies did not
test all available algorithms, therefore the available comparison results may not be
comprehensive. However, the spike-in data and the performance criteria described
above provide a mechanism to objectively evaluate other methods in future.

Evaluation based on the spike-in data has its own limitations. The current data
were generated using ENCODE arrays that cover only a small fraction of the
genome. In addition, the spike-ins do not capture all characteristics of real protein-
DNA interactions. For example, instead of having a triangle shape, many spike-ins
show plateau-like signals since they are created by cloning a whole segment of
promoter sequences. As a result, algorithms that use a particular peak shape to
detect signals (e.g. Mpeak) may not receive objective assessment. Fortunately, many
other evaluation methods are available as substitutes of the spike-in data. Many
transcription factors have known binding motifs. For ChIP-chip experiments involv-
ing these transcription factors, motif enrichment in the TF binding regions can be
used to evaluate different algorithms (see e.g. Fig. 12.6). If gene expression data
are available, different algorithms can also be compared in terms of what percent-
age of protein-DNA interactions are associated with changes of gene expression.
There could be many other examples. The general idea is to find an independent
source of information that can verify the plausibility of the predicted protein-DNA
interactions.
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Fig. 12.8 Areas under the ROC curve (AUC) of several signal detection tools for Affymetrix
data analysis. AUC is assessed using the spike-in data in [19]. The figure shows results for five
different data sets (indicated by five vertical bars). In the top panel, no amplification was applied
to prepare the ChIP samples for hybridization. In the bottom panel, two different amplification
protocols (LM: ligation-mediated PCR and RP: random-priming PCR) were used to prepare the
samples. The lab number 1 and 6 indicate two different labs that generated the data. #reps indicates
how many ChIP samples are used in the analysis (the number of control samples are the same).
(The figure is reproduced from Supplementary Fig. 14 in [15] which was obtained by redrew Fig. 2
of [19] by adding TileMap results)

12.5 Motif Analysis

ChIP-chip enables us to locate transcription factor binding at resolution of 500–
1,000 bp. The resolution is largely determined by the DNA fragment length in the
ChIP sample. Sequence motifs recognized by transcription factors are generally
much shorter. Most motifs contain only 6–30 nucleotides. With further compu-
tational analysis, these short motifs can be identified within the reported binding
regions, and thereby dramatically increase the resolution of binding site prediction.
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The predicted motif sites may serve as candidates for further experimental studies
such as knock-out and transgenic experiments.

There are two types of motif analysis. If the motif recognized by the transcription
factor of interest is known from previous studies, one only needs to map it to regions
reported by ChIP-chip. Tools including CisGenome [15] and MAST [2] can be used
to fulfill this task. For many transcription factors, the binding motifs are unknown.
If this is the case, then the motif needs to be discovered from the binding data.
Often, the motif can be found by searching for sequence patterns enriched in the TF
binding regions. Many de novo motif discovery algorithms have been developed to
handle this task [1, 28, 30]. Readers are referred to [13] for a detailed review on de
novo motif discovery.

When applied to ChIP-chip data, a de novo motif search may return multiple
motifs. Often, it is not clear which one is the key motif recognized by the tran-
scription factor involved in the study. A simple way to discriminate the functionally
relevant motifs from irrelevant ones is compare these motifs’ enrichment levels. Ide-
ally, by comparing the occurrence rates of the motifs (i.e. No. of motif sites/1 kb)
in binding regions to those in negative control regions, the key motif should have
the highest level of enrichment. Unfortunately, an analysis of multiple ChIP-chip
data sets performed in [14] indicates that this is not true if the negative control
regions are randomly chosen from the genome. In fact, binding regions identified by
ChIP-chip and regions randomly chosen from the genome can have very different
characteristics. For example, they may have different GC content, or the TF binding
regions may be located closer to promoters. Differences in motif occurrence rate
may reflect different nucleotide compositions of these two types of regions. To deal
with this problem, Ji et al. [14] proposed to use “matched genomic controls” instead
of random controls as the baseline to evaluate motif enrichment. “Matched genomic
controls” are control regions that are carefully chosen to match the genomic dis-
tribution of ChIP-chip reported binding regions. To choose these control regions
for a ChIP-chip data set, binding regions reported by signal detection algorithms
are annotated with their closest genes. Distances between centers of TF binding
regions and their neighboring genes’ transcription start sites are computed. Next,
genes are randomly selected from the gene annotation database. For each chosen
gene, a genomic region with pre-specified length is picked up in a way such that the
distance between the region center and the gene’s TSS follows the same empirical
distribution of distances between ChIP-chip binding regions and their closest genes.

Using this method, Ji et al. [14] analyzed ChIP-chip data for multiple transcrip-
tion factors. With the matched controls, the key motifs were successfully identified
as the top ranking motif in all test data. Figure 12.9 shows an example that involves
transcription factor Oct4. In this data set, de novo motif discovery reported more
than ten motifs, some of which had stronger signals than the Oct4 motif when
ranked by the MDSCAN score proposed in [30]. When random genomic controls
were used to compute motifs’ enrichment levels, the Oct4 motif did not rank as the
highest. However, when the matched controls were used, it was clearly the top one
among all the motifs. This indicates that with the help of matched control regions,
we are able to unambiguously identify motifs responsible for the transcription factor
binding in ChIP-chip studies.
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Fig. 12.9 Motif analysis of an Oct4 ChIP-chip study. (a) Motifs reported by a de novo discovery
method, Gibbs motif sampler [28], are shown. For each motif, the MDSCAN score is shown in
brackets. The score reflects both the motif’s information content and the number of motif sites in
the binding data [30]. The Oct4-Sox2 composite motif responsible for the sequence-specific pro-
tein binding is underlined. (b) For each motif, the relative enrichment levels r1, r2 and r3 are shown
as a group of three bars from left to right. Assume n1B D no. of motif sites in TF binding regions,
n2B D no. of non-repeat base pairs in binding regions, n1C D no. of motif sites in control regions,
n2C D no. of non-repeat base pairs in control regions, n3k (k D B or C) = no. of phylogenetically
conserved motif sites in specified genomic regions, and n4k D no. of phylogenetically conserved
non-repeat base pairs in the regions. r1 D .n1B=n2B/=.n1C =n2C /; r2 D .n3B=n4B/=.n3C =n4C /;
r3 D .n3B=n2B/=.n3C =n2C /. The relative enrichment levels are computed using either matched
genomic controls (“Matched ”) or random genomic controls (“Random”). Relative enrichment
levels of different motifs are compared, and the Oct4-Sox2 motif responsible for the binding is
indicated by the arrows. (The figure is modified from [14])
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12.6 Concluding Remarks

Data preprocessing, signal detection and motif analysis are three important steps
of ChIP-chip data analysis. Methods discussed in this chapter represent a selected
collection of available methods that have been widely used or that have poten-
tial to become so. They cover all three aspects described above. These methods
can help one efficiently extract meaningful information from ChIP-chip data and
allow us to locate protein-DNA interactions in the genome at a high resolution.
Locating protein-DNA interactions represents the first step to use ChIP-chip data.
A more important scientific question is what are the functions of the reported
protein-DNA interactions. Recent studies in different biological systems suggest
that a large proportion of transcription factor binding sites identified by ChIP-chip
correspond to inert binding without playing roles in activating or repressing gene
expression [27, 37]. This highlights the importance of further analyses that aim
to characterize functions of ChIP-chip signals. To infer functions of protein-DNA
interactions, ChIP-chip data need to be examined together with other sources of
information including gene expression, gene ontology, epigenetic marks, etc. The
possible combinations of analyses are huge. Development of statistical methods that
systematically address this issue is still at its infancy.

With the rapid development of high throughput sequencing technologies, many
applications of tiling arrays can now find their counterparts based on the next gener-
ation sequencing (see [33] for a review). The sequencing counterpart of ChIP-chip is
ChIP-seq which can provide better resolution for locating transcription factor bind-
ing sites. In the near future, however, ChIP-chip will remain to be an important tool
for various genome-wide studies due to its relatively low cost and relatively mature
protocols. Indeed, new ChIP-chip data sets are flowing into the public databases
every month. In this context, there is continuing need for gaining better understand-
ing of the current data processing techniques and developing better methods for data
analysis. More importantly, as the amount of data in the public databases increases,
there is an increasing need to compare and jointly analyze multiple ChIP-chip
and ChIP-seq data sets to reveal regulatory programs behind the tightly specified
temporal and spatial gene expression patterns. Methods targeted for this purpose
are greatly needed, and this is an area that will challenge statistician, computer
scientists, as well as biologists in the next couple of years.

Last but not least, there is an urgent need to translate efficient statistical and com-
putational algorithms to user friendly software tools. ChIP-chip analysis involves
huge data sets and complex analysis pipelines. This makes data analysis a daunt-
ing task for bench biologists with little training in programming. On the other
hand, more and more labs continue to generate ChIP-chip data. This creates a
bottleneck for data analysis. Software tools that can make the analysis procedure
easily accessible to biologists are very useful. The recently developed tools such as
CisGenome [15] and CEAS [17] partially fulfill this goal. However, they are mainly
designed for performing basic analyses such as those reviewed in this chapter. For
more advanced analyses such as data integration, new tools need to be developed.
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With the help of these tools and statistical methods behind them, we would expect
to learn much more from the ChIP-chip studies.
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Chapter 13
eQTL Mapping for Functional Classes
of Saccharomyces cerevisiae Genes
with Multivariate Sparse Partial Least
Squares Regression

Dongjun Chung and Sündüz Keleş

Abstract The availability of high-throughput genotyping technologies and micro-
array assays has enabled investigation of genetic variations that influence levels of
gene expression. Expression Quantitative Trait Loci (eQTL) mapping methods have
been successfully used to identify the genetic basis of gene expression which in turn
led to identification of candidate genes and construction of regulatory networks.
One challenging statistical aspect of eQTL mapping is the existence of thousands of
traits. We have recently proposed a multivariate sparse partial least squares frame-
work for mapping multiple quantitative traits and identifying genetic variations that
affect the expression of a group of genes. In this book chapter, we provide a com-
prehensive illustration of this methodology with a Saccharomyces cerevisiae linkage
study. Data from this study involves segregants from a cross between two Saccha-
romyces cerevisiae strains. Our application focuses on elucidating genomic markers
that affect expression of functional yeast gene classes. We illustrate identification of
eQTL regions affecting whole functional classes of genes as well as eQTL regions
influencing individual genes.

13.1 Introduction

Expression quantitative trait loci (eQTL) mapping aims to identify which markers
are linked to transcripts with detectable effects and to estimate the magnitudes of
these effects. A number of recent studies demonstrated utility of eQTL mapping in a
broad range of biological applications [7,11,31,32,34,38,40,46,49] and the emerg-
ing field of “Genetical Genomics” has created much excitement and enthusiasm
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[33]. Statistical challenges of eQTL mapping have been immediately realized [26].
Initial methods for eQTL mapping were usually either transcript-specific or marker-
specific analyses [27] and lacked proper control of Type-I error rate. Recent efforts
for eQTL mapping focused on combined analysis of all the transcript and marker
data by collapsing these two approaches. In particular, most recent advancements
in statistical methods for eQTL mapping aim to properly account for multiplici-
ties across the genomic markers and transcripts and correlations among transcripts.
Some of these approaches are by [9,18,21,27]. A distinct feature of eQTL analysis
is the existence of multi-traits. It is well known from the traditional QTL literature
that repeated application of single trait analysis is not optimal since information
in the correlation structure among the traits is not utilized [2, 22]. To address the
issue of multi-traits in eQTL mapping, we formulated the eQTL mapping problem
as a variable selection problem in a multivariate response regression in a recent
work [12]. The multivariate response setting is facilitated by clustering genes across
the segregating population of individuals prior to eQTL mapping. We then utilized
sparse partial least squares [13] as a simultaneous variable selection and dimension
reduction approach to identify linkages for each cluster. This framework, named
as M-SPLS eQTL, offers a computationally fast alternative for analyzing multiple
transcript and marker data simultaneously for gaining power and avoiding multi-
plicities for good error control. BAYES approach of [21] utilizes all the transcripts
simultaneously as multivariate traits for eQTL mapping. In contrast, M-SPLS eQTL
mapping provides a compromise between individual transcript-based analysis and
analysis by using all the traits simultaneously.

Current state of the art for interpreting identified eQTL and further hypothesis
generation often relies on a version of gene set enrichment analysis whereby genes
those map to same locus are tested for enrichment in functional gene sets [48].
Since functional gene sets readily partition the set of transcripts into functionally
meaningful groups, they define a clustering of the genes. Therefore, utilizing genes
within functional groups in a multi-trait analysis might provide an alternative to
clustering genes. In this chapter, we focus on utilizing functional gene classes in
M-SPLS eQTL analysis. We start our exposition by providing a brief overview of
the eQTL mapping with multivariate sparse partial least squares regression [12].
Then, we demonstrate step-by-step how M-SPLS eQTL identifies many biologically
relevant eQTL when we utilize functional gene classes in a yeast eQTL study by [5].

13.2 eQTL Mapping with M-SPLS

In ill-conditioned linear regression problems, partial least squares (PLS) regression
is often utilized as an alternative to ordinary least squares regression. Although PLS
had been traditionally promoted for regression problems with a large number of
variables, [13] showed that PLS suffers from the curse of dimensionality in the con-
temporary large p, small n setting. [13] developed a sparse version of PLS (SPLS)
to achieve accurate prediction and variable selection simultaneously by producing
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sparse linear combinations of the original predictors. SPLS regression can select a
higher number of relevant variables than the available sample size and it can han-
dle multivariate response without additional computational complexity. SPLS has
two tuning parameters, K and �, which are the number of latent components and
the sparsity parameter, respectively.K is constrained to be smaller than the rank of
the predictor matrix and � has a value between 0 and 1. As K gets smaller and �
approaches 1, SPLS results in sparse solutions. Further details about SPLS can be
found at [13].

Chun and Keleş demonstrated that SPLS has several attractive properties that
motivate its use for eQTL mapping [12, 13]. Many recent eQTL mapping studies
suggest that most eQTL have weak effects and many transcripts require multiple
loci (markers) under additive models [5]. Utilizing expression of a group of genes
as multivariate response, SPLS facilitates joint analysis of multiple transcripts and
markers to boost weak linkage signals. High correlations among markers in close
proximity can be taken into account due to the ability of SPLS to handle correlated
covariates. M-SPLS eQTL consists of the following three steps.

1. Forming multi-traits. This first step forms “biologically interesting” clusters of
gene expression which are then viewed as multi-traits. Clustering genes based on
their expression profiles among experimental units to identify correlated group of
genes is one way of forming such biologically interesting groups. There is a rich
literature on clustering of gene expression data [23] and the choice of clustering
method in a given experiment relies on multiple factors concerning the design of
the experiment. As discussed in the introduction, utilizing pre-defined functional
classes of genes is an alternative way of forming biologically meaningful groups
of genes.

2. Marker selection with M-SPLS regression. The second step considers the exp-
ression values within a cluster of genes as a multivariate response and forms a
cluster-level multivariate response regression. For each cluster k, we define aGk-
dimensional response vector Y .k/

i: to denote the expressions of all the Gk genes,
measured on the i -th subject and Xi: to denote the marker genotype vector for
the same i -th subject. We then consider a cluster-specific marker model

Y
.k/
i: D Xi:B

.k/ C Ei:;

whereEi: denotes the random error matrix andB.k/ is a p
Gk matrix represent-
ing the contribution of each marker m 2 f1; : : : ; pg to the expression variation
of each transcript g 2 f1; : : : ; Gkg of cluster k. Such a linear model is fitted for
every cluster using the SPLS regression. This step identifies markers affecting all
or a subgroup of genes within the cluster.

3. Transcript selection with bootstrap confidence intervals. Since SPLS estimates
effects of the selected markers on all of the genes in the cluster simultaneously,
it can result in some false linkages. We construct bootstrap confidence intervals
for each marker (selected in step 2 above) and transcript combination to screen
out linkages of transcripts with small effects. The final summary of linkages
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contains marker/transcript combinations for which the confidence intervals do
not include zero.

R package spls provides an implementation of SPLS regression and it can be
downloaded from the Comprehensive R Archive Network (CRAN) at http://cran.
r-project.org/web/packages/spls. This package provides functions for tuning and
fitting of SPLS and functions specific for eQTL mapping. In what follows, spls
version 2.1-0 was used.

13.3 Data Description and Preprocessing

We provide an illustration of the M-SPLS eQTL using the eQTL data of 112 yeast
segregants generated from two Saccharomyces cerevisiae parent strains, BY4716
and RM11-1a (BY and RM for short, respectively) [5]. BY is a standard laboratory
strain and RM is a wild isolate from a California vineyard. Expression levels of
6,229 genes and genotypes of 2,956 SNPs were measured in each of the segregants.
The genotype profile of each marker is binary, indicating the parental strain origin
of the allele. Ambiguous origin was set as missing value.

On average, 0:97% proportion of expression values and 1:89% proportion of
genotype values were missing for each gene and marker, respectively. There were no
missing values for 4,474 genes and 787 markers. We imputed the missing expression
values using a k D 15 nearest neighbor method [44] as in [6]. Missing genotype data
were imputed using the hidden Markov model approach implemented in function
fill.geno of R package R/qtl [8]. We excluded genes with more than 10%
missing segregant expression and excluded segregants with more than 200 missing
markers. Finally, we combined nearby SNPs with the exact same genotype across all
the segregants. This resulted in 1,028 markers and 6,089 genes for 105 segregants.

In the first step of M-SPLS eQTL, we utilized functional classes of yeast genes
developed using Saccharomyces Genome Database (SGD) [14] as clusters of inter-
est. These functional classes were used before, for example in [16]. We focused our
attention on 44 classes with <100 members. The list of these 44 classes is provided
in Table 13.1.

13.4 Results

13.4.1 eQTL Mapping of the ‘Mating’ Class

We first focus on the Mating functional class and identify markers that contribute
to variability of transcript levels among the yeast segregants for 25 genes of this
class. These genes are: AGA1, AGA2, STE6, STE14, MFA2, MFA1, STE23, STE3,
MF(ALPHA)2, MF(ALPHA)1, SAG1, BAR1, STE2, AFR1, FIG1, FIG2, SST2,
MOT2, MOT3, PEA2, OPY1, FUS3, SSF1, FIG4, and MID2. In the following R
script, the 105 
 1; 028 matrix x contains genotype data and the 105 
 25 matrix

http://cran.r-project.org/web/packages/spls
http://cran.r-project.org/web/packages/spls
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Table 13.1 Summary of eQTL mapping for 44 functional gene classes. Denominator in each entry
of the table denotes the number of selected markers for each functional class
Class No. of cis- Markers Markers Markers
(No. of genes) selected acting close within with one

markers markers to genes genes linkage

Arginine (15) 1 0 / 1 1 / 1 1 / 1 0 / 1
Asparagine (7) 1 1 / 1 1 / 1 1 / 1 0 / 1
Autophagy (9) 2 0 / 2 2 / 2 2 / 2 0 / 2
Biotin (4) 1 0 / 1 1 / 1 1 / 1 0 / 1
DrugResistance (12) 109 1 / 109 109 / 109 102 / 109 41 / 109
Endocytosis (19) 5 0 / 5 5 / 5 5 / 5 0 / 5
FattyAcid (35) 21 3 / 21 21 / 21 20 / 21 0 / 21
Flavin (5) 7 0 / 7 7 / 7 7 / 7 0 / 7
Flocculation (5) 5 1 / 5 5 / 5 5 / 5 4 / 5
Galactose (6) 124 2 / 124 124 / 124 105 / 124 67 / 124
GeneralTFs (33) 72 2 / 72 72 / 72 58 / 72 22 / 72
Glutamate (5) 7 0 / 7 7 / 7 7 / 7 0 / 7
Glutathione (7) 11 0 / 11 11 / 11 10 / 11 3 / 11
Glycerol (7) 103 0 / 103 103 / 103 92 / 103 17 / 103
Glycogen (8) 195 2 / 195 194 / 195 164 / 195 18 / 195
Heme (8) 8 3 / 8 8 / 8 8 / 8 1 / 8
Histidine (8) 80 6 / 80 80 / 80 72 / 80 2 / 80
InvasiveGrowth (10) 96 2 / 96 96 / 96 89 / 96 49 / 96
Isoleucine (7) 13 2 / 13 13 / 13 11 / 13 0 / 13
Leucine (5) 2 1 / 2 2 / 2 2 / 2 0 / 2
Lysine (9) 6 3 / 6 6 / 6 5 / 6 0 / 6
Maltose (4) 89 3 / 89 89 / 89 82 / 89 0 / 89
Mating (25) 2 0 / 2 2 / 2 1 / 2 0 / 2
Mitochondria (45) 10 3 / 10 10 / 10 8 / 10 0 / 10
MitochondrialRPs (54) 20 1 / 20 20 / 20 17 / 20 0 / 20
NuclearProteinTargetting (50) 220 12 / 220 220 / 220 187 / 220 44 / 220
PentosePhosphate (9) 7 0 / 7 7 / 7 7 / 7 0 / 7
Peroxisome (20) 5 3 / 5 5 / 5 5 / 5 0 / 5
Phospholipid (35) 26 2 / 26 26 / 26 23 / 26 0 / 26
Polyamine (5) 4 0 / 4 4 / 4 3 / 4 0 / 4
Proline (4) 11 0 / 11 11 / 11 9 / 11 8 / 11
Proteasome (30) 57 3 / 57 57 / 57 53 / 57 0 / 57
Purine (23) 43 1 / 43 43 / 43 39 / 43 6 / 43
Pyrimidine (23) 19 1 / 19 19 / 19 18 / 19 1 / 19
RNAPol (55) 75 4 / 75 75 / 75 64 / 75 0 / 75
rRNAprocessing (36) 3 0 / 3 3 / 3 3 / 3 0 / 3
sphingolipids (12) 31 6 / 31 31 / 31 28 / 31 15 / 31
Sterols (27) 13 1 / 13 13 / 13 11 / 13 0 / 13
TFs (18) 5 1 / 5 5 / 5 5 / 5 0 / 5
Thiamine (11) 197 0 / 197 197 / 197 170 / 197 74 / 197
tRNAprocessing (32) 172 5 / 172 172 / 172 150 / 172 18 / 172
tRNAsynth (30) 3 0 / 3 3 / 3 2 / 3 0 / 3
Tryptophan (12) 15 0 / 15 15 / 15 14 / 15 0 / 15
Vacuole (66) 26 4 / 26 26 / 26 25 / 26 0 / 26
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y.sel is the matrix of expression values of 25 genes in the Mating class, across
the yeast segregants. The function cv.spls searches optimal tuning parameters,
K and eta, that minimize cross-validated mean squared prediction error within the
range that user specifies. eta should have a value between 0 and 1. K is integer
valued and can range between 1 and min fp; .v � 1/n=vg, where p is the number
of predictors, n is the sample size, and v is the number of cross-validation folds.
For example, if ten-fold cross-validation is used (default), K will be smaller than
min fp; 0:9ng. Here, we searchK between 1 and 10 and eta between 0.01 and 0.99.

> cvs <- cv.spls( x, y.sel, K = c(1:10),
eta = seq(0.01, 0.99, 0.01) )

For the Mating class, the optimal parameters are determined asK D 2 and eta D
0:99. The final SPLS fit can be obtained as follows.

> fits <- spls( x, y.sel, K=cvs$K.opt, eta=cvs$eta.opt )
> fits

Sparse Partial Least Squares for multivariate responses
----
Parameters: eta = 0.99, K = 2, kappa = 0.5
PLS algorithm:
pls2 for variable selection, simpls for model fitting

SPLS chose 2 variables among 1028 variables

Selected variables:
384 1248

M-SPLS regression on the Mating functional class selects two (combined) mark-
ers (384 and 1,248) with trans-effects. Combined marker 384 consists of 2 markers
with the identical genotype, located at positions 201; 166 and 201; 167bp in chro-
mosome 3. Combined marker 1,248 consists of 7 markers with the same genotype
and they are located at positions 111; 679–111; 690 bp in chromosome 8. Marker
384 resides within the MAT locus and it is located 992 bp upstream of MATAL-
PHA2 gene and 201 bp downstream of MATALPHA1 gene. Marker 1,248 resides
1,804 bp downstream of GPA1 gene. These loci were identified to influence the
Mating class genes in a previous study [6]. In particular, it is known that the MAT
locus determines mating type of a haploid yeast cell by the genetic composition of
the locus and the polymorphism in GPA1 affects expression of pheromone response
genes [6].

Transcription factor (TF) MCM1 can bind to both the ˛- and a-specific genes
and products of MAT determine whether transcriptional activation takes place [20].
Panel (a) of Fig. 13.1 shows the heatmap of the gene expression of the MAT
genes (MATALPHA1 and MATALPHA2) and the genes in the Mating class. MAT
genes are differentionally expressed for two different genotypes of Marker 384
and both MATALPHA1 and MATALPHA2 are overexpressed in BY strains and
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Fig. 13.1 (a) Heatmap of the gene expression of MAT genes (first two columns; marked with ‘*’)
and the genes in the Mating class. Rows are grouped by genotype of Marker 384, which resides
upstream of MATALPHA2 gene and downstream of MATALPHA1 gene. (b) Heatmap of the gene
expression of GPA1 gene (first column; marked with ‘*’) and the genes in the Mating class. Rows
are grouped by the genotype of Marker 1,248, which resides downstream of GPA1 gene. Bright
and dark color scheme indicate over- and under-expression, respectively. ‘C’ and ‘�’ represent
genotypes ‘BY’ and ‘RM’, respectively
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underexpressed in RM strains. The overexpression of MATALPHA1 ‘turns on’ the
˛-specific genes such as MF(ALPHA)1, MF(ALPHA)2, STE3, and SAG1 while
the overexpression of MATALPHA2 ‘turns off’ the a-specific genes such as MFA1,
MFA2, STE2, STE6, BAR1, and AGA2 [20].

Panel (b) of Fig. 13.1 displays the heatmap of the gene expression of GPA1
gene and the genes in the Mating class. Different sets of genes in the class are
differentially expressed for two different genotypes of Marker 1,248, e.g., FIG1,
FIG2, AGA1, SST2, FUS3, and AFR1. [49] suggested that the polymorphism
of GPA1 may affect its binding to STE2 and STE3 and this again changes the
expression of genes in the Mating class. However, [41] discusses that STE2 and
STE3 are not co-expressed with GPA1 and they are more affected by MAT than
GPA1. [41] suggested that the gene expression of STE12 is linked to GPA1 locus
by considering the biological knowledge that signals initiated from GPA1, STE2,
and STE3 propagate through the MAPK signaling cascade that reach STE12 [47].
The genes differentially expressed for two different genotypes of Marker 1,248 are
target genes of the transcription factor STE12 according to the transcription factor
binding data of [19] and this may suggest that such differential expression is related
to the activity of TF STE12.

Next, we further investigate the linkages of these two markers with the
genes in the class. ci.spls function constructs bootstrap confidence intervals
for each marker/transcript combination (default is 95% confidence intervals).
correct.spls provides refined linkages by setting the marker/transcript com-
binations to zero if their corresponding confidence intervals include zero. fits$A
contains the index of selected markers and the final summary of linkages can be
obtain by the command cf[ fits$A, ].

> ci.f <- ci.spls( fits )
> cf <- correct.spls( ci.f )
> cf[ fits$A, ]

AGA1 AGA2 STE6 STE14 MFA2
384 0.000000 -1.8098963 -1.522525 0.0000000 -1.629656
1248 1.104209 0.5030974 0.000000 0.1220773 0.000000

MFA1 STE23 STE3 MF(ALPHA)2 MF(ALPHA)1
384 -0.7407644 0 2.5571961 1.324 2.288917
1248 0.0000000 0 0.2383098 0.000 0.000000

SAG1 BAR1 STE2 AFR1 FIG1
384 2.2701921 -2.3299790 -2.2942640 0.0000000 0.0000000
1248 0.5859102 0.3367588 0.3124113 0.2873071 0.3895847

FIG2 SST2 MOT2 MOT3 PEA2
384 0.0000000 0.0000000 0 0 0
1248 0.4105893 0.5426099 0 0 0

OPY1 FUS3 SSF1 FIG4 MID2
384 0.00000000 -0.08039047 0 0.00000000 0.00000000
1248 -0.05678439 0.28145494 0 0.04289189 0.09243976
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Construction of confidence intervals reveals that genes MFA1, MFA2, MF
(ALPHA)1, MF(ALPHA)2, and STE6 have linkages only with Marker 384,
whereas, genes FIG1, FIG2, FIG4, AGA1, STE14, AFR1, SST2, OPY1, and MID2
have linkages only with Marker 1,248. In contrast, AGA2, SAG1, BAR1, STE2,
STE3, and FUS3 have linkages with both of markers 384 and 1,248. Linkages with
MAT are stronger in AGA2, SAG1, BAR1, STE2, and STE3, whereas linkage with
GPA1 is stronger in FUS3. STE23, MOT2, MOT3, PEA2, and SSF1 do not have
linkages with either of the markers. Figure 13.2 displays the 95% confidence inter-
vals of coefficient estimates for markers 384 and 1,248, respectively, and provides
visual summary of the linkages.
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Fig. 13.2 Ninety-five percent confidence intervals of coefficient estimates for markers 384 and
1,248. Marker 384 resides upstream of MATALPHA2 gene and downstream of MATALPHA1
gene. Marker 1,248 resides downstream of GPA1 gene. Circles and solid vertical lines indicate
point estimates and their corresponding confidence intervals, respectively. Numbers 1–25 along
the x-axis correspond to the genes in the Mating class, AGA1, AGA2, STE6, STE14, MFA2,
MFA1, STE23, STE3, MF(ALPHA)2, MF(ALPHA)1, SAG1, BAR1, STE2, AFR1, FIG1, FIG2,
SST2, MOT2, MOT3, PEA2, OPY1, FUS3, SSF1, FIG4, and MID2



292 D. Chung and S. Keleş

13.4.2 Summary of the eQTL Analysis for all the Functional
Classes

In this section, we summarize results from the analysis of all the 44 functional
classes by the M-SPLS eQTL. As in the previous section, we searched K between
1 and 10 and eta between 0:01 and 0:99. Table 13.1 displays a summary of the
results. For 13 of the functional classes, more than 50 markers were selected. There
are two factors contributing to such high number of selected markers. Functional
classes with large number of genes and small average within-cluster correlation
tend to have a large number of selected markers (Panels (a) and (b) of Fig. 13.3).
This is expected since if the transcript levels of genes within the functional cate-
gory are not correlated, it is reasonable to argue that different sets of markers are
contributing to expression variation in individual genes. Therefore, as the number
of uncorrelated genes within the cluster increases, the number of selected mark-
ers will tend to increase. We also observe some functional groups with a small
number of genes and large number of selected markers, for example, Galactose,
Glycerol, Thiamine, and DrugResistance, and within-cluster correlation for these
groups are quite small (<0.2).

For each functional class, we determined whether the selected markers are cis- or
trans-acting (column 2 in Table 13.1). Following [7] and [49], a marker is labeled as
cis-acting if any of the functional class genes that it has linkage with is within 10 kb
of the marker. Consistent with the results of previous eQTL studies [49], our results
indicate that most linkages are in trans. However, 64% of the functional classes
(28 out of 44) have at least one cis-acting marker. We further checked whether each
selected marker is within 2 kb of any known yeast genes (column 3) and whether the
marker is within the coding region of any known yeast genes (column 4). In order
to assess whether markers have broad effects on many genes in the class or specific
effects on a small subset of the genes, we checked the number of markers that have
linkage with only one gene in the class (column 5). In 61% of the functional classes
(27 out of 44), all markers have linkages with more than one gene in the class.

Further analysis of each gene category revealed that many gene clusters are
linked to markers that reside within or in close proximity of known yeast genes
(Columns 3 and 4 of Table 13.1). Arginine functional category genes that are
responsible for Arginine biosynthesis are linked to a marker that resides at posi-
tion 76; 127 bp on chromosome 3. This marker is within the coding region of the
AGP1 gene which is an arginine/glutamate permease gene [39]. Asparagine func-
tional class has an eQTL region that spans positions 468; 981bp to 489; 760bp on
chromosome 12. This region consists of 30 markers with the same genotype and
some of these markers exhibit cis-acting property. A subset of the markers reside
exactly on the coding region of the ASP3-1 gene and some are within 2Kb of
ASP3-2 gene. Both of these genes are members of the Asparagine functional group
and are known to be involved in asparagine catabolism [29]. Another example of a
cis-acting marker is at position 460; 945 bp of chromosome 7. This marker is 726 bp
upstream of the KAP122 which is a member of the DrugResistance functional class.
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Fig. 13.3 (a) Numbers of selected markers vs. number of genes in the category. Class names
are provided for classes with more than 50 selected markers. (b) Numbers of selected markers
vs. average within-cluster correlation. Class names are provided for classes with more than 100
selected markers. Number within parenthesis is number of genes in each functional class

This gene might play a role in regulation of pleiotropic drug resistance [10]. Two
other markers linking to this category are in the vicinity of other drug resistance
related genes AQR1 [43, 45] and DTR1 [15, 17].

For the FattyAcids category, a marker at position 51; 324 bp of chromosome 1
has linkage with 12 of the 35 genes within this category and resides within the cod-
ing region of the OAF1 gene. OAF1 is a Oleate-activated transcription factor and it
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activates genes involved in beta-oxidation of fatty acids [24, 36]. Markers at posi-
tions 584; 351 and 584; 357bp in chromosome 2 with the identical genotype have
linkage with 6 of the 35 genes in FattyAcids category. These markers are located at
445 bp downstream of the EHT1 gene. EHT1 is ethanol O-acyltransferase that plays
a minor role in medium-chain fatty acid ethyl ester biosynthesis [37].

Galactose functional category has two cis-acting markers that reside upstream
of the GAL3 gene involved in the activation of the GAL genes in response to
galactose [4, 35]. These markers are located at positions 463; 264 and 463; 267bp
on chromosome 4. A trans-acting marker at position 76; 127bp of chromosome 3
resides within the AGP1 gene which is involved in uptake of asparagine, glutamine,
and other amino acids [39]. This marker has linkages with 4 of the 5 genes in the
functional class Glutamate.

Heme class has a cis-acting marker that resides upstream of the HEM3 gene
involved in the third step in heme biosynthesis [28]. This marker is located at posi-
tion 95; 437 bp in chromosome 4. Genes in histidine category have linkages with
two cis-acting markers, located at position 64; 311 bp in chromosome 3 and position
141; 014bp in chromosome 9. These two markers are placed 1,623 bp downstream
of HIS4 and 1,911 bp upstream of HIS5 genes, respectively. HIS4 is involved in
the second, third, ninth and tenth steps in histidine biosynthesis [25] while HIS5 is
involved in the seventh step [1].

Three among five genes in the leucine category (LEU1, LEU2, and LEU4) have
linkages with Marker 356 consisting of 21 markers with the identical genotype,
located at positions 90; 412–92; 391bp in chromosome 3. 13 of these markers reside
within the coding region of LEU2 and the other 8 markers reside upstream of LEU2.
LEU2 is involved in the third step in the leucine biosynthesis pathway [3]. Such
linkages were also found in previous studies and LEU2 was considered as the puta-
tive regulator of the leucine category [7, 42]. Figure 13.4 shows the heatmap of the
gene expression of the LEU2 gene and the genes in the leucine category. LEU2 is
not expressed in RM strain because RM strain is LEU2-deleted [41, 49]. LEU1 and
LEU4 are overexpressed in RM strain and this suggests a potential compensation
effect due to the loss of LEU2 in RM strain [41, 42]. The transcription factor (TF)
LEU3 binds to LEU2 [19, 30] and [41] argued that the genetic variation in LEU2
perturbs the TF activity of LEU3 and the perturbed TF activity affects the expression
of genes in the leucine category.

13.5 Conclusion

We provided an application of M-SPLS eQTL to analyze eQTL data for 44 yeast
functional gene classes. In particular we focused on the R package spls that facil-
itates the application of sparse partial least squares regression for eQTL mapping.
We have illustrated that this approach provides a principled way of browsing through
linkages generated by eQTL mapping and the focus on functional gene categories
helps to generate hypotheses for further investigation.
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Fig. 13.4 Heatmap of the
gene expression of LEU2
(first column; marked with
‘*’) and the genes in the
leucine category. Rows are
grouped by the genotype of
Marker 356, which resides
within LEU2. Bright and dark
color scheme indicate over-
and under-expression,
respectively. ‘C’ and ‘�’
represent genotypes ‘BY’ and
‘RM’, respectively
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13. Chun, H., & Keleş, S. (2010). Sparse partial least squares for simultaneous dimension reduction
and variable selection. Journal of the Royal Statistical Society: Series B, 72, 3–25.

14. Dwight, S. S., Balakrishnan, R., Christie, K. R., Costanzo, M. C., Dolinski, K., Engel,
S. R., Feierbach, B., Fisk, D. G., Hirschman, J., Hong, E. L., Issel-Tarver, L., Nash,
R. S., Sethuraman, A., Starr, B., Theesfeld, C. L., Andrada, R., Binkley, G., Dong, Q., Lane,
C., Schroeder, M., Weng, S., Botstein, D., & Cherry, J. M. (2004). Saccharomyces genome
database: Underlying principles and organisation. Briefings in Bioinformatics, 5(1), 922.
URLhttp://dx.doi.org/10.1093/bib/5.1.9

15. Felder, T., Bogengruber, E., Tenreiro, S., Ellinger, A., Sá-Correia, I., & Briza, P. (2002). Dtrlp,
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Chapter 14
Statistical Analysis of Time Course
Microarray Data

Lingyan Ruan and Ming Yuan

Abstract Time course gene expression experiments have proved valuable in a vari-
ety of studies. Their unique data structure and the diversity of tasks often associated
with them present new challenges to statistical analysis. In this report, we give a
brief review of several primary questions pertaining to such experiments and popular
statistical tools to address them.

14.1 Introduction

Among the first microarray experiments were those measuring expression over time,
and time course microarray experiments remain common. Nowadays time course
data account for more than one third of microarray experiments (National Center for
Biotechnology Information http://www.ncbi.nlm.nih.gov/geo/). Instead of taking a
static snapshot, time course microarrays capture the dynamics of biological pro-
cesses, and therefore offer a powerful tool to many biological and medical studies.

Broadly speaking, there are two primary goals in time course gene expression
study. One is to characterize temporal patterns of gene expression within a single
biological condition and group genes by these patterns. Doing so could provide
insight into the biological function of genes if one assumes that genes with simi-
lar temporal patterns of expression share similar functions. The other goal common
to many time course experiments is to collect profiles in multiple biological con-
ditions and identify temporal patterns of differential expression. Both goals could
be addressed naı̈vely by applying any of the many methods for analyzing static
microarray data (see, e.g., [13]). For example, in a single biological condition, one
could consider differential expression patterns across time points; in multiple bio-
logical conditions, each time point could be treated in isolation. However, such naı̈ve
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approaches can be inefficient as they do not utilize the information contained in
the dependence structure of the time course data. This problem is exacerbated in
microarray studies, where low sensitivity is a problematic feature of many methods.
In addition, a gene’s expression pattern over time might not be identified by simply
combining results from repeated marginal analyses.

The unique data structure of the time course data and the diversity of tasks often
associated with them present new challenges to statistical analysis. One of the key
issue is to model the temporal dependence among gene expression measurements.
This task is often complicated by the difference in sampling schemes. In many ex-
periments, for example, genetically identical subjects are raised and sacrificed at
different time points. Therefore, the dependence across time points are primarily
produced by the temporal nature of the biological process of interest. In contrast,
in other experiments, the same subjects are followed up over time to collect data
at different time points. The dependence between data from different time points
is then determined jointly by the temporal pattern of the biological process and the
subject effect. Another factor that makes the use of traditional methods difficulty is
the fact that most of the time course studies involve only short time series, with less
than, say, eight distinct time points.

To overcome these challenges, a number of methods have been introduced in past
several years. In what follows, we shall review some of these recent advances.

14.2 Clustering of Temporal Patterns

With a large number of genes monitored, clustering is one of the foremost tasks for
microarray data analysis. It identifies groups of genes that have similar expression
profiles across samples. Clustering can reduce the effort of studying individual genes
and more importantly it can unmask the functional groups among genes. Since the
seminal work by Eisen et al. [5], various techniques have been developed for this
purpose in the context of microarray experiments, which we shall roughly clas-
sify into distance-based unsupervised clustering methods and mixture model based
methods.

14.2.1 Data Structure

Before reviewing some of the common ideas for clustering gene expression patterns,
we first briefly discuss the data structure common to time course gene expres-
sion data where there are multiple time points; and for each time point, there are
microarray measurements from possibly multiple replicates. Intensity values are
background corrected and normalized to account for known sources of variation,
leaving a single summary score of expression for each gene and each replicate at
each time.



14 Statistical Analysis of Time Course Microarray Data 301

Table 14.1 Data structure for microarray experiments with one biological group

Time 1 Time 2 . . . Time T
1 2 . . . n1 1 2 . . . n2 . . . 1 . . . nT

Gene 1 x111 x112 : : : x11n1 x121 x122 : : : x12n2 . . . x1T1 . . . x1TnT
Gene 2 x211 x212 : : : x21n1 x221 x222 : : : x22n2 . . . x2T1 . . . x2TnT

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Gene G xG11 xG12 : : : xG1n1 xG21 xG22 : : : xG2n2 . . . xGT1 . . . xGTnT

The full observed gene expressions can be represented by a matrix whose rows
correspond to genes and columns to replicates. The typical data layout is shown in
Table 14.1. We denote by xgtk the observed expression level for gene g on the kth
array at time point t (k D 1; : : : ; nt ), where nt is the number of arrays at time point
t . Denote by xgt D .xgt1; : : : ; xgtnt

/ the row vector of gene expressions for gene g
at time t , and by xg D .xg1; : : : ; xgT / all gene expressions collected for gene g.

14.2.2 Distance-based Clustering

Unsupervised clustering of gene expressions is generally based upon a certain
distance measure reflecting the similarity or dissimilarity of the temporal expres-
sion patterns between genes. For example, Eisen et al. [5] propose to quantify the
similarity between two temporal expression patterns by their Peason’s correlation
coefficient, i.e., Corr.log.xg/; log.xg 0// between genes g and g0. In a similar spirit,
Tavazoie et al. [21] suggested to use the Euclidean distance between two expression
profiles, i.e.,

k log.xg/� log.xg 0/k D
0
@X

t;k



log.xgtk/ � log.xg 0tk/

�2
1
A

1=2

:

Note that correlation coefficients are similarity measure in that the bigger the score,
the more similar the two expression profiles; whereas Euclidean distance is a dis-
similarity measure in that the smaller the distance, the more similar the two profiles.
Both of them can be used for the purpose of unsupervised clustering. Other similar-
ity or dissimilarity measures have also been introduced to take the temporal nature of
the expression data into account (see, e.g., [6,17]). One notable example is Spellman
et al. [17] who studied the cyclic patterns of time course data collected in yeast.
They propose to measure the similarity between temporal expressions in the Fourier
domain, which allows for the identification of the peak expression during the cell
cycle.

Once the pairwise distance is constructed for the genes, various unsupervised
clustering techniques can be applied. One of the popular choice is hierarchical
clustering which, for example, was adopted by Eisen et al. [5]. The hierarchical
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clustering computes a dendrogram that assembles all elements into a single tree. In
a nutshell, hierarchical clustering proceeds as follows. Let S be the similarity matrix
computed using any of the aforementioned methods, i.e., Sgg 0 is the numerical score
representing the similarity between genes g and g0. The largest entry in the matrix is
first identified and the corresponding genes are assigned to the same cluster because
they have the greatest similarity. The average gene expressions of the two genes can
be then be used in place of the two individual ones to represent the cluster. The
similarity matrix is then updated with the similarity between this new cluster and
remaining genes computed. The process then continues by screening the greatest
similarity and combining the corresponding genes or clusters. The procedure stops
until all genes are merged into a single cluster the relationship among genes is now
represented by a tree structure.

Another popular similarity based clustering approach is the k-means algorithm
which has been used by Tavazoie et al. (1999) among others in the context of time
course microarray data. It iteratetively minimizes the within-cluster sum of squared
distances from the cluster mean. The first cluster centre is the centroid of the entire
data set and subsequent centers are decided by finding the data point farthest from
the centers already chosen. The algorithm is repeated until convergence that the
cluster memberships do not change appreciably between iterations.

Self-organizing maps (SOMs) have also been used to group temporal patterns of
gene expressions [20]. It has a set of nodes with a simple topology and a distance
function on the nodes. Nodes are iteratively mapped into a gene expression space.
The initial mapping is random and the subsequent iterations re-position the nodes
by moving toward a selected point, which is chosen based on random ordering. The
movement depends on the initial geometry with the closet nodes moving the most.
Neighboring points are identified as clusters and a structure in data is imposed by
SOMs.

14.2.3 Model-Based Clustering

In addition to the distance based clustering techniques, model based clustering meth-
ods have also been developed. In these approaches, each cluster is represented by a
component in a mixture model. For a moment, suppose we know apriori that there
are C clusters among the genes. Expression measurements for genes from the same
cluster are expected to have similar profiles, and therefore can be reasonably mod-
eled as observations from the same distribution. More specifically, if gene g comes
from the kth cluster, then xg � fk.xg/. Under this notion, measurements of a
randomly picked gene g from the G genes we observed should follow

xg � �1f1.xg/C : : :C �CfC .xg/

where �k is the prior probability that g comes from the kth cluster (�1 C : : : C
�C D 1).
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Different choices of the component distribution fk have been researched in the
literature. Ramoni, Sebastiani, and Kohane [15] consider each gene’s expression
profile as output from an autoregressive (AR) process. Schliep, Schönhuth, and
Steinhoff [16] address similar goals. In their work, partially supervised learning is
used to identify an initial set of clusters at each time point, represented by a hidden
Markov model (HMM). Along the same vein, Bar-Joseph et al. [1] and Luan and
Li [11] proposed to model temporal patterns of gene expressions from a cluster by
splines with splines coefficients coming from a common distribution.

Once the component distribution is known, clustering can be done based upon
posterior calculations. For example, the chance that a gene comes from cluster k
can be conveniently represented by the following posterior probability:

P


gene g comes from cluster kjxg

� D �kfk.xg/

�1f1.xg/C : : :C �CfC .xg/
:

In principal, estimation of the parameters involved in the component distribu-
tions can be done through maximum likelihood, which is often implemented using
variants of EM algorithm. In practice, however, it can be quite challenging com-
putationally. Heuristic algorithms are often employed to alleviate such problems.
Another difficulty with model-based approaches is in the choice of the number of
clusters, C , which amounts to a model selection problem. BIC criterion is often
used for such purpose although other heuristic methods are also popular in practice.

More recently, Wu et al. [24] introduced a partially Bayesian hierarchical model
integrated with a hidden Markov Model (HMM) structure and auto-regression (AR)
to model temporal gene expression profiles at both the expression level and the state
level to identify genes with trajectories that change over time and to group genes
with similar trajectories.

14.2.4 Related Issues

Depending on the context of the study, several recurring issues often arise with
clustering temporal gene expression data. For example, periodic phenomenon is
common in a lot of studies. An efficient and interpretable clustering procedure
should therefore takes such behavior into account (see, e.g., [22]; Kim et al. [2]).
In particular, Kim et al. (2006) propose to approximate periodical expression levels
by Fourier Series of order one. Distance based clustering can then be employed with
similarities or dissimilarities among the genes measured in terms of the phase and
amplitude of the Fourier series.

In a similar spirit, one may consider project the dynamic profile of a gene’s
expression level into a small number of ‘characteristic’ modes and then cluster genes
according to the projection. One of the more popular examples is the singular value
decomposition (SVD) approach from Holter et al. (2000) where the first few singular
vectors are used as the basis expression patterns.
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Another task that is somewhat related to clustering is the identification of genes
that show differential expression over time. To this end, let �gt D E.log.xgtk// be
the average log expression level for gene g at time t . The problem can be naturally
formulated as classifying a gene into two possible clusters. Majority of the genes
fall into the first class where

�g1 D �g2 D � � � D �gT ; (14.1)

whereas others are classified into a class where this relationship does not hold. In
other words, the second cluster of genes demonstrates differential expression over
time and this could be due to biological response to a certain treatment or trigger-
ing event at the beginning of the experiment. This problem can be naturally cast
as a hypothesis testing problem and treated in a similar fashion as the differential
expression identification for static gene expression analysis (see, e.g., [19]).

14.2.5 Data Example

To demonstrate the usefulness of clustering in time course gene expression studies,
we revisit an experiment on memory CD8 T cell differentiation. The experiment,
original reported in Kaech et al. [10], was done in the context of a large research
effort to understand immune memory in Rafi Ahmeds laboratory of the Emory Vac-
cine Research Center. Here immune memory refers to the ability of the immune
system to remember its rst exposure to a specic antigen and to mount a rapid and
aggressive response to a second exposure. In the immune system, CD8 T cells are
specialized immune cells that play an important role in the regulation of antiviral
response and the generation of protective immunity. In response to a viral infection,
naı̈ve CD8 T cells differentiate into effector CD8 T cells that control the infection
and the effector CD8 T cells that survive continue to differentiate into long-lived
protective memory CD8 T cells.

In this particular experiment, acute lymphocytic choriomeningitis virus Arm-
strong (LCMV) infection of mice was used as a model system to study CD8 T cell
development. Genetically identical, uninfected mice were sacrificed on the baseline
day to obtain naı̈ve CD8 T cells. Other genetically identical mice were infected with
LCMV on the baseline day. Then mice were sacrificed at day 8, day 15, and greater
than day 30 (Imm). Because mice were sacrificed at each time point, each time
point contributes an independent sample. Cells from several mice were pooled for
each microarray chip to increase stability. Further detailed information about this
experiment can be found in Kaech et al. (2002).

In the original analysis, Kaech et al. (2002) selected genes based on whether
their average gene expression changed (decreased or increased) by at least 1:7
fold between any two time points, generating a set of 431 genes. After that, they
applied a K-means clustering algorithm on these genes and found 6 major patterns.
Although the results are useful to a certain extent, the temporal aspects of the data
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Fig. 14.1 Model based clustering for the immune data

were ignored in this analysis. Moreover, both the fold change cutoff in the selection
method and the number of clusters in K-means clustering were chosen arbitrarily.
As a result, the biological meaning of the obtained clusters is not clear and the
interpretation of clustering results is not straightforward.

To improve interpretation, Wu et al. [24] reanalyzed this CD8 T-cell experi-
ment by focusing on the direction (upregulation, downregulation and no change)
and the magnitude of the gene-specic successive differences (changes) in the mean
gene expression levels (log base 2 scale) over time. The clustering result is repro-
duced in Fig. 14.1 where upregulation, downregulation and no change between two
successive time points are represented byC, � andD respectively.

In particular, when compared with the results obtained from K-means clustering
(Kaech et al., 2002), both methods identify clusters ‘start,C,�,�’, ‘start,�,C,C’,
and ‘C,D,D’ as the more prominent clusters and often associated with important
biomarkers:
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Cluster ‘start,C, �, �’: Upregulated at day 8 and gradually downregulated at day
15 and memory stage. This cluster contains 46 genes. Important genes in this
cluster include GZMA, GZMB, GZMK KLRG1, and CCR2.

Cluster ‘start, �,C, C’: Downregulated at day 8 and gradually upregulated at
day 15 and memory stage. This cluster contains 192 genes. Important genes in
this cluster contains genes like IL7R, BCL2, CXCR4, CD62L, and CCR7.

Cluster ‘start,C, D, D’: Upregulated at day 8 with no change over the follow-
ing time points. This cluster contains 282 genes. Important genes in this cluster
include KLRA3, CCL9 and CD44.

14.3 Temporal Differential Expression

When gene expression measurements come from multiple biological conditions, a
fundamental goal is to identify those genes which are differentially expressed under
different conditions. This practice oftentimes helps investigators identify specific
diagnostic, prognostic and predictive factors for disease which can ultimately lead
to the development of molecular-based therapies. The development of statistical
methods to identify differentially expressed genes for static microarray data has
received much attention, especially methods to identify genes that are differentially
expressed between two conditions. For detailed discussion regarding this subject,
the readers are referred to Parmigiani et al. [13] and the references therein.

The general data structure are similar to before except that the replicates are now
collected under at least two biological conditions. The primary goals of the study
are to identify genes with different levels of expression over time. Following the
previous notation, we shall write xgtkc in what follows with an additional subscript
c to denote the conditions, i.e., for each c, fxgtkc W g; t; kg would have the same
layout as given in Table 14.1.

In contrast to the rich literature on static microarray experiments, fewer papers
are dedicated to time course microarray experiments. Methods up to now for
microarray time course experiments can be roughly divided into three classes: (1)
methods extended from those for static microarray experiments; (2) methods based
on smoothing; and (3) methods extended from time series analysis.

14.3.1 ANOVA

Expression measurements for a gene can be regarded as noisy observations of
a vector of latent expression levels at different time and for different biological
conditions. In the current setup, we use �gtc to represent the latent level for the
log-transform expression of gene g at time t under condition c, i.e.,

log.xgtkc/ D �gtc C �gtkc:
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Under the independent sampling when each array is done on independent subjects,
the measurement errors �gtkc can be treated as independent. In contrast, when longi-
tudinal sampling scheme was adopted such that the kth replicate is always measured
on the same subject, the measurement errors f�gtkc W t D 1; : : : ; T g are correlated.
Various models for the correlation structure for the measurement errors have been
studied in details in the literature of longitudinal data analysis (see, e.g., [3]).

With this setup, gene g is equivalent expressed if and only if �gt1 D �gt2 D : : :

for all t D 1; : : : ; T . Various test statistics (see, e.g., [19]) have been introduced in
recent year to test this hypothesis. One popular class of such method is based upon
ANOVA where the following models are often considered (see, e.g., [12]):

M1 W log.xgtkc/ D �g C ˛gc C ˇgt C �gtkcI

and
M2 W log.xgtkc/ D �g C ˛gc C ˇgt C gtc C �gtkc;

where �g models the gene effect, ˛gc and ˇgt represent the gene-specific condi-
tion effect and temporal effect, and gtc can be used to incorporate the two-way
interaction between time and condition.

Based on these models, if gene g is equivalently expressed, then ˛gc D 0 and
gtc D 0. This can be cast as a typical hypothesis testing problem and tested
using F-test when assuming that the idiosyncratic noise �gtkc follows a centered nor-
mal distribution. The normality assumption can be relaxed using permutation test.
Adjustment to multiple comparisons can also be done in a similar fashion as the
static case. The main drawback of this class of method is that they do not account for
the temporal order of the time course data, i.e., identical results would be obtained
if the time points were reordered. As a result, they are susceptible to low sensitivity.

14.3.2 Smoothing

To further account for the temporal nature of time course data, smoothing based
methods have also been introduced. It is now assumed that �gtc D fgc.t/ where
fgc is a smooth function. In this setting, identifying temporal differential expres-
sion can be formulated as testing H0 W fg1 D fg2 D : : :. The main challenge
is how to model the true gene expression profile described by the function fgc.�/.
Hong and Li (2006) and Storey et al. [18], among others, propose to model it as a
linear combination of a finite set of B-spline basis functions. The rationale behind
this modelling approach is the assumption that the temporal process evolves pos-
sibly nonlinearly but smoothly and this smoothness is governed by the number of
basis functions used in modelling fgc.�/. How well the profile can be approximated
heavily depends on the number of basis functions and their respective locations.
Unfortunately, the selection of basis functions, most of the time, can only be done
on a case-to-case basis. A flexible alternative to the B-spline approach is to view
fgc.�/ as a realization of a Gaussian process (Yuan, 2006).
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The idea of Gaussian process modeling is, without parametrizing a function, to
view it as a sample from the space of functions. A Gaussian process defines a dis-
tribution over functions. It can be thought of as the generalization of a multivariate
normal distribution over a finite vector space to a function space of infinite dimen-
sion. Different from parametric approaches such as the one used by Hong and Li
(2004) where inferences about a function is made via the inference on the linear
coefficients, any inference regarding the function takes place directly in function
space with Gaussian process modeling. The Gaussian process based approach of
Yuan (2007) can also conveniently handle more than two biological conditions.

To elaborate on this, consider the aging experiment from Edwards et al. [4].
The experiment was designed to better understand the genetic basis underlying the
relationship between longevity and the ability to resist oxidative stress as we shall
discuss in detail later. After stress induction, the investigators monitored the gene
expression level for young, middle-aged and old mice at five different time points.
There are no natural ways of applying Hong and Li’s approach to compare the three
age groups. Storey et al.’s approach can tell us which genes are not equivalently
expressed across all three groups. But it can not provide information on whether or
not the differential expression occurs only for one group. Furthermore, the validity
of both existing profile-modelling methods is questionable with such a small num-
ber of time points. In contrast, the Gaussian process approach classifies the genes
according to the following five patterns.

H1 W fg;aged D fg;middle D fg;young

H2 W fg;aged ¤ fg;middle D fg;young

H3 W fg;middle ¤ fg;aged D fg;young

H4 W fg;young ¤ fg;aged D fg;middle

H5 W fg;aged ¤ fg;middle ¤ fg;young:

Among a total of 10,043 genes, 7,396 genes to H1 (equivalent expression); 369
genes to H2 (Aged differentially expressed); 731 to H3 (Middle-aged differen-
tially expressed); 1,467 to H4 (Young differentially expressed), and 80 to H5 (all
three conditions differentially expressed). Figure 14.2 depicts the expression mea-
surements and estimated expression profiles for a sample of 15 genes. The black
circles, red triangles and green pluses represent the expression measurements taken
for aged, middle-aged and young age group respectively. The solid lines are the
estimated expression profile and the broken lines stand for the 99% Bayesian con-
fidence bands. The three genes from the first column are identified as H1, and as
indicated by the plot, the three estimated expression profiles are very similar. The
second to fourth column each has three genes classified to pattern H2, H3 and H4

respectively, where one age group shows different expression profile from the other
two. The fifth column corresponds to pattern H5. These genes have three different
expression profiles under different conditions. Such plot not only helps us deter-
mine a gene’s expression pattern but also visualizes a gene expression trajectory
under different conditions.
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Fig. 14.2 Genes with different patterns expression

14.3.3 Differential Expression Pattern

The primary goals of many time course studies are to identify genes with different
levels of expression at each time and classify genes into temporal expression pat-
terns. The aforementioned approaches target at genes that are temporally expressed
but can not address the question of when the differential expression occurs and there
is no information indicating which time points contribute most to a gene being iden-
tified as DE across conditions. To address this question, Yuan and Kendziorski [26]
proposed a HMM method where a gene’s differential expression pattern at each time
point fsgt W t D 1; : : : ; T g is modeled by an unobservable Markov Chain, sgt can
be either differential expression or equivalent expression. Inference about a gene’s
expression pattern at different time points can then be inferred based upon observed
expression measurements. This method is easy to implement thanks to dynamic pro-
gramming techniques such as the Baum-Welch and Viterbi algorithms. To illustrate
the variety of questions that often arise with comparing multiple biological condi-
tions and the versatility of the HMM approach, we reproduce below the analysis of
a couple of case studies from Yuan et al. [27].

The first study concerns the effects of type 2 diabetes on the kidney. The obese
Zucker rat is a model organism for studies of this type. Affymetrix Rat Expres-
sion set 230 chips were used to measure the expression levels of 15,923 genes in
the kidney tissue of control and treated obese Zucker rats over time. The treated
rats received streptozotocin, a chemical known to selectively damage islet cells
in the pancreas thus increasing the progression to type 2 diabetes. Expression
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Fig. 14.3 Average expression for genes that are differentially expressed in the middle of the study

measurements were obtained at 2 h, 1 day, 3 days, and 7 days following treatment.
Two rats were considered for each time and age combination for the first three time
points; three rats in each combination were considered on day 7. All Affymetrix
image files were processed using the affy software in Bioconductor [9]; intensity
scores for each gene were obtained via RMA. In this study, the investigators are
primarily interested in genes that show differential expression only in the middle
of the time course as they are more likely to be responsive to the initial treatment.
This can be expressed in terms of the expression pattern: genes that are equiva-
lently expressed (i.e., �1 D �2 at 2 h and 7 days, but differentially expressed (i.e.,
�1 ¤ �2) at 24 h and 72 h. Genes following such pattern can be conveniently
identified using the HMM method and a subset of them are shown in Fig. 14.3

The second case study considers the genetic response to varying doses of 2,3,7,8-
Tetrachlo-rodibenzo-p-dioxin (dioxin) in mouse liver tissue. Dioxin is the prototype
for a family of highly toxic compounds widely dispersed in the environment. Expo-
sure to dioxin can lead to liver damage, endocrine disruption, birth defects, and
cancer [14, 23]. cDNA microarrays were used to measure the expression levels
of 1,536 genes in liver tissue of mice treated with three doses of dioxin (low,
medium, high). Seven time points were considered (1,2,4,8,16,32, and 64 days fol-
lowing dioxin). Four mice were measured for each time and dose combination. Dye
swaps were also done to give a total of 168 arrays; 132 arrays provided useable
data. Spotfire (www.spotfire.com) was used to process the image files and correct
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Fig. 14.4 Average expression for genes that are differentially expressed in the middle of the study

for dye effects. Of particular interest in the study is to identify genes showing
equivalent expression between low doses, but differential expression at the higher
dose at the intermediate time points. Viterbi paths corresponding to this pattern
(�1 D �2 ¤ �3) at Day 4, Day 8 and Day 16 were identified; the expression
profiles for a subset of these genes are shown in Fig. 14.4.

14.4 Concluding Remarks

Time course expression experiments have been successfully used to study a wide
range of biological systems as they provide key information about the dynamics
of complex biological systems. Driven by the need to effective extract information
from these data, a growing number of approaches have been developed in recent
years to address various questions associated with this type of experiments. In this
report, we gave a short review of some of the representative ideas in clustering and
identifying differential expression in time course studies. The review is by no means
exhaustive but to demonstrate the unique nature of the data structure and multitude
of questions that often arise with time course studies.
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Chapter 15
Kernel Methods in Bioinformatics

Karsten M. Borgwardt

Abstract Kernel methods have now witnessed more than a decade of increas-
ing popularity in the bioinformatics community. In this article, we will com-
pactly review this development, examining the areas in which kernel methods have
contributed to computational biology and describing the reasons for their success.

15.1 Introduction

Kernel methods are a family of algorithms from statistical machine learning [61,67].
These include the Support Vector Machine (SVM) for regression and classification
as well as methods for principal component analysis [62], feature selection [72],
clustering [94], two-sample tests [7, 19], or dimensionality reduction [93]. These
kernel methods have witnessed a huge surge in popularity in bioinformatics over the
last decade. To illustrate this popularity: pubmed, the search engine for biomedi-
cal literature, lists 1,710 hits for ‘kernel methods’ and 1,798 hits for ‘SVM’ (as of
May 28, 2009).

The goal of this article is to review which problems in bioinformatics have
been tackled using kernel methods, and to explain their popularity in this field.
Section 15.2 provides a summary of the central terminology in kernel methods.
Section 15.3 describes how kernels can be used for data integration. Section 15.4
illustrates the power of kernel methods in dealing with structured objects such as
strings or graphs. Section 15.5 presents an overview of applications of Support
Vector Machines in bioinformatics, and Sect. 15.6 reviews applications of kernel
methods in bioinformatics beyond SVM-based classification or regression. The
interested reader is referred to Chaps. 10 and 2 of Schölkopf et al. [63] for primers
on molecular biology and kernel methods, to an introduction to Support Vector
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Machines and kernel methods in computational biology [4], and to a primer on
Support Vector Machines for biologists [49].

15.2 Terminology

A kernel function is an inner product between two objects x; x0 2 X in a feature
space H :

k.x; x0/ D h�.x/; �.x0/i (15.1)

where � W X ! H maps the data points from the input space X to feature space
H . k.x; x0/ is referred to as the kernel value of x and x0. If this kernel function is
applied to all pairs of objects from a set of objects, one obtains a matrix of kernel
values, the kernel matrix K . K is always positive semi-definite,� that is all its
eigenvalues are non-negative. Intuitively, a kernel function can be thought of as a
similarity function between x and x0, and k.x; x0/ can be thought of as a similarity
score, and the matrixK as a similarity matrix, that is a matrix of similarity scores.

The idea underlying kernel methods is to map the original input data, on which
statistical inference is to be performed, to a higher dimensional space, the so-called
feature space, and to perform inference in this feature space. Naively, this proce-
dure would comprise two steps: (1) mapping the data points to feature space via a
mapping �, (2) performing the prediction or computing the statistics of interest in
this feature space. Kernel methods manage to perform this procedure in one single
step: rather than separating mapping and prediction into two steps, inference is per-
formed by evaluating kernel functions on the objects in input space. By means of
these kernel functions, one implicitly solves the problem in feature space, but with-
out explicitly computing the mapping �. Hence any algorithm that solves a learning
problem by accessing the data points only by means of kernel functions is a kernel
method.

15.3 Data Integration

One major reason for the popularity of kernel methods in bioinformatics is their
power in data integration. This attractiveness is due to the closure properties which
kernels possess:

1. k1; k2 are kernels) k D k1 C k2 is a kernel
2. k1; k2 are kernels) k D k1  k2 is a kernel
3. k1 is a kernel; � is a positive scalar ) k D �  k1 is a kernel

� The machine learning community often (incorrectly) uses the term positive definite rather than
positive semi-definite.
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Hence kernels can easily be combined in linear combinations or products. For
instance, to compare two proteins, one can define a kernel on their sequences and
on their 3D structures and then combine these into a joint sequence–structure kernel
for proteins [40].

The goal of multiple kernel learning is to optimise the weights in a linear combi-
nation of kernels for a particular prediction task [34]; a related technique is referred
to as hyperkernels [50]. Lack of runtime efficiency turned out to be a limitation
of early approaches to multiple kernel learning and triggered further research that
addressed this problem [54, 75]. In bioinformatics, [35] applied the kernel learn-
ing technique to protein function prediction by optimally combining kernels on
genome-wide data sets, including amino acid sequences, hydropathy profiles, gene
expression data and known protein-protein interactions. Tsuda et al. [84] present
an efficient variant of multiple kernel learning for protein function prediction from
multiple networks, such as physical interaction networks and metabolic networks.

15.4 Analysing Structured Data

A second advantage of kernel methods is that they can easily be applied to structured
data [22], for instance, graphs, sets, time series, and strings. The single requirement
is that one can define a positive definite kernel on two structured objects, which intu-
itively speaking, quantifies the similarity between these two objects. As strings are
abundant in bioinformatics as nucleotide and amino acid sequences, and biological
networks steadily gain more attention, this applicability to structured data is another
reason for the popularity of kernel methods in bioinformatics. In the following, we
will describe the basic concepts underlying string and graph kernels.

15.4.1 String Kernels

The classic kernel for measuring the similarity of two strings s and s0 from an alpha-
bet ˙ is the spectrum kernel [36] that counts common substrings of length n in the
two strings:

k.s; s0/ D
X

q2˙n

#.q � s/#.q � s0/; (15.2)

where #.q � s/ is the frequency of substring q in string s, which can be computed
in O.jsj C js0j/ [89], where jsj is the length of string s.

As nucleotide and protein sequences are prone to mutations, insertions, deletions
and other changes over time, the spectrum kernel was extended in several ways
to allow for mismatches [37], substitutions, gaps and wildcards [38]. Recently, the
runtime of these string kernels with inexact matching was sped up significantly in
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Kuksa et al. [32]. Approaches such as [74] allow to perform SVM training on very
large string datasets.

15.4.2 Graph Kernels

The classic kernel for quantifying the similarity of two graphs is the random-walk
graph kernel [17, 28], which counts matching walks in two graphs. It can be com-
puted elegantly by means of the direct product graph, also referred to as tensor or
categorical product [26].

Definition 15.1. LetG D .V;E;L / be a graph with vertex set V , edge setE and a
label function: L W V [E ! R. The direct product of two graphsG D .V;E;L /

and G0 D .V 0; E 0;L 0/ shall be denoted as G� D G 
 G0. The node set V� and
edge set E� of the direct product graph are defined as:

V� D f.vi ; v
0
i 0/ W vi 2 V ^ v0i 0 2 V 0 ^L .vi / D L 0.vi 0/g

E� D f..vi ; v
0
i 0
/; .vj ; v

0
j 0
// 2 V� 
 V� W (15.3)

.vi ; vj / 2 E ^ .v0i 0
; v0j 0

/ 2 E 0 ^ .L .vi ; vj / D L 0.v0i 0
; v0j 0

//g

Using this product graph, the random walk kernel (also known as product graph
kernel) can be defined as follows.

Definition 15.2. Let G and G0 be two graphs, let A� denote the adjacency matrix
of their product graph G�, and let V� denote the node set of the product graph G�.
With a sequence of weights � D �0; �1; : : : .�i 2 RI�i � 0 for all i 2 N/ the
product graph kernel is defined as

k�.G;G0/ D
jV

�
jX

i;jD1

Œ

1X
kD0

�kA
k��ij (15.4)

if the limit exists.

Naively implemented, random walk kernels scale as O.n6/, where n is the num-
ber of nodes in the larger of the two graphs, but their runtime was reduced to O.n3/

by means of Sylvester equations [91]. As random walk kernels are limited in their
ability to detect common (non-path-shaped) substructures, a family of graph kernels
has been proposed that count other types of matching subgraph patterns, for instance
shortest paths [8], cycles [24], subtrees [55], and limited-size subgraphs [69].

In recent work [68], a highly-scalable graph kernel was presented based on
so-called subtree patterns or tree-walks. Its runtime scales as O.N h m/, where
N is the number of graphs in the dataset, h the height of the subtree patterns and
m the number of edges per graph. This graph kernel is orders of magnitude faster
than previous approaches, while leading to competitive or better results on several
benchmark datasets.
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15.5 Support Vector Machines in Bioinformatics

The ultimate reason why kernel methods became a central branch of statistical
bioinformatics was the Support Vector Machine, which reached or outperformed
the accuracy levels of state-of-the-art classifiers on numerous prediction tasks in
computational biology. For a comprehensive review of Support Vector Machines
in computational biology up to the year 2004, the interested reader is referred to
Noble [48].

Support Vector Machines were originally defined for binary classification prob-
lems [11, 85]: Given two classes of data points, a positive and a negative class, one
wants to be able to correctly predict the class membership of new, unlabeled data
points. Support Vector Machines tackle this task by introducing a hyperplane that
separates the positive from the negative class, and which maximises the margin, that
is the distance to any point from the positive or negative class. New data points are
then predicted to be members of the positive or negative class depending on which
half-space they are located in with respect to the separating hyperplane. The enor-
mous impact of Support Vector Machines was triggered by the observation that the
dual form of the Support Vector Machine optimization problem only accesses the
data points by means of inner products [60], and that this inner product could be
replaced by any other inner product, that is by another kernel function.

Over the following decade, a multitude of applications of Support Vector
Machines in bioinformatics emerged, which can be divided into three large
branches: SVM applications on DNA/RNA sequences, proteins, and gene expres-
sion profiles. These branches differ in the biological objects or data types that they
study, but they often make use the of same computational techniques. String kernels,
for example, can be applied both to DNA/RNA and protein sequences.

15.5.1 DNA and RNA Sequences

Classification of DNA and RNA sequences via Support Vector Machines is one of
the prime applications of SVMs in computational biology.

15.5.1.1 DNA Sequences

Several SVM-based prediction problems on DNA sequences have been studied
in the literature, including secondary structure prediction from DNA sequence by
an RBF kernel [25], but gene finding is the central prediction task on genomic
sequences that SVMs have been applied to over recent years.

Support Vector Machines were successfully applied to various tasks in gene
finding, in particular for splice site recognition. The prediction task is here to dis-
criminate between sequences that do contain a true splice site versus sequences
with a decoy splice site [73]. The string kernel employed is the weighted degree
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shift kernel. It builds upon the spectrum kernel, counting matching n-mers in two
strings, but the n-mers must occur at similar positions within in the sequence, not
at arbitrary positions as in the spectrum kernel. Multiple kernel learning techniques
were employed in Sonnenburg et al. [76] to determine the sequence motifs that
are predictive of true splice sites (see also Sect. 15.6.2). In Ratsch et al. [56], this
technique was further extended to the recognition of alternatively spliced exons. It
was applied both to known exons to detect alternatively spliced ones, and to introns
in order to check whether they might contain a yet unknown alternatively spliced
exon. In Sonnenburg et al. [78], SVMs were employed for promoter recognition
in humans. The SVM used a combination of kernels on weak indicators of pro-
moter presence, including strings kernels on specific sequence motifs and properties
and a linear kernel on the stacking energy and the twistedness of the DNA. These
algorithmic components were assembled into a complete system for gene finding
that was used to assay and improve the accuracy of the genome annotation of the
nematode Caenorhabditis elegans [57], correctly identifying all exons and introns in
87% (coding and untranslated regions) and 95% (coding regions only) of all genes
tested in several out-of-sample evaluations. A kernel-based approach was also pre-
sented for the identification of regulatory modules in euchromatic sequences [64].
The prediction task is here to decide whether a promoter region is the target of a
transcription factor or not. The kernel designed for this task compares the sequence
region around the best matches of a set of motifs within the sequence and their
relative positions to the transcription start site.

15.5.1.2 RNA Sequences

Support Vector Machines have also been applied in RNA research. A major clas-
sification problem that arises in this field is to decide whether an RNA sequence
is member of a functional RNA family. For this task, special-purpose kernels on
RNA sequences have been defined, so-called stem kernels, which compare the stem
structures that appear in the secondary structure of two RNA sequences [58, 59].
The stem kernel examines all possible common base pairs and stem structures of
arbitrary lengths, including pseudoknots between two RNA sequences, and calcu-
lates the inner product of common stem structure counts. Other typical applications
of SVMs in RNA research include distinguishing protein-coding from non-coding
RNA [42] and predicting target genes for microRNAs [31, 92].

15.5.2 Proteins

A second large area of SVM applications in biology is proteomics, in particular in
protein structure, function and interaction prediction.
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15.5.2.1 Protein Sequence Comparison

Protein comparison tries to establish the similarity of two proteins in order to find
proteins that belong to the same structural or functional class. This comparison can
focus on different aspects of the protein: its amino acid sequence, (approximated)
physicochemical properties, or its 3D structure.

Comparing and classifying protein sequences is one of the classic tasks in bioin-
formatics, and one step towards goals such as protein function prediction, protein
structure prediction, fold recognition, or remote homology detection. Kernels on
sequences in combination with Support Vector Machines contributed to the field of
sequence comparison by enabling discriminative classification of sequences. This
field in kernel machines in bioinformatics witnessed a lot of work on kernel design,
resulting in a number of conceptually different kernels, which we describe in the
following.

The Fisher kernel combines Support Vector Machines with Hidden Markov
Models for protein remote homology detection [27]. The Hidden Markov Model is
trained on protein sequences from the positive class and then applied to all proteins
in the training and test set to derive a feature vector representation of the protein in
terms of a gradient vector. This Fisher-kernel – used within a SVM – outperformed
classic sequence alignment techniques such as BLAST [1] in protein homology
detection. The Fisher-kernel was later generalised to the class of marginalised ker-
nels on sequences [82]: these kernels apply to all objects that are generated from
latent variable models (e.g., HMM). The central idea is to first define a joint ker-
nel for the complete data which includes both visible and hidden variables. The
marginalized kernel for visible data is then obtained by taking the expectation with
respect to the hidden variables.

Ding and Dubchak [14] derived feature vector representations of the physic-
ochemical properties of proteins from their amino acid sequence and then used
these vectors, a kernel on vectors and SVMs to predict SCOP fold membership of
proteins [47]. The physicochemical properties for these composition kernels were
derived by means of amino acid indices [30]: These indices are tables which map
each amino acid type to one scalar that approximately describes a physicochem-
ical property of this amino acid, for instance, its polarity, polarizability, van der
Waals volume, or hydrophobicity. Cai et al. [13] used a similar approach to classify
proteins into structural classes.

Motif kernels, as defined by Logan et al. [43] and Ben-Hur and Brutlag [2], are an
alternative way of representing a protein sequence by a vector whose components
indicate motif occurrence or absence. Logan et al. [43] use weight matrix motifs
from the BLOCKS database [23], which are derived from multiple sequence align-
ments and occur in highly conserved, and often functionally important, regions of
the proteins. These motifs are compared to proteins and the resulting scores are used
as feature vector representations of the proteins. Ben-Hur and Brutlag [2] employ
motifs from the eBLOCKS database of discrete sequence motifs [80], and show how
to efficiently compute the resulting motif kernel using a trie data structure.
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Liao and Noble [41] defined a different feature vector representation of protein
sequence, resulting in an empirical kernel that directly uses existing sequence align-
ment techniques: For a set of n proteins, they first compute a n
nmatrix of sequence
similarity scores (for instance, Smith-Waterman scores [70]) and then represent each
protein by its corresponding vector of sequence similarity scores in this matrix.

The most recent class of protein sequence kernels are string kernels that count
common substrings in two strings (see Sect. 15.4). These kernels either require
exact matches [36], allow for a limited number of mismatches [39], or allow for
substitutions, gaps or wildcards [38].

Further kernels on sequences have been defined which take local properties of the
sequence [44] and local alignments [88] into account for specific prediction tasks,
such as subcellular localisation prediction.

15.5.2.2 Protein Structure Comparison

With the ability to determine protein structure more rapidly advancing than our abil-
ity to study function, function predictions from protein structure gained more and
more attention in computational biology. Dobson and Doig [15] described 1,178
protein structures as vectors by means of simple features such as secondary-structure
content, amino acid propensities, surface properties and ligands, to then classify
them into enzymes and non-enzymes via Support Vector Machines. Borgwardt et
al. [9] modeled proteins from the same dataset as graphs, in which nodes represent
secondary structure elements and edges represent neighborship of these elements
along the amino acid chain or in 3D space. They then employed a random walk
graph kernel on these graph models to perform function prediction and improved
over the results achieved by Dobson and Doig [15]. On other benchmark datasets
for functional and structural classification, Qiu et al. [52] showed that a kernel that
employs similarity scores based on the structural alignment tool MAMMOTH [51]
outperforms the previous vector- and graph-based approaches.

15.5.2.3 Protein Interaction Prediction

A third central topic in computational proteomics is the prediction of protein–
protein interactions, due to the numerous false-positive and false-negative edges
in currently known protein–protein interaction networks. This problem can be cast
as a binary classification problem: a pair of proteins is predicted to interact (positive
class) or not (negative class). Bock and Gough [5] defined the first Support Vector
Machine approach to this problem, in which they represented each pair of proteins
as a concatenated feature vector of physicochemical and surface properties of these
two proteins. Ben-Hur and Noble [3] further refined this approach by defining a
pairwise tensor kernel ktensor on two pairs of proteins .a; b/ and .c; d /:

ktensor..a; b/; .c; d // D ksingle.a; c/ksingle.b; d/C ksingle.b; c/ksingle.a; d/; (15.5)
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where ksingle measures the similarity between two proteins based on their sequences,
gene ontology annotations, local properties of the network, and homologous inter-
actions in other species. Two pairs of proteins are similar in this kernel, if for each
protein in one pair, a protein with similar properties can be found in the other pair.

A setback of the tensor product kernels is the fact that the similarity or dissimi-
larity of the proteins within one pair is not taken into account. This changed when
the metric learning pairwise kernel kmlpk was defined [87]:

kmlpk..a; b/; .c; d // D Œ.�.a/� �.b//0.�.c/ � �.d//�2; (15.6)

which directly compares the relative similarity of the two proteins, .�.a/ � �.b//
and .�.c/ � �.d//, to each other and improves upon the prediction accuracy of the
tensor kernel.

The pairwise tensor kernel and a Gaussian Radial Basis Function (RBF) kernel
that considers within-pair-similarity of proteins were used in a recent study to pre-
dict co-complex-membership of protein pairs in yeast [53]. The tensor kernel was
based on a kernel ksingle, a weighted sum of kernels including three kernels on pro-
tein sequences and three diffusion kernels which measure proximity of the proteins
within a physical or genetic interaction network. The Gaussian RBF kernel was
computed on features that reflect coexpression, coregulation, colocalisation, similar
gene ontology annotation and interologs of the proteins within a pair.

All the kernel methods for protein-interaction prediction via SVMs have in com-
mon that they treat the existence of interactions as pairwise independent events, that
is, the existence of one interaction does not make the existence of other interactions
more or less likely.

15.5.2.4 Other Kernel Applications in Proteomics

Other applications of SVMs in proteomics mainly involve protein function predic-
tion from data sources other than sequence or structure, for which we describe
some representative examples here. In one of the early studies in this direction,
[86] defines a kernel on trees for function prediction from phylogenetic profiles
of proteins. Tsuda and Noble [83] present an approach for predicting the func-
tion of unannotated proteins in protein-interaction or metabolomic networks. Their
method uses a locally constrained diffusion kernel, which maximises the von
Neumann entropy network, to measure similarity between nodes, and a Support
Vector Machine for annotating proteins with unknown function.

15.5.3 Gene Expression Profiles

Another popular field of SVM applications are predictions based on microarray
gene expression measurements. Existing kernels on vectors, such as the linear,
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polynomial and Gaussian RBF kernel, can be readily applied here without involved
kernel design.

15.5.3.1 Diagnosis and Prognosis

The most common task in this field is to predict the phenotype of a patient based
on his or her gene expression levels, primarily for disease diagnosis or for drug
response prediction. The first study of this kind was conducted by Mukherjee et al.
[46] on the dataset of gene expression levels of two classes of leukemia patients from
Golub et al. [18], to tell apart these two subtypes of leukemia using a linear kernel
and a SVM. Many similarly interesting studies followed, each of them focusing
on a particular task of diagnosis or prognosis. The first kernel for time series of
microarrays was defined in Borgwardt et al. [10]. Here, gene expression profiles of
multiple sclerosis patients were compared to predict their response to treatment by
the drug beta-interferon by means of a dynamical systems kernel [90].

15.5.3.2 Function Prediction

SVMs on gene expression levels were also used for gene function prediction. Here,
a gene is represented as a vector of its expression levels across different conditions,
tissues or patients. The underlying assumption is that two genes are functionally
related if they exhibit similar expression levels under different external conditions.
The first study is this direction [12] predicted the membership of 6,000 yeast genes
to five functional classes from the MIPS Yeast Genome Database [45].

15.6 Kernel Methods Beyond Classification

While Support Vector Machines are clearly the most popular kernel method in bioin-
formatics, there are also learning problems in bioinformatics which require different
algorithmic machinery and statistical tests than classification or regression.

15.6.1 Data Integration for Network Inference

First, several kernel methods for data integration, in particular on networks, were
defined.

Kato et al. [29] model protein interaction prediction as a kernel matrix comple-
tion problem. Their setting is that they are given a large dataset of proteins with
different types of information on these proteins, including gene expression levels,
protein localization, and phylogenetic profiles. They represent each of these data
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types by a ‘large’ kernel matrix. They are also given the true protein interactions
between a small subset of all proteins, which they convert into a ‘small’ kernel
matrix. They then define an algorithm for completing the small kernel matrix by
means of the information from the large kernel matrices and to thereby infer the
missing, unknown interactions.

Yamanishi et al. [95] also define a supervised approach to protein network infer-
ence from multiple types of data including gene expression, localisation information
and phylogenetic profiles. They combine ideas from spectral clustering and kernel
canonical correlation analysis to derive features that are indicative of protein inter-
action. This technique is further refined in Yamanishi et al. [96] for enzyme network
inference by enforcing chemical constraints to be fulfilled by the resulting network
structure.

15.6.2 Feature Selection

Second, feature selection is an important problem in computational biology, as
the features that are relevant for an accurate prediction are extremely important to
understand the underlying biological process.

A typical example for the relevance of feature selection in bioinformatics is
gene selection from microarray data. Support Vector Machine-based approaches
to feature selection were defined early on, which recursively eliminate irrelevant
features [21] or iteratively downscale the less informative features [94].

Borgwardt et al. [9] and Sonnenburg et al. [76] employed multiple kernel learning
for feature selection, to weight different kernels used by a Support Vector Machine.
In [9], hyperkernels were used to determine which node attributes in a graph model
of protein structure were most important for correct protein function prediction.
These nodes represented alpha-helices or beta-sheets in the tertiary structure of the
protein, and their attributes were their length in amino acids and Angstroms, and
statistics on their hydrophobicity, polarity, polarizability and van der Waals volume.
Among all these attributes, hyperkernel learning assigned the largest weight to the
amino acid length.

In [76], multiple kernel learning was used to determine those sequence motifs
that are most relevant for correct splice site recognition. Each kernel represented one
single sequence motif at a specific sequence position, and multiple kernel learning
determined the weight for each of these motifs, resulting in a set of position-
specific sequence patterns that are associated with true splice sites. This technique
was further refined in Sonnenburg et al. [77], now taking the overlap in sequence
between different substrings into account and allowing to assess the importance of
(consensus) sequence motifs for correct prediction, even if they do not occur in the
given collection of sequences.

Song et al. [71] define a kernel-based approach to gene selection from microarray
data. They show that many of the vast number of feature selection algorithms from
the microarray literature are indeed instances of this framework, which are obtained
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by a different choice of kernel and/or a particular type of normalisation. New gene
selection algorithms can easily be derived from this framework, even for regression
and multi-class settings, and existing techniques can be objectively compared to
each other, by replacing one kernel by another, while keeping other properties fixed,
such as the normalisation technique employed.

15.6.3 Statistical Tests

Third, a recent development in machine learning are kernel-based statistical
tests [19,20], which led to a first application in bioinformatics: Borgwardt [7] define
a kernel-based statistical test to check cross-platform comparability of microarray
data. This two-sample test, whose goal it is to establish whether two samples
were drawn from the same distribution or not, computes the distance between the
means of the two samples in a universal reproducing kernel Hilbert Space [79] as
its test statistic. The larger this distance, the smaller the probability that the two
samples originate from the same distribution. In experiments on microarray cross-
platform comparability, the test manages to clearly distinguish between samples of
microarray measurements that were generated on the same platform and those from
different platforms.

15.6.4 Kernel Methods for Structured Output

Fourth, another recent development in kernel machine learning are kernel methods
for structured output domains. The classic Support Vector Machine was designed
for binary classification problems, and data objects that were drawn i.i.d (indepen-
dently and identically distributed) from an underlying distribution. However, it is
obvious that many prediction problems in biology are multi-class problems, and
that predictions on different objects can depend highly on each other.

For instance, if one wants to annotate a DNA sequence in gene finding, the pre-
dicted label of a nucleotide (e.g., exonic or intronic) is highly dependent on those
of the neighbouring bases. This is often referred to as the label sequence learning
problem: Given a sequence of n letters, one wants to predict a sequence of n class
labels. Hidden Markov Models are the classic tool for this problem in computational
biology [16]. Conditional random fields were developed as a discriminative alterna-
tive to the generative model that Hidden Markov Models are based upon Lafferty
et al. [33]. Kernel-based discriminative approaches to this problem have recently
been defined in machine learning as well, and employed successfully for sequence
alignment [6, 65], gene finding and genome annotation [57, 66], and tiling array
analysis [97, 98]. A general approach to Support Vector Machine classification in
multiclass and structured output domains was proposed by Tsochantaridis et al. [81],
and promises to trigger further research in this direction in computational biology.
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15.6.5 Outlook

In our opinion, the success story of kernel methods in bioinformatics will continue
over the next decade. The strength of kernels in dealing with structured objects will
lead to more applications of kernels in biological network analysis. Their ability to
elegantly handle high-dimensional data and to integrate various data sources will
make them one attractive tool for tasks such as genome-wide association studies.
Furthermore, the ability to encode prior knowledge in the kernel function will foster
the use of kernel methods in various specialised prediction tasks in computational
biology.

References

1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

2. Ben-Hur, A., & Brutlag, D. (2003). Remote homology detection: A motif based approach.
Bioinformatics, 19 (Suppl. 1), i26–i33. URL http://www.ncbi.nlm.nih.gov/pubmed/12855434.
PMID: 12855434

3. Ben-Hur, A., & Noble, W. S. (2005). Kernel methods for predicting protein-protein interac-
tions. Bioinformatics (Oxford, England), 21 (Suppl. 1), i38–i46.
DOI 10.1093/bioinformatics/bti1016. URL http://www.ncbi.nlm.nih.gov/pubmed/15961482.
PMID: 15961482

4. Ben-Hur, A., Ong, C. S., Sonnenburg, S., Schölkopf, B., & Rätsch, G. (2008). Support vec-
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Chapter 16
Graph Classification Methods
in Chemoinformatics

Koji Tsuda

Abstract Graphs are general and powerful data structures that can be used to repre-
sent diverse kinds of molecular objects such as chemical compounds, proteins, and
RNAs. In recent years, computational analysis of tens of thousands of labeled graphs
has become possible by advanced graph mining methods. For example, frequent
pattern mining methods such as gSpan can enumerate all frequent subgraphs in a
graph database efficiently. This chapter reviews basics of graph mining methodol-
ogy and its application to chemoinformatics and bioinformatics. Graph classification
and regression techniques based on subgraph patterns are also reviewed extensively.

16.1 Introduction

Much of the real world data is represented not as vectors, but as graphs including
sequences and trees, for example, biological sequences, semi-structured texts such
as HTML and XML, chemical compounds, RNA secondary structures, API call
graphs and so forth. Recently we have seen a surge of interest in graph data pro-
cessing. The topic itself is not new. Since 1970s, there has been continuous effort in
developing methods for processing such graph data. For instance, graph alignment
is a classic example [31]. However, in the beginning of 2000s, the development of
graph kernels [16] and graph mining [38] ignited the interests in many fields of
computer science. Among them, chemoinformatics is the most prominent field with
largest repository of data. For example, NCBI’s PubChem has millions of chemical
compounds that are naturally represented as molecular graphs. Also, many differ-
ent kinds of chemical activity data are available, which provides a huge testbed
for graph classification methods. In addition, protein 3D structures [4] and RNA
secondary structures [12] can naturally be represented as labeled graphs.
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Fig. 16.1 Examples of chemical compounds with and without mutagenicity

Figure 16.1 illustrates an example of chemical compound data. Here these graphs
are classified according to their mutagenicity, i.e., the ability of causing mutations in
human DNA. There would be many learning tasks from such data, but the following
two are among the most important ones.

Frequent Pattern Mining Identify frequently appearing subgraphs (i.e., patterns)
in the graphs with mutagenicity.

Graph Classification Construct a prediction rule that classifies yet unseen com-
pounds.

The two tasks are related to each other, namely one can use frequent patterns to
construct prediction rules [30]. In chemoinformatics, graph classification is often
called the Structure-Activity Relationship (SAR) problem [10].

Frequent pattern mining techniques are main tools in general data mining, not
only for graphs [13]. The simplest one is itemset mining [1], where frequent sub-
sets are enumerated from a series of sets. Since the proposal of itemset mining,
researchers have been trying to apply the frequent pattern mining to more struc-
tured data such as sequences [26] and trees [2]. At the final stage of development,
frequent subgraph enumeration algorithms such as AGM [15], Gaston [24] and
gSpan [38] were proposed to deal with the most general structure, labeled graphs
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Fig. 16.2 Schematic figure
of the tree-shaped search
space of graph patterns (i.e.,
the DFS code tree). To
find the optimal pattern
efficiently, the tree is
systematically expanded by
rightmost extensions

A B

A B C D A B
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with loops. They can enumerate all the subgraph patterns that appear more than m
times in a graph database. The threshold m is called minimum support. Frequent
subgraph patterns are found by branch-and-bound search in a tree shaped search
space (Fig. 16.2). The computational time crucially depends on the minimum sup-
port parameter. For chemical compound datasets, it is easy to mine tens of thousands
of graphs on a usual PC, if the minimum support is reasonably high (e.g., 10% of
the number of graphs).

For graph classification, one can just pipeline frequent pattern mining and an
existing classification algorithm such as support vector machines [32]. However, to
achieve the best accuracy, the minimum support has to be determined to a small
value (e.g., smaller than 1%) [14,17,36]. In such setting, the graph mining becomes
prohibitively inefficient, and creates millions of patterns, which make subsequent
processing difficult. Graph boosting [30] progressively constructs the prediction rule
in an iterative fashion, and in each iteration only a few informative subgraphs are
discovered. In comparison to the naive method using frequent mining and support
vector machines, the graph mining routine has to be called multiple times. However,
thanks to an additional search tree pruning condition, one call finishes quickly, and
the overall time is shorter than the naive method.

Notice that the graph classification is possible without resorting to pattern min-
ing. A prominent approach is the combination of graph kernels and support vector
machines [16]. However, this technique is covered by another chapter.

The rest of this chapter is as follows: In Sect. 16.2, we describe basics of pat-
tern mining methods. In Sect. 16.3, the main topic is graph classification and their
applications. We conclude the chapter in Sect. 16.4.

16.2 Frequent Pattern Mining

In this section, we aim to provide an intuitive understanding of graph mining
methods. For this purpose, it is probably best to trace the history of pattern mining
methods. Itemset mining has been extended to more structured data, such as
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transaction sequences [26], trees [2] and labeled graphs [38]. We first explain
itemset mining and then modifications required for mining graphs.

16.2.1 Itemset Mining

Itemset mining is mainly used in business applications such as market basket analy-
sis: In a supermarket, one customer buys several items at the same time, e.g., carrot,
milk, potato etc. Given these transactions, one would like to know the set of items
appearing together frequently. If it turns out that (milk, beer) is a frequent item-
set, they should be placed next to each other to improve sales. More concretely,
definition of itemsets and their properties are summarized as follows:

1. Given a set S of items, any nonempty subset of S is called an itemset.
2. Given an itemset I and a set T of transactions, the support of I , denoted as

support.I /, is the number of transactions that contain all the items in I .
3. Given a positive integer ˛, I is a frequent itemset, if support.I / � ˛. We refer

to ˛ as the minimum support parameter.

The computational time of itemset mining depends on the number of solutions
(i.e., the number of frequent itemsets), which is unknown in advance. If ˛ is too low,
it takes a long time to finish. So a practical advice is to set ˛ to a large value initially
(e.g., 50% of the number of transactions), and decrease it gradually until you have
a moderate number of solutions (e.g., 10,000).

There are several families of algorithms of itemset mining, but the Apriori algo-
rithm is the earliest and the simplest of all. Given four items, all itemsets form a
lattice depicted in Fig. 16.3. If a transaction t includes itemset I , then t includes any
subset of I . This property, called anti-monotonicity, plays a very important role. It
means that, frequent itemsets whose support is above a threshold appears as a con-
nected region in the lattice (i.e., the highlighted region in the figure). Therefore, we
can enumerate frequent itemsets by starting from the empty set and traversing the
tree by adding items. Whenever an infrequent itemset is found, we do not need to
traverse itemsets in its downstream (tree pruning). One can choose either breadth-
first search or depth-first search in traversing the lattice. In the former case, the
method is called Apriori algorithm [1], otherwise the backtrack algorithm [39]. In
Algorithm 1, we present a summary of the Apriori algorithm.

Algorithm 1 The Apriori algorithm for itemset mining
1: D1 D all frequent itemsets of size 1, k D 1

2: whileDk is not empty do
3: Take the union of two itemsets inDk . If their size is k C 1, add toDkC1

4: Remove all infrequent itemsets from DkC1

5: k D k C 1
6: end while



16 Graph Classification Methods in Chemoinformatics 339

Fig. 16.3 Search tree of Apriori algorithm. The highlighted region indicates frequent patterns

Evaluation of computational cost of enumeration algorithms like itemset mining
is tricky. Usually, the computational time is measured as a function of input size like
O.n/. In our case, the input size corresponds to the number of transactions. How-
ever, the efficiency of itemset mining crucially depends on the number of solutions.
Namely, if the number of frequent itemsets is small, the algorithm finishes quickly,
but if there are many frequent itemsets, it takes long time. In worst case evaluation,
itemset mining is NP-hard with respect to the number of transactions. However, the
worst case means that all transactions have the same set of items. When there are
large overlaps in transactions, the dataset is called dense. For dense datasets, itemset
mining can be extremely slow. However, in market basket analysis, it is not usually
the case, because each customer buys only a small fraction of items. For such sparse
data, itemset mining can scale to millions of transactions. For biological applica-
tions, it is important to evaluate the density of transactions in advance. If it is too
dense, itemset mining might not be a viable choice.

16.2.2 Graph Mining

Like itemset mining, graph mining requires a canonical search space in which a
whole set of patterns are traversed without duplication. In gSpan, the DFS (depth
first search) code tree is adopted for this purpose. The basic idea of the DFS code tree
is to organize patterns as a tree, where a child node has a supergraph of the parent’s
pattern (Fig. 16.2). In the tree, a pattern is represented as a text string called the
DFS code, which is made by traversing the graph by depth first search. Each node
is indexed from 0 to n� 1 according to the discovery time in the DFS. All the edges
traversed in the DFS are called forward edges and the rest is called backward edges.



340 K. Tsuda

Fig. 16.4 Depth first search and DFS code of graph. (a) A graph example. (b), (c) Two different
depth-first-searches of the same graph. Red numbers represent the DFS indices. Bold edges and
dashed edges represent the forward edges and the backward edges respectively

One important fact is that, according to the starting node, there are several DFS
codes for the same graph (Fig. 16.4). The canonical representation is determined as
the minimum code according to the lexicographical order.

The patterns are enumerated by generating the tree from the root to leaves using
a recursive algorithm. Node generation is systematically done by rightmost exten-
sions. Still, it is often the case that the same DFS code is generated through different
paths. To avoid the duplication, whenever a new node is made, the associated DFS
code has to be minimum. It is proven in [38] that, by assuring the minimality of the
DFS code in each extension step, the whole set of patterns can be enumerated with-
out duplication. As in the itemset mining, we adopt tree pruning according to the
support. If the support of a pattern is found to be smaller than the minimum support
threshold, the search tree extension is stopped immediately.

All embeddings of a pattern in the graphs have to be maintained in each node to
calculate its support. If a pattern matches a graph in different ways, all such embed-
dings are stored. When a new pattern is created by adding an edge, it is not necessary
to perform full isomorphism checks with respect to all graphs in the database. A new
list of embeddings is made by extending the embeddings of the parent. Technically,
it is necessary to devise a data structure such that the embeddings are stored incre-
mentally, because it takes a prohibitive amount of memory to keep all embeddings
independently in each node.

The most time consuming part of gSpan is the minimality check of the DFS
code. It is as expensive as automorphism checking [38]. Accordingly, gSpan is not
a polynomial-delay method. However, for sparse graphs like chemical compounds,
it can scale up to tens of thousands of graphs. As in itemset mining, gSpan might
not be feasible when graphs are dense with many edges and similar to each other.

16.3 Graph Classification

Graph classification tasks can either be unsupervised or supervised. Unsupervised
methods classify graphs into a certain number of categories by similarity [34, 35].
In supervised classification, a classification rule of graphs is constructed by learn-
ing from training data so that novel graphs can be classified with high accuracy.
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In training data, we have pairs of labeled graphs (e.g., chemical compounds) and
their target values (e.g., biochemical activity). Techinically, supervised methods are
more fundamental, because unsupervised methods can be designed from supervised
method via probabilistic modeling of latent class labels [34].

The simplest way to apply such pattern mining techniques to graph classifi-
cation is to build a binary feature vector based on the presence or absence of
frequent patterns and apply an off-the-shelf classifier. Such methods are employed
in a few chemoinformatics papers [14,17]. However, they are obviously suboptimal
because frequent patterns are not necessarily useful for classification. In chemi-
cal data, ubiquitous patterns like C–C or C–C–C are frequent, but have almost no
significance.

To discuss pattern mining strategies for graph classification, let us first define the
binary classification problem. The task is to learn a prediction rule from the training
examples f.Gi ; yi /gniD1, where Gi is a training graph and yi 2 fC1;�1g is the
associated class label. Let P be the set of all patterns, i.e., the set of all subgraphs
included in at least one training graph, and d WD jPj. Then, each graph Gi is
encoded as a d -dimensional vector

xi;p D
�
1 if p � Gi ;

�1 otherwise;

This feature space is illustrated in Fig. 16.5.
Since the whole feature space is intractably large, we need to obtain a set of

informative patterns without enumerating all patterns (i.e., discriminative pattern
mining). This problem is close to feature selection in machine learning, but the dif-
ference is that it is not allowed to scan all features. As in feature selection, we can
consider the following three categories in discriminative pattern mining methods:
filter, wrapper and embedded [18]. In filter methods, discriminative patterns are
collected by a mining call before the learning algorithm is started. They employ
a simple statistical criterion such as information gain [23, 37]. In wrapper and
embedded methods, the learning algorithm chooses features via minimization of a
sparsity-inducing objective function. Typically, they have a high dimensional weight
vector and most of these weights coverge to zero after optimization. In most cases,
the sparsity is induced by L1-norm regularization [30]. The difference between
wrapper and embedded methods are subtle, but wrapper methods tend to base on

(- 1 , . . . , - 1 , 1 , - 1 , . . . , - 1 , 1 , - 1 , . . . )
B

A

A

B
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B

A

APatterns

Fig. 16.5 Feature space based on subgraph patterns. The feature vector consists of binary pattern
indicators
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heuristic ideas by reducing the features recursively (recursive feature elimination)
[11]. Graph boosting is an embedded method, but to deal with graphs, we need to
combine L1-norm regularization with graph mining.

16.3.1 Formulation of Graph Boosting

The name ‘boosting’ comes from the fact that linear program boosting (LPBoost) is
used as a fundamental computational framework. In chemoinformatics experiments
in [30], it was shown that the accuracy of graph boosting is better than walk-based
graph kernels [16]. At the same time, key substructures are explicitly discovered.

Our prediction rule is a convex combination of binary indicators xi;j , and has the
form

f .xi / D
X

p2P
ˇpxi;p; (16.1)

where ˇ is a jPj-dimensional column vector such that
P

p2P ˇp D 1 and ˇp � 0.
This is a linear discriminant function in an intractably large dimensional space.

To obtain an interpretable rule, we need to obtain a sparse weight vector ˇ, where
only a few weights are nonzero. In the following, we will present a linear program-
ming approach for efficiently capturing such patterns. Our formulation is based on
that of LPBoost [6], and the learning problem is represented as

min
ˇ
kˇk1 C �

nX
iD1

Œ1 � y if .xi /�C ; (16.2)

where kxk1 DPn
iD1 jxi j denotes the `1 norm of x, � is a regularization parameter,

and the subscript “C” indicates positive part. A soft-margin formulation of the above
problem exists [6], and can be written as

min
ˇ;	;	
��C �

nX
iD1

�i (16.3)

s.t. y>Xˇ C �i � �; �i � 0; i D 1; : : : ; n (16.4)X
p2P

ˇp D 1; ˇp � 0;

where 	 are slack variables, � is the margin separating negative examples from
positives, � D 1

�n
, � 2 .0; 1/ is a parameter controlling the cost of misclassification

which has to be found using model selection techniques, such as cross-validation. It
is known that the optimal solution has the following �-property:

Theorem 16.1 ([27]). Assume that the solution of (16.3) satisfies � � 0. The
following statements hold:



16 Graph Classification Methods in Chemoinformatics 343

1. � is an upperbound of the fraction of margin errors, i.e., the examples with

y>Xˇ < �:

2. � is a lowerbound of the fraction of the examples such that

y>Xˇ < �:

Directly solving this optimization problem is intractable due to the large number
of variables in ˇ. So we solve the following equivalent dual problem instead.

min
u;v

v (16.5)

s.t.
nX

iD1

uiyixi;p � v; 8p 2P (16.6)

nX
iD1

ui D 1; 0 � ui � �; i D 1; : : : ; n:

After solving the dual problem, the primal solution ˇ is obtained from the Lagrange
multipliers [6]. The dual problem has a limited number of variables, but a huge num-
ber of constraints. Such a linear program can be solved by the column generation
technique [20]: Starting with an empty pattern set, the pattern whose correspond-
ing constraint is violated the most is identified and added iteratively. Each time a
pattern is added, the optimal solution is updated by solving the restricted dual prob-
lem. Denote by u.k/; v.k/ the optimal solution of the restricted problem at iteration

k D 0; 1; : : : ; and denote by OX .k/ � P the set at iteration k. Initially, OX .0/
is

empty and u.0/
i D 1=n. The restricted problem is defined by replacing the set of

constraints (16.6) with

nX
iD1

u.k/
i yixi;p � v; 8p 2 OX .k/

:

The left hand side of the inequality is called as gain in boosting literature. After

solving the problem, OX .k/
is updated to OX .kC1/

by adding a column. Several criteria
have been proposed to select the new columns [8], but we adopt the most simple rule
that is amenable to graph mining: We select the constraint with the largest gain.

p� D argmax
p2P

nX
iD1

u.k/
i yixi;p: (16.7)

The solution set is updated as OX .kC1/  OX .k/ [X j � . In the next section, we
discuss how to efficiently find the largest gain in detail.
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One of the big advantages of our method is that we have a stopping criterion that
guarantees that the optimal solution is found: If there is no p 2P such that

nX
iD1

u.k/
i yixi;p > v.k/; (16.8)

then the current solution is the optimal dual solution. Empirically, the patterns found
in the last few iterations have negligibly small weights. The number of iterations can
be decreased by relaxing the condition as

nX
iD1

u.k/
i yixi;p > v.k/ C �; (16.9)

Let us define the primal objective function as V D �� C �Pn
iD1 �i . Due to the

convex duality, we can guarantee that, for the solution obtained from the early ter-
mination (16.9), the objective satisfies V � V � C �, where V � is the optimal value
with the exact termination (16.8) [6].

16.3.2 Optimal Pattern Search

As mentioned in (16.7), our aim is to find the optimal hypothesis that maximizes the
gain g.p/.

g.p/ D
nX

iD1

u.k/
i yixi;p: (16.10)

For efficient search, it is important to minimize the size of the actual search space.
To this aim, tree pruning is crucially important: Suppose the search tree is generated
up to the pattern p and denote by g� the maximum gain among the ones observed
so far. If it is guaranteed that the gain of any supergraph p0 is not larger than g�, we
can avoid the generation of downstream nodes without losing the optimal pattern.
For gain maximization, we employ the following pruning condition.

Theorem 16.2. [19, 22] Let us define

�.p/ D 2
X

fi jyiDC1;p�Gi g
u.k/

i �
nX

iD1

yi u
.k/
i :

If the following condition is satisfied,

g� > �.p/; (16.11)

the inequality g.p0/ < g� holds for any p0 such that p � p0.



16 Graph Classification Methods in Chemoinformatics 345

Algorithm 2 gBoost algorithm: main part

1: OX .0/ D ;, u.0/i D 1=n, k D 0

2: loop
3: Find the optimal pattern p� based on u.k/ F Algorithm 2
4: if termination condition (16.9) holds then
5: break
6: end if
7: OX  OX [Xj�

8: Solve the restricted dual problem (16.5) to obtain u.kC1/

9: k D k C 1
10: end loop

Algorithm 3 Finding the optimal pattern
1: procedure OPTIMAL PATTERN

2: Global variables: g�; p�

3: g� D �1
4: for p 2 DFS codes with single nodes do
5: project(p)
6: end for
7: return p�

8: end procedure
9: function PROJECT(p)

10: if p is not a minimum DFS code then
11: return
12: end if
13: if pruning condition (16.11) holds then F Theorem 2
14: return
15: end if
16: if g.p/ > g� then
17: g� D g.p/, p� D p

18: end if
19: for p0 2 rightmost extensions of p do
20: project(p0)
21: end for
22: end function

The gBoost algorithm is summarized in Algorithms 2 and 3.

16.3.3 Computational Experiments

In [30], it is shown that graph boosting performs better than graph kernels in
classification accuracy in chemical compound datasets. The top 20 discrimina-
tive subgraphs for a mutagenicity dataset called CPDB are displayed in Fig. 16.6.
We found that the top three substructures with positive weights (0.0672, 0.0656,
0.0577) correspond to known toxicophores [17]. They correspond to aromatic
amine, aliphatic halide, and three-membered heterocycle, respectively. In addition,
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Fig. 16.6 Top 20 discriminative subgraphs from the CPDB dataset. Each subgraph is shown with
the corresponding weight, and ordered by the absolute value from the top left to the bottom right.
H atom is omitted, and C atom is represented as a dot for simplicity. Aromatic bonds appeared in
an open form are displayed by the combination of dashed and solid lines

the patterns with weights 0.0431, 0.0412, 0.0411 and 0.0318 seem to be related to
polycyclic aromatic systems. Only from this result, we cannot conclude that graph
boosting is better in general data. However, since important chemical substructures
cannot be represented in paths, it would be reasonable to say that subgraph features
are better in chemical data.

16.3.4 Related Methods

Graph algorithms can be designed based on existing statistical frameworks (i.e.,
mother algorithms). It allows us to use theoretical results and insights accumulated
in the past studies. In graph boosting, we employed LPboost as a mother algorithm.
It is possible to employ other algorithms such as partial least squares regression
(PLS) [29] and least angle regression (LARS) [33].

When applied to ordinary vectorial data, partial least squares regression extracts
a few orthogonal features and perform least squares regression in the projected
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space [28]. A PLS feature is a linear combination of original features, and it is often
the case that correlated features are summarized into a PLS feature. Sometimes, the
subgraph features chosen by graph boosting is not robust against bootstrapping or
other data perturbations, whereas the classification accuracy is quite stable. It is due
to strong correlation among features corresponding to similar subgraphs. The graph
mining version of PLS, gPLS [29], solves this problem by summarizing similar
subgraphs into each feature (Fig. 16.7). Since only one graph mining call is required
to construct each feature, gPLS can build the classification rule more quickly than
graph boosting.

In graph boosting, it is necessary to set the regularization parameter � in (16.2).
Typically it is determined by cross validation, but there is a different approach called
“regularization path tracking”. When � D 0, the weight vector converges to the
origin. As � is increased continuously, the weight vector draws a piecewise linear
path. Because of this property, one can track the whole path by repeating to jump
to the next turning point. We combined the tracking with graph mining in [33]. In
ordinary tracking, a feature is added or removed at each turning point. In our graph
version, a subgraph to add or remove is found by a customized gSpan search.

The examples shown above were for supervised classification. For unsupervised
clustering of graphs, the combinations with the EM algorithm [34] and the Dirichlet
process [35] have been reported.

16.3.5 New Applications of Graph Mining

A main advantageous point of using graph mining rather than graph kernels is that
the subgraphs that are correlated with class labels can be detected, which should
be appreciated in many application domains. Traditionally, graph mining methods
are mainly used for small chemical compounds [7, 21]. However, new application
areas are emerging. One is image processing [25], where geometric relationship
between points is represented as edges. Bug detection is an interesting area, where
the relationships of APIs are represented as directed graphs and anomalous patterns
are detected to identify bugs [5, 9]. Also natural language processing is an attrac-
tive area, where the relationships between words are represented as a graph (e.g.,
predicate-argument structures) and key phrases are identified as subgraphs [19].

16.4 Concluding Remarks

As mentioned briefly in Sect. 16.1, there are two different methods for graph data
processing: graph kernels and graph mining. The graph kernel is a similarity mea-
sure between two graphs. On the other hand, graph mining methods can derive
characteristic subgraphs that can be used for any subsequent machine learning algo-
rithms. I have the impression that graph kernels are more frequently applied so far.
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Fig. 16.7 Patterns obtained by gPLS. Each column corresponds to the patterns of a PLS
component.

Probably it is due to the fact that graph kernels are easier to implement and cur-
rently used graph datasets are not so large. However, graph kernels are not suitable
for very large data, because it takes O.n2/ time to derive the kernel matrix of n
training graphs, which is very hard to improve. Toward large scale data, graph min-
ing methods seem more promising because it takes only O.n/ time. Nevertheless,
there remains much to be done in graph mining methods. Existing methods such as
gSpan enumerate all subgraphs satisfying a certain frequency-based criterion. How-
ever, it is often pointed out that, for graph classification, it is not always necessary
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to enumerate all subgraphs. Recently, Boley and Grosskreutz proposed a uniform
sampling method of frequent itemsets [3]. Such theoretically guaranteed sampling
procedures will certainly contribute to graph classification as well.

One fact that hinders the dissemination of graph mining methods is that it is not
common to make the code public in machine learning and data mining commu-
nity. We have made several easy-to-use graph mining codes available in the gBoost
package (www.nowozin.net/sebastian/gboost/).

Whenever there are multiple interacting elements, graph representation comes
into consideration. Graph-data analysis would be necessary in virtually all fields of
computer science and graph classification will certainly play a role there.
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Chapter 17
Hidden Markov Random Field Models
for Network-Based Analysis of Genomic Data

Hongzhe Li

Abstract Graphs and networks are common ways of depicting biological infor-
mation. In biology, many different biological processes are represented by graphs,
such as regulatory networks, metabolic pathways and protein-protein interaction
networks. This kind of a priori use of graphs is a useful supplement to the stan-
dard numerical data such as microarray gene expression data and single nucleotide
polymorphisms (SNPs) data. How to incorporate such a prior network information
into analysis of numerical data raises interesting statistical problems. Representing
the genetic networks as undirected graphs, we have developed several approaches
for identifying differentially expressed genes and genes or SNPs associated with
diseases in a unified framework of hidden Markov random field (HMRF) mod-
els. Different from the traditional empirical Bayes approaches for analysis of gene
expression data, the HMRF-based models account for the prior dependency among
the genes on the network and therefore effectively utilize the prior network infor-
mation in identifying the subnetworks of genes that are perturbed by experimental
conditions. In this paper, we briefly review the basic setup of the HMRF models and
the emission probability functions for some problems often encountered in analy-
sis of microarray gene expression and SNPs data. We also present some interesting
areas that require further research.

17.1 Introduction

Microarray gene expression studies have been widely used in biomedical research.
The most common problem is to identify genes that are perturbed by experimen-
tal conditions or genes that areassociated with certain covariates or outcomes.
Empirical Bayes-based methods are one of the most popular statistical approaches
for analysis of microarray gene expression data in order to account for the parallel
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nature of the inference in microarrays and to borrow information from the ensem-
ble of genes that can enhance the inference about each gene individually. Efron et
al. [8] used a non-parametric empirical Bayes approach for analyzing the factorial
microarray gene expression data. Lonnstedt and Speed [17] took a parametric empir-
ical Bayes approach using a simple mixture of normal models and a conjugate prior
and derived the closed-formed posterior odds of differential expression for each
gene. Smyth [22] developed the hierarchical model of Lonnstedt and Speed [17]
into a practical approach for general microarray experiments in the framework of
linear models with arbitrary coefficients and contrasts of interests. Smyth [22] also
derived the posterior odds statistic in terms of a moderated t-statistic in which pos-
terior residual standard deviations are used in place of ordinary standard deviations.
Yuan and Kendzioski [32], Tai and Speed [24] and Hong and Li [9] developed differ-
ent empirical Bayes methods for identifying the temporally differentially expressed
genes based on time course gene expression data.

While these empirical Bayes methods have proved to be very useful for identify-
ing the differentially expressed genes or genes that are related to certain covariates,
they make a key assumption that genes are independent. However, since many bio-
logical processes are involved in activation of multiple pathways of correlated genes,
the genes with regulatory relationships are expected to be dependent. These depen-
dent genes often interact with each other to form molecular modules that affect
the cellular and clinical phenotypes [10]. One approach to modeling the depen-
dency among the genes and to identifying the molecular modules is to utilize the
prior genetic regulatory network information. Information about gene regulatory
dependence has been accumulated from many years of biomedical experiments and
is summarized in the form of pathways and networks and assembled into path-
way databases. Some well-known pathway databases include KEGG (http://www.
genome.jp/kegg/) [12], BioCarta (www.biocarta.com), BioCyc (www.biocyc.org)
and human protein-protein interaction networks HPRD [20], BIND (www.bind.ca)
[4]. As an example, Fig. 17.1 shows the KEGG human regulatory network [12],
consisting of 33 interconnected regulatory pathways. Such prior network informa-
tion was shown to be very useful in interpreting gene expression data by improving
sample classification and improving detection of differentially expressed genes,
especially when the sample sizes are small. There has been a great interest in devel-
oping statistical and computational methods that can integrate the prior biological
network information into the analysis of genomic data, especially into the analysis
of microarray gene expression data (see Ideker and Sharan [10] for a review). How-
ever, these methods were mainly developed from computational aspects without
formal statistical modeling [25, 26] and focused on using the network information
to enhance detection of modules of co-expressed genes [27].

Representing the known genetic regulatory network as an undirected graph, Wei
and Li [29, 30] and Wei and Pan [28] have recently developed hidden Markov
random field (HMRF)-based models for identifying the subnetworks that show dif-
ferential expression patterns between two conditions, and have demonstrated using
both simulations and applications to real data sets that the procedure is more sensi-
tive in identifying the differentially expressed genes than those procedures that do

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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Fig. 17.1 Undirected graph of the KEGG regulatory network, consisting of 33 interconnected
regulatory pathways. There are a total of 1,663 genes (nodes) and 8,011 regulatory relationships
(edges)

not utilize pathway structure information. The HMRF models were further extended
for analysis of microarray time course gene expression data [30] and more general
multivariate gene expression data [31]. They were also extended for general linear
models for microarray gene expression data ([15]) and analysis of genetic associa-
tion data ([16]). MRF models have also been applied to network-based prediction
of protein function [6, 7, 21].
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In this paper, we review the general HMRF modeling framework for network-
based analysis of microarray gene expression data and analysis of single nucleotide
polymorphism data in genetic association studies. This review summarizes the
methods presented in the following papers: Wei and Li [29, 30], Wei et al. [31],
Li et al. [15] and Li et al. [16]. We briefly outline the HMRF formulation for several
problems in genomic data analysis and summarize the iterative conditional modes
algorithm for parameter estimation. Finally, we outline several other interesting
problems in genomics that require further methodological development.

17.2 Networks, Graphs and Markov Random Field Models

Suppose that we have a network of known pathways that can be represented as an
undirected graph G D .V;E/, where V is the set of nodes that represent genes
or proteins coded by genes and E is the set of edges linking two genes with a
regulatory relationship or a link in protein protein interaction network. Let p D jV j
be the number of genes that this network contains. Note the gene set V is often a
subset of all the genes that are probed on the gene expression arrays. If we want to
include all the genes that are probed on the expression arrays, we can expand the
network graph G to include isolated nodes, which are those genes that are probed
on the arrays but are not part of the known biological network. For two genes g
and g0, if they are linked on the network, we write g� g0. For a given gene g, let
Ng Dfg0Wg� g0 2Eg be the set of genes that are linked to gene g and mg D jNg j
be the degree for gene g.

Let zg be an indicator variable that defines whether the gth gene is perturbed by
certain experimental condition or associated with some covariate. Its definition is
problem-specific and will be clear in the next several sections. The key to the HMRF
approach to network-based analysis of genomic data is that instead of assuming that
z1; : : : ; zp are independently and identically distributed Bernoulli random variables,
we assume that they are dependent on the network, whose dependency can be mod-
eled as a simple discrete Markov random field. Specifically, Wei and Li [29, 30]
proposed to model the dependency of z D .z1; : : : ; zg ; : : : ; zp/

T using a discrete
Markov random field model with the following distribution:

p.zI˚/ / exp.
pX

gD1

zg C �
X

g	g 0

I fzg D zg 0g/; (17.1)

where ˚ D .; �/,  is related to the marginal probability of association and �
measures the pair-wise dependency. We require � to be non-negative to discour-
age neighboring genes with different states. Given the states of all other genes, the
conditional probability of gene i with state zg can be easily derived as

pg.zg jz@g
I˚/ / exp.zg C ��g.zg//; (17.2)
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where z@g
represents the neighbors of gene g and ug.zg/ denotes the number of

neighbors of gene g having state zg [2,3]. In order to account for different degrees of
the nodes (i.e., different numbers of neighboring genes on the network), we propose
to modify the conditional probability (17.2) as

pg.zg jz@g
I˚/ / exp.zg � ��g.1 � zg/=mg/;

where mg is the number of neighbors of the gth gene. Different from the condi-
tional probability in Eq. 17.2, this modified conditional probability does not seem to
correspond to a well-defined joint distribution of the zg ; g D 1; : : : ; p. This condi-
tional probability should be used for account for different numbers of the neighbors
of genes on the network. Finally, we assume that the true state z� is a realization of
a discrete MRF with a specified distribution p.z/ defined by Eq. 17.1. The goal of
analysis is to infer the true state z� based on the data observed.

17.3 HMRF Models for Network-Based Analysis
of Gene Expression Data

In this section, we make the definition of zg for the gth gene explicit and define
the probability models to relate zg to the observed data Og for various problems in
analysis of microarray gene expression data. We can treat the data observed on the
network O D fOg ; g 2 V g as an observable random field. Let f .Og jzg/ be the
emission probability function, which needs to be specified differently for different
problems. Due to small sample sizes in typical microarray experiments, emission
probability functions derived from hierarchical models and empirical Bayes meth-
ods are often preferred. We review in the following some key empirical Bayes
methods published in literature that we used to derive the emission probability
functions for our HMRF models.

17.3.1 Identification of Differentially Expressed Modules

Wei and Li [29] was the first to propose the use of HMRF for identifying the
differentially expressed genes between two experimental conditions using the
network structure information. Consider the simple problem of identifying
the differentially expressed genes between two experimental conditions. Let
Yg D .yg1; yg2; : : : ; ygmIyg.mC1/; : : : ; yg.mCn// be the observed mRNA expres-
sion level of gene g across m C n samples, where the first m samples are from
condition 1 and the next n samples are from condition 2. We are interested in testing

Hg0 W �1g D �2g ;



358 H. Li

where �kg is the mean expression level of the gth gene under condition k. Assume
that the gth gene can have two states, labeled 0 and 1, representing equally expres-
sion (EE) and differential expression (DE), respectively, i.e.,

zg D
�
1 if �1g ¤ �2g (gene g is DE)
0 if �1g D �2g (gene g is EE).

Under the Gamma-Gamma hierarchical models for gene expression data ([13,19,
29]), one can show that

f .Ygjzg D 1/ D K1K2

�QmCn
jD1 ygj

˛�1



vC yg:m

�m˛C˛0


vC yg:n

�n˛C˛0
;

f .Ygjzg D 0/ D K
�QmCn

jD1 ygj

˛�1



vC yg:m C yg:n

�.mCn/˛C˛0
;

where yg:m DPm
jD1 ygj , yg:n DPmCn

jDmC1 ygj ,

K1 D v˛0� .m˛ C ˛0/

� m.˛/� .˛0/
; K2 D v˛0� .n˛ C ˛0/

� n.˛/� .˛0/
; andK D v˛0� ..mC n/˛ C ˛0/

� mCn.˛/� .˛0/
:

These two probability distributions specify the emission probability distributions
with parameters 	 D .˛0; ˛; v/, where ˛ is the common shape parameter of the
gamma distribution of the gene expression level and ˛0 and v are the shape and
scale parameters of the gamma prior of the inverse mean expression levels ˛=�g

(see Kendziorski et al. [13] and Wei and Li [29] for details of the derivations).

17.3.2 Analysis of Time Course Gene Expression Data

Microarray time course gene expression data are often collected to capture the
dynamic nature of gene expression during a given biological process. Wei and Li
[29] developed a spatial-temporal HMRF model to identify the DE genes at dif-
ferent time points during the time course, taking into account both the network
dependency and the time dependency of the differential expression states. Wei et
al. [31] proposed another approach with the goal of identifying the temporally dif-
ferentially expressed genes. Specifically, consider the multivariate gene expression
data measured under two different conditions over k dosage levels or time points,
with n independent samples measured under one condition andm independent sam-
ples measured under another condition. For each experiment, we assume that the
expression levels of p genes are measured. For a given gene g, we denote these data
as i:i:d: k 
 1 random vectors Yg1; : : : ;Ygn for condition 1 and Zg1; : : : ;Zgm for
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condition 2. We further assume that Ygi � Nk.�gy ; ˙g/ and Zgi � Nk.�gz; ˙g/.
For a given gene g, the null hypothesis of interest is

Hg0 W �gy D �gz:

Let �g D �gy � �gz and define

zg D
�
1 if �g ¤ 0
0 if �g D 0

To link zg to the observed time-course gene expression data, we need to define the
emission probabilities. Following Tai and Speed [24], we take an empirical Bayes
approach. Let NY D .Y1C� � �CYn/=n; NZ D .Z1C� � �CZm/=m; NX D NY� NZ;Sy D
.n� 1/�1

Pn
iD1.Yi � NY/.Yi � NY/0;Sz D .m� 1/�1

Pm
iD1.Zi � NZ/.Zi � NZ/0;S D

.nCm�2/�1..n�1/SyC .m�1/Sz/: Tai and Speed [24] introduced a hierarchical
model and showed that NX and S are sufficient statistics for testing the null hypothesis
(17.3). They further showed that

f . NX; S jI D 1/ D �k..N C �/=2/
�k..N � 1/=2/�k.�=2/


 .N � 1/ k.N �1/
2 ��

kN
2 .�.n�1 Cm�1 C ��1//�

k
2


 j
j�N
2 jSjN �k�2

2

jIk C ..n�1 Cm�1 C ��1/�
/�1 NX NX0 C S�jN C�
2

;

and

f . NX; jI D 0/ D �k..N C �/=2/
�k..N � 1/=2/�k.�=2/


 .N � 1/ k.N �1/
2 ��

kN
2 .�.n�1 Cm�1//�

k
2


 j
j�N
2 jSjN �k�2

2

jIk C ..n�1 Cm�1/�
/�1 NX NX0 C S�jN C�
2

;

where N D n C m � 1, S� D .�
=.N � 1//�1S, � and �
 are the degrees
of freedom and scale matrix in the prior inverse Wishart distribution of ˙g , and
� is a scale parameter (See Tai and Speed [24] for detailed derivations). Thus,
given zg D 1, the probability density function of the data is a function of NX
and NS only, which follows a Student-Siegel distribution [1]. Following Aitchi-
son and Dunsmore’s and Tai and Speed’s notation, this distribution is denoted by
StSik.�; 0; .n�1 C m�1 C ��1/
;N � 1; .N � 1/�1�
/. Similarly, the distribu-
tion of f .X; S jI D 0/ follows StSik.�; 0; .n�1 Cm�1/
;N � 1; .N � 1/�1�
/.
The parameters associated with these two emission probability distributions are
	 D .�; �;
/ with a positive definite constraint on the covariance matrix 
.
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17.3.3 Analysis of Gene Expression Data Using
General Linear Models

Smyth [22] proposed empirical Bayes methods for general linear models for anal-
ysis of microarray gene expression. The methods are very general and can handle
general design matrices. Li et al. [15] extended the HMRF model to more general
linear models. Assume that we have a set of n microarrays (samples), we want to
determine how the experimental conditions affect the expression levels of genes and
which genes or subnetworks of genes are affected. Let Y D .Y1; : : : ; Yg ; : : : ; Yp/

denote the microarray gene expression profiling data matrix (n
p) of p genes over
n samples, where Yg is the mRNA expression level of gene g for the n samples. Let
X D .x1; : : : ; xn/

T be the n 
 q covariate matrix of the n samples, where xi repre-
sents the q-dimensional covariate vector for the i th sample. Depending on designs of
the experiments, this vector could correspond to the design matrix or other general
covariates (see [22]) for specification of the design matrices for various microarray
experiments). We assume the following linear model for gene expression level for
the gth gene:

Yg D �g CX˛g C �g ;

var.�g / D �2
g I; g D 1; : : : ; p; (17.3)

where ˛g a coefficient vector and �g is the vector of random errors. Let Ǫg be the
least squares estimate of ˛g and O�2

g be the estimate of �2
g based on this model.

Further let Var. Ǫg / D Vg O�2
g be the estimated covariance matrix, where Vg is a

positive definite matrix based on the design matrix X .
Certain contrasts of the coefficients are assumed to be of biological interest and

these are defined by ˇg D C T ˛g , where C is a contrast vector. The ˇg can then be
estimated by Ǒg D C T Ǫg with its variance estimated by Var. Ǒg / D C TVgC O�2

g D
vg O�2

g . Based on model (17.3), we have

Ǒ
g jˇg ; �

2
g � N.ˇg ; vg�

2
g /;

O�g
2j�2

g �
�2

g

dg

�2
dg
;

where dg D n � q is the residual degrees of freedom.
We are interested in testing whether individual contrast value ˇg to be zero.

To achieve this goal, we introduce a random vector z D .z1; : : : ; zg ; : : : ; zp/
T ,

representing the gene states, where

zg D
�
1 if ˇg ¤ 0
0 if ˇg D 0.



17 Hidden Markov Random Field Models for Network-Based Analysis 361

Assuming an inverse Chi-square prior for the �2
g with means s2

0 and degrees of
d0, and a normal prior for ˇg when zg D 1 with a scale parameter v0, Smyth [22]
showed that the moderated t-statistic and residual sample variance are independent,
with the following distributions:

O�2
g � s2

0Fdg;d0
;

Qtg jzg D 0 � td0Cdg
;

Qtg jzg D 1 � .1C v0=vg/
1=2td0Cdg

;

where F.:/ and t.:/ are the central F and t distributions. Based on these results, we
can define the emission probabilities as

f .Qtg ; O�2
g jzg D 1/ D s2

0Fdg;d0
.1C v0=vg/

1=2td0Cdg
;

f .Qtg ; O�2
g jzg D 0/ D s2

0Fdg;d0
td0Cdg

:

The parameters associated with these two density functions are 	 D .s2
0 ; d0; v0/.

17.4 HMRF Models for Network-Based Analysis of SNP Data

We reviewed in previous section some problems and the HMRF formulations in
analysis of microarray gene expression data. We consider in this section the use
of HMRF model for large-scale genetic association studies in order to account for
linkage disequilibrium (LD) among the SNPs. Suppose we have m cases and n
controls that are genotyped over a set of p SNPs. Let S D f1; : : : ; pg denote
the SNP index. We want to determine which SNPs in S are associated with dis-
ease. Let Y D .Y1; : : : ; Ys; : : : ; Yp/ be the observed genotype data for the p SNPs,
where Ys itself is a vector Ys D .ys1; : : : ; ysmIys.mC1/; : : : ; ys.mCn//, where ysi is
the observed genotype for the i th individual at the sth SNP. In large-scale GWAS
studies, many SNPs are in high LD, at least locally.

17.4.1 Weight LD Graphs and MRF Model

The typical single SNP analysis often ignores the LD among these SNPs. Li
et al. [16] proposed a HMRF model to take into account the LD information in
identifying the disease-associated SNPs. We first construct a weighted undirected
LD graph G based on pair-wise LD information derived from the data or from the
HapMap project. Specifically, an edge between SNPs s and s0 is drawn with weight

wss0 D I.r2
ss0 > �/r

2
ss0 ;
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if wss0 ¤ 0, where I.:/ is the indicator function, r2
ss0

is the r2 measurement of LD
between SNPs s and s0 and � is a pre-determined cutoff value.

For a given SNP s, we then define a random indicator variable as

zs D
�
1 if SNP s is associated with the disease
0 if SNP s is not associated with the disease:

For two SNPs s and s0 that are linked on the LD graph, i.e., if the r2 between these
two SNPs are greater than � , we expect that zs and zs0 are dependent. As before,
joint probability function for z D .z1; : : : ; zp/ can be specified by a MRF model,

p.zI˚/ _ exp.
pX

sD1

zs C �
X
s	s0

ws;s0I.zs D zs0//;

where  and � � 0 are the two model parameters, and ˇ measures dependencies of
zs for SNPs in LD. In this model, the parameter ˇ > 0 encourages the SNPs that are
in LD to have similar values of zs . This is in contrast to the hidden Markov model
where some time or spatial order of the SNPs has to be assumed. The conditional
association state for SNP s, given the states of all neighboring SNPs is

p.zs jzNs
I˚/ _ exp.zs C �

X
s02Ns

ws;s0I.zs D zs0//;

where Ns represents the neighbors of the SNP s on the LD graph.

17.4.2 An Empirical Bayes Model for Genotype Data

In order to specify the emission probability function f .Ysjzs/, let �s D .�s1; �s2; �s3/

be the genotype frequencies at the sth SNP in the case population, and �s D
.�s1; �s2; �s3/ be the genotype frequencies at the sth SNP in the control pop-
ulation, for genotype values of 0, 1 and 2, respectively. We assume that both
of these frequencies across all the SNPs have a Dirichlet prior with parameter
˛ D .˛1; ˛2; ˛3/,

f .�s/ D f .�s1; �s2; �s3/ D
� .
P3

jD1 ˛j /Q3
jD1 � .˛j /

3Y
jD1

�
˛j�1

sj :

The same prior is also assumed for �s . For SNP s, let ysC D .ysC;1; ysC;2; ysC;3/

denote observed genotype counts data in them cases and ys� D .ys�;1; ys�;2; ys�;3/

denote the observed genotype counts data in the n controls. So if SNP s is not asso-
ciated with the disease, cases should have the same genotype frequencies as the
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controls. The combined genotype counts data ys0 D ysCC ys� are generated from
a trinomial distribution with the genotype frequencies of �s D .�s1; �s2; �s3/. Thus,
given zs D 0 the probability of the combined genotype count data is

f .Ys jzs D 0/ D
� .
P3

jD1 ˛i /
Q3

iD1 � .˛i C ysC;i C ys�;i /Q3
iD1 � .˛i /� .

P3
jD1.˛i C ysC;i C ys�;i //

:

On the other hand, if SNP s is associated with the disease, i.e., when zs D 1, cases
and controls should have different genotype frequencies, in which case we have

f .Ys jzs D 1/ D
� .
P3

jD1 ˛i /
Q3

iD1 � .˛i C ysC;i /Q3
iD1 � .˛i /� .

P3
jD1.˛i C ysC;i //


 � .
P3

jD1 ˛i /
Q3

iD1 � .˛i C ys�;i /Q3
iD1 � .˛i /� .

P3
jD1.˛i C ys�;i //

:

The parameters in these two emission probability functions are 	 D .˛1; ˛2; ˛3/,
the hyperparameters in the Dirichlet prior distribution for the genotype frequencies.

17.5 ICM Algorithm, Gibbs Sampling and FDR Controls

For all the models presented in previous sections, the goal is to infer the true state
z� for all p genes or SNPs. One simple approach to this problem is through the use
of iterative conditional modes (ICM) algorithm of Besag [2, 3]. However, we need
to carry out the parameter estimation simultaneously, including the parameters in
the MRF model ˚ D .; �/ and the parameters in the emission probabilities 	.
For simple models presented in Sects. 17.3.1 and 17.4, these parameters can be
estimated simultaneously during the ICM interactions [16, 30]. For more complex
models presented in Sects. 17.3.2 and 17.3.3, a combination of the method of
moments and ICM algorithm can be used to estimate the parameters.

1. For parameters in 	 that do not depend on z, denoted here by 	1, we use the
method of moments of Smyth [22] or Tai and Speed [24] to obtain estimates of
these parameters.

2. Obtain an initial estimate Oz of the true states z� based on the p-values from the
standard single-gene tests.

3. Estimate 	2 D 	n	1, which maximizes the likelihood

l.OjOzI O	1; 	2/ / ˘p
gD1f .Og jzg I O	1; 	2/;
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where O represents the data observed and Og represents the data observed for
the gth gene and f .Og jzg I O	1; 	2/ is the emission probability function defined
in previous sections. Note here we make the conditional independence assump-
tion that given zgs, Ogs are independent.

4. Estimate ˚ by the value O̊ , which maximizes the pseudolikelihood pl.OzI˚/
based on the current states Oz, where

pl.zI˚/ D
pX

gD1

pg.zg jz@g
I˚/

D
pX

gD1

expfzg � ��g.1 � zg/=mgg
expf � ��g.0/=mgg C expf���g.1/=mgg :

5. Carry out a single cycle of ICM based on the current Oz, O	, and O̊ to obtain a new
Oz. Specifically, for g D 1; : : : ; p, update zg , which maximizes

P.zg jY; Oz@g
/ / f .Og jzg I O	/pg.zg jOz@g

I O̊ /; (17.4)

subject to zg D 1 or zg D 0.

6. Go to step 3 until approximate convergence of all the parameters. In particular,
we stop the iterations when the maximum of the relative changes of the parame-
ter estimates is smaller than a small value �.

After obtaining the parameter estimates O	 and O̊ based on the algorithm outlined
above, we then carry out a Gibbs sampling procedure to sample zg ; g D 1; : : : ; p

given the data using the conditional probability defined in Eq. 17.4 and obtain
posterior probabilities of qg D P r.zg D 0jOI O	; O̊ /; g D 1; : : : ; p. The result-
ing posterior probabilities are then used to determine which genes are affected
by the phenotype and those relevant genes can be mapped back to the network
to identify the subnetworks. In addition, we can estimate the false discovery rate
(FDR) based on these posterior probabilities [23]. Specifically, consider p null
hypotheses, H0g , let q.1/; : : : ; q.p/ be the order values of the posterior probabil-
ities and H.01/; : : : ;H.0p/ be the corresponding null hypotheses. The data-driven
FDR procedure can be defined as:

let l D max

8<
:i W

1

i

iX
gD1

q.g/ � ˛
9=
;; then we reject all H.0i/; i D 1; : : : ; l:

If all the parameters are known, using the same argument as in Sun and Cai [23], we
can show that this procedure can indeed control the FDR at ˛ or smaller under the
assumed models. It is however unclear whether this still holds for the data-driven
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procedure due to fact that the theoretical properties of the parameter estimates are
unknown.

17.6 Discussions, Applications and Future Directions

With the increase in availability of human regulatory networks and protein interac-
tion networks, the focus of bioinformatics research has shifted from understanding
networks encoded by model species to understanding the pathways and networks
underlying human diseases [10]. In order to incorporate the prior biological network
information into the analysis of gene expression data related to human diseases, we
have reviewed in this paper the network-based empirical Bayes methods for analy-
sis of gene expression and SNP data. Different from the commonly used empirical
Bayes methods for analysis of microarray gene expression data that assume inde-
pendence among the genes, our proposed method imposes dependency among the
latent indicator variables using a simple discrete Markov random field model defined
on a known regulatory network. In this section, we present a brief summary of appli-
cations of these methods to analyses of several human gene expression data using
KEGG regulatory network. Finally, we discuss a few other related areas that require
new statistical methodological research.

17.6.1 Application to analysis of human microarray
gene expression data

We have experienced the application of these methods to analysis of human gene
expression data using the KEGG regulatory pathways and have obtained encourag-
ing results. Wei and Li [29] applied the method for analysis of breast cancer gene
expression data to identify the connected KEGG subnetworks that are associated
with breast cancer recurrence. Wei et al. [31] applied the method to analysis of a
time course gene expression data of TrkA- and TrkB-transfected neuroblastoma cell
lines and identified genes and subnetworks on MAPK, focal adhesion and prion dis-
ease pathways that may explain cell differentiation in TrkA-transfected cell lines.
Li et al. [15] applied the methods to analysis of brain ageing data and identified
several aging related molecular modules, including subnetwork includes fibroblast
growth factors (FGF1, FGF2, FGF12, FGF13) and their receptor (FGFR3) and the
mitogen-activated protein kinase (MAPK) (MAPK1 and MAPK9) and the specific
MAPK kinase (MAP2K). Li et al. [16] applied the HMRF model with weighted LD
graphs to a genetic association study of neuroblastoma.

It should be noted that the proposed methods can be applied to other relevant
pathways such as human protein-protein interaction networks. Chuang et al. [5] used
the protein-protein interaction network for breast cancer classification and obtained
encouraging results in getting replicable molecular modules and better predictions.
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Since our current knowledge of the genetic pathways of humans is still very lim-
ited, our proposed method depends on the validity of the regulatory networks used.
One limitation of the proposed method is that the gene dependency provided by
these prior networks may not be reflected at the gene expression levels. If this is the
case, we should expect that the estimate of the dependency parameter � in the MRF
model to be small, then the network information will not contribute too much and
the results should be similar to the standard empirical Bayes analysis. It would be
interesting to test the ideas in this paper on other types of biological networks such
as protein-protein interaction networks.

17.6.2 Future Directions

The methods presented in this paper model the dependency of the distributions
of the gene- or SNP- specific data conditioning on experimental covariates or
patient-specific phenotypes, where the gene expression or genotype data are treated
as response variables. The goal of such analysis is to identify the covariate- or
phenotype-associated genes or SNPs. A related but very different problem is to treat
the phenotype as the response and the high-dimensional gene expression data or
SNPs as covariates in high-dimensional regression frameworks. This is often done
when the sample sizes are very large. The goals of such regression analysis are
often two-fold: to identify the genes/SNPs that are predictive to the phenotypes and
to build predictive models. One interesting statistical question is how to incorpo-
rate the prior network information into such high-dimensional regression analysis.
One approach to this problem is in the framework of penalized regression where
a penalty function can be defined to account for the expected smoothness of the
regression coefficients on the network [14, 33]. Alternatively, a Bayesian variable
selection approach can also be developed ([18]). However, much work needs to be
done in this important area.

We presented one way of accounting for LD among the SNPs in genome-wide
association studies using the idea of weighted LD graph. However, there is still a
computational limitation to consider all the SNPs in typical GWAS. One possibility
is to perform the analysis chromosome-by-chromosome. An interesting extension
for analysis of GWAS data is to incorporate the prior biological network information
assuming that whether a gene is associated with disease directly depends on an
association status of genes within the same pathway. Noticing that different genes
can have different numbers of SNPs, we should first have a method to summarize
the SNP variations within a gene into a gene-level statistic. One simple approach
is to perform the principal components (PC) analysis and to obtain the first several
PCs for each gene. It would be interesting to explore whether such a procedure can
indeed lead to identifying more true disease-associated genes.

We have used the maximum pseudo-likelihood estimation (MPLE) during the
ICM algorithm to estimate the parameters related to the MRF ˚ . An alternative to
learn the MRF parameters is to use the iterative proportional fitting (IPF) algorithm.
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Comparisons between these two procedures in the settings considered in this paper
deserve further studies. Theoretical supports for MPLE and the IPF procedure and
the corresponding data-adaptive FDR control procedure are also needed. There is
also a need for statistical methods to assess the significance of the subnetworks that
are identified by the HMRF models.

Finally, real biological pathways/networks are more complicated than simple
undirected graphs. The nodes of such networks may represent different biological
quantities, the links may represent different biological interactions and the real net-
works are often directed. In addition, besides gene expression data, many types of
genomic data are being generated. How to integrate these data with detailed prior
biological network information raises many challenging statistical problems.
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Chapter 18
Review of Weighted Gene Coexpression
Network Analysis

Tova Fuller, Peter Langfelder, Angela Presson, and Steve Horvath

Abstract We survey key concepts of weighted gene coexpression network analy-
sis (WGCNA), also known as weighted correlation network analysis, and related
data analysis strategies. We describe the construction of a weighted gene coex-
pression network from gene expression data, identification of network modules and
integration of external data such as gene ontology information and clinical pheno-
type data. We review Differential Weighted Gene Coexpression Network Analysis
(DWGCNA), a method for comparing and contrasting networks constructed from
qualitatively different groups of samples. DWGCNA provides a means for measur-
ing not only differential expression but also differential connectivity. Further, we
show how to incorporate genetic marker data with expression data via Integrated
Weighted Gene Coexpression Network Analysis (IWGCNA). Lastly, we describe R
software implementing WGCNA methods.

18.1 Introduction

The merging of network theory with gene expression data analysis techniques
has spawned a new field: gene coexpression network analysis. Genes with simi-
lar expression patterns may participate in pathways and in regulatory and signaling
circuits [13], and their products may form complexes. Constructing a network of
genes based on coexpression facilitates the understanding of such phenomena and
identification of their key players.

Gene coexpression networks are also referred to as ‘association’, ‘correlation’
or ‘influence’ networks. They have been used to describe the transcriptome in
many organisms, for example, in yeast, flies, worms, plants, mice and humans
[4, 5, 7, 19, 46, 47, 49, 50, 54, 55]. Network methods have also been used for ‘stan-
dard’ microarray data analysis tasks such as gene filtering [16, 23, 35, 54], sample
classification and outcome prediction [9, 43].
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Here we will describe weighted gene coexpression network analysis (WGCNA)
[22, 23, 30, 54], a systems biology method for describing the correlation patterns
among genes across microarray samples. WGCNA can be used for finding clusters
(modules) of highly correlated genes, for summarizing such clusters using the mod-
ule eigengene or an intramodular hub gene, for relating modules to one another and
to external sample traits (using eigengene network methodology) and for calculating
module membership measures. Network based gene screening methods can be used
to identify candidate biomarkers or therapeutic targets. These methods have been
successfully applied in various biological contexts such as cancer, mouse genetics
and yeast genetics.

Before describing two specific data analysis strategies (the differential network
analysis DWGCNA and the Marker Integrated WGCNA), we briefly review the key
concepts of the WGCNA framework.

18.1.1 Constructing a Weighted Coexpression Network

WGCNA uses network terminology to describe coexpression, or correlation patterns
among probe set or ‘gene’ expression profiles. For the purposes of this chapter, we
do not distinguish between probe sets and genes. The nodes of a gene coexpression
network correspond to genes, labeled by indices i; j D 1; 2; : : : ; n, and each edge
is determined by the pairwise correlation between two gene expression profiles. The
network can be specified by its adjacency matrix A, a symmetric matrix with entries
aij in Œ0; 1� that encode the strength of the link between genes i and j . It is useful
to define the adjacency A in terms of coexpression similarity sij D jcor.xi ; xj /j.
This defines an unsigned network in which positive and negative correlations are
treated equally. Optionally, one may also want to preserve the sign of the correlation,
using a signed similarity defined as sij D .1C cor.xi ; xj //=2. Signed and unsigned
similarities differ in how they treat negatively correlated genes: genes with a high
negative correlation (close to �1) will have a low similarity in a signed network but
a high similarity in an unsigned network.

In an unweighted network, the adjacency can be defined by hard thresholding
the coexpression similarity sij : genes i and j are linked (aij D 1) if the absolute
correlation between their expression profiles exceeds a pre-defined constant � called
the hard threshold. While unweighted networks are widely used, they do not reflect
the continuous nature of the underlying coexpression information and may thus lead
to an information loss. In contrast, weighted networks reflect the continuous nature
of coexpression by allowing the adjacency to take on continuous values between 0
and 1. A weighted network adjacency can be defined by raising the coexpression
similarity sij to a power ˇ � 1, referred to as the ‘soft threshold’. By raising the
similarity to a power, the weighted gene coexpression network construction empha-
sizes high correlations at the expense of low correlations. In summary, a weighted
unsigned network is defined by

aij D sˇ
ij :
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18.1.2 Gene Significance

To incorporate external information into the coexpression network, we make use
of gene significance (GS ) measures. Abstractly speaking, the higher the absolute
value of GSi , the more biologically significant is the i -th gene with regard to a
given application.GSi could encode pathway membership (for example, it equals 1
if the gene is a known apoptosis gene and 0 otherwise), or it could encode knockout
essentiality.

When a sample trait is available (for example, body weight), we often use
the absolute value of the correlation coefficient between the trait and the gene
expression profiles to define a trait based gene significance measure GS t rait

i D
jcor.xi ; t rai t/j. It is straightforward to calculate the corresponding p-value using a
correlation test or a regression model. Alternatively, if a p-value has been defined
for each gene, one can define a gene significance measure as the negative log of the
p-value, GSi D � log.p-value.i//. The gene significance can take on positive or
negative values, with GSi D 0 indicating that the gene is not significant with regard
to the biological question of interest.

18.1.3 Network Modules

A major step in our analysis is to cluster genes into network modules based on their
coexpression. Most standard clustering methods require a distance, or dissimilarity,
measure, where highly coexpressed genes have a small dissimilarity. For example,
one could use the adjacency-based dissimilarity measure dissAdjij D 1 � aij . If
larger and more robust modules are desired, one can use a dissimilarity measure
based on the topological overlap matrix (TOM) [39, 54]:

dissTOMij D 1 � TOMij D 1 �
P

u¤i aiuauj C aij

min.ki ; kj /C 1 � aij

;

where ki D P
u¤i aui denotes the network connectivity. TOM combines the con-

nection strength between a pair of genes with their connections to other ‘third
party’ genes, and has been shown to be a highly robust measure of network
interconnectedness (proximity) [32, 53].

The dissimilarity measure of choice is used as input in average linkage hier-
archical clustering. Modules are then defined as branches of the resulting cluster
tree. Toward this end, a flexible (‘dynamic’) branch cutting method has been imple-
mented [31]. This module detection procedure has been found useful in many
applications [6, 12, 16, 19, 23, 28, 35, 36, 38, 51].

It is often useful to summarize the expression profiles of all genes in a mod-
ule using a single representative expression profile. For this purpose, we define the
module eigengene E as the first principal component of the standardized expression
profiles of a given module [22, 29]. The eigengene can be considered a weighted
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average of the module gene expressions. When a sample trait y is available, one
can correlate the module eigengenes with this trait. The correlation coefficient or its
corresponding p-value is referred to as the eigengene significance.

For each module we also define its module significance as the average absolute
gene significance for all genes in the module. When gene significance is defined
as the correlation of gene expression profiles with an external trait y, module
significance tends to be highly related to the corresponding eigengene significance.

By relating only a few modules to the trait data rather than thousands of genes,
WGCNA alleviates the multiple testing problem inherent in gene expression data
analysis. Because the modules may correspond to biological pathways, focusing the
analysis on modules amounts to a biologically motivated data reduction scheme.

18.1.4 Network Concepts and Connectivity

The term network concepts refers to functions of the adjacency matrix and/or a gene
significance measure that characterize topological properties of the gene network,
both globally and at the level of individual genes. For example, the average adja-
cency is referred to as network density and the average gene significance across
genes is referred to as network significance [22].

An important network concept is the connectivity ki (also known as degree)
that measures how connected the i -th gene is with other genes in the network. The
whole network connectivity, often simply called connectivity, is defined as the sum
of connection strengths (adjacencies) of gene i with all other network genes:

ki D
X
u¤i

aui :

By definition, genes inside coexpression modules tend to be highly connected – in
other words, they tend to have high whole network connectivity.

Network connectivity depends on many biological and technical factors. As a
result, different networks will inherently have different connectivities. To facilitate
comparison of connectivity values between two different networks, we define the
scaled whole network connectivity as

Ki D ki

maxi .ki /
; (18.1)

which is the connectivity divided by the maximum connectivity in the network.
The intramodular connectivity kIM;i measures how connected, or coexpressed,

the i -th gene is with respect to the genes of a particular module. Intramodu-
lar connectivity is calculated as the sum of the adjacencies within the module of
interest:
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kIM;i D
X

u2Module

aui :

If an eigengene is available (for example, Eq denotes the eigengene of module
q), one can define the eigengene based measure of intramodular connectivity (also
known as fuzzy module membership measure) as

k
q
ME;i D MM q.i/ D cor.xi ; E

q/; (18.2)

which measures how correlated gene i is with the eigengene of module q. The mod-
ule membership measure takes on values in Œ�1; 1�. If MM q.i/ is close to 0, the
i -th gene is not part of module q. On the other hand, if MM q.i/ is close to 1 or
�1, it is highly connected to genes in module q. The module membership can be
defined for all genes (irrespective of whether they were used in network construc-
tion or not). Module membership has been used to annotate genes with respect to
cell type specific modules in the human brain transcriptome [36].

While there is a close relationship between the eigengene based connectivity
kME;i and intramodular connectivity kIM;i for a given module, we prefer kME;i

for the following reasons: (1) it is naturally scaled to take on values between �1
and 1, (2) one can use a correlation test to calculate a corresponding p-value for a
gene’s module membership, (3) it can be used in signed networks to identify genes
that are anti-correlated with a given module eigengene and (4) kME can be com-
puted for any gene on the array (not just genes used in the network construction).
In practice, we find that intramodular and module eigengene based connectivity are
highly correlated [22].

18.1.5 Are Hub Genes Important?

Hub genes are highly connected genes, or put another way, genes that interact with
many other genes. The precise definition of hub gene status depends on the con-
nectivity measure and a threshold for this measure. For example, the top 20% most
highly connected genes could be referred to as hub genes, but other thresholds have
also been used. Network theorists have long studied the relationship between the
biological significance of a gene and its centrality or network connectivity. Clearly,
the precise definition of biological significance (i.e., the choice of the gene sig-
nificance measure) depends on the research question and the application. Several
network articles have pointed out that highly connected hub nodes are often cen-
tral to network architecture [1, 2, 7, 20]. While theses genes are not always critical
in higher organisms, knock-out experiments in yeast have shown that hub genes are
essential for survival [6,25]. A theoretical and empirical analysis of hub gene signif-
icance with regard to different connectivity measures and different gene significance
measures can be found in [22]. That work also provides a geometric characterization
of networks in which hub genes are important. These theoretical findings show that
intramodular connectivity (as opposed to whole network connectivity) with respect
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to biologically significant modules can be an important complementary gene screen-
ing variable. Intramodular hub genes are centrally located in the module and thus
summarize the pathway state. Several publications have demonstrated the impor-
tance of intramodular hub genes, for example, in brain cancer [23] or inflammatory
response [17].

Several studies have shown that differences in connectivity can be used to
identify biologically important genes in coexpression networks of higher organ-
isms [16, 19, 35, 48]. Below, we review a systems-genetic gene screening strategy
that combines intramodular connectivity with causality testing scores [38]. This
concludes our introduction on the key concepts of WGCNA.

18.2 WGCNA Applications

In this section we will review two WGCNA approaches to complex disease analy-
sis: (1) Differential WGCNA or DWGCNA, which allows one to view systematic
differences between different subgroups or species, and (2) Integrated WGCNA,
or IWGCNA, which integrates genetic marker information to characterize network
relationships as causal or reactive. Figure 18.1 provides an overview of WGCNA,
DWGCNA and IWGCNA.

18.2.1 DWGCNA

We now describe differential weighted gene coexpression network analysis, or
DWGCNA, which may be useful for identifying gene pathways distinguishing phe-
notypically distinct groups of samples. Differential network analysis is concerned
with identifying both differentially connected and differentially expressed genes.
We illustrate this analysis approach using data from a previously studied F2 inter-
cross between inbred strains C3H/HeJ and C57BL/6J [16, 19]. The liver tissues of
135 female mice were analyzed. We identified the 30 mice at both extremes of the
weight spectrum and constructed the first network using the 30 leanest mice and the
second network using the 30 heaviest mice. To measure differential gene expression
between the lean and the obese mice, we use the absolute value of the Student t-test
statistic. To measure differential connectivity, we use

DiffK(i) D K1.i/�K2.i/;

where K1.i/ and K2.i/ measure the scaled whole network connectivity (Eq. 18.1)
in lean mice (group 1) and obese mice (group 2), respectively.
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Fig. 18.1 Overview of network methodology. (a) Overview of WGCNA. (b) Overview of
DWGCNA. (c) Overview of IWGCNA

18.2.1.1 Identifying Gene Sectors Based on Differential
Expression and Connectivity

We hypothesized that changes in connectivity may correspond to large-scale
rewiring of the gene coexpresson network in response to environmental changes,
physiologic perturbations or genetic variations. Plotting the difference DiffK in
connectivity between lean and obese mice versus the t-test statistic for differential
expression of each gene gives a visual demonstration of how difference in con-
nectivity relates to a t-statistic describing difference in expression between the two
networks.

Figure 18.2a shows a scatterplot of DiffK versus the Student’s t-statistic of dif-
ferential expression. Eight sectors of the plot with high absolute values of DiffK
(>0.4) and/or t-statistics (>1.96) are shown. Horizontal lines depict sector bound-
aries based on t-statistic values, and vertical lines depict boundaries based on DiffK.
These eight sectors are marked by numbers in Fig. 18.2a. We use a permutation
test to determine sector significance. The permutation test contrasts networks built
by randomly partitioning the 60 mice into two groups. Figure 18.2b demonstrates
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Fig. 18.2 Sector plots of differential network analysis. In (a) and (b), difference in connectivity
(DiffK) is plotted on the x-axis, and t-test statistic values are plotted on the y-axis. Horizontal lines
indicate a difference in connectivity of�0.4 and 0.4, whereas vertical lines depict a t-statistic value
of �1.96 or 1.96. (a) Observed DiffK and t-statistic values. Genes are colored based on network
1 module definitions. Numbers indicate sectors 1–8. (b) Corresponding sector plot for a permuted
network where array samples in data sets 1 and 2 were randomly permuted

the the relationship between DiffK and t-statistic when network membership is per-
muted. Based on 1,000 random permutations, sectors 2, 3 and 6 were significant
(p � 1:0 
 10�3). Membership in sector 5 was significant with p � 1:0 
 10�2.
Clearly, we find that genes that are differentially connected may or may not be
differentially expressed.

18.2.1.2 Functional Enrichment Analysis of Sector 3 and Sector 5 Genes

We used the DAVID database to determine the functional enrichment of 61 sec-
tor 3 genes that were both highly connected in network 1 and weakly connected
in network 2 [11]. We focused on sector 3 for two reasons. First, sector 3 mem-
bers had extreme values of DiffK as well as high t-statistic values. Also, as one
can see from Fig. 18.2a, a high proportion of yellow module genes were found in
this sector based on network 1 module definitions. These yellow module genes were
weakly connected in network 2, and therefore were annotated as grey module (back-
ground) members in a module assignment scheme based on network 2. This result
suggests that in a pathophysiologic state (mouse obesity), the yellow module can
no longer be found. Genes in the yellow module were enriched for the extracel-
lular region, extracellular space, signaling, cell adhesion and glycoproteins at the
p < 0:05 level. Furthermore, 12 terms for epidermal growth factor or its related
proteins were recovered in the functional analysis.
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Sector 5 is analogous to sector 3 in that it contains genes with both extreme
differences in connectivity and extreme t-statistic values. After Bonferroni correc-
tion, sector 5 genes were enriched for enzyme inhibitor activity, endopeptidase
activity, dephosphorylation, protein amino acid dephosphorylation and serine-type
endopeptidase inhibitor activity at the p < 0:05 level. Two genes were found in all
mentioned categories: Itih1 and Itih3.

In summary, DWGCNA identified genes and pathways that are not only dif-
ferentially expressed, but also differentially connected. This additional information
describes the differential wiring of genes. R code and tutorials to reproduce these
results are available from http://www.genetics.ucla.edu/labs/horvath/nCoexpression
Network/DifferentialNetworkAnalysis/.

18.2.2 IWGCNA

The availability of genetic marker data enables causality testing to identify the
genetic drivers underlying the modules and clinical traits of interest. The concept
of conducting a causality analysis based on genetic marker data has been explored
by several authors [3, 8, 10, 26, 33, 37, 41, 45]. We refer to a weighted gene coex-
pression network analysis that uses genetic markers in causality testing as ‘Marker
Integrated WGCNA’ or simply as IWGCNA. We review the IWGCNA approach
for integrating a weighted gene coexpression network with SNP data to identify a
disease-related module and to develop a systems genetic screening strategy that gen-
erates testable hypotheses. Furthermore, we use the Network Edge Orienting (NEO)
software [3] to show that this screening strategy prefers genes that are causal for the
modules.

IWGCNA uses correlation to relate gene expression profiles, genetic markers
and clinical traits. Using correlation provides a unified approach for relating vari-
ables from disparate data sets. IWGCNA aims to find genes that are (1) significantly
related to the clinical trait, (2) highly connected hub genes in a disease related
coexpression module and (3) significantly associated with a disease related marker.
Figure 18.1c outlines the main steps of IWGCNA.

18.2.2.1 Steps of the IWGCNA Analysis

In this section we review the application of IWGCNA on a chronic fatigue syn-
drome (CFS) data set and show that it identifies candidate genes whose functions
are consistent with results from other CFS studies [38]. We analyzed the pheno-
type, genotype and expression data from a 4 year longitudinal study conducted by
the Centers for Disease Control (CDC) [40]. We focused on 127 patients that were
diagnosed with some level of fatigue according to the Intake diagnosis (i.e., we
removed the controls). The goal was to find genes and pathways that relate to CFS
severity, which is an ordinal outcome with levels mild, moderate and severe.

http://www.genetics.ucla.edu/labs/horvath/Coexpression
Network/DifferentialNetworkAnalysis/
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Fig. 18.3 Visualizing the network. (a) Hierarchical clustering of the 2,677 most varying and
connected genes in a chronic fatigue syndrome data set resulted in five modules. (b) A multi-
dimensional scaling plot of these genes indicates that the blue module is the most distinct

First, we constructed a coexpression network from the microarray data.
Figure 18.3 shows the five modules of coexpressed genes that were identified
by WGCNA and a classical multi-dimensional scaling plot of their relative posi-
tions. We defined GSseverity.i/ as the absolute value of the correlation between
the CFS severity phenotype and the i -th gene expression xi : GSseverity.i/ D
jcor.xi ; severity/j. Note that gene significance raised to a power ˇ can be interpreted
as the connection strength between severity and the i -th gene expression in a
weighted network.

Second, we identified a module related to CFS severity. To arrive at a measure
of module significance, we averaged the GSseverity values of all genes within a mod-
ule. The blue module with 299 genes had the highest module significance (average
GSseverity D 0:234, p D 0:007) and was selected for further analysis.

Third, we used a severity-related SNP marker to prioritize genes within the blue
module. This step required a SNP marker that is associated with both the trait and
the trait related module. The genetic marker data consisted of 36 autosomal SNPs
located near or within a set of eight genes that were considered biologically relevant
for CFS [44]. We chose to focus on SNP rs10784941 located within the TPH2 tryp-
tophan hydroxylase two gene because it had previously been shown to be associated
with chronic fatigue and CFS severity in our data set. To measure the association
between a SNP and the gene expression profiles, we defined a SNP-based gene
significance measure: GSSNP .i/ D jcor.xi ; SNP /j. GSSNP is similar to a sin-
gle point LOD score as it measures the extent to which a gene is associated with
the SNP.

Fourth, we applied an integrated gene screening strategy to identify candidate
genes. While a standard gene screening approach would draft a final list of candi-
date genes based solely on the association between gene expression and the clinical
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trait (GSseverity), our integrated strategy additionally used GSSNP and kME . This
approach allowed us to select disease related genes that were implicated by the
genetic marker and network connectivity information. Since the blue module was
associated with CFS severity, we used it for a module based screening analysis. We
selected candidate genes that met the following criteria: (1) moderate association
with the TPH2 SNP, (2) kblue

ME in the top 80% to select intramodular hub genes,
(3)GSseverity andGSTPH2 signs that were consistent in both sexes and (4) moderate
association with the severity trait. This strategy resulted in 20 candidate genes.

Fifth, we used causality testing implemented in the Network Edge Orient-
ing (NEO) software [3] to orient network edges. We calculated the LEO:NB:
SingleMarker score, which is a relative fitting index that compares the model
fitting p-value of the causal model for a gene xi causing eigengene E to that
of the next best competing model. For the edge orientation of xi ! E , the
LEO:NB:SingleMarker is given by

LEO.xi ! EjSNP/ D log10

0
BBBBBBBBBBBB@

p.model 1 W SNP ! xi ! E/

max

0
BB@
p.model 2 W SNP ! E ! xi /;

p.model 3 W xi  SNP ! E/;

p.model 4 W SNP ! xi  E/;

p.model 5 W SNP ! E  xi /

1
CCA

1
CCCCCCCCCCCCA

;

where the competing models have the following interpretations: model 2 implies
that E causes xi , model 3 implies that the SNP directly affects both xi and E so
that given the SNP they are independent of each other (confounded model), model
4 implies that the SNP andE both affect xi and model 5 implies that the SNP and
xi both affect E . Genes with a causal relationship to their parent module are highly
related to many other genes within the module and are upstream of the module gene
expressions. There were 66 causal genes out of the 299 blue module genes, and all
but three of our 20 candidate genes were causal for the blue module. A NEO analysis
of the combined male and homogenized female samples found that 18 candidate
genes were causal. The enrichment for causal genes within our candidate gene set
shows that our gene screening strategy favors causal drivers.

The analysis described in steps 1–5 is a biologically motivated gene screening
strategy. Gene ontology software showed that the majority of our candidate genes
interacted in a cell death pathway.

In summary, we have shown that WGCNA can be combined with genetic marker
data to identify disease-related genes, pathways and their causal drivers. IWGCNA
of a CFS data set identified candidate genes that interact in a biologically relevant
pathway. Integrating gene coexpression networks with allelic association studies
may be useful for identifying complex disease genes.
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18.3 Software for WGCNA

The WGCNA R software package [30] provides a comprehensive collection of R
functions for performing various aspects of weighted correlation network analysis.
The package includes functions for the following tasks: (1) network construction,
(2) module detection, (3) module and gene selection (screening), (4) calculations
of network topological properties, (5) data simulation, (6) visualization and (7)
interfacing with external software packages. Along with the R package, we also
provide user-friendly R software tutorials. While the methods development was
motivated by gene expression data, the underlying data mining approach can be
applied to a variety of different settings. The R package, along with its source code
and additional material, are freely available at http://www.genetics.ucla.edu/labs/
horvath/nCoexpressionNetwork/Rpackages/WGCNA. Here we briefly outline the
main functionality of the package.

18.3.1 Category 1: Functions for Network Construction

The WGCNA package provides a host of pairwise coexpression similarity mea-
sures for constructing networks including more robust measures of correlation (the
biweight midcorrelation [52] or the Spearman correlation). Using a thresholding
procedure, the coexpression similarity is transformed into the adjacency. Both hard-
thresholding (function signumAdjacencyFunction) and soft-thresholding
(function adjacency) are available. Adjacency functions for both weighted
and unweighted networks require the user to choose threshold parameters – for
example, by applying the approximate scale-free topology criterion [54]. The pack-
age provides functions pickSoftThreshold and pickHardThreshold that
assist in choosing the parameters, as well as the function scaleFreePlot for
evaluating whether the network exhibits an approximate scale-free topology.

18.3.2 Category 2: Functions for Module Identification

WGCNA identifies gene modules using unsupervised clustering, i.e., without the
use of a priori defined gene sets. The user has a choice of several module identi-
fication methods. The default method is hierarchical clustering using the standard
R function hclust [27]. Branches of the hierarchical cluster tree correspond to
modules and can be identified using one of a number of available branch cutting
methods, such as the constant-height cut or two dynamic branch cut methods [31].
Compared to the static constant-height cut, the height and shape parameters of the
dynamic tree cut methods offer improved flexibility for branch cutting and module
identification.

One drawback of hierarchical clustering is that it can be difficult to determine
how many (if any) clusters are present in the data set. While the default parameters

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA
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of the dynamic tree cut functions have worked well in several applications, in
practice we recommend carrying out a cluster stability/robustness analysis. A coex-
pression module may reflect a true biological signal (e.g., a pathway) or it may
reflect noise (e.g., technical artifacts, tissue contamination or false positives). To
test whether the identified modules are biologically meaningful, gene ontology
information (functional enrichment analysis) can be used. Toward this end, we pro-
vide an R tutorial that describes how to interface WGCNA with relevant software
packages and data bases.

18.3.2.1 Summarizing the Expression Profiles of a Module

Several options have been implemented for summarizing the gene expression pro-
files of a given module. For example, the function moduleEigengenes repre-
sents the module expressions of the q-th module by the module eigengene Eq .
Alternatively, the user can use intramodular connectivity to find the most highly
connected intramodular hub gene, which represents the module.

18.3.2.2 Fuzzy Measure of Module Membership

Hierarchical clustering and most other standard clustering methods such as Parti-
tioning Around Medoids (PAM) [27] result in a binary module assignment, i.e., a
node is either inside or outside of a module. As we discussed previously, in some
applications it may be advantageous to define a continuous, fuzzy measure of mod-
ule membership for all nodes. Such a measure is particularly useful to identify nodes
that lie near the boundary of a module, or nodes that are intermediate between
two or more modules. Since we define the fuzzy module membership MM as the
eigengene-based connectivity (see Eq. 18.2) we named the corresponding R function
signedKME.

18.3.2.3 Automatic Blockwise Module Detection

Many microarray experiments report expression levels of tens of thousands of dis-
tinct genes (or probes). Building and analyzing a full network among such a large
number of nodes can be computationally challenging because of memory size and
processor speed limitations. The WGCNA package contains several improvements
that address this challenge. The function blockwiseModules first pre-clusters
nodes into large clusters, referred to as blocks, using a variant of k-means clus-
tering (projectiveKMeans). Next, hierarchical clustering is applied to each
block and modules are defined as branches of the resulting cluster tree. To synthe-
size the module detection results across blocks, an automatic module merging step
(mergeCloseModules) is performed that merges modules whose eigengenes are
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highly correlated. The time and memory savings of the blockwise approach are often
substantial.

18.3.2.4 Consensus Module Detection

When dealing with multiple adjacency matrices representing different networks, it
can be interesting to find consensus modules, defined as modules that are present
in all or most networks [29]. Intuitively, two nodes should be connected in a con-
sensus network only if all input networks agree on that connection. This naturally
suggests to define the consensus network similarity between two nodes as the mini-
mum of the input network similarities. For multiple input data sets, it can be useful
to replace the minimum by a suitable quantile (e.g., the first quartile). Consensus
module detection can be performed step-by-step for maximum control and flexi-
bility, or in one step using the function blockwiseConsensusModule. This
function calculates consensus modules across given data sets in a blockwise manner
analogous to the blockwise module detection in a single data set.

18.3.3 Category 3: Functions for Module and Gene Selection

Finding biologically or clinically significant modules and genes is a major goal of
many coexpression analyses. The definition of biological or clinical utility depends
on the research question under consideration. We have previously discussed the gene
significance (GS) measure, which may be used in gene selection. Similarly, the mod-
ule significance measure may be used in module selection. Furthermore, genes with
high module membership in modules related to traits are natural candidates for fur-
ther validation studies. This strategy is implemented in the networkScreening
function.

18.3.4 Category 4: Functions for Studying Topological Properties

Many topological properties of networks can be succinctly described using net-
work concepts, also known as network statistics or indices [12, 22]. Network
concepts include whole network connectivity (degree), intramodular connectiv-
ity, topological overlap, the clustering coefficient and other network measures
described in [12]. The WGCNA package implements several functions, such as
softConnectivity, intramodularConnectivity, TOMSimilarity,
clusterCoef and networkConcepts, for computing these measures. Basic
R functions can be used to create summary statistics and test their differences across
networks. Differential analysis of network measures such as intramodular connec-
tivity may reveal regulatory changes in gene expressions as previously described in
the section on DWGCNA [16, 35].
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18.3.5 Category 5: Functions for Simulating Microarray Data
with Modular Structure

Simple yet sufficiently realistic simulated data is often important for evalua-
tion of novel data mining methods. The WGCNA package includes simulation
functions simulateDatExpr, simulateMultiExpr and simulateDat
Expr5Modules that result in expression data sets with a customizable modular
(cluster) structure. The user can choose the modular structure by specifying a set of
seed eigengenes, one for each module, around which each module is built. Module
genes are simulated to exhibit progressively lower correlations with the seed which
leads to genes with progressively lower intramodular connectivity. The user can
specify module sizes and the number of background genes, i.e., genes outside of the
modules. The seed eigengenes can be simulated to reflect dependence relationships
between the modules (simulateEigengeneNetwork).

18.3.6 Category 6: Visualization Functions

Module structure and network connections in the expression data can be visual-
ized in several different ways. For example, the coexpression module structure can
be visualized by heatmap plots of gene-gene connectivity that can be produced
using the function TOMplot. An alternative is a multi-dimensional scaling plot;
relationships among modules can be summarized by a hierarchical cluster tree of
their eigengenes, or by a heatmap plot of the corresponding eigengene network
(labeledHeatmap). The package includes several additional functions designed
to aid the user in visualizing input data and results.

18.3.7 Category 7: Functions for Interfacing
with other Software Packages

We have created R functions and tutorials to integrate WGCNA with other net-
work visualization packages and functional enrichment software. For example, the
functions exportNetworkToVisANT and exportNetworkToCytoscape
allow the user to export networks in a format suitable for VisANT [24] and
Cytoscape [42], respectively.

Our online R tutorials also show how to interface WGCNA results with gene
ontology packages available directly in R, e.g., GOSim [15]. Many gene ontology
based functional enrichment analysis packages simply take lists of gene identifiers
as input.
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18.3.8 Tutorials

We provide a comprehensive set of online tutorials that guide the user through the
major steps of correlation network analysis. The tutorials provide R code the user
can copy and paste into an R session, along with comments and explanations of
both the input and output. The tutorials cover the following major topics: correlation
network construction, step-by-step and automatic module identification, consensus
module detection, eigengene network analysis, differential network analysis, inter-
facing with external software packages and data simulation. The tutorials use both
simulated and real gene expression data sets.

18.4 Discussion

Weighted gene coexpression network analysis (WGCNA) complements other net-
work analysis approaches such as gene network enrichment analysis [34] and func-
tional analysis of gene coexpression networks [21]. While most other approaches
focus on unweighted networks, WGCNA preserves the continuous coexpression
information. That being said, the WGCNA R package implements methods for both
weighted and unweighted correlation networks.

While WGCNA is a powerful microarray analysis tool, users should also be
aware of its limitations. First, WGCNA assumes that the microarray data have been
properly pre-processed and normalized. To normalize the expression data, several
R functions have been implemented in Bioconductor packages [18]. Although all
normalization methods are mathematically compatible with WGCNA, we recom-
mend using the biologically most meaningful normalization method with respect
to the application under consideration. Second, similar to most other data mining
methods, the results of WGCNA can be biased or invalid when dealing with tech-
nical artifacts, tissue contamination or poor experimental design. Third, although
several coexpression module detection methods are implemented within the R pack-
age, the package does not provide the means to determine which method is best.
While the default hierarchical clustering methods have performed well in several
real data applications, it would be desirable to compare these and other methods
on a benchmark collection of real data sets. The WGCNA R package currently
focuses on undirected networks. Methods for orienting edges and constructing
directed networks are implemented in R, and can be used in conjunction with
WGCNA [3, 8, 37].

WGCNA can be used as a data exploratory tool or as a gene screening method.
For example, one may use WGCNA to explore the module structure in a network,
to measure the relationship between genes and modules (module membership infor-
mation), to explore the relationships between modules (eigengene networks) and
to rank-order genes or modules with regard to their relationship with a sample
trait. WGCNA can generate testable hypotheses for validation in independent data
sets. For example, WGCNA may suggest that a module, or a putative pathway, is
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associated with a disease outcome. One can use a correlation test p-value [14] or a
regression-based p-value for assessing the statistical significance between variables.
For example, it is straightforward to attach a significance level to the fuzzy mod-
ule membership metric. The relationship between standard microarray data mining
techniques and gene coexpression network analysis is discussed in [22]. Coex-
pression networks hold great promise for uncovering the genetic basis of complex
diseases, and WGCNA is an intuitive and simple tool for this task.
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Chapter 19
Liquid Association and Related Ideas
in Quantifying Changes in Correlation

Ker-Chau Li

Abstract This chapter describes a novel statistical concept of a ternary relationship
between variables in a complex data system, coined ‘liquid association’ (LA) by Li
(Proc Natl Acad Sci U S A 99(16):16875–16880, 2002). LA describes how vari-
ation in the pattern of association between a pair of variables, including its sign
and strength, is mediated by a third variable from the background. LA is intro-
duced because despite the many successful applications of similarity based analysis
on microarray data, numerous cases where the functional association between genes
is known from the literature (confirmed by experiments) but the statistical correla-
tion from the corresponding expression data is practically zero also exist. Other
than the noises in the microarray data, a deeper reason may be the biological com-
plexity of the cellular system and the hidden components, which are not directly
measured by gene expression, such as multiple functions of a protein, varying cellu-
lar oxidization-reduction states, fluctuating hormone levels or other cellular signals
and so on.

19.1 Limitation of Correlation and Similarity Analysis

It has been well-accepted that genes with similar profiles are likely to share com-
mon cellular roles and participate in related pathways. Pearson’s correlation is a
popular measure of similarity, which is thought to conform well to the intuitive
biological notion of what it means for two genes to be ‘co-expressed’ [2]. For
any pair of genes (X; Y ), a correlation or other similarity measure is computed.
High correlation is a likely evidence for functional association between genes-their
gene products are more likely to form a protein complex; they may participate in
common pathways and biological processes; they may be governed by common
regulatory elements upstream their gene coding regions. This kind of similarity
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analysis together with other variations and extensions for clustering or classification
has generated enormous information from high throughput biological experiments.

Positively and negatively associated genes, once detected, can be used as build-
ing blocks toward the understanding and prediction of the system behavior. But in
the extremely complex biological systems, the vast majority of cases turn out show-
ing no or weak correlations between variables. This is a major shortcoming of the
traditional correlation-based similarity analysis. Even the advanced techniques like
K-means, self organization maps or hierarchical clustering method do not address
this issue properly.

There are numerous cases of failure with conventional correlation analysis where
functional association is evident according to experimental evidence, yet the statisti-
cal correlation from gene assay evidence is practically zero. The abundance of such
negative results constitutes a bottleneck in distilling more information from microar-
ray data. Two illustrative cases concern the transcription factors, Max and thyroid
hormone receptor (TR); Weaver [24], page 406–407. These transcription factors can
serve either as activators or as repressors, depending on other interacting molecules.
Max can bind to Myc and form a Myc-Max dimer that acts as a transcription activa-
tor. But when bound to Mad, the Mad-Max dimer serves as a repressor. For the case
of TR, it associates with RXR to form a TR-RXR dimer that serves as a repressor in
the absence of thyroid hormone. In the presence of thyroid hormone, the TR-RXR
dimer is converted into an activator. Histone deacetylation is involved in both
repressing events. Thus for example, if X is taken to be the expression profile of
the gene encoding TR and Y is taken to be the profile of one of its target genes, then
X and Y may be either positively correlated or negatively correlated, depending
on the hormone level. If the hormone level fluctuates in an unspecific manner, the
opposing directions of correlation may cancel out each other and no similarity based
analysis may succeed in detecting the functional association between X and Y .

In general, all biological processes are interlocked and many proteins have
multiple cellular roles. Two proteins engaged in a common process under certain
conditions, may disengage and embark on activities of their own under other condi-
tions. This implies that both the strength and the pattern of association between two
gene profiles may vary as the intrinsic cellular state changes.

An important issue arising from the above discussion is how to systematically
study the co-expression patterns between functionally related genes, subject to the
cellular state changes. The issue is compounded by fact that a cellular state is not
clearly defined and that there are numerous intracellular and intercellular conditions
that can alter the cellular state. A direct approach would be to specify a number
of them and conduct more profiling experiments under more specific conditions
accordingly. But this depends on our biological knowledge about what conditions
are relevant to the genes under study. Quite often such information is not avail-
able and indeed, biologists may hope to identify such conditions from large scale
genomic data. The LA method approaches this issue in a reverse manner. For
any two given genes, the method attempts to delineate the cellular state changes
that may affect their co-expression pattern. This is made possible via a theory of
co-expression dynamics.
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19.2 Concept of Liquid Association

The term liquid association (LA), ‘liquid’ as opposed to ‘steady’, was first used
to conceptualize the internal change of co-expression patterns for a pair of genes
(X ,Y ) in response to constant changes in the cellular state variables. Because the
relevant cellular states are typically unknown, it is difficult to detect this novel type
of association from the profiles of X and Y alone. To make a progress, we make
a somewhat broad assumption that the state change turns out associated with the
differential expression of one geneZ. Then the profile ofZ can be utilized to screen
the scatterplot of (X ,Y ) for the intrinsic expression patterns termed LA activity.
This creates a ternary relationship between X; Y and Z. Figure 19.1 is a schematic
diagram for illustrating the concept of LA.

Specifically, if an increase in Z is associated with an increase in the correla-
tion of (X ,Y ), then Z is a positive LA-scouting gene for (X; Y ) and a positive
score is assigned to quantify the strength of LA. The pair (X; Y ) is called a posi-
tive LAP (liquid association pair) of Z. Likewise, a negative LA-scouting gene can
be defined if an increase in Z is associated with a decrease in the correlation of
(X; Y ) then the LA score is negative-valued. Thus when comparing the low with
the high expression levels of a positive LA-scouting gene, the scouted LAP is likely
to change from being contra-expressed to being co-expressed. For a negative LA-
scouting gene, the change goes the opposite direction from being co-expressed to

Fig. 19.1 Co-expression dynamics. Profiles of genes X and Y are displayed in a scatterplot (the
left panel). The four green (diamond) points represent four conditions for cellular state 1 wherein
X and Y are co-regulated. Likewise, the four red (square) points represent four conditions for
cellular state 2 wherein X and Y are contra-expressed. To depict this kind of internal evolution in
the association pattern, we say (X ,Y ) forms a liquid-association pair (LAP). Because the relevant
cellular states are usually unknown, it is hard to detect LAP directly from the profiles of X and
Y alone. However, if the cellular states are correlated with the differential expression of a third
gene Z, then we can use Z to scout (X; Y ) for information about their liquid association (LA.)
activity. In the right panel, the four green bars (low values) represent the expression of Z for the
same 4 green-colored conditions as in the left panel. Likewise, the four red bars (high values)
correspond to the 4 red-colored conditions in the left panel. When Z is down-regulated (green),
X and Y are co-expressed; when Z is up-regulated (red), X and Y become contra-expressed. We
assign a score to quantify the strength of LA. The LA score for this illustration is a negative value.
On the other hand, if the low expressions of Z correspond to the red points in the left panel and
the high expressions of Z correspond to the green points in the left panel, then the LA score will
be positive. This figure is taken from Li [10]
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being contra-expressed. In general, an LA-scouting gene serves only as a red flag, a
surrogate for the intrinsic state variable that facilitates the LA activity. The protein
encoded by an LA-scouting gene may not have any direct physical contact with its
LAP or the proteins encoded by the genes.

For the genome-wide study, there are a huge number of combinations for choos-
ing three genes from N genes. For example, the number of combinations in yeast
(with N D 5878) is approximately 33.8 billion triplets. For Affymetrix human gene
expression chip U133plus2, the number of gene probes exceeds 60,000, leading to
more than 3.6E12 triplets to inspect. Clearly, it is too time-consuming to visualize
every scatterplot like Fig. 19.1 for detecting the LA patterns. A statistical measure to
quantify liquid association for identifying the likely LA triplets is introduced next.

19.3 Mathematical Derivation

The mathematical platform for introducing liquid association involves three ran-
dom variables X , Y and Z, each with mean 0 and variance 1. The correlation
coefficient between X and Y is equal to E.XY /. By conditioning, E.XY / D
E.E.XY jZ// D Eg.Z/, where g.Z/ D E.XY jZ/ denotes the conditional expec-
tation of XY givenZ. This identity describes how the variableZ contributes to the
correlation between X and Y via g.Z/. We regard g.z/ as the influx of correlation
contribution at Z D z and ask how it varies as z increases. Denote the derivative of
g.z/ with respect to z by g0.z/. We quantify the overall influx change by averaging
g0.Z/ overZ, leading to the following definition of liquid association.

Definition 19.1. Suppose X , Y , Z are random variables with mean 0 and vari-
ance 1. The liquid association (LA) of X and Y with respect to Z is given by
LA.X; Y jZ/ D Eg0.Z/, where g.z/ D E.XY jZ D z/.

This definition is fairly general. WhenZ follows a normal distribution, there is a
very simple way of calculating LA.

Theorem 19.1. If Z is standard normal, LA.X; Y jZ/ D E.XYZ/.
This theorem can be proved by using the celebrated Stein Lemma (Stein 1981).

Using this theorem, the LA score is simply the average of the triplet product,
n�1.x1y1z1 C � � � C xnynzn/.

Remark 19.1. The notion of LA is completely different from the notion of partial
correlation coefficient. The partial correlation measures how X and Y are corre-
lated after adjusting for the common correlation due to their correlation with Z.
More specifically, let U D X � r1Z and V D Y � r2Z be the residual of regressing
X and Y onZ respectively; r1, r2 being the regression coefficients. Then the partial
correlation is equal to the correlation of (U; V ). One typical use of partial correla-
tion is to help the causality inference. In some applications, two highly correlated
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variables X and Y may turn out having no casual relationship at all and the par-
tial correlation technique can used to probe for a shared variableZ that is correlated
with bothX and Y , thus explaining the apparent correlation between them. For such
cases, the partial correlation would be reduced to essentially 0.

Remark 19.2. One technical note concerns phrases such as ‘change in correlation
between X and Y given Z’ which should be more accurately rephrased as ‘change
in the intrinsic structure of correlation between X and Y ’. The subtlety is that
E.XY jZ D z/ measures only the intrinsic contribution of Z to the overall cor-
relation. It does not measure the conditional correlation of X and Y given Z D z,
h.z/ D �.X; Y jZ D z/ D Cov.X; Y jZ D z/=SD.X jZ D z/SD.Y jZ D z/.
One can define a liquid association-like notion using h.z/ to replace g.z/ and estab-
lish the identity with E.h.Z/Z/ using the Stein lemma. However, the estimation of
h.Z/ requires local smoothing.

Remark 19.3. The estimation issue aside, on may ask which measure, Eh0.Z/ or
Eg0.Z/, would be more appropriate for applications in microarray data analysis.
This is not an easy question to answer. A typical use of correlation between gene
expression profiles intends to reflex the degree of coordination in regulation gene
expression. The quantity g.Z/ uses a common baseline measure for X and Y no
matter what conditions are associated with Z. For many applications in microar-
ray studies, this is easier to accept. As to be argued below, g.z/ reflects better
the intuitive change in the co-expression/co-regulation of a pair of genes X and
Y than h.z/.

In most microarray gene expression analysis studies [6], biologists tend to agree
that the baseline expression of a gene can be represented by the average value of the
expression of all conditions under study. Because we have set the mean of X and Y
to zero, cases with X > 0 and Y > 0 (X < 0 and Y < 0, respectively) indicate
of upregulation (down-regulation, respectively) of both genes. Co-upregulation or
co-downregulation contributes a positive value in the productXY . Likewise, contra-
expression/contra-regulation (either X > 0, Y < 0, or X < 0, Y > 0) contributes
a negative value in the productXY . Thus by calculating the average of contribution
to the product XY over all conditions, LA is a way of quantifying the change of
co-regulation pattern.

The use of the conditional correlation h.z/, however, implies that the baseline
expression levels of gene X and gene Y and their ranges of variation must be reset
in assessing the degree of coordination under different activity level of Z. This
mathematical formulation of conditional correlation may not serve well the purpose
of explaining the intuitive biological sense of coordination under the varying condi-
tions associated with Z. See Sun, Yuan and Li [22] for more detail discussion in the
context of 2D-trait eQTL mapping in genetic variation studies.

Remark 19.4. Our LA measure is not intended to capture the detail pattern of
change in h.z/ D E.XY jZ D z/. For example, if h.z/ is not monotonically increas-
ing or decreasing, then measures like Ejh0.Z/j may seem more informative to use.
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Estimation of such measures would require local smoothing, however. Such proce-
dures would be worth pursuing provided that good biological insight can be gained
to ensure the fluctuation in g.z/ is not due to noises.

19.4 Computing LA

The theorem derived in the previous section makes the computation of LA extremely
simple. For application in analyzing microarray gene expression data, we convert
each gene expression profile by normal score transformation so that the normal dis-
tribution can be followed as closed as possible. Otherwise, to estimate LA we cannot
apply Theorem and will have to resort to nonparametric regression, which would be
difficult to do for all possible triplets in the genome.

The normal score transformation is f˚�1.
Ri

nC1
/, i D 1; 2; : : : ; ng, where ˚.�/ is

the cumulative normal distribution, Ri is the rank of the gene expression for the i th

condition and n is the total number of conditions.
To gain some insight about the magnitude of LA score required for detecting a

meaningful change in correlation, Yuan and Li [14] conducted a simulation study
based on a model which was flexible enough to represent a wide range of correlation
changes. They considered four independent random variables, s, Z, e1, e2; s taking
values�1 and 1 with equal probability andZ, e1, e2 being standard normal random
variables. Let X D sr1Z C .1 � r2

1 /
1=2e1 and Y D sr2jZj C .1� r2

2 /
1=2e2. It can

be seen that X , Y are marginally normal with mean 0 and variance 1. For Z < 0,
the correlation betweenX and Y is �r1r2 and forZ > 0, the correlation is changed
to r1r2. By setting r1 D r2 D 0:6 and generating three gene profiles with 60 cases:
x1; : : : ; x60; y1; : : : ; y60; z1; : : : ; z60 to compute the LA scores for 10,000 repeats,
they obtained the mean of LA scores to be :316 and the standard deviation 0:123.
The simulation for this and other correlation changes were shown in the following
table. Using 95% as the cutoff point, we see that a change from �0:5 to 0.5 can
be comfortably detected by LA. In fact, only 1:22% of cases simulated under no
correlation change (r1 D r2 D 0) have LA scores higher than 0.2389(the average
LA score for r1 D r2 D 0:5); see the last row of the Table 19.1. To study the effect
of the number of conditions, they also conducted the simulation for 40 conditions.
The results are reported in parentheses. The change of �0:5 to 0.5 may still be
detectable.

For easy visualization of LA activity, it helps to find good threshold values c1,
c2 for dividing conditions into the high (Z > c2) , the intermediate (c1 < Z < c2)
and the low (Z < c1) expression groups of the LA-scouting gene Z. There are
at least two ways to proceed. The first method uses a stratified linear model as an
approximation to fit the data by least squares. The model takes the form of Y D
a1 C b1X C error for Z < c1 and Y D a2 C b2X C error for Z > c2, where a1,
b1, a2, b2, c1 and c2 are estimated from the data. The second method based on the
optimal accumulation of correlation contribution by Z so that the total contribution
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Table 19.1 Rows 1–4 show the results of simulation under each specified value of r1 D r2. Row
5 shows the result simulated under r1 D r2 D 0. The number of conditions is set at 60 (40 for
values reported in parentheses)
r1 D r2 D 0 0.3 0.4 0.5 0.6 0.7 0.8 0.9

mean of .0000 .0993 0.1653 0.2389 .3159 .3920 0.4648 0.5336

LA score (.000) (.0879) (.1489) (.2151) (.2831) (.3537) (.4186) (.4793)

S.D. of LA .1072 0.1171 0.1187 0.1215 .1226 0.121 0.1174 0.1139

score (.1241) (.1331) (.1367) (.1369) (0.1367) (0.1375) (.1339) (0.1297)

% of LA 50.24% 80.46% 91.76% 97.28% 99.42% 99.87% 99.97% 100%

score > 0 (50.59%) (74.75%) (86.08%) (94.04%) (97.64%) (99.20%) (99.74%) (99.94%)

% of LA score > 50.24% 17.76% 6.24% 1.22% 0.17% 0% 0% 0%

mean of LA score (50.59%) (24.11%) (11.53%) (4.03%) (1.14%) (0.19%) (0.06%) (0.01%)

to the product XY will be of different signs and the difference will be as large as
possible between the high and the low expression groups of gene Z.

19.5 Examples of Application

Example 1. Gene regulation for the metabolic pathway of urea cycle. This
example is taken from Li [10]. In Fig. 19.2, a schematic of the urea cycle with
key enzymes and intermediates is shown. The biological function of this path-
way is to maintain a suitable level of arginine. The expression data we used came
from four cell-cycle experiments, accessible at http://genome-www.stanford.edu/
cellcycle. All of the data were used to construct gene profiles with a total of 73
conditions.

ARG2 is the gene encoding acetylglutamate synthase which carries out the first
step in synthesizing ornithine and eventually arginine. In order to feed ornithine
into the arginine biosynthesis pathway, CAR2 (ornithine aminotransferase) should
be inactivated to avoid the immediate degradation of ornithine. This suggests that
CAR2 and ARG2 may be contra-expressed. However, the correlation between
ARG2 and CAR2 is nearly zero.

To apply liquid association, we take genes (ARG2, CAR2) as the gene pair
(X; Y ) to calculate LA.X; Y jZ/ for each Z of the 5,878 genes in the database and
rank the results. From the list of 10 genes with most negative LA scores, we found
the gene CPA2 which encodes the large subunit of carbamoyl phosphate synthetase.
Because carbamoyl phosphate is needed for enzyme ornithine transcarbamoylase
(encoded by ARG3) to synthesize citrulline from ornithine, high expression of CPA2
reflects the state of cellular demand for arginine.

The LA activity pattern for (ARG2,CAR2) as mediated by CPA2 is shown in
Fig. 19.3. It can be seen that when the expression level of CPA2 is low, as repre-
sented by the diamond shapes, a positive correlation is seen between ARG2 and
CAR2. As the level of CPA2 increases, the correlation pattern is gradually weak-

http://genome-www.stanford.edu/cellcycle
http://genome-www.stanford.edu/cellcycle


396 K.-C. Li

ARG1 ARG4

CAR1ARG3

AR G2

CPA1
CPA2

aspartate
L-arginino-
succinate

arginine fuma
ratecitrulline

omithine

urea

L-glutamate-
5-semialdehyde

proline

glutamate

N-acetyle-
glutamate

gluta
mine

carbamoyl-
phosphate CAR2

Fig. 19.2 Urea cycle/arginine biosynthesis pathway. ARG2 encodes acetyl-glutamate synthase,
which catalyzes the first step in synthesizing ornithine from glutamate. Ornithine and carbamoyl
phosphate are the substrates of the enzyme ornithine transcarbamoylase, encoded by ARG3.
Carbamoyl phosphate synthetase is encoded by CPA1 and CPA2. ARG1 encodes argininosuc-
cinate synthetase, ARG4 encodes argininosuccinase, CAR1 encodes arginase, and CAR2 encodes
ornithine aminotransferase. This figure is taken from Li [10]

ened. Eventually, when CPA2 is high, shown as triangles, the association has turned
into a negative. The LA score is �0:2894 with the P-value 56 of a million by a
permutation test as described in Li [10].

For efficient activation of the arginine biosynthesis pathway, up-regulation of
ARG2 must be concomitant with down-regulation of CAR2 to prevent immediate
ornithine degradation. We see this occurs only when CPA2 is up-regulated. Because
activation of CPA2 provides the influx of carbamoyl phosphate into urea cycle, high
expression level of CPA2 can be interpreted as a physiological signal for arginine
demand. Therefore, from the LA-activity plot it can be seen that under this state,
ARG2 and CAR2 are indeed negatively correlated. When the demand is relieved and
CPA2 is lowered, CAR2 is up-regulated, opening up the channel for ornithine to
degrade and leave the urea cycle.

Example 2 Gene expression and drug sensivity. Microarrays have been applied to
the 60 human cancer cell lines (9 tumor types: 8 breast, 6 central nervous system,
7 colon, 6 leukemia, 8 melanoma, 9 non-small cell lung cancer, 6 ovary, 2 prostate,
8 renal ) used in the NCI drug discovery screen [16,18,19]. Genes whose expression
correlates well with a drug activity profile are likely to be associated with the under-
lying cellular mechanism of growth inhibition. However, there are numerous factors
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Fig. 19.3 Liquid association between ARG2 and CAR2 as mediated by CPA2. When the
expression level of CPA2 is low (conditions represented by blue diamonds), a positive correla-
tion is seen between ARG2 and CAR2. As the level of CPA2 increases, the correlation pattern is
gradually weakened. Eventually, when CPA2 is high (red triangle), the association is turned into
negative. The LA score is �0:289. For efficient activation of the arginine biosynthesis pathway,
up-regulation of ARG2 must be concomitant with down-regulation of CAR2 to prevent ornithine
from leaking out of the urea cycle. We see this occurs only when CPA2 is up regulated. Because
activation of CPA2 provides the influx of carbamoyl phosphate into urea cycle, high expression
level of CPA2 can be interpreted as a physiological signal for arginine demand. When the demand
is relieved and CPA2 is lowered, CAR2 is up-regulated, opening up the channel for ornithine to
leave the urea cycle. This figure is taken from Li [10]

that can contribute to drug sensitivity. Consequently, quite often no correlation is
found between a drug activity profile and the expression profile of its known molec-
ular targets. Indeed, extensive biochemical studies have been conducted on issues
such as drug transport, modification, translation regulation of the target gene, cell
cycle arrest, and programmed death; see for example, Chapter 19, pharmacology
of cancer chemotherapy, of Devita, Hellman and Rosenberg [5]. But the drug resis-
tance problem is complex and it would be useful to find a computational method
for augmenting the sketchy results established by the labor intensive biochemical
approaches. The LA method offers one such approach, because of its ability to
exploit lack of correlation.

Li and Yuan [14] investigated how to correlate drug activity profiles with gene
expression profiles. This is achieved by putting both the gene expression profiles
and the drug activity profiles together as an enlarged system. The refined database
consists of indices of LA.X; Y jZ/, where X , Y , Z are any drug activity profile
or gene profile. The variety of gene- drug combination offers flexibility in using
the refined database that can be specified at the user preference/interface stage. For
example, if X is the activity profile of a drug of interest, Y is a drug target gene
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profile and Z is any other gene profile, then by comparing L.X; Y jZ/ over Z, the
high score genes may have a role in affecting the drug activity.

The use of antifolate compounds in chemotherapy have a long history in
medicine. Methotrexate(MTX) is an antifolate that has been used for treatment
of non-Hodgkin’s lymphoma, osteogenic sarcoma, chorocarcinoma and carcinomas
of breast, head and neck. The molecular target of MTX is DHFR (dihydrofolate
reductase). But the correlation between MTX and DHFR and that between MTX
and TYMS are weak. We took X D MTX (Methotrexate), Y D DHFR (dihydrofo-
late reductase). It was found that TXN(thioredoxin) has the fourth highest negative
LA score. This signifies a central role for the thiol-disulfide redox regulation in
tumor growth and drug resistance and is consistent with the view that the thiore-
duction system plays a role in all three major aspects with which the clinician is
concerned: prevention, early detection and effective treatment. Furthermore, from
the short list of the significant LA-scouting genes for (MTX, DHFR) and that
for (MTX, TYMS), TXN (thioredoxin) was also found. In addition, the list also
included TXNRD1 (thioredoxin reductase).

Example 3 Alzheimer Disease. Amyloid-beta peptide is the predominant compo-
nent of senile plagues in the brains of patients with Alzheimer’s disease (AD). It
is derived from the amyloid-beta precursor protein (APP) via the consecutive pro-
teolytic cleavage by beta secretase at the N terminus and by gamma secretase
at the C terminus. APP is a widely-expressed cell surface protein. Its normal role
was first linked to the control of gene expression in Cao and Südhof [3], where
the carboxyl-terminal intracellular fragment of APP was found to interact with the
nuclear adaptor protein Fe65 (encoded by APBB1) and the histone acetyltransferase
Tip60 (encoded by HTATIP). In Li et. al. [14], we compare the profiles of APBB1
and HTATIP with that of APP and find the correlations (�:06,�:27 respectively) are
quite low. In search of genes, which may play a role in weakening the correlation, we
first apply LA to the pair (APP, PBB1). We find a beta-site APP-cleaving enzyme
BACE2 from the best 20 genes with negative LA scores. We then apply LA again to
the pair (APP, HTATIP). This time we find a major component of gamma-secretase
PSEN1 (presenilin 1) to be at the second place with best positive LA scores! There
are several other high LA score genes that are related to Alzheimer diseases; see Li
et al. [11] for details.

Example 4. Multiple sclerosis (MS). This example was taken from Li et al. [12]. To
test the applicability of LA in the characterization of the molecular background of a
complex trait, we selected available information existing for MS in a special popula-
tion sample of Finland. We started with the major MS candidate gene MBP( myelin
basic protein, compacting and stabilizing myelin sheath). The role of this gene has
been proven in rodent models for MS, EAE (experimental allergic encephalomyeli-
tis), and the gene has been identified both in linkage and in association study in large
MS pedigrees of a regional sub-isolate of Finland. Over the years, geneticists have
conducted extensive MS studies using the Finnish population and identified three
major genetic loci for familial MS in this isolated population: HLA on 6p, MBP on
18q and loci on 17q22–24 and 5p12–p14. A recent work gives a refined MS locus
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of 2.5 Mb on chromosome 17q22–q24 and establishes PRKCA (protein kinase C,
alpha) as a primary candidate gene in this region. Involvement of this gene with
MS is further validated by an association with MS in a UK population. The protein
kinase C isoforms are involved in pathways regulating a large number of cellular
processes such as proliferation, apoptosis, differentiation, migration, and neuronal
signaling.

To study the co-expression pattern between MBP and PRKCA, we take them as
genesX and Y to explore GNF2002 database [20] through the LA system. The gene
with the highest LA score is SLC1A3 (glial high glutamate transporter, member 3).
Interestingly, SLC1A3 is located near the boundary of the MS locus on 5p. Subse-
quent liquid association analyses lead to many other functionally associated genes,
using four databases in total, human tissue data of GNF2002 and GNF2004 [21] and
NCI cell line data of NCI Affy [19] and NCI cDNA [16]. Figure 19.4 summarizes
the key findings. It can be seen that the HLA locus is also associated with SLC1A3
and MS, independently of our previous knowledge of this well established fact.

A follow-up gene typing study on Finnish MS families was conducted and estab-
lished SLC1A3 as a candidate gene of MS. Moreover, stratification of the Finnish

Fig. 19.4 SLC1A3 and related genes. Four large scale gene expression databases are used in this
study. The arrows point to the genes found by the liquid association score system. The color of a
line/arrow shows which database is used in the analysis. P-values are calculated by randomization
test. All four major MS loci for the Finnish scan have representative genes in this chart: MBP from
18q23, PRKCA from 17q22–q23.2, SLC1A3 from 5p13, and the HLA locus at 6p21.3. Also shown
are two separate lists of genes correlated with MBP and with SLC1A3 most strongly. CTNND2
(located at 5p15.2) is seen in both lists. This figure is taken from Li et al. [12]
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families according to HLA type based on the overtransmission of high-risk MS
DR2 allele belonging to HLA region to MS-affected individuals from our study
sample further strengthened the resulting association between the SLC1A3 SNPs
and MS. Specifically, TDT for the SNP rs2562582 (located hear SLC1A3) showed
significant association with MS, p-value 0.0006. Thus, based on the LA and fur-
ther supported by association analyses, SLC1A3 connects all four major MS loci
identified in Finnish families.

The findings by LA analysis were strengthened with results from a more
recent international MS Whole Genome Association scan [7]. A major compo-
nent of the study used Affymetrix 500 K to screen common genetic variants of
931 MS family trios. Based on their data released, two SNPs, rs4869676 (chro-
mosome 5: 36641766) and rs4869675 (chromosome 5: 36636676), with TDT P
values of 0.0221 and 0.00399 respectively, were found in the upstream regulatory
region of the SLC1A3 gene. In fact, within the 1 Mb region of rs486975 there
are a total 206 SNPs in the Affymetrix 500 K chip. No other SNPs have P val-
ues less than that of rs486975.The next most significant SNPs in this region are
rs1343692(chromosome 5: 35860930) and rs6897932 (chromosome 5: 35910332;
the identified MS susceptibility SNP in the IL7R axon). The MS marker we
identified, rs2562582(chromosome 5: 36641117), less than 5 kilobases away
fromrs4869675, was not used in the Affymetrix chip. Interesting, IL7R also
appeared in the genes list found by our LA analysis; see Fig. 19.4, the leftmost
panel of genes which were found by setting X ,Y to be MBP,SLC1A3 to search for
LA scouting genes.

19.6 A Higher Dimension Generalization of LA

While LA is motivated by studying the intrinsic change in correlation structure
between two genes, it is natural to ask how to deal with multiple genes. Li et al
[14] introduced projective liquid association (PLA). Like LA, PLA assigns a score
PLA.X jZ/ to a group X of variables for assessing change in the correlation
structure mediated by the variable Z.

Let X D .x1; : : : ; xp/
0, denote a vector of p variables, each variable being the

expression of one gene in the group. To project X to a two dimensional space,
we need two orthogonal vectors, a, b, a0b D 0. The liquid association between
a0X and b0X as mediated by Z is given by LA.a0X; b0X jZ/ D a0E.ZXX 0/b.
Thus the most informative projection for revealing the LA pattern can be found by
maximizing ja0E.ZXX 0/bj. Li et al. [14] showed that the solution is the difference
between the largest and the smallest eigenvalues from the eigenvalue decomposition
of the matrix E.ZXX 0/:

E.ZXX 0/bi D �ibi ; �1 � �2 � � � � � �p
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The solution �1 � �p is achieved by taking a D .b1 C bp/=
p
2 and b D

.b1 � bp/=
p
2.

This eigenvalue decomposition solution looks similar to a regression dimension
reduction method, principal Hessian direction (PHD), which uses the following
eigenvalue decomposition:

˙yxxbi D �i˙xbi j�1j � j�2j � � � � � j�pj

where the matrix ˙yxx is equal to E..Y � �/XX 0/, EY D �. Li [9] showed that
if X follows a multivariate normal distribution, then under the dimension reduc-
tion model that the response variable Y depends on the regressor X through a
k-dimensional projection ofX , at most k eigenvalues of PHD eigenvalue decompo-
sition are nonzero.

19.7 How to Decide if a LA Score is Significant or not.

In Li [10], a permutation test is proposed to serve for this purpose . Fixing the
gene pair (X; Y ), the procedure generates as many as 105 or 106 artificial profiles
Z� by randomly permuting the coordinate of the expression profile of gene Z and
compute their LA scores LA.X; Y jZ�/. This generates the null distribution. The
p-value for LA.X; Y jZ/ is obtained by counting how often LA.X; Y jZ�/ exceeds
LA.X; Y jZ/.

An immediate question arises: how to adjust for multiple testing? Many multiple
hypothesis testing procedures have been proposed for controlling family-wise error
rate (FWER) or the false discovery rate (FDR) at a pre-specified level. One major
difficulty in FDR procedures is the assumption of independence on the test statistics.
Because in our problem, the test statistics are highly dependent, alternative solutions
would be desirable. One possibility is to use an idea similar to Westfall, Zaykin and
Young [25] as outlined before . However, the computation is very intensive.

For a given pair (X; Y ) of genes, LA.X; Y jZ/ is computed for every gene Z
in the genome. But practically, the most interesting ones are from the short list of
genes with the most positive or the most negative scores. We like to test if these
high score genes are significant or not. The idea is again to use a randomization
test. But instead of permuting the coordinate of the expression profile of geneZ, we
permute the coordinate of the expression profile of the gene pair (X; Y ) to generate
an artificial pair (X�; Y �). We compute LA.X�; Y �jZ/ for everyZ in the genome.
We then rank these simulated LA scores and keep track of the highest value (most
positive) and the lowest value (most negative). After doing this several thousand
times, we obtain a reference distribution for the highest LA score and a reference
distributions for the lowest LA score. We can use these two distribution to obtain
a P-value for the gene with highest LA score and a P-value for the gene with the
lowest LA score. Similarly, if we keep track of the second highest score during the
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simulation, we can generate a reference distribution to obtain a P-value for the gene
with the second highest LA score, and so on.

19.8 Extension for Applications with Censored Data.

One important clinical application of microarray technology is to predict survival
time based on the gene expression profile. While formally the survival time is just
another external variable, like the drug response profile, we often need to deal with
severe censoring problem. For example, in the breast cancer data of van de Vijver
[23], there were 216 right-censored patients out of the 295 cases studied. For these
patients, one only knew that their times to event were greater than the last follow-
up time. A direct application of LA would lead to unbiased results. However, it is
possible to modify LA by working on properly imputed survival times.

A two-step procedure. In the first step, we may use Kaplan-Meier estimator to
yield a crude estimate of the survival time for censored patients. With the corrected
survival time as the lead, one may apply both correlation and LA analysis to find a
short list of high score genes that are associated with the survival outcome. In the
second step, one may apply the modified SIR for censored data [13] to give a refined
estimate of the true survival time for the censored cases. Wu et al. [26] illustrated
how to implement such a procedure for the aforementioned breast cancer data.

19.9 Incorporation of Discrete Variables such
as Genetic Markers

LA was primarily motivated from the consideration that the cellular state can be
modeled as a continuous variable. However, one may apply the same concept to the
cases with discrete states. The simplest case is when Z is binary, with a notable
application on the identification of genetic markers associated with complex dis-
eases or traits. For example, in studying the gene-environment interaction, one may
take XD trait of interest, YD environment variable and search for marker Z with
best LA scores. Yet another application of LA can be found in identifying marker–
marker interaction. By taking ZD trait of interest, we can conduct a genome-wide
search of marker pairs Y ,Z with most significant LA scores.

In addition, many studies have shown that gene expression variation is herita-
ble. The eQTL approach expands the traditional genetic study on the identification
of the gene or genes directly responsible for a phenotype variation by treating the
expression of a gene as a quantitative trait. This approach has been applied in yeast,
mouse, rat and human [1, 4, 8, 15, 17, 27]. Taking one step further, one asks how
the genetic variation may affect the co-expression pattern of a pair of genes. This
is in line with the basic idea of LA. The mouse, rat and human marker profiles are
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more complicated because we have to differentiate homozygous genotypes from
heterozygous genotypes.

There are several variants of conducting LA type of analysis when Z is a cat-
egorical variable. If Z is binary (say, taking 0 or 1), an obvious version of LA is
E.XY jZ D 1/ � E.XY jZ D 0/. This is equivalent to the basic LA formula
E.XYZ/ if instead of using 0 and 1 to code Z, 1=a and �1=b are used, where
a D P.Z D 1/, b D 1 � a. But this coding gives var.Z/ D 1=ab. Thus it tends to
assign higher LA scores to unbalanced markers (a or b closer to 0). To achieve equal
variance var.Z/ D 1, we may use .b=a/1=2 and �.a=b/1=2 for coding Z. For an
application of LA in yeast eQTL study, see Sun et al. [22].

If Z has more than two categories, there are even more possibilities. For the
mouse marker profiles, there are least three different types of coding, depending on
the dominant/recessive considerations:Z D �1; 0; 1 ( homozygous I, heterozygous,
homozygous II ); Z D �1; 1 (homozygous I, heterozygous or homozygous II);
Z D �1; 1 (homozygous I or heterozygous, homozygous II). We may also consider
the variance adjustment as in the binary case.

For other situations where all categories are treated equally, one possibility is to
use the maximum from all binary differences, E.XY jZ D i/ � E.XY jZ D j /,
where i , j are any two values thatZ may take. Another possibility is to consider the
one-way analysis of variance by treatingXY as the output andZ as group indicator.
This leads to the quantity, var.E.XY jZ//.
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Chapter 20
Boolean Networks

Tung-Hung Chueh and Henry Horng-Shing Lu

Abstract Reconstruction of genetic regulatory networks from gene expression pro-
files and protein interaction data is a critical problem in systems biology. Boolean
networks and their variants have been used for network reconstruction problems due
to Boolean networks’ simplicity. In the graph of a Boolean network, nodes repre-
sent the statuses of genes while the edges represent relationships between genes. In
a Boolean network model, the status of a gene is quantized as ‘on’ or ‘off’, repre-
senting the gene as being ‘active’ or ‘inactive’ respectively. In this chapter, we will
introduce the basic definitions of Boolean networks and the analysis of their prop-
erties. We will also discuss a related model called probabilistic Boolean network,
which extends Boolean networks in order to have the advantage of modeling with
data uncertainty and model selection. Furthermore, we will also introduce directed
acyclic Boolean network and the statistical method of SPAN to reconstruct Boolean
networks from noisy array data by assigning an s-p-score for every pair of genes.
At last, we will suggest possible directions for future developments on Boolean
networks.

20.1 Introduction

In order to understand complex biological networks and systems biology path-
ways, we need to investigate global structures instead of individual behaviors since
there are interactions and associations between genes. Due to the invention of high
throughput technology, genome-wide expression profiles can be measured simul-
taneously. However, it is still a great challenge to reconstruct functional network
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architectures and to identify complex biological networks from genomewide data
such as DNA sequences and expression profiles, because the number of gene inter-
actions is huge [4]. In recent years, there has been significant progress in research
and development concerning genetic network models and network reconstruction
problems.

Various methods have been proposed in the literature to tackle the problem recon-
structing of genetic regulatory networks. For instance, the Bayesian network model
is an important technique that has been studied extensively in the past 2 decades
[12,13,22,23]. A Bayesian network is a directed acyclic graph (DAG) comprised of
two components: the first component is comprised of nodes that correspond to a set
of variables and a set of directed edges between variables with Markov properties.
The second component describes a conditional distribution for each variable, given
its parents in the graph. Recently, Bayesian network models have been applied to
analyze microarray expressions and biological data [6,10,11]. Although algorithms
for reconstructing Bayesian networks have been developed [8, 32], the algorithms’
computational costs remain a concern as Bayesian networks with a small number of
variables still require large sample sizes in order to obtain accurate estimates.

Therefore, we consider a simpler model: Boolean networks, which can be rep-
resented as binary and switching biological networks. Boolean networks were
originally introduced by Kauffman in 1969 [14], and received attention in the stud-
ies of gene regulatory networks because of Boolean networks’ simple structures.
We regard Boolean networks as a generalization of Boolean cellular automata (CA)
where the state of each node is affected by other nodes in the network [36, 37]. In
Boolean network models, nodes represent the statuses of genes and gene expression
states are quantized to one of two states: on or off, representing a gene as active or
inactive, respectively. The wiring with rules between nodes in the graph represents a
functional link between genes and determines the expressions of target genes given
a series of input genes. Hence, the target gene is influenced by a set of genes with
specific rules under the structure of Boolean networks.

Classical Boolean networks have been criticized for their deterministic nature.
The assumption that every gene is determined only by a single Boolean function
with a fixed set of input genes may be unsound. Therefore, we will discuss a
more flexible model in the literature called probabilistic Boolean networks [26,27],
which allow more than one Boolean function for every target gene. The probabilis-
tic Boolean network model can handle uncertainty in data and model selection, but
still retain the exquisite rule-based properties of Boolean networks. Further, we will
discuss directed acyclic Boolean networks and the statistical method of SPAN [20]
to infer pairwise relationships and reconstruct Boolean networks from noisy array
data by assigning a s-p-score for every pair of genes.

This chapter is organized as following: In Sect. 20.2, we will introduce the defini-
tion of classical Boolean networks and discuss the network reconstruction algorithm
from input/output profiles of gene expression along with the computational com-
plexity and the number of experiments required for inferring the classical Boolean
networks [1, 3, 14, 15]. In Sect. 20.3, we will focus on the definition and properties
of probabilistic Boolean networks which generalize classical Boolean networks. We
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will also discuss the inference of probabilistic Boolean networks [26]. Then, we
will introduce directed acyclic Boolean networks and the statistical reconstruction
method of SPAN by considering the pairwise relationships of every elements [20]
in Sect. 20.4. Lastly, we will conclude and discuss future developments on Boolean
networks in Sect. 20.5.

20.2 Boolean Networks

Boolean networks (also known as random Boolean networks or N-K models) were
introduced 30 years ago by Kauffman to represent genetic regulatory networks [14].
In this section, we will review the definition of Boolean networks and introduce
the network reconstruction algorithm from state transition tables that are related to
profiles of gene expression. We will also discuss the computational complexity and
the amount of data required for the reconstruction of a network structure.

20.2.1 Definition of Boolean Networks

A Boolean networkG.V; F / is a directed graph consisting of two components: a set
of nodes V D fv1; v2; : : : ; vng that corresponds to genes, and a list of Boolean
functions F D ff1; f2; : : : ; fng that corresponds to the rule of interaction and
combination of several genes [2]. For every node vi 2 V , its expression has only
two states, on and off, representing whether a gene is active or inactive. For every
Boolean function fi .vi1 ; vi2 ; : : : ; vik / 2 F , k specified input nodes vi1 ; vi2 ; : : : ; vik

are assigned to the node vi in the graph and represent the rules of regulatory mech-
anisms between genes. The expression of a gene is determined by the expression of
the gene directly affecting it with a Boolean function. Therefore, the state of each
node vi 2 V is determined by the Boolean function fi .vi1 ; vi2 ; : : : ; vik /.

For each node vi , the gene expression state at time t is assumed to take either 0
(not-expressed) or 1 (expressed) and is expressed as  t .vi /. In a classical Boolean
network, every gene expression profile at time t C 1 is completely determined
by the expression profile of a set of genes vi1 ; vi2 ; : : : ; vik at time t and the
corresponding Boolean function fi 2 F . That is, we can write  tC1.vi / D
fi . t .vi1/;  t .vi2/; : : : ;  t .vik//.

For convenience, we converted the classical Boolean network G.V; F / to the
wiring diagram G0.V 0; F 0/ (See Fig. 20.1) [30]. For each node vi 2 V , suppose
vi1 ; vi2 ; : : : ; vik are the input nodes assigned to vi . Then we construct an additional
node v0i and connected the edge from vij to v0i for each 1 � j � k. That is, the
set of fv1; : : : ; vng represents the gene expression profile at time t and the set of
fv01; : : : ; v0ng corresponds to the gene expression profile at time t C 1. Hence we
can treat the set of fv1; : : : ; vng as the input values and the set of fv01; : : : ; v0ng as
the corresponding output values. Therefore, the output values of fv01; : : : ; v0ng are
determined by v0i D fi .vi1 ; : : : ; vik /.
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Fig. 20.1 A Boolean network G.V; F /, its wiring diagram G0.V 0; F 0/ and the functional
dependency table

In classical Boolean networks, the states of nodes at time t C 1 depend on the
states of nodes at time t , so that all nodes progress synchronously. Usually, in clas-
sical Boolean networks, the dynamics of the states of nodes are evolving according
to the model structure and the scheme with an initial state. Hence, if the size of
node n is fixed, the state space is finite .2n/. Therefore, given a particular set of
nodes with the corresponding Boolean function, the trajectory or the state transition
can be calculated. Consequently, a state will be eventually recur in the Boolean net-
work. Since classical Boolean networks are completely deterministic, the dynamics
are deterministic and a trajectory must reach a repeating state cycle. This means that
the system of the network ultimately transits into an attractor. If an attractor consists
of only a single state, it is called a point attractor or a steady state. If an attractor
consists of two or more states, it is called a cycle attractor or a state cycle. The set
of states that flow towards the same attractor state is called the basin of the attractor
[38]. The effects of feedback for Boolean networks have been discussed in [31]. An
example of a Boolean network with n D 3 is shown in Fig. 20.2.

Suppose there is a Boolean network G.V; F / with n nodes v1; v2; : : : ; vn and
initial joint probability distributionsD.v/, v 2 f0; 1gn. The joint probability of node
in the next time step would be

P rff1.v/Di1; f2.v/Di2; : : : ; fn.v/ D ing D
X

v2f0;1gnWfj .v/Dij ;jD1;:::;n

D.v/ (20.1)
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Fig. 20.2 The gene expression in time t and time t+1 is showed in the left, the transition space
are showed in the right. There is one point attractor (001) with four states flowing into it, (111),
(110), (100) and (001). There is also one cycle attractor of period two (101$010), with one states
flowing into it, (011)

The computing procedure could be iterative and the joint probability distribution
in time step t could be described as Dt .v/ D �.Dt�1.v// where the mapping �
is denoted by (1) and Dt�1.v/ is the joint probability distribution at time t � 1.
Therefore, the joint probability distribution at any time step t would be Dt .v/ D
� t .D0.v// whereD0.v/ is the initial joint probability distribution.

If we try to consider all possible networks, there will be 22k
possible functions for

each node. In addition, each node has nŠ=.n�k/Š possible ordered combinations for
k different links. Therefore, for each target gene, there are 22k �nŠ=.n�k/Š possible
input combinations to constitute a network. Hence, the number of possible networks
with n nodes and k input links is the following [7]

.
22k

nŠ

.n � k/Š /
n:

20.2.2 Reconstruction of Genetic Boolean Networks

Here we will discuss the network reconstruction problem with a Boolean network
model. Let .Ij ; Oj / be the pair of expression profiles for fv1; : : : ; vng, where Ij

is the expression at time t and Oj corresponds to the expression at time t C 1.
The network reconstruction problem is to reconstruct the classical Boolean network
from a series of pair examples, EX D f.I1; O1/; .I2; O2/; : : : ; .Im; Om/g.

There are a variety of algorithms proposed for reconstructing the structure of a
genetic regulatory network from expression data of genes under the model of classi-
cal Boolean networks [2, 19]. In this subsection, we will discuss one reconstruction
algorithm called REVEAL proposed in [21]. First, we only consider Boolean net-
works in which the indegree of each node is bounded by a constant K , because it
has been proven that the number of profiles required grows exponentially if k is
not bounded [1]. For simplicity, we only show algorithms for the case of K D 2.
However, the algorithm can be intuitively generalized to anyK .
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We start by computing the Shannon entropy that measures the systematic mutual
information of the Boolean network state transition table in the algorithm [25]. The
Shannon entropy is defined in term of the probability of an event Pi by

H D �
X

Pi logPi :

For a pair of binary elements .vi ; vj /, the individual and combined Shannon
entropies are defined as

H.vi / D �
X

rD0;1

P.vi D r/ logP.vi D r/;

H.vj / D �
X

sD0;1

P.vj D s/ logP.vj D s/;

H.vi ; vj / D �
X

r;sD0;1

P.vi D r; vj D s/ logP.vi D r; vj D s/:

One example of a binary system for explaining the calculation of Shannon
entropy is demonstrated in Fig. 20.3.

The conditional entropy H.vi jvj / corresponds to the information contained in
vi but not shared with vj . It can be shown that H.vi ; vj / D H.vj /CH.vi jvj /. If
H.vi ; vj / D H.vj /, i.e.H.vi jvj / D 0, then all information contained in vi is shared
with vj and we would think vj can determine the expression of vi completely. Next,
we list and demonstrate the procedure of algorithm, REVEAL, for the problem of
network reconstruction.

� Step 1: Calculation of entropies from input
We calculate the entropy of every input node fvig; i D 1; : : : ; n. Since the inde-
gree of each node is bounded by K D 2, we also need to calculate the entropies
of each pair of input node fvi ; vj g; i; j D 1; : : : ; n.

� Step 2: Identification of kD 1 links
For each node v0i 2 V; i D 1; : : : ; n, we calculate the entropies of all single
input-output pairs H.v0i ; vj /; i; j D 1; : : : ; n. If H.v0i ; vj / D H.vj /, then vj

Fig. 20.3 Calculation of Shannon entropy for single element and pair elements. Probability is
calculated by the frequency the state of on or off
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completely determines v0i . If there is no single input vj such that H.v0i ; vj / D
H.vj /, execute Step 3, otherwise output vj and constitute the rule between v0i
and vj .

� Step 3: Identification of kD 2 links
For each node v0i 2 V; i D 1; : : : ; n, we calculate the entropies of all pair inputs
with one output H.v0i ; vj ; vl/; i; j; l D 1; : : : ; n. If H.v0i ; vj ; vl/ D H.vj ; vl/,
then the pair input .vj ; vl/ exactly determines v0i . Then we constitute the rule
between v0i and vj ; vl .

The advantage of this algorithm is its low time and memory complexity. We
consider the example by the input/output pairs data as shown in Fig. 20.1. It is easy
to reconstruct the classical Boolean network from the data f.I1; O1/; .I2; O2/; : : : ;

.I16; O16/g by the algorithm REVEAL. We list the step-by-step demonstration in
Fig. 20.4 from the network example of Fig. 20.1.

20.2.3 Analysis of the Computational Complexity and Required
Number of Experiments

For the network reconstruction problem, we assess the time complexity of the
REVEAL algorithm. If a node is controlled with exactly k input variables, there
are



n
k

�
possible combinations of input nodes. For the calculation of input entropies

with indegree that is bounded by K , there are



n
1

�C 
n
2

�C � � � C 
n
K

�
input entropies

that need to be evaluated. This constitute the computational complexity of O.nK/.
Moreover, for each node, there are



n
k

�
entropies to be calculated in every step of

the identification of k links. In total, there are K steps of identification because the
indegree is bounded by K . Consequently, for each node,



n
1

� C 

n
2

� C � � � C 

n
K

�
entropies are evaluated in the step of identification with k D 1; 2; : : : ; K . There-
fore,O.nKC1/ entropies are evaluated in total and the REVEAL algorithm works in
polynomial time for fixedK . Besides, it has been shown that theO.logn/ transition
(INPUT/OUTPUT) pairs are necessary and sufficient for the network reconstruction
with high probability if the maximum indegree of Boolean networks is bounded [2].

20.3 Probabilistic Boolean Networks

In the previous section, we have introduced the definition and properties of classical
Boolean networks. However, the structure of classical Boolean networks has been
criticized for its deterministic formality. If the state of every node is obtained at any
one time step, the states of all nodes at next time step are determined and fixed in a
classical Boolean network model. However, there may be scenarios in which a set
of different Boolean functions is required to describe a transition between a set of
variables. In this section, we are going to introduce the basic definition and notation
for probabilistic Boolean networks which allow more than one possible Boolean
function for each node and extend the network structure to a probabilistic setting.
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Fig. 20.4 The step-by-step demonstration of the algorithm REVEAL for network example showed
in Fig. 20.1

20.3.1 Definition and Notation

Probabilistic Boolean networks were proposed in [26] as a generalization of the
classical Boolean networks with more flexibility due to its non-deterministic struc-
ture. In a probabilistic Boolean network, every node vi is assigned by a set Fi D
ff .i/

1 ; : : : f
.i/

l.i/
g, where each f .i/

j W f0; 1gn ! f0; 1g is a possible Boolean function
determining the value of gene vi . Clearly, a probabilistic Boolean network becomes
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Fig. 20.5 The basic building
block for the expression of
gene vi in a probabilistic
Boolean model

a classical Boolean network if there is only one possible Boolean function for every
node vi , that is, the value of l.i/ is 1, for all i D 1; : : : ; n.

We will also refer to the function f .i/
j as a predictor which is one of the possible

Boolean function assigned to the expression of gene vi . For every node vi in V ,
one of the predictors in Fi would be selected randomly by a predefined probability
distribution at any given time step. Therefore, at a given instant of time, a realization
of a probabilistic Boolean network is determined by a vector of Boolean functions.
We illustrate the basic building block for the expression of gene vi of a probabilistic
Boolean network in Fig. 20.5.

Suppose in total there are N different realizations in a probabilistic Boolean
network, the N vector functions, f1; f2; : : : ; fN are defined as fm D .f

.1/
m1
;

f
.2/

m2
; : : : ; f

.n/
mn
/, where 1 � mi � l.i/ and f .i/

mi
2 Fi .i D 1; 2; : : : ; n/, for

m D 1; 2; : : : ; N . Each vector function fm W f0; 1gn ! f0; 1gn represents a pos-
sible realization of the entire probabilistic Boolean networks. Hence, if the values
of all genes .v1; v2; : : : ; vn/ is known at time t and the realization fm is chosen,
fm.v1; v2; : : : ; vn/ D .v01; v02; : : : ; v0n/ gives us the state of the genes at time t C 1.

If the predictor for each gene is chosen independently, that is,

P rff .i/ D f .i/
mi
; f .j / D f .j /

mj
g D P rff .i/ D f .i/

mi
gP rff .j / D f .j /

mj
g;

for all i; j;mi ; mj with 1 � mi � l.i/, 1 � mj � l.j /, then the probabilis-
tic Boolean network is said to be pairwise independent. Under the assumption of
independence of the random variables f .1/; f .2/; : : : ; f .n/, the number of possible

probabilistic Boolean network realizations is N D
nY

iD1

l.i/ [26].

Although the domain of each predictor function f .i/
j is f0; 1gn, there should

be many fictitious variables that are not needed in the function. A variable vi is
described as fictitious for a function f , if the state of vi would not affect the output
of function f , that is,
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f .v1; : : : ; vi�1; 0; viC1; : : : ; vn/ D f .v1; : : : ; vi�1; 1; viC1; : : : ; vn/ (20.2)

for all v1; : : : ; vi�1; viC1; : : : ; vn. Consequently, there are only a few input genes that
actually regulate gene xi at any given time. Let f be a random vector, representing
the realization of a probabilistic Boolean network, then f D .f .1/; f .2/; : : : ; f .n//,
where f .i/ 2 Fi for all i D 1; 2; : : : ; n. Hence, for a node vi , the probability that
f

.i/
j is selected as the predictor .1 � j � l.i// is

c
.i/
j D P.f .i/ D f .i/

j / D
X

mWf .i/
mi
Df

.i/

j

P rff D fmg (20.3)

If we define the N 
 n matrix M as

M D

0
BBBBBBBBBBBBBBBBBB@

1 1 � � � 1 1

1 1 � � � 1 2
:::

:::
: : :

:::
:::

1 1 � � � 1 l.n/

1 1 � � � 2 1

1 1 � � � 2 2
:::

:::
: : :

:::
:::

1 1 � � � 2 l.n/
:::

:::
: : :

:::
:::

l.1/ l.2/ � � � l.n � 1/ l.n/

1
CCCCCCCCCCCCCCCCCCA

:

each one corresponding to a possible network configuration, then the probability of
network i being selected is

Pi D P rfNetwork i is selectedg D
nY

jD1

c
.j /
Mij

; (20.4)

where Mij is the ij th entry in matrix M .
Next, we establish a 2n 
 2n state transition matrix A by

A.v; v0/ D P rf.v1; : : : ; vn/! .v01; : : : ; v0n/g
D

X
i Wf .1/

Ki1
.v1;:::;vn/Dv0

1
;:::;f

.n/
Kin

.v1;:::;vn/Dv0

n

Pi (20.5)

It was shown that the state transition matrix A is a Markov matrix and the proba-
bilistic Boolean network is a homogeneous Markov process [26].

Let us illustrate the above construction with an example. We consider a prob-
abilistic Boolean network consisting of three genes V D fv1; v2; v3g and the
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function sets F D fF1; F2; F3g with F1 D ff .1/
1 g, F2 D ff .2/

1 ; f
.2/

2 g, F3 D
ff .3/

1 ; f
.3/

2 ; f
.3/

3 g. The rule of each function is given by the following truth table.
By assuming the independence of the probabilistic Boolean network, there are

six possible realizations in this example and the matrixM becomes

M D

0
BBBBBBB@

1 1 1

1 1 2

1 1 3

1 2 1

1 2 2

1 2 3

1
CCCCCCCA
:

The network i represented by the i th row of M is selected meaning that the
predictors .f .1/

Mi1
; f

.2/
Mi2

; f
.3/

Mi3
/ will be used.

Let Pi be the probability that network i is selected. In this example, the state
transition matrix A is given by

AD

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 1 0 0

0 0 0 0 0 P4 C P5 C P6 0 P1 C P2 C P3
0 0 P2 C P3 C P5 C P6 P1 C P4 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 P2 C P5 P1 C P3 C P4 C P6 0 0 0 0

P5 C P6 P4 P2 C P3 P1 0 0 0 0

1
CCCCCCCCCCCCCCCA

:

20.3.2 Inference of Probabilistic Boolean Networks

For a given gene, there is a set of predictors that could be selected. One approach to
estimate the probability is the method of coefficient of determination (COD) which
was used in an optimal nonlinear filter design [5, 18]. Let v1 be a target gene that
we wish to predict by a set of predictors function f .i/

1 ; f
.i/

2 ; : : : ; f
.i/

l.i/
. For each

predictor f .i/
j , one can use the COD to find a set of genes v.i/

j such that f .i/
j .v.i/

j /

are the optimal predictors.
Specifically, the CODs for vi related to the predictor f .i/

j .v.i/
j / for each j is

defined as

� i
j D

�i � �.vi ; f
.i/

j .v.i/
j //

�i

;
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where �i is the error of the best estimate of vi without any conditional variables and
�.vi ; f

.i/
j .v.i/

j // is the error measure of vi given the predictor f .i/
j . It is clear that the

value of COD is between 0 and 1. The large value of COD indicate higher evidence
that the corresponding predictor with its input genes are plausible.

Let us now assume predictors f .i/
1 ; f

.i/
2 ; : : : ; f

.i/

l.i/
with a class of gene sets v.i/

1 ,

v.i/
2 , : : : , v.i/

l.i/
are selected with the highest CODs. Then, for a given gene vi , the

probability that predictor f .i/
j is selected is estimated by

C
.i/
j D

� i
j

l.i/X
jD1

� i
j

:

The number of predictors, l.i/, is a parameter selected by the user based on the
amount of training data available and existing biological information.

20.3.3 Influences Between Pairs of Genes in Probabilistic
Boolean Networks

In the probabilistic Boolean network model, every gene is influenced by a set of
Boolean functions with several input genes. However, the contribution of every input
gene is not always the same. Hence, it is important to distinguish genes that have
major impacts on the predictor from those that have minor impacts.

Since every gene is controlled by a set of Boolean functions, we first consider
the influence of variables on a Boolean function. One method is to quantify the
influence of a variable on a Boolean function, as proposed in [26,28]. The influence
of the variable vj on the function f is defined as

Ij .f / D EDŒ
@f

@vj

� D P rff .v/ 6D f .v.j //g

where EDŒ � is the expectation operator with respect to distribution D.v/ and v.j /

is the same as v with j th component is toggled (from 0 to 1, or from 1 to 0). For
a probabilistic Boolean network, Fi denotes the set of predictor for gene vi with
corresponding probabilities c.i/

1 ; : : : ; c
.i/

l.i/
. Hence, the influence of gene vm on gene

vi can be defined as

Im.vi / D
l.i/X
jD1

Im.f
.i/

j /c
.i/
j ;
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Table 20.1 One example of probabilistic Boolean network model

x1x2x3 f
.1/
1 f

.2/
1 f

.2/
2 f

.3/
1 f

.3/
2 f

.3/
3

000 1 0 0 1 1 1
001 1 1 0 1 1 1
010 0 1 1 1 0 0
011 0 0 0 0 0 0
100 1 0 0 1 1 1
101 1 1 1 1 1 1
110 0 1 1 1 0 1
111 0 1 0 1 0 0

where Im.f
.i/

j / is the influence of variable xm on the predictor f .i/
j . The influ-

ence matrix � with elements of �ij D Ii .vj / collects the information of influence
between every pair of genes.

We consider the probabilistic Boolean network shown in Table 20.1 with c.1/
1 D1,

c
.2/
1 D 0:4, c.2/

2 D 0:6, c.3/
1 D 0:2, c.3/

2 D 0:4, c.3/
3 D 0:4. We let the initial

joint probability distribution D be an uniform distribution, that is, D.v/ D 1=8

for all v 2 Œ0; 1�3. Suppose we would like to compute the influence of variable v1

on variable v2, we need to calculate the influence of v1 on the predictor f .2/
1 and

f
.2/

2 by

I1.f
.2/

1 / D ED Œ
@f

.2/
1 .v/

@v1

� D 0:25;

I1.f
.2/

2 / D EDŒ
@f

.2/
2 .v/

@v1

� D 0:25:

Hence, the influence of variable v1 on variable v2 would be

I1.v2/ D I1.f
.2/

1 / � c.2/
1 C I1.f

.2/
2 / � c.2/

2 D 0:4 � 0:25C 0:6 � 0:25 D 0:25:

By computing every pair of gene similar to the process above, we can obtain the
influence matrix

� D
0
@0 0:25 0:15

1 0:75 0:75

0 0:75 0:15

1
A :

20.4 Directed Acyclic Boolean Networks

In the previous section, we introduced the classical Boolean network model and
the probabilistic Boolean network model in order to analyze the expression pro-
files of genes with time courses. However, in some experiments, the expressions
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Table 20.2 The table of states for directed acyclic Boolean network shown in Fig. 20.6

Case 1 2 3 4 5 6 7

v1 0 1 1 1 1 1 1
v2 0 0 0 0 1 1 1
v3 0 0 1 1 0 1 1
v4 0 0 0 0 1 1 1
v5 0 0 0 0 0 0 1

of genes only can be observed at a specific time. Therefore, in this section, we
will discuss a directed acyclic Boolean network model for handling the static and
dynamic expression profiles of genes [20]. A directed acyclic Boolean network is
uniquely determined by the state space of its elements: all possible on-off states
that are compatible with the network structure. Our goal is to reconstruct directed
acyclic Boolean networks from possibly noisy array data.

20.4.1 The Structure of Directed Acyclic Boolean Networks

Firstly, we will introduce the structure of directed acyclic Boolean networks. Sup-
pose there are m elements, v1; v2; : : : ; vm in a Boolean network. For any two
elements vi and vj , we have two kinds of pairwise relationships: prerequisite and
similarity. We say that vi is prerequisite for vj if the on-status of vi is necessary
for the on-status of vj and this relationship is denoted by vi � vj . That is, if we
know the status of vj is 1 and vi � vj , then the status of vi must be 1. Therefore
for any pair of elements .vi ; vj / with a prerequisite relation, there are a total of four
possible relationships: vi � vj , vi � Nvj , Nvi � vj and Nvi � Nvj . The prerequisite
relationship is transitive, thus if vi � vj and vj � vk , then we have vi � vk . For any
pair of elements .vi ; vj / which have prerequisite relationship vi � vj , we say they
are covering pair if there are no other element vk such that vi � vk and vk � vj .

The other types of relationships between pairs of elements is similarity and neg-
ative similarity. We say that vi and vj are similar if the status of two elements is
consistent. That is, the status of these two elements is on and off simultaneously,
and this is denoted by vi � vj . There is another relationship of negative similarity
and there are two possible relationships: vi � vj and vi � Nvj .

In the diagram, if vi is prerequisite to vj , we draw a directed arrow from the
vertex vi to vj , and if vi is similar to vj , we use an undirected line to connect vi and
vj . For the purpose of making the prerequisite relationships more clear in the graph,
we only represented all partial orders by arrows between covering pairs.

We will illustrate the above construction by an example with Fig. 20.6 which has
five elements with one similarity and four prerequisite relationship. For five Boolean
elements, there are totally 25 D 32 possibilities in the state space and only seven
states are compatible with the diagram.
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Fig. 20.6 A diagram of
directed acyclic Boolean
network with the
corresponding table of states

Table 20.3 Count patterns for the basic six relationships assuming exhaustive sampling and no
measurement error

vi 	 vj vi  Nvj Nvi  vj

vi /vj 0 1 vi /vj 0 1 vi /vj 0 1
0 C 0 0 0 C 0 C C
1 0 C 1 C C 1 C 0

vi 	 Nvj vi  vj Nvi  Nvj
vi /vj 0 1 vi /vj 0 1 vi /vj 0 1
0 0 C 0 C 0 0 C C
1 C 0 1 C C 1 0 C

The seven states that are compatible with Fig. 20.6 are enumerated in Table 20.2.
Suppose we generate n samples from the directed acyclic Boolean network in
Fig. 20.6. That is, we sample with replacement from Table 20.2 and arrange the
data in a matrix .yij /, where i D 1; : : : ; n, j D 1; : : : ; 5. We can identify the rela-
tionship of each pair of elements as prerequisite or as similar relationships from
the corresponding two columns of data matrix .yij /, which is the transposition of
Table 20.2. Then, the directed acyclic Boolean network would be reconstructed by
integrating the pair relationships together. For each pair of elements, we count the
frequencies in four cells of .vi ; vj / for .0; 0/, .0; 1/, .1; 0/, .1; 1/ from the samples
and arrange them in a 2 
 2 table. We mark a cell ‘C0 if the frequency count is
positive and mark it ‘0’ otherwise. Then, we check the table with those six pairwise
relationships listed in Table 20.3. For example, if we consider the paired elements v1

and v2, the frequency counts of .v1; v2/ for .0; 0/; .1; 0/ and .1; 1/ are positive and
there is no incident for .0; 1/, therefore, the relationship between v1 and v2 would
be v1 � v2.
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20.4.2 Identification Algorithm with Noisy Array

In Sect. 20.4.1, we discussed an identification method for data without noise. In this
subsection we will consider the situation of noisy array data. We assume that every
element in the entry of .yij /, j D 1; 2; : : : ; m switches to its reverse status with a
misclassification probability p independently; that is

xij D
�
yij with probability 1 � pI
1 � yij with probability p:

(20.6)

Thus, the observed array (xij ) contains misclassification error. Our goal is to
reconstruct directed acyclic Boolean networks from noisy array of binary data (xij ).

In the first step, we investigate every pair of elements for possible relationships.
Next, we use the probabilistic model of equation (20.6) to estimate misclassification
probability p. We treat the data in the 2 
 2 table as a multinomial distribution with
four cells whose probabilities are q00, q01, q10, q11, respectively, where q00Cq01C
q10 C q11 D 1.

The observed data n00; n01; n10; n11 are generated from the multinomial distri-
bution with probability r00; r01; r10; r11, where r00 C r01 C r10 C r11 D 1. The
relationship between qij and rij is displayed in Table 20.5 and explained below.

Because of the misclassification error, a portion of samples ofm00 may change to
the other three cells. We use the notations ofm00;00; m00;01; m00;10; m00;11 to repre-
sent the counts of four cells changed fromm00. Analogous notations are defined for
m01; m10 and m11. Consequently, their generating probabilities (q00; q01; q10; q11)
are calculated as follows: qij;kl D pji�kjCjj�lj.1 � p/2�ji�kj�jj�ljqij . Here, we
adopt the notation qij;kl analogous to mij;kl . The above parameters and splits are
shown in Tables 20.4 and 20.5. By these two table, it is easy to find that the
correspondence between two sets of counts and probabilities is the following:

8̂
<̂
ˆ̂:
nkl D

X
i;jD0;1

mij;kl ;

rkl D
X

i;jD0;1

qij;kl I

Table 20.4 Splitting counts caused by misclassification error

.vi ; vj / Observed

Actual 00 01 10 11

00 m00;00 m00;01 m00;10 m00;11 m00

01 m01;00 m01;01 m01;10 m01;11 m01

10 m10;00 m10;01 m10;10 m10;11 m10

11 m11;00 m11;01 m11;10 m11;11 m11

n00 n01 n10 n11 n
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Table 20.5 Splitting probabilities caused by the misclassification error
.vi ; vj / Observed

Actual 00 01 10 11

00 q00;00 D .1� p/2q00 q00;01 D p.1� p/q00 q00;10 D p.1� p/q00 q00;11 D p2q00 q00
01 q01;00 D p.1� p/q01 q01;01 D .1� p/2q01 q01;10 D p2q01 q01;11 D p.1� p/q01 q01
10 q10;00 D p.1� p/q10 q10;01 D p2q10 q10;10 D .1� p/2q10 q10;11 D p.1� p/q10 q10
11 q11;00 D p2q11 q11;01 D p.1� p/q11 q11;10 D p.1� p/q11 q11;11 D .1� p/2q11 q11

r00 r01 r10 r11 1

and (20.7)

8̂
<̂
ˆ̂:
mij D

X
k;lD0;1

mij;kl ;

qij D
X

k;lD0;1

qij;kl :

For the complete data fmij;klg, the log-likelihood is given by

L D
X

i;j;k;lD0;1

mij;kl log qij;kl ; (20.8)

where qij;kl are those splitting probabilities. Since the complete data fmij;klg are
not observable, we use the E-M algorithm to maximize the log-likelihood. In the
E-step, the splitting counts of complete data fmij;klg are evaluated by the con-
ditional expectations using the current values of the parameters by the following
formula

Ep;q00;q01;q10;q11
.mij;kl jnkl / D nklqij;klX

i 0j 0D0;1

qi 0j 0;kl

; (20.9)

where i; j; k; l D 0; 1. One or two probabilities of q00; q01; q10; q11 are zero in
those different hypotheses specified in Table 20.6. In the M-step, we maximize the
conditional expectation of the log-likelihood for the complete data to obtain the
maximum likelihood estimates (MLEs) of the parameters. According to the MLEs,
we can compute the p-score or s-score for every pair of elements, which are obtained
by the estimate for the misclassification probability under prerequisite or similar
relationship.

For the first step, we would like to determine the most probable relationships
between elements and select candidate pairs of genes for the watch list. Next, we
reconstruct a directed acyclic Boolean network by integrating the relationship of
those genes selected.

For a pair of genes vi and vj , we define the p-scores pviNvj
, pvivj

, pNviNvj
,

pNvivj
are, respectively, the maximum likelihood estimates of p under the triangular

model: q00 D 0, q01 D 0, q10 D 0, q11 D 0. The s-scores svi	vj
and svi	Nvj

are the
maximum likelihood estimates of p under the diagonal model: q01 D q10 D 0 and
q00 D q11 D 0, respectively.
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Table 20.6 The six basic relationships and their corresponding probabilistic hypotheses and
scores

Relation Hypothesis Scores

vi  Nvj q00 D 0 pvi�Nvj

vi  vj q01 D 0 pvi�vj

Nvi  vj q10 D 0 p
Nvi�vj

Nvi  Nvj q11 D 0 p
Nvi�Nvj

vi 	 Nvj q01 D q10 D 0 svi�Nvj

vi 	 vj q00 D q11 D 0 svi�vj

According to the E-M algorithm described above, we can evaluate the s-score
and p-score for every pair of elements. We use the MLE Op to measure how well
each hypothesis fits: the smaller the score, the more evidence that the corresponding
hypothesis could be true.

For each pair of elements, we find the diagonal model which have the smaller
s-score and the triangular model which have the smallest p-score. Then we evaluate
their BIC values by

BIC D � log likelihoodC d logn

2
;

where d is the number of parameters for one possible relationship. We treat the
model with the smaller BIC value as the most probable relationship for the pair
elements and the s-p-score is defined as the corresponding score under the model.
Next, for every pair of elements, we rank its s-p-score in the ascending order. The
smaller the s-p-score is, the more likely the relationship could be true.

If the samples are generated from a directed acyclic Boolean network, s-p-scores
are quite useful for the discovery of pairwise relationships. Here we could consider
the maximum compatibility criterion: to choose the maximum threshold value so
that the selected relationships contain no conflicts [20]. We collect those relation-
ships whose s-p-scores are smaller than a threshold. Known biological results could
be helpful for the determination of a threshold. For example, if we know the rela-
tionship v1 � v3 is true, then the s-p-scores smaller than pv1v3

should be in our
watch list. As more relationships are included in the watch list, the more likely we
are to observe incompatible ones. In general, we can choose the threshold which
allows the maximum number of relationships with no conflicting relationships.

We now evaluate the computational complexity of statistical reconstruction
method of SPAN described above. The key procedure is the computation of s-p-
score for every pair of elements. If the number of elements is m, their are totally


m
2

�
pairs of elements and the complexity for the computation of MLE is O.m2/.

We can rank the s-p-score of every pair elements in the order ofO.m2 logm/. Thus,
in this statistical reconstruction algorithm, the time complexity is O.m2 logm/ and
the memory complexity is O.m2/ as described in [20].
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20.5 Conclusion

We have introduced a variety of models including classical Boolean networks, prob-
abilistic Boolean networks and directed acyclic Boolean networks for dealing with
genetic regulatory networks. These variants of Boolean networks can be used in the
exploration of large genetic networks because of the simple structure of Boolean
networks. Based on the reconstruction of Boolean networks, more flexible models,
like Bayesian networks, can be applied to investigate more complex problems.

There are several advantages in estimating gene regulatory networks with
Boolean networks. First of all, a variety of software packages have recently been
developed for constructing Boolean networks. Matlab implementations of classical
Boolean network toolbox and for probabilistic Boolean networks were developed in
[24, 26]. Moreover, Li and Lu also provided an implementation for the s-p-scoring
method in Matlab [20]. Other genetic regulatory network tools such as NetBuilder
for simulating genetic Boolean network are also available [35]. Second, recent
research indicates that various complex biological processes can be described by
seemingly simplistic Boolean formalisms [33,34]. The dynamic behaviors of living
systems can be explained effectively by Boolean networks [9, 29]. Moreover, for
large-scale gene regulatory networks, Kim et al. [17] have used Boolean network
with chi-square test on the yeast cell cycle microarray gene expression data sets.
Kauffman et al. [16] have used a random Boolean network to get possible interac-
tion rules for transcriptional network models in yeast. Furthermore, the dynamic
behaviors of cellular states are also represented by attractors in Boolean network
in [9].

One characteristic of a Boolean network is that all the variables in the graph
are binary. If the data we observed is continuous or quantized to have more than
two levels, we need to discretize them. For microarray data, the ratios of expression
level would be one possible approach of discretization. That is, we can treat the gene
as on (active) if the log-ratio of its expression is larger than zero and off (inactive)
otherwise. In general, biological background knowledge will be helpful for setting
thresholds for discretizaion. On the other hand, if the samples are obtained from a
time course, then we can consider the gene as on or off by detecting the gene is
either increasing or decreasing with time.

For future developments on Boolean networks, we can consider more compli-
cated structures such as Boolean networks with time delay. Furthermore, we can
develop models of Boolean networks that have more flexible structures than these
models proposed in literature. Since Boolean network models have been shown to be
useful for reconstructing genetic network from real biological gene expression pro-
files, the evaluation of Boolean network models’ effectiveness will be an important
task in the future.
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Chapter 21
Protein Interaction Networks: Protein Domain
Interaction and Protein Function Prediction

Yanjun Qi and William Stafford Noble

Abstract Most of a cell’s functional processes involve interactions among proteins,
and a key challenge in proteomics is to better understand these complex interaction
graphs at a systems level. Because of their importance in development and dis-
ease, protein-protein interactions (PPIs) have been the subject of intense research in
recent years. In addition, a greater understanding of PPIs can be achieved through
the detailed investigation of the protein domain interactions which mediate PPIs. In
this chapter, we describe recent efforts to predict interactions between proteins and
between protein domains.

We also describe methods that attempt to use protein interaction data to infer pro-
tein function. Protein-protein interactions directly contribute to protein functions,
and implications about functions can often be made via PPI studies. These infer-
ences are based on the premise that the function of a protein may be discovered
by studying its interaction with one or more proteins of known functions. The sec-
ond part of this chapter reviews recent computational approaches to predict protein
functions from PPI networks.

21.1 Introduction

In recent years, the human and other genome sequencing projects have generated
vast amounts of data that identify thousands of new gene products whose functions
and interrelationships are not yet known. The overall molecular architecture of all
organisms is largely mediated both structurally and functionally through the coor-
dination of protein-protein interactions (PPIs). In particular, the disruption of PPIs
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Fig. 21.1 The framework of
contents in this chapter

may lead to the development of diseases. Thus, correctly identifying the interrela-
tionship between proteins at the systems level is urgent and necessary, since such
knowledge would lead to a better understanding of the functional properties that
define the behaviors of most complex biological systems.

Experimental techniques [81] to detect PPIs or protein functions have their own
limitations, and the resulting data sets are often noisy. Thus, additional approaches
are needed to accelerate the recovery of complex protein-interaction systems. Given
the vast amount of available biological evidence and the representational power
of mathematical models, computational methods are gaining importance. In this
chapter, we review three areas to which computational approaches contribute sig-
nificantly (Fig. 21.1). We first introduce methods targeting protein-protein inter-
action predictions in Sect. 21.2. Then in Sect. 21.3 recent advances in identifying
domain-domain interactions are presented. Finally, Sect. 21.4 reviews various ways
to predict protein functions from PPI graphs.

21.2 Prediction of Protein-Protein Interactions

The term “protein-protein interactions” refers to the association of protein molecules
with each other. The associations are interesting from multiple perspectives, includ-
ing ascertainment of specific biological processes and pathways such as signal
transduction pathways, as well as the systems-level studies of networks on the
cellular or organism-wide scale. Because direct pairwise PPIs provide the basic
building blocks to carry out the myriad of functions in a cell, comprehensively iden-
tifying these interactions is essential for understanding the molecular mechanisms
underlying biological functions.

Experimental techniques for deciphering protein-protein interactions have been
reviewed by [81]. In general, interactions among proteins can take on many forms
(e.g., have an impact on functions of one another, or occur in a common path-
way), and many proteins only operate in complexes and through physical con-
tact with other proteins. These factors have prompted the development of various
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complementary experimental methods for detecting protein-protein interactions.
Traditionally, PPIs have been studied individually through the use of genetic, bio-
chemical and biophysical experimental techniques (also termed small-scale meth-
ods). The related experiments are generally time-consuming, sometimes requiring
months to detect one PPI. In the last several years, large-scale biological PPI exper-
iments have been introduced to directly detect hundreds or thousands of protein
interactions at a time. Yeast two-hybrid (Y2H) screens [32, 36, 75, 86] and protein
complex purification detection techniques using mass spectrometry [23, 24, 32] are
the two most widely used large-scale approaches. However, both methods suffer
from high false positive and false negative rates [55]. For the Y2H method, this
is due to insufficient depth of screening and misfolding of the fusion proteins. In
addition, interaction between “bait” and “prey” proteins has to occur in the nucleus,
where many proteins are not in their native compartment. The mass spectrometry
based complex identification methods [23, 24, 32] may miss complexes that are not
present under the given conditions. In addition, tagging may disturb complex for-
mation and weakly associated components may dissociate and escape detections.
In general, the resulting data sets are often incomplete and exhibit high false posi-
tive and false negative rates [15, 55, 99]. Consequently, even for well-studied model
organisms, most true PPIs have not yet been discovered experimentally.

Computationally, protein-protein interaction networks can be conveniently
modeled as undirected graphs, where the nodes are proteins and edges represent
physical binding interactions. Initially, this graph is missing many edges (false
negatives) and contains many incorrect edges (false positives). To complement
and extend experimental methods, a variety of computational methods have been
successfully applied to predict protein interactions. These approaches may be cate-
gorized on the basis of the types of data they considered when making predictions,
as follows:

� Over-represented domain pairs or motif pairs observed in interacting protein
pairs have been studied and used to infer PPIs. We provide more details of
domain-domain interactions in Sect. 21.3. Structural information and sequence
evidence about PPI interfaces has been used to predict potential PPIs [13, 21] as
well.

� Various genomic methods infer protein interactions based on the conservation of
gene neighborhood (Fig. 21.2), conservation of gene order, gene fusion events,
or the co-evolution of interacting protein pair sequences [54, 82].

� An attractive alternative approach is to integrate various types of evidence from
multiple sources in a statistical learning framework. A number of classification
methods have been explored and multiple ways of using biological evidences
have been studied in this framework [6, 8, 38, 60, 67, 71, 78, 96, 98, 101].

� High-throughput PPI experiments for elucidating protein-protein interactions
have been applied to model organisms in recent years. Unfortunately the derived
data sets are noisy and incomplete [55]. Multiple computational techniques have
been proposed to improve the data reliability [5, 10, 84].
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In the next sections, we describe in detail methods that fall into the latter three
categories.

As mentioned above, interactions among proteins can take on many forms. Most
previous computational works either predict direct physical interactions between
proteins, or to identify if two proteins operate in the same complex, or to predict
if two proteins are functionally linked to each other. The readers should keep this
distinction in mind for the following methods. Qi et al. [66] performed a systematic
comparison between these tasks and found that the task of identifying co-complex
relationship seems to be easier than the other two tasks, with respect to the feature
evidence they used.

21.2.1 Genomic Inference with Context

Accurate and large-scale prediction of protein-protein interactions directly from
protein sequences is one of the important challenges in computational biology.
Reviewed in [82] as “genomic inference methods” (including gene neighbor, gene
fusion, and phylogenetic profile approach), this category uses genomic or protein
context to infer functional associations between proteins.

Gene neighborhood: The idea of the gene neighborhood approach is shown in
Fig. 21.2. We can see that genes P1, P2 and P3 are neighbors across three differ-
ent genomes. From this association, we infer that their protein products are likely
to associate with one another. The gene neighborhood approach provides strong
signals for functional association between gene products within and across species
[54], but this approach is arguably less well suited for specifically detecting physical
interactions.

Gene fusion: The gene fusion approach [52], infers protein interactions from
protein sequences in different genomes. It is based on the observation that some
interacting proteins/domains have homologs in other genomes that are fused into
one protein chain. Figure 21.3 gives an example of “gene fusion.”

Phylogenetic profile: The phylogenetic profile method [65] is based on the
observation that interacting proteins need to be present simultaneously in order
to perform their functions. Therefore, the repeated co-occurrence of a pair of pro-
teins across different organisms provides evidence that they interact. As shown in

Fig. 21.2 PPI prediction by gene neighborhood approach (modified from Fig. 1 in [82])
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Fig. 21.3 PPI prediction by gene fusion (modified from Fig. 1 in [82])

Fig. 21.4 PPI prediction by phylogenetic profile strategy (modified from Fig. 1 in [82])

Fig. 21.5 PPI prediction by
classification with multiple
evidence

Fig. 21.4, a phylogenetic profile is constructed for each protein as anN -dimensional
vector, where N is the number of genomes under consideration. The presence or
absence of a given protein in a given genome is indicated with a 1 or 0 at each
position in the profile. Proteins’ phylogenetic profiles can then be linked using a
bit-distance measure, with linkage indicating physically interaction or functional
assocation [65, 82]. This approach can also be used for protein domains, where a
profile is constructed for each domain.

21.2.2 Classification from Multiple Types of Evidence

Studies in this category make use of a classification algorithm to integrate diverse
biological datasets (Fig. 21.5). A classifier is trained to distinguish between pos-
itive examples of truly interacting protein pairs and negative examples of non-
interacting pairs. Many different research groups have independently suggested
using supervised learning methods for predicting protein interactions. However,
the data sources, approaches and the species they worked on have varied widely.
According to these differences, we categorize previous works into four groups:
supervised classifiers on protein pairs, kernel based network reconstruction, direct
modeling of PPI data sets, and inter-species PPI prediction.
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21.2.2.1 Supervised Classifiers on Each Protein Pair Separately

By transforming multiple biological data sources into a feature vector representing
every pair of proteins, the task of predicting pairwise protein interactions can be
formalized as a binary classification problem. Each protein pair is encoded as a fea-
ture vector where features may represent a particular information source such as
related mRNA expressions, domain composition, or evidence coming from exper-
imental methods. There are many possible ways to encode evidence sources into
feature attributes and it is an important factor for the reliability of the computational
predictions [66]. For instance, pearsons correlation values between two genes could
be used as features on selected gene expression sets. Alternatively, feature attributes
could describe how likely two proteins interact in other species [54].

A number of proposed methods belong to this group, including naive Bayes clas-
sifiers [38] , decision trees [101], kernel based methods [6, 96], random forests
[51, 67], logistic regression [4, 51], and the strategy of summing likelihood ratio
scores to predict PPI confidence in human [70, 71, 78] or in yeast [47]. Multiple
classifiers were compared for PPI predictions in yeast [66]. Random forests and sup-
port vector machines (SVMs) were found to achieve the best performance among
them.

These approaches used different types of data, different supervised classifiers and
generally treated each protein pair independently for the interaction identification.

The popular STRING database [54] is a successful example of an application of
this supervised learning methodology. The authors identified functionally associated
protein pairs by computationally integrating known protein-protein associations,
co-expression pairs, literature mining and pairs transferred across organisms. The
resulting STRING database integrates and ranks predicted PPIs, by benchmarking
them against a common reference set with the modified sum of likelihood approach.
The most recent version of STRING [40] covers about 2.5 million proteins from
630 organisms. The authors claim that this provides the most comprehensive view
of PPIs currently available.

Most of the above scoring methods use a set of likely true positives to train the
predictive model. However, a single positive training set may be biased and not
representative of true interaction space. To address this concern, Yu et al. [100]
demonstrated a method to score protein interactions by using multiple indepen-
dent sets of training positives to reduce the potential bias inherent in using a single
training set. Defining negatives can also be problematic, since the absence of an
edge in an observed network does not necessarily imply that the edge does not
exist in the true network. Several studies attempt to define a set of high-confidence
non-interacting proteins [39]; however, such methods are likely to yield their own
biases [7]. Thus, the simpler approach of selecting negatives uniformly at random is
generally preferred [6, 28, 68, 102].
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21.2.2.2 Network Reconstruction with Kernel Methods

As mentioned above, multiple data evidence used for PPI predictions are in dif-
ferent formats (e.g., numeric values for gene expression, letter strings for protein
sequences). A natural choice for this data integration task is kernel methods [6],
which unify the data representation as special matrices called kernels (Fig. 21.6b).
Kernel methods have been applied successfully on the protein interaction prediction
tasks in recent years. The problem of PPI predictions could be framed as the follow-
ing network reconstruction problem (Fig. 21.6). The input is a graphG D .V;E; NE/,
where V is a set of nodes representing each protein, and E; NE � V 
 V are sets
of known edges and non-edges, respectively, corresponding to protein pairs that are
known to interact or not. This PPI graph is represented as an adjacency matrix in
Fig. 21.6a which contains known interactions (black boxes), known non-interactions
(white boxes) and pairs with unknown status (gray boxes). In Fig. 21.6b, kernel
methods build kernel matrices (graphs) based on features of proteins or protein
pairs. The key question then is to reconstruct those “?” entries in the input PPI
graph (gray boxes of Fig. 21.6a) based on the kernel graph(s) (Fig. 21.6b). Here we
describe three interesting papers in this group.

Pairwise kernel between protein pairs: Ben-Hur et al. [6] and Gomez et al.
[27] proposed the pairwise kernel approach to use a standard kernel method (such
as SVM) for PPI predictions. Treating each protein pair as a data example, a pairwise
kernel function computes the similarity between two pairs of proteins. Thus, with n
proteins, the resulting kernel matrix (an example in Fig. 21.8b) contains n4 entries.
One way to construct such a kernel is to build them on top of an existing kernel
between individual proteins. For example, given a kernel matrix K with each entry
describing the inner product between two proteins, the pairwise kernel could be built
for the four proteins in Fig. 21.8a as follows:

Fig. 21.6 PPI predictions through kernel methods (modified from Fig. 1 of [98]). (a) PPI network
is represented as an adjacency matrix which includes: known interactions (black boxes), known
non-interactions (white boxes) and pairs with unknown status (gray boxes). (b) Kernel matrix built
from a certain feature evidence, with a darker color describing larger value
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K 0..v1; v2/; .v3; v4// D K.v1; v3/K.v2; v4/CK.v1; v4/K.v2; v3/ (21.1)

The motivation is that protein pair .v1; v2/ is similar to protein pair .v3; v4/ if the two
proteins v1 and v2 are similar to proteins v3 and v4, or vice versa. Later, Martin et al.
[53] proposed a similar way to make use of protein properties for PPI prediction
task, but with a tensor product kernel.

As a continuation of this work, the authors in [69] predicted co-complexed
protein pair (CCPP) relationships using kernel methods from heterogeneous data
sources. They show that a diffusion kernel [45, 83] based on random walks on the
full network topology yields good performance in predicting CCPPs from protein
interaction networks (for more details about this kernel, see Sect. 21.4.5) . In their
setting of direct ranking, a diffusion kernel performs much better than the mutual
clustering coefficient. Alternatively, when using SVM classifiers, a diffusion kernel
performs much better than a linear kernel. One recent work from Vert et al. [91]
explored a closely related approach called the “metric learning pairwise kernel”
to convert the problem of direct inference based upon similarities between nodes
joined by an edge on the PPI graph to the task of distance metric learning.

Note that the pairwise kernel strategy also belong to the group of methods in
Sect. 21.2.2.1. Those methods use feature values to describe each protein pair. With
an inner product between these features vectors, we could generate a pairwise kernel
matrix. Of course, the way to calculate the kernel matrix in Eq. 21.1 is more general,
since the pairwise kernel could incorporate data from individual proteins (using a
pairwise kernel) and protein pairs.

Supervised reconstruction with a kernel between proteins: Because the com-
putational cost for the above pairwise kernel is high, Yip et al. [98] and Yamanishi
et al. [96] proposed to work directly with kernels defined on individual proteins.
Given such a kernelK (between proteins) and a cutoff t , the method simply predicts
interactions for each pair of proteins for which K.vi ; vj / � t .

To make use of the training examples, supervised algorithms were presented to
reconstruct the kernel matrix based on a sub-matrix of known interactions. Assum-
ing that the sub-network of the adjacency matrix is totally known (as shown in
Fig. 21.7), the goal is to modify the kernel similarity between proteins (as defined
by the kernel) to some values that are more consisitent with the partial sub-matrix.
Subsequently, simple thresholding is performed on the resulting similarity values
to predict PPIs [98]. Yamanishi et al. [96] presented a method in this style to infer
protein interaction networks using a variant of kernel canonical correlation analy-
sis (originated from spectral clustering theory). The goal was to identify features
from the input kernel (built from the genomic/proteomic evidence) and features
from the diffusion kernel that were derived from the known PPI submatrix, so that
two features have the highest correlation under certain smoothness requirements.

Kernel matrix completion: Similar to the above supervised network reconstruc-
tion, Kato et al. [42] also assume a partially complete adjacent matrix (Fig. 21.7).
They formulated supervised network inference as a kernel matrix completion prob-
lem, where the inference of edges boils down to estimation of missing entries of a
kernel matrix. The goal is to make the resulting matrix closest to a spectral variant
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Fig. 21.7 PPI predictions by
the supervised network
inference (modified from
Fig. 1c of [98]). Partial
complete adjacency matrix
required by the supervised
reconstruction approach,
which needs complete
knowledge of a submatrix
(upper-left)

Fig. 21.8 Global and local modeling for PPI network reconstruction (modified from Fig. 2 of
[98]). (a) An interaction network, with solid black lines representing known interactions, red dotted
edges representing known non-interacting edges and blue dashed lines representing those protein
pairs with unknown interaction status. (b) Global model based on pairwise kernel approach, where
each edge is treated independently. (c) Local model for protein v2. Different node colors indicate
distinctive evidence status, for instance, different cell compartments that the proteins reside in

of the kernel matrix as measured by the KL (Kullback-Leibler) divergence. An
expectation-maximization algorithm is proposed to simultaneously infer the miss-
ing entries of the adjacency matrix and the weights of multiple datasets (a weight is
assigned to each type of dataset and thereby to select informative ones). The algo-
rithm iteratively searches for the filled adjacent matrix that is closest to the current
spectral variant of the kernel matrix, and at the same time, the spectral variants of
the kernel matrix which is closest to the current filled matrix. When convergence is
reached, the predictions are thresholded from the final complete adjacency matrix.

Local model: Each of the above approaches builds a global model to predict new
edges over the network based on the partial knowledge of the network to be inferred
(Fig. 21.8b). This single model may not be able to separate all cases of interacting
pairs from non-interacting ones, if there are different subgroups of interactions [98].
For instance, protein pairs involved in transient interactions may use a very different
strategy compared with those involved in protein complexes. These two types of
interactions may belong two separate subgroups that cannot be fitted by one single
model.

Accordingly, Bleakley et al. [8] introduce a novel method that uses a local model
to allow for flexible modeling of subgroups of interactions. A local model is built
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for each protein, using the known interactions and non-interactions of this protein as
the positive and negative examples. The resulting classification rule predicts edges
associated with a single protein. Thus, each pair of proteins receives two predic-
tions, each from the local model of either protein. In Fig. 21.8c, the method built a
local model for protein v2. Because node v1 is similar to node v3, this local model
classified pair .v2; v1/ as negative. Since each node has its own local model, the
approach only needs a kernel defined on proteins, rather than a kernel between pairs
of proteins.

Local model with training set expansion: The accuracy of computational tech-
niques proposed for PPI network reconstruction is consistently limited by the small
number of high-confidence examples. Specifically, for the local model approach, the
uneven distribution of positive examples across the potential interaction space, with
some objects having many known interactions and others few, makes it hard to pre-
dict new interaction partners for those proteins having very few known interactions
reliably. To address this issue, Yip et al. [98] proposed two semi-supervised learning
methods by augmenting the limited number of gold-standard training instances with
carefully chosen and highly confident auxiliary examples.

� The first method, prediction propagation is similar to self-training methods [79]
described in the the machine learning community. This method uses highly con-
fident predictions from one local model as the auxiliary examples of another.
This propagation strategy uses the learning from information-rich regions in the
training network to help make predictions in information-poor regions.

� The second method, kernel initialization, takes the most similar and most dissim-
ilar proteins of each protein in a global kernel (between proteins) as the auxiliary
examples. Similar to prediction propagation, adding these new examples into the
training sets boosts the performance of the local modeling approach.

21.2.2.3 Inter-species PPI Prediction

All of the above studies aim to predict PPIs within a single organism (termed intra-
species PPI prediction), with most studies focusing on yeast or human. Recently,
researchers have begun to extend computational methods to predict PPIs between
species (termed inter-species PPI prediction).

Of particular interests are host-pathgen PPIs. For any host-pathogen system, it
is important to understand the mechanism by which a pathogen can infect its host.
One method of infection is via protein interactions, where pathogen proteins target
host proteins (as described in Fig. 21.9). Developing computational methods that
identify which PPIs enable a pathogen to infect a host has significant implications
in identifying potential therapeutical targets.

Davis et al. [16] studied ten host-pathogen protein-protein interactions using
structural information with a comparative model: the host/pathogen protein pairs
that share similarity to protein complexes with known structures are used to build
3-D structural models of putative complexes, and the modelled pairs are then filtered
by functional and genomic experimental information. The technique was applied
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Fig. 21.9 Protein-protein
interactions in host-pathgen
systems (modified from Fig. 1
of [87])

to ten pathogens and assessed by three independent computational procedures.
The results suggest that this method is complementary to experimental efforts in
elucidating networks of hostpathogen protein interactions.

Later, Tastan et al. [87] extended the supervised learning framework to predict
PPIs between HIV-1 viruses and human proteins. A random forest based classi-
fier was used to integrate multiple biological data types, achieving state-of-the-art
performance for this task.

Similar to host-pathgen PPI, several recent papers identify interactions between
drugs and target proteins. This is a key area in genomic drug discovery. The authors
in [95] formalized the drug-target interaction inference as a supervised learning
problem on a bipartite graph, where the model extended the metric embedding
approach [1] to integrate chemical and genomic spaces into a unified space.

21.2.3 Modeling Experimental PPI Data Sets Directly

Genome-wide, high-throughput PPI experiments for elucidating protein-protein
interactions have proven to be one of the most important tools in recent years. How-
ever the quality of currently available PPI data sets is unsatisfactory, which limits
its usefulness to some degree. A crucial step in analyzing proteomics PPI data is to
separate the subset of credible interactions from the background noise. Various com-
putational techniques have been proposed for inference of reliable protein-protein
interactions directly from experimental interaction results. In the following, several
interesting ones are covered.

Von Mering et al. [55] were among the first to discuss the problem of accurately
inferring protein interactions from high-throughputdata sources. The proposed solu-
tion [55], which used the intersection of direct high-throughput experimental results,
achieved a very low false positive rate. However, the coverage was also very low.
Less than 3% of known interacting pairs were recovered using this method.

Later, Bader et al. [5] applied logistic regression to estimate the posterior proba-
bility that a pair of proteins will interact. Only statistical and topological descriptors
were used to predict the biological relevance of protein-protein interactions obtained
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from high-throughput PPI screens for yeast. Other evidence, such as mRNA expres-
sion, genetic interactions and database annotations, were subsequently used to
validate the model predictions. They demonstrated that it is possible to define a
quantitative confidence measure based entirely on screening statistics and network
topology. The main assumption underlying the confidence measure is that nonspe-
cific interactions are highly likely to be technology-specific [5]. This type of analysis
is essential for analyzing the growing amount of genomic and proteomics interation
data in model organisms.

Aiming to improve the quality of experimentally available PPI data by identi-
fying erroneous datapoints from PPI experiments, Sontag et al. [84] described a
probabilistic approach to estimate errors in yeast-two-hybrid experiments, consider-
ing both random and systematic errors. The systematic errors arise from limitations
of the Y2H experimental protocol: ideally the reporting mechanism in Y2H should
be activated if and only if the two proteins being tested truly interact, but in practice,
even in the absence of a true interaction, the reporter may be activated by some pro-
teins – either by themselves or through promiscuous interaction with other proteins.
The authors described a probabilistic relational model that explicitly models these
two types of errors. They use Markov chain Monte Carlo algorithms for inference.
In constrast to previous work, which often models Y2H errors as being independent
and random, experimental results showed that this approach could make better use
of the available experimental data.

Currently no method exists to systematically and experimentally assess the qual-
ity of individual interactions reported in interaction mapping experiments. Braun
et al. [10] developed an interaction tool kit consisting of four complementary,
high-throughput protein interaction assays and provided a standardized confidence-
scoring method. Based on positive and random reference sets consisting of well
documented pairs of interacting human proteins and randomly chosen protein pairs,
a logistic regression model was trained to combine the assay outputs and calcu-
late the probability that any newly identified interaction pair is a true biophysical
interaction once it has been tested in the the four high-throughput PPI assays. This
approach allows a systematic and empirical assignment of confidence scores to all
individual protein-protein interactions from high throughput interation experiments.

The above approaches have considered protein pairs independently when infer-
ring the presence of PPIs. In contrast, Jaimovich et al. [37] considered the neigh-
borhood interaction pairs together and employed a relational Markov random field
approach for collective inference of PPIs in yeast. The basic idea is shown in
Fig. 21.10:

In this paper [37], the authors view the PPI prediction task as a relational learn-
ing problem, where observations about different entities are not independent. The
method exploits relational probabilistic models to combine multiple types of fea-
tures, including protein attributes (e.g., localization of proteins) and protein-protein
interactions (e.g., experimental interaction assays). The results demonstrated that
modeling the dependencies between interactions leads to significantly better predic-
tions. However, due to the model complexity and the difficulties during inference,
this model can currently be applied only to a small set of proteins.
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Fig. 21.10 Improve PPI prediction with dependencies between interactions (modified from Fig. 1
in [37]). (a) A possible interaction between proteins P1 and protein P2. They are localized in differ-
ent cellular positions (indicated with purple and green colors). (b) Two additional proteins P3 and
P4 provide extra dependency evidence. Dashed line represents functional association from indirect
evidence and solid line describes interactions from experimental interaction sets. The combined
evidence gives more support to predict that P1 and P2 interacts

Fig. 21.11 Prediction of
domain-domain interactions

21.3 Prediction of Domain-Domain Interactions

Many of the experimental and computational approaches described above address
the question, “Do these two proteins interact?” In practice, how the proteins interact
is also of great interest. Protein interactions occur through physical binding of small
regions on the surface of proteins. Therefore, insights into the mechanism whereby
a protein carries out its function can be obtained by identifying the interaction site
where protein binding takes place. Moreover, detailed knowledge about the binding
sites at which an interaction takes place can provide insight into the causes of human
disease as well as a starting point for drug design [92]. Unfortunately, this type
of information is not typically provided in a protein interaction graph and is not
revealed by high-throughput experimental methods.

A protein may contain a single domain or multiple domains, each one typically
associated with a specific function [88]. The combination of domains determines the
function of the protein, such as its subcellular localization and the interactions it is
involved in [34]. There exists a certain degree of conservation in the interaction pat-
terns between similar proteins and domains. It has been found that close homologs
almost always interact in the same way [81]. Thus, it is interesting to find out what
domains are responsible for binding.

Currently little useful data is available from major databases with respect to rela-
tions on the domain level [63]. This lack of data makes computational prediction of
domain-domain interactions very important. A series of computational approaches
have been developed to predict which domains in a protein pair interact given a set
of experimental protein interactions [82]. Domain interactions extend the functional
significance of proteins and provide a more detailed view of the protein-protein
interaction network (Fig. 21.11).
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Inferring interactions between domains from protein-protein interactions is a
challenging task. Various methods have been proposed to predict domain interac-
tions from protein-protein interaction graphs. Most methods begin by annotating
protein sequences with domains that can be defined by Pfam, CDD, or other domain
databases. The models are typically trained with certain known protein interactions
to identify domain-domain interaction pairs. The predicted domain interactions can
be evaluated using structural data or by high quality interaction sets. Moreover, the
resulting domain interactions can in turn help in predicting protein-protein inter-
actions. It is worthwhile to mention that some of the approaches mentioned in the
last section for protein interaction prediction, such as the sequence co-evolution
or phylogenetic profiles (reviewed in [63]) are also applicable to domain interaction
prediction [82]. In addition, the following section introduces several methods specif-
ically designed to predict domain-domain interactions from protein interaction data.

Inferences on the interactions among domains can be made by analyzing the
domain composition of a set of proteins and their interaction networks.

Association method: A characteristic domain or structural motifs can be used to
distinguish interacting proteins from non-interacting. Association methods [30, 82,
85] use different classifiers for this purpose, and some of them are tuned specifically
to identify domains responsible for protein interactions. Correlated domains are
pairs of domains that are found together more often than expected by chance in
known PPI pairs. An association method may predict that two proteins interact if
they contain correlated domains, one from each protein, whose association value
is greater than a predefined threshold. Because some domain pairs can be found
quite often in protein interacting pairs, this simple assocation method can be quite
successful in identifying novel PPIs.

An examplar case is given in Fig. 21.12a. Domain pair (x, a) is the most abundant
in all four interacting protein pairs (blue lines) compared with other domain-domain

Fig. 21.12 Two methods to predict domain-domain interactions from PPIs. (a) Association
method. The domains x and a are predicted to interact due to the abundance of domains x and
a in protein interaction pairs, shown as the blue line. (b) As the same PPI dataset in (a), that the
actual domain interactions (blue lines) do not include domains x and a. This shows that account-
ing for other domains in a protein pair, in addition to x and a, can result in alternative domain
interaction predictions
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pairs. Taking the domain combination pair as a basic unit, these methods use their
frequencies in the interacting and non-interacting sets of protein pairs, for deriving
novel protein interactions. For example, Sprinzak et al. [85] use the following score,
computed from protein interaction data, to find correlated domains:

S.dm; dn/ D Imn

Nmn
(21.2)

where Imn is the number of interacting pairs that contain .dm; dn/, and Nmn is the
total number of protein pairs that contain .dm; dn/.

Dyer et al. [20] extended this idea for identify domain interactions in host-
pathogen systems. They integrate a number of public intra-species PPI datasets with
protein-domain profiles for predicting and studying host-pathogen PPI networks.
The model used intra-species PPIs and protein-domain profiles to compute statistics
on how often proteins containing specific pairs of domains interact. These statistics
can then be used to predict inter-species PPIs in host-pathogen systems.

Maximum Likelihood Estimation: One drawback of the association method
is that it ignores other domain-domain interaction information between the protein
pairs and, thus, does not make full use of all of the available information. As in
Fig. 21.12a, if domains x and a do not appear in any other proteins, then in the asso-
ciation method this pair is assigned the association score S.x; a/ D 4=4 D 1.
This method ignores other domain-domain interactions among domains b, c, y
and z. To infer a domain-domain interaction, other related domain-domain interac-
tions should be taken into account (as shown in Fig. 21.12b). To do so, interactions
among other proteins containing domains b, c, y or z must be included, and thus,
more domains and proteins are involved. Iterating this process, eventually all pro-
teins and all domains are related and need to be taken into account. In addition,
the association method ignores experimental errors (normally quite high in current
experimental PPI sets) and treats the observed interactions as real interactions. This
noise may lead to the impossibility of having a pattern of domain interactions that
is compatible with the protein-protein interaction map.

To address the above two issues, Deng et al. [18] develop a global approach
using a maximum likelihood estimation (MLE) method that incorporate all available
proteins and domains, as well as experimental errors. They used yeast two-hybrid
protein interaction data and treated protein sequences as “bags of domains.” The
model estimates the probabilities of interactions between every pair of domains.
Treating protein-protein interactions and domain-domain interactions as random
variables, the two basic assumptions are (1) that two proteins interact if at least
one pair of domains of the two proteins interacts and (2) interactions between dif-
ferent domain pairs are independent. Thus, the probability of a potential interaction
between a protein pair .i; j / is

P.Pij D 1/ D 1�
Y

.dm;dn/�.Pi ;Pj /

.1 � �mn/ (21.3)
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where �mn denotes the probability that domain dm interacts dn. The expectation
maximization (EM) algorithm is used to find maximum likelihood estimates of
unknown parameters by finding the expectation of the complete data consisting of
observed and unobserved data in two iterative steps. Here the observed data includes
protein-protein interactions and the domain composition of the proteins, and the
unobserved data includes all putative domain-domain interactions [82].

The above methods may preferentially identify promiscuous domain interactions,
because they focus on those that occur with the highest frequency. Methods are need
to detect the low-propensity, high-specificity domain interactions. Thus, Riley et al.
[73] proposed the domain pair exclusion analysis (DPEA) method to extend the
MLE approach. Riley et al. are specifically interested in extending beyond single
proteome prediction to infer domain interactions from the incompletely mapped
interactomes of multiple organisms. Their appoach employs a likelihood ratio test
to assess the contribution of each potential domain interaction to the likelihood of
a set of observed protein interactions from the incomplete interactomes of multiple
organisms.

Similarly, Iqbal et al. [35] address the problem of predicting protein domain inter-
actions by using belief propagation, which is a powerful message passing algorithm
for probablistic inference. The input to their algorithm is an interaction map among
a set of proteins, and a set of domain assignments to the relevant proteins. The out-
put is a list of probabilities of interaction between each pair of domains. The method
is able to effectively cope with errors in the protein-protein interaction dataset and
systematically resolve contradictions.

Hypothesis test: Nye et al. [61] proposed a statistical method to test the null
hypothesis that the presence of a particular domain pair in a protein pair has no
effect on whether two proteins interact. The procedure calculates a statistic for each
domain pair which takes into account experimental errors and the incompleteness
of the dataset. The background distribution is simulated by shuffling domains in
proteins so that the network of protein interactions remains fixed. The domain pair
with the lowest p value is deemed most likely to interact. The authors point out that,
for the majority of test cases, random domain prediction outperforms all methods
tested, indicating the low accuracy of all prediction methods of domain interactions.

A set cover approach: Later, Huang et al. [33] proposed an interesting model
to map the relationship between interactions of proteins and their corresponding
domain architectures to a generalized set cover problem. Figure 21.13 gives a
schematic explanation of the set cover approach. Set Y represents all potential pro-
tein pairs, and set X describes all known protein interaction pairs. F D fSi ; 1 �
i � tg is a family of subsets of Y . The general set cover problem is to find a subset
C of F to cover X , such that X � [S2CS . Often, C is required to satisfy cer-
tain conditions. In this case, F is the set of all domain pairs .dm; dn/. Specifically
if a protein interaction pair .Pi ; Pj / contains domain pair .dm; dn/, then .Pi ; Pj /

belongs to the subset of .dm; dn/. The goal is to find the collection C to cover X ,
where C is a subset of F and contains all the domain pairs present in the interaction
network. The authors applied a greedy algorithm to identify sets of domain inter-
actions which explain the presence of protein interactions to the largest degree of
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Fig. 21.13 A set cover
approach to predict domain
interactions from PPIs. Y set
represents all potential
protein pairs. X set includes
all known protein interaction
pairs

Fig. 21.14 Basic idea to predict protein interaction sites with the InSite method [92]. This figure
is modified from Fig. 1 in [92]

specificity. Using domain and protein interaction data from S. cerevisiae, they claim
that this model enables prediction of previously unknown protein interactions.

Prediction with additional information: Recently, researchers started to com-
bine PPIs with a variety of additional types of evidence to predict domain inter-
actions. For example, Wang et al. [92] propose a learning method, called InSite,
to predict specific regions (domains or motifs) where protein-protein interactions
take place. The input includes a library of conserved sequence motifs or domains,
a set of protein-protein interactions, and any available indirect evidence on protein-
protein interactions and motif-motif interactions, such as expression correlation,
gene functional annotation, and domain fusion. InSite makes predictions at the level
of individual protein pairs, in a way that takes into consideration the various alter-
natives for explaining the binding between this particular protein pair. Specifically,
this method integrates multiple biological data sets and generates predictions in the
form of ‘Motif Y on protein P2 binds to protein P5’ (as shown in Fig. 21.14). In
contrast to previous methods, which predict bindings between pairs of motif types,
InSite makes predictions of interactions of particular occurrences of two motifs.
Thus, InSite may give the same motif pair different interaction confidences, depend-
ing upon the sequence context and the local neighborhood of the PPI network
(Fig. 21.14). This approach provides a principal way to integrate all available bio-
logical evidence. It also treat PPIs from multiple assays differently, since some of
them are noisy and some are indirect.

As above, we briefly discuss several important approaches to the task of iden-
tifying interacting and/or functionally linked domain pairs. These methods exhibit
varying levels of success; however, they usually assume that domains interact inde-
pendently, which is a limitation. Also part of the prediction errors come from
incomplete domain assignments, insufficient coverage of domain databases and
limited searching ability of domain profiles. In addition, domain interactions are
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Fig. 21.15 Prediction of
protein function from PPI
networks

predicted from protein interactions, whose available data is incomplete and noisy at
the current stage [82].

There exist a number of important problems related to the domain-domain pre-
diction from PPIs, including the interaction sites’ prediction or the docking task.
Since they are beyond the scope of this chapter, interested audience could refer
to the review paper Zhou et al. [103] for the first task and Ritchie et al. [74] for
understanding the second: docking problem.

21.4 Prediction of Protein Function from PPI Networks

Proteins are involved in practically every function performed by a cell. However,
despite the availability of large amounts of DNA and protein sequence data, the
biological function is still unknown for a large proportion of sequenced proteins.
Moreover, a given protein may have more than one function, so many proteins that
are known to be in one functional class may have as yet undiscovered functiona-
lities [97].

Inferences about function can be made via protein-protein interactions because
protein interactions directly contribute to protein function. The premise is that the
unknown function of a protein may be discovered through its interaction partners.
Besides protein interaction evidence, the function of an unannotated protein can be
predicted through various other data sets, including sequence homology, phyloge-
netic profiles, gene expression and so on. Combining multiple data sources together
for protein function prediction is an interesting computational problem [11, 64, 89].

Here we focus on reviewing computational approaches that use protein-protein
interaction evidence for protein function inference. It is worth mentioning that
the interaction partners for a protein may belong to different functional cate-
gories. The problem of functional assignments in the complex protein network of
within-function and cross-function interactions remains a difficult task [80].

Previous efforts in this area can be grouped into six categories, which are
described in the following sections.

21.4.1 Simple Statistical Test

The basic assumption of functional annotation is that proteins which lie closer to one
another in the PPI network are more likely to have similar functions. Thus, a simple
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statistical test can be used to assign functions to proteins based on the functions of
their interaction partners.

For instance, Schwikowski et al. [77] proposed the neighborhood-counting
method to assign k functions to a protein by identifying the k most frequent func-
tional labels among its interacting partners. This strategy is simple and effective, but
the full topology of the network is not taken into account in the annotation process,
and no confidence scores are created for the annotations.

Another typical technique, referred to as the chi-square method [31], assigns k
functions to a protein with the k largest chi-square scores. For a protein p, each

function f is assigned a score .nf �ef /2

ef
, where nf is the number of proteins in the

n-neighborhood of p that have the function f . The value ef is the expectation of
this number based on the frequency of f among all proteins in the network [80].

Recently Lee et al. [48] extended the neighborhood-counting [77] method to
make network-based prediction of loss-of-function phenotypes in Caenorhabditis
elegans. For a given phenotype, each gene in the worm proteome was ranked-
ordered by the sum of its linkage weight (log-likelihood score of the gene interaction
edge) to the “seed” set of genes already known to show that phenotype. The
high-scoring genes are most likey to share the given phenotype.

In general, these simple methods lack a systematic mathematical model.

21.4.2 Graph Topoplogy

Researchers have also explored a variety of graph algorithms for protein functional
inference [41,58,90]. For instance, Vazquez et al [90] and Karaoz et al. [41] exploit
the global topological structure of the interaction network for functional annotation.
The basic idea is described with a simple schematic example in Fig. 21.16. This is a
subgraph of the protein interaction network in the yeast Saccharomyces cerevisiae,
with yellow nodes representing unannotated proteins and blue nodes representing
annotated ones (the associated functions are listed as numbers in brackets adjacent
to the nodes). Given one of these proteins with unknown functions, a simplified
version of the method (proposed in [77]) would predict the function that appears
most often in the neighbor proteins of known function. This approach would lead
to the following classification result (from top to bottom): P3 (2), P4 (3,4,10) and
P5 (12). By contrast, graph algorithms such as the one proposed by Vazquez et
al [90], would also consider the interactions among unclassified proteins. Taking
into account the interactions among the three unclassified proteins, one more iter-
ation of the “majority rule” would lead to the following classification: P3 (2,4),
P4 (3,4,10) and P5 (12). Thus, this extended method determined another possible
function for P3.

The approach proposed in [90] assign proteins to functional classes so as to
maximize the number of edges that connect proteins (unannotated or previously
annotated) assigned with the same function. Precisely, they maximize
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Fig. 21.16 Functional
annotation from graph
algorithm on PPI networks.
Modified from Fig. 1 in [90].
This shows a subgraph of the
protein interaction network of
the yeast Saccharomyces
Cerevisiae. Proteins in yellow
are unannotated (unknown
function); the others are
classified proteins (functions
in brackets)

X
.i;j /2E 0

ı.�i ; �j /C
X
i2V

hi .�i / (21.4)

where E 0 is the set of edges between two unannotated proteins, ı is a function
that equals 1 if x D y and 0 otherwise, V is the set of nodes (proteins), and
hi .f / denotes the number of neighbors of protein i previously annotated with
function f . The first term in the optimization criterion accounts for unannotated
proteins, whereas the second term concerns the interactions between unannotated
and previously annotated proteins. This optimization problem can be generalized to
the computationally hard problem of minimum multiway cut. The authors solved it
heuristically using simulated annealing in [90].

Karaoz et al. [41] additionally consider the case where edges in physical inter-
action networks are weighted using gene expression data. The approach is a gen-
eralization of the well-studied multiway k-cut problem. The authors apply a local
search strategy in which the state of the vertex is changed according to the majority
of the states of its neighbors. Similarly, Nabieva et al. in [58] developed a network
flow algorithm that exploits the underlying structure of protein interaction maps in
order to predict protein function. Unlike [41, 90], this method takes advantages of
both network topology and a particular measure of locality.

21.4.3 Graph Clustering

Clustering on protein interaction networks can also be used to predict protein func-
tion. For example, Samanta and Liang [76] proposed a network-based statistical
measure to represent how many common partners two proteins share. They then
use this statistic to hierarchically cluster the proteins in the PPI network. The key
idea is that two proteins that share a large number of common partners likely have
close functional associations. Arnau et al. [3] also applied hierarchical clustering in
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the protein-protein interaction network to find functionally consistent clusters. Their
similarity measurement is derived from the shortest distance between two proteins
in the network. Unlike typical graph clustering, Airoldi et al. explored a genera-
tive style of clustering [2]. The authors used a latent mixture membership approach
to model the protein-protein interaction network. This approach transforms the
function prediction objective into learning of the latent groups.

Sharan et al. [80] recently reviewed current computational approaches on func-
tional annotation of proteins in the context of the protein interaction networks. They
split the related papers into two types: (1) direct annotation schemes, which infer
the function of a protein based on its connections in the network, and (2) module-
assisted schemes, which first identify modules of related proteins and then annotate
each module based on the known functions of its members. Methods we cover in
other subsections belong to the “direct scheme” category. The current subsection
only briefly introduces module-based (we call “graph clustering” based) methods
which utilized the modularity assumption of PPI networks. There exist a number
of ongoing work that explore this category of strategies for protein function annota-
tion. Readers interested should refer to the overview paper [80] for details. Basically,
such methods first attempt to identify coherent groups of genes and then assign func-
tions to all genes in each group. The module-assisted methods differ mainly in their
module detection techniques, which include graph clustering, hierarchical cluster-
ing, clustering based on network topology, etc. Once a module is obtained, simple
methods are usually used for function prediction within the modules.

21.4.4 Probabilistic Propagation on Belief Networks

Although there exist multiple functional classes, we can approach the functional
annotation task one fuction at a time. Figure 21.17 gives a schematic illustration
of this case. For a certain functional class, the proteins assigned this function are
labeled “1”. The proteins which are known to not have this function are labeled
“0”. The remaining nodes are marked “?”. With this assignment, the protein-protein
interaction graph in Fig. 21.17 can be treated as a probabilistic belief network of
function annotations. A number of probabilistic approaches to protein function

Fig. 21.17 A schematic illustration of the function prediction task on a protein network. Modified
from Fig. 1 in [89]. The task is to predict labels of unannotated proteins marked as “?”. For a
specific functions proteins having that function are labeled with “1” or other wise “0”



448 Y. Qi and W.S. Noble

prediction have been suggested. Most such approaches have relied on a Markovian
assumption, namely, that the function of a protein is independent of all other pro-
teins given the functions of its immediate neighbors [80] . This global approach
takes all the network interactions and the functions of known proteins into consider-
ation, propagating function labels from annotated proteins to unannotated proteins
[17, 19, 49, 50].

The Markovian assumption naturally leads to a Markov random field (MRF)
model, which was proposed by Deng et al. [19]. In this paper, an MRF was used
to assign functions to unknown yeast proteins, with a probability representing the
confidence in the prediction. Each protein node is assigned a random variable, with
states corresponding to functional annotations in this setting. Thus, the interac-
tion between two known proteins can be classified into one of the three groups:
(1,1), (1,0) and (0,0), where numbers describe the involved proteins’ functional
annotation. The joint belief can then be represented with a Gibbs distribution by
considering the classification of all proteins,

P r.X jPPInet/ D expŒ�U.xI �/�
Z.�/

(21.5)

where
U.xI �/ D �.˛N1 C ˇN11 C N10 C �N00/ (21.6)

U.xI �/ represents the potential function of the PPI network given a functional con-
figuration of all proteins X D .x1; : : : ; xN / (discrete states). N1 is the number of
proteins for class “1,” and Nl l 0 is the number of protein interactions between cate-
gory l and l 0 in the network. � D .˛; ˇ; ; �/ are parameters, where � is set equal
to 1. Z.�/ is the normalization constant (called the partition function), which is
calculated by summing over all the configurations,

Z.�/ D
X

x

expŒ�U.xI �/� (21.7)

Inference in this model is computationally hard. Deng et al. [19] use a quasi-
likelihood method to estimate the parameters � . The posterior probability that an
unknown protein has the function of interest given the annotations of its neighbors
P.xv D 1jxN.v// was calculated with a Gibbs sampler.

Letovsky and Kasif [50] assumed a binomial model for local neighbors of a pro-
tein annotated with a given term. Also using the MRF propagation this algorithm
assigns probabilities for proteins’ functional annotation in the network using loopy
belief propagation. Leone et al in [49] proposed a belief propagation method on PPI
networks in a similar framework.

Later, Wu et al [93] proposed a related probabilisitic model to annotate functions
of unknown proteins on PPI networks. Their model is an implicit MRF model that
considers all the functions in a single model. This approach allows the model to
capture correlations among protein functions. The authors used the conditional dis-
tribution and presented a maximum likelihood formulation of the problem. The time
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complexity of the corresponding learning and inference algorithms is linear in the
size of the PPI network.

Mostafavi et al [57] adopted a variation of the Gaussian field label propaga-
tion algorithm for gene function prediction. Like the methods described above, this
method assigns a score to each node in the network. This score reflects the estimated
degree of association that the node has to the seed list defining the given function.
The scores can be thresholded to make predictions. Unlike previous approaches
using MRFs, the Gaussian field algorithm has a well-defined solution and can be
efficiently computed.

21.4.5 Kernel Method

Kernel machines have been applied extensively for discovering functionally similar
proteins within interaction networks. This approach has the ability to integrate mul-
tiple types of evidence for functional predictions. For instance, Lanckriet et al. [46]
and later Tsuda et al. [89] represent each data type using a matrix of kernel similarity
values. These matrices are then combined by learning optimal relative weights for
the different kernels.

Here we briefly describe how protein-protein interaction data can be used by a
kernel method [89]. Normally, a diffusion kernel [45, 83] is calculated on the graph
of proteins connected by interactions. The diffusion kernel is a general method for
computing pairwise distances among all nodes in a graph, based on the sum of
weighted paths between each pair of nodes. Assume that A is the n  n adjacency
marix of a graph, andD is the nn diagonal matrix such thatDi i is the node degree
of i -th node. The graph Laplacian matrix is defined as L D D � A. The diffusion
kernel [45, 83] is then defined as

K D exp.�ˇL/ (21.8)

where the diffusion parameter ˇ > 0 determines the degree of diffusion. This kernel
can be interpreted in terms of a “lazy” random walk for sufficiently small ˇ. At each
step, the next node is randomly chosen from the neighbor nodes according to the
transition probabilities. One can also stay at the same node (which is why the ran-
dom walk is called “lazy”. The kernel valueKij is equivalent to the probability that
a random walk starting from i will stay at j after infinite time steps. Figure 21.18
shows the actual values of diffusion kernels with one possible ˇ. When ˇ is large
enough, the kernel values among distant nodes can capture the long-range rela-
tionships between proteins [89]. Diffusion kernels offer several benefits: (1) these
kernels consider similarities among all protein pairs on the graph, not just imme-
diate neighbors, (2) node degrees are taken into account in the kernel calculations,
and (3) the parameter ˇ is relatively easy to tune and has a clear meaning.

Lanckriet et al. [46] (and many others) used a diffusion kernel [45, 83] to sum-
marize PPI graph evidence for functional predictions. Later, Tsuda and Noble
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Fig. 21.18 Actual values of the diffusion kernel for one parameter setting of diffusion parameter
ˇ. Modified from Fig. 2 in [89]. Each value on a node shows the kernel value between the node
and the central node (orange node). The kernel values diffuse through the nodes on the graph

[89] proposed a locally constrained variant of the diffusion kernel. They showed
that computing the diffusion kernel is equivalent to maximizing the von Neumann
entropy, subject to a global constraint on the sum of the Euclidean distances between
nodes. This global constraint allows for high variance in the pairwise kernel dis-
tances. Thus, the authors proposed an alternative, locally constrained diffusion
kernel and demonstrated that the resulting kernels allow for more accurate support
vector machine predictions of protein functional classifications from the metabolic
and protein-protein interaction networks.

21.4.6 Functional Identification Toward Annotation Taxonomy

The above two subsections handle the task of protein function prediction as multi-
ple binary classications, where the methods treat each function at a time and make
predictions for each term independently.

A more general approach to protein function prediction uses labels that follow a
directed acyclic graph taxonomy as defined by the Gene Ontology (GO) [14]. The
GO defines a set of terms to which any given protein may be annotated. In GO rep-
resentation, the parent-child relationship among terms implies that the child term
is either a special case of the parent term or describes a process or component that
is part of the parent process/component. In either case, there is a clear directional
dependency. Specifically, a protein positively annotated to a child term is, by defini-
tion, also positively annotated to the parent term(s), but not vice versa. As a logical
consequence, a protein that is negatively annotated to a parent term is also nega-
tively annotated to the child term(s). A negative annotation indicates that a protein
has been experimentally verified not to be involved in a particular function.

Researchers proposed a variety of methods for systematically predicting protein
function considering its taxonomy structures at the same time. Here we list three
representative approaches as following:

Markov Random Field Extension: A MRF model was extended to chain graphs
in [11] to directly incorporate the structure of the Gene Ontology into the graphical
representation for protein classification. The authors presented a method in which
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Fig. 21.19 A simple example of protein function identification considering the annotation tax-
onomy. Modified from Fig. 2 in [29]. SVM classifier is represented with light red node and GO
terms are described with green. Here single SVM classifiers (with one SVM per function term)
were combined through Bayesian networks to correct their predictions based on the hierarchical
relationship between GO [14] terms

each protein is represented by a replicate of the Gene Ontology structure, effectively
modeling each protein in its own annotation space. Belief propagation was used to
make predictions at all ontology terms.

Ensemble Framework: Guan et al. [29] describe an ensemble framework
based on SVMs that considers correlation between multiple function terms
(see Fig. 21.19). A single SVM is used to predict a certain function for an unknown
protein by integrating diverse datasets. In the context of the Gene Ontology hier-
archy, single SVM classifiers are combined through Bayesian networks to correct
their predictions based on the hierarchical relationship between GO terms in the
GO directed acyclic graph. For each GO term, the method included all neigh-
boring nodes in its Markov blanket to construct the Bayesian network. Shown
in Fig. 21.19, Y1 is the GO node of interest in this example. Thus this Bayesian
network was constructed with the local Markov blanket surrounding Y1.

Reconciliation Method: Similar to the above paper, Obozinski et al. [62] pro-
posed to predict GO terms using an ensemble of discriminative classifiers. This
paper focused on reconciliation methods for combining independent predictions
to obtain a set of probabilistic predictions that are consistent with the topology
of the ontology. Eleven distinct reconciliation methods were investigated: three
heuristic methods; four variants of a Bayesian network; an extension of logistic
regression to the structured case; and three novel projection methods including iso-
tonic regression and two variants of a Kullback-Leibler projection method. The
authors found that many apparently reasonable reconciliation methods yield recon-
ciled probabilities with significantly lower precision than the original, unreconciled
estimates. On the other hand, the isotonic regression method seems to be able to
use the constraints from the GO network to its advantage, usually performing better
than the underlying, unreconciled predictions.

Recently, in a special issue of Genome Biology, several research groups [64] used
GO annotation as a benchmark to compare methods of protein function predictions
with GO hierarchy structure being considered. Readers could refer to [64] for more
discussion.
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21.5 Related General Topics

All sub-problems covered in this chapter are instances of more general tasks like
“link prediction”, “entity labeling”, “structural output learning” or “graph mining”
in the machine learning, data mining, and social network analysis communities.
Methods proposed in related research fields have great potentials to be used for
protein-protein interaction prediction, protein function identification or domain-
domain interaction detection in the near future. As the literature on these topics
is vast, this section will briefly discuss just a few related studies as a guide.

21.5.1 Statistical Relational Learning (SRL)

As an area of growing interest in machine learning, statistical relational learning
[25, 26] takes an object oriented approach to clearly distinguish between entities,
relationships and their respective attributes in a probabilistic setting. Unlike most
previous learning algorithms that assume all training examples are mutually inde-
pendent, SRL methods try to capture complex relations among examples. A simple
example of a relational system is a recommendation system: based on the attributes
of two entities, i.e., of the user and the item, one wants to predict relationships
like the preference (rating, willingness to purchase, ...) of this user for this item.
One can exploit the known relationship attributes and the attributes of entities to
predict unknown entity or relationship attributes [94]. This case is quite similar to
protein-protein interaction prediction where we want to find the interaction pref-
erence of one protein to another. Various paradigms of SRL have been proposed
in recent years, including probabilistic relational models, Bayesian logic programs,
relational dependency networks, Markov logic networks, infinite relational model
[43], infinite hidden relational model [94] and etc (surveyed in [25, 26, 59]). Sev-
eral methods have software package available online, for instance, the open-source
Alchemy system [44] provided a series of algorithms for statistical relational learn-
ing and probabilistic logic inference, based on the Markov logic representation [72].
It has been applied to problems in entity resolution, link prediction, information
extraction and others [44].

21.5.2 Graph-Based Semi-Supervised Learning

Semi-supervised learning (SSL) [12] occupies the middle ground, between super-
vised learning (in which all training examples are labeled) and unsupervised learn-
ing (in which no label data is given). In application domains where unlabeled data
are plentiful, such as bioinformatics, SSL got growing interests in recent years. One
category of SSL algorithms consider dependencies between the labels of nearby
examples on a constructed graph [9, 104] to perform joint inference. These models
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train to encourage nearby data points to have the same class labels, which is exactly
protein function detection aims for. The graph-based SSL can obtain impressive
performance using a very small amount of labeled data [12]. As we know from
above, for a large number of protein functional categories, there exist very few
annotated genes from experimental tests. Graph-based SSL might make better func-
tional predictions for these classes. Mostafavi et al. [57] made some attemps in this
direction.

21.5.3 Mining of Entity-Relation Graphs

In the data mining research community, relational or semi-structured data is natu-
rally represented in a graph schema, where nodes denote entities and edges between
nodes represent the relations between entities [22]. Such graphs are heterogeneous,
since they include different types of nodes and different types of edges [56]. Many
social networks could be described as entity-relation graphs. Using email system
as an example, the graph inludes email-message, from-to-person, email-address
and time entities which are inter-connected via relations derived from textual and
structural information residing in a corporate database or a personal computer
[56]. Similarly, protein interaction network could be converted to this schema eas-
ily where proteins, protein function annotations or domain compositions could be
treated as different types of entities. Given an entity-relation graph, a popular ques-
tion of interest is how to determine the nature of relationship between two entities
that are not directly connected in the graph. The classical strategy [22] proposed in
the literature performs random “lazy” graph walks on the entity-relation network to
measure entity similarities. This strategy is closely related to graph-based SSL meth-
ods where “labels” (or “similarity”) from a start node propogate through edges in
the graph, e.g., ccumulating evidence of relatedness over multiple connecting paths.
The problem of “entity proximity” has connections to all three tasks we covered in
this chapter. For instance, protein function prediction could be treated (“implicitly”)
as a task of finding how similar an unknown protein is, to a known protein in terms
of a specific functional category.

21.6 Summary

Biology relies on the concerted action of a number of biomolecules organized in
networks, including proteins, small molecules, DNA and RNA. A key challenge
is to understand the interactions among these molecules. The role of computa-
tional research on protein-protein interactions includes not only prediction, but also
understanding the nature of the interactions and their binding residues on interac-
tion interfaces. This chapter surveys recent efforts to predict interactions between
proteins and between protein domains.
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Predicting protein functions is one of the most important challenges of cur-
rent computational biology research. A large number of computational techniques
have been suggested for functional annotation using interaction networks; we have
reviewed a few typical approaches in this chapter.
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Chapter 22
Reverse Engineering of Gene Regulation
Networks with an Application to the DREAM4
in silico Network Challenge

Hyonho Chun, Jia Kang, Xianghua Zhang, Minghua Deng, Haisu Ma,
and Hongyu Zhao

Abstract Despite much research, reverse engineering of gene regulation remains a
challenging task due to a large number of genes involved and complex relationships
among them. In this chapter, we review statistical methods for inferring gene regu-
lation networks, specifically focusing on the methods for analyzing gene expression
data. We then present a new reverse engineering method in order to efficiently utilize
datasets from various perturbation experiments as well as to integrate these multiple
sources of information. We apply our approach to the DREAM in silico network
challenge to demonstrate its performance.

22.1 Introduction

Inferring gene regulatory networks (GRNs) has been a vigorous research area
as a result of the increasing availability of genome wide gene expression data
[13,20,23,42]. However, reverse engineering remains a challenging task, because a
large number of genes are involved in GRNs where the complexity of the network
inference problem increases super-exponentially [11] as a function of the number
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of genes involved. To promote further research, an unbiased assessment of reverse
engineering methods such as DREAM [26, 43, 44] has been advocated to compare
the performance of different methods recently.

In this chapter, we first review statistical methods for inferring GRNs, specifi-
cally focusing on the methods for analyzing gene expression data. We also describe
typical perturbation experiments for generating gene expression data, where only
partial information on a GRN can be obtained from each dataset. We then present
a new reverse engineering method in order to efficiently extract information that is
specific to each dataset as well as to integrate these multiple sources of information.
We apply our approach to the DREAM4 in silico network challenge to demonstrate
the performance of our method, and a brief conclusion will follow.

22.2 Statistical Methods for the Network Inference
from Gene Expression Data

In this subsection, we review statistical methods that have been developed to infer
GRNs, specifically focusing on the methods for analyzing gene expression data. In
this setting, gene expressions are measured after perturbing a system of genes in
various ways in order to reveal the regulatory structure in the system. There are
generally two types of perturbation datasets for the GRN inference. In the first type,
a number of perturbations are studied but only one observation is made for each
perturbation after genes reach steady states. For the second type, gene expression
profiles are recorded along a number of time points. In our following discussion, we
will refer to these two types as steady state and time course, respectively.

Intuitively, genes in a pathway will likely change together in response to a pertur-
bation, and one method for network reconstruction is to examine the association of
expression profiles between each pair of genes. A network can be built based on pair-
wise dependencies [7,8], called Relevance Network (RN). The association between
genes can be measured by Pearson correlation coefficient or its various transforma-
tions, or mutual information measures; then those edges that are more associated
than a pre-specified threshold or empirically determined threshold are retained to
construct the network. Although appealing, one major limitation of this approach
is that pairwise dependencies may be due to either direct regulatory relationship
or indirect relationship through other genes. Therefore, the networks inferred from
pairwise association may contain many false positive edges. One way to reduce
false positives is to study the association between two genes in the presence of
one or more other genes, where examples include ARCANE [27] and conditional
correlation coefficients [33, 49].

Because genes in a system are likely to interact together, it may not be ideal to
consider two, or at most three genes at a time, as in the RN approach. To model
all genes together, Gaussian Graphical models (GGM) have been introduced. As
GGMs assume that gene expression measurements are sampled from a multivariate
normal distribution with covariance matrix ˙ , the modeling of genes only involves
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estimating a mean vector and a covariance matrix. One attractive feature of GGM is
that the inverse of the covariance matrix, or the precision matrix (˙�1), represents
the conditional correlation of any pair of genes conditional on all other genes. Thus
GGM formulation will allow us to distinguish gene pairs that directly interact from
those that indirectly interact through other genes.

However, when the number of experiments is not much larger or smaller than
the number of genes, which is often the case for gene expression data, the estimated
covariance matrix Ȯ can be singular and it is difficult to estimate a stable preci-
sion matrix. As a remedy, several attempts are made by utilizing conditional mean
model representation of GGM with sparsity assumption imposed. Specifically, a
characterization of .Y1; : : : ; YG/ being the multivariate Gaussian distribution is pro-
vided by Fisk [17], and the main characteristic is that the conditional distribution of
Yi given the remaining Y1; : : : ; Yi�1; YiC1; : : : ; YG depends on conditioning vectors
only through the conditional mean ˇi0CPG

jD1;j¤i ˇijmj , for all i , whereG is the
total number of genes,mj is the mean expression of gene j , ˇij s are the coefficients
of the j th gene on the i th gene, and ˇi0 is the constant term for the i th gene. We
then represent the gene expression measurement of the i th gene in following linear
regression model:

Yik D ˇi0 C
GX

jD1;j¤i

ˇijYjk C �ik;

where Yik is the expression measurement of gene i at the kth experiment, and �ik

is a Gaussian noise term. This representation enables the integration of many reg-
ularization techniques (e.g. LASSO) to avoid singularity problem caused by small
number of experiments.

In network analysis, the sparsity assumption, e.g. there are a small number of
edges for each node, is often made because biological networks are usually assumed
to be sparse. The most popular method of incorporating this assumption is by
using LASSO [40], and Meinshausen and Buhlmann [28] performed the regularized
regression method LASSO in the following form:

Ǒ

i D argminˇi

� ˇ̌̌
ˇ
ˇ̌̌
ˇYi � ˇ0i �

GX
jD1;j¤i

ˇijYj

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

2

C �
GX

jD1;j¤i

jˇij j
�
;

where Ǒ
i is the regression coefficient vector for gene i , and � is the penalty term
that reflects the balance between model fit and model complexity. This procedure
often leads to a model with only a few non-zero regression coefficients. However,
the resulting network structure may not be symmetric, because each gene is fitted
separately, which will lead to difficulties in network interpretation. Later, Peng et al.
[30] achieved network symmetry by reformulating the coefficients ˇij s into par-
tial correlations and then regularize these partial correlations while fitting all genes
simultaneously. Some other approaches under the regression setting include iterative
greedy algorithms and combinatorial algorithms [1, 2]. In addition, a threshold gra-
dient decent method is proposed to estimate the precision matrix [25]. Furthermore,
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empirical Bayes or shrinkage approaches can be used to infer large scale GRNs
[37, 38], and the sparsity assumption can be accomplished by prior specification
under the Bayesian setting [14, 34].

Bayesian networks (BNs) were proposed very early to infer gene networks based
on gene expression data [18,22]. In BNs, gene regulations are modeled as a directed
acyclic graph (DAG), and the joint distribution of all the genes can be formulated
as a product of conditional probabilities. When inferring the structure of an under-
lying DAG, a term reflecting the balance between model fit and model complexity
is incorporated to prevent overfitting. Although gene network inference by using
BN approaches is an active research field [15], a number of limitations remain to be
addressed [45]. First, there are cases where the DAGs cannot be differentiated purely
from the observed datasets (e.g. DAGs forming an equivalence class). Second, con-
tinuous observations need to be discretized for BN analysis in most cases. Third,
BNs do not allow feedback loops, a common phenomenon in biological networks.
To allow feedback loops, dynamic Bayesian networks (DBNs) have been proposed
[31, 51]. But DBNs typically assume time homogeneous transition model, resulting
oversimplified dynamics of the biological processes.

Time course gene expression data can also be utilized to infer regulatory rela-
tionships. One approach is to use linear regression model in the light of ordinary
differential equation (ODE):

Yi .t C�t/ � Yi .t/

�t
D

GX
jD1;j¤i

ˇijYj .t/ � diYi .t/C �i .t C�t/;

where the dependent variable is the change of expression level between two obser-
vations, and di represents the decay rate of the i th gene. Bansal et al. [3] developed
the TSNI algorithm, where the observed time course data are first smoothed by using
splines and then SVD is applied to the gene expression matrix to reduce the dimen-
sionality of the predictors. We remark that when both steady state and time course
data are available, a single regression model can be used [5] by representing steady
state equation as

0 D
GX

jD1;j¤i

ˇijYj � diYi :

To impose sparsity to the biological network, Gardner et al. [19] select k regulators
for each gene that fit expression data with the smallest error. In addition, forward
model selection using AIC is also widely adopted [10]. Recently, regularization
methods have been utilized under the ODE framework [12].

Another approach utilizes nonlinear regression model [47]:

Yi .t C�t/�Yi .t/

�t
D
�
˛i

Y
j

Y
wji

j .t/
Y

k

Y
wki

k
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Y
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Y
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l
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�

C �i .t C�t/;
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where wj i ;wki and wli are the coefficients to quantify the effects of corresponding
gene, and di is the mRNA decay rate. The time-delayed response incorporates gene
expression levels at time t; t ��t and t � 2�t , and the joint effects from multiple
genes are modeled through a multiplicative function. This model can be considered
as a variant of S-system [35,36] . To overcome the difficulty of parameter estimation,
the authors use a genetic algorithm coupled with Bayesian Information Criterion
(BIC)[45] and only consider a limited set of genes when this model is applied.
Additionally, the problem of estimating nonlinear ODE models for gene regulation
network using the generalized profiling method for functional data analysis [32] is
also studied by Cao and Zhao [9].

Vector autoregressive (VAR) network model is used to infer gene network from
time course gene expression datasets, where the model is given by:

Yi .t C�t/ D ˇi0 C ˇi i .t/Yi .t/C
GX

jD1;j¤i

ˇijYj .t/C �i .t C�t/:

The nonzero coefficients of the model represent directed causal influence [21].
Opgen-Rhein and Strimmer [29] use shrinkage method on VAR network model to
accommodate the singularity problem due to a large number of genes with a small
number of experimental conditions. Alternatively, elastic net method is proposed for
this purpose [39].

The performances of RNs, GGMs and BNs have been compared in the literature
[41,48]. Both BNs and GGMs have better performances than RNs. And, for a small
system, BNs outperform GGMs and structural perturbations are more informative
than dynamic perturbations (e.g. time course data) [45].

22.3 Reverse Engineering of Gene Expression Datasets
from Various Perturbation Experiments

In the previous section, we reviewed statistical methods that had been developed in
recent years to reconstruct gene regulatory networks, focusing on methods designed
for analyzing gene expression data. However, any single method cannot be opti-
mal to study datasets from various types of perturbation experiments. Therefore, in
this section, we first describe typical perturbation experiments for generating gene
expression data and then propose a method that is aiming to infer GRNs by extract-
ing experiment-specific information across datasets from various experiments and
then integrating these information in a systematic way.

The steady state mRNA level of unperturbed networks is referred to as “wild
type”. Various perturbation experiments can be performed to induce deviations in
the gene expression levels from wild types. The first is to reduce the transcription
rate of a single gene or down to zero while keeping all the other genes con-
stant, which are referred to as knock down or knock out experiments, respectively.
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Independent knock down/out experiment can be performed for every gene in the
network. The second is to slightly increase or decrease the basal activation of all
genes in the network simultaneously by random magnitudes, which are called the
multi-factorial experiments. These multi-factorial perturbations can be repeated as
many times as the number of genes in the network. Each set of gene expressions can
be measured either at the system’s new steady state (steady state dataset), or across
several times points (time course dataset). From now on, we assume that datasets
from both steady states and time course experiments are available.

In order to use RN, GGM and BN approaches on the knock down/out data, dif-
ferent perturbation experiments need to be treated interchangeably. However, since
the underlying biological states are clearly different [45], this may lead to loss
of valuable information. For example, knock down/out data contain the informa-
tion on which gene is perturbed in each experiment, but this information is not
directly utilized in these methods. Therefore, we propose a method that may ana-
lyze knock down/out datasets more efficiently. We remark that we did not pursue
BNs in the subsequent analysis, since mRNA measurements are hard to be optimally
discretized, which is a major limitation of BNs [45].

Since knock down/out datasets reflect series of subsystems by keeping the values
of most parameters constant and varying only one of them, they could be the most
valuable sources of inferring network structures [50]. Without considering noise, if
the expression level of gene B changes significantly as a result of perturbing gene
A, this could imply a direct path from A to B. However, in the presence of noise,
the relationship between gene A and gene B could be a result of either true signal or
noise, and hence a crucial step in inferring the network structure is to extract reliable
regulatory signals from the background noise.

The mRNA levels for genes in the wild type and knock down/out experiments
contain only a single data point. In order to facilitate the statistical modeling of
background noise, it is necessary to effectively combine various datasets across
experiments, and we achieve data integration by assuming the noise of gene i ’s
expression follows the same normal distribution with mean 0 and standard deviation
�i across different datasets. This is a natural assumption to make because the data
were generated from the same set of dynamic models. We remark that we assume
the noise is from a normal distribution for the model simplicity.

To detect gene expression changes, it is important to accurately estimate the wild
type (or base line) expression and the background noise. Although using knock
down/out data to estimate these variables (e.g. the error model of Yip [50]) may
appear to be an appealing strategy, we recognize that parameter estimation using
knock down/out data alone often heavily relies on the assumption of signal sparsity,
which is not always met in practice. In addition, the signal in the time course data,
or the time trend, has the nice property of being continuous. Once the smooth time
trend is estimated, we can compute the residuals by subtracting the estimated time
trend from the observed expression levels in the time course. The residuals can then
be used to model the background noise. Note that the procedures outlined above do
not rely upon the sparsity assumption, and therefore, the time course data is chosen
to estimate the background noise.
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a b

Fig. 22.1 Variance estimation by using time course datasets. (a) Seperate time trend estimates
across replicates by using smoothing spline method. (b) Box plot of the standard deviation
estimates across replicates

We adopt the smoothing spline method to estimate the time trend, and the degree
of smoothness, or the smoothing parameter, is determined using the generalized
maximum likelihood (GML) method [46]. We separately estimate the time trend
and the standard deviation for each replicate, and then take their median value as
the final estimate of the standard deviation (Fig. 22.1). The wild type expression
level for each gene is estimated by simply averaging the values that correspond to
wild type measurements from both steady state and time course datasets.

With the estimated wild type ( Omi ) and standard deviation of noise ( O�i ), we
can effectively utilize knock down/out data to generate scores that should separate
signals from background noise, by computing the p-value associated with the regu-
lation of gene i to gene j as 2



1 � ˚ 
jYij � Omi j= O�i

��
, where ˚ is the cumulative

distribution function of standard normal random variable, and Yij is the expression
of gene i when gene j is knocked down/out. Although the scores generated from
knock down/out experiments are quite informative for learning network structure,
a couple of problems may hamper an accurate inference. First, there are situations
where knock down/out experiments cannot convey useful information, resulting in
false negatives. For example, if a gene (e.g. gene A) has a low wild type expression
level and is positively regulated by another gene (e.g. gene B), knocking down/out
gene B will only impose a very limited impact on gene A’s expression. Similarly,
if gene A’s wild type expression is already saturated at its maximum, knocking
down/out its negative regulators (e.g. gene B) will not induce dramatic changes on
gene A’s expression either. Second, regulations detected from the knock down/out
experiments inherently may contain many indirect relationships, and including these
indirect edges will clearly elevate the number of false positives.

Because multi-factorial data contain changes of expression levels resulting from
perturbations both in the up and down directions, we utilize multi-factorial per-
turbation data to complement the estimates obtained from the knock down/out
experiments (Fig. 22.2). Specifically, we use pair-wise correlation to quantify the
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Fig. 22.2 Limitation of knock out and knock down experiments. (a) Solid dots represent knock
out experiments and circles represent knock down experiments of gene 5 of the 5th network of
DREAM4 in silico network challenge. Solid line represent the estimated wild type expression
and dotted lines 99% confidence intervals. Wild type is low and gene 5 does not change in gene 7
knock out experiment. (b) Scatter plot of gene expression of gene 5 and gene 7 from multi-factorial
experiments. A positive correlation is observed as the expression level of gene 7 increases

regulatory strength between a pair of genes on the basis that these genes tend to
respond similarly to different perturbations as in the RN approach [7, 8]. Then, we
use p-values of the pair-wise correlations as our third score for the network infer-
ence. This approach should alleviate the aforementioned false negative problem;
however, it is worth noting that the direction of regulation cannot be inferred from
this dataset alone, since all of the genes in the network are perturbed simultaneously
in each multi-factorial experiment.

On the other hand, to effectively address the false positive issue, a conditional
analysis [33, 49] is required to differentiate direct from indirect regulations among
genes as we mentioned in previous section. One convenient way would be com-
puting the conditional correlation coefficients between genes conditional on all
other genes in the multi-factorial datasets via GGMs. However, when multi-factorial
datasets contain too few experiments, conditional correlations cannot be accurately
estimated without further modifications such as by employing regularization meth-
ods [28]. Although imposing regularization appears to be an appealing strategy, we
found that it did not drastically improve the performance when the sample size (the
number of experimental conditions) is small and the covariates (gene expressions)
are highly correlated. Therefore, we utilize time course datasets for this purpose
via ODE. Since time course datasets have replicates with many time points, solving
ODE is not too difficult. Denoting Y r

i .t/ as the expression level of gene i at time
point t of the r th replicate, we can write down the ODE model in the following way:

Y r
i .t C�t/ � Y r

i .t/

�t
D ˇi0 C

GX
1

ˇikY
r

k .t/C �r
i .t C�t/;
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whereG represents the total number of genes in the network. To estimate the param-
eters of the ODE model, we use the ordinary least squares approach. We use the
p-values for the hypothesis of ˇij D 0 given ˇiks where k ¤ j , as our score to
infer the direct regulation of the gene j on gene i .

So far, we have generated four scores using the knockout, knockdown, multi-
factorial, and time course datasets. We combine these scores by Fisher’s method

[16], where the test statistics is given by �ij D �2P4
kD1 log

�
pk

ij


, and pk

ij denotes

the p-value of the event that gene i is regulated by gene j from the kth dataset, and

the final score for gene i to be regulated by gene j is given by 1 � P
�
X2

8 � �2
ij


,

where X2
8 denotes a random variable that follows chi-square distribution with 8

degrees of freedom. Finally, we rank ordered the gene pairs based on the final score
to infer the overall regulatory network.

22.4 An application to DREAM4 in silico Network Challenge

22.4.1 Background of DREAM4 in silico Data

The in silico network challenge of the fourth Dialogue for Reverse Engineering
Assessments and Methods (DREAM4) provides biologically plausible simu-
lated gene expression datasets in order to evaluate various reverse engineering
methods in an unbiased manner. Further, because participants’ performance is
solely measured by prediction performance, more practical methods are encour-
aged to be developed. The detailed description of the challenge can be found at
http://wiki.c2b2.columbia.edu/dream/ind ex.php/D4c2.

In the DREAM4 challenge, biologically plausible datasets were generated by
first extracting network topologies from real transcriptional regulatory networks of
E. coli and S. cerevisiae, where these extracted subnetworks may include cycles but
not auto-regulatory loops. In the subsequent step, gene expression data were gen-
erated from these subnetworks using stochastic differential equations (SDEs), the
Langevin equations [4], where dynamics for both mRNA and protein were specified
by kinetics models. For proteins, the driving forces were given by the translation
rate and degradation rate, whereas for mRNAs, the driving forces were described by
the transcription rate and the degradation rate. The transcription rate was modulated
by using thermodynamic models [6]. Hence, a complete regulatory model not only
depends on the network structure, but also depends on the detailed conformation of
the regulatory models [26, 43, 44].

To simulate the knock down and knock out effects on a gene, the transcription
rate of this gene was reduced by half or down to zero, respectively. Independent
knock down and knock out were performed for every gene in the network. Addi-
tionally, multi-factorial data were generated by slightly increasing or decreasing the
basal activation of all genes in the network simultaneously with random magnitudes.



470 H. Chun et al.

Multi-factorial perturbations were repeated as many times as the number of genes in
the network. Each time course dataset has 21 time points, with four or five replicates.
The initial condition always corresponds to wild type. A perturbation was applied to
only one third of the genes during the first half of the time course, and was removed
during the remaining time course.

The final datasets contain noise-added mRNA concentration levels (not protein
concentration levels), and the noise is simulated from a mixture of normal and
log normal distributions. All networks and data were generated using version 2.0
of GeneNetWeaver (GNW). Furthermore, datasets were normalized such that the
maximum of normalized gene expression values for a given network is one.

The main goal of the challenge is to infer GRNs that are modeled by a directed
graph, where each node represents a gene and each directed edge from gene A to
gene B implies that gene A is a regulator of gene B. The challenge consists of one
sub-challenge of 10-gene-network and two sub-challenges of 100-gene-network.
For the 10-gene-network, all five previously described types of datasets (wild type,
knock down, knock out, multi-factorial, and time course) were provided (sub-
challenge 1). For the first 100-gene-network sub-challenge, all but multi-factorial
data were provided (sub-challenge 2); and for the second sub-challenge, only the
multi-factorial datasets were given (sub-challenge 3).

22.4.2 Reverse Engineering of DREAM4 in silico Data

We applied our method to DREAM4 in silico data, and the predicted networks were
evaluated by the following two criteria: (1) AUPR: The area under the precision-
recall curve, (2) AUROC: The area under the receiver-operator characteristics curve.

For the DREAM4 in silico challenge, we estimated wild type expression level for
each gene in DREAM4 datasets by taking average of the first-time-point expression
levels in the time course data plus the provided wild type, because the expression
level at the first time point of each time course replicate can be considered as one
wild type expression level according to the data description as well as our visual
inspection of the time course data. We generated the sorted list of edges for the size
10 network challenge (sub-challenge 1) by using the method described in Sect. 22.3.
For the one of the size 100 networks challenge (sub-challenge 2), the multi-factorial
datasets were not given, and thus we were only able to combine three available
datasets to generate the final score. For the other size 100 networks challenge (sub-
challenge 3), where only multifactorial datasets were provided, we simply used RN
method to generate the sorted list of edges.

We present the performance of our proposed method in Table 22.1 as well as that
of three best performers in DREAM4 sub-challenges. We remark that the reported
scores are provided by DREAM4 initiatives in an unbiased manner. Our approach
was ranked second in the size 10 network challenge. Interestingly, the best performer
of the sub-challenge 1 did not participate in the size 100 network challenges, and
the best performers in the sub-challenges 2 and 3 did not show good performance
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Table 22.1 Comparison of our proposed method to the best performers of DREAM4 in silico
challenge

AUPR/AUROC

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Sub.1 Propsed method 0.881/0.967 0.382/0.796 0.682/0.916 0.698/0.902 0.424/0.822
Best performer of Sub.1 0.916/0.972 0.547/0.841 0.968/0.990 0.852/0.954 0.761/0.928
Best performer of Sub.2 0.590/0.764 0.225/0.606 0.681/0.830 0.767/0.928 0.406/0.703
Best performer of Sub.3 0.629/0.852 0.285/0.680 0.458/0.852 0.595/0.808 0.400/0.710

Sub.2 Propsed method 0.427/0.906 0.379/0.777 0.314/0.835 0.309/0.848 0.105/0.766
Best performer of Sub.1 n.a. n.a. n.a. n.a. n.a.
Best performer of Sub.2 0.536/0.914 0.377/0.801 0.390/0.833 0.349/0.842 0.213/0.759
Best performer of Sub.3 0.338/0.864 0.309/0.748 0.277/0.782 0.267/0.808 0.114/0.720

Sub.3 Propsed method 0.108/0.739 0.147/0.694 0.185/0.748 0.161/0.736 0.111/0.745
Best performer of Sub.1 n.a. n.a. n.a. n.a. n.a.
Best performer of Sub.2 0.130/0.698 0.110/0.636 0.194/0.722 0.170/0.724 0.162/0.708
Best performer of Sub.3 0.154/0.745 0.155/0.733 0.231/0.775 0.208/0.791 0.197/0.798

Table 22.2 Comparison of our proposed method to the best performer of DREAM3 insilico
challenge

AUPR/AUROC

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

DREAM3 best performer 0.710/0.928 0.713/0.912 0.897/0.949 0.541/0.747 0.627/0.714
Propsed method 0.727/0.918 0.735/0.899 0.908/0.941 0.546/0.737 0.549/0.725

in the size 10 network challenge. Our method shows good performance across all of
the sub-challenges, suggesting the robustness of our proposed method.

We also compare the performance of our method to that of the best performer in
the DREAM3 challenge [50], using the 10-gene-network datasets from DREAM3.
The DREAM3 in silico network challenge is the previous year’s challenge of reverse
engineering from heterozygous knock down, null mutants and trajectory datasets,
which correspond to knock down, knock out and time course datasets, respectively,
in DREAM4 challenge. Datasets were generated in a similar way to generate the
datasets of DREAM4 except that sets of ODE were utilized for DREAM3. Because
multi-factorial dataset was not provided in DREAM3 as in sub-challenge 2 of
DREAM4, we were only able to combine three available datasets to generate the
final score. In addition, in the DREAM3 time course data, perturbation is applied
only at the first time point. We took the last data point of each time course replicate
experiment and used the median of these values as the wild type estimate, assuming
that the system is recovered to wild type at the end of the time course. The results
are summarized in Table 22.2, and it appears that our method performs as well as
the best performer in the DREAM3 in silico challenge.

To further investigate performance of our method, we simulated data by follow-
ing the scheme outlined in Sect. 22.4.1. Since version 2 of GeneNetWeaver (GNW)
was not available at the moment, we used version 1.2.0 of GNW, the simulation
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software used for DREAM3 challenge, to simulate topologies and regulatory param-
eters of 10-gene-networks. After true networks were generated, we integrated them
into stochastic differential equations to get the dynamics of these networks. We sim-
ulated five types of data, i.e., wild-type, knock out, knock down, muti-factorial, and
time series data, in line with the types of data provided by DREAM4 in silico net-
work challenge. It is worth noting that for our simulation and DREAM4 challenge,
SDE is used; whereas for DREAM3, ODE was utilized.

We analyzed a total of six network topologies (five from the provided true net-
works in DREAM3, and one from our own simulation setup). The new topology
is provided in Fig. 22.3. For each topology, we generated five replicated datasets
because the stochastic component of SDE might induce too much error in the
dataset, which may disguise the true performance of our method. We also gener-
ated scores using merged data from different combinations of various experiments,
to examine which combination would yield the best prediction.

G1

G7

G8G10

G3

G9

G2

G6 G4

G5

Fig. 22.3 Our newly simulated topology
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Table 22.3 The effect of data aggregation of our method
(a) When internal noise level (standard error) of SDE is 0.01, and measurement error noise level
(standard error) is 0.05

AUPR/AUROC

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3 New

All 0.662/0.905 0.745/0.921 0.855/0.954 0.502/0.675 0.530/0.676 0.649/0.830
Knockout only 0.631/0.819 0.796/0.937 0.861/0.959 0.469/0.645 0.509/0.640 0.685/0.825
Knockout C 0.606/0.841 0.785/0.926 0.838/0.941 0.492/0.659 0.527/0.664 0.641/0.827

knockdown
KnockoutC 0.666/0.872 0.792/0.937 0.864/0.962 0.469/0.649 0.515/0.650 0.680/0.825

mutifactorial
Knockout C 0.674/0.859 0.741/0.922 0.879/0.971 0.486/0.659 0.519/0.659 0.695/0.839

time course

(b) When internal noise level (standard error) of SDE is 0.01, and measurement error noise
level (standard error) is 0.1

AUPR/AUROC

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3 New

All 0.562/0.801 0.605/0.801 0.787/0.941 0.463/0.627 0.542/0.690 0.610/0.817
Knockout only 0.568/0.760 0.670/0.849 0.835/0.960 0.440/0.597 0.500/0.654 0.632/0.797
Knockout C 0.524/0.761 0.647/0.820 0.812/0.943 0.428/0.591 0.497/0.656 0.580/0.820

knockdown
KnockoutC 0.551/0.774 0.652/0.839 0.783/0.934 0.441/0.598 0.501/0.653 0.628/0.784

mutifactorial
Knockout C 0.614/0.803 0.625/0.825 0.804/0.953 0.476/0.639 0.563/0.716 0.670/0.828

time course

(c) When internal noise level (standard error) of SDE is 0.05, and measurement error noise
level (standard error) is 0.05

AUPR/AUROC

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3 New

All 0.345/0.693 0.413/0.665 0.365/0.752 0.393/0.646 0.332/0.584 0.419/0.724
Knockout only 0.320/0.638 0.468/0.734 0.385/0. 752 0.347/0.570 0.377/0.561 0.466/0.704
Knockout C 0.355/0.685 0.439/0.711 0.339/0.737 0.348/0.604 0.334/0.566 0.414/0.725

knockdown
KnockoutC 0.284/0.637 0.435/0.697 0.351/0.737 0.364/0.602 0.370/0.566 0.432/0.705

mutifactorial
Knockout C 0.356/0.655 0.439/0.699 0.407/0.790 0.405/0.641 0.401/0.612 0.472/0.707

time course

In Table 22.3, we summarize the results from this study. Note that the values
presented in the table are the average over the five replicates. We first observe that
knock out data contain the most information on network topologies, suggesting an
accurate estimate of wild type and noise model is important. Second, we find that
utilizing multi-factorial and time-course data does improve AUPR and AUROC,
implying that these datasets contain additional information to reduce false positives
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and false negatives. And finally, knock down data do not seem to benefit the predic-
tion, presumably because they contain redundant but weaker information than that
provided by the knock out data.

In summary, in the DREAM4 network challenge, our method performs second
best in size 10 network challenge and also exhibits superior performance in the
size 100 network challenges. In addition, using the datasets provided by DREAM3,
we show that our proposed method performs as well as the best performer of
the DREAM3 in silico challenge. Furthermore, using our simulated datasets, we
demonstrate that network structures can be better predicted by combining multi-
factorial, knock out, and time course data in the DREAM4 in silico challenge. But
the additional benefit from combining the knock down dataset is not obvious.

22.5 Conclusion

In this article, we first reviewed the GRN inference methods, focusing on the meth-
ods that analyze gene expression data, including RNs, GGMs and BNs. Since there
were various types of perturbation experiments to generate gene expression data,
any single proposed GRN method cannot be optimal across various datasets. We
thus proposed a new reverse engineering method that extracts experiment specific
information and effectively integrates these multiple sources of information. One
unique feature of our approach is to combine various datasets across experiments
and facilitate the statistical modeling of background noise by assuming that the
noise from each gene’s mRNA measurements across experiments follows the same
normal distribution with mean 0 and variance �2

i , for each gene i .
From simulation studies, we observe that most of the information on network

structure can be inferred from knock out data alone; and the limitation of using only
knock out data to perform parameter estimation can be reduced by incorporating
additional information from multi-factorial and time course datasets. However, the
knock down data do not seem to benefit the inference of network structure in our
method. This suggests two future directions. The first is to devise a method to more
efficiently combine the evidences so that the contribution from weak signals can be
weighed down, whereas that from strong signals can be weighed up; and the second
is to design a more sophisticated algorithm to better extract the information from
the knock down data.

The structure of a directed graph is assumed for the network topology, however,
our use of multi-factorial and time-course data does not carefully consider the char-
acteristics of a directed graph. First of all, the correlation measure, used to generate
the score for the multi-factorial dataset, does not have any directional information.
Thus, it gives equal scores to edges in both directions. Although this may not rep-
resent the best way of inferring directed edges, it should not seriously harm the
accuracy of inference either. However, a more serious problem may arise in our cur-
rent usage of time series data, where a naive conditional approach is implemented
to differentiate direct from indirect edges without fully exploiting the structure of
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the graph (e.g. V-structure [24]), which could lead to aberrant predicted network
structures. Although the effects of the aforementioned theoretical shortcomings of
our method do not seem to be profound in our simulation; in the future, we would
like to design a method to more accurately differentiate direct from indirect edges
to better address these issues.
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Chapter 23
Inferring Signaling and Gene Regulatory
Network from Genetic and Genomic
Information

Zhidong Tu, Jun Zhu, and Fengzhu Sun

Abstract Biological systems respond to environmental changes and genetic vari-
ations. One of the essential tasks of systems biology is to untangle the signaling
and gene regulatory networks that respond to environmental changes or genetic
variations. However, unwiring the complex gene regulatory program is extremely
challenging due to the large number of variables involved in these regulatory pro-
grams. The traditional single gene centered strategy turns out to be both insufficient
and inefficient for studying signaling and gene regulatory networks. With the emer-
gence of various high throughput technologies, such as DNA microarray, ChIP-chip,
etc., it becomes possible to interrogate the biological systems at genome scale effi-
ciently and cost effectively. As these high throughput data are accumulating rapidly,
there exists a clear demand for methods that effectively integrate these data to elu-
cidate the complex behaviors of biological systems. In this chapter, we discuss
several recently developed computational models that integrate diverse types of
high throughput data, particularly, the genetic and genomic data, as examples for
the systems approaches that untangle signaling and gene regulatory networks.

23.1 Signaling and Regulatory Networks in Biological Systems

Living organisms need to constantly adjust themselves to cope with environmen-
tal changes and changes happened within themselves. For example, yeast cells
need to quickly adapt to different nutrition sources in order to survive in the wild
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environment, and human cells in various tissues need to divide and grow at different
speed and timings to ensure normal body development. All these are accomplished
by complex signaling and regulatory networks which allow the system to sense
the change and adjust its behavior accordingly. Many human diseases are asso-
ciated with the defects in these signaling and regulatory networks. For example,
global survey of phosphotyrosine signaling identified abnormal oncogenic kinase
activation in lung cancer [1], and multiple oncogenic pathway signatures showed
coordinated expression changes in prostate tumors [2]. It is clear that decoding these
signaling and regulatory networks is critical for understanding the biological sys-
tems and important for developing new treatments for human diseases caused by
the disruptions of these networks.

We use glucose signaling pathway in yeast as an example for signaling and reg-
ulatory networks. Yeast cells prefer fermentable carbon source to nonfermentable
carbon source that has to be metabolized by oxidation [3]. Addition of glucose to
yeast cells growing on a nonfermentable carbon source triggers rapid global changes
to the system to allow quick utilization of the favorable energy source. More than
40% of the genes’ expression changes more than two folds within minutes follow-
ing addition of glucose [4]. As shown in Fig. 23.1, multiple pathways are involved
in glucose signaling. They coordinate with each other to sense and integrate the
glucose level signal, and respond by transcriptional regulation of a large pool of
genes [5] and activating or repressing certain enzymes (not shown in the figure). As
highlighted in the figure, majority of the transcription regulations occur via path-
ways intermediated by GTP binding proteins Ras and Gpr/Gpa2, whose activation
lead to rapid increase of intracellular cAMP, this in turn activates protein kinase A
(PKA), which is responsible for re-programming of thousands of genes’ expression
by phosphorylating its downstream targets including multiple transcription factors
(TFs) [6].

Glucose NH3/TORC1

40 genes 20 genes 30 genes 20 genes 40 genes ~1000 genes ~1000 genes

Ras Gpr/Gpa2

Oxidative
phosphorylation

Amino-acid
biosynthesis

Carboxylic Acid
metabolism

Hexose
transporters

Ribosome
biogenesis

Carbohydrate
metabolism

Hap Snf1 Rgt2 PKA Sch9

Fig. 23.1 Diagram of the regulatory wiring connecting the addition of glucose to the transcrip-
tional responses of the cell. Dotted lines indicate a limited or indirect connection (reproduced and
modified from [5])
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23.2 Genetic Variation and Gene Expression Regulation

Perturbations on certain pathway nodes (e.g., PKA in Fig. 23.1) have been exper-
imentally shown to cause changes to downstream genes’ expression [5]. Here, we
study one category of perturbations, i.e., the naturally occurring DNA variations,
and their impact on gene expression. By treating a gene expression as a classic phe-
notypic trait, linkage analysis has been applied to identify the genetic factors that
lead to gene expression variations. From simple organisms (e.g., budding yeast), to
most advanced mammals such as human and mouse, researchers have consistently
identified numerous genetic factors that regulate the expression of a large number
of genes [7–9]. As some of these genetic factors are linked to disease phenotypes by
linkage analysis, and genes regulated by these genetic factors have been shown to
lead to disease development when knocked out in mouse models [10, 11], studying
the networks underlying these genetic perturbations provides a novel approach for
understanding the diseases at unprecedented systems level.

Again, we use yeast as the model organism to describe systems approaches of dis-
secting the genetic landscape of global gene expression regulation, we then discuss
the most recent development on higher organisms at the end of this chapter.

Brem and Kruglyak performed a pioneering study on genetic mapping of global
gene expression measured by microarrays in 2002 [8]. In that experiment and the
following ones [12, 13], they crossed two strains of budding yeast Saccharomyces
cerevisiae, a standard laboratory strain (BY) and a wild strain isolated from a
California vineyard (RM) (Fig. 23.2a). Over one hundred segregants from the cross
were then profiled for their genotypes and global gene expression levels.

The two parental yeast stains have quite different global gene expression profiles.
A total of 1,528 genes show differential expression at P < 0:005, whereas only 23
are expected by chance [8]. More interestingly, expression measurements in hap-
loid segregants suggest that parental differences in expression are highly heritable.
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Fig. 23.2 Two yeast strains (BY and RM) were crossed and multiple segregants were cultured and
profiled for both genotype and global gene expression. (a) the rectangle indicates yeast chromo-
some and * indicates genetic marker. Different colors represent different allele types. Segregants
inherited different allele types from either BY or RM at the marker position, (b) an example show-
ing the linkage between gene expression trait and the genetic marker. (Reproduced and modified
from [14])
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As illustrated in Fig. 23.2b, the distribution of a particular gene’s expression is
tightly related to the allele type measured at genetic marker * and is similar to the
distribution in the parental strain carrying the same allele.

Clearly when treated as classic traits, certain gene expression levels can be linked
to chromosomal regions based on linkage analysis. These mapped regions on chro-
mosomes are called expression trait loci or eQTLs. Determining eQTLs is obviously
an important step towards dissecting the genetic structures that regulate gene expres-
sion. However, these eQTLs often contain large number of genes and makes it
difficult to unambiguously identify the factors that cause expression variation. Sec-
ondly, even if the eQTL contains very few genes and the causal genetic factors can
be identified by including additional clues and/or reasoning, the mechanisms for
the factors to cause expression variation remain unclear. In the next section, we
introduce several approaches addressing these problems.

23.3 Inferring Causal Genes and Regulatory Networks

To solve the problems mentioned above, several integrative computational meth-
ods have been developed and demonstrated to be effective in identifying the causal
regulators and elucidating the underlying regulatory networks. We examine two
approaches in details in the following sections, and briefly discuss several related
works at the end.

23.3.1 Approach I: Identifying Signaling and Regulatory Paths

Tu et al. proposed an approach that aims at identifying signaling and regulatory
paths (or gene networks) in the biological system that link the genetic factor in
the eQTL with the expressionally perturbed genes (called target genes). Since the
perturbation of nodes on such regulatory paths is linked to target gene expression
variations, identifying these paths would help to reveal the underlying regulatory
mechanisms and facilitate the causal gene inference.

As shown in Fig. 23.3, the approach works by first constructing a gene network,
which consists of protein-protein interactions, protein phosphorylation and TF-DNA
biding information. Presumably, this gene network contains general knowledge of
interactions within the system that are involved in signaling and expression regu-
lation. However, having this global gene network does not directly answer which
genes in eQTLs are responsible for target gene expression variation. To provide a
solution, the algorithm tries to identify paths in the gene network that connects can-
didate genes physically resided in eQTLs and genes that are linked to the eQTLs
given certain assumptions.
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Fig. 23.3 Overview of the procedures for causal gene identification and regulatory pathway
inference by Tu et al. (figure reproduced from [15])

23.3.1.1 Basic Assumptions

Two basic assumptions are made by Tu et al. [15]. First, we assume that the causal
gene regulates the target genes by modulating the activities of TFs of the corre-
sponding target genes. Although multiple mechanisms are responsible for regulating
gene expression (e.g., by regulating mRNA degradation, transcription rate, etc.),
regulation on transcription factor’s activity is commonly regarded as the dominant
form. Second, we assume that the activities of genes on the pathway correlate with
target gene’s expression. The concept is illustrated in Fig. 23.4, where the target
gene’s expression is affected by the activity of node on the pathway. As current
high throughput technology can not directly measure protein activity, we use gene’s
expression as an approximation. Although this approximation may be unreliable
at individual gene’s level, it is acceptable when considering the general trend at
genome scale [16] and is a common practice for many microarray data analyses.
Pathway-wise gene-gene correlation was studied by Zien et al. and their results sug-
gested that genes on the same pathway were more synchronized in their expression
levels [17]. The second assumption is important as it indicates that not all the paths
in the gene network are equally relevant to specific target genes, and ranking these
paths can be done based on expression correlation of genes in the path.

23.3.1.2 Identifying Regulatory Paths in the Network

At the kernel of Tu et al.’s approach, efforts are spent on finding paths in the net-
work that connect genes physically residing within eQTLs and target genes whose
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Fig. 23.4 A conceptual gene regulatory pathway in activated status (a) and deactivated status (b).
Nodes in large circles are proteins; in particular, T1 and T2 are transcription factors. In (a), B
is actively phosphorylating protein C, and as this signal passes down to the pathway, target gene
is actively expressed. (b) due to mutations in B, the pathway is no longer in active status and
target gene’s expression is at residual level. It is noteworthy that the pathway does not need to be
strictly simple linear, as D could interact with C and D to form complex regulatory network. (figure
reproduced from [15])

expression linked to the same eQTLs so that expression of the genes on these paths
are more correlated with the target gene expression than what would be expected
from randomly selected paths. However, as causal gene is unknown and needs to be
identified, all genes physically residing in eQTLs are considered as candidates and
ranked by certain scoring functions.

Given a target gene and its eQTL, Tu et al. initiate “walks” in the network starting
from TFs that bind to the promoter region of the target gene. Once arrived at a node,
the next node to visit is chosen stochastically by favoring genes whose expressions
are highly correlated with target gene gt (Fig. 23.5). Some walks will eventually
arrive at genes within eQTL and these genes will be visited at different frequen-
cies when walks are repeated multiple times. The algorithm can be formalized as
follows.

For a target gene gt , the set of transcription factors binding to its promoter
region are denoted as Tgt

D .t1; : : : ; tn/, and the candidate causal genes in the
eQTL regions are denoted as Cgt

D .gc1
; : : : ; gcm

/. The gene network is repre-
sented as a graph G in which the protein-protein interactions are represented as
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g1

g2 g3

g4

gt

tk

Fig. 23.5 Initial step for “walking” in the network. TFs for the target gene are identified based
on TF-DNA binding data and are taken as initiating points for the walk. The next gene to visit
is selected stochastically from all neighbors based on expression correlation with the target gene.
Genes with stronger correlation are favored for being chosen as next node to visit (see main text
for details)

undirected edges while protein phosphorylation and TF-DNA bindings are repre-
sented as directed edges. For each tk 2 Tgt

, we start a stochastic search procedure
as shown in Fig. 23.6.

We denote all the neighbors of a particular gene in the gene network as Nei.�/, so
that b 2 Nei.a/, eba 2 G, where eba represents a directed edge from b to a. Start-
ing from tk , we estimate for each gi 2 Nei.tk/ the “likelihood” that gi is causative
for the expression variation of the target gene gt . Based on our second assumption,
we estimate such causal effect by the absolute value of the Pearson correlation coef-
ficient of gi and gt expression levels, denoted as j�.gi ;gt /j. Intuitively, a gene with
strong expression correlation with the target gene is more likely to be involved in
the same pathway. However, as not all genes on the pathway necessarily correlate
with the target gene due to other post-translational regulation mechanisms, we give
non-correlated genes a residual probability for being on the regulatory pathway by
defining the casual effect of gi with respect to gt as �.gi ; gt / D maxfj�.gi ; gt /j; "g,
where 0 < " < 1 is the residual causal effect that a non-correlated gene could have
upon gt .

We denote a path as P.g0; g1; : : : ; gz/, where g0; g1; : : : ; gz are nodes in the
graph and cycles are disallowed in the path, i.e., gi ¤ gj for any gi ; gj on the path.
To ensure paths are non-cyclic, a set U is introduced which contains only unvisited
genes. We stochastically select gi 2 Nei.tk/ \ U and transit from tk to gi . The
transition probability is determined by Eq. 23.1.

Unvisited neighbor genes will be randomly drawn according to this transition
probability. The chosen gene will be removed from U thereafter.

Prfgi jtk; gi 2 Nei.tk/\ U g D �.gi ; gt /P
gs2Nei.tk/\U

�.gs ; gt /
(23.1)
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Fig. 23.6 The flow diagram of the stochastic searching algorithm

After we arrive at gi , the same procedure is repeated. We select g0i 2 Nei.gi /\U
based on similar transition probability as described by Eq. 23.2.

Prfg0i jgi ; g
0
i 2 Nei.gi / \ U g D �.g0i ; gt /P

gs2Nei.gi /\U

�.gs ; gt /
(23.2)

It is of note that the algorithm always calculates the causal effect of a gene gi

with respect to gt , which is different from most transcription regulatory network
inference algorithm. In this procedure, the objective is not to identify the relation-
ship between connected genes (i.e., gi and g0i ), but to find connected genes which
are likely to be causative for the expression variation of the target gene gt .

The above procedure stops when it reaches any gene gi 2 Cgt
or when it enters

a dead end (i.e., Nei.gi /\U D ;). We also set an upper bound for the total number
of transitions allowed to ensure a stop. The upper bound is chosen to be unrealis-
tically high for any known pathway and is different from the path length in those
deterministic pathway finding algorithms. Suppose we stop at gc 2 Cgt

after one
round of the procedure, the path can be written as P.tk ; : : : ; gi ; : : : ; gc/. The causal
effect of gc on gt throughP.tk ; : : : ; gi ; : : : ; gc/ can be calculated by Eq. 23.3. Here,
we assume that the causal effect of each node on the pathway is independent with
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each other. This assumption may not always hold. However, considering interac-
tions among genes on the pathway will make the problem too complex and we do
not consider them in this chapter.

p.gc ; tk ; P.tk ; : : : ; gc// D �.tk ; gt / � � � � � �.gc ; gt /: (23.3)

Equation 23.3 measures the causal effect of gc on gt with respect to a specific
potential pathway, and the general causal effect of gc considering the whole gene
network can be estimated by Eq. 23.4, where P gc

tk
denotes all the paths starting from

tk and ending at gc .

p.gc ; tk/ D
X
P

gc
tk

p.gc ; tk ; P.tk ; : : : ; gi ; : : : ; gc//: (23.4)

To calculate p.gc ; tk/, each gene gi 2 G is associated with a counter V tk .gi / to
record the times it has been visited. We iterate the whole procedureN times and N
is set to be large enough so that (23.5) can be approximated, where Vtk .gc/ denotes
the visit times for gc 2 Cgt

.

lim
N!C1Vtk .gc/=N D p.gc ; tk/: (23.5)

If the target gene has more than one TF, each TF is assigned a weight based on its
causal effect on the target gene and is linearly combined as shown by Eq. 23.6. The
probability that gc is the casual gene in the eQTL considering all the TFs for the
target gene gt is estimated by Eq. 23.7.

VT .gc/ D

mP
kD1

�.tk ; gt /Vtk .gc/

mP
kD1

�.tk; gt /

(23.6)

1Pr.gc/ D VT .gc/P
gs2C.gt /

VT .gs/
D

P
k

p.gc ; t
c
k
/

P
sWgs2C.gt /

P
k

p.gs ; t
s
k
/

(23.7)

Assuming there is only one causal gene in each eQTL, the gene with the largest
posterior probability is reported as the causal gene as shown by (23.8).

g�c D arg max
gs2Cgt

1Pr.gs/ (23.8)

To identify the underlying pathway, we start from g�c and trace backwards. We
find from Nei.g�c / the gene with the largest visit count and move to that gene
(not stochastically). We repeat until we arrive at tk . By this way, we find the most
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probable pathway which links g�c and tk . The linear pathway generated by this
approach is mainly for simplicity consideration. As indicated by Eq. 23.4, there
could be multiple paths connecting g�c and tk , and all of them contribute to the
causal effect of g�c .

23.3.1.3 Testing with Yeast Knockout Compendium Data

To objectively measure the performance of the approach, Tu et al. designed a test-
ing scheme using Rosetta yeast knockout compendium data [18]. From knockout
expression profiles, Tu et al. used their algorithm to infer genes that were knocked
out. Since the knockout genes are known, the prediction accuracy is obtainable. To
transform this test into the same problem as eQTL causal gene inference, several
major steps were proposed and are listed below:

1. Identify genes whose expression is significantly perturbed for each deletion
mutation experiment and treat these genes as target genes of the knockout gene.

2. For each knockout, simulate an eQTL region around the deleted gene so the
region contains ten genes. These ten genes position consecutively on the same
chromosome and the deleted gene is randomly positioned at position one to ten.

3. Run the algorithm to identify the knockout gene from the ten genes.
4. Calculate the overall prediction accuracy. The method is expected to have higher

than 10% correct prediction rate if it performs better than random guess.

Tu et al. reported an overall accuracy rate of 46%, which is four times better than
random guess. This suggests that such integrative approach does help to identify
the underlying genetic factors that are responsible for the expression changes in
the system. However, due to incomplete information for TF-DNA binding, protein-
protein interaction, etc., the coverage of such predictions is not particularly high
with only �30% knockouts being considered as predictable by the algorithm.

23.3.1.4 An Example of Predicted Causal Genes and Inferred
Regulatory Network

We show one example of such inferred regulatory network generated from the algo-
rithm. For gene PRP39, a component of RNA splicing factor U1 small nuclear
ribonucleoprotein polypeptide, its eQTL on chromosome VIII consists of three
genes (see Fig. 23.7). From chromatin immunoprecipitation (ChIP) experiments,
two TFs (DIG1 and STE12) bind to the promoter region of PRP39. The algorithm
reports the same gene (GPA1) as the causal gene when it initiated with either of the
two TFs. There are other genes linked to the same eQTL (e.g., FAR1) with the same
inferred causal gene and pathway. Many of these genes are known to be involved in
pheromone signaling [19]. By comparing the pathway identified by the algorithm
(Fig. 23.7) with known pheromone pathway, large fraction of proteins are matched
and arranged in the correct order. Furthermore, Yvert et al. performed an experiment
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Fig. 23.7 An example of inferred causal gene and its associated regulatory network. Edges
without arrows are protein-protein interactions. Edges with arrow represent phosphorylation or
TF-DNA binding. Only nodes been visited more frequently than GPA1 and having at least two
interactions with primary pathway nodes are shown

by making a point mutation in GPA1 in one of the yeast strains and observed that
those downstream genes displayed altered expression levels as expected [20], which
confirms GPA1’s role in causing expression variation of downstream genes.

23.3.2 Approach II: Constructing De Novo Causal Networks

In this section, we discuss an alternative approach that constructs networks de novo
based on gene expression, protein-protein interaction, TF-DNA binding informa-
tion, metabolite profiles, literature information and other sources of information
[21]. The overview of this method is illustrated in Fig. 23.8.

23.3.2.1 Causal Inferences

The first step of constructing causal networks is to infer pair-wise causal/reactive
relationship under perturbations. Biological systems change dynamically in
response to genetic or environment perturbations. Multiple methods have been pro-
posed to model the causal/reactive relationships underlying the dynamic behaviors
of the systems, such as Granger causality test based on time series [22], Dynamic
Bayesian networks [23] and differential equations [18]. As there are feedback
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Fig. 23.8 The flow diagram of the Bayesian network reconstruction process. High throughput
data, such as gene expression profiles, protein profiles and metabolite profiles are used as main
data for Bayesian network reconstruction. Genotype data, transcription factor binding site data and
protein-protein interactions are used to generate different structure priors

regulations in biological systems, the systems will reach semi-static states even-
tually after constant perturbations. One example of such constant perturbations is
genetic perturbation depicted in Fig. 23.2 above. Using static state data alone, e.g.,
gene expression data, we can not distinguish causal relationships, A ! B ! C ,
A  B ! C and A  B  C , which are Markov equivalent. If A is genotype
at a locus L and gene expression trait or metabolic traits can not affect genotypes
in general, then only one structure in the Markov equivalent class, L ! B ! C ,
is possible so that we can make causal inference about the order of B and C with
regard to L [11]. There are two steps in the causality test procedure: pleiotropy test
and causal model selection.

23.3.2.2 Pleiotropy Test

Pleiotropy is defined as one QTL regulates multiple traits. To take advantage of the
correlation structure among multiple traits, Jiang and Zeng [24] developed a joint
interval mapping method as the following equation:

 
y11 � � �y1n

y21 � � �y2n

!
D
 
�11 � � ��1n

�21 � � ��2n

!
C
 
a1

a2

!
.x1 � � � xn/C

 
d1

d2

!
.z1 � � � zn/C

 
e11 � � � e1n

e21 � � � e2n

!
;

where yi is the vector of trait values for individual i .i D 1; : : : ; n/ , aj and dj are
the additive and dominance effects for trait j .j D 1; 2/, xj and zi are genotypes at
the test position, and ej is the residual effect for trait j . From this statistical model
a series of tests of hypotheses can be performed to test whether the two traits are
supported as being driven by a single QTL at a given test position. The first test
involves testing whether a given region is linked to the joint trait vector for the traits
under study:
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H0 W a1 D 0; d1 D 0; a2 D 0; d2 D 0
H1 W at least one of the above terms is not 0.

To test the above null hypothesis of no linkage against the alternative linkage
hypothesis, likelihoods associated with the null and alternative hypothesis are maxi-
mized with respect to the model parameters. From the maximum likelihoods the log
likelihood ratio statistic is formed and used to test whether the alternative hypothe-
sis .H1/ is supported by the data. With this model, the log likelihood ratio statistic
under the null hypothesis is chi-square distributed with 4 degrees of freedom. If the
null hypothesis .H0/ is rejected, the implication is that trait 1 and/or trait 2 have a
QTL at the given test locus.

Subsequent to the test just described resulting in a rejection of the null hypoth-
esis, second and third tests of hypotheses are performed to establish whether the
detected QTL affects both traits. For a given QTL test position,

H10 W a1 D 0; d1 D 0; a2 ¤ 0; d2 ¤ 0
H11 W a1 ¤ 0; d1 ¤ 0; a2 ¤ 0; d2 ¤ 0

assesses whether the first trait has a QTL at the test position, and

H20 W a1 D 0; d1 ¤ 0; a2 D 0; d2 D 0
H21 W a1 ¤ 0; d1 ¤ 0; a2 ¤ 0; d2 ¤ 0

assesses whether the second trait has a QTL at the test position. As above, the log
likelihood ratio statistics are formed for each of these tests, where under the null
hypotheses these statistics are chi-square distributed with 2 degrees of freedom. If
both null hypotheses H10 and H20 are rejected, the QTL is supported as having
pleiotropic effects on the two traits under study.

Gene expression is noisy. Many factors can drive expression levels of two genes
to be correlated [25]. In the setting of genetics crosses, genotype is the only ran-
domized factor that drives correlations among traits. The pleiotropy test is to check
whether such correlations are due to common genetic variations or other things.
Figure 23.9 shows that pairs of genes correlated due to pleiotropic effects of QTLs
are more coherent with regard to biological processes than pairs of genes correlated
due to other factors [10].

23.3.2.3 A Likelihood-Based Causal Model Selection

We have previously published a method to infer whether two quantitative traits
linked to a common genetic locus are related, with respect to the locus, in a causal,
reactive or independent fashion has been previously published and validated [10,11],
and extended and generalized by others [26]. To briefly review the method, for
two quantitative traits T1 and T2 linked to the same locus L in an F2 intercross
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Fig. 23.9 Comparison of correlation with and without pleiotropy test filtering (QTL overlap). All
pairwise correlations of gene expression of BXH ApoE male adipose are calculated. Each pair
of genes are checked whether they belong to the same GO biological process. Using different
correlation p-value cutoffs, there is always a higher percentage of gene pairs sharing common GO
biological process after pleiotropy test filtering than without the filtering step

population, there are three basic relationships that are possible between the two
traits relative to the DNA locus L. Either DNA variations at the locus L lead to
changes in trait T1 that in turn lead to changes in trait T2, or variations at locus L
lead to changes in trait T2 that in turn lead to changes in trait T1, or variations at
locus L independently lead to changes in traits T1 and T2, as previously described
[11]. Assuming standard Markov properties for these basic relationships, the joint
probability distributions corresponding to these three models, respectively, are:

P .L; T1; T2/ D P .L/P .T1jL/P .T2jT1/

P .L; T1; T2/ D P .L/P .T2jL/P .T1jT2/

P .L; T1; T2/ D P .L/P .T2jL/P .T1jT2; L/ ;

where the final term on the right-hand side of equation M3 reflects that the cor-
relation between T1 and T2 may be explained by other shared loci or common
environmental influences, in addition to locus L. P .L/ is the genotype probability
distribution for locusL and is based on a previously described recombination model
[24]. The random variables T1 and T2 are taken to be normally distributed about
each genotypic mean at the common locus L, so that the likelihoods corresponding
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to each of the joint probability distributions are then estimated based on the nor-
mal probability density function. Because the number of model parameters among
the models differs, the Bayesian Information Criteria (BIC) or Akaike Information
Criterion (AIC) can be used for model selection.

To assess whether the best fitting model was significantly better than the alter-
native models, we developed a confidence measure using resampling methods to
assess more formally whether a particular gene expression trait was causal, reactive
or independent of the metabolic traits of interest, with respect to a given locus. To
compute the confidence measure, 1,000 bootstrap samples were drawn. For each
resample, the model selection procedure was carried out to estimate the propor-
tion of times each model was chosen. This proportion was then considered as a
reliability score for the selected model and is used to generate causal priors for
Bayesian networks.

23.3.2.4 Structure Priors Derived from Genetic Data

In segregating populations, variations in DNA are the ultimate cause of traits under
genetic control. An expression trait that gives rise to a cis-acting eQTL corresponds
to a structural gene that harbors a DNA variant in the gene region that affects tran-
script levels. In constructing a network, genes with cis-acting eQTLs can be allowed
to serve as parent nodes of genes with trans-acting eQTLs, p.Xcis ! Xtrans/ D 1,
whereas genes with trans-acting eQTLs can not be parents of genes with cis-acting
eQTLs, p.Xtrans ! Xcis/ D 0. Thus, genes with cis-acting eQTLs represent the top
layers of the network.

We can further extend this concept by leveraging the genetic architecture more
generally. If two genes, Xa and Xb , are found to be driven by common genetic loci
(the loci have pleiotropy effect on both genes), the gene pair and the corresponding
locus can be used to infer a causal/reactive or independent relationship based on a
formal causality test [11] described above. The reliability of each possible relation-
ship between gene Xa and gene Xb at locus li , p.Xa ! Xbjli /, p.Xb ! Xajli /,
and p.Xa?Xbjli /, are estimated by a standard bootstrapping procedure. If an inde-
pendent relationship is inferred (p.Xa?Xbjli / > 0:5), then the prior probability
that gene A is a parent of gene B is scaled as

p.Xa ! Xb/ D 1 �
P

i2PE

p.Xa?Xbjli /
P

i2PE

1
;

by considering all loci where the two genes are detected as having pleiotropic
effects. If a causal or reactive relationship is inferred (p.Xa ! Xbjli/ or p.Xb !
Xajli / is > 0.5) then the prior probability is scaled as

p.Xa ! Xb/ D
2 P

i

p.Xa ! Xbjli /
P
i

p.Xa ! Xbjli /C p.Xb ! Xajli / :
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If the causal/reactive relationship between genes Xa and Xb can not be reason-
ably inferred, then the complexity of the eQTL signature for each gene can be taken
into consideration. Genes with a simpler, albeit stronger eQTL signature (i.e., a
small number of eQTL explain the genetic variance component for the gene, with a
significant proportion of the overall variance explained by the genetic effects) can be
taken to be more likely to be causal compared to genes with a more complex, pos-
sibly weaker eQTL signatures (i.e., a larger number of eQTL explaining the genetic
variance component for the gene, with less of the overall variance explained by the
genetic effects). In this case, the structure prior that gene Xa is a parent of gene
Xb can be taken as p.Xa ! Xb/ D 2  1Cn.Xb/

2Cn.Xa/Cn.Xb/
, where n.Xa/ and n.Xb/

are the number of eQTLs with LOD scores greater than a threshold for Xa and Xb,
respectively.

The improvement in the network reconstruction accuracy by incorporation of the
genetic priors is shown by comparing network predicted signatures with experiment
signatures [27] and by simulation studies [28]. Results showed that structure priors
derived from genetic data not only help recover true causal relationship, but also
help recover true relationships regardless of edge direction. The largest network
reconstruction accuracy improvement due to genetic prior occurs when around 200
samples are available for network study, as shown in Fig. 23.10.

23.3.2.5 Structure Priors Derived from Other Data Sources

There are many high throughput data providing additional information to gene
expression data, including protein-protein interaction data, protein-DNA binding
data, microRNA binding data, and so on. When high confidence protein-protein
interactions are identified, the corresponding pair of genes tend to correlate at the
expression level. It is still a challenge to get high quality protein-protein interaction
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data and protein-DNA binding data at genome scale for mammalians. However,
there is high quality transcription factor binding site data for yeast which was
derived from high quality ChIP-on-Chip experiments and phylogenetic conservation
filter [29], and protein-protein interaction data was derived from manually curated
protein complexes [30] as well as from complexes identified by clique community
analysis. These data can be combined together to form a structure prior used to
reconstruct Bayesian networks. We have demonstrated that the derived priors can
significantly enhance network reconstruction accuracy [31].

Gene expression is regulated by transcription factors, and many gene-gene
expression correlations can be explained by co-regulation by the same transcrip-
tion factors. Gene expression networks exhibit a scale-free property which is a
general property of biological networks [32]. The scale-free property suggests
that a small numbers of transcription factors regulated a large number of genes’
expression levels. To represent TF-DNA and protein-protein complex data in the
network reconstruction, we introduce a scale-free prior. For example, given a tran-
scription factor T , and a set of genes G that contain the binding site of T , the
transcription factor prior ptf can be defined so that it is proportional to the number
of responders that are correlated with the transcription factor’s expression level
log.ptf.T ! g// / log.

P
gi2G

pqtl.T ! gi /  ı/, where pqtl.T ! g/ is the struc-

ture prior for the QTL and ı D
�
1; if corr.T; gi / � rcutoff

0; if corr.T; gi / < rcutoff
. The correlation cutoff

rcutoff can be determined using permuted data to minimize the false discovery rate.
When the Bayesian networks based on these yeast data were reconstructed using
these priors and compared to the yeast knock-out compendium data [18], there are
125, 139 and 152 knock-out signatures enriched in the networks reconstructed using
only expression data, using expression and genetic data only, and using expression,
genetic, TF binding site and protein-protein interaction data, respectively. These
results indicate that the integration of orthogonal experimental data improves the
quality of reconstructed networks, and these more predictive networks will have
greater utility in refining the definition of disease, identifying disease subtypes,
identifying targets for disease, and identifying biomarkers for disease and drug
response.

23.3.2.6 More Details of Mechanism Revealed by Integrating
Additional Data

Orthogonal data not only provides prior information for network reconstruction, but
also provides mechanism explanation of network regulation. For example, there are
13 eQTL hot spots for the yeast segregant data described in previous section [20].
LEU2 is predicted as one of regulators for eQTL hot spot on chromosome 3 [20,31].
We have shown that LEU2 knockout signature significantly overlap with LEU2 sub-
network (p-valueD 4:91
10�18). Based on available high quality TF-DNA binding
data, we noticed that genes with LEU3 binding sites are enriched in both LEU2
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Fig. 23.11 The effect of LEU3 on LEU2 subnetwork. (a) Genes with LEU3 binding sites (red
nodes) are enriched in the LEU2 subnetwork (p-value D 1:42 � 10�8) and close to LEU2
itself in the network. (b) LEU2 expression level variates among the segregant population, how
LEU3 expression level does not change among the segregant population. This suggests that LEU2
expression affects LEU3 activity instead of LEU3 expression level

subnetwork and LEU2 knockout signature (p-valuesD 1:42
10�8 and 7:52
10�5,
respectively), shown in Fig. 23.11a. We hypothesized that the mechanism of LEU2
mutation affects the eQTL hot spot as following: LEU2 genotype affects LEU2
expression level which in turn affects LEU3, then LEU3 regulates genes with LEU3
binding sites. However, LEU3 transcriptional level does not change among the
segregant population, shown in Fig. 23.11b. There is a missing link how LEU2
expression affects LEU3 activity. To answer this question, we quantified metabolites
for the segregants using quantitative NMR. The concentration of an intermediate
metabolite in leucine biosynthesis reactions, 2-isoproprylmalate, is linked to the
eQTL hot spot on Chromosome 3, shown in Fig. 23.12a. LEU2 expression level
causally affects 2-isopropylmalate concentration, and 2-isopropylmalate is causal
for expression of genes with LEU3 binding sites, shown in Fig. 23.12b. It has been
shown that 2-isopropylmalte binds LEU3 protein regulates target gene activation by
LEU3 [33]. Then, the mechanism of LEU2 affecting genes linked the eQTL hot
spot is clearer: LEU2 genotype affects LEU2 expression level which in turn affects
2-isopropylmalate concentration, then 2-isopropylmalte binds to LEU3 protein and
regulates LEU3 protein activity, LEU3 regulates genes with LEU3 binding sites.
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Fig. 23.12 Relationship of LEU2 and 2-isopropylmalate. (a) Both LEU2 and 2-isopropylmalate
are key components in KEGG leucine biosynthesis pathway. (b) LEU2 expression and 2-
isopropylmalate concentration are linked to LEU2 locus and LEU2 expression is causal to
2-isopropylmalate based on the causality test. (c) 2-isopropylmalate is directly causal to genes
with LEU3 binding sites (red nodes). It has been shown that 2-isopropylmalate modulates Leu3p
activity [33]

23.4 Related Approaches

Although we just focus on two selected approaches as examples to illustrate systems
methods of studying biological networks, other approaches are emerging too. For
example, a recently developed approach built on Tu et al.’s method, called eQED,
has been demonstrated to improve the performance of predicting the regulator-target
relationship [34]. In this method, analog electric circuit is used to model the protein
interaction and gene regulatory network. The weights on the edges of the molecular
network, defined as the average of the mRNA correlation of genes associated with
the edge with the target gene, are used to represent conductance in the circuit. By
putting some voltage on the circuit and assuming the target gene is grounded, the
causal gene in the eQTL is predicted as the one with the highest current running
through it. This model is very similar to Tu et al.’s method except that branches
with dead-end are not counted and are excluded from calculation. By doing so,
Suthram et al. showed�50% increase in the number of correct predictions of causal
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gene-target pairs by simple eQED model or �67% increase when multiple loci are
considered simultaneously using a globally constructed circuit.

There are also several regression based methods to predict causal/reactive rela-
tionship assuming that the pool of all possible causal regulators is known [35–37].
One of regression based methods, called Lirnet, has been shown to generate bet-
ter prediction accuracy [37]. In most of these methods, genetic data or eQTL is
the key component for accurately inferring causal relationship. Genes predicted to
be causal to obesity by Schadt et al. [11] have been systematically tested and vali-
dated [38]. Many variants of the causality test based on eQTL have been proposed
[15, 26, 39]. Causal prediction confidence estimated by a series of permutation tests
is shown to be more accurate than the bootstrapping method [40]. In addition to
these methods centered on genetic regulation of gene expression, there are signifi-
cantly more methods existing when considering integrative systems approaches in a
more general sense [24, 41, 42].

23.5 Conclusions

Unwiring the signaling and regulatory network is of great importance for under-
standing the biological system, which in turn will greatly help us to reveal the
underlying mechanism of diseases and facilitate developing novel treatment. How-
ever, as we have pointed out, it is highly challenging to untangle the complex
system due to the large number of genes involved as both input and output and
the large number of parameters required to model signal transition from input to
output. We demonstrate that integrating various types of high throughput data that
capture different aspects of the system provides a promising way to tackle the
problem. Although these methods are different in their designs and assumptions
about how complete our knowledge is, they are common in demonstrating that only
by considering multiple sources of information, and investing all these variables
simultaneously, can we obtain a much clearer view of the system.

As one of the most rapidly developing area in current biology research, we
expect that the integrative approach of studying signaling and regulatory network
will continue to play a critical role in advancing our understanding of the biological
system.
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Chapter 24
Computational Drug Target Pathway Discovery:
A Bayesian Network Approach

Seiya Imoto, Yoshinori Tamada, Hiromitsu Araki, and Satoru Miyano

Abstract Genome-wide transcriptome data together with statistical analysis enable
us to reverse-engineer gene networks that can be a kind of views useful for under-
standing dynamic behaviour of biological elements in cells. In this chapter, we
elucidate statistical models for estimating gene networks based on two types of
microarray gene expression data, gene knock-down and time-course. In our mod-
eling, nonparametric regression model is combined with Bayesian networks to
capture nonlinear relationships between genes and a derived Bayesian informa-
tion criterion with efficient structure learning algorithm selects network structure.
Some efficient algorithms for structure learning of Bayesian networks, which is
known as an NP-hard problem for optimal solutions, are also introduced. To demon-
strate the statistical gene network analysis shown in this chapter, we estimate gene
networks based on microarray data of human endothelial cell treated with an anti-
hyperlipidaemia drug fenofibrate. Based on the constructed gene networks, we
illustrate computational strategies for discovering drug target genes and pathways.
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24.1 Introduction

Due to the advances of microarray technology, large amount of gene expression
data have been measured in various species, human cell lines, disease cells, cells
with various stimuli and so on. Construction of gene networks that enables us to
understand relationships between biological molecules in genome-wide scale is
considered as a challenging problem but absolutely essential for systems biology.
Several mathematical models, including Boolean networks [3–5, 70], Bayesian net-
works [18, 27, 35, 37, 70], graphical Gaussian models [68, 76], dynamic Bayesian
networks [46,52,55], vector autoregressive models [19], state space models [32,79],
etc., have been proposed for reverse-engineering gene networks based on micro-
array data.

In this chapter, we describe statistical methods based on Bayesian networks for
constructing gene networks. Bayesian networks have been developed mainly in
the field of artificial intelligence as an expert system. The theory and methodol-
ogy for Bayesian network learning have been well studied for discrete data. The
gene expression values are, however, essentially continuous and we need to convert
them into discrete values, if we wish to use the discrete-type Bayesian networks.
However, the discretization leads to information loss and the threshold values for
discretization are also problematic parameters. Moreover, the number of categories
in the discretization should be chosen appropriately. The resulting networks strongly
depend on their values. One possible research direction might be to study these prob-
lems in microarray data in order to use the discrete-type Bayesian networks. Another
and important direction is, however, to extend Bayesian networks suitable for anal-
ysis of continuous microarray data. To use microarray data as continuous variables,
Friedman et al. [18] considered fitting linear regression models (see also Heckerman
and Geiger [31]). However, the assumption that the parent genes depend linearly on
the objective gene is not always guaranteed. Imoto et al. [35, 37] then proposed the
use of nonparametric additive regression models (see also Green and Silverman [23]
and Hastie and Tibshirani [28]) for capturing not only linear dependencies but also
nonlinear relationships between genes.

Although modeling of the relationship between genes is one of the important
tasks in gene network estimation, a more fundamental issue is how we determine
the structure of gene network. This problem is equivalent to the structure learning of
Bayesian networks. In this chapter, we consider structure learning of Bayesian net-
works from a statistical model evaluation point of view. More concretely, we choose
an optimal Bayesian network structure based on the statistical model evaluation
using an information criterion. Based on Bayesian statistics, we derive an infor-
mation criterion termed BNRC. BNRC is considered as an extension of Bayesian
information criterion proposed by Schwarz [62], which is used to evaluate mod-
els estimated by maximum likelihood method, to evaluate models estimated by
maximum penalized likelihood method.

To improve the quality of the estimated gene networks, we also introduce a
way to combine biological prior knowledge with microarray data to estimate gene
networks. For example, the information of cis-regulatory elements can be used.
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A Bayesian framework is provided for this purpose; the microarray data is used to
build the likelihood based on Bayesian networks and the biological prior knowledge
is used for constructing prior probability of the network structure.

Computational challenges using gene network estimation technology are to
uncover the mode-of-action of a drug and novel drug target pathways. We show a
strategic method for this challenge by analyzing drug response time-course microar-
ray data and gene knock-down microarray data with extended Bayesian networks
with the application of microarray data of human endothelial cell treated with an
anti-hyperlipidaemia drug, fenofibrate.

24.2 Statistical Modelings for Gene Networks

24.2.1 Bayesian Networks and Nonparametric Regression

24.2.1.1 Bayesian Networks

Bayesian network is a probabilistic graphical model that gives a compact repre-
sentation of joint probability of a large number of random variables. Let X D
fX1; : : : ; Xpg be a set of random variables and let G be a directed acyclic graph
that represents statistical or causal dependency amongX1; : : : ; Xp. Mathematically,
a random variable Xj is regarded as a node of G and a directed acyclic graph G is
defined by G D .X ;E /, where E is the set of direct edges; a direct edge e.i; j / is
included in E if and only of there exits the direct edge from Xi to Xj in G.

By assuming the Markov property between nodes in G, i.e., a node depends
only on its direct parents and independent of other non-descendant nodes, the joint
probability of X1; : : : ; Xp can be decomposed as:

Pr.X1; : : : ; Xp/ D
pY

jD1

Pr.Xj jPa.Xj //; (24.1)

where Pa.Xj / is the set of the direct parents ofXj inG. We note that Eq. 24.1 spec-
ifies conditional independencies among random variablesX1; : : : ; Xp, e.g., Xj and
random variables in ND.Xj / n Pa.Xj / are conditionally independent when Pa.Xj /

is given, where ND.Xj / is the set of non-descendant random variables of Xj ; we
obtain Pr.Xj jND.Xj // D Pr.Xj jPa.Xj //.

In Friedman et al. [18], Hartemink et al. [26] and Pe’er et al. [58], microar-
ray gene expression values were discretized into several categorical values, e.g.,
c1; c2; : : : ; and they used discrete-type Bayesian networks specified by a probability
table for modeling gene networks:

�ijk D Pr.Xi D uij jPa.Xi / D uik/;
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where uij is the value corresponding to j th category and uik is the kth pattern of
the parent nodes of Xi . Typically, for the data discretization, one can set three cate-
gorical values ui1 D �1, ui2 D 0 and ui3 D 1, whereXi D �1, 0 or 1 represent i th
gene is repressed, unchanged or overexpressed, respectively [18]. As we mentioned
above, the use of discrete-type Bayesian networks for microarray data analysis
has some problems. In the next section, we introduce a nonparametric regression
for extending Bayesian networks to estimate gene networks from microarray data
without discretization.

24.2.1.2 Nonparametric Regression

Friedman et al. [18] considered fitting linear regression models, which analyze the
microarray gene expression data as continuous variables (see also Heckerman and
Geiger [31]). Suppose that we have the observational data Xn of the set of p ran-
dom variables X D fX1; : : : ; Xpg, where Xn is an .n 
 p/ matrix whose .i; j /th
element, xij , corresponds to the expression value of j th gene measured by i th
microarray. In this content, a gene is regarded as a random variable representing
the abundance of a specific RNA species. A linear regression model for j th gene
can be represented by xij D ˇ0j CPkWXk2Pa.Xj / ˇkjxik C "ij ; .i D 1; : : : ; n/;

where ˇ0j and ˇkj ’s are parameters, and "ij ’s are noise terms independently gener-
ated from identical distribution with zero mean and finite variance. Usually, one can
use Gaussian distribution for "ij that yields Gaussian linear regression model.

In linear regression models described above, the assumption that the parent
genes depend linearly on the objective gene is not always guaranteed. Then Imoto
et al. [35, 37] proposed the use of nonparametric additive regression models (see
also Green and Silverman [23] and Hastie and Tibshirani [28]) for capturing not
only linear dependencies but also nonlinear relationships between genes. In general,
nonparametric regression with additive noise can be represented by

xij D mj .pa.Xj /i /C "ij ; .i D 1; : : : ; n/; (24.2)

where pa.Xj /i is the vector of expression values of the parents of Xj measured
by i th microarray and m.�/ is a smooth function. The additive assumption for the
regressor can yield

mj .pa.Xj /i / D
X

kWXk2Pa.Xj /

mjk.xik/; (24.3)

wheremjk.�/ is a smooth function. We constructmjk by a basis expansion approach

mjk.xik/ D
MjkX
˛D1

 j̨kb j̨k.xik/; (24.4)
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where fb1jk.�/; : : : ; bMjkjk.�/g is the prescribed set of basis functions,  j̨k’s are
parameters and Mjk is the number of basis functions.

For continuous data, the decomposition formula for joint probability in Eq. 24.1
can be rewritten as

f .xi1; : : : ; xipjG/ D
pY

jD1

fj .xij jpa.Xj /i /; .i D 1; : : : ; n/; (24.5)

where f and fj ’s are densities. Hence, when we use Gaussian noise, i.e., "ij �
N.0; �2

j /, a statistical model for gene networks based on Bayesian network and
nonparametric regression is given by

fj .xij jpa.Xj /i ;�j /

D 1q
2��2

j

exp

2
4�fxij �PkWXk2Pa.Xj /

PMjk

˛D1  j̨kb j̨k.xik/g2
2�2

j

3
5; (24.6)

where �j is the vector of parameters in fj , e.g., �j D .1j1; : : : ; �
2
j /
0.

24.2.2 Dynamic Bayesian Networks and Nonparametric
Regression

24.2.2.1 Dynamic Bayesian Networks

Dynamic Bayesian network is an extension of the Bayesian network for analyzing
time-course data. Let Xtj be a random variable governing the expression value of
j th gene at time t . Put Xt D fXt1; : : : ; Xtpg and X1WT D fX1; : : : ;XT g. Like
Bayesian network, we set the Markov property between Xt and Xt�1 as

Pr.Xt jXt�1;Xt�2; : : : ;X1/ D Pr.Xt jXt�1/:

In each time slice, Pr.Xt jXt�1/, we construct a network representing gene regu-
lations. The network structure is assumed to be stable throughout all time points.
Taking these gene regulations, the conditional probability Pr.Xt jXt�1/ can also
be decomposed into the product of conditional probabilities of each gene given its
parent genes, of the form

Pr.Xt jXt�1/ D
pY

jD1

Pr.Xtj jPa.Xj /t�1/;
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where Pa.Xj /t�1 is the state vector of the parent genes of j th gene at time t � 1.
Hence, like the Bayesian network, we obtain the following decomposition of joint
probability:

Pr.X1WT / D Pr.X1/

TY
tD2

pY
jD1

Pr.Xtj jPa.Xj /t�1/:

Therefore, an essential point of modeling dynamic Bayesian network is to construct
the conditional probability Pr.Xtj jPa.Xj /t�1/.

24.2.2.2 Nonparametric Vector Auto-Regression

For microarray time-course data, we focus on the construction of the density
fj .xtj jpa.Xj /t�1/. Like nonparametric regression model for Bayesian networks,
we can extend the nonparametric regression model in Eq. 24.2 into the first-order
nonparametric autoregressive model of the form

xtj D mj .pa.Xj /t�1/C "tj ; .t D 2; : : : ; T /;

with additive regressor defined by combining Eqs. 24.3 and 24.4. This model is con-
sidered as an extension of linear autoregressive model defined bymj .pa.Xj /t�1/ D
ˇ0j pa.Xj /t�1, where ˇj is the vector of coefficients and ˇ0j indicates the transpose
of the vector ˇj . Therefore, the dependencies detected by this model are considered
as a nonlinear Granger’s causality [22].

24.2.3 Statistical Model Selection Approach for Learning
Bayesian Networks

24.2.3.1 Parameter Estimation

The Bayesian network and nonparametric regression model defined by combining
Eqs. 24.5 and 24.6 has parameters of coefficients for basis functions and variances
of noise. From a Bayes approach, given a graph G, maximum a posteriori estimate
of the parameter �j are defined by

O�j D arg max
�j

nY
iD1

fj .xij jpa.Xj /i ;�j /�j .�j j
j /; (24.7)

where �j .�j j
j / is the prior distribution on the parameter �j with the hyperpa-
rameter vector 
j . Suppose that the prior distribution �j .�j j
j / is factorized as
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�j .�j j
j / D
Y

kWXk2Pa.Xj /

�jk.�jk j�jk/;

where �jk D .1jk; : : : ; Mjkjk/
0 and �jk’s are hyperparameters that control the

preciseness of the prior knowledge. In practice, we use a singular Mjk variate
normal distribution as the prior distribution on �jk ,

�jk.�jk j�jk/ D
�
2�

n�jk

��.Mjk�2/=2

jKjk j1=2
C exp

�
�n�jk

2
� 0jkKjk�jk

�
;

(24.8)

where Kjk is an Mjk 
Mjk symmetric positive semidefinite matrix satisfying

� 0jkKjk�jk D
MjkX
˛D3

. j̨k � 2˛�1jk C ˛�2jk/
2:

By taking the logarithm of the objective function in Eq. 24.7, we immediately
find the MAP estimate of �j is equivalent to the maximum penalized log-likelihood
that, by taking the minus and omitting terms independent of parameters, is the
solution of the following optimization:

O�j D arg min
�j

2
64log.�2

j /C
1

�2
j

nX
iD1

8<
:xij �

X
kWXk2Pa.Xj /

MjkX
˛D1

 j̨kb j̨k.xik/

9=
;

2

�n
X

kWXk2Pa.Xj /

�jk� 0jkKjk�jk

3
5 :

Put x.j / D .x1j ; : : : ; xnj /
0 and Bjk D .bjk.x1k/; : : : ;bjk.xnk//

0 with
bjk.xik/ D .b1jk.xik/; : : : ; bMjkjk.xik//

0, jPa.Xj /j D qj and Xjm
2 Pa.Xj /

.m D 1; : : : ; qj /. Based on the backfitting algorithm [28], the modes O�jk can be
obtained by the following procedure:

Step 1 Initialize: �jk D 0, for all k such that Xk 2 Pa.Xj /.
Step 2 Cycle: k D j1; : : : ; jqj

; j1; : : : ; jqj
; j1; :::

�jk D .B 0jkBjk C nˇjkKjk/
�1B 0jk

0
@x.j / �

X
l 6Dk

Bjl �jl

1
A; (24.9)

where ˇjk is equivalent to O�2
j �jk and set to a fixed value.

Step 3 Continue Step 2 until a suitable convergence criterion is satisfied.
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The mode O�2
j is given by O�2

j Djjx.j / �
P

kWXk2Pa.Xj / Bjk O�jk jj2=n and O�jk is

the final updated. We note that the estimates O�jk and O�2
j depend on the values of the

hyperparameters ˇjk . The hyperparameters ˇjk are called smoothing parameters
in the context of nonparametric regression. There are many methods for choos-
ing smoothing parameters such as cross-validation, generalized cross validation,
Akaike’s information criterion [2], Bayesian information criterion [62] and so on.
In our context, we choose the hyperparameters based on an information criterion
derived in the next section.

24.2.3.2 Statistical Evaluation for Network Structure

Suppose that we have microarray data Xn of the set of p genes X D fX1; : : : ; Xpg
and that the dependency among p genes, shown as a directed graph G, is unknown
and we want to estimate it from Xn. From a Bayes approach, the optimal graph
is selected by maximizing the posterior probability of the graph conditional on the
observed data. By Bayes’ theorem, the posterior probability of the graph can be
represented as

p.GjXn/ D p.G/p.XnjG/
p.Xn/

/ p.G/p.XnjG/; (24.10)

where p.G/ is the prior probability of the graph, p.XnjG/ is the likelihood of
the data Xn conditional on G and p.Xn/ is the normalizing constant and does not
depend on the selection ofG. Therefore, we need to set p.G/ and computep.XnjG/
for the graph selection based on p.GjXn/.

The likelihood p.XnjG/ can be computed by Bayesian networks or dynamic
Bayesian networks. By removing the normalizing constant, the likelihood of the
data is given by

p.XnjG/ D
Z nY

iD1

f .xi j�G/�.�G j
/d�G ; (24.11)

where �G D .�1; : : : ;�p/
0 and �.�G j
/ is the density of the prior distribution on

�G with the hyperparameter vector 
. We suppose that �G holds log�.�G j
/ D
O.n/. We can choose the optimal graph such that p.GjXn/ is maximum. A crucial
problem for constructing a criterion based on the posterior probability of the graph
is the computation of the high dimensional integration in Eq. 24.11. Heckerman and
Geiger [31] used the conjugate priors for solving the integral and gave a closed-
form solution. To compute this high dimensional integration, we use Laplace’s
approximation [14, 30, 75] for the integral

Z nY
iD1

f .xi j�G/�.�G j
/d�G D .2�=n/r=2

jJ
. O�G/j1=2
expfnl
. O�G jXn/gf1COp.n

�1/g;
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where r is the dimension of �G ,

l
.�G jXn/ D
nX

iD1

logf .xi j�G/=nC log�.�G j
/=n;

J
.�G/ D �@2fl
.�G jXn/g=@�G@�
0
G

and O�G is the mode of l
.�G jXn/. Then, by taking minus twice logarithm of
p.G/p.XnjG/, we define the Bayesian network and nonparametric regression
criterion, named BNRC, for selecting a graph

BNRC.G/ D �2 logp.G/ � r log.2�=n/C log jJ
. O�G/j � 2nl
. O�G jXn/:

(24.12)

The optimal graph is chosen such that the criterion BNRC in Eq. 24.12 is minimal.
The merit of the use of the Laplace method is that it is not necessary to consider the
use of the conjugate prior distribution. Hence the modeling in the larger classes of
distributions of the model and prior is attained.

The decompositions of the prior distribution of �G , �.�G j
/D Qp
jD1 �j

.�j j
j /, and prior probability of the graph, p.G/D Qp
jD1 p.Lj /, yield BNRC as

a decomposable score:

BNRC.G/ D
pX

jD1

BNRCj ; (24.13)

where Lj is the subgraph of G consisting of Xj , Pa.Xj / and the edges between
them. By removing constant terms that are independent of model selection, we
obtain

BNRCj D 2qj C .n� 2qj � 1/ log.2� O�2
j /C .2qj C 1 �Mj �/ logn

C
X

kWXk2Pa.Xj /

(
log.j
jk j=jKjkj/� .Mjk � 2/ logˇjk

C nˇjk

O�2
j

O� 0jkKjk O�jk

)

with Mj �D P
k Mjk and 
jk DB 0jk

Bjk CnˇjkKjk . Here ˇjk’s are the parame-
ters of BNRCj and are set by minimizing BNRCj . The Hessian matrix is approxi-
mated by

log jJ
.�G/j �
X

kWXk2Pa.Xj /

log

ˇ̌
ˇ̌
ˇ�
@2l
j

.�j jXn/

@�jk@�
0
jk

ˇ̌
ˇ̌
ˇC log

ˇ̌
ˇ̌
ˇ�
@2l
j

.�j jXn/

@.�2
j /

2

ˇ̌
ˇ̌
ˇ :
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The details of the derivation of BNRC are in Imoto et al. [39]. This decomposition
property is important for the efficient computation of the score of BNRC when we
change the structure of the graph; this yields efficient structure learning algorithms
in the next section.

24.2.3.3 Efficient Learning Algorithms for Network Structure

In general, the problem of structure learning of Bayesian networks based on opti-
mizing score function is known NP-hard [13]. Since gene networks usually contain
several hundreds or more genes, for its learning, algorithms based on greedy heuris-
tics are usually employed. Heuristic learning algorithms give us locally optimal
structures that are not guaranteed as the global optima. In a greedy hill-climbing
algorithm (HC), we test (1) adding one edge, (2) remove one edge and (3) reverse
one edge direction and check the score. If the score is improved, we perform the
best one and update the graph. HC repeats this procedure until the score converges.
However, the time complexity of the above trials in one step is O.p2/ and more
than O.p3/ in total, that is computationally hard if the number of genes is large.
Therefore, like the sparse candidate algorithm [17], we restrict the number of candi-
date parents for each gene by m .m� p/ and apply the above trials for each gene
and its candidates of parents; this yieldsO.p/ in one step of one gene. Note that the
resulting structure based on this constrained greedy search depends on the order of
genes to be learned. We usually test many permutations and take the best one from
the learned networks.

For small Bayesian networks, an optimal search algorithm [56] can be used in
time complexity O.p2p/ and learn gene networks having 30 or less genes in the
current computational capacity. Recently, a hybrid algorithm that learns a skele-
ton with an independency test approach and constrains on the directed acyclic
graphs considered during the search-and-score phase, is shown to improve sensi-
tively accuracy and speed [77]. According to the concept of hybrid approach, Perrier
et al. [59] proposed an algorithm that can learn optimal Bayesian network when the
undirected graph is given as the structural constraint. Perrier et al. [59] called the
undirected graph as the super-structure; the skeleton of the learnt Bayesian network
is a subgraph of the super-structure. The algorithm can learn optimal Bayesian net-
work with 50 nodes when the average degree of the undirected graph is around two,
i.e., sparse structural constraint.

For structure learning of dynamic Bayesian networks, we can ignore the
acyclicity of the graph; the networks can allow cycles. Therefore, it is enough
to find the best set of the parents for each gene. Since a simple enumeration requires
exponential order of time complexity, we can use efficient algorithms like a branch
and bound algorithm, which can reduce the computational time practically.

In learning dynamic Bayesian networks, another way for finding gene net-
work structure is to use lasso [74]. The lasso uses L1-type shrinkage in the loss
function of the parameter estimation; it is equivalent to use a Laplace distribu-
tion as the prior distribution for the coefficients of linear regression and achieves
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parameter estimation and structure learning, simultaneously. As an extension,
Kojima et al. [47] used additive nonparametric regression model for vector autore-
gressive models and estimated their parameters by group lasso. Furthermore, since
many genes in microarray data are correlated each other and the lasso usually
chooses the best one from the correlated genes; this yields unstable parameter esti-
mates that cannot capture the group effects of genes. In such a case, elastic net [83]
is advocated and can be used for gene network estimation [67].

Finally, we describe practical ideas for implementation of Bayesian network
and nonparametric regression efficiently. Here we pick up three main tips that are
employed in our implementation and effective to reduce the computational time.

1. In the BNRC score, the main calculation is to estimate coefficients of B-splines,
jk . These are calculated by the back fitting algorithm, which repeatedly cal-
culates jk until the mode O�2

j converges. In the back fitting algorithm, the term
.B 0

jk
BjkCnˇjkKjk/

�1B 0
jk

in Eq. 24.9 does not change during the network esti-
mation. Therefore this can be calculated for every gene and stored in advance.
We can avoid the computation of inverse matrices during the network estima-
tion. The resultant matrix (Mjk 
 n-size), however, requires relatively a large
amount of memory to store. Therefore, if the amount of memory is insuffi-
cient, then .B 0

jk
Bjk C nˇjkKjk/

�1 (Mjk 
 Mjk-size) can be stored instead

of .B 0
jk
Bjk C nˇjkKjk/

�1B 0
jk

.
2. In the greedy hill-climbing algorithm, the local scores of the same genes with the

same set of parents are repeatedly calculated. Therefore, the calculated score
can be stored and refused many times during the network estimation. This
significantly decreases the computational time.

3. Also in the greedy hill-climbing algorithm, it requires to check if the constructing
graph is a DAG every time it adds or reverses an edge. To do this efficiently, the
online version of the topological ordering algorithm can be used, such as the PK
algorithm [57]. There exists a topological order that corresponds to a DAG. Thus
if adding or reversing an edge does not affect the topological order of the current
graph structure, then the edge does not affect the graph cyclicity and this can be
done in a constant time.

24.2.4 Combining Prior Knowledge for Gene Networks
with Microarray Data

A drawback in the gene network construction from microarray data is that while
the gene network contains a large number of genes, the information contained in
gene expression data is limited by the number of microarrays, their quality, the
experimental design, noise, and measurement errors. Therefore, estimated gene net-
works contain some incorrect gene regulations, which cannot be evaluated from a
biological viewpoint. In particular, it is difficult to determine the direction of gene
regulation using gene expression data only. Hence, the use of biological knowledge,
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including protein-protein and protein-DNA interactions [7,10,24,34,43], sequences
of the binding site of the genes controlled by transcription regulators [48,63,81], lit-
erature and so on, are considered to be a key for microarray data analysis. In this
section, we provide a general framework for combining microarray data and bio-
logical knowledge aimed at estimating gene networks by using Bayesian network
model. The key idea is to construct prior probability of the network represented by
p.G/ in Eq. 24.10 by such kinds of prior knowledge for gene networks.

In order to combine various types of genomic data with microarray data for esti-
mating gene networks, Imoto et al. [36] proposed a general framework that uses
additional knowledge for gene networks as a prior probability of the graph in the
context of Bayesian statistics. They considered prior biological knowledge as dis-
crete information and construct a prior probability of the graph, denoted by p.G/ in
the previous sections, based on the Gibbs distribution; the balance between the prior
knowledge and microarray was tuned by the information criterion BNRC. Accord-
ing to this concept, Bernard and Hartemink [9] constructed p.G/ using the binding
location data [48] that is a collection of p-values (continuous information). In this
section, we construct p.G/ by using multi-source information including continuous
and discrete prior information [41].

Let Zk is the matrix representation of kth prior information, where .i; j /th
element z.k/

ij represents the information of “gene i ! gene j ”. For example,

1. If we use a prior network Gprior D .X ;Eprior/ for Zk , z.k/
ij takes 1 if e.i; j / 2

Eprior or 0 if e.i; j / … Eprior.

2. By using the gene knock-down data for Zk , z.k/
ij represents the value that indi-

cates how gene j changes by knocking down gene i . We can use the absolute
value of the log-ratio of gene j for gene i knock-down data as z.k/

ij .
3. For a transcription factor (gene i ), if ChIP-chip data are available, we can use

minus log p-value of gene j as z.k/
ij .

Using the adjacent matrix E D .eij /1�i;j�p of G D .X ;E /, where eij D 1 for
e.i; j / 2 E or 0 for otherwise, we assume the Bernoulli distribution on eij having
probabilistic function

p.eij / D �eij

ij .1 � �ij /
1�eij ;

where �ij D Pr.eij D 1/. For constructing �ij , we use the logistic model

�ij D 1=f1C exp.��ij /g

with linear predictor

�ij D
KX

kD1

wk.z
.k/
ij � ck/;
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where wk and ck (k D 1; : : : ; K) are weight and baseline parameters, respectively.
We then define a prior probability of the graph based on prior information Zk (k D
1; : : : ; K) by

p.G/ D
Y

i

Y
j

p.eij /:

This prior probability of the graph assumes that edges e.i; j / (i; j D 1; : : : ; p) are
independent of each other. In reality, there are several dependencies among eij ’s
such as p.eij D 1/ < p.eij D 1jeki D 1/ and so on. We may consider adding such
information into p.G/ as an extension.

24.3 Computational Drug Target Discovery Using Microarray
Data of HUVEC Treated with Fenofibrate

24.3.1 Data Sets

All data in this chapter were measured by CodeLinkTM Human Uniset I 20K
(20,469 probes).

24.3.1.1 Fenofibrate Time-Course Data

We measure the time-responses of human endothelial cell genes to 25�M fenofi-
brate. The expression levels of 20,469 probes are measured at six time-points
(0, 2, 4, 6, 8 and 18 h). Here time 0 means the start point of this observation and just
before exposure to the fenofibrate. In addition, we measure this time-course data as
the triplicate data in order to confirm the quality of experiments.

24.3.1.2 Gene Knock-Down Data by siRNA

For estimating gene networks, we newly created 400 gene knock-down data by using
siRNA. We measure 20,469 probes for each knock-down microarray after 24 h of
siRNA transfection. The knock-down genes are mainly transcription factors and sig-
naling molecules. Let QxDi

D . Qx1jDi
; : : : ; QxpjDi

/0 be the raw intensity vector of i th
knock-down microarray. For normalizing expression values of each microarray, we
compute the median expression value vector v D .v1; : : : ; vp/

0 as the control data,
where vj D mediani . Qxj jDi

/. We apply the loess normalization method to the MA
transformed data, where Mi D log Qxi jDj

� log vi and Ai D .log Qxi jDj
C log vi /=2

are plotted as .Ai ;Mi / 2 R2, and the normalized intensity xj jDi
is obtained by

applying the inverse transformation to the normalized log. Qxj jDi
=vj /.
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Fig. 24.1 Overview of the analysis for finding fenofibrate-related gene networks

24.3.2 Estimation of Gene Network Induced by Fenofibrate

24.3.2.1 Background and Overview

As a real application of gene network estimation techniques, computational drug
target discovery enhanced with gene network inference [15, 38, 61, 73] has made
tremendous impacts on pharmacogenomics. In this section, we show a proof-of-
concept study of discovering druggable gene networks, which are most strongly
affected by a chemical compound. For this purpose, we use two types of microar-
ray data described previously: One is gene expression data obtained by measuring
transcript abundance responses over time following treatment with the chemical
compound. The other is gene knock-down expression data, where one gene is
knocked-down for each microarray. Figure 24.1 is the conceptual view of our strat-
egy in this section. First, we estimate dynamic relationships denoted byGT between
genes based on time-course data by using dynamic Bayesian networks [46]. Second,
in gene knock-down expression data, since we know the information of knocked-
down genes, possible regulatory relationships between knocked-down gene and its
regulatees can be obtained. We denote this information by R. Finally, the gene net-
work GK is estimated by gene knock-down data denoted by XK together with
GT and R by using Bayesian network based on multi-source biological infor-
mation [39]. The key idea for estimating a gene network based on multi-source
biological information is to use GT and R as the Bayesian prior probability of GK

introduced in Sect. 24.2.4.
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24.3.2.2 Selection of Genes Affected by Fenofibrate

For estimating fenofibrate-related gene networks from fenofibrate time-course
data and 270 gene knock-down data (note that this analysis was done in Imoto
et al. [41] and at that time we had this number of knock-down data as a part
of our current data), we first define the set of genes that are possibly related to
fenofibrate as follows: First, we extract the set of genes whose variance-corrected
log-ratios, j log.xj jDi

=vj /=sj j, are greater than 1.5 from each time point, where
sj D VarŒlog.xj jDi

=vj /j log.xj jDi
� vj /�. We then find significant clusters of

selected genes using GO Term Finder. Table 24.1 shows the significant clusters
of genes at 18 h. The first column indicates how expression values are changed,
i.e. “%” and “&” mean “overexpressed” and “suppressed”, respectively. The GO
annotations of clusters with “&” are mainly related to cell cycle, the genes in these
clusters are expressed ubiquitously and this is a common biological function. On
the other hand, the GO annotations of clusters with “%” are mainly related to lipid
metabolism. In biology, it is reported that the fenofibrate acts around 12 h after
exposure [21, 29]. Our first analysis for gene selection suggests that fenofibrate
affects genes related to lipid metabolism and this is consistent with biological facts.
We also focus on the genes from the 8 h time-point microarray. Unfortunately, no
cluster with specific function could be found in the selected genes from the 8 h time-
point microarray However, there also exist some genes related to lipid metabolism.

Table 24.1 Significant GO annotations of selected fenofibrate-related genes from the 18 h time-
point microarray

GO Function p-value Number of genes

& GO:0007049 Cell cycle 1.0E-08 35

& GO:0000278 Mitotic cell cycle 3.7E-07 19

& GO:0000279 M phase 5.0E-06 17

% GO:0006629 Lipid metabolism 1.3E-05 25

& GO:0007067 Mitosis 1.3E-05 15

& GO:0000087 M phase of mitotic cell cycle 1.6E-05 15

& GO:0000074 Regulation of cell cycle 2.7E-05 22

% GO:0044255 Cellular lipid metabolism 4.4E-05 21

% GO:0016126 Sterol biosynthesis 4.3E-04 6

% GO:0016125 Sterol metabolism 4.5E-04 8

% GO:0008203 Cholesterol metabolism 1.5E-03 7

% GO:0006695 Cholesterol biosynthesis 2.4E-03 5

% GO:0008202 Steroid metabolism 3.6E-03 10

& GO:0000375 RNA splicing, via
transesterification reactions

4.1E-03 9

& GO:0000377 RNA splicing, via
transesterification reactions with
bulged adenosine as nucleophile

4.1E-03 9

& GO:0000398 Nuclear mRNA splicing, via
spliceosome

4.1E-03 9

% GO:0006694 Steroid biosynthesis 6.0E-03 7

& GO:0016071 mRNA metabolism 6.3E-03 13
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Therefore we use the genes from the 8 and 18 h time-point microarrays. Finally
we add the 267 knock-down genes (three genes are not spotted on our chips) to the
selected genes above, total 1,192 genes are defined as possible fenofibrate-related
genes and used for the next network analysis.

24.3.2.3 Discovering Master-Regulator Genes in Fenofibrate
Induced Gene Network

By converting the estimated dynamic network and knock-down gene information
into the matrix representations of the first and second prior information Z1 and Z2,
respectively, we estimate the gene network OGK based on Z1, Z2 and the knock-down
data matrix XK . For extracting biological information from the estimated gene net-
work, we first focus on lipid metabolism-related genes, because the clusters related
this function are significantly changed at the 18 h time-point microarray. In the
estimated gene network, there are 42 lipid metabolism-related genes and PPAR˛
(Homo sapiens peroxisome proliferative activated receptor, alpha) is the only tran-
scription factor among them. Therefore, we next focus on the node downstream of
PPAR˛ (Fig. 24.2). Among the candidate regulatees of PPAR˛, there are 21 lipid

Fig. 24.2 Downstream of PPAR˛. There are 491 genes in four steps downstream. We consider
these genes are candidate regulatees of PPAR˛
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metabolism-related genes and 11 molecules previously identified experimentally to
be related to PPAR˛. Actually, PPAR˛ is known to be activated by fenofibrate.

One of the drug efficacies of fenofibrate is to reduce LDL cholesterol. LDLR and
VLDLR are on the downstream of PPAR˛ and mainly contribute to the transporting
of cholesterol; they are candidate regulatees of PPAR˛. As for LDLR, it has been
reported the relationship with PPAR˛ [42]. We also could extract STAT5B and GLS
that are children of PPAR˛ and have been reported their regulation-relationships
with PPAR˛ [44, 69]. Therefore, it is not surprising that our network shows that
many direct and indirect relationships involving known PPAR˛ regulatees are trig-
gered in endothelial cells by fenofibrate treatment. In the node upstream of PPAR˛,
PPAR˛ and RXR˛, which form a heterodimer, share a parent. We could extract
fenofibrate-related gene network and estimate that PPAR˛ is the one of the key
molecules of fenofibrate regulations without previous biological knowledge.

In the estimated fenofibrate induced network, there are 42 genes that are related
to lipid metabolism. Among them, 17 genes have more children than PPAR˛. In
these 17 genes, six genes are known as drug targets in pharmaceutical companies
or having druggable motifs reported in Hopkins and Groom [33]. For example, the
seventh hub gene is HMGCR, which is known as the target of pravastatin, another
anti-hyperlipidaemia drug.

24.3.3 Discovery of Signaling Pathways Affecting
Fenofibrate-Induced Gene Networks

24.3.3.1 Background and Overview

Drug-response pathways at a transcriptome level are successfully predicted by
cutting-edge computational techniques. On the other hand, some drugs affect the
pathways at protein level. For example, drugs affect secretion of secreted proteins
(e.g., cytokines and growth factors) which are released from target cells. There is
a possibility that these proteins have effects on target cells through drug-effected
autocrine pathways. From the drug development viewpoint, these pathways could
be useful for revealing drug mechanism of action, potentiation of drug effects and
avoidance of side effects.

To validate the existence of such drug-affected autocrine pathways, we pro-
pose a novel computational method for finding signaling pathways that have the
potential to regulate gene networks. The method combines gene networks esti-
mated as drug-response pathways from mRNA expression data with proteome
networks represented by protein-protein interactions to extract such pathways. First,
we estimate a dynamic gene network from drug-response time-course microarray
data by dynamic Bayesian network with nonparametric regression. For this, we
propose the node-set separation method that enables us to find subnetworks signif-
icantly activated at observed time points, master-regulator genes and critical paths
in the drug-response pathways. We then combine protein-protein interaction (PPI)
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Fig. 24.3 Overview of a computational strategy for discovering signaling pathways affecting gene
networks

network with the estimated dynamic gene network. The candidate signaling path-
ways that connect a ligand or a receptor to the key genes in the gene network are
extracted and evaluated based on statistical hypothesis testing at each observed time.
Based on the computed p-values, the candidate drug-affected autocrine pathways are
selected by multiplicity corrected significance level.

Figure 24.3 represents the overview of the proposed method. Based on drug
response time-course microarray data, we estimate a dynamic gene network by the
dynamic Bayesian network model with nonparametric regression. However, ordi-
nary dynamic Bayesian network can estimate a network from time-course data,
while at each observed time-point, different sub-networks have high activity and
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transmit information of external signals to other sub-networks. Therefore, we need
to extend dynamic Bayesian network to capture this feature. We introduce this
extension in the next section.

24.3.3.2 Node-Set Separation Method for Dynamic Bayesian
Network with Time-Dependent Structure Changes

The key idea of our dynamic Bayesian network estimation, called node-set sepa-
ration method, is to define the active gene set for each time point. That is, a gene
in an active gene set is determined as a differentially expressed gene comparing to
the controls. Let At D fgi W pv.gi ; t/ � �tg be the active gene set at time t for
t D 1; : : : ; T , where gi represents the i th gene, pv.gi ; t/ is the p-value of gi at
time t , and �t is the threshold for time t that could be determined by using false
discovery rate for example. In our case, the p-value of each gene is computed by
comparing triplet expression values of the gene at a time to control four replicate
expression values, i.e., expression data of non-treated cells. We then define the node
set Nt D At�1 [At for t D 1; : : : ; T , where A0 is the empty set.

The definition of the node set has the basis on the Markov process of the
dynamic Bayesian networks, i.e., the dynamic Bayesian network assumes the first
order Markov process among time-course data. The gene network at time t , we
denote Gt , is estimated for the node set Nt by the dynamic Bayesian network
and nonparametric regression with whole 400 knock-down microarray gene expres-
sion data X1; : : : ;XT [46]. Finally the dynamic gene network is obtained by G D
G1 [ � � � [GT . The advantage of this estimation procedure, i.e., using node set Nt

separately, by comparing with other algorithms that use N D A1 [ � � � [ AT as
the node set is not only finding dynamics of transcriptome networks, but also has a
possibility to reduce false positive edges in the networks, because we can reduce the
size of the gene set for each observed time efficiently; this can increase the accuracy
of the structure learning.

First, we define master-regulator genes in each node set Nt , based on the esti-
mated Gt for t D 1; : : : ; T . The hub genes in Nt are defined as the top 5% genes;
the genes in Nt are ranked according to the numbers of their direct child-genes in
Gt . We denote the set of hub genes of Nt as Ht . We also focus on the direct parents
of the hub genes and represent the set of parent genes of the hub genes in Ht as Pt .
Since the hub genes and their direct parents could control the transcription levels
of many genes in Nt , we thus define the set of master-regulator genes at time t by
Mt DHt [Pt .

Table 24.2 summarizes the numbers of nodes (jNt j), edges, hubs (jHt j), and
hubs and their parents (jMt j) in the dynamic transcriptome network Gt . These hub
and their parent genes were used as target nodes of the pathway extraction in the
later step.
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Table 24.2 Summary of the dynamic gene networks. jHt j is the number of hub genes, jMt j the
number of hubs and their parents in Gt
Gt nodes edges jHt j jMt j
1 (2 h) 14 59 1 9
2 (2 h/4 h) 19 91 1 2
3 (4 h/6 h) 144 625 7 31
4 (6 h/8 h) 200 874 10 42
5 (8 h/18 h) 454 1 982 22 51

Table 24.3 The number of
possible pathways s5k and the
final significant pathways
with pv.s5k; 5/ < �t with
respect to the maximum
distance l

l all final

1 13 3
2 651 3
3 27,373 43
4 1,194,215 150
5 51,078,582 806

24.3.3.3 PPI Paths for Candidate of Signaling Pathways

We then focus on the PPI network for exploring candidates of signaling pathways
affecting master-regulator genes. On the PPI network, for gi 2 Mt , we search
receptors and ligands, denoted by rj , that connect gi by l or less edges, i.e., gi

connects with rj by l � 2 or less intermediate proteins. We denote the kth PPI path
for the genes in Mt ending at gi 2Mt as stk D rj – p1 – p2 – � � � – gi , where p1

and p2 represent the intermediate proteins in the PPI network.
We checked the number of possible pathways to determine the appropriate l

(maximum distance). Table 24.3 shows the number of all possible pathways from
ligands or receptors to M5 (the hubs and their parents in 8 h/18 h transcriptome net-
workG5) evaluated by p-values of 18 h fenofibrate time course gene expression data
(pv.s5k; 5/). According to this table, we decided to use l D 4 since it seems to be
the most realistic and appropriate for the later analysis.

24.3.3.4 P-Values for PPI Paths by Meta-Analysis

Let Œpi � represent the gene for the i th protein in the PPI network, i.e., if pi is a
protein translated from the i 0th gene, we have Œpi � D gi 0 . We also define Œrj � in
the same way. We assess the significance of stk using the p-values, pv.Œp0�; t/ for
p0 2 stknfgi g, by statistical meta-analysis [25]. That is, we regard the p-value of
each genes in stk as an evidence whether the PPI pathway stk is activated or not.
We use the statistical meta-analysis method for integrating p-values of genes in stk

into the p-value of stk .
The integrated p-value for stk is computed under the null hypothesis: all p-values

pv.Œp0�; t/ are not significant, and the alternative hypothesis: at least one or more
p-values pv.Œp0�; t/ are significant. That is, if the null hypothesis is not rejected,
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stk seems to be not functional; otherwise if we observe the small p-value, stk is
activated and is functional. For the meta-analysis, we use Fisher’s inversion method
to integrate p-values. We remove the p-value of gi for the meta-analysis, because gi

was selected as a significant genes in Nt . Therefore, it is obvious that stk is decided
as significant if gi is included in the meta-analysis calculation, and is meaningless.

Since the node set Nt is constructed by the active gene sets of time t and t � 1,
there are two ways to assess the significance of stk by using either p-value at time
t or t � 1. We test both cases and assess the significance of each PPI path. We
determine stk is significant if and only if either pv.stk; t/ < �t or pv.stk; t � 1/ <
�t�1 holds, where pv.stk; t/ is the integrated p-value of the PPI path stk with p-
values at time t and �t is the threshold determined by considering multiplicity of the
testings. In the real data analysis, we use 1% significant level with the Bonferroni
correction. Obviously, other methods for controlling multiplicity of testing, such as
family-wise error rate, false discovery rate and so on, can be used for reducing false
negatives. The reason why we choose the Bonferroni method is that since we use the
results of statistical tests for mRNA expression data for finding the significance of
protein levels, some changes of protein levels are not measured normally. Therefore,
we choose the most strict correction method to achieve a conservative method.

In order to confirm that the method can capture known pathways related to
fenofibrate, we focused on PPI paths related to PPAR˛, since PPAR˛ is a target
of fenofibrate. In the dynamic transcriptome network analysis, PPAR˛ is included
in the node sets N4 and N5, i.e., PPAR˛ was over-expressed at 8 and 18 h. In both
times, PPAR˛ was selected as a hub gene. In G4 PPAR˛ has 21 children and 31 in
G5. Since we would like to investigate drug-affected autocrine pathways, we first
limited the candidate PPI paths by autocrine ligand pathways (ALPs) that connect
ligands included in earlier time gene networks, i.e., active ligands in earlier times,
to hub genes and their parent genes.

By the Bonferroni correction with 1% significance level, only 23 pathways from
ligands in G3 or G4 to M5 evaluated by 8 h expression data remained as significant
ALPs (Table 24.4). Among them, we found that the pathway including PPAR˛ as
a hub gene of the gene network has high statistical significance (the fourth high-
est significance). This ALP is VEGF�NRP1�GIPC1�PRKCA�PPAR˛. PRKCA,
protein kinase C alpha, is located on the upstream of PPAR˛. PRKCA is one of the

Table 24.4 The numbers of all the ALPs from ligands in Gt 0 to Mt

Gt 0 ligands Mt total eval t � 1 eval t

2 (2 h/4 h) 3 (4 h/6 h) 437 35 126
2 (2 h/4 h) 4 (6 h/8 h) 894 160 27
3 (4 h/6 h) 4 (6 h/8 h) 1,448 177 28
2 (2 h/4 h) 5 (8 h/18 h) 533 30 27
3 (4 h/6 h) 5 (8 h/18 h) 873 23 23
4 (6 h/8 h) 5 (8 h/18 h) 873 23 23
Column “total” represents the number of all possible pathways (l D 4).
Columns “eval t � 1” and “eval t” are the numbers of ALPs that are
statistically significant if evaluated by pv.stk ; t � 1/ and pv.stk ; t /,
respectively.
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members of serine- and threonine-specific protein kinases and is related to phos-
pholyration of many genes including PPAR˛. Protein kinase C inhibitor inactivates
the phosphorylation of PPAR˛ and induces the trans-repression activity of PPAR˛
in hepatocytes. Our method was able to extract this known relationship, which is
related to PPAR˛’s trans-repression, with high statistical significance. VEGF, vascu-
lar endothelial growth factor A, is also included in this pathway. VEGF is a member
of the PDGF/VEGF growth factor family and is the predominant regulator of angio-
genesis. It has been reported that fenofibrate induces VEGF mRNA and prevents cell
from apoptotic cell death in human retinal endothelial cells (HRECs). VEGF is also
significantly up regulated in our microarray experiment. From this, our result sug-
gests that the trans-repression property of fenofibrate might be caused by PRKCA
mediated thorough VEGF signaling (Fig. 24.4).

24.3.4 Novel Drug Target Discovery Based on Gene
Network Information

24.3.4.1 Background and Objective

PPAR˛ is a ligand-activated transcription factor belonging to the family of nuclear
receptors. PPAR˛ is highly expressed in liver, skeletal muscle, kidney, and heart
and regulates the transcription of genes involved in energy metabolism [20, 49].
Over the past decade, PPAR˛ has been investigated as a therapeutic target and
drugs targeting PPAR˛ have been developed. Fenofibrate is one of the synthetic
ligands of PPAR˛ and has been widely used for the treatment of hyperlipidaemia,
type 2 diabetes and cardiovascular diseases due to its the lipid-lowering effects [71].
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A reported molecular mechanism of the lipid-lowering effect is “trans-activation”,
that is, PPAR˛ activated by fenofibrate forms a PPAR-RXR heterodimer complex,
which binds to PPREs in the promoter regions of genes involved in beta-oxidation
and lipoprotein/cholesterol transport [20]. In addition, fenofibrate also has anti-
inflammatory and anti-atherogenic functions, which are thought to be based on
“trans-repression” mechanisms in endothelial cells, smooth muscle cells and other
vascular cells [82].

While the lipid-lowering molecular mechanisms in the liver are well known,
the anti-inflammatory mechanisms in vascular cells have not been fully inves-
tigated. In addition, there are some PPAR˛-independent drug effects in human
endothelial cells. For example, fenofibrate has been shown to regulate the sur-
vival of cultured human retinal endothelial cells in PPAR˛-independent manner,
since pretreatment with the PPAR˛ antagonist, MK 886, did not alter this effect
and since another selective agonist for PPAR˛, WY-14643, had no significant
effect on cell survival [45]. Moreover, in human umbilical vein endothelial cells
(HUVECs), fenofibrate has been shown to increase AMPK phosphorylation, but
neither bezafibrate nor WY-14643 had the same effect [51]. Therefore, we speculate
that fenofibrate has PPAR˛-independent actions in human endothelial cells.

The objectives of this study are (1) to identify transcripts in HUVECs regulated
by fenofibrate in a PPAR˛-dependent and a PPAR˛-independent manner: (2) to
construct dynamic Bayesian gene networks to reveal PPAR˛-independent mech-
anisms of action of fenofibrate, and the master regulators of PPAR˛-independent
transcripts, based on computational data analysis techniques.

24.3.4.2 Gene Selection

We first compared fenofibrate-treated cells in data set A in Fig. 24.5 to untreated
control cells in data set N (comparison 1) and second compared PPAR˛ siRNA-
treated cells in data set C to control siRNA-treated cells in data set B (comparison 2).
In the comparison 1, we identified fenofibrate-regulated transcripts based on the Sig-
nificant Analysis of Microarray (SAM) statistical test, which takes multiple testing
into account by estimating a false discovery rate, “q-value” [78]. If a transcript was
up or down-regulated 1.7-fold or more in data set A rather than in data set N, and
had a SAM q-value that was less than or equal to 0.05, we regarded this transcript
as a fenofibrate-regulated transcript. The number of regulated transcripts gradu-
ally increased with time of fenofibrate exposure and fenofibrate’s effects were first
clearly observed after 6 h of treatment which is consistent with previous report [21].
Interestingly, the transcript encoding PPAR˛ was not detected to be up-regulated
until after 8 h of treatment. Then, we used the MetaGP [25] tool to biologically
interpret microarray data at each time point. MetaGP evaluated the significance
of Gene Ontology terms based on the p-value at each time point. This analy-
sis suggested that inflammatory related genes annotated by inflammatory response
(GO:0006954), angiogenesis (GO:0001525) and cell adhesion (GO:0007155) were
highly significant at middle or late time points (6, 8 and 18 h).
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In the comparison 2, if a transcript was up- or down-regulated 1.7-fold or
more in data set C rather than in data set B, we regarded this transcript as a
PPAR˛-regulated transcript. From two comparisons, if a transcript was oppo-
sitely regulated by fenofibrate and PPAR˛ siRNA, we regarded this transcript
as a fenofibrate-regulated transcript through PPAR˛ dependent mechanisms. The
remaining fenofibrate-regulated transcripts that did not meet the criterion in the
comparison 2 were considered PPAR˛-independently regulated transcripts. Con-
trary to our expectations, data for most fenofibrate-regulated transcripts were con-
sistent with PPAR˛-independent fenofibrate mechanisms of action, in spite of fact
that PPAR˛ is a target of fenofibrate (Table 24.5). It is interesting to speculate about
the possible explanations for this observation. Fenofibrate and other PPAR˛ lig-
ands appear to predominantly modulate the expression of genes that are traditionally
thought to be activated by inflammatory pathways. These genes may not been signif-
icantly regulated by fenofibrate responses in HUVECs without a prior inflammatory
stimulus, as was the case in our study. This could lead to our observation of mainly
PPAR˛-independent regulation of transcript abundance by fenofibrate. Another pos-
sible explanation is that fenofibrate might mainly act through PPAR˛-independent
mechanisms in endothelial cells. Unlike the mechanism of lipid-lowering actions
based on the binding PPREs of promoter regions of PPAR˛ targeting genes, the
anti-inflammatory mechanisms may be very complicated.
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Table 24.5 The number of transcripts oppositely regulated by fenofibrate and PPAR˛ siRNA-
mediated knock-down
Time points 4 h 8 h 18 h

Up regulation in fenofibrate & Down regulation in siPPAR˛ 0 6 98
Down regulation in fenofibrate & Up regulation in siPPAR˛ 0 7 66

24.3.4.3 Gene Network-Based Drug Target Discovery

We use dynamic Bayesian network and nonparametric regression method [46] with
the node-set separation method [72] in order to find dynamical changes of activities
of gene networks by dosing with fenofibrate. From this combination, we can find
which networks are activated over our observed time course. In this study, we esti-
mated five gene networks based on node-set separation method [72]. Each node-set
consists of regulated transcripts at (1) 2 h, (2) 2 or 4 h, (3) 4 or 6 h, (4) 6 or 8 h, and
(5) 8 and 18 h, respectively.

Here, we mainly focused on the gene network with transcript sets which are sig-
nificantly regulated at 8 or 18 h, because PPAR˛ is regulated at the same time points.
We initially evaluated our gene network predictions by reference to our siRNA
experiments in which PPAR˛ was knocked down. We were reassured that 14 out
of 28 PPAR˛ child transcriptomes in the gene network show PPAR˛-dependent
manner in our siRNA experiments (hypergeometric test p-value< 0.01). This result
suggests that our gene network methods can capture at least a subset of PPAR˛
regulated genes.

We next focused on the hub transcripts in our network. We defined hub transcripts
as those transcripts with the top 5% of numbers of direct children in the network.
Reassuringly, PPAR˛, a direct target of fenofibrate, is listed as a hub transcript.
This seems reasonable because a drug targeted molecule is likely to be important
for downstream gene-gene regulation relationships.

We also identified transcripts whose children in transcript network were signifi-
cant enrichment of PPAR˛-independently regulated transcripts (Table 24.6). There
are five transcripts including one EST or two hypothetical proteins which meet sig-
nificant p-value< 0.01. Among them, solute carrier family 1 member 4 (SLC1A4),
shows the highest significance (p-value< 1.2E-03). This gene is a glutamate/neutral
amino acid transporter and mediates the efflux of L-serine from glial cells and
its uptake by neurons [80], but its relevance to human endothelial cells has not
been reported previously. Growth differentiation factor 15/macrophage inhibitory
cytokines 1 (GDF15/MIC-1), is very interesting. This gene is a transforming growth
factor beta family related protein that exerts multiple effects on cell fate such as
on cell growth, differentiation, and inflammatory and apoptotic pathways [1] and
is regulated by several anti-tumor agents. GDF15 inhibits endothelial cell migra-
tion and decreases matrix metallopeptidase 2 (MMP2) activity produced by the
HUVECs in a concentration-dependent manner [16]. These effects are very simi-
lar to fenofibrate’s effects. GDF15 is also listed as a hub transcript, therefore we
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Table 24.6 Gene list having PPAR˛-dependently regulated transcripts as its child in gene network
with statistical significance (p-value < 0.01)

Gene name Gene description A B p-value

SLC1A4 Solute carrier family 1 member 4 34 32 1.2E-03
LOC201895 Chromosome 4 open reading frame 34 75 64 3.4E-03
AK023999 EST 24 23 3.5E-03
LOC148189 Hypothetical protein LOC148189 85 37 6.2E-04
FST Follistatin 23 22 4.8E-03
GDF15 Growth differentiation factor 15 34 31 5.5E-03
A: The number of child transcripts in gene network.
B: The number of PPAR˛-independent regulated transcripts in “A”.

focused on the 34 downstream children of GDF15 and 11 out of these 34 transcripts
are related to apoptosis and cell death.

24.4 Discussion

In this chapter, we show statistical inference of gene networks from microarray
gene expression data. Bayesian networks extended for analyzing continuous data
with nonlinear complex structure were introduced. For the statistical modelings in
this chapter, the use of nonparametric regression with basis function expansion with
B-splines is essential. An information criterion for its structure learning was derived
from a Bayesian point of view. We computed the posterior probability of the graph
by using Laplace’s approximation and showed that the derived information criterion
can be considered as an extension of Schwarz’ BIC. For applying aforementioned
statistical models and the information criterion, BNRC, for estimating gene net-
works, we need to establish a systematic procedure for determining structure of
gene networks, because the structure learning of Bayesian networks is an NP-
hard problem; a naive enumeration requires super-exponential time-complexity with
respect to the number of genes. For this problem, we showed several computational
algorithms including greedy heuristics and optimal search.

By using our gene network estimation technology, we showed three studies
[6, 41, 72] in computational drug target discovery. All three studies use microar-
ray data of human endothelial cells. We focused on the mode-of-action of an
anti-hyperlipidaemia drug, fenofibrate, in HUVEC.

� In the first study, fenofibrate response time-course microarray data and sin-
gle gene knock-down microarray data were combined and we focused on the
hub genes in the estimated gene networks; we found that PPAR˛, a target of
fenofibrate, is a hub gene and other known drug targets have also high con-
nectivity. From the first analysis, we found that like protein-protein interaction
networks hub genes in the estimated gene networks should be important for
defining the molecular function of the estimated networks.



24 Computational Drug Target Pathway Discovery: A Bayesian Network Approach 527

� In the second study, we tried to extract signaling pathways that strongly affect
the action of fenofibrate in transcriptome. We extended the dynamic Bayesian
network so that it can allow structure changes in time by the node-set separa-
tion method and we applied it to fenofibrate response time-course microarray
data. For finding such signaling pathways, we combined protein interaction net-
works constructed by protein-protein interaction data and extracted significant
signaling pathways from it. Based on this framework, we tested a biological
hypothesis: there exist autocrine signaling pathways that are dynamically regu-
lated by drug response transcriptome networks and control them simultaneously.
In this result, from over one million possible protein-protein interaction path-
ways, we extracted significant 23 autocrine-like pathways with the Bonferroni
correction, including VEGF�NRP1�GIPC1�PRKCA�PPAR˛, that is one of
the most significant ones and contains PPAR˛.

� In the third study, we further evaluated the gene networks estimated by fenofi-
brate response time-course microarray data by using PPAR˛ knock-down
microarray data. We found that unexpectedly many of fenofibrate-regulated
genes are not on the downstream of PPAR˛. By considering the estimated net-
work topology around these genes, we found that GDF15 may be an important
regulator of PPAR˛-independent fenofibrate action in HUVECs; that can be
considered as a novel drug target.

For further analysis of molecular networks, it is important to combine statisti-
cal analysis described in this chapter with simulation model for molecular networks
like Cell Illustrator [12, 53]. Since gene networks estimated by microarray gene
expression data and statistical graphical models like Bayesian networks are a kind
of approximate models of molecular networks, development of a more sophisti-
cated model that can simulate the responses of molecular networks against various
external stimuli or evaluate the variations of networks. Since simulation models
of molecular networks are usually created by gathering knowledge provided from
the literature, parameters such as speed of biological process, initial values and so
on are sometimes tuned manually. Furthermore, the network structure constructed
by the literature is often incomplete. For these problems, we proposed to use a
statistical method called data assimilation that combines simulation model and
observed data in order to automatic parameter estimation and network structure
determination [54]. We consider that a strategic method that uses statistical network
estimation method to determine key transcripts in the network, learns simulation
model including genes and proteins from the literature and identifies key transcripts
by data assimilation; this yields more efficient strategy to discover novel drug target
pathways.
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Chapter 25
Cancer Systems Biology

Elana J. Fertig, Ludmila V. Danilova, and Michael F. Ochs

Abstract Cancer is a complex disease, resulting from system-wide interactions of
biological processes rather than from any single underlying cause. The processes
that drive all cancer development and progression have been termed the ‘hallmarks
of cancer’. With the growth of large-scale measurements of numerous molecular
and cellular properties, a new approach, cancer systems biology, to understanding
the interrelationship between the hallmarks is presently being developed. Cancer
systems biology focuses on systems-level analysis and presently strives to develop
novel data integration and analysis techniques to model and infer cancer biology
and treatment response.

25.1 Introduction

To date, cancer biology researchers have discovered many properties of cancer cells,
genetic mutations in cancer, and interactions between cancer cells and components
of the host organism [66]. Rather than finding a single cause, this categorization has
revealed that complex interactions between cancer inducing and retarding mecha-
nisms underlie cancer progression [73, 87, 119]. In the absence of clear targetable
causes of disease, therapeutic development has lagged. As a result, cancer mortality
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rates have remained relatively constant over the last 50 years [90], leaving cancer as
one of the five leading causes of death in the United States [82].

Biological mechanisms explain the emergence of processes that underlie malig-
nant cancer, including most notably cell-stroma and cell-cell interactions [29, 81,
131], signaling networks [62, 94], reprogramming of expression [16, 47], genetic
instability [40, 115, 136, 175], and stem cells [45, 134]. In the new era of bioin-
formatics, several measurement platforms have been developed and implemented
to understand these cancer processes in isolation. Nonetheless, cancer is a funda-
mentally complex disease affecting the entire biological host system, similar to
the processes in aging [50]. Moreover, the aggressiveness and metastasis of a spe-
cific cancer depend strongly on the nature of its interaction with the host organism
[22,176]. As a result, seemingly eradicated tumors may later grow back aggressively
after initial success from localized treatments.

A new systems biology approach is emerging to complement traditional reduc-
tionist techniques employed in cancer biology. This field uses statistical techniques
and predictive mathematical models to integrate measurements from and biological
understanding of individual processes in cancer. Ideally, by considering measure-
ments and biology from the entire system, these algorithms will quantitatively and
accurately test and generate hypotheses about cancer development [9, 56, 107].
Moreover, this quantitative study will ideally implicate the underlying biological
processes in the development and maintenance of the malignant phenotype to aid in
improving prediction of prognosis and treatment strategies [73, 87].

The statistical challenges of cancer systems biology are daunting. The organ-
ism, even the individual cancer cell, is immensely complex and poorly elucidated
in comparison to a physical or chemical system. Models must address multicellular
interactions and distal signals from other systems in the organism and environment.
Physical cellular models are correspondingly incomplete, capturing only a fraction
of the true complexity. Moreover, the cellular components modeled can never be
truly isolated from the rest of the system, even in a well controlled experiment.
Statistical models must, therefore, deal with this uncertainty.

While the complexity of the underlying system is extreme, we are beginning
to acquire large data sets that offer opportunities for disentangling at least some
of that complexity. Beginning with microarrays in the mid-1990s [109, 146], a
series of technologies have been developed to allow genome-wide measurement
of the dynamic molecular components of cells. We can now routinely measure
numerous molecular components of cancer and normal cells. Genetic variations
across genomes can be measured with SNP-chips [100], and genome-wide asso-
ciation studies (GWAS) are underway in many cancers [75]. Methylation of DNA
can be determined globally by methylC mass spectrometry (MS) [106] and within
CpG islands using arrays [20]. Measuring transcription levels of both genes [147]
and exons [179] has become routine, with large data repositories available. Protein
levels are measured using MS, although this remains more difficult and is not yet
genome-wide. Metabolite levels for hundreds of chemicals can now be measured
using MS, and structural information can be obtained using NMR. All of these data
remain noisy in a statistical sense, and this noise is often confounded with natural
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variation in the cell. However, while certain species of molecules can be tightly con-
trolled, differentiating between technical and biological variance is difficult given
the limited replication of data points.

Global molecular measurements are being made on different tissues, which have
different levels of heterogeneity in the cells comprising them. Traditional uses of the
technologies noted above require large numbers of cells, so that the measurements
reflect averages over a heterogeneous population. It is now clear from a number of
studies that individual cells exhibit stochastic variation in the levels of molecular
components, even when those levels are tightly controlled [28,99]. At present, most
measurement strategies do not capture the dynamic nature of these systems, but only
provide an average over asynchronous stochastic behavior even within a single cell
type. Single cell analysis is a powerful approach for cultured cells, but it is unlikely
that we will see such measurements on all components of a complex, heterogeneous
system like a tumor for many years.

Analysis of the data generated by these new technologies can rely on the
substantial understanding of cellular systems developed over the last 150 years
by reductionist techniques. This information, if integrated properly into analy-
sis, greatly reduces the potential range in the model parameters that need to be
considered in fitting the data. Inclusion of this data is done both through model
construction and by use of a Bayesian framework. However, in developing any algo-
rithm, it is important to note that systems biology currently relies on noisy data and
employs simplified and error-prone models to represent the cancer system.

In the next section (Sect. 25.2), we describe the biological processes involved in
cancer, to lay the foundation for understanding the role of statistical analysis. The
description of these processes involves a substantial vocabulary, described in the
glossary in Table 25.1. Building on this highly simplified biological picture, we will
elaborate on the statistical techniques used for systems biology in later sections.

25.2 Cancer Etiology

25.2.1 The Hallmarks of Cancer

Cancer is initiated throughout the body from numerous genetic mutations. While
studies have revealed mutations in more than a thousand genes, only a limited
number of these can drive cancer development [63]. Moreover, rarely does the
mutation of a single gene initiate cancer from normal cells [65]. Instead, groups
of these mutations of oncogenes (i.e., drivers of oncogenesis) and tumor suppres-
sors (i.e., blockers of oncogenesis) collaborate to induce the genomic instability
that causes further mutations and to affect seven discrete processes that lead to
aggressive tumors [65,66]. Specifically, cancer cells have self-sufficiency in growth
signals, insensitivity to anti-growth signals, an ability to drive tissue invasion and
metastasis, limitless replicative potential, and sustained angiogenesis [66]. Recently,
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Table 25.1 Glossary

Term Definition

Acetylation A reaction introducing an acetyl functional group into an organic
compound.

Allele A form of a gene, which is typically found in a pair in cells containing
a double genome (diploid cells).

Angiogenesis Growth of new blood vessels.
Carcinogenesis Process that transforms normal cells into cancer cells.
ChIP-on-chip

(ChIP-chip)
Measurement technology that combines Chromatin

ImmunoPrecipitation (ChIP) with microarray technology (chip) to
identify binding sites of DNA-binding proteins on a genome-wide
basis.

ChIP-Sequencing
(ChIP-Seq)

Measurement technology that combines Chromatin
ImmunoPrecipitation (ChIP) with massively parallel DNA
sequencing to map global binding sites of DNA-associated proteins.

Chromatin The combination of specific DNA-binding proteins, histones, and
DNA, which can be condensed.

CpG island Genomic regions that contain a high frequency of CG nucleotides in
sequence.

DNA Methylation Addition of a methyl group to the C nucleotide in a CG sequence of
DNA that may suppress transcription of a nearby gene.

Endothelium Thin layer of cells that line the interior surface of many internal
vessels, separating interior from exterior.

Epigenetic Describing changes in phenotype or gene expression that are
inheritable but not related to the DNA sequence.

Epithelium The layer of cells lining the inside of organs or glands and the outside
of the body.

Fibroblast A connective tissue cell that secretes components of the extracellular
matrix and the stroma, and which is important in wound healing.

Flow cytometry A measurement technique for counting and sorting cells based on their
molecular properties, especially cell surface proteins.

Gene A region of DNA that encodes information for a hereditary
characteristic.

Gene expression The process by which cells take the code in DNA and transcribe it
into mRNA and then translate the mRNA into protein.

Inflammation The response of the immune system to a stimulus from infection or
wounding, resulting in a number of physiological changes.

Kinase An enzyme that transfers phosphate groups to specific amino acid
residues on proteins.

Knock-out,
knock-in,
knock-down

Experimental techniques to remove, insert, and reduce, respectively,
expression of a gene.

Meiosis A process of cell division resulting in each daughter cell having half
the number of chromosomes.

MicroRNA
(miRNA)

A small RNA molecule encoded in the DNA that targets specific
mRNAs reducing expression of some genes.

Mitochondria A cell organelle that produces energy for a cell.
Mitosis A process of cell division resulting in each daughter cell having the full

number of chromosomes.
Phenotype Any observable characteristic or trait.

(continued)
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Table 25.1 (continued)
Term Definition

Phosphatase An enzyme that removes phosphate groups from specific amino acid
residues on proteins.

Polymerase Chain
Reaction (PCR)

A technology that amplifies a piece of DNA to permit measurements
requiring more than a few molecules.

RNA interference
(RNAi)

The reduction of mRNA translation by complementary RNA
sequences to that of the mRNA.

Reverse A technology that converts an RNA molecule to a DNA
Transcription molecule and then amplifies it using PCR, which can be
PCR (RT-PCR) used for highly sensitive transcript level measurements.

Single-Nucleotide
Polymorphism
(SNP)

A sequence variation that occurs within a significant fraction of the
population, such that a single location in the genome has two
different bases in many individuals.

Small interfering
RNA (siRNA)

A fabricated RNA designed to cause RNA interference and
knock-down a gene in an experiment.

Telomere A region of repetitive DNA at the end of chromosomes, which shortens
with each DNA replication.

Transcription Copying a strand of DNA into complimentary RNA to promote gene
activity.

Translation Process by which mRNA is converted into proteins.
Vogelgram Figure representing the stages of cancer and the physiological drivers

of transitions between stages.

inflammation has been recognized as an additional hallmark of cancer [97, 112].
These ‘hallmarks’ are summarized in Fig. 25.1.

The ultimate goal of cancer systems biology is to infer the malignant drivers
of the biological processes present in an individual patient’s cancer. Normal cells
maintain themselves by producing needed molecular components (e.g, proteins,
metabolites, nucleic acids, lipids) to perform their functions. This maintenance
requires expression of genes as needed according to the Central Dogma (DNA is
transcribed to mRNA that is translated to protein). A subset of cells in adults
divide to produce new cells. During this process, cells receive a signal to proliferate
(e.g., a growth signal), and they go through the cell cycle which involves prepara-
tion for DNA synthesis (G1), replication of DNA (S), preparation for mitosis (G2),
and cell separation by mitosis (M). Each division of a cell leads to shortening of
the ends of the chromosomes, called telomeres, and replication is blocked once
telomeres reach a minimum size. Cells are also equipped with mechanisms to block
proliferation through anti-growth signals and to control cell death through cell death
signals. Cell death mechanisms can trigger an irreversible self-destruction involving
programmed rupture of the mitochondrial organelles in the cell. These apototic pro-
cesses can also be triggered by detection of an unfixable problems, such as coding
errors in the DNA. Therefore, to grow and evade cell death, cancer cells must both
inappropriately activate proliferation and suppress normal cell death processes. As
cancers grow, further short-circuiting of normal biology is required to induce the
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Fig. 25.1 The hallmarks of cancer. These biological processes need to be deregulated in order
for a cancer to grow and metastasize, which is why cancer generally involves a series of changes
(modified from [66])

biological processes that comprise the hallmarks. Algorithms inferring the sources
of cancer progression may identify the mutations to the DNA or the sources of alter-
ations in gene expression that can short-circuit normal cellular function. Similarly,
algorithms that infer the effects of the hallmark processes may improve early disease
detection and discover processes that promote development and metastasis of cancer
cells. Therefore, knowledge of the cancer hallmarks is required to guide interpreta-
tion of statistical analyses, distinguishing key processes in the cancer system from
other processes that might be changed from normal cells but that are incapable of
driving carcinogenesis. Ideally, incorporation of prior knowledge on genes and pro-
cesses, as in a Bayesian model, may improve inference of these processes and their
underlying sources.

The first process, evading apoptosis (programmed cell death), involves the loss
of responsiveness to signals indicating that the cell needs to eliminate itself. The
master regulator of this process is the protein p53, which integrates signals from
external cell fate signals and from internal quality control signals that monitor DNA
stability [169]. The second process, self-sufficiency in growth signals, is charac-
terized by many mutations that drive cancer. For example, a number of cancers
contain mutations in growth factor receptors or in downstream activators of growth
factor receptors, making them active in the absence of growth signals [6, 80]. The
third process, insensitivity to anti-growth signals, involves sets of proteins that
are designed to block activated growth signals by deactivating downstream com-
ponents [86]. The fourth process, limitless replicative potential, often involves
activation of the enzyme telomerase, which can lengthen the telomeres at the end
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of the chromosomes [68]. The fifth process, sustained angiogenesis (i.e., creation
of new blood vessels), is important for solid tumors, which require nutrients to be
delivered to enable them to continue to grow [51]. The sixth process, tissue invasion
and metastasis, involves remodeling of the cellular environment and degradation of
surrounding structures [126], permitting a cancer cell to leave the original site and
circulate, finding a new site to begin a new tumor (i.e., metastasis). The seventh
process, inflammation (e.g., activation of wound and infection response), allows
recruitment of cells and chemicals to the site of a wound, and it is hijacked by
cancer to avoid attack by the immune system and to acquire nutrients [141].

However, targeting these processes is difficult for an individual tumor, because
the specific mutations are highly variable between tumors, and because targeting
these processes will affect normal cells causing toxic side effects [119]. Thus, to
eradicate a tumor, therapeutics must target the processes within the specific tumor
cells and potentially additional cells harboring tumorigenic potential, while avoid-
ing damaging normal cells. Therefore, one goal of analysis in cancer studies is to
distinguish cancer cells from their normal counterparts. Statistical algorithms, such
as class comparison, can identify underlying genetic differences between cancer
and normal tissues. Clustering and pattern recognition algorithms can extend these
inferences to identifying features that correlate to the hallmark processes. Integrat-
ing these features with knowledge of the biological processes underlying the cancer
hallmarks (several of which are described in the remainder of this section) can impli-
cate candidate biomarkers and therapeutic targets for individual cancers or cancer
types, targeting of which will ideally have minimal impact on normal tissues.

25.2.2 Cell-Stroma and Cell-Cell Interactions

In addition to mutations, the microenvironment to which cancer cells belong can
also promote tumorigenesis [5, 32, 81]. The need for a suitable microenvironment
for tumor cell growth was predicted early by Paget in his seed and soil hypothesis
[127]. It is now believed that as cancer cells develop, they co-evolve the components
in the surrounding environment, together called the stroma. The resulting cell-cell
interactions between the cancer and stroma promote tumor growth and metastasis
[104]. As a result, statistical algorithms that can infer abnormalities in the stroma or
in cell-stroma interactions may provide novel insights into the cancer system. Such
algorithms must perform multivariate analysis to infer the different covariates that
correspond to cell types and interaction terms for cell-stroma interactions.

The stroma contains fibroblasts, endothelial cells, immune cells, and the extra-
cellular matrix that can promote tumorigenesis and metastasis [2, 104]. In normal
systems, the components of the stroma facilitate normal development by secreting
the extracellular matrix, scaffolding and shaping connective tissue, healing wounds,
and mediating the immune response [4, 104]. However, in tumors, the complex
cross-talk between cancer cells and the stroma depicted in Fig. 25.2 causes the
stroma to send signals to the cancer cells that induce and sustain the hallmarks
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Fig. 25.2 Complex cross-talk between the tumor and surrounding stroma promote tumor devel-
opment and metastasis. Tumor cells send signals to the stroma that encourages its growth and
recruitment of blood vessels. Simultaneously, the stroma sends signals to the tumor encouraging
its growth, inflammation, and continued survival

of cancer [60, 131]. This role of stroma immune cells in tumorigenesis is recog-
nized in references to tumors as ‘wounds that do not heal’ [42]. The tumor growth
that results from this immune response further promotes recruitment of additional
stroma components and vasculature to ultimately enable metastasis into otherwise
oxygen-poor (hypoxic) and nutrient-poor environments [32, 104]. As a result, tra-
ditional therapeutics that target only cancer cells may leave behind an environment
that is suitable for reinvasion, and, furthermore, may trigger an immune response in
the myofibroblasts of the stroma that could later encourage regrowth of the tumor
[37]. Moreover, traditional cancer treatments such as chemotherapy, radiation, and
surgery may promote activity of the aberrant immune cells in the tumor stroma to
facilitate regrowth after treatment [37].

Although the stroma apparently promotes tumor development and metastasis,
the specific sequence of events that triggers malignancy in otherwise normal cells
and stroma remains unknown [5, 60]. Nonetheless, the early role of the stroma in
tumorigenesis is apparent from experiments revealing that the growth and metasta-
sis of tumor cells is limited in vitro without the presence of the stromal components
[37] that are observed in the early metastatic process in vivo [37, 60, 140]. Mathe-
matical models can be used to explore the necessary co-evolution of the tumor cells
and stroma in many scenarios that cannot be observed directly in experiments due to
technical and ethical limitations. Many of these models solve systems of ordinary or
partial differential equations that describe the growth of populations of tumor cells
and stroma components due to hypothesized interactions. For example, systems of
equations can model the effects of increased nutrients in the tumor due to recruit-
ment of blood vessels in the stroma [10,55,58], growth signals propagated between
the stroma and tumor cells [165], and metastatic breaches [9, 10, 122, 135]. As a
result, these predictive models can provide powerful and non-invasive in silico tools
to test hypotheses about the role of the tumor microenvironment in cancer growth
and test the efficacy of different targets in that environment.
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While the mechanisms underlying tumor cell and stroma development are still
being explored, several researchers are pursuing promising therapeutics that directly
target the microenvironment in order to kill cancer cells and prevent metastasis
[2, 5, 104]. These studies attempt to identify distinguishing malignant stroma fea-
tures by comparing gene expression measurements from tumor stroma to a control
population with cDNA libraries, Serial Analysis of Gene Expression (SAGE), and
microarray measurements. The resulting gene expression measurements are com-
pared to look for differences between gene activity (called differential expression)
in the measured population types [2, 13]. In class comparison algorithms, gene
expression from stromal cells is compared to that from non-stromal cells [71] (see
Sect. 25.3.4.1). To avoid inadvertently targeting the normal stroma components in
healthy tissue, therapies must target only those stroma components that behave aber-
rantly in malignant stroma [104]. Therefore, class comparison algorithms may yield
more effective targets if applied to distinguish gene expression in tumor stroma from
normal stroma (e.g., [33, 181]). Clustering algorithms (see Sect. 25.3.4.2) may also
be applied to these datasets to distinguish gene expression in normal stroma from
that in tumor stroma [11, 13, 49]. However, as described above, it is likely that the
differences in functionality and expression in tumor stroma from their normal coun-
terparts results in response to signals received from the neighboring tumor cells.
Therefore, algorithms used to infer cell signaling processes (Sect. 25.2.3) may be
most adept at inferring both the underlying processes in and the sources of aberrant
behavior in tumor stroma [77, 138].

25.2.3 Signaling Networks

As described in the previous section, cellular communication is crucial to both ben-
eficial and malignant interactions between a cell and its environment. As a result,
statistical techniques which infer the biological species which mediate this com-
munication and the subsequent phenotypic effects are critical to understanding the
cancer system. Many cellular processes, including notably those induced through
cell-stroma interactions, are controlled by reactions between intracellular pro-
teins (particularly kinases and phosphotases) that occur in a specified sequence in
response to triggers from the cell’s external environment and internal state. Each
of these reactions is known as a signaling reaction and the sequence in which
they occur is referred to as a signaling pathway. Together, collections of signaling
pathways within a cell form a signaling network. In cancer, activity in these signal-
ing networks plays a key role in tumor development and metastasis [18, 111]. For
example, signaling networks facilitate the interactions between tumor cells and the
tumor stroma described in Sect. 25.2.2. In this example, the growth signals secreted
by the tumor stroma trigger signaling pathways in the tumor cell that facilitate
cell division and hinder apoptosis, while the corresponding signals sent from the
tumor cell trigger pathways that promote angiogenesis and immune response in the
stroma.
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Fig. 25.3 Graphical representation of a signaling network relevant to processes in breast tumors.
The top parallelograms represent receptors in the cell membrane, while the bottom diamonds rep-
resent transcription factors in the nucleus. The growth factors (squares) bind the receptors causing
them to communicate with the signaling proteins in the cytoplasm (represented by the circles).
Each straight arrow in the cytoplasm represents an activation of the target protein by the origin
protein, and each T the repression of the target protein. Triangles represent states in the cell, such
as hypoxia, which can induce signaling, often through unknown intermediaries

Figure 25.3 depicts an example of a signaling network that enables tumor cells to
respond to internal and external triggers, such as the signals from the tumor stroma.
In this network, extracellular signals shown as squares are processed by the recep-
tors shown in the figure as parallelograms. These receptors signal to the downstream
proteins (shown as circles) in the cytosol of the cell by inducing post-translational
modifications, typically phosphorylation at specific amino acid residues. The sig-
nals can be activating or repressing, and their final targets are often transcription
factors (shown as diamonds), leading to reprogramming of gene expression (see
Sect. 25.2.4). The networks often have feedback loops directly or through gene
expression, feed-forward loops, and substantial cross-talk that enable complex reac-
tions to stimuli with a limited number of signaling components [15,85]. In addition,
while core pathways have been deduced, there are numerous proteins known to play
a role in signaling that are not yet reflected in core diagrams (such as Fig. 25.3).
Signaling pathways often regulate cell growth, proliferation, death, and adhesion, so
therapeutics that modify these signaling processes could directly target the source
of cancer progression for each patient [150, 167].

Ideally, signaling structure and activity could be inferred from direct mea-
surements of the population and activity of each protein within a cell. However,
while informative, such direct proteomic measures are restricted to a few proteins
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in vivo at limited times during tumorigenesis [15, 153]. Nonetheless, the structure
and activity in signaling networks can be inferred from numerous indirect mea-
surements. Often, the signals passed along pathways promote gene expression to
facilitate the desired biological process. Therefore, global gene expression measure-
ments from microarrays indicate active pathways in measured cells [21]. Chromatin
ImmunoPrecipitation-on-Chip (ChIP-Chip) experiments use microarray technology
to identify the locations on the genome to which proteins that control gene expres-
sion (transcription factors) bind. Integrating these measurements with global gene
expression can indicate the interactions of these transcription factors with pathway
activity, elucidating the activity in specific pathways and the effects of cross-talk
[128, 143, 166]. Similarly, classes of RNAs, including siRNAs [128, 139, 142, 167],
can knock-down specific proteins in signaling networks. Therefore, targeted experi-
ments with these siRNAs can further probe the implications of network structure on
signaling activity. Moreover, several genetic variations in an individual are likewise
linked to specific modifications in signaling activity. As a result, expression mea-
surements from individuals with genetic variations measured by SNPs can further
provide indirect indications of the signaling activity in that individual [84, 130].

Because some transcript level changes derive from signaling activity, the struc-
ture and activity in signaling networks can be inferred with statistical techniques
(reviewed in [30]). Often, algorithms based upon Bayesian networks can infer the
structure of the signaling network that best fits the gene expression measurements
(e.g., [26, 70, 139]). These algorithms can utilize prior distributions that encode
structural information from additional sources [19, 120, 160, 178]. While success-
ful at inferring the structure of networks with few connections and proteins, these
techniques cannot account for feedback loops [139] and are subject to overfitting
when used to infer the structure of moderately-sized networks [120].

The structure of several core networks have been established and are available in
curated databases (e.g., [174]). These databases often contain lists of protein-protein
interactions along specific signaling pathways that have been reported in numer-
ous independent studies and verified by the database curator. While these databases
may still have errors and missing interactions, they ideally provide more accurate
estimates of the structure of signaling networks than that inferred from any single
gene expression experiment. Several statistical algorithms utilize this established
structure of signaling networks to infer the signaling processes active along spe-
cific pathways in tumor samples in order to identify optimal molecular targets for
treating these cancers. These techniques include standard statistical analyses of dif-
ferential expression [148], clustering [137], and pattern recognition [21], including
use of transcription factor target information [96]. While standard in machine learn-
ing, many of these algorithms are limited in their utility for biological inference
because they cannot fit the large number of parameters [89], account for feedback
loops [139], or incorporate reuse of genes for multiple cellular functions [118].
Modifications of these approaches include use of non-negative matrix factoriza-
tion techniques to identify overlapping groups of coregulated genes [91, 118] and
supervised learning based on sets of genes derived from the networks [96, 159].
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Computational modeling using the structure of the signaling networks as the
basis for reactions in differential equation-based models is also an area of active
research [113, 139, 144, 170]. Ideally, these models will one day predict signaling
processes that are active in a cancer and the implications of different targeted treat-
ment strategies. However, these models are currently limited to modeling signaling
in simpler organisms than humans and their cancers because of needed but unmea-
surable model parameters and the complex dynamics of the multicellular system
[73,89]. Therefore, while protein signaling shows the potential to target cancer pro-
gression at its source, quantitative inference of signaling activity in a tumor requires
a systems approach to integrate the information provided from all sources of indi-
rect measurement of the biological processes coupled with predictive mathematical
models [53, 73, 74].

25.2.4 Gene Expression and Epigenetics

The specific genetic mutations that induce cancer vary widely across patients. How-
ever, similar changes in expression of specific genes are commonly observed during
tumor growth and metastasis, suggesting a need for similar molecular components
[47]. Although not encoded in the DNA sequence, some changes in gene expression
can be inherited by cancer cells to favor disease development [16, 48], potentially
facilitating later genetic mutations [16,47]. Such non-genomic inheritance is known
as epigenetic inheritance. For example, the gene PTEN is epigenetically silenced in
several human cancers, which leads to increased AKT activity and loss of tumor sup-
pression [52, 117, 151, 156]. In cancer, epigenetic effects include heritable markers
that promote or repress gene activation, often achieved by binding of methyl groups
to target sites, known as CpG islands, upstream of a gene on the DNA [16, 47, 48].
Loss of these methyl groups, hypomethylation, can promote gene expression, while
hypermethylation can silence expression. Typically methylation is used specifically
to silence genes following organism development, in order to shutdown growth pro-
cesses needed only in embryogenesis. As such, hypomethylation can reinitiate these
processes, which can lead to the uncontrolled growth seen in cancer. Alternatively,
hypermethylation of a needed tumor suppressor, such as PTEN, can remove checks
on such growth. Cancers may also modify gene expression by altering the com-
pressed structure of the DNA (i.e., chromatin), which sequesters genes away from
transcription factors. In addition, expression of microRNAs (miRNAs) can similarly
reduce the production of protein by targeting mature mRNAs for destruction prior to
translation [35]. Identifying the sources of expression changes may improve clinical
detection and diagnostics. For instance, improper hypermethylation changes may be
reversed by chemical compounds, providing powerful cancer therapeutics [72].

Changes in transcript levels will ultimately lead to a different complement of
proteins being produced by the cell. The most straightforward way to identify these
effects would be to measure the protein states and levels. However, such measure-
ments are not presently feasible on a genome-wide basis. Alternatively, microarrays
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(and now exon arrays) can measure transcript levels (and alternative splicing). How-
ever, excluding highly expressed proteins, correlation can be low between mRNA
levels and protein levels [64, 168]. In general, it seems highly likely that creation of
increased levels of mRNAs whose proteins all work together in a biological process
represents upregulation of that process. As such, one approach to the analysis of
cellular reprogramming is to focus on gene set enhancement of biological process
gene ontology terms.

Using microarray measurements to identify the genes expressed at higher or
lower levels relative to normal tissues could improve predictions of prognosis. For
example, class comparison algorithms are employed to infer specific genes that dis-
tinguish normal and cancer samples. However, while microarrays measure global
gene expression, at most they can provide information about correlation to specific
malignancies when using clustering or pattern finding algorithms. Thus, cancer sys-
tems biology algorithms which rely on microarrays alone are insufficient to identify
the cause of changes in gene transcript levels.

Identifying the causes of changes in gene expression in tumor samples will
require integration of transcript measurements from microarrays with measure-
ments from additional platforms. DNA methylation arrays indicate the points on the
genome to which methyl groups are bound, identifying sites for hypo- and hyperme-
thylation of the DNA [54, 116]. Methylation arrays are first analyzed to determine
the specific genes that are routinely hyper- and hypomethylated [24, 79]. ChIP-
chip and ChIP-seq measurements provide additional information about interactions
between transcription factors and DNA, further suggesting potential locations of
hypo- and hypermethylation of the DNA [24, 54, 166]. Finally, miRNAs can also
be measured using specialized microarrays and these measurements can be corre-
lated with transcript levels of mRNAs targeted for degradation [1]. Alternatively,
quantitative real time polymerase chain reaction (qPCR) can directly detect and
quantify activity in specific miRNAs known to reprogram expression in cancers
[1]. Together, these data sets can be used to identify mechanisms for malignant
expression modifications through algorithms discussed in Sect. 25.3.3. For example,
analysis can propose driver biological mechanisms by seeking methylation, miRNA,
or genetic alterations that correlate with gene expression changes identified using
class comparison, clustering or pattern recognition algorithms [155].

25.2.5 Genetic Instability and ‘Vogelgrams’

The biological processes that induce carcinogenesis in normal cells often decrease
the fidelity in cell replication, causing cancer cells to become genetically unstable
[23, 36, 136]. This genetic instability subjects cancer cells to numerous mutations
upon replication. As a result, many statistical algorithms used to infer mutations
distinguishing normal and cancer samples will find many mutations across stud-
ies, most of which cannot drive oncogenesis [63]. Currently, competing theories
are invoked to explain the inception of genetic instability in cancer, including
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microenvironment-tumor interactions [67] (Sect. 25.2.2), disruption of DNA repair
by growth preferring mutations [110], improper signaling and expression [23]
(Sects. 25.2.3 and 25.2.4), and microRNA activity [36] (Sect. 25.2.4).

Ideally, identifying driver genes could implicate the source of cancer progression,
and thus suggest a therapeutic strategy. Although it is challenging to distinguish
driver from passenger genes in these subsets, changes in candidate driver genes
likely confer a change in the information encoded in the DNA, for example resulting
in a change in an amino acid, or in a promoter where a transcription factor binds.
Comparisons of such mutations in several patients have implicated numerous driver
genes in each stage of cancer development [63]. However, comprehensive studies
integrating genetic and transcript measurements from numerous tumor samples have
shown that the driver mutations may primarily occur within a limited number of core
signaling pathways [84, 130, 163, 173], as expected from the hallmarks.

To systematically track disease progression, figures called Vogelgrams link the
sequence of phenotypic changes in an evolving cancer cell to the specific driver
mutations responsible for each change [46]. An example of a generalized Vogelgram
is given in Fig. 25.4, where the types of genetic changes, rather than specific muta-
tions, are provided for a single cancer type. Comparison with Fig. 25.1 shows how
the hallmarks of cancer tend to be reflected in the transitions in a Vogelgram.

The sequence of mutations in cancer has been used to abstract the mutation
processes in stochastic and differential equation models that predict the amount of
time and number of distinct mutations needed for cancer development [17, 95, 110,
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Fig. 25.4 Generalized from the Vogelstein model of colorectal cancer progression (from [92]) that
extends the Knudson two-hit model [93]. The progression of the cancer from a benign neoplasm to
a carcinoma involves multiple genetic mutations involving different genes and potentially different
sequences in various cancers. These models have been refined and can be constructed for many
different types of cancer
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115, 133]. These models have provided significant evidence that genetic instability
is an early precursor to tumor formation, possibly even responsible for initiating
tumorigenesis [115]. Another view is that it is errors in cell signaling or methy-
lation changes in DNA that drive the emergence of genetic instability. This latter
hypothesis can be explored by identifying the underlying drivers of biological mod-
ifications in the cancer system such as those suggested in Sect. 25.2.4. Specifically,
techniques that can analyze integrated SNP, copy number, methylation, miRNA, and
expression alterations in cancer samples should be particularly adept at inferring the
underlying drivers of genetic instability.

25.2.6 Stem Cells

The complexity of the biological processes in tumorigenesis make improbable
the ability of multiple heterogeneous cell types to simultaneously become cancer-
ous. However, tumors are composed of such heterogeneous cells, which could be
explained if, like tissues during development, tumors develop hierarchically from
a common stem cell [38, 108, 177]. Like cancer cells, stem cells evade apoptosis
and have unlimited replicative potential, thereby requiring fewer mutations to gain
all necessary cancer functions than normal differentiated cells [45, 134]. Therefore,
resistance of stem cells to therapeutics, perhaps due to the fact that stem cells can lie
dormant and most cancer treatments rely on cells growing, could cause seemingly
eradicated tumors to regrow [45,108,154]. Moreover, if stem cells acquired genetic
instability, they could easily mutate in response to treatment to confer a growth
advantage and resistance to treatment [98]. Thus, under the stem cell hypothesis,
therapeutics must target cancer stem cells in addition to the tumor cells [45, 154].
The dynamics of tumorigenesis and the response to therapeutics arising from stem
cells is supported by mathematical models [114].

In contrast to the stem cell model, a second model of cancer involves clonal
evolution, where one differentiated cell acquires attributes that permit uncontrolled
growth and it subsequently comes to dominate the other cell types. Both models
have aspects that appear to agree with experimental results [172]. For instance,
in many cancers multiple cell types appear tumorigenic in xenograft models, sug-
gesting differentiated cells have tumorigenic potential. However, certain cell types
identified by specific cell surface markers appear to have increased and sometimes
dominant tumorigenic potential, as suggested in the cancer stem cell model and first
identified in breast cancer [3]. However, the current measurements and models can-
not distinguish true cancer stem cells from normal cells that have mutated under
the pressures of the cancer to evolve stem-like properties [103, 152, 171], as our
stem-cell markers are not highly specific.

Activity in particular transcription factors is one indirect marker of cancer stem
cells. As a result, differential expression analysis between cancer and normal cells
focused on inferring transcription factor activity may implicate stem-like behavior
in measured tumors [125]. However, such inference cannot distinguish biological
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modifications that induce stem-like activity and a predominance of cancer stem cells
in the tumor. Integrative analysis of measurements from multiple platforms may
infer drivers of this stem-like behavior through genetic or epigenetic modifications,
but may not distinguish between modifications that caused normal stem cells to
attain carcinogenic properties and changes that permitted cancer cells to attain stem-
like properties.

25.3 Towards a Systems Biology of Cancer

The previous section (Sect. 25.2) described several biological mechanisms that
underlie cancer. Because of the complexity of cancer, measurements from any sin-
gle platform have intrinsic limitations in representing the entire cancer system [56].
As a result, numerous measurement platforms have been devised to gather data
from cancer samples. The corresponding analysis algorithms in cancer systems biol-
ogy have several common elements, including notably distinguishing cancer and
normal samples and identifying clusters or patterns resulting from regulation by
common biological drivers. While several of these inferences can be made with
standard statistical algorithms, novel statistical techniques are constantly emerging
to infer the biological processes responsible for inducing and maintaining cancer in
an individual from these measurements.

In the remainder of this section, we describe standard statistical models that have
emerged to identify the complex biological processes in the cancer system described
in Sect. 25.2. The evolution of statistical models in systems biology can be predicted
based on their development in response to the first systems-level measurements to
emerge in biology, the gene expression microarray. These methods include ‘prepro-
cessing’ necessary to remove technical artifacts from the data [78] (Sect. 25.3.2);
data integration to bring together the different types of data (e.g., mRNA, DNA, pro-
teomic measurements) and annotate them (e.g., gene ontology) to allow improved
analysis (Sect. 25.3.3); and analysis to identify statistically significant variations
(Sect. 25.3.4). Many algorithms for these analyses are implemented within the R
Project for Statistical Computing using Bioconductor [57], and many other tools
have been created though often they rely on their own data formats.

25.3.1 Data for Systems Biology

Section 25.2 included discussion of several measurement technologies used to elu-
cidate the biological processes in cancer (summarized in Table 25.2). As one of the
first global measures of biological systems, microarrays provide the most common
data source in experiments probing the processes in tumor development, mainte-
nance, and metastasis. Moreover, because many publishers require all measurements
from microarray experiments to be deposited in the Gene Expression Omnibus
database (GEO) [14] or in ArrayExpress [129] upon manuscript submission, there
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is an abundance of public data available for the development, testing, and imple-
mentation of statistical algorithms. However, it is important to remember that gene
expression is technically the production of a protein from the DNA gene encoding
its sequence, even though the term is often used to refer to transcripts measured by
a microarray (see Table 25.1).

Statistical analysis for cancer systems biology must evolve to use measurements
that can track the full complement of cellular molecular components, including
DNA sequences for genes and non-coding regions (e.g., promoters, enhancers, etc.),
RNA variations from alternative splicing, miRNAs and their targets, proteins includ-
ing variants and their structures, and metabolites using the additional measurement
platforms described in Table 25.2. In addition, it is important to carefully describe
and track phenotypes, which will best be done with some type of ontology or
controlled vocabulary [25].

One complication that enters with functional genomics is that context (e.g., cell
type, disease state) and time (e.g., time following stimulation, time after treat-
ment) have an impact on the measured data, which contrasts with DNA sequences,
at least for typical cells. For RNA and proteins, the actual production and life-
times of the molecules vary widely and these variations impact phenotype. A more
complete understanding of the biological processes underlying cancer requires inte-
grating measurements from multiple platforms focused on different molecular forms
(e.g., DNA, RNA, protein, pathway, complex) and cells (e.g., cancer cells, stromal
cells, circulating immune cells) from an individual. As a result, new databases with

Table 25.2 A snapshot of measurement technologies for cancer systems biology

Technology Target Uses

SNP-chip SNP variants Allelic variation
DNA sequencing DNA variations Gene mutation, allelic variation
MethylC MS Methylation sites of

DNA
Hypermethylation, gene

expression
Methylation arrays CpG methylation Hypermethylation, gene

expression
Microarrays mRNA concentration Gene expression
RT-PCR mRNA concentration Gene expression
Exon-Chip mRNA at exon level Gene expression, alternative

splicing
SAGE mRNA Gene expression
ChIP-on-chip,

ChIP-Seq
Protein binding to DNA Transcription factor targeting,

gene expression
miRNA arrays miRNA levels Gene expression
Mass Spectrometry Protein concentration,

metabolite
concentration

Signaling activity, gene
expression

Nuclear magnetic
resonance
spectroscopy

Metabolite concentration Metabolic flux, enzyme activity

Flow cytometry Proteins on specific cells Signaling activity, cell
concentrations, heterogeneity



550 E.J. Fertig et al.

multi-platform measurements of individual tumor samples are being compiled and
made publicly available (e.g., [163]).

A second complication is the fact that unmeasured covariates will always play
an important role in biological studies, as the systems are too complex to obtain
complete coverage in measurements. In addition, as the discovery of miRNAs
made clear, there remain unrecognized active biological components that we nei-
ther measure nor model. This makes identification of causative mutations or events a
two-stage process. Statistical and computational approaches must make predictions
from the available data, but these predictions must be verified by controlled biolog-
ical experiments to show that the identified mutation is causative and not merely
correlative.

25.3.2 Data Preprocessing

Throughout the remainder of this chapter, we will adopt the notation that measure-
ments are stored in an m 
 n matrix X in which each row represents a biological
entity (e.g., a gene, protein, etc.) and each column represents a sample or experi-
ment. Ideally, some rows of X vary across columns due to differences in the sample
or experiments, called interesting variations. However, variation often arises from
technical artifacts in the data processing, called obscuring variations (discussed in
[69]). As a result, preprocessing techniques must be implemented to remove the
technical artifacts before performing an analysis on any biological measurement.

Often, the raw measurements will have dramatically different distributions across
rows (biological factors) or columns (sample or experiment). However, in order to
compare variations across samples, each column in X must have measurements on
the same scale, but the technologies tend to give only relative measurements. There-
fore, many preprocessing techniques strive to scale the measurements to enable
comparison across columns. Many of these techniques assume that if the measure-
ments were not subject to obscuring variation, they would have the same signal
distribution across rows. Currently, the most widely used preprocessing techniques
of this variety are applied to microarray data, robust multi-array average (RMA)
[78] and DNA-chip analyzer (dChip) [145]. Similar techniques are under develop-
ment for SNP-chips, miRNA arrays, methylation arrays, proteomics techniques, and
metabolomics measurements.

While normalization techniques such as RMA correctly put the columns of X on
a comparable scale, technical artifacts may remain to obscure the interesting varia-
tions. For example, even after normalization, significant variations in some rows of
X are often observed across columns that are distinguished only by technical factors
(for example, by array, processing date, technician, etc.) called batch effects (e.g.,
[121, 180]). Several groups have corrected for such batch effects by applying lin-
ear models with covariates that represent the technical variables [44, 83]. However,
because these factors are unknown a priori, other groups have developed algo-
rithms based upon the singular value decomposition to simultaneously estimate the
covariates and correct for the batch effect from the set of measurements [102, 121].
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Nonetheless, it is important to note that no algorithm can correct for batch effects
if the technical covariates match the interesting covariates. For example, if a study
processed all cancer samples on one day and all normal samples on another, it will
always be impossible to distinguish variations due to disease status from those due
to lab differences [12]. Therefore, care should be taken when designing a study or
selecting a data set to randomize the processing of samples.

25.3.3 Data Integration

Because biological systems are extremely complex, measurements from many plat-
forms should be analyzed to capture the biological processes responsible for cancer
[56]. For analysis, the data must be properly integrated into a coherent data set. Once
integrated, analysis algorithms must consider the different range, uncertainties, and
biases in the measured data [76], in addition to the biological relationships between
the different types of data.

Data integration is often achieved by formulating a score or probability of spe-
cific biological events (e.g., genetic mutations, protein interactions, etc.) based upon
the multiple measurements and then applying existing algorithms to these unified
scores to infer the underlying processes inherent in these measurements [76,84,130].
Alternatively, information from additional measurement platforms can be directly
encoded in the analysis algorithm applied to a global measurement data set, such
as microarray measurements. For example, clustering algorithms can incorporate
biological knowledge from multiple data sets to initiate the clusters proposed or to
define the distance function used to separate clusters [132, 149, 182]. Similarly, this
biological information can be encoded as prior distributions in Bayesian algorithms,
such as in Bayesian networks used to infer structure and activity of signaling net-
works [19, 120] or in algorithms leveraging known transcriptional regulation [96].
This inferred structure can then be used in further analysis to identify processes
occurring along specific pathways [21, 163].

Such integrated analysis of multi-platform measurements will ideally improve
inference of the underlying cancer system to facilitate the formulation of novel
biological hypotheses and predictions. Moreover, integrating this wealth of mea-
surements with predictive models will further refine both sources of biological
information. Ideally, integrated algorithms will accurately estimate and predict the
biological processes underlying a patient’s cancer, and therefore, improve predic-
tions of the prognosis and impact of treatment strategies.

25.3.4 Data Analysis

Once the measurements have been preprocessed and integrated, they can be ana-
lyzed to infer the biological factors that underlie cancer development, maintenance,
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and metastasis described in Sect. 25.2. The analysis algorithms typically strive to
infer markers that distinguish normal and cancer samples and to identify the mech-
anisms which induce these differences. The algorithms can be divided into class
comparison algorithms (Sect. 25.3.4.1), clustering algorithms (Sect. 25.3.4.2), and
pattern recognition algorithms (Sect. 25.3.4.3). We focus here on algorithms applied
to microarray data, as most developments have occurred in this area. These algo-
rithms can be used on integrated data as well, however algorithms that address the
differences in molecular components will have greater impact to identify malignant
drivers and, thus, candidate treatment targets for individual cancers.

25.3.4.1 Class Comparison

Class comparison or outcome-related gene finding algorithms estimate differences
between two (e.g., cancer and normal) or more (e.g., cancer types) classes [41]. For
example, these algorithms are often applied to microarray data to infer genes whose
expression differences distinguish the phenotypic classes. Biological processes or
gene expression levels inferred to differ are often used as disease markers. Many
standard inferential analysis techniques are used to identify such differences, includ-
ing t-tests, ANOVA, and regression [7], providing subsets of biological molecules
that are correlated to the disease system, and which should be explored by further
assays and analyses to identify drivers of carcinogenesis. For example, if the class
comparison algorithms identify genes that are commonly expressed in stem cells,
experiments can generate additional data to determine if the measured cells indeed
have stem-like properties, as discussed in Sect. 25.2.6.

Class comparison algorithms are typically implemented in two steps. First, a met-
ric is established to rank the rows of X (often genes). This metric must incorporate
the variability in each row, not merely the magnitude of the difference between the
classes. Therefore, these algorithms often use metrics based upon the t-statistic for
sorting [7, 13, 34]. In the second step, the top rows of this list above a threshold
are retained as having a significant class variability [13, 34]. Ideally, this threshold
value will allow for only a small false discovery rate in class differences, typically
10 � 20% [7, 13, 41].

One issue that has arisen in class comparison in cancer is that the natural varia-
tion in cancer often leads to important entities being overlooked, because they are
notably different from normals only in a subset of the cancers under study. This has
led to the development of outlier profile analysis, which can identify entities that
differ only in a subset of cancer samples when compared to normals [59, 164].

Once the entities that distinguish the classes are identified, it is often desirable
to link these factors to the specific biological processes that are responsible for
inducing the class differences. Often, these algorithms identify sets of genes dif-
ferentially expressed in the classes. The biological function of these genes can then
be established by comparing to lists of these functions encoded in Gene Ontology
using various algorithms (e.g., hypergeometric tests) or prepackaged software (e.g.,
Onto-Express [39]). Enrichment relative to random assortment in the genes in a set
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can indicate the biological mechanisms driving the class distinction, although it is
important to remember that the processes may only be correlative. For instance, in
cancer studies, it is not unusual to find enhancement in cell cycle processes. This is
a reflection of the fact that cancer cells are actively growing, but it does not provide
insight into the mechanisms driving the development of cancer.

25.3.4.2 Clustering

Clustering algorithms can be used in cancer systems biology to identify sets of genes
or samples representative of tumor types. When applied to group rows of X, cluster-
ing algorithms seek groups of biological entities (e.g., genes) that behave similarly
across the columns (samples). Clustering algorithms can also group the columns
of X to identify the samples that are similar (often tumor or tissue type). While
the former analysis is used to identify genes that behave similarly and may be
linked through biological processes active in some samples, the latter identifies
genes whose changes may be indicative of the type of sample (e.g., cancer subtype).
Regardless of the application, there are two main classes of clustering algorithms:
unsupervised algorithms, which use the measurements to define and assign groups
and supervised algorithms, which assign genes or samples to predefined groups
based on additional information [7, 132].

Several unsupervised algorithms, including hierarchical clustering, k-means
clustering, and self-organizing maps (SOM) [123, 132], commonly infer sets of
entities that co-vary within a population. Among the most common algorithms is
agglomerative hierarchical clustering algorithms, which iteratively group pairs or
clusters that are closest by a user-defined metric [43]. Relative similarity is often
represented graphically in a dendrogram, and clusters result from choosing a dis-
tance along the dendrogram to divide the entities into groups. If a fixed number of
clusters is expected, K-means or K-medians clustering can be used. These algo-
rithms first randomly assign measurements from each entity into a cluster and then
iteratively reshuffle the members of the cluster to maximize the inter-cluster distance
between the mean or median value of cluster members [157, 158]. Self-organizing
maps (SOM) are another method to create clusters, and here additional information
can be gained by the relationship between clusters [161]. Unsupervised clustering
algorithms have been extended for microarray data to group genes involved in
inhibitory or activating interactions to implicate regulatory relationships [34].

Supervised clustering (also known as classification or class prediction) is used
to identify groups of entities that differentiate specific classes. These algorithms
are often employed in similar scenarios to class distinction algorithms to identify
the patterns that relate to the observed classes. Whereas class distinction consider
biological entities individually, supervised clustering algorithms infer these patterns
by simultaneously considering groups of biological entities and their interactions
[13]. Typically, supervised algorithms will rely on data divided into a training set
and a test set. The algorithm first finds the entities and their relationships to distin-
guish the classes, and then uses the test set to validate the results. Many supervised
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clustering techniques are adopted from standard algorithms [123, 132], including
notably artificial neural networks [88] and support vector machines (SVM) [27].

Clustering genes can aid in identifying potential clinical multigene biomark-
ers. In addition, ontological categories in genes grouped together may provide
insight into biological processes driving the disease, effectively identifying spe-
cific subprocesses related to the hallmarks of cancer. Gene set enrichment [159]
and other techniques can look for enhancement of ontological categories in clus-
ters. Clustering in samples can identify subtypes of cancer that could correlate with
phenotypic responses beyond standard cancer staging, potentially providing insights
that could improve cancer treatment.

Clustering algorithms will link entities or samples that behave similarly through-
out an entire experiment. However, it is sometimes the case that a group of genes
will be coordinated in transcript levels over only part of an experiment, or that a
series of samples share behavior only across some genes. Biclustering approaches
attempt to address this by identifying subclusters that link subsets of entities and
samples [162]. In this case, comparing inferred subclusters of genes may implicate
molecular differences between individual samples that could be responsible for dif-
ferent therapeutic responses in the measured population, perhaps due to different
drivers of the cancer hallmarks.

25.3.4.3 Pattern Recognition

One weakness in using clustering for analysis of biological data is that entities must
belong to a single cluster. Therefore, these algorithms often cannot represent the
biological reality that molecules such as genes and proteins often have multiple
uses, requiring their assignment to multiple groups when addressing function [118].
To address this, we differentiate clustering (gene in one class) from pattern recog-
nition (gene in multiple classes) here, although these terms are not well separated
in general use. Since genes are reused in multiple processes, pattern recognition
algorithms may be more adept than clustering algorithms at inferring the biologi-
cal processes in cancer. Nonetheless, clustering algorithms remain more adept for
biomarker discovery, which requires finding entities that tie strongly to class.

These pattern recognition algorithms can be viewed as performing matrix decom-
position on X, as in

X D AP; (25.1)

where the rows of P form a set of basis vectors that represent the underlying biolog-
ical behaviors and the columns of A provide the corresponding assignment of genes
to the behaviors. One standard algorithm for such matrix decomposition is principal
component analysis (PCA) [8] . In spite of the wide applicability of PCA for many
scientific applications, the orthogonality requirement on its basis vectors prevents
PCA from representing the overlapping patterns that arise from reuse of genes in
biological processes [118].
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Three algorithms were developed simultaneously to address this problem in the
domains of medical spectral imaging, Bayesian Decomposition (BD) [124], com-
puter vision, Non-negative Matrix Factorization (NMF) [101], and statistics,
Bayesian Factor Regression Modeling (BFRM) [31]. BD and NMF algorithms
rely on positivity in the A and P matrices, and both have been applied to microarray
data analysis [91,118]. BFRM extends the model of Eq. 25.1 by allowing additional
terms related to phenotype [31]. From a statistical point of view, BD and BFRM
have an advantage in that the Markov chain Monte Carlo procedure underlying
them is less prone to becoming trapped at local maxima in the probability space. In
addition, they allow incorporation of biological knowledge in the decomposition,
such as known pathways or transcriptional coregulation in BD [96] or phenotypic
measurements in BFRM.

The complexity of gene regulation, with many if not all genes having multi-
ple transcription factors regulating their expression, plays an especially important
role in cellular responses to cell signaling changes. The complex signaling net-
works (e.g., Fig. 25.3) drive overlapping sets of transcriptional regulators, which
in turn regulate overlapping sets of genes. Isolating the transcriptional signature of
one factor requires solving Eq. 25.1, so that the correct set of genes are grouped
together. These then become surrogates for estimation of transcription factor activ-
ity, which can be integrated with other measurements (e.g., proteomics, receptor
status) to improve estimations of signaling changes. Such signaling changes, often
arising from mutations or epigenetics, play a key role in driving most of the cancer
hallmarks.

25.4 Discussion

Cancer results from a series of events, usually mutations or epigenetic modifica-
tions, that lead to undesirable gain or loss of protein activity. In each individual,
the driving mutations of the cancer differ slightly. Nonetheless, these mutations are
linked through their effects on the hallmarks described in Sect. 25.2.1. The interac-
tion of the biological processes driving cancer development and growth is complex,
and often involves feedback between the heterogeneous components of a tumor and
its environment, such as hormonal changes in the individual. As a result, the pro-
cesses responsible for an individual’s cancer are often difficult to identify, and are
even more challenging to target therapeutically, requiring a systems approach to
understanding this disease.

The field of systems biology offers opportunities for quantitatively testing and
formulating hypotheses about the underlying system-wide processes occurring in
tumorigenesis. To date, most effort has focused on developing algorithms to iden-
tify differences between tumor subtypes and normal tissues on the basis of a single
type of measurement in order to implicate the biological processes that are active in
cancer. However, due to the complexity of the system, greater insight will be gleaned
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from algorithms that can infer biological processes from multiple measurements of
different molecular species.

Another approach, predictive computational models, provides an additional
source of experiments to integrate, test, and propose biological theories about the
cancer system. Traditional computational models rely on biochemical models based
on the master chemical equation in its stochastic form suitable for low concentra-
tions [61] and its successors [105]. More novel models rely on graphical models of
networks of interacting proteins or networks of phenomenological responses (i.e.,
upregulation of a gene), with Bayesian Networks being the most widely used [139].
Such models provide a simulation of the system, potentially allowing in silico test-
ing of hypotheses, which should streamline development of therapy. However, these
models presently are too incomplete to handle the complexity of the full cancer
system.

To fully utilize the measurements of the cancer system, systems biology must
formulate data integration algorithms that incorporate data from multiple tech-
nologies and prior information from biological studies in predictive mathematical
models. This combination of information will provide the algorithm with the statis-
tical power to infer biological activity in tumorigenesis in spite of the complexity
underlying the entire cancer system. Integrated algorithms could quantitatively
identify the driving mutations or aberrant processes in an individual cancer and,
therefore, reach the fundamental goal of personalized medicine by suggesting an
individualized treatment plan.
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Chapter 26
Comparative Genomics

Xuhua Xia

Abstract Comparative genomics was previously misguided by the naı̈ve dogma
that what is true in E. coli is also true in the elephant. With the rejection of such a
dogma, comparative genomics has been positioned in proper evolutionary context.
Here I numerically illustrate the application of phylogeny-based comparative meth-
ods in comparative genomics involving both continuous and discrete characters to
solve problems from characterizing functional association of genes to detection of
horizontal gene transfer and viral genome recombination, together with a detailed
explanation and numerical illustration of statistical significance tests based on the
false discovery rate (FDR). FDR methods are essential for multiple comparisons
associated with almost any large-scale comparative genomic studies. I discuss the
strength and weakness of the methods and provide some guidelines on their proper
applications.

26.1 Introduction

The development of comparative genomics predates the availability of genomic
sequences. It has long been known that organisms are related, with many homol-
ogous genes sharing similar functions among diverse organisms. For example, the
yeast IRA2 gene is homologous to the human NF1 gene, and the functional equiv-
alence of the two genes was demonstrated by the yeast IRA2 mutant being rescued
by the human NF1 gene [5]. This suggests the possibility that simple genomes can
be used as a model to study complicated genomes. A multitude of such demonstra-
tions of functional equivalence of homologous genes across diverse organisms has
led to the dogmatic assertion that what is true in E. coli is also true in the elephant
[attributed to Jacques Monod, [33], p. 290].
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It is the realization that what is true in E. coli is often not true in the elephant
that has brought comparative genomics into the proper evolutionary context. The
impact of this realization on comparative genomics is best illustrated by a simple
example. Suppose we compare a Cadillac Deville and a Dodge Caravan. The two
are similar in functionality except that the Caddy warns the driver when it is back-
ing towards an object behind the car. What is the structural basis of this warning
function? Nearly all structural elements in the Caddy have their ‘homologues’ in
the Dodge Caravan except for the four sensors on the rear bumper. This would lead
us to quickly hypothesize that the four sensors are associated with the warning func-
tion, which turns out to be true. Now if we replace the Dodge Caravan with a baby
stroller, then the comparison will be quite difficult because a stroller and a Caddy
differ structurally in numerous ways and any structural difference could be respon-
sible for the warning function. We may mistakenly hypothesize that the rear lights,
the antenna or the rear window defroster in the Caddy, which are all missing in the
stroller, may be responsible for the warning function. To test the hypotheses, we
would destroy the rear lights, the antenna, the rear window defroster, etc., one by
one, but will get nothing but negative results. What could be even worse is that,
when destroying the rear lights, we accidentally destroy a part of the electric system
in such a way that the warning function is lost, which would mislead us to conclude
that the rear lights are indeed part of the structural basis responsible for the warning
function-an ‘experimentally substantiated’ yet wrong conclusion. A claim that what
is true in E. coli is also true in the elephant is equivalent to a claim that what is true
in the stroller is also true in the Caddy. It will take comparative genomics out of its
proper conceptual framework in evolutionary biology.

Evolutionary theory states that all genetic variation, including genomic varia-
tion, results from two sculptors of nature, i.e., mutation (including recombination)
and selection. Thus, any genomic difference can be attributed to differences in dif-
ferential mutation and selection pressure. This allows us not only to characterize
evolutionary changes along different evolutionary lineages, but also to seek evo-
lutionary processes underlying the character changes. In particular, evolutionary
biology provides the proper comparative methods [7,20,28,55,71] for comparative
genomics.

In what follows, I will numerically illustrate the comparative methods for analyz-
ing genomic features that are either continuous or discrete. Large-scale comparative
genomic studies almost always lead to multiple comparisons. So I will also illustrate
the computation involved in controlling for false discovery rate which represents a
key development in recent studies of statistical significance tests [8, 9]. One evolu-
tionary process that has shaped bacterial genomes is the horizontal gene transfer,
and the phylogenetic incongruence test used to detect such horizontal gene transfer
events will be illustrated. The last section covers comparative genomic methods for
detecting recombination events and mapping recombination points.

While molecular phylogenetics is often essential in comparative genomics, the
subject has been treated fully elsewhere [22, 50, 66]. Simple overviews of the sub-
ject are also available [4, 66, 87]. A more egregious omission in this chapter is
genome rearrangement, but interested readers may consult the publications of my
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colleague at University of Ottawa, David Sankoff, who is a pioneer in the field
and wrote excellent reviews on the subject [69, 70]. A large-scale empirical study
of genome rearrangement in yeast species following a whole-genome duplication
(WGD) event, featuring a meticulous reconstruction of gene order of the ancestral
genome before WGD, has recently been published [26].

26.2 The comparative Method for Continuous Characters

26.2.1 Variation in Genomic GC% Among Bacterial Species

Studies of the variation in genomic GC% among bacterial species serve as the
easiest entry point into comparative genomics. Wide variation in genomic GC%
is observed in bacterial species. A popular selectionist hypothesis is that bacterial
species living in high temperature should have high genomic GC% for two rea-
sons. First, an increased GC usage, with more hydrogen bonds between the two
DNA strands, would stabilize the physical structure of the genome [42,64]. Second,
high temperature would need more thermostable amino acids [3] which are typi-
cally coded by GC-rich codons. This implies that genomic GC% should increase
with optimal grow temperature (OGT) in bacterial species. While this prediction is
not supported, either based on results of sequence analysis [24] or by experimental
studies [94], it has been found that GC% of rRNA genes is highly correlated with
OGT [24, 30, 49, 79], [18, p. 535]. In particular, when the loop and stem regions
of rRNA are studied separately, it was found that the hyperthermophilic bacterial
species not only have higher proportion of GC in the stems but also longer stems
[80]. In contrast, the GC% in the loop region correlates only weakly with OGT.
Because stems function to stabilize the RNA secondary structure which is function-
ally important, these results are consistent with the hypothesized selection for RNA
structural stability in high environmental temperatures.

When studying the relationship between two quantitative variables, such as OGT
and stem GC%, a phylogeny-based comparison is crucially important to avoid vio-
lation of statistical assumptions. Figure 26.1 illustrates a case in which one may
mistakenly conclude a positive relationship between X and Y when the 16 data
points are taken as independent. A phylogenetic tree superimposed on the points
allows us to see immediately that the data points are not independent. All eight
points in the left share one common ancestor, so do the eight points in the right. So
the superficial association between X and Y could be due to a single coincidental
change in X and Y in one of the two common ancestors. One needs to use the
phylogeny-based method, such as independent contrasts [20], [22, pp. 432–459] or
the generalized least-squares method [46, 56, 57] when assessing the relationship
between quantitative variables.

While the derivation and mathematical justification of the phylogeny-based com-
parative method is quite complicated, the most fundamental assumption is the
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Fig. 26.1 Phylogeny-based comparison is important for evolutionary studies. The data points,
when wrongly taken as independent, would result in a significant positive but spurious relationship
between Y and X (which represent any two continuous variables, e.g., GC% and OGT)

Brownian motion model [22, pp. 391–414] which appears reasonable for neutrally
evolving continuous characters. Here I illustrate the actual computation of indepen-
dent contrasts with a numerical example to facilitate its application to comparative
genomics, prompted by my personal belief that one generally cannot interpret the
results properly if one does not know how the results are obtained.

Suppose a phylogeny of eight bacterial species whose OGT and GC% of rRNA
genes have been measured, with the eight species referred to hereafter as s1 to s8
from left to right in Fig. 26.2. The computation is recursive, and is exactly the same
for any quantitative variable. So we will only illustrate the computation involving
OGT. One may repeat the computation involving GC% as an exercise.

The computation is of three steps. First, we recursively compute the ancestral
values for internal (ancestral) nodes x1 to x6. We treat these ancestors as if they
were new taxa and compute the branch lengths leading to these ancestral nodes. We
may start with the two sister species s1 and s2. The OGT of their ancestor (x1) is a
weighted average of the OGT values for s1 and s2 (weighted by the branch lengths):

OGTx1
D �2

�1 C �2

OGTs1
C �1

�1 C �2

OGTs2
D 3 
 70

4
C 1 
 74

4
D 71 (26.1)

One may note that the weighting scheme in (26.1) is such that the ancestral state
is more similar to the state of the descendent node with a shorter branch than the
other with a longer branch. This makes intuitive sense as a descendent node diverged
much from the ancestor should be less reliable for inferring the ancestral state than
a descendent node diverged little from the ancestor.
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Fig. 26.2 A phylogeny of eight bacterial species (s1–s8) each labeled with optimal growth tem-
perature (OGT) and GC% of the stem region of rRNA genes in the format of ‘OGT, GC%’. The
branch lengths (v1 � v14) are next to the branches. Ancestral nodes are designated by x1 to x6

We now treat x1 as if it is a new taxon and compute the branch lengths leading
to it from its ancestor (x5) as

�x1
D �1�2

�1 C �2

C �9 D 1 
 3
1C 3 C 3 D 3:75 (26.2)

We do the same for x2 to x4, and the associatedOGTxi and vxi values are listed
in Table 26.1. The computation of the ancestral states for x5 and x6 is similar to that
in (26.1), e.g.,

OGTx5
D vx2

OGTx1

vx1
C vx2

C vx1
OGTx2

vx1
C vx2

D 3:9 
 71
7:65

C 3:75 
 78:4
7:65

D 74:63 (26.3)

Now we can take the second step to compute the unweighted contrasts (desig-
nated by C) as well as the sum of branch lengths linking the two contrasted taxa.
With eight species, we have seven (D n� 1, where n is the number of species) con-
trasts (first column in Table 26.2). These unweighted contrasts, as well as the sum
of branch lengths (SumV) associated with the contrasts, are illustrated for those
between s1 and s2 and between x1 and x2 for OGT in (26.4). All the computed
unweighted contrasts for both OGT and GC%, as well as the associated SumV
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Table 26.1 Computed
ancestral states (OGTxi and
GCxi ) and the branch lengths
(vxi ) for the six ancestral
nodes

xi OGTxi vxi GCxi

x1 71.0000 3.7500 51.2500
x2 78.4000 3.9000 52.0000
x3 87.6000 6.6000 64.0000
x4 94.4444 3.8889 51.6667
x5 74.6275 4.9118 51.6176
x6 91.9068 5.4470 56.2394

Table 26.2 Unweighted and weight contrasts for the two quantitative variables OGT and GC%

Contrast Unweighted Contrasts SumV Weighted Contrasts
OGT GC% WCOGT WCGC%

s1 � s2 �4:0000 �5:0000 4:0000 �2:0000 �2:5000
s3 � s4 �4:0000 �20:0000 10:0000 �1:2649 �6:3246
s5 � s6 �4:0000 �10:0000 15:0000 �1:0328 �2:5820
s7 � s8 �4:0000 �15:0000 9:0000 �1:3333 �5:0000
x1 � x2 �7:4000 �0:7500 7:6500 �2:6755 �0:2712
x3 � x4 �6:8444 12:3333 10:4889 �2:1134 3.8082
x5 � x6 �17:279 4:6218 10:3588 �5:3687 �1:4360

values, are listed in columns 2–4 in Table 26.2.

Cs1�s2OGT D OGTs1
�OGTs2

D 70 � 74 D �4
SumVCs1�s2

D �1 C �2 D 1C 3 D 4
Cx1�x2OGT D OGTx1

�OGTx2
D 71 � 78:4 D �7:4

SumVCx1�x2
D �x1

C �x2
D 3:75C 3:9 D 7:65

(26.4)

We can now take the third step of obtaining independent weighted contrasts (WC)
by dividing each unweighted contrasts by the square root of the associated SumV.
For example,

WCs1�s2OGT D Cs1�s2OGTp
Sum Vs1�s2

D �4p
4
D �2

WCx1�x2OGT D Cx1�x2OGTp
Sum Vx1�x2

D �7:4p
7:65

D �2:6755
(26.5)

These independent contrasts for OGT thus computed, together with those for
GC%, are shown in the last two columns in Table 26.2. Now we need to assess the
relationship between WCOGT and WCGC%, specifically whether an increase in OGT
will result in an increase in GC%, i.e., whether the two are positively correlated.
There are two ways to assess the relationship. The first is parametric by performing
a linear regression of WCGC% on WCOGT , forcing the intercept equal to 0. The reason
for a zero intercept is that we do not expect a change in GC% if there is no change
in OGT. The resulting slope is 0.4647. The regression accounts for 11.17% of the
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variation in WCGC%. The square root of 11.17%, equal to 0.3342, is the correlation
coefficient between the two. Of course you may also do a regression of WCOGT on
WCGC%, which will result in a slope of 0.2403. These slopes and the correlation
coefficients are in the default output in the CONTRAST program in PHYLIP [21].
The relationship between WCOGT and WCGC%, although positive, is not significant
(p D 0:4249).

One may also assess the relationship between WCOGT and WCGC% by using non-
parametric tests. For example, we expect half of the (WCOGT , WCGC%) pairs to have
the same sign (i.e., both positive or both negative) and the other half to have differ-
ent signs. We observe six pairs to have the same sign and one pair to have different
signs (Table 26.2). So we have

�2 D .6 � 3:5/2
3:5

C .1 � 3:5/2
3:5

D 3:5714 (26.6)

With one degree of freedom, the relationship is not significant (p D 0:05878).
Although the method of independent contrasts has been available for many

years, many studies, even recent ones, still fall into the same trap, as illustrated in
Fig. 26.1, of concluding a significant relationship between X and Y without taking
the phylogeny into account. A recent claim of a strong relationship between intron
conservation and intron number [32] represents one of such studies.

One shortcoming of the method of independent contrasts is that the value of the
ancestral state is always somewhere between the two values of the descendents.
This implies that it cannot detect directional changes over time. For example, if the
ancestor is small in body size and all descendents have increased in body size over
time, then the Brownian motion model assumed by the independent contrast method
is no longer applicable. In such cases, one should use the generalized least square
method [46, 56, 57].

When the method of independent contrasts was applied to the real data to assess
the relationship between bacterial OGT and GC% of rRNA stem sequences and
between OGT and rRNA stem lengths, the two relationships are both statistically
significant [80]. Thus, the selectionist hypothesis is supported, but it accounts for
only a very small fraction of variation in the genomic GC% among bacterial species,
which calls for an alternative hypothesis for the variation in genomic GC%.

The mutation hypothesis of genomic GC% variation [48, 76, 94, 96] invokes
biased mutation in different bacterial species to explain genomic variation in GC%,
i.e., GC-rich genomes are the result of GC-biased mutation. One prediction from the
mutation hypothesis is that the third codon position should increase more rapidly
with the genomic GC% than the first codon position which in turn should have
its GC% increase more rapidly with the genomic GC% than the second codon
position. The reason for this prediction is that the third codon positions are little
constrained functionally because most substitutions at the third codon positions are
synonymous. Some nucleotide substitutions at the first codon positions are syn-
onymous, but most are nonsynonymous. All nucleotide substitutions at the second
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Fig. 26.3 Correlation of GC% between genomic DNA and first, second and third codon positions
[48]. While the actual position of the points may be substantially revised with new genomic data
(e.g., the GC% for the first, second and third codon positions for Mycoplasma capricolum is 35.8%,
27.4%, and 8.8% based on all annotated CDSs in the genomic sequence), the general trend remains
the same

codon positions are nonsynonymous and typically involve rather different amino
acids [83,91]. The empirical results [48] strongly support this prediction (Fig. 26.3).

The pattern in Fig. 26.3, while consistent with the mutation hypothesis, has
resulted in two misconceptions. First, the pattern shown by the third codon position
is often interpreted to reflect mutation bias. This interpretation is incorrect because
the third codon position is subject to selection by differential availability of tRNA
species [16, 82, 86, 88, 90]. We may contrast a GC-rich Streptomyces coelicolor and
a GC-poor Mycoplasma capricolum as an illustrative example. M. capricolum has
no tRNA with a C or G at the wobble site for four-fold codon families (Ala, Gly,
Pro, Thr and Val), i.e., the translation machinery would be inefficient in translat-
ing C-ending or G-ending codons. This implies selection in favour of A-ending or
U-ending codons and will consequently reduce GC% at the third codon position.
This most likely has contributed to the low GC% at the third codon position in
M. capricolum. In contrast, most of the tRNA genes translating the five four-
fold codon families in the GC-rich S. coelicolor have G or C at the wobble site,
and should favour the use of C-ending or G-ending codons. This most likely has
contributed to the high GC% at the third codon position in S. coelicolor. The
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same pattern is observed for two-fold codon families. The most conspicuous one
is the Gln codon family (CAA and CAG). There is only one tRNAGln gene in
M. capricolum with a UUG anticodon favouring the CAA codon. In contrast, there
are two tRNAGln in S. coelicolor, both with a CUG anticodon favouring the CAG
codon. Thus, the high slope for the third codon position in Fig. 26.3 is at least par-
tially attributable to the tRNA-mediated selection. Relative contribution of mutation
and tRNA-mediated selection to codon usage has been evaluated in several recent
studies [16, 86, 88, 90].

Second, the observation that GC% of the third codon position increases with
genomic GC% is sometimes taken to imply that the frequency of G-ending and
C-ending codons will increase with genomic GC% or GC-biased mutation [40].
This is not generally true. Take the arginine codons for example. Given the tran-
sition probability matrix for the six synonymous codons shown in Table 26.3, the
equilibrium frequencies (�) for the six codons are

�AGA D 1

2k2 C 3k C 1
�AGG D �CGA D �CGT D k

2k2 C 3k C 1 (26.7)

�CGC D �CGG D k2

2k2 C 3k C 1

The three solutions correspond to the number of GC in the codon, with AGA
having one, AGG, CGA and CGT having two, and CGC and CGG having three
G or C. One may note that the G-ending codon AGG has the same equilibrium
frequency as that of the A-ending CGA and the T-ending CGT. Thus, we should not
expect A-ending or T-ending codons to always decrease, or G-ending and C-ending
codons always increase, with increasing genomic GC% or GC-biased mutation. In
fact, according to the solutions in (26.7), AGG, CGA, and CGT will first increase
with k until k reaches

p
2=2, and will then decrease with k when k >

p
2=2.

Table 26.3 Transition probability matrix for the six synonymous arginine codons, with ˛ for tran-
sitions (C$ T and A$ G), ˇ for transversions, and k modeling AT-biased mutation (0 � k � 1)
or GC-biased mutation (k > 1). We ignore nonsynonymous substitutions because nonsynonymous
substitution rate is often negligibly low compared to synonymous rate. The diagonal is constrained
by the row sum equal to 1

CGT CGC CGA CGG AGA AGG

CGT k˛ ˇ kˇ 0 0
CGC ˛ ˇ ˇ 0 0
CGA ˇ kˇ k˛ ˇ 0
CGG ˇ ˇ ˛ 0 ˇ

AGA 0 0 kˇ 0 k˛

AGG 0 0 0 kˇ ˛
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One may ask why the phylogeny-based comparison was not used for character-
izing the relationship between codon GC% and genomic GC% in the 11 species
in Fig. 26.3. The reason is that the two variables change very fast relative to the
divergence time among the studied species, i.e., phylogenetic relatedness among the
11 species is a poor predictor of the codon GC% or genomic GC%. That genomic
GC% has little phylogenetic inertia is generally true in prokaryotic species [93].
In such cases, one may assume approximate data independence and perform a
phylogeny-free analysis. Another study that leads to insight into the relationship
between UV exposure and GC% in bacterial genomes [73], which may be the first
comparative genomic study, is also not phylogeny-based.

26.3 DNA Methylation, CpG Dinucleotide Frequencies
and GC Content

CpG deficiency has been documented in a large number of genomes covering a
wide taxonomic distribution [15, 35–37, 53]. DNA methylation is one of the many
hypotheses proposed to explain differential CpG deficiency in different genomes
[10, 62, 77]. It features a plausible mechanism as follows. Methyltransferases in
many species, especially those in vertebrates, appear to methylate specifically the
cytosine in CpG dinucleotides, and the methylated cytosine is prone to mutate
to thymine by spontaneous deamination [23, 44]. This implies that CpG would
gradually decay into TpG and CpA, leading to CpG deficiency and reduced genomic
GC%. Different genomes may differ in CpG deficiency because they differ in
methylation activities, with genomes having high methylation activities exhibiting
stronger CpG deficiency than genomes with little or no methylation activity.

In spite of its plausibility, the methylation-deamination hypothesis has several
major empirical difficulties (e.g., [15]), especially in recent years with genome-
based analysis (e.g., Goto et al. 2000). For example, Mycoplasma genitalium does
not seem to have any methyltransferase and exhibits no methylation activity, yet
its genome shows a severe CpG deficiency. Therefore, the CpG deficiency in
M. genitalium, according to the critics of the methylation-deamination hypothesis,
must be due to factors other than DNA methylation.

A related species, M. pneumoniae, also devoid of any DNA methyltransferase,
has a genome that is not deficient in CpG. Given the difference in CpG deficiency
between the two Mycoplasma species, the methylation hypothesis would have pre-
dicted that the M. genitalium genome is more methylated than the M. pneumoniae
genome, which is not true as neither has a methyltransferase. Thus, the methylation
hypothesis does not seem to have any explanatory power to account for the variation
in CpG deficiency, at least in the Mycoplasma species.

These criticisms are derived from phylogeny-free reasoning. When phylogeny-
based comparisons are made, the Mycoplasma genomes become quite consistent
with the methylation hypothesis [85]. First, several lines of evidence suggest that
the common ancestor of M. genitalium and M. pneumoniae have methyltransferases
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Fig. 26.4 Phylogenetic tree of Mycoplasma pneumoniae, M. genitaliums, and their relatives,
together with the presence (+) or absence (�) of CpG-specific methylation, PCpG=.PCPG/ as
a measure of CpG deficiency, and genomic GC%. M. pneumoniae evolves faster and has a longer
branch than M. genitalium

methylating C in CpG dinucleotides, and should have evolved strong CpG defi-
ciency and low genomic GC% as a result of the specific DNA methylation. Methy-
lated m5C exists in the DNA of a close relative, Mycoplasma hyorhinis [61],
suggesting the existence of methyltransferases in M. hyorhinis. Methyltransferases
are present in Mycoplasma pulmonis which contains at least four CpG-specific
methyltransferase genes [17]. Methylatransferases are also found in all surveyed
species of a related genus, Spiroplasma [52]. These lines of evidence suggest that
methyltransferases are present in the ancestors of M. genitalium and M. pneumoniae.

Second, the methyltransferase-encoding M. pulmonis genome is even more defi-
cient in CpG and lower in genomic GC% than M. genitalium or M. pneumoniae,
consistent with the methylation hypothesis (Fig. 26.4). It is now easy to under-
stand that, after the loss of methyltransferase in the ancestor of M. genitalium and
M. pneumoniae (Fig. 26.4), both genomes would begin to accumulate CpG dinu-
cleotides and increase their genomic GC%. However, the evolutionary rate is much
faster in M. pneumoniae than in M. genitanlium based on the comparison of a large
number of protein-coding genes [85]. So M. pneumoniae regained CpG dinucleotide
and genomic GC% much faster than M. genitalium. In short, the Mycoplasma
data that originally seem to contradict the methylation hypothesis actually pro-
vide strong support for the methylation hypothesis when phylogeny-based genomic
comparisons are made.

One might note that Ureaplasma urealyticum in Fig. 26.4 is not deficient in
CpG because its PCpG=.PCPG/ ratio is close to 1, yet its genomic GC% is the
lowest. Has its low genomic GC% resulted from CpG-specific DNA methylation?
If yes, then why doesn’t the genome exhibit CpG deficiency? It turns out that
U. urealyticum has C-specific, but not CpG-specific, methyltransferase, i.e., the
genome of U. urealyticum is therefore expected to have low CG% (because of
the methylation-mediated C ! T mutation) but not a low PCpG=.PCPG/ ratio.
The methyltransferase gene from U. urealyticum is not homologous to that from
M. pulmonis.
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26.4 Comparative Genomics and Comparative Methods
for Discrete Characters

A genome typically encodes many genes. The presence or absence of certain
genes, certain phenotypic traits and environmental conditions jointly represent a
major source of data for comparative genomic analysis. These binary data are best
analyzed by comparative methods for discrete data.

A total of 896 bacterial genomes and 63 archaea genomes have been made
available for research through Entrez as of May 21, 2009. In addition to genomic
GC that can be computed as soon as the sequences are available, each sequenc-
ing project also delivers a list of genes in the sequenced genome, identified by
one of two categories of methods, i.e., by checking against the ‘gene dictionary’
through homology search, e.g., BLAST [1, 2] or by computational gene prediction,
e.g., GENSCAN [13, 14]. The availability of such annotated genoes facilitates the
large-scale comparative genomics illustrated in Fig. 26.5.

The comparison in Fig. 26.5, albeit in a very small scale, can immediately lead to
interesting biological questions. First, Escherichia coli and Klebsiella pneumoniae
have genes coding proteins for lactose metabolism, but others do not. This leads to
at least three possible evolutionary scenarios. First, lactose-metabolizing function
may be absent in the ancestor A (Fig. 26.5), but (1) gained along lineage B and
lost in lineage F and G or (2) gained independently along lineage E and lineage H
(e.g., by lateral gene transfer or LGT). The third possible scenario is that the function
is present in the ancestor A, but lost in all species except for lineages E and H.

If lactose-metabolizing genes are frequently involved in LGT, then we should
expect the gene tree built from the lactose operon genes to be different from the

Fig. 26.5 Phylogeny-based comparative bacterial genomics, with C=� indicating the pres-
ence/absence of gene-mediated functions. Modern bacterial comparative genomics typically would
have thousands of columns each representing the presence/absence of one gene function as well
as many environmental variables of which only a habitat variable is shown here. Modified from
Ochman et al. [54]
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Fig. 26.6 DNA sequence data for significance tests of two alternative topologies

Table 26.4 Phylogenetic incongruence tests with maximum likelihood (ML) and maximum par-
simony (MP) methods. lnL1 and lnL2 are site-specific log-likelihood values based on the F84
model and T1 and T2 (Fig. 26.6), respectively, and NC1 and NC2 are the minimum number of
changes required for each site given T1 and T2, respectively

Site ML MP
lnL1 lnL2 NC1 NC2

1 �4:0975 �4:0990 1 1
2 �2:0634 �2:7767 0 0
3 �5:1147 �7:7335 1 2
4 �1:9481 �2:6238 0 0
5 �3:2142 �5:0875 1 2
6 �3:2142 �5:0875 1 2
7 �2:0634 �2:7767 0 0
8 �2:3938 �3:2626 0 0
9 �3:1090 �3:8572 1 2

species tree, which is typically approximated by a tree built from many house-
keeping genes. Is the lactose operon gene tree significantly different from the
species tree?

Suppose we have the sequence data (Fig. 26.6) from housekeeping genes, a
species tree .T1/ and a lactose operon gene tree .T2/. We wish to test whether
T1 is significantly better than T2 given the housekeeping gene sequences, with
the null hypothesis being that T2 is just as good as T1. Both the maximum parsi-
mony (MP) and the maximum likelihood (ML) methods have been used for such
significance tests.

For the ML method, we compute the log-likelihood (lnL) for each of the nine
sites (Fig. 26.6) given T1 and T2, respectively (lnL1 and lnL2 for T1 and T2, respec-
tively, Table 26.4). A simple numerical illustration of computing site-specific lnL
can be found in Xia [66, pp. 279–280]. A paired-sample t-test can then be applied
to test whether mean lnL1 is significantly different from mean lnL2. For our data in
Table 26.4, t D 4:107, DF D 8, p D 0:0034, two-tailed test). So we reject the null
hypothesis and conclude that the lactose operon gene tree (T2) is significantly worse
than the species tree (T1). A natural explanation for the phylogenetic incongruence
is LGT.

For the MP method, we compute the minimum number of changes (NC) for
each site given T1 and T2 (Fig. 26.6), respectively (NC1 and NC2 for T1 and T2,
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respectively, Table 26.4). A simple numerical illustration of computing site-specific
NC can be found in Xia [66, pp. 272–275]. We can then perform a paired-sample
t-test as before to test whether mean NC1 is significantly smaller than NC2, in
one of three ways. The first is to use the entire nine pairs of data, which yields
t D �2:5298, DF D 8, p D 0:0353, and a decision to reject the null hypothesis
that T1 and T2 are equally good at the 0.05 significance level, i.e., T1 is significantly
better than T2. Second, we may use only the five polymorphic sites in the paired-
sample t-test, which would yield t D �4, DF D 4, and p D 0:0161. This leads
to the same conclusion. The third is to use only the four informative sites which is
however inapplicable in our case because we would have four NC1 values all equal
to 1 and four NC2 values all equal to 2, i.e., the variation in the difference is zero.

When the phylogenetic incongruence test is applied to real lactose operon data,
it was found that the lactose operon gene tree is somewhat compatible to the species
tree, and the case for LGT is therefore not strong [74]. This suggests the possibility
that the lactose operon was present in the ancestor, but has been lost in a num-
ber of descendent lineages. In contrast, the urease gene cluster, which is important
for long-term pH homeostasis in the bacterial gastric pathogen, Helicobacter pylori
[63, 92], generate genes trees significantly different from the species tree (unpub-
lished result). This suggests that the urease gene cluster is involved in LGT and
has implications in emerging pathogens. For example, many bacterial species pass
through our digestive system daily, and it is conceivable that some of them may
gain the urease gene cluster and become acid-resistant, with the consequence of one
additional pathogen for our stomach.

The second type of biological questions one can derive from Fig. 26.5 is func-
tional association between genes. We note that Type II ENase (restriction endonu-
clease) is always accompanied by the same type of MTase (methyltransferase)
recognizing the same site (Fig. 26.5). Patterns like this allow us to quickly iden-
tify enzymes that are partners working in concert. ENase cuts the DNA at specific
sites and defends the bacterial host against invading DNA phages. MTase modifies
(methylates) the same site in the bacterial genome to prevent ENase from cutting
the bacterial genome. Obviously, ENase activity without MTase is suicidal, so the
two must both be present. This also explains why the activity of many ENases
depends on S-adenosylmethionine (AdoMet) availability. AdoMet always serves
as the methyl donor for MTase. Without AdoMet, the restriction sites in the host
genome will not be modified even in the presence of MTase because of the lack
of the methyl donor, and ENase activity will then kill the host. So it is selectively
advantageous for ENase activity to depend on the availability of AdoMet. Although
rare, MTase can be present without the associated ENase. For example, E. coli pos-
sesses two unaccompanied MTases, Dam and Dcm. Some bacteriophages carry one
or more MTases to modify their own genome so as to nullify the hostile action of
the host ENases.

Sometimes one may find the presence of orthologous genes in different species
but the function associated with the gene is missing in some species. Such is
the case of ERG genes involved in sterol metabolism. Many species, including
Drosophila melanogaster and Caenorhabditis elegans, share orthologous genes
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involved in de novo sterol synthesis [78], but D. melanogaster and C. elegans have
lost their ability to synthesize sterols de novo, although their ERG orthologs are
still under strong purifying selection revealed by a much lower nonsynonymous
substitution rate than the synonymous substitution rate. Further microarray stud-
ies demonstrated a strong association between the orthologs of ERG24 and ERG25
in D. melanogaster and genes involved in ecdysteroid synthesis and in intracellu-
lar protein trafficking and folding [78]. This suggests that the ERG genes in D.
melanogaster have diverged and evolved new functions.

Another example in which a phylogenetic backdrop facilitates the study of evo-
lutionary mechanisms involves the translation initiation. All molecular biology
textbooks tell us that prokaryotes use the matching of the Shine-Dalgarno (SD)
sequence in the mRNA and the anti-SD sequence in the small subunit rRNA to locate
the translation initiation site, whereas eukaryotes use the Kozak initiation consensus
to locate the translation initiation site. This would constitute a great piece of evi-
dence for creationists to argue for independent creation. However, it is possible that
the ancient organisms may have evolved these two translation initiation recognition
mechanisms in parallel, and both might have contributed to the accurate localiza-
tion of the translation initiation site. It is remarkable that some ancient lineages
of prokaryotes living in deep sea hydrothermal vents still retain both mechanisms
(unpublished results).

Mapping genes and gene functions to a phylogeny has revealed the loss of an
essential single-copy Maelstrom gene in fish, and a plausible explanation is that the
essential function has been fulfilled by a non-homologous gene [97]. Such find-
ings that a specific molecular function can be performed by evolutionarily unrelated
genes suggest a fundamental flaw in research effort to identify the minimal genome
by identifying shared orthologous genes [47]. The rationale for such an approach is
this. Suppose a minimal organism needs to perform three essential functions des-
ignated x, y, z, and three different genes, designated A, B, C, encode products that
perform these three functions. If we have a genome (G1) with five genes A, B, C,
D, E and another genome (G2) with four genes A, B, C, F, with genes of the same
letter being orthologous, then shared orthologous genes between G1 and G2 are A,
B, C which would be a good approximation of the minimal genome. In reality, it is
possible that G1D fA, D, Eg for functions x, y, z and G2D fA, C, Fg for functions
x, y, z. Both are already minimal genomes, but the intersection of G1 and G2 is only
A which is a severe underestimation of a minimal genome. Creating a cell with such
a ‘minimal’ genome is doomed to fail.

The third type of questions one can derive from Fig. 26.5 is the association
between gene function and environmental variables. Note that Klebsiella pneumo-
niae and Serratia marcescens produce urease (Fig. 26.5). Both species can generate
acids by fermentation leading to acidification of their environment. The presence of
urease, which catalyzes urea to produce ammonia, can help maintain cytoplasmic
pH homeostasis and allow them to tolerate environmental pH of 5 or even lower.
Thus, comparative genomics can help us understand gene functions in particular
environmental conditions.
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Urease gene cluster serves as one of the two key acid-resistant mechanisms in
the bacterial pathogen Helicobacter pylori in mammalian stomach, with the other
mechanism being a positively charged cell membrane that alleviates the influx
of protons into cytoplasm. The latter mechanism is established by comparative
genomics between H. pylori and its close relatives as an adaptation to the acidic
environment in the mammalian stomach [92].

The second and the third type of questions involve the same statistical problem,
i.e., the identification of association either between two genes (e.g., between a type
II ENase and a type II MTase) or between a gene and an environmental variable
(e.g., between urease production and the habitat). A statistician without biological
background might use a 2 
 2 contingency table (i.e., NC=C; NC=�; N�=C; N�=�)
and Fisher’s exact test to identify the association between two columns without
taking the phylogeny into consideration. However, such an approach can lead to
both false negatives and false positives. Fig. 26.7 illustrates the association study
of two pairs of genes. Ignoring the phylogeny will lead to a significant association
between genes ORC3 and CIN3. However, the data points are not independent as the
superficial association could be caused by only two consecutive gene–gain events
(Fig. 26.7) and all the seven ‘11’ could then the consequence of shared ancestral
characters.

A phylogeny-based comparative analysis [7, 55] characterizes the state transi-
tion by a Markov chain, and uses a likelihood ratio test to detect the presence of

Fig. 26.7 Comparative methods for discrete binary characters. The presence and absence (des-
ignated by 1 and 0, respectively) of four genes are recorded for each species (a). The two black
arrows indicate a gene–gain event. The instantaneous rate matrix (b), with notations following
Felsenstein [22], shows the relationship among the four character designation, i.e., 00 for both
genes absent, 01 for the absence of gene 1 but presence of gene 2, 10 for the presence of gene 1
but absence of gene 2, and 11 for both genes present. The diagonals are constrained by each row
sum equal to 0. Modified from Barker and Pagel [7]
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association between genes or between a gene function and an environmental condi-
tion. Two genes, each with two states (presence/absence), have four possible joint
states and eight rate parameters (˛1; ˛2; ˇ1; ˇ2; ı1; ı2; 1 and 2) to be estimated
from the data (Fig. 26.7). When the gain or loss of one gene is independent of the
other gene, then ˛1 D ˛2; ˇ1 D ˇ2; ı1 D ı2; and 1 D 2; with only four
rate parameters to be estimated. Thus, we compute the log-likelihood for the eight-
parameter and the four-parameter model given the tree and the data, designated
lnL8 and lnL4, respectively, and perform a likelihood ratio test with test statistic
being 2.lnL8 � lnL4/ and four degrees of freedom.

I illustrate the computation of lnL8 by using a simpler tree with only four oper-
ational taxonomic units or OTUs (Fig. 26.8). The joint states, represented by binary
numbers 00, 01, 10 and 11, correspond to decimal numbers 0, 1, 2 and 3 which will
be used to denote the four states in some equations below. The likelihood for the
eight-parameter model is

L8 D
3X

zD0

3X
yD0

3X
xD0

�zPzx.b6/Px0.b1/Px3.b2/Pzy.b5/Py0.b3/Py3.b4/ (26.8)

Equation 26.8 may seem to suggest that we need to sum 34 terms. However, the
amount of computation involved is greatly reduced by the pruning algorithm [19].
To implement this algorithm, we define a vector L with elements L(0), L(1), L(2),
and L(3) for every node including the leaves. L for leaf i is defined as

Li .s/ D
�
1; if s D Si

0; otherwise
(26.9)

L for an internal node with two offspring (o1 and o2) is recursively defined as

Li .s/ D
"

3X
kD0

Psk.bi;o1
/Lo1

.k/

#"
3X

kD0

Psk.bi;o2
/Lo2

.k/

#
(26.10)

where bi;o1
means the branch length between internal node i and its offspring o1,

and Psk is the transition probability from state s to state k computed from the rate
matrix (Fig. 26.7b). For example, bx;S1

(branch length between internal node x and
its offspring S1) is b1 in Fig. 26.8. The computation involves finding the eight rate
parameters that maximize L8. As there is no analytical solution, the maximizing
algorithm will simply try various rate parameter values and evaluate L8 repeatedly
until we converge on a set of parameter values that result in maximum L8. Many
such algorithms are well explained and readily available in source code [60].

While the equations might be confusing to some, the actual computation is quite
simple. With only four OTUs, S1 D S3 D ‘00’ and S2 D S4 D ‘11’ (Fig. 26.8), the
likelihood surface is quite flat and many different combination of the rate parameters
can lead to the same maximum L8. In fact, the only constraint on the rate parameters
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is high rates from states 01 and 10 to states 00 and 11 (i.e., large ı1C1C˛2Cˇ2)
and low rates from states 00 and 11 to states 01 and 10 (i.e., small ı2C2C˛1Cˇ1).
This should be obvious when we look at the four OTUs in the tree (Fig. 26.8), with
only 00 and 11 being observed at the leaves. This implies that 01 and 10 should
be transient states, quickly changing to 00 or 11, whereas 00 and 11 are relatively
conservative stable states. One of the rate matrices that approaches the maximum
L8 is

Q D

2
666664

00 01 10 11

00 �16:47 13:15 3:32 0

01 1:10 �135653:97 0 135652:87
10 1816:49 0 �20308:04 18491:54
11 0 18:30 207:21 �225:52

3
777775

(26.11)

The rate of transition from states 01 and 10 to states 00 and 11 is 644.5 times
greater (The true rate should be infinitely greater) than the other way round, which
implies that we will almost never observe 01 and 10 states. The transition probability
matrices with branch lengths of 0.1 and 0.3, which are computed as eQt , where t is

LZ(00) = 0.060687
LZ(01) = 0.060692
LZ(10) = 0.060691
LZ(11) = 0.060691

Ly(00) = 0.24647
Ly(01) = 0.24649
Ly(10) = 0.24649
Ly(11) = 0.24649

LS4(00) = 0
LS4(01) = 0
LS4(10) = 0
LS4(11) = 0

L
S3

(00) = 1
L

S3
(01) = 0

L
S3

(10) = 0
L

S3
(11) = 0

LS2(00) = 0
LS2(01) = 0
LS2(10) = 0
LS2(11) = 1

LS1(00) = 1
LS1(01) = 0
LS1(10) = 0
LS1(11) = 0

LX(00) = 0.24527
LX(01) = 0.24720
LX(10) = 0.24710
LX(11) = 0.24719

S4: 1 1 Æ 3

S3: 0 0 Æ 0

S2: 1 1 Æ 3

S1: 0 0 Æ 0

b5 = 0.1

b4 = 0.3

b3 = 0.3

b2 = 0.1

b1 = 0.1

b6 = 0.3

z

y

x

Fig. 26.8 Four-OTU tree with branch lengths (b1–b6) for illustrating likelihood computation. The
L vectors are computed recursively according to (10)–(11)
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the branch length, are, respectively,

P.0:1/ D

2
666664

00 01 10 11

00 0:54616 0:00011 0:00467 0:44908
01 0:51459 0:00011 0:00499 0:48038
10 0:51738 0:00011 0:00496 0:47759
11 0:51458 0:00011 0:00499 0:48034

3
777775

P.0:3/ D

2
666664

00 01 10 11

00 0:53145 0:00011 0:00482 0:46377
01 0:53144 0:00011 0:00482 0:46382
10 0:53144 0:00011 0:00482 0:46382
11 0:53144 0:00011 0:00482 0:46382

3
777775

(26.12)

We can now compute L8 by using the pruning algorithm. First, LS1–LS4 are
straightforward from (26.9) and shown in Fig. 26.8. Lx and Ly are computed
according to (26.10), e.g.,

Lx.00/ D P00;00.0:1/P00;11.0:1/ D 0:54616
 0:44908 D 0:24527
Lx.01/ D 0:51459
 0:48038D 0:24720
Lx.10/ D 0:51738
 0:47759D 0:24710
Lx.11/ D 0:51458
 0:48037D 0:24719

(26.13)

Similarly,Ly.00/,Ly.01/,Ly.10/, andLy.11/ are computed the same way and
have values 0.24647, 0.24649, 0.24649, and 0.24649, respectively. Similarly, Lz is
also computed by applying (26.9), e.g.,

Lz.00/ D AB D 0:246207
 0:246487D 0:060687; where

A D ŒP00;00.b6/Lx.00/C P00;01.b6/Lx.01/C P00;10.b6/Lx.10/

C P00;11.b6/Lx.11/� D 0:246207

B D ŒP00;00.b5/Ly.00/C P00;01.b5/Ly.01/C P00;10.b5/Ly.10/

C P00;11.b5/Ly.11/� D 0:246487 (26.14)

Lz.01/, Lz.10/, and Lz.11/ are 0.060692, 0.060691, and 0.060691, respectively.
The final L8 is

L8 D
3P

kD0

�kLz.k/ D 0:060687
 0:5C 0:060691
 0:5 D 0:060689
ln.L8/ D �2:802

(26.15)

where we used the empirical frequencies for �k , although �k could also be esti-
mated as a parameter of the model. Note that states 01 and 10 are not observed, and
�01 and �10 are assumed to be 0 in (26.15).
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The computation of ln.L4/ is simpler because only four rate parameters need to
be estimated, and is equal to �5:545. If quite a large number of OTUs are involved,
then twice the difference between the two log-likelihood, designated 2�lnL, fol-
lows approximately the �2 distribution with 4 degrees of freedom. If we could
assume large-sample approximation in our case, then 2�lnL D 5:486, which leads
to p D 0:241, i.e., the eight-parameter model is not significantly better than the
four-parameter model. Such a result is not surprising given the small number of
OTUs.

With this phylogeny-based likelihood approach, Barker et al. [6] found that the
superficial association between genes CIN4 and ORC3 is not significant, although
Fisher’s exact test ignoring the phylogeny would produce a significant association
between the two genes. Similarly, genes L9A and L42B were found to be sig-
nificantly associated based on the phylogeny-based likelihood approach, although
Fisher’s exact test ignoring the phylogeny would suggest a lack of the association.
In this particular case, L9A and L42B are known to be functionally associated and
CIN4 and ORC3 are known not be functionally associated. Ignoring the phylogeny
would have produced both a false positive and a false negative. Phylogeny-based
comparative methods for continuous and discrete methods have been implemented
in the freely available software DAMBE [84, 95] at http://dambe.bio.uottawa.ca.

One difficulty with the comparative methods for the continuous and discrete
characters is what branch lengths to use because different trees, or even the same
topology with different branch lengths, can lead to different conclusions. One may
need to explore all plausible trees to check the robustness of the conclusion.

Modern comparative genomic studies may often involve the functional asso-
ciation of thousands of genes or more. With N genes, there are N.N � 1/=2
possible pairwise associations and N.N � 1/=2 tests of associations. There are
N.N � 1/.N � 2/=6 possible triplet associations. So it is necessary to consider
the topic of how to control for error rates in multiple comparisons.

26.5 Controlling for Error Rate in Multiple Comparisons

There are two approaches for adjusting type I error rate involving multiple compar-
isons, one controlling for familywise error rate (FWER), and the other controlling
for the false discovery rate (FDR) [51]. While FWER methods are available in
many statistical packages and covered in many books, there are few computational
tutorials for the FDR in comparative genomics, an imbalance which I will try to
compensate below.

The difference between the FDR and FWER is illustrated in Table 26.5, where
N12 denotes the number of null hypotheses that are true but rejected (false posi-
tives). FWER is the probability thatN12 is greater or equal to 1, whereas FDR is the
expected proportion of N12=N:2, and defined to be 0 when N:2 D 0. Thus, FDR is
a less conservative protocol for comparison, with greater power than FWER, but at
a cost of increasing the likelihood of obtaining type I errors.

http://dambe.bio.uottawa.ca
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Table 26.5
Cross-classification of N tests
of hypothesis

H0 Reject
No Yes

TRUE N11 N12
FALSE N21 N22
Subtotal N:1 N:2

Table 26.6 Illustration of the
BH [8] and BY [9]
procedures in controlling for
FDR, with 15 sorted p values
taken from Benjamini and
Hochberg [8]

i p pcritical:BH:i pcritical:BY:i

1 0.0001 0.00333 0.00100
2 0.0004 0.00667 0.00201
3 0.0019 0.01000 0.00301
4 0.0095 0.01333 0.00402
5 0.0201 0.01667 0.00502
6 0.0278 0.02000 0.00603
7 0.0298 0.02333 0.00703
8 0.0344 0.02667 0.00804
9 0.0459 0.03000 0.00904
10 0.324 0.03333 0.01005
11 0.4262 0.03667 0.01105
12 0.5719 0.04000 0.01205
13 0.6528 0.04333 0.01306
14 0.759 0.04667 0.01406
15 1 0.05000 0.01507

The FDR protocol works with a set of p values. For example, with 10 genes,
there are 45 pairwise tests of gene associations, yielding 45 p values. The FDR pro-
tocol is to specify a reasonable FDR (typically designated by q) and find a critical
p (designated pcritical) so that a p value that is smaller than pcritical is considered
as significant, otherwise it is not. The q value is typically 0.05 or 0.01. Two gen-
eral FDR procedures, Benjamini-Hochberg (BH) and Benjamini-Yekutieli (BY), are
illustrated below.

Suppose we have a set of 15 sorted p values from testing 15 different hypotheses
(Table 26.6). The Bonferroni method uses ˛ /m (where m is the number of p values)
as a critical p value (pcritical:Benferroni) for controlling for FWER. We have mD 15. If
we take ˛ D 0:05, then pcritical:Benferroni D 0:05=15 D 0:00333 which would reject
the first three hypotheses with the three smallest p values.

The classical FDR approach [8], now commonly referred to as the BH procedure,
computes pcritical:BH:i for the i th p value (where the subscript BH stands for the BH
procedure) as

pcritical:BH:i D q � i
m

(26.16)

where q is FDR (e.g., 0.05), and i is the rank of the p value in the sorted array of p
values (Table 26.6). If k is the largest i satisfying the condition of pi � pcritical:BH:i,
then we reject hypotheses fromH1 toHk . In Table 26.6, kD 4 and we reject the first
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four hypotheses. Note that the fourth hypothesis was not rejected by pcritical:Bonferroni

but rejected by pcritical:BH:4. Also note that pcritical:Bonferroni is the same as pcritical:BH:1.
The FDR procedure above assumes that the test statistics are independent. A

more conservative FDR procedure has been developed that relaxes the indepen-
dence assumption [9]. This method, now commonly referred to as the BY procedure,
computes pcrit ical:BY:i for the ith hypothesis as

pcritical:BY:i D q � i
m

mP
iD1

1
i

D pcritical:BH:i
mP

iD1

1
i

(26.17)

With m D 15 in our case,
P
1=i D 3:318228993. Now k (the largest i satisfying

pi � pcritical:BY:i) is 3 (Table 26.6). Thus, only the first three hypotheses are rejected.
The BY procedure was found to be too conservative and several alternatives have
been proposed [25]. For large m,

P
1=i converges to ln.m/C  (Euler’s constant

equal approximately to 0.57721566). Thus, for m D 10; 000,
P
1=i is close to 10.

So pcritical:BY is nearly 10 times smaller than pcritical:BH:

One may also obtain empirical distribution of p values by resampling the data.
For studying association between genes or between gene and environmental fac-
tors, one may compute the frequencies of states 0 (absence) and 1 (presence) for
each gene (designated f0 and f1, respectively) and reconstitute each column by
randomly sampling from the pool of states with f0 and f1. For each resampling,
we may carry out the likelihood ratio test shown above to obtain p values. If we
have generated 10,000 p values, then the 500th smallest p value may be taken as the
critical p value. Note that all the null hypotheses from resampled data are true. So
FDR and FWER are equivalent. This is easy to see given that FDR is defined as the
expected proportion ofN12=N:2 (Table 26.5) and FWER as the probability thatN12

(Table 26.5) is greater or equal to 1. As we cannot observeNij, we use nij to indicate
their realized values. When all null hypotheses are true, n22 D 0 and n12 D n:2.
Now if n12 > 0, then FDR D E.n12=n:2/ D 1, and FWER D P.n12 � 1/ is nat-
urally also 1. If n12 D 0, then FDR D 0 (Recall that FDR is defined to be 0 when
n:2 D 0), and FWER D P.n12 � 1/ is also 0 [8])

26.6 Comparative Viral Genomics: Detecting Viral
Recombination

There are two major reasons to study recombination. The first is that it is bio-
logically interesting. For example, different strains of viruses often recombine to
form new strains of recombinants leading to host-jumping or resistance to antiviral
medicine, posing direct threat to our health. The second reason is that recombina-
tion is the source of many evils in comparative genomics and molecular evolution
as it can generate rate variation among sites and among lineages and distort phylo-
genetic relationships [43]. We may be led astray without controlling for the effect
of recombination in comparative genomic analysis.
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Detecting viral recombination and mapping recombination points represent
important research themes in viral comparative genomics [68]. This is often done
in two different situations. The first is to address whether one particular genome
(typically the one causing human health concerns, designated hereafter as R) is the
result of viral recombination from a set of N potential parental strains (designated
hereafter as Pi , where i D 1; 2; : : : ; N). Graphic visualization methods such as
Simplot [45] and Bootscan [67] , as well as the phylogenetic incongruence test, are
often used in this first situation.

In the second situation, one does not know which one is R and which ones are P
genomes. One simply has a set of genomic sequences and wishes to know whether
some are recombinants of others. This is a more difficult problem. Many methods
have been developed to solve the problem, and have been reviewed lucidly [31]. I
will include here only what has been left out in the review, i.e., the graphic methods
(Simplot and Bootscan) for the first situation and the compatibility matrix methods
for the second. The compatibility matrix methods are among the most powerful
methods for detecting recombination events.

26.6.1 Is a Particular Genome a Recombinant of N Other
Genomes?

Given a sequence alignment, compute genetic distances dR;P i (between R and Pi )
along a sliding window of typically a few hundred bases. If we have a small dR;Pi

and a large dR;Pk
for one stretch of the genome, but a large dR;Pi

and a small
dR;Pk

for another stretch of the genome, then a recombination likely occurred. This
method, with visualization of the d values along the sliding windows, is known as
Simplot [45]. Its disadvantage is that it does not generate any measure of statistical
confidence.

I will illustrate the Simplot procedure by using HIV-1M genomes in an A-J-cons-
kal153.fsa file [68]. HIV-1 has three groups designated M (main), O (outgroup) and
N (non-M and non-O), with the M group further divided into A-D and F-K subtypes.
The A-J-cons-kal153.fsa contains consensus genomic sequences for subtypes A, B,
C, D, F, G, H, and J, as well as the KAL153 strain which may be a recombinant of
two of the subtypes.

The result of applying the Simplot procedure is shown in Fig. 26.9. The genetic
distance used is a simultaneously estimated (SE) distance based on the F84 model
[89]. Note that dKAL153;A is relatively small and dKAL153;B relatively large up
to site 2,601, after which dKAL153;A becomes large and dKAL153;B small until
site 8,701. After site 8,701, dKAL153;A again becomes small and dKAL153;B large
(Fig. 26.9). The simplest interpretation is that KAL153 is a recombinant between
an A-like strain and a B-like strain. The two sites at which KAL153 changes its
phylogenetic affinity (i.e., 2,601 and 8,701) may be taken as the recombination sites.

One may ask what the interpretation would be if B is missing from the data.
The interpretation unavoidably would be that KAL153 is a recombinant between
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Fig. 26.9 Genetic distance between the query sequence (KAL153) and the consensus subtype
sequences (A–J). MLCompositeF84 [89] is a simultaneously estimated distance based on the F84
model. KAL153 is genetically close to A before window start site at 2,601 and after window
start site 8,701, but becomes close to B between window start sites 2,601 and 8,701. Output from
DAMBE [84, 95]

an A-like strain and a D-like strain (Fig. 26.9). This interpretation is still reasonable
because subtypes B and D are the most closely related phylogenetically. However, if
A is missing from the data set, then the recombination event would become difficult
to identify.

One might also note a few locations where the HIV-1 viral genomes are highly
conserved across all included subtypes. Biopharmaceutical researchers typically
would use such comparative genomic method to find conserved regions as drug
targets or for developing vaccines against the virus.

One shortcoming of the Simplot method is that it does not produce any measure
of statistical confidence. Given the stochastic nature of evolution, the distance of a
sequence to other homologous sequence will often fluctuate. So the interpretation of
patterns in Fig. 26.9 is associated with much uncertainty. Two approaches have been
developed to overcome this shortcoming, one being the Bootscan method [67, 68],
and the other is the phylogenetic incongruence test mentioned before.

The Bootscan method also takes a sliding window approach, but bootstraps the
sequences to find the number of times each Pi has the smallest distance to R. The
application of the bootscan method to the HIV-1M data (Fig. 26.10) shows that A
is closest to KAL153 for almost all resampled data up to site 2,601, after which B
becomes the closest to KAL153 until site 4,801. At this point A again becomes the
closest to KAL153, albeit only briefly and with limited support. After site 5,051, B
again becomes the closest to KAL153 until site 8,701 after which A again becomes
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Fig. 26.10 BootScan output from scanning the HIV-1M sequences with KAL153 as the query.
Output from DAMBE [84, 95], with window size being 400 nt and step size being 50 nt. DAMBE
implements many other distances including the GTR distance and several simultaneously estimated
distances suitable for highly diverged sequences

the closest to KAL153 (Fig. 26.10). The result suggests that there might be two
recombination events.

The Simplot and the Bootscan procedures work well with highly diverged
parental sequences, e.g., when the parental sequences belong to different subtypes as
in our examples above. However, they are not sensitive when the parental sequences
are closely related. This is true for most of the conventional methods for detecting
recombination.

The second method for confirming KAL153’s phylogenetic affinity reflected
by changes in the genetic distance to other HIV-1M genomes (Fig. 26.9) is the
phylogenetic incongruence test. The result in Fig. 26.9 allows us to partition the
aligned genomic sequences into two sets, one consisting of the segment from 2,601
and 8,630 (hereafter referred to MIDDLE), and the other made of the rest of the
sequences (hereafter referred to as TAILS). The phylogenetic tree for the eight sub-
types of HIV-1M is shown in Fig. 26.11. A new HIV-1M genome suspected to be
a recombinant, such as Kal153, may be phylogenetically grafted onto any one of
the positions indicated by the numbered arrows (Fig. 26.11), creating 13 possible
unrooted trees referred hereafter as T1, T2; : : : ; T13, respectively, with the subscript
number corresponding to the numbers in the arrow in Fig. 26.11). From results in
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Fig. 26.11 Phylogenetic tree of the eight HIV-1M subtype genomes, with percentage bootstrap
support indicated at each internal node. The numbered arrows indicate branches to which KAL153
can be granted to generate a new tree

Fig. 26.9, we can already infer that T6 should be supported by the TAILS data set
and T9 should be supported the MIDDLE data set. However, will the support be
significant against other alternative trees?

The result of phylogenetic tests (Table 26.7) shows that the TAILS data set
strongly support T6 (grouping KAL153 with subtype A) but the MIDDLE data
set strongly support T9 (grouping KAL153 with subtype B). This suggests that
KAL153 is very highly likely to be a recombinant from subtypes A and B.

The use of the MIDDLE and TAILS for the phylogenetic incongruence test might
be criticized for having fallen into a sequential testing trap [75]. A sliding-window
approach together with the control for the false discover rate may be statistically
more defendable.

26.6.2 General Methods Based on the Compatibility Matrix

In the set of four sequences in Fig. 26.12a, there are three possible unrooted trees
labeled T1, T2 and T3. Except for site 49, all sites are compatible with each other
because they all support T1. In contrast, site 49 supports T3. In the classical
population genetics with the infinite alleles model [38] where each mutation
is unique and not reversible, site 49 would be considered as resulting from
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Table 26.7 Statistical tests of 13 alternative trees, based on the TAILS and MIDDLE data sets
Data Tree lnLa 4lnLb SE.4/c T pTd pSHe pRELLf

TAILS 6 �15046:0 0.000 0.000 1.000
2 �15223:6 �177:587 28.579 6.214 0.000 0.000 0.000
7 �15225:4 �179:382 28.092 6.385 0.000 0.000 0.000
1 �15279:4 �233:325 34.684 6.727 0.000 0.000 0.000
5 �15287:2 �241:162 34.013 7.090 0.000 0.000 0.000
3 �15334:1 �288:028 38.281 7.524 0.000 0.000 0.000
4 �15341:0 �294:930 38.052 7.751 0.000 0.000 0.000
10 �15373:2 �327:121 40.059 8.166 0.000 0.000 0.000
12 �15379:0 �332:934 39.987 8.326 0.000 0.000 0.000
11 �15423:2 �377:209 42.205 8.938 0.000 0.000 0.000
13 �15424:7 �378:629 41.968 9.022 0.000 0.000 0.000
9 �15592:2 �546:125 48.274 11.313 0.000 0.000 0.000
8 �15598:1 �552:052 47.741 11.563 0.000 0.000 0.000

MIDDLE 9 �23875:2 0.000 0.000 1.000
13 �24086:1 �210:934 30.721 6.866 0.000 0.000 0.000
8 �24091:5 �216:388 30.005 7.212 0.000 0.000 0.000
12 �24398:1 �522:909 47.870 10.924 0.000 0.000 0.000
10 �24535:3 �660:101 54.873 12.030 0.000 0.000 0.000
4 �24553:5 �678:299 54.061 12.547 0.000 0.000 0.000
3 �24623:9 �748:766 56.714 13.202 0.000 0.000 0.000
5 �24627:3 �752:148 56.671 13.272 0.000 0.000 0.000
1 �24652:2 �776:994 57.503 13.512 0.000 0.000 0.000
2 �24653:3 �778:099 57.767 13.470 0.000 0.000 0.000
7 �24749:9 �874:732 61.169 14.300 0.000 0.000 0.000
6 �24753:4 �878:281 61.246 14.340 0.000 0.000 0.000

alog-likelihood of each tree.
bdifferences in log-likelihood between tree i and the best tree.
cstandard error of4lnL.
dP value for paired-sample t-test (two-tailed).
eP value with multiple-comparison correction [72].
fRELL bootstrap proportions [39].

recombination because mutations, being unique and not reversible by definition with
the infinite alleles model, could not produce the pattern in site 49. In other words,
parallel convergent mutations in different evolutionary lineages (homoplasies) are
not allowed in the infinite allele model.

The infinite alleles model is not applicable to nucleotide sequences where each
site has only four possible states that can all change into each other. So we need
to decide whether site 49 in Fig. 26.12a can be generated by substitutions with-
out involving recombination. In general, sequence-based statistical methods for
detecting recombination share one fundamental assumption (or flaw) that we have
only two alternatives, homoplasy or recombination, to explain polymorphic site
patterns in a set of aligned sequences. If we reject the homoplasy explanation,
then we arrive at the conclusion of recombination which is aptly named a back-
door conclusion [29]. Such a backdoor conclusion is ultimately not as satisfying
as empirical demonstrations of recombination. For example, statistical detection of
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a

b

Fig. 26.12 Two sets of aligned nucleotide sequences for illustrating the compatibility-based
method for detecting recombination events. (a) Four sequences without recombination. (b)
Four sequences with recombination between S2 and S3, indicated by the switching of colored
nucleotides. Dots indicate monomorphic sites

recombination involving mammalian mitochondrial genomes have been reported
numerous times, but only an empirical demonstration [41] convinced the skeptical
majority.

If we are happy with the fundamental assumption above that we have only two
alternatives to discriminate between, then the method based on a compatibility
matrix is both powerful and computationally fast. With a set of aligned sequences,
two sites are compatible if and only if they both support the same tree topology. We
only need to consider informative sites, i.e., sites featuring at least two states each
of which is represented by at least two sequences. Non-informative sites are always
compatible with other sites and need not be considered.

A pairwise compatibility matrix, or just compatibility matrix for short, lists
whether sites i and j are compatible. The compatibility matrices for the two set
of sequences in Fig. 26.12, one experiencing no recombination (Fig. 26.12a) and the
other experiencing recombination involving the segment between informative sites
16–39 (Fig. 26.12b) are shown in Table 26.8. Two points are worth highlighting.
First, sites that share the same evolutionary history are expected to be more com-
patible than those that do not (e.g., when the shared ancestry is disrupted by
recombination). Note more 0’s (compatible sites) in the upper triangle for sequences
without recombination than in the lower triangle for sequences with recombina-
tion involving informative sites 16–39 (Table 26.8). Second, recombination tends
to create similar neighbors in the compatibility matrix. Note the blocks of 1’s and
0’s in the lower triangle in Table 26.8. This similarity among neighbors has been
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Table 26.8 Pairwise compatibility matrices, with 0 for compatible sites and 1 for incompatible
sites, for aligned sequences in Fig. 26.12a (upper triangle) without recombination and those in
Fig. 26.12b (lower triangle) with recombination between informative sites 16–39

Site 1 10 13 16 17 25 30 32 37 40 43 49 50

1 0 0 0 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 0 1 0
13 0 0 0 0 0 0 0 0 0 0 1 0
16 1 1 1 0 0 0 0 0 0 0 1 0
17 1 1 1 0 0 0 0 0 0 0 1 0
25 1 1 1 0 0 0 0 0 0 0 1 0
30 1 1 1 0 0 0 0 0 0 0 1 0
32 1 1 1 0 0 0 0 0 0 0 1 0
37 1 1 1 0 0 0 0 0 0 0 1 0
40 0 0 0 1 1 1 1 1 1 0 1 0
43 0 0 0 1 1 1 1 1 1 0 1 0
49 1 1 1 1 1 1 1 1 1 1 1 1
50 0 0 0 1 1 1 1 1 1 0 0 1

characterized by the neighbor similarity score (NSS) which is the fraction of neigh-
bors sharing either 0 (compatible) or 1 (incompatible). NSS is the basis of a number
of methods for detecting recombination events [11,34,58,59,81] because its signif-
icance can be easily assessed by reshuffling the sites and recomputing NSS many
times. The clumping of the compatible and incompatible sites in the compatibil-
ity matrix also suggests the possibility of mapping the recombination points. For
example, one may infer from the compatibility matrix for the four sequences in
Fig. 26.12b (lower triangle in Table 26.8) that the 5’-end recombination point is
between informative sites 13 and 16, and that the 3’-end recombination point is
between informative sites 37 and 40.

The compatibility matrix approach can be refined in two ways. First, when
sequences are many, one will have some sites that are highly incompatible with
each other as well as some sites that are only slightly incompatible with each other.
The compatibility matrix approach lumps all these sites as incompatible sites, result-
ing in loss of information. Second, neighboring sites in a set of aligned sequences
are expected to be more compatible with each other than with sites that are far
apart. These two refinements were included in a recent study [12] that uses a refined
incompatibility score (RIS) and the PHI statistic based on RIS. This new method
appears much more sensitive than previous ones based on empirical applications
[12, 65].

26.7 Summary

With the increasing availability of genomic sequences, comparative genomics has
expanded rapidly and contributed significantly to our understanding of how muta-
tion, recombination and natural selection have jointly governed the evolutionary
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process. Comparative genomic analysis, aided by the phylogeny-based comparative
methods, has resulted in improved detection of (1) functional association between
genes and between genes and environment which is essential for understanding
the origin and maintenance of the genetic components of biodiversity, (2) lateral
gene transfer in prokaryotes and (3) recombination events and recombination sites.
Development of comparative genomics has also motivated the research in statistics
such as those controlling for the false discovery rates. Comparative genomics has
dramatically changed the way of how regulatory sequence motifs are discovered,
leading to the active development of phylogenetic footprinting which will be cov-
ered in the next chapter. What is particularly worth pointing out is that powerful
and sophisticated software packages have been developed to facilitate research in
comparative genomics.
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Chapter 27
Robust Control of Immune Systems
Under Noises: Stochastic Game Approach

Bor-Sen Chen, Chia-Hung Chang, and Yung-Jen Chuang

Abstract A robust control of immune response is proposed for therapeutic en-
hancement to match a prescribed immune response under uncertain initial states and
environmental noises, including continuous intrusion of exogenous pathogens. The
worst-case effect of all possible noises and uncertain initial states on the matching
for a desired immune response is minimized for the enhanced immune system, i.e.,
a robust control is designed to track a prescribed immune model response from the
stochastic minimax matching perspective. This minimax matching problem could
herein be transformed to an equivalent stochastic game problem. The exogenous
pathogens and environmental noises (external noises) and stochastic uncertain inter-
nal noises are considered as a player to maximize (worsen) the matching error
when the therapeutic control agents are considered as another player to minimize
the matching error.

Since the innate immune system is highly nonlinear, it is not easy to solve
the robust control problem by the nonlinear stochastic game method directly. A
fuzzy model is proposed to interpolate several linearized immune systems at dif-
ferent operating points to approximate the innate immune system via smooth fuzzy
membership functions. With the help of fuzzy approximation method, the stochastic
minimax matching control problem of immune systems could be easily solved by
the proposed fuzzy stochastic game method via the linear matrix inequality (LMI)
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technique with the help of Robust Control Toolbox in Matlab. Finally, in silico
examples are given to illustrate the design procedure and to confirm the efficiency
and efficacy of the proposed method.

27.1 Introduction

A dynamic response of the immune system, which includes innate immune sys-
tem and adaptive immune system, is induced by infectious microbes or noises. The
innate immune system provides a tactical response, signaling the presence of ‘non-
self’ organisms and activating B cells to produce antibodies to bind to the intruders’
epitopic sites. The antibodies identify targets for scavenging cells that engulf and
consume the microbes, reducing them to non-functioning units [42]. The antibodies
can also stimulate the production of cytokines, complement factors and acute-phase
response proteins that either damage an intruder’s plasma membrane directly or
trigger the second phase of immune response. The innate immune system protects
against many extracellular bacteria or free viruses found in blood plasma, lymph,
tissue fluid, or interstitial space between cells, but it cannot clean out microbes that
burrow into cells, such as viruses, intracellular bacteria, and protozoa [17, 23, 42].
The innate immune system is a complex system and the obscure relationships
between the immune system and the environment in which several modulatory stim-
uli are embedded (e.g., antigens, molecules of various origin, physical stimuli, stress
stimuli).This environment is noisy because of the great amount of such signals. The
immune noise has therefore at least two components: (a) the internal noise, due
to the exchange of a network of molecular and cellular signals belonging to the
immune system during an immune response or in the homeostasis of the immune
system. The concept of the internal noise might be viewed in biological terms as a
status of sub-inflammation required by the immune response to occur; (b) the exter-
nal noise, the set of external signals that target the immune system (and hence that
add noise to the internal one) during the whole life of an organism.

Activated by the innate immune response, the adaptive immune system could
provide strategic response to invading microbe and yield protective cells. These
protective cells could remember specific antigens and produce antibodies to counter
the antigens, and seek for epitopes of antigens on the surfaces of infected cells.
It is found that adaptive immune mechanisms depend on the actions of B- and
T-lymphocytes that become dedicated to a single antibody type through clonal selec-
tion. Meanwhile, killer T-cells (or cytotoxic T-lymphocytes) bind to infected cells
and kill them by initiating programmed cell death (apoptosis). In addition, helper
T-cells assist naive B-cells in maturing into plasma cells that produce the needed
antibody type. Finally, immune cells with narrowly focused memory are generated,
ready to respond rapidly if invading microbes with the same antigen epitopes are
encountered again. Elements of the innate and adaptive immune systems are shared,
and response mechanisms are coupled, even though distinctive modes of operation
can be identified [17, 23, 42].
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Recently, there are many models of immune response to infection [3, 25, 30, 33]
with special emphasis on the human-immunodeficiency virus [26, 28, 29, 39]. Some
papers have discussed immune defense models with moving target strategy [1].
Norbert Wiener [48] and Richard Bellman [7] appreciated and anticipated the
application of mathematical analysis to treatment in a broad sense, and Swan
surveys early optimal control applications to biomedical problems [43]. Notably,
Kirschner [19] offers an optimal control approach to HIV treatment, and intuitive
control approaches are presented [8, 15, 47, 49, 50].

The dynamics of drug response (pharmacokinetics) have been modeled in sev-
eral works [32, 45] and control theory is applied to drug delivery in other stud-
ies [6,10,14,16,18,20,27,31,34]. Recently, Stengel [42] presented a simple model
for the response of the innate immune system to infection and therapeutic interven-
tion by applying the quadratic optimal control design which finds a control agent
such that the immune response is stable and the quadratic performance index (cost
function) is minimized. Their results show not only the progression from an ini-
tially life-threatening state to a controlled or cured condition but also the optimal
history of therapeutic agents that produces that condition. In their study, the per-
formance index (cost function) of quadratic optimal control for immune systems
may be decayed by the continuous exogenous pathogens input, which is considered
as noises of the immune system. Furthermore, some overshoots may occur in the
optimal control process and may lead to organ failure because the quadratic optimal
control only minimizes a quadratic performance index (cost function) that is only
the integration of squares of states and allows the existence of overshoot [51]. A
series researches about dynamic optimization method which find a control law for
immune system such that a certain optimality criterion is achieved is proposed to
design the optimal schedule for host defense, immune memory and post-infection
pathogen levels in mammals [35–38]. Recently, a minimax robust tracking control
for immune to match the desired immune response systems under environmental
disturbances has been studied [11].

In this study, a robust control of immune response is proposed for therapeutic
enhancement to match a desired immune response under uncertain exogenous
pathogens input, noises and uncertain initial states. Because of the uncertainties of
these factors mentioned above, in order to attenuate their detrimental effects, their
worst-case effects should be considered in the matching control procedure from the
robust design perspective. The worst-case effect of all possible uncertain factors on
the matching error to a desired immune response is minimized for the enhanced
immune systems, i.e., the proposed robust control is designed from the stochastic
minimax matching perspective. This minimax matching could be transformed to
an equivalent dynamic game problem [5]. The exogenous pathogen input is con-
sidered as a player to maximize (worsen) the matching error, while the therapeutic
control agent is considered as another player to minimize the matching error. Since
the innate immune system is highly nonlinear, it is not easy to solve the robust
control problem by the nonlinear stochastic game method directly. Recently, fuzzy
systems have been employed to efficiently approximate nonlinear dynamic systems
to solve the nonlinear control problem [12, 13, 21, 22]. A fuzzy model is proposed
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Fig. 27.1 Scheme of the
robust control design for
innate immune systems
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to interpolate several linearized immune systems at different operating points to
approximate the innate immune system via smooth fuzzy membership functions.
Then, with the help of fuzzy approximation method, a fuzzy dynamic game scheme
is developed so that the stochastic minimax matching control of immune systems
could be easily solved by the linear stochastic game method, which can be subse-
quently solved by a constrained optimization scheme via the linear matrix inequality
(LMI) technique [9] with the help of Robust Control Toolbox in Matlab. Because the
fuzzy dynamic model can approximate any nonlinear dynamic system, the proposed
model matching method via fuzzy game theory can be applied to the robust control
design of any model of immune system that can be Takagi-Sugeno (T-S) fuzzy inter-
polated. Finally, the computational simulation examples are given to illustrate the
design procedure and to confirm the efficiency and efficacy of the proposed min-
imax match control method for immune systems. The design scheme is shown in
Fig. 27.1.

27.2 Model of Innate Immune System

For the principal goals to study the general course of a disease and to clarify some
observational results, a simple four-nonlinear, ordinary differential equation for the
dynamic model of infectious disease is introduced as the following equations to
describe rates of change of pathogen, immune cell and antibody concentrations and
of an indicator of organic health [3, 41]. A more general dynamic model will be
given next in sequel.

Px1 D .a11 � a12x3/x1 C b1u1 C d1w1

Px2 D a21.x4/a22x1x3 � a23.x2 � x�2 /C b2u2 C d2w2

Px3 D a31x2 � .a32 C a33x1/x3 C b3u3 C d3w3

Px4 D a41x1 � a42x4 C b4u4 C d4w4

a21.x4/ D
�

cos.� x4/; 0 � x4 � 1=2
0; 1=2 � x4

(27.1)
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where x1 denotes the concentration of a pathogen that expresses a specific foreign
antigen; x2 denotes the concentration of immune cells that are specific to the foreign
antigen; x3 denotes the concentration of antibodies that bind to the foreign anti-
gen; x4 denotes the characteristic of a damaged organ [x4=0:healthy, x4 �1:dead].
The combined therapeutic control agents and the exogenous inputs are described
as follows: u1 denotes the pathogen killer’s agent; u2 denotes the immune cell
enhancer; u3 denotes the antibody enhancer; u4 denotes the organ healing factor (or
health enhancer); and w1 denotes the rate of continuing introduction of exogenous
pathogens (external noises). w2 � w4 denote the stochastic noises or unmodeled
errors and residues (internal noises). a21.x4/ is a nonlinear function that describes
the mediation of immune cell generation by the damaged cell organ. And if there
is no antigen, then the immune cell maintains the steady equilibrium value of x�2 .
The parameters have been chosen to produce a system that recovers naturally from
the pathogen infections (without treatment) as a function of initial conditions during
a period of times. For the benchmark example in (27.1), both parameters and time
units are abstractions, as no specific disease is addressed. The state and control are
always positive because concentrations cannot go below zero, and organ death is
indicated when x4 � 1. The structural relationship of system variables in (27.1) is
illustrated in Fig. 27.2. Organ health mediates immune cell production, inferring a
relationship between immune response and fitness of the individual. Antibodies bind
to the attacking antigens, thereby killing pathogenic microbes directly, activating
complement proteins, or triggering an attack by phagocytic cells, e.g., macrophages

Organ
x4

Pathogens
x1

Immune
Cells

x2

Antibodies
x3

Organ Health
Enhancer  u4

Immune Cell
Enhancer  u2

Antibody
Enhancer  u3

Pathogen
Killer’s Agent u1

Environmental
disturbance  w3

Exogenous
pathogens  w1

Environmental
disturbance  w4

Environmental
disturbance  w2

Fig. 27.2 Innate and enhanced immune response to a pathogenic attack under exogenous
pathogens and environmental noises
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Fig. 27.3 Native immune responses to pathogens which are under sub-clinical, clinical, chronic,
and lethal conditions [41]

and neutrophils. Each element of the state is subject to independent control, and new
microbes may continue to enter the system.

Several typical uncontrolled responses to increasing levels of initial pathogen
concentration under sub-clinical, clinical, chronic, and lethal conditions are shown
in Fig. 27.3 [41]. In general, the sub-clinical response would not require medical
examination, while the clinical case warrants medical consultation but is self-
healing without intervention. Pathogen concentration stabilizes at non-zero values
in the chronic case, which is characterized by permanently degraded organ health,
and it diverges in the lethal case and expire the organ. The ‘lethal’ simulation of
Fig. 27.3 is allowed to continue to past the point at which x4 exceeds one [42].
Finally, a more general disease dynamic model could be represented as

Px.t/ D f .x.t//CBu.t/CDw.t/; x.0/ D x0 (27.2)

where x.t/ 2 Rn�1 is the state vector, u.t/ 2 Rm�1 is the control agents input;
w.t/ 2 Rn�1 includes exogenous pathogens and environmental noises or uncer-
tainty vector. f .x.t// denotes all possible nonlinear interactions in the immune
system. B denotes the matrix of control agents input coefficients (i.e., B D
diag.Œ b1 b2 b3 b4 �//. D denotes the matrix of the internal or external noises coef-

ficients (i.e.,D D diag.Œ d1 d2 d3 d4 �//.
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27.3 Robust Therapeutic Control of Immune Response

The optimal control is to specify u.t/ such that the following cost function is
minimized within the time interval [0, tf ]. tf is the final time. [41].

J D 1

2
E

�
xT .tf /Px.tf /C

Z tf

0

ŒxT .t/Qx.t/C uT .t/Ru.t/�dt

�
(27.3)

where P ,Q andR are weighting matrices to be specified by designer.EŒY � denotes
the expectation of Y . Because the average quadratic control is only to minimize J in
(27.3), i.e., the average integration of xT .t/Qx.t/CuT .t/Ru.t/ to be minimized, a
control leading to large overshoot of x.t/ but with small integration of xT .t/Qx.t/

may be specified in the quadratic optimal control design [51]. This therapeutic con-
trol will lead to organ failure because x4.t/ � 1. Furthermore, the cost function
does not include exogenous pathogens and environmental noises w.t/, which may
degrade the performance of the stochastic quadratic optimal control. Therefore, it is
more appealing to prescribe a desired time response of the disease dynamic in (27.2)
beforehand. Next, we design therapeutic control agents u.t/ to optimally track the
desired time response and at the same time the influence of exogenous pathogens
and environmental noises w.t/ on the tracking should be eliminated as much as
possible.

Consider a reference model of immune system with a desired time response
prescribed as follows

Pxr .t/ D Arxr .t/C r.t/ (27.4)

where xr .t/ 2 Rn�1 is the reference state vector;Ar 2 Rn�n is a specific asymptot-
ically stable matrix and r.t/ is a desired reference signal. It is assumed that xr .t/,
8t > 0 represents a desired immune response for Eq. 27.2 to follow, i.e., the ther-
apeutic control is to specify u.t/ such that the tracking error Qx.t/ D x.t/ � xr.t/

must be as small as possible under the influence of uncertain exogenous pathogens
and environmental noises w.t/. Since the exogenous pathogens and environmental
noises w.t/ and the initial state x.0/ are uncertain and reference signal r.t/ could be
arbitrarily assigned, the robust control design should be specified so that the worst-
case effect of three uncertainties w.t/, x.0/ and r.t/ on the tracking error could
be minimized and set below a prescribed value �2, i.e., both the stochastic mini-
max matching and robustness against uncertainties w.t/, x.0/ and r.t/ should be
achieved simultaneously [5, 9].

min
u.t/

max
w.t/;r.t/

E
hR tf

0 . QxT .t/Q Qx.t/C uT .t/Ru.t//dt
i

E
hR tf

0 .wT .t/w.t/C rT .t/r.t//dt C QxT .0/ Qx.0/
i � �2 (27.5)

where the weighting matricesQ and R are assumed diagonal as follows

Q D diag.Œ q11 q22 q33 q44 �/; R D diag.
�
r11 r22 r33 r44

	
/:



608 B.-S. Chen et al.

The diagonal element qi i of Q denotes the punishment on the corresponding track-
ing error and the diagonal element ri i of R denotes the relative therapeutic cost.
Since the worst-case effect of w.t/, r.t/ and uncertain initial state x.0/ on tracking
error Qx.t/ and control u.t/ is minimized from the energy point of view, the minimax
problem of Eq. 27.5 is suitable for the stochastic minimax matching problem under
unknown initial x.0/, uncertain environmental noises w.t/ and changeable refer-
ence r.t/, which are always met in practical design cases. Because it is not easy
to solve the Nash stochastic game problem in (27.5) subject to (27.2) and (27.4)
directly, we provide an upper bound �2 of the minimax problem.

Remark 27.1. Actually, the design idea is the same as the model adaptive control
(MRAC) [4]. The desired time response in (27.4) is the model reference in Astrom
and Wittenmark. The difficulty of the model reference control design of immune
system is that all the immune systems are nonlinear and external disturbances are
uncertain. Therefore, the minimax game theory in (27.5) and fuzzy interpolation
method are employed to simplify the design procedure of the nonlinear MRAC
design problem of immune systems in the next approach.

We will first solve the above sub-minimax problem and then decrease the upper
bound �2 as small as possible to get the real minimax problem. Since the denom-
inator in (27.5) is independent of u.t/ and is not zero, Eq. 27.5 is equivalent
to [5, 9]

min
u.t /

max
w.t /;r.t /

E

�Z tf

0

. QxT .t/Q Qx.t/C uT .t/Ru.t/ � �2wT .t/w.t/ � �2rT .t/r.t//dt
�

� �2E � QxT .0/ Qx.0/	 (27.6)

Let us denote

min
u.t/

max
w.t/;r.t/

J.u.t/;w.t/; r.t// D min
u.t/

max
w.t/;r.t/

E

�Z tf

0

. QxT .t/Q Qx.t/C uT .t/Ru.t/

��2wT .t/w.t/ � �2rT .t/r.t//dt

�

From the above analysis, the dynamic game problem in (27.5) or (27.6) is equiv-
alent to finding the worst-case disturbance w�.t/and reference signal r�.t/ which
maximize J.u.t/;w.t/; r.t// and then a minimax control u�.t/ which minimizes
J.u.t/;w�.t/; r�.t// such that the minimax value J.u�.t/;w�.t/; r�.t// is less than
�2 Qx.0/T Qx.0/, i.e.,

J.u�.t/;w�.t/; r�.t// D min
u.t/

J.u.t/;w�.t/; r�.t//

D min
u.t/

max
w.t/;r.t/

J.u.t/;w.t/; r.t// � �2E
h
QxT .0/ Qx.0/

i

(27.7)
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Hence, if there exist u�.t/, w�.t/, and r�.t/ such that stochastic minimax matching
problem in (27.7) is solved, then they can satisfy the robust performance in (27.5)
as well. Therefore, the first step of robust matching control design of therapeutic
agents for immune systems is to solve the following stochastic game problem.

min
u.t/

max
w.t/;r.t/

J.u.t/;w.t/; r.t// (27.8)

subject to the disease dynamic model in (27.2) and the desired reference model in
(27.4). After that, the next step is to check whether the condition J.u�.t/;w�.t/;
r�.t// � �2 QxT .0/ Qx.0/ is satisfied or not for any Qx.0/.

In general, it is not easy to solve the stochastic minimax matching problem
directly; it should be transformed to an equivalent minimax regulation problem.

Let us denoteF. Nx.t// D
�
f .x.t//

Arxr .t/

�
, Nx.t/ D

�
x.t/

xr .t/

�
2 R2n�1 , u.t/ 2 Rm�1 and

v.t/ D
�

w.t/
r.t/

�
2 R2n�1. Then we can rewrite the stochastic minimax matching

problem as

min
u.t/

max
v.t/

J.u.t/; v.t//

D min
u.t/

max
v.t/

E

�Z tf

0

. NxT .t/Q Nx.t/C uT .t/Ru.t/ � �2vT .t/v.t//dt

�

(27.9)

subject to the following augmented system of (27.2) and (27.4)

PNx.t/ D F. Nx.t//C Bu.t/C C v.t/ (27.10)

where Q D
�
Q �Q
�Q Q

�
; B D

�
B

0

�
; C D

�
D 0

0 I

�
; I D

�
I �I
�I I

�
in which I

denotes the 4-by-4 identity matrix. Then the stochastic minimax matching prob-
lem in (27.8) is equivalent to the following minimax regulation problem of the
augmented system in (27.10).

min
u.t/

max
v.t/

J.u.t/; v.t//

D min
u.t/

max
v.t/

E

�Z tf

0

. NxT .t/Q Nx.t/C uT .t/Ru.t/ � �2vT .t/v.t//dt

�

� �2E
h
NxT .0/I Nx.0/

i
(27.11)

subject to (27.10).

Theorem 27.1. The dynamic game problem for robust matching control of immune
response in (27.11) could be solved by the following stochastic minimax matching
control u�.t/ and the worst-case disturbance v�.t/
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u�.t/ D �1
2
R�1BT @V. Nx.t//

@ Nx.t/ (27.12)

v�.t/ D 1

2�2
C T @V. Nx.t//

@ Nx.t/ (27.13)

where V. Nx.t// > 0 is the positive solution of the following Hamilton-Jacobi
inequality (HJI)

�
@V. Nx.t//
@ Nx.t/

�T

F. Nx.t//C NxT .t/Q Nx.t/ � 1
4

�
@V. Nx.t//
@ Nx.t/

�T

BR�1BT @V. Nx.t//
@ Nx.t/

C 1

4�2

�
@V. Nx.t//
@ Nx.t/

�T

CC T @V. Nx.t//
@ Nx.t/ < 0 (27.14)

with
V. Nx.0// � �2 NxT .0/I Nx.0/ (27.15)

Proof. see Appendix A.

Since �2 is the upper bound of Nash game problem in (27.5), based on the
analysis above, the stochastic minimax matching control u�.t/ and the worst-case
disturbance v�.t/ still need to minimize the upper bound �2 as follows

�2
0 D min

V. Nx.t//>0
�2 (27.16)

subject to (27.14) and (27.15).
After solving a V. Nx.t// and �2

0 from the constrained optimization in (27.16), we
substitute this solution V. Nx.t// to obtain the stochastic minimax matching control
u�.t/ in (27.12).

27.4 Robust Control of Innate Immune System via Fuzzy
Interpolation Method

Because it is very difficult to solve the nonlinear HJI in (27.14), no simple approach
is available to solve the constrained optimization problem in (27.16) for robust
control of innate immune system. Recently [12, 13, 44], the fuzzy T-S model has
been widely applied to approximate the nonlinear system via interpolating sev-
eral linearized systems at different operating points so that the nonlinear dynamic
game problem could be transformed to a fuzzy dynamic game problem. Using such
approach, the HJI in (27.14) can be replaced by a set of linear matrix inequalities
(LMI). In this situation, the nonlinear dynamic game problem in (27.5) could be
easily solved by fuzzy dynamic game method for the design of robust control for
innate immune response systems.
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Suppose the augmented system in (27.10) can be represented by the Takagi-
Sugeno (T-S) fuzzy model [44]. The T-S fuzzy model is a piecewise interpolation
of several linearized models through membership functions. The fuzzy model is
described by fuzzy If-Then rules and will be employed to deal with the nonlinear
dynamic game problem for robust control to achieve a desired immune response
under exogenous pathogens input and environmental noises. The i -th rule of fuzzy
model for nonlinear system in (27.10) is of the following form [12, 13].

Rule i:
If x1.t/ is Fi1 and : : : and xg.t/ is Fig , then

PNx.t/ D Ai Nx.t/C Bu.t/C C v.t/; i D 1; 2; 3; � � � ; L (27.17)

in which Ai D
�
Ai 0

0 Ar

�
, B D

�
B

0

�
; C D

�
D 0

0 I

�
, and Fij is the fuzzy set; Ai ,

B, and C are known constant matrices; L is the number of If-Then rules, g is the
number of premise variables and x1.t/; x2.t/; : : : ; xg.t/ are the premise variables.
The fuzzy system is inferred as follows [12, 13, 44].

PNx.t/ D
PL

iD1 �i .x.t//ŒAi Nx.t/C Bu.t/C C v.t/�PL
iD1 �i .x.t//

D
LX

iD1

hi .x.t//ŒAi Nx.t/C Bu.t/C C v.t/� (27.18)

where �i .x.t// D
gQ

jD1

Fij .xj .t//;hi .x.t// D �i .x.t//PL
iD1 �i .x.t//

; x.t/ D Œx1.t/;

x2.t/; : : : ; xg.t/�, and Fij .xj .t// is the grade of membership of xj .t/ in Fij .
We assume

�i .x.t// � 0 and
LX

iD1

�i .x.t// > 0 (27.19)

Therefore, we get

hi .x.t// � 0 and
LX

iD1

hi .x.t// D 1 (27.20)

The T-S fuzzy model in (27.18) is to interpolateL linear systems to approximate the
nonlinear system in (27.10) via the fuzzy basis function hi .x.t//. We specify the

parameter Ai easily so that
LP

iD1

hi .x.t//Ai Nx.t/ in (27.18) can approximate F. Nx.t//
in (27.10) by the fuzzy identification method [44].

After the nonlinear system in (27.10) is approximated as the T-S fuzzy system
in (27.18), the nonlinear stochastic game problem in (27.10) and (27.11) is replaced
by solving the fuzzy dynamic game problem in (27.18) and (27.11).
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Theorem 27.2. The minimax control and the worst-case disturbance for the fuzzy
stochastic game problem in (27.11) subject to (27.18) are solved respectively as
follows.

u�.t/ D �R�1BTP Nx.t/ and v�.t/ D 1

�2
C TP Nx.t/ (27.21)

where P is the positive definite symmetric matrix solution of the following Riccati-
like inequality

PAi C AT
i P CQ � P T BR�1BTP C 1

	2P
TCC TP � 0; i D 1; : : : ; L

P � �2I
(27.22)

Proof. see Appendix B.

By fuzzy approximation, obviously, the HJI in (27.14) can be approximated by a
set of algebraic inequalities in (27.22).

Since �2 is the upper bound of minimax Nash stochastic game problem in (27.5),
the minimax stochastic game problem still needs to minimize �2 as follows

�2
0 D min

P >0
�2 (27.23)

subject to (27.22).
In order to solve the above constrained optimization in (27.23) by the conven-

tional LMI method, we let W D P�1 > 0. Then the equation (27.22) can be
equivalent to

AiW CW AT
i CWQW � BR�1BT C 1

�2
CC T � 0; i D 1; : : : ; L

or AiW CW AT
i CW

�
Q �Q
�Q Q

�
W �BR�1BT C 1

	2CC
T � 0; i D 1; : : : ; L

or AiW CW AT
i CW

�
Q1=2

�Q1=2

�
I
�
Q1=2 �Q1=2

	
W �BR�1BT C 1

	2CC
T � 0

By the Schur complements [9], the constrained optimization in (27.22) and
(27.23) is equivalent to the following LMI-constrained optimization:

�2
0 D min

W >0
�2 (27.24)

subject to

2
4AiW CW AT

i � BR�1BT C 1
	2CC

T W

�
Q1=2

�Q1=2

�
�
Q1=2 �Q1=2

	
W �I

3
5 � 0; i D 1; : : : ; L

�2W � I
(27.25)
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Remark 27.2. 1. By applying fuzzy interpolation method, the nonlinear system can
be approximated to several linearized systems via fuzzy basis function hi .x.t//

in (27.18) and specify the constant parameter Ai , i.e.,
LP

iD1

hi .x.t//Ai Nx.t/. Then,

the HJI in (27.14) of nonlinear stochastic game problem is replaced by a set of
inequalities in (27.22), which can be easily solved by LMI-constrained optimiza-
tion in (27.25).

2. The constrained optimization to solve �0 and W D P�1 in (27.24) and (27.25)
can be easily solved by decreasing �2 until there exists no W > 0 solution in
(27.25). After solving W and then P D W �1 from the constrained optimiza-
tion problem in (27.24) and (27.25), the minimax control can be obtained from
(27.21).

3. The solution W > 0 in LMI-constrained optimization (27.25) can be solved by
Robust Control Toolbox in Matlab efficiently.

4. If the conventional stochastic quadratic optimal control in (27.3) is consid-
ered [42], i.e., the effect of noises is not considered in the design procedure, the
optimal tracking control problem is equivalent to letting �2 D 1 in (27.5) [51].
Then the optimal control design u�.t/ D �R�1BP Nx.t/ can be solved by a
common positive definite symmetric matrix P from the equation (27.22) with
�2 D 1, i.e., solving a common positive definite symmetric matrix P > 0 from
the following constrained inequalities PAi CAT

i P CQ�P T BR�1BTP � 0;
i D 1 � � �L [9]. In order to solve the optimal tracking control by LMI tech-
nique, the stochastic optimal tracking control is equivalent to solving a common
W D P�1 from the following constrained inequalities

AiWCW AT
i CW

�
Q1=2

�Q1=2

�
I
�
Q1=2 �Q1=2

	
W �BR�1BT � 0; i D 1; : : : ; L

(27.26)
or equivalently,

2
4AiW CW AT

i � BR�1BT W

�
Q1=2

�Q1=2

�
�
Q1=2 �Q1=2

	
W �I

3
5 � 0; i D 1; : : : ; L (27.27)

which is equivalent to (27.25) with �2 D1.

According to the analysis above, the robust control of innate immune system via
fuzzy interpolation method is summarized as follows.

Design Procedure:

1. Give a desired reference model in (27.4) of immune system.
2. Select membership functions and construct fuzzy plant rules in (27.17).
3. Give weighting matricesQ and R in (27.5).
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4. Solve the LMI-constrained optimization in (27.25) to obtainW (thus P D W �1

can also be obtained) and �2
0.

5. Construct the controller under the worst-case noises in (27.21).

27.5 Computational Simulation

We consider the innate immune system in (27.1) and in Fig. 27.2. The values of the
parameters are in the Table 27.1. The immune noises w1 � w4 are assumed white
Gaussian noises. One is the external noises which are under infectious situation; the
microbes infect the organ not only by an initial concentration at the beginning but
also by the continuous pathogens input. For the convenience of computer simula-
tion, suppose the continuous pathogens input to the immune system is viewed as an
environmental disturbance w1. The other is internal noises w2 � w4 are assumed
zero mean white noises with standard deviations all equal to 2. The dynamic model
of innate immune system under exogenous pathogens input and environmental
noises are controlled by a combined therapeutic control shown in (27.1) [41] with
the set of the initial condition x.0/ D Œx1.0/x2.0/x3.0/x4.0/�

T D Œ33:110:98�T .
In this example, therapeutic controls u1 � u4 are combined to enhance the immune
system.

Our reference model design objective is that system matrix Ar and r.t/ should
be specified beforehand so that its transient responses and steady state of refer-
ence system for innate immune response system are desired. If the real parts of
eigenvalues of Ar are more negative (i.e., more robust stable), the tracking sys-
tem will be more robust to environmental noises. After some numerical simulations
for clinical treatment, the desired reference signals are obtained by the following

Table 27.1 Model parameters of dynamic innate immune system [24, 42]

Parameter Value Description

a11 1 Pathogens reproduction rate coefficient
a12 1 The suppression by pathogens coefficient
a22 3 Immune reactivity coefficient
a23 1 The mean immune cell production rate coefficient
x�

2 2 The steady-state concentration of immune cells
a31 1 Antibodies production rate coefficient
a32 1.5 The antibody mortality coefficient
a33 0.5 The rate of antibodies suppress pathogens
a41 0.5 The organ damage depends on the pathogens damage possibilities coefficient
a42 1 Organ recovery rate
b1 �1 Pathogen killer’s agent coefficient
b2 1 Immune cell enhancer coefficient
b3 1 Antibody enhancer coefficient
b4 �1 Organ health enhancer coefficient
d1 	 d4 3 Noises coefficient
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Fig. 27.4 The desired reference model with four desired states in (27.28): pathogens (xr1, blue,
dashed square line), immune cells (xr2 , green, dashed triangle line), antibodies (xr3, red, dashed
diamond line) and organ (xr4, magenta, dashed circle line)

reference model (see Fig. 27.4).

Pxr .t/ D Ar � xr .t/C Br � ustep.t/ (27.28)

whereAr D diag.
��12 �2:3 �10 �3 	/ Br D

�
0 4:6 13:3333 0

	T
and ustep.t/

is the unit step function.
From the investigation of the uncontrolled innate immune response (lethal case)

in Fig. 27.5, the pathogen concentration is increasing rapidly and causes organ fail-
ure. We try to administrate a treatment after a period of pathogens infection to
enhance the immune system. The cutting line (black solid line) in Fig. 27.5 is a
proper time to take drugs. Suppose the set of the initial condition of the desired

reference model is about xr .0/ D
�
2:9 3:2 1:1 0:9

	T
. The time response of the

desired reference model in (27.28) is shown in Fig.27.4.
To minimize the design effort and complexity for this nonlinear innate immune

system in (27.1), we employ the T-S fuzzy model to construct fuzzy rules to approx-
imate the nonlinear innate immune system with the innate immune system’s state
variables as premise variables in the following.
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Fig. 27.5 The uncontrolled immune responses (lethal case) in (27.1) are shown to increase the
level of pathogen concentration at the beginning of the time period. In this case, we try to adminis-
trate a treatment after a short period of pathogens infection. The cutting line (black solid line) is an
optimal time point to give drugs. The organ will survive or fail based on the organ health threshold
(horizontal dashed line) [x4 <1: survival, x4 
1: failure]

Rule i:
If x1 is Fi1, x2 is Fi2, x3 is Fi3, and x4 is Fi4, then

PNx.t/ D Ai Nx.t/C Bu.t/C C v.t/; i D 1; 2; 3; � � � ; L (27.29)

where Nx D Œx1 x2 x3 x4 xr1 xr2 xr3 xr4�
T , u D Œu1 u2 u3 u4�

T , v D Œw1 w2 w3 w4

r1 r2 r3 r4�
T , the number of the fuzzy rules is L D 16. To construct the fuzzy model

in (27.29), we need to find the operating points of the innate immune response.
Suppose the operating points for x1 are at Nx11 D 0, and Nx12 D 4. Similarly, the
operating points of x2, x3, and x4 are at Nx21 D 0, Nx22 D 10, Nx31 D 0, Nx32 D 5,
Nx41 D 0, and Nx42 D 1, respectively. For the convenience of design, triangle type
membership functions are taken for Rule 1 through Rule 16. We create two triangle
type membership functions for each state at these operating points (see Fig. 27.6).
In order to accomplish the robust matching performance, we should tune up a set of
the weighting matricesQ and R of the cost function in (27.11) as follows

Q D diag.
�
1 1 1 1

	
/; R D diag.

�
0:003 0:003 0:003 0:003

	
/:
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Fig. 27.6 Membership
functions for four states
x1; x2; x3 and x4

After specifying the desired reference model, we need to solve the constrained
optimization in (27.24) for the robust minimax control in (27.21) by employing
Matlab Robust Control Toolbox. Finally, we obtain a minimum noise attenuation
level �2

0 D 0:98 and a common positive definite symmetric matrix P for Eq. 27.22
as follows

P D

2
666666666664

0.43313 0 0 0 �0.43313 0 0 0

0 0.56172 0 0 0 �0.56172 0 0

0 0 0.42678 0 0 0 �0.42678 0

0 0 0 0.28482 0 0 0 �0.28482
�0.43313 0 0 0 0.50151 0 0 0

0 �0.56172 0 0 0 0.62738 0 0

0 0 �0.42678 0 0 0 0.49526 0

0 0 0 �0.28482 0 0 0 0.34567

3
777777777775

Figures 27.7 and 27.8 present the simulation results for the robust control.
Figure 27.7 shows the responses of the controlled immune system by minimax
model matching control with the concentrations of the pathogens x1, immune
cells x2, antibodies x3 and organ index x4 to track the desired reference states
xr1; xr2; xr3 and xr4, respectively. From the simulation results, the tracking
performance of the robust control via T-S fuzzy interpolation is quite satisfactory.
The Fig. 27.8 shows the four combined therapeutic control signals. Obviously, from
Figs. 27.7 and 27.8, it is seen that the effect of stochastic external noise on the refer-
ence model tracking of immune system is attenuated significantly by the proposed
robust therapeutic control design.

27.6 Discussion

From the simulation results (Figs. 27.7 and 27.8), it is shown that the innate immune
system under the continuous intrusion of exogenous pathogens and the corruption
of environmental noises can be controlled by a robust control design to achieve the
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Fig. 27.7 The tracking of innate immune system to the desired reference model by the robust
stochastic minimax matching control under the continuous exogenous pathogens and environ-
mental noises
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Fig. 27.8 The stochastic minimax controls in the simulation example. The drug controls u1 (blue,
solid square line) for pathogens, u2 for immune cells (green, solid triangle line), u3 for antibodies
(red, solid diamond line) and u4 for organ (magenta, solid circle line)
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Fig. 27.9 In the case of conventional stochastic optimal control (i.e., � D1 in (27.5)), since the
effect of continuous exogenous pathogens intrusion and environmental noises is not considered in
the design procedure, the states of innate immune system overshoot and diverge and cannot track
the desired reference responses

desired time response. If we consider the conventional optimal control in (27.3),
i.e., the effect of the environmental noises is not included in the cost function; the
optimal tracking control problem is equivalent to letting �2 D 1 in (27.5) and
(27.22). From the simulation results (Figs. 27.9 and 27.10), the four states of opti-
mal tracking of the immune system are overshooting and diverging without tracking
the desired immune time response. Obviously, exogenous pathogens and the envi-
ronmental noises have deteriorated the optimal tracking performance and therefore
their effects should be considered in the robust control design procedure. In the situ-
ation, the proposed robust matching control design is necessary to achieve a desired
time response.

The combined therapies design is an important issue for all human diseases [46].
For a long period, the treatment of inflammatory skin diseases such as psoriasis,
contact dermatitis and atopic dermatitis has included agents that alleviate symptoms,
but these agents have not been aimed at any specific molecular targets involved in the
pathogenesis of the disease. Insights into this immune mechanism may facilitate the
development of combination therapies that take advantage of the robust design, with
the aim of achieving higher efficacy at a lower drug dosage. The proposed robust
design has used four control variables, i.e., pathogen killer’s agent u1, immune cell
enhancer u2, antibody enhancer u3, and health enhancer u4, to achieve a stochastic
minimax matching performance and to efficiently attenuate the effect of exogenous
pathogens and environmental noises on the immune system.
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Fig. 27.10 The controls of conventional stochastic optimal control (i.e., � D1 in (27.5)) without
considering the effect of continuous exogenous pathogens intrusion and environmental noises in
the design procedure, the drug controls u1 (blue, solid square line) for pathogens, u2 for immune
cells (green, solid triangle line), u3 for antibodies (red, solid diamond line) and u4 for organ
(magenta, solid circle line) are all overshooting and divergent

In this study, the model of innate immune dynamic system is taken from the
literature, which still needs to compare quantitatively with empirical evidence in
practical application. For practical implementation, accurate biodynamic models are
required for treatment application. However, model identification is not the topic of
this paper. Furthermore, we have made an assumption that the four states (x1 � x4/

of the concentrations or indices can be measured accurately by the medical equip-
ment. With these detectable signals, we can solve these stochastic game problems
for robust tracking control design of innate immune system to obtain the drug
administration values in real time through medical instrument readout. If measure-
ment is corrupted by noises in the measurement process, some filter designs should
be employed to attenuate these noises to estimate the state variables for control in
(27.21) [40]. Nevertheless, the implementation of filter will increase the complexity
of the design problem [2]. Since the proposed robust control design can provide an
efficient way to create a real time therapeutic regime to protect suspected patients
from the pathogens infection, in the future, we will focus on applications of robust
control design to therapy and drug design incorporating with nanotechnology and
metabolic engineering scheme.

As a comparison, the similarity and difference between our stochastic minimax
control method and the stochastic optimal control method [38] are given in the fol-
lowing. We all want to minimize the total cost of design, i.e., the weighted sum of
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the damage caused by pathogens and the cost paid by specific immune cells. On the
other hand, the differences are given in the following: (1) A desired model reference
is given to be optimally tracked for the enhancement of the immune system in our
proposed method and Shudo and Iwasa have designed an optimal control to min-
imize the cost. (2) The effect of external noises has not been considered in Shudo
and Iwasa, but the worst-case effect of external noises has been considered and min-
imized in our design via the Nash stochastic game method. (3) Fuzzy interpolation
technique is employed by our method so that linear matrix inequalities (LMIs) tech-
nique is used to efficiently solve the nonlinear minimax optimization problem in our
design procedure. However, Shudo and Iwasa have used a dynamic programming
method to derive an optimal schedule to solve the nonlinear optimization problem
of host defense, immune memory and post-infection pathogen levels in mammals.

27.7 Conclusion

Robustness is a significant property that allows the innate immune system to
maintain its function despite exogenous pathogens, environmental noises (exter-
nal noises) and system uncertainties (internal noises). Based on stochastic game
theory, the robust tracking control is formulated as a stochastic minimax problem
for an innate immune system to achieve a desired time response prescribed prior
under environmental noises, unknown initial conditions. In general, the robust con-
trol design for innate immune system needs to solve nonlinear Hamilton-Jacobi
inequality (HJI), which is generally difficult to solve for this control design. Based
on the proposed fuzzy stochastic game scheme, the design of nonlinear dynamic
robust matching control problem for innate immune system is transformed to solve
a set of equivalent linear stochastic game problem. Such transformation can then
allow us an easier approach by solving a LMI-constrained optimization problem
for robust minimax control design. With the help of the Robust Control Toolbox
in Matlab instead of the HJI, we could solve these linear stochastic game problems
for robust matching control of innate immune system efficiently. From the in silico
simulation examples, the proposed stochastic minimax match control of immune
system could track the prescribed reference time response robustly, which may lead
to potential application in therapeutic drug design for a desired immune response
during an infection episode.

Appendix

Appendix A

Proof of Theorem 1.

Let us denote a Lyapunov energy function V. Nx.t// > 0. Then (27.9) is equivalent
to the following minimax problem



622 B.-S. Chen et al.

min
u.t/
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v.t/

J D min
u.t/

max
v.t/

E

�
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By the chain rule, we get

dV. Nx.t//
dt

D
�
@V. Nx.t//
@ Nx.t/

�T

� d Nx.t/
dt

D
�
@V. Nx.t//
@ Nx.t/

�T

� .F. Nx.t//C Bu.t/C C v.t//

(A2)

Substituting (A2) into (A1), we get
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Therefore, the minimax solution is given as follows
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with

u�.t/ D �1
2
R�1BT @V. Nx.t//

@ Nx.t/
v�.t/ D 1

2�2
C T @V. Nx.t//

@ Nx.t/
if the equation (27.14) holds, then

J.u�.t/; v�.t// � E ŒV. Nx.0//� �E �V. Nx.tf //	

From the inequality in (27.11), this minimax solution should be less than
�2 NxT .0/I Nx.0/, and then we get the inequality in (27.15).
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J � E ŒV. Nx.0//� � E �V. Nx.tf //	 � E ŒV. Nx.0//� � �2E
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i

Appendix B

Proof of Theorem 2.

Let us denote a Lyapunov energy function V. Nx.t// D NxT .t/P Nx.t/ > 0. Then (27.9)
is equivalent to the following
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The minimax solution is given as follows
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In order to simplify the above equation, suppose the inequality in (27.22) holds,

then
min
u.t/
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v.t/

J � E Œ Nx.0/P Nx(0)�

From the inequality in (27.11), this minimax should be less than �2E
� NxT .0/I Nx.0/	,
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v.t/

J � E Œ Nx.0/P Nx(0)� � �2E
h
NxT .0/I Nx.0/

i
; i:e:; P � �2I

Since we assume �2 is the upper bound in (27.5), the minimax control becomes
how to design u�.t/ in (27.21) by solving the constrained optimization problem in
(27.22) and (27.23).
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