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Preface

It has been seven years since the first International Symposium on Math-
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gratefully acknowledge the financial and logistical support provided by Xerox
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| ntroduction

In 1975, a semina book by Georges Matheron, entitted Random Sets and
Integral Geometry, laid down the foundations of a novel technique for shape
processing and analysis known as mathematical morphology. Twenty five years
later, mathematical morphology is considered to be a powerful tool for signal
and image anaysis, in particular for those applications where extraction and
analysis of geometric information is of interest. The main idea behind mathe-
matical morphology is to analyze geometric information by “probing” an image
with a small geometric template known as the structuring element. This simple
idea has lead to a large collection of theoretical results and practical tools and
has provided a new approach for processing visua information.

This book contains the proceedings of the fifth International Symposium on
Mathematical Morphology and its Applications to Image and Signal Processing,
held June 26-28, 2000, at Xerox PARC in Palo Alto, Cdlifornia. It provides
a broad sampling of the most recent theoretical and practical developments of
mathematical morphology and its applications to image and signal processing.

The contributions are classified under several themes, which are briefly in-
troduced below. It should be noted that many papers have aspects belonging
to more than one theme.

THEORY. A number of theoretical aspects of mathematical morphology are
investigated. These include: an understanding of the relationship between tra-
ditional signal processing techniques and mathematical morphology, sequential
decompositions of a particular class of morphological operators, decomposition
of large concave grayscale structuring elements, minimization of mixed volume
functionals of convex polyhedral shapes based on Minkowski addition, investi-
gation of certain topological properties of the discretization of closed sets based
on the Hausdorff metric, the introduction of vector levelings and flattenings,
and a lattice control model for dynamical systems.

SHAPE ANALYSIS AND INTERPOLATION. This part includes three papers, pro-
viding a morphological approach to shape interpolation, a shape deformation
technique based on combining morphological interpolation with affine trans-
formations, and the use of affine invariant mathematical morphology for shape
recognition.

FILTERING. Morphological filtering is an important subject of mathematical
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morphology that provides operators capable of removing unwanted structures
from images. Here, a method is presented for constructing self-dual morpholog-
ica filters, a new class of morphological filters is proposed for extracting linear
features, aperture filters are applied in several image analysis applications,
and a technique, using genetic algorithms, is proposed for the optimization of
grayscale soft morphological filters.

CONNECTIVITY AND CONNECTED OPERATORS. Connected operators are non-
linear operators that remove connected components from the level zones of a
given image. A number of issues regarding connectivity and connected oper-
ators are investigated: new insights on the concept of digital connectivity are
presented, the concept of a connectivity class is extended to include approx-
imate and multiresolution connectivities, and region-tree pruning is proposed
as a tool for constructing connected operators.

SEGMENTATION. Mathematical morphology is instrumental in providing effec-
tive solutions to image segmentation problems. Here, a number of papers
present morphological approaches for segmenting grayscale, color, 3-D and
video images, as well as for extracting semantic video objects. Moreover, flood-
ing, a key step in morphological segmentation, is discussed in the framework
of hierarchical morphological segmentation.

TEXTURE ANALYSIS. In this part, morphological tools, like granulometries
and antigranulometries, Choquet capacities, erosion and dilation curves, etc.
are used for texture synthesis, classification, and mipmapping.

MULTIRESOLUTION TECHNIQUES AND SCALE-SPACES.  Multiresolution  ap-
proaches are extremely useful in many image processing and analysis appli-
cations. In this section, morphological pyramids and wavelets are studied on
the quincunx lattice, an algebraic framework for morphological scale-space op-
erators is introduced, and an idempotent scale-space approach to segmentation
is proposed.

ALGORITHMS. In this part, a number of papers deal with the development
of algorithms for the fast implementation of morphological operators. These
include algorithms for efficient implementation of standard erosions, dilations,
openings, and closings, for attribute openings-closings and change detectors;
and for calculating distance transforms, the watershed transform, and the me-
dia axis of 3D objects.

APPLICATIONS. Finally, a number of papers deal with the use of mathematical
morphology in a variety of applications. These include: compression of doc-
ument images, OCR classification, bank check logo segmentation, correction
of handwriting baseline skew, segmentation of renaissance books, extraction of
linear features in airborne images, face locdization, and quantitative descrip-
tion of telecommunication networks.

The papers in this book contribute ideas that are useful to people working
in mathematical morphology and other areas of signal and image processing,
pattern recognition and computer vision.



A MORPHOLOGICAL VIEW ON TRADITIONAL SIGNAL
PROCESSING

RENATO KESHET (KRESCH)
Hewlett-Packard Laboratories — Israel
Technion City, Haifa 32000, Israel.
E-mail: renato@hpli.hpl.hp.com

Abstract. We argue that the fundamentals of mathematical morphology (partial ordered
sets, openings, erosions, etc.) could provide a theoretical foundation for signal processing in
general. The main observation is that signal processing addresses simpler versions of signals
(of a given set S), and this actually determines a partial ordering on S. Another  observation,
made in the past by Serra, is that ideal filters are in fact algebraic openings. In this paper,
these and other ideas are addressed and developed.

In the first part of this paper, we show that several key signal processing tasks (linear
filtering, quantization, and decimation) can be seen as particular cases of morphological
operators. Specifically, for each of these operators, we show a complete inf-semilattice in
which the operator is an erosion. This serves as a background and motivation for investigating
the relationship between mathematical morphology and general signal processing.

In the second part, we revisit the foundations of signal processing from the point of
view of mathematical morphology. We show that, to every function, one can associate a
partial ordering and an ideal filter (algebraic opening in the resulting partial ordered set),
which provide a characterization of the “simplification” (information loss) performed by the
function. Then, links between classes of signal processing tasks and basic morphological
operators are established.

Key words: Mathematical Morphology, Complete Semilattices, Signal Processing, Image
Processing.

1. Introduction

1.1. MOTIVATION

Structural and functional similarities between the well-known linear Laplacian
pyramid and the morphological skeleton representation, observed in the past [1]
(see dso [2, chapter 9]), are the roots of the work presented here. These two
image decomposition schemes can be obtained by the same agorithmic struc-
ture: i) Perform a series of information removal steps, ii) at each step perform
a restoration operation, and iii) take the differences between the restored and
the input images at each step. The only difference between the agorithms is
that for the Laplacian pyramid the information removal step and restoration
operation are decimation and interpolation, respectively, whereas for the mor-
phological skeleton, these are erosion and dilation, respectively. As noted in
[3] (see aso [2, chapter 5]), there are other decomposition schemes that have
the same algorithmic structure as above. Bit-plane decomposition is obtained
if the information removal and restoration operators are set to point-wise in-
teger division by 2 and point-wise multiplication by 2, respectively. Quadtree
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decomposition is obtained for another specific choice of information removal
and restoration operators.

Heijmans and Goutsias have recently proposed a common axiomatic frame-
work for these pyramidal schemes [4], deepening the understanding of the sim-
ilarities between them. On the other hand, one could go forward, and ask if
there is a deeper connection between such theoretically different operators as
linear decimation, morphological erosion, and integer division.

An interesting result, related to the above question, is given in [3, 2]. It
turns out that quadtree and bit-plane decompositions are particular cases of
morphological skeletons on complete lattices! |.e., there exists a complete lat-
tice (the usual complete lattice of grayscale images) where point-wise integer
divison by two is an erosion, and another one (the usua Boolean lattice on
Z*) where the quadtree information removal step is an erosion. It is also shown
that the corresponding restoration operators are their adjoint dilations. In this
case, could linear decimation be an erosion as well, and the linear interpolation
be its adjoint dilation? Unfortunately, there does not seem to exist a complete
lattice where this holds.

However, with the extension of MM’s theory to complete semilattices [5],
we can answer the above question affirmatively. We show here that there exists
acomplete inf-semilattice (CISL) where decimation is indeed an erosion, and
interpolation is its adjoint dilation!

The above result triggered a few other interesting results: We also show
here that any linear trandation-invariant filter is an erosion in the same CISL
as above. Also, quantization is shown to be an erosion in another CISL.

1.2. ANALYSIS

In our opinion, all the above observations are more than just curious remarks.
We believe that the very nature of MM congtitutes a suitable framework for
signal processing (SP) in general, and therefore it is not a coincidence that
the information removal steps of all decomposition schemes considered above
are erosions. Similarities between MM and other signal processing tasks, like
template matching and restoration, have aso been reported in the past [8, 2,
chapter 9]. Other links are given in [10].

In the second part of this paper, we briefly review signal processing funda-
mentals from the MM theoretical point of view, in order to justify the above
statement. In particular, we argue that the concept of partial ordering (the
basis of mathematical morphology theoretical framework) could be seen as a
formal characterization of the notion of “simpler version” of a signal, which
is the heart of signa processing. We show that every operator is an erosion
in some partial ordered set (poset), which means that every operator has an
underlying simplicity criterion (the partial order) behind it. We suggest that
an operator is suitable to some signal processing application only if its under-
lying simplicity criterion matches the application needs and ones intuition of
what “simpler version” means. In this framework, erosions assume the réle of
information removing operators, while their adjoint dilations are the restora-
tion step associated to them. The associated opening represents the ideal filter
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behind the operation. Interestingly, the closing operation is of no meaning in
this framework.

2. Some Traditional SP Tasks Viewed as Morphological Operations

The methodology in this section is as follows. To each example of SP task,
we associate a partia ordering that provides the corresponding set of signals
with a CISL structure. Then we show that the operation in consideration is
an erosion in that CISL. The proof for the first proposition presented here is
shown, but that of the others is omitted, for lack of space.

2.1. SCALING AND PYRAMIDS

Let us define the partial ordering < onts (Zd> .Fordl f,g€ ¥ (Z‘i>:

f é g < Yw € [0,2m)¢,

{ |F(w)] <|G(w)l], and 1)
0 {F(w)} =0 {Gw)},

where F(w) and G(w) are the d-dimensional Fourier transforms of f(x) and

g(x), respectively, and ©{-} is the operator that returns the phase of a Fourier
coefficient.

The partially ordered set <€2 <Zd) ,é) is actualy a CISL, where the least

element is the null function. The infimum of a set {fi} € 42 (ZZd) is given by
the following relation:

A fi} = FTH{W}, @)

where F~1 denotes inverse d-dimensional Fourier transform, and W(w) is de
fined by:

Ww) 2 { inf {|F;(w)[} - exp (7O {Fo(w}}) , if © {Fi(w)} = © {Fo(w)}, Vi

0, otherwise.
(3)
Consider the R: 1 decimation operation DR, characterized by:
Dr{f}(n)= > hi- f(nR—1), (4)

icZ?

where {h;} is the set of coefficients of the ideal m/R-cutoff low-pass filter.
And consider also the 1 : Rinterpolation operation |r, given by up-sampling,
followed by filtering with the same idea m/R-cutoff low-pass filter {h} as
above.

Proposition 1 DR is an erosion in <€2 (Zd> ,§>-
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Proof: We have to prove that Dr (/.\ {fi}) =A {Dr(f.)}, for any subset { f;}

of £ (Zd).
From signal processing theory, we have:
F{Dr(f)} (w) = F(w/R). )
Therefore:

F{DR (R f)} = W(w/R)
{ inf{|F;(w/R)|} exp (j© {Fo(w/R)}),

if © {Fi(w/R)} = © {Fo(w/R)},Vi
0, otherwise.

F{ADR(7)}- (®)

Proposition 2 |Rr is the adjoint dilation of Dr.
Corollary 1 The corresponding morphological opening is filtering by {hi}.

Proposition 3 The Laplacian pyramid, calculated with the decimation and
interpolation operations Dg and | R, is a morphological skeleton in £z (Zd).

2.2. LINEAR FILTERING

For simplification, let us consider here only discrete signals, i.e., signals in
2 (Zd>. The results can be extended to continuous signals as well.
Consider the linear filtering operation £,, characterized by:

L{ftn)=(F*g)(n)= > gi- f(n—1), (7)

iCcZ?

where {gi} is the set of coefficients of an arbitrary filter. The pseudo-inverse
L¥ of alinear filtering operator L, is given by: L7 (f) 2 F-1 {F(w)H* ()},

where
H#(w) ) { 1/H(w), |H(w)| >0, ©)

0, otherwise.
Proposition 4 £, is an erosion in (éz <Zd) ,g).

Proposition 5 £¥ is the adjoint dilation of Z,.

Corollary 2 The morphological opening associated to a given linear filtering
operation is an ideal (idempotent) linear filtering operation.
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2.3. QUANTIZATION

Consider the complete inf-semilattice (JR, ;) of real numbers with the partial
ordering:
m%y@OSxSyorngSO, 9)
where < in the right-hand side denotes the standard scalar ordering. The
infimum operation A associated to ; is given by: x A y = median{x, y, 0}.
Now, consider the quantization by truncation with step g > O, QfIT), defined
by:
we-{ i i 20 w0

Proposition 6 For any q > 0, Q{™) is an erosion in (B, ;) The adjoint

dilation of @\ is the dequantization DS given by:

e (3} 4228

Similar results can be obtained for quantization by rounding, QéR), with a
more complex partial ordering.

3. Signal Processing on Posets

The various examples in Section 2 motivates us to look at MM theoretical
fundamentals as a possible, appropriate framework for signal processing in
general. In this section, we investigate signal processing from the point of view
of MM on posets. The investigation is limited to deterministic operators.

3.1. MORPHOLOGY ON POSETS

The recent extension of MM from complete lattices to complete semilattices [5]
is not the most genera possible. It turns out, from the work of Heijmans and
Ronse [6], that, with the concept of adjunctions, MM can be based on genera
partially ordered sets (posets).

A B
Let < and < be two partial orderings defined on arbitrary sets A and B
respectively. Let €: A— Band 6: B +— A be two operators. (€, 9) is caled an

B A
adjunction between Aand B, if: Va € A,bec B, b<e(a) < i(h) <a.
As in MM on complete lattices, operators € and o that form an adjunction

between posets satisfy distributivity over infimum and supremum, respectively,
and therefore will be called erosion and dilation, respectively.

3.2. SIMPLIFICATION AND PARTIAL ORDERS

Typicaly, the am of a signa processing operation is to address a simplified
version of a given signal. By “addressing a simplified version” we mean either
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producing a simplified version of a given signal, recovering a signal from a
simplified version of it, or transforming the signal in order to ultimately assess
a simplified version of it.

The term “simplified version” implies the existence of a partia ordering <
on the set of signals S, where a signal f O Sis a simplified version of another
g O Siff f=< g. This partial order constitutes a hierarchy in S.

Often (but not necessarily), one can also associate a simplicity measure
pto this hierarchy, which is a non-negative real function that quantifies the
simplicity of each signal. Examples of useful simplicity measures of signals
include energy, entropy, the inverse of smoothness (roughness), variance, error,
area, length, etc. The measure and the partial ordering should be related as
follows: f < g = u(f) < u{g)*. Notice that u(f) < u(g) & 7 < g, which
means that being simpler than another signal does not necessarily means being
a simpler version of it.

3.3. IDEAL FILTERS AND OPENINGS

Simplification of signals are obtained by filters. J. Serra compares the func-
tionality of a filter with hand washing [7]: i) It does not add dirt to the hands,
ii) once the hands are clean, further cleaning produces nothing, and iii) wash-
ing only one hand cleans less than washing both. The above features are
mathematically described as anti-extensivity, idempotence, and increasingness,
respectively. Serra aso points out that these correspond exactly to the defi-
nition of algebraic opening. The conclusion is that filtering is performing an
algebraic opening, and vice-versa

An interesting and strong aspect of filtering is given by the following propo-
sition.

Proposition 7 Let A be an arbitrary set. For every idempotent operator vy :
A — A there exists a partial ordering =<, such that yis an opening in the poset
(A2).

Proof: Define < asfollows. a; < as < a; = ag or a; = ~y(az). It is easy to
show that the above is a partial ordering. In this case, yis increasing, since
a1 < as = v(a1) = v{az) = y(a1) = v{az). Moreover, yis idempotent by
definition, and anti-extensive, by definition of <. Hence, yis an opening. O

l.e.,, any idempotent operator can be seen as a filter according to some
simplification criterion (partial ordering). However, it is obvious that not every
idempotent operator is an appropriate filter for signal processing. Actualy,
most are not. To be appropriate, the underlying partial ordering of the filter
should match one's intuition of what “simpler version” means.

3.4. INFORMATION REMOVAL AND OPENINGS

Next proposition permits us to conclude that the only way to remove informa-
tion is by using openings (filters).

1 If Sis discrete, or if the signals f and g are “regular,” then f < g = u(f) < i(g)
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Proposition 8 Let A be an arbitrary set. Any operator ¢ : A — A can be

decomposed into ¢ = €'y, where y: A — A [ Ais an idempotent operator,
and €' : A'— Aisaninvertible operator.

Proof: Let B O A be the range of ¢. For every b O B, consider the set
AY = {a € A| b=¢(a)}. Construct an operator &: B — A, by assigning,
for each b O B, an arbitrary element of A7 to 5(b). Let the range of S be
denoted by A'. Notice that any such construction satisfies $& =id, and ¢

is an idempotent operator. We then assign vy 2 0¢. We define €' as identica
to¢, but with domain restricted to A, i.e.,, we define ¢’(a’) = ¢(a’), for dl
a O A'. Even though ¢ is not necessarily invertible, €' is, and its inverse is d.
This is because i) d¢'(a’) = dp(a’) = v(a’) = a/, and ii) '6(b) = pd(b) = b.
Finally notice that v = wdp = . O

Since €' is invertible, it does not remove information from a signal. It
merely modifies the format of the information. Therefore, if ¢ is lossy, then
the information is lost by means of the idempotent operator y, which according
to Proposition 7 is an opening in some poset. Notice that the decomposition
referred to in Proposition 8 is not unique, which means that there may be
more than one opening “behind” a given operator, and more than one partial
ordering related to an operator. In other words, there may be more than one
way to interpret the information loss. But in each case, the latter is caused by
an opening.

3.5. INFORMATION REMOVAL AND EROSIONS

onLo , onuto

Proposition 9 Let y: A
B O A an invertible operator and dits inverse. Define the operator € = s Y, as

A" O A be an idempotent operator, €' : A

well as the relation < in A ap < ag < a; = 0" (az) for some non-negative
integerz n. Then:

i) The relationé is a partial ordering in A.
ii) (g, 0) is an adjunction between the posets <A,£<> and (B, ;)

iii) yis the morphological opening associated with the above adjunction.

The proof is omitted because of lack of space. Propositions 8 and 9 together
lead to the following even stronger proposition.

onto

Proposmon 10 For every operator ¢ : A — B A thereis a partial ordering
;<, for which ¢ is an erosion between the posets <A, j> and (B, j).

As in the case of openings, the above proposition is relevant only when =
matches one's intuition of what a “simpler version” is. For instance, one could
say that one reason for linear filtering (convolution) to be usually regarded

2 3" and £" are the n-fold application of dand &, respectively, and 8° = £° =id.
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as an appropriate signal processing operation is because it is an erosion with
underlying partial ordering (1) associated to signal energy?, which is often
recognized as a good measure of signal complexity. On the other hand, in
many applications (e.g., segmentation), signal energy is not an appropriate
measure, and other (non-linear) methods are usualy invoked.

We should also point out that the range B of the operators ¢ and €' in
Propositions 7, 8, and 9, are required here to be a subset of A only for simplicity.
One can show that these propositions can be extended also for an arbitrary B,
which means that in fact every mapping is an erosion between posets.

3.6. ROLES IN SIGNAL PROCESSING

Summarizing the above ideas, one identify the following links between signa

processing and morphological concepts.

—  Simplification criteria for signal processing are partia orderings. In most
practical cases, this partiad ordering characterizes a CISL, since it is in-
tuitive to expect the existence of a “simplest signal,” but not of a “most
complicated” one.

—  Simplification (information removal) is performed by openings, which are
ideal filters.

— Instead of openings, it is nevertheless more usua to use erosions for sim-
plification, which consist in fact of filtering plus an invertible distortion/
transformation. Examples of erosions: linear filtering, decimation, quan-
tization, coding, compression, denoising, pattern detection, etc.

— To each of the above simplification operators, correspond a “pseudo-inver-
se,” the adjoint dilation, which does not add or remove information — just
cancels the invertible distortion/transformation performed by the erosion.
Examples: Inverse operators in genera, interpolation, deguantization, de-
coding, restoration, pattern reconstruction, enhancement (deblurring), etc.

The above links can be depicted schematically through the diagram in Fig. 1.
Two particular examples of SP tasks seen as morphological operations are
shown in Fig. 2.

Notice that, in the above scheme, the morphological closing operation has
no intrinsic meaning or function. In many cases it is simply equal to the identity
operator, and in other cases it is not well defined. In this context, the classical
closing on a complete lattice, which usualy does have a meaning and function,
is seen as an opening in the dual complete lattice. This is because such closing
is used for filtering, and therefore function as an opening.

4. Discussion

The ideas described above can develop into two different research approaches:
Analysis, which aims in providing new insights and understanding of old schemes,

3 The partial order definition in terms of absolute value of the frequency components in (1)
is equivalent to a definition in terms of the energy (square of absolute value) of the frequency
components.
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Fig. 2. Examples of signal processing tasks seen as morphological operations. (a) Feature
extraction, and (b) resolution reduction.

and synthesis, which should result in new signal processing algorithms, tools,
etc., or in ways of improving existing ones.

The work described here is purely analytic. It provides observations that
lead to a different way of regarding traditional signal processing tasks. Further
analysis research should try to answer questions like: “What is the underly-
ing partial ordering (simplification criterion) behind a given signal processing
task?’ “Does this partial ordering make sense intuitively?” “What is the ideal
filter associated to a given signal processing task?’ Etc.

Regarding the synthesis approach, no contribution was provided yet, at this
point. This approach could work as follows: First, find a partial ordering that
is suitable to a specific set of signals and a given application. Then, design
algebraic openings on the resulting poset. Finally, design erosions/adjoint-



12 RENATO KESHET (KRESCH)

dilations that are associated to the above openings (optional). One possible,
interesting candidate for partial ordering is the concept of “leveling,” proposed
by Meyer (see [9]).

5. Conclusion

The observations presented in this paper suggest that morphological funda-
mentals (partial ordering, openings, erosions, dilations, adjunctions) on posets
could serve as a framework for signal processing in general.

We first showed that some key signal processing tasks can be seen as ero-
sions on CISL’'s, and we presented underlying partia orderings (simplification
criteria) related to them.

We then argued that every operator can be seen as a morphological erosion
between posets, and is related to an ideal filtering (the associated opening) and
a simplification criterion (the corresponding partial ordering).

We aso stressed that the work presented here is purely analytic, and one
still has to provide answers to questions like: “Can a MM framework for signal
processing provide new algorithms and application, or improve existing ones?’
Moreover, extension to stochastic signal processing still has to be investigated.
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1. Introduction

W-operators are discrete set operators that are both trandation invariant and
locally defined within a finite window W. Due to their great utility in binary
image analysis, they have been intensively studied. One of the most successful
approaches to represent W—operators is Mathematical Morphology [7, 5, 2].

A particularly interesting property of W-operators is that they have sup-
decompositions, that is, they can be decomposed in terms of a family of sup-
generating operators (i.e., the uniquely intersection of erosions and comple-
mented dilations), that are parameterized by the operator basis [1] (i.e., a
collection of maxima intervals). The sup-decomposition has a parallel struc-
ture that usually is not efficient for computation in conventional sequential
machines.

In this paper, we formalize the problem of transforming the sup-decompo-
sitions into purely sequential decompositions (when they exist). The theory
proposed consists in the formulation and solution of discrete equations in a lat-
tice space. Due to their discrete nature, the solution of these equations depends
on the combinatory techniques that were developed for general \W-operators,
specialized for increasing W-operators and applied on operators built by al-
ternating compositions of dilations and erosions.
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The results presented here extend to general W-—operators some results
given by Jones [6] for increasing trandation invariant operator and introduce
some new bounds for the particular case of increasing W-operators.

Following this introduction, Sections 2 and 3 reviews some properties of,
respectively, the lattice of sets and of collections of maximal intervals. Sec-
tion 4 introduces and gives bounds for the Minkowski factorization equation.
Section 5 speciaizes the results of Section 4 and introduces a necessary condi-
tion for the structuring element. Section 6 gives some properties for collections
of W—operators. Section 7 shows how to apply the results of Section 5 to
compute the structuring elements of morphological operators built by aternat-
ing composition of dilations and erosions from their basis. Section 8 gives an
application of the proposed method to a simple example for transforming a sup-
decomposition into a purely sequential decomposition. Finally, in Section 9,
we discuss the results presented and give some future steps of this research.

The proof of the results given in this paper are presented in [4].

2. Lattice of Sets

Let E be a non empty set and let W be a finite subset of E. Let P(W) denote
the power set of W. Elements of P(W) will be denoted by capital letters
A B, C,...Let O be the usua inclusion relation on sets. The pair (P(W), O)
is a Complete Boolean Lattice [3]. The intersection and union of X and Yin
P(E) are, respectively, XNY and XUY. The complementary set of X O P(W)
with respect to W, denoted Xv‘f/ or, simply, X€, when no confusion is possible,
isXfy ={zeW: : zg X}

Let E be a non empty set, that is an Abelian group with respect to a binary
operation denoted by +. The zero element of (E, +) is denoted by o.

The transpose of a subset X 0 P (E) is the subset X', given by Xt = {z €
E:—zeX}.

For any X O P (E) and y O E, X denotes the translation of X by y, that
issX,={z€E:z—ye X}

Let X,Y OP(E). The Minkowski addition and subtraction of X and Y are,
respectively, the subsets X @Y and X oY givenby X @Y =U{X,:y €Y}
and XY =n{X_,:yeY}

Let X,YO P (E). We say Y is an invariant of X if and only if (iff)
X=(XeY)aY.

3. Lattice of Collection of Maximal Intervals

Let P (P(W)) be the collection of al subcollections of P (W). Elements of
P (P(W)) will be denoted by capital script letters A, B, C, .. . If O is the usual
inclusion relation on sets, then the pair (P(P(W)), 0) is a Complete Boolean
Lattice.

Let A,BOP (W) such that A O B. An interval of extremities A and B
is the subset [A, B] of P(W) given by [4,B] = {X e P(W): AC X C B}.
The sets A and B are called, respectively, the left and right extremities of the
interval [A, B]. For al pairs (A B) such that A € B, [A B] represents the
empty collection, also denoted 0.
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Collections of intervals contained in P(W) will be denoted by capital bold
face letters as Aw,Bw,Cw, .., or,simply, A, B, C, ..., when no confusion is
possible.

An interval [A, B] in a collection of intervals X is caled maximal iff there
does not exist an interval [A', B'] in X, distinct of [A, B], such that [A, B] O
[A, B'].

The collection of al maximal intervals of X is denoted Max(X). Of course,
if al the intervals in X are maximal, then X = Max(X).

Let X be a subcollection of P(W). The collection of all maxima intervals
contained in X is denoted M (X), that is,

M(X) = Maz({|A, B C P(W) : [4,B] C X}).

We denote by 00X the collection of al elements of P(W) that are elements
of intervas in X, that is, UX = {X e P(W): X € [A4, B, [A4, B] € X}.

Let My denote the set {M(X): X C P(W)}. We will define the partial
order < on the elements of My, by setting, for al X, Y ON .,

X<Y <& V[ABeX, JA,B)eY:[A B C[4, B

The poset (M, <) congtitutes a Complete Boolean Lattice [2]. The supre-
mum and infimum operations in the lattice (M, <) are given, respectively, by
for any X,Y € Iy, XUY = M((UX) U (UY)) and XNY = M((UX) N (UY)).

Given two collections of maximal intervals Xy, € IIw, and Yw, € Ilw,,
we say that Xw, = Yw, iff Wy = Ws, (ie., Iy, = y,) and Xw, < Y,
and Yy, < Xy,.

LetW',W € P(E) such that W' O W. We define the set ITyy iy C Iy
as Iy yw={Xeclly: AACW andB' - W =W¢, V[4, B X}

Proposition 1 LetW', W € P(E) suchthat W’ 2 W. The mapping W(),
from (ITy, <) to (I w, <), defined by
W(Xw) = {[4,B] S P(W'): A' = A and B’ = BUW®, [A, B] € X}
constitutes a lattice isomorphism between the lattices (I, <) and (Tl /w, <).
The inverse of the mapping W(?) is the mapping W™(-), from Tly. w to Iy,
defined by
W (X)) ={[4,B|CPW): A=A"andB = B'NW, [4',B'] € Xy}

As a consequence of Proposition 1, if WO W we can change of representa-
tion of a collection of maximal intervals Xy € Iy 10 Xy € yw C Iw,
and vice-versa

For any X € Iy and y € E, X, € Iy, denotes the translation of all
intervals of X by vy, that is, X, = {[4y, By] € Ilw, : [4, B] € X}.

Let Xy € Iy and C € P(E). The Minkowski addition and subtraction of
Xw by C are, respectively, the collection of maximal intervalsXw @C € Ilwgc
and Xy © C € HWQBC“ given by Xy & C = u{(Xh)W@C : h € C} and
Xwol= [—l{(X_h)W@Ct che C}

4. Minkowski Factorization Equation

Problem Given a collection of maximal intervals Yy € Iy and a set C O
P(E), find all collections of maximal intervals Xy € Ily, such that
XW &P Ct = YLV’- (l)
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Since Xw @ Ct € Ilyget and Yy € Iy, then, by Equation (1) the
windows Wand W satisfy W e Ct = W',
The next result is a property of collection of maxima intervals.

Proposition 2 Let Xy € Iy, C € P(E) and Yy € Iy If Xy @ Ct =
Yw: , then, for any heE, (Xh)Wh &) (Ch)t = Y.

4.1. UPPER BOUND FOR W

The next result states an upper bound for the window W in Equation (1) and
is a direct consequence of the adjunction relation given in [5, p. 84, Eq. 4.41].

Proposition 3 Let W,C, W' ¢ P(E). f W Ct = W', then W C W' © C".

Given aset C' € P(E) and a collection of maximal intervals Y ., by Propo-
sitions 3 and 1, the collectionsXy, € Iy that satisfy Equation (1) can have
their representations changed to Xy oot € oot w. Therefore, it is suffi-
cient to consider that W = W’ o C*.

4.2. UPPER BOUND FOR X

In this section, we state an upper bound for X. Let W,C € P(E).An
immediate consequence of the Minkowski addition is that o € C* @ C. So, we
can easily see that W C W & (C* & C). Thus, by the associative property [5,
p. 82, Eq. 4.29] of the Minkowski addition, W C (W & C*) & C. Hence, by
Proposition 1, we can change the representation of any collection of maximal
intervals Xy € Iy to Xy~ € Iy, whereW” = (W o CH @ C.

The following theorem [4] gives an upper bound for all Xy € Iy .

Theorem 1 Let Yy € Iy and C' € P(FE). For any Xw € Iy such that
Xw @ Ct =Yy, we have that Xyv < Yy &Ct, whereW” = (WaCHaC.

Let X\ be a solution of Equation (1). Thus, X+ € Iy ,w. By The-
orem 1, Xy < Yy © Ct So, we get an upper bound for Xy, .. Now, we
will show an upper bound for Xy . Since Xy~ < Yyw & C%, then, for any
[4, B] € Xy~ there exists [L, R} € Yw+ © Ctsuch that [4,B] C [L,R]. As
Yw ©C* € Ilyw, then L C A and B C R C W". Since [A,B] € Xy~
and Xy € HW”/W7 then ACW and B-W = W¢° S, LC ACW
and We = B-WCR-WCW —-W =W Thus, R—W = W¢,
and, consequently, [L,R] € Iy ,w. Hence, for any interva [A,B] € Xy,
there exists an interval (L, R| € Yw: © C%, such that [A,B] C [L,R] and
[L,R] S HW”/W- Therefore, if Uy = {[L,R] EYw 6 Ct: [L,R] S HW”/W}
and Uy = W™ (Uy~), then, for al Xy that satisfy Equation (1), we have
that Xy < Uw. Consequently, U, is an upper bound for Xy .

4.3. LOWER BOUNDSFOR X w
Given an interval [A’,B] € P(W’') and aset C € P(E), we define the col-

lections of intervals E%,’Bl]’c and R[V@I'Bl]’c, contained in P(P{W)), where
W=WeocC" as
cBYC A BAW]: AL, CW, BCB.,, B.,—W=W° zeC'

and
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RWEIC (A B nW| A, CA A ,CW, BL,—W =W¢, zcCt}.
We define the setH“ BIC a1l BIC - (PO U{R,S]}: [P,Q) €
C4g 10 [ 5] e R 1),
Let I = {123, .., n} be a set of indices. Let Yy = {[4;,B}] :i € I}} €
Iy and C € P(E). We define the setSYW’ © H[V‘:}“Bl]’c X e X H%”’B"]’C.
Given a collection of maximal mtervaIsYW/ € Iy and a subset C' € P(F),
let us define the set of collection of mtervals@YW’ © whereW =W'eCt, by
OYW"C = {Zy €Ty : Zw = {8, i € I}, (sw,sw,u ny eSO
The next result states lower bounds for Xy in Equation (1)
Theorem 2 LetC € P(E) and Yw: € Hyw-. For all Xw € Iy such that
Xw ® C* = Yy, there exists Zy € @YW’ “ such that Zy < Xw.

5. Fixed Right Extremity Simplification

Let us define the set Zyw C Il as the set of al collections of maxima intervals
such that the right extremity of any interval is the window W. We call any
collection in Iy, by right window collection.

Now, consider the problem, presented in Section 4, restricted to |, and
| w+, that is, given a collection Yy € Zw. and aset C € P(E), find all
collections of maximal intervals Xy € Zyw such that Xy & Ct = Y.

For simplicity, where there is no risk of confusion, we denote the intervals
[A, W] of X € Ty, by [A].

5.1. LOWER B OUND SIMPLIFICATION

Given an interval {A'] € P(W') and a subset C € P(E), we define the sets
cae = {{A’_Z,W] czect) anduld)C = (W]} [P,w] e £id)CY.

Let 1 ={1, 2, 3, .., n} beaset of indices. LetYw = {[4}] :i € I} € Iy~
and C € P(E). We define the set Fo 0 = #lC . plaal0,

Given a collection of maximal mtervaIsYW: € ZW/ and a subset C € P(FE),
let us define the set of collection of |ntervals<I>YW [ whereW W’'e C?t, by
eYWC Z (T € Ty : Zyy = U{Fly, i € I}, (Fly, Fly, - FRy) € Fir" C}

Note that, by definition of the set@%’v‘””c in Section 4.3, if the right ex-
tremity of the intervals in Y . and Zw are, respectively, the windows W and
W, then ©5%" is reduced to the set &2, Thus, we can easly see that,
(I)E’VWHC C ebfvw’:c

The following result, that is a particular case of Theorem 2, states lower
bounds for X in Equation (1) for right window collections.

Theorem 3 Let C € P(E) and Yy € Zw-. For all Xy € Iy such that

Xw & Ct = Yy, there exists Zyw € @3¢ such that Zy < Xw and Zy @
Ct = YW/

As a consequence of Theorem 3, al lower bounds for Xy in Equation (1)
are in <I>YW’ € In fact, each Zyw € <I>YW’ ¢ such that Zw ®Ct = Yy isa
lower bound for Xw .
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Let W ,W € P(E) such that W O W. We define the set Zyy jw C Zw- as
Twow ={X€Zw : A CW, V[A]€X}. Note that Zw: ,w < Iy /i

Now, we present an agorithm for solving the Equation (1) in the caseYy €
I we.

Algorithm SearcH (C, Y w'):
Input: A set C € P(E) and a collection of intervals Yy,» € Zyy:.
Output: The collections Xw € Zw , where W = W’ © C*, such that Xw @ C* = Y.
begin
W' (WeCH®C;, Upw «— {[LIEYyw/ 6C*: [L] € Ty /w}-
for each Zw € @, do
if Zw & C' = Yy, then
for each X \y such that Zw < Xy < Uy
if Xw @ Ct = YW' then
output Xw ;

end.

5.2. FEASIBLE sETS C

In Equation (1), a subset C € P(E) is a fixed parameter. Obviously, given a
collection Yw+ € Zw -, there exist some subsets in P(E) such that Equation (1)
has no solution. The subsets in P(E) such that Equation (1) has at least one
solution are called feasible sets.

In this section, we study some properties of Equation (1) in order to give a
necessary condition for the existence of feasible sets. Observe that, by Propo-
sition 2, if a subset C' € P(FE) is feasible, then, so is Cy,, for any hOE.

Let [A] O XOlw. We say that the left extremity A is minimal in X iff
|A] < |B|, for any interval [B] O X. Clearly, if |A] = |[B|, then the extremities
of [A] and [B] are minimal.

Let Z O w. Let us denote by Min(Z) the set of al intervas in Z
such that its left extremity is minima in Z, that is, Min(Z) = {[A] O Z :
Ais minimal in Z}.

Given a collection of maximal intervals Z O Iw, for each set A € P(E), let
us define the set 5% € P(E) asS% = {h€ E: [A_] € Z}.

The next result gives a necessary condition for feasible sets.

Theorem 4 Let Yy € Zw+ and C € P(E). If C is a feasble set, then, for
any [A1 0 Min(Yw:), there exists a 0 E such that C, € S and C is an
invariant of SX,W’.

Given a collection of maxima intervals Yw. € Ty, a a consequence of
Proposition 2, if Cis feasible, then so is Ch, for any h O E. By Theorem 4, if

C is feasible, then, for any [A]1 O Min(Yw:), a trandation of C, say C,, isa
subset of SY*' . Since C, is aso feasible, then the feasible sets can be found

by searching C C SX,W’ such that Cis an invariant of S:,(,W’.
Now, given a collection of maximal intervals Yw- € Zwr, we present an

algorithm that outputs pairs(C, Xy ) € P(E)xZw such that Xy &C? = Y.
Algorithm SearcH-ALL (Y ):

Input: A collection of intervals Yy, € Iy,
Output: The pairs (C,Xw) € P(E) x Iw, WithtW = W’ & C*, such that Xw & C* = Y.
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begin
let [A]1 0 Min(Y ) such thatlS:,W’\ is minimum.
for eachC C SZ,W’ such that Cis an invariant of S:,W' do

begin
let {X1,X2,---,Xn,} betheoutput of SearcH (C, Yy .);
fori=12,..., n output the pair (C, X;);
end
end.

6. Lattice of W —Operators

A mapping from P(E) to P (E) is caled an operator. The operators will be
denoted by lower case Greek letters a, B, y,. . . The set of all operators will be
denoted by W. The set W inherits the Complete Boolean Lattice structure of
(P (E), O) by setting, for any 41,42 € ¥,

Y1 < & (X)) Cye(X) (X e P(E).

The supremum and infimum of two operators ; and Y, of W verify, respec-
tively, (1 V 9h2)(X) = 11 (X) Ugpa(X) and (41 Ap2)(X) = 1(X) Nepa(X), for
any X € P(E).

Let C € P(F). The dilation and erosion by C are the operators dc and €c
given by, for any X € P(E), §c(X) =X ® C and ec(X) = X & C. Usudly,
the subset C is called structuring element.

The operator v OW defined by v(X) = X ¢, for any X € P(E), is caled
negation operator.

The dual operator of the operator s, denoted Y *, is given by y* = vv.

An operator  is cdled translation invariant (t.i.) iff, for any x 0 E and
X e P(E)7 "Z)(Xx) = w(X)x

Let W be a finite subset of E. An operator ( is caled locally defined within
W iff, for any x O Eand X € P(E), z € ¥(X) & z € ¢(X NW,).

An operator Y is caled a W —operator iff it is both t.i. and locally defined
within W. The set of al W —operators will be denoted by W . The pair
(¥w, <) congtitutes a sublattice of the lattice (W, <) [2].

The kernel of an operator i € ¥y is the set Ky () given by Kw () =
{X e P(W):0e9y(X)}

Barrera and Salas [2] stated the following lattice isomorphism between the

complete lattices ([Jw, <) and (Ww, <).
Proposition 4 The mapping M (Kw(-) from (W, <) to ([Jw, <) constitutes
a lattice isomorphism between the lattices (Ww ,<) and ([lw,<). The inverse
of the mapping M (Kw (*) is the mapping iC};} (U(-)) , where KCj/ () is defined
by Kt (X)(X)={zxcE: (X —z)nW e x}.

For any operator ) € Wy, the basis of ), denoted B w (), or simply B(y)
when no confusion is possible, is the collection of all maximal intervals contained
inKw(w), that is, By (1) = M(Kyw (4)).

Given ¢y € Yy and C € P(FE), the operators éc1p and ecy are locally
defined, respectively, withinW @ C* and W O C. The following proposition [2]
shows how to build the basis of §-1 and ec1y from the basis of .
Proposition 5 Ify € Uy and C € P(E), then

Bwgct(dcy) = By () @ Ct and Bwgc(ecy) = Bw (v) o C*.
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The following result is a consequence of Proposition 5 and the fact that
(ectip)t = dcy™ [4).

Corollary 1 Lety’ € Iy, C € P(E) andy € Il . Then, ¥ = ecetp iff
Bw ((¥')") = Bw(y*) & C*.

An operator ) is caled increasing iffvX,Y € P(E),if XOY, then ¢ (X) O
W(Y). We denote by Q\y the set of all increasing W-—operators.

A very interesting property of basis of increasing W-operators is that (O
¥ w is an increasing operator iff for any interval [A, B] O By (¢), B = W.
Thus, we can easily prove that, Y is increasing iff By () € Zw .

Given YW , Y* is localy defined within W [2]. In addition, if 1) € Ty,
is increasing, then so is ¢* [5, p. 46].

Let I = {1,2,3,-- , n} be a set of indices. Given the basis of an increasing
W-operator ), the next result shows how to build the basis of |* from the
basis of Y. This proposition is a particular case of the result stated in [2].
Proposition 6 If § is an increasing W—operator with basis By, (v) = {[A;] :
i O 1}, then the basis of its dual operator * is

Bw (¢*) =1{[{a}} :a € A%,i e I}.

7. Compositions of Erosions and Dilations

We denote by Y the set of all W—operators that may be built by an alternat-
ing compositions of erosions and dilations. Note that the set of all alternating
sequential filters [8], locally defined within a window W, is a subset of Y.
Given the basis of an operator Y OOY w, we describe how to find a representa-
tion for .

If ¢ is an operator in Y, then an representation of ¢ may start by a
dilation or an erosion, that is, ¢ may be rewritten by éc41 or eci)y.

Given the basis of an operator ¢ 0OY , that starts by a dilation (re-
spectively, erosion), then, by Proposition 5 (respectively, by Corollary 1),
we can find a representation of  applying the procedure SEARCH_ALL for
Bw (W) (respectively, for Bw (p*)). If (C, X) is an output of the procedure
SEARCH_ALL (Bw (W)) (respectively, Bw (0*)), then ¢ can be rewritten by
¥ = §cipy (respectively, by ¢ = ecetp1) where Y, is an increasing W -operator
and B (U;) = X (respectively, B(y7) = X*).

Thus, given the basis of an operator Y OY w, we will construct the tree
that represents the space of al possible representations of Y in the following
way. The root is the basis of . A node is a collection of maximal intervals
Yw € Zw. If Y w ={[{o}]}, then Y w has no descendants. If Yw = {[{a}]},
a # o, then the descendant of Y w is {[{0}]} and the edge that joins Y
and its descendant is labeled & _. In any other case, compute Y73, and
apply the procedure SEARCH_ALL for Y w and Y3, . If (C, X) is an output of
SEARCH_ALL (Yw), then X is a descendant of Y w and the edge that joins
Yw to X is labeled d¢. If (C, X) is an output of the procedure SEARCH_ALL
(Y3 ). then X* is a descendant of Y and the edge that joins Y w to X* is
labeled .- .This tree is called Representation Tree.

Note that, given the basis of an operator Y OY , the labels of the edges
on the path from the root to a node Y w = {[{0}]} forms a representation for

y.
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Representation Tree Represcntation Tree
oY1 = Yy 5 oY) =Yy
cy .
® Yo = Xy
w' = W = 1111 W' =w; — 11111
Yy =Y, = {[00101], {10100}, [01000], [00010}} Y = Yy = {{o0101}, (10100}, [o1000], [00010]}
vyt = 011 10
Y7 -, = ([0, (ouao]}
Output of SzarCuALL (Y ):
Cy =101

Yo = X3 = {[101], (010]}
Wy =Ww'gCt =111

Output of SEARCH-ALL (YI)
0.

{a) (b)

Representation Tree Representation Tree Representation Tree
e Yi = Yy o Y1 =Yy s o Yi =Yy
(5(71 501 Cy l
E:TYQ:XL Ect.)’2=x1 Ect.\@:x,
G ¢
2
2.y3=x2* 2.)/3:)(; .)/3:)(2*
deg | Scy
‘g = 111 @Yy = X3 oYy = X3
2 = ([101], [otg]} e = 110 dcy v
% = {[110], for1]} T s
2 i Y3 = {[ot0], {1og]}
utput of SearciALL (Yg): ¥ = {|io)} Wy =10
0. 4 T ¥gq = {[2)}
. Output of Starci-AvL (Yg): -
utput of SEARCHLALL (Y 5): < M Cyq =01
3=1

Cq =11 Ys = {(1]}
M Yq = Xg = {b9} Wg =W40CE =1
Y5 = Xg = {[110)} ; ) 5 =Wa 00 =1
= X% = {[o10], [100]} Wa = Ws S0y = 2
Y3 =X5; = = Qutput of SEARCILALL (Y,’;):
W3 = Wg 605 =110 0 -

(e () (e)
Fig. 1. Application of the proposed method to a simple example.

8. Application Example

We have implemented the method proposed in Section 7 for transforming a

sup-decomposition into a sequential decomposition. In this section, we show an
application of this agorithm to a simple example. For simplicity of notation,
we represent the subsets of a window W by strings of O's and 1’s, where 0
means that the point does not belong to the subset and 1 means that it does.
Moreover, the origin is represented by an underline character in the string

description of a subset of W. For example, if Wis the set {(-1,0), (0,0), (1,0)},
the subset {(0, 0), (1, 0)} is represented by O011.

In Figure 1, we show a simple example for finding a sequential representation
of an operator Y inY . In this example, the basis of Y is the collection
of maximal intervals Y; =Y y presented in Figure la. The root of the
representation tree is the input basis, that is, Y1.

Figure 1b shows that the outputs of procedure SEARCH_ALL when applied
for Y1 and Y7 are, respectively, (Ci, X ;) and §. Thus, the descendant of the
root Y1 isY, =X; and the edge that joins Y; and Y , is labeled dc, (see
Figure 1 b).

In Figure 1c, we see that the outputs of SEARCH_AL L when applied for Y,
and Yz* are, respectively, ) an d (C,, X,). Thus, the descendant of the node Y
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isY 3 =X5 and the edge that joins Y, and Y 5 is labeled gy, @s it is shown
in Figure 1c.

In Figure 1d, we show that the outputs of SEARCH_ALL when applied for
Y3 and Y’; are, respectively, (G, X z)and @.Thus, the descendant of the node
Y3 is Y, = X3 and the edge that joins Y3 and Y 4 is labeled b, as it is shown
in Figure 1d.

Finaly, in Figure le, Y4 = {[{ a}]}, where a = (-1,0). Since a # o, then
the descendant of Y, is Y s = {[{0}]} and the edge that joins Y, and Y .is
labeled &, with C4 = {-a}.

The labels of the edges on the path from the root to the node Ys forms a
sequential representation of Y, i.e, dc,ectdc,dc, is a sequential representation
of Y.

As we can see in this example, we transform the sup-decomposition of
(that has a paralel structure) into a purely sequential representation of Y. The
advantage of the sequential representation over sup-decomposition is that the
sequential representation is usually more efficient for computation in conven-
tional sequential machines. For this example, the number of shifts, unions and
intersections for computation of by using its sup-decomposition is 9; if its
sequential decomposition is used, this number is decreased to 7.

9. Conclusion

In this paper, we have studied the problem of transforming the basis repre-
sentation of morphological operators into more efficient representations (when
they exist). The solution of this problem depends on the solution of Minkowski
factorization equation, that is a hard combinatorial problem.

We have given new bounds for the space of solutions of Minkowski factoriza-
tion equation and showed how to apply them to build segquential representations
from the basis of sequences of dilations and erosions.

The next steps of this research are improvements on the implemented al-
gorithm for the proposed technique and study of more restrict bounds for the
family of alternating sequentia filters.

References

1. G. J F. Banon and J. Barrera. Minimal Representations for Trandation-Invariant Set
Mappings by Mathematical Morphology. SSAM J. Appl. Math. 51(6):1782—1798, Decem-
ber 1991.

2. J. Barera and G. P. Salas. Set Operations on Collections of Closed Intervals and their
Applications to the Automatic Programming of Morphological Machines. Journal of
Electronic Imaging, 5(3):335-352, July 1996.

3. G. Birkhoff. Lattice Theory. American Mathematical Society, Providence, Rhode Island,
1967.

4. R. F. Hashimoto and J. Barrera. Finding Solutions for the Dilation Factorization Equa-
tion. Technical Report RT-MAC-9914, Departamento de Ciéncia da Computaggo, IME-
USP, November, 1999.

5. H.J. A. M. Heijmans. Morphological Image Operators. Academic Press, 1994.

6. R. Jones. The Transformation of the Basis Representation into Cascaded Representation.
In Mathematical Morphology and its Applications to Sgnal Processing, pages 239-244.
Barcelona, Spain, 1993.

7. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

8. J. Serraand L. Vincent. An Overview of Morphological Filtering. Circuits Systems Sgnal
Process, 11(1):47-108, 1992.



DECOMPOSITION OF SEPARABLE CONCAVE
STRUCTURING FUNCTIONS
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Abstract. This paper presents a decomposition scheme for a large class of greyscale structur-
ing elements from mathematical morphology. In contrast with many existing decomposition
schemes, our method is valid in the continuous domain. Conditions are given under which
this continuous method can be properly discretized. The class of functions that can be
decomposed with our method contains the class of quadratic functions, that are of major
importance in, for instance, distance transforms and morphological scale space. In the con-
tinuous domain, the size of the structuring elements resulting from the decomposition, can
be chosen arbitrarily small. For functions from the mentioned class, that can be separated
along the standard image axes, a discrete decomposition in 3 x 3 elements can be guaranteed.

Key words. Mathematical Morphology, Structuring Element Decomposition, Concave Struc-
turing Elements.

1. Introduction

In this paper we study the decomposition of a large class of structuring func-
tions often used in morphological image processing. We study decomposition of
continuous functions and prove that a subset of the class of concave functions
can be decomposed into a dilation sequence of functions with finite effective do-
main. Only then we show what are the requirements for proper discretization
of the proposed decomposition scheme.

In mathematical morphology [18, 7], concave structuring functions play an
important role. Matheron [14] already showed that convexity of structuring
sets is needed to axiomatize the concept of size. This analysis lead to the
notion of granulometries. Concave functions are needed to extend the notion of
granulometries to grey level functions [11]. In [10], Xu presents a decomposition
scheme for convex polygon-shaped structuring elements in binary morphology.

Concave structuring functions play an important role in the calculation of
(Euclidean) distance transforms [2]. Sternberg [19] showed that the Euclid-
ean distance transform can be calculated by dilating the indicator function of
a set with a cone shaped structuring function. The cone functionc(z,y) =
—+/x2 + 32 encodes the distance to its center. The infinite support function c
can be decomposed into the sequence c=tO tO - - - where tis the “top” of the
conet(x, y) =c(x,y) for x2 + y 2 <landt(Xy) = —o elsewhere. Unfortu-
nately this decomposition cannot be properly discretized, i.e. discretizing the
tops and then dilating leads to a different result then first dilating and then
discretizing. Therefore a chamfer distance transform [1, 26] can only be an
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approximation of the Euclidean distance transform.

Dilating the indicator function of a set with the square of the cone function
leads to the square of the distance transform [22] of that set. Huang[8] showed
that the discretized squared cone can be decomposed into a sequence of finite
support discrete structuring functions. In this paper we will give a geometrical
continuous construction that is a generalization of this result in the sense that
our result can be used for a larger class of (continuous) concave functions (not
only the parabola).

The parabolic function is not only important because it can be used to
calculate the distance transform. It has been shown by van den Boomgaard [24]
and Jackway [9] that the parabola in a very specific sense is the morphological
analogue of the Gaussian function as used in linear convolutions [22, 24].

Decomposition of structuring elements ([28]) has a lot of literature devoted
to it. Some of the reported results deal with continuous structuring elements.
For example the decomposition of convex symmetric polygons into the dilation
of the edge line segments [18] is simple to prove for polygons in IR?. Also the
logarithmic decomposition of a convex set into the dilation of the set with its
extreme elements (the vertices of a polygon) [15, 25] is proved for continuous
sets (and the conditions for proper discretization are given in [21]). Most of
the results on decomposition, however, are focused on the decomposition of
discrete sets [5, 20, 12, 16, 6]. Whereas the decomposition of continuous sets
tend to be of a geometrical nature, the proofs for the decomposition of discrete
sets tend to be of an algebraic nature [17].

Decomposition into small structuring elements is important from a practica
point of view. Even for the Euclidean distance transform, that can be imple-
mented quite efficiently using the dimensional decomposition (see [23]), the
decomposition into small 3 x 3 elements is profitable as it alows for inhomoge-
neous distance transforms [26]. These are for instance needed in the watershed
algorithm while keeping track of the distance traveled from the starting marker
points [27].

2. Decomposition

Consider the dilation of a function f with respect to the structuring function
g
(fog)(z)=\ flz-y)+9w-

yeIR™

The effective domain of the structuring function gis the set of points y where
g(y) # —oo. Note that only points in the effective domain of g need to be
considered in calculating the dilation result.

The structuring functions considered in this paper are all concave. Concave
structuring functions generalize the notion of convex sets to the domain of
grey vaue images. A function g : IR™ — IR isconcave if g(tz + (1 — t)y) >
tg(z) + (1 — t)g(y)forz,y € IR*and 0 <t< 1. A concave function is proper
concave if: g(z) > —cofor at least one x and g(z) < oofor al x.
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Fig. 1. Example of a separation of a parabola g into xzgs and x.z9o

We restrict ourselves to structuring functions g that can be separated in
one-dimensional proper concave functions gz and gz . The separation process
makes use of the embedding operator y, to embed one-dimensiona functions
into two dimensional space (see [23]):

Definition 1 Let | be a one dimensional real function. The operator xz (with
# a direction vector, ||#]] = 1) embeds the function | into 2-dimensional space,
resulting in the function xgzl : IR? — IR:

ez = J W) if & parallel to ¥
xol (%) = { —oo , otherwise (1)

The structuring function g is called separable if it can be separated in functions
gs and g such that:
g = X9 D X9, (2)

(see figure 1 for an example)
Notice that when we take two arbitrary proper concave functions g+ and g
the resulting function ¢(Z) = X595 xwgw iS dways a proper concave function.
The vectors v :andw in the separation must be linearly independent. Func-
tions f : IR? — IR which can be written as f(z,y) = fi(z) + fu(y), with
fi: IR - Randf,: IR —» IR ae a subclass of the functions that can be
Separated cf. eguation 2.

2.1. THE DECOMPOSITION SCHEME

In theorem 1 we will prove that a one dimensiona proper concave function
g can be decomposed in two concave functions uand r, such that f =u O r
(under certain conditions). This function u aways has a finite effective domain.
Following this theorem alows for the decomposition of g5 and g w :

95 = (us D 1), g5 = (ug © ).
Now dilation of image | with function gisl O g=10 (x#9s © Xwgw), with

X595 D Xags = X#(us B 75) ® xa(ug ® rg). - The embedding operator can be
distributed over the dilation, s0 g= (xsus® Xu7s) B (Xwta ® XaTw). and since
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Fig. 2. Example of a decomposition of a parabola ginto u, andr,

dilation is commutative and associative ¢ = X5ty D Xwus D Xo75 D XwTa- If we
defineu; = xsus ® xwts and "1 = X575 © XaTa, thenI &g = (I & uy) B 1.
(See for an example figure 2.) Since 7 and rg are proper concave functions,
the same process can be repeated and the dilation with g can be carried out as
follows I & g = I @& u; & uz @ r2. For n decomposition steps this results in

I®g=10u1 PD... DU, DTy 3)

Only in case the function g has a finite effective domain, it can be de-
composed in a finite number of functions u; . . .up, such that ry is the pulse
function. For functions with an infinite effective domain, the rest function ry,
aways has an infinite effective domain.

2.2. DECOMPOSITION OF ONE DIMENSIONAL CONCAVE STRUCTURING FUNC-
TIONS

The main theorem of this section gives a decomposition of one dimensional
proper concave functions f into two proper concave functions u and r, such that
f=ulr.In this decomposition u aways has a finite effective domain, while r
only has a finite effective domain if f has a finite effective domain. To simplify
the decomposition, we assume that f(x) < O, except for x = 0, where f(0) = 0.
For proper concave functions this comes down to trandating the function such
that the maximum is obtained in the origin. Since the decomposed function is
used for dilation, this only results in a simple trandation of the result.
The function uis constructed from f as follows

uw) = { H) e = @

—o00 , otherwise ’

where z3 and =% are chosen such that f(z}) =t and f(z3) = ¢2 for some red
numberst1< 0, t; < 0 and 27 < 0, 3 > 0, see figure 3. The function r is
constructed from f as follows

[ fle+az) -t ,ifz<O 5
r(r) = { flz+ x3) — ta , otherwise. )
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Fig. 3. Visuaization of the symbols used in the decomposition.

The terms —t; and —t, translate the maximum of r to the origin so that the
dilation u O r will not be a translated version of f. r is again a proper concave
function, so the same decomposition scheme can be used to decompose r (with
possible other values of z7 and z3).

Fig. 4. Decomposition of f into uandr.

A non-trivial decomposition exists in case the effective domain of the con-
cave function is of the form (a, b) where a< 0 and b > 0. Then t; and t, can
always be found such that there exist z; < 0 andz} > 0, with f(z}) = ¢; and
flas) =t

Theorem 1 ensures that the decomposition given by equations 4 and 5 indeed
results in a decomposition of f such that f = u O r. The proof of this theorem,
and al other proofs omitted in this paper, can be found in [4].

Theorem 1 Letf(x) : IR — IRbe a one dimensional proper concave function
with f(X) < O except for x = O, where f(0) = 0. Assume that there existz} <0
and z3 > 0 suchthat (1) = ¢, and f(z3) = ¢, for some real numberst; < 0,
t, < 0. Now define

—o0 , otherwise

u(z) = { flz) , ife} <oz < as
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and
T(x):{f(l'—i—x]‘)—t , ifx <0

flz+x3) -t , otherwise.

Then u O r(x) = f(X).

3. Discretization of the Decomposition Scheme

In this section we discuss the conditions under which the decomposition process
can be properly discretized, i.e. the conditions under which dilating with the
origina discretized function is the same as dilation with the discretized results
of the decomposition. First the definition of the discretization operator AE, 7

The vectors ¢ and d generate the sampling points in the discretization grid.

Definition 2 The discretization operator A ; constructs a function A, zf :
Z? - IR from a function f : IRZ — IR asfollows

—=

(Az 2/ P @) = f(pé+ qd).

Likewise, the discretization Af of a function f : IR — IR is constructed by
(A f)(p) = f(pk).
Now the term “properly discretizable” of the decomposition f = u O r can
be formalized as:
Dpgf = Bgqu@ Dy gr
In general the decomposition process can not be guaranteed to be properly
discretizable.

The following lemma gives the conditions under which one dimensiona de-
composable functions can be properly discretized.

Lemma 1 Let the decomposition for a function f be given by the parameters
z; and z% and let the discretization be given by parameter d. Then

Adf = Agqu® Agr

i Vk € Zy, kd < d[51:
FUkd) = flhd (@1 ZH] = 1)) + £(@155) - (o)

and Yk € Zg, kd > d| % |:

* I* x* *
fkd) = f(kd + (23 — dtgzj)) + f(dtfj) - flz3).
For two-dimensional decomposable functions f that can be separated into fz
and f.;, the question whether it can be discretized properly with parameters ¢
and w boils down to the question whether f5 can be discretized with parameter

|¥] and f-5 can be discretized with parameter ||
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If the discretization vectors @ andd do not correspond with the separation
parameters ¥ and 4., it is still possible for the discretization of the decomposi-
tion scheme to be proper.

In the following theorem we use [ @
column are the vectors v and w.

] to denote the 2 x 2 matrix whose

Theorem 2 Let f be a two-dimensional decomposable function that can be
separated into fz and fg , for which A fy = Agjus © Ayre and Ay fo =
Aygiug & Ajgre. Then if o and W are two points from the lattice formed by ¢
and d and there exists an integral matrix U such that det(U) = +1 and [7w] =

—

[éd]U, then
AE,Jf =D qu® By gr

The well-known example decomposing a (discrete) parabola g(p,q) = —(0*+
q°) that aso follows directly from the theory presented in this paper is:

-2 -1 =2 -6 —3 —6
g=< -1 0 -13H< -3 0 -3d---
-2 -1 -2 -6 —3 —6

Here we use the notation that within the curly brackets the values of a struc-
turing function in the discrete sampling points are given. The origin is marked
with an underscore. All the values that are not shown are implicitly assumed
to be equal to —x.

The second example illustrates that non axes aligned quadratic structuring
functions (QSF’'s) are also decomposable using our approach. Consider the
QSF 9(p,q) = —p* + 2pq — 2¢*. This QSF is decomposed as:

—2 -1 -2 ~6 -3 —6
g= 10 -1 ES 3 0 -3 @ ..
—2 —1 -2 —6 -3 —6

4. Computational Complexity

In general, the dilation with a structuring function with effective domain nQ
where Q is convex is of complexity O(M?n?|Q|), where |Q| is the number of
points in Q, and the dimension of the image is M x M. If the structuring
function nQ can be decomposed such that for the effective domain of nQ holds
that

QeQRd...Q,
N

n times

the complexity is reduced toO(M?n|Q)|).

Due to the nature of our separation process, the decomposition scheme
aways returns structuring functions with a parallelogram shaped effective do-
main. Since the size of the effective domains of the resulting functions of our
decomposition scheme can be chosen at will, the domains can be chosen equa
to Q, where the effective domain of the original structuring function is nQ. The
decomposition scheme then reduces the complexity by a factor n.
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5. Conclusions

In this paper we have presented a decomposition scheme for a large class of
concave structuring functions. The results are valid in the continuous domain,
but we have proved the requirements for proper discretization as well. The
important class of quadratic structuring functions prove to be decomposable
into a sequence of dilations with structuring functions restricted to a finite
(small) effective domain. For the axis aligned parabola (an element of the
class of quadratic functions) our proof is a generalization of the decomposition
presented by Huang [8]. The main difference with existing approaches is that
we have chosen a continuous geometrical view on decomposition instead of a
discrete algebraic approach.

We have restricted our proofs to the functions that are separable by di-
mension. This is somewhat of a limitation that may well be eliminated using
more elaborate proofs using the slope transform description of morphological
operators [3] or equivalently (for concave functions) using the Fenchel conju-
gate functions (or the upper and lower slope transform) from convex analysis
[13, 3]. Such an extension of the theory is left to future work.

We believe that the presented approach for decomposition of concave struc-
turing functions provides an intuitive feeling for the decomposition (being a
“cut-and-paste” procedure as illustrated in figure 4) that is fruitful for a deeper
understanding of morphological operators modifying and probing the geometry
of visual observations.
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MINKOWSKI SUM VOLUME MINIMIZATION FOR CONVEX
POLYHEDRA*

ALEXANDER V. TUZIKOV and STANISLAV A. SHEYNIN
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Abstract. The paper considers a problem of minimization the volume of Minkowski sum or
mixed volume functionals for convex polyhedral shapes. It is assumed that one of the shapes
can be rotated about arbitrary axis through arbitrary angle. This problem is of interest for
some approaches developed for shape pose determination, invariant shape comparison, shape
symmetry analysis. It is shown that the problem can be solved efficiently, i.e. there exists a
finite number of rotation axes and rotation angles which are candidates for the best solution.
Some implementations problems of the developed algorithm and results of experiments are
discussed.

Key words. Minkowski Addition, Convex Polyhedron, Volume, Mixed Volume.

1. Introduction
Minkowski addition of two sets A, B € R®is defined by
A®B={a+blac A, be B}.

Denote by V(A) the volume of the set A C R®, Given convex setsA, B ¢ R®
and a,= 0 it is known that the following relation is true [3, p.353]:

V(A& BB) = o’ V(A) + 3028V (A, A, B) + 3a3*V (A, B, B) + f°V(B). (1)

Here V (A, A, B) and V (A, B, B) are called mixed volumes.
It is well-known [10] that every convex body Ais uniquely determined by
its support function given by:

h(A,u) = sup{{a,u) | a € A}, uwe S2

Here [aulis the inner product of vectors a and u, and S® denotes the unit
spherein R®. It is also known [10] that

h(A & B,u) = h{A,u) + (B, u), uwe S

The support set F(A, u) of A at u O S?2 consists of all points a O A for which
{a,u) = h{A,u). Support sets can be of dimension 0, 1, 2. If Ais a convex
polyhedron, then its support sets of dimension O, 1, 2 are vertices, edges and
facets of A, respectively.

* The authors were supported by the INTAS grant N 96-785.
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It is known from Minkowski's existence theorem [10, p. 390] that a convex
polyhedron is uniquely determined by areas and norma vector directions of its
facets.

If Pis a convex polyhedron with facets F; and corresponding outward unit
normal vectors u;,i=1, ..., k, then

V(A, P, P)

k
Z h(A, u;}S(F,

where S(Fi) is the area of the facet Fiof P.

Let | be an axis passing through the coordinate origin and r, , be the
rotation in R* about | by an angle ain a counter-clockwise direction. Suppose
that P and Q are convex polyhedra in R®.

The problem addressed in this report is how to compute efficiently the
minimum of the functionals

V(Pvp’ré,a(Q))a V(P7r€,a(Q)7T[,a(Q>) and V(P@TZ,Q(Q))

for all rotations r; , inR>. Below we refer to these functionas as objective
functionals.

What is the motivation to study this problem? First point out the follow-
ing inequalities known from Brunn-Minkowski theory (Brunn-Minkowski and
Minkowski inequalities [5, 10]).

For two convex compact sets A, BC R¥ it holds:

V(A® B)i > V(4)} +V(B)3,
V(A, A, B)® > V(A)?V(B)

with equality if and only if A and B are homothetic modulo translation.

Suppose that the set B is a rotated, scaled and shifted version of the set A.
Then the minimization of the objective functionals under all possible rotation
re,o(B)of the set B allows to define the orientation of the set B respective to the
set A. Here it was used also the trandation invariance of Minkowski addition
as well as volume and mixed volume functionals. This property was utilized
in [2, 7, 8 9] to develop procedures for attitude determination of 3D shapes.
It aso alowed to develop recently an approach for comparing convex shapes
and computation their symmetry measures [6, 11, 12]. However the paper [11]
presents only a theoretical framework for comparing convex shapes and contains
a complexity analysis of the solution but does not consider implementations.
The aim of this report is to discuss some implementation problems and to
provide the results of experiments.

To describe the developed procedure we use the slope diagram representa
tion (SDR) of convex polyhedra [4]. According to this representation, facets,
edges and vertices of a polyhedron are given by points, spherical arcs and con-
vex spherical polygons of the unit sphere S2.

—  Facet representation. A facet F; of a polyhedron which is orthogonal to
the unit vector u; is represented on the sphere S? by the end point of this
vector;

C.vl»—t
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Fig. 1. Polyhedron (a) and its slope diagram representation (b).

— Edge representation. Each edge is represented by the arc of the great circle
(spherical arc) joining two points corresponding to the two adjacent facets
of the edge;

— Vertex representation. The region (called the spherical polygon) of the
sphere bounded by spherical arcs corresponding to the edges which are
adjacent to a polyhedral vertex, represents this vertex on the sphere s?
The spherical arcs are included in the region.

Also, weights of spherical points and spherical arcs are used. The weight of a

spherical point or arc equals the area of the corresponding polyhedral facet, or

the length of the corresponding polyhedral edge, respectively.

2. Minimization for a Fixed Rotation AXis

Let | be afixed rotation axis.

While rotating the slope diagram of polyhedron Q about a fixed axis a
finite number of situations arise when spherical points of the rotated SDR(Q)
intersect spherical arcs or points of SDR(P) or vice versa. These rotations of
Q are called I-critical in that sense that they are candidates for loca minima
of the considered functionals. To be more precise the volume and the mixed
volume functionals are concave at any interval between two neighbor critical
rotations.

This property is illustrated in Fig. 3. The formal definition of critical rota-
tions and the description of properties of considered functionals are discussed
in [11].

Thus the following proposition is true [11].

Propositionl Given an axis of rotation |, the mixed volume V (P, r;.(@),
re,o(@)) of convex polyhedra P and Q is a function of a which is piecewise
concave on [0,2T), i.e. concave on every interval (o, o), for k = 1,2,...,N
and o'y, = of.
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N

(a) Py (b) P (c) P5

Fig. 2. (a),(b),(c) Convex polyhedra P;, P, and Ps.

28.5

0 1.5708 3.1416 4.7124 6.2832 0 1.6708 3.1416 47124 6.2832
Angle of rotation o Angle of rotation o
(a) (b)

Fig. 3. (8, (b) Functionas V(P; @ ru,«(P3)), u=(0,0, 1),i= 1, 2 are piecewise concave.
The os indicate the values of the functionals at critical rotations.

Here 0 < o] < o < ... < oy < 27 are the {-critical angles of Q with
respect to P, i.e angles for which spherical points of rotated SDR(Q) intersect
spherical arcs or points of SDR(P) (further called +ritical angles for mixed
volume).

The similar proposition is aso true for volume V(P ® re(Q)) but with a
larger set of critical rotations including both ¢-critical angles of Q with respect
to P and ¢~ critical angles of P with respect to Q (further called Z- critical angles
for volume).

These results allow us to compute efficiently the minimum of functionals
V(P,r6,a(Q); 76,a(Q)), V(P P,r0,a(Q)) @and V(P @716,a(Q)) for any fixed rota-
tion axis £ and all rotation anglesa € [0,27). It is sufficient to compute them
only at a finite number of corresponding ¢ -critical angles.
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3. Minimization for all Rotation Axes

Since our interest is to find the minimum of objective functionals for all possible
rotation axes, we have to know which axes have to be checked. Fortunately it
is possible to reduce essentially the set of such rotation axes. This reduction
is based on the following property of functionals under consideration. If for a
fixed position of polyhedron Q' = ¢, o, (Q) there exists an axis#’ such that Q'
is not ¢'-critical w.r.t. P, then the value V(P, Q', Q') is not a locad minimum
of the mixed volume functional V (P, 7 o (Q), 7. (Q)). A smaler value of the
functional can be found by rotating polyhedron Q' about the axis ¢'. A similar
property is true for other objective functionals as well.

In [11] it was proved that for minimizing the mixed volume functional
V(P,r0,a(Q),7,0(Q)) the following critical rotations ry, 45 of Q with respect
to P are only of interest (denote@’ = r;q-(Q)):

1. it is fulfilled simultaneously that one spherical point of SDR(Q') coincides
with a spherical point of SDR(P) and another spherical point of SDR(Q')
intersects a spherical arc of SDR(P);

2. three spherical points of SDR(Q') intersect three spherical arcs of SDR(P)
simultaneously.

A similar result (but with a larger set of critical rotations defined by spher-
ica points and spherical arcs of both SDR(P) and SDR(Q")) is true for the
volume functional.

Item 1 means that one facet of Q' is paralel to some facet of P and another
facet of Q' is pardlel to some edge of P. It is clear that there exists only a
finite number of critical rotations corresponding to this item. Given any two
spherical points from SDR(P) and one spherica point and one spherica arc
from SDR(Q), the corresponding rotation vector and critical angle making
them coinciding can be easily computed (see Section 4 for details).

Finding critical rotations corresponding to item 2 is a more complicated
problem. Suppose that for given spherical points a, b, c and spherical arcs with
normal vectors |, m, n there exists a rotation r such that rotated spherical
points belong to the above spherical arcs. Then it is true

{I,r(a)) =0,
(m,(b)) =0,
(n,r(c)) = 0.

The set of al 3D rotations can be parameterized by homogeneous coordinates.
A rotation corresponding to homogeneous coordinates (t, u, v, w) has the fol-
lowing matrix [7, ch.18]

1 2+ -0 —w? 2w - tw) 2(tv + uw)
e e 5 2(uv + tw) 12 —u? + 0% — w? 2(vw — tu)
tut et rw 2(uw — tv) 2(tu + vw) 2 —u? -2 +w?

Therefore we obtain a system of 3 homogeneous algebraic eguation of order
2. By other words, this problem is equivalent to finding intersection points of
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3 quadratic surfaces in projective space. Given triples of spherica points and
arcs this system of equations is equivalent to some equation of degree 8 and can
be solved numerically. We do not discuss this case and refer to [1] for a detailed
discussion. However it seems that this case is of theoretical value rather than
of practical one.

4. Experiments

In this section, we apply the above results for the minimization of Minkowski
sum volume of convex polyhedra given in Fig. 2. For every pair of these polyhe-
dra the volume functional was minimized under al critical rotations for volume
of the first type (it corresponds to item 1 in section 3). No computations were
performed for critical rotations of the second type which corresponds to item
2. Therefore the obtained final results give a good local minimum of the func-
tional but there is no guarantee in fact that this local minimum eguals to the
globa one.

Note that the set of critical rotations for volume is larger than for mixed
volume. It includes all rotations of Q for which a spherical point u of SDR( Q")
coincides with a spherical point of SDR(P) (i.e. two facets are paralel), and
simultaneously another spherical point from SDR of one polyhedron (P or Q')
intersects a spherical arc from SDR of the second polyhedron while rotating Q'
about the axis defined by point u.

To find al such rotations we should perform at first for every pair of spher-
ica points u 0 SDR(P) and v O SDR(Q) a rotation of Q making these points
coinciding. But for simplification we use rotations of both polyhedra transfer-
ring points u and vto the point (0, 0, 1). Then we find al critical rotations
for the fixed axis passing through the point (0, O, 1) (see section 2). The latter
procedure is reduced to solving the following equation system

2 +y? =122
{ n1x + nay +ngzg =0
for every spherical point (Xo,Yo, Zp) and spherical arc with norma vector
(n1,n2,n3). The solution of this system gives us the position (X, Y, zo) of the
spherical point after rotation. This rotation is critical if the point belongs to
the spherical arc (not to its exterior).

This agorithm was implemented using MatLab system. The full complexity
of it is O(n*), where nis the number of polyhedra facets.

Table | shows the volumes of original polyhedra given in Fig. 2. For every
pair of original polyhedra the minimum (in fact the local one) of the volume
functional and the corresponding critical rotation of the second polyhedron were
computed. The obtained results are given in Table Il. Note that for polyhedra
P1 and P3 the minimum is achieved for their initial positions, therefore the
rotation angle is 0 and the rotation axis is undefined. Fig. 4 presents the
corresponding Minkowski sums having minimum volume found.

For comparison we show also in Fig. 5 polyhedra P O P2 and P2 OP;.
Volumes of these polyhedra (equal 18 and 27.33) are greater than volumes of
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TABLE |
Volumes of polyhedragivenin Fig. 2.
Polyhedron P, P, P3
Volume of polyhedron 1 2 1333

TABLE I
The found minimal values of the volume functional for pairs of polyhedra given in
Fig. 2.

Pairs of polyhedra P, and P, P1 and Ps P, and P3
Minimum of the

volume functional 17.899 13.333 18.513

Axis of rotation (0.863, 0.357, 0.357) - (0.465, 0.465, —0.753)
Angle of rotation 4.5654 0 1.8508

polyhedra shown in Fig. 4 (8),(c).
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(a) P and P, (b) P, and Ps (c) P, and P

Fig. 4. Minkowski sums for which minimum in Table Il is achieved.
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Abstract. We study a new framework for discretization of closed sets based on Hausdorff
metric as described in [15, 16, 23, 24]. Let F be a non-empty closed subset of R™, S C Z™
is a Hausdorff discretization of F if it minimizes the Hausdorff distance to F. We study
the properties of Hausdorff discretization for homogeneous metrics. For such metrics the
popular covering discretizations are Hausdorff discretizations. We also study some topological
properties of Hausdorff discretizations. Actualy, a Hausdorff discretization of a connected
closed set is 8-connected, its maximal Hausdorff discretization is 4-connected, and a Hausdorff
discretization “preserves’ the homotopy for a class of closed sets and a class of homogeneous
metrics. Under some general condition, a Hausdorff discretization is “homeomorphic” to the
original set.

Key words: Connected, n-Connected, Covering Discretization, Hausdorff Metric, Homeo-
morphic, Homogeneous Metric, Homotopically Equivalent.

1. Introduction

The problem of discretizing shapes, images, and image processing operations
has been extensively studied in mathematical morphology [10, 18]. Although
the importance of the Hausdorff metrics in image analysis is recognized [18],
current discretization theories are not based on a metric approach. This draw-
back has been the starting point of our study of Hausdorff discretization [15, 16,
19, 22, 23, 24]. The basic idea is to select as possible discretizations of a Euclid-
ean set F all discrete set Ssuch that the Hausdorff distance between F and S
is minimal. This leads to severa possible choices for such a discretization.

Our framework is as follows. given a metric d on IR", let F be a non-empty
closed subset of IR™; then S € Z™ is a Hausdorff discretization of F if it mini-
mizes the Hausdorff distance Hy (S, F) to F. We characterize the set Muy(F)
of subsets of Z™ which are a Hausdorff discretization of a non-empty closed set
F. We have proved that a Hausdorff discretization of a non-empty closed set
F converges to F when the resolution of the discrete space tends to O, as in [3].
We refine the study of Hausdorff discretization for the class of homogeneous
metrics. Actually, we investigate the relationship between Hausdorff discretiza-
tions and covering discretizations. We also study some topological properties
of Hausdorff discretizations for homogeneous metrics. We have proved that
a Hausdorff discretization of a connected closed set is 8-connected, its maxi-
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mal Hausdorff discretization is 4-connected. and that Hausdorff discretization
“preserves’ the homotopy for r-convex closed sets for a subclass of homoge-
neous metrics [19]. Under some general condition, a Hausdorff discretization
is “homeomorphic” to the original set. This new result generalizes the one in
[12].

This paper is divided into six sections. In the second section we briefly recall
classical notions of metric space and Hausdorff space. In the third section, we
introduce the Hausdorff discretization. Section 4 deals with homogeneous met-
rics, while Section 5 considers topological properties of Hausdorff discretization.
The last section is a conclusion.

The proofs are not given here, most of them can be found in [19, 21, 23].

2. Some Metric Notions and Hausdorff Metric

We assume that the reader is familiar with classica notions of topological space,
metric space and normed space, see for example [2, 9, 11]. We introduce here
our notations, most of them are recalled in [19, 22, 23, 24].

Definition 1 Let (g, d) be a metric space, and let p [ andr O IRT,
Bi(p) = {z € € {d(z,p) <7}

Bd(p) is called the ball of center p and of radius r. Let E [k .

o iNt(E)={zc E | Ir>0, Biz) C F},int(E) is called the interior of E.

e Cl(E) is the intersection of all closed set containing E, cl(E) is called the
closure of E.

In al the following al topological notions in a metric space (€, d) are considered
relatively to the topology induced by d. All metrics used in this paper are
induced by norm. So if Nis a norm over g, then the function dy such that:
Ox, y Og, dyXY)=N(x —y) is caled the metric over € induced by N.

Example:

Let @ = (z1,22,...,2,) € IR". Then ¥Vp > 1, |z|, = {/|:51|P+...+ lz,|P and
|2|0o = Mmaxi<i<nlr:] @e anorms over £ = IR"™. The metrics induced by these
norms are denoted dp and deo respectively.

2.1. HAUSDORFF METRIC
The definitions and results presented in this subsection can be found in [2, 9].

Definition 2 Let(g, d) be a metric space; H(g) is the set of non-empty com-
pact subsets of €, F(g) the set of closed subsets of €, and F'(g) the set of
non-empty closed subsets of €.

On H(e), we will define a metric Hy, such that if (g,d) is a complete metric
space then (H(g), Hy) is a complete metric space.

Definition 3 Let(g, d) be a metric space and let A, B 0O H(g). We define the
oriented Hausdorff metric from Ato B by hg(A, B) = max,ga(d(a, B)) where
d(a, B) =in foos (d(a,b)).
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Definition 4 Let (¢, d) be a metric space. The Hausdorff distance between two
compact sets A, B 0 H(e) is defined by Hd (A, B) = max(hq(A, B), hq(B, A)).

Remark:

Let F'(¢) be the set of non empty closed set of € Then, the functions hy
and Hy can be extended in natural way as function from F/(£) x F'(£) to
IR" U {+00}. Hyis a “generalized metric” in the sense that it satisfies the
axioms of metric, but can take infinite values.

3. Hausdorff Discretization

In this section, we present our framework of discretization based on Hausdorff
metric. Our result are proved in [19]. In the rest of this paper we assume that
we have as metric space (IR™,d), where dis a metric induced by a norm on
IR", and as a discrete space D, = pZ", for p> 0. So

Yz € R™,¥r >0, Bd(z)ND, is a finite s,
and for such distance, M O D, implies that M € F(IR").

Definition 5 Let d be a metric on IR™and p > 0. The covering radius of the
metric d in Dpis
7‘C(dv /)) = SUPzcIR" (d(z, Dp))

Let F be a non-empty closed subset of [R™; M O D, is a Hausdorff discretiza-
tion of F in Dy if it minimizes the Hausdorff distance to F. In this section, we
study the properties of Hausdorff discretizations. In [15, 16, 23, 24], we have
studied the Hausdorff discretizations when F is a compact set.

Definition 6 Let F' € F'(IR™).
* A set M O DpisaHausdorff discretization of Fin D, if
Hy(F,M) =inf({Hq(F,S)| S CD,}).
* Mu,(F,p) ={M C D, | Hi(F,M) = infscp,(Ha(F,S))}is the set of
Hausdorff discretizations of F.
* Ay, (F,p) = (UMeMH”(Rm M)iscalled the maximal Hausdorff discretiza-
tion of Fin D,
e The valuery(F,d, p) = infzcr(d(z, D,)) iscalled the Hausdorff radius of
F in Dp for the metric d.

We characterize now the Hausdorff discretization.

Theorem 1 Let F' € F/(IR"); then:
* Mg, (F,p)is nonvoid and for M € Mg, (F,p), Hy(F,M) =ry(F,d, p);
o for a family (M;);e; of members of My, (F,p), U,c; Mi € My, (F,p)
and so AH,),(Fv ﬂ) € MHd,(Fv /));
o if (M,)necmvis a decreasing sequence in My, (F, p) (relatively to the set
inclusion ) then N,cpy Mo # @ and oy M € My, (F, p);
o A, (Fip)={pc D, |dp,F) <ru(F,d p)};
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Fig. 1. Left: A compact set K = AuBuUC overlayed with discrete points p, g, r, sand their
sguare cells C(p, 1), C(q, 1), C(r, 1), C(s, 1). Right: For d =d, (the Euclidean distance), the
maximal Hausdorff discretization of Kis{p, q, r, s}; indeed, we show the circles of radius
ry (K, d, p) centered about these points. The unique other Hausdorff discretizing set of K is

{p, g, s}

e My, (F,p) isthe set of all M O D, such that A C Ay, (F,p) and F is
included in the union of balls of radiusr g (F,d, p) centered about points of
M;

o ru(F,d,p) < rc(d, p).

Remark:

In [15, 23] we have proved that, if K € H(R"), then My, (K, p) is finite and
VM € My, (K,p), Mis finite. Actually, if 7 = Supsex(d(O,z)) + 7 (K, p)
(K being a compact set implies that r is finite), then Ay, (K, p) C BHO)YND,,
which is a finite set.

In Figure 1 we illustrate the construction of Hausdorff discretizations for a
compact set K: computing the Hausdorff radius (maximal distance from points
of K to the discrete space), one takes for Ay, (K, p) al discrete points p such
that the ball of center p and Hausdorff radius intersect K; any subset M of
Ay, (K, p)such that the corresponding balls for p O M cover K, will be a
Hausdorff  discretization.

In the following proposition, we see that, the “digital geometry” converges
relatively to Hausdorff metric to the “Euclidean geometry”, as in [3], by using



TOPOLOGICAL PROPERTIES OF HAUSDORFF DISCRETIZATIONS 45

lattices with increasing resolution. In the following proposition we assume that
the distance d verify the condition:

lim r.(d, p) =0
p—0

This condition is verified by al distances induced by norms [16].
Proposition 1 Let F' e F'(IR"), then for any choice of M7 € My, (F, p),

lim Hy(F,M*) =0.
p—0

Remark:
Let BH,: F'/(IR") x F'(IR") — IR™ defined by:

BHy(F,F') = Supzepn (|d(z, F) — d(z, F')| e~ for all F,F' e F'(IR")

where O is any fixed point in IR" for example the O vector. Then, BHy is a
metric on F'(/R"™); BHy is called the Busemann-Hausdorff metric [2, 9, 10, 13]
. The topology induced by BHy is the classical hit-or-miss topology if for
example al balls (relatively to the metric d) are compact sets.

We have, VF, IV € F'(IR"), BH.(F,F") < Hi(F,F’). So for any choice
M? € My, (F,p), im,_o BHq(F, M?) = 0, which implies that a Hausdorff
discretization MP of the closed set F converges to F for the hit-or-miss topology
when the resolution p of the discrete space converge to 0.

Let us briefly compare our approach to the morphological one [10, 18]. Here
one chooses a structuring element A(p) at each resolution p, which satisfies the
covering assumption D, & A(p) = IR™. One takes then the discretization of
F by dilation by A(p)[15], consisting of al points p 0 D, such that A, N
F # §. Making some technical assumptions on A, these authors prove the
convergence to F, when the resolution p of the discrete space tends to 0, not
of the discretization of F, but of a “reconstruction” of that discretization. In
fact, we have shown [15, 20] that under the covering assumption, the distance
between a closed set and its discretization by dilation is bounded by the radius
of the structuring element A(p), namely the supremum of distances of points of
A to the origin. We can choose A(p) = pA(1), and then for a distance induced
by a norm, the radius of A(p) is proportional to p, so it tends to O when p tends
to 0. Hence we get here for the discretization by dilation a similar Hausdorff
metric convergence of the discretization itself (not a “reconstruction”) to the
original set when the resolution tends to 0. See [15, 20] for more details.

4. Homogeneous Metric and Hausdorff Discretization

We present some properties of a homogeneous metric and we refine the char-
acterization of Hausdorff discretizations for such metrics, Actualy, we study
the relationship between Hausdorff discretizations and covering discretizations.
Again, results of this section are proved in [19].
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Fig. 2. (&) The structuring element AisC(o, 1). (b) A Euclidean set X overlayed with
the discrete points p and their cells C(p, 1). (€) Asc (X, 1).

Definition 7 Let p 0D, , we define the the cell of center p as

Cp.p) = {z € " | do(z.p) < §}

Note that cells are closed and overlap only at their boundaries.

Definition 8 A metric d over IR" is called cellular if Yz € IR", Vp, ¢ €
Z", z € C(p,1) = d(p,z) < d(q,z). In particular, if @ € C(p,1)NC(g, 1),
then d(p,x) = d(q, ).

Definition 9 A norm N on IR" ishomogeneous if for every (z1,...,z») € IR",
(€1,..,6n) € {=1,1}", and for every permutation o of {1, ..., n}, we have
N(e1Z5(1)s - EnTomy) = N(x1,..,z,). A metric induced by homogeneous
normis called a homogeneous metric.

Theorem 2 Let d be a homogeneous metric induced by a norm N, then:
e d is cdlular,
o re(d,1) = iN(1,..,1) and
* B{=(0) C By (,(0) € BY(O).

Example:

1

In IR™, ¥p > 1, d, iis a homogeneous metric and thus, 7c(d,,1) = (%), and
re(doo, 1) = %

Definition 10 Let E C JR™, asubset SO Dy iscalled a covering discretization
of Ein Dp,if VP€ S, ENC(p,p) #0 and £ € U,es Clp.p)

An example of covering discretization is the supercover discretizationA s
which associates to every X € P(IR™) the set of all p O D such that C(p, 1)
intersects X (see Figure 2):

¥X C IR", Asc(X,p)={peD|Cp,p)N X £}

Theorem 3 Let d be a cellular metric and let £ € F'(IR™). If Sis a covering
discretization of F in D,,then S € My, (F,p).
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5. Topological Properties of Hausdorff Discretizations in the Plane

In this section, we study some topological properties of Hausdorff discretiza-
tions for homogeneous metrics. First we recall some results of [19]: 1) every
Hausdorff discretization of a connected closed set is 8-connected, and its max-
imal Hausdorff discretization is 4-connected; 2) every Hausdorff discretization
“preserves’ the homotopy for a “r-convex” closed set and for a subclass of
homogeneous metrics. The proofs of theses results is given in [19]. Findly,
we give a new result: using a stronger condition than “r-convexity”, we prove
that for a subclass of homogeneous metrics, every Hausdorff discretization is
“homeomorphic” with the original closed set. The proof of this new result will
be given in [21] (working document in preparation).

Notations:

Let d be a metric on JR? , and let p O D,

* Va(p) ={g€D, | du(p,q) = p} ad

* Va(p) ={q €D, | di(p,q) =p}

Property 1 Let d be a homogeneous metric, and let F ¢ F/(R"). If F is
connected thenvM € My, (F), M is 8-connected, and AHgq(F) is 4 -connected.

The converse of the last property is not true for every closed sets. Consider for
example the set F = {(z, %) |z €]0,1}U{(—=z, 1) | = €]0,1]} whichisaclosed
set of JR? relatively to any distance induced by a norm. It is easy to see that,
Yp > 0,YM* € My, (E,p), MP is8-connected, but E is not connected.

In the following we show that the last property has a converse if Fisa
compact set.

Property 2 Let d be a homogeneous metric, and let K ¢ H(]RQ), and assume
that there exists po > 0 such that for every p <po there exists Af» € My (K, p)
such that MP is 8-connected; then K is connected.

Definition 11 Let d be a homogeneous metric and let 7 ¢ F(R™); Fiscalled
r-convex relatively to dif vz ¢ R™ vr' < r, B;l, (x) N F is a connected subset
of F, and if d(x, F) <r, then there exists an unique point in F denoted T(X)
such that d(z, F) = d(z, w(x)).

Remark:
If Fis a finite set of points and if o« = min,.yecr(d(z,y)) then F is r-convex

relatively to d for every r < 5.

Definition 12 Let X, Y be metric spaces. Two continuous maps f, g : X - Y
are homotopic if there exists a continuous map H : X x [0, 1] - Y such that

Ve e X, f(z) = H(z,0) and g(z)= H(z,1).

The homotopic relation is an equivalence relation.
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Definition 13 Two metric spaces X, Y are homotopically equivalent if there
exist maps f: X - Yandg:Y - Xsuchthat g o fand Idx are homotopic,
and f o gandld, are homotopic, where Idx and Idy are the identity maps of
X and Y respectively.

The homotopic equivalence is an equivalence relation. The following theorem,
proved in [19], states that for a subclass of homogeneous metrics, if M is a
Hausdorff discretization in Dp of ar-convex closed set F, then U, C(12, p)
and F are homotopically equivalents for p < po . This result generaizes the
results of homotopy proved in [12].

Definition 14 A metric d on IR? is called strictly homogeneous if d is homo-
geneous and B2 ,1,(0,0) N BL 1 (1,1) = {(3, 5)}.

In other words, the balls of covering radius centered about diagonally adja-
cent discrete points intersect only at their corners. For example d, is strictly
homogeneous for all p> 1 and for p = c.

Theorem 4 Let d be a srictly homogeneous metric. Let F be r-convex rela-
tively to d, p < g7y and M € My, (F,p). Then the set Uperr C(pyp) is
homotopically equivalent to F.

Definition 15 Two topological spaces X, Y are called topologically equivalent
or homeomorphic if there exists a hijection f : X - Y such that both f and its
inverse function f are continuous.

Definition 16 A topological space X is called a bordered 2D manifold if every
point of X has a neighbourhood homeomorphic to a relatively open subset of a
closed half-plane. A connected component of a 2D bordered manifold is called
abordered surface.

Definition 17 Letr > 0. A closed set F € F/(IR?) is called strictly r-convex
relatively to a metric d, if F is r-convex relatively to d, and 0OP O F there exists
Q O F such that P € BXQ) and B(Q) C F.

Definition 18 Letr > 0. A closed set F' € F/(IR?) is called r-regular relatively
to a metric d, if F and <l(JR*\ F) are both strictly r-convex relatively to d.

Theorem 5 [1, 4,5, 8, 14]
Two bordered 2D surfaces are homeomorphic iff they agree in character of ori-
entability, number of contours, and Euler characteristic.

Definition 19 A subset SO D, is called singular if there exists P O S such
that

e P+p(l,1) €S, but P+ p(0,1) ¢S and P+ p(1,0) € S; or

e P4+p(l,-1) €S, but P+ p(0,—-1) ¢ S and P+ p(1,0) ¢ S.
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@ (b)

Fig. 3. (a) Singular configuration. (b) Non singular configurations.

The two different configurations characterizing the singular sets are illustrated
in Figure 3(a) by considering aternatively the white and the black pixels as
the foreground.

We present now our new main result, which will be proved in [21] (working
document in preparation).

Lemma 1 Let F be a closed r-regular set in Jz? andlet p < 2\/§T(d 5 Then
YMP e My, (F,p), Mr is not singular. ’

Remarks:

Let F be a closed r-regular set in JR? and letp < s s \FMP € Mu,(F,p)
and P O M P, then al possible configurations at P are represented in Fig-
ure 3(b) (modulo a reflection and/or a 90° rotation).

H 2 s
Corollary 1 LetF beaclosed r-regular setin IR* andlet p < ST Then

YM?P e My, (F, p), the set|Jpcpy C(P,p) isabordered 2D manifold.

Theorem 6 Let d be a strictly homogeneous metric and K be a r-regular com-
pact subset of /R*> such that K is a bordered 2D manifold. Let p < m

Then YM? € Mg, (F, p), the set | Jpe . C(P,p) and K are homeomorphic.

Let us mention related results from the literature: [17] showed that un-
der certain conditions on a Euclidean set X, in the supercover discretization
Asc(X,p) there are points that can be removed in such a way that for the
remaining subset Sof points, |J,.sC(p,p) is homotopic to X. On the other
hand [6, 7, 12] gave sufficient conditions under which UpEAsc(X,p) Clp, p) is
homeomorphic to X, but our result is more general.

6. Conclusion

Throughout several papers we have introduced a new framework for the dis-
cretization of a non-empty closed set, based on the Hausdorff distance. We
have the convergence (in Hausdorff metric sense) of the discretization to the
original object when the resolution of the discrete space converges to zero. We
refine the study of the Hausdorff discretizations for homogeneous metrics and
we study the topological properties of Hausdorff discretizations.

We intend to do further investigations on:
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o the differentia properties of Hausdorff discretization;

e itsextension to grey-level images,

e the discretizations of basic geometrical and morphological operators. ro-
tation, symmetry, dilation, erosion, opening and closing by a structuring
element.

In [19], we have aready shown that the Minkowski addition is discretizable in

our framework.
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VECTORIAL LEVELINGS AND FLATTENINGS
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Abstract. It is possible to level a colour image by applying to each of its coordinates a
separate grey-tone leveling. Interpreting this operation in a vectorial space gives a better
insight into levelings and flattenings, interpreted as Minkowski subtractions.

Key words: Levelings, Flattenings, Vectoria Images, Minkowski Subtraction.

1. Introduction

Levelings and flattenings have been defined and used for grey-tone images.
Colour images may be leveled, by leveling independently each colour compo-
nent. Applying a scaar leveling or flattening to each component of a vector
image will be called vectoria leveling. In the present paper, we give a geomet-
rica interpretation of vectorial levelings and flattenings in the vectoria space
itself. From this analysis, a deeper insight may be gained in levelings and
flattenings, from which new vector operators may be derived; in particular, a
way to produce vectoria levelings independent of the coordinate axis is pre-
sented. As it appears that levelings are Minkowski subtractions and flattenings
are erosions, we will examine whether it is possible to construct dilations and
openings. The present study aso leads to more synthetic algorithms for vector
levelings, in which al coordinates are treated at the same time. Levelings and
flattenings have been introduced by F. Meyer [3], [4]. An extensive algebraic
study has been made by G. Matheron [2]. Binary levelings have been studied
by J. Serra [6].

2. Separating Functions

2.1. NOTATIONS

In this paper, we study vectorial functions defined on a discrete grid G. The
neighboring relations are defined by a planar graph. The vector function maps
the grid G into a vector space R", on which an orthonormal basis is defined g:
P = gp = (Gp%, GpYs Gp-2> )

Most often nis equal to 2 or 3. It may be three colour coordinates or
the coordinates of a vector field for instance Figure 1 presents an example of
leveling of a motion field; the initial field presents a number of spurious vectors;
a marker is generated and the original field is leveled with this marker. The
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illustrations in the present paper all use n= 2. In what follows, we identify
the points p of R" with the vectors of origin O and extremity p.

Given two distinct vectors a and b and one of the vectors i of the basis we
will define:

1. HalfSpace(a, b, i) as the half space passing by a, containing b and orthogonal
to i. The limiting hyperplane is parallel to the axis of coordinates other
than i. If the vector iis orthogona to the vector %, or if a =D, then
HalfSpace(a, b, i) is the plane containing a and b and orthogonal to i.

2. The quadrangular zone with corner a and with faces parallel to the axis
of the coordinates: Quad(a, b) = HalfSpace( a, b, x) N HalfSpace( a, b, y) N
HalfSpace(a, b, z) N ....

3. The parallelepiped, with faces paralel to the coordinate axis and with
opposite corners a and b Box(a, b) = Quad(a, b) M Quad(b, a).

4. More generaly, Box (a1, az, a3, ....,an) IS the smallest parallelepiped par-
alel to the coordinate axis and containing the family (a;). This box aways
exists and is unique. However, not al a; are summits of this box.

Given a parallelepiped H and a corner a of H, the opposite corner b will
be written Opposite(a, H). The segment ab will be a maximal diagonal of the
paralelepiped. By convention, if the box H is empty, then Opposite(a, 0) = a.

22. CLAss oF FUNCTIONS SEPARATING TwWO FUNCTIONS

Matheron in [2] introduces the following notions for scalar functions, from a
set E into a complete lattice T.

Definition 1 Forg, h, f OTE, we say that h separates g and f, and we write
(ghf) or equivalently (f h @), if and only if, for any p O E, the series (gp hp fp)
is monotonous, i.e. Vp € E: g, < h, < fporgy, = hp 2 fp.

We extend now the previous definitions to the vectoria case.

Definition 2 For g, h, f O (R“)G, we say that h separates g and f, and we
write (g h f) or equivalently (f h g), if and only if, for any p O G, the point
hp belongs to Box(gp, fp)-

Obviously, the relation (g h f) holds if and only if for each coordinate di-
rection i the relation (g.i h.i f.i) holds.

Definition 3 We call Inter(g, f) the set of functions separating g and f.

2.3. THE ORDER g > h

In the scalar case, Serra in [5] defined the activity order between two functions
g and h with respect to a reference function f as. g is more active than h =

gNhNf<hAfand gV f>hVf. This activity order extends to the vectorial
case as follows:
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Definition 4 We say that g is more far away from f than h, or that g is bigger
than h, in the order f, and we write g > h, if and only if h separates g and
f:g>t h= (g hf).

Proposition 1 > fis an order relation on (R“)G,on and moreover g>f h <
f>g4 h.

2.4. EXISTENCE OF A SUPREMUM OF A FAMILY OF FUNCTIONS

The family of vectorial functions is not a complete lattice for the order relation
> ¢ since there is in general no supremum for a family of functions (h'). A
function kis larger than each function in a family (h') for >; iff for each pixel
p and each index i we have Box (h;'),fp) O Box(kp, fp). This will be the case
if and only if Box (fp, Ay, h2,...,h%) O Box(kp fp). But such an inclusion can
only become true if fy isasummit of Box (fy, &, hf),...,hg) , which generally is
not the case. There are particular situations however where it is the case. We
will evocate two of them.

a) There exists a function g such that for each function of the family (h')
and each pixel pwe have Box(fp, hy,) 0 Quad (f,,0p).

b) As a particular case: Box(fp,h;) 0 Box( fp,9p) for all h'. In other words,
al functions h' belong to Inter (g, f).

In both cases, there exists a supremum, i.e. the family of elements which
are superior to all functions of the family (h') has a smallest element, which is

defined as{\/f(hi)}p = Opposite (fp, Box(fp, hp, hZ,...,h7)). The supremum

of two functions h' and h2 is illustrated in fig. 2, with a first example (E)
where the supremum exists and a second example (F) where it does not exist.

Remark 1 The RGB color representation uses only positive or null values for
each component. Hence the condition a) for the existence of a supremum is
satisfied.

2.5. THE INF-SEMI LATTICE OF FUNCTIONS

If (h') is a family of functions, then a function k separates the function f and
each function hi if and only if for each pixel p, we have k, O Box(hj, fp) . But
MBox (A, fp) is a rectangular box itself; hence Opposite(f, ﬂBox(h;,fp)) is

tlh_e largest function for <;which separates the function f and each function
h'. This function is the infimum of the family (h') for the order relaion >f.
Its expression at pixel pis given by [A;hs], = Opposite (fp, MBox(hy, fp))-

The infimum of two functions h! and h? is illustrated with three different
configurations in fig. 2(E,F,G). Since any family of functions of (R”)G has an
infimum for <y but not necessarily a supremum, it is called an inf-semi-lattice.
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3. Levelings = Minkowski Subtraction

3.1. DEFINITION OF LEVELINGS

Scalar levelings have been defined in [4] and [2]: a scalar function ais a leveling
of a scalar function bif and only if a= (b A aa) VBa = (b VBa) A aa where
is an extensive dilation and B the adjunct anti-extensive erosion. In this sec-
tion, we will consider the extensive morphological dilation by a flat structuring
element B which contains the origin (and the adjunct erosion). We cal V the
structuring element made of a central pixel and al its neighbors on the grid.

The same structuring elements, without the central pixel, will be caled B and

{?. The corresponding morphological dilations and erosions will be written

as Minkowski addition: aa = a @ B = |J s34+ and Minkowski subtraction
tc B

Ba = a© B = () sy (for the structuring element V one classically uses:
teB
da=a®V = ayst;ea=a®B= () ay.) where s, is the trandation of
teV teVv

s by the vector t.

Examining the expression fa =a©B = [) a.4:, We see that the Minkowski
teB
subtraction is nothing but the infimum of translated copies of the function

a, by all translations defined the structuring element. Since there exists an
infimum for the order relation >¢, we may similarly define in this new lattice
a Minkowski subtraction by a structuring element B of a vectorial function g:

teB

gOf B = /\ 9.4t
f

The explicit formulation is the following:

(9©¢ B), = Opposite(fp, [ ) Box(fp, gpt1))-

e

The construction is illustrated, with three different configurations, by figures
2H, I, and J for a structuring element made of two pixels (1, 2) with the centre
a 1

Definition 5 A function g is a B-leveling of a function f iff g is invariant by
the Minkowski subtraction for the structuring element B: g = g O B.

The function g is aB-leveling of a function f iff each coordinate g.x, g.y,
g.Z, ... s a scdar B-leveling of the corresponding coordinates f.x, fy, f.z, ....
of the function f.

If we now take a function h that is not a B-leveling of the function f, it is
possible by repeating upon convergence the operation g =g ©; Bon a copy ¢
of h; we then obtain the largest B-leveling of f verifying: f<; g<; h.

3.1.1. Basic properties
Curiously, this Minkowski subtraction is not increasing: 9 <s h # (9 ©y B) <g
(hO¢ B), and does not commute with the infimum: (¢ Af R)OfB # (g ©f B)Ay
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(hof B); hence, it is not an erosion. It is interesting to analyse why it is not
increasing. Let gand h be two functions such that g <; h. This means that,
for any pixel p, Box (fp, gp) O Box(fp,hp). But for t# 0, we do not necessarily
have Box (fp, gp+t) OBox (fp,hp+t) and hence (9 ©f B) £5 (h Oy B).

G. Matheron in [2] has shown that the flattenings are the smallest increasing
(for <) operators greater than the levelings. We will give a direct proof in the
section of flattenings below and show how to construct them.

The following relation (g ©f B) @y B = g © 2B aso is not true.

3.1.2. V-Levelings (levelings based on the structuring element V) are

connected operators

The formula for levelings g, = (g©; V), = Opposite(fp, [ Box(fp, gp+t))
tcV

implies the following property:
O(pg) neighboring pixels, Box (fp,gp) OBox (fp,gq).

Exchanging the roles of p and q yields Box (fg,gq) O Box( fq,gp). In the case
where fp = fq these two relations have as immediate consequence thatg, =g,.
Hence, levelings are connected operators.

Let us now analyse in the vector space why \flevelings produce flat zones.

Proposition 2 Let g be a V-leveling of f and (p, g) be two neighboring pixels.
fp € Quad(gq, f4)

Then, “P DI =g =
fo € Quad(gy, f,) ~ T

Proof. From Box(f,,gp) O Box(fp, gq) we derive that

Quad(gp:fp) - Quad(gq, f;n)
On the other hand fp O Quad(gy,fq) implies Quad(gy, fp) O Quad (g, fq);

putting everything together yields Quad(g,,fp) O Quad( gq.fq). Exchanging
the roles of p and q we also obtain Quad(gq, fq) O Quad( gp, fp). Hence

Quad(gp: fp) = Quad(gq: fp)
implying that g, = gq. o

3.2. SUPREMUM OF MINKOWSKI SUBTRACTIONS

The result of a Minkowski subtraction always belongs to Inter (g, f). If we
consider the results of several Minkowski subtractions with different structuring
elements B;, then the family (9 ©; B;) has a supremumV; (g9 ©5 B:) which
also belongs to Inter (g, f). As an example, we may construct a leveling for
which the elementary step is the supremum of three Minkowski subtractions
with segments as structuring elements.

4. The Flattenings

Let g and h be two functions such that g <; h. This means that, for any
pixel p, Box(fp.9p) O Box(fp, hp). But for t# 0, we do not necessarily
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have BoX(fp, gp+t) C BOX(fp, hptt) and hence (9 ©f B) <5 (h©f B). For
this reason, the levelings are not increasing. The inclusion Box(f,, gp+t) C
BoxX(fp, hp+t) is false in general but may become true if we increase the size
of each box. Since g <; h,we have BOX(fptt;gp+t) C BOX(fptes Rpte) hence
BoX (fp; fo+ts Gp+t) C BOX(fp, fo+t. hp+e). The preceding relation is true for all
vectors t belonging to a given neighborhood V. Furthermore Box({f,, gp) ﬂteg
Box (fp, fo+t» gp+t) defines a box for which f, is a summit. Hence the follow-
ing operator, called flattening step, defined for each pixel p, is increasing for
>t gp — Opposite (f,, Box{fp, gp) ﬁteﬁ Box(fp, fot+ts Gp+t))-

This operator is the basic step of a flattening, which we write: g @y B =
Opposite(f, Box(f,g) mte]og Box(f, f.++,9.+¢)) and is illustrated with three dif-

ferent configurations in fig. 2 (K,L,M), for a structuring element made of two
pixels (1, 2) with the centre at 1.
If we remark that Box(f, g) = Box(f, g) n Quad(f, g), we may write

teB

9@y B=Opposite | f, Box(f,9) N, _¢ (Quad(f, 9) N Box(f, f +¢, g.+t))}= AN
f

where the operator T: g — g! = Opposite [f,Quad(f,g) N Box(f, f.+¢,g.+¢)]
may be interpreted as a translation. Thus the flattening step appears as a
Minkowski subtraction in the A ¢ —lattice but the tranglation is rather baroque.
In contrast, the elementary leveling step is a Minkowski subtraction also in the
A —lattice based on the usual translation g +;.

The scalar version of the “trandation” T has been introduced by Kresh in
[1]. Contrarily to the ordinary translation, this translation commutes with A,
and under some restrictive conditions with Vv ;.

Lemma 1 The operator T is increasing: g <; h = g* <y h* and commutes
with As : (g Af h)t = g* Ay h*. If functions g and h possess a supremum, i.e.
Quad(f, g) = Quad(f, h), then (g Vs k)" = gt vy ht.

As an immediate conseguence of the commutativity of the operator A¢ and
the fact that it commutes with T we obtain:

Proposition 3 The elementary flattening ¢ @ B commutes with the A; infi-
mum, hence it is an erosion. It is the smallest increasing operator bigger than
the elementary leveling g @ B.

Definition 6 A function g is a B-flattening of a function f iff g is invariant
by the flattening step with the structuring element B: ¢ = g @ B.

Obviously, we have: g ©f B <y g @y B <; g. Hence, if gis a leveling of
f, i.ee ¢g©y B =g, then g @y B = g, meaning that g also is a flattening of
f. Hence, any leveling of faso is a flattening of f.

Contrarily to classical erosions, it is not true that: (¢ @y B)@sB = g@#2B.
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4.0.1. Characterisation of V-flattenings (flattenings based on the structuring
element V)

If gisaV-flattening of a function f, then for the same neighboring pixels
(p, ) : Box (fp, gp) OBox(fp,fq, gq)- It is easy to check that these two relations
imply, for each coordinate, the classical characterization of flattenings: fp.2 A
fexzNggr < gpx < fpxV foxVgex.

4.1. AN INCREASING M INKOWSKI ADDITION

On a complete lattice, an adjunct dilation may be associated to each erosion

([5]). As we only have a semi-lattice, we could follow Kresh and define the

following adjunct dilation ([1]):6+(9) = A{h |y <y h @y B}. This dilation is
f

increasing, but its expression does not lead to a practical construction. For this

reason we prefer to construct an explicit increasing Minkowski addition, based
on the increasing “trandation” T: which for functions that possess a supremum
behaves as a dilation

teB
g®5 B = \/ g" = Opposite(f, Quad(f,g) NBox(f, g, ..., Fotys Getr,-))
f

Using the restricted commutation of T with V; we obtain:

Proposition 4 If a family (h' ) of functions is comparable, i.e. for i #]j,
Quad(fp ,hi )=Quad (fp,h 1), then the increasing Minkowski addition com-
mutes with the supremum of the family, hence it is a dilation.

Due to the fact that the operator T has not all properties of the usua trans-
lation, in particular (g*)~° # g, we do not have complete adjunction properties
between the operators @ and ®;. We only managed to show the following, for
structuring elements which are couple of pixels (o, t):

h®y (0,1) <fg=>h—t <fgQf (O,t)

h<ygo5(0,t)=h®f(0,t) <f gt

Unfortunately we cannot have total adjunction, as shows the following
counter-example. Let us consider in 1-dimension three periodic scalar func-
tions functions f, g and h where f,c.; =f, and f,, =f,. Their values are
distributed as follows: f2 > (hy = g5) > (h, =g4) >f;. Since Box(f1, g1) O
Box(f;,h1) n Box(f1,f2,h2) and Box(f2, g2) O Box(f,, ho) n Box(fz, f1, h1) we
indeed have g < ¢ (h@ {B). However, we do not have an adjunction as it is not
true that (gO0; B) <; has Quad(fz, g2) n Box(f1, f2, g1, g2) = Box(fi, f,) g
Box(fz, h 2).

4.2. PSEUDO-OPENINGS AND CLOSINGS

Pseudo-openings will be obtained by applying, in sequence, a flattening (in-
creasing Minkowski subtraction) by a structuring element B followed by an
increasing Minkowski addition by the symmetrical structuring element B' :
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((9 @5 B) ®5 B'). Pseudo-closings will be obtained by applying, in sequence,
an increasing Minkowski addition by a structuring element B followed by a
flattening (increasing Minkowski subtraction) by the symmetrical structuring

element B': ((g ®f B) @5 B').

5. Conclusion

The levelings and flattenings presented in this paper may be caled separable,
as they may be obtained by processing each coordinate axis separately. This
feature is reflected by the fact that the basic elements Quad(a, b) and Box(a, b)
are rectangular shapes, with the faces paralel to the axis of coordinates. This
separability may be considered as an advantage, in terms of computation, as a
processor may be affected to each component, and as there is no cross-effects
between coordinates. On the other hand, it is aso a disadvantage, as the result
relies heavily on the choice of coordinate axis. For this reason, it may be useful
to construct vector levelings and flattenings, less dependant, or independent
of this choice of axis. In order to get an independence of the coordinate axis,
we use disks in the place of boxes and adopt the following definition for the
vectorial activity order relation, on which the construction of levelings would
apply without problems.

Definition 7 For g,h, f 0O (R“)G, we say that h separates g and f, and we
write (g h f), or equivalently (f h @), if and only if for any p O G, the point
h belongs to the disk Disk(gp, fp) for which the points g, and fp are extremities
of diameter.

For constructing the infimum of afamily of functions (g1, g2, ..., gn) a a pixel
p we have to construct the intersection of all disks Disk(g’; , fp) which is rather
tedious in the initial space, but becomes simple after transforming the space by
an inversion centered in f,. Each of the disks is transformed into a half-plane not
containing the point f,. The intersection of al these hafplanes forms a convex
body, on which we have to project the point f: this projection aways exists
is unique but may be at infinity; after inversion, the image of this projected
point will be the farthest point in the intersection of disks Disk(gf,f,fp). The
inversion of the point at infinity gives f,. The construction is illustrated by fig.
3.
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Abstract. Lattice control can unify nonlinear control systems where the basic vector and
signal superpositions or transformations are based on the lattice supremum and infimum.
In this paper we introduce a special case of lattice control that can model fuzzy dynamical
systems in state space. Vector and signal transformations are represented as lattice dila-
tions or erosions. The state and output responses are computed via supremal convolutions
based on fuzzy norms. Causality and stability issues are studied. Finally, solutions to the
controllability and observability problem are found using lattice adjunctions.
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1. Lattice Model for Max and Min Control

In [7, 8, 6] a unified model was proposed based on lattice theory for large classes
of nonlinear control systems, such as discrete event dynamical systems, recur-
sive morphological filters, and fuzzy dynamical systems. Lattice morphology
[9, 3] is ideally suited to studying such systems because all vector and signal op-
erations and mappings involved can be expressed as morphological operators,
and solutions to important control issues such as responses, stability and con-
trollability are obtained using simple lattice-theoretic morphological concepts.
In this paper we examine a special case of lattice control systems applicable to
fuzzy dynamical systems.

In classical linear control the state vectors, the input/output signals, and
the system matrices take values from the field of reals equipped with standard
addition and multiplication. In lattice control we take the set V' of scalarsto be
a complete sublattice of R and equip it with the standard real number ordering
< and four binary operations:

(A). A generalized ‘addition’, which will be the supremum [on reals.

(A). A ‘dual addition’, which will be the infimum [ on reals.

(M). A commutative generalized ‘multiplication’ * under which: (i) V is
a monoid (i.e., semigroup possessing an identity) with identity Vig and null
element Viis = AV, and (ii)» is a scalar dilation, i.e, distributes over any
supremum.

(M"). A commutative ‘dual multiplication’ *" under which: (i) V is a monoid

*
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with identity Vijg' and null element Vg, = \/V, and (ii) +’ is a scalar erosion,
i.e., distributes over any infimum.
We group the above requirements into three assumptions:
(LCA1L). (V,v,A) is a complete infinitely-distributive lattice.
(LCA2). (V,«) is a commutative monoid, and+ is a dilation.
(LCA3). (V,) is a commutative monoid, and =’ is an erosion.

Under the above assumptions (V,V, A, *,*") becomes a commutative com-
plete lattice-ordered double monoid (CLODUM). This will be the most general
and minimally required agebraic structure we consider for the set of scalars.
In our model, all the vectors/matrices/signals take values fromV, and their
‘addition’ is done via pointwise sup or inf. The most important abstraction
is ‘multiplication’ of two matrices.! Thus, the generalized max-x ‘product’ of
a matrix Q = [g;;] 0 V™ with a matrix R = [r;]] OV®™ yields a matrix
P= [pw] Dmen defined by

P= Q ®= R s, Pig = \/ Qik* Tk (1)

The state equations of the max control model are:

x(k+1) = Amx(k) v Bmu(k)
y(k) = Cax(k) v D@u(k) @

where k is a discrete time index. We assume a n-dimensiona state vector
x = [11,Z2,...,z,)t OV" ap-dimensiona input u 0 V® , and an r-dimensional
output y O V". Therefore, the four matrices have the following sizes: A O
VR B OV™?, C OV™™, and D O V™*?.. By replacing U with [ and
@ with a dual matrix ‘product’ =', where a row and a column vector are
‘multiplied’ via a min-x’ operation, we obtain adual model that describes the
state-space dynamics of min control systems.

By specifying the scalar ‘multiplication’ « and its dual +", we obtain a large
variety of classes of nonlinear dynamical systems that are described by the
above unified lattice control model. Two such chow% are:

(1) Max-Sum Control where V = and = = +. Such systems (with spe-
cial choices of A, B, C, D) have been used in [1, 4, 8] to model the dynamics
of certain classes of discrete event dynamical systems (DEDS) as applied to
material flow in manufacturing systems and related scheduling problems. The
underlying nonlinear matrix operations are the basis of the minimax algebra
[2], which has found numerous applications in DEDS and operations research.
In typical applications of DEDS, the states x;(k) may represent the start-up
or completion time of the k-th cycle of machine i, the input u represents avail-
ability times of parts, y represents exit times, and the elements of the matrices
A, B, C, D represent service/delay times or activity durations. Further, the
max-sum control model can also capture the dynamics of recursive morpholog-
ical filters described by max-sum difference equations [8].

1 Notation: If M = [m;j] is a matrix, its (i,j)th element is also denoted as {M}ij = m;;j.
Similarly, if x = [x;] is a vector, its ith element is denoted as {x}i or simply Xx;.
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(2) Max-Tnorm Control: There are many types of nonlinear control systems
where the elements of the state, input and output vectors represent fuzzy set
memberships [12], possibilities, or probabilities. Examples include fuzzy con-
trol systems, probabilistic automata, fuzzy classifiers, as well as certain types
of neural nets with nonlinear combinations of inputs; surveys of such fuzzy sys-
tems can be found in [5]. Fuzzy state-space models can be useful for qualitative
modeling of problems with large number of states where quantitative modeling
is impossible. The dynamics of large classes of such systems can be described
via the lattice control model by restricting the set of scalars to beV =0, 1]

and using a fuzzy intersection norm (ak.a. ‘triangular-norm’) T'(a, b)éa*b as
the scalar ‘multiplication’. This paper deals with this special case of lattice
control.

2. Max-Tnorm Control

A fuzzy intersection norm, in short a Tnorm, is a binary operation T:
[0, 1] - [0, 1] that satisfies the following conditions [5]: For all a, b, ¢ O [0, 1]

F1. T(a, 1) =aand T(a,0) = 0 (boundary conditions).

F2. T(a, T(b, ¢)) = T(T(a, b), c) (associdtivity).

F3. T(a, b) = T(b,a) (commutativity).

FA. b<cO T(a b)<T(a c) (increasing).
For the Tnorm to satisfy the general algebraic conditions we require from the
set of scalars, it must aso satisfy the following:

F5. T is a continuous function.
Conditions F1-F3 make ([0, 1], T) a commutative monoid with identity Vig = 1
and null Vi = 0. Conditions F4-F5 suffice to make T a scalar dilation with
respect to any argument, as proven next.

Proposition 1. Let T be a continuous fuzzy intersection norm. Then, the
operator x + T(x, a), for any arbitrary fixed a O [0, 1], is a dilation.

Proof: Consider a (finite or infinite) collection {x; : j O J} of pointsin [0, 1]
with x = \/jEJ z;. Since [0, 1] is compact, we can find an increasing subse-
quence {zx = zj,}, such that zx < zx:1 and x = \/, & = limg_00 . Since
Tis increasing, T'(zx,a) is dso an increasing sequence that converges to its
supremum \/,, T(z,a). Further, \/, T(zx, a) V; T(z;,a) < T(z,a). Findly,
since T is continuous, we have\/, T(zk, a) = limg_ o0 T'(2k,a) = T(z,a). This

yields
T(\/ Ljs a) = \/ T(xja a)

which proves that T is a scaar dilation. a

As a ‘dua multiplication’ we may use a fuzzy union norm T'(a,b)éa*'b,
where T satisfies F2-F5 and a dua boundary condition:
F1' T'(a,0)=aand T'(a, 1) = 1 (dua boundary conditions).
Clearly, ([0, 1], T') is a commutative monoid, and T is an erosion. Choos-
ing in the lattice control model the above set of scalars and ‘multiplications
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among them creates the case of max-T and min-T' control systems, obtained
by replacing in the general state equations of lattice control the general matrix
‘product’ ® and its dual ®’ with the following max-T and min-T' versions:

P=QoOrR , Pij = \/T(Qikv"'kj) ©
k

P=QOyR, pi; = AT (qin,7ss) Q)
k

The most obvious choice for the T norm and its dual norm T are the min and
max, respectively. But there are also numerous other choices [5].

3. Vector and Signal Lattice Operators

The space of vectors and the space of signals with values from the lattice V
are special cases of function lattices. The underlying set of these lattices is
the set £ = V¥ of al functions mapping an arbitrary nonempty set EintoV
In particular, if E= {1, 2, ..,n}, then £ becomes the set of al n-dimensional
vectors (n-tuples) [z1, ...,z»] with elements fromV. If E = Z, then £ becomes
the set of al discrete-time signals with values fromV.. The set £ becomes a
complete infinitely distributive lattice if we define on it the standard pointwise
partial ordering <, supremum [, and infimum O induced by V.

Pointwise ‘multiplication’ of a lattice element F O £ = A% by a scalar
a0V yieds elementary dilations on £ that are caled translations 7,{#){x)

= T(F(X,a), x O E. An operator ¢ on L is caled translation invariant
iff it commutes with any trandation, i.e, Y7 = 7 Yfor al 7. All the above

concepts apply as well for the dual translations 7, () (z) éT'(F(a:),a), which
are elementary erosions onZL..

More general dilations and erosions on the function lattice £ = VEZ can
be decomposed into suprema and infima of scalar dilations and erosions onV,
respectively.

Proposition 2 ([3]). Let V be a complete lattice and E an arbitrary nonempty

set. The pair (g, d) is an adjunction on the function lattice V¥ iff for every
x, y O E there exists an adjunction (€xy,dxy) onV such that

(P =V dap(Fl@) , €(@)@)= A &:(G)) (5)

zcE yeE

If we define the impulse functions q and their duals q'

v, T =2 v, T =2
qz,v(m) = { 0, 2 ) q;,v(m) = { 1, z#z (6)
we can enable the decomposition (5) by defining the scalar dilations to be
530,&/(”) = 6(‘130,0)(3/)’ veV @]

and €y cto be the adjoint erosion of dx,y.
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3.1. VECTOR LATTICE

Consider now the vector space £ = V", equipped with the partial ordering
x <y, which means x; < y; 0i, the supremum x Oy = [x; Oy;] and the
infimum x Oy = [x; Oyi] between any vectors x,y O £. Then, (£, 0)is
a complete infinitely distributive lattice. Elementary vector dilations are the
vector trandations 7,(x) = [T(zi,a)] and their duds7,(x) = [T(z;,a)]. By
defining as ‘impulse functions the unit vectors e and their duas €

e:£00,..,0,1,0,..,0], € 2[1,..,1,0,1,...,1]"
each vector x = [X1,...,Xp]' can be represented as a max of translated impulse
vectors or as a min of dual-translated dua impulse vectors

T

x=\ Tuler) = \ 75, (€) ®
=1 i=1

More general forms of vector dilation (Om ) and erosion (em) are, respectively,

the max-T and min-T' ‘product’ of a matrix M with an input vector:

Sp(x)2MOrx, ex(x)2MOfx (9)

A vector operator P on £ is (dual-)trandation invariant iff it commutes with
any vector (dual-)translation.

Theorem 1 ([6]). (@) Any translation invariant dilation & on the vector lattice
L =10, 1]" can be represented as a matrix-based dilation dm where M = [m;j]
with m;i; = { 3(ej)}i,and vice-versa.

(b) Any dual-translation invariant erosion € on£ can be represented as a
matrix-based erosion ew where M ' = [m};] with mj; = {(e})};, and vice-
versa.

Given a vector dilation d(y) =M Oty with M = [M;j], what is its adjoint

erosion €? The scalar adjoint erosion stems from a binary operation ¢ :
[0, 112 - [0, 1] defined by

E(w,a) e sup{v: T(v,a) < w} (20)
For example, the adjoints of the minimum and product Tnorms are:
1 1- .
T(v,a) = min(v,a) == &{(w,a) = % +- (Tw> sign(w -a) (11)
T(v,a) = av == £(w,a) = min(%, 1) (12)

where sign(r) = 1if r= 0 and -1 else. If we consider the scalar dilations
0:5(v) = {0(esw)}; = T(v,my;) then their adjoint scalar erosions are g (W) =
& (w, mj;). Thus, according to the decomposition (5), the adjoint vector erosion
is
e(x) =M'Ogx, {M'O¢x}; = /\ﬁ(wj,mji) (13)
3

where (-)! denotes matrix transposition.
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3.2. SIGNAL LATTICE

Consider the set VZ of al discrete-time signals f: Z — V with values form V.
Equipped with pointwise sup [Jand inf [J, this becomes a complete infinitely
distributive lattice £ with partial order the pointwise signal relation <. The
signal trandations are the operators iy (f)(k) =T (f (k= i),v), where (i,v) O
Z x R and f (k) is an arbitrary input signal. A signal operator on £ is called
trandation invariant iff it commutes with any such trandation. Consider now
two elementary signals, called the impulse g and the dual impulse ('

o1, k=0 D 0, E=0
Q(k):{O,k#()’ Q(k):{17k7é0

Then every signal fcan be represented as a sup of translated impulses or as
inf of dual-translated dual impulses:

1) =\ TU @), alk ~ D) = \T'IfG), o' (k - 9)]

General signa dilation and erosion can result, respectively, from the sup-T
convolution (1 and the inf-T' convolution Y of two signas f and g defined

by

fOra(k) 2 \/ T[£(3), 9k — )] FOrg(k) = ATf@ak 5] (14)

The following theorem characterizes al trandation invariant signal dilation or
erosion systems as nonlinear convolutions of the above type.

Theorem 2 ([6]). (a) An operator A on the signal lattice [0, 1]Z is a trandla-
tion invariant dilation iff it can be represented as the sup-T convolution of the
input signal with the system’s impulse response h = A (q).

(b) An operator E on the signal lattice [0, 1]Z is a dual-trandation invariant
erosion iff it can be represented as the inf-T' convolution of the input signal with
the system’s dual impulse response h' = E(Q').

Given a signa dilation A(f) = f(Orhand its representation via scaar
dilations as

A =\ Are(f(K),  Are(v) = T[v,h(€ - k)]
kel

it follows from the decomposition (5) that its adjoint signa erosion is

E(g)(k) = ) &lg(0), h(£ — k)] (15)
ecZ
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4. State and Output Responses

The basic state-space model of a max-T control system can now be represented
via matrix-based dilations:

x(k+1) = Galx()] V dg[u(k)] 1
y(K) = dobe()] v dplulk)]

Solving the state equations by using induction on kyields the state response:
(\/k_‘:A(k‘lf“ Or BOr u(i))
o5 v (V85 s

|
>
z
a
)
X
=
<

x(k) =
(17)

Il

where A (¥ denotes the k-fold max-T matrix ‘product’ of A with itself for k= 1
and A© =1, where | nis the n x n identity matrix.
The above result yields in turn the output response:

v = Gehx(0)] v (\/:()1505]2'1_i53[u(i)}>V5D[u(k)} (18)

‘zero’-input resp.

V.s(k) 2 ero'-state resp.

Thus, the output response is found to consist of two parts: (i) the ‘zero’-input
response which is due only to the initial conditions X(0) and assumes an input
equal to 0, and (ii) the ‘zero’-state response which is due only to the input x(0)
and assumes initial conditions equal to O.

For single-input single-output systems the mapping u(k) — y,(k) can be
viewed as a translation invariant dilation system A. Hence, the ‘zero'-state
response can be found as the sup-T convolution of the input with the system’'s
impulse response h = A(q):

yzs(k) = A@w) (k) = \/ T[u(?), h(k — £)] (19)
£

Assuming the system is initially at rest, its impulse response is found to be

0, k<O
h(k) ={ D, k=0 (20)
car A%V ao,B, k>0

The last two results can be easily extended to multi-input multi-output systems.

5. Causality, Stability

A max-T control system initially at rest can be viewed as a trandation invariant
dilation system A mapping the input uto the output y. (Assume for brevity
single-input single-output systems.) Let h =A(q) be the impulse response of
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A. A useful bound for signals f(k) processed by such systems is their global
supremum

IFiVE \ FR)
ke

which can be viewed as a semi-norm. Such systems are caled bounded-input
bounded-output (BIBO) stable iff a bounded input yields a bounded output,
i.e, if [lully < 1= |ly|lv < 1. The following theorem provides us with sim-
ple agebraic criteria for checking the causality and stability of max-T control
systems based on their impulse response.

Theorem 3 ([6]). Consider a max-T norm control system A initially at rest
and let h = A(q) be its impulse response. (a) The system is causal iff h(k) = 0
for all k < 0. (b) The system is BIBO stable iff ||k||v < 1.

6. Controllability, Observability

A max-T control system is controllable if the following system of nonlinear
equations can be solved and provide the vector u = [u(0), u(1), ..., u(N — 1)]"
of input values required to drive the system from the initial state x(0) to any
desired state x(N) in N steps:

z1(N) u(0)
x(Ny=| =A™ Opxo) v | [AY V0B, B Op :
Zn(N) c u(N —1)
N——— —_———
X u

(21)
Assuming that the input is dominating the initial conditions, i.e., the second
term C O-1 u is not smaler than the first term A(N) o x(0) of the right hand
side, which is true if x(0) = 0, we can rewrite the above as

COru=x (22)

Equations of the form (22) have been studied in [10, 11] in the context
of fuzzy relations. The next lemma provides a sufficient condition for their
solvability. Let N, ={1,2,...,n}.

Lemma 1 ([10, 11]). Equation (22) has a solution if for any i O N, there
exists j ON,, such that {C};; = 1 and {C}x; =0 ¥V k #i.

In genera, the set of solutions of (22) forms a sup-semilattice. The greatest
solution is given by
u=_C0,x (23)

where & is the adjoint scalar erosion of the dilation T defined in (10). In certain
applications the conditions of Lemma 1 can be restrictive. An important aspect
in such cases is finding the reachable set R, i.e, the set of state vectors x for
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which (22) is solvable. Let us first recall some definitions given in [11]. With
the aid of & and a related binary operation

0, a<b
¢(a,b) < { inf{z : T(a,z) =b}, a>b (24)

we define the following three solution matrices:
(T} 26(C s 25), {Ths 2 CUC g 2), (T 2 G (/\{f}ik, {f}i])
k

where (min corresponds to the case where T is the min norm. Given the above
matrices, the greatest solution is the row-wise infimum of I', the mean solution
is the row-wise supremum of I, and the minimal solutions also result from
I'. Note that the greatest solution that results from the solution matrix [ is
identical to the one provided by the adjoint vector erosion in (23).

The reachable set R can be found via the following Lemma:

Lemma 2 ([10, 11]). The state vector x belongs to the reachable set R iff for
any i O N, such that x; # 0 the ith column of L'is not equal to 0.

Hence, if a desired state x belongs to R, the control u given by (23) drives the
system to this state Xx.

If x does not belong to R, then it may be sufficient to solve an approximate
controllability problem that has some optimality aspects. Specifically, consider

the problem of finding an optimal input vector u as solution to the following
optimization problem:

Minimize |jx —C Oz u|| subject to COru < x (25)

wherethe norm [0 is either the | , or the lanorm. The optimal controllability
solution is actually a lattice erosion u = g(x) = C' O¢x identical to the greatest
solution (23). €is the adjoint erosion of the dilation &§(y) = C O1y. Its
optimality can be proven simply by noting that €,0) forms a lattice adjunction,
and hence d¢ is an opening operator. Opening is aways anti-extensive, and
hence 8(g(x)) < X. Therefore, u = g(x) is the largest solution with d(u) < x.

State Trajactories: X1(-), X2(--), X3(..)
& o ¢ o o 86 O O
N @ s o 3 @ o

k4 0
'
'
.
1
\
LY

°

2 3
Time Index

Fig. 1. State trajectories from initial state at k= 0 to a desired state a k = 5.
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Example: Consider a max-T control system with T(a, b) = ab, n = 3 dates,
p =1 input, and

0.2 0.8 0.1 1 0 1
A=710302], B=|0|, x(0)=[0], x(N)=]|07
0 07 1 0 0 0.3

This system can drive the initial state x(0) to the desired x(N) in N = 5 steps
by using the following scalar control signal

[(0), u(1), u(2), u(3), u(4)]" = [0.4286, 0.4286, 0.4286, 0.7, 1.0]"

Figure 1 shows the state trajectories. ]

The above ideas on the controllability problem can aso be applied to the
observability problem. A max-T control system is observable if we can estimate
the initial state by observing a sequence of output values. This can be done if
the following system of nonlinear equations can be solved:

y(0) C u(0)
: = : Brx(0) V [A(n—1},---,A(0)] O :
y(n — 1) Ccop AMD u(n — 1)
O
(26)

This max-T matrix equation can be solved either exactly or approximately by
using the same methods as for the controllability equation.
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A MORPHOLOGICAL INTERPOLATION APPROACH -
GEODESIC SET DEFINITION IN CASE OF EMPTY
INTERSECTION
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CVRM / Centro de Geo-Sstemas, Instituto Superior Técnico
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Abstract. This article presents a morphological approach for the generation of intermediate
2D objects, using others 2D objects, as initial ones. The approach is useful for a smooth
readlistic 3D object’s visualisation, in case of shortage input information. The study is based
on mathematical morphology concepts, such as geodesic distance and geodesic set definition,
dealing with the case of empty intersection between the objects, in a orthogona projection
over a plane. A classical approach is used to define spatial polynomia curves, interpolating
the extreme left and right sets of visible essential border points of the initial objects. Further,
the arc of each curve bordered between a couple of initial 2D objects is orthogona projected
over the lower plane together with the upper 2D object. The projections and the object, al
over the same plane, are used to create the geodesic set. Then, a set of intermediate sec-
tions, between each couple of initia objects, is defined by the application of a morphological
linear interpolation. Experiments were performed in order to validate the theory. Real data
obtained by well logs performed in Vae de Milhagos (Setdbal - Portugal) was used for this
propose, and the results are given in the article.

Key words: Mathematica Morphology, Binary Interpolation, Polynomia Interpolation,
Geodesic Distance, 3D Smooth Visualisation.

1. Introduction

This paper presents the development of an approach for the interpolation of
binary images, using as initial information 2D objects with empty intersection.
The interpolation developed is twofold: firstly is used a polynomia one to de-
fine the geodesic set within it the interpolations will be defined, and secondly
it is used a linear one to generate such intermediate sections. This method is
helpful for smooth realistic 3D object’s visualisation in case of shortage input
information. It may lead to advantages in 3D subsurface object’s visualisa-

tion, since the prospective drills or well logs are the only data source for it.
Moreover, a shortage of information usually exists, due to the expensive costs
associated with the performance of enough number of drills, or difficulties re-
lated with the possibility of visiting all the necessary locations. The innovation
introduced in here is the creation of the geodesic set between two consecutive
objects, whenever exists empty intersection among them, in a top view pro-
jection. The linear interpolation applied consists in a generadisation of the one
proposed by [3], who have developed an approach for objects with non-empty
intersection. Later, improved by [2] the interpolation methodology was en-

larged to objects with empty intersection, using a geodesic set containing both
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initial and final, defined by the object’s connection through a straight segment.
In this article it is proposed a method to define such geodesic set, in a more
precise way, through the employment of a polynomial interpolation. Until now,
the morphological interpolation methodology was only applied to binary cases,
but it can also be extended to grey level images. The methodology was applied
to the generation of an impermeable groundwater unit, using data from its
respective well logs.

2. Basic Notions

Hereafter are presented some basic notions used for the method implementation
on morphological interpolation, such as geodesic distance, geodesic dilation,
geodesic erosion and reconstruction. Let X be a set, x and y being two points of
X. The geodesic distance (dx (x,y)) is the length of the shortest path included
in X and linking the two points. Geodesic dilation of a marker set Y by an
elementary structuring element B in the geodesic set X can be thus defined as:

DEY)=(YeB)nX 1)

where & is Minkowski addition. If this operation is performed until idempo-
tence, we get what is called the reconstruction set by the marker Y which is
made of all the connected components of X marked by Y. This transformation
is caled reconstruction (Rx(Y)) and can be written as:

Rx(Y) = D¥ =1lim(DE..DE)(Y) )

This transformation is increasing, anti-extensive and idempotent and thus it
is an opening. Because it preserves the connectivity of X, it can be caled a
connected opening. The dua transformation is the geodesic erosion that can
be defined for the complementary sets X°¢ and Y°©:

EZ.(Y)=(Y*oB)UX® 3)

where © is Minkowski subtraction. The geodesic transformation is repeated
until idempotence and the dua transformation (R%c(Y®)) of the reconstruction
Ry (Y) is obtained:

Rye(Y©) = (RxY)® = E®X® = lim(Exe...Exe)(Y®) (4)

This transformation is increasing, extensive and idempotent and therefore
it isaclosing, that can be called connected closing, because the connectivity
is preserved. The basic notions just described were used in the interpolation
methodology implementation, which is presented in the next item.

3. Interpolation Approach

Reference [3] introduces an interpolation procedure between sets of non-empty
intersection, adapted from the one developed by [5], and [l], for reconstructing
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a topographical surface from its contour lines. Meyer uses the notion of geo-
desic distance between sets, in which the respective intersection plays a major
role. To transform a set X into a set Y, X will shrink and become X N Y,
and at the same time X N Y will grow and become Y. Thus, this interpola-
tion algorithm only works when there is a non-empty intersection between the
sets. The geodesic set in which Meyer’'s algorithm works is the union of the
two non-disjoint sets X and Y, and each transformation X O (X nY) and
(XNY)DO Ytaken separately consists in finding al the interpolations between
a set and another one contained in it. The proposed agorithm follows basically
the same procedure of Meyer's agorithm - two different interpolations between
increasing or self-contained sets using geodesic distance functions - but enlarg-
ing the geodesy to a mask containing the two sets. In order to illustrate the
interpolation methodology sets, a geodesic one defined by the union of straight
segments between the objects, is used in figure 1 just as an example. Let X
and Y being two sets we want to interpolate and Z a geodesic set containing
both sets X and Y : (XUY )cC Z (figure 1). The algorithm calculates two
interpolation functions defined as follows:

0on X and 1 ontheboundaryof Z

Z
Int(z) = dx/(dx+dz),onZ/X (5)
X
+ooon Z¢
P OonY and1lontheboundaryof Z
Int(z) = dy/(dy+dz),onZ/Y (6)
Y
+ooon Z°€

Where dx and dy are the geodesic distances of a point x to the sets X and Y,
respectively, and d; is the respective geodesic distance to the boundary of the
set Z.

Fig. 1. Sets X, Y and geodesic set Z.

The interpolated sets between X and Z, and between Y and Z, are obtained
by a single threshold between 0 and 1:

I)Z?t(a) = {a:| I;Z}t(x) < a} @)

Iét(a) = {:1:| [ét(x) < a} ®)
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Once performed these two interpolations, the interpolation set between X and
Y, i.e, the sets that are at a distance (a) from X and (1 — a) from Y, can be
obtained by the intersection of two partia interpolated sets:

z
I)?(lt(a) - interpolated set at a distance o between X and Z;

z
I;:}t(a) - interpolated set at a distance o between Y and Z.

Thus:

Y z z
I)T(Lt(a) = Ig(lt(a) N I}'I}t(l —a) 9

In conclusion, through the application of this expression it is possible to gen-
erate intermediate interpolated objects, for certain o values, where a O [0, 1].
Until this phase it has been considered a general geodesic set containing both
initial and final objects, in order to describe the morphological interpolation
methodology. In the next item it is proposed a technique to define the geodesic
set using the orthogonal projection of polynomia spatial curves between ob-
jects, which interpolate the set of extreme left and extreme right border points.
This way the geodesic set definition is improved, and thus the morphological
interpolation.

3.1. GEODESIC SET DEFINITION

Let us consider “similar” 2D-objects [7], situated on a set of plane sections,
which will be used to create the surface of a single 3D object. Let the coordinate
system Oxz, in each finite plane be connected with the upper left corner (the
axis Ox™* is oriented toward the upper right, and the axis Oz* toward the
down left corner). And, the spatial axis Oy* is connected with the same
point of the first plane, being oriented from the first to the last plane section.
Assume that the point A belongs to a 2D object’s border. We shal cal A an
extreme left (right) visible with respect to Oz, if its x coordinate is minimal
(maximal). Therefore, for a certain set of 2D objects situated on the space, two
sets of extreme points are defined: set of extreme left, and set of extreme right
visible points. Further, a classical approach is employed in order to define the
polynomial curve interpolating each set. Let us consider a set of spatial points
N = {(z,yi,2;),t = 1,..n}. The polynomial curve L, interpolating the points
may be represented by the next parametric equations:
L:xz=f(t),y=g(t),z=h(t), where t is a parameter, and

f(t) = a(n—l)»t(n_l) + a(n__g)-t(n_Q) + ... +ap
9(t) = b(n_1y t™ D £ b, 0yt ™™D 4 by (10)
h(t) = C(n—l)-t(n_l) + C(n_g).t(”_g) + ...+ o

T =
y fry
Zz =
an—1 bn—l Cn—1
n— bn— n—
Let us denote by : A, = -2 | B, = 2 c=| ™2,

ag bg o
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Tn—-1 Yn-1 Zn—1
Xn _ Tn-—2 ; Yn — Yn—2 7 Z, = Zn—-2
Zo Yo 20
If one choose for each i = 1,.., na fixed value of t=1t; , then can be

constructed the following matrix:

t, =) g (=)

tz(n_l) tg(n_Q) o1
T(nxn) =

e |

This way the equation system (10) may be presented in the following matrix
form:

T(nxn)-An =X, T(nxn)~Bn =Yn T(nxn)~On =2Zn (11)

When the coordinates of n spatial points are given, we may calculate the cor-
responding vectors A,, Bn and Cn for each fixed Ty(t;,..., ty), through the
resolution of the equation systems (11). Thus, will be defined the curve L in-
terpolating the points. Employing the upper approach over the sets of extreme
left and right border points, the polynomia curve interpolating each set may
be defined. Further, the arc of each curve bordered between a couple of initial
2D objects is orthogonal projected over the lower plane together with the upper
2D object. The projections and the objects, over the same plane, are used to
create the geodesic set needed for the morphological approach generating the
intermediate 2D objects between the initia couple of 2D objects.

3.2. GEODESIC DISTANCE ALGORITHM

In order to obtain the geodesic distances from each 2D object, was developed
a program in Cto automatically execute severa commands that are described
hereafter. Two images are considered, one with the object to which the dis-
tances are concerned - object X, and another one with the geodesic set (con-
taining both objects, but with zero value over X). Next it is applied a dilation
to object X, followed by its intersection with the geodesic set. With this oper-
ation it is obtained the object X surrounded by pixels with value 1, because it
was made 1 dilation. To obtain the pixels with geodesic distance 2, we will have
to apply another geodesic dilation over the previous one, followed by an XOR
operation with the results of geodesic distance 1, assigning value 2 to such
difference. Repeating these procedures for object X until idempotence, in the
respective geodesic set, it will be obtained the various geodesic distances. For
the application of the interpolation methodology presented previously, the geo-
desic distances from each object, within the respective geodesic set are needed.
So, al those distances were calculated as described above, resulting in severd
images such as dx - geodesic distance to object X caculated in Z/X, and dy
- geodesic distance to object Y calculated in Z/Y, both generated for each
interval between two consecutive sections.
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4. Case Study

As it has been mentioned, the morphological interpolation method developed
so far was applied for the generation of intermedi ate 2D objects, in order to
provide a smooth readlistic 3D reconstr uction and visualisation, in case of short-
age input information. Using input data obtained by well logs from Vae de
Milhagos (Settibal peninsula in Portugal) six images were generated employ-
ing a morphological approach developed by [4]. A set of sections cutting a
single impermeable unit (figure 2) was derived by the application of a recogni-
tion approach based on regularity’s definition [6], and notion of morphological
similarity [7]. Those sections are then considered paralel to the plane Oxz.

1 2 3 wll

Fig. 2. Initial sections used for the generation of intermediate ones.

Observing them from a top view can be concluded that they do not intersect
each other (figure 2). Therefore, the original Meyer's method [3] could not be
applied for the generation of intermediate sections, leading to the enlargement
of the interpolation context by [2]. The geodesic set definition consists in an
important step due to its influence on the subsequent interpolations, noting that
in Meyer's method the geodesic set is given by the object’s union, and in here
such set is defined. Thus, the polynomia interpolation presented in paragraph
3.1 was applied to all sections, obtaining two spatial curves connecting them:
one corresponding to the connection of the extreme left points of each section,
and the other line connecting its extreme right visible points. The equation
systems describing those curves are given below:

- for the right one:

X = Fi#) — —Todsxt® — 1285 =4 827 t7 . 24085 =12 3085.6 =t — 1300
Z = g{ty= 1.9=4" +35.70 %1 230« t* L BERTY %17 - 81358 x £ = 534
Y = kit =t (12)

- for the left one:

X o= uff) = =501+ 92+ 4%  600.1=1% + 1800 %12 — 23377 ~¢ t 2152
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Z = wft) = —2.33 %% +42.12 % 1 — 275 £* 4 TRO.3 # 7 — U1T = ¢ - 576
Y = w(t) =t (13)

Based on the polynomial functions it was calculated the orthogonal projec-
tion's location of three points, respectively at distance t= 0.25, t = 0.50 and
t= 0.75 from each initial spatial section (considering that the distance between
two consecutive sections is set to one). All the triples of points used to bind the
different geodesic sets are given below (1 and 2 represents couples of sections
used to define left-l and right-r sets of points):

TABLE|
Points coordinates for geodesic sets definitions.

e Ww | 1y 1t ” T Hor [ g Tt
82 207 76 207 160 280 | 140 284
94 223 BT 223 171 274 | 155 283
128 2492 | 115 244 194 227 { 178 231
197 272 | 1¥5 274 249 115 | 225 1Ll
214 278 | 191 230 272 53 243 76
216 275 | 183 277 286 70 254 67
177 250 | 162 249 283 128 | 250 120
146 229 | 134 227 265 175 | 234 170
116 206 | 103 205 237 224 | 210 222
T8 163 54 165 161 294 | 142 294
79 148 | 43 133 121 301 | M| 303
95 140 44 118 85 284 72 286
158 148 79 161 30 2001 38 [REH]
L84 161 ° 108 175 63 141 5l 157
133 180 | 119 190 1z 154 95 150

In the next figure is represented an example of such point’s location corre-
spondent to the fifth and sixth sections.

.ﬁ ; -w'

Fig. 3. (A) Fifth and sixth sections, and the points obtained from the polynomial curves
projection; (B) Geodesic set definition by linking the extreme left and right points, with the
2D objects.

Then, after the geodesic set’s definition for each two consecutive sections,
it was applied the morphological interpolation method, in order to obtain the
intermediate ones. The result is presented in figure 4, together with the ini-
tial sections, displayed at the left and right columns. In the next phase the
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Fig. 4. Interpolated sections and initial sections (left and right columns).

interpolated sections are introduced in a software tool - SURFDRIVE (demo
version), in order to provide the impermeable unit surface 3D visualisation.
In figure 5A are given the initial sections situated according to their spatial
distribution. And the same sections combined with the interpolated ones are
shown in figure 5B.

The surface obtained in figure 6B using the geodesic set approach by a
polynomial function to generate intermediate sections, is a smoother result,
and thus more accurate than the one obtained in figure 6A.

5. Conclusions

With the results obtained may be concluded that the interpolation method
enables to provide smooth 3D reconstruction and visualisation, when the initial
2D transversal sections do not overlap each other (orthogona projection) and
their number is not enough. These advantages are due to the following points:

- definition of the geodesic set using polynomial interpolation in case of
empty intersections between the initial 2D objects;

- generation of intermediate objects between each couple of initial 2D ob-
jects;
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A ANy B

Fig. 5. (A) Initial sections spatially distributed; (B) Interpolated and initial sections,
spatialy distributed.

A

Fig. 6. (A) Aquifer 3D visualisation based in initial sections; (B) Aquifer 3D visudisation
based in initial sections and interpolated ones.

- improvement of data usage, needed for a smooth realistic 3D visualisation
in case of shortage input information.

The interpolation method for grey level images is still under development,
but we believe that this process can also be extended to that context, with
positive results, especially to study the topological/spatial relations between
various permeable types of subsurface objects.
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Abstract. The combination of morphological interpolation and affine transformation is
presented. The proposed approach unites the advantages of both methods: the displacement
is performed by using affine transformation, and the shape deformation by morphological
interpolation. It allows the transformation of one binary set into another in semi-automatic
or fully-automatic way.
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1. Introduction

The current paper describes the combination of morphological interpolation
and affine transformation and its application to the deformation of binary image
objects. The morphological interpolation (section 2) alows one to deform the
object’s shape in a very elegant and robust way. The disadvantage is that the
result of interpolation of distant sets is either not possible to obtain or not
very redlistic, depending on the method applied. On the other hand the affine
transformation (section 3) is an ideal solution for displacements like trandation
and rotation. The change of shape however, could be performed to a very
restricted extent: only by rescaling and shearing, which does not allow the
modification of a shape into another (as morphological interpolation does).

The approach presented in the current paper unites the advantages of both
methods: the displacement is performed by using an affine transformation and
the shape deformation by a morphological interpolation. The method proposed
(section 4) consists of three mgor steps. At the beginning an affine transforma-
tion is applied to each of the sets in order to place them in the central position.
In the next step, the morphological interpolation is performed. Finally, in the
third step, the interpolated set is moved to its final position by once again using
an affine transformation. Contrary to morphological interpolation, the affine
transformation requires some input parameters. The methods of calculation of
these parameters are described in section 5. Section 6 contains the results and
conclusions.

* Also affiliated to: Institute of Control and Industrial Electronics, Warsaw University of
Technology, ul.Koszykowa 75, 00-662 Warszawa, POLAND.
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2. Morphological Interpolation of Sets

Morphological interpolation is a recent subject. The main papers on it were
presented during the last two ISMM symposiums: in 1996 by F. Meyer [4, 5],
and in 1998 by J. Serra [6, 7] and S. Beucher [1, 2]. The interpolation method
applied here is based on the interpolation of the intermediary sets between
two sets with non-empty intersection. Two approaches to this issue have been
proposed. The first one is based on the median set [1, 2, 6, 7], the second one
- on the geodesic distance functions [4, 5]. The median set of two binary sets
with non-empty intersection is an influence zone of the intersection of both in
the union of them. It could also be expressed by using the basic morphological
operators: dilation and erosion as follows [6, 7]:

M(P,Q)=1Zpugy(PNQ) =U{((PNQ)®AB)N((PUQ)SAB), X >0} (1)

where P,Q (PN Q# ﬂ) are the initial sets and M (P, Q) is the median set. The
interpolated set at a given level could be obtained by the successive generation
of medians ([1, 2]). This approach, however, is not very fast. A faster solution
based on geodesic distance functions, which produces the same results, has been
proposed in [4, 5]. It alows one to obtain the interpolated set at a given level
by a simple thresholding of two interpolation functions, namely int,ﬁ’nQ,which

interpolates between Pn Q and P; and intng, which interpolates between
Pn Qand Q. The interpolated set at level 0 < k < 1, is the union of two
cross-sections of the interpolation function:

Zi = Thry(intheg) UThra g (intg,0) 2

where Thr  operator represents the thresholding at level k, and Zg is the
interpolated set at that level. The interpolation function int|§n is obtained
as a combination of two geodesic distance functions: d; and d,. The first one
is the distance from Pn Q to P and is obtained by the successive dilations of
P n Q within mask P. The function d, represents the geodesic distance function
from P to (PN Q), obtained by successive geodesic dilations of P with mask
(PN Q). Finaly, the interpolation function intlﬁ,’nQ equals 31_d-|:Tz' Function

intgﬁQ is obtained in a similar way.

3. Affine Transformation

An affine transformation alows one to translate, rotate, rescale and shear an
image. In the case described in the current paper, this operation is applied
to the transformation of binary sets. We match two sets as well as possible,
leaving the more precise change of shape to the morphological interpolation.

3.1. GENERAL FORM

The transformation can be explained in terms of the general transformation
matrix [8, 3] which in the case of an affine transformation can be expressed as
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follows:
air a2 0
[z,9,1] ={u,v,1]- A; A= | as ax 0

az; azz 1

(3)

The affine transformation considered here includes three kinds of operations:
translation, rotation and scaling®; the transformation matrices of which are,
respectively, the following:

1 00 cosf sinf 0 s, 00
0 1 O[;R(B)=1|—sind cosf 0] ;S(sz,85)=1]0 540
1

Ity

o~

0 0 1 0 01

(4)
The equations above describe the forward mapping [8, 3]. It means that we
calculate the coordinates of the final image for every pixel from the initial one.
In order to obtain an appropriate matrix for the inverse mapping (which char-
acterizes the calculation of the coordinates on the initial image for every pixel
of the fina one), the matrix A from Eq. 3 should be inverted®. In general, if we
consider the affine transformation consisting of n basic operations, trandations,
rotations, scalings or shearings:

T(taw ty) = [

A=A -A-...- Ay (5)
the inverse transformation matrix A" will be equal to:
A=At=A oA AT (6)

The inverse matrices of the three basic transformations introduced above (de-
fined as in Eqg. 4) are respectively:

1 1
T~ (tarty) = T(—ts, —ty); R71(6) = R(=0); 57 (s0,8y) = S(—, =) (V)

Sz Sy

4. Combination of Morphological Interpolation and Affine Transfor-
mation

The proposed approach combines both methods described above. In the first
step an affine transformation is performed on each of the two sets under study;
this results in locating both (modified) sets in a central position. It is shown in
Fig. 1(b) (initia sets. (@) and (c)). This first transformation consists of trans-
lation, rotation and scaling. In the second step the morphological interpolation
using the interpolation function is performed. Finally the morphologicaly in-
terpolated set is affine-transformed to its final position(s) (Fig. 1(d,ef)). In
fact, the transformation to the final position could be done directly from both
initial sets, and the morphological interpolation could be performed there with-
out transforming them into the central position. But the proposed solution is

1 The fourth kind of the affine transformation: shearing is not taken into consideration.
2 The inverse matrix describes also an affine transformation.
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faster with regard to the speed of the calculations of the morphologicaly in-
terpolated set. The interpolation functions are generated only once, and the
final interpolated sets at different levels are obtained by the appropriate thresh-
olding and one affine transformation to the final position for each level. The
particular steps of treatment are described in the following sections.

)’t (@ ‘ EIRC) ©
P e 4+ >
(D e ®
Fig. 1. Generation of the interpolated set: (a), (c)-initial sets, (b)-central position,

(d, e f)-interpolated sets.

4.1. PUTTING BOTH SETS IN THE CENTRAL POSITION

The first step of treatment is performed separately for two sets P and Q. In
order to perform the affine transformation the following auxiliary data sets
must be associated with them: the middle point of the set (for the set P:
(XpPo,yro), and (Xqo,Yyqo) for Q), and the proper angle (ap and ag). The
first data is used twice: firstly for the trandation to the central position, and
secondly as a center of the rotation. The second data - the proper angle,
describes the orientation of the set and is the angle between the x-axis and
the line indicating the characteristic direction of the set. There exists also the
third input data, which depend on the relation between both sets. the scaling
coefficients sx,sy. They describe the proportion ratio between the sets. We
will consider now all these data as known a priori. How to obtain them is
described in the next section. The transformation which moves the initial sets
P to the central position is the following:

Ap =T(—zpo,—ypo) - R(—ap) - T(zc,yc) (8)

It rotates the set around the point (Xpg,Ypo) and trandates it in such a way
that the middle point is placed in the central point (xc,yc). The appropriate
transformation of the set Q contains one additional step, rescaling:

Aq = T(—zqo, —yqo) - R(ag) - S(sz,8y)  T{(zc,yc) (9

The only difference with the former transformation is that between the rotation
and the trandation, the set Q is rescaled by using the coefficients sy,s,®. Both

3 In order to match both sets, only one of them - in our case Q - has to be rescaled.
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equations shown above tell us what has to be done with the initial set in order
to obtain the transformed one - they define the forward mapping. In this
case for each point from the initial image (containing the initial set), its new
coordinates on the final one (which contains the set in the central position) are
calculated. This approach, however, has one important disadvantage. Due to
the numerical inaccuracies, it can happen that not al the points on the fina
image are filled by the values of the appropriate points from the initial one and
some holes are present. In order to avoid it, the inverse mapping is applied. In
this case, according to the equations 6 and 7, the transformation matrices are
respectively the following:

Ap' =T(=z¢,~yc) - Rlar) - T(zpo, yro) (10)
At =T(~zc,~uc) - R(~aq) - S(5;, 5-) - T(aqo, ygo)

By using both equations indicated above one transform both sets to the central
position (see Fig. 2(b)). Now the distance functions: intF.,q and intg.nQ.
(where P' and Q' represent the transformed sets) are produced. They allow
one to later obtain the morphologically interpolated set at given level. All the
steps described in this section are performed only once, even if the interpolated
sets on different levels have to be produced.

4.2. INTERPOLATED SET AT GIVEN LEVEL

Let 0 < k < 1 be the level on which the interpolated set is calculated (for k=0
it is equal to P and for k=1, to Q). The interpolation functions calculated
in the previous step are thresholded according to Eqg. 2. In order to place it in
the final position the affine transformation is applied once again. This time,
however, new transformation parameters are calculated (all of them depend on
k): final middle point (X (k), yr(k)) , rotation angle 3(k) and scaling coefficient
s'x(k), s (k). The appropriate matrix of the affine transformation is (in case of
forward mapping):

Aime(k) = T(—zc, —yc) - S(sy(k), sy (k) - R(=B(k)) - T(zr(k),yr(k))  (11)

The transformation parameters are calculated by using the following equations:

’ _ 1 . 5/ A 1 12

S0 = g Y T A, =) (12)

Bk) =ap+k-(ag —ap) (13)

zp(k) =xpo+ k- (zqo — xpo); yr(k) = ypo + k- (ygo — ypo) (14)

As in the previous case, instead of the forward mapping, the reverse one is
applied, the matrix of which is the following:

A (k) = T(~zp(k), —yr(k)) - R(-B(k)) - S( ) T(zc,ye) (19)
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5. Calculation of the Parameters of the Affine Transformation

For calculating the parameters of the affine transformation four methods have
been developed - one semiautomatic and three fully automatic ones.

5.1. SEMIAUTOMATIC BY THE TRIPLET OF POINTS

In the current method a triplet of control points is associated with each of the
two sets. The affine transformation can transform any triple of non collinear
points into any other in the image space by using the combination of all four
base transformations. In the current paper we neglect shearing, which re-
duces the triplets which can be transformed. Let {p1 = (Xp1, YP1), Po =
(Xpo, Yro): P2 = (Xp2,Yr2)} and {Gi = (XQ1,YQ1).do = (XQo,¥Qo), G2 =
(X02,Yq2)} be the triplets of control points of respectively the sets P and
Q. The necessary condition is that they must be the vertices of a right-angled
triangle, which can be expressed by using the following equation (the right an-
gle is indicated by a pixel with index 0): Xo(Xo— X1— X2) + yo(Yo —-y1 —Yy2) =
Y1Y2— X1 X2. Example sets and the triplets are shown on Fig. 2. The appropriate
points are the ends of the gray straight lines.

)

(e1) i ‘ (b)

Fig. 2. On the left: two initial sets (with the control points), on the right: transformed set
in the central position.

Both sets are transformed using the affine transformation in such a way that
their appropriate triplets of points superimpose (see Fig. 2(b)). The middle
points are aready known and they are equal to po for the set P and g for the
set Q. The proper angle ap* is defined as an angle between the line passing
through the points pp and p, and the x-axis of the base coordinate system:

<a<

o) 3
o]

TP1 — ZTpo
o = Sg’n,(ypl — ypo) - arccos ;T
(\/(Ipl —xpo)? + (yp1 — yP0)2>

(16)
Scaling coefficients are calculated by considering the lengths of segments
p1Po, P2Po and their relationship to the lengths of segments g;0g, d29o:

4 When the equation considers only one set, it means that the appropriate equation for
the second one is to be obtained in exactly the same way.
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Sy =

_ JEpr—xzpo)’ + (yp1 —ypo)? _ [(&p2—~2zp0)® + (yp2 — ypo)?
(zq1 ~ z2qo)? + (yg1 — ¥go)?’

(xQ2 — 2qo)? + (yQ2 — ¥@o)?
(17)

5.2. AUTOMATIC WITHOUT RESCALING

In the automatic method, at first the middle point is calculated as a center
of gravity of the set. In order to obtain the proper angle o, one measures the
intercepts hy x of the set P at every point x 0 P and for every angle A. Let |
be the maximum lengths of these intercepts:

I =sup{hyo(P),z€ P, Xe|0,n]} (18)
then A is the direction associated with | - the proper angle of P° .

(b)

(c)

(a) : (d)

Fig. 3. The initial sets (a) and the automatic matching obtained by using different criteria:
(b) - without rescaling, (c) - by the smallest rectangle matching, (d) - with the area criterion.

The scaling coefficients are not calculated here (sx = s, = 1). The change
of size is performed only by means of the morphological interpolation.

5.3. AUTOMATIC BY SMALLEST RECTANGLE MATCHING

The middle point and the proper angle is calculated as in the previous method.
In order to obtain the scaling coefficients the size of the smallest rectangle
containing the set is considered. The coefficients are than calculated by using
the extreme values of the coordinates of the points belonging to the set:

TPmazx — TPmin . _ YPmaz — YPmin (19)

8y = ) oYy
LQmaor — TQmin YQmaz — YQmin

5 Of course a set can have more proper angles A - not only one.
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0% 30% i 50% H 0%
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/

Fig. 4. The sequence generated by using the automatic calculation of parameters: (a) -
without rescaling, (b) - by the smallest rectangle matching, (c) - with the areal criterion.
Initial images are shown on Fig. 3.

where indices max and min stand for the extremal coordinate values aong
the appropriate axes. These values can be computed either before or after
performing the rotation - in the result shown in the next section they are
calculated after the rotation.

5.4. AUTOMATIC BY USING THE AREAL CRITERION

In this approach, the middle point and the proper angle are caculated in the
same way as in the former ones. The difference lies in the calculation of the
scaling coefficients. They are calculated according to the relation between the
areas of both sets - the areal criterion:

o area(P)
Sp = Sy = _area(Q) (20)

where area(P) and area(Q) represent the area of respectively P and Q.

6. Results and Conclusions

The results of the automatic methods are presented in Fig. 4. The auto-
matically computed parameters are the following: Xpo = 133, ypo = 184,
Xqo = 353, Yoo =273, ap = —140°and aq = 0°. The result of the first
method (&) shows that the absence of the rescaling leaves the entire change
of size to the morphologica interpolation, the results of which is not as pre-
cise as in the combination with the rescaling. Next two methods contain the
rescaling, the automatically computed parameters of which are following for
(b): sx = 0.56, sy = 1.05; for (c):sx = sy = 0.5. If we compare both methods,
the second one (c), with the areal criterion produces finer interpolated sets
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INTER

MORPH

Fig. 5. An animation obtained automatically by using the affine-morphological deformation.

(because the transformed sets in the central position are smaller). The initia
sets and the matched sets in the central position are shown in Fig. 3.

The proposed method deals with objects. The objects, however, are always
a part of a particular image. They are represented as connected components. |If
one considers images, one cannot avoid the question of noise-sensitivity. In case
of noisy image one have to filter the noise before the interpolation starts. Input
images for the interpolation must be noise-free and contain only the objects.

The method of set deformation proposed in the current paper combines the
advantages of the affine transformation and the morphological interpolation.
It alows one to transform one binary set into ancther one in a semi-automatic
or fully-automatic way. The shape of the interpolated sets looks natural and
the transition is performed smoothly. It can be applied in different areas of
image processing. One of the possible application areas is the animation. It
could be applied to animate the titles, graphics, or other objects on the im-
age. The example of the animation obtained by using the proposed method is
presented on Fig. 5. The first word ‘INTER’ is transformed into another one:
‘MORPH’. Each frame of the animation has been obtained as a superposition
of the interpolations of single letters. Each letter was transformed by using the
automatic method consisting of translation and rotation (rescaling has not been
performed). In order to improve the smoothness of the final animated frame,
an additional morphological filtering (closing of size 1) has been applied.
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AFFINE INVARIANT MATHEMATICAL MORPHOLOGY
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Abstract. We design a generic contrast and affine invariant planar shape recognition al-
gorithm. By generic, we mean an agorithm which delivers a list of all shapes two digita
images have in common, up to any affine transform or contrast change. We define as “shape
elements’ all pieces of level lines of the image. Their number can be drasticaly reduced
by using affine and contrast invariant smoothing Matheron operators, which we describe as
alternate affine erosions-dilations. We then discuss an efficient local encoding of the shape
elements. We finally show experiments. Applications aimed at include image registration,
image indexing, optical flow.

Key words: Shape Recognition, Contrast and Affine Invariance, Partial Occlusion.

1. Introduction

Recently, various strategies to rigorously define distances between shapes have
been proposed [25]. This distance method alows large nonparametric defor-
mations. In this communication, we shall restrict ourselves to the case where
perturbations boil down to contrast changes, planar affine transforms and oc-
clusions. This restrictive framework is just sufficient to recognize an image
which has undergone a Xerox copy or a photograph (if it is a painting) and is
thereafter subject to contrast changes and an arbitrary framing (occlusion on
the boundary). The affine invariant framework is a well acknowledged topic
[3, 4, 12, 13].

The restrictions we are taking are not arbitrary, but result from a hopefully
rigorous invariance analysis. We first argue that the local contrast invariant
information of an image is completely contained in its level lines ([5, 6]), which
turn out to be Jordan curves. In order to overcome the occlusion phenomena,
we wish to have an encoding as local as possible. The locality is obtained by
segmenting each level line into its smallest meaningful parts which must finaly
be described by small codes. The curve segmentation-encoding process must
therefore be itself invariant.

Moreover, the description of the curves must involve some smoothing since
level lines are influenced by the quantization process. Thus, smoothing must
be performed in order to get rid of this influence. Another reason to smooth
shapes, is given by the “scale space ideology” [24]. Indeed, many of the fine
scale oscillations of the shapes may be parts of the shape; the analysis of the

* {lisani, moisan, monasse, morel} @cmla.ens-cachan.fr
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shape would be lost in those details.
Following [1], the only contrast invariant, local, smoothing and affine invari-
ant scale space leads to a single PDE,

%:— = |Du|curv(u)%, (1)
where Du is the gradient of the image, curv(u) the curvature of the level line
and tthe scale parameter. This equation is equivalent to the “affine curve
shortening” ([22])

Ox

=7
where x denotes a point of a level line, Curv(x) its curvature and 7 the signed
normal to the curve, aways pointing towards the concavity.

This equation is the only possible smoothing under the invariance require-
ments mentioned above. This gives a helpless bottleneck to the local shape
recognition problem, since it is easily checked ([1]) that no further invariance
requirement is possible. Despite some interesting attempts [10], there is no way
to define a projective invariant local smoothing. The use of curvature-based
smoothing for shape analysis is not new [2, 14, 9].

The contrast invariance requirement leads us to describe the shapes in terms
of mathematical morphology [23]. In [7], connected components of level sets are
proven to be invariant under contrast changes and [6] proposed to take as basic
elements of an image the boundaries of the level sets (the so called level lines),
a complete representation of the image which they cal topographic map. A
fast agorithm for the decomposition of an image into connected components
of leve lines is described in [20] and its application to a semi-local scale-space
representation in [21]. Each one of these connected components is a closed
Jordan curve and in many cases, we shall identify the term “shape” with these
Jordan curves.

In Section 2, a fast algorithm to perform equation (2) is derived by going
back to the mathematical morphology formalism ([23, 16]) and defining first
an affine distance and then affine erosions and dilations. This leads us to an
axiomatic justification for a fast algorithm introduced by Moisan ([17, 18]).
This presentation follows the genera line of a book in preparation [11].

In Section 3, we explain how to segment the smoothed curves into affine
invariant parts and how these pieces of level lines can be encoded in an efficient
way for matching. Section 4 gives a first account of what can be done with the
generic agorithm.

= |Curv(x)1%ﬁ', 2

2. Affine Invariant Mathematical Morphology and PDE’s

We first define an “affine invariant distance” which will be a substitute to the
classical Euclidean one. We consider shapes X, subsets of R?.. Let x 0 IR?
and A an arbitrary straight line passing by x. We consider all connected
components of IR? \ (XU A).If x O X, exactly two of them contain x
in their boundary. We denote them by CA, (x,A, X), CA2(x,A, X) and call
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them the “chord-arc sets’ defined by x, A and X, and we order them so that
area(CA 1(x, A, X)) < area(CA »(x, A, X)).

Definition 1 Let X be a “shape” and x O /R?, x 0 X . We call affine distance
of x to X the (maybe infinite) number &(X, X) = inf, area(CA 1(x, A, X)) /2,
o(x, X) = 0if x O X.

Definition 2 For X O IR?. We call affine a-dilate of X the set DaX =
{x,3(x, X)<al’?}. We call affine a-eroded of X the setFaX = {x, 3(x, X¢) >
al/Z} :(Daxc)c_

Proposition 1 E, and D ,are special affine invariant (i.e., they commute with
area preserving affine maps) and monotone operators.

Proof: It is easily seen that if X O Y, then for every x, (X, X) = 3(X,Y).
From this, we deduce that X 0 Y = Da X0 DaY. The monotonicity of E,
follows by the dudity relation £, X = (Do X¢ )¢. The specia affine invariance
of D, and Ea follows from the fact that detA = 1 implies that area(X) =

area( AX).

Remark 1 One can show that E, and D. are affine invariant in the sense
of Definition 14.19, in [11] that is, for every linear map A with det A > O,
AE(detA)1/2a — E A

We shal now use Matheron Theorem (Theorem 6.2 in [11]) in order to give
a standard form to £, and D,.

Definition 3 We say that B is an affine structuring element if 0 is in the
interior of B, and if there is some b > 1 such that for every line A passing by
0, both connected components of B \ A containing O in their boundary have an
area larger or equal to b. We denote the set of affine structuring elements by
B.g.

Proposition 2 For every set X,
Ex= ) () X-y={z.3BeBu,z+a/’BcX}
BeB.tr yeal/2B

Proof: We simply apply Matheron theorem. The set of structuring elements
associated with E, is B = {X, E,X 3 0}.Now,

E,X 30 & 6(0,X°%) > al/? & infparea(CA, (0, A, X))/2 > al/?

This means that for every A, both connected components of X \ A containing
0 have area larger than some number b > a. Thus, X belongs to a'/?B4 by
definition of IB 4.

By Proposition 2, x belongs to E,X if and only if for every straight line A,
chord-arc sets containing x have an area dtrictly larger than a. Conversely we
can state:

Corollary 1 E4X is obtained from X by removing, for every straight line A,
all chord-arc sets contained in X which have an area smaller or equal than a.
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2.1. APPLICATION TO CURVE AFFINE EROSION/DILATION SCHEMES

Let co be a Jordan curve, boundary of a simply connected set X. Iterating
affine erosions and dilations on X gives a numerical scheme that computes the
affine shortening ct of ¢y a a given scale T. In general, the affine erosion of
Xis not simple to compute, because it can be strongly non local. However, if
Xis convex, then it has been shown in [18] that it can be exactly computed
in linear time. In practice, c will be a polygon and the exact affine erosion of
X —whose boundary is made of straight segments and pieces of hyperbolae—
is not really needed; numericaly, a good approximation by a new polygon is
enough. Now the point is that we can approximate the combination of an
affine erosion plus an affine dilation of X by computing the affine erosion of
each convex component of ¢, provided that the erosion/dilation area is small
enough. The algorithm consists in the iteration of a four-steps process:

1. Break the curve into convex components.

2. Sample each component.

3. Apply discrete affine erosion to each component.

4. Concatenate the pieces of curves obtained at step 3.

e Discrete affine erosion. This is the main step of the agorithm: compute
quickly an approximation of the affine erosion of scale o of the whole curve. The
first step consists in the calculus of the “area” A; of each convex component

¢/ = PJP!..Pl_| givenby A; = 572 [Pg P! Pi Pg;l] /2. Then, the effective
area used to compute the affine erosion iso. = max {¢/8, min; A;} . We restrict
the erosion area to 0. because the simplified agorithm for affine erosion may
giFve a bad estimate of the continuous affine erosion+dilation when the area
of one component is less than the erosion parameter. The term ¢ /8 is rather
arbitrary and guarantees an upper bound to the number of iterations required
to achieve the final scale. The discrete erosion of each component is defined as
the succession of each middle point of each segment [AB] such that

1. Aand B lie on the polygona curve

2. Aor Bis a vertex of the polygona curve

3. the area enclosed by [AB] and the polygona curve is equal to Oe

e |teration of the process. To iterate the process, we use the fact that if
E ; denotes the affine erosion plus dilation operator of area g, and h = (hi) is

a subdivision of the interval [0, H] with H = T/w and w = 1 (2)*%, then

E(;Ll_ho)a/2 & E(hg—h1)3/2 0...0 E(hn—hn_1)3/2 (Co) — CT

as|h| = max; h;41 — by — 0, where ¢; is the affine shortening of co described
above by (2).

The algorithm has linear complexity in time and memory, and its stability
is ensured by the fact that each new curve is obtained as the set of the middle
points of some chords of the initial curve, defined themselves by an integration
process (an area computation). Hence, no derivation or curvature computation
appears in the algorithm.
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Fig. 1. Inflexion points (marked with small triangles) and bitangents of a closed curve. The
area defined by each bitangent and the original curve is marked (Al).

Y |
—~ x| )
/ \_/ A\ | |
/ e | /

X

|
A
|
|

|

Fig. 2. Left: Loca reference system for similarity invariant normalization: reference direc-
tion (RD), normal directions (N1, N2) and reference points (R1, R2). The portion of the
curve normalized with this reference system starts at P1 and ends at P2, passing through
the inflexion point. Right: Similarity invariant normalization. The y-ordinate of the marked
points is used to encode the piece of curve.

3. Algorithms for the Description of Shapes in I mages.

3.1, SMILARITY INVARIANT DESCRIPTION OF CURVES

In the search for an invariant description of a curve, the starting point for the
sampling must be invariant, and so must be the sampling mesh. Typically,
inflexion points have been chosen because they are affine invariant. Now, since
the curve is amost straight at inflexion points, their position is not robust, but
the direction of the tangent to the curve passing through them is. Another affine
invariant robust semilocal descriptor is given by the lines which are bitangent
to the curve (see Fig. 1).

Our reference system is formed by such a line, and the next and previous
tangents to the curve which are orthogonal to it (see Fig. 2). The intersections
of each one of these lines with the reference line provide two reliable points
independent of the discretization of the curve. The portion of the curve to be
normalized is limited by these points. Normalization consists in a similarity
transform that maps the reference line to the x-axis and that sets the distance
between the two reference points to 1. We discretize each one of the normalized
portions of the curve with a fixed number n of points, and we store, for each
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Fig. 3. Left: Local reference system for affine invariant normalization: reference points (R1,
R2, R3). The portion of the curve to be encoded has endpoints P1 and P2. Right: Affine
invariant normalization. The length of the normalized piece of curve together with the x and
y coordinates of the marked points are used to locally encode the curve.

discretized point, its y coordinate (see Fig. 2). This set of n values is used to
compare portions of curves.

3.2. AFFINE INVARIANT DESCRIPTION OF CURVES

If we look at Fig. 1, we can observe that the portion of the curve between the
points defining the bitangent, together with the bitangent itself, define an area
(A1), from which further invariant features can be computed. In particular,
we can compute the barycenter of this area, an affine invariant reference point.
We compute then the line Bl parallel to the bitangent and passing through
the barycenter. B1 divides the initial area into two parts and we compute
the barycenter of the part which does not contain the bitangent (see Fig. 3).
This second barycenter is a second reference point. Finally a point in line B1
such that the area of the triangle formed by this point and the two preceding
barycenters is a fixed fraction of the initial area Al is a third reference point
(see Fig. 3). We therefore obtain three nonaligned points, that is an affine
reference system. This strategy is related to [8]. Some discretization points are
taken a uniform intervals of length on the normalized curve and they are used
to compare portions of curves.

4, Experimental Results

Figure 4 displays a picture of a man and the same picture after an occlusion
of the face with his forearm and their level lines after smoothing with the
iterative scheme described in section 2. Clearly some level lines have suffered a
significant occlusion, and, even if some parts of the level line remain unchanged,
registration methods based on global matching would fail in detecting those
lines. In Figure 5, we show the result of the matching of several pieces of an
occluded level line with other pieces of level lines in the second image.
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Fig. 4. Up: Original images (from the film 'Analyze This (Warner Bros)). Down: their
smooth level lines (smoothing method of section 2).
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Abstract. In this paper we present a method for constructing self-dual grey-scale image
operators from arbitrary morphological operators defined on what we call fold-space. We call
this class of self-dua operators folding induced self-dual filters (FISFs). We show examples
of their application to noise filtering.
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1. Introduction

In image anaysis self-dual filters are of interest because they treat both the
light and dark areas of an image in an equivalent manner. They are well suited
to situations where we desire to “separate two components, one of which is
sometimes lighter and sometimes darker than the other” [11]. Examples of such
situations include the elimination of salt-and-pepper noise, and the filtering of
images—e.g. hatural scenes, textures, bipolar radar images—for which there is
no distinction between foreground and background.

Non-linear self-dual filters offer several advantages over their linear coun-
terparts. They may be designed: (i) such that they do not reduce the dynamic
range and high frequencies in the image [11]; (ii) to be independent of monotone
changes in intensity caled anamorphoses [10, 11]; (iii) such that no new in-
tensity values are introduced in the image; and (iv) to be idempotent but not
induce the ringing degradation [4] that is characteristic of ideal linear filters.
Self-duality is a property possessed by convolution and therefore by al linear
filters [11]. It is, however, a property possessed by only some non-linear filters
(the median filter is perhaps the best known example). It is therefore desirable
to know how to construct non-linear filters that are self-dual. This has been
the motivation for much of the research on non-linear self-dual filters since the
late 1980s [11, 12, 8, 5, 3, 6]. Recently Evans, Svalbe and Jones [3] introduced
the idea of imposing an alternative ordering (which they call folded ordering)
on the grey-scale (intensity) values in an image such that the application of
a single idempotent morphological closing yields a self-dual filter. Unfortu-
nately, they note that the imposed reordering seriously inhibits the ability of
the resulting filter to attenuate impulse noise. They subsequently abandon this
ordering in favour of another that induces only approximate self-duality. In this
paper we present a theoretical framework for the construction of self-dual oper-
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ators from arbitrary morphological operators defined on what we call fold-space.
Fold-space generalises the notion of folded ordering (hereinafter referred to as
the ESJ folded ordering). We call the class of self-dual operators that can be
constructed from fold-space operators folding induced self-dual filters (FISFs).
The folded closing (hereinafter referred to as the ESJ folded closing) proposed
by Evans, Svalbe, and Jones [3] represents but one example from this class.
We show that other FISFs can be designed that do not suffer the limitations
of the ESJ folded closing when filtering impulse noise.

The remainder of this paper is organised as follows. In the next section we
briefly review ordering in sets, and the complete lattice of grey-scale functions
(this serves as our model for grey-scale images). In Section 3 we introduce the
space of folded grey-scale functions (fold-space) and show that it is a complete
lattice. In Section 4 we define and characterise FISFs, give examples of how
they may be constructed, and address issues with regard to implementation.
Finally in Section 5 we provide a short discussion and conclusion.

2. Sets, Ordering, and Complete Lattices

The concept of ordering in sets is the central idea in this paper. Moreover it is
a fundamental concept in mathematical morphology. The algebraic structure
used in the formal definition and study of mathematical morphology is the
complete lattice which is in essence an ordered set equipped with a supremum
and infimum. Hence, in this section we briefly review several definitions and
results pertaining to sets, ordering, and complete lattices that will be needed
for the materia presented in subsequent sections.

Let Sbe an arbitrary set and let R be a subset of Sx S The set Ris
called a binary relation on S If the ordered pair (X,Y) O Rthen we write
XRY and say that “(the relation R holds between X and Y”.

Definition 1 (properties of binary relations) A binary relation R defined
on a set Sis said to be

1. reflexive if XRX for all X O S;

2. transitive if XRY and YRZ O XRZ for al X, Y, Z OS;

3. symmetric if XRY O YRX for all X, Y O S, and

4, anti-symmetric if XRY and YRX O X =Y for al X, YO S.

A binary relation that is both reflexive and transitive is called a relation of
quasi-ordering. A binary relation that is reflexive, transitive, and symmetric
is caled an equivalence relation. A binary relation that is reflexive, transitive,
and anti-symmetric is caled a partial order relation.

Theorem 1 (Schroder’s theorem [2]) Let R be a relation of quasi-ordering
defined on a set S. The relation € defined

XeY if and only if XRY and YRX

is an equivalence relation. Moreover, if the equivalent elements are identified,
R becomes a partial order relation.
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If Ris a partial order relation defined on a set Sthen the pair (S R) is
called a partially ordered set or poset. In addition if XRY or YRX or both
for al (X, Y) OSthen the poset is said to be totally or linearly ordered and
is caled a chain. A partially ordered set (S R) is said to be a complete lattice
if every non-empty subset of S (finite or not) has both a supremum and an
infimum.

Let (£, <) 'be a complete lattice and letO (£) * be the set of all operators ¢ :
L — L. An operator+ € O (L) is said to be a negation if it is a bijection (one-
to-one and onto), reverses the ordering (i.e X <Y = v (Y) <¢(X)VX,Y ¢
L), and sdtisfiesy (¢ (X)) = X VX € £. A complete lattice may possess no
negations, a single negation, or multiple negations [7]. An operator ¢ € O (L)
is said to be self-dual ify (X) = [ (X*)]" VX € £, where * denotes a negation.

2.1. CompLETE LATTICE OF GREY-SCALE FUNCTIONS

Mathematically grey-scale images can be represented as functionsf:E - G.
Although the domain space E may be an arbitrary set, it is usually taken to
be either R™ or Z™ (representing pixel coordinates). The set G defines the set
of grey-values. It is essential that G is a complete lattice. For example, in
image processing G is typicaly one of the infinite setsR or Z, or the finite
set {0,1,..., m}, each of which is a complete lattice for the usual partial order
relation <. Let F be the set of functions f: E — G. The partial order relation
< on G can be used to define a partial ordering on the set F as follows:

f<g & flz)<g(z)VzecE.

The pair (F, <) is a complete lattice. When G is the finite set {0, 1, . . . , m}, the
lattice possesses the unique negation f* (X) = m— f (x). When G is one of the
infinite sets R or Z, the lattice possesses multiple negations [7] (in grey-scale
morphology special attention is paid to the negation f* (x) =—f(x) wherein
it is seen as the counterpart to set complementation on a boolean lattice).

3. Fold-Space and the Folding Operator

The ESJ folded ordering is a distance ordering [1] defined on the finite grey-
value set G ={0,..., m}. It is an ordering of the grey values in relation to
their absolute deviation or distance from some reference value. The ESJ folded
ordering in fact defines an equivalence relation on the set G ={0,..., m},
namely

a=bif and only if aand b are equidistant from the reference value,

where a, b € G. When the reference value is the median of the set G then the
ordering can be used to construct a self-dua filter on the lattice ¢, <) from
a filter that is not self-dual. The ESJ folded closing [3], for example, is con-
structed as follows: (i) the image grey-values are folded about the median (the
locations of affected pixels are recorded in a template image so that the process
can be inverted), (ii) a morphological closing with a flat structuring element
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(b)

(©) (d) e
Fig. 1. lllustration of folded ordering. (a), (b) Original 8-bit grey-scale image (sine-wave
corrupted with salt-and-pepper noise) and its rendering as a surface. (c),(d) The folding

of the original image about the median and its rendering as a surface. () Template image
needed to invert folding.

is applied, and (iii) the folding is inverted (see Figure 1). We note in passing
that this idea bears some similarity to the concept of a difference semilattice
recently introduced by Kresch [9]. The elements of a difference semilattice are
difference functions (i.e. the difference between two rea functions f,g O F).
The null element of the lattice is the function o( X) = O (the lattice has no
universal element). The infimum operation between two difference functions h
and kis defined point-wise as follows:

min (h (z),k(z)), if h(z) >0and k(z) >0
(hAE)(z) = max(h(z),k(z)), if h(z) <0 and k(z) <0

otherwise.

k]

If we consider difference functions of the form f(x) — c, where fO F is an
integer valued function and cis the median of G, then we have an operation
akin to folding (the sign of the difference values plays the same role as the
template image). However this is where the similarity ends because the infimum
operation defined for folded grey-values cannot be expressed as an infimum in
the difference semilattice framework.

In order to formalise the idea of folded ordering, and to extend its definition
to the infinite chainsR and Z (and any chains that are isomorphic to them)
we now introduce the concept of fold-space and the folding operator.

In the remainder of this paper it is necessary to assume that the set of
grey-values G is, in addition to being a complete lattice, totally ordered (which
is the case for the usua setsR, Z, and {0, 1, ..., m}). Let H be the set of all
functions f: E — G whereG =G x {-,0,1} (the set {-1,0,1} is arbitrary in
the sense that it can be any chain of three elements—they are indicator values).
We cal H the space of folded grey-scale functions or simply fold-space.
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Definition 2 (folding operator) Leto : F — 'H be the folding operator
defined point-wise as follows:

(f(x),1), i f(z)<f* ()

o(f)(z)=q (f(),0), iff(z)=r"(z)
(f*($),—1),iff($)>f )

This operator maps a function f € Finto a pair f = (f1, f2) € H comprising
the folded function f; and an indicator function f,. The folding operator is
a one-to-one mapping of F on to #; i.e. the image of every distinct element
f of Fis a digtinct element f of %, and in addition each element of % is an

image. Consequently the folding operator has an inverse o1: 7{ — F which
is defined point-wise as follows:

fl (.’E) s lf f2 (il?) 1
(=3¢ ifhE)=0
fi(z), iffalz)=~1

where f~: (H,f2), i e:E - {1, 0 1}, and c O G such tha c =
c*. The constant cis called the crease and its existence and value are solely
determined by the negation operator; e.g. when G is the infinite set R, then
the negation f*(x) = —f(x) + k on the lattice (F.,<) prescribes the value of
the crease to be k/2 (see aso the comments in Section 4.2).

From the definition of the folding operator, it is easy to prove the following
properties.

Proposition 1 (properties of the folding operator)
1L Ifo(f)=(f1,f2) theno (f*) = (fl,—fz)luhere felF.
2. 07 ((fu, f2) = [071 ((fr, = fo))]” where f = (f1, fa) € H.

3.1. CoMPLETE LATTICE OF FOLDED GREY-SCALE FUNCTIONS

In keeping with the underlying idea of the ESJ folded ordering we can define
the following equivalence relation on the set G:

a=bif and only if a; =ba

where a = (a1,a2) and b = (b1,b2) are elements of the set G. This relation
is defined in terms of the equality relation defined on the first component of
the elements of G, i.e. the folded grey-values. We can think of these folded
grey-values as being elements of the complete chain (G, <). The partia. order
relation < on G can be used to define the following order relation on G:

a< bif and only if a;< by

Unfortunately, however, the relation « is not itself a partial order relation. It is
only a relation of quasi-ordering because athough it is reflexive and transitive,
it is not anti-symmetric; eg. if G ={0, 1, ..,m} then it is clear that (2,0) «
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(2,1) and (2,1) <« (2, 0) but (2, 0) # (2, 1). Consequently, (é,<<) is not a
complete lattice. However, the definition of the equivalence relation above can
equally be defined

as=bifandonly if a < bandb « a.

The relation induces a partition of G into the subsets (equivalence classes) X =

{{z,-1) ,(2,0) ,(z, )}, Y = {(y, -1), (%, 0),(y, 1)}, ... wherex, y, ... O G. If
we let Sbe the set of equivalence classes X, Y, . . . then the relation=< defined

X < Yif and only if a< b,

forsomeae Xand be Y, is a partial order relation (by Theorem 1). It follows
that the pair (S, =) is a complete lattice. In fact< defines a total ordering and
so (S, X) is a complete chain.

Rather than explicitly forming the set Sof equivalence classes, it is possible
to work with the set G directly. Given two elements a, b DG we have that
a< bif and only if X <Y, where X is the equivalence class containing a and
Y is the equivalence class containing b. A problem_arises when we seek to find
the supremum or infimum of two elements a, b OG that are equivalent. The
solution is to define the supremum (resp. infimum) to be the first operand, or
the second operand, or some other equivalent element. In this sense the set G
together with the relations <« and = defined on it, is a complete lattice (whose
elements are not the elements of G but rather the equivalence classes of the
partition of G induced by =). In a similar fashion if we define the following
pair of binary relations

f<g & f~(z)<<§(9:) Ve E, and

]75 g < f(z) =g(z)Vr ek,

wheref,@' € H, then the set A together with the relations « and = defined
on it, is a complete lattice. We cal morphological operators defined on this
complete lattice fold-space morphological operators.

4. Folding Induced Self-Dual Filters

Definition 3 (folding_induced self-dual filter) The product c~'I'c €
O (F),where T' € O(H), is called a folding induced self-dua filter (FISF) if

*

for al f € F, o=To (f) = [a‘lfa ]

Theorem 2 LetT € O(H). The producto~'To € O (F) is a FISF ifT (f) =
[0 (7)) for all e n where 7 = (1, ~72) when F = (£1, 72).

Proof: By definition o~ 'T'cisa FISFif o~'I'o (f) = [o~'To (f*)]" for dl f O
F.lfwelet f=(f1, ) =c(f) then we can write the LHS asc~'T ((f1, f2))-
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Using property 1 of Proposition 1 we can write the RHS as [¢= 1 ((fy, _fz))]*,

If we let § = (91,92) = D ((f1, f2)) and & = (h1, ha) = T ((f1,—f2)) we can
then write o1 (3) = {a*l <l~1>] . Using property 2 of Proposition 1 this can

be written as o~ ((g1,92)) = o' ((h1, —h2)). Henceif T ((f1, f2)) = (g1,92)
then T (1, —f2)) = (91, ~92), ie. T (F) = [T (fvﬂ v 0

This theorem in essence states that I' must be an operator that is self-dual
with respect to the second component of its argument.

4.1. CONSTRUCTING FISFs
The ESJ folded closing can be written as the product c~'T'¢ wherel’ (f (z) =

(¢ (f1)(z), fo (x)), and ¢ € O (F) is the closing ¢35 = egdp for the dilation
dp € O(F) and the erosion eg € O (F) defined

s(f)@) =\ {fz-v)}, and ep (f) (@) = A {f (= +v)},

yeB yeRB

where B is a compact set of E [10]. This filter acts only on the first component
of f. Hence according to Theorem 2 the ESJ folded closing is a FISF. We will
call FISFs constructed in this manner type 1 FISFs.

It is precisely because the ESJ folded closing does not take into account the
second component of f that it performs poorly as an impulse noise filter. Image
values less than the fold point cannot be replaced by values greater than the
fold point and vice versa. Consequently it “can not completely remove pepper
noise from a light area or sat noise from a darker region” [3]. This then is
our motivation for introducing the_following definitions of the supremum and
infimum, respectively, for the set G:

a, ifby < aq

vh— b, ifa; < by
@YY =1 (a1,0), ifa; = byanday # by
a, ifa; = by and ag = by,

a, ifa; < by

_ b, ifby < ay
anb= (a1,0), ifa; = byand ag # b
a, ifay = byand as = by,

where a, b € G. These definitions dictate that the supremum or infimum of
two distinct but equivalent elements is aways the equivalent element with the
second component equal to zero. A fold-space closingl = EpAp defined in
terms of these definitions, where

A5 (F) @) { Fe-w}, ad Ba (F) @) = A\ {Fe+n},

ye R
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(¢) (d)

Fig. 2. Demonstration of noise filtering of a natural scene. (a) Original 8-bit grey-scale
image. (b) Image corrupted with 60% salt-and-pepper noise. (c¢) Result after applying a
5 x 5 median filter to the noisy image. (d) Result after applying a type 2 FISF, based on a
fold-space closing with a 5 x 5 flat structuring element, to the noisy image.

satisfies Theorem 2 and can thus be used to construct a FISF. We will call
FISFs constructed in this manner type 2 FISFs. Figure 2 demonstrates the
effectiveness of this FISF in removing salt-and-pepper noise.

Unfortunately, as Figure 3 shows, both the ESJ folded closing and type 2
FISFs based on a fold-space closing perform poorly when large areas within
the image are at either grey-value extreme. This then is the motivation for in-
troducing the following definitions of the supremum and infimum, respectively,

\/ {a,b,...} = { (o, i) if g is unique

(c,0) otherwise,

Adfab,...} = { (8,v) if v is unique

(3,0) otherwise,

where o =V {a1,b1,...}, pu=mode{z| (o, z) € {a,b,...}}, B = A{a1,b1,.. .},
and v=mode {y| (8.vy) € {a,b,...}}. A fold-space closing defined in terms of
these definitions satisfies Theorem 2. The behaviour of this FISF is illustrated
in Figure 3. We will call FISFs constructed in this manner type 3 FISFs.
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(d)

Fig. 3. Demonstration of noise filtering when significant parts of the image are at either
extreme of the grey-value range. (a) Origina 8-bit image with grey-value bands at 0, 128, and
255. (b) Original image corrupted with 50% salt-and-pepper noise. (c) Result after applying
an ESJ folded closing with a 5 x 5 flat structuring element to the noisy image (type 1 FISF).
(d) Result after applying a 5 x 5 median filter to the noisy image. (€) Result after applying
a type 2 FISF, based on a morphological closing with a 5 x 5 flat structuring element, to the
noisy image. (f) Result after applying a type 3 FISF, based on a morphological closing with
a 5 x 5 flat structuring element, to the noisy image.

4.2. IMPLEMENTATION |SSUES

The implementation of fold-space morphological operators for digital images
differs from the implementation of conventional grey-scale morphological oper-
ators only in that the supremum and infimum operations (either between two
pixels or over a window of pixels) must propagate a template value in addition
to a grey-value. Given that a digital image is typically represented using a fi-
nite number of grey-values{0, 1, . .., m} where m + 1 is a power of 2, the crease
does not exist. However, the symmetric point with respect to the ordering
does exist and so we can set ¢ = m/2. Unfortunately cis not a representable
grey-value. This presents a problem in the case of type 2 and type 3 FISFs
when it comes to applying the inverse folding operator. One possible solution
is to replace any pixel values that would map to the crease with the grey-value
of the preceding or succeeding representable grey-value (though the resulting
filter is now only approximately self-dual). Two other possible solutions, which
preserve self-duality, are: (1) to use only an odd number of grey-values, and
(2) a the unfolding step, to replace any pixel vaues that would map to the
crease with the corresponding pixel produced by applying a median filter (or
indeed any other self-dual filter) to the origina image.

5. Discussion and Conclusion

We have proposed a novel method for the construction of self-dual operators,
FISFs, from arbitrary morphological operators defined on what we call fold-
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space. We have shown that the folded closing proposed by Evans, Svalbe, and
Jones [3] is a particular type of FISF. Whilst the ESJ folded closing performs
poorly as a noise filter for impulse-type noise, we have shown that other types of
FISF can be designed that are very effective noise filters. Further opportunities
for research include an investigation of the possible applications for FISFs, and
the theoretical characterisation of multiple folding and other extensions to the
equivalence relation induced by folded ordering.

Users of MICROMORPH version 1.3 can download an implementation of
fold-space dilation and erosion (based on the supremum and infimum definitions
for type 2 FISFs) from our ftp site.?
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Abstract. We present here a new solution to a problem which is commonly encountered in
applied image analysis: the problem of extracting linear features from an image. Examples
of linear features are fibres, fractures and object boundaries. Such features, though linear,
are usually not straight — in general they are curved.

A standard morphological tool for extraction of dark linear features is the minimum
of straight-line closings. If the linear features are light in colour, the dual, a maximum of
straight-line openings, may be used. This approach, however, is not robust to curvature in
the linear features, especialy if they are narrow.

In this paper we present an efficient algorithm inspired by local shortest-paths which is
robust to curvature. This approach yields filters which are morphological closings or openings.
Examples show the effect of the new method.

Key words: Morphological Filtering, Minimal Paths, Algorithms.

1. Introduction

This paper deals with the efficient implementation of algebraic openings and
closings over specific sets of paths that can be used for image filtering purposes,
typically as an intermediary step for segmenting thin linear features in images.

Our goal is to filter images where thin, elongated features in 2-D images
are present. Figures 1(a) and 3(a) offer examples. On such images it is often
necessary to filter an image so as to remove noise while at the same time not
removing linear features which contain important information. Typicaly the
noise which is to be removed consists of small spots or specks.

Such filtering is not easy because linear features are by definition thin. Many
line detection algorithms have a low-pass filtering stage which can erase such
features altogether, or make assumptions which are not necessarily verified.
The typical mathematical morphology approach is to perform a minimum of
closings or of openings with line structuring elements oriented in a large number
of directions [7], assuming the features are uninterrupted and relatively straight
(We refer to this filter as the SLC (“straight line closing”) or the SLO (“straight
line opening”) filter), but when such features are not straight enough or are
too thin, they get filtered out as well.

To account for non-strictly straight features, a morphological reconstruction
by dilations or erosions can be performed after applying the SLC filter [9]. This
approach can lead to other kinds of problems because the reconstruction stage
is often hard to constrain properly [5]. In this case, reconstructed features are
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no longer necessarily narrow.

2. Optimal Path Approaches

For sufficiently well defined problems, a viable alternative to filtering the image
to suppress unwanted noise prior to extracting the desired structure, is to search
for features in the raw data

2.1. GLOBAL PATHS

The global optimal path problem is the problem of finding paths of optimal cost
from one extremity of an image to the other, for example from top to bottom
or from left to right. Such paths will cross the whole image, hence the term
“global”.

When the problem is to find a dark path on a white background, one in-
teresting path-cost criterion is the sum of grey levels along the path. While
finding a path to minimise such a criterion may sound like a difficult problem,
there is in fact an efficient algorithm that uses generalized distance transforms.

More precisely, let us suppose that we want to find a path P between two
regions A and B of a discrete grey level image |. The graph connecting A and
B can be the standard 4-connected or 8-connected grid or any given graph.
Each vertex p of the graph is associated with a value v, (p) € R. We want to
find, amongst al paths P joining A and B, that for which

Cr(P)y="Y_ vi(p)

peEP

is minimal. The distance between sets A and B may now be defined as
di(A,B) = min{C,(P)P connects A and B}.

It can be proved that p belongs to a minima path P between A and B if
and only if

di (A, {p}) + d ({p}, B) = di(A,B)

This suggests an efficient algorithm for finding minima paths between A and
B:
1. Compute d, (A, {p}) for dl pinI.

2. Compute d; (B, {p}) for al pin .

3. Sum the two results and find the points of lowest value: they define at least
one minima path between A and B.

Optimal paths are an interesting application of classic dynamic program-
ming techniques to image analysis. Dijskstra [2] initially proposed an algorithm
for finding minimal paths on graphs. More recently Rosen and Vincent [4] used
a similar algorithm for images and applied it to feature extraction. Buckley and
Yang [1], as well as Gruen and Li [3] introduced a series of regularity criteria
to global paths.
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2.2.LOCAL PATHS

However, global optimal paths are useful tools only in a limited numbers of
cases. The method is for example not generally applicable to the segmentation
of randomly oriented short linear features in an image.

Recently, Vincent [10] introduced local optima paths to overcome this sort
of limitation. The idea is to consider, for a given positive value of L, paths of
length L only. In global shortest-paths a cone C5? = [§—66,6+46) isnotionally
placed with its point at each pixel (x, y). The path-cost is minimized over al
paths which (1) lie within C3?, and (2) connect (x, y) with the image boundary.

For a given length L and 00, 8 can be varied to produce a number of images
I . The minimum among the I 4 (X, y ) provides an indication of the direction
and value of the minimal path at pixel (x, y), athough the minima path itself
is lost.

Vincent actually proposes an efficient parallel/recursive algorithm to im-
plement this on 2-D images for arbitrary search cones, but we shal only here
present the simpler case for @ = 0,7/2,7 or 37/2, and §0 = w/4. Vincent's
algorithm is laid out in Algorithm 1.

Algorithm 1 (local minimal path)

For 8§ =0,7/2,7 and 3%/2, do:
Ig — I
repeat L times
for ¢ in (—1,0,+1)
Ji « Iy shifted by one pizel in direction —6 + im /4
Iy — Ig + min; {J;}
Result: J « ming{ly}

In this algorithm, | is the original image, the |, and J; are intermediate
images, and Jis an image holding the final result. In this case the search cones
are just right-angled triangles of height L.

Figure 1 shows an example of the application of this agorithm to an image
of pavement in which cracks are present. The cracks need to be detected for
road maintenance reasons. Fig. 1(a) is the origina image and Fig. 1(b) is the
image filtered using Vincent's algorithm with L = 20. We can see how the
algorithm filtered out a lot of the noise but also how it blurred the thin cracks.
In the rest of the paper, we will show how to adapt Vincent's agorithm into a
closing, which will not have this effect, while retaining some of this agorithm'’s
properties, such as its ability to follow a non-straight path. The result of the
new method, applied to the same image and with the same length parameter
L = 20, is shown in Fig. 1 (c) .

For simplicity, in the rest of the paper we describe the closing only; the
flexible linear opening can trivially be obtained by grey-level complementation.
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(b) (©

Fig. 1.  An image of cracks in road pavement (a). Vincent's local minimal path algorithm
(b) , flexible linear closing (c).

3. Flexible Linear Closings

In this section we present the filtering that we want to achieve and we introduce
an interesting decomposition that gives rise to an efficient agorithm.

3.1. COLLECTIONS OF STRUCTURING ELEMENTS

The SLC (straight-line closing) filter uses straight-line structuring elements
(SEs) such as that shown in Fig. 2(a). For a given length L there are effectively
2L such digital straight-lines at different angles [6]. The SLC filter computes
closings with each of these SEs and returns the pixel-wise minimum of al of
the closings.

Consider the flexible line segments shown in Fig. 2(b)-(e). Like Fig. 2(a),
these objects are digital lines made up of L = 10 pixels. They are not straight
lines, however. The idea of the flexible linear closing (FLC) filter is to compute
the minimum of closing with a collection of SEs such as these. For a given value
of the length parameter L, there are many more flexible linear segments than
straight linear segments. Whereas as we have noted there are in practice only
2L different straight linear segments of length L, we will consider a collection
of flexible linear segments of length L whose size is O(3%). By exploiting
recursive structure in this collection of SEs, following the general approach
of Vincent [10], we can compute the minimum of this very large collection of
closings in the same order of computation time as that required by the SLC,
namely O(L). The FLC will preserve dark linear features if they are at least
L pixels in length, even if they are narrow and curved.

However, it is possible that a collection of SEs may be too rich and therefore
too flexible. Consider, for example, the SE shown in Fig. 2(f). It is, in some
sense, too “curly”. If SEs such as these were included, structures less than L
pixels in diameter might be preserved. We define the collection of SEs used in
the FLC filter as the union of four separate groups of SEs: the vertical group
(V,), the horizontal group (H_), the forward diagonal group (D}) and the
backward diagonal group (D).
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Fig. 2. Linear segments used as structuring elements (a-€). Unsuitable structuring element

().

For a given length parameter L, al SEs considered have exactly L pixels
and are 8-connected. To be included in group V| a SE B must have one further
property: the row indices of the points in B must al be distinct. Note that 8-
connectivity implies that in this case the i-values must be a set of L contiguous
integers. In Fig. 2, segment (c) is a member of Vy, as is the straight segment
(a). Similarly group H_. contains SEs whose column indices j are distinct; SEs
(d) and (€) are members of H .

The forward diagonal group D7 is defined in terms of the difference, i —j,
between the row and column indices. A SE B is a member of D} if the
collection {i — j | (,7) € B} contains no duplicates. (We assume that iis
increasing downwards and j is increasing to the right.) SE (e) is a member of
D, In similar fashion D is defined by the property that the values of i +]j
for points (i, j) O B must be distinct. SEs (8) and (b) are in Dy;.

Note that SE (f) is in none of the four groups, that the four groups are not
digoint, and that there is a relationship between these groups and Vincent's
search cones: al the SEs belonging to V| are contained in the union of two
vertical cones of opening 90° and height L, one going up and the other going
down, intersecting at their single-pixel extremity, when the origin of the SE is
placed at the intersection of both cones. A similar result holds for horizontal
and diagonal cones.

For simplicity, in the following, we only consider the discrete and finite case,
and so we use the min/max notation rather than infimum/supremum (A/V).
We aso denote the set of flexible linear structuring elements as:

'PL:VLUHLUDZ_UDZ (1
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and the flexible linear closing as:

®p = min ¢5.
P glelgqba )

3.2. DECOMPOSITION OF THE PROBLEM
We begin by noting that, given the decomposition (1) of P, , we have

®p, :min{éVL»':DHqu)Dzﬂ(bpz}- (3

We now describe a procedure which efficiently computes ¢y, = mingev, ¢5.
Only dight modifications are required for the computation of &g, , & Dt and
®,-. These are then combined via pixel-wise minimum to obtain &, .

Let us first introduce a general theorem on closing decomposition.

Theorem 1 (closing decomposition) If Bx is any flat structuring element
with origin x and f is a function of Z™ with values in a finite subset of Z, then

#5(f)(z) = mipmax f( +y - o) @

The result follows directly from standard morphological equations. Com-
bining Theorem 1 with (2) we have the following definition of the filter &y, ,
applied to an image f and evaluated at an arbitrary point z, in terms of maxima
and minima:

d = - 5
v.()(2) = min minmax f(z +y ~ ). ®)

Let us define the cost C¢(B) = max,ep f(x) (Note that in Vincent's algo-
rithm, it would be >~ 5 f(z)). Let AL, = {P =B, | B eV, andz € B}
be the set of al trandations By which include the origin of members B of V| .
(Notethat 0 OBy if and only if x O B.) Equation (5) becomes

By, (1)) = gmin Cr(P_.). ©)

That is, the value of the vertical flexible linear closing ®v, (f) at point zis
the minimum path cost over all paths in V| which pass through z. The key
step in the development of the algorithm for computation of the FLC is the
following decomposition of the set A, of paths. Essentially we partition this
set according to the row positions of the uppermost points in each path. If P
is any member of A, then (1) P is a vertical path of length L (i.e. a member
of VL), and (2) the origin (O, O) is an element of P.

Now let us break P into two pieces, with the break at the origin and the
origin itself included in both parts. Let pd be the upper part of P and P" the
lower part, o P=PY OP".

The path pd is a vertical path of length |, 1 <1 <L whose lowest point
is the origin, that is, a length-l path proceeding upwards from the origin. Let
Q, be the set of al such paths, so P¢ € Q,. Similarly let Q; be the set of all
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length-I paths proceeding downwards from the origin, so P* € QL_1+1. Our
arbitrary path P is therefore a member of the collection

U {(P*uP* | PYeQ and P* € Qroi1} )

1<I<L

so AL OBL. We do not have the room to expand the full proof here, but the
converse is aso true and A, and B are in fact identical.
With this, (6) becomes

Oy, (=) = pin Cr(P-.) (8)
which simplifies to
v, ()(z) = min max {D}(z), Df~+1(2)} (9)

where D} +(z) = minpacq, C;(P2,) is the minima |-step upwards distance from

zusing a maximum-of-grey-values metric, and Dét(z) = minp.cg, Cr(PY,)is
the minimal |-step downwards distance. These terms may be computed for
al points zin the image and al !, 1 < < Lusing a simple modification of
Vincent's local shortest-path algorithm. These are then combined via (9) to
produce &y, (f)(z) for all points zin the image domain.

3.3. ALGORITHM

An algorithm for computing $v,(f)(z) is shown in Algorithm 2. The ago-
rithms for computlngfbHL,@D+ and <I>D; are similar, and must be combined by
Eqg. 3 to compute the FLC. The relatlonshlp to Vincent's algorithm is straight-
forward. This agorithm is only O(L2), but it can be made more efficient by
remarking that the J; and Jg are computed multiple times. By reordering the
loops and taking advantage of the recursive implementation, a O(L) algorithm
that uses L times more memory can be derived. Due to lack of space we cannot
present these details here.

4. Application

Figure 3 shows the result of a segmentation of a star field from the Hubble
Space Telescope used for the detection of asteroids. Asteroids are close to
earth as compared to distant stars and the paralax due to the motion of the
HST around its orbit create curved paths on long exposures where asteroids are
present. It is essentia to distinguish curved trails from straight artifacts due
to bright stars or cosmic rays. This is achieved using an FLO (flexible linear
opening) to extract both curved and straight features, and a conventional SLO
(straight line opening) followed by morphological reconstruction to extract the
straight paths only. Note that this filter does reconstruct the asteroid trail as
well (Fig 3(c)) but not as sharply as the FLO (Fig 3(b)). Thresholding the
difference yields the desired result.
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Algorithm 2 (vertical flexible linear closing)

For0 <m < (L—1) do:
or 8 =7 /2, do:
Ig 1
repeat m times
foriin (—1,0,+1)
J; «— Iy shifted by one pizel in direction —6 + im /4
Iy — max(Jy, min{.J;})
Jr — min{ly}
For 8§ =3r/2, do:
]9 — I
repeat L — m + 1 times
fori in (—1,0,+1)
J; «— Iy shifted by one pixel in direction —8 + i /4
Iy — max(lg, min{.J;})
Jp — min{lp}
JP =max(Jy,Jg)
Result: JY — min,, {J}

5. Discussion and Future Work

As presented, the algorithm performs a similar task to the straight-line clos-
ing followed by morphological reconstruction, but is different enough to be of
interest in some applications. A flexible linear closing will always remove less
from the input image than the corresponding straight-line closing, but there
is no obvious order relationship between the FLC and the SLC followed by
morphological reconstruction (as illustrated in Fig 3(d)).

The algorithm presented is also translation invariant, whereas it is quite
difficult to implement an efficient trandation invariant SLC [8].

The algorithm as presented works only for paths which are included in
90° cones. For some applications, it might be interesting to restrict the set of
paths to narrower cones (for example 45° or less), i.e. straighter paths. Vin-
cent [10] actually presented a more complex agorithm for local path optimisa-
tion on such cones, but we have not yet adapted his algorithm to our problem,
as the implementation is significantly harder and the benefits are not obvious.

It would also be interesting to apply the entire algorithm to better ap-
proximations of the circle than just squares. The paths would then all have
approximately the same Euclidean length, which could be useful for some ap-
plications involving rotation invariance. It is possible to link this enhancement
to the use of narrower cones in a relatively straightforward manner, but it is
less obvious how to do so in the general case (of an arbitrary angular subset
of an arbitrary regular polygon), without giving up the recursive nature of the
agorithm, and therefore much of its efficiency.
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@ (b)

(© (d)

Fig. 3. Application of flexible linear opening: a star field containing an asteroid trail
(@). FLO of length 40 (b). SLO of length 10 followed by morphological reconstruction
(c). (d) shows the difference (c)-(b) with the O level as mid-grey. Original image courtesy
NASA/JPL/HST.

Another limitation is that there is no constraint on the smoothness (regu-
larity) of the paths. One can imagine situations where limiting the proposed
algorithm to smoother paths would be useful. Buckley and Yang [1] have done
some work on regularised global shortest path, and it remains to be seen if this
work can be adapted to ours.

This work can aso be adapted to 3-D images with few difficulties other than
practical implementation, but it hasn't been carried out yet.

6. Conclusion

We have presented an algorithm to perform a new series of transforms. the
flexible linear closings and openings. The agorithm has polynomia complexity
and is reasonably easy to implement. These transforms can be used to filter
out noise in images while retaining thin, linear, but not necessarily perfectly
straight features. These features can then for example be segmented more
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easily.
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Abstract. Aperture filters is a class of non-linear filters that are translation invariant and
locally defined in both space and range. The optimal design of a filter in this class is prac-
tically possible because one can impose the size of both the space and range window, and
thereby greatly reduce the number of parameters to be estimated in filter design. This is
accomplished without overly affecting the probability mass that would be used for full op-
timization. This paper provides several real-world applications of aperture filters, such as
automatic extraction of markers, deblurring, and resolution enhancement.

Key words: Optimal Filter, Aperture Filter, Non-Linear Filter.

1. Introduction

There are two fundamental problems with designing nonlinear operators (fil-
ters) by computational learning or statistical optimization [1]. The first is the
inordinate amount of data required for estimating conditional probabilities and
the second is the algebraic problem involved in reducing the designed operator
to a convenient representation. The present paper concerns aperture filters,
which are grayscale operators that help overcome the first problem [2]. An
aperture filter views the image through an aperture, which is the Cartesian
product between a domain window and a range window, that is chosen ac-
cording to the signa values in the domain window. Signal values above and
below the range window are projected into the top and bottom of the aperture,
respectively. This projection compresses the probability mass of the observed
signal into a smaller set of variables in such a way as not to ater the mass of
observations within the aperture (which carry the most mass) and minimally
alter the mass of those outside the aperture. The aperture reduces greatly
the dimensionality of the computational learning problem, while not substan-
tially affecting the distribution of probability mass that would be used for full
optimization.

This paper applies aperture filters to three basic image processing tasks:
marker detection, deblurring, and resolution conversion. Application of non-
linear filters to deblurring has been difficult owing to the problem of estimat-
ing optimal nonincreasing nonlinear filters from image data. An exception has
been in binary image processing for documents, where nonincreasing filters have

* Texas A&M University, Department of Electrical Engineering, College Station, TX
77843-3128, email: edward@ee.tamu.edu.
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proven very effective. In particular, nonlinear filter design by computational
learning has been very successful for resolution enhancement of binary images.
Here, using aperture filters, we extend the approach to grayscale images.

2. Aperture Filters

Let E be a non empty set that is an Abelian group with respect to a binary
operation denoted by +. Elements of E will be denoted by xand z. Let L
and M be two subsets of Z. Elements of L or M will be denoted by y. The
operations of maximum and minimum on subsets of L or M will be denoted,
respectively, vand A.

An image is a mapping from E to L or from E to M. Images will be
denoted by for g (Fig. 1la). The set of all images from E to L (resp., M)
will be denoted Fun[E, L] (resp., Fun[E, M]). For any fO Fun[E, L] and
x O E, the trandation of f by xis the function f, given by, for any z O E,
fy(z) =f(z - x) (Fig. 1b). An image operator is a mapping from Fun[E, L]
to Fun[E, M ]. Image operators will be denoted by the capital Greek letter W.

Let W be a finite subset of E. An image window is a mapping from W to
L. Image windows will be denoted by u. The set of al image windows will
be denoted Fun[W, L]. For any f O Fun[E, L], the restriction to W of fis
the image window f/W given by, for any zO W, (f/W)(z) = f (2) (Fig. 1b).
The redtriction class of fto W, denoted F ¢, , is the family of images whose
restriction to W gives /W, that is, F ;,,,= {g O Fun[E, L ]:fW =g/W}
An image operator W is caled spatially locally defined in the window W if
and only if (iff), for any fO Fun[E, L] and x O E, ¥ (f)(x) = W(g)(x),dg O
Fyi_.;w- An image operator W is called spatially transation invariant iff, for
any zO E,W(f,) = W (f),. An operator that is both spatialy localy defined
in Wand spatially trandation invariant is called a W-operator .

A characteristic function is a mapping from Fun[W, L] to M . Characteristic
functions will be denoted by lower case Greek letters. When L and M are finite
sets the characteristic functions will be aso caled computational functions.
An important property of the W-operators is that they can be characterized
uniquely by the characteristic functions, that is, there exists a bijection between
the set of W-operators and the set of characteristic functions [3] [4]. The
characterization of a W-operator W by its characteristic function  is given by,
for any fO Fun[E, L] and x O E,W (f)(x) = ¥(f-./W). From now on, to
simplify the presentation, we will consider just images with infinite range, that
is,L=M = Z.

Lete uOFun[W, Z] and y O Z. The grayscale translation of u by y
is given by, for any zO W, (Uu+ vy)@2 =u(2 +y(Fig. 1c). The sub-
set KO Z, K= {-k ..., k}, wherekis a positive integer, will be called
agrayscale, or range, window. The windowing of u a y by the grayscale
window K is the function u/Ky O Fun[W, K] given by, for any zO W,
(u/Ky)(z) = ANV {—k,u(z) —y},k} (Fig. 1d, the shaded points are the pro-
jections of u — u(o) into the range window K).

A characteristic function  from Fun[W, Z]to Z is called locally defined in
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Fig. 1. (a) f:Fun[E,Z], (b) f-x. (€) u—u(o), (d) u/K_

K iff, for any u € Fun[W,Z}, ¥(u) = u(0) + Bu(oy(u/Ku(o)), Where u(o) is the
image of uat the origin and By, for any y U Z, is a computational function
from Fun[W, K] to K ; ¢ is called translation invariant iff, for any y 0 Z
and u € Fun[W,Z], ¢¥(u +y) = ¥(u) +y. A characteristic function is called
a K-characteristic function if it is both localy defined in K and translation
invariant.

Theorem 1 A K-characteristic function 1 is characterized by, for any v €
Fun[W, Z], ¥(u) = u(o) 4 By(u/Ku(), Where B, is a computational function
from Fun[W, K] to K.

An operator W characterized by a K-characteristic functionv is called an aper-
ture filter and is denoted W . The morphological representation of aperture
filters have been treated previously (under the name of WK-operators) [5].

Definition 1 An aperture filter WA is a mapping from Fun[E, Z] to
Fun[E,Z], given by ¥ 4(f)(z) = u(0) + By(u/Ky(o)), Where u = f_x/W .

The definition above can be extended in two ways. one can use a compu-
tational function 8 : Fun[W, K] to K/, K C Z, K' = {-k,...,K'}; and one
can translate the function f by a function s(u) (instead of u(0)), where s(u)
is a mapping from Fun[W,Z] to Z (which determines the positioning of the
aperture).

The statistical design of aperture filters from image realizations requires
estimation of the characteristic functions from sample image data (pairs of
observed and ideal images) and their representation in an efficient computa
tional form. The statistical design of aperture filters and its computational
representation has been treated in a previous paper [2].

3. Markers Detector

The morphological segmentation method developed by Beucher and Meyer is
useful to find the borders of specified objects [6]. The power of the method
comes from the fact that it simplifies the segmentation process by reducing it
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Fig. 2. (a) Observed, (b) ideal and (c,d) examples of application

to the problem of finding markers for the specified objects [7]. However, find-
ing markers may not be easy. In this application, aperture filters are used in
conjunction with the Beucher-Meyer paradigm to facilitate automatic segmen-
tation.

Figure 2a shows part of an image of a face from which the objective is to
segment the eyes. The images have about 500 x 500 points and the database has
images of the same face at different angles of observation. In the experiment,
several aperture filters have been trained with different window sizes and ranges
using Figs. 2a and 2b as the observed and ideal images, respectively. The ideal
image has been produced using the segmentation paradigm from human chosen
markers. The result of the segmentation is a binary image labeled 255 for the
eyes and O elsewhere. For this training pair, a good aperture is (3x5x10,
10) (widthxheightx k, k') positioned on the median (see [2] for details about
the aperture positioning). Figures 2c and 2d show two results obtained by
the proposed method (superposed to the original image). The results of the
application of the designed operator have been filtered with morphological area-
open filter to clean small statistical errors (small connected components). Nine
images were used for testing. The result of the segmentation is correct for six
images, partially correct for 2 images (missed one of the eyes) and one failure
(missed both eyes).

An extension of this technique has been applied with success to segment
objects in a sequence of images for video edition [8]. Figures 3a and 3b show
one of the training pairs used to segment the racket and figures 3c and 3d show
two examples of application of the method combined with the original image
[aperture (3x3x10,10)].

4. Deblurring

Aperture filters have been shown to be a powerful tool for deblurring [2]. In
those experiments, images of a random Boolean function model [9] whose pri-
mary function is pyramidal (Fig. 4a) were blurred by a (3 x 3) nonflat convo-
lution kernel and digitized (Fig. 4b). The objective was to design an aperture
filter to deblur images of that kind. Ten training and ten test images were
used, each of size 256 x 256 points. Six apertures sizes were tested and we
observed the decreasing of MAE (mean absolute error) and MSE (mean square
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a b c d

Fig. 3. (ab) Training pair and (c,d) two application images.

a

Fig. 4. Part of a random Boolean function: (a) original; (b) blurred.

error) errors as the number of training examples increase. The increasing in
the size of the aperture yields decreasing of MAE (Fig. 5) and MSE errors if
a sufficient number of training examples are given. The designed aperture
filters have been compared to optima linear filters of up to 7 x 7 points (label
7 x 7 in Fig. 5). Figures 6a and 6b show part of a test image and the result
from the application of the aperture. The main difference between the filters
(linear and nonlinear) is that the aperture filters preserve the structure of the
edges, while the linear filters do not.

There are clear theoretical reasons for aperture filters to outperform linear
filters. For a given window W, the unconstrained optimal filter W, will out-
perform the optimal aperture filter, Waper, and the optimal linear filter, W,
because the later two represent constraints on optimality. The reason we do
not use Wopt is that the error of estimating Wop from data is too great. While
the class of aperture filters does not include the class of linear filters, optimizing
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Fig. 5. MAE plots for deblurring random Boolean functions.

a b

Fig. 6. (a) Test image; (b) Result of the aperture applied on the left image.

over an aperture tends to be less constraining than requiring linearity, abeit,
at the cost of increased estimation error for filter design. The great advan-
tage of Waper Over Wiin is that, for observations strictly within the aperture,
there is no constraint and therefore we get maximum structural restoration.
This is similar to secondarily constrained binary filters [10]. Efficient struc-
tural constraint does not occur for linear filters, and this improved structural
restoration for aperture filters can offset the training advantage of linear fil-
ters for sufficiently large data samples. A second reason aperture filters (and
nonlinear filters, in general) are superior to linear filters is that digital signals
are quantized, so that there redly are no linear digital-signal filters, and the
quantization of the optima linear filter can have serious negative effects for
insufficient quantization.

In another set of experiments, the objective is to deblur a 430 x 430 satel-
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Fig. 7. (a) CBERS simulation and (b) resulting of the aperture filtering.

lite image (SPOT 4) blurred with a non-flat convolution kernel to simulate
the image that would be seen by the new Chinese-Brazilian satellite (CBERS,
Fig. 7a). A total of 35 experiments have been done using 7 different apertures
(Wxk, k) (Wx5, 20), (Wx 5, 25), (Wx 5, 30), (Wx 10, 20), (W x 10, 25),
(W x 10, 30), (Wx 15, 15) and (W x 15, 30); where (W x k, k') gives the di-
mensions of the aperture (W being the five-point cross dilated by itself), and k
and k' as defined in section 2. Since there is only one image available, the oper-
ators have been designed using 17629, 33566, 48130, 61101, and 72933 random
points of the image. The whole image has been used for testing the designed
operators. Figure 7b shows the resulting image for aperture size (W x 15, 30)
using 72933 examples.

5. Integer  Multiresolution ~ Enhancement

Multiresolution enhancement is an important application for the printer indus-
try because documents generated at a certain low resolution should not appear
blocky in a high resolution printer [11]. The printer software has to enhance the
image before printing. In this section, we show an experiment where the objec-
tive is to design an operator to enhance the resolution of an image digitized at
75 dpi (Fig. 8a) in order to estimate the image digitized at 150 dpi (as Fig. 8b).
A simple way to shrink a 150 dpi image to 75 dpi is to choose, for each four
points of the large image, one point and discard the other three. If this is done
in a coherent form, then we obtain four different images (phases) of 75 dpi
(which can be regrouped to compose the 150 dpi image again.) Figure 9 shows
the whole process. The idea of multiresolution enhancement we applied is to
design aperture filters to transform a low resolution image (i.e., the observed
image is an image acquired at low resolution) to each of the phases of the same
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b

Fig. 8. (a) Eye image at 75 dpi and (b) Eye image at 150 dpi.

Fig. 9. Sampling an image in all its phases.

image acquired at high resolution (i.e, each sampled phase will be the ideal
image used to estimate the aperture operator for that phase). When we apply
the designed operators to images acquired at the same low resolution (similar
to the ones we used for training), we end up with images of what is expected to
be the phases of the idea high resolution image. The process ends regrouping
the images to get an enhanced image at a high resolution (following the arrows
of Fig. 9 backwards). The result is expected to be good because the differences
between observed and the phases of the ideal image are not large. Since the
ratio of the resolution is an integer (in the example, 2, because of the 75 to 150
dpi conversion), the enhancement is said to be integer-conversion. A similar
idea can be used to non-integer resolution conversion [11] (for instance, 80 to
120 dpi). Figure 10 shows the subsamplings resulting from sampling Fig. 8b.
The images are labeled by the origin point where the sampling started. Four
operators, Wi, W¥2,W3 and W4, going to each of the four subsampled images,
have been designed using the right half of the 75 dpi image (Fig. 8a) for train-
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Fig. 10. Phases (0,0), (0,1), (1,0) and (1,1) of the 150 dpi image.

‘a : % ¥ b

Fig. 11. (a) Result for aperture (3x3x10, 30) and (b) Result for simple replication.

ing and the whole image for testing. Ten experiments have been tested with
the following apertures (W x k, k'): (3x3x10, 10), (3x3x10, 15), (3x3x10,
20), (3x3x10, 25), (3x3x10, 30), (W x 5, 20), (W x 5, 25), (W x 5, 30), and
(W x 10, 30), where W is the cross-window defined previously.

The designed operators have been compared to the 150 dpi image and with
two classical expanding agorithms (simple replication and averaging of nearest
neighbor pixels.) For the aperture filters, the high resolution images have
been put together by regrouping the resulting images from the application of
the four operators. One regrouped result for (3x3x10, 25) aperture is shown
by Fig. 11a. Figure 11b shows the result of simple replication method. The
main differences between the methods are in the textures (they are better
reconstructed by the aperture filter) and in the edges (classica methods tend
to make them blurred or blocky.)

6. Conclusion

The ability of statistically designed aperture filters to solve some standard
grayscale image filtering problems has been experimentally demonstrated. Nat-
urally, the goodness of designed filters depends on the amount of training data
and the aperture size needed for satisfactory estimation. Nonetheless, aperture
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filters can be used to extend the computational learning methods that have
been successfully used in the design of nonincreasing binary filters. In the next
future the authors plan to compare the aperture filters for multiresolution en-
hancement with another known linear approach as splines approximation [12]
and other nonlinear approaches [13, 14].
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GA OPTIMISATION OF MULTIDIMENSIONAL GREY-SCALE
SOFT MORPHOLOGICAL FILTERS WITH APPLICATIONS IN
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NEAL R. HARVEY

Space and Remote Sensing Sciences Group,
Nonproliferation and International Security Division,
Los Alamos National Laboratory

Los Alamos, NM 87544, USA

and

STEPHEN MARSHALL
Dept. of Electronic & Electrical Engineering
University of Strathclyde, Glasgow, G1 1XW, UK

Abstract. A technique using Genetic Algorithms (GAs) for the optimisation of multidi-
mensional grey-scale soft morphological filters is described, which has applications in archive
film restoration. It applies specifically to the problem of film-dirt removal in archive film
sequences. Because of ageing, scratches and film dirt, much valuable film archive materia is
unusable. There is therefore a demand for automatic techniques which can remove these film
artifacts whilst preserving image structure, fine detail and without introducing motion blur.

The optimisation criterion is based on mean absolute error (MAE). The optimisation is
undertaken using genetic algorithms. An artificial training set is constructed from within the
archive material by selecting relatively clean areas and transferring examples of noise and
dirt to these frames.

Examples of applying the techniques described to a rea film sequence, provided by the
British Broadcasting Corporation (BBC), are shown.

Key words: Soft Morphology, Genetic Algorithms, Film Dirt, Archive Restoration.

1. Introduction

There has been a growing interest in recent years in the area of archive film
restoration due, in part, to the emergence of digital television broadcasting, the
growth in video sales and the expansion in the number of television channels.
To satisfy the increasing demand for materia to fill air time, it is becoming more
attractive to offer archive material. Unfortunately, a lot of the available archive
material has suffered some form of corruption and requires restoration in order
to be made of a sufficient quality for resale or broadcast. Here we describe some
of our recent research in which we investigated the application of grey-scale soft
morphological filters in the removal of a specific type of corruption, known as
film dirt, from archive film material.
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2. The Film Dirt Problem

Film dirt is a common problem in archive film restoration. Film dirt occurs
when foreign particles get caught in the film transport mechanism and dam-
age the film, causing loss of information. This damage appears as “blotches’
of random size, shape and intensity. These blotches are non-time correlated
(temporally impulsive).

Fig. 1 shows an example of a region of an image extracted from a sequences
which has been corrupted with film dirt.

Fig. 1. Region extracted from an image sequence corrupted with film dirt

3. Soft Morphological Filters

Soft morphological filters are a relatively recently introduced class of non-
linear filters [1, 2]. Their original definition was related to the class of (stan-
dard/structural) morphological filters (discrete flat morphological filters), but
they have since been extended to the grey-scale (function processing) case [3].
The idea behind soft morphological filters is to dlightly relax the standard de-
finitions of morphological filters in such a way as to achieve robustness whilst
retaining most of their desirable properties. Whereas standard morphological
filters are based on local maximum and minimum operations, in soft morpho-
logical filters these operations are replaced by more general weighted order
statistics. The key idea of soft morphological operations is that the structur-
ing element is divided into two parts. the hard centre which behaves like the
standard structuring element and the soft boundary, where maximum and min-
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imum are replaced by other order statistics. This makes the filters behave less
rigidly in noisy conditions and makes them more tolerant to small variations
in the shapes of the objects in the filtered image.

Just as the fundamental standard morphological operations are dilation and
erosion, the fundamental soft morphological operations are soft dilation and soft
erosion. In a manner similar to that of standard morphological operations, the
secondary soft morphological operations of soft opening and soft closing and
the tertiary soft morphological operations of soft open-closing and soft close-
opening can be defined.

Before proceeding to the definitions of the soft morphological operations,
some other concepts need to be defined:

The Structuring System [ b, a,r] consists of three parameters; functions a and
b, having supports A and B, respectively (A O B) and a natural number, r,
satisfying 1< r <[B[Jwhere OBOis the cardinality of B. Function b is called the
structuring function, a its (hard) centre (A the support of its (hard) centre),
b\a its (soft) boundary (B\A, the support of its (soft) boundary) and r the
order index of its centre which is also referred to as the repetition parameter.

3.1. FUNDAMENTAL GREY- SCALE SOFT M ORPHOLOGICAL OPERATIONS

Grey-scale soft dilation of a signal f by the structuring system [b,a,r ] is denoted
by f& [b,a, r] andisdefined by:

f&[b,a,r](z) = the r Margest value of the multiset
{ro(f(z —a)+a(a))|a e A J{f(z — B) +b(8)6 € B\A} €

Grey-scale soft erosion of a signal f by the structuring system [b,a,r] is
denoted by f & [b,a, r] and is defined by:

foba,rl(z) = the r"smalest value of the multiset
{ro(f(z+a) —a(a)a € A J{f(z+ B) - b(B)|6 € B\A} 2

r times

The symbol ¢ represents the repetition operator. That is;r 0 x=7=,...,x.

As an extreme case, grey-scale soft morphological operations by the struc-
turing system [b, a, r] reduce to the equivalent standard grey-scale morpholog-
ical operations by the function b if r = 1, or, aternatively, if A=B. If
r > OB\AL] grey-scale soft morphological operations by the structuring system
[b,a,r] reduce to the equivalent grey-scale standard morphological operations
by the structuring function a.

4. Optimisation of Soft Morphological Filters

Severa methods have been described for the optimisation of soft morpholog-
ical filters. Huttunen et a [4] and Kuosmanen et a [5] describe methods for
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the optimal choice of (2-D) flat (function-set processing) soft morphological
structuring system. These methods do not, however, optimise the choice of
soft morphological operation. Harvey [6, 7] described a method for the opti-
misation of (2-D/spatial) grey-scale soft morphological filters which is able to
optimise not only the structuring system, but also the choice of soft morpho-
logical operation. In [8] these GA optimisation techniques have been applied
to the restoration of archive film material.

In this paper we seek to illustrate the extension of the techniques to the
optimisation of grey-scale soft morphological filters in the spatio-tempora do-
main and to illustrate their performance in the restoration of rea corrupted
image sequences, provided by the British Broadcasting Corporation.

5. Why extend to the Spatio-Temporal Domain?

Sequences that contain fast motion have always been a problem for archive
film restoration methods. The reason that fast motion is a problem is that,
temporally, fast motion is very similar to the film dirt. That is, if an object
has fast motion it only appears briefly in a single frame, and not in the same
position in adjacent frames. Film dirt has very similar temporal characteristics,
i.e. it is non-time correlated (temporally impulsive). By extending the filtering
from purely spatial to spatio-temporal it is anticipated that the resulting filters
will make use of the tempora characteristics and in this way outperform their
purely spatial counterparts. However, by careful coding of the filter parameters
for genetic algorithm optimisation, the search space for spatio-tempora (3-D)
filters will include the filters of lesser dimensions (i.e. 2-D and 1-D).

We do not provide a description of how these parameters are incorporated
into a genetic algorithm optimisation strategy. The fundamentals of this tech-
nique have been described in a previous ISMM paper [6]. Instead we concen-
trate on the application of these methods to a "real-world” problem.

The GA will be capable of searching for any 3-D grey-level soft morpholog-
ical filter which is a combination of four operations from the set { soft erode,
soft dilate, do-nothing }, which will use a structuring function (hard centre and
soft boundary) and repetition parameter chosen from al the possible variations
within the overall region of support and maximum grey-level value, the bounds
of which are pre-set. This search space encompasses (3-D) spatio-temporal, 2-D
(purely spatial) and 1-D (purely temporal) soft morphological filters. In addi-
tion, the class of soft morphological filters encompasses several other classes of
non-linear filters including standard morphologica filters and rank-order filters.

6. Applying the GA Optimisation Method to the Film-Dirt Problem

In order to make use of a GA in the optimisation of filter parameters, there
has to be some method of defining a fitness value to an individual chromosome
representing a particular set of grey-scale soft morphological filter parameters.
A fitness function has to be determined which provides some objective mea-
sure of the individual’s performance in its environment. This fitness function
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is crucial to the successful implementation of the GA optimisation technique.
The environment, in this case, is the image sequence which is to be filtered.
Defining what is meant by performance, however, is a more complicated task.
The nature of images is that they are to be viewed by humans. The genera
idea in the field of image restoration is that of improving the subjective quality
of the images when viewed. Unfortunately, there does not exist a simple func-
tion which maps subjective image quality to some objective quality criterion.
Criteria do exist which provide some objective measure of image quality. The
majority of these criteria are based on a comparison with an ideal (uncorrupted)
version of the image under consideration, and will contain some modification
of signal-to-noise ratio (SNR) or the mean absolute error (MAE) [9].

Generaly, in the case of film restoration, it is not possible to perform a
comparison with an ideal image sequence, as such a thing does not exist. After
dl, if a non-corrupted version of the film exists, why bother trying to restore a
corrupted version?

One method of addressing this problem is as follows. In most image se-
quences it is generally possible to find areas of the image which are uncorrupted.
It is then possible to artificialy corrupt this ideal image with particles of film
dirt extracted from other similar, but corrupted, regions in the image sequence.
In this way it is possible to produce the necessary training set which will allow
the evaluation of a fitness value based on some measure of MAE and/or MSE.

6.1. GA OPTIMISATION OF SOFT MORPHOLOGICAL FILTERS USING A TRAIN-
ING SET

As mentioned above, it is generaly not al that difficult to produce an ar-
tificial training set by finding areas of the image sequence (in a number of
separate frames) which are uncorrupted and then artificially corrupting this
ideal/reference image sequence with particles of film dirt extracted from other
similar, but corrupted, regions in the image sequence. An example of just such
a training set is shown below. Figure 2 shows a series of uncorrupted regions
extracted from an image sequence and Fig. 3 shows the same sequence after
having been artificially corrupted with film dirt. The sequence runs in a “raster
scan’: i.e. left to right, top to bottom.

6.1.1. Fitness Function

Having a training set, i.e. an ideal and corrupted version of the same image
sequence, enables the fitness value of an individual (i.e. a particular set of
filter parameters) to be based on a comparison of the filtered image sequence
(processed with a filter having the parameters represented by the particular in-
dividual) with the ideal image sequence. The fitness of an individua is therefore
determined as follows:

Let MAEax be the maximum possible MAE for an image (for 8-bit grey-
scale images MAEax would be 255). Let N be the number of images in the
training sequence. Let mae; by the MAE for the it" image in the filtered,
corrupted sequence with respect to the it" image in the ideal sequence. Let

fitness; be the overal fitness of the individua j.
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Fig. 3. Artificialy corrupted regions extracted from image sequence
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i=N
fitness; =100 x (Y (1 — (mae; /| MAEpqz)))/N) ©)

i=1

So, to put this in words, the “interim” fitness for an image in the sequence
is a measure of how far away the filtered image is from the worse case (and
hence how close it is to the ided). The fitness value for an individual is then
the average of al these interim fitness values over the whole image sequence,
expressed as a percentage. A filter capable of perfectly restoring an image
segquence would then have a fitness value of 100.

The actual “(genetic algorithms’ used in these techniques were based on
what is often referred to as a simple genetic algorithm. There is much literature
available on this topic, and in the interest of brevity we omit a description and
instead refer the interested reader to [10, 11, 12].

7. Application to Real Image Sequences

The GA was run, using the same training set as illustrated above. The GA
was set the task of optimising a soft morphological filter with an overall size
of structuring function set at 5 x 5 x 3 (i.e. spatial dimensions of 5 x 5 and a
temporal dimension of 3. The best filter found is shown in Fig. 4. This filter
was then applied to an entire image sequence.
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Fig. 4. Best filter found using GA
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Fig. 5 shows an examples of a region extracted from a sequence of images
corrupted with film dirt, together with the same region after having been fil-
tered with the grey-scale soft morphological filter found using the GA. The
upper example of the pair is the corrupted version and the lower example is
the filtered version.

Fig. 5. Region extracted from image corrupted with film dirt and the same region after
filtering with the spatio-temporal grey-scale soft morphological filter found using the GA

8. Discussion

It can be seen that filter found has some aspects which would be expected of a
suitable filter. For instance, the hard centre has a support of 1 pixel and that
pixel is the origin of the structuring function (i.e. the pixel under considera-
tion). So, the output of the filter is weighted towards the input pixel value.
Also, the filter sequence found is soft dilation - soft erosion or soft closing.
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This might be expected for the remova of “dark” artefacts within the image.
However, due to the nature of soft morphologica filters, the relationship be-
tween filter parameters and their effects on the image are not quite as intuitive
as for “standard” morphologica filters.

In general the results depicted here show that the filter found has excellent
performance in attenuating/removing film-dirt from image sequences and has
little, if any, effect on the image detail.

In spite of the filter being optimised for a small, artificialy created training
set, the filter still performs well when applied to the entire image sequence.
The performance of the filter found can be further illustrated when we apply
the same filter to totaly different image sequences.

8.1. APPLICATION TO OUT-OF- TRAINING-SAMPLE DATA

Figs. 6 shows the results of applying the filter found using the GA and training
set described above to entirely different image sequences. It can be seen that
the filter is still able to perform extremely well with respect to its ability to
remove film dirt and retain important image detail.

9. Conclusions

A technique for the optimisation of multi-dimensional grey-scale soft morpho-
logical filters has been developed which is able to optimise filters with respect
to a criterion based on mean absolute error. This criterion necessitates the cre-
ation of an artificial training set. However, it has been shown that this is not
an overly burdensome task. It has also been shown that the filter found during
optimisation has excellent performance for data sets other than that used in the
optimisation, provided the training set contains corruption which is sufficiently
representative of the corruption in the other sequences to be restored.
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Abstract. The traditional approach of digital topology consists of using two different kinds
of neighborhood for the black and white pixels of a binary image, and consequently two
kinds of connectedness. In this paper, we are proposing to define connectedness in terms of
a bounded subcollection of sets and to analyze the topological aspect of a binary image in
an expanded domain in which it is sufficient to consider only one kind of connectedness. In
the first part, we recall the definitions of neighborhood and connectedness of the traditional
digital topology approach. In the second part, we define the notions of “bounded space”,
“connected bounded space” and of “connected subset of a bounded space’. In the last part,
we introduce two image operators (a dilation and an erosion) that produce expanded images
whose connectedness is analyzed in relation to a bounded space obtained from the invariance
domain of an opening. We show how the traditional two kinds of connectedness can be
derived from this analysis.

Key words. Digital Topology, Adjacency, Bounded Space, Connectedness, Connected Class,
Connected Subset, Connected Component, Connected Space, Dilation, Erosion, Opening,
Connectivity Opening, Expanded Domain, Expansion Operators.

1. Introduction

Digital topology provides the theoretical foundations for image analysis and
more specifically advanced image segmentation.

Traditionally, digital topology is based on the neighborhood concept. From
it, other concepts, like connectedness and connected components, are derived.

When the pixels of a binary image are arranged aong lines and columns,
the need for using two kinds of neighborhood, one for the black pixels and one
for the white, appears in the early studies on digital topology.

In this paper, we propose the notion of bounded space as first concept,
instead of neighborhood. Then we can use the traditiona topological approach
(not digital) to define connectedness.

Our contribution consists of showing that it is possible to derive the tradi-
tional 4-connectedness and 8-connectedness from a unique connectedness de-
fined on an expanded image domain.

This is obtained by using two expansion operators (one dilation and one
erosion) and by studying connectedness in the expanded domain.

In the first section, we recall the definitions of neighborhood and connect-
edness of the traditional digital topology approach, and we show the need for
two definitions.
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In the second section, we introduce the definitions of “bounded space’,
“connected bounded space” and “connected subset of a bounded space’.

In the last section, we show how the connectedness defined in terms of a
bounded space obtained from the invariance domain of a morphological open-
ing, and the traditional two kinds of connectedness are related.

2. Traditional Approach to Digital Topology

Let Z2 be the set of al ordered pairs of integers. The elements of Z2 will be
called points. The set Z2 equipped with the usual addition is an Abelian group
denoted (Z2, +,0) where o is the null element of + (0o = (0, 0)). From this
group, we can build the notions of trandate, transpose, symmetry, Minkowski
addition, and trandation invariant dilation (Serra, 1982).

Let u be a point of Z?, we denote by B + u the translate by u of a subset
Bof Z 2 and by B' its transpose. If the subset B is equal to its transpose then
it is said symmetric. We denote by &g the dilation by B defined by, for any
subset Y of Z 2,

sp(Y)2Y o B,

where [ is the Minkowski addition.
By construction dg is a trandation invariant (t.i.) operator.
Let H and V be the following subsets of Z2.

H 2 {(0,-1),(0,0),(0,1)} and V 2 {(~1,0),(0,0), (1,0)}.
We denote by &, and &g the following dilations on Z2,
612 Spuy and 6 2 Spev.

Since H and V are symmetric, for n equals to 4 or 8 and for any points X1
and X, inZ?2,

A 5n({12}) & ITo € 571({221}) (]_)
Now we use these two dilations in the 4 and 8 neighborhood definitions.

Definition 1 (neighborhood of a point) - Let x be a point of Z2, 84 ({x}) is its
4-neighborhood and &g ({x}) is its 8-neighborhood.

From neighborhood we can define adjacency.

Definition 2 (adjacency between two points) - Two points x; and x of Z2 are
said to be n-adjacent if x; belongs to the n-neighborhood of Xx,.

Because of (1), the order of the points in Definition 2 is irrelevant. Further-
more, since H O V O H O V, the 4-adjacency implies the 8-adjacency.
The adjacency between points can be extended to subsets.
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Definition 3 (adjacency between two subsets) - Two subsets X; and X, of Z2
are said to be n-adjacent if there exists a point x; in X; and a point x, in X,
such that x; and x, are n-adjacent.

We are now ready to recall the definitions of n-connected subset and points.

Definition 4 (connected subset) - A subset X of Z? is n-connected if it cannot
be partitioned into two subsets which are not n-adjacent to each other.

Definition 5 (connected points) - Let X be a subset of Z2. Two points x; and
X, of Z2 are said to be n-connected in X if there exists in X an n-connected
subset which contains x, and X, .

If x; and X2 are n-connected in X, we say that x; is n-connected in X to
X2. The binary relation "is n-connected in X to” is an equivalence relation.
This observation leads to the notion of connected components of a subset.

Definition 6 (connected components of a subset) - Let X be a subset of z2.
The equivalence classes of the equivalence relation “is n-connected in X to” are
called the n-components of X.

The subset X representing the original image of Figure 1 has four 4-connected
components and just one 8-connected component.

Now, if we apply the above definitions to its complement X°¢ &z2_ X, we
come up with a problem because X° has two 4-connected components and just
one 8-connected component.

If we assume, for example, that X should be connected and should separate
its complement into two components, then, in this case, the topological analysis
could not be made by using the same connectedness for X and its complement.

In early studies on digital topology (see for example Rosenfeld’s paper [5]), it
was suggested using different connectedness for a set and its complement to get
round the problem. In the above example one should use the 8-connectedness
for Xand the 4-connectedness for its complement X°€.

In the next section, we introduce a new approach that makes the topolog-
ica analysis of a binary image more coherent because it is based on a unique
definition of connectedness.

3. Connected Bounded Space

In topology, the connectedness of a subset of a set E is defined in relation
to a subcollection of subsets of E called topology for which the unique open
and closed sets are the empty set and the proper set E. In mathematical
morphology, Serra [7] has introduced the notion of connected class without an
explicit reference to a subcollection of subsets of E.

In this section, we will show a relationship between both concepts.

Based on the observation that the connectedness notion used in topology
can be defined in terms of a subcollection of subsets of E which do not need
to be a topology, we introduce the definition of bounded space.
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Definition 7 (bounded space) - Let P (E) be the collection of all subsets of
E. A bounded space is a pair (E,B), where B is any subcollection of P (E)
containing at least the empty set® and the set E.

We use the expression “bounded” because B must contain the universal
bounds of the poset (P (E), O), which are( and E.
We can now introduce the notion of connectedness for a bounded space.

Definition 8 (connected bounded space) - A bounded space (EB)is connected
(or E is connected w.r.t. B) if § and E are the unique sets X in B8 such that
X and X€¢ (the complement of X in E) are both in3.

Like in topology ([4], p. 84), we have the following characterization of a
connected bounded space.

Proposition 1 (characterization of a connected bounded space) - A bounded
space (EB) is connected if and only if E cannot be partitioned into two sets
inB.

Let She a subcollection of P(E) and let X be a subset of E, then we denote
by Sx the subcollection {S’' € P(E):35¢S,8=5nX}.

If B contains the universal bounds of P (E), then Bx contains the universal
bounds of Pi(X), hence we can state the next definition.

Definition 9 (bounded subspace) - Let (E,B) be a bounded space and let X be
a subset of E, then (X, Bx) is called a bounded subspace of (E, B).

We are now ready to define the connectedness of a subset.

Definition 10 (connected subset) - A subset X of E is a connected subset of
(E,B) (or a connected subset w.r.t. ), if the bounded subspace (X, Bx) is
connected.

As we see, this connectedness definition is based on the notion of connected
bounded space, contrasting with Definition 4 based on adjacency.

The subcollection C of the connected subsets of (E, B) sdtisfies:

(i) the empty subset of E, and the singletons of E belong to C;

(ii) let Sbe a subcollection of C, if N Sis nonempty, then U.Sbelongs to C.

Property (ii) is similar to Proposition 30 of Lima's book on topology [4].

Actually, a subcollection of P(E) which satisfies Properties (i) and (ii) is
called a connected class by Serra ([7], p. 51) or a connectivity class by Heijmans
([3], p- 317). Hence we can state the following proposition.

Proposition 2 (bounded space and connected class) - The connected subsets
of any bounded space form a connected class.
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In other words, to each bounded space, we can associate a connected class,
but the converse is not true (the subcollections of 4-connected and 8-connected
subsets are counterexamples).

Proposition 2 is interesting because Serra ([7], Theorem 2.8, p. 52) has
proved that each connected class is characterized by a family of openings, called
connectivity openings by Heijmans ([3], p. 317). Hence to each bounded space
we can associate a family of connectivity openings.

The practical problem is to find useful bounded spaces. In the next section
we will see an important example of bounded space.

4. Digital Connectedness on Z?2

In this section, we introduce a specia bounded space for the topology analysis
of the binary images defined on Z2. This bounded space will be obtained from
the invariance domain of a morphological opening.

Let a and b be the mappings from Z?2 to P(Z?) defined by, for any y in Z2,

a(y) £ 65({2y}) and b(y) 2 ss({2y})",

and let 3, and »= be the two mappings from P(Z?) to P(Z?) defined by, for
any Y inP(Z?),

5(Y) 2 | afy) and 4e(Y) & | b(y).

yeyYy yeY®

We know (see [1]) that &, and & are, respectively, a dilation and an erosion,
a and b being their respective structuring functions. When applying these
operators to an image we get two expanded images as shown in Figure 1.

N »E

Fig. 1. Original and expanded images.
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We use the expression “expanded image” because the distance between two
components of the output image is twice this distance in the input image.
The operators o, and ,e are mutually negative in the sense that

pe(Y) = 6,(Y)° or equivalently »(Y)° = 6a(Y°) )

From (2), we can prove < in the following equivalence. For any subsets Y;
and Y, of Z 2,
Y1 Y, & pe(Y1) Caa(Ye) 3

With respect to »e, we have the following two properties.
Let y1 and y2 be 8-adjacent but not 4-adjacent points in a subset Y, then

y1+y2 € pe(Y) & Jys and y4 € Y,ys and yq € §4({y1}) NI ({y2}). (4)

When Y reduces to two 4-adjacent points y; and y, in Z 2, we have,

ve({vn, v2}) = {21, y1 + y2, 292} (5

Let €, and ,0 be the erosion and the dilation forming, respectively with &,
and »e two Galois connexions (g4, 8,) and (0, 5¢), the first one being a Galois
connexion between (P(Z?), ) and (P(Z%),C), and the second one between
(P(Z?),c) and (P(Z%),D).

We observe that €, 03, and ;6 o ,c are two identity operators. In this sense,
the two expansions &, and ¢ transform an image into an expanded image
without loss of information.

By construction &, o £, is a morphological opening on Z2 [6]. Its invariance
domain is the image of P(Z?) through 3,, i.e., 6.(P(Z?)) ([6], p. 53).

Since &, (P(Z?)) contains § and Z 2, the pair (Z2, 8, (P(Z?))) forms a bounded
space.

It is interesting to note that §,(P{Z?)) is a subset of the Khalimskii topology
([3], p.222), nevertheless, the connected classes obtained from both subcollec-
tions are the same.

Hence, the connectedness of the binary images defined on Z2 can be ana-
lyzed indifferently using the Khalimskii topology space or the bounded space
(Z2,6,(P(Z?))). That is, we can define connectedness from the Khalimskii
topological open sets or equivalently from the morphological open sets of d,0¢,.
Since the latter are simpler we prefer to work with them.

Associated with the bounded space (Z2,6,(P(Z?))), we have the adjacency
graph or grid of Figure 2. This grid is obtained by drawing an edge between
two points forming a connected subset w.r.t.d,(P(Z?)).

.0
\

Fig. 2. Adjacency graph.
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From now on, we suggest analyzing the digital topology of the binary images
on Z?2 by considering their expanded versions, through &, or p&, as subsets of
the bounded space (Z2,4,(P(Z3?))).

The interesting result is that the 4-connectedness and 8-connectedness can
now be characterized from this unique bounded space. To show this, we present
first, without proof, two properties of the trandations on Z2,

Proposition 3 (trandation properties) - For any subsets B, B; and B, of Z?,
and any points X, X1, X» and Xz inZ?,

(i) if 1 € By + z2 and x5 € By + x3, then x1 € (B, ® By) + 3,

(i) if 22 € B® = 2 € B then 2z, € B®> + 220 => 21 + 23 € B + 215.

These properties will be used to prove the next proposition. We will use, in
particular, the fact thatH UV and H OV satisfy the condition2z € B2 = z ¢ B
of property (ii).

Proposition 4 (adjacency characterization) - The following four statements
are equivalent. For n equals 4 or 8, and for any points y; andy, inZ?2

(i) y1 and y2 are n-adjacent,

(i) y1 +y2 € n({201}),

(iii) y1 +y2 € dn({2y2}),

(iv) 6n({2up}) M 0n({2y2}) # 0.

Proof - For any y; and y, inZ?,

Y1 +y2 € 6.({201}) & 6({m}) + (8 is til)
ey € 6({y}) (translation definition)
= y; and y are n-adjacent (adjacency definition)
<y +y2 € 0,({2y2}). (same steps as above)

This prove the equivalence between (i), (ii) and (iii). Furthermore, (ii) and
(iif) implies (iv). Let us prove that (iv) implies (iii). For any points y, y1 and
y2inZ?,

€0 ({2y1}) N6 ({2y2}) @ y € 8,({2y1}) and y € 6,({2y2}) (N definition)

< 2y1 € 0n({y}) and y € 6,,({2y2}) (Property (1))

=41 € 6n(0,({2y2})) ((i) of Proposition 3)
=y +y2 € 6, ({2y2}). ((ii) of Proposition 3)
That is, (iii) and (iv) are equivaent. O

Before extending the characterization adjacency to the subsets of Z2 we
need one more proposition.

Proposition 5 (expansion operator property) - For any distinct points y1 and
y2 INZ? (y, #Y2), we have,
3a({2y1}) N 8a({2y2}) = a(y1) Ne(y2) Nee({y1,92})-

Proof - An exhaustive study with respect to each point uin HuV - {o} shows
that the number of points of (HUV)N(HUV +2u) is always one. Consequently,
when y; and y, are 4-adjacent, the number of points of 6,({2y1})Nd4({2y2})is
aways one. From Proposition 4, this point is y1 +y2. That is, for any distinct
points y1 and y» inZ?,
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+ if and are 4-adjacent
) maal{za)) = { § ) Ty o Ve J

From Proposition 4, if y; and y, are 4-adjacent then {y1+wy2} C a(y1)nalys2).
Observing that u 0 H UV — {0} implies that 2u0H UV, we have, for any two
4-adjacent distinct points y; and y2 inZ?, 2y, ¢a(yz) and 2ya¢a(y;). Therefore,
using (5) and Proposition 4, we have, for any distinct points y; and y, in Z2,

if and are 4-adjacent
a(yr) Na(yz) Neel({y1,y2}) = { éyl + 92} otr?/elrwise.yz d

0

Using the previous proposition we can state the following result.

Proposition 6 (subset adjacency characterization) - For any disjoint subsets
Y; and Y2 of Z 2,

@) Y. and Y, > 6,(Y1) N6 (Y2) Npe(Y1 U Ys) # 0,
(||) Y1 and Yo =4 6Q(Y1) M éa(Yz) M 6a(yl U Yz) .—}£ 0
Proof - Let us prove (i). For any disjoint subsets Y; and Y, of Z?2,
Y1 and Y
are 14—adjac;nt 352 E iil » 41 and yp are d-adjacent (Def. 3)
Ty € Y,
are 4- adjacent < 3?;1 € Y1  9a({2011) N 8a({202}) # 0 (Prop. 4)
- adj Iy € 1]
are 8- adjacent o Eg; c Y; yo(y) Nalye) Neel{yr,y2}) £ 0 (Prop. 5)

&= 6a(yl) N éa(Yg) M b€(Y1 U YQ) # 0.

The O of the last equivalence follows from the increasing property of 8,
and be. Let us prove [0 The non empty intersection implies that there exist
y1in Yi,y2 in Y2 and xin pe(Y1U Y2) such that x O a(y;) na(yz) (the
intersection of two distinct 3 by 3 sguares). By Proposition 4, y; and y, are
4-adjacent or 8-adjacent. If they are 4-adjacent, then, by Propositions 4 and 5,
a(y1) Nalyz) Nee({y1,y2}) # 0. If they are 8-adjacent but not 4-adjacent, then,
the number of points of a(y;) Na(yz) is one and, by Proposition 4, x =yl + y2.
Therefore, by (4), there exists y3 in Y1 (or Y2) 4-adjacent to y2 (or y;) and we
can apply again the previous 4-adjacency analysis. This proves (i).

The proof of (ii) is much easier since we can use the property that a dilation
commutes with union, that is, ,(Y1 UY3) =6,(Y1)Ud,(Y2) and consequently
the equality 6a(Y1) N a(Y2) = 6o (Y1) N 8a(Ya) NS (Y1 UY2). |

From the previous proposition, we can state our final result.

Proposition 7 (characterization of digital connectedness) - For any subset Y
of Z2,

(i) Y is 4-connected if and only if he(Y) is a connected subset of (Z2, 5, (P (Zz)))
(ii) Y is 8-connected if and only if 8,(Y) is a connected subset of (Z?2, §,(P(Z2))).

Proof - Let us prove (i). Let B be the subcollection 5,(P(Z?)). For any Y of
z?,
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] 3Y1, YQ C Zz,
Y is not 4-connected « { Vi UYy =Y and ¥, NY, = @ and (Def. 4)
Y1 and Y; are not 4-adjacent

Yl U Y2 =Y and Yl N }/2 = @ and (PI’Op. 6)
5a(Yl) M 5a(Y2) n bE(Yl U Yg) = @

EXI, X2 S Bb5<y),
=1

v, Ys C Z2,
A g

YiUuY, = bE(Y) and *)

X1 M Xg) =0
= pg(Y) is not a connected subset of (Z2, B). (Def. 10)
* The O of the equivalence follows by choosing X; = §,(Y1) Ne(Y) and
Xo = 0,(Y2) Npe(Y), and by applying property (3) and the property that a
dilation commutes with union. The implication O follows by observing that
for any subset Y of Z2, Byg(yy = {X € P(E) :3Y' C Y, X = 5,(Y") Npe(Y)}

and »e(Y) C 6,(Y1 UYa).

The last inclusion is used in conjunction with (3) to prove that YUY, =Y.
The proof of (ii) is similar and simpler since Proposition 6 is not needed. O

The operators 8, and pe being mutually negative, we see that analyzing the
4-connectedness of the foreground of Y and the 8-connectedness of its back-
ground (Y°©), is (from Proposition 7) the same as analyzing the connectedness
of the foreground of be(Y) and its background (e(Y)< whichis 6,(Y¢)) w.r.t.
8a(P(Z2)).

In the same way, we see that analyzing the 8-connectedness of the foreground
of Yand the 4-connectedness of its background (Y ), is (from Proposition 7)
the same as analyzing the connectedness of the foreground of d8,(Y) and its
background (6,(Y)¢ whichis ,e(Y©)) w.r.t. 6,(P(Z?)).

The important fact, is that in al situations we analyze the connectedness
with respect to the same bounded space (Z?,8,(P(Z?))).

In the case of the bounded space (Z2,4,(P(Z?))), we could verify that the
connectivity openings yx (see Section 3) associated with this space are given
by, for any point xin Z? and any subset X of Z2,

7=(X) 2 | & (=} X),

n>1

where 3¢ (-|X) is the conditional dilation on Z? given by, for any subsets X and
X of 22,

5.(X'1X) 2 | ele)n X,
zeX’
and where cis a mapping from Z2 to P(Z?) given by, for any point xin Z2,

(’c)é HoV ifdycZ? z=2yorz=2y+
A=Y HUV otherwise.
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Hence for testing if a subset X of Z?2 is connected w.rt. §,(P(Z?)), we
choose a point x in X and we compute y,(X). If yx(X) = X then X is
connected, otherwise it is not.

It is interesting to observe that applying the same approach to the hexagonal
lattice, the expanded image by the dilation and the one by the erosion have the
same connectedness which corresponds to the usua digital 6-connectedness.

5. Conclusion

In this work we introduced an alternative method for studying connectedness
of a binary image. This was done based on two observations.

The first observation was that we can define connectedness simply on bounded
spaces and, for our purpose, we did not need to consider a much elaborated
structure like a topology space for example. An interesting result was that
behind each bounded space there is a connected class as defined by Serra. An
open problem is how to express the related connectivity opening family in terms
of a bounded space.

The second observation was that by expanding the image domain it was
possible to get two interesting results. The first one was the definition of a
useful bounded space to study the connectedness of a binary image. This
bounded space was obtained from the invariance domain of a morphological
opening. The second result was that the foreground and background in the
expanded domain can be studied coherently by using the same connectedness.
Probably, other interesting definitions, like a border definition, could be found
in the expanded image domain.

Finally, we would like to point out that the suggested bounded space for
connectedness analysis was obtained from a subcollection of morphological open
sets. This subcollection which is a subset of the Khalimskii topology appeared
to be sufficient for our purpose. This shows the importance of the morphological
open sets and could justify a notion of “morphological space” which would be
a bounded space (E, M) where M is a U-closed subcollection of subsets of E.
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Abstract. As known from the works of Serra, Ronse, and Haralick and Shapiro, the con-
nectivity relations are found to be useful in filtering binary images. But it can be used aso
to find roadmaps in robot motion planning, i.e. to build discrete networks of simple paths
connecting points in the robot's configuration space capturing the connectivity of this space.
This paper generalises and puts together the notion of a connectivity class and the notion of a
separation relation. This gives an opportunity to introduce approximate epsilon-connectivity,
and thus we show the relation between our approach and the Epsilon Geometry introduced
by Guibas, Salesin and Stolfi. Ronse and Serra have defined connectivity analogues on com-
plete lattices with certain properties. As a particular case of their work we consider the
connectivity of fuzzy compact sets, which is a natura way to study the connectivity of grey-
scale images. This idea can be transferred also in planning robot trgjectories in the presence
of uncertainties. Since based on fuzzy sets theory, our approach is intuitively closer to the
classical set oriented approach, used for binary images and robot path planning in known
environment with obstacles.

Key words: Connectivity, Complete Lattice, Fuzzy Set, Morphological Operations, &
Geometry.

1. Imprecise Computations

In many practical tasks we operate with imprecise or uncertain data, espe-
cially when this data comes as an output from some measuring instrument.
This problem appears in image processing because of the distortion effect, and
often because of non-precise calibration of the camera. Therefore lots of work
have been done for the development of algorithms which give reliable results
operating with imprecise data. A good framework for imprecise computations
in robust geometrical agorithms is the Epsilon Geometry, which uses inac-
curate primitives. It is based on a general model of imprecise computations,
which includes rounded-integer and floating-point arithmetic as special cases
[4]. Another more general approach for imprecise geometrical reasoning is the
Fuzzy Geometry approach. It generalises in some sense the Epsilon Geometry,
and moreover gives the opportunity to transfer geometric ideas directly from
black-and-white image processing techniques to the analysis of grey-scale im-
ages [14]. Our approach to fuzzy connectivity is more genera than this in [2]
and [14] since it is based on the choice of a connectivity class.
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2. Mathematical Morphology — Background

Serra [16] and Heijmans [7] have shown that morphological operations can
be formulated on any complete lattice. A set £ with a partial ordering “<” is
called a complete lattice if every subset 7{ C £ has a supremum. \/ 'H € £ (least
upper bound) and infimum (greatest lower bound) A H € L.

An operator ¢ : £ — M, where £ and M are complete lattices, is called
dilation if it distributes over arbitrary suprema: ¢(V,c; Xi) = Ve v(Xy) ,
and erosion if it distributes over arbitrary infima. Erosions and dilations
are increasing operations [7]. An operator i € L* is caled a closing if it
is increasing, idempotent (/2 = ¢) and extensive v(X) > X). An operator
i € L* is caled an opening if it is increasing, idempotent and anti-extensive
(v(X) < X) [7]. A pair of operators (g, 3), is caled an adjunction, if for
every two elements X, Y O £ it follows that 8(X) < Y <« X < ¢g(Y).
In [7] it is proved that if (g,0) is an adjunction then e is erosion and dis
dilation. If (g, &) is an adjunction, then the composition € is a closing, and
O0c is an opening. As an example, let us consider the lattice £ with elements
the subsets of a linear space E, i.e. £ = P(FE). Here and henceforth, by
P(X) we denote the power set of X, i.e. the family of al subsets of the set
X . Then every translation-invariant dilation is represented by the standard
Minkowski addition: 64(X}) = A® X = X @ A, :and its adjoint erosion is given
by Minkowski subtraction: 4(X) = X & A {7]. Then closing and opening of
A by B are defined asdeB = (A®B)c B, AcB= (A6 B)® B. These
operations are referred to as classical or binary morphological operations.

3. Connectivity of Binary Images

In mathematics, the notion of connectivity is formalized in the topological
framework in two different ways. First, a set is caled to be connected when it
cannot be partitioned as a union of two open, or two closed sets. In practice,
it is more suitable to work with the so-called arcwise connectivity. A set Xis
said to be arcwise-connected when for every two distinct points a and b from X
there exists a continuous curve joining a and b and lying entirely in X. Arcwise
connectivity is more restrictive than the general one. It is not difficult to show
that any arcwise-connected set in R" is connected. The opposite is not true
in general, but for open sets in R" the topological connectedness is equivalent
to arcwise connectedness. Arcwise connectivity is widely used in robot motion
planning. The motion planning task is to find a path, i.e. a continuous sequence
of collision-free configurations of the robot (or any moving agent referred as a
robot), connecting two arbitrary input configurations - the start configuration
gp and the fina configuration g., whenever such a path exists, or indicate
that no such path exists. The negative result means that the query points g,
and ge lie in different connected components of the free configuration space. In
this case the profit of studying approximate connectivity is evident, because if
there are uncertainties in the robot metrics and control parameters, the robot
may collide with the obstacles when moving through narrow passages in the
workspace [8]. If the geometric models of the robot and the workspace are
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imprecise, the approximate connectivity approach could be useful in practice,
especially when the path planner captures the connectivity of the robots con-
figuration space by building a probabilistic roadmap [8], a network of simple
paths connecting points picked in random in this space. In image analysis,
several notions of digital connectivity have been introduced. Usually, they ex-
ploit the definition of arcwise connectivity in a discrete way — depending on the
regarded neighbourhood relation (4-sqaure, 8-square, hexagonal, etc.) [17].
Following the works of Serra [15, 16, 17] and Haralick and Shapiro [6], an
abstract connectivity framework, suited mainly for analysis and processing of
binary images has been developed. It is strongly related with the mathematical
morphology concepts [15]. The base concept is the connectivity class:

Definition 1 Let E be an arbitrary set. A family C of the subsets of E is called
a connectivity class if the following properties hold:
1.9cC and {z}cC forevery z€E ;
2. IfE;€C foricl and (N, Es #0, then U,
8 If ED A€, then for everyz € E  7.(A) C C.

E; €C.

The third axiom can be referred to as trandation -invariance of the connectivity.
It hasn't been imposed in the previous works [17, 6, 13] since it doesn’'t give
any topological impact to the notion of connectivity. However it is essential
from morphological point of view since the trandation-invariance is one of the
main bases of mathematical morphology. This condition can be replaced by
more general one, namely affine invariance of connectivity, or in the case of
arbitrary complete lattice by T-invariance with respect to a given Abelian
group of automorphisms T [7]. In our work it is sufficient to work only with
translation-invariant  operators.

Given a connectivity class in a universa set E we can define the maximal
connected component of a set A [0 E containing a particular point x:

1(4) = | J{CecClzeCand C C A}

Then it can be proved easily (see [16] or [7]) that :
- For every x O E  yy is an algebraic opening in E;
= ({z}) = {z};

- either v, (A) = 1, (4) or v.(A) Ny, (A) =0;
-z ¢ A implies that v,(4) = 0;
- User 1=(4) = A

It is easy to demonstrate that X O C if and only if for every two points
X, y O X it follows that yx(X)=yy(X).

Theorem 1 If X and A are connected with respect to the connectivity class C,
then X O A is connected with respect to C as well.

This theorem generalises the result of Theorem 9.59 from [7], where only
arcwise connectivity is considered. It follows directly from more genera results
in [17], [12] and [13], but for completeness we present the proof.
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Proof: Because of translation invariance it is sufficient to work only with
structuring elements A containing the zero point. Then X 0 X 0 A Then
because of the monotonicity of openings, for every x O X we have that

0# X =7(X) Cr(XoA).

Therefore, if y O Xthen v,(X @ A) = v,(X @& A) because both sets contain
the set ~,(X) which is the same asy,(X). Since 0 O A, then z € 7.(4) C C.
On the other hand r.(A) € X & A. Then from the third property of the
maximal component, we have that for every a € A v (X & A) = yz1.(X & A)
since both sets contain 7,.(A) which is nonempty. Anaogically, for every y O X
and every b 0 Awe have y,(X ® 4) = yy45(X & A4). Then v, (X ® A) =
Yy+b( X @ A), which automatically proves the theorem because of the arbitrary
choice of x,y, aand b. ]

Let Sbe a binary relation between the subsets of a universal set E, i.e.
SOP(E)xP(E).

Definition 2 We say that S is a separation if it satisfies the following condi-
tions [6]:
—Sis symmetric, which means that (X, Y) O S if and only if (Y, X) O S.
— Sis exclusive, which means that (X, Y) O S implies X n Y = @.
— Sis hereditary, which means that (X, Y) O S implies (X, Y) O S for
each X OXand Y OV.

We have omitted the last axiom of Haralick and Shapiro as too restrictive for
our studies.
Following Ronse [13], we may consider two more axioms characterizing the
separation relation:
If N;er Ai # 0 and for each i € I (A;, E\ A;) € S, then
(Mier A E\Uje; 4i) €S-

— Given three nonvoid pairwise digoint sets A, B and C from E, such that
(A, ByO Sand (AO C, B)OS then we must have (A,BOC) O S.

Every connectivity class defines a separation relation and vice versa. If C
is a connectivity class, then we can define the separation relation Sin the
following way: say that (X, Y) O Swhen ~,(XUY)Nv,(XUY)=0. Then
it is easy to demonstrate that the conditions for Sto be a separation relation
are satisfied. Then if Sis a separation defined for the subsets of the universal
set E, we can define a connectivity class as C as any subset of P(E) with the
properties:

.90 Cand {x} OCfor every x O E;

2.Aset A0 Ebelongs to Cif for every its two subsets X and Y such
thta X nY=0,X0OY =Ait follows that (X, Y) O S Such a set will be
called indecomposable.

To show that Cis a connectivity class we must demonstrate that given the
indecomposable sets A; O E for i O | and (V,c;A; # @, then the set
A = |J;c; Ai is indecomposable as well. The last is proved in [13].

If Kis a connected structuring element then X oK = | J, X; ® K, where X
are the maximal connected components of X (see for instance theorem 5.2 in
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[6] ). Then if Ais separated from B and the structuring element K is connected
it simply follows that(AUB)o K = (Ao K)U{BoK). Then suppose that the
random dropout noise N removes points from the ideal image A to produce
the observed image B. If the noise N is separated from the complement of A€,
the complement of A, then A =B « K. Therefore the connectivity relations
give us the possibility of perfect reconstruction of the original image.

4. Epsilon-Geometry Approach

The Epsilon Geometry framework defines the notion of an epsilon predicate as
a means for creating approximate tests. Let O be a set of objects in a space
supplied with a metric d . Let P be a predicate defined on ©. Then for any
X OO and any € > 0, let us define an epsilon version of P [3, 4]. Say that
€ — P(X) =true if and only if P(X) =true for some X', d(X,X’) < «.
(—e) —P(X) = true ifandonlyif P(X') =true foral X', d(X,X’) <e. For
instance a polygon is said to be (—€)-convex if it remains convex under any
perturbation to its vertices in disks with radius € > 0.

Let y, be the connectivity openings in E associated with the path-connecti-
vity (the usual arcwise connectivity in the continuous case E = R", or its
discrete analogs as mentioned above). Let K O E be a connected structuring
element which contains the origin. Then we can define another family of open-
ings: v.(A) = ANy, (A® K) for every point x 0 A. These openings are
connectivity openings with respect to the connectivity class

C'={DCR"| thereexistss C O C such that DC C C Do K}

as shown in Example 9.62 from [7].
Then having as a base the usual path connectivity in its continuous or
discrete versions, we can introduce the notion of epsilon connectivity.

Definition 3 Aset X O E is called e-connected if it is connected with respect
the connectivity class C' when K = B (0).

Here and henceforth B, (X) denotes the closed ball (disk in two-dimensional
space) with centre x and radius r. An example of this notion is given on Fig.
1. For completeness we can refer to the connected sets as 0O-connected.

If P and Q are non-empty compacts in R" then

dist (P,Q) = inf{e|Q C P& B.(0), P C Q& B.(0)}. )

is known as Hausdorff distance between P and Q. In practice, in al image
processing and robot control tasks we work with compact sets. Therefore our
definition of epsilon - connectivity is correct, since for every set X from C'
there exists a set X from C such that dist (X, X') < €. Namely, the set X
plays the role of C in definition 3. Here, the notion of (—€)-connectivity is
not useful, since we should have a connectivity class, which elements must have
the property, that all sets at a distance not greater than € should be path -
connected for € > 0.
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Fig. 1. The hatched region becomes ¢ -path-connected adding the disk, with ¢ equa to the
radius of the disk

5. Fuzzy Morphological Operations

Consider the set E called the universal set. A fuzzy subset A of the universal
set E can be considered as a function py4 : E + [0,1], called the membership
function of A. pa(z) is called the degree of membership of the point x to the set
A. The ordinary subsets of E, sometimes called ‘crisp sets’, can be considered
as a particular case of a fuzzy set with membership function taking only the
values 0 and 1.

Let 0 < a< 1. Ana-cut of the set X (denoted by [X]q) is the set of points
x, for which ux(z) > «.

The usual set-theoretical operations can be defined naturally on fuzzy sets:
Union and intersection of a collection of fuzzy sets is defined as supremum,
resp. infimum of their memership functions. Also, we say that AO B if
palz) < pg(z) for dl x OE The complement of A is the set A with
membership function pac(z) = 1 — pa(z) for dl x O E. If the universal set
E is linear, like the d-dimensional Euclidean vector space RY or the space
of integer vectors with length d, then any geometrical transformation aris-
ing from a point mapping can be generalised from sets to fuzzy sets by tak-
ing the formula of this transformation for graphs of numerical functions, i.e.

for any transformation @ like scaling, translation, rotation etc. we have that
P(ua(z)) = pa(ip~t(z)). Therefore we can transform fuzzy sets by transform-

ing their a — cuts like ordinary sets.

Let us now consider the dilation and erosion as defined by Werman and
Peleg [19].

bipp,a(z) = ilelg min(u4(b), up(z — b)), )
pea.a(@) = inf max(up(b),1—pa(b —z)), ®)

It is easy to find an example showing that they do not form an adjunction
[10]. So, let us now consider only the Werman-Peleg dilation. It can be
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checked directly that the adjoint erosion of &g, denoted by €5, takes the
form pep,a)(z) = infyer (h (pa(y) ~ pe(y — 2)) (1 — pal(y)) + pa(y)), where
h(x) = 1 when x2 0 and is zero otherwise. In this case we shall denote
§4(B)=40p(A) =A@ B, and eg(4) = Ao B.

Definition 4 A function F : R" + R is called upper semicontinuous (u.s.c.)
if for any t O R such that t > F (X) there exists a neighbourhood B, (X) such
that t > F(y) for every point y O B (x).

It is proved in [11] that if A and B are fuzzy sets from R 9 whose membership
functions are upper semicontinuous with bounded support, then so is A B,

Definition 5 Following [14], let us say that the points x, y O E are connected
in the fuzzy set A if there exists a path I from x to y such that

inf pa(2) 2 minfua(z), pa(y)l-

Then we may call the fuzzy set A a—path-connected if every two points x and
y, such that pa(z) >1—a and pa(y)>1—a, are connected in A. Let
consider further a fuzzy set whose membership function is u.s.c. with bounded
support. Consider we are given a connectivity class Cin the universal set E
(either RY or Z9). Then we may generdise the upper definition not only for
path-connectivity saying that a fuzzy set A isa— connected for any a O [0, 1)
if {A]g € C for every positive B less than or equal to 1 — a. For completeness
we may call a set A to be l-connected if its support is in the connectivity
class, which means|J,[A]« CC. We made our definitions consonant with the
Epsilon Geometry framework: in the fuzzy sense an image is O-connected if
and only if its essential parts are connected.

Applying directly Theorem 1 we show that if for a given a O [0, 1] the fuzzy
sets X and A are a —connected, then X O Ais aso a—connected. So we define
the degree of connectivity of the fuzzy set A in the following way:

de(A) =1—inf{a| A is o — connected }.

It is straightforward to show that de(A @ B) < min[de(A), de(B)].

This is a general way to define degree of connectivity, which can be used
as a feature in different pattern recognition tasks depending on the basic con-
nectivity class. On Fig. 2 one can see an example of X-ray mammogram. The
degree of connectivity of the outer darker part is 0.33, the light internal region
has degree of connectivity 0.78. The degree of connectivity of the whole image
is 0.24 disregarding the background. On the lower part of the image one can
see two calcifications (the small light spots at the bottom). Therefore for any
small region containing the calcifications, the degree of connectivity will be
approximately 0.24. Any of the two calcifications themselves have high degree
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of connectivity = 0.8. Therefore we can use the ratio between the degree of
connectedness and the variance between the maximal and the minimal grey
levels of the region as a feature of the region. If the value of this feature is
small one could suppose the existence of abnormalities in the region.

Fig. 2. An example of a mammogram with cancerous calcifications
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6. Conclusions and Future Research

We have shown that we can deal with e-connected sets when imprecise descrip-
tion of the objects is available. This approach gives a safer solution in the field
of robotics and vehicle guidance. Also, a general definition of connectivity of
fuzzy sets have been established, suited for direct implementation to grey-scale
images. Since we work with adjoint fuzzy morphological operations, we have
real opening and closing filters (idempotent, increasing, [anti]-extensive), which
gives us the opportunity to apply fuzzy closing operation directly to the grey-
scale image to remove sparse noise. Such noise may appear with the old CCD
cameras when some pixels are dead, but also in the process of photocopying
where some ink drops may damage the copy. Also, this noise can be considered
as the most severe case of random noise. Therefore, if we demonstrate that a
connectivity based filtering works well to such dropout noise, it is most likely
that it can apply to any random noise. Since in the crisp case every convex
set is connected, it should be interesting to find a relation between the values
of the degree of convexity defined in [11], and the degree of connectivity of a
given fuzzy set.
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Abstract. In this paper, we introduce an axiomatic framework for the notion of multireso-
lution connectivity on complete lattices. This framework extends the notion of connectivity
classes, introduced by Serra in the late eighties. We introduce multiresolution connectivi-
ties by means of two equivalent notions: connectivity measures and connectivity pyramids.
We present examples of multiresolution connectivities based on pyramids of dilations and of
morphological sampling operators. We study the application of multiresolution connectivity
to various image analysis tasks, such as pyramid decompositions, hierarchical segmentations,
and multiresolution features.
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1. Introduction

In this paper, we present an axiomatic framework for the notion of multireso-
lution connectivity. This approach extends the concept of a connectivity class,
introduced by Serra in the late eighties [7]. In our framework, a connectivity
class corresponds to a single-resolution connectivity.

Multiresolution connectivities are introduced by means of axiomatizations
for the equivalent notions of connectivity measures and connectivity pyramids.
A connectivity measure is a nonnegative function on the lattice of interest
that quantifies the idea of a varying degree of connectivity. The equivalent
notion of a connectivity pyramid consists of an upper semi-continuous family
of nested connectivities, which extends the notion of connectivity classes to a
multiresolution setting.

We have organized this paper as follows. In Section 2, we introduce notation
and provide a brief overview of single-resolution connectivity. In Section 3, we
deal with the axiomatic definition of multiresolution connectivity. In Section
4, we present examples of multiresolution connectivities based on pyramids of
dilations and morphological sampling operators. In Section 5, we describe the
relationship of multiresolution connectivity with multiresolution image anay-
sis tools, such as pyramid decompositions, hierarchical segmentations and mul-
tiresolution features. Finaly, in Section 6, we present our conclusions.

* This work was supported by the Office of Naval Research, Mathematical, Computer,
and Information Sciences Division, under ONR Grant N0O0014-90-1345. The first author was
also supported by the CNPq Scholarship 200725196-3.



160 ULISSES M. BRAGA-NETO AND JOHN GOUTSIAS

2. Mathematical Preliminaries

In this section, we introduce notation and present a brief overview of concepts
needed in the sequel. For more details, the reader is referred to [1, 3].

A complete lattice £ is a partialy ordered set (poset) in which every family
of elements has an infimum and a supremum, denoted by A and \/, respectively.
If the set is totally ordered, it is called a complete chain. Following Serra [8],
whenever we use the terms “lattice” and “chain” we mean “complete lattice”
and “complete chain,” respectively. By definition, every lattice £ must posses
aleast dlement O and a greatest element I, given by O= AL and | = \/ L,
respectively. A subset Sof a lattice £ is caled a sup-generating family for £
if every element of £ can be written as the supremum of elements in S An
element of the sup-generating family Sis called a sup-generator. It is assumed
that O is not a sup-generator; i.e., O O S(of course, O is sup-generated
voidly by any family SU £). In this paper, subsets of £ will be denoted by
script letters, such as C, F, G, H. The elements of £ are generaly denoted by
uppercase letters, such as A, B, C. In order to distinguish the elements of the
sup-generating family S we denote them by lowercase letters, such as x, y, z
Given an element A0 L, we define S(A) = {x 0 SOx < A} as the family of
al sup-generators majorated by A.

Two lattices £ and £’ are isomorphic if there is a bijection ¢ : £ — £'that
preserves the ordering, i.e, 4 < B += (A) < ¢(B), for A,B ¢ L. The
bijection v is said to be an isomorphism between the lattices £ and £’.

Given a lattice £, with sup-generating family S a family CO £ is caled a
connectivity class on £ if the following conditions are satisfied:

(iyooc
(i) sOc
(iii) if C; OCand A C; # O, then \/C; OC.

The elements of the connectivity class C are the connected elements of £. It
can be shown that a connectivity class Cis uniquely determined by its family
of connectivity openings {y, Ox O S}, where v, (A) = \V/{COCx< C< A} .

A partition, or segmentation, of an element A0 Lis a mapping Pa: S(A) -
L, such that:

(i) x<Pa(x) <A for every x O S(A)
(i) P a(x) =Pa(y) or Pa(x) APaly) =0, for every x yeS(A).

Each Pa(x) is called a zone of the partition P, of A. The partition is said to
be connected, with respect to a given connectivity class C, if P5(x) € C, for all
x O S(A). For any two partitions Pa and PA', we say that Pa isfiner than
P A, which we denote by P C Pp, if Pa(X) € PA'(X), for each x O S(A) (in
this case, we may also say that P,' iscoarser than Pp). It is easy to see that
defines a partial order on the set T, of al partitions of A. As a matter of fact,
the poset Ty is a complete lattice: the infimum is simply (M Pf)(z) = A Pi(z),
while the supremum is given by UP: =n{P, | P4 d P}, i€ I}.
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3. Multiresolution Connectivities

We now provide equivalent axiomatizations for the multiresolution notions of
connectivity measures and connectivity pyramids. All proofs, as well as addi-
tional results and examples, can be found in [1].

Definition 1 Let £ be a lattice with sup-generating family S A function :
£ - R is said to be a connectivity measure on £ if:

(i) 0< ¢(A) < oo, forall Ac L

(ii) $(0) = ¢(z) = sup {$(A) | A€ L}, forz € S

(i) ¢(V A;) > inf {¢(A)}, for all A; € L such that \ A; # O.

The value @( A) indicates the degree of connectivity of an element A0 £ L f
@ (A) =0, Ais said to be disconnected, wheress, if @A) = sup{¢(A4’) | A" € L},
A is said to be fully connected. The zero element and the sup-generators are
aways fully connected. Condition (iii) requires that the degree of connectivity
of the supremum of overlapping elements of £ must not become smaller than
the smallest connectivity measure of the individual elements. We say that @is
discrete if the range @:(£) does not have accumulation points in IR.

A simple example of a discrete connectivity measure, with £ = P(Z?*) and
sup-generating family S = {{v} | v € Z*}, isgivenby @(A) = 1, if Ais 4
connected, @(A) = 0.5, if Ais 8- but not 4-connected, and @A) = 0, otherwise.

Given a connectivity class C on £, we define a simple binary connectivity
measure by taking @(A) = 1,if AOC, and @(A) = 0, otherwise. Hence, stan-
dard connectivities may be viewed as single-resolution connectivities, where the
degree of connectivity is all-or-nothing. We mention that a connectivity mea
sure can be interpreted, with minor modifications, as the membership function
of afuzzy connectivity class, athough we do not pursue this interpretation here.

In the sequel, unless stated otherwise, J C R, will be a closed index set,
with 0 O J. We say that a is an upper accumulation point of J, if the interva
(¢ — €, ], for any € > 0, contains infinitely many points of J.

Definition 2 Let£ be a lattice with sup-generating family S. A function C:
J - P(L) is a connectivity pyramid on L if;

(iyc(@© =L

(i) C (a) is a connectivity class for each a O J

(iii) Cla) CC(B), if a=>p

(iv) Cla) = gcq C(B), if ais an upper accumulation point of J.

At times, it will be convenient to denote the connectivity classes C(a) by
Cua, and write C = {C,}aes . Condition (iii) requires the connectivity classes
Cy to be nested, so that the criterion for connectivity becomes stricter as a
increases. On the other hand, the upper semi-continuity condition (iv) provides
a smoothness constraint “from below” on the pyramid. If J does not contain
any accumulation points, C is said to be a discrete connectivity pyramid, in
which case condition (i v) becomes void.

Examples of connectivity pyramids, based on families of decreasingly con-
nected graphs and families of increasingly finer topologies, are given in [1].
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Given a connectivity pyramid C = {C,},cs ON £ , We associate afamily of
o -connectivity openings on £, givenby «, . (4) = \V{C € C, |z < C < A}
for a O J, x O S It can be shown that these o -connectivity openings satisfy
nesting and upper semi-continuity properties similar to conditions ( iii) and
(iv) of connectivity pyramids. Moreover, a connectivity pyramid is uniquely
determined by its family of o-connectivity openings.

The set of connectivity pyramids defined on Jis a complete latticep (., .J),
with partial order defined by C < €' «= C(a) C C'(a), a € J. This is
implied [7] by the fact that P(L, J) is an inf semi-lattice, where the infimum of
a family C of connectivity pyramids is given by C(a) = N C (), a € J, With
universal element C(a) = £, o € J. Similarly, the set of connectivity measures
that take on values in Jis a complete lattice Af(£,.J) , with the partial order
defined by ¢ < ¢/ < ¢(A4) < ¢(A), 4 € £,,snce M(L£,J) is an inf semi-
lattice, where the infimum of a family ¢ of connectivity measures is given by
¢(A) = inf {¢:i(A)}, A € £, with universal element ¢(A) =supJ, A € L.

In similar fashion to the “second generation” connectivity classes of [8], we
have the following result.

Proposition 1 Let C = {C,},cs b€ a connectivity pyramid on a lattice £
with sup-generating family S and let 6 be an extensive dilation on £ such that
0(X)OCq, for every x 0 Sand a O J. Then,

C’ = {5_1(Ca)}a€J
defines a new connectivity pyramid on £, which is less strict than the original
connectivity pyramid; i.e., C < C?9,

The following result states the equivalence between the class of connectivity
pyramids defined on Jand the class of connectivity measures that take on
values in J.

Theorem 1 Let g be a lattice with sup-generating family S. The lattice of con-
nectivity measures M (£ J) that take on values in J is isomorphic to the lattice
P (£ ,J) of connectivity pyramids defined on J. Moreover, the isomorphism X:
M(L, Ty — P(L, J) is given by

X(@)a)={AcL|$4)2a}, acl, 1
with inverse Y: P(L,J) — M(L,J) diven by
Y(C)(A) =sup{aecJ|AcCla)}, AcL. @

A multiresolution connectivity assumes either a connectivity measure ¢, or
a connectivity pyramid C, where the latter can aso be specified by a family
of o -connectivity openings {v, , | o€ J,z ¢ S} Given any one of these three
equivalent ways to specify a multiresolution connectivity, one can refer liberaly
to the other two. We say that an element A 0 £ is a-connected if one of the
three equivalent conditions are satisfied: (&) (A) = a, or (b) AO C,, or (c)
Yax(A) =A for x O S(A). An a-connected component, or a-grain, of A0 £
is an a-connected element C O £such that C < A and there is no o -connected
element C' 0 £with C< C' < A It can be shown that the family of a-grains

of Ais given by Ca(A) = {Yaz(A) |z € S(4)}-
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A AD(m—-o)B A®(m-P)B

Fig. 1. Dilation-based multiresolution connectivity. Since AO (m — a) B is connected, but
AO (m-B)Bis not, it follows that o < @A) <pB.

4. Multiresolution Connectivities based on Pyramids of Operators

A family {¢, | @ € J} of operators on a lattice £, where Jis an arbitrary
index set of real numbers, is said to be a bottom-up (resp. top-down) pyramid
of operators if there exists a y 0 J such that ¥, = ¥y (resp. ¥s = ¥y%a),
for al a = B [6]. The next two subsections present useful multiresolution
connectivities based on top-down pyramids of morphological operators.

4.1. DILATION-BASED MULTIRESOLUTION CONNECTIVITY

Consider the dilations &(A) = A0 (m—a)B, for a 0 J, defined on K (RY) (the
lattice of all compact subsets of R“ in the usual Euclidean topology), where B
is the closed unit ball and J=[0, m]. It is easy to see that {d, | @ € J} defines
a top-down pyramid of dilations.

Proposition 2 Let £ = K (R%) with sup-generating family S = {{v} | v €
le}, furnished with the usual Euclidean topological connectivity. Let {6, | & €
J} be the top-down pyramid of dilations defined above. Then,C = {Ca}acs

where
Co=L; Co={AeL]|é,(A)eC}t, aeJ\{0}

defines a connectivity pyramid on K(IRY).

The associated connectivity measure is clearly given by

$(A)

Il

sup{a € J| A®(m — «)B is connected}
=m — inf{a € J| A& aB is connected}.
Figure 1 provides an illustration of this multiresolution framework. Note that

2-D digital versions of the dilation-based multiresolution connectivity discussed
here can be defined as well.

4.2, MULTIRESOLUTION CONNECTIVITY BASED ON M ORPHOLOGICAL SA M-
PLING

Another interesting example of multiresolution connectivity, based on morpho-
logica sampling [4], was suggested by Henk Heijmans! It turns out that the

1 Personal communication.
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resulting multiresolution connectivity scheme is based on a top-down pyramid
of closings. By necessity, the discussion in this subsection will be very brief.
We refer the reader to [1, 3, 4] for more details.

Consider, as the domain of definition of imag&a the lattice F(IRY) of all
closed subsets of RY . Let the sampling grid S 0 IRY be given by § = {kyu; +

4 kqug | k; € Z}, where uj are linearly independent vectors in RY. Let the
san‘pllng element C 0 IRY be an open set such that 0 0 C, C n S= {0} and
SO C= R'Y. This last condition is known as the covering assumption. For
instance, we may take C' = {zju; + - - + zquq | —a < z; < a}, Where a > 1/2,
Given the above conditions, one can show that o(A) = {s € S| CsNA# 0}
defines a dilation from F(IRY) into P(S), caled the sampling operator. It can
aso be shown that the adjoint erosion from P(S) into F(le) known as the
reconstruction operator, is given by p(V) = {v € R | C, NS C V}, where

C={-v|vel} |s the reflection of C. Thus, the composition 1= po defines
a closing from F ([R ) into itself. This is known as the approximation operator.

Proposition 3 Let C be a connectivity class on F (IR%) and let C be a sampling
element such that, for every s O S,

C:\ |J CoeC, VS CS\{sh 3)
s'es’

Then, the approximation operator Ttis connectivity-preserving; i.e, 1(C) O C.

We remark that condition (3) is actually easy to check in practical situations
(it usudly involves a small finite number of tests).

In order to extend the above theory to a multiresolution setting, we con-
sider the morphological sampling approach known as covering discretization [3].
Consider the sampling grid S defined previously, and let the sampling element
be C' = {z1u1 + - +xquq | —1 < z; < 1}. Define

1 1
Sn=5g S Cn=gy
It can be easily checked that the sampling elements C,, satisfy condition (3),
for each n > 1, with the usual topological connectivity in IRY. In addition,
ShOC, = RY, so that the covering assumption is satisfied for each n > 1.
This leads to a family of approximation operanrs {mn | n > 1}, which can be
shown to define an anti-granulometry on F(IR'Y); i.e., a top-down pyramid of
closings. We now arrive at the main result of this subsection.

C, n>1. (4)

Proposition 4 (Multiresolution connectivity based on morphological sampling).
Let £=F (IR?) with sup-generating family § = {{v} | v € R?}, furnished with
a connectivity class C. Let C,, be the sampling elements discussed in connec-
tion with (4), and let {rx, | » > 1} be the associated family of approximation
operators. If condition (3) is satisfied for the underlying connectivity class C,
then C = {C,}o<n<oo, Where

Co=FMR?Y;, Ch=mC)={AcL]|m(A)EC},0<n<o0; Co =C,
defines a discrete connectivity pyramid on F(IRY) .
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m,(4)
Fig. 2. Multiresolution connectivity based on morphological sampling. Since T, (A) is
connected, but m,(A) is not, it follows that m < ¢(A) < n.

Figure 2 illustrates this multiresolution connectivity scheme.

5. Multiresolution Tools

In this section, we briefly discuss the application of multiresolution connectiv-
ities to a number of useful multiresolution image analysis tasks.

5.1. PyrRAMID DECOMPOSITIONS

In the case of a discrete index set J(e.g.,, J={0,1,...,m}), a multiresolution
connectivity can be used to derive a pyramid representation scheme (we refer
the reader to [2] for more details on pyramid decompositions).

Given a lattice £ with sup-generating family S we define the root marker
set R to be a non-empty subset of S i.e., ¥ # RO S The andysis and
synthesis operators of the pyramid scheme are given by

#] = \/ Y41 (Anadysis), (%)
TER
¢ =id  (Synthesis), (6)

respectively, where{v; . |j € J,z € §} is the family of a-connectivity openings
associated with the multiresolution connectivity.

Assume that there exist addition and subtraction operations +, — defined
on £, such that z/ij.(A) + (A- 'zz;j.(A)) = A, for every given AO £ (eg., in the
binary case, we may take + to be set union and — to be set difference). The
analysis operators then give rise to a pyramid decomposition: 4 — {Dg, 4;} —
{Do,Dl,Az} — e {D07D1, .. .7Dm_1,Am} , Where

Ay = A
A=) (45) =\ vir12(4)) )
z€ER
Dy =45 -4,
such that A can be recovered from the approximation signal Am and the detail
signals { D;} via a simple summation, A = Am+zg’:01 D; . Note that the above
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) ’\g R
i/ y oot
b D Markers

O
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D, D, A

2

Fig. 3. Pyramid decomposition of the image Ain Fig. 2, assuming dilation-based multires-
olution connectivity. The root marker set Ris indicated on the approximation image A.
Note that the sum of Do, D1 and A, recovers the origina image A.

decomposition scheme depends on the particular root marker st R The name
“root marker” comes from the fact that the m-connected components marked
by one of the elements of Rare present in al approximation signas Aj.

Figure 3 depicts a binary example that shows three levels of a pyramid de-
composition, based on the above scheme, where dilation-based multiresolution
connectivity is assumed.

5.2. HIERARCHICAL SEGMENTATION

The concept of hierarchical segmentation is of fundamental importance in
the framework of multiresolution-based applications, such as adaptive bit-rate
object-oriented coding [5]. Below, we formalize this notion in the context of
multiresolution connectivities.

Definition 3 Let £ be a lattice with sup-generating family S A hierarchical
partition or hierarchical segmentation of A is a family Pa = {PS | a € J},
where Pf are partitions of A such that:

(i) PRC P, ifa>p

(ii) P = |’15<an, ifa is an upper accumulation point of J.

Each Pf(z) is called an a-zone of the hierarchical partition. Moreover, we
say that Pais connected, with respect to a given multiresolution connectivity
C = {Colacy, if PF(z)€Cq, for al x O §A) andaO J.

Condition (i) above says that a hierarchical partition of Ais a family of
increasingly finer partitions of A. On the other hand, condition (ii) imposes a
smoothness requirement on this family.

Proposition 5 Let £ be a lattice with sup-generating family S furnished with
a multiresolution connectivity, given by the family ofa-connectivity openings
{(Vaz | # € S, € J}. Given an eement AD £, the mappings C'¢ : S(A) - £
defined by

CL(x) =vaz(4), z€8(4), ac, 8

provide a connected hierarchical partition C4 = {C§ | @ € J} of A
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We refer to the hierarchical partition Ca as the hierarchical partition of
connected components of A. Note that, since in a multiresolution connectivity
we have that Co = £, the bottom level of a hierarchical partition of connected
components corresponds to the original object.

5.3. MULTIRESOLUTION CONNECTIVITY- BASED | MAGE FEATURES

Given a lattice £ and an element A O£, apartition feature is a monotone map-
pingv: 74 — IR, where: 74 is the lattice of partitions of A. By a monotone
mapping, it is meant that either vis increasing, i.e, P4 T P4’ = v(P,) <
v(Pa ), or that vis decreasing, i.e, Py T Py = v(Ps) > v(P4'). An in-
creasing (resp. decreasing) partition feature v is upper semi-continuous if, for
any chain {P} | « € I} of increasingly finer partitions in7,, we have that
v(M PS) = inf{u(P})} (resp. sup{v(P})}).

A useful partition feature is the counting feature , given by p (PA) = num-
ber of zones of PA, if this number is finite, or p(Pa) = o, otherwise. This
feature is clearly decreasing. In addition, we have the following resuilt.

Proposition 6 The counting feature m is upper semi-continuous on7y,.

Now, consider a multiresolution connectivity C = {C,}acs On L, where
J=[0, m] is an interval of rea or integer numbers (we may have m=cw). Let
AT £ and let v be a partition feature on 7, . We define the clustering curve
Xy of Awith respect to vto be the function X4: J — IR given by:

X4(a) = v(CF), acl, ©

where C ¢ is level a of the hierarchical partition of connected components of A,
defined in (8).

Proposition 7 Let J = [0, m] be a continuous interval. We have that:
(i) The clustering curve X : J — IR is a monotone, continuous function
on J, except for a countable number of jump discontinuities.
(ii) If vis upper semi-continuous, then X' is left-continuous at the jumps.

The variation in X4 indicates how the connectivity feature changes as clus-
ters of components break apart or merge. For the counting feature p, X’ gives
the variation of the number of a-grains of A. From the previous discussion, it
is clear that X/ is an increasing, piecewise constant, left-continuous function.

We define the clustering spectrumY’} of A as the derivative of X:

f—aX:g(a), a € [0, m], if Jis continuous
X4i(a) — Xi(a—1), a=1,2,...,m, if Jis discrete

Yi(e) = {

It is understood that, at points a where X% has jump discontinuities, Y (c)
will be assigned an impulse of magnitude equal to the jump. Figure 4 illustrates
the clustering curve and the clustering spectrum of a binary image.

We remark that, in the case of a binary lattice (e.g., when £ = P(IR?)) the
counting feature can be applied to derive other interesting topological multires-
olution features. For instance, the curve X’ gives the variation of the number
of pores of A, while the curve X% — X, gives the variation of the genus of A.
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DY |- il

A X4 (o) Pi (o)
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Fig. 4. Clustering curve Xﬁ and clustering spectrum Y/‘; associated with the image on the
left, in the case of a dilation-based multiresolution connectivity, with the counting feature u
(the vertical axes of the plots are not drawn to the same scae).

6. Concluding Remarks

In this paper, we have presented an axiomatic formulation of multiresolution
connectivity, which extends the single-resolution notion of connectivity classes.
We have presented multiresolution connectivity examples based on pyramids of
dilations and of morphological sampling operators. We have also demonstrated
the use of this framework in some useful multiresolution image analysis tasks.
An interesting issue that was not discussed in this paper is the relation-
ship between connected operators [6] and multiresolution connectivities. This
problem is studied in [1]. In this reference, we present an additional exam-
ple of multiresolution connectivity based on a pyramid of operators, namely,
a pyramid of openings. Moreover, we investigate the concept of hyperconnec-
tivity [8], which provides a better framework for connectivity on graylevel and
multispectral images, and extend this notion to the multiresolution case.
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Abstract. This paper discusses region-based representations useful to create connected
operators. The filtering approach involves three steps: first, a region tree representation of
the input image is constructed. Second, the simplification is obtained by pruning the tree and
third, and output image is constructed from the pruned tree. The paper focuses in particular
on several pruning strategies that can be used on tree representation.
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1. Introduction

Filtering techniqgues commonly used in image processing are defined by an
input/output relationship that relies on a specific signalh(x) caled impulse
response, window or structuring element. The three classical cases are:

Linear convolution and impulse response: the output of a linear trandation-
invariant system is given by: ¢y (f )(X) =3 ne . h(K) f(x —k). The impulse
response, h(x), defines the filter properties. For image processing, the main
drawback of linear filters is the blurring they introduce. The blurring charac-
teristics is directly related to the extension and shape of the impulse response.

Median filter and window: considering a window W, the output of a median
filter is defined by: ¢»w ( f)(x) =MediankOW { f(x — k)}. Here aso, the basic
properties of the filter are defined by its window. The major drawback of this
filtering strategy is that every region tends to be round after filtering with most
commonly used windows (circles, sguares, etc.).

Morphological erosion/dilation and structuring elements: dilation by a struc-
turing element h(x) is defined in a way similar to the convolution: &, (f) (x) =
Vi _ o (h(k) + f(x — K)), where \/ denotes the supremum. The erosion is given
by Ch( F)(X) = Are_oo (N(K) = f (X + K)), where A denotes the infimum. Based
on these two primitives, morphological opening: y,(f) = On(C}(f)). and clos-
ing: ¢, (f) = 0,(0 ()), can be constructed. These operators also introduce
severe distortions due to the shape of the structuring element.

Most people would say that the heart of the filter design is to appropriately
select the impulse response, the window or the structuring element. However,
for image processing, this selection implies some drawbacks. Since h(x) (or W)
is not related at al with the input signal, its shape introduces severe distortions
in the output. Many connected operators used in practice choose a completely
different approach: the filtering is done without using any specific signal such
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Fig. 1. Max-tree representation of images.

as an impulse response, a window or a structuring element. As a result, no
distortion related to a priori selected signals is introduced in the output. Gray
level connected operators [6] act by merging of elementary regions called flat
zones. They cannot create new contours and, as a result, they cannot intro-
duce in the output a structure that is not present in the input. Furthermore,
they cannot modify the position of existing boundaries between regions and,
therefore, have very good contour preservation properties. Several approaches
can be used to create connected operators. One of the most popular approach
consists in using the classical pixel-based representation of the image and a re-
construction process [7, 2]. An dternative approach relies on the definition of
a region-based representation of the image and the definition of a region merg-
ing process [5, 4]. The goal of this paper is to discuss this second approach
assuming that the region-based representation is a tree. The organization of
this paper is as follows. Section 2 defines two region tree representations. the
Max-tree (or Min-tree) and the Binary Partition Tree. The filtering strategies
are discussed in section 3. Conclusions are reported in section 4.

2. Region Tree Representations

2.1. MAX-TREE AND MIN-TREE

The first tree representation is caled a Max-tree [5]. This representation en-
hances the maxima of the signal. Each node Ny in the tree represents a con-
nected component of the space that is extracted by the following thresholding
process: for a given threshold T, consider the set of pixels X of gray level value
larger than T and the set of pixels Y of gray level value equa to T:

X = {x, such that f(x) = T} and Y = {x, such that f(x) = T} (1)

The tree nodes Nk represent the connected components of X such that Y # ¢,
An example of Max-tree is shown in Fig. 1. The origina image is made of 7
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Merging step 2 Merging step 3

Original partition

Fig. 2. Example of Binary Partition Tree creation with a region merging algorithm.

flat zones: {A,...,G}. The number following each letter defines the gray level
value of the flat zones. The binary images, X, resulting from the thresholding
with 0 < T < 2 are shown in the center of the figure. Finaly, the Max-tree is
given in the right side. It is composed of 5 nodes that represent the connected
components shown in black. The number inside each square represents the
threshold value where the component was extracted. Finally, the links in the
tree represent the inclusion relationships among the connected components
following the threshold values. Note that when the threshold is set to T = 1, the
circular component does not create a connected component that is represented
in the tree because none of its pixels has a gray level value equal to 1. However,
the circle itself is obtained when T = 2. The regiona maxima are represented
by three leaves and the tree root represents the entire image support.

2.2. BINARY PARTITION TREE

The second example of region-based representation is the Binary Partition
Tree [4]. It represents a set of regions that can be obtained from the parti-
tion of flat zones. The leaves of the tree represent the flat zones of the origina
signal. The remaining nodes represent regions that are obtained by merging
the regions represented by the children. As in the cases of the Max-tree and
Min-tree, the root node represents the entire image support. This represen-
tation should be considered as a compromise between representation accuracy
and processing efficiency. Indeed, al possible merging of flat zones are not rep-
resented in the tree. Only the most "useful” ones are represented. However,
as will be seen in the sequel, the main advantage of the tree representation is
that it alows the fast implementation of sophisticated processing techniques.
The Binary Partition Tree should be created in such a way that the most
“useful” regions are represented. This issue can be application dependent.
However, a possible solution, suitable for a large number of cases, is to create
the tree by keeping track of the merging steps performed by a segmentation
algorithm based on region merging (see [3, 1]). In the following, this information
is caled the merging sequence. Starting from the partition of flat zones, the
algorithm merges neighboring regions following a homogeneity criterion until
a single region is obtained. An example is shown in Fig. 2. The original
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partition involves four regions. The regions are indicated by a letter and the
number indicates the grey level value of the flat zone. The agorithm merges
the four regions in three steps. In the first step, the pair of most similar regions,
B and C, are merged to create region E. Then, region E is merged with region
D to create region F. Finally, region F is merged with region A and this
creates region G corresponding to the region of support of the whole image.
In this example, the merging sequence is. (B, C)Y{E, D)4 F, A). This merging
sequence progressively defines the Binary Partition Tree as shown in Fig. 2.

To create the Binary Partition Trees used in this paper, the merging algo-
rithm following the color homogeneity criterion described in [1] has been used.
It should be noticed however that the homogeneity criterion has not to be re-
stricted to color. For example, if the image for which we create the Binary
Partition Tree belongs to a sequence of images, motion information should also
be used to generate the tree: in a first stage, regions are merged using a color
homogeneity criterion, whereas a motion homogeneity criterion is used in the
second stage. Furthermore, additional information of previous processing or
detection algorithms can also be used to generate the tree in a more robust
way. For instance, an object mask can be used to impose constraints on the
merging algorithm in such a way that the object itself is represented as a single
node in the tree. Typical examples of such algorithms are face, skin, character
or foreground object detection. If the functions used to create the tree are
self-dual, the tree itself is a self-dual representation appropriate to derive self-
dual connected operators. By contrast, the Max-tree (Min-tree) is adequate
for anti-extensive (extensive) connected operators. Note that in al cases, the
trees are hierarchical region-based representations. They encode a large set of
regions and partitions that can be derived from the flat zones partition of the
original image without adding new contours.

3. Filtering Strategy

Once the tree representation has been created, the filtering strategy consists
in pruning the tree and in reconstructing an image from the pruned tree. The
simplification is performed by pruning because the idea is to eliminate the image
components that are represented by the leaves and branches of the tree. The
nature of these components depends on the tree. In the case of Max-trees (Min-
trees), the components that may be eliminated are regional maxima (minima)
whereas the elements that may be simplified in the case of Binary Partition
Trees are unions of the most similar flat zones. The simplification itself is
governed by a criterion which may involve simple notions such as size, contrast
or more complex ones such as texture, motion or even semantic criteria.

3.1. INCREASING CRITERIA

One of the interests of the tree representations is that the set of possible merging
steps is fixed (defined by the tree branches). As a result, a large number of
simplification (pruning) strategies may be designed. A typica example deals
with non-increasing simplification criteria. A criterion C assessed on a region
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Fig. 3. Area filtering: original (left), area opening (center), area open-close (right).

Ris increasing iff: OR1 0 R> 0 C(Ry) £ C(R2). Assume that nodes where the
criterion value is lower than a given threshold should be removed by merging.
If the criterion is increasing, the pruning strategy is straightforward because if
a node has to be removed al its descendants have also to be removed. A typical
example is the area opening [8]. One of its possible implementation consists
in creating a Max-tree and in measuring the area (the number of pixels) Ag
contained in each node Nk. If the area A is smaller than a threshold, 7.4, the
node is removed. The simplification effect of the area opening is illustrated in
Fig. 3. The operator removes small bright components. If the simplified image
is processed by the dual operator, the area closing, small dark components are
also removed. Using the same strategy, a large number of connected operators
can be obtained.

3.2. NON-INCREASING CRITERIA

If the criterion is not increasing, the pruning strategy is not trivial since the
descendants of a node to be removed have not necessarily to be removed. In
practice, the non-increasingness of the criterion implies a lack of robustness
of the operator [5]. For example, similar images may produce quite different
results or small modifications of the criterion threshold involve drastic changes
on the output. A possible solution consists in applying a transformation on the
set of decisions. The transformation should create a set of increasing decisions
while preserving as much as possible the decisions defined by the criterion. This
problem may be viewed as dynamic programming issue that can be efficiently
solved with the Viterbi algorithm.

The dynamic programming algorithm will be explained and illustrated in
the sequel on a binary tree (see Fig. 4). The extension to N-ary trees is straight-
forward. The trellis on which the Viterbi algorithm is applied has the same
structure as the region tree except that two trellis states, preserve N and
remove N/, correspond to each node Ni of the tree. The two states of each
child node are connected to the two states of its parent. However, to avoid
non-increasing decisions, the preserve state of a child is not connected to the
remove state of its parent. As a result, the trellis structure guarantees that
if a node has to be removed its children have also to be removed. The cost
associated to each state is used to compute the number of modifications the
algorithm has to do to create an increasing set of decisions. If the criterion
value states that the node of the tree has to be removed, the cost associated to
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N3,remove
cost:0

N4,remove 4,preserve| N5 remove NS ,preserv
cost: 1 cost:0 cost: 1 cost:0

Original Tree Trellis for the Viterbi
(Max-Tree, Min-Tree or algorithm

Binary Partition Tree)

Fig. 4. Creation of the trellis for the Viterbi algorithm. A circular (square) node on the
Tree indicates that the criterion value states that the node has to be removed (preserved).

the remove state is equal to zero (no modification) and the cost associated to
the preserve state is equal to one (one modification). Similarly, if the criterion
value states that the node has to be preserved, the cost of the remove sate is
equal to one and the cost of the preserve state is equal to zero. The cost values
appearing in Fig. 4 assume that nodes N1, N4 and Ns should be preserved and
that N2 and N3 should be removed. The goa of the Viterbi algorithm is to
define the set of increasing decisions such that >, Cost(Nk) is minimized.

To find the optimum set of decisions, a set of paths going from all leaf nodes
to the root node is created. For each node, the path can go through either the
preserve or the remove state of the trellis. The Viterbi algorithm is used to find
the paths that minimize the global cost at the root node. The optimization
is achieved in a bottom-up iterative fashion. For each node, it is possible to
define the optimum paths ending at the preserve state and at the remove state:

Let us consider a node N and its preserve state NP, A path Pathi is a
continuous set of transitions between nodes (Ng — Ng) defined in the trellis:
Pathk = (N, — Nz)U(WNp — N,)U...UWN, — Ni).. The path Pathf starting
from a leaf node and ending at that state is composed of two sub-paths: the
first one, Pathy, “*/*, comes from the left child and the second one, Path L ",
from the right child (see Fig. 5). In both cases, the path can emerge either from
the preserve or from the remove state of the child nodes. If Ny; and Ny, are
respectively the left and the right child nodes of Nk, we have:

Pathteit = Pathf |y NE - N or Pathf \J NE — NE)

Pathk{),Right — Pathf U (N,fz’ — N,f) or Path,]:2 U (/\[Ji _ N’f) ©)
Pathi) — Pathk’LeftU Pathi’nght

The path cost is equal to the sum of the costs of its individua state transi-

1 In the general case of an N-ary tree, the number of incoming paths may be arbitrary.
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Fig. 5. Definition of Path and cost for the Viterbi algorithm (see Egs. 2, 3 and 4).

tions. Therefore, the path of lower cost for each child can be easily selected.

If Cost(Pathi!) < Cost(Pathf)

then {  Path, "/ = Pathf |J (NE - N,
Cost(Path;™*!*) = Cost(Pathf);}
else { Pathl-beft = Pathf | NE — NFP);
Cost(Pathf’Left) = Cost(Pathf ); }
If C’ost(PathkRz) < C’ost(Pathf;) (3)
then { Pathf’mght = Path}?z U (./\/klz — ./\/',f);

Cost(Path; ™"y = Cost(Pathf );}
else { Pathl- ot Pathf U WE — NP
Cost(PathD 9"y — Cost(Pathl); }
Cost(Path) = Cost(Pathy"*'") + Cost(Pathl™"") + Cost(NF);

In the case of the remove state, A%, the two sub-paths can only come from
the remove states of the children. So, no selection has to be done. The path
and its cost are constructed as follows:

Path>* 7" = Pathft |J (WE — NE);
Path[-Raht — potpR | (NE = N

- 4
Pathf = Path, !LeftU Pathf’mght; (4)

Cost(Path{) = Cost(Pathf )+ Cost(Pathfl) + Cost(N[);

This procedure is iterated in a bottom-up fashion until the root node is
reached. One path of minimum cost ends at the preserve state of the root node
and another path ends at the remove state. Among these two paths, the one
of minimum cost is selected. This path connects the root node to al leaves
and the states it goes through define the final decisions. By construction, these
decisions are increasing and as close as possible to the original decisions.

An example of motion filtering is shown in Fig. 6. The objective of the
operator is to remove al moving objects. The criterion is the mean displaced
frame difference estimated on each node (non-increasing criterion). In this
sequence, al objects are still except the ballerina behind the two speakers and
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Fig. 6. Example of motion connected operator preserving fixed objects: original frame
(left), motion connected operator (center), residue (right).

the speaker on the left side. The connected operator with the Viterbi agorithm
removes al moving components.

3.3. GLOBAL OPTIMIZATION UNDER CONSTRAINT

In this section, we illustrate a more complex pruning strategy involving a global
optimization under constraint. Let us denote by C the criterion to optimize
(for example, minimize) and by K the constraint. Moreover, assume that the
criterion and the constraint are additive over the regionsNVi: C =3\, C(Nk)
and K = > . K(Ni). The problem is therefore to define a pruning strategy
such that the resulting partition is composed of nodes N; such that:

Min Y C(N;) , with Y K(N) < Tk (5)
Ni Ni

This problem is equivalent to the minimization of the Lagrangian: £ =
C + AKX where A is the Lagrange parameter. Both problems have the same
solution if we find A* such that K is equal (or very close) to the constraint
threshold 7x. Therefore, the problem consists in using the tree to find by
pruning a set of nodes creating a partition such that:

Min <ZC(M) +A*ZK<M)) (6)
Ni M

Assume, in a first step, that the optimum A* is known. In this case, the
pruning is done by a bottom-up analysis of the tree. If the Lagrangian value
corresponding to a given node Ng is smaler than the sum of the Lagrangians
of the children nodes N;, then the children are pruned:

If C(No) + A*K(No) < 3 C(NG) + A" > K(N), prune ;. @)
Ni N

This procedure is iterated up to the root node. In practice of course, the
optimum A" parameter is not known and the previous bottom-up analysis of
the tree is embedded in a loop that searches for the best A parameter. The
computation of the optimum A parameter can be done with a gradient search
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(©

Fig. 7. Example of optimization strategies under a squared error constraint of 31 dB. (a)
Minimization of the number of the flat zones, (b) contours of the flat zones of Figure 7(a)
(87 flat zones, perimeter length: 4491), (c) Minimization of the total perimeter length, (d)
contours of the flat zones of Figure 7(c) (219 flat zones, perimeter length: 3684).

algorithm. The bottom-up analysis itself is not expensive in terms of compu-
tation since the algorithm has simply to perform a comparison of Lagrangians
for al nodes of the tree. The part of the agorithm that might be expensive
is the computation of the criterion and the constraint values associated to the
regions. Note, however, that this computation has to be done once.

This type of pruning strategy is illustrated by two examples relying on a
Binary Partition Tree representation. In the first example, the goal of the
connected operator is to simplify the input image by minimizing the num-
ber of flat zones of the output image: C1 = > o, 1. In the second example,
the criterion is to minimize the total length of the contours of the flat zones:
Cz = ), Perimeter (Nk) . In both cases, the criterion has no meaning if
there is no constraint because the algorithm would prune al nodes. The con-
straint we use is to force the output image to be a faithful approximation of
the input image: the squared error between the input and the output images
K =3 Seen. @(f)(x)— f(x))? is constrained to be below a given quality
threshold. In the examples shown in Figure 7, the sguared error is constrained
to be of at least 31 dB. Figure 7(a) shows the output image when the criterion
is the number of flat zones. The image is visualy a good approximation of the
origina image but it involves a much lower number of flat zones: the origina
image is composed of 14335 flat zones whereas only 87 flat zones are present
in the filtered image. The second criterion is illustrated in Figure 7(c). The
approximation provided by this image is of the same quality as the previous
one. However, the characteristics of its flat zones are quite different. The total
length of the perimeter of its flat zones is equa to 3684 pixels whereas the
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example of Figure 7(a) involves a total perimeter length of 4491 pixels. The
reduction of perimeter length is obtained at the expense of a drastic increase
of the number of flat zones: 219 instead of 87. Figures 7(b) and 7(d) show the
flat zone contours which are more complex in the first example but the number
of flat zones is higher in the second one.

This kind of strategy can be applied for a large number of criteria and con-
straints. Note that without defining a tree structure such as a Max-tree, a
Min-tree or a Binary Partition Tree, it would be extremely difficult to imple-
ment this kind of connected operators.

4. Conclusions

This paper has discussed two region-based representations useful to create con-
nected operators. Max-tree (Min-tree) and Binary Partition Tree. The filtering
approach involves three steps. first, a region-based representation of the input
image is constructed. Second, the simplification is obtained by pruning the
tree and third, and output image is constructed from the pruned tree. The
tree creation defines the set of regions that the pruning strategy can use to
create the final partition. It represents a compromise between flexibility and
efficiency: on the one hand side, not all possible merging of flat zones are rep-
resented in the tree, but on the other hand side, once the tree has been defined
complex pruning strategies can be defined. In particular, it is possible to deal
with non-increasing criteria using dynamic programming approach such as the
Viterbi algorithm or to involve constrained optimization criterion.
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Abstract. A new segmentation method based on the morphological characteristic of con-
nected components in images is proposed. The formalisation of the morphological char-
acteristic is based on a composition of the residuals of morphological opening and closing
transforms by reconstruction. In case of multi-scale segmentation, this concept is generalised
through the derivative of the morphological profile. Multi-scale segmentation is particularly
well suited for complex image scenes such as aerial or fine-resolution satellite images, where
very thin, enveloped and/or nested regions have to be retained. The proposed method per-
forms well in the presence of both low radiometric contrast and relative low spatia resolution,
which may produce textural and border effects and ambiguity in the object/background dis-
tinction. Examples of the proposed segmentation approach applied on satellite images are
given.

Key words: Mathematical Morphology, Morphological Segmentation, Levelling, High Res-
olution Satellite Imagery.

1. Introduction

In this paper, a new segmentation method is proposed. The proposed method
is based on the residuals of morphological opening and closing transforms with
a geodesic metric. It may be considered analogous to a region growing tech-
nique. However, in contrast to using statistical loca properties, like in region
growing approaches, the proposed method uses a pixel similarity rule based
on the morphological characteristic of the connected components in the image.
Morphological residuals between the original grey-level function and the com-
position of a granulometry and an anti-granulometry by reconstruction are used
to build a so-called morphological profile function. This function is interpreted
as a fuzzy membership function related to a set of morphological characteris-
tics of the connected components in the image. Then, the labeling phase is
formalised as a decision rule based on the greatest value of the derivative of
the morphological profile function. The proposed method can be applied with
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both single-scale and multi-scale approaches. Since standard morphological
segmentation approaches are based on an edge-detection phase (watershed line
extraction on a gradient image), the origina contribution of this work is the
definition of a morphological segmentation method, which avoids the gradi-
ent calculation, and can be applied either to single-scale or multi-scale image
processing problems.

Watershed line detection [1] is the main tool of mathematica morphology
for image segmentation. Watershed segmentation was introduced in image
analysis by Beucher and Lantujoul [2] and defined mathematically by both
Meyer [3] and Najman and Schmitt [4]. However, except for a few simple cases
where the target object is brighter than the background or vice versa, watershed
segmentation cannot be applied directly. Another well-known problem of the
standard approach in watershed segmentation is its severe over-segmentation,
which is difficult to overcome. The standard non-linear solution to the over-
segmentation problem has been introduced by Meyer and Beucher [1] as a strat-
egy which involves a marker selection followed by flooding of the relief formed
by the gradient obtained from these markers. The marker detection is the main
problem for this approach. If there is no externa information available, the
marker detection problem is generally solved by morphologica filtering (usu-
aly geodesic closing) of the gradient image, followed by a thresholding of the
filtered gradient. Since closing is defined by morphological dilation followed by
erosion, this variation of the watershed-plus-marker approach assumes that the
loca minima of the gradient, which are smaller (thinner) than the structuring
element (SE), are not relevant. The same applies to grey level edges with values
less than a given threshold.

All the above-mentioned approaches assume that the region of interest for
detection is large and homogenous, relative to the spatial and spectral resolu-
tion of the sensor. Consequently, these approaches are very hard to apply in
segmentation of textured or very complex scenes, and they often lead to results
that are unreliable.

2. The Proposed Approach

It is well known that there are two fundamentally different strategies for image
segmentation, i.e,, edge detection and region growing. Even though the stan-
dard approach to morphological segmentation is dependent on edge-detection,
it is possible to consider a different morphological approach to the segmentation
problem. The idea here is to try to characterise image features by their morpho-
logical intrinsic characteristics, instead of using their boundary. In a hypothet-
ical approach that uses a morphological region growing technique, the border
of a detected feature can be of size zero, thus avoiding the above-mentioned
surface-of-edges problems in segmentation of complex imagery. Thus, a fea
ture or an “object” in the image could be defined as a connected component
(region of pixels) with the same characteristics, measured by some kind of a
morphological operator.

It is a common practice to use the opening and closing transforms in or-
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der to isolate bright (opening) and dark (closing) structures in images, where
bright/dark means brighter/darker than the surrounding features in the im-
ages. In order to isolate features with a thinner support than a given SE,
a widely used technique is to take the residuals of the opening, closing and
origina images, by a morphological transformation called top-hat and inverse
top-hat (or bot-hat) [5].

The chosen approach for the opening and closing calculation uses a non-
Euclidean metric known as filtering by reconstruction [6,7]. The reason for
using the reconstruction approach is that this family of morphological filters has
proven to have a better shape preservation than classical morphological filters.
In fact reconstruction filters introduce less shape noise since an interaction
between the shape of the structures present in the image and the shape of the
structuring element is used in the filtering.

The simpler and intuitive taxonomy of morphological characteristics could,
for a given spatial domain, be the set T = {“flat”, “concave’, “convex”},
local curvature of the grey level function surface, where the spatial domain
is determined by a given SE. As described above, such segmentation reguires
the precise definition of the spatial domain where the method is applied in
terms of a SE size. Some structures may have a high response for a given
SE size, and a lower response for other SE sizes, depending on the interaction
between the SE size and the size of the structure. Sometimes we know ex-ante
the size of the structures that we want to detect. However, that is often not
possible, and then a single-SE-size approach appears to be too simplistic. For
these reasons, in exploratory or more complex cases, it can be a good idea
to use a range of different SE sizes in order to explore a range of different
hypothetical spatial domains, and to use the best response of the structures in
the image for segmentation. Given the above-proposed notion of morphological
characteristic, it is straightforward to extend the same concept to multi-scale
processing, by introducing the concepts of morphological profile and of the
derivative of the morphological profile (DMP).

2.1. DEFINITION

Let I1y(x) be the opening profile (a vector) at the point x in the image | defined
as:

y(z) = {Tlyx : TIya*(2), VA € [0, ..., n]} )

and let 1lg(x) be the closing profile (a vector) at the point x of the image |
defined as:

Ig(x) = {Igy : Ipr*(x), VA € [0,...,n]} )

with vo*(z) = ¢o*(z) = I(z) — Hyolz) = po(z) = I(z) for A = 0 by
definition of opening and closing by reconstruction. Given (1) and (2), the
opening profile can aso be defined as a granulometry made with opening by
reconstruction, while the closing profile can be defined as anti-granulometry
made with closing by dual reconstruction. The derivative of the morphological
profile is defined as a vector where the measure of the slope of the opening-
closing profile is stored for every step of an increasing SE series.
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The derivative of the opening profile Ay(x) is defined as the vector:

Av(x) = {Avx : Aya =] &y — Pnaca VA € [1,. .., n]} (3)
By duality, the derivative of the closing profile Ag(x) is the vector:
Ad(x) = {Adx : Apy =| Bps — Dpa_y |, YA e [1,...,n]} (4)

Generally, the derivative of the morphological profile A(x) or the DMP can be
written as the vector:

_ Ac+>\:A7/\7V€[]‘""’n]
A= { Acrv1:Apy, Ve, .. n] X

for an arbitrary integer c with n equa to the total number of iterations.

Given al the above, the morphologica multi-scale characteristic @ of the
image | at the point x can be defined as the SE size (iteration number) with
the greatest associate value in the A function:

P(z) ={e: A(z) =VA(z),Veec—n+1,...,c+n]} (6)

Equation (6) can be rewritten in order to maintain information about the
type of structure that is detected. In order to do that, the multi-scale-opening
characteristic @ A(x) of the image | a the point x can be defined as:

Dy(z) = {A: Ayy = VAY(z)} (7)
while the multi-scale-closing characteristic can be defined as:
Po(z) = {A: Apx = VAp(z)} (8)

With these definitions, an algorithm for multi-scale segmentation of the
image |, based on its characteristic, can be written as.

Ex = $o(z) : VAY(z) < VAp(z) (9)

o) { fx = Oy(z) : VAY(z) > VAp(z)
E=0:VAy(z) = VAp(z)

where the label of the morphological characteristic is the iteration code of the
opening or closing series that correspond to the greatest value of the derivative.
If this greatest derivative value is strictly equal for both the opening and closing
series, the “flat” label & is applied. In this sense, an image feature is a set of
connected pixels or a connected component with the same vaue of ®. The
function @ takes values in the range ®(z) € [, ..., A,] IN case of prevaently
“convex” regions, values in the range ®(x) € [%4, ..., &,] in case of prevalently
“concave” regions, and the value ®(x) = k = 0in case of prevalently “flat” or
morphologicaly “indifferent” regions for al the used sizes of SE O [1,...,n].

In case of uncertainty or ambiguity of the distinction between scene fore-
ground and background, it is aso possible to soften the conditions of the mor-
phological characteristic by rewriting (9) as:

A A

A =Pv(x) : VAY(z) > VAp(z) > 0
5 (2) - { s = Bpla) VA (z) < VAp(z) > o (10
= 0: VAY(z) = VAp(z) <o

Al
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for a given level of contrast ¢ = 0. With 0 = 0, (9) and (10) give the same
result, while by increasing the value of o > 0 the level of necessary contrast
is increased in order to avoid the labeling of the pixels with the “flat” label.
Thus, the level o could be interpreted as a threshold used in distinguishing
between image foreground and background.

2.2. DiscussioN

The intuitive idea of a multi-scale morphologica profile can theoretically be
interpreted as a variation of the notion of a morphological spectrum. It can
be defined as an extension of the opening spectrum studied by Haralicket al.
[9] or the pattern spectrum defined in Maragos [10]. Both are based on the
definition of some kind of granulometry [11], as the opening spectrum, i.e., the
image sequence created by computing the differences between successive images
in a granulometry generated by a flat SE family with an integral index set.
Applications of variations of the morphological spectrum have been proposed
for image noise reduction [12] and pseudo bandpass image decomposition [13].

While the above-mentioned approaches do not require a particular metric
for the morphological transforms, the DMP approach requires the use of gran-
ulometry and anti-granulometry made by opening and closing by reconstruc-
tion, using a geodesic metric. In addition, the above-mentioned approaches are
mainly used for filtering purposes, while the definitions of the derivative of the
morphological profile in (6) and the morphological multi-scale characteristic
in (7) and (9), dlow us to reach the segmentation phase, avoiding problems
related to the calculus of a gradient function.

Theoretically, the proposed method and watershed segmentation share the
same geodesic approach, but there is an important difference. In contrast
to watershed segmentation, which is intrinsically non self-dua (and in fact is
implemented with basin flooding agorithms), the proposed approach is fully
self-dual and then treats darker or brighter connected components exactly in
the same way. This is an important positive characteristic of the proposed
method, since it alows us to avoid the calculus of the gradient function in the
segmentation  process.

Moreover, in watershed segmentation, we typicaly only take into account
the absolute contrast (any kind of grey-level difference) between adjacent con-
nected components in the region merging process. However, in the proposed
approach we introduce the concept of relative contrast, where relative means
relative to a given spatiadl domain of application. This way, contrast is not only
defined trivially as the grey-level difference between adjacent connected com-
ponents, but it also includes a dimension describing the scale with which the
image is observed where different levels of simplification may produce different
relative contrasts. In fact, to use the derivative of the morphological profile as
in (6), corresponds to detecting the spatial domain having the greatest contrast
(in darker or in brighter structures) with respect to the surrounding connected
components. Thus, the contrast is always measured relative to a given spatial
domain. An important consequence of this characteristic is that the proposed
method is expected to dramatically reduce the over-segmentation problem of
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the classical watershed approach, by introducing some sort of an intrinsic hier-
archy.

In a recent paper, Crespo et al. [14] give similar observations, to what
has been presented here, about problems related to the use of the classica
watershed segmentation procedure in cases where it is also necessary to retain
very thin structures. As here, the adopted solution in [14] involves filtering by
reconstruction. However, the overall strategy there is completely different from
our approach. The procedure proposed in [14] requires

1. a morphological filtering phase for image simplification;
2. the extraction of a set of masks by thresholding of some criteria (five such

criteria are used in [14]);

3. the extraction of a final mask using a set union of the preceding criteria;

4, a region merging phase based on a measure of region dissimilarity, calcu-
lated as the absolute difference between the grey-level average of adjacent
regions.

Differences between the method proposed here, which is based on the deriv-
ative of the morphological profile (DMP), and the method proposed in [14],
concern both the self-duality and the complexity of the structure of parame-
ters that are responsible for the final segmentation output.

In contrast to the DMP approach, the morphological filtering phase of the
“flat” approach in [14] is intrinsically non self-dual because it uses aternate
filtering in order to detect flat areas. Therefore, the operator has to decide in
advance what kinds of structures (brighter or darker) are more important to re-
tain. However, that is often arbitrary and may provoke undesired effects on the
final output. Moreover, the DMP approach requires the definition of only two
parameters (the step of the granulometry/anti-granulometry and the maximal
SE size used, or the maxima number of iteration), while the “flat” approach in
[14] requires a more complex structure of parameters. Those parameters may
be less manageable and can provoke instability or robustness problems on the
output. An example is the use of a gradient-to-area ratio criterion that often
produces instability when it is needed to manage at the same time regions of
very different areas. These regions can be of various sizes, from one pixel to
many hundreds of pixels. The solution in [14], i.e, to exclude regions of area
less than a given number of pixels (5 pixels in the cited paper), is questionable.
It eliminates most of the small regions and it further complicates the general
parameter structure by introducing another threshold. These shortcomings are
overcome by the approach proposed here.

3. Applications

3.1. PREVIOUS EXPERIMENTS

The idea to use a composition of opening transforms for a morphological seg-
mentation of satellite data was proposed some time ago for the detection of
different urban structures [15,16]. In the experiments in [15,16], segmentation
labels were obtained after the arithmetic summing of an opening series with an
increasing SE. The method is only applicable to Boolean maps (binary or 2-
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grey-level images) and it does not use geodesic metric. More recently, Pesaresi
and Kanellopoulos [17] used a composition of geodesic opening and closing op-
erations of different sizes in order to build a morphologica profile. Then, they
used a neural network approach for the classification of features. The difference
from their method to the method proposed here, is that in [17] the absolute
residual between the original image and the opened or closed one was used as
a morphological characteristic function. Therefore, the method in [17] cannot
be used for multi-scale segmentation since it limits the explored spatial domain
by a restraint range of SEs. The method proposed here, which is based on the
derivative of the morphological profile, is both more general and more robust
than all the methods above, as will be demonstrated by the following examples.

3.2. EXAMPLES

Example of the application of the proposed method is now given for the seg-
mentation of a satellite high-resolution image. The original image used in
this experiment was recorded by the IRS-1C panchromatic sensor, which has
ground spatia resolution of 5x5 meters, and covers a surface of about 15.000
x 15.000 pixels (75 km x 75 km). The subsample showed here is taken from
an agricultural are connoted by scattered settlement (N-E of Athens, Greece),
and covers a surface of 665 x 966 pixels (3.3 km x 4.8 km). Figure 1 (left)
shows the subsampled image with a min-max histogram stretching. It is easy
to note the co-presence in the scene of objectsregions of different sizes. As
a consequence, in this experiment the multi-scale approach was applied as de-
fined in (9). Figure 1 (right) shows the segmentation results. The spatial
domain explored in this experiment was given by a range of 10 increasing SEs
with an octagonal shape and a diameter ranging from 7 pixels (45 meters) up
to 61 pixels (305 meters). The step from iteration A to iteration A + 1 was
then equal to 6 pixels (30 m.). Consequently, the fina number of labels was
n=10+10+1=21, counting also the “flat” label. The function ¢ (x) assumes
values in the range ®(z) € [%1,...,~,] in case of prevaently “convex” regions,
vaues in the range ®(z) € [%1,..., Ry] in case of prevalently “concave’ regions,
and the value @(x) = & = 0 in case of prevaently “flat” or morphologically
“indifferent” regions for all the used sizes of SE 0 [1, . . ., 10]. Great regions
as well as smaller ones are retained, without undesired loss of details in the
segmented image. That is also the case for nested, thin and, complex regions.
It is interesting to note that the proposed multi-scale approach seems to have
a hierarchical effect. Large regions appear to have the same label. Also, no
over-segmentation effect is detected due to the presence of non-relevant local
minima and local maxima which is usual in classical segmentation by watershed
approach.

Figure 2 shows a comparison between the proposed approach and classical
watershed segmentation for a 100 x 100 pixel area of the Athens data set. The
subsample is placed in the centre of Athens and is taken over a compact urban
area with an internal vegetated area (park). Subimage 1 shows the original
radiometric data enhanced with min-max histogram stretching for visualisa-
tion purposes. The classical morphological approach requires the detection
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Fig. 1. Left: portion of IRS-1C panchromatic scene over an agricultural and scattered
settlement area N-E of Athens, Greece, 1998. The image covers an area of 3.3 x 4.8 square
kilometers with a resolution of 5x5 meters (665 x 966 pixels). The image has been enhanced
for visualisation by min-max histogram stretching. Right: multi-scale segmentation obtained
by (9). The explored spatial domain ranges from an octagon of 7 pixels (45 meters) to an
octagon of 61 pixels (305 meters), with 10 steps of 6 pixels (30 meters) each.

of the “border” of the regions, and subimage 2 is the direct application of a
morphological gradient transform (defined as the difference between dilation
and erosion) to the original data. In this complex context, it is possible to
observe that attempting to start from edges of regions leads to the production
of “surfaces of edges’ where most of the pixels are connoted as “border pixels.”
Another problem with the classical approach, which is evident here, is the over-
segmentation generated by non-relevant local minima of the gradient function.
Subimage 3 is the gradient of the filtered data where a morphological filter
was applied, defined as the opening of the closed image with a flat SE equa
to 3x3 pixels. Consequently, the situation in subimage 3 appears to be simpler
than in subimage 2. Subimage 4 shows the results of watershed segmentation
using the gradient image in subimage 3. Subimage 5 shows the output of the
multi-scale morphological segmentation defined in (9). We can note that the
proposed approach retains a better description of the origina structura infor-
mation, introducing less shape noise than the classical watershed segmentation
approach. Another positive characteristic of the proposed method is the in-
trinsic hierarchy that reduces dramatically the over-segmentation effect. This
can be detected in the case of the green area that is labeled as only one region
by the proposed method but a set of non-homogenous regions by the classica
approach.
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Fig. 2. Comparison of the proposed morphological segmentation approach and classical
watershed segmentation. 1. Original radiometric information (IRS- 1C panchromatic sensor)
after linear histogram stretching; 2. gradient of the original data; 3. gradient of the filtered
data; 4. image obtained by watershed segmentation; 5. image obtained by multi-scale
segmentation as defined in (9).

4. Conclusions

Morphological segmentation by the derivative of the morphological profile was
proposed. The proposed method is based on the use of residuals from opening
and closing by reconstruction. In experiments, the proposed method demon-
strated excellent performance even where the classical morphological approach
had problems. In particular, the proposed approach gives a better shape de-
scription than the classica approach. It aso retains significant small regions in
images, and has an effect of intrinsic hierarchy that reduces dramaticaly the
over-segmentation problem of the classical approach.

The proposed method is particularly well suited for the segmentation of
complex image scenes such as aerial or fine-resolution satellite images where
very thin, enveloped and/or nested regions may have to be retained, and where
the gradient calculation has a major drawback. The method performs well
in presence of both low radiometric contrast and relative low spatia resolu-
tion which may produce a textural effect, a border effect, and ambiguity in
object/background distinction. All these factors are critica and lead to an
instability effect if segmentation methods based on an edge-detection approach
are applied.

The drawback of the proposed method concerns the necessity of looking
at a range of increasing opening and closing by reconstruction operations,
which may cause a heavy computational burden. As a consequence, for images
with very large and homogeneous regions, it is possible that a gradient-plus-
watershed approach may be more efficient, since it does not need to explore a
very wide range of different SE sizes. For the above reasons, the method pre-
sented here is particularly well suited for segmentation of complex image scenes
such as aerial or satellite images where very thin, enveloped and/or nested re-
gions have to be retained. It is also well suited for images with low radiometric
contrast and relatively low spatial resolution, which produce textural effects,
border effects, and ambiguity in the object/background distinction. All these
factors are critica and can lead to instability effects if segmentation methods
based on the edge-detection approach are used.
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Abstract. Flooding is at the heart of morphological segmentation. The properties of flood-
ings, defined as upper levelings are first studied. If gis a flooding of f, its catchment basins
re unions of the catchment basins of f. For this reason, it is possible to construct multiscale
segmentations associated to families of increasing floodings of a given reference function.
Various useful families of floodings are presented, together with ways to combine them. We
then show how traditional segmentation techniques belong to this framework if one floods
with a uniform level of water and with markers. Replacing this uniform flooding by oth-
ers permits to favour the segmentation of regions having some characteristics such as large
size or contrast. Finally the introduction of fuzzy markers establishes a continuum between
traditional segmentation with markers and pure multiscale segmentation.

Key words: Flooding, Hierarchy, Minimum Spanning Tree, Ultrametric Distance, Multi-
scale Segmentation, fuzzy Markers.

1. Introduction

Flooding seems to be at the heart of morphological segmentation: both the
watershed as the swamping of a topographic surface imposing a set of markers
as regional minima are based on flooding. Floodings are upper levelings, i.e.
closings by reconstruction. Their properties are studied in a first part.

The catchment basins associated to a series of increasing floodings form a
hierarchy, which may be summarized as an ultrametric distance between the
caichment basins of the finest partition. A lexicographic ultrametric distance
is introduced, allowing to combine the hierarchies associated to two families
of increasing floodings. It is then shown how to use this distance for deriving
segmentations in various modes. unsupervised, with markers or interactively.

In order to enlarge the palette of available tools we present several particular
modes of flooding: as a matter of fact, the characteristics of the results will
depend upon the criteria governing the flooding. Synchronous flooding where all
lakes share some common size, such as atitude, depth, area or volume. Finaly,
we establish a continuum between multiscale segmentation and segmentation
with markers by using fuzzy markers, where sources are placed, whose flood is
slowed down by a factor associated to each marker.
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2. Flooding a Topographic Surface

2.1. DEFINITION OF A FLOODING

Levelings have been presented in [5]. The simplest class of them are defined as
follows.

Definition 1 An image g is a leveling of the image f if and only if, for any
couple of neighboring pixels p,q, gn > g4 = fo = g9p > g9 = foq.

As shown by this definition, the levelings are neither extensive nor anti-
extensive. In this paper we will concentrate on the subclass of extensive level-
ings, which we call floodings. From the definition of levelings we immediately
derive the definition of floodings:

Definition 2 A function g is a flooding of a function f if and only if g = f
and for any couple of neighboring pixels (p,q): gp > 94 = gp = fp.

The following criterion is easily derived from the definition of floodings if
one interprets the implication A 0 B of the definition as [nonA or BJ.

Criterion 1 Flood: A function g is a flooding of a function f if and only if
g=[fVeg.

2.2. PROPERTIES OF FLOODINGS

Creation of lakes

A flooding gis obtained from a function f, by creating a number of lakes on
the topographic surface of f. All connected components where g > f are flat
if gis aflooding of f:

9q > Iy
9p > fp

for any couple of neighboring pixels(p,q): = gp = Gq.
We will call lake of aflooding g any flat zone of g containing at least a pixel p for
which f, >gp. Let us consider a lake L of a flooding g of a reference function
f. If al neighbors of L have a higher atitude, then L is a regiona minimum. If
L has a lower neighbor, there exists a couple of pixels (p,q), p belonging to L
and gp >gq. This implies that g, = fp, meaning that the level of the flooding
g and the level of the ground f are the same at pixel p: the lake cannot build
a wall of water without solid ground to hold the water. If the lake L also has
higher neighbors, this means that from the pixel p to the pixel qthe level of
g decreases; from p inwards towards the center of the lake, the atitude of g
also decreases;, whereas, if one follows the outside boundary of the lake, in both
directions the altitude will increase. Hence pis a saddle point of the function f.

Algebraic properties

It is easy to check using their definition that:

— If gand hare two floodings of f, then g Ohand g Ohaso are floodings
of f.
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— If gand h are floodings of fand g = hthen gis a flooding of h.

— Therelation {g is a flooding of f} is reflexive, antisymmetric and transitive:
it is an order relation. In particular, if fand h are two functions such that
f < h, then the family of floodings (g;) of f verifying g; < hform a
complete lattice for this order relation. The smallest element is fitself
and the largest is obtained by repeating the geodesic erosion of h above f:
hntl — f v eh™ until stability, that is when A”*! = p* (this operation is
known in the literature as reconstruction closing of ffrom h). The criterion
“Flood” given above shows that the result at convergence effectively is a
flooding of f. Convergence may be obtained faster when using a recursive or
a data driven implementation of the agorithm using hierarchical queues.
This operation also is known as reconstruction closing of fusing h as
marker.

— These properties permit various constructions of increasing families of
floodings (g;): it is necessary and sufficient that g is a flooding of 9 -

fFiff>X

Aiff <A

h-closings ([1]), area closings ([8]) or volumic closings ([7]) are floodings associ-

ated to the size of the catchment basins. Reconstruction closings with markers

permit a manifold of floodings, associated to marker functions. Swamping with

markers is a particular case ([6]).

The simplest flooding is uniform and obtained by threshold f =

2.3. WATERSHED AND FLOODINGS: ABSORPTION OF CATCHMENT BASINS DUR-
ING FLOODING

If gis aflooding of a reference function f, we may imagine a progressive flooding
of f producing g. During this flooding process, the catchment basins (CB) of
f merge according to two mechanisms. a) the level of the water reaches a
saddle point within a CB X but has a lower level in the neighboring catchment
basin Y: X is absorbed by Y; b) two previously disconnected lakes merge: the
corresponding CB aso merge; the merging also occurs a the localisation of a
saddle point. As a result, each CB of g is either identica with a CB of for
equal to the union of severa CB of f.

2.4. FLOODING SPANNING TREE

The neighborhood graph G = (X, U) of a topographic surface fis defined as
follows: the nodes X are the catchment basins, the edges U link neighboring
catchment basins. The edge u between the nodes a and b is weighted by the
dtitude of the saddle point between a and b. However, during increasing flood-
ings, the catchment basins merge only along some edges of the neighborhood
graph: this set of edges is the minimum spanning tree ® = (X, T) of G (unique
if the weights of the edges of U are all different). Hence® summarizes al useful
information associated to floodings of f. If g is a flooding of f, a number of
catchment basins of fare covered by a lake. If we assign to each of the corre-
sponding nodes of X the level of their lake, we are able to derive the catchment
basins of g. An edge u of T will be considered as flooded if the level of water at
one of the adjacent nodes is higher or equal to the weight of u. The binary tree
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obtained from © by cutting al edges which are not flooded is a forest where
each tree represents a catchment basin of g.

3. Hierarchy Associated to an Ordered Series of Floodings

3.1. HIERARCHY OF THE CATCHMENT BASINS

Let us now consider a family F of increasing floodings (gi)i<n of a reference
function f, verifying gi < g for i <j, and go = f. The set of catchment basins
of gj is called Ai; A = || A is the set of all catchment basins. Each A;i is a
partition of E. The partitions are nested: each element a of A; is the union of
CB of Aj_;.

3.2. HIERARCHY AND ULTRAMETRIC STRUCTURE

The hierarchy of the catchment basins A associated to the family of flood-
ing F is equivalent to the definition of an ultrametric distance. The distance
Fd(a, b) between two basins a and b of A is defined as the index of the low-
est flooding of F for which a CB will contain them both. Such a basin al-
ways exists if the highest flooding gy has only one minimum. In the op-
posite case, it may not exist: the distance between a and b is then infinite:
Fd(a,b) =inf{i|3ce A ; aUbCc}.

The restriction of Fd to Ag is an ultrametric distance, as it verifies:

* reflexivity : Fd(xx) = 0

* symmetry: Fd(Xx,y) = Fd(y,X)

* ultrametric inequality: for all x, y, z: Fd(x,y) < max{Fd(x, z), Fd(zY)}

The first two axioms are obvioudy verified. The last one may be interpreted
as follows: the minimum index of a flooding of F for which a CB contains
both catchment basins x and y is lower than or equa to the index of the lowest
flooding for which a CB contains al three catchment basins x and y and z. The
level of this last flooding is precisely max{Fd(x, z), Fd(z y)}.

An ultrametric distance is a distance, as the ultrametric inequality is stronger
than the triangular inequality. A closed ball for the ultrametric distance with
centre a and radius nis the set of al regions b for which Fd(a, b) < n. The balls
associated to an ultrametric distance have two unique features, which will be
useful in segmentation. The radius of a ball is equa to its diameter, i.e. to the
largest distance between two elements in the ball. Each element of a ball is the
centre of this ball. The union of all closed balls of radius i precisely constitute
the set Ai.

3.3. USEFUL FAMILIES OF FLOODINGS

If a hierarchy may be associated to each family of increasing floodings, it is
now time to indicate useful families of floodings from which to derive multiscale
segmentations. As a matter of fact, the quality of segmentation will depend to
a great extent on the family of floodings on which it is build.
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3.3.1. Uniform flooding

A flooding of a function fis uniform if the level of al lakes is at the same
level A.The family {f1},-, used with markers is a the base of &l traditional
morphological segmentation: placing sources at the position of the markers and
flood the topographic surface with uniform flooding. The resulting catchment
basins are the expected segmentation.

3.3.2. Sze oriented flooding

Size oriented flooding is produced by placing sources at each minimum and
flooding the surface in such a way that all lakes share some common measure
(height, volume or area of the surface). As the flooding proceeds, the level of
some lakes cannot grow any further, as the level of the lowest path point has
been reached. In fig. 1, flooding starts from all minima in such a way that al
lakes always have uniform depth. The resulting hierarchy is called dynamics
in case of depth driven flooding and has first been introduced by M. Grimaud.
Area and volume criteria have been studied by C. Vachier ([7]). Size oriented
flooding permits to produce hierarchica segmentation with good psychovisual
properties. The depth criterion ranks the region according to their contrast,
the area according to their size and the volume offers a nice balance between
size and contrast.

Fig. 1.  Example of a height synchronous flooding. Four levels of flooding are illustrated;
each of them is topped by a figuration of the corresponding catchment basins.

Remark 1 Any stage of synchronous flooding represents a closing of the topo-
graphic surface. For the height, it will be h-closing, for the area, area closings
and for the volume, volumic closings. If the criterion governing the growth of
the lakes is the height, the associated flooding becomes uniform flooding.
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3.3.3. Tailored flooding for favouring some types of regions.

In some cases, while using one of the size criteria, it appears desirable to favour
some regions. As an example: in many cases, the topographic surface to be
flooded is the gradient image dh of an image h. The catchment basins of dh
correspond to flat zones in h, which may be regiona minima, maxima or step
zones. However minima and maxima of h are perceptually more important than
transition flat zones. For this reason, it may be worthwhile to push minima
and maxima of h higher in the hierarchy.

Fig. 2. 4 levels of tailored synchronous flooding, where the minimum marked red is slowed
down by a factor 5. As a result we show the corresponding segmentation into 3 regions
compared to the segmentation in 3 regions if no source is slowed down.

It is easy to obtain this result during synchronous flooding: the flooding of
the minima we wish to favour is slowed down by some factor. In fig. 2 we have a
case where depth synchronous flooding is performed. However the depth of the
minimum above a black bar grows five times slower than the depth in the other
catchment basins. For this reason, the minimum above a black bar survives
much longer any absorption.

3.3.4. Svamping: flooding speed=0 at the localisation of the markers

In presence of markers, the corresponding minimum has no source at al. Or in
other terms the flooding of this basin is infinitely slow. Hence the correspond-
ing minima stay minima for ever, and catch their neighbouring basins, the final
resulting flooding is the traditional swamping. If there are N minima, cutting
the N — 1 highest edges of the MST vyields the segmentation based on markers.
The advantage of this approach over the traditional approach of segmenta-
tion with markers, is the possibility to cut more than N — 1 edges, yielding a
segmentation with more regions than the number N of markers. Inversely, by
adding a second criterion (see the lexicographic combination of criteria below)
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it is possible to break the ties between the markers and obtain segmentations
with less than N regions.

3.3.5. Fuzzy markers for a maximal versatility

Grouping both notions together, tailored flooding and flooding with markers,
leads to the notion of fuzzy markers. each minimum is considered as a fuzzy
marker and assigned a fuzzy level (1 means a hard marker, where no source is
placed; 0 means no marker at al, and the source is not slowed down; A means
a fuzzy marker, and the corresponding source is slowed down by a factor of A).
Fuzzy markers permit to establish a continuum between traditional multiscale
segmentation and segmentation with markers.

3.3.6. Implementation of fuzzy markers through uniform flooding

Synchronous flooding is a nice vehicle for presenting the concepts, but not really
easy to implement. On the other hand, uniform flooding is extremely efficiently
implemented with the help of hierarchical queues [3]. And it is possible to
produce the same weights for the edges of the MST during uniform flooding as
those produced by synchronous flooding, as we will see now. Let us illustrate
the procedure with the depth criterion; furthermore, the source a minimum m;
is slowed down by the factor A;. A different label is assigned to each minimum
of f and the topographic surface is flooded. Each time two lakes i and j
with different labels merge, their depths d; and dj are measured. The weighted
measures f— and % (the measure is infinite for A = 0, corresponding to a
hard marker, which absorbs al its neighbors) are compared: the lake with the
smallest measure is considered to be absorbed by the other and takes its label.
The two lakes are necessarily neighbors on the flooding tree: the weighted size
of the smallest lake is assigned to the edge of the flooding tree which connects
them. When the uniform flooding is completed, all edges of the flooding tree
will be assigned weights and the ultrametric distance can be computed.

3.4. COMBINING TWO DIFFERENT HIERARCHIES

We have presented a number of mechanisms for constructing a hierarchy. We
may still construct more by combining two of the preceding ones by one of
the following mechanisms. The ultrametric distance Fd between any couple of
elements of Ag is easily computed as soon as we know it for al couples which
are linked by an edge of the flooding tree: so it is sufficient to define a weight
Fd(x,y) for each edge (x,y) of the MST. The ultrametric distance Fd between
two catchment basins a and b of Ag is then simply obtained: Fd(a, b) is equal
to the highest weight on the unique path on the tree FT between a and b. The
most natural ways to combine two hierarchies are the following ones.

3.4.1. Maximum and minimum of two flooding hierarchies

If F;d and F,d are the distances associated to two distinct flooding families, we
define the maximum and the minimum of these distances. For the maximum
we create a flooding tree (F; O F,)T where each edge (X, y) has the weight
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Fid(z,y) v Fod(z,y). The resulting ultrametric distance is equal to Fid Vv Fud.
Replacing v by A produces the infimum (Fy A F,)d which is the greatest ul-
trametric distance smaller then F;d and F.d: it is equal to £yd A F,d on each
edge of the MST and higher or equal between nodes which are not neighbors
on the MST.

3.4.2. A lexicographic ultrametric distance

If the number of different floodings within a family F; is reduced, it does not
offer a rich multiscale representation of the reference function f: from one
flooding g; to the next g;,; the number of catchment basins will be strongly
reduced, each catchment basin of gj+, being the union of several catchment
basins of g;. In some cases, it may be desirable to have a richer hierarchy with
more levels and more regions. However, we desire that the major stratifica-
tion of F; be respected. This is the case for instance if one uses markers, as
explained above: all regions with markers are equivalent and appear at the
highest level of the hierarchy. Introducing a second criterion will make it pos-
sible to tie the breaks between regions with markers and get additiona levels
of the hierarchy with less regions. The solution is to combine F; with another
hierarchy F, into a lexicographic ultrametric distance. We define the lexi-
cographic distance F)Fyd(a,b) = {Fid{a,b), Fod(a,b)}. The order relation is
classicaly defined as: Fy Fhd{a,b) > FyFhd(c,d) < {Fid(a,b) > Fid(c,d)} or
{Fid(a,b) = Fid(c,d) and Fyd(a,b) > Fai1d(c,d)}. Let us now take the flood-
ing spanning tree and assign to each of its edges adjacent to two nodes a and
b the distance F1F,d(a,b). The lexicographic distance Li,d(a, b) between any
two nodes a and b will be defined as the maximum taken by the distance F; F»d
along the unique path on the flooding tree between a and b. This yields again
an ultrametric distance, which leads to a hierarchy which is finer than the
hierarchies induced by the family F;.

4 . Application to Segmentation

We are now able to summarize a number of various multiscale criteria in form
of a weighted spanning tree. This flooding spanning tree may now be used in
each of the three classical segmentation modes.

4.1. SEGMENTATION WITH MARKERS

In many situations one has a seed for the objects to segment. It may be
the segmentation produced in the preceding frame when one has to track an
object in a sequence. It may also be some markers produced either by hand or
automatically. As a result, some nodes of the flooding tree may be identified as
markers. The resulting segmentation associated to these markers will then till
be a minimum spanning forest, but constrained in that each tree is rooted in a
marker. Several agorithms exist for constructing the minimum spanning forest,
closely related to the classical agorithms for constructing the MST of a graph
(see [4], for more details). The simplest conceptualy is the following: take
any couple of markers and cut the highest edge on the unique path between
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them. Repeat this operation until a forest is created where each tree contains
one and only one marker. We obtain the classical segmentation with markers
if we chose the ultrametric distance associated to uniform flooding, i.e. the
tree © itself. Using a different set of weights, associated to another mode of
flooding will permit to produce another balance between regions: for instance
if the weights are based on area synchronous flooding, the same set of markers
will tend to detect large regions, whereas a set of weights based on depth will
stress contrasted regions.

4.2. UNSUPERVISED SEGMENTATION

The primary aim of a hierarchical approach is to be able to easily produce
segmentations with an arbitrary number of regions. The best segmentation
into n regions should be a partition in n regions such that each region is as
homogeneous as possible and two distinct regions as different as possible. The
approach based on ultrametric distances defines the homogeneity of a region
as its diameter: it is the largest distance between two nodes in this region.
We may then define the diameter of a partition as the largest diameter of a
region in the partition. A partition P1in nregions will be better than another
partition P2 aso in nregions, if the diameter of P1is smaller than the diameter
of P,. It is easy to verify that the best partition into n regions, i.e. the partition
with the smallest diameter is then obtained by cutting the n— 1 highest edges
in this tree, producing n— 1 subtrees, each of them representing a region of
the desired segmentation. This is illustrated on the top row of fig. 3, where
two levels of a hierarchy are illustrated, with a lower and a higher number
of regions. The quality of the obtained segmentation relies entirely upon the
particular choice of hierarchy, or more precisely upon the family on floodings
underlying this hierarchy.

4.3. INTERACTIVE SEGMENTATION

Besides the traditional segmentation technique based on markers, new interac-
tive segmentation techniques may also be developed. A toolbox for interactive
editing is currently under development ([2]), based on a hierarchy of segmenta-
tions. A mouse position is defined by its x —y coordinates in the image but aso
by its depth zin the segmentation tree. If the mouse is active, the whole tile
containing the cursor is activated and added or suppressed from the segmen-
tation mask. For the same x —y position, a mouse displacement towards lower
levels of the hierarchy will result in a resegmentation of the region, whereas
a displacement towards higher levels represents a fusion of adjacent regions.
This is illustrated in fig. 3, where two levels of a hierarchy are illustrated on
the top row, with a lower and a higher number of regions. None of them gives
completely satisfying results. For this reason, some regions in the background
will be merged by replacing them with their oversets in higher levels of the
hierarchy (balls of the ultrametric distance with a larger radius) , while other
regions in the person will be resegmented by moving lower in the hierarchy
(balls of the ultrametric distance with a smaller radius).
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Fig. 3. Top row: a) initial image; b) and c) two partitions with a decreasing diameter
associated to volumic driven floodings. Bottom row: local variations of the radius of the
balls permit to resegment some regions and merge others.

5. Conclusion

We have defined a unified framework for hierarchical morphologica segmenta-
tion based on families of increasing floodings of a gradient image. Traditional
morphological segmentation appears as a particular case. It is possible to use
this framework for unsupervised, marker driven or interactive segmentation.
Size oriented flooding permits to favour size or contrast or a balance between
both. Using fuzzy markers permits to obtain a continuum between marker
driven segmentation and unsupervised multiscale segmentation. Finaly, the
use of lexicographic ultrametrics permits to combine various criteria and ob-
tain fine grained hierarchical segmentations.
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Abstract. Segmentation and edge detection are key points in image anaysis. Mathematical
morphology employs the watershed transform to obtain the edges of the objects in an image.
Usually, the watershed is significantly influenced by the morphological gradient. Furthermore,
the direct segmentation of the gradient by the watershed transform results in an extreme
oversegmentation. In this paper, we propose a morphological approach to compute the multi-
scale gradient applied to color images. The main property of this technique, established on
color morphology, is that it does not split the color channels in contrast to other methods
in the literature. The experiments have shown that the suggested technique enhances the
segmentation results generating more precise watershed lines.

Key words: Color Morphology, Edge Detection, Color Multi-Scale Gradient, Morphological
Segmentation, Watershed.

1. Introduction

One of the main goas of image analysis is to isolate regions that are likely
to come from a single object in order to analyze and recognize geometrical
properties and the structure of the objects. The geometrical analysis of the
objects must be quantitative, since only such an analysis and description of
the objects can provide a coherent mathematical framework for describing the
spatial organization. The quantitative description of geometrical structures is
the objective of mathematical morphology.

So far, the use of such framework has alowed the development of a class
of morphological algorithms to deal with binary and grayscale images. Multi-
channel processing has been of growing interest recently, especially in color
image processing. By comparison to grayscale images, color images contain
three times as much data. Thereby, their use allows getting a much more robust
segmentation toward lighting conditions and a better accuracy concerning the
extracted regions.

The segmentation task this problem presents to mathematical morphology is
far from easy. Indeed, the conventiona morphological segmentation technique
is the watershed transform. However, watershed is intrinsically a grayscale
transformation, with its applicability depending on the existence of an order
relation on pixel values. By defining an ordering relation that induces a lattice
structure on the image, one can extend mathematical morphology to color
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images and therefore, to the watershed segmentation.

The purpose of this work is to introduce a new morphological multi-scale
gradient for color images and stress that by including this operator in the
morphological segmentation process, one can improve the watershed results.

The paper is organized as follows. Section 2 refers to color morphology and
explains how morphological operators can be obtained by defining a vectoria
ordering relation on the image. Further on, the proposed definition of the color
multi-scale gradient is presented in section 3. Section 4 discuss about color
watershed techniques and demonstrates the way color segmentation based on
watersheds can be achieved and improved by using the multi-scale gradient.
The experimenta results are shown in section 5. Finaly, conclusions are drawn
in section 6.

2. Color  Morphology

Every morphological operator we apply to the grayscale images can be applied
to the color channels separately, because it commutes with infimum and supre-
mum respectively. This somewhat marginal processing is equivalent to the
vectorial approach defined by the canonic lattice structure when only supre-
mum and infimum operators and their compositions are involved and induces
a totally ordered lattice presented in [5] and expressed by X <Y «— X{i) <
Y(i),Viel,...,N.

With these relations, the supremum of a family {X;) is the vector v.X
where each component V. X(i) is the supremum of the { X;(i)}. Respectively,
the infimum of a family { X;} is the vector A.X where each component AX (i) is
the infimum of the { X;(i)}. Using this procedure, new colors not contained in
the input image will appear even for flat structuring functions. Despite of this
major drawback of introducing new colors into the image, there is an inverse
effect of color reduction suggested in [2].

The essential point to extend mathematical morphology to color images is to
define a vectorial ordering relation that induces a lattice structure on the data
Recently, in [1] and [10] an extension from grayscale to color morphology have
been introduced, following the idea of adjunctions and h-adjunctions. Firstly,
the input image is coded. Secondly, a mapping h: RN — Ris used to rank
the vectors that means that each vector pixel is represented by a single scalar
value. The main idea is that a lexicographical ordering' is used, inducing a
total ordering and determines clearly the infimum and supremum of each set
of vectors.

With this approach, it is possible to perform any grayscale morphological
operator on the coded image, and to decode the result afterwards. Thus, the
vectorial ordering relation can be considered as an extension to a total order. It
follows that, the output vector of any morphological operator is necessarily one
of the input vectors. Nevertheless, it is sensitive to the choice of the vectorial
ordering relation and to the color model in use. The suggested method in [1]

1 An ordered pair (i, j) is lexicographically earlier than (i',j' ) if either i<i'ori=1i"and
j < j'. It is lexicographic since it corresponds to the dictionary ordering of letter words.
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is dlightly modified to obtain a morphological multi-scale gradient for color
images that will drive the watershed segmentation.

3. Morphological Edge Detection

3.1. EDGE DETECTION

Many applications in computer vision require edge detection. Edges are of ex-
treme importance, as they convey essential information in a picture. Accurate
edge detection is necessary for a number of image analysis and recognition tech-
niques including watershed segmentation. ldeally, edges are steep transitions
between smoothly varying luminance areas. In real scenes, transitions are not
so steep, which means that their extraction requires careful processing.

Several edge detection techniques exist in the literature [6]. Usualy, these
techniques use first or second derivatives of image luminance and adopt some
adaptive filtering techniques to control the effects of noise. Although this is a
sure way to reduce noise effects, it leads, most likely, to discontinuities in the
detected edges and in contour misplacement.

3.2. COLOR MULTI-SCALE GRADIENT

In morphological image processing, several edge detectors have been developed.
However, we will concentrate on the classica morphologica gradient defined
as.

V(f) = 34(f) —&4(f) (1)

It is clear that the gradient magnitude obtained by subtracting the ero-
sion g4(f) from a dilation &y(f) is influenced by the size and shape of the
structuring function g. Since the gradient is used at the basis of the genera
morphological approach to segmentation, it is of primary importance to com-
pute it properly. However, this gradient is inappropriate because when large
structuring functions are employed, edges that are close to each other may get
merged by smoothing and may be detected as only one single edge. On the
other hand, small structuring functions result in too many noise points due
to insufficient averaging and low intensity edges. Unfortunately, this problem
cannot be solved by using gradients by erosion or dilation because they produce
biased results depending on the brightness of the region.

In order to solve these problems, we propose a multi-scale approach to the
morphological gradient to work on color images. Some mathematical equations
must be provided. Equation 2 is a morphological filter #(f);+1. The filter
chosen was an opening  of the color image f scaled by g,. Clearly, ¢ (f)1
corresponds to the color image f. By adding the morphological gradient of the
filtered color image in equation 3 to the top-hat by opening of its own gradient
in equation 4 (i.e. white top-hat) and taking the average based on scale we
arrive at the color multi-scale gradient in equation 5.

7/’(f)i+1 = S"g(%b(f)z) (2
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VW(f)it1) = 0, (D(Fiv1) — €g, (P(fir1) (3)
D(V(f)ir1)) = V(Hit1) — 00, (V& (1)) (4)
G = — S VW) e) + D) (5)

i=0,scale

The color multi-scale gradient allows enhancing the real boundaries, which
exist in each scale, compared to boundaries that are present in one scale only.
Moreover, due to the averaging operation, it is more robust to noise caused by
scaling. The top-hat transform in equation 4 is a very good contrast detector
suitable for enhancing the bright and narrow objects in the image [9].

It is interesting to compare the results obtained by conventional methods
against the proposed color multi-scale gradient. Figure 1 shows the original
RGB color image and three versions of the gradient. For the sake of compari-
son, al gradients images are shown in grayscale. Figure I(b) shows the result
obtained by applying the morphological gradient (see equation 1) to the color
image. Figure 1(c) is achieved by taking the maximum of the gradients from
the color channels separately and figure 1(d) shows the results obtained by the
color multi-scale gradient when scale is set to 5.

Fig. 1. Input Image (), color gradient (b), maximum of the gradients from the three-color
channels (c), and the color multi-scale gradient (d).
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In this paper, we use an interval of Euclidean disks centered at origin and
parameterized by i. The interval is generated from a single small convex sym-
metrical structuring function g by letting go = g and g; for (i =1) given by i
Minkowski additions. Euclidean disks reduce the anisotropy that is present in
other shapes like a line, a square, or a diamond.

4. Color Image Segmentation with Watersheds

The idea of watershed is drawn by considering an image as a topographical
surface. Suppose we pierce holes at every regiona minimum and dip the image
surface into water, then water will flood areas adjacent to regiona minima. A
regional minimum is a connected plateau from which it is impossible to reach
a point of lower gray level by an always-descending path. As the image surface
is immerged, some of the flood areas (catchment basins) will tend to merge.
When two or more different flood areas are touched, watershed lines (i.e. dams)
are constructed between them. When finished, the resulting networks of dams
define the watershed of the image.

4.1. CoLorR WATERSHED TECHNIQUES

The watershed method is meaningful only for grayscale image analysis. It is
based on the existence of a total ordering relation embedded in the complete
lattice. Since such a relation does not exist in color space, the watershed
transform is not applicable immediately. One should consider experimenting
particular approaches in order to understand its advantages and drawbacks.
There are so many techniques that could be employed to exploit the idea of
watersheds to color image segmentation. Different techniques may produce
different watershed lines and catchment basins. In this paper, we will restrict
ourselves to the ones shown in figure 2.

The first two techniques shown in figure 2(a) and (b) start through the
splitting of the color channels followed by an image filtering. Every channel is
filtered to make easier the image segmentation. Morphologica filters are used
for this task. These filters remove regions that are smaller than a given size but
preserve the contours of the remaining objects [8]. Subsequently, depending on
the order in which the combination of the channels is performed, the gradient
of the filtered image is approximated by the use of a morphological gradient
operator. After this step, the gradient is used as an input to the marker
selection for the watershed algorithm to partition an image into homogeneous
regions.

The third technique in figure 2(c) follows almost the same steps described in
the previous approaches (i.e, image filtering, morphological gradient, marker
selection, and watersheds). The novelty of this technique is that, despite of
splitting color channels, it makes use of color morphology for image filtering
and for the multi-scale gradient.
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Fig.2. Color Watershed Approaches.
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4.2. MARKER SELECTION

The procedure to extract the extrema of a function is called geodesic recon-
struction [11]. Lets us consider two functions f and r and suppose that we want
to impose some regional minima Rto f. We construct v(z,y) = +oo if (z,y) &
R;r=0if (x,y) O R Function f is called the mask image and r is the marker.
Denote by nthe elementary structuring function. The reconstruction of f by
ris obtained by iterating the following operation until stability is reached:

T’H—l(xﬂy) = /\(f(m,y),snrk(m,y)) (6)

where kis the level of iteration performed.

Among various applications of this useful transformation, valley remova is
of interest for us now. To extract valleys with contrast greater than a height
value h of an image I, it suffices to reconstruct | from | + h. By algebraic
difference between | and the reconstructed function, one gets the desired image
without valleys. To extract the peaks, one can use a dua reconstruction of |
from | — 1. It should be noted that the image produced by the valley removal
step is subjected to the combination of channels before a regional minimum
detection is applied.

4.3. WATERSHED ALGORITHM

The watershed algorithm was introduced for the purpose of segmentation in
[7] and [12]. The generic marker-based watershed algorithm used in this pa
per, recently introduced in [3], is established on the wave front propagation
interpretation. It consists of a discrete wavefront initialization and data driven
propagation. The initial wavefront (i.e., the set of markers) is considered as
sources of propagation. Amid waves arriving at a point, the first one is added to
the discrete front. This stage is repeated for every point on the wavefront. The
envelope of al infinitesimal wavefronts forms the macroscopic wavefront. The
algorithm can be applied to different image types and makes use of a priority
gqueue to speed up the propagation step.
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5. Experimental Results

The experimental results described in this section have been partially obtained
using mor ph, a novel morphological library for Mat | ab 2. Without loss of gen-
erality, the color model chosen was the classical RGB despite of color features
being highly correlated. Nevertheless, other color models for color segmenta-
tion and recognition could be used [4].

The evauation criterion chosen was to preserve the majority of all important
edges and reduce the number of remaining segments. Figure 3(a) and (b) show
the watershed results on top of the original image when the watershed schemes
(@ and (b) from figure 2 are applied. The height h was set to 20 for the marker
selection. Figure 3(c) and (d) show the watershed results on top of the origina
image when the watershed scheme (c) from figure 2 is applied. The scale sand
height h were set to [4,20] and [5,20] respectively.®

Fig. 3. Input Image and Watershed Resullts.

6. Conclusions

The performance of morphological techniques based on the watershed approach
is strongly influenced by the gradient algorithm used as a starting step for
segmentation. Using a conventional gradient operator, the watershed approach

2 Additional information about this library can be obtained at http://www.mmorph.com

3 Due to the costs of color printing and the inherent distortions associated with the size
reduction and the printing process, the corresponding color images will be made available
through http://www.wins.uva.nl/~ornellas/images/ismm2000
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leads to an oversegmented image with many irrelevant regions. In this paper, we
have presented a color multi-scale gradient and a new method for the watershed
segmentation using color morphology without splitting the image in its own
channels.

The reconstruction algorithm embedded in the marker selection step can
efficiently remove irrelevant minima caused by noise and quantization error in
the resulting gradient images. Hence, watershed transformation based on the
color multi-scale gradient results in meaningful segmentation with more precise
watershed lines.
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Abstract. This paper presents a fully automatic watershed color segmentation scheme which
is an extension to color images of a previously reported approach dedicated to segmentation
of scalar images. The importance of this extension lies mainly on its ability to automatically
select an optimum result out of a hierarchical stack. This achievement is realized through
the introduction of new evauation methods for the segmentation quality of each level of the
hierarchy which considers a tradeoff between the preservation of details and the suppression
of heterogeneity. The first method estimates the local color error of the regions and combines
it with the amount of regions. The second evaluates the contrast of the segmented image by
combining a region uniformity with an inter-region contrast measure for all regions. These
two methods are compared with respect to an existing one. Experimental results demonstrate
the improvement which has been achieved by using the new evauation criteria

Key words: Hierarchical Watershed Segmentation, Color, Evaluation Criteria

1. Introduction

Color image segmentation refers to the partitioning of a multi-valued image into
meaningful objects. The additional information provided by color along with
the continuously increasing number of applications which deal with analysis
tasks of color images, advocate its prominent position among the interests of
the image processing community.

In this paper, we present an automatic color image segmentation agorithm
based on the principles of hierarchical segmentation using the watershed trans-
formation. It is an extension of an earlier hierarchica watershed segmentation
of scalar images [7].

Similar to the grey level case, the segmentation of color images using the
watershed transformation can be translated as the elimination of its main
drawback, namely over-segmentation. In the literature, treatment of the over-
segmentation problem in color images can be divided into three main categories.
The first one deals with the selection of an appropriate set of markers which
will be used as a guide for an exclusive selection of regions. The marking proce-
dure is a very difficult task and sometimes impossible to solve. This approach
has been followed by Meyer [6] who used color differences between pixels to
establish a stopping criterion for a region growing process which propagated
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the labels of selected markers. The second category is linked to the flat zone
concept. Crespo and Schafer [2] propose a scheme which establishes a flat
zone inclusion relationship, affecting only those flat zones that belong to an
extracted feature computed from all color bands. This feature is computed by
employing a gradient-to-area criterion. Recently, a tendency exists towards a
third approach which attributes a hierarchy among the gradient watersheds.
This additionally implies that the computation of the gradient magnitude of
a selected color scheme has to be considered. Shafarenko et a. [8] apply the
waterfall hierarchical segmentation algorithm [1] on a LUV gradient image and
employ a termination criterion for the merging process based on the topology
of randomly textured images. Finaly, Demarty and Beucher [3] propose two
merging schemes for gradient watersheds which are computed on an HLS gradi-
ent magnitude image. Either they apply the waterfall algorithm or they merge
the basins according to the color of their minima

In our approach, we extend an earlier hierarchical watershed segmentation
scheme [7] for color images, experimenting with RGB and L*a*b* color space.
The gradient computation for these color spaces is based on the di Zenzo multi-
band gradient [9]. Weselect the optimum segmented level out of a hierarchical
stack by evaluating a criterion which takes into account the trade off between
preservation of details and suppression of heterogeneity. Three different evalu-
ation criteria were tested. Experimental results are given for all combinations
between color spaces and evaluation criteria.

The organization of this paper is as follows: In section 2 we describe the
proposed hierarchical segmentation scheme. The evaluation criteria that are
introduced for automatically extracting the best segmentation level out of the
produced hierarchical stack are given in section 3. Section 4 is dedicated to the
discussion of our experiment a results and conclusions.

2. The Hierarchical Segmentation Scheme

The hierarchical segmentation allows to obtain iteratively less detailed image

partitioning. In our approach, a hierarchical stack {H L}, k=12 - In
is obtained. Each hierarchical level HLk is defined as a partitioning Pk =
{Rk1,Rk2, " -,Rkn,} of the original color image I, which preserves the in-

clusion relationship Px O Pk_1. In other words, each region R,i of P« is a
assumed to be the union of a unique set of Py_1 regions. Pk is a mosaic color
image consisting of a patchwork of regions of constant color, estimated as the
mean color vector of the region. Our approach, called constrained dynamics
of contours is detailed in a previous paper [7] dealing with scalar images. Our
extension of the origina agorithm [7] for the segmentation of color images con-
cerns the computation of the gradient magnitude in multi-valued images and
the modification of the hypothesis test. The adapted scheme which deals with
color images is described in the flowchart of Figure 1 and is detailed in the
sections which follow.
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Fig. 1. Flowchart of the constrained dynamics of contours for color images

2.1. COLOR GRADIENT ESTIMATION

Several approaches for color gradient estimation were proposed in the literature.
An estimation of the color gradient as the sum over the gradient of each color
component has been reported by Demarty and Beucher [3]. Another approach
is to take the RMS of the component gradient magnitudes as the magnitude
of the resultant gradient [9]. Rather than combining the different gradient
components, the color scalar gradient can be estimated as the largest color
distance between neighboring pixels. In case of an uniform color space, the
Euclidean distance is used [8].

The above mentioned approaches make use of color components; but how-
ever, do not consider that color images are vector-valued functions for the multi-
band gradient estimation. An explicit formula for multi-band gradient estima
tion has been reported by S. di Zenzo [9]:

Let a m-band image be represented by a function f: R?> -~ R™, that maps a
point P(X1,X2) in the image plane to a m-vector f = [f1(x1.X2), ..., fm (X1, X2)]"
For color images we have m = 3. Since we are looking for variations in
the image, we consider the difference at two nearby image points P and Q:
Af(P,Q) = f(P) — f(Q). Considering an infinitesimal displacement dP, the
difference becomes the differential df? = Zle a%f;dfvi and its squared norm:

Zz az o, dmzdazj (1)

i=1 j=1

where the dot denotes inner product. Note that, speaking about the inner
product of vectors implies that some kind of metric has been defined in R™.
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Using the Euclidean metric we get:

2 2
df? =>">" gijdaidy; (2)
i=1 j=1
where the g;;'s are given by g;; = Y4, g—%%%.
The extrema of the quadratic form defined by Eq 2 are obtained in the
direction of the eigenvectors of the matrix [gij], given by n+ = (cos0z, snf+) ;
0, = Larctan 242 9—= 0 + + /2 and the values at these locations cor-

g11—g22
respond to the eigenvalues  Ax = (911 + g22 & /{911 — g22)% + 4g12)/2. The
multi-band gradient is then defined by:

Vi =/ Ap — M (3)
In this paper we use, for both the RGB and L*a*b* color space, the di Zenzo
multi-band gradient as input for the watershed segmentation.

2.2. HIERARCHICAL STACK OF GRADIENT COLOR WATERSHEDS

After the application of the watershed transformation on the gradient magni-
tude image we construct a tree structure following a model that consists of two
modules. The first module is dedicated to valuate the saliency of each contour
arc of the oversegmented image using the dynamics of contours [5], while the
second module identifies the different hierarchical levels using a stopping crite-
rion. When the contour valuation of adjacent region couples has terminated,
a ranking of the values providing the priority of merging is applied. The hi-
erarchical segmentation algorithm will be completed after the application of
the merging stopping criterion phase which retrieves the different hierarchical
levels HL . For this purpose, a statistical decision is employed through a hy-
pothesis test, leading to the creation of a new hierarchical level in the case that
the homogeneity constraint imposed in the regions is violated during the region
merging process. The hypothesis set is defined as follows:
- HS: Two adjacent regions belong to the same label at level k
— HX: Two adjacent regions belong to different labels at level k

This stopping criterion phase has been extended in the case of multi-valued
images defined in RGB and L*a*b* color space. The generalization of the chi-
square test approach for multivariate analysis is the Hotteling's T2 test. The
application of this test to the merged region R; O R; is given by:

H(’f : F(%j)k < F(3,n(RiuR])k#4)(a) = P(i,j) = true 4
HY : By, 2 Fonam,on,, -0(@) = P, j) = false (5)
= (pi—p) 270 (Bi— i)
2 —_ 1 J iy . .
where £, = 3(n(r,ur, . +2) — 2 i and y; are the mean color

"Ry TRy
vector of regions Ry,i and Ry respectively, X j) is the covariance matrix
approximated as a diagonal matrix under the assumption that the components
in RGB and L*a*b* color space are independent, and F ., ) denotes a random
variable with a F-distribution which has m and | degrees of freedom. The
confidence interval o is set to 0.05 throughout all our experiments.
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3. Criteria for Automatic Hierarchical Level Selection

In most hierarchical segmentation schemes, the desired degree (level) of seg-
mentation remains interactive. In other words, the user may select visually
and qualitatively, the hierarchical level a which the resulting segmentation is
acceptable. In this paper, we introduce an automatic hierarchical level selec-
tion based on a quantification of the segmentation quality for each level of the
hierarchical tree via an evauation criteria. Various empirical evauation meth-
ods for image segmentation have been proposed in the literature [10]. They
rely on segmentation quality measures such as (i) intra-region uniformity, (ii)
inter-region contrast and (iii) region shape (boundaries should be smooth and
accurate).

Liu and Yang [4] suggested a segmentation evaluation function £ (.) which
expresses the trade-off between the suppression of heterogeneity and preser-
vation of details. Using the same notation as in Section 2.2, £LY\(.) is defined
as.

> er, 482 (1(z;), Pr(z;))
LY, Py) = /g — (6)
k k Rk%;Pk /TRy ;

where | is the original color image, Pk is the partitioning at level k, nk denotes
the number of regions at level kand dE(.,.) is the Euclidean distance. The
term /ng is a global measure which penalizes the segmentation with too many
regions. The term 3" dg®/ /AR, is a local measure which penalizes small
regions or regions with a large color error. The smaller the value of £Y (I,Py),
the better the segmentation result is.

When taking into consideration different metrics d(.,.), for color distance
estimation, in any selected color space a generalization of Liu and Yang evalu-
ation function is proposed:

GLY(LPy) =i Y, > d*(I(z;), Pe(zy)) (7)

Ry €Pr x;€R:;

In this formulation we ensure that significant small regions can be also consid-
ered (not penalized).

The segmentation evaluation functions LY(I, Px) and GLY(I, Px) do not
incorporate directly the quality measures (ii) and (iii). In view of this, we
propose an evaluation function CH(l, Pk) which combines a region homogeneity
measure H ki (local color error) with an inter-region contrast measure Ck,i
(color difference between adjacent regions). It is denoted as :

1
CH(LPy) = e ngr, ;CHk i (8)
ZRkyLEPk TRy Rk¥Pk "

where for a given region Ry i, the term CH is defined as:

CHk,i — { 1 Ck,v‘,’ Zf Hk,l < Ck,z (9)

0 otherwise
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We estimate the region homogeneity Hy; and the border contrast Ck,i as fol-
lows:

1
Hii = —— > d((z;),Pi(z;)) (10)
Rk'/"' IJER}Q',’
1
Cii = - max (d(I(z;), P(z1))) (11)
n’B(Rk',,) z]EB(Rk,i) IIGN(ZJ')

where d(.,.) is the metric defined for the selected color space, B(Rg;) is the
set of border pixels of region Ry, i, and N (X;) denotes the neighborhood for
pixel x;. H ; is very similar to the definition of a uniformity criterion, and
Cki expresses a trade-off between the border accuracy of a region and the
difference between the region and its neighbors. CH; penalizes those regions
with large color error and low border contrast. If the color error inside the
region is low and the adjacent regions are significantly different (high border
contrast), its value is high. This conforms to the quality measures (i) and (ii).
In the proposed segmentation evaluation criterion CH(l, Py), the higher the
vaue is, the better the segmentation result is.

4. Experimental Results - Conclusions

As aready mentioned in Section 1, the fundamental problem in watershed
color segmentation is over-segmentation. This can be seen in Figures 2(a)-
(d). In this paper, we tried to overcome the over-segmentation problem by an
automatic color segmentation scheme based on the construction of a stack with
hierarchical levels evaluated by functions which describe the desired optimum
segmentation. We have tested three different evaluation functions which were
analytically described in Section 3. The behavior of our proposed algorithm
was demonstrated in RGB (Fig. 3) and L*a*b* (Fig. 4) color space. For the
sake of clarity, a subset of successive hierarchical levels for each color space is
presented, including the selected optimum segmentation according to each of
the evaluation functions that have been considered. Additionally, in Fig. 5
the behavior of the evaluation functions for all the levels in the hierarchica
stack, is shown. We recall that in the case of CH (.) we search for the global
maximum, while in the case of LY (.)and GLY (.) we search for the global
minimum. Note that for the global optimum the last level of the hierarchical
stack is not considered since this attributes one segment to the whole image.
After our experiments with various images - only two are presented herein
due to lack of space - GLY (.) and CH(.) are improvements of L) (.) evaluation
function. Consistent to its definition GLY (.) penalizes segmentation levels with
a high number of regions when the color error term is low. This causes the
suppression of significant image details (small regions). In the case of CH (),
significant image details are preserved.
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(@ (b) (© (d)

Fig. 2. Original images (a)Toys, (c) Woman, and their oversegmented results (b),(d)

(b) ©

Fig. 3. (a)-(c) Three successive hierarchical levels (L*a*b* case) : (b) Automatic level
selection by GLY (I, Pk) and CH (I, Px), (c) Automatic level selection by LY (I ,P«k)

(b)

Fig. 4. (a)-(c) Three successive hierarchical levels (RGB case) : (b) Automatic level selection
by CH(l, Pk), () Automatic level selection by £V (I, Px) and G£YV(l, P«)
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In this paper, no panacea solution is provided, but our experimental results

enc
of

ourage further investigation guided by the proposed scheme within the field
automatic hierarchical level selection out of a hierarchical stack in color

image segmentation.

Fig. 5. The evaluation functions £Y(I, Py), GLY (I, Px) andCH(l, Py) for each hierarchical
level, in the case of (a) Toys and (b) Woman image
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Abstract. Motion based segmentation techniques usually begin with an estimate of the
velocity flow field and utilise clustering techniques to segment the flow field. This paper
investigates the practicality of performing segmentation using the information typically ap-
plied to the velocity estimation stage. A region growing process is described that can reliably
segment rigid objects observed by moving cameras without requiring shape or motion models.

Key words: Motion Segmentation, Region Growing.

1. Introduction

Motion information is a powerful cue that can assist in segmenting image se-
guences. In some situations motion information may be the most significant
cue, possibly far more significant than colour or texture. Segmentation of
image seguences is important in many applications, including robotics, video
coding, multimedia and security, and a wide variety of approaches have been
investigated.

Motion based segmentation has been under investigation for many years.
Typical approaches involve two steps — estimation of image velocities followed
by clustering of some kind. A wide variety of approaches to both steps has
been developed.

This paper explores the merits of applying a region-based segmentation
technique — seeded region growing — to a form of information that is usually
used for velocity estimation.

2. Background

2.1. VELOCITY ESTIMATION

Velocity estimation techniques can be broadly described as either feature based
tracking schemes or spatio-temporal filtering schemes. The first type of scheme
includes edge, corner and block based schemes [1, 2] which typicaly produce
sparse flow fields, while the second type includes gradient based optical flow
schemes [3] and energy models [4, 5, 6] which produce dense flow fields.



216 RICHARD BEARE AND HUGUES TALBOT

2.2. REGION-BASED SEGMENTATION  TECHNIQUES

In the past region-based segmentation techniques have been mostly used to
segment grey-level or colour still images [7, 8, 9]. These schemes assume that
it is possible to define subsets of the regions of interest (markers), some form
of region descriptor (control field) and a measure of compatibility between a
region's control field and border pixels. The markers are grown by individually
considering pixels on the outer edge of each marker. A decision on whether
to add an individual pixel to a growing region is based on this compatibility
measure.

Region-based segmentation techniques — using the mean colour of the re-
gions as the measure on the control field — have been proposed for the segmen-
tation of time series of images, with applications to sequence coding [10]. These
techniques are attractive due to the high level nature of the features and the
robustness of region growing techniques. The high level nature of the region
based tokens can simplify the matching process.

2.3. OTHER MOTION SEGMENTATION TECHNIQUES

Velocity based segmentation techniques may generally be considered as loca
or global — loca schemes attempt to find discontinuities in the velocity field
while global schemes attempt to find regions of consistency. Local schemes
may be susceptible to noise but are often attractive from the implementation
point of view. Globa schemes commonly attempt to fit regions of the flow field
to analytic functions [11, 12]. Hybrid schemes that formulate the problem as
a globa optimization that can be solved using an iterative local computation
have also been investigated [16].

Shape and motion models of non-rigid objects, like humans, have been incor-
porated into robust contour tracking frameworks by [13, 14]. These techniques
do not rely on tracking of feature points and can maintain a segmentation in
cluttered environments.

2.4. OUR SCHEME

The segmentation scheme described in this paper does not operate on velocity
fields. A region growing technique is applied to the information from which ve-
locity fields are typically derived. The aim of the scheme is to demonstrate that
motion based segmentation may be performed without using velocity estimates.

3. Fundamental Motion Descriptors

The velocity at each location in a dense flow field is derived from a set of possible
solutions (henceforth termed a motion distribution). The process involved in
making this decision (or collapsing the distribution) may be purely local, or
employ more global information.

This paper describes a segmentation technique that operates directly on
a motion distribution image, therefore avoiding the problem of collapsing the
motion distributions to produce a flow field. In this example the simplest and
least robust measure - single pixel color differences - is used to produce the
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motion distribution. This distribution may be computed quickly - it is simply
the absolute difference between a pixel in one frame and each pixel in a region
of interest in the subsequent frame. The size and shape of the region of interest
(motion descriptor kernel) is defined by the expected range of motions. This is
equivalent to defining a search space for a feature based scheme. Automated
techniques for deciding the region size have not been investigated.

4. Using Motion Descriptors in Seeded Region Growing

Seeded region growing is a well known, and intuitive technique, that is nor-
mally used to segment scenes using greyscale or colour information. The basic
principle of operation is to place pixels from the borders of the regions onto a
priority queue according to a measure of similarity between a control field de-
scribing the region and candidate pixels. For instance, when segmenting colour
or multispectral images, each pixel is represented by a vector, and each region
can be described by the multispectral average of al of the pixels within the
region. The similarity between any pixel and a region can be computed by the
magnitude of a suitable vector difference.

The concept can be extended to motion analysis. The control field can
be a “motion image” in which each pixel is described by a motion descriptor.
The problem is now to define a similarity measure. Each region may also
be described by a motion descriptor, but the similarity between two motion
descriptors is not well described by a vector or element-wise difference.

4.1. REGION REPRESENTATION

To solve the problem of the similarity measure, it is convenient to represent a
region in a form that is similar to the pixels to which it is going to be compared.

The simplest way to represent a region is to use a motion descriptor that
is simply the element-wise sum of al motion descriptors associated with pixels
belonging to the region. This control field can be easily updated every time
a pixel is added to a region and is therefore efficient to implement. Another
option would be to convert the motion descriptor to a probability distribution
function. This representation may be useful in many circumstances, but is
more computationally intensive.

4.2. DETERMINING PIXEL PRIORITY

The order in which pixels are assigned to regions is critical to region growing
techniques, and is dependent on the pixel priority. The process of determining
the pixel priority based on motion information is different to the processes used
for spectral information for a number of reasons:

— The two dimensional nature of the motion descriptor means that simple
vector differences aren’t meaningful.

— A large proportion of the motion descriptors may not be relevant. The
quality of match in some parts of the descriptor kernel may be very bad
(eg. in the case of a smal feature and significantly different background
covering a significant area of the motion descriptor), so using all of the
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kernel to determine the priority is not sensible.

A simple scheme has been developed to evauate the priority of a motion
descriptor. (A one dimensional version of this is shown in Fig. 1.) A region
motion descriptor based on color differences indicates the relative likelihoods
of different motion vectors. The most likely motion corresponds to the point of
minimum pixel color difference. Therefore the most important characteristic
of the motion descriptor describing a region is the location (not the value)
of the minimum (or maximum if a correlation kernel is used) (i in Fig. 1).
This location may be an unreliable estimate of region velocity if the region is
small, but can be expected to become more reliable as the region grows. A
measure of similarity between a region motion descriptor and a pixel motion
descriptor may be simply defined as follows. Suppose the minimum error in
the region motion descriptor is at location (i, j). The value of the error in the
pixel motion descriptor at the same location may be taken as a measure of
compatibility between the two kernels and used to determine a priority. If the
error is large then the priority is low because the two descriptors are unlikely
to be representing similar velocities.

Error

Region motion descriptor

Error

_ - pPosition

Pixel motion dlbscriptor

Fig. 1. Priority measure for motion descriptor — 1 dimensional version shown for simplicity.
The vertical axis shows error magnitude. In this case pixel A will have a higher priority than
pixel B because the error magnitude at location i is lower.

4.3. ENFORCING TEMPORAL CONTINUITY

Seeded region growing techniques require that seeds be selected. In our scheme,
the initial seed selection is manual — one seed is assigned to the border of the
image being investigated (the “background” seed), and another is assigned to
each object. In order to enforce spatial continuity, the eroded [15] results of
the segmentation at time n are used to derive the seeds for the segmentation
a time n+ 1. This part of the process is somewhat haphazard at present —
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seeded region growing does not allow regions to shrink, so it is important that
the erosion structuring element produces an updated seed that is contained
entirely within the object of interest. Automated ways of achieving this have
not yet been investigated. One option includes using motion information to
update the position of the seed rather than relying on overlap between frames.

5. Results

This section shows the segmentation results for a number of scenes using the
technique just described.

5.1. RANDOMLY TEXTURED OBJECTS

Fig. 2 shows a scene in which a randomly textured object moves randomly in
front of a background with a statistically identical random texture and motion.
This is a variant of common psychological experiments that demonstrate the
power of motion information as a segmentation cue. (Note that it is impossible
to appreciate this from the still images.) This scene can only be segmented
using motion information — it is impossible to define a filter to find a square
in individual frames. This example is aso difficult for feature based schemes
because the motion is random, so it is hard to generate reliable velocity esti-
mates. The region growing segmentation is able to function successfully without
knowledge of the shape of the object or any complex motion models.

Fig. 2. Random textures segmented using only motion information. Results show every
second frame.
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Fig. 3. A subset from the Hamburg taxi sequence. Segmented using only motion informa-
tion. First image shows the initial seeds. Results show every second frame.

Fig. 4. A subset from a highway scene. Segmentation using only motion information. First
image shows the initial seeds. Results show every second frame.

5.2. HAMBURG TAXI

Fig. 3 shows the results of segmenting a small subset of the Hamburg taxi
sequence. The initial result does not encompass the entire car, although the
results do improve over time. The segmentation produced is reasonable, but
takes some time to evolve, because there are large flat regions where the mo-
tion information is not very strong. The borders of the segmentation are not
particularly stable.
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5.3. HIGHWAY  SCENE

Fig. 4 is a relatively complex scene with a moving background and an object
that is shrinking in size. The background also contains some independently
moving objects. The motion only segmentation produces quite good results,
although the borders are not particularly stable. The shadow of the car is not
segmented. This is understandable because it overlaps the border of the image,
which is the second seed. Some of the problems with border stability in this
scene could be due to the simple minded update of seeds between frames in
the presence of high speed motion. The high displacement of objects makes
it necessary to use a large erosion to force the seed to be entirely contained
within the object of interest. This means that the constraints on temporal
border smoothness are not very strong.

6. Discussion and Further Work

The techniques described in this paper work well on a variety of scenes, without
relying on complex scene models, by exploiting the simplest forms of motion
information - single pixel differences. Experiments with more reliable forms of
motion information, such as correlation based measures, show some improve-
ments in segmentation but suffer significant increase in computational cost.
These examples show that motion segmentation techniques operating on mo-
tion descriptors, rather than flow fields, are an interesting avenue of research.

We haven't tackled yet the problem of the initial seeds, which is an absolute
necessity in many real world applications. Also, we think that a simple erosion
of results between frames to provide temporal continuity is only adequate if
the object being tracked does not move too far between frames. A more so-
phisticated approach may improve robustness. Speed is also an issue for rea
time applications. The speed of the process is largely dependent on the nature
of the motion descriptors.

The technique described here can be applied to any form of motion descrip-
tor, including correlation based approaches and spatio-temporal filter-based
approaches. Some experiments have been done using sum of absolute differ-
ence based measures, however no filter-based measures have been used yet -
this may be an interesting area for future investigation.

Preliminary investigations into the use of colour information in regions
where motion cues are unreliable have suggested that the costs of including
the extra information are not justified by improvements in results.

Investigations into the extension of the region growing process to use 3
dimensional data have begun, but the results so far are inconclusive.

We also plan to experiment with replacing the simple erosion of the marker
between frames with something that can take advantage of the motion infor-
mation - i.e. change the position of the seed rather than just the size.
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7. Conclusions

This paper has discussed a motion based segmentation technique that uses
the type of information usually applied to velocity estimation. The technique
avoids the problems associated with estimating a reliable flow field. The tech-
nique is able to use an initial set of seeds to establish a segmentation that is
maintained over time.
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Abstract. This paper presents a technique for the generation of a segmentation pyramid for
a video sequence, designed for use in an interactive segmentation context. The pyramid is
represented as a minimum spanning tree, which allows an efficient access to the information
and avoids unnecessary recalculations. Several ways to introduce user interaction are also
proposed.
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I. Introduction

Image segmentation is the first step in many computer vision systems, and it
has been used for a long time in industrial and medical applications. Recently,
along with the growth of the Internet and the availability of powerful computers
to the genera public, new standards like MPEG-4 and MPEG-7 are appearing.
They address the so-called content-based applications, where images and video-
sequences are treated not at the pixel level, but at the object level. These
applications rely on a successful segmentation of the objects present in the
scene.

In multimedia applications, the treated images can be very diverse and
automatic segmentation becomes problematic as no a priori knowledge on the
contents of the images is available. In this context, interactive segmentation
offers an attractive solution by automating the task of finding homogeneous
regions while leaving object definition to the user. Segmentation pyramids are
very well suited to interactivity, as they offer a high degree of flexibility. The
user can navigate between the different resolution levels, choosing the regions
that form the object of interest.

Several types of bottom-up segmentation pyramids have been proposed in
the literature [13], [12], [24], [5], [1], [2], [15]. In these approaches, regions are
progressively merged into larger regions until a single region is obtained or a
stop condition is satisfied. The hierarchy is then represented in the form of a
graph. Two main issues arise when examining the existing literature:

1. The merging criterion is in most cases based on a local dissimilarity measure,
which does not take into account global measures such as size of the regions.
This produces good results at the first merging steps, but at coarser levels of
the hierarchy semantic aspects start to play a role and local merging criteria
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are no longer valid.

2. Although some of the techniques proposed can directly be applied to the
segmentation of 3D images, no proposals have been made for the generation of
a pyramid which is coherently preserved throughout a complete video sequence
shot. In most cases, moving video sequences are treated in a tracking-based
manner, where an initial mask is interactively defined for the first frame of the
sequence, to be tracked in the remaining frames [7], [3]. Whenever a hierarchy is
used, it is for the analysis of individual images and it is not preserved from one
frame to the next. It would however be very desirable to produce a hierarchy
which is coherently preserved throughout the video segquence shot. In this way,
when the user interacts to re-partition a certain region or to merge it with a
neighbour, this interaction affects al the images of the sequence and the process
of video object generation is much faster.

The first issue has been addressed in [17], [6], in the context of interactive
segmentation of still images. In [17], a segmentation pyramid is produced by
establishing a hierarchy between the regions of the watershed. The merging or-
der defining the hierarchy is based on the volume extinction values [16], a global
measure which is well adapted to the characteristics of human perception, due
to the trade-off between size and contrast it makes. As the complete hierar-
chy can be obtained in a single watershed of the image, it results in very fast
calculation. The hierarchy is represented in the form of a Minimum Spanning
Tree, which alows for very fast manipulation.

This paper deals with the issue of video sequence processing by proposing
an extension of the techniques described in [17] to the segmentation of video
sequences and 3-D images. We consider video sequences as a particular case of
3-D images with two spatial dimensions and one tempora dimension. Video
sequences being too long to process them as a single 3D block, a time recursive
approach is proposed.

A segmentation pyramid for the whole sequence (or 3-D image) is made
available to the user, who can navigate between the different resolution levels
to create or modify the object partition. The actions carried out by the user
affect the whole sequence.

2. General Description

To produce a segmentation pyramid for a 3-D image or a video sequence, we
use a 3-D approach based on flat-zone detection followed by a watershed, both
using 3-D connectivity. The 3-D approach has the advantage that the same
algorithms can be applied to both 3-D images and video sequences. In the
sequel we will focus on video sequences, although the technique is aso valid for
3-D image segmentation.

As a video sequence can be very long and the computer memory is limited,
the sequence must be divided into blocks of images for processing. In order to be
able to preserve the region hierarchy between consecutive blocks, our algorithm
divides the video sequence into overlapping blocks (one image overlap).

An intra-block algorithm produces the segmentation pyramid for each block.
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In order to ensure a coherence of the regions and their hierarchy between blocks,
a single global hierarchy is recursively produced, using a procedure that we will
cal pyramid projection.

The segmentation pyramid for the video sequence is represented by a mini-
mum spanning tree (MST). This tree is progressively updated at each projec-
tion step using the information contained in each block of the sequence.

Section 3 explains the generation of the segmentation pyramid for an indi-
vidual block. Section 4 describes the pyramid projection between two consecu-
tive blocks. Finally, Section 5 proposes some mechanisms to interact with the
segmentation pyramid.

3. Intra-Block Segmentation

This section describes how the segmentation pyramid is produced for a block of
images and how it can be represented as a tree. The computation is carried out
in two steps. Firstly, a fine partition of the block is produced and represented
by a neighbourhood graph. Then, from the neighbourhood graph a minimum
spanning tree representing the segmentation pyramid is derived.

3.1. CREATION OF A FINE PARTITION THROUGH FLAT-ZONE DETECTION AND
GRADIENT FLOODING

In our previous work with still images in [17], a fine partition is created by
flooding a morphological gradient from all its minima. This produces a par-
tition with as many regions as there are minima on the gradient image. This
technique can be directly extended to still 3-D images by using a 3-D gradient
and flooding using 3-D connectivity. However, for moving video sequences, us-
ing a 3-D gradient will produce erroneous spatial contours around the moving
areas, as these areas will show high gradient values due to the image-to-image
changes. Using 2-D connectivity to calculate the gradient is not a good ap-
proach either, as it will produce leaks in the propagation: when two regions
with low 2-D gradient values become temporally connected due to motion, tem-
poral propagation will produce the label of the first region to be propagated
inside the second region from one image to the next.

Creating the fine partition by flat-zone detection on the initial image rather
than detecting the catchment basins of a gradient image restricts the possibil-
ity of tempora leaks as the propagation is made only across regions having
the same colour. However, the contours of the flat zones are in genera very
irregular. To take advantage of the better contours produced by the watershed
without increasing the risk of leaks, a hybrid approach is used. Large 3-D flat
zones are detected and taken as markers for a 3-D watershed propagation inside
a gradient image produced using only 2-D connectivity. Small flat zones are
discarded, considering that they belong to a transition area, where the gradient
will very likely have a high value (and thus no leaks will take place). To take
advantage of colour information, three separate 3-D watersheds for the three
colour components are calculated, taking flat zones or pseudo-flat zones [11]
as markers. The intersection of the three partitions is then calculated. In a
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last step, very small regions are removed and a last watershed is computed to
find the final contours. The partition intersection further minimises the risk of
leaks (spatial and temporal), as there will only be a leak if it exists in the three
partitions.

As an important pre-processing step, filtering by levelings [10] is applied to
the three normalised colour components. This alows the enlargement of the
flat zones without modifying the regions contours.

3.2. THE NEIGHBOURHOOD GRAPH

Any partition can be represented by a neighbourhood graph. Each region of
the partition is represented by a node of the graph. Two nodes are connected
if the regions they represent are neighbours on the image. The graph edges can
be weighted to express a local dissimilarity measure between regions. Possible
dissmilarity measures that can be used to weight the graph edges are the lowest
pass point along the border separating the two regions on the gradient image,
the average gradient value along the border or a distance measure based on the
colour components inside the region.

The neighbourhood graph provides a simplified representation of the image,
and it can be flooded using a watershed algorithm where the edge weights
represent the height of the borders the water must cross [9].

3.3. MINIMUM SPANNING TREE AND SEGMENTATION PYRAMIDS

In the watershed transformation, the lakes corresponding to two catchment
basins A and B always meet through the path of lowest sup-section (sup-section:
highest value along the path) between A and B. If we consider all possible pairs
of catchment basins, we obtain a set of paths of minima sup-section. This set
of paths forms the minimum spanning tree of the neighbourhood graph [8].
Hence, the minimum spanning tree of the neighbourhood graph contains all
the necessary information for flooding purposes. It can be created during the
flooding of the neighbourhood graph by adding the edges to the MST in the
order they are flooded on the neighbourhood graph, as long as they do not
introduce a loop. When an edge introduces a loop on the MST, it is not added.
At the end of the flooding, the MST has recorded the paths followed by the
water to merge the different lakes. This agorithm corresponds to Bohusav's
algorithm for the calculation of the Minimum Spanning Tree.

On the MST, there is a unique path between any pair of nodes. Suppressing
an edge of this tree produces a forest with two trees, which corresponds to a
partition of the image into two regions. In the same way, suppressing n—1 edges
of the tree partitions the image into n regions. Removing a variable number
of edges of the tree produces a segmentation pyramid. It is then a question of
knowing which edges to remove to obtain meaningful segmentations. The edge
weights representing a dissimilarity measure between neighbouring regions, it
seems reasonable to suppress them by decreasing weights. In this way, the most
different regions will be separated first in the hierarchy.

The selection of the edge weights is a crucia issue to obtain meaningful
segmentations. The approach used here consists of weighting the edges of the
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neighbourhood graph with a local dissimilarity measure based on a colour dis-
tance. The MST of the graph is then computed and its edges are simultaneously
re-weighted based on the volume extinction value [16], which can be seen as a
global dissimilarity measure. When an image is flooded by placing sources on
al its minima, every time that two lakes meet an absorption takes place. The
lake with smaller volume is considered to be absorbed by the lake with larger
volume. When a lake is absorbed by a larger lake, its volume at the moment
of the absorption is called the volume extinction value of the corresponding
catchment basin. At the end of the flooding each catchment basin except one
has been assigned an extinction value. The same procedure can be used during
the graph flooding, where the volume of a region can be approximated as its
surface multiplied by the current flooding level. The volume extinction values
rate the regions in a way which is close to human perception, as they take into
account both the size and contrast of the regions. Figure 1 shows a compari-
son between the 15 best regions found using a dynamics criterion [4] and the
volume extinction values.

(@) Original image (b) Dynamics (c) Volume extinction
values

Fig. 1. Best 15 regions as found using the dynamics and the volume extinction values.

Both the MST and the extinction values can be calculated by storing some
extra information during the graph flooding.

Figure 2 shows three different resolution levels of the segmentation pyra-
mid for four consecutive images belonging to the same block (for a block of 5
images).

4. Pyramid Projection

As treating a whole video seguence into one single block is not possible nor
convenient, a projection step becomes necessary to put past and present infor-
mation into correspondence.

For this purpose, the sequence is divided into overlapping blocks (one image
overlap), and two continuity conditions are imposed on the common image
between two blocks:

—  The fine partition must be exactly the same on the common image for the
two blocks.
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Fig. 2. Three levels of the segmentation pyramid for four consecutive images belonging to
the same block.

— The hierarchy of the regions that exist in the two blocks should be pre-
served. New regions will be accommodated into this hierarchy.

In order to fulfill the first condition, the marker image used to produce the
fine partition is modified. Section 3.1 described how 3-D flat or pseudo-flat
zones were detected and used as markers for constructing the watershed of a
gradient image. The marker image is therefore a 3-D image containing the
detected flat zones. Now the first frame of the block containing the flat zones
is replaced by the last frame of the fine partition corresponding to the previous
block. The flat zones of the remaining images of the block are then relabeled
to establish a correspondence with the regions of the imposed partition. Flat
zones that do not obtain a label from the partition of the previous block are
considered as new regions. The resulting 3-D image is then taken as marker
for the watershed in the current block.

To satisfy the second condition, a recursive approach is used to dynamically
update the MST to represent the sequence up to the current block.

Consider that the block Nis currently being processed, and that an updated
tree gn-1 is available representing the segmentation pyramid up to the block
N—1. The new treeqy is obtained by incorporating into the existing tree N -1
al the regions newly appeared in block N. In order to accommodate the new
regions into the hierarchy, their volume extinction values must be calculated.



A PYRAMID FOR INTERACTIVE SEGMENTATION OF VIDEO SEQUENCES 229

The nodes corresponding to the new regions will then be plugged into @n-1
with edges weighted with this measure.

For the calculation of the extinction values for the new regions, a complete
neighbourhood graph G is computed for the current block. Also, a new graph
@n is obtained from @n-1 by adding a node to@n -1 for each new region, but
with no link. To determine the links between the new nodes, and between the
new and the old nodes, a partial flooding of Gn is carried out. In the partia
flooding, only the nodes of the graph corresponding to new regions are flooded.
Flooding the existing nodes is not necessary, as they are aready linked in@n
When two new regions are joined by the flooding, one of them extinguishes as
explained in Section 3.3. An edge is then added to @n between these two nodes,
weighted with the volume of the extinguished region. When a new node meets
with an old node, the new node is considered as extinguished (without volume
comparison) and an edge is added to ¢n, weighted with the volume of this
region. At the end of this procedure, a tree @y has been obtained. The paths
between regions existing in@n-1 are preserved with the same weights. New
regions have been plugged into the tree, weighted with their volume extinction
values.

At each projection step the tree @n grows by adding the new regions into
the hierarchy while retaining previous information.

Figure 3 shows the results of the pyramid projection for images 1, 40 and
100 of the Mother and Daughter sequence.

Fig. 3. Three different levels of the segmentation pyramid for images 1, 40 and 100
of the Mother and Daughter sequence. The segmentation pyramid has been projected
block-to-block to span the whole sequence.
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5. User Interaction

This section describes some possibilities for user interaction with the segmen-
tation pyramid. From the user point of view, the interaction simply consists of
re-segmentation and merging of regions, and marker drawing. The tree repre-
sentation is not visible to the user.

Three types of interactions are proposed: automatic segmentation into a
certain number of regions, local re-segmentation/merging of regions and seg-
mentation from markers.

5.1. SELECTION OF THE TOTAL NUMBER OF REGIONS

A starting point in the segmentation process could be for the user to ask for
the image to be segmented into a number n of regions. This corresponds to
a request for an automatic segmentation of the image into nregions. Such a
request may easily be satisfied by suppressing the n— 1 edges of the tree with
highest weight. The interaction can be presented in a very intuitive way by
means of a siding bar which slides up and down to have more or less resolution.

5.2. LOCAL INTERACTIONS

The interaction type described in the previous section treats the image as a
whole, finding the n best regions. However, the user may be interested in having
some regions segmented with more detail than others. In this case, the user
must be offered the possibility to refine a certain area or to coarsen it by merging
it with neighbouring regions. This is done by locally suppressing/adding edges
from/to the tree. Two operations allow the user to locally navigate up and
down the pyramid.

In the refine operation, the user clicks on a certain area with the mouse.
At the same time, the number of regions in which the selected region must
be subdivided may be specified. If it is not, a default value is used. The
n — 1 (nbeing the parameter specified by the user) edges of highest weight
are suppressed, but this time only the edges inside the selected region are
considered.

In the coarsen operation, the user selects a region with a mouse click, and
again a parameter n may be specified. The n — 1 most similar neighbouring
regions are merged to the selected one. Among the previously eliminated edges,
the n — 1 of lowest weight that link a node belonging to the selected region
with an external one are re-inserted.

Figure 4 shows an example of local actions carried out by the user. As
a starting step, an automatic segmentation into 10 regions is obtained. The
user then clicks on the helmet and requests a re-segmentation of the region
into two regions. The helmet is then separated from the background on all the
images of the sequence where the helmet is present. The user then requests
a re-segmentation of the shoulder region, in order to separate it as well from
the background. In this way, finer or coarser segmentations can be obtained
on certain areas by simple mouse-clicking.
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Fig. 4. Sequence of interactions, shown for one block of the video sequence. Top to bottom:
original image, automatic segmentation into 10 regions, re-segmentation of the helmet area,
re-segmentation of the shoulder.

6. Segmentation from Markers

Finally, another type of interaction is the classical marker drawing. The user is
asked to roughly mark the objects of interest, including the background. The
markers are imposed on the MST and the resulting segmentation is obtained
for the whole sequence. An agorithm can be found in [8]. As a segmentation
pyramid is available, further re-segmentation/merging are possible if the regions
obtained are not completely satisfactory.

7. Conclusions

We have presented a technique to create a segmentation pyramid corresponding
to a video sequence. Instead of a single partition, a segmentation pyramid is
available. This approach is very well suited to interactivity as it alows the
user to build the desired video object by taking regions from different resolution
levels and frames. The correspondence between regions is made at all resolution
levels for all the images of the sequence. In this way, the actions carried out
by the user automatically affect al the images of the video sequence.
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Abstract. We conceive the problem of multiple semantic video object (SVO) extraction
as an issue of designing operators on a complete lattice of partitions. In this paper, we
propose a framework based on accurate spatial partition generation and application of opti-
mal extraction operators on the generated partitions. Under the framework, we introduce a
spatio-temporal regional maximum likelihood operator for extraction purposes. Some theo-
retical properties of the operators are established. Experimental results show that our scheme
is capable of successfully handling multiple SVOs in a variety of scenarios.
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1. Introduction

SVO extraction can be considered as a process of segmenting and tracking
arbitrary collections of image regions (that correspond to objects in the red
world) with pixel-wise accuracy. The task, crucial for the next generation
of multimedia standards MPEG-4 and MPEG-7 [12], is formidable because
SVOs are human abstractions that are not invariant, either in spatial features
or in motion. Several approaches, based on different object representations
(contours, regions, active meshes) have been recently proposed [2], [7], [11],
[10].

When 2D regions are selected to represent an object, two factors define the
quality of the extraction result: the precision of the spatial partition, and the se-
lected tracking technique. On one hand, a good segmentation technique should
preserve the contours of the scene objects, as human perception is sensitive to
artifacts in borders. On the other hand, the tracking process is responsible for
keeping an accurate SVO representation along time. Several methods consist of
the computation of an initial object partition and its tracking by a prediction-
adjustment process, in which the original partition is updated to generate the
partitions at each time [3], [6], [10]. However, this process is not trivia if pixel-
wise accuracy is required: noisy motion information, which constitutes the key
factor of the procedure, often introduces inaccuracy and ambiguity in defin-
ing the boundaries of the video objects [7], [11]. Furthermore, some of these
techniques unfortunately rely on heuristics, and/or cannot handle the case of
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several objects.

This paper presents a different approach. We propose a general framework
for 2D region-based SVO extraction based on spatial partition generation and
the application of one or more extensive operators in the lattice of partitions.
We are interested in developing a systematic approach in which such opera-
tors can be defined, their properties can be analyzed, and that allows for the
extraction of multiple SVOs from natural video seguences.

The rest of the paper is organized as follows. Section 2 presents an overview
of our methodology. Section 3 introduces the partition lattice operators for
SVO extraction. Section 4 shows results for several MPEG-4 test sequences.
Section 5 provides some concluding remarks.

2. Proposed Approach

A complete lattice of partitions is an appropriate morphological framework
to analyze segmentation problems [15], [14]. We start by reviewing such a
notion. Given a space € and its power set P (), a partition of € is a mapping
P :¢e - p(e) such that Oxy O, (i) x O P (x), and (ii) P(x) = P (y)
or P(x) n P(y) = 0 P(x) is called the zone or region of P that contains
X. It can be proved that the set of al partitions of € constitutes a complete
lattice, denoted by [1, where the partial ordering relationship is defined as
P < Pj < P.L(T) - Pj(x),\i:r S E,Pi,Pj € II. In this case, Pi is said to
be finer than Pj. The infimum of a set of partitions {P; i € Z} is defined as
(A, P)(z) = n;P,(z) Yz € £, i.e, it corresponds to the partition made of the
intersections of al the regions in the origina set of partitions. Additionaly,
the supremum of a set {Pi} is given by (\/, P)(z) = N{B : B = U; Uyen
Py(y),z € B,B € P(£)} which is the finest partition that is larger than each
of the individual P;. For the two-partition case, (P, v Py)(z) = (P, Vv P;)(y) if
Pi(x) =Pi(y) or Pj(x) = Pj(y). Findly, the least and greatest elements of ]
correspond to the finest partition Po and the coarsest partition P, , such that
Po(x) =xand P (x) = € for al x Oe.

For purposes of indexing of the zones of a partition, it is convenient to use the
following notation: P = {R;,i € I}, where R; = Uz € £ such that P(x) = R;.

The extraction of the SVOs of a scene corresponds to one special case of
partition of the image support. This can be defined as follows.!

Definition 1 Let | = {I' Ot 0 Z} be a multivalued image sequence, with
domain & = D(I%) ¢ Z2. Let pt = {Rt i € {1,..,N}} denote a partition of ¢
at time t. The j-th Semantic Video Object of the scene depicted in | (consisting
of M objects) is defined by SVO; = {SVO}}, where

N;
svo; = J K (1)
i=1

IMultivalued images and random variables are both denoted by bold letters. The meaning
should be clear from the context.



EXTRACTION OF SEMANTIC VIDEO OBJECTS 235

In MPEG-4 terminology, SVO‘j represents the j-th Video Object Plane
(VOP) at time t, each composed of N regions of P* (37, Nf = N). Eq.
1 naturally alows for the definition of multiple SVOs. The associated partition
of SVOs at timet, denoted by P &yo, isthe collection

Piyo = {SVOL,j € {1,..,M}} (2)

We propose to achieve SVO extraction by (1) generating, at each time in-
stant, spatial partitions Pt that do not depend on inaccurate motion informa-
tion and that preserve the true object contours, so that the frontiers between
objects can be discerned even though they are of similar color, and (2) finding
optimal homomorphisms between the generated partitions and the set of SVOs
in the scene. Therefore, we claim that SVO tracking can be formalized as a
process of applying operators { ' ()} in the lattice of partitions [14], [15]. These
operators can be designed by specifying spatio-temporal statistical criteria.

In addition, we consider the interactive introduction of semantics as essen-
tial, such that one or more of the following functions can be implemented by
a user: initial definition of the SVOs, creation of a multiview representation,
correction of the automatic results, or specification of context. Some typical
works in this area include [2] and [7].

SVO extraction is then defined as a combined process of spatial partition
generation and subsequent application of partition lattice operators, with user
intervention at (possibly) different instants.

For the partition generation stage, we have previously developed a four-
band (color+intensity edges) morphological multivalued spatial segmentation
method that improves the contour localization properties of the traditional
watershed techniques [5]. The following section concentrates on the formulation
of the partition operators.

3. Partition Lattice Operators for Semantic Video Object Extraction

Some basic partition operators for segmentation were originally proposed in
[14]. More recently, a work that pointed out the connection between region
merging algorithms and connected operators was presented in [4].

In our approach, once a partition P'is generated at each time t, the problem
becomes the construction of P&, o from P! by introducing temporal informa-
tion that allows the implementation of the tracking function. This informa-
tion is represented by a temporal reference SVO partition set, denoted by TR,
composed of the SVO partitions of the scene at different time instants, i.e.,
partitions that correspond to different scene views. The partition reference set
is then expressed as TR = {P&,,, k € {1,..,K}}. For example, if K = 1,
and tx = t— 1, then TR = {PLy¢,}, which means that the generation of the
current SVO partition will depend on information provided by the previous
one. If K> 1, the decision for the construction of the current SVO partition
will include information from multiple instances. Note that the partitions in
TR can be computed either by off-line user interaction or automatically as part
of the extraction process. We now define a SVO extraction operator.

Definition 2 Let [ be the complete lattice of partitions of £ = D(I*). Let
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Ptell, add TR = {P&, 5, ..., P50} An SVO extractor operator is a mapping
Yhp o I 11, so that
Psvo = ¥rp(P") (3)

The explicit dependence on TR will be usually omitted as this set is used as
a reference. With this formulation, several tracking schemes can be formulated:
monoview (k = 1) or multiview (k > 1); causal (tx <t) or non-causal (tx >
t). The superscript in the operators notation means that they can be time-
dependent.

As we mentioned, we have assigned the accurate extraction of region bound-
aries to the partition generation phase. As a result, the extraction operators
{* } can be thought of as a classification mechanism, that assigns each region
Rit O P! to the appropriate SVO, so that no new spatial contours are intro-
duced in the partition P&, o. This concept is illustrated in Fig. 1. In fact,
al possible operators that can be designed with this idea in mind satisfy the
following property.

Property 1 The operators { '} are extensive.

Proof. It directly follows from Egs. 1 and 2.

This property implies a relation between this class of operators and con-
nected operators [4], [9]. In addition, we would like the operators {yf} not
to be injective. From the practical point of view, this would represent some
robustness in the extraction operation, by alowing several partitions '}, all
comparable by the ordering relation, to be mapped to the same object partition
PLyo. Finaly, idempotence represents another desired property, as it would
imply that the extraction would be done in one single step.

Fig. 1. SVO extraction operator. Hand sequence. (a) Original image |1. (b) Partition
P! (segmentation model superimposed); (c) SVO partition Py o = W(PY) (original image
superimposed).

In the following section, we present one operator for the case in which the
reference set is given by TR = {P,L}, and ¢ is non-time-adaptive.

3.1. PARTITION OPERATOR BASED ON REGIONAL M AXIMUM L IKELIHOOD.

The design of the partition operators can be formulated in terms of an opti-
mality criterion to be satisfied. Note that, from the statistica point of view,
SVO extraction (as has been formulated here) represents a process of assigning
the regions of P! to a given class, namely the objects in the scene; from the
algebraic point of view, it corresponds to the design of extensive partition oper-
ators. We initially propose a partition operator qu(Pt) to construct each S/O,-t
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from the partition P! using the previous SVO partition (Pg,lo)as reference,

Péyo, = ¥;(P")

where Pévoj is the partition that divides the image support into the j-th SVO
and the rest of the scene. The generation of P&yo is then straightforward.

Let Vie -1 2 P(E) — Z? be the mapping that computes a region motion
vector, assuming a pure translational model, using the image sequence I' at
times tand t— 1, so that V' = V}. 1:-1(RY) denotes the motion vector computed
for the region Rt € P*. Additionaly, let [X]n represent the translated version
of X € Z2by h € Z% [X]n = {x+ h|z € X}. The region attribute that
will be used to construct the SVO partition at each time t, using the tempora
reference Py = {SVOS™1,j € {1,..., M}} is defined as follows.

Definition 3 Given a partition P!, and the SVO partition P‘SI,%,the normal-

ized overlapped area between the i-th region R OP' and the j-th SVO is given

by:

card([Ri}y. N SVOLI™)
card(R?)

(4)

noaj; =

This measure takes values between zero (no overlapping) and one (R! U
SVO!™), and will decide for the assignment of each region in P' to the cor-
responding SVO. Obvioudly, each R! € P‘belongs either to the j-th SVO or
to any other SVO in the scene depicted in the image sequence. In hypothesis
testing terms,

The normalized overlapped area can be modeled as a continuous random vari-
able noa, taking values noa in [0,1] (we drop the index tin what follows to
simplify the notation). Let svo;,j = 1,...,.M represent the j-th possible class
(i.e. the j-th SVO), with prior probabilities P(svo;), and let svof .denote the set
of al classes except the j-th one, which implies P(svo§) = 1 — P(svo;). With
this setting, P(svoj /noa) and P(svo§/noa) represent the a posteriori condi-
tional probabilities that correspond to Hy and Hi, respectively. We use the
Maximum a Posteriori (MAP) criterion to map each region to an SVO [13]:

Hy
P(svoj/noa) S P(svoj/noa) (6)
Ho
such that the hypothesis H, that is chosen is the one that has a larger a
posteriori probability. Applying Bayes theorem on both sides of the expression
and rearranging terms,

p(noa/svo;) {1 P(svoj-) 0
p(noa/svo) 7, P(svo;)

where p(noa/svo;) represents the class-conditional probability density function.
For the two-object case, we can assume equal priors (P(svo;) = P(svof)), as
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foreground and background video objects may have any size and shape, and
the expression reduces to the maximum likelihood criterion
p(noa/svo;) Iil

L =
(m08) = noafsvo) 7,

1 8
For the cases of larger number of objects, however, the exact expression is

Eq. 7. Let k' denote the ratio P(svo$)/P(svo;). We propose to model the

class-conditional probability density functions by exponentia distributions:

—Ainoa

p(noa/svoj) = Are u(noa) ; p(noa/svoj) = Ape**1 7V y(1 — noa)
/

where u(x) designates the step function. These distributions approximately
model the real data: due to segmentation errors, p(noa svo;) should be highly
concentrated around noa = 1, and rapidly decay as noa — 0. The dua situa-
tion holds for p(noa/svo?). In addition, the parameter values A should make
the conditional probabilities outside the interval [0, 1] negligible. The problem
has been reduced to finding an optima threshold for noa,

o dg —InQa/kA) _ T )

noa
50 A1+ Az

We can now write an expression for the proposed partition operator:
Plyo, =v;(PY) = {SVOLE\SVO'} (10)
where A\B denotes set difference and

SVO: =| JR! such that noal; > Thoa (11)

The parameters A; and k' can be estimated from the actual data. However,
if we assume symmetry between the exponential distributions (\1 = A»), and
Ai >>k', the expression for the optimal threshold can be further simplified and
approximated as:

T _ )\2 - ].n(>\2/)\1) in kt ~ .1_
oa AL+ Ag AL+ A 2
This analysis shows that ;, under the described assumptions, is equivalent to
a tracking algorithm recently reported in [7] for the two-SVO case.

To extract the M SVOs present in the scene, §; should be applied M — 1
times (the M —th SVO is aways selected as the scene background). Finally,
P Lvo can be directly generated from the set of partitions {v;(P?) j]\ijl, by
defining a partition operator YrmL () for regional maximum likelihood:

(12)

M-1 M-1
Plyo = brur(PY) = [\ v,(P") = N Phvo, (13)
=1 =1

Some properties of this operator can be established (the same applies to j,
as it is equivaent to Yrm for M = 2 in Eq. 13).
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Property 2 @ rmL has the following properties: (i) neither increasing nor de-
creasing, (ii) idempotent, (iii) not injective, (iv) not invertible, (v) not a mor-
phological filter.

Proof (i). (Counterexample). Let P! be a partition of ¢ that consists of three
regions, labeled B (background), H (head), and S (shoulders), respectively.
Let P! be another partition that consists of two regions, H and E =B O
S (erroneously merged regions). By construction, P} < P}. Additionaly,
assume that there is no motion and that P4y}, is correctly composed of the
background B and the object O = HOS. Applymg WYrmL to the two part|t|ons
’lﬁRML(P) = nglo, and ’L/JRML(Pt) = 7.’7 but obviously ngloi 7
SO Y rmL iS not increasing. Similarly, it can be proved that ¢ gL iS not
decreasing.

(i) Yrymr(WrML(PY)) = YrMmL(Phyo)- BUt Péyo is aready the partition
of SVOs. A further classification process simply assigns every SVO; to itself,
i.e. YrmL(Psvo) = Pvo-

(i) Using the counterexample in (i), YrmL(P}) = vrmo(Piyh) = Pivh,
so P} and Pévo map to the same partition under Y gy, Which shows that the
operator is not injective. In general, for a set of partitions {P{ < --- < PL},
the equality Yrarr (P) = -+ = ¥rp(PL) will hold.

(iv) Follows from (iii).

(v) Remember that a lattice operator is caled a morphologica filter iff it is
idempotent and increasing. The result immediately follows from (i).

3.2. STATISTICAL VALIDATION OF THE PARTITION OPERATOR

To justify the assumptions in the previous subsection, we performed statistical
tests on severa MPEG-4 video sequences. Indeed, we found that the exponen-
tial, symmetrical distribution assumption adequately represents the data. In
Table I, we show the ML estimates for the parametersAi , for the two-SVO case
(foreground object and background). Additionally, the priors P(svo;) a each
time t are estimated from the relative sizes of the SVOs at the previous frame
of the video sequence, so that:

k= P(svo})/P(svo;) = card(S\SVO;_l)/card(SVO;"l)

TABLE|
Estimated parameters for MPEG-4 sequences
Sequence Ay X2 kO Thoq

Bream 14221 11389 244 045
Foreman  75.17 7951 194 051
Hand 97.64 7883 425 044

Table | also shows the initial values of &°. It is observed that the assumption
that A >> k aso holds, even for small objects, and that the estimated optimum
threshold Thoa is actually close to the approximated value. This fact validates
the direct use of 1/2 as the value of Tnoa, Which reduces the computational
complexity. It is aso pointed out that Yrm L can tolerate SVO size changes.
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Fig. 2. SVO extraction. (a) Akiyo. (b) Hand. (c) Tennis. (d) Bream.

4. Results
Our framework is integrated in an SVO extraction system whose minimum-user
interaction model was presented in [5], and consists of four steps:

1. SVO structure definition. A user-defined Pgy,, is generated from 1°.

2. SVO computation by generation of a partition P!V t.

3. SVO tracking by application of our partition operator, Py, o= Yt (Pt, Piyb).

4. SVO postprocessing to refine the object partitions, Piyo — Phyo-
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Fig. 3. Generated SVO Spatial Distortion. (a) Akiyo, (b) Bream. The distortion introduced
by the erosion of the ground truth by a 3 x 3 structuring element is also shown.

Extraction results for various scenarios are shown in Fig. 22. In all cases,
we superimpose P§, o on It. Fig. 2(a) shows the result for the Akiyo sequence
for two user-defined SVOs. Akiyo and Background. Even though they have
some adjacent regions of similar color, our methodology generated precise SVO
contours. Fig. 2(b) illustrates a two-SVO gesture image sequence [1]. The hand
presents fast, articulated motion and shades, and the scene has a significant
change of illumination. As a third example, the result obtained with the Tennis
sequence, divided into three SVOs, is shown in Fig. 2(c). The sequence has been
correctly partitioned. Finally, the result obtained with the Bream sequence,
that presents object deformable motion and global camera motion, is shown in
Fig. 2(d). In summary, our methodology performs well for different types of
object and camera motion.

The computational complexity of our method is low, and adequate for semi-
automatic SVO extraction. When fast motion estimation is used, the extrac-
tion takes around three seconds/frame in QCIF color images, on an SGI Octane
computer; this figure could be significantly reduced by code optimization. Full
motion estimation provides the best SVO extraction results at the expense
of increasing the processing time, and might be required when tracking tiny
objects with large motion.

Objective evauation of our methodology can be performed for those se-
guences for which a ground truth is available. The MPEG-4 group has pro-
posed figures for spatial distortion evaluation [16]. In Fig. 3 we present the
results obtained for the Akiyo and Bream test sequences. To provide an idea of
the degree of accuracy of the generated SVO partitions, the spatia distortion
computed between the ground truth and a 3 x 3-eroded version of itself, that
approximately peels off the ideal SVO partition by one pixel, is aso presented,
and confirms the obtained quality.

The main limitations of the proposed method arise when extracting SVOs in
(i) highly cluttered scenes where the colors of different SVOs are similar, which
introduces segmentation errors, and (ii) sequences in which newly uncovered
regions have no matches in the previous frame, which produces tracking errors.

2 Test video sequences are available at http://hitl.washi ngton. edu/ peopl e/ dani el gp
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We are currently extending our methodology to a multiview SVO representation
(i.e, when the partition reference set TR is composed of more than one SVO
partition) to address these problems.

5. Conclusions

We described a methodology for multiple SVO extraction based on object
contour-preserving spatial partition generation and application of extensive
spatio-temporal partitions operators. The use of the partition lattice frame-
work for SVO extraction alows for the modeling of various tracking schemes
and leads to the development of optimal algorithms. We have illustrated this
with a regional maximum likelihood operator. Experimental results for a vari-
ety of real situations in natural video sequences have verified its effectiveness.
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Abstract. This paper introduces the notion of morphological granulometric deconstruction.
A model based on that notion is proposed and the algorithms developed to simulate images
are aso described. The model is validated with a set of images of different types of Portuguese
granites.

Key words: Morphological Granulometry, Deconstruction, Implantation, Primary Grain,
Granite Texture.

1. Introduction

In earth sciences, the information known or available on some structure is nor-
mally scarce and only known through a set of sampling points. The way of
dealing with this fact and the verification that a variable measured in a point,
besides presenting an erratic value, normally exhibits structural features has
given origin to the regionalised variables or geostatistics theory [11]. The esti-
mation and the simulation based on this structured information uses a spatia
autocorrelation function named variogram [9, 11] which is in the basis of other
tools that allow to infer the feature or the structure for the remaining por-
tion of the field where experimental information is not known. However, if
the available information on the feature or structure is not so scarce, besides
the application of geostatistics, mathematical morphology can also be used to
model and to simulate structures. Since the pioneer use of morphological mod-
els in geosciences [4, 5, 12] and mineral processing applications [1], a long and
consistent way has been built with success in a considerable set of applica-
tions [7, 8, 18, 19]. Although these models are relatively simple to apply, they
present, however, some difficulty of generalisation, being the choice of the shape
of the primary grain a mgor difficulty. For instance, in a simulation procedure,
the random variation of the shape of the primary grain can be helpful [7, 10],
but in other cases that situation will not solve the problem of constructing
structures, as for instance, the ones presented by natural stones. However,
this type of pictures shows a structuring character that, paradoxicaly, alows
thinking about the use of geostatistics. Anyhow, the tools used in this theory
do not take explicitly into attention granulometric features of the structures.
Thus, in this paper is introduced a model based on granulometric features of
the structures and the respective simulation algorithms that are based upon
the way the morphological operators deal with their size and shape features.
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2. The Model

The underlying idea to this model comes from the computation of the granu-
lometry by openings of increasing size. The application of successive openings
of increasing size suppresses the regions or objects of the structures not contain-
ing completely the structuring elements. The remaining regions or structures
become simpler and simpler and tend to the shape of the structuring element
used, as the sequence of opened images of figure 1 illustrates.

Fig. 1. Openings with a square of increasing size applied to biotite-quartz phase of a
Portuguese granite.

This simplification of the image by morphological operators is somehow a
decomposition or deconstruction of the initial structure into several opened sets,
that through the Lebesgue measure Meas of the remaining or of the suppressed
successive structures allows to construct the size distribution or granulometric
curve [13]. The sequence goes this way from something to nothing, or in this
binary case, goes from a non empty set to an empty set. Thus, in order to create
something from nothing, why not reverse the order of the sequence, and this
way to deconstruct now the granulometric curve in order to create a structure?
Having this in mind, the morphologica granulometric deconstruction model is
proposed. The parameters of the model are extended to other features and are
based on the criteria proposed by Serra [18] to characterise a structure: size,
dispersion and connectivity.

2.1. SiZE AND SHAPE PARAMETERS

Size and shape parameters of a structure X are given by openings y (or closings
¢) with a structuring element B of increasing size A, being the computation of
the respective granulometries in measure Gwm(A) given by:

_ Meas(X) — Meas[y*?(X)]
B Meas(X)

Gu(A)

being gar(A) = Gar(A — 1) — Gu(N).

@

2.2. DISPERSION AND ORIENTATION PARAMETERS

The dispersion and orientation parameters are given by the covariance C(h),
which is the measure of the erosion [ by a pair of points h:

C(h) = Meas[e" (X)) @

or by the variogram y(h) function, that can be deduced from the covariance:
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v(h) = C(0) = C(h) ©)

2.3. CONNECTIVITY AND NEIGHBOURHOOD PARAMETERS

For this set of parameters, the neighbourhood or vicinity functions can be
used [6, 3] but, in aternative, one proposes to use the morphological granu-
lometry in number Gy (A):

N(X) = NY*P (X))

Gn(A) = N0 (4)

where N (X) is the number of particles or objects of X, being the measure of
the structure of size A given by gn(A) = Gy (A —1) -~ Gx(A). But in this case,
is crucia to know exactly the number of particles or objects that disappear and
are created after the application of each opening yof size A. Let gn+(A) be
the number of particles or objects that disappear completely in each iteration
A, and gn- (A) the number of particles or objects that are created after each
iteration A, that verify the relation:

gn(A) = gN+(A) —gn-(A) (5

The computation of these quantities is respectively done through the following
set of morphological operations:

gn+(A) = N[Xs_1/Rx,_,(X2)] (6)

gn-(A) = N[Rx, (X5/SKIZx,_,(X:)[ ) XAl 7

or simply through eg. 5 when gy (A) or one of these quantities is known. In eg. 6
and in eq. 7, Rx,_, (X)) is the reconstruction of the marker X, in the mask or
geodesy X -1 and SKI1Zy, , (A,) is the geodesic skeleton by influence zones
of X, in the geodesy X _1.

3. The Algorithms

The algorithms for the simulation of textures using the morphological granu-
lometric deconstruction model consist on the implantation of primary grains
in regions previously designed (geodesies) according to the quantities given by
the morphological granulometries in measure and in number. Although not
inspired on cellular automata methods, there exist some similarities with the
developed agorithms, particularly on the definition of the rules for primary
grain implantation [17, 20].

The input parameters of the model are the granulometric functions in mea
sure gm (A) and in number gy (A), as well as, the associated functions gy 4 (A)
and gn—(A), and also a tolerance t related to the surface to implant in each
iteration of size A. The implantation of a new primary grain at each step can
be done according to one of the following conditions:
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— the grain to implant cannot be superimposed to already implanted ones
(figure 2a);

— the grain to implant can be superimposed to the already implanted ones
and

* must connect them (figure 2b);
* must not connect them (figure 2c).

(a) ®) ©

Fig. 2. Possible locations for primary grain implantation: (a) without superimposition (b)
with superimposition and connection (c) with superimposition and without connection.

Within each previously defined geodesy, updated after each iteration of the
algorithm, the geometrical locus where each primary grain can be implanted is
chosen according to a Poisson point process or to other more elaborated point
processes.

The sequence of construction of the structures by granulometric deconstruc-
tion starts by the implantation of primary grains following the granulometry in
number gn(A) followed by the granulometry in measure gm (A ). The surface of
each granulometric class of size A that is necessary to spend, begins by implan-
tation of complete grains (value given by gn+(A)) or by superimposed grains
in order to connect structures already implanted (value given by gn —(A)), and
finishes by the implantation of primary grains where is only allowed superimpo-
sition with no connections between the new grains and the aready implanted
ones (vaue given by gm(A)).

3.1. IMPLANTATION OF PRIMARY GRAINS FOLLOWING gn(A)

At this stage, the procedure consists firstly on the implantation only of com-
plete primary grains (given by the function gn+(A)), implanting them over the
background without any superimposition, and secondly on the implantation of
uncompleted grains (information given by the function gy—(A)), by implanting
partialy the grains in order to connect the ones aready implanted.

The procedure begins by the implantation of complete primary grains in
the geodesies or masks successively built after each iteration (mask of type A)
where is possible to perform that operation. The construction of this type of
mask can be simply obtained by the erosion € of the background X¢ with a
structuring element of size (A +1)B:

My = 5(A+I)B(XC) (8)
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An example of the construction of a mask of type A is presented in figure 3.
The application of eq. 8 to the union of primary grains already implanted
(figure 3a) constructs the mask M where is possible to implant a complete
primary grain without superimposition (figure 3b).

(a) ®

Fig. 3. Construction of mask of type A.

The construction of a mask where is possible to implant grains that will be
superimposed to the aready implanted ones and that simultaneously establish
connections between grains (mask of type B) is more elaborated. It consists
on finding the regions where the primary grain fits, i.e,, on finding the regions
of the complementary set X° where is possible to implant a primary grain
that connects at least two distinct components. The detection of the regions
where that topological modification is performed is achieved by a closing ¢ of
size A/2, that aso detects the concavities of the structures presenting the same
size/shape, as can be noticed on figure 4b (regions in grey). To distinguish these
two types of regions (concavities and non-concavities) added by the closing, it
should be taken into account that the closed concavities are in contact with only
one object while the closed non concavities are contacting at least two different
objects. Thus, the counting of the number of contacts for each closed region is
performed on the image Y resulting from the following set of operations:

Y = [65(2*B/2(X) /X)) () X ©)

where 9 is the dilation and ¢ the closing transforms. The identification of
the added regions is obtained by the closing ¢ with the structuring element
AB/2 (p*B/2(X)/X). This set Y, dilated in the following with the structuring
element B of unitary size, followed by its intersection with the initial set X
allows to identify the borders or internal contours of X, that are contacting
the regions added by the closing. Now, in the new geodesy Yi:

Y =Y Jp*B2(X)/X) (10)

constituted by the union of the regions added by the closing (x*B/2(X)/X)
and of the internal contours of X in contact with the regions connected by
the closing (set Y), it is necessary to count the connected components of Y
within those geodesies. If, within each connected component of Y;, the number
of objects (or contacts) is equal to 1, then the set marked by this object is a
concavity, otherwise, for a number superior to 1, this set is not a concavity. If
the connected component is not a concavity, it should be investigated if it really
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connects different objects or if it is only contacting different regions belonging
to the same particle. The sequence of operations that allows to discriminate
these two types of non concavities demands more algorithmic efforts.

Thus, in order to identify the non concavities that connect different con-
nected components, it is enough to count the number of objects of the initial
set X that each connected component Y, ofY; (Y; = Y1) is marking, and
therefore, can reconstruct. By an individual analysis of each Y,; set, the recon-
structed Y,; sets are then obtained:

Yai = Rx (Y1) (11)

Analogously to the way of distinguishing concavities from non concavities it
suffices to count the number of objects of each set Y. If this number is 1, thus
this component connects two different regions from the same object, but if the
number is superior to 1, then this component connects different objects. After
the identification of the connected components that belong to non concavities
and where the implantation of a primary grain connects different objects, it
is now possible to construct a new type of mask (type B, Mg), by simply
reconstructing those components Y, in the mask given by the closing *BI2(X),
whose final result is shown in figure 4c:

MB = R‘PAB/Q (Y2) (12)

®

Fig. 4. Construction of mask of type B.

3.2. IMPLANTATION OF PRIMARY GRAINS FOLLOWING Gy (A)

When the granulometric distribution function in number gn(A), and the asso-
ciated functions gn+(A) and gy —(A)) are spent for a given class of size A, i. e,
when all the primary grains from those experimental class were implanted (com-
plete or superimposed to connect structures) it may be necessary to implant
more primary grains to respect, within the permitted tolerance, the granulo-
metric distribution in measure gwm (A). Obviously, to respect the distribution
in number gn(A), the new primary grain can only touch or be superimposed
to the aready implanted grains, without connecting them. To keep intact this
topological relation, a new type of mask must be built (type C). It takes into
account the regions where is possible to implant new superimposed (submask
M c1) without connection (submask Mc2). Thus, the construction of the sub-
mask M ¢1 consists on detecting the interior regions of the implanted grains
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where is possible to implant a new grain without being completely absorbed
(to avoid the unnecessary implantation of a grain within an existent structure)
and the exterior regions of the aready implanted ones where is possible to im-
plant a grain with superimposition. The first one of these sets is obtained by
the logical subtraction between the set of structures and the eroded set. The
second set is obtained by the logical subtraction between the dilated structures
and the structures. The union of these two sets constitutes the submask Mc
(figure 5b):

Moy = [X/P (X162 (X)/(X)] (13)

Submask Mc is the geodesy where the submask Mcq is valid without
modifying the homotopy, i.e., where there is no connection. Therefore, submask
M c2 is constructed through the following set of operations:

Moo = *B2[(SKT1Z(X))°] (14)

that corresponds to the influence zones of the already implanted structures
obtained by the skeleton by influence zones KlZ, eroded by

AB/2(e*B/Y(SKIZ(X))°),
where it is not possible to establish connections between digjoint structures by
primary grains of size A (figure 5c).

Thus, mask Mc is obtained through the intersection of the two submasks
M c1 and Mc2 (figure 5d):

Mc = Mc, [\ Mea (15)

9
iy

Fig. 5. Construction of mask of type C.

4. Simulation of Binary Textures of Granites

In order to simulate textures using the proposed model, experimental informa-
tion extracted from a set of 13 types of Portuguese grey granites was used [14,
15]. All these granites are constituted mainly by feldspars, quartz and biotite
minerals and present the same textural neighbourhood or vicinity relationships:
feldspar (lighter phase) is the matrix or background, where quartz (grey phase)
and biotite (darker phase) are included. The biotite occurs mainly within the
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quartz but always in its boundaries (contacting the feldspar phase) and also,
in lower quantities, totally involved in the feldspar phase, being rare the oc-
currence of biotite completely involved by the quartz phase. Those topological
relations are schematically represented in figure 6a. Due to this hierarchy a
simplification was introduced by unifying biotite and quartz phases within a
single one and keeping feldspar phase unaltered (figure 6b).

W ©

Fig. 6. Scheme (&) of occurrence of main mineralogical phases in a granite (biotite (black),
quartz (grey), feldspar (white)) (b) adopted for the simulation (biotite-quartz (black),
feldspar (white)).

In figure 7 an example concerning Pedras Salgadas granite is presented (fig-
ure 7a shows an experimental or real texture segmented/classified with a mor-
phological approach [16], while figures 7b, 7c and 7d are examples of simulated
textures). For each type of granite five redlisations of the morphological gran-
ulometric deconstruction model, based on size distributions in number and in
measure, were performed.

Fig. 7. Binary textures of granites (biotite-quartz (black) and feldpsar (white)): (a) exper-
imental (b)(c)(d) simulated.

In general, concerning the visual aspect of the simulated images in compar-
ison with the real ones, the similitude is very high, lying the difference on the
regularity of the contours of the phases. If the experimental texture presents
smoother contours, and does not denunciate the digital character of the image,
the simulated textures do not hide that characteristic and present more regular
contours. Obviously that a post-processing step can be envisaged, but so far,
it is preferable to exhibit this characteristic in order to reconvince us about the
veracity of the simulated structure [2].

To validate the proposed model, on each simulated image were performed
the same measures that were previously performed on the experimental ones:
granulometry in measure and in number for the phase directly simulated (phase
biotite-quartz) but also to the complementary phase (phase feldspar), and aso
a dispersion/anisotropy measure (the variogram function) in two normal direc-
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tions (0° — 180° and 90° — 270°) for both biotite-quartz and feldspar phases.
The granulometric curves (in measure and in number) and the experimental
variograms obtained for the Pedras Salgadas granite are presented in figures 8
(biotite-quartz phase) and 9 (feldspar phase), corresponding in the simulated
case, to average curves of the five realisations of the model performed. In the
graphics, each real or experimental value is plotted with a black polygon, while
the simulated values are plotted with a circumference.

The granulometries in measure and in number of biotite-quartz phase (phase
directly controlled in the simulation algorithms) are highly reproduced. The
granulometries in measure and in number for feldspar phase are globaly well
reproduced, with some few local discrepancies. Anyhow the results can be
considered very positive and acceptable. In what concerns the experimental
variograms computed in two normal directions, the results obtained present
aso highly similar behaviours. Globally, the degree of matching for the set of
13 types of granites between the experimental and the simulated curves is very
high [15].

.......................................
.....

Fig. 8. Vadlidation tests on bictite-quartz phase. (a) granulometry in measure (b) granu-
lometry in number (c) experimental variograms.
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Fig.9. Validation tests on felspar phase. (a) granulometry in measure (b) granulometry in
number (c) experimental variograms.

5. Conclusions and Future Developments

In face of the textures obtained and of the comparison of the experimental
and simulated curves, the proposed model can be accepted as a valid one,
allowing, so far, to simulate natural structures as the ones presented by the
granites (without preferential nor a spatial clustering of its phases) based on
the morphological granulometric distributions in number and in measure.
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Therefore, the model and the algorithms presented to binary images may
be improved taking into account the following points:

— the information about dispersion and orientation should be considered
when necessary;

— more phases should be accepted, in a hierarchical or non hierarchica ways;

— a generalisation should be done in order to contemplate grey level and
colour images,

— the agorithms should be optimised or fast versions should be created in
order to reduce the present high computational costs.
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Abstract. A morphological tool for accurate automatic texture classification is proposed and
applied to a large set of plastering mortars. Starting from measurements of morphological
data (covariance, speed of erosion and dilation, size distribution, watershed sizing) on grey
level images, correspondence analysis is used in a learning procedure to visualize the surfaces
in a reduced space, and to select the most pertinent measurements with respect to the
classification of textures.
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1. Introduction

Texture classification by image analysis has many applications in industry. The
aim of this study is to provide and demonstrate the usefulness of a texture clas-
sification agorithm that uses some morphological measurements and statistical
data analysis (Correspondence Analysis) in order to classify random textures
into k different classes. This is applied to the development of a fast automatic
classification of samples of plastering mortars, in order to replace a standard
visual inspection procedure. The presentation which follows is extracted from
a more systematic and wider study [1].

The approach is divided in two steps: training and classification. In the
training step, morphological measurements on sample images produce a large
number of data, which are submitted to a multivariate statistical analysis in
order to get the best separation of the representation points into k regions.
The classification step is obtained by projecting experimental data in a low
dimensional representative subspace of the data

The main difficulty of this approach is to find the best morphological mea-
surements that should be performed. In the present work, we show that the
morphological measurements: (i) covariance curve; (ii) dilation and erosion
curve;, and (iii) granulometry and antigranulometry distributions, do not give
the same accuracy for the classification. We show how to extract the best
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Fig. 1. (a) Q1 quality (too early), (b) Q2 quality (normal), (c) Q3 quality (too late).

morphological functions, from the point of view of a classification, and for this
one the more discriminant values. The paper is organized as follows. section 2
describes the samples to be studied. Section 3 presents the morphological mea-
surements used in this work. Section 4 describes the statistical data analysis.
Section 5 presents the experimental results and finally, the conclusions are
summarized in Section 6.

2. Samples and Image Acquisition

The plastering mortars samples studied in this work are specimens to be given
to customers in a sample presenter. The manufactured specimens present three
types of texture qualities (noted Q1, Q2, Q3), due to some variability in ther
elaboration. These qualities depend on the drying time of the roughcast be-
fore being scrapped. It is possible to define the following categories, from the
morphological aspect of samples: “too early”, “norma” and “too late” term.
Some examples of such samples images are presented in Fig. 1.

The classification problem studied here is, given a collection of sample im-
ages of a group G containing different texture types, classify them into classes
Q1, Q2 and Q3, according to their texture types.

In the study [1], 3 types of textures were anaysed, with 300 samples per
type. We restrict the presentation to a single type of texture, which corresponds
to 300 samples.

In the process of image acquisition of plastering mortars, a simple device
composed of a TV camera and two lamps were used. A normal (and isotropic)
lighting flattens the relief and the image has a too low contrast to be tractable.
Therefore, an oblique lighting (45 degrees) was used. The projected shadows
of the relief give an anisotropic texture, characteristic of the surfaces. In the
images, the grey levels do not directly represent the elevation of the considered
point, but are however representative of the topography: the obtained images
present shadows, due to the presence of a strong relief (Fig. 1).

All acquired images presented a horizontal periodic noise, which was re-
moved by a frequency filter, using a Fast Fourier Transform (FFT). The fina
images contain 485 x 285 pixels.
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3. Morphological Measurements

When working with textures, it is convenient to consider images as realizations
of random structures (random sets for binary images [9, 10], and random
functions (RF's) for grey-level images). They can be characterized by means
of the Choquet capacity [9, 10, 8], from which are derived most morphological
measurements.

3.1. THE CHOQUET CAPACITY

An upper semi-continuous random function Z(x) is characterized by its Cho-
quet capacity, T(g), which can be defined [8] on the lower semi continuous
functions (Isc)g with a compact support K

T(g) = P{z € Dz(9)}; Dz(9)° = {z, Z(y) < g(y — z),Yy € K} (1)

A particular and usua case is the spatia law defined on a finite number of
points X1,X2,...,Xn,

F(x1,22, .., Zn, 21, 22, .., 2n) = P{Z (1) < 21, Z(x2) < 29, ..., Z(Tp) < zn}
(2)
Other particular cases give the changes of supports by 0 (supremum), namely
adilation or by L] (infimum), namely an erosion, which generate new RF's:

Zy(K) =Vaerx{Z(z)} =Z0 K

INK) = Neerx{Z(z)} = 20 K

As a particular case, when the compact set K is limited to point x and
g(x) = z, we recover the distribution function F(2z):

F(z) = P{Z(z) < 2} =1-T(g) (3)

3.2. MORPHOLOGICAL MEASUREMENTS

3.2.1. Covariance Function
The centered and reduced covariance function of the stationary random func-
tion Z(x) is defined by:

E{Z(z)Z(z + h)} — (E{Z(x))*}
E{Z(2)Z(z)} - (E{Z(2)})?}

where E{:} denotes the mathematical expectation of a random variable. The
term E{Z(z)Z(z+h)} is estimated by the average of the product{Z(z)Z{x +
h)} over the pixels of the images. As it can be interpreted in terms of a product
of convolution, it is obtained by FFT. We added the value 0.5 to the centered
and reduced covariance, to avoid negative values for the Correspondence multi-
variate data analysis. The measurements were made for separations h ranging
from 1 to 100 in the two main directions of the image (horizontal and vertical)

C(h) =
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3.2.2. Closing and Opening Curve (Anti- Granulometry and Granulometry)

A granulometry is the study of the size distributions of the objects of an image
[9, 10]. We compute, at the same time, a granulometry (distributions of sizes of
peaks) using morphological openings and an anti-granulometry (distributions
of sizes of valleys) using morphological closings. The following estimator for
the size density is equivalent to a probability distribution function, while the
function S(k) plays the role of a cumulative distribution function [5]:

S = S(k)—S(k+1)

with

S(k)—l. 1 _{Vol{(Mesz)m((Z—Av{Z})okB)} ifk>0
o NVol{M & 2&B} Vol{(M o 2|k|B)N ((Z — Av{Z}) e |k|B)} if k <O

where:

— Zo kBis the opening of Z by kB,

— Z +[kiBis the closing of Z by kB,

— Nis the number of levels in the gray-level image (in our case N = 255),

—  Vol{} is the volume of image, that is, Vol {X} = ¥ X(w),

— Av{?} is the average constant image, that is, Av{ll}i(e}xis an image of the
same size as X with constant height equals to %-Vol{ X} where Sis the

number of pixels of X,
— Zis the input Image,
— Mis the mask Image,
— Bis the structuring element (sguare; horizontal or vertical segment), and
— M n Z means the restriction of image Z to the mask M.

Fig. 2 gives an example of closing opening curves by sguares (sizes cover
the range 1 to 100 pixels in measurements). The right side (positive values
in horizontal axis) is the opening curve while the left side (negative values in
horizontal axis) is the closing curve.

3.2.3. Erosion and Dilation Curve

We also use a “pseudo-granulometry” and "anti-pseudo-granulometry” ob-

tained by replacing the closing and opening by, respectively, dilation and ero-

sion [5]. More formaly,

S(k):l. 1 _{Vol{(MekB)m((Z—Av{Z})ekB)} @szo
N Vol{M & kB} Vol{(Mo|klB)yN((Z —Av{Z}) @ kB)} ifk <0

The speed of erosion (namely of dilation) is defined as the difference [5(k)—
S(k+ 1)0. In Fig. 3 is given an example of an erosion and dilation curve by verti-
cal segments. Asin the case of granulometry, erosions and dilations by squares
(with sizes ranging from 1 to 100 pixels), horizontal and vertical segments (with
sizes ranging from 1 to 100 pixels) were used for texture classification.
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Curve of Closing and Opening by Square
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Fig. 2. Example of a closing (left side) and opening (right side) curves by sguares.
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Fig.3. Example of an erosion (right side) and dilation (left side) curves by vertical segments.

We observe that the computation of the erosion and dilation curve is definitely
faster than the computation of the closing and opening one.

3.2.4. Measurements on peaks and valleys

In order to get information on the connectivity of peaks and valleys, we ex-
tracted watersheds of images and of their negative values (an example is given
in Fig. 4). From these segmented images, we measured the number of val-
leys with a given area S, or with a given volume V (by integration of the grey
level values over each watershed), and similarly for the number of peaks. This
type of information is illustrated on the curves of Fig. 5, where the left part
concerns peaks and the right part concerns valleys. These morphological data
were used in a preliminary study of the surfaces, but was not relevant for the
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Fig. 4. Example of watersheds

Curve of Arca Histogram

Fig. 5. Example of area distribution of catchment basins: peaks (left part) and valleys
(right part).

classification of the present textures.

4. Introduction to Correspondence Analysis

In order to analyze the morphological measurements described in Section 3.2
and to produce a classification of samples, we use Correspondence Analysis [4].
A similar approach was followed in [7] for the automatic classification of non
metallic inclusions in steels. It was used more recently for the classification
of rough surfaces [2], and of simulations of random sets [3]. The values of
measurements are stored in a table, where every line corresponds to a sample
(or observation) and every column to a measurement (or a variable). W e
define the line coordinate of a given surface (observation) as the vector with
M dimensions, and the column coordinate of a given measurement (variable)
as the vector with N dimensions. Alternative factor analysis techniques could
be used for this purpose, like Discriminant factor analysis, Canonical Variate
Analysis, or even Penalised Discriminant Analysis [6]. These methods share
with Correspondence Analysis the fact that an optimal linear combination of
variables is looked for the discrimination of data, and in practice they give very
similar results. In addition, it can be proved that Correspondence Analysis is
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a special case of Discriminant or Canonical Analysis, based on the chi sguare
metrics [4]. Correspondence analysis allows to build a map of the line and
column coordinates (points with M and N dimensions, respectively) into a
reduced dimensional space (for instance a two-dimensional space), generating
synthetic criteria (in this sense, the method is a type of factor analysis [4]).

Not al of the variables used in the analysis are important to separate the
samples. This anaysis alows us to find the most significant variables amongst
the initial variables for the separation of samples.

Correspondence analysis alows one representation of the cloud of line points
and column points in a reduced space, which separates as well as possible
al the points by maximizing the inertia. Moreover this analysis allows the
interpretation of the axes (or factors) of the representation plane in terms of
the initial variables. That is precisely the main advantage of this method (with
respect to the classical factor analysis) for our purpose.

An indication of the quality of the synthetic axes makes it possible to es
timate the accuracy of the simplified representation and the amount of lost
information, from the corresponding part of inertia that they carry. For exam-
ple, we will say that the first direction explains 45 % of inertia, or equivaently
that it synthesizes 45 % of the total information. Obviously, one representation
of points in one plane explains the sum of fractions of inertia for each axis. It
is important to notice that we can use the distance between images, as well as
the distance between variables.

In the example of the study shown on Fig. 6, we notice that the part of
explained inertia is 88.4 % for the first factor and 5.8 % for the second one.
That means that we represented a vector with 200 dimensions in a 2D-space,
while keeping 95 % of the total information. The visuaization of column points
allows to identify the most discriminant measurements. To conclude this part,
we can remind that the correspondence analysis alows:

- to visualize the surfaces in a reduced space (typically 2 or 3 dimensions) with
the help of synthetic factors.

- to give an interpretation of this representation.

- to propose a reduction of the number of variables, useful to decrease the
measurement time.

5. Results

The study was made in three steps. At first, the relevance of directional struc-
turing elements is estimated (this choice is justified by a directional lighting).
In a second step, the most discriminant variables are determined, in order to
reduce the amount of data. These two first steps were done in a reduced data-
base (30 samples). In the final step, we studied the complete data base (300
samples) on a reduced number of measurements.

5.1. FIRST STEP: SURFACES AND LIGHTING ANISOTROPY

The first study intends to evaluate if the obtained textures are really character-
istic of the different qualities of the product. The opening and closing curves
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do not give discriminant results in the present case, mainly due to the fact
that the experimental curves present many oscillations (see Fig. 3.2.2). Larger
images of each sample would be required to proceed to a statistical averaging.
In the remaining part of the study, we limit measurements to the erosion and
dilation curves (and by the way, abandon opening and closing measurements).
Directiona structuring elements appear to be a good direction of investigation.

5.2. SECOND STEP. REDUCING THE NUMBER OF VARIABLES

The projections of variables in the first factor plane show the influence of
each variable on the discrimination. In fact, the most scattered variables in
the factor planes are kept (two close variables will have the same influence
on the representation and the classification, and therefore a single one can be
used). For the remaining part of the study, it is possible to keep the following
measurements:
- the covariance (horizontal and vertical), for distances between 1 and 50
pixels;
- the erosion-dilation curve using, vertical or horizontal segments, ranging
from 1 to 30 pixels.
- the erosion and dilation curves, using squares with side between 1 and 50
pixels.

These measurements were made for a complete data basis of 100 samples
for each quality.

5.3. FINAL  STUDY

At first, a very important result of this study is that the covariance function
is not efficient enough to discriminate the three categories, while the morpho-
logical operations (erosion and dilation) give a satisfactory discrimination of
samples. Using a simple linear regression to define the best limits of the differ-
ent domains, we obtain for these cases the scores given in Figs 6 and 7. We can
notice that in the case of directional operators perpendicular to the incidence
of lighting (Fig. 7), the best results give 90 % of well classified surfaces. This
is very interesting, because very fast algorithms exist to compute directional
erosions and dilations. As reported on Fig. 6 and 7, some misclassified sam-
ples are observed. The reasons of these misclassifications are due to the fact
that these textures look very similar for specimens corresponding to different
families. We can notice than these samples are not easily detectable even with
a manua inspection.

6. Conclusion

We have presented in this paper an automatic tool of texture classification.
This tool, used here in one practical study, is based on the correspondence
analysis of morphological data. It alows a visuaization in a synthetic space
(here 2D-space), where the meaning of each axis is obtained by projecting the
variables in the same space. From examination of the variables in this plane,
the most discriminant variables can be extracted. The automatic classification
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Curve Erasian and Dilation by Sguare
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Fig. 6. Classification score for erosion-dilation curves by square and related representation
of variables in the first factor plane.

on the basis of the erosion and dilation curves (using a sguare or directional
structuring elements) give very clearly better results than the covariance func-
tion in the present case. This is consistent with the theoretical characterization
of random structures by means of the Choquet capacity. Working with few op-
timized data (erosion and dilation curves for structuring elements with sizes
between one and 30 or 50) gives a good classification of very similar textures,
with a score of 90%. The control of the misclassified samples shows that they
are very difficult to discriminate, even by an experimented observer.

This study is in fact the learning phase of the classification: using a reference
database, the best directions (or factors) which discriminate these samples were
calculated. Now, to classify a new sample, we only have to project it onto these
directions. Using the learning step, it is not necessary to calculate new factors
by extracting singular values. As a result of this study, it appears that linear
erosions and dilations are very discriminant for very similar textures, where
covariances failed to separate samples of rough surfaces.
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Curve Erosion and D¥éation by Vertical Line
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Abstract. Interactivity has become one of the main objectives of multimedia applications.
Texture mapping techniques are essential to allow its development, but they all have one
point in common: they are not content dependent. In this paper the development of content
dependent texture mapping techniques is studied. A content dependent sampling process,
based on a reference image which indicates the importance given to each pixel of the original
image, is proposed. Two methods of building the reference image by means of morphological
tools are described. This content dependent sampling method is used to build a mipmap, a
classical structure used in texture mapping.

Key words: Image Sampling, Content Dependent Sampling, Texture Mapping.

1. Introduction

Multimedia interactive applications are rapidly developing. This enhanced in-
teractivity and new freedom needs to be supported by texture rendering tools.
Different texture mapping techniques exist [7], but, as long as we know, they
all have one point in common: they are not content dependent. This means
that images with different content will be treated the same way, and that in-
side one image all pixels are also processed without taking into account their
“meaning”. For example imagine a 3D scene featuring a notice-board hanging
from a textured wall. The wall and the text will be rendered exactly in the
same way. However, it could be interesting to better preserve the details of the
text than the details of the wall texture, for instance.

In this article we focus on the downsampling problem. Note however that
content based upsampling algorithms have also been recently developed in the
same context by Albiol and Serra [1].

In classical computer graphics, the treatment of a texture pixel depends
only on its position. In the present work, we will analyze the content of the
texture image and downsample it depending on the importance associated to
each pixel. To this end, a content dependent sampling method based on a ref-
erence image which indicates the importance given to each pixel of the original
image is presented. Two methods for building the reference image that make
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use of mathematical morphology are proposed. Moreover, we will apply these
downsampling techniques to texture mapping using mipmaps.

In order to test the resulting texture rendering algorithms in real time con-
ditions, and to compare them with existing techniques, we have chosen MESA,
a freeware implementation of OpenGL (Open Graphics Library), a software
interface to graphics hardware.

2. Content Dependent Sampling

We refer the reader interested by a review on texture mapping techniques to
an article by Heckbert [7]. The techniques described in this review do not take
into account the contents of the image when downsampling.

Mathematical morphology has aready been applied to image sampling [5, 6,
8, 9]. In these works the aim was to simplify the image before sampling, in order
to keep only those details that could be represented at the lower resolution level.
In that sense these non-linear approaches aready were content dependent, but
in our case we want to develop tools that will enable us to preserve some
details that are considered important, even if they are theoreticaly too small
(the theoretical limit being given by the Shannon sampling theorem), while
trying to avoid aliasing. Of course, this will only be possible if there is enough
place in the image. In that sense, our work is inspired from [3, 4].

2.1. A GENERAL FRAMEWORK FOR IMAGE SAMPLING

The simplest downsampling method is point sampling. It can be analyzed in
the following way: the origina image | is partitioned into regular 2 x 2 square
blocks, and within each block the first pixel (in the video scanning order) is
kept in order to build the sampled image J. We will denote B(xy) the block
composed of pixels {(2x, 2y), (2x + 1,2y), (2x, 2y + 1), (2x + 1, 2y + 1)}. This
procedure is illustrated by figure 1.

\ l
1 e '

B@2,1)

~r> pixel (2,1)

Fig. 1. Point sampling

Let Rbe a grey level image the same size as |, whose pixel values are defined
by:

R(x, y) =1if xand y are even, (1)
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R(x,y) = 0 otherwise. (2)

Then the point sampling operator can be expressed as follows:

Jz,y) = Y R(P)I(P). ©)

PeB(z,y)

But why should we choose the first pixel in each block? The only reason
is that its coordinates are even. The question then is whether it would not
be better to keep the most interesting pixels among the four, or even better
to combine the four pixels in some way. This leads us to the definition of a
general sampling operator based on a reference image.

Definition 1 Let Q be an operator which takes as input one color image |
of size n x m (the original image) and one grey level image R (the reference
image) of same size and which gives back an image J of half their size(5 x % ):

J=Q(,R). (4)
Q is a reference sampling operator if and only if:

D peney FOEP)
£ R(P)#0
Hay) = QUL R @y) =4 - Sereyfm o Zvesey BP) 7

: 2 PeB(ay [(P) otherwise

©)

This means that in order to compute the value of the sampled image pixel
J( %, y) we compute a convolution of the pixels of | belonging to B(x, y) using
as weights the respective values of R.

Existing downsampling methods can be described via reference sampling.
For example, a classical downsampling method based on convolution can be
written as;

Liimy) =5 3 L(P). ©

PeB(z,y)

Using the above definition, this can be expressed as a reference sampling
where the reference image is constant. The fact that this sampling method is
not content dependent clearly appears here: the values of the reference image
do not depend on the pixel values of the origina image.

Precisely, the main interest of reference sampling is that it alows the con-
struction of content dependent downsampling methods. The value in the ref-
erence image of a pixel P indicates its importance: the higher its value, the
better it will be represented after downsampling.

The next step is the construction of the reference image R. Here is where
morphological tools come into play. They will allow us to identify interesting
pixels.
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22. FROM THE MORPHOLOGICAL GRADIENT TO THE MORPHOLOGICAL LAPLA-
CIAN

From now on, for the sake of clarity, we will only consider grey level images.
The generdization to color images is easy thanks to the fact that we will only
use morphological operators to compute the reference image, and not to process
the texture image itself. When applying these operators to a color image, we
will in fact apply them to its luminance.

Interesting points in an image (maxima and minima, crest points) belong to
high gradient regions. This is why we first tested the morphological gradient
as reference image. However the gradient proved to be unsatisfactory for this
application for one main reason: not al high gradient points are interesting
(for example slanted planes or noise produce high gradients).

Therefore we looked for an operator with a higher discrimination factor,
and we found the morphological Laplacian, defined as:

Ls(I) = bs(I) +es(D) - 21, ™

where &g and Os respectively denote the morphological dilation and erosion,
and Sdenotes the used structuring element.

Contrary to the gradient, the Laplacian may have negative values, which
are as meaningful as positive ones. In order to build the reference image we
take the absolute value of the Laplacian. Hence the sampling operator can be
written:

where 00 denotes the absolute value operator.
Results are shown in section 4.

23. USING THE MORPHOLOGICAL TOPHAT TO DETECT DETAILS

Now we are going to detect details in a more explicit way using the tophat
transform.

However, we cannot directly use the result of the tophat as a reference
image; by doing so we would favor noise. We have to filter the tophat images
in order to extract only the meaningful details. To this am we use a hysteresis
threshold followed by an area filter in order to obtain a binary image indicating
interesting details. Finaly we take the intersection between this binary image

and the original tophat image in order to recover the grey levels of the details.
After applying this filtering step to the white tophat and the black tophat of

the original image, we obtain two reference images. The first Ry corresponds
to the light details in the origina image, and the second R, to the dark details.
The final reference image is built by taking the supremum of both images:
R=R,VR.

Results are shown in section 4.

2.4. COMMENTS

At this point some comments are necessary. The two downsampling methods
that have just been described are unsatisfactory from a strict theoretical point
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of view because they do not even try to minimize the loss of information. For
instance, if we upsampled an image obtained with these methods, the result
would be quite different from the original image. But the aim of this study
is to produce better looking images, at least for some cases such as images
containing text, important details or binary information. From this point of
view we believe that the results are interesting.

Before concluding, we explain how to apply these content dependent sam-
pling methods to texture mapping.

3. Application to texture mapping

3.1. MIPMAP CONSTRUCTION

A classical class of texture mapping methods is based on the pre-calculation of
a set of smaller versions of the original texture image lg. If 1o is of size n x m,
then a pyramid is built with images I; of size & x 7. This pyramid is called
a MIP map (MIP stands for the Latin phrase Multum In Parvo which means
many things in a small place). These structures were first applied to texture
mapping in [2]. They can be built and used in different ways.

A possible way of building a mipmap is recursively. Let |; be the i-th level
of the mipmap. |; is thus an image of size 5 x . With a reference sampling
operator Q we can recursively compute the pyramid using the rule:

Iy = QL Ry). (9)

However if we proceed this way, in some cases image details could sur-
vive aong several mipmap levels, which could be annoying for some applica-
tions. For these applications, we propose here an aternate mipmap construc-
tion method which uses content dependent operators but that ensures that
small details will be kept only in one mipmap level.

Let | o be the origina texture image, Q be the reference sampling operator,
and g be the function that computes the reference image from a texture image.
We want to build a mipmap starting from Io: (I, 11,12,...). Let K, bea
constant reference image the same size as |,. Then the recursive procedure to
build a mipmap which only preserves small details during one mipmap level is
defined by:

]gmooth — Io, (10)
Ipeeit = QI K,), (11)
In+1 —_ Q(IZmGOth,g(IfLMOOLh))- (12)

This means that we build a paralel smooth mipmap structure
(Igmooth, [gmooth [smooth  yand a we apply a content dependent sampling
operator to compute I,,;; from Ismoeth,

32. IMPLEMENTATION

We have implemented the general reference downsampling method, as well
as the two reference image construction methods (Laplacian method, tophat
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sampling) using XLIM3D, a mathematical morphology library developed at the
Center of Mathematical Morphology.

The reference sampling procedure itself is very fast. The computation of
the reference image may be slower, depending on the chosen method. For
instance the Laplacian method is very fast, requiring only the computation of
one dilation and one erosion, but the tophat method can take longer. It is not
the computation of the tophat that takes most time, but the filtering step: the
reconstruction used in the hysteresis threshold, as well as the area filtering, may
require many iterations. However, thanks to the algorithms used in XLIM3D,
which are based on hierarchical queues, we can now use these operators in real
time. Finally, note that the construction of the mipmap is not as critical as its
use during the rendering process.

The resulting mipmaps have been used within MESA, an implementation
of OpenGL. The resulting texture mappings preserve the details better than
the classical methods.

4. Results

In order to evaluate the new Laplacian and tophat sampling methods, and
to compare them with the classica downsampling method, we have computed
the mipmaps of two images with the three methods. The first image shows
some flat regions, rich textures, and text (figure 2). The second is a binary
image (figure 4). Note that, in order to stress the differences between classical
and content-dependent downsampling methods, we have not used the aternate
mipmap construction method described in the precedent section, which avoids
the survival of the same detail through severa mipmap levels.

Let us first have a look at figure 3. The three sampling methods perform
similarly in smooth regions. Differences appear in non-smooth areas like tex-
ture rich regions and near borders. Despite the fact that the representation of
these images in this document cannot alow detailed viewing, it can be appre-
ciated that images sampled with the Laplacian method are dlightly less blurred
than the images obtained with the classical convolution method. As noted pre-
vioudly, this has been achieved without introducing any visible aliasing. The
improvement brought by the tophat method is more visible. More details are
preserved from one downsampling level to the next. For example text in images
downsampled with the tophat method is easier to read.

Differences between these mipmap construction methods appear more clearly
when applied to a binary image. For example in figure 5 we can appreciate the
improvement brought by the new methods: detail and contrast have been bet-
ter preserved with these methods than with the classical downsampling method
based on convolution.

5. Conclusion

A general sampling method, called reference sampling, has been defined. It
generalizes some classical downsampling strategies and moreover it allows the
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Fig. 2. Origina image (256 x 256).

construction of content dependent downsampling operators.

Using the morphological Laplacian and the tophat operator two content
dependent downsampling operators, which aim at keeping meaningful image
details, have been proposed.

Finally, it has been explained how to build and use mipmaps based on these
content dependent sampling operators. Their implementation under MESA
gives interesting results.

A certain number of questions remain. What sampling method should we
use? What values should we give to the parameters? The sampling method
can be chosen according to the origina texture image. If it is very smooth,
then the Laplacian method should be used. Otherwise, the tophat method is
more interesting. The parameters used by the tophat algorithm can also be
adapted to the image: the higher their values, the less the details that will be
kept.

These choices can be made on the spot, after analyzing the image, or be
somehow included with the image. For example the composer of the 3D scene
could choose the sampling technique for the textures he uses.
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Fig. 3. Comparison of sampling results; the first column corresponds to the first downsam-
pling step (image sizes are 128 x 128), and the second column to the second downsampling
(image sizes are 64 x 64). First row: constant reference image. Second row: Laplacian
sampling. Third row: Tophat sampling.
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Fig. 4. Original binary image (256 x 256).
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Fig. 5.  Comparison of mipmaps computed from a binary image; the first column corresponds
to the first downsampling step (image sizes are 128 x 128), and the second column to the
second downsampling ( image sizes are 64 x 64). First row: constant reference image. Second
row: Laplacian sampling. Third row: Tophat sampling.
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Abstract. This paper is concerned with two types of multiresolution image decompositions,
pyramids and wavelets. We present an axiomatic approach for both cases, encompassing
linear as well as nonlinear decompositions. A wavelet decomposition is more specific in the
sense that it aways involves a pyramid transform. Both families will be illustrated by means
of concrete examples using the quincunx scheme in two dimensions. One nonlinear wavelet
transform will be discussed in more detail: it uses the lifting scheme and has the intriguing
property that it preserves loca maxima over a range of scales.
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1. Introduction

It is widely accepted that multiresolution approaches are extremely useful in
various image processing applications. This is due to the fact that most images
contain physically relevant features at different scales. For their proper under-
standing, multiresolution (or multiscale) techniques are indispensable. Another
good reasons to take recourse to multiresolution approaches is that the corre-
sponding algorithms offer various computational advantages.

In this paper we present a brief overview of the axiomatic framework for
the pyramid and the wavelet transform, which has been discussed in great
detail in [5, 8], and we present worked-out examples for both cases based on
the two-dimensional quincunx sampling scheme. An important feature of our
framework is that it allows linear as well as nonlinear transforms. This is
important to us, since our interest primarily goes to decompositions which are
based on morphological operators.

In Section 2 we introduce the pyramid transform and in Section 3 we discuss
a particular example based on a morphological adjunction. The general wavelet
transform is introduced in Section 4. There we aso explain how the lifting
scheme can be used to design (linear and nonlinear) wavelet transforms. An

* This work was supported in part by NATO Collaborative Research Grant CRG.971503.
John Goutsias was also supported by the Office of Naval Research (U.S.A.), Mathematical,
Computer, and Information Sciences Division, under ONR Grant N00014-90-1345.
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interesting example, called max-lifting, based on morphological operators is
discussed in Section 5. As we will show, the mgjor characteristic of this scheme
is that it preserves loca maxima

2. The Pyramid Transform

In this section we will formalize the concept of a pyramid, as first introduced
by Burt and Adelson [1], using general analysis and synthesis operators. For
a comprehensive discussion we refer to [5]. Thus, consider a family of image
spaces Vj, j = 0. Assume that we can go from level jto the next level j + 1 by
means of an analysis operator 1/1} : V; = Viy1. To go back from level j+ 1to
the lower level j we need to dispose of a synthesis operator 1/1]4 Vipi— Vo In

this scheme, every analysis operator 1,/)} is designed to reduce the information
contained in images at level j, and as such, they are not invertible in general:
the composition z,/)Jl-d;jT (z) does only yield an approximation of the input image
x 0V;. On the other hand, we demand that the synthesis operator does not
cause a further reduction of the information content of an image. To achieve
this, we will make the following assumption to which we refer as the pyramid
condition: for every j= 0, the operators l/)JT-, 1/131- satisfy

w;wjl(x) =z forx e V. 1)

This condition yields that the composition wjl-d); is idempotent. The pyramid
scheme introduced above can be used to obtain an alternative representation
of an image x, provided that we have an addition + and a subtraction — onVj
such that z; + (z2 — z1) = 25 for z1,25 € V;. Given an input signal xo 0 Vo,
we consider the following recursive signal anaysis scheme:

Iy — {y071"1} - {yO’ylyzQ} — e,

where
Tj1 = w;(xj)vyj =z %l-(l’jﬂ) .
We refer to this scheme as the pyramid transform. The original signal xqo O
Vo can be exactly reconstructed from z;41 and yo,¥1,...,%; by means of the
backward recursion
T = T/JJL(IJ'H) +y;, 720,

the inverse pyramid transform. For grey-level images, one can choose the stan-
dard addition and subtraction for -+ and —, respectively. In the case of finitely

many grey-levels, say n, one can also use the cyclic addition (i.e. addition
modulus n). In the binary case, this corresponds with the ‘exclusive or'.

3. Morphological Pyramids

Here we investigate pyramid decompositions based on two basic morphological
operators, erosion and dilation. Recall that for two complete lattices £ and
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M, an operator pair (g, 8), withe : L — M gnddé : M — L, is caled an
adjunction if 3(y) < xif and only if y< O(x) forx O£ and y O M. In that
case €is an erosion and o a dilation; see[7]. We consider pyramids that satisfy
the following constraints:

(i) the image domains V; are complete lattices;

(i) the analysis/synthesis pair(z/z}-,wjl-) forms an adjunction.

Assume that there exist two sets S Q and a binary relation on Sx Q denoted
by s — q. Given a complete lattice 7 (later, 7 will have the interpretation of
grey-level set), we can define an adjunction (/7,%!) between 7° and 7€ in
the following way:

V(@) g)= N\ z(s) and v )(s)= \/ 2'() )

si18s—q q:5—¢g

forz € 79 andz’ € 79. Here A,.,_,,2(s) standsfor min{z(s) | s € S and s —
gt (or ‘inf if the set is infinite). Indeed the pair, (¥',%!) constitutes an ad-
junction. In general it will not satisfy the pyramid condition, however. Thereto,
we need an additional assumption [5].

Proposition 1 The pair (¥7,4!) given by (2) satisfies the pyramid condition
(i e ¥yt =id on TX) if and only if for all q O Q there exists an s O S such
that (i)s - gand (ii)s - g whereq OQ, impliesq = q.

In the remainder of this section we are exclusively concerned with morpho-
logical adjunction pyramids which correspond with a 2D quincunx sampling
approach. Let Sdenote the square lattice comprising the integer points, i.e.,
S = {(s1,52) | 51,52 € Z}. Furthermore, let Q be the subset of Sresulting from
a quincunx sampling scheme, i.e., @ = {{¢1,92) | 1,92 € Z and ¢ + g2 even }.
Findly, let S O Q be the set resulting after a second quincunx sampling step,
i.e, 8" = {(s,s}) | si,sh € 2Z}. We define the following two norms on S:

Fig. 1. Arrows express the relations s - , g between sO Sand q O Q (left), and q -1 S
between g 0 Q and s O S (right). The larger disks comprise the quincunx grid.
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sl = lsa] + [s2] and [}s]lco = max{[si], [s2[},

where s= (s1,s2) O S Consider the binary relations
s—oq iff ||s—qli <1 and g—15 iff |[g—5lec 1

on Sx Q and Q x S', respectively. These relations are illustrated in Fig. 1.
Observe that both relations satisfy the conditions (i) — (ii) of Proposition 1.
Putting Vo = T S and V; = T Q, the analysis and synthesis operator given by
2,ie,
Y@= /\ =z(s) and yy(e)s)= \/ '(a),
8:5—0q q:s—o04q

form an adjunction between Vp and V31 and satisfy the pyramid condition.
Similarly, putting Vo= T S" and defining

Pla)s)= N =g and ¥i@)g) =\ (),

q:q—18' s'ig—18’

we obtain an anaysissynthesis pair (¥1,%!) which is an adjunction between
Vi and V, and satisfies the pyramid condition. Now, since S = 2S, we can
repeat the same procedure by putting Q" =2QandS'=2 S.

In Fig. 2 we compute 2 levels of the corresponding pyramid transform. The
odd levels in the pyramid are shown after a 45° clockwise rotation.

We make two important observations regarding this example: (1) since every
analysig/synthesis pair constitutes a morphological adjunction, the approxima
tion operator zp}w} is a morphological opening [7]. This means in particular
that the approximation image &; = wﬁ:}(xj) is never larger than the original
image x;, and therefore the detail image y; = z; —&; is nonnegative. (2) In the
expressions for w} and zpj. we only need to consider those points that lie in the
domain of the image, i.e, a square window. This does not affect the validity
of the pyramid condition, but it does destroy trandation invariance.

4. Wavelets and Lifting

A serious drawback of the pyramid transform is that its output signal comprises
more data than the input signal. The wavelet transform (see [9] for a compre-
hensive account in the linear case), to be discussed below, does not have this
drawback. In this case the detail signal is generated by a second analysis gpera-
tor w]'., mapping V; into another space W, ,in such a way that =’ = dz;(x) and

y' = w}(z) jointly contain the same amount of data as x. Furthermore, there
exists a synthesis operator \I»']l such that the perfect reconstruction condition

Vil(z),wl(2) =2, zeV; 3
holds, as well as

Yl (T (z,y)) ==, and wl(¥(z,y) =y, for z € Vipr, y € Wy,



MORPHOLOGICAL PYRAMIDS AND WAVELETS 277

Fig. 2. Morphological adjunction pyramid for the quincunx scheme. From left to right:
image xj (with j= 0 at the bottom level), approximation &; = q/;jw;-(zj), and detail
y; =z — &

Refer to Fig. 3 for an illustration. Often, eg. in the linear case, \I/# is of the
form

' y) = P () +wh(y), @

and in this case we say that the wavelet transform is uncoupled [8].

Via Wia
Synthesis

) 1 T )
Analysis | ¥ @, | Analysis

Fig. 3. The general wavelet transform.

The lifting scheme introduced by Sweldens [10], provides a simple, flexible,
and efficient tool for the construction of linear as well as nonlinear wavelet
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transforms. A general lifting scheme starts with an invertible transformation
> of the input data Xg into two or more channels (or bands). We restrict
ourselves to the two-channel case for simplicity. Thus application of Y to xg
yields two output signals, a coarse signal x1 and a detail signa y1. Application
of ¥ ! to xq,y1 returns the input signal: xg = Y 1(x1,y1). In practice, T will
often be a known wavelet transform, for example the lazy wavelet which splits
the input data into even and odd samples. By a concatenation of so-called
prediction and update lifting steps (see Fig. 4) one arrives at a lifted wavelet.
In Fig. 4 the prediction operators are denoted by 1 and the update operators
by Aj. If the lifting scheme consists of one prediction step mifollowed by one

k2 X]

X
__0'2

Yi yi

Fig. 4. Lifting scheme.

update step A, and x'1,Y; are computed by the following scheme,
(z1,91) = S(zo), ¥y =y1—7m(z1), @) =z1+ My,

then we arrive at a lifted transform ' (xg) =(x‘,y'1)- This can be inverted by
z1 =21 = A¥1), w1 =yl +7(z), o =X (z1,y1)

Later we use this scheme to obtain a two-dimensional wavelet transform for the
case that Y splits an input image according to the quincunx sampling lattice.
In [8] we have shown that a linear transformation Y followed by one nonlin-
ear prediction or update step yields an uncoupled wavelet transform. However,
two nonlinear lifting steps result in a coupled wavelet transform, in general.

5. Max-lifting for the Quincunx Lattice

In this section we present a particular example of a nonlinear wavelet scheme
associated with the two-dimensional quincunx sampling lattice. Consider the
partition of the square lattice Sinto two disjoint subsets, Q and R= S\ Q.
We define an adjacency relation expressing when sis a neighbour of s, i.e.,
s~ g if ||s — §'lly = 1. Thus ~ is a symmetric relation on Sx S, and s ~ s'
can only hold if either sor s (but not both) is an element of Q. Observe that
r —g gif and only if r ~qgfor r 0 Rand q O Q. Now let the operator > govern
the splitting of a signal Xg on Sinto two subsampled signals, x; defined on Q
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and y, defined on R, i.e, z1(q) = zo(q) for ¢ € Q and y1(r) = zo(r) for r € R.
Consider the coupled wavelet transform obtained by applying first a prediction

lifting
n(z)(r) = \/ =(q) (5)
q.g~rT
and then an update lifting
My)(@) =max{0, \/ y(r)} (6)
Tir~q

This means that the prediction of the signal at a point r is given by the maxi-
mum of its 4 neighbours. The update operator is chosen so that local maxima
of the input signal xo are mapped to the next level x'.  The next result, a

Fig. 5.  Wavelet decomposition of an image based on the max-lifting scheme. Bottom row:
original image Xo. Middle row: wavelet transformed images xj and y' (after rotation). Top
row: images x"; and y" resulting from wavelet transform of x;. Note that the detail image
may contain positive (bright) and negative (dark) grey values.

proof of which can be found in [8], gives a formal statement. But first we need
two more definitions. We write s~~ s if s=g or||s— |1 =2 Givena
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signa xon Sand a point s Swe denote by A(x |s) the set of neighbours s
of ssuch that x(s') = x (s') for al neighbours s' of s. Observe that A(X| s)
contains at least one point.

Proposition 2 Let Xg be an input signal on S, let (x1,y1) be its splitting into
subsignals on Q and R, respectively, and

vi(r) =wn(r) —w(z)(r),  21(e) = z1(a) + Ay (9),

where 1tand A are given by (5)-(6). Then the following holds:
(a) zo(q) < 71(q) < max{zo(s) | s=qors~gq}, forqeQ.
(0} xo(r) < max{zi(q) |g~r}, forr € R.
(c) Assume that r O R is such thatzq(r) > zo(s)for s~r and s ~—~ r,
then z7(q) = zo(r) for every g € A(zo | 7).

Thus the max-lifting scheme preserves local maxima. But we can also show
that this scheme will never create new maxima.

Proposition 3 Suppose that the coarse signal x; has a local maximumat g 0 Q
in the following sense: z/(q¢’") < zi(q) for g O Q with ||¢ —¢'||1 <2 (with every
point q there correspond nine such points, including g itself). Then xo has a
local maximum at some s O Swith s=qor s~ qandzo(s) = z}(g).

In Fig. 5 we apply the max-lifting scheme to a particular image.

6. Summary and Conclusions

The pyramid condition given in (I), though seemingly straightforward, imposes
relatively strong conditions on the analysis and synthesis operators. In the
linear case, this condition is necessary and sufficient in order that the pyramid
transform can be extended to a wavelet transform. For the nonlinear case, this
problem is open.

Construction of nonlinear wavelets with prescribed properties (in the spirit
of vanishing moments conditions in the linear case) is a research area which is
amost entirely unexplored; some early work in this direction can be found in
[2, 3, 4, 6]. The main tool, and to the best of our knowledge the only tool so far,
to address this problem is the lifting scheme. A great dea of future research on
nonlinear wavelets will have to face the question how to build schemes that yield
decompositions which are useful in applications such as compression, denoising,
image fusion, or image retrieval. We believe that the max-lifting scheme will
turn out useful for some of these applications. We are currently exploring this
issue.
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Abstract. This paper proposes a general algebraic definition for image scale-spaces. The
basic idea is to first downscale the image by a factor tusing an invertible scaling, then apply
an image operator at a unit scale, and finaly resize the image to its original scale. It is then
required that the resulting one-parameter family of image operators satisfies some semigroup
property. In this paper only the morphological erosions are considered. In this case, classica
tools from convex analysis play an important role.
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tion, Scale-Space, Scaling, Semigroup, Slope Transform, Subpolynomial Functions, Young
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1. Introduction

Scale-space is an accepted and often used formalism in image processing and
computer vision. This formalism makes the choice at what scale visua obser-
vations are to be made explicit. In the past the choice for an observation scale
was often hidden somewhere in the definition of the operators.

The notion of linear scale-space has a very long history in image processing
[1, 2, 3]. Weickert et.al. [4] only recently ‘discovered’ that the concept of linear
Gaussian scale-space dates back to the sixties.

In mathematical morphology the notion of scale (or size) dependent obser-
vations was pioneered by Matheron [5] in his study of granulometries. Jackway
[6] and van den Boomgaard [7] showed that a morphologica analogue of the
Gaussian linear scale-space does exist: the parabolic erosions and dilations.
The morphological parabolic scale-space is the solution of a partia differential
equation [8, 9], just like the Gaussian linear scale-space is the solution of the
diffusion equation [2].

In this paper we present an algebraic framework for the construction of
morphological scale-space operators. Let f be the image at scale zero (i.e. the
mathematical concept of an image at infinite resolution) and let T(s) be the
operator such that T(s) f is the observation at scale s. The family of operators
{T(s)}s>0 is collectively caled a scale-space.

We require the scale-space operator to be a macroscopic operator, in the
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sense that T(t) only needs the zero scale image without the need to calculate all
intermediate images T(s)f for s<t. We thus take a quite different approach to
scale-space compared to Alvarez et. a. [10] who take the evolution of the zero
scale image modeled with a partial differential equation as a starting point.

In the proposed framework the notion of scale is explicitly defined. We first
downscale the image by a factor t, then apply an image operator at unit scale
and finally resize the image to its origina scale.

In Section 2 we present our new algebraic definition of a scale-space. In the
remainder of the paper we are mainly concerned with the morphological scale-
space induced by the erosion (infimal convolution). In that context, tools from
convex analysis, such as the Young-Fenchel conjugate (slope transform) play
an important role. Such tools are briefly discussed in Section 3. In Section 4 we
present a systematic treatment of erosion scale-spaces. Some final conclusions
are presented in Section 5.

2. Scalings, Semigroups and Scale-Space

In our definition of scale-space, the scale at which the operators interact with
the image is explicitly captured in a scaling operator. The actual image process-
ing operator works at a fixed ‘unit’ scale. In this paper we consider the scale to
be represented with a positive real scalar, i.e. an element of the set 7= (0, «).

Definition 1 (Scaling) A family S = {S(t) | t > 0} of operators on L is
called a scaling if (i) S(1) = id and (ii) S(t)S(s) = S(ts) for s, t > 0.

A scaling thus forms a commutative group with inverse S(t)~! = S(1/t) and
unity element S(1). In a scale-space construction it is the ordering of scales that
is much more important than the actual value. The scale is the free parameter
in the system and we are thus free to reparameterize the scale at will as long
as the reparameterization preserves the ordering of the scale values.

Definition 2 (Anamorphic scalings) Two scalings S and S are said to be
anamorphic if there exists an increasing bijection yon 7 such that Sy(t)) =
S(t)for al tOd 7.

If we assume that S(t) = id if and only if t = 1, then it is easy to show that
such a bijection y must satisfy the conditions y(1) = 1 and y(st) = y(s)y(})
fors,t0 7. The most important example is given by y(t) = tP, where p > 0.
In this paper we only consider images that are mappings from the continuous
plane RY to the real values R (R extended with the values +o and —oo ). This
complete lattice of images is denoted as £ = Fun (R% R). The scaliings we
will look at are a combination of a spatially isotropic scaling and a grey value
scaling:
Definition 3 (Image scalings) The image scaling S*(t) : £L — £ isdefined
s S(1)f =t f ().
For o = 1 we obtain a pure spatial scaling whereas for a = 0 we obtain a pure

grey value scaling. For a = %there is a perfect balance between spatial scaling
and grey value scaling.
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The atlas principle introduced by Koenderink [2] states that it should be
possible to build a scale-space incrementally. If f denotes the ‘zero scale’ image,
the image observed at scale s is given as T(s) f. Observing this image at scale
t results in T(t)T(s)f and according to the atlas principle we should have that
T(s)T'(t) =T ()T (s) =T(r) for somer > 0.

The atlas principle can be associated with a commutative semigroup de-
scribing the way in which the scales combine in a composition of scale-space
operators. Thus T(s)T(t) = T(t)T(s) = T(s-+t) where | is a binary opera-
tion on 7 that is associative and commutative, i.e.(7,})is a commutative
semigroup. In this paper we only consider a special class of scale semigroups
(T,4).

Definition 4 (+, -scale semigroup) The binary operator +, : 7 — 7 de-

fined by s +, ¢t = (s¥ + t“)% forms a commutative semigroup(7,+,) for
O<v<sg o,

For v= 1 we obtain the standard additive semigroup (7,+), whereas v = o
leads to the supremal semigroup (7,V). Within the scale-space context this
choice for a scale semigroup has particular advantages. It is easy to see that
s<t=s+,r <t+,rfor any fixed r, meaning that the ordering of scale values
is preserved when we perform a subsequent observation at scale r. Semigroups
(T,+) that have this property are called linearly ordered. For finite v (i.e.
v< o), any observation at scale t following an observation at scale s will
increase the scale, i.e. s,t <s+,t. For the supremum semigroup we only have
s, t o s+ « t showing that the scale does not decrease by making an observation
at any finite scale.

Now we are ready to give a formal definition of a scale-space. In our ap-
proach the starting assumption is that the scale-space is a semi-group of opera-
tors on the image space £ under composition, compatible with a given linearly
ordered semi-group + on the range of scale values7 and invariant with respect
to a given scaling S.

Definition 5 (Scale-space) Let (7, +,<)be a linearly ordered semigroup and
let S be a scaling on the image space£. The family {T(¢)}:>0 of operators on
L iscalled an (S,+) scale-space if:

T)T(s) = T(t+s), s,t>0,
T(@)S() =S@E)T(1), t>0.

An dternative definition of a scale-space operator follows easily from the above
definition:

Definition 6 (Scale-space construction) Let (7, <) be a linearly ordered
semigroup, let Y be an image operator on £, and let S be a scal.ing onl. The
family { T(t)} >0 defined withZ(t) = S(t)®:S(t)~", defines a (S, +) scale-space
fT($)T(s) = T(t+s), s,t>0.
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3. Convex Analysis and Mathematical M orphology

The morphological operators that we will be looking at, are the classica struc-
tural erosions and dilations. The set £ = Fun (R? R) is a complete lattice
under the pointwise ordering. Every translation invariant adjunction on £ is
of the form (ep,dp) With:

eo(£)(@) = Mneps [F (@ — 1) + b(R) @
6(F)(@) = Vere [f (@ +h) — b(h)]. @

In these expressions, the function b is called the structuring function. We
will assume throughout this paper that a structuring function b is lower semi
continuous and convex with b > —o . The expression for the erosion ¢y is a
well-known operation in convex function analysis, where it is known under the
name infimal convolution and denoted by f B b. The dilation &, will be denoted
as f Hb. Our choice for the infimum convolution as the erosion leads to some
properties that may look a bit awkward to the seasoned morphologist. For
instance it is the erosion that is associative and commutative in this approach,
ie. (fBbH)BY = fB(bEV) and fEb = bE f whereas in the classical approach
based on the Minkowski operations it is the dilation that has these propertiesl.

This section presents a brief overview of some basic results in convex anaysis
that play a role in the sequel; refer to [11] for a comprehensive account.

Definition 7 (Convex sets and convex functions) A set X0 RYis con-_
vex if tx + (1 —t)y OX when x, y 0 Xand 0 < t< 1. A function f : R4 - R
is convex if f(tx + (1 —t)y) < tf (x) + (1L = O)f(y), for x, y O R4 and 0 < t< 1.

It can be easily shown that the infima convolution of two convex functions
yields a convex function (see [11]). Convexity of sets and of functions are
compatible notions; let | x be the indicator function of a convex set X given by
I x(x) = 0 for x OX and Ix(x) =« for x OX, then |y is a convex function.

Definition 8 (Subpolynomial functions) A convex function f is called sub-
polynomial of degree k wherek > 1 if f(tz) = t* f(z),xz € R%t > 0. The family
of convex subpolynomial functions of degree k is denoted as SP (K).

Special cases worth mentioning are the subpolynomial functions of degree 1
that are called sublinear and the subpolynomial functions of degree « being
indicator functions of convex sets. An example of a sublinear function is the
support function H g of aset B defined for = € B¢ as Hp(x) = sup,cp (,9)-
It is not difficult to show that O O B is equivalent with H g(x) = O for all
x O RY Not only is the support function sublinear, but it can also be shown
that any sublinear function is the support function of some closed convex set
B. For adisk B ={x | ||x|| £ 1} the support function is the corresponding
norm H g(x) = [|X]].

! The classical structural erosion f Gais defined as(f ©a){z} = Apcprz [f (@ + k) ~ a(h)]
showing that f B b= f &b, where b(z) = —b(—xz).
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In convex function analysis the function conjugate being a dua represen-
tation of a (convex) function plays an important role. The conjugate function
is also known as the Fenchel conjugate, the Young-Fenchel conjugate or the
Legendre transform.

Definition 9 (Conjugate function) The conjugate function f* of a function
f:R*— Ris defined by

fr(€) = sup {(z,¢) — f(=)}
rERY
Conjugation in the context of mathematical morphology has been emphasized
by Dorst and van den Boomgaard [12] and by Maragos [13], who call this
operation the morphological slope transform. Refer to [14] for a systematic
treatment of the slope transform in the complete lattice framework. To a
certain extent the slope transform plays a role in mathematical morphology
which is somewhat comparable to the role of the Fourier transform in linear
signal processing. This is mainly because of the following result.

Proposition 1 Let f and g be convex functions, then (f 8 g)* = f* + g*.

Indicator functions and support functions are linked through conjugation: if B
is a nonempty closed convex set, then 5 = Hp and Hjf = Ip.

For anumber k 0 [1,00] we define its reciprocal k* through the relation:
1/k+ Uk = 1.

Proposition 2 A function f is subpolynomial of degree k if and only if its
conjugate f* is subpolynomial of degree k*.

If k=1 then f is sublinear and therefore we know that f = H for some closed
convex set B. Because the conjugate of a support function is the indicator
function of the same set we have f* = Hy = Ig € SP(c0), i.e. the conjugate
of a sublinear function is an subpolynomial function of degree .

4. Morphological Scale-Space Operators

In this section we are exclusively conserved with the class of scale-space op-
erators on £ = Fun(R%, R) induced by the morphological structural erosion
epf = fBb Without loss of generality we may concentrate on the erosions
only, as it can be shown [15] that in case (g, 8) is an adjunction and T, defines
a scale-space then Ty defines a scale-space as well.

In this paper we will restrict ourselves to scalings of the form S%(t) as
defined in section 2. A straightforward calculation shows that the scaling of
the images completely ‘carries over’ to the scaling of the structuring function
that is used:

T.()f = £ B S*(@)b.

For T¢(t) to be a scale-space operator we should have that Te(¢)T:(s) = T.(s+t).
Using associativity of the erosion we obtain a semigroup requirement on the
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family of scaled structuring functions S(t)b with respect to the erosion opera-
tor: S*(t)b B S*(s)b = S*(s+t)b. Taking conjugates on both sides we arrive
a (S*(t)b)* + (S*(s)b)* = (S*(s+t)b)*. The conjugate of a scaled function
(S ()b)(¢) equals ti—ob* (2>~ 1¢) thus:

tl_ab*(t2a_1§) + sl-—ab*(s2a-—1§) — (S+t)1—ab*((s+t)2a_lf). (3)

Erosion scale-space analysis thus boils down to the analysis of the above equa-
tion. Without any assumption on b* (other then b, and thus b* being convex)
we can notice the special case for o = 3, then: t2b* (&) +s7b* (&) = (s+t)Fb*(£).
Regardless of b* we thus have that:

Proposition 3 The erosion €(f) = f B b with b convex induces an (S%,+%)
scale-space.

The scaling S% (t)f is anamorphic with the umbral scaling U(t) f, where U (t)f =
tf(-/t) with t > 0, more precisely S (t) = U(v/%). Notice that regardless of the
structuring function b we have that U(t)fBb=U(t) (f B U(%)b) showing the
umbral scale invariance of the erosion. It is a well-known result from classical
morphology that umbral scales add up in a sequence of erosions (dilations) if
and only if the structuring function is convex. From this point of view the
above proposition tells us little news.

The agebraic form of the equation governing erosion scale-space (eq.(3))
suggests that choosing a subpolynomial function may lead to other types of
erosion scale-spaces. Assuming that b* 00 SP (k*) we may rewrite eq. (3):

tl—a+k*(2a—1)b*(€) + Sl—a+k*(2a—1)b*(£) _ (S_i_t)l—a+k*(2a-1)b*<§)_ (4)

It should be noted that the case k* =o (i.e. b 0 SP (1)) has to be treated
separately as the above eguation only makes sense for k* <o, i.e. k> 1. First
we concentrate on finite k*. Equation (4) shows that:

Proposition 4 The erosion €(f) = f B bwith b 0 SP(k) for k > 1 induces an
(s, +,) scalespace if v=1-a + k* (2a-1).

A well-known example in this class of erosion induced scale-spaces are associ-
ated with the quadratic structuring functions bg (x) = [Qx, xXOwhere Q is a
positive definite diagonal matrix. There k=k* = 2 and thus € (f) = f B bq
induces an (S%, +34-1) scae-space in casea > % The parabolic morphological
scale-space is illustrated in figure 1.

Another example is the case k* = 1, i.e. k= oo corresponding with b= Ig
for some convex set B. Then we have v=1—- a + 2a -1 = a. Thus erosions
using flat convex structuring functions induce scale-spaces irrespective of the a
parameter defining the balance between the spatial scaling and the grey vaue
scaling. Figure 1 also shows a morphological scale-space induced by a flat
erosion using a disk shaped structuring element.

The special case that k* = o is extensively studied in [15], here we only
present an important case. The case that k* = oo corresponds with a convex
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Fig. 1. Erosion scale-spaces. The top row shows the parabolic scale space, the second

row shows a flat disk scale-space. On the left in both rows the ‘zero scale image’ f is shown.

The four other images on the top row show the erosion f B S' (t)b where bis the parabolic
function b(x) = ||x||? for the first row and b = Ig with B a disk of radius 1for the second

row.

indicator function b* = |g where B is a convex set. In case B contains the
origin we may rewrite equation (3), leaving out the finite multiplications of the
functions b* = Ig and get 1g(t22~1¢) + Ig(s?2~1¢) = Ig((s+t)2*~1¢). Note
that Ip(Az) = Ip/a(z), which alows us to rewrite the above into Ij-z2ap +
Ig-2.5 = I(s-i—t)1—2°‘B' Because Ix + Iy = Ixnywe find Li—2ap + 51205 =
I(1-20ps1-20) . FOr o > 1/2 we have t'72* A 5172 = (¢ v 5)1=2> which leads
to s+t = sVt Incase b* =1g, b = Hg i.e bis the support function of a
convex set B containing the origin. Summarizing:

Proposition 5 The erosion e(f) = f B bwithb = Hpg where B is convex set
containing the origin, induces an (S*, V) scale-space if a > 1/2.

The scale-space operator in this case is T(t) f = f B S%(t)b. For a sublinear
function b we have (S%(t))b(z) = t1=*b(z/t*) = t!~2b(z). Because a > 1/2
we have that t12% is a decreasing function in t. The erosion f 3 Hg resembles
the band-pass filter known from linear signal processing. Taking the conjugate
(or slope transform) we obtain(f B Hg)* = f* + Hg = f* + Ig which equals
fr€)if &€ Band oo if £ ¢ B. Thus the erosion filters out al slopes that lie
outside B.

5. Conclusions

In this paper we proposed an algebraic construction technique for morphological
scale-spaces induced by erosions (infimal convolutions) using convex structuring
functions. This technique is also valid to analyze the morphological scale-spaces
induced by openings and closings and even to analyze linear scale-spaces based
on convolutions. A comprehensive account can be found in [15].

Anaysis of linear scale-space operators makes heavily use of the Fourier
transform. Morphological operators alow for a similar change in representa
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tion to facilitate the analysis of scale-space operators. the slope transform or
conjugate as it is well-known in convex function theory. Using results from
convex function theory we have presented some of the important classes of
morphological erosion scale-spaces.

All structuring functions that have been used in the literature to con-
struct morphological scale-spaces, ranging from flat convex structuring func-
tions (‘sets’) to the parabolic and quadratic structuring functions being the
morphological equivalent of the Gaussian function, are member of the class of
subpolynomial functions that we have proposed in this paper.
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Abstract. This work constitutes a first approach on image segmentation based on the
recently proposed morphological scale-space theory. We introduce an idempotent smoot hing
operation, in the corresponding scale-space, and analyze some of its main features concerning
the monotonicity of the image extrema and the way these extrema merge in a multiscale
simplification process. We also define some basic criteria to control the merging of the image
extrema across scales to obtain good markers for segmentation. As we will illustrate, these
methods take into account only local information of the image and yield sound segmentation
results, mainly in those applications where the regions to be segmented can be characterized
(marked) by the extrema of the image function.

Key words: Morphological Scale-Space, Dual Reconstruction, Mathematical Morphology.

1. Introduction

This work addresses the oversegmentation porblem by means of a multiscale
representation of an image. Multiscale approaches have been largely considered
in the signal processing theory as an effective way to relate information from
different signal representations (scales), and have been extended to many image
processing applications such as filtering, segmentation, compression and cod-
ing. Examples of this multiscale representations are the wavelets, the pyramid
transform, and the granulometric decomposition.

One of the basic problems with any multiscale method concerns the difficulty
to relate significant information or features of the signal across the different
scales. In [13], Witkin proposed a novel multiscale approach, named the scale-
space, in which the representation of a significant feature of a signal describes
a continuous path across scales. In this case, we have that if a signal feature
is present at a certain coarser scale, then it must be found at al finer scales,
up to the original image representation (o = 0). This aspect constitutes the
monotonic property of the scale-space approach since the number of features
across the different representation levels decreases monotonically as a function
of scale.

In the Witkin's origina work, extrema of a signa and its first derivative
constitute the features of interest and the scale-space monotonicity property is
given by convolutions of the original signal with Gaussian functions.

* This work was supported by FAPESP - Fundagdo de Amparo & Pesquisa do Estado de
Sao Paulo and the FINEP/PRONEX/IC project, no 76.97.1022.00.
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The monotonic property of the scale-space approach can be very useful in
image segmentation by a hierarchical process [11]. Unfortunately, as discussed
in [7], there is no convolution kernel for a two-dimensional signal which can
preserve this property when the feature of interest is the signa extrema.

Recently, non-linear filters based on scaled morphological operators have
been associated with the scale-space theory [2]. Chen and Yan [3], for example,
defined a theorem for zero crossings of binary image by considering openings
of its objects with a scaled disk. Park and Lee [8] defined a scale-space for
one-dimensional signals based on opening and closing operations. Jang and
Chin [6] also considered these operations in the definition of a scale-space in
which the interest features are the contour segments of binary images. The
extension of these results to gray-scale images is not direct.

In a recent work, Jackway [5] developed a scale-space approach based on a
multiscale morphological dilation and erosion (MMDE) smoothing which guar-
antees the monotonic property for the extrema of an image. He aso defines the
watershed of a signal (monotonicity for regions) smoothed at a certain scae as
the feature of interest. Nevertheless, as stated by the author, the method can-
not be directly associated with image segmentation tasks since "the watershed
arcs move spatially with varying scale and are not a subset of those at zero
scale” [4].

In the following, we analyse some important characteristics of this scale-
space smoothing and introduce an idempotent scale-space approach which can
yield sound segmentation results when linked to the watershed transform. The
first aspect considered here refers to the preservation of the spatia position and
gray-scale vaue of the image extrema guaranteed by the scale-space smoothing.
As we will see later, to prevent the watershed lines from shifting spatialy, we
will use these regional extrema as the set of markers in a homotopic modifi-
cation of the origina image. Finaly, we also illustrate how to consider some
local aspects of the merging process across scales in order to improve our seg-
mentation results.

This paper is organized as follows. In Section 2 we introduce the morpho-
logical scale-space approach and define an algorithm for segmentation based on
this approach. We also define an idempotent scale-space that can be used to
characterize the set of image extrema considered in the segmentation method.
In Section 3 we illustrate the definition of some monotonic-preserving merging
criteria used to improve our segmentation results. Finally, some conclusions
are drawn in Section 4.

2. The MMDE Scale-Space Approach

The MMDE scale-space is defined for both positive and negative scales. For
positive scales, the image is smoothed by dilation, and for negative scales it is
processed by erosion.

Let f be animage, f : R> - R A smoothed version of f at scale o is given

by
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(f®go)(z) ifoc >0
(f®gs)(z) = flz) fo=0 )
(f egc)(w) ifo <0,

where o corresponds to the intuitive notion of scale, and & and & stand for
gray-scale dilation and erosion [9], respectively. The scaled structuring function
go : Go € R? x R — R s defined as

go(z) =lolg(jo|™z) , VYo #£0 ¢

One can show that in order to verify the monotonic property, gs should
be a nonpositive, anticonvex, and even function for al x 0 R, with g(0) = 0
[5]. Thus, by smoothing an image with such a kernel, one can preserve the
monotonicity of its regional maxima or minima by performing dilation (for o
> 0) or erosion (for o < 0), respectively. An example of such a kernel used
in this work is the circular paraboloid g(x, y) = —(x¢ + y?) which has been
considered as a suitable function for practica reasons such as computational
efficiency [5].

In his morphological scale-space, Jackway extends the monotonicity from
point sets to regions by establishing a link between the extrema of the image and
its gradient, through the watershed transform and the homotopic modification
by a reconstruction process [9]. The next section illustrates this aspect and
shows how we can define a multiscale segmentation algorithm based on the
monotonicity property for regions.

2.1. MORPHOLOGICAL SCALE-SPACE AND SEGMENTATION

Formally, the monotonicity for the image extrema can be stated as follows
(here, we consider only the results for negative scales, the extension to the
positive ones is obtained from duality) [5].

Theorem 1 [5] Let the set of points Emin (f) = { xO f : x is a local minimum}
represent the minima of image f. Then, for any scales 0, < s; < 0,

Emm.(f ®ga'2> g Emzn(.f ®go'1> g Emzn(f)

A scale-space monotonicity for regions is obtained by associating the water-
shed transform with the gradient image as follows [5]:

Algorithm 1. FOR each scale ok DO:

1. smooth f to obtain (f O gs) (X) using Eg. 1.

2. find a suitable set of regiona minima Ni (for ox < 0) or maxima M; (for
or >0)of (f®gs) (X) corresponding to a marker function, g(x).

3. compute the magnitude of the gradient image [0 (f O 9o, )0

4. modify the homotopy of this image by a dual reconstruction process [1, 12]
using function g(x) as marker.

5. find the watershed regions of the modified image.
ENDFOR
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Fig. 1(b) illustrates the result of such an agorithm for ¢ = -5. Note that
due to the smoothing operation in Eq. 1 (erosion, in this case) the gradient
watersheds move spatially as a function of scale and do not represent the con-
tours of the image according to a common segmentation model. Thus, for the
purpose of segmentation, we need to face the problem of "forcing” these water-
shed lines to delineate the regions being segmented. The following proposition
by Jackway allows us to use the set of extrema, present at a certain scale,
as marker in a homotopic modification of the original image. This homotopy
modification constitutes the base for the preservation of the image contours
across scales.

Proposition 1 [5] Let the structuring function have a single maximum at the
origin, that is, g(x) is a local maximum implies x = 0, then:

Ifo< Oand (f O go)(Xmin) is local minimum, then, f (Xmin)is a local
minimum of f(x) and (f O o) (Xmin) = f (Xmin)-

Based on this result, which states that the position and amplitude of the
extrema in the originad and smoothed images do not change, we define a mul-
tiscale segmentation agorithm as follows:

Algorithm 2: FOR each scae 0 DO
1. smooth f to obtain (f O g4) (X) using Eqg. 1.
2. find a suitable set of regiona minima N; (for ok < 0) or maxima M; (for
ok = 0) of (f O gg) (X) corresponding to a marker function, g(x).
3. define a new image f' by modifying the homotopy of the origina image f
using function g(x) as marker.
4. compute the magnitude of the gradient image [0 (f' )0
5. modify the homotopy of this image by a dual reconstruction process [1, 12]
using function g(x) as marker.
6. compute the watershed of this modified image.
ENDFOR

Fig. 1(c) shows the result of this algorithm representing a better partition
of the original image (Fig. 1(a)). Note that, in this case, the set of markers
used in the homotopic modification of the original and gradient images (steps
3 and 5 above) is given by the same set of minima as in Fig. 1 (b).

The next section discusses some aspects concerning the merging of the image
extrema across scales.

2.2. AN IDEMPOTENT SCALE-SPACE

Once we define the smoothed image, it is very difficult to characterize the set

of extrema that remains (or should remain) at a certain scale. The following

idempotence considerations constitute an important simplification of this set.
Let f be an image function as before and

(Feg)"=((f99:,)009,) S ©4g,)

n times
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Fig. 1. (a) Origina image. (b) The watershed lines based on the MMDE approach (© = -5),
and (c) on the homotopy modification by reconstruction of the origina image.

(in the sequel, we consider that f and go are defined in the discrete domain).
We define an idempotent smoothed version of f, at scde o, as

(f®go)(z) ifo>0
(fOg)(z) =1 flz) ifo=0 ®3)
(fSgs)"(x) ifo <0,

where n is the number of iterations so that (f O go)"(X) = (f O go)™* (X) for
0>0, and (fO go)"(X) = (f © do)"Lx) for 0 < 0. As we have shown in
[10], the basic properties of the MMDE approach also hold for this idempotent
scale-space. The following proposition concerns the idempotence property of
Eq. 1 (The proof of all the propositions discussed in this paper is given in
appendix A and in [10]).

Proposition 2 [10] For any o < O there exists a value n such that (f &
90)"(¥) = (f © go) "HX).

The set of regiona minima obtained after smoothing the image till idem-
potence constitutes the minima minimal configuration - MMC set at scde o.
Shortly, this set represents a simplification of the image defined at scale s by
the original morphological scale-space method (Eqg. 1). It contains less non-
significant minima that can be used as markers in our multiscale segmentation
algorithm. The next proposition considers other aspects of the merging process
in the definition of the MMC set.

Proposition 3 [10] Let x; and x; O Emin(f) denote two points of the image

f with f (%) < f(xj). For a 4-connectivity and o < 0, we can show that pixel
X; will belong to the influence zone [9] of x,, Z(x), if Oxx, O Z (xi) so that

f(zg) — flzr) 2 Do x (d(z;,zx) — 1) 4
where d denotes the city-block distance and Do =[8Uptic, (go(t))0 t # 0.

Equation 4 relates the value of a minimum, xj, and the influence zone of
another minimum, x;, lower than x; for merging. According to the above
proposition, two minima with small height difference can merge only at coarser
scales (e.g., minima with the same gray-scae will merge only when ¢ - —o,
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that is, Do — 0). To illustrate such a point, let us assume the segmentation
of the electrophoresis image shown in Fig. 2. Besides the dark blobs to be
segmented, this image also shows the aspect related to the distance between
the image minima concerning Eq. 4. As we can see in Fig. 2-(b), for o= -1/2,
some significant minima have been merged with their nearest “deeper” (darker)
neighbors. Such a merging constitutes a filtering of the image components used
as markers in our segmentation algorithm. For a finer scale, 0 = -1/4 (Fig.
2-(c)), some non-significant minima do not merge either because of their high
distance to a significant minima, or due to the small gray-scale difference be-
tween them. These non-significant minima that remain a a certain scale define
an oversegmentation of the original image (Fig. 2-(a)). This oversegmentation
can be reduced by a post-processing operation taking into account the gradi-
ent value of the non-significant regions of the image. This operation, which is
followed by the watershed computation, is given by

o [0 ifg(z) < K
9@ = { o(z)~ K ifg(z)> K, (5)
where g(x) is the gradient of the reconstructed image, f'(x), and K is a thresh-
old value. Note that besides eliminating the non-significant minima which do
not merge with the significant ones, this post-processing yields a merging of
the minima with similar gray-scale and small gradient between them.
Fig. 2-(d) illustrates such an operation applied to the image in Fig. 2-(a).
The next section improves this segmentation results based on the definition
of some monotonic-preserving merging criteria used in the smoothing process.

3. Extrema Merging Criteria

One way to improve the segmentation results obtained here is to define some
criteria to locally control the merging of the image extrema during the smooth-
ing process. These criteria can be based on information such as the altitude
difference between minima (for negative scales), and the gray-scale values of
the pixels separating these minima (as we can see from proposition 3, the value
of the pixels between the image minima is irrelevant from the point of view of
the MMC set definition, which takes into account only the gray-scale value of
the minima and their distances).

Through these merging criteria, we can detect pixels that should remain
unchanged during the smoothing process, thereby preventing meaningful min-
ima from merging. To do it, we need to guarantee that the non-smoothing of a
point at a certain scale will not create a new minimum in the smoothed image.
The next proposition concerns this aspect:

Proposition 4 For a discrete structuring function gs of size N x N, N odd,
with radius R = L%J , the non-smoothing of a point x, of the image by Eq. 3
can introduce a new minimum in the neighborhood of x, with radius R-1.

Finally, we can aso prove the following statement regarding computation
time.
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(c)

Fig. 2. Segmentation based on the idempotent scale-space. (a) Original image; watershed
lines for scales (b) 0 = -1/2 and (c) o = -1/4. (d) Image (c) after the post-processing
operation (K=10).

Proposition 5 [10] For discrete images, the MMC set can be obtained from
Eqg. 1 by considering a small 3 x 3 structuring function gg.

According to propositions 4 and 5 above, we can define local merging cri-
teria based on the unchanged state of a pixel, while preserving the monotonic
property of the transformation. Some examples of these criteria are given be-
low.

3.1. THE ALTITUDE DIFFERENCE BETWEEN MINIMA

Suppose that in some applications the meaningful regions to be segmented
can be associated with a set of minima with high altitude difference between
them. One way to avoid these significant minima (markers) from merging is
to consider that some points nearby these minima will not be eroded across
scales. Topographically, the aim here is to define a kind of “barrier” along a
regional minimum which will prevent it from merging with other minima of
very different depths.

Let H be a constant representing a height parameter. The smoothed value,
fs(X), of a point xx O Emin (f), at scale o, is given by
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g, if 2 € N3gz(Zmin) and (f(Tmin) — (f o) (ze) > H
fa(xk):{(;@gaf(xk),soti(eﬁwisg Emin) = (JO gl 2 1)

where N3yx3 (Xmin ) denotes the 3 x 3 neighborhood of a point Xpnin O Emin ().
In this case, the eroded value fs; (x) can be related to the value of another
regional minimum, :z;m.n, that would merge with Xnin if fo(Xk) < f(Xmin).
The difference (f(Xmin) — (f ® do)(X«)) then, gives a local information about
the altitude difference of these minima

Figure 3.(a)-(c) shows some segmentation examples by considering Eq. 6.

(a) (b) (c)

Fig. 3. (a) Original image. The result of the scale-space segmentation for (b) o = -1, and
(c) o =-1and H = 20.

3.2. THE ALTITUDE OF THE POINTS SEPARATING REGIONAL MINIMA

Another information that can be taken into account to locally control the merg-
ing of the image extrema is the altitude of the points separating these extrema.
For the regional minima, for example, we can define the following conditional
smoothing, based on the origind and the transformed values of the pixels at
scale o.

_ [ (G Ogo)(ze) + H if (fzx) — (F O go)(zr)) 2 H
Jolaw) = { (f@i)(iz) otherwiie7 9o) ) ()

where H is a constant representing a height parameter. This equation defines
a value fs(x) such that (f ©®gs)(Xk) < fo(xx) < f(xk), when the difference
between f (xx) and its smoothed value, at scale o, is greater or equal to H. As
we have seen before, the transformed value of the pixel xx can be related to
the value of a minimum Xqin in its neighborhood. In such a case, if (f(xk) —
(f ©®gg)(*%)) = H and X« belongs to a path between two regiona minima,
Xmin and I;r;zn’ then smoothing xk to a value greater than (f ® gg)(x) can
prevent these minima from merging through this path. Figure 4.(a)-(b) shows
some segmentation examples by using Eq. 7.

Both of the above methods consider basic configurations of the significant
extrema we seek as markers in our segmentation process. Based on these cri-
teria, we can avoid merging (even a a coarse scae) two minima with high
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dtitude difference, as in Figure 3, where regions which are not characterized
by significant extrema are segmented (the nuclel of the cells), or separated by
pixels with high gray-scale values, as in Figure 4, where minima of different
depths do not merge.

(a)

Fig. 4. Watershed lines based on Eq. 7 for 0 = -1/2. (a) H = 15 and K = 10; (b)H = 10
and K = 10.

4. Conclusions

In this work we consider the problem of image segmentation by means of the
morphological scale-space theory. Our approach is based on the simplifica-
tion of the extrema of an image which smoothed versions are characterized
by a monotonic filtering of these extrema. Among other results, we define
an idempotent morphological scale-space smoothing, which associated to the
morphological reconstruction algorithm, can be used in a multiscale segmenta-
tion model. Also, we proved that by keeping unchanged a point of the image
smoothed by a 3 x 3 structuring function, we do not add any new minima in the
final transformation. As we have seen before, this result is very important if we
want to define segmentation criteria taking into account the value of the image
extrema and the monotonic property, inherent to the scale-space approach.

Appendix
A. Proof of Propositions

Proof of Proposition 4: For two points xi and xp of an image f, if (f © gy) =
f(X;) — gy (X; — Xp), then, from the proposition 6 below, we have that [p, (X, Xp)
such that (f © go)(z1) < -+ < (f O go)(@Tm) < --- < (f O go)(zp_1) < (f O
9o )(xp), for some x; 0 p, (Xi, Xp).

Therefore, if a point xm O p. (Xp-1, X) is not eroded during the smooth-
ing process, then a minimum can be created in Xn+1 and the set of points
{Xp, s Xm+1} Will belong to an influence zone different from the one of X, .
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Since the longest path occurs when x; = x; and we have that #p-~(Xi, Xp)!
=R+ 1, for a structuring element with radius R, the new defined influence
zone will have, a most, R— 1 points of this path.

Since for R= 1, #p«(Xp, Xi) = 2, then no new minimum is created, and the
monotonic property holds for such a case. a

Proposition 6 Let US consider two points x; and x; of an image f, such that
(f © 9o)(z4) = flz:) — go(w; — ;). Then Op.(xi, X) so that for any xi O
pulTi, Ti—1), (f © go)(zk) < (f © go)(z5)-

Proof: Since z; € Nu(zk,Go), (f © go)(z) = inf {f(zx — ) = go(O)} <
f(a?i)—ga(mk—zi). ThUS, Sinced(xk,ri) < d(:cj,xi), we have thatga(a:k—x,-) >
go(x;—x;). Therefore, (fogs)(zx) < f(@:)—go(zr—2i) < fl2i) —go(z;—zi) =
(f©gs)(z5), and 0, (f © go)(zk) < (f © go)(z;). =
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EFFICIENT DILATION, EROSION, OPENING AND
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Abstract. We propose an efficient algorithm for computing the dilation and erosion filters.
For a p-element dliding window, our algorithm computes the 1D filter using 1.5 + o(1) com-
parisons per sample point. Our agorithm constitutes improvements over the best previously
known such algorithm by Gil and Werman [5]. The previous improvement on [5] offered by
Gevorkian, Astola and Atourian [2] was in better expected performance for random signals.
Our result improves on [5] result without assuming any distribution of the input. Further,
a randomized version of our algorithm gives an expected number of 1.25 + o(1) comparisons
per sample point, for any input distribution. We deal with the problem of computing the
dilation and the erosion filters simultaneously, and again improve the Gil-Werman algorithm
in this case for independently distributed inputs. We then turn to the opening filter, defined
as the application of the min filter to the max filter, and give an efficient agorithm for its
computation. Specificaly, this algorithm is only dlightly slower than the computation of
just the max filter. The improved algorithms are readily generalized to two dimensions for
rectangular structuring element, as well as to any higher finite dimension for a hyper-box
structuring element, with the number of comparisons per window remaining constant.

Key words: Max-Filter, Min-Filter, Running Window.

1. Introduction

In signal and image analysis one often encounters the problem of min (or max)
computation in a window with p elements in the one-dimensional (1D) case,
or p x p elements in the 2D case. In mathematical morphology [7], the result
of such an operator is referred to as the erosion (or dilation) of the signal with
astructuring element given by a flat ramp of width p.

An important application is the morphological edge detector, obtained by
applying both the min filter and the max filter, and then subtracting the re-
sults. Denoising is yet another example of using the min and max filters. The
opening (respectively closing) filter is obtained by feeding the results of the
max (resp. min) filter to the min (resp. max) filter. In image processing the
opening filter eliminates small white regions, while closing eliminates small
dark regions. In both filters, the size of the window determines the size of the
regions that can be removed. Some other applications of the min and max fil-
ters in pattern analysis, adaptive signal processing and morphological analysis
are mentioned in [2]. These applications call our interest to the problem of
efficiently computing the min and max filters for a wide range of p.

The one-dimensiona version of the problem can be formulated as follows:
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1D Max-FiLTER: Given a sequence xg, ...,Xpn_1, @nd an integer p > 1, compute
Yi = MaXosj<p Xi+j,fori=0,...,n—p.

The 1D MiN-FILTER problem is similarly defined.

As usual in filtering, we assume that p< n.As an efficiency measure of
agorithms for this problem we use C;, defined as the number of comparison
operations per sample (or output) point as n goes to infinity.

Since any max filter computation must examine every input element at
least once, we have that C1 = 1. A trivial agorithm for the 1D Ma x-FILTER
problem gives C; = p — 1. On the other hand, since it is impossible to compute
the filter without examining each input point at least once, there is a trivia
information theoretical lower bound for the problem of C; = 1.

Two non-trivial algorithms for the problem were published in [6]: The first
achieves C; = O (Igp)! and the second C, = 3+ 0(1) for uniformly distrib-
uted independent input signals. The worst case performance for both of these
algorithms depends on the window size.

Gil and Werman, in their work on computing the median filter [5], gave
the first algorithm for computing the max filter whose performance does not
depend on p. Their agorithm is more general since it can compute any semi-
ring operation, <, filter of size p while using 3 — 4/p applications of ¢ per sample
point. Since max is a semi-ring operation, their result gives C; = 3 —4/p.

Gevorkian, Astola and Atourian [2] observed that in the special case when
the semi-ring operation is max, the Gil-Werman algorithm can be improved,
assuming locally uniform distributed signals, to achieve E(C1) = 2.5 — 3.5/p.
The expectation here is respectively to input distribution. In the worst input
case, the performance of the algorithm of [2] is the same as the Gil-Werman
algorithm. Here we describe an algorithm achieving further reduction, C; =
15 +1ng —O (1/p). This improvement is deterministic and does not make any
assumptions on the input distribution.

Further, we also describe a randomized agorithm which comes even closer
to the lower bound in achieving E(C1) = 1.25 + 1%}3 — O (1/p), where the ex-
pectation is w.r.t. random selections made by the agorithm; i.e., this expected
performance is obtained for any input.

The optima L-filter, the morphological edge detector, and other applica-
tions call for the simultaneous computation of the min and max in each window,
as summarized in the following problem definition.
1D Max-MIN-FILTER: Given a sequence Xo, ..., Xn-1, and an integer p > 1, compute
Yi = MaXogj <p Xi+j and zi = Minpsj<pXi+j fori=0,...,n-p.

We give an algorithm that solves the 1D MAa x- MiN-FILTER problem faster
than solving the 1D Ma x-FiLTER and the 1D Min-FiLTER. Let CT" be the
number of comparisons per input sample for solving 1D MAXx- MIN-FILTER.
Then the algorithm achieves E(CT*) ~ 2 + 2.3466:E2, for the special case of
independent input distribution, i.e., the expectation is with regard to input
distribution. In the worst case this agorithm does not improve on the inde-
pendent computation of the Min- and Max filters. However, for natural images,

1 We use Ig(-) to denote log, ()
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the agorithm makes such an improvement.

The problem posed by the opening filter is similar to 1D MAx-MIN-FILTER,
since in both it is required to compute both a Min-Filter and a Max-Filter.
However, the fact that in the opening filter these filters are computed sequen-
tially, where the results of one filter are fed to the other, makes it much easier.
Let C] be the number of comparisons per input sample for computing the
opening filter. Then, we show that C{ < Ci 4+ O(l-g;—’l). Clearly, the same
result holds for the closing filter.

As described in [5], a 1D max filter can be extended to square (or rectan-
gular) window 2D max filter. This is done by first applying the 1D filter along
the rows, and then feeding the result to a 1D filter running along the columns.
Let C, be the number of comparison operations required per input point for
computing the 2D max filter. We have that C> = 2C;, and more generaly,
C4 = dC4, where Cy is defined accordingly for the d-dimensional filter. We
similarly have that CJ' = dCJ" and C¢% = dCs.

Outline. The remainder of this paper is organized as follows. Section 2 reviews
the Gil-Werman agorithm. The deterministic and randomized algorithms im-
proving it are described in Section 3. In Section 4 we give our agorithm for
the 1D Max- MiNn FILTER PrROBLEM. The efficient algorithm for computing
the opening (and closing) filter is described in Section 5, and conclude with
Section 6.

2. The Gil-Werman Algorithm

The Gil-Werman algorithm is based on a partitioning of the input signal to
overlapping segments of size 2p — 1, centered at Tp—1,T2p—1,%3p—1,---- Let]
be the index of an element at the center of a certain segment. The maxima of
the p windows which include x; are computed in one batch of the Gil-Werman
algorithm as follows: First, define Rk, and Sk for k=0,...,p—-1:

Rp = max(x;,Tj—1,...,Tj—k)y and Sp = max(ZT;, Cjq1,--->Tjsk)- (1)

Now, the Ry’s and the Sk’s can be merged together to compute the max filter:

max(xjmk, ey L0y -y ,’I:j_}_pfkﬁl) = max(Rk, Sp—k_l), (2)
for k=1,...,p—2 In addition, we have max(z;_p_1,...,2;) = Rp_1 and
max (:IIQ, Ces ,12j+p_1) = Sp_l.

There are two steps to the Gil-Werman algorithm:

Preprocessing Computing all Rk and S¢ from their definition (1) which is
done in 2(p — 1) comparisons.

Merge Merging the Rk and Sk together using (2), for which another p — 2
comparisons are required.

Since this procedure computes the maximum of p windows in total, we have
that the amortized number of comparisons per window is 3 — 4/p. For large p,
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we have that the preprocessing step requires two comparison operations per
element, while the merge step requires one more comparison.

3. The Improved Algorithms For the Max-Filter

Let us show how the two steps of the Gil-Werman algorithm can be carried out
more efficiently.

3.1. AN EFFICIENT MERGE PROCEDURE

We first show how to improve the merge step, by reducing the number of
comparisons from 1 to Igp/p + o(1). In this step, we compute

max (R, Sp_k-1), (3)

for k= 1,...,p— 2. Observing that Ry_2 > Rp—1 > ... > Ry, andS,_5 >
Sp—1 2 ... 251, we can eliminate most of these comparisons. Suppose that
for some specific i it was found that R; > S,—;—1, then for al k> i, we have
that Ry > R; > Sp_i_1 > Sp—r—1, and therefore there is no need to do the
comparisons of (3) for al k>i. Similarly, if it is determined that R; < Sp_;—1,
then we do not need to do the comparisons of (3) for al k<.

The optimized procedure for the merge step is therefore a binary search.
We start by setting i = Op — 2)/20 and then continue with the remaining half
of the problem size. The number of comparisons is thus reduced from p— 2
to O (Igp). In fact, it can be easily checked that the number of comparisons
in the binary search of the merge step is exactly Ogp — 100 The amortized
contribution of the improved merge step to the complexity is %.

3.2. AN EFFICIENT PREPROCESSING COMPUTATION

Let us now deal with the preprocessing step of the Gil-Werman algorithm.
Gevorkian, Astola and Atourian [2] observed that preprocessing computation
can be made more efficient for randomized input, using the fact that in the Gil-
Werman algorithm, the suffixes S¢ of one segment overlap with the prefixes Ry
of the following segment. Specifically, the problem that needs to be solved is

PRrReFIX-SuFFix Max: Given a sequence Xo, . . . , Xp, compute all of its prefix max-
ima: s = max(Xq, . . .,Xk), for k=0,...,p—1, and all its suffix maxima: ry =
max(Xk, . . ., Xp), for k=1,...,p.

Note that this problem does not call for computing the overall maximum of
the input s, =ro = max(Xo,...,Xp).

The original Gil-Werman algorithm makes 2(p — 2) comparisons in solving
the PRerix-Surrix Max problem. We propose the following efficient solution
for this problem. Let q= Op + 1)/20 = p/2 + (p mod 2)/2. In the first part
of the modified implementation, compute all s, for k = 0, . . . ,q— 1 and rg
for k=q, ... ,p. Thisis carried out using p— 1 comparisons.

The second part of the modified implementation of the preprocessing stage
begins in comparing s;;and rq. If rq 2 sq,, then we know that the over-
al maximum falls is one of Xq, . . . , Xp. Therefore, it is unnecessary to fur-
ther compute the value of rq_1,rq_,...,r:1. Instead, the algorithm outputs
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Tq—1 = Tgq—2 = ... = 11 = 7, and continues to compute sg,...,s5,-1. A
similar situation occurs if 7, < s,_1, in which case it is unnecessary to com-
pute sg,...,sp—1. In both cases, the number of comparisons that remain to be

done is [p + 1)/20. The total number of comparisons in the more efficient algo-
rithm for PrRerix- SUFFIX Max is(p—1)+1+ 2] =1. 5p—{—’M Noting
that each batch requires (on amortization) solving one instance of PRrREFIx-
SurFix MAaXx, we can combine our results so far to obtain:

Theorem 1 There exists a deterministic algorithm for the 1D Max-FILTER
problem, achieving C; = 1.5 + @ + %‘“ <15+ %ﬂ.

Can we improve on this result? An information theoretical lower bound for
the number of comparisons required to solve PREFIX-SUFFix MAX, isp + Igp—
O(1). This bound is derived as follows. A compact output of an algorithm for
the problem uses p + Igp — O(1) bits comprised as follows:

1. Ig p bits to designate the location of the overall maximum (for simplicity,

we assume that p is a power of 2),

2. one hit for each location prior to the maximum, designating whether the
corresponding element changes the prefix maxima, and

3. one bit for each location following to the maximum, designating whether
the corresponding element changes the suffix maxima.

Moreover, there are distinct inputs which produce all the bit combinations of

this compact representation. Thus, in order to make the distinction between

these inputs, the algorithm is forced to make at least p+Higp—O(1) comparisons.

Although we are unable to meet this lower bound, we can come close to it
in an important special cases. Suppose that in an input to the PREFIX-SUFFIX
Max problem, the overall maximum is located at a random location | in the
input sequence. (This does not necessarily mean that the input is uniformly and
independently distributed). Then, once the comparison between -1 and rq
is made, al that remains is to proceed to compute OUtPULS Sg, Sq41y---,Se—1
in the case that sq—1 < 7¢, or 7g_1,7¢—2,...,7¢+1 Otherwise. The expected
number of comparisons in this completion stage is

+1— —( d 2) 1 1
A (T i+ D) =Bt <z di < (4)

In general, it cannot be assumed that an arbitrary input to the PreFIx-
Surrix Max problem will have its maximum a a random location. However,
in using this procedure as part of an algorithm for solving the 1D M Ax-FILTER
problem, we can achieve this effect by choosing at random the starting point for
segmentation. Thus, the segments will be centered at positions indexed T, T +
p, T+2p,...,wheretisan integer selected at random in therange [0, . . ., p—1].
Such a random selection does not degrade the efficiency due to the assumption
that p < n. We have thus obtained:

Theorem 2 There exists a randomized algorithm for the 1D MA x-FILTER
problem, achieving E(C;) < 1.25 + “ﬁ;ll—]jt <1.25+ 1%2.
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The interested reader is referred to eg., [3] and the references thereof for
examples of applying the template mechanism for non-trivial compile-time com-
putation and code generation that are useful for implementation of logical cases
involved in the proposed agorithms.

4. Efficient Algorithm for Computing the Max and Min Together

Let us dea with the 1D MA x- MIN FILTER problem, and show how the min
and max filters together can be computed more efficiently than an independent
computation of both. We start again from the Gil-Werman agorithm. The gain
comes from partitioning the input signal into pairs of consecutive elements, and
comparing the values in each pair. The greater value in each pair carries on
the maximum computation while the lesser one carries one to the minimum
computation.

4,1. THE PREFIX M A Xx- MIN PROBLEM

Let us first consider the following problem,

Prerix Max-Min: Given a sequence Xo, ..., Xq-1, compute My = max(Xo, ..., Xk),
and mx = min(xo,...,Xk),fork=0,...,9-1.

The straightforward solution for Prerix MAx-MIN uses a total of 2(q—2) +1
comparisons. Analyzing this problem from an information theoretic point of
view we find that for all i > 2, there are three cases for element xi. It either
increases the running prefix maximum, or it decreases the running prefix min-
imum, or makes no changes to those. There are only two possible cases for Xy,
while there is exactly one case for Xo . Thus, we obtain 1+(g-2) Ig 3 = 1.58496(,
as an information theoretic lower bound for the number of comparisons for this
problem.

We do not know of a general way of bringing the amortized number of
comparisons from 2 — o(1) closer to the Ig 3 lower bound, or proving a stronger
lower bound. However, if it is known that the distribution of input elements is
independent, we can even do better than the lower bound! This improvement is
carried out as follows. Suppose that M; and m; were already computed. Then,
to compute Mi.1,Mj+2, mi+1 and mj,,, we apply the following incorporate-
next-input-pair algorithm.

Algorithm incorporate-next-input-pair: Extend the result of a solution to PrREFIX
Max-MiN to include input elements x; .1 and X;,, using the four following compar-
isons:

1. Compare x;+1 and Xj+2. Assume, without loss of generality, that Xi+1 = Xi+2.

2. Compare M; with Xj+1 = maxX(Xi+1,Xi+2)-

3. Compare m; with Xi+2 = min(Xi+ 1, Xi+2).

4. At this stage, the algorithm has determined both Mi+2 and m;.,. Specifically,
Mi+2 = max(Xi+1, Mij) and mj+2 = min(Xi+2, m;). There are four cases to
consider in computing m;+; and M 4.

a) No changes: xi+1 < M and Xj+2 = mj. No more comparisons need to
be done in this case, and the algorithm outputs Mi+2> = Mi+1 = M; and
Mi+2 =Mj+1 = M,
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b) Changes to both the maximum and the minimum: xj+1 = M and Xi+2 < m; .
Again, no more comparisons need to be done in this case, and the algorithm
outputs Miso =M1 = Xj+1, Mixg =M, and Mj+2 = Xi+2.

¢) Change to the maximum: Xi+1 = M and xi+2 =2 mj. The algorithm out-
puts Mij+2 = Mj+1 = Xi+1 and mi+2 = mij+ = m;.without additional
comparisons.

d) Possible change to the minimum: xi+1 < M and Xi+2 < mi. This is the
only case in which an additional comparison is required: The algorithm first
outputs Mij+2 =M i+1 = Mj, mi+2 = Xi+2 and then determines mi+1 by
comparing Xj+1 with M;. If Xj+1 <mj then mj+1 = Xi+1, otherwise, mj+| =
mj.

Thus, in the worst case, the algorithm makes four comparisons for each
pair xi+1 and Xi+2, where i > 0 is odd, which does not improve on the two
comparisons for element by the trivial algorithm. The fourth comparison how-
ever is needed only in case

Tipo < My = mm ( i) (5)

or in the dual case, namely when the first comparison yields xi+1 < Xj+2, and

Tiyo < M; = Ofg?%(?(l“z) (6)
With i.i.d. the probability of (5) or (6) holding is 1/(i + 3), for al i > O.
Let u=[y/20-1=(g- (gqmod 2)) — 1. Then in the last application of the
above algorithm we dea with the pair xz, and x2y+1. In total, Fy, the expected
(with regard to input distribution) number of times the fourth comparison is
made is given by

1
2u + 2

1 1 1
quz+6+§++ :(Hu-{—l_l)/za (7)

where Hy is the uth harmonic number. It is well known that

lim H, =lnu++v and lnu+~v<H, <lnu-+1, (8
where y = 0.577216 is Euler's constant (also called Mascheroni’s constant).
Combining (7) and (8) we have

Fy =dl 2054 0(1)

) 9
~ D) 0911392 4 o(1) < Rt < Ing=1 ©)

Other than these, in solving PRerix M A x- MinN, there are u applications of
incorporate-next-input-pair, in which 3u comparisons are made, one compari-
son in which Xo is compared with x; to determine Mg, M1, mg and m;, and
finally, and only if gis odd, two comparisons to determine Mg_; and mg_y .
The number of these comparisons is

g mod 2
5

1+ 3u+ 2(¢g mod 2) = ——2~—2+ (10)
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Adding (9) and (10) we have that the expected total number of comparisons
in our solution to PReFiIx MAx-MiN iS a most

(11)

and the expected amortized number of comparisons per element is1.5+ 1—;‘5‘1 -
2/g. It should be noted that one cannot hope to improve much on this result.
The reason is that solving Prerix Max-MIN also yields the maximum and the
minimum of the whole input. However, computing both these values cannot be
done in less than [3p/2] comparisons [1, page 187] even for randomized inputs.

4.2. COMPUTING THE MIN- MAX FILTER

We now employ algorithm incorporate-next-input-pair in the pre-processing
stage of the modified Gil-Werman algorithm adapted for finding both the min-
imum and the maximum filters. Specifically, we are concerned in this stage in
finding an efficient algorithm to the PReFix-Surrix M A x- MiIN problem, de-
fined as computing the maximum and the minimum of all prefixes and all
suffixes of an array of size p+ 1. Such an efficient algorithm is obtained
by partitioning the input array into to two halves. In the lower half which
comprises q=Hp+ 1)/20=p /2 + (pmod 2)/2 elements we repetitively ap-
ply incorporate-next-input-pair to compute the prefix maxima and the prefix
minima in this half. A similar computation is carried out in the upper half
with p—g+ 1=0(p + 1)/20elements of the input array, except that agorithm
incorporate-next-input-pair is mirrored to compute the suffix minima and the
suffix maxima in this half. The total expected number of comparisons so far
can be computed from (11):

3, 3(p+1-— In In 1— 3,
39 4 3etloe)  Ing g pAlod) 4 <32 41,95, (12)

Once this computation is done, we carry on as before to produce the rest of
the required output. In two more comparisons we find out where the maximum
and the minimum of the whole array occur. If the maximum occurs in the
lower (resp. upper) half then it remains to compute the suffix (resp. prefix)
maxima from the mid-point down-to (resp. up-to) the location of the maximum.
From (4) we have that this computation costs another 0.25 comparison per
input element. A similar completion stage must be carried out for the minimum
prefixes or suffixes, using another 0.25 amortized comparisons. All that remains
is the merge step, which has to be carried out twice, once for the minimum and
once for the maximum. The number of comparisons for the merge is at most
21g p. Combining this with (12) we obtain:

Theorem 3 There exists an algorithm for the 1D MiN- MAx FILTER prob-
lem, that at the worst case makes twice the number of comparisons as that
of Theorem 2. For independently distributed inputs, the amortized number of
comparisons that the algorithm makes is

In2. 1 1
+ (24 02)lep gp

—— & 2+ 2.3466—.
2°p P

Inp+1
Crcopo P8P o
p
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Stated differently, we have that asymptotically for large p, and for i.i.d. one
comparison per element is required to compute each of the minimum and the
maximum filters, provided they are computed together. We refer to [4] for
further details like performance on natural images.

5. An Efficient Algorithm for the Opening and Closing Filters

In this section we describe how the opening (and closing) filter can be computed
more efficiently than a mere sequential application of the Max-Filter and then
the Min-Filter.

To understand the improvement, consider the problem of computing the
prefix-minimum, in the case that the input of length pis given as a sequence
of L monotonically increasing or decreasing segments. Suppose that the prefix-

minimum has been computed up to a point i, i.e, that the value of m; =
min(Xo, ..., X;) is known, and that Xj+1,...,Xj+k iS @ monotonically decreasing
segment of the input of length k. Then, in order to compute mi+1,..., Mj.,

al that is required is to find the smallest | such that my<m; This Ican be
easily found using a binary search in [Igk] comparisons. We then have

Mo — m; ifj<¥
i $i+j lfgS]Sk

If on the other hand X;+1, . . . , Xi+k iSamonotonically increasing sequence, al
that is required in order to compute mj 44, . . ., M+ iSto compare X+ 1 and mi .
In this case we have that mi+1 = Mij+2 = ... =Mj+k = min(X+1, M;). Using

Lagrange multipliers we obtain that the number of comparisons is bounded
above by
L[lg %W (13)

Recall now the improved merge step described in Section 3.1. Each itera-
tion of the binary search algorithm generates about haf of the outputs of the
max-filter that remained to be computed. Note that all values generated in
one such iteration are consecutive in the output. Further, since these values
are obtained from computing either Ri or S;, they are either monotonically
increasing or monotonically decreasing. Thus an application of the modified
max filter algorithm also partitions each stretch of p outputs into at most [Ig p]
monotonic segments.

The improved opening filter algorithm is thus obtained by first applying the
modified Gil-Werman max-filter algorithm, while preserving this partitioning
of the output. Then, the results are fed into the modified Gil-Werman min-
filter algorithm. The partitioning information is then used for an efficient
implementation of the preprocessing stage in which prefix- and suffix-minima
are computed. It follows from (13) that the preprocessing stage can be done
in a most O(lg? p) comparisons. Since the merge step can be done in O(lg p)
comparisons, we obtain:

Theorem 4 There exists an algorithm which computes the opening filter, achiev-
ing Cf = Cy +O(E2R),
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In other words, asymptotically computing the opening filter is not more
expensive than computing just the max-filter.

6. Conclusions

We presented improvements of the Gil-Werman algorithm for running min and
max filters. The average computational complexity was shown to be 1.25 + o(1)
per element for a randomized algorithm, without any assumption on the dis-
tribution of the data, and 1.5 + o(1) or a deterministic agorithm. These im-
provements, which come close to the best known lower bound for the problem,
were enabled by careful examination of the redundancies in the preprocessing
and the merge steps of the Gil-Werman algorithm.

We continued to study a related problem, namely the computation of the
min and the max filter together. We found that for independently distributed
input elements, it is possible to compute the minimum and the maximum filters
together in 2 + 0(1) comparisons per data point. This is less than 2.5 + 0(1)
comparisons required by applying twice the best max filter algorithm.

The opening and closing filters which are similar to the problem of comput-
ing the min- and max-filters together, can be computed much more efficiently.
We found agorithms for these filters using 1.5 + 0(1) comparisons determinis-
ticaly, or 1.25 + 0(1) comparisons randomly, for worst case inputs.

All agorithms are readily extendible to higher dimensions.
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Abstract. Morphological attribute openings and closings and related operators are general-
izations of the area opening and closing, and alow filtering of images based on a wide variety
of shape or size based criteria. A fast union-find algorithm for the computation of these

operators is presented in this paper. The new algorithm has a worst case time complexity of
O(N log N) where N is the image size, as opposed to O(N2 log N) for the existing agorithm.
Memory requirements are O(N) for both algorithms.

Key words: Area Operators, Attribute Operators, Granulometries, Union-find Algorithm.

1. Introduction

Morphological attribute openings, thinnings and granulometries were intro-
duced by Breen and Jones [1] as a generaization of morphological area opera-
tors proposed by Vincent [8, 9]. Attribute openings are most easily understood
in the binary case. Unlike structural openings, attribute openings are shape
preserving, because they simply test whether a connected component satisfies
some increasing criterion T. If it does, it is retained, if not, it is removed. In
the case of the area opening, the area of each component is compared to some
threshold value A, and if the area of the component is larger, it is retained.
The flexibility of this methodology is shown in Figure 1. In this figure a binary
image of bacteria is filtered using three attribute openings, each of which would
remove al sguares smaller than 11 x 11 pixels. The first is the area opening,
with A = 121. All small bacteria have been removed in the resulting image. By
contrast, the attribute opening using the criterion that the moment of inertia
| must be larger than A = 11%4/6, removes most of the smaller components,
but not the elongated ones. Attribute opening using the length of the diagonal
of the minimum enclosing rectangle as criterion, with A =v242, has similar
results.

The agorithm Breen and Jones derive for their wider class of operators is
based on Vincent's pixel queue agorithm for area operators. Recently, a new
algorithm for area openings and closings has been developed [5], which is based
on Tarjan’s union-find algorithm [7]. It was found that the union-find based
algorithm was between 2 and 10 times faster than the original algorithm on the
images tested. Furthermore, the computational burden of the new algorithm
was practically independent of the size criterion A used, or the image content.
By contrast, Vincent’s algorithm is particularly sensitive to the presence of
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(a) (c) (d)
Fig. 1. Attribute openings of an image of bacteriaz (a) a binary image of 256 x 256 pixels;
attribute using (b) area A = 121; (c) Moment of inertia | = 114/6, corresponding to that

of an 11 x 11 square, and (d) length of diagonal of minimum enclosing rectangle D = v/242.
Structural opening of (a) by an 11 x 11 square structuring element removes all objects.

linear structures in the image, in which case the computing time rises almost
linearly with A.

In this paper we extend the union-find algorithm to the wider class of at-
tribute openings and closings. Later work will focus on extension to thinnings
and thickenings, and granulometries or size distributions.

2. Attribute Morphology: Theory

The theory of attribute operators is given only briefly here. For a more thor-
ough discussion the reader is referred to [1]. Here we will first discuss binary
attribute openings and closings, and then the extension to the grey scale case.
Binary attribute openings are based on binary connected openings. Let the set
X OM denote a binary image with domain M. The binary connected opening
IMx(X) of Xat point x O M yields the connected component of X containing
x if x O X, and @ otherwise. Thus I, extracts the connected component to
which x belongs, discarding al others. Breen and Jones then use the concept
of trivial openings I't, which use an increasing criterion T to accept or regject
connected sets. A criterion T is increasing if the fact that C satisfies T implies
that D satisfies T for @l D O C. The trivial opening It of a connected set
C with increasing criterion T is just the set C if C satisfies T, and is empty
otherwise. Furthermore, t(#) = @. The binary attribute opening is defined
as follows.

Definition 1 The binary attribute opening I'T of set X with increasing crite-
rion T is given by

IT(X) = [ J Tr(T(X)) @
zeX

It can be shown that this is an opening because it is increasing, idempotent,
and anti-extensive [1]. Theattribute opening is equivalent to performing a
trivial opening on al connected components in the image.

A generdization to grey scae can be made by first defining thresholded
images X (f),

Xn(f) = {z € M|f(z) = h} (2)
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Fig. 2. One dimensional discrete image with grey levels h > h' > h" to illustrate the def-
initions of level components, regional maxima, peak components and the threshold images:
(a) double arrows indicate three level components L L2 and L}l,,’ the former two are aso
both peak components P; and P,f and regiond maxima at level h; a further peak component
Pl, at level h'is also shown; (b) shows the threshold sets Xy, X, , and Xp+ in relationship
to the grey scale image.

where the grey scale image f is a mapping from the image domain M to
Z U {—o00, 0}.

Definition 2 The grey scale attribute opening y' of image f with increasing
criterion T is given by

(T (MN)(@) = max{hlz € IT(Xn(1)}. ©)

Grey scale attribute closings can easily be defined by a duality relationship
with the grey scale attribute openings [5].

3. Algorithms

Before going into the details of the algorithms, we first define a level component
L, a level hof a grey scale image f as a connected component of the set of
pixels {p € M|f(p) = h}. A regional maximum My at level his a level com-
ponent no members of which have neighbors larger than h. A peak component
Pn at level his a connected component of Xn(f). At each level hthere may
be several such components, which will be indexed asL{, P’/ and M}, respec-
tively, with i,j, and k from some index set. It can be seen that any regiona

maximum MF is also a peak component, but the reverse is not true. Examples
of these three types of components, and of the threshold sets X (f) are given
in Figure 2.

All level components L} at level h are of course subsets of some peak com-
ponent P} < X,(f) a the same level h. However, for a given criterion T, not
necessarily al Li C I'r(P), because not al P need meet the criterion T. It
can be seen from (3), that not al level components are necessarily affected by
a grey scae attribute opening. Only those Li which are not subsets of a peak
component P}{ which meets the criterion T must be changed in grey level by
yT. In other words, al Lj, ¢ Tp(P}) ¢ TT(X.(f)) must be left unaltered. If
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[ S=IN £
(a) (b) (c) (d) (e) ) (@

Fig. 3. Processing nested maxima by the pixel queue algorithm, assuming only the peak
at full width meets the criterion: (@) original image; (b-f) situation after processing the
first, second, third, fourth, and fifth maximum from the left. At each stage the pixels
indicated by the double arrows have been inspected. After visiting the current maximum, the
algorithm first inspects the pixels to the left of the maximum, because the valley to the right
is lower. This results in a frequent rescanning of pixels of the left-most regional maxima. (g)
16 x 16 pixel image showing nested maximum structure on which the computational burden
is expected to be O(NZlog N).

we assume that the pesk component P}, in Figure 2 meets the criterion, the
level component labeled L}, in the same figure will remain unaltered. This is
because h" < h', so that P}, C Pl (the latter is not shown in the figure), and
since T must be increasing in the case of a grey scale attribute opening, Pl
must meet T. By contrast, assume that P} = M} = L} does not meet the
criterion, and therefore L} ¢ T'r(P}) since Tr(P}) = 0. Then the grey level
of L}, must be atered to h', because P, O L} is the smallest peak component
containing L} which meets T.

3.1. THE PIXEL QUEUE ALGORITHM

The pixel queue based algorithms for morphological area and attribute oper-
ators are given in some detail elsewhere [I, 5, 8, 9], so we will describe them
only briefly. The source code of our implementations is available on request.
Briefly, the image is first scanned using a pixel queue to create a list of all
regional maxima Mj. After this, al Mf are processed sequentialy. This is
done by growing a peak component Pgl,hl < h around a seed pixel within the
maximum MF using a priority queue. As each pixel is added to the growing
region, its neighbors which do not (yet) belong to the region are put in the
priority queue, from which they are retrieved in reverse grey level order. The
process of adding pixels pauses whenever the next pixel taken from the priority
queue has a grey level h" different from the current level h'. If h* >h', the
region grown so far is not a peak component P/, at level h'. All the grey levels
of pixels found so far are set to h', and the maximum M} from which the region
was grown is removed from the list. If h" <h', the region grown so far is a
peak component at h', which is subsequently checked against the criterion. If
the criterion is met, the grey level of all pixelsp € P/, are set to h', and MFis
removed from the list. Otherwise, the routine continues adding new pixels at
level h". The algorithm terminates when al maxima have been processed.
One problem which occurs is that pixels may be visited more than once
if nested maxima exist, especially if the attribute threshold A is large. This
effect can be seen in Figure 3. In this one-dimensiona example, the algorithm
processes the maxima from left to right, and each time only detects that the
growing region is not a peak component after having re-visited al pixels visited
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by the previous region-growing loop. If A is chosen so that the entire image (of
N pixels) is the smallest set satisfying the criterion, it is possible to construct
an image in which each pixel is processed O(N) times. A two-dimensional
example can be seen in Figure 3g. At each visit a pixel has to be inserted
into and retrieved from a priority queue of length of order v'N. In that case
we arrive a a worst case running time of O(NZlogN). Strictly speaking, this
effect is due to awkward arrangement of the depths of the valleys between
the maxima, not to the heights of the maxima. Had all the maxima in figure
3(a) been given the same height (as is the case in figure 3(g)), the problem
still remains. Processing the maxima in order of grey level does not solve the
problem.

The agorithm requires a label image of N pixels, and a (priority) queue also
of N pixels in the worst case. Therefore its memory requirements are O(N).

3.2. THE UNIoN-FIND METHOD

Tarjan [7] presents the union-find algorithm which provides a general method
for keeping track of digoint sets. It allows performing set-union operations on
sets which are in some way equivalent, while ensuring that the end product
of such a union is digoint from any other set. Since connected components
and level components in an image are by definition digoint sets, the union-
find algorithm lends itself to any image processing method which is defined by
such image components. Dillencourt et a. [2] have shown that the union-find
algorithm can be used for efficient connected component labeling of arbitrary
image representations. Fiorio and Gustedt propose a similar algorithm [3], and
Meijster and Roerdink [4] adapted the algorithm to level-component labeling.
Since attribute openings and closings are connected filters, their operation can
be defined directly in terms of connected components in the binary case and
level components in the grey scale case. This means Tarjan's agorithm can
be adapted to attribute openings. This is born out by the application of the

algorithm to area openings [5].

Tarjan uses tree structures to represent sets. Each non-root node in a tree
points to its parent, while the root is flagged in some way. Two objects x and
y are members of the same set if and only if x and y are nodes of the same
tree, which is equivalent to saying that they share the same root. There are
four important operations.

—  Mkeset (x): Create a new singleton set {x}.

—  FindRoot (x): Return the root element of the set containing Xx.

— Union(x,y): Compute the union of the two sets containing x and y.

— Equiv (x, y): determine whether x and y satisfy some equivalence criterion.

For level component labeling the algorithm becomes:

for pixels p do
{ MakeSet (p) ;
for all neighbors n<p do
if ( Equiv( n, p) )
Union( n, p) ;
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Note that in this context the condition n<p means that n is a pixel which has
been processed before p.  In this case Equi v(n, p) istrueif theimage valuel [ n]
equals| [ p] . Uni on calsFi ndRoot internally to determine the root nodes of
the trees containing n and p. After this scan, a second “resolving” scan assigns
each root pixel a unique label, and to each non-root pixel the label of its root.

Before going into the details of the attribute opening algorithm itself, we
will discuss the general framework for storing the digoint sets, and the auxiliary
functions needed for attribute openings and closings.

The digjoint sets we have to find are all level components L, C I'7(Xx(f))
which are not altered by the attribute opening y' , and, for all other L%, the
smallest peak component P, > Lt which meets T. Each of these sets is
represented as a tree, with each pixel containing a pointer to its parent pixel.
To store the trees for the entire image, we use an integer array parent of the
same size as the image (i.e., N),inwhich parent[p] isthe parent of pixel p.
Pixels are stored aswi dt h*y+x, with x and y the pixel’s x and y coordinates,
and wi dt h the image width. If a pixel is aroot of atree, i.e. it has no parent, we
flag thisby setting parent [ p] < 0. If p istheroot of a peak component which
does not meet the criterion, we call the pixel an active root, which is flagged
by parent [ p] =ACTI VE< 0. All other roots are labeled | NACTI VE (< 0). An
array auxdata of Nvoid pointers is used to store pointers to any auxiliary
data about the peak component (e.g., area size, centroid location, etc.) needed
for computation of the attribute. Only if p is an active root does auxdat a[ p]
point to valid data. This allows us to process different extrema simultaneously,
rather than sequentially.

To perform any kind of attribute opening using a single routine, pointers to
four functions must be passed to the attribute opening procedure:

e NewAuxData, which initidlizes the auxiliary data,

e DisposeAuxData, which discards them,

e MergeAuxData, which merges two sets of auxiliary data,

e Attribute, which computes the attribute based on the auxiliary data

The pseudo-code for the MakeSet, Fi ndRoot, Equiv, andUni on routines is
shown in Figure 4. In this case, as in the case of the area opening [5], the
Equi v and Uni on routines are asymmetrical. This is done to ensure that if the
set we are dealing with is a peak component Py, at level h, the root element
r hasagrey level I[r] =h. Therefore, we process the pixels in decreasing
grey level order, and aways make the last pixel processed the root of the new
tree. We do this by radix-sorting the pixels, and storing the coordinates in an
array Sort pi xel s of length N. Pixels of the same grey level are processed in
scan line order. Scanning of peak components from high to low grey levels is
guaranteed, without finding regional maxima explicitly.

As each pixel p is processed, we first check whether its grey level | [ p] is
different from its predecessor's greylevel | [p-]. If so, al active roots with
grey level 1 [ p-] q are inspected, checking whether At t ri but e( auxdat a[ q])
> A. If s0, they are labeled as | NACTI VE and their auxiliary data are discarded.
After this clean up, the MakeSet routine labels p as a singleton set, setting
parent[p] toACTIVE, andcaling NewAuxDat a, passingthepixel p toit (see
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voi d MakeSet ( int x )

{ parent[x] = ACTIVE
NewAuxDat a( x) ;

}

void Link ( int x, int y)
{ if ( (parent [y] == ACTIVE) and (parent[x] == ACTIVE) )
{ auxdata[y] = MergeAuxData(auxdata[x] , auxdata[y]);
Di sposeAuxDat a(auxdat a[ x]);

}
else if (parent[x] = ACTIVE)
Di sposeAuxDat a(auxdat a[ x] ) ;
el se
{ DisposeAuxData(auxdataly]);
parent [y] = INACTIVE, }
parent[x] =y;

int FindRoot ( int x )
{ if ( parent[x] >=0)
{ parent[x] = FindRoot( parent[x] );
return parent[x] ;
}

el se return x;

}

bool ean Equiv ( int x, int y)

{ return ( (I[x] == I[y]) or (parent[x] == ACTIVE) );
}

void Union ( int n, int p)
{ int r = FindRoot(n);
if (r !'=p)
if ( Equiv(r, p) )
Link( r, p);
else if (parent[p] == ACTIVE)
{ parent[p] = |NACTIVE
Di sposeAuxDat a(auxdata[p]); }

Fig. 4. The basic operations for attribute openings and closings using the union-find method.
The negative constants ACTIVE or INACTIVE flag active and inactive roots in the par ent

array, and auxdat a[ p] contains pointers to auxiliary data. The variable | anbda is equal to
the parameter A. The parameters of Equiv must be root nodes. Linking is done if either the

image values 1 [x] and I[y] areidentica, or if x is aroot of an active peak component.
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figure 4). The Uni on procedure is now called for each neighbor n which has
already been processed. We briefly describe this procedure here. Since the p
isalways aroot, Fi ndRoot isonly called to find the root pixel r of n. Next,
Equi v iscaledwithr andp asparameters. If thegreylevel I [r] of r isequal
tothat of p orif r isactive, Equi v returns “true” and the two trees are merged
using the Li nk routine (see figure 4). If Equiv returns “false’, a neighbor has
aroot grey level higher than | [ p] and is inactive, sop € L{ < TT(X,(f)).
Therefore, p is set to inactive, and its auxiliary data are discarded. The Li nk
routine always assignsp toparent[r] . Beforethat, Li nk inspects both roots.
If bothr and p are active, Mer geAuxDat a is caled on the auxiliary data of r
and p, storing the result in the auxiliary data of p, and discarding the auxiliary
dataof r. |If either r or p areinactive, the active root is set to inactive, and its
auxiliary data are discarded.
In pseudo code this part of the algorithm now becomes:

for pixels p do
{it el t=110p1)
for all pixels gwith |l [qg]==] [p-] do
if ( ( parent [g] == ACTIVE ) and
( Attribute(auxdata[q]) >= lanmbda ) )
{ parent [q] =INACTIVE;
Di sposeAuxDat a(auxdata [q] ) ;

}

MakeSet (P) ;
for all neighbors n<p do
Union, (n, p) ;

Here p— denotes the pixel processed immediately before p. This part of the
algorithm requires O(Nlog N ) operations in the worst case [5, 7].

At the end of this part of the algorithm, we have found two kinds of disjoint
sets: (i) those with constant grey level, which are level components Li
I'T(X.(f)), and (ii) those with varying grey level, which are peak components
Pf;, with h the maximum grey value for which the criterion is satisfied. Because
the root r of these peak components is always the last pixel processed, its grey
level in the input image satisfies f(r) = h. Therefore, if we set the grey level
of each pixel in the output image to that of its root in the input image, al
L}, <« TT(X,(f)) remain unchanged, whereasal P/ are filled uniformly with a
grey level of h, as in the previous agorithm. Assigning all pixels the grey level
of the root of their component can be done in linear time [5]. The simplest
approach is to store the output image in the parent array:

For each pixel p in reverse sort order do
if (parent [p] < 0) then
parent [p] =1 [p] ;
el se
parent [p] = parent [parent [p] ] ;
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Fig. 5. Timing of algorithms for mean and pathological cases:. (a) Mean CPU times and
standard deviations of moment of inertia closings as a function of A for the union-find (solid
line) and pixel queue (dashed line) algorithms, for 20 natural images of 256 x 256 pixels; (b)
log-log plot of timing results as a function of image size N for both algorithms, for the case
shown in Figure 3a, showing at least O(N?) complexity for the pixel queue method (dashed),
versus O(N) for union-find (solid).

Thus, each pixel which has a negative par ent[ p] isaroot, and is assigned
its image value. Every image value which is not aroot has a parent [ p] which
always points to a pixel which was processed later in the first phase of the
algorithm, and which will therefore always have been assigned the correct image
value before the current pixel in the reverse order scan. At the end of this phase,
the array par ent contains the output image.

It might be thought that finding all components Li c T'7(X,(f)) aswell as
those L? which need to be changed is wasteful, compared to the region-growing
phase of the pixel queue approach, which only grows the peak components,
without visiting those L which need not be atered. However, during the
phase in which the maxima are sought, the pixel queue agorithm also visits all

¢ regardless of whether they should be altered or not.

4. Timing Results

To compare the computational complexities of both agorithms on real images
as a function of the attribute threshold A, we computed moment of inertia
openings with increasing A for 20 natural images of 256 x 256 pixels, including
microscopic images, buildings, portraits, aerial photographs and astronomical
images. The results are shown in figure 5a. Similar results were obtained
using the diagonal of the minimum enclosing rectangle as attribute (data not
shown). As in the case of area openings and closings [5], CPU times for the
pixel queue algorithm depend strongly on A, and on image content; hence the
large standard deviations of the timings. The union-find approach is faster in
al cases, except for smal Ain a few images. The coefficient of variance of
the timings is aso much smaller, indicating a far smaller dependence on image
contents.

A far more dramatic difference in CPU times was observed in a set of ar-
tificial images, designed to demonstrate the O(NZ?log N) worst case behavior
of the pixel queue algorithm. The images consist of maxima nested in such a
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way that each time a new maximum is flooded, all previously processed pixels
must be visited again, in a two-dimensional variant of the case shown in Figure
3. A 16 x 16 pixel image from this set is shown in figure 3g. A log-log plot
of CPU times versus image size for both algorithms for images ranging from
16 x 16 up to 128 x 128 pixels is shown in figure 5b. The pixel queue algorithm
shows a quadratic dependency of CPU time on image size, and at a size of
256 x 256 the CPU time was 4340 s. By contrast, the union-find algorithm
shows a linear dependency on image size, and needs only 0.7 s for an image
of 256 x 256 pixels. It appears that the pixel queue approach does not handle
nested extrema efficiently, contrary to what has been claimed [I, 8, 9].

5. Conclusions

It has been shown that the union-find algorithm is a fast method for computing
attribute openings, especially at high values of A. Its theoretical worst case is
an order of magnitude smaller than that of the pixel queue agorithm, though
it may require more memory, depending on the attribute used. However, both
algorithms require O(N) memory in the worst case (apart from the image
itself).

Further work is in progress to extend the algorithm to computation of at-
tribute granulometries. It is expected that the speed gains will be considerable,
since the pixel queue methods are particularly slow when large connected com-
ponents must be scanned, i.e. a large A. The union-find algorithm does not
suffer from this drawback. A comparison to the MAX-tree approach for com-
putation of anti-extensive connected filters [6] must also be made.
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Abstract. This paper presents a loca measurement based on the level lines within an image.
Its most important feature is that it separates local geometry (the shape of the level lines)
from local contrast (the grey-levels). Using only the first of these we have derived two types
of motion detection one of which relates to the disappearance of local level lines and the
other to a change in their local geometry. The nature of the measurement allows us to use
both a short term and long term time reference and therefore detect objects that are moving
or that were not present a few minutes (for example) before. We have used this technique in
a number of applications. Appraisals by transportation operators have provided encouraging
results.

Key words: Change Detection, Motion Detection, Level Sets, Video Surveillance.

1. Introduction

The aim of detecting motion or change is to locate parts of the image that
move (or that appear or disappear). In this paper we shall assume that the
video camera is fixed with respect to the background.

When lighting conditions are constant or known, the problem involves de-
tecting changes in intensity. The first algorithms (see [5, 10], and for a good
survey of this, [18]) generally started by analyzing change over time in grey-
levels (or any measurements based on them, gradient, wavelet coefficients,...),
as for the background these changes will be zero, if we ignore noise.

However, intensity-based measurements are contrast dependent, so the me-
thod is sensitive to lighting changes. Of course, with a high enough frame rate
the change in contrast between successive images is small, and up to a certain
limit comparisons between such measurements can still be effective.

The use of edge maps, such as zero crossings of the Laplacian or a Canny-
Deriche edge detector, is an important step towards achieving robustness against
contrast change [5, 7]. As edges (generaly) correspond to large intensity varia-
tions, an edge at a pixel is more stable than the grey-level value. However, such
edge selection is performed on the basis of intensity (and intensity-derived) cri-
teria. As it is contrast-dependent it will either be sensitive to contrast change
or discard low contrast zones (or both). Image level lines can be considered as
being roughly equivalent to an edge map where no selection has been made.

Other methods are based on comparisons between estimated motion and

* A part of the work presented is undertaken in the CROMATICA project. It is granted
by the EC in the 4th PCRD framework.
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an estimated dominant velocity model (in our case O as the camera is fixed)
[13, 4, 9]. A good survey of this can be found in [9]. Such methods are effective
on condition that the motion estimate is reliable. (Note that motion estimates
are aso generaly based on contrast-sensitive image measurements). However,
when the camera is fixed, as in our cases, it is not necessary to compute motion
in order to detect changes.

The nature of the detection problem is also dlightly different if the aim is
to construct a change detector rather than an instantaneous motion detector.
For example, counting the cars waiting at a pedestrian crossing involves de-
tecting objects that are not necessarily moving but which were not present a
few minutes before. This problem is generally addressed by constructing refer-
ence image which gives the average grey-level measurement for each pixel over
previous minutes (see, for example [7, 17] and the references therein). This
clearly assumes that under changing lighting conditions measurements will re-
main stable, or be stabilized (for example by histogram modification or other
more precise methods).

This paper will dea essentially on the determination of a measurement that
separates geometry from contrast with a view to designing a change detector.
We shall begin by giving a brief description of a “contrast invariant” represen-
tation of the image as proposed in [6, 11, 12] which will provide us with our
framework. We shall then investigate possible ways of making local measure-
ments where contrast information is separated from geometrical information.
The nature of local detection will be specified. Thirdly, we shall propose a
simple “change” detection algorithm that uses only geometrical data. This will
aim to identify objects that have appeared in the image within a given histor-
ica time threshold. With a short historical time threshold the device becomes
an instantaneous motion detector. Finaly, we will show some of the real time
experiments done on real situations.

2. Sensor Modelization and a “Contrast Invariant” Measurement

2.1. REPRESENTATION OF THE SENSOR

We can represent image acquisition in a very approximate manner by the fol-
lowing sequence of operations. scene contrast, smoothing, sensor contrast ad-
justment, quantization, sampling. This representation is very minimal, and is
certainly open to criticism, but it will provide us with a framework and help
to show the limits of the proposed method. We shall use the term “globa con-
trast change” to describe a globa change in the intensity values of the entire
image in which the relative levels of illumination are retained. That is to say
that an image J can be deduced from an image | by a contrast change if there
is non-decreasing function g from IR to IR such that J = g(I). In our rep-
resentation, we shall consider that the "scene contrast” and "sensor contrast
adjustment” represent a global contrast change. We shall also assume that the
role of smoothing, which is mainly due to the lens, is negligible, in that it occurs
a a level smaller than one pixel. It should now be noted that quantization can
be viewed as a contrast change. Indeed, quantization between a value of 0 and
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255 can be written as a contrast change with gq(X) = E (Max(0, Min(X, 255)))
where E is the truncation function and gq is a non-decreasing function. We
shall ignore noise for the time being and consider its impact in section 4.

These assumptions imply that the image | can be deduced from the scene
luminance by a change in contrast. This stage is followed by sampling. If
our hypothesis that smoothing is negligible is correct | can be compared to a
sampled version of the scene which we shall refer to as Si. For the function g
that represents the combined effect of al the contrast changes we have

I = 9(Su) D

It should be noted that g may change over time, so that if there are a large
number of observations of Ii and Seach of them will satisfy (1) (Ii = gi(S)).
Let us now consider what common features are shared by all the images Ii.

2.2. REPRESENTATION OF THE IMAGES BY MEANS OF LEVEL-SETS

Let 1(i,j) denote the intensity of the image | at the pixel location (i,j). The
level set A of |is the set of pixels with an intensity equal or greater than A,
that is to say:

X\ = {x = (4,7),such that I(x) > A}. (2)

We shall refer to the boundary of this set as the A level line. In the case of a
digital image, a level line is formed by a finite number of Jordan curves. As
a consequence of (2), the level sets of an image are included in others. (If
A 2 pthen X\I C &,I). Therefore the level lines do not cross each other. As
I(x) = sup {) / x € &)}, The data of the family of the X, is sufficient to
reconstruct the image [12, 6]. Therefore, the family of the level sets provides a
complete representation of the image.

2.3. THE IMPACT OF CONTRAST CHANGE

We shall now examine the effects of global contrast changes in order to distin-
guish between them and changes due to motion and new objects, etc. Let us
return to our representation of the sensor and consider the relationship between
the scene Sq and the observation of this image |. With g a contrast change,

If I = g(Sq) then {XxI}seqo,... 2550 C {ASa}rer (3)

This means that all the level sets in the observed image are present in the
scene. The operation by which the image is produced from the scene can be
considered as the straightforward removal of some level sets with a possible
change in their levels. However, the geometry of the remaining level lines is
not affected. Let us now consider what occurs between two observations I1 and
I 2. From (3) we can obtain:

{X\I1}reqo,...2551 C {XaSa}aer and {XaI2}acqo,.. 2557 C {XaSatrer (4)

A level set in 11 is not necessarily a level set in |2 or vice-versa All we can
state for certain is that both families of level sets are subsets of the family of
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level sets in Syq. Therefore, the level lines in |, and 1, do not cross each other,
on condition that I, and |, are observations of the same scene.

This aready provides us with a useful basis for motion detection. The de-
tection of level lines that cross in successive images is an indicator that some-
thing other than a change in contrast has occurred between the two images.
However, a change detection algorithm based only on this criterion will only
provide information about those parts of the images which have level lines,
being effectively blind in homogeneous areas.

2.4. OUTLINE OF AN ALGORITHM BASED ON REFERENCE DATA

Comparing two observations of a scene is far more limiting than comparing an
observation directly with the scene Sy. For this reason, in order to improve
motion detection we have to construct a reference data which represent the
background image of the scene. This reference data will be built up by com-
bining al the level lines in the observed images. If there is no motion and no
noise, the reference data will provide a good representation of all the level lines
in the background of the scene. From (3), the following possibilities exist for
a section of level lines in a new image. Firstly, this section exists (to within
a certain approximation) in the reference data, in which case no detection oc-
curs. Secondly, some of the level lines can cross a level line which is contained
in the reference data, in which case detection occurs (in what follows we shall
refer to this type of detection as "strong detection”). Finaly, it is possible that
the area of level lines does not exist in the reference image. This absence may
either occur when the reference image is sufficiently complete (in which case
detection of a type we shall refer to as “weak detection” occurs) or when the
reference image is not sufficiently complete (in which case we do not know if a
detection or merely a change in contrast has occurred).

3. Local Measurement Based on Level Lines

Measurements based on level lines have already been explicitly or implicitly
proposed. For example, in [3] or, a dlight variant of it, [14] the authors defined
characteristics based on the shape of the connected sections of the level set.
However, for our application the non-local nature of these makes them difficult
to use. In [2] a motion detector using the variation over time of a gradient-
based detector measurement was evaluated, and the authors noted that their
results were considerably improved if gradient amplitude was discarded. They
therefore proposed to use gradient orientation aone (in a non-digitized image,
the orientation of the gradient is contrast independent). Let us now consider
what possible contrast invariant local measurements exist. It is apparent from
the previous section that image representation using level lines separates image
information into contrast (its levels) and geometry (its shapes). The reason for
making local measurements is to avoid mixing measurements which relate to
moving objects with measurements which relate to the background. To achieve
this we have defined "local" by two conditions. Firstly, we have measured only
the geometry of all level lines that pass through the current point. Secondly,
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Fig. 1. The observation window around a point is here defined as the straight part of the set
of level lines passing through it. The directions of these lines are used in change detection.

starting from the current point, we have taken measurements along each of
these lines until the orientation of the tangent changes. At each point we have
thus defined an adaptive neighbourhood which depends solely on the geometry
of the level lines and is therefore contrast invariant. A simple measurement
that we have used is thus to list the direction of the half-tangent of each of the
level lines passing through each point.

4. A Change Detection Algorithm

4.1. LocaL DIRECTION EXTRACTION

Extraction of the local direction of the level lines can be performed recursively.
Starting at each point, al level lines are followed until a direction change, up
to the discrete grid, is encountered. We have considered that the direction
changes when the path covered is no more the sampling on the grid of a line
segment. Once al the recursions have been completed we have, for each point,
a description of the straight sections (half-tangents) of the level lines passing
through it (See Figure 1). The precision to within which the orientation of each
half-tangent is known depends on the path length (the longer this is the higher
the precision). Path lengths of less than three steps are discarded at this stage,
which means that a precision of +17/8 is achieved. The only parameter we have
used at this stage of processing is the minimum of 3 steps. The measurement
performed at each pixel therefore consists of a list of angles o,...,8; and the
number of level lines for each of these 4y, ..., d;. (i depends on the pixel). By
this means we have separated geometry (the angles) from the contrast (number
of level lines).

4.2. CONSTRUCTING THE REFERENCE DATA

The aim of the reference data is to show the normal configuration of the di-
rections at each point. The directions are quantized to give a discrete set of n
directions. If the duration for which a direction occurs exceeds a certain thresh-
old it will be included in the reference data. The occurrence of the direction
6, at pixel x is represented by the number O(X, 6;). As each image is received
this number is increased if the direction is present. The reference data for this
point and this direction are obtained by thresholding this number.

It should be noted that different scene configurations may be present si-
multaneously in the reference data. Some objects, for example traffic signals,
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change over time but are present for a sufficiently large proportion of the time
to be included in the reference data and therefore not detected as changes.
The parameters at this stage are as follows:
Direction quantization. We have chosen to quantify the direction at inter-
valsof 1/8, which gives n = 32. This is the consequence of an experimental
trade-off between memory use (one counter per direction per pixel O(X, 6;))
and the number of different geometrical configurations considered (more than
30,000 per pixel).
Historical time threshold T. The number of occurrences of each quantized
direction at each point during a time period T are recorded. T is the “historical
time threshold” for the reference data
Occurrence threshold To.A direction with more than To occurrences will
be considered to belong to the background. To must be fixed on the basis
of experience, depending on the characteristics of the object (average speed,
maximum waiting time at a pedestrian crossing, etc.). However, Tp has a
minimal bound in order for directions generated by noise not to be considered as
belonging to the background. Such a bound can be computed using probability.

4.3. DETECTION.

We have seen above that there are two types of detection, strong detection
(the detection of directions which are incompatible with those stored in the
reference image because level lines cross) and weak detection (the detection
of a direction that is not present in the reference image. We shall begin by
considering the latter.

Weak Detection. When a direction is detected at a point we can check
whether this direction occurs in the reference data (within the quantization
precision of the directions stored in the reference data). If it is not, we state
that a weak detection has occurred at this point, which means either that the
point is not part of the background or that the point is part of the background
but the reference image is incomplete. It should be noted that several simulta
neous weak detections, corresponding to several directions that are not in the
reference image, can occur for a single point.

Strong Detection. This occurs when the level line directions in the current
image and the reference image are incompatible (i.e. cross each other). In
practice, strong detection is often ineffective, as it cannot occur whenever the
intensity of the background is uniform (see figure 3) In this situation, a possible
way of making it operative would be to place a textured pattern on the ground.

No parameters are involved in the detection stage.

4.4. FILTERING OF DETECTION.

As detection is based on a comparison between the current image and reference
data it is sensitive to noise. In the same way that a criterion is required in order
to decide if a direction has been present long enough to become part of the
reference image, we need a criterion in order to decide if a detection is valid.
To perform this we have defined our final parameter, which is a minimum
size threshold. This involves removing connected detections that are too
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Fig. 2. Typica examples of weak and strong detections. Left: some directions (thin arrows)
in the current image are not in the reference, we get a weak detection. Middle: directions
in the current image cross directions in the reference (thick arrows), we get a weak and a
strong detection. Right: directions in the current image are opposite to the directions in the
reference (which means a local contrast inversion), we get again both detections.

&

&

Fig. 3. Middle: weak detections (only detected areas of more than 10 pixels are shown).
Right: poor strong detections on a non textured background.

small (e.g. [20]). The reasoning behind this is that a moving object has a
minimum spatial and temporal presence which is greater than that of noise.
As we were unable to estimate formally the maximum spacial and temporal
presence that could be generated by noise, we empirically set a value of ten
pixels in our trias.

4.5. QUALITY OF MOTION DETECTION.

Is the algorithm robust to contrast changes?

As we have seen the algorithm mainly relies on weak detections. However,
spurious weak detections can occur when there is a contrast change and the
reference image is incomplete. Typically, such a situation arises when there
is a sudden increase in contrast which has not occurred previously during the
historical time threshold T. It should be noted that this type of event will not
affect strong detections.

It would have been possible to approach this problem in the following ways:
1. using a long historical time threshold T and a low occurrence threshold To.
2. discarding frames in which there is a large increase in weak detections and
none in strong detections.

3. Considering only those detections that create trajectories (see [18]).

In practice, even in outdoor applications, we found that not using directions
associated with only a single level line was sufficient. The procedure is that
all directions are used to construct the reference image but only those with
at least two levels are considered for detection (the 6; for a & = 2). This
approach is both simpler and more flexible than the other possible solutions
we have listed. However, it adds another parameter “> 2”) and means that
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Fig. 4. Left: daytime image of a crossing, next: number of level line directions observed
for each pixel (the greater the number of directions the darker the image, white indicates no
level lines), next: black pixels show the presence of at least one direction in the reference
data, right: detected moving parts (weak detection with an area of more than 10 pixels).

Fig. 5. left: night-time image of the crossing shown figure 4, right: detected moving
parts. Note that the night presents particular problems (Canny edge detector often missed
the boundaries of cars due to very low contrast. The signal/noise ratio is also quite low).

detection ignores very low contrast objects (i.e. those whose contrast is less
than twice the quantization threshold). It can been seen from Figure 5 that
the technique is till susceptible to low contrast.

Does the algorithm detect shadows? In its present form the algorithm
makes no distinction between shadows and objects. It will therefore detect
shadows that are not present in the scene for longer than the occurrence thresh-
old. If their nature requires it these might be removed as described, e.g, in [15].

5. Trials

We are currently using this algorithm in a number of transport applications, for
example vehicle location at an intersection and detection of abnorma human
behaviour in a subway environment. The aim of the first of these is to count
moving and stationary vehicles at an intersection in order to improve traffic
signal control. To be of benefit, a system of this type must be effective 24
hours a day under al atmospheric and lighting conditions (see Figure 5). The
system runs on a 166MHz Pentium-based PC at a rate of 7 frames per second.
The historical time threshold has been set a 10 minutes and the occurrence
threshold at 3 minutes. The results obtained are quite satisfactory (at the 7
frame per second frame rate 98.5% of queues are detected and queue length
measurements are accurate to within 90%) and this system has now been de-
ployed. It should be noted that the measurement errors are largely due to some
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shadows the system has been unable to remove.

Fig. 6. Left: image recorded a few months after the images and reference data shown in
Figures 4 and 5. There have been some changes in vegetation and road markings and the
lighting conditions are different. The black areas in the middle image show those pixels in
this image which, after the best histogram modification we could achieve, have a grey-level
difference of more than 32 with those in the top left image in Figure 5. Right: unfiltered
detection achieved by comparing the image with the reference data for the image on the right
in Figure 4. This example shows that, for this application, measurements based on level lines
are sufficiently robust to contrast changes.

The second type of application aimed to detect abnormalities generated, for
instance, by a person or object that has remained stationary for too long in a
subway corridor. In this environment systems have to cope with the problems
resulting from obstructions, poor contrast, and the fact that people change
shape and move erratically. The detection of stationarities is performed by dis-
carding from a novelty map (obtained through the change detector with a large
historical time threshold) parts in motion (obtained through the change detec-
tor with a short historical time threshold). The system has been tested for over
240 hours covering 400 different stationarity situations under real conditions:
with a frame rate of 7 images per second 98% of abnormal stationarities are
detected, with no false detection. For our applications the number of directions
memorized in the reference image was set at 32. One level line for a direction
was sufficient for it to be used to construct the reference image, but at least
two were required for detection. The minimum area in the noise filtering stage
was 10 pixels. The historical time threshold and occurrence threshold were
chosen with reference to the application and the characteristics of the scene
(for example pedestrian crossing signal timings).

Fig. 7. Detection of stationarities in subway corridors.
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6. Summary and Conclusions

In this paper we have described a new measurement technique that can be
used to detect moving parts in an image. Its main origina feature is that lo-
cal geometry is separated from local contrast information. Discarding contrast
information, we have developed two types of motion detection, one of which
relates to the disappearance of local level lines and the other to a change in
their local geometry. The temporal reference employed in the technique can
be either long or short and objects that were not present a few minutes (for
example) before can be detected. The technique has been used in a number of
applications. Appraisals by transportation operators have provided encourag-
ing results.
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Abstract. A new general algorithm for computing distance transforms of digital images
is presented. The algorithm consists of two phases. Both phases consist of two scans, a
forward and a backward scan. The first phase scans the image column-wise, while the second
phase scans the image row-wise. Since the computation per row (column) is independent of
the computation of other rows (columns), the algorithm can be easily parallelized on shared
memory computers. The algorithm can be used for the computation of the exact Euclidean,
Manhattan (L1 norm), and chesshoard distance (L o norm) transforms.

Key words: Distance Transforms, Row-Column Factorization, Parallelization.

1. Introduction

Distance transforms play an important role in many morphological image proce-
ssing applications. They have been extensively studied and used in computa-
tional geometry, image processing, computer graphics and pattern recognition,
eg. [1, 2, 3, 7]. The two-dimensional distance transform can be described as
follows. Let B be a set of grid points taken from a rectangular grid of size
m x n. The problem is to assign to every grid point (x,Yy) the distance to the
nearest point in B. If we use the Euclidean metric for computing distances,
and represent B by a boolean array b[:, ‘], we thus want to compute the two
dimensional array dt[x, y] = /EDT(z,y)., where

EDT(z,y) =MIN(,j: 0 <i<mA0<j<nAbli,j]:(z~13)%+ (y—5)?).

Here we use the notation MIN(k : P(k) : f(k)) for the minima value of f(k)
when k ranges over all values that satisfy P(k).

Since the exact Euclidean distance transform is often regarded as too com-
putationally intensive, several algorithms have been proposed that use some
mask which is swept over the image in two scans, to compute approximations
like the Manhattan (city-block) distance, the chessboard distance, or chamfer
distances (see [1, 2, 3, 7]). The time complexity is linear in the number of
pixels of the image (i.e. O(m x n)), but it does not yield the exact Euclidean
distance, which is required for some applications. Another drawback of these
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agorithms is that they are hard to parallelize for paralel computers since pre-
viously computed results are propagated during the computation, making the
process highly sequential. A recursive algorithm of order mn log m for the ex-
act EDT is given in [5]. In [6] a recursive agorithm of order mn for the exact
EDT is given by reducing the problem to a matrix search algorithm.

In this paper, which is based upon [4], we present a new algorithm that
also computes distance transforms in linear time, is simpler and more efficient
than [6], and is easy to pardlelize. It can compute the Euclidean (EDT), the
Manhattan (MDT), and the chessboard distance (CDT) transform, defined by

EDT(z,y) = MIN(3,7:0<i<mA0<j<nAbli,j:(z—19)%+(y~7)?),
MDT(z,y) = MIN(5,7: 0 <i<mAO<j<nAbl,j:|e—i+|y—7]),
CDT(z,y) = MIN(,7: 0<i<mAO0<j<nAblj]:|z—i max [y —j|).

If we define the minimum of the empty set to be «, and use the rule z+ o =
for all z, we find with some calculation

EDT(z,y) = MIN(i:0<i<m: (z—i)4+G(,v9)%),
MDT(z,y) = MIN(i: 0 <i<m:lz—1i|+G@vy)),
CDT(x,y) = MIN(i: 0 <i<m:|z—i| max G(3,¥)),

where G(i,y) = MIN(j: 0 < j <n A b4, 7] : |y — 4])-

The agorithm can be summarized as follows. In a first phase each column
Cx (defined by points (x, y) with x fixed) is separately scanned. For each point
(%, y) on Cy, the distance G(x, y) of (x, y) to the nearest points of Cx n B is
determined. In a second phase each row Ry (defined by points (x, y) with y
fixed) is separately scanned, and for each point (x, y) on Ry the minimum of (z—
)2 +G(z’,y)for EDT, |z—2'|+G(z,y) for MDT, and|z—z'{ max G(z',y)
for CDT is determined, where (X', y) ranges over row R, .

2. The First Phase

The object of the first phase is to determine the function G. We first observe
that we can split G into two functions GT (top) and GB (bottom), such that
G(i,y) = GT{i,y) min GB(i,y), where

GT(i,y) = MIN(j:0<j<yAbli,5]:y—1J)
GB(i,y) = MIN(j:y < j <nAbi,j]:j—y)

We start with the computation of GT by introducing an array g to store its
values. It is easy to see that GT(i, y) = 0 if b[i, y] holds, and that, otherwise,
GT(i, y) = GT(i,y—1) + 1 (or o if y= 0). We can therefore compute
gl x, y] :=GT(x, y) using only g[x, y — 1] in a simple column scan from top to
bottom. Similarly, wefind GB(i, y) = GB(i, y+ 1) + 1. The second scan runs
from bottom to top, and computes G(x, y) directly, using GT from the previous
scan, and GB from the current one. After some simplification, this results in
the code fragment given in Fig. 1. Clearly, the time complexity is linear in the
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forall z € [0..m — 1] do
(x scan 1 %)

if b[z, 0] then
glz,0] := 0
else
gz, 0] := o0;
endif
fory:=1ton—1do
if [z, y] then
glz,y] =0
else
glz,y) == 14 glz,y — 1J;
endif

(* scan 2 x)
for y ;= n — 2 downto 0 do
if glz,y + 1] < g[z, | then
glz,y] = (1 +glz,y + 1))
endif
end forall

Fig. 1. Program fragments for the first phase.

number of pixels (i.e. O(m x n)). In actual implementations it is convenient
to replace o by m + n, since al distances in the images are less than m + n if
the set B is non-empty.

3. The Second Phase

In the second phase we want to compute EDT, MDT, or CDT row by row,
i.e. for al x with fixed y. Therefore, in this section we regard y as a constant
and omit it as a parameter in auxiliary functions, and introduce g(i) = G (i, y).
Instead of developing an algorithm for each metric separately, we aim at a more
general agorithm for

DT(x,y) =MIN(z : 0 < i < m: f(x,1)). (1)
The choice of the function f depends on the metric we wish to use, i.e.

(z —1)2 +g(:)? for EDT,
flz,0) =< |z —14| +g(2) for MDT,
|z — 4| max g(i) for CDT.

It is helpful to introduce a geometrica interpretation of the minimization
problem of Eg. (1). For any iwith O <i<m, denote by F; the function
x — f(z,i)on the rea interval [0, m— 1]. We cdll i the index of F ;. In the case
of EDT, the graph of F; is a parabola with vertex at (i, g(i)). In the case of
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(b) MDT

s 4 7 ] s s

(@ EDT (c) CDT

Fig. 22 DT as the lower envelope (solid line) of curves Fi, 0 < i < m (dotted lines). The
dashed vertical lines indicate the transitions between regions.

MDT the parabolas are replaced by V-shaped approximations, while in the case
of CDT we deal with ‘topped off’ V-shaped approximations (see Fig. 2). We
can interpret DT geometrically as the lower envelope of the collection {F, 00 <
i < m} evaluated at integer coordinates, cf. Fig. 2. The lower envelopes
consist of a number of consecutive curve segments, whose index we denote by
s[Q], s[1],..., s[q] counting from left to right. The projections of the segments
on the x-axis are called regions, and form a partition of the interval [0, m) by
consecutive segments. The computation of DT now consists of two scans. In a
forward (left-to-right) scan the set of regions is determined using an incremental
agorithm. In a backward (right-to-left) scan the values DT(x, y) are trivialy
computed for all x.

We start by replacing the upper bound min (1) by a variable u and define

FL(z,u) =MIN(t: 0 < i <w: f(z,1)).

The geometric interpretation is that we restrict the set B to the half plane to
the left of u. Clearly, DT(x, y) = FL(x, m).

For given upper bound u > 0, we define an index h to be a minimizer at
x if, in the expression for FL(x, u), the minimal value of f(x, i) occurs at h.
In general, x may have more than one minimizer. defined as the least index h
with 0 < h < usuch that f(x, h) < f(x,i) for dl iin the same range, i.e.

H(z,uw) =MIN(h: 0 <h<uAV(i:0<i<u:f(z,h)< f(z,i)):h). (2

We clearly have FL(x,u)=f(x,H(x, u)), hence DT(x,y) = f (x,H(x, m)).
Therefore, the problem reduces to the computation of H(x, m).

We consider the sets S(u) of the least minimizers that occur during the scan
from left to right, and the sets T(h, u) of points with the same least minimizer
h. We thus define

S(u) = {H(z,u)|0<z<m}, (©)]
T(h,u) = {z|0<z<m A Hlz,u)=h }f0<h <u.
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(a) above (b) below (c) intersection

Fig. 3. Location of F, (dashed curve) w.r.t. the lower envelope (solid line).

Clearly, S(u) is a nonempty subset of [0, u), and.S(u) = {h|T(h,u) # 0}. We
define the regions for u to be the sets T(h, u) that are nonempty. It is easy to
see that the regions for u form a partition of [0, m).

The aim is the case where u = m. Indeed, for x 0 T (h, m), we have
H (x, m) =hand hence DT(x, y) = f (X, h). The second phase of the algorithm
therefore consists of two scans. scan 3 computes the partition of [0, m) that
consists of the regions for mand scan 4 uses these regions to compute DT. For
given u, only the curves with indices from 0 to u— 1 are taken into account. The
minimizer of x corresponds to the index of the curve segment whose projection
on the horizontal axis contains x. Let the current lower envelope consist of
g+ 1 segments, i.e. S(u) = {s[0], 5[1], . . ., s[q]}, with gI] the index of the I-th
segment. Consider what happens when F  is added. Three situations may
occur:

(@) Fy is above the current lower envelope on [0, m — 1], cf. Fig. 3(a). Then
S (u+ 1) = S(u), since the set T( u, u+ 1) is empty.

) Fu isbelow the current lower envelope on [0, m — 1], cf. Fig. 3(b). Then
S(u+ 1) ={u}, i.e, al old regions have disappeared, and there is one new
region T(u, u+ 1) = [0, m).

(c) Fu intersects the current lower envelope on [0, m— 1], cf. Fig. 3(c). The
current regions will either shrink or disappear, and there is one new region
T(u,u+ ).

We start searching from right to left for the current region which is inter-
sected by F . This can be determined by comparing the values of F , and F | at
the begin point t[1] of each current region | =q,q— 1, . . ., until we find the first
| = I* such that F,(t[£*]) > Fipe-)(t[¢*])- Then Fu is not the least minimizer
a t[ | *], and there must be an intersection of F, with F |+ in region 1*. Let x*
be the horizontal coordinate of the intersection. If I* = g and x* = m we have
case (a); if I* < 0 we have case (b); otherwise case (c) pertains.
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forall y € [0.n — 1] do
g :=0; s[0] :=0; t[0] := 0;
for w:=1tom—1do (* scan 3 x)
while ¢ > 0 A f(tla], sla]) > £(tla),u) do
g:=q-1
if ¢ < 0 then
g:=0;s[0]=u
else
w = 1+ Sep(slg), w);
if w < m then
qg:=gq+1; s[ql:==u; tlqg] :=w
end if
end if
end for
for u :=m — 1 downto 0 do (* scan 4 *)
difu, y] == f(u, slq]);
ifu=1[g] theng:=qg—1
end for
end forall

Fig. 4. Program fragments for the second phase.

To find x*, we introduce a function Sep, where Sep(i , u) is the first integer
larger or equal than the horizontal coordinate of the intersection point of F
and F; with i<u, i.e

Fi(z) < Fu(z) & =z <Sep(i,u). (4)

We thus have x* = Sep(s[| *], u). Clearly, the function Sep is dependent on
which distance transform we want to compute. In the next section we will
derive the expressions for the function Sep, but in the remainder of this section
we simply assume that Sep is available.

We introduce an integer program variable u. It is convenient to represent
S(u) by an increasing sequence of elements. Since the regions form a partition
of [0, m) by consecutive segments, we can represent them by the sequence of
their least elements. According to the case analysis above, the regions are to
be adapted at their end. We can therefore implement these sequences in two
integer arrays, sand t, with an integer variable q as index of the end point.

We start with the forward scan, see scan 3 in Fig. 4. We have S(1) = {0},
and T(0, 1) = [0, m), and thus start with g =0, s[0] = 0, and t[0] = 0. In a
loop, variable uis incremented, and thus the representations of Sand T must
be updated by means of the case anadysis above. For details, we refer to our
report [4].

To investigate the complexity of the forward scan, we consider the expression
g+ 2(m —u), which isinitially 2m. In every execution of the body of the outer
loop (scan 3 in Fig. 4), and also in every execution of the body of its inner loop,
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(a) gu) 2 g(i) +u—=1 b) (&) > glu) +u—1 (c) otherwise

Fig. 5. Cases for finding Sep for MDT.

the value of the expression decreases. This implies that the time complexity
of the scan is linear in m. Note that, the average number of iterations of the
inner loop is a most two. The algorithm uses less than 2m comparisons of f
values, and function Sep is evaluated less than m times.

When the forward scan is finished, we have completely determined the parti-
tion of [0, m) in regions. Given these regions, we can trivially compute dt-values
in a simple backward scan (see scan 4 in Fig. 4).

4. Derivation of the Function Sep

The derivation in the previous section was independent of the actual metric
used. The functions dependent on the metric are f and Sep. In this section we
compute expressions for Sep for EDT, MDT, and CDT. The easiest is EDT.
We find for i <u

Fi(z) < Fu(z)
<{definition of F;, F,}
(z— )2 +g(9)? < (z —w)? +g(h)?
& {calculus; ¢ < u; x is an integer}
z < (1?2 — i 4 g(u)? — g(3)?) div (2(u —4)).

Here, we denote integer division with rounding off towards zero by div. Thus,
we find for EDT that

Sep(i,u) = (u® — i + g(w)? - ¢(i)*) div (2(u ~1)).

If we use the Manhattan metric, the analysis is dightly more complicated.
Since we have to deal with absolute values in the expressions, awkward case
analysis is necessary if we want to compute Sep analytically. Therefore we
prefer a geometric argument. We have to consider three cases (see Fig. 5).

If g(u)= g(i) + u—i, the graph of F, lies entirely above the graph of F;
for al x, thus we choose Sep(i, u) = . If g(i) > g(u) + u — i, the graph of F;
lies entirely above the graph of F, so Fi (x) < Fy(x) for no x a dl. Thus, we
must choose Sep(i, u) = —o to satisfy (4). In al other cases, Fy intersects F
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Fig. 6. Cases for finding Sep for CDT, where y= (u — i)/2. Cases(a)-(c): g(i) < g(u).
Cases (d)-(f): g(i) > g(w).

a z* = (g(w) — g(i) + h+1)/2. So, if we want to compute MDT we use

00 if g(uw) > g(3) +u —1,
Sep(é,u) = ¢ —oo if g(2) > g(u) +u—1,
(g(u) —g(i) + A+ 1) div 2 otherwise.

For the case of CDT we have |x — i|max g(i) £ |x — u|max g(u). We
consider two main cases, which each can be split up in three sub-cases. First
we consider the case g(i) < g(u). From Fig. 6(a)-(c), we see that the increasing
segment of F; (y=x-—1i) intersects the decreasing part of F, (y = u — x), or
the constant part (y = g(u)). Let ybe the vertical coordinate corresponding
with the middle of i and u (x = (i + u)/2), i.e y= (u — i)/2. From Fig. 6(a),
we see that if g(i) < v A g(u) < v, we haveFi(z) < Fu(x) if z < (3 +u)/2.
From Fig. 6(b)-(c), we see that the increasing part of F; intersects the constant
segment of F a i + g(u), and thus we have Fi(z) < Fyu(z) if = < i+ g(u).
Putting the three cases together, we can conclude

g9(i) < g(u) = (Fi(z) < Fu(z) & 2 < HTU max (i + g(u))).
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TABLE |
Timing results in ms. From left to right: EDT, MDT, and CDT.

size | p=1 p=2 p=3 p=4| p=1 p=2 p=3 p=4| p=1 p=2 p=3 p=4
256 12 7 5 4 11 6 4 3 12 6 4 3
512 69 35 25 19 63 34 24 17 67 35 25 18
1024 | 307 156 104 791 281 147 97 74| 298 152 101 77
2048 | 1542 780 517 389 | 1407 709 476 357 | 1501 753 506 381
4006 | 6251 3137 2098 1577 | 5753 2886 1929 1451|6073 3053 2041 1530

The other main case is g(i) > g(u). Again, in Fig. 6(d), we see that if g(i) < v,
the intersection at (i + u)/2 is the separator. If g(i) >y (see Fig. 6(e)-(f)), the
horizontal segment of F; intersects the decreasing part of F, a x = u — g (i).
Just like in the previous case, we can put these cases together. This results in
the following expression for Sep:

. v [ G+ g(w)) max ((1+4u) div 2) if g(2) < g(u),
Sep(i,u) = { (u— g(i)) min ((i +u) div2)  otherwise.

5. Parallelization, Timing Results, and Conclusions

Since the computation per row (column) is independent of the computation
of other rows (columns), the agorithm is well suited for parallelization on a
shared memory machine. In the first (second) phase, the columns (rows) are
distributed over the processors. The two phases must be separated by a barrier,
which assures that all processors have completed the first phase before any of
them starts with the second phase. The theoretical time complexity of the
paralel agorithm for p processors (where p < mmin n) isO (mn/p).

We ran experiments on an Intel Pentium 1l based shared memory parallel
computer with 4 cpu's, running at a 550MHz clock frequency. We performed
time measurements using several binary images, and found that the execution
time is amost independent of image content, and scales well w.r.t. the number
of processors. This is as expected, since the amount of work per row and
column is amost the same. In table | the timings for square images are given
for p=1to p = 4 processors. Note that the computation of MDT and CDT is
only dightly faster than the exact EDT. We aso implemented the sequentia
algorithm of [7] for CDT, and found that our algorithm is less than a factor of
2 dower, which can easily be overcome by paralel processing.

The algorithm can be easily extended to d-dimensional distance transforms
by separating the problem into d phases, each solving a one-dimensional prob-
lem, as carried out above for the case d = 2.
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Abstract. This work reviews the watershed in the graph framework of a shortest-path
forest problem using a lexicographic path cost formulation. This formulation reflects the
behavior of the ordered queue-based watershed algorithm. This algorithm is compared with
our proposed shortest-path forest (IFT—Image Foresting Transform), concluding that the
watershed is a specia case of that. Recently many different watershed approaches are being
used. We point out that in some cases the watershed agorithm does not keep the optimality
of the shortest-path forest solution unless the IFT algorithm is used. The main difference
between the algorithms is related to permanently labeling a pixel when inserting or removing
it from the queue. The watershed based on the pixel dissimilarity using IFT can segment
one-pixel width regions while keeping the optimality of the shortest-path forest solution.

Key words: Watershed, Hierarchical Queue, Shortest-Path Forest, Image Foresting Trans-
form, Graph-Based Image Processing, Color Image Segmentation.

1. Introduction

The watershed is one of the most powerful tools for image segmentation in
Mathematical Morphology. Although it was first reported in 1979 [1], its de-
velopment is still active in the community.

In this paper we propose a watershed formulation, based on a particular case
of the Image Foresting Transform framework [7], that reflects the behavior of
watershed algorithm using the ordered queue. We aso point out a very specia
formulation of arc weights in the watershed algorithm which we believe was the
cause of many difficulties concerning the analysis of the queue-based watershed
algorithm, mainly related to the way a pixel is labeled before or after queueing.
Finally we show that the resolution problem of the watershed on gradient,
described in [4] can be solved when using different weight assignments as
in [10] but applying the IFT agorithm.

The outline of this paper is as follows. Section 2 reviews the graph defini-
tions and presents the watershed as a shortest-path forest problem. Section 3
presents the IFT shortest-path forest algorithm using the ordered queue. Sec-
tion 4 compares this algorithm with the watershed algorithm using ordered
gqueue. Section 5 presents the extension of the watershed and the importance
of using the IFT agorithm. Section 6 discusses the watershed where there are
catchment basins without markers.



342 ROBERTO LOTUFO AND ALEXANDRE FALCAO

2. Definitions and Notation

A graph G = (V, A) is composed of two sets V and A. V is the set of nodes,
and A is the set of arcs (p,q),p,q €V associated to a pair of adjacent nodes.
The graph is weighted if aweight w(p, q) is associated to each arc, and it is
caled digraph if the arcs are directed, i.e.,, (p,q) and (g, p).

A path from vi to v, is a list of unique adjacent nodes (vi,vj,...,Vn),
(Vi,Vvi+1) € A. The path Cost C(v{,Vs,...,V,) in aweighted graph can be given
by a non-decreasing function of the arcs weights in the path. Two particular
formulations to define the path costs are of interest: Cs, the sum of each arc
weight in the path, and C,, the maximum of the arc weight in the path.

_ —1
Co(v1,v2,. .., Un) = Z?:fw(vuvwl) Cr(v,v2,. .-, 0n) = VD) w(vi,vi41)

The first formulation is traditional in the majority of the shortest-path
problems and is applied in image processing mainly for distance transform
computation [9] and edge tracking [8]. The second formulation of the path cost
will be mainly used in this paper as it is related to the flooding simulation of
the watershed transform.

The watershed from markers can be described by flooding a topographical
relief model of the gray-scale image. The markers are holes in the image relief
where colored water can enter as the relief is flooded. There is one color associ-
ated to each set of markers. As the rdief is uniformly flooded, different colored
water may meet but cannot be mixed. When all the relief is flooded, each
colored water region defines the catchment basin CB associated to the marker.
The classical watershed transform is when the markers are the regional minima
of the image.

To mimic this flooding process, we need a path cost formulation with two
components C = [Md] with a lexicographic order. The first and most priority
isM as the maximum arc weight in the path, representing the flooding process.
The second component d, of less priority, is the distance from the end of the
path to the nearest node with a lower path cost. This component reflects the
constant evolution of the flooding process when water reaches a plateau in the
relief.

Cm(Uthu s ?v”) = [M<n)’ d]

M(n) = Vi w(vi,vigr)
d = min{j: M@G) = M(i—3),5=0,1,2,...,i— 1}

I

The shortest cost between two nodes C},(p, g} is given by the smallest lexi-
cographic cost of al the paths between p and q.

C:n<p7q):/\Cm(vlav2a~-~7vn)apzvlvqZ'Un (1)

For the watershed, the arc weight is the height of the wall between nodes
and the shortest cost is the minima height where the water coming from two
points merge. When water comes from different CBS in a plateau, the second
component of the lexicographic cost allows the partition to be at the media
line of the plateau.
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The shortest-path forest problem is a problem in graph theory that finds,
for each node, the shortest path connecting it from its nearest root node. The
result is a digoint set of shortest-path trees. It is important to note that in the
forest partitioning, an arc cannot be used simultaneously to compute the path
cost related to two different catchment basins. This characteristic makes this
formulation very different from other watershed definitions based on the SKI1Z
(SKeleton of Influence Zone) formulation [11] [13].

Next we present the formulation of the watershed transform based on the
shortest-path forest framework that is very efficiently implemented by the or-
dered queue watershed algorithm.

2.1. WATERSHED FORMULATION IN THE SHORTEST-PATH FOREST FRAME-
WORK

The watershed from markers L, is computed on a gray-scale image g(p). The
image is modeled as a connected digraph with each pixel as a node and the arcs
defined by the neighborhood connectivity. All the incident arcs to p have the
same weight, given by the pixel value at p, w(i,p) = g(p). The lexicographic
path cost between two points is given by the equation 1 (C},). The path cost
from a region L to a point p, C}, (L, p), is given by the smalest path cost
between any pixel of the region L to the pixel p:

Ci(L,p) = Min{Cp(l,p),l € L}

The catchment basin CBy associated to the marker Ly is given by the nodes
with smaller or equal path cost from this marker than from any other marker.

CBy = {plCh(Lr,p) < Cr(Ljsp) 1, K #

Fig 1 shows with a numerical example the watershed as a forest shortest
path problem in an image with 5 rows and 6 columns. This image has many
plateaus to illustrate the role of the second component (d) in the lexicographic
path cost.

3. The IFT Algorithm to Compute the Shortest-path Forest

The first shortest-path forest algorithm was due to Moore [12] in 1957. This al-
gorithm is very similar to the well known Dijkstra’s shortest-path algorithm [6]
and is valid for any path cost using a non-decreasing function of the arc weights
(See this proof in [7]). Dia proposed in 1969 the first implementation of the
Moore's shortest-path forest using an ordered queue [5]. We present next the
IFT shortest-path forest algorithm which uses an ordered queue to find the
catchment basins of the watershed based on the definition just presented.

An ordered, hierarchical, or priority queue, with a FIFO restriction is a
data structure very popular in some morphologica image processing agorithms
such as gray-scale reconstruction and watershed. A node p, associated with a
priority value c, can be inserted in the ordered FIFO queue (Enqueue(p,c)).
When a node is de-queued (DeQueueMn), it is selected the oldest one from



344 ROBERTO LOTUFO AND ALEXANDRE FALCAO

33,11 =) 3[3,2] & 3(3,3] 3[3,3] 6m3[3,2] ¢m3[3,1]
] T

3[3,0] 4[4,0] 4[4,0] 4[4,0] 4[4,0] 3[3,0]
1} T T T

22,00 202,00 20201 2[2,0] 2[20] 2[2,0]
L} T 7 T

L0) L1 1[1,2] 11,21 L1} 1[L,0]

i) T T T
0 D 1[1,0] B 1[1,1] 1[1,1] ¢m 1[1,0] ¢m E
PixelValue [Lexicographic cost (M,d)]

Fig. 1. Watershed as the shortest-path forest. The markers (roots) are the two corner pixels
at the lowest row with value 0. The arrows indicate the shortest lexicographic paths. Their
gray intensity (light or dark) indicate the forest partitioning.

the lowest priority queue. The following algorithm aso needs an operation to
remove randomly any node p from the queue (DeQueue(p)). An important
property of this data structure when used in the IFT algorithm below, is to
keep the data implicitly sorted following the lexicographic path cost defined
by equation 1. The First-In-First-Out behavior associated with the nature of
the IFT algorithm to propagate the lower cost paths first (ordered queue) are
responsible for the intrinsic lexicographic sorting.

The watershed can be implemented using the IFT agorithm below if w(p,q)
is substituted by g(qg). Later, in section 5 we will generalize w(p,q) to other
watershed approaches. In the algorithm, C(p) is the cost path from p to its
nearest marker; L(p) is the input marker image and also the result of the
watershed partitioning with the catchment basins.

IFT ALGORITHM
1. Initialization
a) flag(p)=TEMP; p in al nodes
b) C(p)=e ; L(p)=0; p: non-marker nodes
c) C(p)=0; Enqueue(p,0); L(p)= label of marker; p: marker nodes
2. Propagation
while Queue is not empty
a) v = DeQueueMin
b) flag(v)=DONE
c) for each p neighbor of v and flag(p)==TEMP
if Max{C(v), w(v,p)} < C(p)

Cp) = Max{C(v), w(v,p)}; L(p)=L(v);
if p is in queue then Dequeue(p);
Enqueue(p,C(p));



ORDERED QUEUE AND THE OPTIMALITY OF THE WATERSHED 345

The agorithm works with two set of nodes. temporary (TEMP) and per-
manent (DONE). Initially al nodes are set as temporary (line 1a) and as the
agorithm evolves, the nodes are transformed in permanent (line 2b). An im-
portant property of this algorithm is that once a node is permanent, its path
cost is the final optimal shortest-path. As the FIFO priority queue keeps intrin-
sically sorted the second component d of the lexicographic cost, we can work
only with the first component M. For sske of simplicity, we will call simply
by path cost this first lexicographic cost component in the description of the
algorithm.

In the initidlization phase, all nodes are set as temporary, the markers have
their path cost assigned to O and all other nodes have costs assigned to infin-
ity. The marker nodes are labeled and non-marker nodes have label 0. The
propagation step works until there is a temporary node. The node with the
minimum temporary cost is selected by removing it from the ordered queue
and it is transformed in a permanent node. The temporary nodes p which
are neighbors of the new permanent node v are processed. If the path cost
computed through the permanent node v is smaller than the temporary cost
associated with node p, its cost and label are updated. If the node was aready
in the queue, it is removed. Finaly the node is enqueued with the priority of
the new path cost.

4. The IFT Algorithm and the Watershed Using Ordered Queue

The best performance sequential watershed algorithm is achieved using an or-
dered FIFO queue [2].

WATERSHED ALGORITHM
1. Initialization
L(p)=0 for non-marker nodes
for p:marker nodes, Enqueue(p,g(p))
2. Propagation
while Queue is not empty
v = DeQueueMin
for each non-labeled p neighbor of v
L(p)=L(v);
Enqueue(p,g(p))

There are two important differences between the watershed and the IFT.
1) In the watershed, a node is labeled when entering into the queue whereas
in the IFT the node is permanently labeled only when it leaves the queue and
while in the queue, its label can change; 2) The priority assigned to a node in
the queue is the cumulative path cost in the IFT agorithm as opposed to the
value of the pixel associated with the node, in the watershed agorithm.

For simplicity, in the following explanation, it is assumed that the image
has no plateaus and therefore the lexicographic cost path can be reduced to
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Max {C(v),W}
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Fig. 2. @) arc weights between two pixels in the watershed; b) Incident arc weights in the
watershed; ¢) Cumulative cost when all incident arc weights are the same

the first component M (n) which is the maximum arc weight in the path. Nev-
ertheless the conclusions are also valid for situations with plateaus using both
components of the lexicographic cost formulation.

First we explain why in the last algorithm a node can be labeled permanently
when entering into the queue without loosing its shortest-path optimality. Ac-
cording to our definition of the arc weight in the watershed formulation, the
graph is directed with w(p, q) = g(q) and w(q,p) = g(p). The weight from node
p to g is different from the weight of going from g to p (See Fig 2a). With this
formulation, all the arcs arriving a node p have the same weight g(p). Fig 2b
illustrates this.

It is not difficult to see that when a digraph has this property, the IFT
algorithm does not require pixel queue re-evaluation. We can see this with
the help of Fig 2c. Suppose that pixel v has just become permanent and
pixel p is its non-labeled neighbor. Pixel v is the only permanently labeled
in the neighborhood of p. This means that the cumulative path cost until
pixel v is less or equal to any other neighbor of p, so Cp(v) < Cur(s), v
and s neighbors of p. As al the arc weights going to p have the same W,
0 V{Crn(v), W} < V{C,.(s), W}, meaning that Cn(p) can be assigned a
permanent label as it will not change any further. As far as we know no one
has call the attention to this point, and in our view, this very particular aspect
of the watershed algorithm was a cause of great difficulty in its analysis and
extension to new classes of watershed algorithms. To guarantee the optimality
of the shortest-path forest solution, it is important to understand that making
the label permanent when inserting the pixel in the queue is only possible when
the incident arc weights are the same. When the graph is not directed, this is
not the case as it will be explained in the next section.

Next, we discuss why the watershed uses as priority the pixel vaue (arc
weight) instead of the cumulative path cost C.,(P). When we consider the wa-
tershed from regional minima, the arc weights in the catchment basins leaving
the minima are monotonically non decreasing. In this sense, the path cost com-
puted using the maximum arc is equivalent to the path cost computed from
the last arc in the path as this last arc will always be equal or larger than al
the previous arcs: Cp.(v1,vn) = Vi w(vi, vig1) = w(vn_1,vn) = glvn) as
w(vi, Vig1) < w(vi+1,vi+2) in the solution path.
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These considerations make us conclude that the IFT algorithm gives the
same result as the watershed using the ordered queue if the markers are the
regiona minima of g(p). The case where the markers are not in the regiona
minima is commented in section 6.

5. Extension of the Watershed Based on Dissimilarity

The watershed defined in subsection 2.1 can be generalized using other arc
weights. The first modification of the watershed algorithm using arc weights
in an undirected graph was reported by Meyer [10]. The arc weights from
p to q and from q to p are the same: w(p,q) = w(g,p), and in one of the
simplest form could be computed from the absolute difference of the pixel gray
levels: w(p,q) = |f(p)— f(g)|- The advantages of this approach are mainly two:
first, it achieves a higher resolution than the use of morphological gradient [14];
second, it can be used for color images.

In this case, the watershed algorithm, labeling a pixel when queueing, fails
and the IFT agorithm must be used to guarantee the optimality solution of the
shortest-path forest solution. There is another variation of the IFT algorithm
in updating the queued node that was reported in [3] which is the following.
When a shorter cumulative cost is found to a pixel aready in the queue, instead
of removing it and inserting it again with a lower priority value, which requires
a more complex queue data structure to be able to remove any pixel randomly,
one can insert the pixel again with the lower priority. In this situation, a pixel
can be in the queue more than once and when the pixel is de-queued a test
is included to certify if it is aready labeled or not. In this situation the first
instance of the same pixel removed from the queue will be the one with the
lowest priority and will label permanently the pixel. The second and further
instances of the pixel in the queue will have no effect when de-queueing as the
pixel is aready labeled.

To illustrate the advantage of higher resolution of the watershed based on
dissimilarity and the requirement of queue re-evaluation of the shortest-path
algorithm, we show an experiment where a numeric image of two blobs con-
nected by an one-pixel thick region is segmented using three approaches. 1)
watershed on gradient; 2) watershed on dissimilarity, labeling the pixel when
entering the queue; and 3) the watershed on dissimilarity using the IFT al-
gorithm. In all three cases we use one inside and one outside marker. Fig 3
shows this illustrative example. The correct segmentation is achieved only with
the IFT agorithm. The use of higher resolution segmentation is of particular
importance in digital video segmentation [14].

6. Case Where the Markers Are Not in the Regional Minima

TO overcome the oversegmentation problem when using the watershed from
its natural regional minima, a minima imposition operator can be used to
change the homotopy of the image in such a way that the markers are the only
regiond minima in the image [2]. Later it was realized that the watershed from
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Fig. 3. Result of several watershed approaches
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Fig. 4. Watershed boundary with a catchment basin with no markers and same peak height.
a) watershed with ordered queue; b) watershed with IFT

markers using the ordered queue did not require this change of the homotopy
to impose the minima on the markers. The behavior of this algorithm is best
illustrated using Fig 4. The figure shows a situation where a catchment basin
with no marker is surrounded by peaks of same height. As the agorithm evolves
during its propagation step, the markers fill their own catchment basins and
both arrive simultaneously at the peaks of the same height. The first that
enqueues a neighbor in this markless catchment basin with a smaller priority
level will flood the entire basin with its label. The final watershed boundary
will be at the crest line of one of the peaks (randomly chosen as shown in
Fig 4a). If the minima imposition operator were used, the image with new
homotopy will present a plateau closing the catchment basin without a maker
and the watershed boundary will be at the media line of this plateau. The use
of the cumulative path cost (Cm) in the watershed definition of subsection 2.1
is equivalent of making intrinsically this change of homotopy. Thus the IFT
algorithm implements this definition as illustrated in Fig 4b.
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7. Conclusions and Discussions

The watershed can be seen as the solution of the shortest-path forest problem
(IFT) in the graph theory framework. The lexicographic path cost is based on
two components, the first with the highest priority, is related to the normal
flooding (maximum arc weight in the path) and the second, is related to the
watershed behavior at the image plateaus. This formulation has the advantage
of being consistent with the most efficient watershed agorithm based on the
ordered queue. We have caled the attention that this agorithm is a particular
case of the IFT shortest-path forest algorithm. We have explained why the
FIFO characteristic of the ordered queue is important. We have aso explained
the main difference of both agorithms which is related to the way a pixel is
labeled before or after its inclusion in the ordered queue. Finally, we have
shown that the IFT algorithm guarantees the optimality of the shortest-path
forest solution when other watershed approaches are used. We have illustrated
this with a simple numeric example of segmenting a one-pixel width region.
The watershed as a shortest-path forest can be used both at pixelwise or
region level. This paper described the approach at pixelwise level, where each
pixel is a node in the graph and the arcs are pixel neighborhood relations. The
same model can be applied at the region level, where each node is a region of a
segmented image, the arcs are obtained from the region adjacency information,
and the arc weights are computed as a measurement related to these regions.
As long as the cost path is a non-decreasing function of the arc weights, the
shortest-path forest partition can be found with the IFT algorithm. We note
that a commonly path cost used in many region-growing algorithms, based
on the absolute difference between the mean gray-scale value of the last node
region and the mean gray-scale of al the previous nodes in the path is not a
non-decreasing function and does not lead to shortest-path forest partition.
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Abstract. We present a discrete framework for 3D wave propagation to support morpho-
logical computations with an emphasis on the recovery of the medial axis of a 3D solid, a
collection of surface patches, or a data set of unorganized points. The wave propagation is
implemented on a discrete lattice, where initial surfaces are considered as sources of prop-
agation. Three classes of discrete rays are designed to cover the propagation space with
a minimal number of computations. These pencils of rays represent a “compromise” view
between Huygens and Fermat principles. The 3D medial axis points are then found at the
collision of wavefronts. This method has linear time complexity in the number of nodes of the
lattice used to discretize the propagation medium, i.e., it is independent of the topological
complexity of the initial data. As such, it is highly efficient for the extraction of symmetries,

as well as for implementing 3D morphological filters based on erosions and dilations, from
large 3D data sets. The wave propagation scheme permits to implement the effect of various
metrics including the Euclidean one.®

Key words: 3D Morphology, Skeletons, Euclidean Distance Transform, Wave Propagation,
Eikonal, Unorganized Datasets, Cellular Automata.

1. Introduction

The significance of morphological operations and symmetry-based representa-
tions of shape is well-established in computer vision [6, 18], computer graphics
[2], and computational and solid geometry [11, 20]. Mathematical morphology
is concerned in particular with “probing” operations on discrete sets, through
the use of structural elements aimed at emphasizing or filtering some structure
of the probed sets. This probing is performed for a range of scales dictated
by the structura element’s size and shape. A particular result of such probing
operations, is the “medial axis’ or “skeleton” which consists of points equidis-
tant to the boundary, or aternatively is the locus of maximal bitangent circles
in 2D or spheres in 3D. Dilation/erosion, closing/opening, hat-filters and other
morphological probing operations are useful in many practica applications, in-
cluding image and video signal filtering, topography feature extraction (e.g.,
watershed segmentation) and Computer Aided Design (eg., offsets for numeri-
cal machine tooling). In this paper we concentrate on the probing of 3D discrete
sets, which has proved difficult in the past to perform efficiently and accurately.

1 we gratefully acknowledge the support of this research by the NSF grant IRI-9700497.
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We cast our 3D mathematical morphology work within the framework of
geometrical optics, where the equivalence between the continuous wave propa
gation representation of optics and the discrete set probing of morphology can
be exploited to design useful algorithms. This equivalence has started being
exploited in the processing of 2D sets and grey-level images in the recent years
(eg., see [3, 21, 15, 22]). It directly generalizes to 3D problems and can be
stated as follows [3]:

Theorem 1 (Wave propagation as a morphological (set) operation)
Let S be a 3D object or set of points in the metric space IR®. LetB(t) be a fam-
ily of convex structural elements in/R® which can be continuously scaled in size
as a function of a “time” t. Then, we can describe morphological operations
on S via the following evolution equation of its boundary 0S:

oS

= = B(e) - 1

5 = BO) N, (1)
where (3 is the amount of deformation (e.g. due to a dilation or erosion) by a
structural element B, 8 encodes the relative orientation of B with respect to the

boundary 0S of our object, and N is the normal to 0S.

At any time t, one can show that this is a “normal mapping”, weighted as a
function of the structural element shape and orientation with respect to a given
“wavefront” 9S(t). Equation 1 gives us a continuous interpretation of morpho-
logical operations via a differential deformation, B [21]. We also recognize
Equation 1 as a Hamilton-Jacobi equation describing a general wave propa-
gation. This equivalence with geometrical optics identifies B as the refractive
index of our space, into which the wavefront 0S evolves. Consider now the
gradient field to our object’s boundary, O0S, a any time t, and let us denote
the time evolving boundary 0S(t) as a wavefront @, which in IR® is a surface:
a(X,y, z) = 0 (in implicit form), for a given time t.

Corollary 1 (Morphological operations via the Eikonal equation)
Dilations and erosions can be modeled in 3D via the Eikonal equation of geo-
metrical optics [19]:

d¢-VS=4, 2

where the (refractive) index, [, provides the metric structure of the medium of
propagation.

B may vary in shape localy, defining a Riemannian geometry. In this paper we
will restrict ourselves to the special, but important case, where 3 is taken to be
homogeneous, that is, where our structural elements do not vary in “shape’,
but only in size.

2. Continuous Propagation

Consider a point qg in Euclidean space E* at time to, taken to be the source
of a disturbance transmitting itself “locally” [4, p. 250]. At time tg + Atthe
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disturbance is propagated through space in the form of a surface or wavefront,
o(X, ¥y, zt) = 0. At any later time, the new wavefront can be obtained as a
collection of disturbances from a previous wavefront; this is the famous geo-
metrical construction of Huygens [4, p. 250]:

Theorem 2 (Huygens principle) Let @q,(t) be the wavefront of the point
after time t. For every point q of this front, consider the wavefront after time
t1: @q4(t1). Then, the wavefront of the point g, after time t +t1: Qg (t + t1),
will be the envelope of the fronts @q(t1) such that q Cp ¢,(t).

The wavefront is thus the boundary of the set of all points g to which “informa-
tion” from a given source can travel in time less than or equal to t (Fig. 1. (b)).
Huygens' metaphor can be transfered to the discrete domain without difficulty,
e.g., by considering the Minkowski sum of small discrete spherical sets with
a discrete front at time t. This is precisely the realm of 3D Mathematica Mor-
phology, where the spherical sets are called structural element [18]. The prob-
lem is one of inefficiency: Minkowski sums with isotropic structural elements -
required to ensure Euclidean results - have too much (maximal) overlap.

(a)

Fig. 1. (a) Example of 3D medial axis computed through wave propagation from a spherical
cap and a rectangular plane filing a cubical portion of space. The symmetry sheet, in the
middle, is a paraboloid of revolution. (b) A wavefront as the envelope of fronts of wavelets
and an equivalent minima path along a ray (after [4, p. 249]).

Theorem 3 (Fermat’'s principle) Information travels along rays from a point
go to a point g in the shortest possible time [19].

Fermat's principle represent the alternative viewpoint to Huygens, where rays
are such that their gradient vector coincides with the normal to the wavefront,
i.e., the direction of aray is given as. p= 0 S Rays and wavefronts are related
precisely through the refractive index 3, via Equation (2). Integration of this
index from a source go to g result in a minima time path. One interesting
special case is where the index is taken to be both isotropic and homogeneous.
In this case, the direction of motion of the rays and the wavefront coincide [4];
thus,

dg VS =|ldg| |[VS|I=1.
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Note that, considering a (light) particle traveling at constant speed c, since the
index is fixed, we aso have that ||p|| = ||[VS|| = ¢, leading to a simplified form
of the Eikonal equation:

B R=1

This evolution equation is equivalent to taking for our family of structural
elements, B(t), spheres of continuously varying radius. In other words, the
underlying metric of the medium of propagation is Euclidean.

3. Discrete Propagation: Three Beam Classes

Each data point belonging to the initial surface (closed or not, unorganized
and possibly isolated) is considered a source, as in the “grassfire’” model of
Blum [6], where skeletons are computed as the “quench points’ of the fire or
wavefronts. The dual views of (continuous) wave propagation imply two dis-
tinct approaches to their simulation in the discrete domain. On the one hand,
Huygens' principle suggests propagating waves from the wavefront to al its
neighbors. This method is clearly redundant and inefficient, but it covers the
entire discrete space. On the other hand, Fermat’s principle suggests prop-
agating waves from the wavefront along discrete set of directions, e.g., along
grid axes and diagonals. This method is efficient, but does not cover the whole
space and leaves gaps behind. We adopt an intermediate view where, in ad-
dition to regular (1D) discrete rays, normally achieved by propagating aong
grid axes and diagonals, we aso fill the remaining gaps of propagation with
2D beams (planar sectors) along each grid plane of propagation, namely the
XY, YZ, and XZ planes. There are still some gaps left behind by this ap-
proach which are completely filled by 3D beams (volumetric sectors). Thus, we
have reached a compromise: the three sets of beams represent neither rays nor
spherical wavelets, but discrete conical beams which more efficiently represent
the continuous wave propagation it simulates.

In order to formally specify the above model, namely, the three classes
of beams and their propagation on a discrete lattice, we adopt the notion of
cellular automata. A cedl is defined as a voxel with a set of directions of
propagation, and rules for propagating these directions to neighbor cells are
established. Specificaly, four concepts are required [1]: (i) a discrete lattice or
array of cells: the celular space; (ii) a set of neighborhoods (or templates or
masks): cellular neighborhoods; (iii) a definition of possible cell states; (iv) a
set of rules for local transitions (or cell-state transitions function)?2

First, the discrete lattice is provided by the 3D grid and a set of voxels.
Second, we take for the CA neighborhood, the 3x3x3 set of closest voxels cen-
tered around each cell. Third, the cell state indicates which of the discrete
directions of propagation are to be followed. These directions of propagation
maintain the contiguity of the wave front and come in three classes. 1D, 2D
and 3D. Finadly, the cell-state transitions function is uniquely determined by

2 Together (ii) and (iii) correspond to the notion of structural element, and thus represent
the embodiment of the index (or deformation), B.
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= R o - & = < ey

Fig. 2. Examples of neighborhoods, from left to right, for the 1DPR: 1D axia, 2D diagonal,
and 3D diagonal, for the 2DPR, and, finally, for the 3DPR.

its initial state and the application of the loca transition. Note that by “local
transition” we mean that the state of a cell a time t+ 1 is only a function of
its own state and the states of its immediate “neighbors’ at time t.

Formally, let cijx denote the cell at location (i, ], k). Consider a cubic
(3x3x3) neighborhood consisting of the 26 nearest cells. Let cijk ® {01mn}
denote a propagation (or dilation) from cell cijx to a cell with relative position
(I, m, n) in the 3x3x3 neighborhood, i.e., |, m, n O {-1, 0, 1}. Furthermore, let

Cijkea{élnmnn,,an:la"wN} ’ (3)

denote simultaneous propagation from cell ¢k to al cdls(i+l,, j+my,, k+ny)
forn=1,...,N(N= 26), and where |, my, ny can take values -1, O, +1.

The propagation of a spherical wave in the discrete domain takes place aong
6 axial directions, where I, m, and n, take on values from Table I (LHS),
for a total of 26 discrete, but 1D, directions of propagation. We call this
first class of propagation rays the 1D pencil of rays (1DPR), Figure 2. While
this set of rays does cover the immediate neighborhood correctly (i.e., as a
correct approximation of continuous wavefront propagation), it does not cover
al neighbors of neighbors correctly (and therefore beyond), and gaps result.
This is well known from the “ordered propagation” ideas of Ragnemam in 2D
[17]. An efficient solution is to augment the 1DPR by pairs of neighboring
propagation directions taken along each plane of the grid. This leads to the
following transition rule:

Cijk @ {(5lvmnnn ) 60,7;7,77“,,) y 1= 17 ce 7N} ’ (4)

where the indices (6i,m,n, » Jo,p,r,) CaN ONly take values as described in Tar
ble Il, for a total of 24 2D Pencils of Rays (2DPR), Figure 2. Similarly, a
3D pencil of rays (3DPR) is needed to cover the solid angle limited by a (3D)
diagonal and grid axes, Figure 2. These are represented as

Cijk B {(6lnmnn,, > 50,7p,,qn ) 6r,,s,,tn)a n=1,... 7N} ) (5)

where the indices take on values described in Table | (RHS), for a total of 48
combination of 3D Pencils of Rays (3DPR).

The above discussion implicitly addresses the state transition function. Each
state inherits information regarding the source of wave propagation and can
thus determine its own set of pencils of rays to propagate. ldeally, beams
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| 1DPR ] 3DPR |
| Axia | Plane diagonal | 3D diagona | [ Axial | 2D diagonal | 3D diagonal |
100 | 110 | -1,1,0 111 1,00 11,0 111
1,00 | 11,0 | 1,10 111 1,00 11,0 111
010 | 101 | -101 111 1,00 110 11
0-10 | 1,01 | -10-1 111 1,00 1-1,0 111
001 | 01,1 | 011 111 1,0,0 101 111
00-1 | 011 ]0-1-1 111 1,0,0 101 111
11,1 1,00 1,0-1 111
111 10,0 101 111
TABLE |

(LHS) Indices of the 26 1DPR: I, mp, n,. (RHS) Indices of the 3DPR, by triplets
(ln, mn, ny), (09,Pn.49y), {ry, sy, ty), associated to the positive X direction. Taken
together with indices for the other 5 directions, gives a total of 48 possible 3DPR.

X-axis

| Y -axis

Z-axis

(1,0,0), (1,1,0) (0,1,0), (1,1,0) (0,0,1), (1,0,1)
(1,00, (1,-1,0) | (0.1,0), (-1,1,0) | (0,0,1), (-1,0,1)
(1,0,0), (1,0,1) (0,1,0), (0,1,1) (0,0,1), (0,1,1)
(1,0,0), (10-1) | (0,1,0), (0.1-1) | (001), (0-11)
(1,0,0), (L1,0) | (0-10), (1-10) | (0,0-1), (1,0,-1)
(-1,0,0), (-1-1,0) | (0-10), (-1-10) | (0,0,-1), (-1,0,-1)
(-1,0,0), (-1,0,1) | (0-1,1) (0,11 | (0.1-1), (0,1-1)
(-1,0,0), (-1,0-1) | (0-1,0), (0-1-1) | (0,0,-1), (0,-1,-1)
TABLE I

Indices of the 24 2DPR, for pairs (i, my,ny), (on, Py, ¢n)-

proceed in parallel. Simulation of this process on a sequentia machine, how-
ever, requires a notion of time, or distance from source with constant speed
propagation.

The state of a cell cjjk is described either as active (“on” a wavefront) or
as quiescent (“off”). A label is used to identify membership to a particular
“beam” type, namely a selection among 1DPR, 2DPR and 3DPRdirections.
Each cell maintains a distance map (from sources) in the form of (Lx, Ly, Lz)
which reflects the (signed) coordinates of the vector from the current cell to its
source(s). If we compute a single distance map, only one (minimal) distance
set is kept. 3 A symmetry label is also associated to each cell, depending on the
type and number of its sources.

The 3D loca state transition function is used to update an active cell’s state
at any given time-step. These transitions are implemented using a discrete
approximation to the Euclidean metric [12, 17]. Specifically, an active cell
transmits its signed Euclidean distance from a source vector, (Lx,Ly,L7),

3Multiple distance maps and interpenetrating waves in 2D have been proposed in [26, 23].
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and thus updates all the neighbors contained in its beam.4 The remaining
quiescent cells, which typically form a much larger number, do not require
computations.

Note that, at initialization, since we do not assume any apriori knowledge

of the object surface geometry other than sampled point positions, the full 26
neighbors are used for the propagation from the sources. To further optimize
the propagation and reduce the possibility of multiple updates of each cell,
ordered propagation through distance is then simulated [17], i.e, on the list
of active cells, we aways first process those with lowest (sguared) Euclidean
distance, L? = L2 + L2 + L2. Quiescent cells when first visited automatically
accept the distance value L2 written by an active neighboring cell. Later up-
dates may occur if a new distance is of lower vaue. When a quiescent cell’s
distance vector is updated, it is added to the active list, and inherits some
“label information” from the cell updating it, eg., initial source and pencil
of rays. Active cells use their associated pencil of rays to change the state of
neighboring cells.
Numerical complexity and exactness: Our implementation of wave propagation
performs the Euclidean Distance Transform (EDT) with respect to the initia
source points. We integrate ideas from ordered propagation in 2D [16, 24, 17] to
obtain a nearly optimal algorithm. The EDT’'s numerical complexity is linear in
the number of cells visited, that is O(M), where M is the number of cells used
to sample the medium of propagation, and, thus, is independent of the object’s
outline shape. The constant of linearity is a function of the neighborhoods
used and the way overlaps are handled. Since the larger beams, 2DPR and
3DPR, are al made by the concatenation of simpler 1DPR, one may eliminate
overlap between nearby beams by constant bookkeeping, a refinement recently
proposed by Eggers [8].

EDTs are nearly exact methods [7], with problems occurring only for those
Voronoi regions which have sharp ends going between lattice nodes (in 3D,
these are cones of sub-voxel width). Some authors proposed partial solutions
to this problem, e.g., using delayed remova of cells from the active list [25, 17].
A complete solution to this problem, however, requires the propagation of
shock waves [22], which we will implement in the future. Despite these minute
errors, the results are much more accurate than al other integer approximation
(methods based on so-caled Chamfer DTs as well as thinning methodologies),
together with similar or lower numerical complexity [12].

4. Symmetry Detection

Symmetry loci can be directly detected during our process of wave propagation,
when wavefronts meet. In the discrete domain, two cases are possible: either
different automata reach the same cell at the same time-step/distance-value,
or an automaton reaches a cell with a lower minimal distance value, which
signifies that a crossing of waves has occurred between voxels. In the latter
case, we update the symmetry status of all intervening cells. In genera this

4 A signed EDT is useful when computing angles between intersecting waves, § 4.
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involves either two or three voxels, associated to either a skeletal point on a
sheet or on an axia curve. Hence the computed symmetry sheets appear thick
when we locally register many cells in the vicinity of a sub-voxel symmetry site.
This is only an apparent “defect” which should be tackled by using an adapted
sub-voxel tracer. In the examples provided in this paper, we have used the now
classical marching-cube algorithm [13], which generates bounding iso-surface
on each sides of the skeletal sheets.

Pruning of the 3D skeleton graph: Skeletal symmetries are known for their
sensitivity to any perturbation of the original surface shape, e.g., each little
bump is responsible for a skeletal feature. In 3D, this usualy generates a new
surface sheet. This is a drawback of the skeletal representation, which, however,
can be tackled using a degree of significance first hinted at by Blum [6].

Fig. 3. Accurate 3D wave propagation from a dot and a square plane.

Two simple criteria may be combined to remove most effects due to noise
(small perturbations of the boundary) or sampling-effects of the grid (a rotated
plane becomes a rippled surface). First, one may consider a minimum distance
of propagation before retaining any wave crossing as indicating a skeletal sym-
metry. We cal it “minimal thickness’, and denote it by p. The second criterion
is the angle made by pairs of crossing waves, which we denote by a. The closer
to Ttis a the higher the “local” significance of the symmetry; for a = twaves
are exactly facing each other as their originating sources. As a — 0 the corre-
sponding surface elements become paralel. Small perturbations or ripples on
the surface may generate large wave crossing angles a initially, near the orig-
inating surface, but those then rapidly decrease as they travel away from the
boundary. This is simply due to the fact that noise or ripples have a relatively
small support on the surface shape. Recently, some authors have shown how
to select a-posteriori empirical values for p and q, for any given sampled object
[5, 9]. In our wave propagation scheme, p and a are easily computed using dis-
tance values, L and the signed distance vectors of crossing waves (Ly, Ly, L2z),
respectively.

The above criteria, however, prove insufficient if one must guarantee the
homotopy of the final result, such that no holes are created in the skeleton due
to a too high threshold on a. Therefore, one must combine these with a classica
homotopy preserving criteria, such as used by thinning algorithms, e.g., see [14].
Again, such a criterion is best applied in the course of propagation, in order to
remove any insignificant skeletal point (according to o) without creating holes.
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Indeed, if one waits to perform such deletions as a post-processing step, one
must start from low p values and in fact re-do much of the propagation aready
performed once.

Finally, a post-processing step may be performed in order to retrieve parts

of the skeletal sheets and rims which are either near or linked to the object
surface, but which were removed because of the minimum p criterion set to
remove the ripple effects. This is relevant in particular for objects where ridges
or valleys are required to be precisely located as surface shape features, e.g.,
for the nose line of a face [10].
Results: We illustrate the accuracy of the propagation and the topological
correctness of this scheme in a few examples. Figure la represents propagation
from a single point (left) and a rectangular plane (right) for a cubic domain of
size 400x400x400. The intermediate symmetry sheets, in the expected form of
a paraboloid of revolution, are also shown. In Figure 3 the intermediate steps
of that propagation are shown. The computation is performed in a sub-minute
time scale, on a typical UNIX workstation, which indicates the algorithm’s
efficiency. We expect parallel hardware to bring such computations to real-
time applications.

In Figure 4a,b we show the symmetries detected for a parabolic gutter, which
has the special feature of containing a generic axis of symmetry at the meeting
of three planar sheets. Note that we use a symmetry significance criterion
to remove insignificant symmetries as we propagate waves, hence insuring the
correct topology for the final skeleton. Finaly, in Figure 4c,d are shown the
computed medial axes for an open and closed cylinder.5

(¢

Fig. 4. (a) Parabolic gutter and ( b) its symmetry sheets. (c) Open cylinder and computed
medial axis. (d) Computed media axis for the associated, closed cylinder.

5. Conclusion

We have introduced an efficient algorithm for 3D morphological probing oper-
ations under the Euclidean metric, including dilations/erosions, and for sym-
metry detection of shapes. This is accomplished based on a discrete wave
propagation scheme, which has linear time complexity in the number of cells
used to sample space. Our method is nearly optimal as we restrict potential

5 Visit the web site: http://www.lems.brown.edu/~leymarie, under the Mathematical
Morphology page/link, for more results, in particular for filtering and surface interpolation
applications.
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multiple updates of cells state to only those beams involved in wave crossings.
A fully optima algorithm, permitting to retrieve an exact distance map and a
continuous sub-voxel trace of the shape offsets and skeleton, will require the use
of an analytic distance propagation, a topic we are exploring; for 2D results,
see [23, 21, 22].

We emphasize that the extracted skeletons are invariant under rigid trans-
formations, due to the use of Euclidean metric to update cell states, and can
operate on unconnected surface patches or even unorganized points.
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Abstract. This paper describes a two-stage method of document image compression wherein
a grayscale document image is first processed to improve its compressibility, then losslessly
compressed. The initial processing involves hierarchical, coarse-to-fine morphological oper-
ations designed to combat the noiselike variability of the low-order bits while attempting
to preserve or even improve intelligibility. The result of this stage is losslessly compressed
by an arithmetic coder that uses a mixture model to derive context-conditional graylevel
probabilities. The lossless stage is compared experimentally with several reference methods,
and is found to be competitive at all rates. The overall system is found to be comparable
with JPEG in terms of mean-square error performance, but appears to outperform JPEG in
terms of subjectively judged document image intelligibility.

Key words: Document Image Compression, Image Morphology, Arithmetic Coding, Mul-
tiresolution, Gaussian Mixtures.

| . Introduction

Grayscale scanning offers several advantages over binary scanning in terms
of image quality and downstream flexibility, even when the documents being
scanned are binary. The downside is the need to capture, process, and store
much more information. Compression of the scanned grayscale document im-
ages is therefore of great importance.

JPEG [11] is the most widely used method for compressing natural scenes,
but introduces undesirable artifacts around the sharp edges found in document
images, particularly within text and line-art regions. Recently, methods have
been proposed in which different segments of a document image are encoded
using different techniques, a good example is the DjVu format developed by
AT&T [6].

While it is advantageous to use segmentation information to adapt compres-
sion locally, it is not necessary to encode the segments separately. In particular,
the approach proposed here is to use the segmentation information to switch
among probability models used with arithmetic coding, thus alowing the en-
coding to be carried out on a single raster layer. The segmentation information
must be transmitted, but this requires few bits relative to those required for the
image itself. We propose a two-stage approach: (a) morphologically-based seg-
mentation and a one-time lossy transformation to improve compressibility and
maintain intelligibility, and (b) lossless compression by arithmetic coding. Sec-



362 KRIS POPAT AND DAN S. BLOOMBERG

tion 2 describes the lossy transformation and segmentation method, Section 3
describes the lossless compression, and Section 4 presents some experimental
results.

2. Lossy Stage

Unlike conventional lossy compression techniques, such as JPEG, which per-
forms lossy quantization and lossless encoding of the coefficients atomicaly,
here we separate the lossy step from the lossess one. Because the lossy step is
performed in the image domain, rather than the transform domain, the change
in visual appearance can be controlled by minimizing the maximum pixel value
change.

Most of the entropy in a scanned grayscale image is in the low-order bits
(LSBs) of each pixel. Because these bits are the least visible, they can be
set to zero by rounding. For example, for 8 bit pixels, three LSBs can be
set to zero by adding 4 (binary 100) and truncating to the 5 MSBs, taking
care to avoid overflow. To take account of neighboring correlations, we use a
multiscale approach were four pixels at one scale are compared and are either
left unchanged or averaged with post-rounding. The thresholds used for the
comparison at each scale can be chosen either to preserve low-contrast features
(such as bleed-through) or to remove them.

2.1. 'PYRAMID SCHEME'

For document images, it is important to represent the pixels in transition re-
gions between light and dark (i.e., at edges) with fidelity. This is accomplished
in the following manner. The lossy stage first rounds the n, LSBs of al pixels
a full resolution to 0. Then it generates a pyramid of ny reduced images of
dimension 2™¢ relative to the original. At each 2 x 2 - 1 x 1 stage, the image
is tiled into 2 x 2 pixels and the maximum deviation from the average within
the tile is compared to a level-dependent threshold. If the deviation is smaller
than the threshold, a single pixel is saved with the average value (again with n,
LSBs rounded to 0); otherwise, the pixel is marked with the value 1, which is
distinguished from all possible rounded average values. Beyond the first stage
in the pyramid, pixels with value 1 can be encountered and are ignored in the
averaging process.

After the reduced images are generated, the average values are propagated
back up the chain. Consider the propagation from level mtom—1. If alis
encountered at level m, then the four corresponding pixels at m— 1 are left
unchanged. Otherwise, any of the four pixels at m— 1 that are not 1 are set
to the pixel value from level m.

The parameters in the encoder are thus. ny, the number of LSBs rounded
at each stage to O; ng, the number of reduced images generated in the pyramid;
and {tmm = I,...,nq}, the thresholds set for each level. The thresholds and
nr cannot be chosen independently, and a workable choice is t, =2" for
m<2andt, =2"1for2<ms<ny.

It may be desirable to choose different encoder parameters for text and
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halftone regions. For example, with large values for n,, ny and the thresholds,
the text regions are highly compressible, with smoothed background and re-
moval of bleed-through. However, such parameters can cause visible contouring
and smearing in halftone regions. Instead, we may want a larger number of
gray levels, albeit at low resolution, and might choose smaller values of nr, ng
and thresholds. Unlike the text regions, where significant added compressibil-
ity is achieved by the multiresolution operations, in halftone regions most of
the compressibility is due to the initial rounding.

2.2. SEGMENTATION

To apply different parameters to halftone and text regions, and to alow the
lossless stage to switch to a probability model appropriate for the category and
choice of parameters, it is necessary for the encoder to generate a segmentation
mask. There are many methods for generating a mask covering the halftone
regions, and we describe a particularly efficient morphologically-based one that
uses a hinarized version of the image, generated from a globa threshold.

The threshold can be chosen from a (subsampled) histogram of image pix-
els. If there is a significant amount of text or line-art, the set of background
pixels will be evident in the histogram. A global threshold for projecting the
foreground pixels can then be chosen at the dark edge of this set, by placing
the pixels in overlapping histogram bins, finding the darkest bin containing a
sufficient fraction of all pixels, and choosing a value near the minimum (dark)
boundary of this bin.

If no threshold value is found, no segmentation is performed, and the image
is compressed as halftone. Otherwise, the image is pixelwise lowpass filtered
using the threshold, giving a foreground mask binary image. From this binary
image, a halftone seed is derived morphologically, and a halftone mask is gen-
erated by binary reconstruction into the foreground mask from the seed. The
seed is generated by a series of closings and openings, which is efficiently carried
out on an image pyramid using a sequence of threshold reductions [3], along
with closings and openings. Threshold reductions with threshold values of 1
and 4 are equivalent to dilations and erosions with a 2 x 2 structuring element,
respectively, followed by subsampling.

3. Lossless Compression

The processing described in the previous section modifies a document image to
make it more compressible, without changing it so much as to detract from its
aesthetic appeal or its intelligibility. The remaining problem is to represent the
resulting array of cleaned-up pixels in a compact manner. Although in some
circumstances we may wish to consider encoding methods which incur further
loss, for simplicity we assume that the lossy stage has resulted in precisely the
image we wish to represent, and accordingly restrict consideration to lossless
compression methods. Throughout this section, the unqualified terms “image’
and “pixel” will refer to the result of the lossy stage.
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3.1. WHY NOT GENERIC L OSSLESS COMPRESSION ?

One possibility would be to use a generic compression routine such as the gzip
program [5]. This approach has the appeal of simplicity and robustness, but
does not take full advantage of what is known in advance about the statis-
tics of the specific class of images being encoded. Still, this approach can
be effective, provided that the two-dimensiona pixel array is represented as a
one-dimensional sequence in an appropriate manner. For instance, by encoding
differences between pixels values in an appropriate way, the Portable Networks
Graphics (PNG) format can achieve good compression on graphics images; see
the discussion about “filters’ in [1].

Generic compressors like gzip function by discovering patterns in the data
presented to them, but they do not interpret the data in order to draw reason-
able generaizations about similar patterns. Specifically, they do not exploit the
following smoothness property of the joint probability law that can be thought
to govern pixel neighborhoods: small changes in pixel amplitudes in a pattern
correspond to small changes in the probability assigned to that pattern. This
property suggests that an advantage is to be had by sharing statistics among
patterns that are deemed similar.

3.2. CONDITIONING CONTEXTS AND M IXTURE M ODELS

We thus consider techniques wherein approximate pattern matches are used
when learning the statistical regularity upon which the compression will be
based. Arithmetic coding [14, 13] offers a convenient means of separating the
statistical modeling task from the actual compression task without giving up
performance, thereby allowing the use of specialized statistical models capable
of exploiting the above-mentioned smoothness property. For practical reasons,
the pixels are processed sequentially rather than in the aggregate, but within
that constraint, the use of arithmetic coding allows us to freely specify any
statistical model. The remaining constraint is that the statistical model may
be conditioned only on preceding pixels in the chosen ordering.

The conditioning structure of the statistical model we consider is patterned
after the grayscale extension [10] of the causal-neighborhood context model
originaly proposed in [7] for binary images. Specificaly, for every pixel location
in the sequence, a set of nearby but strictly preceding pixel locations is specified
as a conditioning context. We consider the simplest case, wherein the pixels are
encoded in raster order and the set of conditioning pixels is specified relative
to each encoded pixel by a constant causal context neighborhood template (see
Figure 1).! An estimate of the conditional density is obtained by appropriately
normalizing a Gaussian mixture estimate of the joint density of the conditioning
pixels and the pixel being encoded. Although normalizing a joint mixture
estimated in this way generally does not result in the best conditional density
estimate of comparable complexity [9], this approach is conceptually simple,

1 Hierarchical, coarse-to-fine sequencing is also possible, but multiple statistical models
must then be employed, and the conditioning neighborhoods required become more complex.
Furthermore, preliminary results have not demonstrated a clear performance advantage in
the present application that might offset this added complexity.



TWO-STAGE DOCUMENT IMAGE COMPRESSION 365

and in practice has often been found to perform adequately relative to more
involved estimation methods.

@ (b)
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Fig. 1. Two examples of causal context neighborhoods. Solid dots indicate conditioning
pixels, while the unfilled dots indicate the pixel currently being encoded or decoded.

After the lossy stage, the image pixels assume values in a relatively small
set. For example, for eight-bit original images and when n, = 3, there are only
thirty-one possible values for each pixel: 0, 8, 16, . . ., 248. Such coarse dis-
cretization is dlightly at odds with the smoothness property mentioned earlier,
but we wish to exploit smoothness for the generalization benefit it offers, and
resort to the following artifice. We imagine that the value of each pixel repre-
sents an independent quantization of a hypothetical continuous valued pixel.
The mixture is used to model the conditional density of this continuous valued
pixel, conditioned on specific previous quantized pixel values. The probabil-
ity mass function provided to the arithmetic coder is obtained by integrating
this conditional density over each quantization region. Since the hypothetical
continuous-valued pixel is unavailable for training the mixture, the quantized
values are used instead, after adding to each a small amount of uniformly dis-
tributed noise. Independent quantization of individual pixels is an imperfect
model of the lossy stage, as it does not account for the important spatia inter-
action that occurs there. Nevertheless, we have found that it is a useful model
for deriving a probability mass function for arithmetic coding, as is borne out
in the results presented in Section 4.

3.3. DETAILS OF THE L OSSLESS COMPRESSION M ETHOD

The pixels are always processed in raster order. Let x denote the current pixel
being encoded, and let (y;,..., yn) denote a vector of preceding conditioning
pixels specified by a fixed context neighborhood of the type shown in Figure 1.
A set of training images, each deemed similar in nature to the image segment
to be encoded and each processed by the lossy stage using the same parameter
values, is determined. For instance, if the cleaned-up image segment to be
encoded is a line drawing, the training images selected should also be line
drawings, processed using the same parameters in the lossy stage.

These training images are scanned by sliding the context neighborhood
along the image and, at every pixel location for which the entire neighbor-
hood lies within the image boundaries, assembling the values indicated by
the neighborhood into a vector. In this way, a collection of training vectors
{% Y1, - - -, ¥YN)i,i = 1,.,T} is obtained. The number of training vectors T
is targeted to be T = 100K, where K is the number of components to be used
in the mixture model. To control T, the training images are chosen to be of
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sufficient size and number to yield a number of vectors somewhat larger than
the desired T, then subsampling is used to reduce the number to the desired
value. Pseudorandom noise distributed uniformly on (—ad/2, ad/2) is added to
each coordinate of every vector thus obtained, where d is the minimum spacing
between any two graylevels in the training images, and a O [0, 1] is a para
meter that controls the amount of noise added. Note that this noise is added
only to the training vectors for the purpose of more robustly fitting the mixture
model; it is not used after the model has been fit, i.e., when images are actually
encoded and decoded.

The mixture model consists of K separable Gaussian components, where K
is a parameter that controls model complexity. Because the training and test
image sets are digjoint, choosing too large a K (i.e., one that causes overfitting)
would be signaled by poor performance on the test images. The estimation of
the mixing proportions and component density parameters is accomplished
via the expectation-maximization algorithm [12]. After training, the mixture
model  p(Xc, Y1, Yn) iS Used to provide a conditional density estimate

ﬁ("ECIylv--wyN) & ﬁ(‘rc,yla"'ayl\’)

for each (hypothetical) continuous-valued pixel in a new image, where the
Y1,... YNy &€ now regarded as fixed. To obtain a probability mass estimate
for each actual (i.e.,, quantized) pixel value X', (XcOy1,..Yn) IS integrated
over the quantization region that supports that value. Specifically, we use the
estimate

. z'48/2
Pr(z =2'|y1,...,yN) :/ xelyr, ..., yn)dz,
z'—8/2
for each quantized pixel value x', with the exceptions that the lower integration
limit for the smallest X' is set to —» and the upper integration limit for the
largest X' is set to o .

For a given conditioning vector (yi,.,Yn), let p(x) denote the probabil-
ity mass function Ifr(x = X'Y1,W)- For use in arithmetic coding, p(x)
is approximated by a fixed-precision probability mass function q(x) such that
g(x) > 00x. For a given p(x), we choose q(x) from the feasible set to mini-
mize the expected ideal bit rate — Xx p(x')log,q(x'), which is equivalent to
minimizing the relative entropy [4] between p(x) and q(X).

Near the borders of the image, some of the conditioning pixels will lie outside
the image. In order to still have a conditional density estimate in such cases,
the estimate p(Xc, Y 1,...Yn) IS integrated over the coordinates corresponding
to the unavailable conditioning pixels, and the result is used to obtain the
desired conditional density estimate as described above.

Although we explicitly account for the quantized nature of x when obtain-
ing 15r(x:x’Dyl,..., Vn), we do not make any adjustment for the fact that
the conditioning pixels are also quantized. However, little is at stake here: the
consequence of quantizing the conditioning pixels is to perturb the location of
the line parallel to the x-axis in (X, yq,.., Yn)-Space aong which the condi-
tiona density is evaluated. If the perturbation is small, then the smoothness
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property mentioned in Section 3.1 suggests that the resulting change in the
estimated pixel probabilities will likewise be small. In contrast, accounting for
the quantized nature of xis essential, as the probability mass assigned to the
various values that x assumes directly determines the number of bits required
for encoding those values.

Arithmetic coding is carried out as described in [8], using a code-register
precision of 16 bits and a 15-bit-wide carry-control register.2 This alows the
two registers to coexist as fields in a single 32-bit hardware register without
involving the sign bit. When an image is encoded, a header is first created indi-
cating: the dimensions of the image, the minimum spacing & between graylevels,
and the minimum and maximum graylevels that occur in the image. Since each
of these quantities is a relatively small integer, the number of bits needed for
this header is negligible compared with the number needed for the rest of the
image. After the last pixel has been encoded, the code- and carry-control reg-
isters are flushed into the code bit stream and the procedure terminates. The
bits thus produced are packed into bytes and written into a binary file; this
file constitutes the compressed representation of the image. It has been con-
firmed experimentally that decoding this compressed representation results in
an exact bit-for-bit replica of the image.

4. Results and Conclusions

Experiments were performed on a set of nine 512 x 512 subimages of 300 dpi,
8 bpp grayscale scans of selected pages of the March 1998 issue of the IEEE
Transactions on Image Processing. For clarity, we compress segments of various
types separately, rather than switching models on the basis of the segmentation
mask as would be done in a practical system. Accordingly, three subimages were
selected in each of the following categories: text, line drawings, and halftone.
For each image in each category, the compression technique described in this
paper was applied, using the other two images in the category to train the
mixture model.

To find suitable combinations of parameter values for the lossy stage, all
combinations of the parameter values n, 0O {2,..,6}, n4d O {3,45}, and
threshold sequences among those listed in Table | were applied to each of the
nine images. The compressibility of each result was estimated by the mini-
mum of the bit rates obtained over al techniques described in Appendix A.
The minimum rate and mean-square error (MSE) together define a point in
the rate-MSE plane for each of the sixty candidate parameter combinations for
each image. The convex hull of these points was determined using the ghull
program [2] for each origina image, and the parameter value combinations that
appeared most frequently among vertices of the facets facing the origin were
adopted for use in testing the lossless stage. The (nr, hy, {tm}) triples found
in this way were: (5,3,3), (4,3,1), (3,3,2), (3,3,3), and (2,3,3). Severa context

2 Other versions of arithmetic coding could be used as well, but care must be taken to
properly interface the statistical model described above to the coder, particularly if conversion
to an intermediate binary source representation is required for the coder to operate.
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TABLE |
Threshold sequences used in

lossy stage.
L abel tm,m =1,..., 6
1 {16,8,8,8,8,8}
2 {8,8,4,4,4,4}
3 {4,4,4,4,4,4}

neighborhoods and values of K and a were tried for the lossless stage; no one
set worked best across al images. Figure 2 shows the MSE performance of the
overall approach, averaged across images in each category using leave-one-out
crossvalidation, for K = 256, a = 0.5, and the context neighborhood shown in
Figure la Significantly larger values of K were found to result in overfitting.
Also presented in Figure 2 are results for the lossless methods described in Ap-
pendix A, and for JPEG applied to the origina images using several different
quality factors. It can be seen that the proposed lossless technique is compet-
itive at all rates, and outperforms most of the reference techniques at all but
the highest bit rates.

JPEG can be seen to generally outperform the proposed technique in Fig-
ure 2. However, MSE is not the whole story, as larger MSE can correspond
to improved intelligibility. An example of this is in Figure 3, where JPEG is
more faithful to the origina scan, but the proposed technique results in greater
intelligibility by removing bleed-through and preserving edges.

Based on these results, we tentatively conclude that the proposed tech-
nique can be an attractive alternative to established methods when compressing
grayscale document images, as it offers good MSE performance while maintain-
ing or even improving intelligibility. The lossless stage is interesting in its own
right, as it appears to outperform several standard approaches, particularly
when the image supplied to it has low complexity.

Appendix
A. Lossless Image Compression Techniques used for Reference

The following lossless compression techniques for grayscale images were used

for reference purposes in this study.

— BTPC: Binary Tree Predictive Coding (Version 4.1) by John A. Robin-
son. The program used (in lossless mode) was cbt pc, avalable from
http://www.engr.mun.ca/~john/btpc.html.

— CALIC: Context-based, Adaptive, Lossless Image Coder (arithmetic cod-
ing version) by Xiaolin Wu and Nasir Memon. The program used was
enCALI Ca.sun, avalable from ftp:/ftp.csd.uwo.ca/pub/from_wulv.arith.

— HIST: A rough measure of compressibility obtained by computing the en-
tropy of the normalized image histogram, treating each pixel indepen-
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Fig. 2. Average crossvalidated MSE-Rate performance for each of the three image categories.
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Fig. 3. Left: A 256 x 256 patch from one of the original text images. Middle: result of
JPEG compression a 0.97 bpp (MSE = 5.84). Right: result of proposed scheme at 0.78 bpp
(MSE = 7.58).

dently.

— FELICS: Fast, Efficient, Lossless Image Compression System by Paul G.
Howard and Jeffrey Scott Vitter. The program used was ngf el i cs, avalil-
able from http://www.cs.mu.oz.au/mg/mg-1.2.1.tar.gz.

— JPEG-LS: JPEG-LS Reference Encoder, Hewlett-Packard LOCO-I imple-
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mentation. The program used was | ocoe, available from
http://www.hpl.hp.com/loco/software.htm

PNG: The pnnt opng open-source program (version 2.37.1) by Alexander
Lehmann, Willem van Schaik, and Greg Roelofs. Available in
ftp://swrinde.nde.swri.edu/pub/png/applications. This program is based
on the Portable Networks Graphics (PNG) library [1].

SP: Arithmetic coding version of the lossless image compression program
by Amir Said and William A. Pearlman. The program used was sp_conpr ess
available from

http://www.cipr.rpi.edu/research/SPIHT/EW_Code/l ossless.tar.gz.
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Abstract. The problem of Optical Character Recognition (OCR) can be solved by set
operators implemented as programs for a Morphological Machine (MMach). In this paper, we
present two techniques to boost such programs: (1) Anchoring and (2) Edge Noise Filtering
by Stamp. The power of these techniques is demonstrated by some impressive experimental
results.
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1. Introduction

Optical Character Recognition (OCR) refers to a process in which printed
documents are transformed into ASCII files mainly for the purpose of editing.
A key problem in OCR is the recognition of characters by their shapes.

A model of a procedure for shape recognition is a set operator applied
on a Discrete Random Set [8]. Mathematica Morphology (MM) is a genera
framework to study set operators [1].

An important aspect of MM is the description of set operators by a formal
language that is complete and expressive [3]. Since the sixties special ma-
chines, the Morphologica Machines (MMachs), have been built to implement
this language.

The automatic programming of MMachs has been modeled as an statistical
optimization problem. In this approach, the goals of the user are represented as
a collection of input-output of image pairs and the target operator is estimated
from these data

In this paper, we present two normalization techniques to boost MMach
programs for character recognition: (1) Anchoring and (2) Edge Noise Filtering
by Stamp.

* The authors have received partial support from FAPESP and CNPq. The authors also
thanks the students Teofilo E. Campos, Rogerio Feris, Archias A. de A. Filho, Franklin C.
Flores and Fabiano C. Sousa, that have developed part of the software used in this paper.
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An image sampling is necessary to reduce the design complexity of the
MMach program that recognizes characters. However, a problem with regular
sampling is that the shape of the low resolution character realization gener-
ated depends on the position on the grid of the corresponding high resolution
realization. The anchoring solves that.

Usually, text images have edge noise, due to physical phenomena of the
scanning process, and to degradations of paper and ink of the text. This cre-
ates badly distributed random shapes, that affects seriously the quality of the
recognition program. We have developed a new technique for designing noise
edge filtering, that performs a nice normalization. The principle of this tech-
nigue is to design a MMach program that transforms the characters realization
in a kind of “average” character, the stamp.

We have gotten impressive experimental results applying anchoring and edge
noise filtering before recognition. These experiments were realized on images
with ten classes of characters, the ten digits, and a severe edge pepper noise.

Following this introduction, section 2 recalls how to design discrete set op-
erators. Section 3 recalls the principles of the OCR recognition program used.
Section 4 introduces the Anchoring technique. Section 5 describes the stamp
technique for designing Edge Noise Filters. Section 6 presents some experi-
mental results. Finally, in Section 7, we discuss the technique proposed and
present some future steps of this research.

2. Statistical Optimal Operator Design of W-Operators

The formulation of the set operator design process as a statistical optimization
problem depends on an algebraic representation of a family of operators [7] [2]
and on a datistical optimization procedure [5] on the space of parameters of
this representation.

Let E denote the integer plane Z%. Let P(E) be the powerset of E. A
binary image X is an element of P(E).

The set E is an Abelian group with respect to the vector addition, denoted
by +. The zero element of (E, +) isthe origin of E and is denoted by o.

Let X O P(E) and u O E. The trandation of X by uis the element of
P(E) defined by X, ={z € E:z—ue X}.

A mapping Y from P(E) to P(E) is called a set operator. A set operator
is caled trandlation invariant if and only if (iff), for any uO Eand X O P (E),
P(Xu) = (X

Let W be a finite subset of E. A set operator U is called locally defined in
the window W iff, for any ud Eand X € P(E), v € ¥(X) & u e p(X nW,).

A set operator that is both trandation invariant and locally defined in W
is called a W-operator. The family of W-operators is denoted W .

Let P(W) be the power set of W and hy be the Boolean function from
P(W) to {0,1} defined by, for anyx € P(W), hy(x) =1 <= 0 € 9(x)

A W-operator ) can be represented in terms of hy by, for any X O P(E),
PW(X) ={z € E: hy(X_,NW) =1} The Boolean function hy is cdled the
characteristic function of .
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Set operators will be optimally designed to estimate an image when it is
observed after going through a system. Images are modeled as discrete random
sets. If Y is a set operator, then for each random set S there is an output
random set Y(S). If Sis an observed redization of S, then W(S) is a redization
of Y(S). The task is to design an operator  such that, given the input process
S, Y(S) is satigtically close to a desired process |. We call S, | and ¢ (S) the
observation, ideal and estimator processes, respectively. The distance between
I and Y(S) is measured by a probabilistic error measure Er[l, Y (S)]. Assuming
that operators belong to an operator family F, an optimal operator relative
to F is an operator Yopt O F such that Er[l, Yy (S)] < Er[l, (S)], for any
wOF.

Assuming that | and @ (S) are jointly stationary, the optimal operator is
a W -operator. Therefore, it is enough to search in the equivalent space of
Boolean functions

In practice, the joint probability is unknown and should be estimated from
a collection of input-output image pairs. Thus, the error is computed from the
estimated probabilities.

3. Character Recognition by Shape

The purpose of character recognition is to assign a unique classification code to
each distinct character so each lower or uppercase letter, digit and punctuation
symbol will have a code that is unique.

Characters can be recognized by a family of set operators [5]. However, this
is not computationally efficient and there is not an easy way to generalize dl
classes together, when we deal with many classes of characters. In this case, a
more practical approach is multi-classification [6].

Multi-classifiers are operators W characterized by functions hy from P(W)
to {0,1,...,n}, that classify the shapes x O P(W) in n classes. 0 is reserved
for the background.

In this case, the training images present all the correctly classified characters
(i.e., labeled by a unique code). Therefore, when the multi-classifier is applied
to an image, it generates an image in which the pixels are coded with values
between 0 and n, according to the characters they form.

The multi-classifiers can be implemented by a slight modification of the ISl
algorithm [4], in the following way :

1.Group the examples by their codes in decreasing order of frequency. This
results in n groups X1, X5, ..., X,, where X; contains all examples with the
assigned code 1.

2. Initidize the process with the unitary interval set Bn= {[{0}, W]} (i.e,
the basis of the identity operator). Recall that the desired operator i,
with basis B;, is anti-extensive, i.e, Wi (X) O X.

3. Extract from B, al examples in X, . Let Bh_1 be the set of the resulting
intervals. Note that each example in Xi,...,Xp iS in some interva in
Bn-1. Then, extract from the intervals in Bn-1, al examples in X1, and
put the resulting intervals in B,_,. Again, note that the examples X, and
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Xn-1 are not in Bh_> while al the other examples are in it. Repeat this
process down to n= 2 (i.e, until the extraction of all examples in X, to
generate B; is done). Note that B; 0 B> O ... 0O By.
4. Given a configuration x, to apply the operator one can use the following
algorithm:
if x O[A,B] OB1then hy(x)=1
eseif x O [A, B] OB, then hy(x) = 2
eseif. ..
dseif x O[A, Bl OBk-1 thenhy(x) =k-1
else if x O [A, B] OBk then hy(x) = k
dsehy(x) =0
4. Normalization of Characters

The complexity of designing an operator from examples can be measured in
terms of the amount of training data that the learning agorithm needs to learn
an operator with a given precision. This measure is caled sample complexity.

The sample complexity depends on the cardinality of the window W and
on the stochastic process representing the family of images considered. For
a given stochastic process the complexity grows with the cardinality of W.
Symmetrically, for a given window W, the complexity grows with the variety
of shapes occurring in the family of images considered.

Therefore, to design easily good character classifiers, we need tools to de-
crease the images resolution and to normalize the characters shape. The reso-
lution reduction will reduce the size of the window and the shape normalization
will simplify the stochastic process (i.e.,, family of images) considered.

In the following, we introduce two simple operators for resolution reduction
and shape normalization: anchoring and edge noise filtering by stamp. Figure
1 presents the complete process proposed.

75 dpi Classified
300 dpi Linage T Stamped Linage —- Anchored Image - lmagp; » h;llsj; ele

Stamp Anchor Sampling Clasification

Fig. 1. Block diagram of the system.
4.1. ANCHORING

Resolution reduction is performed by a process of sampling the high resolu-
tion image. A regular sampling depends on two positive integers m and n,
respectively, the horizontal and vertical sampling steps. Only the pixels that
arein the columns O, m, 2m, ... and in the lines O, n, 2n, ... will occur in the low
resolution image.

A problem with regular sampling is that, if we have two objects with the
same shape in different positions in the high resolution image, they may turn
into different shapes after the sampling. Figure 2 shows an example that illus-
trates this fact. Note that all the characters 1 and all the characters 2 have
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the same shape (Figure 2a) in the high resolution image, but not in the low
resolution image (Figure 2b). Even after applying a morphological filter as
closing (Figure 2c) or close-open (Figure 2d) the problem still persists.

111111 Ll 1111

222222 2222272
a b

i1l 1111 ' O A O

2222217 222222
c d

T1 1111

222322

e

Fig. 2. Sampling of identical objects: (a) origina image; (b) Direct sampling ; (c) Sampling
after 7 x 7 box closing; (d) Sampling after 7 x 7 box closing-opening; (e) Sampling after
anchoring.

To avoid that, we have introduced the anchoring process. It consists of
constructing a new high resolution image by fixing a reference point for each
object and translating each object of the image in such way that their reference
point be on the nearest point of the low resolution grid. A reference point easy
to compute is the center of the minimum rectangle that contains the object.

If we apply an (m, n) anchoring, followed by the corresponding (m, n) sam-
pling, objects of the same shape in the high resolution image keep the same
shape in the low resolution image. For example, note that all characters 1
and 2 have the same shape in the high and low resolution images (respectively,
Figures 2a and 2¢).

Figure 3 shows the sampling, with m=n = 2, of the character “0” in differ-
ent positions of the greed. Figure 3a, 3b and 3c show, respectively, the origin
image, the sampling and the representation of the sampling in a low resolution
image. Figure 3d, 3e and 3f show, respectively, the anchoring, the sampling
of the anchored image, and the low resolution representation of this sampling.
Note that when the anchoring is applied, al characters remain identical after
sampling.



376 JUNIOR BARRERA ET AL.

[
I
1

[T ]e o] Is n o|
I'IHH HH M 2]
T I BB IEEERERE

a
ET T ] T ]

[ ]e u:u|l . ]-]?hl -H;I-}

1] 1] m|

EOS_HON OED DD s <l

. T
of fo} IDECINC] [el ToT Je] To]
[T FLPTTT 1T LTTT
T JT T
] il 1 1
LT i I I
C
T , IREERRENI 117

EOEONDEOEOEOEOEONEROEOED }. AEOEOEOED < el .] I.{ }. <

[ I ] | | | [ N

RO T | im0 [1e]

] [« *TL- o[ [ i (o] Ie]

o =l
D D 0 NEONC

- [] It =l

m %. H I N 0 15

H {1 [ 1

OEOROEOED DEUNCORDED T 1o DED NEOEOROED
ILITTTTTTT LTI TTT INEEREE LTI T

T TTT T3 LTITIT IANEEN

DEORONDI IDNDROE0 [el Tl 1ol 1o D Tef Jaf Tol dal Tot

Tol ] ON EONOROE 80|
I o}
Tl telTeT IDMDMCH [ s[5 IONDBO
T T FTETTT I{HH
C
I 0 A A 111
I TTTT0T 1) I I L]

Fig. 3. Anchor: (a) Original image; (b) Direct sampling; (c) Sampled image (d) Anchoring
of the original image; (e) Sampling after anchoring; (f) Sampled image with anchoring.

4.2 EDGE NOISE FILTERING BY STAMP

Usualy, text images have edge noise, due to random physical phenomena of
the scanning process and to degradations of the paper and ink of the text. This
noise creates shape differences between realizations of the character and these
differences affect badly the characters classifier.

A solution to reduce these differences is to design an edge noise filter. How-
ever, this is not an easy task, since usualy there are not idea images available
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for training the filter.

To overcome this difficulty, we have developed the notion of stamp. The
stamp for a given character is an “average’ character obtained by adding and
thresholding registered realizations of the character. The registration is done
by fixing a reference at the same coordinate. As in the anchoring, an easy to
compute reference is the center of the minimum rectangle that contains the
character. A more robust aternative is the character center of mass.

Using the notion of stamp, we can create an idea image to train the fil-
ter. This image is built by substituting each realization of a character by its
corresponding stamp, registered through the reference point adopted.

Figure 4 shows an example that illustrates the application of the stamp.
Observe the edge noise image (Figure 4a) with a cross denoting the centers of
the digits, the corresponding ideal image via the stamp (Figure 4b) and the new
image obtained by replacing the digits by the stamp (Figure 4c). The images
of Figure 4a and 4c will be used to train the stamp operator [4]. Figure 4b
shows the count of black pixels for each digit. The threshold is chosen as half
of the number of digits. that is, for each pixel is attributed its most frequent
vaue (0 or 1) in the observed character redlizations. In the next example, the
threshold calculated is three.

T T T T

T T

ol 0 Tresheld
]

I-II-IHEE
T
-

m [ X | [T] e
T T T

Fig. 4. Stamp: (8 Origina image; (b) Stamp generated from image; (c) Image replaced by
stamp.
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Figure 5 shows an example of edge noise filtering. Figure 5a is the noise
image. Figure 5b is the symmetrical difference of the image of Figure 5a with
the corresponding stamp image. Figure 5c¢ is the result of applying the filter
designed on the image of Figure 5a. Figure 5d is the symmetrical difference of
the ideal image (stamp image) and Figure 5c (recovered image). Note that the
edges in Figure 5d are less dense than the ones in Figure 5b, because of the
correction done by the filter.

11111 PRt e

NE

222222
a b

111111

v

2222122

¢ d

Fig. 5. Stamp trained operator: (a) original image; (b) Symmetrical difference between
original and ideal image (c) Stamp with the designed operator (d) Symmetrical difference
between the designed operator and the ideal image.

5. Experimental Results

We have realized some experiments to test the proposed normalization tech-
nique.

The source images are composed just of digits (0, 1, 2, . . ., 9). These images
were obtained by scanning text printed in a laser printer and adding pepper
noise on the external edges of the character redlizations. The density of the
noise imposed was 50%. Each image is composed of 400 characters, 40 of each
digit. The images were scanned in 300 dpi.

In al the experiments, the classifier was trained using a window 3 x 5
and only one training image. When a noise edge filtering was designed, it
was designed based on only one training image. The classification error was
evaluated in 5 different images, containing together 2000 character realizations.
All the resolution reduction applied were from 300dpi to 75dpi.

In the first experiment, we have created a stamp image, reduced its reso-
lution and designed a classifier from it. The empirical error measured for the
classifier applied on the stamp image itself was 0%.

In the second experiment, we have reduced the resolution of a noise image
by pure sampling and then the classifier was trained. The empirical error
measured by the application of the classifier designed in the test images was
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13.5%.

In the third experiment, we have applied the anchoring on a noise image
before reducing its resolution. The empirical error measured for the classifier
was 9.2%.

In the fourth experiment, we have designed an edge noise filter, applied the
anchoring, reduced the resolution and designed a classifier. The empirical error
measured for the classifier was 2.35%. The filter designed was a two stage filter
[9], where each stage depends on a 3 x 3 window.

We have aso tried to do the image recovery by some filters designed heuris-
tically. Applying the median, with a 3 x 3 window and the close-open alternate
sequentia filter by the 3 x 3 square, the empirical error for the classifier was,
respectively, 4.95% and 4.35%

Observe that our experimental results confirm our theoretical expectation.
The empirical errors measured were bounded by the non normalized and com-
pletely normalized cases. Each normalization applied decreased the measured
error in a significant amount. Improvements in edge noise filter design will lead
the error asymptotically to zero.

6. Conclusion

Classically OCR is considered as a problem of Pattern Recognition, where
the main task is to design sophisticated shape classifiers. We have presented
another view of this problem: to design simple shape classifiers for filtered
images. Under this view, the main task becomes the design of the image filter.

The potential of the new approach was demonstrated by some impressive
experimental results. In our experiments, the correctness of pure classification
was about 90%, while the one after filtering was about 97%.

The technique used for designing filters was inspired in an old technique
of information theory: to send a signal several times by a noise channel and
recover the most frequent value for each bit. The filter designed emulates such
recognition process, with the scanner acting as the noise channel.

Note that the goal of the filter is character normalization and this is ex-
actly modeled by an idempotent operator. Therefore, the filter designed could
have even better performance, if the estimation of the optimal operator were
constrained to the family of idempotent operators.

The next priority of our research in this subject is the development of a
technique for the design of (non-increasing) idempotent W:operators.
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Abstract. This paper presents a method to locate and extract Brazilian bank check logos
automatically by employing mathematical morphology. The objective is to minimize the
number of heuristic parameters to obtain the most precise possible segmentation in every
situation, thereby allowing this approach to be reused in other applications. Trials and
results are presented.

Key words: Mathematical Morphology, Bank Check Logos, Fillhole.

1. I ntroduction

One of the major challenges in image processing might be image segmentation
of significant data. The major problem lies in the absence of a priori knowledge
of the number and type of structures the image will present. Such structures
are identified on the basis of their geometry, shape, topology, texture, color
or brilliance, those characteristics allowing better identification being chosen.
Image segmentation is a process that typicaly partitions the spatiadl domain of
an image into mutually excluding subsets, called regions. Each region is uni-
form and homogeneous with regards to some properties such as hue or texture,
and the values of those properties vary in some aspects and meanings from the
properties of the each neighboring region.

What is a logo? It is typically a perceptualy salient marking, larger than
individual text components [2]. In the literature very little is said about auto-
matic logo segmentation. [7], [5] and [1] focused their efforts on the recognition
phase, but the location and segmentation of logos was performed manually.
[2] employed the page segmentation algorithm in the logo segmentation phase
of his work, but the complete and precise segmentation was not possible in
al situations because in some cases the logos generated showed parts missing,
corrupted regions, or the presence of components that were extraneous to them.

In segmentation many heuristics are generally used for the size and position
of the components to be extracted. Logos (typicaly confined to a compact
and isolated part of the document, and not linked to the text structure as
other graphs) are frequently separated from the other graphic components by
their position in the page and by using the previous knowledge of the type of
document (memorandum, letter, etc.).

The use of many heuristics ends up by limiting segmentation for a given type
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of application. The approach presented here employs mathematical morphol-
ogy to automatically locate and extract logos from the image of Brazilian bank
checks. Such approach is supported by erosion, dilation, binary granulometry,
reconstruction and Fillhole operators, described in [6].

The objective is to minimize the number of heuristic parameters in order
to obtain the most precise possible segmentation in every situation. We think
that, by reducing the number of heuristic parameters, the segmentation is more
general and, thereby this approach can be reused in other applications. This
paper is organized as follows: Section 2 will describe the database used in the
experiments. Section 3 will describe the assumptions underlying the approach
presented here. Section 4 will describe the initial phases of Brazilian bank
checks segmentation. Section 5 will describe the Brazilian bank check logo
location and segmentation method. Section 6 will present tridls and results.

2. Logo Acquisition

To carry out our approach on bank check logos, initialy a bank of 478 colored
Brazilian bank checks of 18 institutions was set up (150 empty and 328 printed
digitized at 300 DPIs with 256 indexed colors). The horizontal and vertical
sizes of each bank check image are 2053 x 898 pixels and its average size is
1.100 kb.

3. Logo Segmentation Assumption

Segmenting without previous knowledge and employing just a few heuristics is
a challenge. Since the purpose of a logo is to provide a symbolic link to an or-
ganization, it is typicaly a perceptualy salient marking, larger than individua
text components [2]. In the case of Brazilian bank checks, despite the com-
plexity of images, just the single assumption that the logo is bigger (in term of
area) than any other information present in the check will be employed.

4. Initial Segmentation Phases

Because of the blending of relevant logo aspects with the artistic background,
the extraction of information from colored images of Brazilian bank checks
is a complex task. Acknowledging that fact, the transformation of originaly
colored images into grayscale images was chosen.

The initial steps of automatic logo segmentation consist in:
— Removing the artistic background from the grayscale image of Brazilian

bank checks using the Fillhole process;

—  Thresholding the grayscale image;
— Removing the noise from the binary image;

The initia phases of the Brazilian bank check logo location and extraction
methodology are described and justified below.

4.1. REMOVAL OF THE ARTISTIC BACKGROUND BY THE FILLLHOLE

Since the logo blends with the artistic background, up-front removal of the
check background becomes necessary. The direct background removal was re-
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jetted because it affects the logo (some components have disappeared, some
parts became too thin, the process has modified the logo structure). The
inverse approach, maintaining the background, was chosen. The Fillhole mor-
phological operator was deemed the best tool because it is automatic and not
heuristic, and allows the maintenance of most background components. The
removal is performed by subtraction between the bank check grayscale image
and the image resulting from the Fillhole morphological operator. The Fillhole
operator consists in removing holes of an image using a minima technique im-
position [6]. The Fillhole operator is based on the reconstruction by erosion
(or dual reconstruction) where the mask image is the origina image and the
marker image is the maximum value of the origina image except along the
borders where the values of the origina image are kept. In the case of bank
checks, the connectivity used was the 8-neighborhood.

4.2. THRESHOLDING PHASE

The thresholding process consisting in transforming grayscale images into bi-
nary images not always provides good quality black-and-white images. The
assessment of that quality is always a challenge. [4] studied the efficacy of
severa thresholding agorithms on Brazilian bank check images. Many thresh-
old algorithms were tested and the Otsus agorithm was chosen because it is
automatic and it presents the best results in a short time.

4.3. Noise REMOVAL PHASE

The means chosen to remove noise originating from background residues and
the Otsu algorithm is the morphological erosion operator. The binary gran-
ulometric approach was employed to carry out that remova objectively, and
not heuristically. Granulometry was applied to check images by varying the
type of structuring elements ( horizontal, vertical, cross, square, rhombus).
It was concluded that the most adequate solution is 2 erosion iterations with
the cross structuring element, because it eliminates undesirable information
without affecting relevant information.

5. Logo Location and Extraction Methodology

Because of the wide variety of logos in bank checks, their location and extraction
by eliminating irrelevant information and reconstructing the logos is extremely
heuristic.

The automatic logo extraction is supported by a single assumption: the logo
is the component which has the largest area found in a bank check image. On
the basis of this assumption, one can think of sieving the image until its largest
component is found. By using the size criteria in the absence of heuristic para-
meters, binary granulometry was once more employed (Fig 1). Theoreticaly,
the last class generated in the granulometric process must contain the whole
logo. In practice, however, because of wear sustained during the thresholding
process and because of the fact that the size of the logo component is irregular,
this not always happens, and just a portion of the logo is obtained as a result
(Fig 2-(e)). To reduce the influence of these problems and consequently the
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impairment of the efficacy of the method, the assumption was adapted to sieve
the logo in the last classes and not only in the last one. The crucial aspect of
the sieving process is to only extract parts of the logo or the entire logo. The
logo classification is performed through the sieving in the last classes and not
only in the last one. It was verified (Table I1) that the two last classes are the
only ones where it is possible to only sieve a portion of the logo.

Granulometric Curve
B00CO

50402
50000

:

Number of black pixeis
8
8
s

1 2 3 4 5 3 7 8
Structuring eiement size

Fig. 1. Granulometric curve relative to the Fig 2-(d)

The logo location and extraction process is carried out as follows (Fig 2

and 3):

— Extracting the largest part of the logo contained in the last or in the two
last classes by granulometric sieving;

— Performing the heuristic horizontal dilation of the filtered binary image of
the check with 20 iterations so as to connect all the symbols and letters
that make up the logo;

— Extracting a dilated version of the logo by means of binary reconstruction,
having the part of the logo contained in the last or in the two last classes
as marker, and the dilated image as mask;

— Extracting the logo in its origina shape by intersecting the filtered binary
image and the image containing the dilated logo version.

6. Trials

Logos are complex patterns, consisting in several text and image patterns that
can be divided into four types [3]:
— word-in-mark, containing only the characters or words in the mark;
—  deviceemark, containing only graphic or figurative elements;
— composite-mark, consisting in characters or words and graphic elements;
— complex-mark, containing a complex image.

As a rule, works found in the literature process just one type of logo, such
as the one by [3]. In this study a database of Brazilian bank check images
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mixing word-in-mark and composite-mark logos was processed. The database
contains 478 grayscale bank checks filled in by hand, typewritten and blank,
from eighteen banking institutions.

The main problems found were (Table 1):

(i) Unsatisfactory thresholding of bank check images generating degradation
and reducing the size of some logos, that consequently are not isolately
sieved in the last class;

(i) Extraction of other check components besides the logo because of over-
lapping handwritten strokes. This overlap leads to the linkage of those
elements, blending them into a sole, larger component that is therefore

placed with a part of the logo in the last class by the granulometry process
sieving;

(iii) Some other components than the logo were placed in the last classes by
the granulometry process sieving.

Table | shows that, by sieving a portion of the logo into the two last classes,
in 8.99% of the cases the logo was not segmented and in 11.93% of the cases,
other elements besides the logo were segmented.

TABLE |
Problems found in the proposed ap-
proach of automatic Brazilian bank
check logo segmentation technique

Problem Number %
of checks of checks
@) 43 8.99
(i) 29 6.07
(i) 28 5.86
TABLE 11

Results obtained by the proposed approach of automatic Brazilian bank
check logo segmentation technique

Assumption Segmentation Number %
of checks of checks
The last class Partial 82 17.15
Full 285 59.62
The two last classes Partial 83 17.36
Full 295 61.72

Table 11 groups the numerical results obtained by the proposed approach
of automatic Brazilian bank check logo segmentation. From the assumption
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that the logo is placed in the last class, the logo was partialy segmented in
17.15% of the cases. And the rate of full logo segmentation was 59.62%. From
the assumption that the logo is placed in the two last classes, in 17.36% of the
cases the logo was partially segmented. And the rate of full logo segmentation
was 61.72%. These results mean that it is possible in 79.08% of the cases to
only segment Brazilian bank check logos with few a priori knowledge.

7. Conclusion

This paper presents a method to locate and extract Brazilian bank check logos
automatically by employing mathematical morphology in order to minimize
heuristic parameters. The feasibility of the granulometric approach to reduce
the number of heuristic parameters in automatic logo location and extraction
was evidenced in a database of 478 Brazilian bank checks. The results were
shown that it is possible in 79.08% of the cases to only segment Brazilian bank
check logos with no a priori knowledge. This approach was also shown to
allow the extraction of different types of logos, in our case word-in-mark and
composite-mark logos.

These results have shown that by improving some basic steps as the thresh-
olding process for instance, it is possible to increase the logo segmentation rates.
To reduce the influence of overlapping handwritten strokes and consequently
the impairment of the efficacy of the method, future work may involve the
extraction of handwritten or pre-printed strokes (by applying the Hough trans-
form, for instance) and/or a process of handwritten or pre-printed patterns
recognition.
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Fig. 2. (8 origina Gray scale image (b) Elimination of background bank check image (c)
Binary image (d) Noise elimination
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Abstract. An approach to correct the baseline handwritten word skew in the image of
Brazilian bank check dates is presented in this article. The main goa of such approach is to
reduce the use of empirical parameters. The weighted least squares approach is used on the
morphological pseudo-convex hull.
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1. Introduction

There are several research works in the area of handwritten word recognition in
search of still undiscovered solutions. Such research is not a trivial pursuit, in
view of severa factors, among which we may mention the complexity inherent
to human handwriting. Variations introduced by the human writer, for instance
the dlant of characters, the different sizes of height and width of characters, can
decrease the recognizer performances. The paper deals here with the problem
of the skew of the handwriting line, named the handwriting baseline skew. To
reduce the variability, many handwritten word recognition systems correct the
handwriting baseline skew, so that the extraction of that line may be performed
correctly, minimizing error in the recognition phase, as proposed in El Yacoubi’s
work in [12].

The correction of the handwriting baseline skew consists in detecting the
lower pixels of each word character (named minima of a word baseline) and
finding the best straight joining them. Because of the complexity of handwrit-
ing, several works demand the use of empirical parameters, rendering analysis
and implementation more complex. It will be shown that it is possible to re-
duce the use of heuristics in the correction of the handwriting baseline skew by
employing a pseudo-convex hull from the mathematical morphology.

The state of the art in terms of handwritten word skew correction will be
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presented in section 2. The morphological pseudo-convex hull technique to
reduce the use of heuristics will be presented in section 3. The approach de-
veloped to detect and eliminate undesirable minima in the handwriting baseline
on the basis of the weighted least squares approach will be presented in section
4. The approach to correct the handwriting baseline skew in bank check images
on the basis of pseudo-convex hulls [10] will be presented in section 5. Some
results achieved will be presented in section 6.

2. State of the Art

Only a few authors in the literature described in detail the approach used to
correct the handwriting baseline skew. On the basis of the papers studied,
it was perceived that the use of heuristics is frequent. Many works [1] [2]
[6] [8] [12] are found in the literature that deal with detection and correction
of the handwriting baseline skew employing several empirica parameters (for
instance 8 empirical parameters in [12]). This redlity might adversely impact
the development of automatic processes regardless of the type of application
(dates, addresses, amounts in writing, etc..). The main goa of this work is to
reduce the use of parameters when filtering undesirable minima to correct the
handwriting baseline skew.

3. Morphological Pseudo-Convex Hull

By definition, the convex hull of a set X corresponds to the smallest convex
set containing X. There are several ways to obtain the convex hull [4] [5]. [11]
has shown that an equivalent definition of the convex hull consists in carrying
out the intersection of all half-planes containing X.

The effect of building the convex hull of X is wrapping X. In the case
of handwritten word processing, since its application considerably reduces the
quantity of minima in a word baseline, the convex hull cannot be used, just its
concept will be applied. Therefore, we define what we call the “pseudo-convex
hull” as follows: the pseudo-convex hull represents a not convex set which
wraps the word without loosing the main baseline minima. In a practical
way, the pseudo-convex hull of X may be obtained simply through the basic
binary dilation and reconstruction. Only horizontal and vertical directions are
considered. This is corresponding to the intersection of 4 half-planes [11]. The
pseudo-convex hull operation that is being used may be given by:

pseudo-convex-hull( X) =

B
P(5231 (X))(X)

where B1 and B represent, respectively, the structuring elements B, = {+s}
and By.r = {-} or viceversa And where pZ(Z) is the reconstruction of the
binary set Sfrom Z with the structuring element B.

By using the complete reconstruction on dilated set, the pseudo-convex hull

becomes convex. As may be observed in Fig. 1, since the number of iterations
is reduced, the number of minima increases accordingly. To keep the main
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Fig. 1. (a) Original image, (b) Convex hull from complete reconstruction, (c) and (d)
Pseudo-convex hulls.
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minima of handwritten words, an incomplete reconstruction is carried out by
using the conditional dilation.

In the approach developed, the pseudo-convex hull employed is being ex-
tracted in two steps. The process utilized to obtain the first pseudo-convex
hull in Fig. 2(b) consists in the horizontal dilation of the word in the orig-
inal image (set X), followed by the vertical conditiona dilation. The second
pseudo-convex hull is obtained by inverting only the structuring elements in the
operations described above, as shown in Fig. 2(c). In Fig. 2, 10 iterations of
dilation and conditional dilation were applied. Both pseudo-convex hull images
extracted provided similar but not identical aspects as may be observed in Fig.
2(b) and (c). Therefore, the intersection of those two images (Fig. 2(d)) pro-
vides a pseudo-convex hull image with more details than the horizontal and/or

0t chul +
0% opul *+
0F ohuls +
0r ohul ¥

Fig. 2. (8 Original image, (b) and (c) First and second convex hull, (d) Final Pseudo-convex
hull.

The result of logic operation Xor between the original image and the pseudo-
convex hull, presented in Fig. 3, shows that the application of the pseudo-
convex hull wraps the words, without altering the vertical positioning of the
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Fig. 3. Logic operation Xor between the handwritten words and their pseudo-convex hulls.

most relevant word minima and maxima originating from the lower and upper
baselines. This is very important because if the minima alter their vertical
positions, the correction of the word undulation may be adversely affected.

4. Detection and Elimination of Minima

The main objective of employing the pseudo-convex hull is to decrease the use of
empirical thresholds in developing this approach. This technique is being used
in a way that reduces the minima in a word so that, when filtering undesirable
minima, few empirical thresholds will have to be defined. Of course, the number
of minima depends on the format of pseudo-convex hull which depends on
applied dilation and conditional dilation number. The influence of dilation
iteration numbers is studied in section 6.

Because of the likely fragmentation of the words, from now on the pseudo-
convex hull of parts of a word or of a whole word will be called connected
component. Fig. 4(a) shows an example where the connected components
minima were detected in the inferior contour of the pseudo-convex hull. In the
case of Fig. 4(b), the minima were detected in the original inferior contour
of words. The utilization of the pseudo-convex hull leads to the detection and
storage of just the most relevant minima, so that the insignificant (desirable or
undesirable) minima are eliminated, thereby avoiding the use of heuristics to
eliminate the undesirable ones. Furthermore, the regular aspect of the pseudo-
convex hull helps detecting minima.

' )‘_\ ) P . //‘ %ﬂf
{ ~ . 1
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Q
T @ n,""
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13
(b}
Fig. 4. (a) Detection of minima in connected components employing the inferior

pseudo-convex hull contour, (b) Example of detection of minima in words, using their original
contour.
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Minima are detected in fall/rise transitions from the inferior contour of
connected components. Once the minimum points are determined in each con-
nected component using the pseudo-convex hull, such minima must then be
adjusted to a straight line. The usual would be to apply the least squares
method using the straight line mathematical model y = ax + b, where a and b
are parameters, ais the straight line skew and b the intercept, x and y are the
coordinates of the word minimum points.

The criterion of minimizing the sum of the squares of the remainder, v,
must be applied when there are more than two minimum points in the hand-
writing, i.e.,, n> 2. In mathematical notation, the least squares method is
defined by:

minimize(z V) = minimize(a,bem)(Z[axk +b—w)?)
k=1 k=1

When different weights are applied to the remainder, the weighted least
squares method is defined by minimize 3"} _, vipx , where pi is the weight of
the corresponding remainder vy. The parameter estimates are obtained, both
for the weighted case and for the case in which the weights are considered units,
by deriving the above expressions in relation to the parameters and equaling
to zero. That procedure will not be demonstrated here because it is considered
too trivial.

The undesirable minima detection methodology proposed in this paper is
known in Geodesy as the “Danish Method” [9] or “Changing Weights’ [7]. It
consists in decreasing, at each iteration, the weight of the points the remainder
of which surpasses a given pre-fixed iteration value. One of the weighting
function methods [7] is:

Tkl n 2
Pr+1= Pre (Tg_)}f lvk| 220 with ¢ = —Zk:lpkvk
pe if jug| < 20 n—2

where g is the standard deviation.

As a rule, the first iteration is performed without weights. In our event,
in which handwritten words are processed, a different approach was adopted
to increase the efficiency of the method. Such approach consists initially in
defining and employing weights since the first iteration. The criterion adopted
to define the weights py,withk=1,...,n,is

1
Pk = % where di = 0 /min(dc),withk=1,..,n
and O = (yk — Yk—1)" + (Uk — Yk41)?
Then the weight of the remainders surpassing the standard deviation value

is decreased for the first two iterations. For the ensuing iterations, the criterion
adopted is to decrease the weight of the remainders surpassing 20.
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5. Correction of the Handwriting Baseline Skew

Once the straight line is adjusted by the weighted least squares methods, the
global word skew is evaluated and corrected, by rotating the origina image
utilizing the one-pass implementation [3]. That aims to decrease the losses
originating mainly from the pixel fractional addresses, avoiding gaps in the
target image.

If necessary, the minima detected in the month of the date are filtered to
eliminate the undesirable minima, again utilizing the weighted least squares
approach. In the case of figures (day/year), the lowest minimum is preserved.

The use of Hook's transformation [12] to correct the skew of each connected
set was eliminated, as opposed to the previous studies [10]. The correction
of the undulation of each connected component is now carried out, if needed,
by positioning all the minima belonging to the connected component in the
same vertical position of its first minimum, employing El Yacoubi’s agorithm
[12]. Once the undulation is corrected, the connected components are verticaly
repositioned so as to be aligned with the first connected component. To ensure
a good correction of the undulation using this algorithm, the elimination of the
undesirable minima is fundamental.

6. Results Achieved

The tests were applied to 1600 images of Brazilian bankcheck dates. The
influence of dilation and conditional dilation numbers into the baseline skew
correction was studied and may be observed in Fig 5. The item “Few minima’
represents the problem of obtaining less minima than the expected number.
It is increasing when the dilation and conditional dilation numbers are also
increasing. The item “Unwanted minima’ represents the number of wrong
minima. This factor is constant. The item “Threshold” represents the influ-
ence of the bad binarization of bank check dates. Its influence increases when
the dilation and conditional dilation numbers are also increasing. The item
“Segmentation” represents the errors occurred in the database. This factor is
constant. The item “Number error” represents the errors occurred with the
numbers. It is also constant. The item “Other errors’ represents the unknown
factors which have introduced some errors.

By combining all these factors with the percents of correctly deskewed im-
ages, the best results are obtained with 6 iterations of dilation and conditional
dilation, with 78% of Brazilian bank check dates correctly processed. In Fig.
6, interesting results in a complex image may be observed.

Unsolved problems remain when it occurs of fragmentation of word (when
a connected word is broken in two or more connected sets). The elimination
of only the realy undesirable minima is fundamental, so as not to impair the
handwriting baseline skew correction.



PSEUDO-CONVEX HULL TO CORRECT HANDWRITING BASELINE SKEw 395

Percent of corraectly deskewed images

79 4
78

77
76
75

T
73
72
71

7a
a9

Yalues

TN T U N S N

b4
=]
=
=
22
=3

Percent of errors in deskew process

Oiteratons H

§ teralions
6 terations
Tierafions

W 5 iterations
6 iterations
7 iterations
@ 8 iterations
a9 iterations

—

Other errors

Few minima
Unwanted
minima
Threshold

Number error &

Segmentation §

Fig. 5. Numerical results of correctly and incorrectly deskewed dates.

7. Conclusion

The main goal of this approach was to demonstrate that it is possible to reduce
the utilization of empirical thresholds in handwriting baseline skew correction.
In this article it was shown that, by associating binary mathematical morphol-
ogy techniques for the determination of the pseudo-convex hull to the weighted
least squares method, the reduction of the empirical thresholds was made pos-
sible. In the case of handwritten words, though, the complete elimination of
heuristics is till very difficult because of the complexity of handwriting. The
utilization of the weighted least squares method allowed the reduction of such
problems, leading to better results. Nevertheless, because of word fragmen-
tation and the sometimes small number of minima extracted by the pseudo-
convex hull, some problems in the elimination of undesirable minima occur,
impairing the handwriting baseline skew correction. The association of this
approach to classical techniques such as projection profiles, etc... is envisaged
for future works.
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Fig. 6. (@) Origina image, (b) Pseudo-convex hull image, (c) Connection of the pre-filtered
minima segments, (d) Image with the corrected skew.
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Abstract. This paper presents a mathematical morphology application for the segmentation
of greyscale images of ancient books of the renaissance (16th century), followed by the dis-
tinction of its elements in two classes. figures and text characters. The images were obtained
by scanning photographs of pages of ancient Portuguese books. Due to the book’'s age and
its preservation state, some irregularities appeared in the resultant scanning process, such
as different image's size, distorted pages, noise/spots, among many others. The application
attempts to go beyond those issues, in order to obtain the best binary image, reflecting
more precisely the original one, and to separate the image’'s elements into figures and text
characters, obtaining finally clean and clear results.

Key words: Document Processing, Geodesic Reconstruction, Segmentation.

1. Introduction

If the information contained in very old books, and therefore delicate to han-
dle, could be translated to a digital format, their very content would be of
much wider access. In the image analysis laboratory of the CVRM, it has been
developed a methodology that takes the printed part of these books content,
cleaning it from all the not useful “signs’ appearing on their pages, and after-
wards, classifying it in two types: text and figures. An approach, followed by
S. Beucher [1] in a similar case, has inspired the way to solve the first part of
this problem: the pages segmentation into binary images. For the second part
of our task, the separation between figures and text, we kept using the Mathe-
matical Morphology tools. These are indeed a proper approach [2], while other
methodologies [3] could have been applied but would have probably been more
time consuming. In fact, the work developed consists in two principal tasks,
one being consequent to the other. First, the task we faced is to obtain the
correspondent binarized images where the text and the figures are represented
(level 1) on a homogeneous background (level 0), and next, to distinguish and
separate the text from the figures.

The outcomes presented hereafter pertain to the first phase of an European
project still in progress, whose main objective is to build an indexed digita
library, containing three sets of books: Portuguese, French and Italian ones, al
from the XVI century. This work has, of course, been applied to the Portuguese
set. The sequence of mathematical morphology operators involved in the im-
ages treatment is applied through a script to be run in the Visilog software,
C-interpreter. The scripts developed during the research in the initia part
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of the project, are two: one for the segmentation and one for the separation
between text and figures. They could be easily linked in a single one but, for
a better and clearer explanation, they will be illustrated separately.

2. Inputs

The inputs are digital grey level images, produced by scanning photographs of
old Portuguese books pages. Though the efforts of the scanning team have
been appreciated, the input images are far from being “standard”: this means
that the set of images was not homogeneous in their general characteristics.
This was due to both the author’s imperfections in printing (a few years after
Gutenberg's invention), and to the most actual problems in the photo/scanning
operation. Because of the imperfection in the “strength” of the printing, some
part of figures and letters, are less marked than others: if we consider the
topographic analogy of the grey level images, it can be said that the “furrow”
of these lines is not as deep as the rest. Due to the non optimal scanning
conditions we have had other not idea situations. For instance the image's size
is varying both in the linear dimensions and in the proportion between width
and height. Apart from this, which was not a great deal because the software
handled it, the variations in the background colour (white) represented the
major cause of the few imperfections in the results. The basic input is then a
grey level image of about 2600 x 3900 pixels, with dark letters and figures, over
a background mainly white with some darker shades in a varying proportion,
presenting some dirt spots and occasionally handwriting characters.

3. Application Developed

The two main operations of the application, and the respective sequence of
operations, are hereafter discussed. The notations and terminology are the
same as in Soille's book [4].

3.1. SEGMENTATION

The concept guiding the methodology to segment is simple, referring to the
topographic analogy. The signs (text and figures) to detect are like “valleys’ or
“furrows’ carved on a basically plane background. To be highlighted, they are
filled and the origina image is subtracted to the one with the filled up furrows,
leaving just the filling in the output image. Thus we arranged a mask to cover,
in the most accurate way, the text and the figures. To locate the interesting
zone of each image, in order to build an appropriate mask, we exploited the
morphological gradient information. This would leave out of the process al the
objects (dirt spots, etc) with “soft slope” contours. We have aso used basic
directional morphology operators to suite the text's shape and the figures as
well as possible. The mask is therefore obtained through directional dilations
of the gradient, in the horizontal and vertical directions. Our intention was to
make the minimum number of dilations needed to cover the “furrow” of any
sign (text or figure) to be detected, and not more, otherwise we would be in
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risk of covering the “valleys’ of the surrounding noise. Also, it was assumed
that the main directions of the text characters were 0° and 90°, which is close
enough to the reality to get effective results. This method gives an output
image with a dark background and the extracted objects in grey level. It is,
basicaly, a sequence in 3 steps:

1. Dilating the original grey level image.

2. Reconstruction of the origina image with the image created in step one,
which is the “covering” or “filling” operation.

3. Subtraction of the origina image to the reconstructed one.

It was considered convenient to repeat the operation once more, as letters or
figures lightly marked were badly segmented with the first gradient mask. The
second “covering” is somehow complementary to the first one. The reason is the
following. After the dilated gradient is processed, it was created an image which
is the multiplication of the binary mask, obtained thresholding the dilated
gradient (see step 2 and 3 of the operations sequence), by the maximum value
of the gradient (this was called meaningfully “plateau”). Then the gradient was
subtracted to this “plateau”. The result is an image with minimums located
where the dilated gradient presented maximums and vice versa. Next, this
“complementary dilated gradient” is raised until its maximum meets the value
of the first gradient’'s maximum. This allows the second reconstruction to cover
and fill the “valleys’ of light marks, this being a problem especialy in areas
with a very white, or high in topographic terms, background.

Segmentation operations seguence

The process for the image treatment is explained hereafter, following the se-
quence of the operations performed on an input image by the algorithm:

1. Previous filtering with a low pass Gaussian kernel (Fig.1A). This was con-
sidered the best one as it gives a weight, to the central pixel, which is 4 times
the surrounding ones, so it filters the image preserving enough contrasts.

2. Directiona dilations, with size 20 in the vertical direction and 10 in the
horizontal, on the gradient creating the image “grdD”, dilated gradient
(Fig.1B).

3. Thresholding of “grdD” with threshold level 2.

4. FIRST RECONSTRUCTION: multiplying the former image described, by
the dilated gradient “grdD”, obtaining the image used as mask (referring
to Soille's terminology in [4]) for the reconstruction of the original filtered
image.

5. Subtracting the original filtered image to the reconstructed: the result being
an image that presents the printed part of the manuscript in grey level on
a black background. Thresholding this with a threshold level 2, producing
the first binary image, part of the final output (Fig.1C).

6. SECOND RECONSTRUCTION: multiplying the output of step 3 by the
gradient maximum, creating the “plateau” image. Subtracting the “grdD”
to it, to attain the complementary gradient image, “grdD_C". Before using
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this as a mask for the second reconstruction of the origina filtered image
(Fig. 1D), raising of the image “grdD_C” to the “plateau” level (adding to
it the difference between the maximums of the complementary and of the
normal gradient).

7. Like in step 5, similar operation between the second reconstruction and the
original image generating the second binary image (Fig. 1E).

8. Union of the two binary outputs (from step 5 and step 7), producing the
fina image (Fig.1F) , ready to be submitted to the separation agorithm.
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Fig. 1. Images resultant from the algorithm’s steps: (A) initial image; (B) image “grdD”;(C)
first binary output; (D) image “grD_C” after the “raising” operation; (E) second binary
output; (F) final image, union of (C) and (E).

3.2. SEPARATION BETWEEN FIGURES AND TEXT

The objective is to separate figures from text characters, using the binary im-
ages outputs of the segmentation algorithm. Fundamentally, we used the main
directions in which the image’'s elements evolve [5], i.e, it has been assumed
that the majority of lines composing the text characters has an orientation of
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0° (length) and 90° (height). A text example is presented in the next figure
(Fig.2).

Bt TP-4 -:_{r;CJI.:{uiI 1 N VETMES
elrife gas gentes encobr
{4 maritina jecreta,

o Dot WNoburno a
ag inftdas pentes fo che

Fig. 2. Example of text orientation

Most of the figures are composed of several small lines, which main direc-
tions do not include the ones concerning text characters. So, the figures were
obtained using the directions of 30°, 60°, 120° and 150°. All the images were
converted to a hexagonal grid, in order to have smoother shapes in the re-
sults. The skew of the images was not taken into account because viewing
our image set we noticed a regular behaviour, with no perceptible rotation
[6]. Concerning the agorithm’s implementation, it was used a combination of
mathematical morphology operations/primitives to obtain the expected seg-
mentation. It starts with the figure's extraction followed by the separation of
the text.

Figures operations sequence
This is the sequence of the agorithm steps:

1. After the conversion to a hexagona grid, directional closings at 30°, 60°,
120° and 150°, with structuring element size of 5 pixels, in order to connect
the figures elements. This value was chosen to avoid the connection between
characters, being 7 pixels their average spacing.

2. Directional openings of size 15, a 0° and 90°, eliminating most of the
text characters. At this phase, according to the parameter's values al the
figures are separated from the rest.

3. Reconstruction of the image resulting from step 1, using as a marker the
image resulting from the step 2.

4. Reconstruction of the initial image using as markers the output of step 3.

5. Directional closings applied to the output of step 4 with a structuring ele-
ment of size 3.

6. Hole fill operation to the output of step 5, closing all the figures elements.
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7. Opening of size 22 is applied to the output image of step 6, excluding al
the remaining text elements.

8. Reconstruction of the image resultant from step 6, using as marker the
output of step 7.

9. Reconstruction of the initial image, using as markers the output of step 8,
obtaining the figures.

Text operations sequence

10. Geometrical difference operation, XOR (exclusive or), between the image
resultant from step 9 and the initial one. This way it is obtained the
respective text, as well as some small particles that should be cleaned.

11. Delete the elements touching the image's border.

12. Directiona openings over the output of step 11, at 30°, 60°, 120° and 150°
with size 2, and directions 0° and 90° with size 1, eliminating the small
pasticles.

13. Directional closing to the output of step 12, at 0° with size 10, and direc-
tions: 30°, 60°, 90°, 120° and 150° with size 7, in order to connect the text
characters.

14. Reconstruction of output of step 11 using as markers the output of step 13.

15. Initial image reconstruction using as markers the output of step 14, obtain-
ing the text cleaned from noisy particles.

Basicaly the agorithm for all the Portuguese books follows the same strut-
ture as the one presented above, However, it was necessary to adapt to each
type of book, some of the size parameters, due to the mentioned conditions of
scanning and preservation state.

4, Results

In this section we show two examples of the output of the methodology, with
the respective input image (see figures 3 and 4). In both cases the figures and
the text are clearly extracted, even if, in the “Lusiadas’ case, a letter “Q”
got classified as part of the image. Errors like this one are consequence of a
deficient binarization, which is usualy [7] a very critica point. In the other
example, it can be seen that the evident variations of the background grey level
did not prevent from a good binarization.

5. Conclusions

This whole application has been trained mainly on the images taken from the
book “OS Lusiadas’, by Luis de Camdes. Afterwards we tested their application
to another Portuguese book: “Obras do Doutor F. Miranda’. We found that
the changes to be made in the parameters values were not many and, beside
of this, they were not hard to come up to. Still, this is a fundamental check to
be made before any other upcoming use of the scripts. Considering the project
aims the results were in general satisfactory and useful. The mathematical
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Fig. 3. Algorithm’s application to the “Lusiadas” book. (A) initial image; (B) figure
segmentation; (C) text segmentation.
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Fig. 4. Algorithm’s application to the “Obras do Doutor F. Miranda” book. (A) initial
image; (B) figure segmentation; (C) text segmentation.

morphology operators involved in this methodology approach the images in a
globa way, and not localy. Therefore the major problems derived from the
wide shades in the background. Just an example: as the gradient operation is
a measure of a slope, the importance of a fixed height surrounding the valleys
represented by the letters is evident. In future it will be considered to apply
a background normalization, for example with an alternating sequentia filter
[7]. The same methodology will be applied to other European books from the
same age, expecting to find them effective, as long as the kind of characters will
not change significantly. In the case of the Coran book, which is aso going to
be analysed, it will be probably necessary to adapt the algorithms. However,
this application will surely contribute to the digitalization of the information
contained in the historic books that will be submitted to it. It will aso provide
an easier way for their consultation and, hence, for their better preservation.
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Abstract. In this paper we present a model-based approach to the automatic extraction
of linear features, like roads and paths, from aerial optical images. The proposed method
consists of two steps. The first step utilizes local information related to the geometry and
radiometry of the structures to be extracted. It consists of a series of morphological filtering
stages. The resulting image (response) serves as input to a line-following algorithm, which
produces a set of line segments. In the second step, a segment linking process is carried out
incorporating contextual, a priori knowledge about the road shape, with the use of Markov
random field (MRF) theory. In this approach the extracted line segments, produced by
the morphological operators, are organized as a graph. The linking of these segments is
then achieved through assigning labels to the nodes of the graph, using domain knowledge,
extracted line segments measurements and spatial relationships between the various line
segments. The interpretation labels are modeled as a MRF on the corresponding graph and
the linear feature identification problem is formulated as a maximum a posteriori (MAP)
estimation rule. The proposed approach has been successfully applied to airborne images of
different profile.

Key words: Mathematical Morphology, Markov Random Fields, Linear Features, Airborne
Images.

1. Introduction

Several approaches for linear feature extraction have been proposed in the
literature, most of them dealing with the problem of road identification by
using either synthetic aperture radar (SAR) images or optic (visible range)
images. The literature contains a variety of schemes, which are mainly based
on alocal criterion, involving the use of local operators, or a global criterion,
incorporating additional knowledge about the structure of the objects to be
detected. The methods based on loca criteria evaluate local properties on the
image by using either an edge or line detector [4] [6] [12] [13] or morphological
operators [5]. The performance of these methods can be greatly increased by
using techniques that introduce some global constraints in the image anaysis
process. These techniques lead to an optima solution through the minimization
of a cost function by using either dynamic programming [3] [6] [10], tracking
methods [7] or the Bayesian framework [2] [9] [12].

In this paper, we propose a combined mathematical morphology and MRF
technique for road identification. It is a model-based approach that combines
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both local and global criteria about the geometry and radiometry of the linear
structures of interest. During the local analysis step, the detection of elongated
structures is performed by applying a series of morphological filters, similar
to those proposed by Chanussot et al. [5]. The main axis of the extracted
elongated structures is determined by applying the watershed transformation
on the response of the morphologica filtering. The response values along the
watershed lines, together with information about orientation, is then used as
an input to a line-following algorithm that produces a set of line segments. The
procedure related to the global analysis step is inspired by the earlier work of
Tupin et a. [12]. A segment linking process is performed by using contextual
a priori information with the help of a Markovian model of road like objects.

The use of MRF theory succeeds in extending the results of the morphologi-
cal filtering towards a better reconstruction of the road network. The proposed
Markovian model can be considered as a refined, more robust version of the one
of Tupin et al.[12], as it involves a fewer number of parameters, and describes
more efficiently the properties of the linear features of interest. Our approach
has a high detection performance in heavily textured environments and is able
to identify elongated structures of different size.

The paper is organized as follows: In Section 2 the proposed morphological
approach for linear feature detection is described. In Section 3 we present the
MRF model-based formulation for road identification and show how domain
knowledge can be organized into clique functions associated with the MRF
model. We illustrate the results of our approach for various airborne images in
Section 4. Finaly a discussion and directions for future research are given in
Section 5.

2. Local Analysis

The features we search for (roads and paths) are characterized by their geom-
etry and image appearance (radiometry). The roads appear on an optical
airborne image as thin, elongated structures with a maximum width wWpax .
They are localy rectilinear, with each road pixel belonging to a line segment
that is longer than a minimum length | o and each road segment is considered as
a bright structure with respect to its surrounding. All this information can be
integrated and extracted using mathematical morphology. A series of morpho-
logical operators, adapted to the geometrical characteristics of the objects we
want to identify, are successively applied to the input image. A line-following
algorithm is then applied to the resulting image in order to produce a set of
line segments. As an example, we will use the airborne image of Fig. 1(a).

2.1. LINEAR FEATURE DETECTION

1. Removing non-flat valleys
We want to remove dark structures from the image, without influencing
the shape of the bright elongated structures of interest. For this reason,
we apply a morphological closing by reconstruction, using a square flat
structuring  element (SE) of size equal to Wmax /4.
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2. Removing non-linear bright structures
Road segments correspond to elongated bright regions with a certain width.
In order to eliminate bright structures that do not belong to any line seg-
ment with minimum length lo, we apply on the reconstructed image of
step 1 a morphological opening by using lo pixels long linear structuring
elements successively oriented in 32 possible directions. The resulting value
a each pixe is the supremum of all these directional openings.

3. Removing bright structures of large width
In this step, we eliminate very wide linear bright structures that correspond
to objects larger than the roads. Initially, we perform a morphological
closing operation with a flat square SE of size Wmax /4 in order to remove
remaining dark spots from the image. After this, we retain only bright
structures with widths less than w max, by applying an opening top-hat
operator with a flat sgquare SE of size Wmax. The remaining structures
correspond to the roads that we want to extract. Finaly, we apply once
again closing with a flat square SE of size wmax/4, in order to make the
regions inside the roads more uniform. We will consider this result as the
response (1) of our morphologica road detector. The negative image of
this response is shown in Fig. 1(b).

(a) (b)
Fig. 1. (a) Origina airborne image. (b) Morphological road detection response (1)

22.LINE SEGMENT EXTRACTION

The final result of step 3 (Section 2.1) gives a higher response at the points
belonging to the roads compared with the surrounding background. An easy
way to extract the road regions would be the application of a threshold to
the resulting image as in [5]. Unfortunately, this leads to partial detection of
the roads (disconnected segments), together with some spurious results corre-
sponding to false alarms. In order to overcome this problem, and to produce
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one pixel width line segments, we extract, from the resulting image of step
3, the pseudo-media axis of the roads, over which we apply a line-following
algorithm using the orientation of the SE which produces the supremum of the
directional openings (step 2 in Section 2.1). The pseudo-medial axis of the
roads is extracted by performing the watershed transformation on the response
image |. The result of this transformation is shown in Fig. 2(a).

(a)

Fig. 2. (a) Watershed lines. (b) Orientation image.

An orientation image is obtained by assigning to each pixel the direction of
the SE which produces the supremum of the directional openings operator (step
2 in section 2.1). An example is given in Fig. 2(b) where a white gray value
represents an angle of 0° and black an angle of 180°. We then apply a line-
following algorithm along the watershed lines of Fig. 2(a), with each medial-
axis pixel considered as a starting point. The tracking is performed in both
directions adong a line, by taking into account angular information provided
by the orientation image of Fig. 2(b). We retain only line segments satisfying
an angular deviation of maximum da degrees and having length greater than
a predefined value Imin. Fig. 3(a) shows the fina result of the line-following
algorithm, applied on the image of Fig. 2(a), using the orientation image of
Fig. 2(b). The angle offset da was set equal to 10°. A small value for | yin,
equal to |o/5, is used in order to avoid discontinuities especialy in regions close
to road bifurcation.

3. Global Analysis

The global analysis step of our approach is based on the earlier work of Tupin
et a. [12] and is carried out on the level of the road segments. A graph is
built, which contains al possible connected line segments that are created by
using some connectivity criteria. The road identification process is then treated
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as an optimum graph labeling problem. This is carried out by associating an
energy function to the line segments, based on a Markovian model of road
like objects. Given the observation process, the minimization of this energy
function will produce the best configuration of the line segments.
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Fig. 3. (a) Detected line segments (Sge(). (b) Augmented set of line segments (S).

3.1. GRAPH CREATION

We will denote by Sget the set of the detected line segments (Fig. 3(8)). Each
segment of Sqet is defined by its endpoints. Two line segments of Sye Can
be connected if their distance is less than a fixed threshold, and if the angle
between them is less than a specified value. We create a new set S, , which
corresponds to all possible connections between the elements of Sy . Let
S = {Sget U Scon}, With its cardinality denoted by N. The elements of the set
S are presented in Fig. 3(b).
For each line segment i 0 Swe assign a saliency measure r; defined as:

ri=1/(10 —a +1) D

where T is the mean value of the morphological road detection response, along
the line segment (Fig. 1(b)), 6 is the line segment orientation, and & is the
mean value of the morphological road detection orientation response, along the
line segment (Fig. 2(b)).

We associate a graph structure (G) to the set S, each segment i (belonging
either to Sqet Or Sco, ) being one of its nodes, and two nodes i and j being linked
by an arc if they share a common endpoint. In order to introduce contextua
knowledge with the use of a Markovian model, we must define a neighbourhood
system. The neighbourhood N; of each node i contains al the line segments
that have a common endpoint with i. For each segment i [0 Sy we define 2
cliques that correspond to both of its end points. Each of these cliques contains



410 A. KATARTZIS ET AL.

al the segments that share the specific extremity. If Nyo denotes the number
of elements of Sy , then the total number of cliques equals 2N 4 . An example
of such a neighbourhood system is shown in Fig. 4.

D S
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- @
@ — : elements of S,,,

a s : elements of §,,4

Q : clique with (n)
number of el

Fig. 4. Neighbourhood system.

After the definition of our neighbourhood system, we attach attributes to
the nodes and arcs of G. The arc between nodes i and j is associated with a
value Bij representing the angle between the two segments. For each node i O S,
we associate a normalized length |; and an observation value d;, that reflects
the probability of this segment belonging to the road. d; should increase when,
adjacent to it, segments belong also to the road, something that rises from the
continuity that characterizes our region of interest. For this reason we express
di as a function of the saliency measures r:

d; = jné%{(ﬁ +7;5)/2}

The identification of the road will be carried out with an appropriate labeling
of the graph. A label |; is associated to each node i with |; = 1if iis a part of
the road and |; = O otherwise. The optimum configuration L = (I ,15,...,IN)
of the segments of S, given the observation process D = (dq,d,,...,dn), can
be estimated with a MAP criterion that maximizes the posterior probability
distribution given by:
p(d|) P(1)

P(lld) = =2 @)

where P(l) is the prior probability of labelings I, p(d|l) is the conditiona prob-
ability distribution function (p.d.f.) of the observations d, also called the like-
lihood function of | for d fixed, and p(d) is the density of d which is a constant
when dis given.

3.2. ENERGY DEFINITION

3.2.1. Conditional Probability Distribution

We consider that the conditional probability distribution p(d|l) corresponds to
a Gibbs distribution. By assuming independence between the different obser-
vations (di) and supposing that the conditional probability distribution of di
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only depends on the labelings I, we can write

N N
p(d)l) = Hp(dim) o exp (— Z V(diui)) 3)

where V (d;|l;) denotes the potential of segment i. This type of potentia can
be deduced from the observation field D and reflects the likelihood of every
segment as belonging or not to a road.

The conditional probability distributions p(di|l;) are learned from an ex-
periment after a manual segmentation of the roads, performed by a human
observer. After this experiment, we notice that road segments may have al-
most any observation value d, while non-road segments have observations with
values greater than a threshold t. Based on this heuristic, the following linear
conditional potentials have been chosen:

difd<t
1 otherwise

V(d|0) = { and V{(d|1) =0, Vd

In order for the potentials to correspond to a_probability distribution, we nor-
malize the values V (d|l) so that: f) p(d = z|l)dz = [ exp[-V(d = z|l)]dz = 1.
This condition holds for the potentials that correspond to road segments, as
they are equal to zero. For the non-road segments, potentials of the form:
V(d;|0) + logZy are used; Z, denotes a normalization factor given by:
Zo=(1-1t)(1/e) —t(1/e — 1), with e = exp (1).

3.2.2. Prior Probability of Labelings

Our prior road model is based on the assumptions that roads are long struc-
tures with low curvature and that intersections between them are rare. By
considering the label field L as a MRF, we can use once again the MRF-Gibbs
field equivalence in order to introduce a priori knowledge to the road identifi-
cation task. The prior probability of labelings P(l) can be expressed in terms
of an energy function U(l) as:

) = -eon(~U D) @

P(L =
where Z; is the partition function andU(I) = >~ ..~ V.(I). The clique potentials
Vc(l) carry a priori information about the geometrical characteristics of the
features to be extracted. Every clique c contains one segment belonging to
Sdet (with length 19¢), along with the segments of Scon (with length | ")
that share the same extremity. Based on the main assumptions of our road
model, we have chosen the following potentials for every clique c

Viceli=0=V.()=0 (5)

e/l =1=V,(I) = K; +1— ¢ 1 logZ, (6)
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(i, 5) € P/l = by = 1= Vo(1) = sin(yy) + 1 — €35 4 ¢°" 4 2logZy  (7)

in al other cases,

D=Ky Y L (8)
i/i€c

Equation 5 describes a null situation, which does not have to be penalized
or favored with respect to the a priori assumptions about the road structure.
In equation 6, by choosing K1 > 0 we penalize short roads: i.e. the clique
potential is high for a clique with only one isolated segment, except when this
isolated segment has a high normalized length ¢2¢¢ (close to 1). High values
of K favor more connected configurations. Equation 7 imposes the constraint
of low curvature and at the same time penalizes configurations with short
detected and long connecting segments. Finally, K, > 0O, in equation 8, makes
less probable the appearance of crossroads.

The additional factors logZ, and 2logZg, in equations 6 and 7 respectively,
facilitate the comparison between the clique potential values and the condi-
tional potentials of the null configurations (where al the segments of the cur-
rent clique are labeled as 0). In the case of a clique with one segment labeled
as 1, the factor K1 + 1 — £¢¢* in equation 6 is directly compared with the con-
ditional potential component V(di|0) of the current segment i. In the case of a
clique with two segments i, j labeled as 1, the factor sin (6;;) +1 —é;i”Jréj"” of
equation 7 is compared with the sum of the conditional potential components
V(di[0), V(d;]0).

3.2.3. Posterior Probability

The posterior probability P(l|d) can be also expressed in terms of a global
energy function U (l|d), which can be deduced from the potentials described in
the previous two sections:

N
Plild) = -eap(-UI) , Uld) = Y V) + V@) @
i=1 ceC

The MAP configuration of the line segments can be estimated by minimizing
the energy function U (l|d).

4. Results

For the minimization of the energy function, we use a simulated annealing
scheme with a polynomia-time cooling schedule [1]. By comparing the energy
components of different configurations of three adjacent segments, we derived
the following accepted range for the parameter K1: Ky < 21”—;&29 Recall that
the factor Zgis a function of the parameter t. Finally, the parameter K> has
been empirically set to a value around 0.1. In Fig. 5 we present the results of
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our method applied on the image (a) of Fig. 1, using a different value for the
parameter K.

Fig. 5. Results of the road extraction process for different parameter values. (a) t = 0.15,
Ki = 05 Kz = 0.1 - Optimal result. (b) t= 0.15, K; = 0.3, K, = 0.1 - Partia reconstruc-
tion of the road network.

5. Discussion - Conclusions

We proposed a model-based technique for linear feature extraction, in digitized
airborne images, which combines both local and globa criteria, and presented
its application on the problem of road and path detection. Its main advan-
tage is the high detection performance in heavily textured environments along
with its ability of identifying elongated structures independently of their size.
Concerning the local analysis step, we utilized the morphological operators pro-
posed by Chanussot et. a. [5] in order to identify road structures with specific
geometrical properties. Additionaly, we extracted the road main axis and ap-
plied a line-following algorithm. This process produced a set of line segments
with meaningful orientation properties and eliminated a sufficient number of
fase aarms. In the next step of our work, we created a Markovian road model,
similar to the one proposed by Tupin et. a. [12] in order to introduce contex-
tual knowledge to our anaysis. At the same time, we proposed some necessary
modifications in order to incorporate additional information about the nature
of the line segment candidates. These include a discrimination between the
initially detected segments (Sdet) and the ones corresponding to the possible
connections (Scon), the introduction of a new observation measure (di) that
reflects more efficiently the likelihood value of each segment and the use of
fewer number of potential parameters (t, K1, K 2).

One of the most important limitations of our method is that it is not entirely
unsupervised, due to the setting of five parameters, two of them concerning
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the local analysis step (Wmax, lo) and three (t, K1, K2) influencing the linking
process. The parameters Wmax, lo are based on a priori knowledge about the
size of the roads. On the other hand, the proposed ranges of the parameters
t, K1, K2, give optima results for this type of environments, independently of
the size of the linear features of interest. Further analysis should be carried
out towards the problem of identifying road segments with high curvature,
especialy when this is higher that the maximum road width found in the image
and in the choice of a more efficient skeletonization process for the extraction
of the road main axis. Finally, improvements could be obtained during the
connection step, by searching for the best path between extremities of the
segments we want to connect, instead of assuming that all roads may be found
by connecting a set of initially detected segments.
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TESTING SOME MORPHOLOGICAL APPROACHES TO FACE
LOCALIZATION*
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Abstract. In this paper we present the results of the use of some morphological approaches
to feature extraction for face localization in gray level images. Namely we have applied the
Morphological Multiscale Fingerprints (MMF), and two grayscale Hit-or-Miss transforms.
The morphologica feature extraction techniques tested belong to the class of global image
feature extraction approaches. They can be combined with others to ensure a more robust
face localization. No structural relationships between face elements are taken into account.
We compare these results with those obtained using a standard PCA approach.

Key words: Face Localization, Morphological Multiscale Analysis, Generalized Hit-or-Miss
Transform.

1. Introduction

The field of face recognition [1] has reached a high degree of maturity, however
the problem of face localization remains a research issue. Face locadization is
the task of determining the position of a face in the image. It is a needed
preprocessing step for face recognition. There are several approaches to face
localization which have shown some degree of success. The early approaches
followed the path of Principa Component Analysis (PCA) which was very suc-
cessful for face recognition [2],[3]. However, PCA shows a high sensitivity to
changes in illumination and in pose and scale. The Local Feature Analysis
[4] combines the PCA approach with some structural approaches. The PCA-
based localization has been extended to Independent Component Analysis in
[5]. Other works based on global picture processing use neural network ap-
proaches [6, 7, 8, 9, 10, 11]. These approaches are quite sensitive to the training
samples employed, and their tuning is a quite laborious process. On the other
hand, approaches based on the color processing [12, 13] are very easy to real-
ize, although again very sensitive to the training data. Structural approaches
are based on the detection on face elements and the testing of their relative
distances [14, 15]. They can be made robust to occlusions and pose changes,
but again their tuning is very tricky. A sensible approach to more robust face
localization is the combination of several methods into a multi-cue system.

In this paper we explore the performance of some morphological operators
to extract features for the task of face localization in grayscale images. No

* Work supported by project PI-1998-21 from the Gobierno Vasco and project TAP-
98-0294-C02-02 from the CICYT. Bogdan Raducanu has a predoctoral grant from the
UPV/EHU
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structural model is proposed, athough the morphological methods could be
embedded into structural approaches performing the detection of face elements.
The first method is based on the extraction of morphological features from the
image. The features are the reduced fingerprint of the image obtained from
a multiscale morphological analysis [16]. Two different generaizations of the
Hit-or-Miss transform for grayscale images constitute the second and third
methods tested. The first generalization was originally proposed as a grayscale
operator with the same structure as the binary image Hit-or-Miss transform:
a superposition of two erosions [17]. It was called the Graylevel Hit-or-Miss
Transform (GHMT). The second generalization is a new proposition based on
the decomposition in level sets of the grayscale images. We call it Level Based
Hit-or-Miss Transform (LBHMT) to differentiate from GHMT. It consists of
the application of the binary Hit-or-Miss transform on each of the level sets of
the image, and combining them with the sup operator. The objective of the
present work is to compare the performance of the morphological analysis with
the PCA approach, taken as a representative of the global feature extraction
techniques. We have used a small custom database of images and computed
the mean Receiver Operation Curve (ROC) for the techniques.

Section 2 presents the Multiscale Morphological Fingerprint. Section 3
presents the generalizations of the Hit-or-Miss Transform. Section 4 reviews
the PCA approach to face localization. Section 5 presents our experimental
results. Section 6 presents our conclusions.

2. Multiscale Morphological Fingerprints

Scale-space theory deals with the formal definition of the concept ‘scale’ in
terms of signals/images, i.e how we represent the data at a given scale and
how we relate image features from one scale to another. A very important
basic requisite for a particular scale-space is the so-called ‘causality’: Every
feature/extremum in coarse scale (large ) has to have a cause in fine scae
(small o). The linear scale-space results from the convolution with Gaussian
kernels of increasing variance.

Another way to generate a scale-space is using mathematical morphology.
Dilation and erosion, are the basic operations of morphological scale-space. In
the following definitions, we assume that fis the origina grayscale image and g
is the structuring function, namely f:D OR" - Rand g:EOR" - R The
dilation is defined as: (f &g)(x) = ?ﬁp {f(x—t)+g(t)} and the erosion as:

E

(feg (x)= JEE“ (x+t)—g(t)}. In al the assumptions, in order to dismiss

the ‘lateral shifting effect’, [16] impose for the origin of the structuring function
the following conditions. sup {g(t)} = 0and g (0) = 0. A suitable scale-space
toOE

structuring _function is the ‘sphere’ function defined by the following equation:
1/2
gs (x) = |z| ((1 - l|x/o'||2> —1), |zl < ¢. Now, the multiscale dilation-

erosion is defined as:



MORPHOLOGICAL APPROACHES TO FACE LOCALIZATION 417

f(z) ifo =0 (€8]
(f9) (@) ito <0

For positive scales (o > 0), the operation corresponds to a dilation, and
for negative scales (o < 0), the operation corresponds to an erosion. As ||
increases, the image tends to have less ‘structure’. When |o] —» 0O, the image
converges to the original one. The features preserved by the multiscale analysis
are the local extrema This is stated by the following theorem, proved in [16]:

(f®g)(z) ifo >0
(f*90) (z) =

Theorem 1 Considering f the original function and g the structuring function
with the property that it has a local maxima at the origin, we define the following
sets: Emax = {x : f(X)is a local maximum} and Emin = {x : f(x) is a local
minimum}. Then, for any 01 <02 < 0 < 03 <04 we have the following
relations. Emin(f* gcrl) O Emin (f* gaz)D Emin(f) and E max(f* 904) o Emax(f *
Uo3) U Emax ().

The fingerprints of a scale-space are plots of the point sets of the signa

extrema over the scales, i.e. E*(0) = Emax(f *go) U Emin(f* do). In Practice,
for computational reasons, is used the so-called ‘reduced fingerprint’, defined

as follows:
Emex(f @ gs) ife >0
E: (U) = LErax (f) uJ Emin(f) ifo =— 0 (2)
Emin(f @g) ifoe <0

The preservation of the local extrema produces a relative insensitivity of
the morphological multiscale fingerprint to variations of illumination. Figure
1 shows the reduced fingerprint (second row), the local minima (third row)
and maxima (fourth row) of a face image (center) after darkening (left) and
brightening (right) with the application of monotonic increasing gamma func-
tions. The localization of the local maxima and minima is not changed by the
monotonic transformation of the grayscales. The fingerprint is affected by the
brightness transformation in the following way: the darkening of the image pro-
duces a reduction and an increase of the scale of the loca maxima and the local
minima, respectively. The brightening works in the dual direction. However,
for moderate brightness variations the MMF is much more insensitive than the
PCA described in the next section.

In the experiments reported in section 4, we have computed the distance
between two fingerprints as the sum of the difference of the number extreme
points at each scale: d(fi, f2) = ) |Card (E¢, (o)) — Card (E, (¢))|, where by

Card(A) we denote the cardinaity of the set A. This distance is obviously
invariant to affine transformations, and relatively robust against small illumi-
nation changes. In the experiments reported below, we have used the sphere
structural function defined over a finite set of scales {o=+2',i=1,...,6}.
To decide the ‘faceness of an image we compute the nearest neighbor relative
to a set of face patterns. The minimum distance is kept as a measure of the
similitude of the image to a face. Despite the naivety of the definition of the
distance, the results were very good.
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BN

Fig. 1. Fingerprint of a face image after darkening and brightening.

3. Generalizations of Hit-or-Miss Transform to Grayscale Images

In this section we review the definition of the Hit-or-Miss Transform (HMT)
morphological operator and one extension to grayscale images. Furthermore,
we present our own definition of this operator for grayscale images, based on
level sets. The HMT can be seen like a template matching technique, thus
it selects pixels that have certain geometrical properties (e.g. isolated points,
edge points, corner points or T-junctions, as reported in [18]). This operator
is not a morphological filter, because it's not endowed with the two properties:
(i) increasingness and (ii) idempotence.

3.1. BINARY HIT-OR-MISS

Given a window X, consisting of the image Jand the background (X\J), and
two structuring elements K and L, satisfying the condition KNL = @, we
define the ‘Hit-or-Miss' as follows:

JO(K,L)y=(JeK)n(X\J)eL) (3

Without any loss of the generality of the above definition, we can consider
the special case in which K and L form a partition of the template window, Y.
In this situation, K represents the actual image, and L, the background, i.e.
L = Y\K. The required condition, KN.L =@, is thus satisfied. Then, the in-
terpretation of the above formula is. a pattern matches a feature in the original
image if the intersection between the erosion of the image with the template
and the erosion of the image background with the template background is not
empty.

3.2. GRAYSCALE HMT: GHMT

The previous definition of the HMT has been extended [17] to gray-level images.
In this case, the sets are substituted by functions, and binary erosions by
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grayscale erosions. In the following definitions, we assume that fis the origina
grayscale image and g is the structuring function, namely f:D O R" -~ R
and g: EORM - R, as defined in section 2. The ‘Hit-or-Miss transform in
this case becomes [17]:

(Fog) (@) =[(feg) @] +[(-f)e(-9) (=) 4

Using the definition of erosion, the above relation can be rewritten into the
form:

(F®9) (@) =min{f @+ ~g(®)} +min{~f @@+ +g®} (5

The first erosion ensures that the template matches the image from ‘above’,
and the second one, from ‘below’. The ‘perfect matching’ occurs when both
matches happen simultaneously. Making use of the dualism between erosion
and dilation, the last relation can be written in the following form:

(f®g)(z) =min{f (z+1) —g ()} —max{f (z +1) —g ()} (6)

The last relation says that the result of the GHMT is aways negative or
a most equal to 0. It can be shown that f O g takes value 0O, iff f(x +t) =
g(Xx) + k, for every xO E, where kis a constant. This property demonstrates
the insensitivity of the GHMT to some variations of the image/template. In
the experiments reported below, the face patterns become the templates. The
GHMT with each template was computed and the maximum result for each
pixel gave the measure of faceness of the pixel.

3.3. GRAYSCALE HMT BASED ON LEVEL SETS: LBHMT

We can interpret the image as a topographical map where local €elevation cor-
responds to the gray value in the image [19]. The image is formed by staking
the level sets, with lowest level at the bottom and the highest on the top. Us-
ing this analogy, we can analyze the image at level k,k=0,...,Nmax —1,
independently from the other ones, where by Nmax we denote the maximum
gray-level from the image. Let us consider a gray-level image as a function of
its coordinates versus intensity, i.e. f: DO R" 5 {0,1,...,Npnax— 1}. The
image f can be decomposed into its grayscale sets as given by the formula:

Se(f) ={z € D|f(z}) 2 k} ()

Level sets correspond to binarizations by threshold k. In a similar way,
having this level sets, we can reconstruct the original image, by taking the
supremum of all of them

f(ac):k_ sup {z € S(f)} (8)

=0,...;Nmax—1

With this interpretation, we can consider both the original image and the
structuring function as topographical maps. We can apply the binary HMT
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locally at each level set. The grayscale Hit-or-Miss Transform can be expressed
as the reconstruction of an image whose level sets are given by the binary HMT
computed at the corresponding level sets of the original image and pattern.
Therefore, the result of this operation is given by the supremum of al loca
results. In other words,

(f®g)(x)=  sup  {z€S5(f)®Sk(g)} 9)

=Uysd¥max —

where Si(g) s the two element partition formed by the foreground (lvalued
pixels) and the background (0 valued pixels). We call this operator Level Based
Hit-or-Miss Transform to differentiate from the GHMT described previously.
In the face localization problem the templates correspond to face patterns. The
measure of faceness of a pixel corresponds to the distance between the original
image and the result of the LBHMT of al the face patterns. The combination
of the result of the face patterns is done with the sup operator. Despite of the
non-increasing nature of the Hit-or-Miss Transform on binary images, there are
no missed threshold sets when the result images are restacked, we are currently
working on the formal proof of this assertion. Although it can be proved that
the resulting grayscale operator is not invariant to grayscale transformations
of the image or the pattern, the experimental results show that it is relatively
robust against illumination changes.

4. Review of the Eigenface Approach

For the sake of completeness we review the PCA approach to face localization
[3], sometimes referred to as the subspace approach. Given an initial set of M
face images, each one of size N x N pixels. Let them be ', 2,...,h. The
average face of the set is denoted by W. Each face in the set differs from the
average by the quantity ®; =I; -W¥, with i =1, ..., M.From the covariance

M
matrix of the original set: C = & > ®,®%, we retain the first significant
1

n

M eigenvectors, denoted by v ,with:I =1,...,M .These eigenvectors are
M

used to create the M eigenfaces in the following way: = > P, [ =
k=1

1,...,M.To test the faceness of an image I', we project it on the subspace

defined by the eigenfaces: wy, = uf (I~ ¥),k=1,...,M. The reconstruction

from this projection is given by &, = gj w;u;. The reconstruction error €2 =
1=1

||<I>—<bf||2'can be used as a “faceness criterion”, in order to decide if at the
current location in the image there is a face present or not, where® =T — W.
This can be achieved by simply thresholding the parameter €, i.e. by stating
that a region in the image corresponds to a face iff the reconstruction error is
below a certain threshold. In the experiments reported in the next section, we
have computed this reconstruction error for each pixel neighborhood. This error
image is then normalized in the interval [0, 1] before thresholding to determine
the face localizations.
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Fig. 2. ROC of the ratio of true positive pixels, PCA (‘*'),MMF (‘0’), and Generalized
Hit-or-Miss: GHMT(‘+') and LBHMT (‘.’). (@) train images (b) test images.

Fig. 3. Face localization on some training images with the constraint of 90% localization of
face pixels: MMF, PCA, LBHMT and GHMT.
5. Experimental Results

We have performed the experimental comparison of PCA and MMF, GHMT,
LBHMT over a set of 19 images. The faceness measure is normalized in al cases
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Fig. 4. Face localization on some test images, constrained to 90% localization of face pixels:
MMF, PCA, LBHMT, GHMT.

and a threshold is applied to determine the faces. We have extracted 40 sample
faces from 10 images, and exactly the same faces have been used to compute
both the eigenfaces of the PCA transformation, the MMF prototypes, and as
the templates for GHMT and LBHMT. The images used for the face extraction
are considered the training set, and the remaining as the test set. The ground
truth is given by a set of hand defined rectangles that include most of the faces.
Note that these rectangles do not coincide with the face patterns. Under this
conditions the training images also require some generalization abilities.

We have computed the Receiving Operator Curve (ROC) (the ratio of the
true positive pixels to false positive pixels) by varying the faceness threshold
value for all approaches when applied to face localization on the training and
test images. In figure 2 we plot the mean of the normalized ratios rl= (true
positive / positive ground truth) versus r2 = (false positive / negative ground
truth) . The rl ratio approaches 1 when there is no fase positive responses,
The rl ratio approaches 1 when all the faces in the image are detected, the r2
ratio approaches 0 when there are no fase positives.

It can be appreciated in figure 2, that the MMF consistently performs better
than the other techniques, giving better recognition rates for the same false
positive ratio. This is more clear in the training images. All the approaches
eventually detect al the labeled faces in the images at the cost of increasing
the false positives, but MMF does it faster. The worst results are given by
the GHMT. The LBHMT and the PCA alternate their performance. While
LBHMT performs better in the training set, the PCA improves relatively in
the test set. The exploratory experiments with both GHMT and LBHMT
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showed that both techniques were able to localize the exact patterns in image.
As noted before the ground truth does not match exactly to the set of face
patterns, some extrapolation abilities are required of the classification criteria
realized by the operators. This produces a great decrease of the accuracy of
the response of the Hit-or-Miss techniques.

The results in figure 2 may be mideading because r2 is normalized against
the figure background, so that a small variation corresponds to a big increase
in false positives. In figure 3 and 4 we show the localizations performed by
(ordered by columns) the MMF (left column), PCA, LBHMT, and GHMT
(right column) on some images when the process is constrained to localize
90% of the face pixels in the image. This congtraint is realized by relaxing the
corresponding faceness threshold for each method until the required percentage
of true positives is reached. A face locdization is given by a white square.
Overlapping squares produce white patches in some cases. Namely PCA and
GHMT results show this effect.

6. Conclusions and Further Work

In this paper we make an empirical comparison of several techniques for face lo-
calization based on morphological operators. We propose the use of Multiscale
Morphological Fingerprint (MMF) to obtain a set of global features for face
recognition. We also tested the grayscale Hit-or-Miss Transform (GHMT) and
a new definition for grayscale HMT based on level sets. The Principal Compo-
nents Analysis (PCA) has been used for benchmarking. The ROCs computed
show that MMF performs consistently better than the other techniques. Fur-
ther work will be addressed to the search of more elaborate definitions of the
similarity between fingerprints that could lead to increased discriminant power.
Also we want to explore alternative extensions of the Hit-or-Miss operator with
improved classification generalization properties.
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QUANTITATIVE DESCRIPTION OF TELECOMMUNICATION
NETWORKS BY SIMULATION
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Abstract. A stochastic model is used to analyse cellular communication network perfor-
mance through the average number of users connected to a base station. This average is
studied in two different ways : from the servers’ point of view and the customers, leading to
different results. Analytic limitations appear in the non-stationary case. Simulation seems
to be a solution in order to obtain redisations as well as non intuitive results.

Key words: Cellular Networks, Mobile Communications, Macroscopic Modeling, Poisson
Process.

1. Introduction and Description of the Network Model

With new telecommunication systems based on cellular communication net-
works, companies have to make strategic plans to build new networks by setting
up servers according to the customers distribution with appropriate capacity,
to modify existing networks by adding new servers or increasing server capacity
and to evaluate the performance of these systems (i.e. saturation probability).
These problems are very complex and in order to reduce the parameter number,
we use a probabilistic model. The main idea consists in considering the spatial
configuration of the network objects (customers and servers) as redlizations of
stochastic point processes [6].

In this paper we consider a simple model for describing cellular communi-
cation network [1, 2]. This model is made up of two kinds of objects, the base
stations and the users. For each station, we define an area (cell). Together
these cells form a partition of space. Users in a cell are served by the corre-
sponding base station (see Figure 1). We use two independent non stationary
Poisson processes to model the location of servers and users in the system,
because of its tractability. Let P(A\) denote a Poisson process with intensity
function A (in other words, A is not necessarily constant but may vary through
space). A stands for the server intensity and Ac for the user intensity. This
model is examined via the number of users connected to each base station in
two different ways, first anaytically and second using simulations.



426 F. TOURNOIS ET AL.

Fig. 1. Basic model with users (small discs), stations (big discs), cells and communication
paths.

2. Customers’ and Servers' Point of View

Our aim is to study the average number of users connected to one server. There
are two ways to answer this question. In the first one, we consider things from
the customer’s point of view. He wants to know how many users are connected
to his server. In the second one, we consider the server's point of view. He
wants to know how many customers are connected. Let N¢(x) be the number
of users connected to the base station serving a customer located at point x and

let Nq(z) = E(N.(x))be its expectation. We use Ns(x) to denote the number
of users connected to the server located at point x and Ns(z) = E(N,(z)) for
its expectation. In the following formulae, we can see important differences

between these two approaches.

Proposition 1 If A is the user’s process intensity and As the server’s process
intensity, then for all O R" the generating functions [8] of N.(x) and Ns(X)
are :

E(ZNC(I)):/ E [e—xa[C(ww.oo;(r,,g_m)u{m] <z—1>] X (y)e~ s (Ble—ub) gy

n

E (zN@)=E [e=ACEPANUEN -]

whereC (1, {8y yez) is the cell of the Voronoi diagram [7, 5] constructed with
{@i}ser which contained the point y, B(z,7) = {y| |z —y| <7}, A(B) = [z X,
Ae(B)= [ andB={z|z¢ B}

The second formula is straightforward. Regarding the first one, it can be
obtained by randomizing the location of the server of x.
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Corollary 1 If A . is the user’'s process intensity and As the server’s process
intensity, then for all x O R"

=

(z)

E U e (€U PO 005 5opy) U D) Asly)e™ B@l=sDdy

Ny(z)

I

E X (C(8 POV {8})]

In general, these formulae are not mathematically tractable. In contrast to this,
simulations are possible. Things are particularly simple in the case of a Poisson
process. To simulate such a process that contains point X, it is sufficient to add
xto any simulation.

{PA W) |we®,§ €PN (W)} ={PA)(w)U{§}|weas}

To show that these two formulae lead to different evaluations, let us study
the constant case, that is, where for al xO BR™A ¢(X) =Acand As(X) = As. In
that case, in one dimension applying the two formulae givesN, = Re Nc = 3As

24
whereas in two dimensions. N, = 4=, N, = 1.2804= [3, 1.

>

3. One-dimensional Study

In this section, we let n = 1 and study some specific cases of intensities. We
begin with the polynomial case to point out differences between the two points
of view. Then, periodic functions are considered.

Proposition 2 If A\ 0 R[X]* is the users process intensity and As 0 Ro[X]
the servers process intensity, we define two series

Bopt1 =0

Qo — 3(32P+2_1) B
2p — W and 2p = 22pA§p$i
agpy1 =0

and two linear mappings from R[X] — R[X] by

X ):z%an—j% and ¢s T Z,Bn iTT
§=

then we have :

Tc = (bc()‘c) and WS = QS()‘S)

These formulae are obtained by simple calculus using the first corollary.

Let us chooseAs(x) = A O R and A¢(x) = A(x2 —1)>. Figure 2 shows
that when As and A increase proportionally, we have the constant case locally
No(z) = Ze (ig and Ny (2) = 353 In fact, the moreAs increases, the cell size
decreases, the calculation becomes more local and then the customers intensity
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Fig. 2 N: (top) and N5 (bottom) withAs(x) =A O R and Ac(X) =A(x2 — 12, A =1
(eft), A 0{2345 (middle) and A = 100 (right).

variation decreases in the cell. A low intensity variation is near the constant
case. For A = 1, N, and N, are far from the constant case and when A increases
(AO{2, 3, 4, 5}) the constant case appears gradually. Note also that for A < 10

the estimated values are far from the constant case. So when optimizing a
network, the rule of thumb f\\% is not optimal. We also see a real difference
between the customers’ and the server’ points of view.

Now, we can propose the same formulae for a periodic function.

Proposition 3 If Ac = " a,e™* is the users intensity process and As O
neEZ
Ry[X] the servers intensity process then :

N = 3ag Z 20, 2,(1202 +-n?)

2\, | & (a2 nfp
and da
by ag ApAg ;
Ns = — 4 __ns e'mz
As ngz:* 422 + n?

For example, if we choose As =A and A, = 2A + A cog(x) + % cos(20x), then
we have a high (1Y/10) and a low (2rmvariation frequency. Figure 3 shows that
the high frequencies become more and more visible as A increases.

Now, we choose another simple case in order to show the border effects. We
define o € R, As = A = a1y, for this case. Firstly, from Figure 4, we see the
convergence to the constant case according to a. Secondly, we notice bumps
near the edges corresponding to peaks of the numbers of customers. This result
appears al the more interesting as it is unexpected. These peaks correspond
in fact to places where base stations cover average-sized areas, located at the
end parts of the 1D.
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Fig. 4. Ne (left) and Ny (right) with Ag= Ac=a.ly5 5, x 0]0,1[ and a (]1,10[.
4. Two-dimensional Study

We are now going to study a realistic two-dimensional case. In 2D all the
calculations get more complex and require the use of simulations. We only
obtain analytical formulae for the average number of users in the constant case
(see section 2).

Firstly, similarly to the one-dimensional case, let us choose As = A, =
O .1j0,1;2. Figures 5 and 6 show the simulation results for three cases a = 5,
o =20 and a = 50. As in the one-dimensional case, we see that the convergence
to the constant case’ is observed first in the middle of the square. Peaks appear
near the edges and near the corners. In this case, like A in the one-dimensional
study, o defines a scale or precision factor to watch a.1j0,1;2 . When a increases,
the shape of the sguare ]0,1[2 appears. We can follow the evolution in the three
pictures : at first, we cannot see the square (o = 5) and finally the square
appears (a = 50). In the general case A ¢ acts as a scale factor to watch or
describeA¢ . We can say from these figures that, peaks are better revealed by

t Ne(z) = 3252} and Ny(2) = 322

NS
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the customers’ point of view than the servers'.

Moreover, in 2D, the number of users is not constant outside the definition
set (see the edge of the surface) because a Voronoi diagram defines cells in B2
outside ]0,1]2 and these infinite area cells do not necessarily cover the same
area in contrast to the 1D case.

o
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Fig. 5. Ne with s = Ac = aljg 2, = €] — 0.2,1.2[%, a = 5 (left), a = 20 (middle) and
o = 50 (right).
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Fig. 6. N5 with Ay = Ac = aljg 12, # €] ~ 0.2,1.2[%, a = 5 (left), a = 20 (middle) and
o = 50 (right).

5. Two-dimensional non-Euclidian Study

Let us now consider an obstacle deflecting the transmission. The shortest
path between two points is not necessarily a line (see Figure 9). The Voronoi
diagram becomes a geodesic Voronoi diagram [4, 7] and we see a variation of
the number of users, compared to the previous case. We choose Ag= A =0 .1p
with A = {z €]0,1]?| = ¢]0.4,0.6[*}. Figures 7 and 8 show the results of the
simulation for three casesa = 5, a = 20 and a = 50. As before, a is a scae
factor. As it increases, the square 10.4, 0.6[2 becomes more and more visible.

This experiment makes us realize that it must be very difficult to obtain
analytical results. However by using simulations, non intuitive results can be
obtained.
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6. Conclusion

The servers and customers points of view lead to quite different results. An-
alytic solutions cannot be obtained even in simple cases. Simulation seems to
be a viable aternative to analytical studies for mobile communication network
studies. Our preliminary simulations give interesting new results but we could
examine more complex cases by using conditional simulations [9]. For example,
we could consider the real network state at one point in time and begin the
simulation with this data

Fig. 9. Some shortest paths in A .
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city-block, 331
computation of, 331
Euclidean, 23, 331
Manhattan, 331
document images, 361
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dua trandation, 64
dynamic programming, 173
dynamical system, 61
dynamics of contours, 210

edge detection, 180, 201
morphological, 201
edge maps, 321
edge noise filtering, 371, 378
Eikonal equation, 352
simplified form, 354
encoder, 362
encoding
lossless, 362
energy function, 409
entropy, 362
epsilon
connectivity, 153
geometry, 149, 153
predicate, 153
equivalence relation, 100
equivalent spaces
homotopically, 48
topologicaly, 48
erosion, 3, 7, 9, 19, 62-65, 150, 1609,
293, 301, 363, 416
affine, 92
curve affine, 94
discrete affine, 94
geodesic, 72
multiscale, 292, 416
soft, 131
erosion curve, 256
Euclidean
distance, 209
distance transform, 357
metric, 331
Euler’s constant, 307
expansion operator, 145
expectation-maximization algorithm, 366
extraction of linear features, 109
extrema merging criteria, 296
extremity
left, 14
right, 14

face localization, 415
eigenface approach, 420
subspace approach, 420

face recognition, 415

feasible set, 18

FELICS, 369
Fenchel conjugate, 287
Fermat's principle, 353, 354
FIFO queue, 343
figure separation, 400
filmdirt, 129, 130
film restoration, 132
filter, 99, 100

folding induced, 99, 100

folding induced self-dual, 104
linear trandation-invariant, 4

self-dual, 99, 100
filter problem
1D max, 305
1D max-min, 306
1D min-max, 308
filtering
by levelings, 226
by reconstruction, 181
edge noise, 371, 378
of detection, 326
finer partition, 234
fitness function, 132, 133
flat zone, 55, 170, 208, 228
detection, 224, 225
merging of, 171
flattening, 51, 55, 58
elementary, 56
scalar, 51
separable, 58
vectorial, 51
flooding, 189, 190
partial, 229
simulation, 342
size oriented, 193
tailored, 194
uniform, 193
fold-space, 100, 102
folded
grey-scale function, 103
ordering, 99
Fourier transform, 5
function lattice, 64
fuzzy
a-path connected set, 155
classifier, 63
connectivity, 149
control system, 63
dynamical system, 61
geometry, 149
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intersection norm, 63
marker, 195

set, 154

set membership, 63
set possihility, 63

set probability, 63
union norm, 63

Galois connexions, 144
Gaussian kernel, 399
Gaussian mixture estimate, 364
genetic algorithm, 129
optimization, 132
simple, 135
genus, 167
geodesic
closing, 180
dilation, 72
distance, 72
erosion, 72
metric, 179
reconstruction, 204
set, 71, 72, 74
geometrical construction
of Huygens, 353
Gibbs distribution, 410
Gil-Werman agorithm, 303
global
contrast change, 322
optimal path problem, 110
path, 110
gradient, 92
color, 209
color multi-scale, 201
di Zenzo multiband, 208
flooding, 225
morphological, 398
multi-scale, 199
watershed, 294
granulometric
deconstruction, 243
features, 243
granulometry, 23, 179, 245, 256, 283,
383
graph, 342
adjacency, 144
arc of, 342
directed, 342
neighborhood, 191, 226
node of, 342
optimum labeling, 409

weighted, 342
gzip program, 364

half space, 52
halftone
image, 363
mask, 363
seed, 363
Hamilton-Jacobi equation, 352
handwritten word recognition, 389
Hausdorff
discretization, 41-43
distance, 41, 43
radius, 43
hierarchical
connected partition, 166
level, 208
partition, 166, 167
process, 292
segmentation, 159, 166, 207
stack, 208
hierarchical partition
of connected components, 167
hierarchical stack
of gradient color watersheds, 210
HIST, 368
historical time threshold, 326
hit-or-miss transform, 416, 418
binary, 416, 418
grayscale, 416, 418, 419
level based, 416, 419, 420
homeomorphic spaces, 48
homotopic map, 47
homotopy, 348
change of, 348
modification, 294
Hotteling's T2 test, 210
Huygens' principle, 353, 354

idea filter, 8
idempotence, 8
IFT algorithm, 344
image
features, 167
foresting transform, 341
halftone, 363
mask, 204
multivalued sequence, 234
operator, 120
pyramid, 363
sampling, 263
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scaling, 284

sequence, 223

window, 120
image sampling

content dependent, 264
impulse, 66

dual, 66

function, 64

response, 169
increasingness, 8
indecomposable set, 152
independent component analysis, 415
inf-semi lattice, 53
infimal convolution, 286
influence zone, 295
information removal, 8, 9
interior, 42
interpolation, 3
interval, 14

maximal, 15
intra-block segmentation, 225
IS1 algorithm, 373
isomorphic lattices, 160
isomorphism, 160

Jordan curve, 91, 92, 94, 323
JPEG, 361, 362, 368
JPEG-LS reference encoder, 369

kernel, 19
Khalimskii topology, 144

Laplacian pyramid, 3
lattice
Boolean, 14
complete, 4, 100, 101, 150, 160
complete infinitely-distributive, 62
control model, 61
function, 64
inf-semi, 53
isomorphism, 15, 19
morphology, 61
operator, 64
semi-, 57
signal, 66
theory, 61
vector, 65
left extremity
minimal, 18
Legendre transform, 287
level

component, 313

ling, 91, 92, 323
set, 321, 323, 419
level line

detection, 324
level-component labeling, 315
leveling, 51, 54, 58, 189, 190

elementary, 56

scalar, 51, 54

separable, 58

vectorial, 51
lexicographic

cost, 342

order, 342
lifting scheme, 273, 277

max-lifting, 278

prediction lifting, 278

update lifting, 278
likelihood function, 410
line segment extraction, 407
linear

convolution, 169

feature detection, 406

feature extraction, 109, 405

filter, 4

filtering, 6

scale-space, 283, 416
local

direction extraction, 325

dissimilarity measure, 223, 226

feature analysis, 415

path, 111

scale-space, 92

state transition function, 356
lossless compression method, 365
low-order hits, 362
LSB, 362

MAE, 133
MAP, 237
MAP criterion, 410
marker, 204

detection, 119, 121

drawing, 230

fuzzy, 195

root, 165

selection, 204
Markov random field, 405
Markovian model, 409
Mascheroni’s constant, 307
mask image, 204
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mathematical morphology
affine invariant, 91, 92
Matheron theorem, 93
max
control, 61
control model, 62
filter, 302
lifting, 274
max-min filter, 302
max-sum control, 62
max-T control system, 64
observable, 70
max-Tnorm control, 63
maximal connected component, 151
maximum a posteriori, 237
mean absolute error, 133
mean-square error, 367
medial axis, 351
median filter, 169, 302
membership function, 154
merging, 230
merging sequence, 171
metric
Busemann-Hausdorff, 45
Hausdorff, 42
Hausdorff oriented, 42
homogeneous, 45, 46
min
control, 61
control system, 62
filter, 302
min-T control system, 64
minimax algebra, 62
minimum rate, 367
minimum size threshold, 326
minimum spanning tree, 224-226
Minkowski
addition, 14, 15, 33, 54, 57, 72,
140, 150
existence theorem, 34
factorization equation, 15
inequality, 34
subtraction, 14, 15, 51, 54-56, 150
sum, 33, 353
sum volume minimization, 33, 38
MIP map, 267
mipmapping, 263
mixed
volume, 35
mixed volume, 33

mixture model, 364, 366
MMachs, 371
monoid, 61
morphological
adjunction pyramid, 275
edge detector, 301
filtering, 180
filters, 61
fold-space operator, 104
gradient, 398
interpolation, 71, 77, 81, 82
Laplacian, 266
machines, 371
measurements, 255
mult iscale analysis, 416
multiscale fingerprints, 416
parabolic scale-space, 288
profile, 179
profile function, 179
pyramids, 273, 274
recursive filters, 62
sampling, 163
scale-space, 293, 416
scale-space operator, 283, 287
similarity, 76
skeleton, 3
slope transform, 287
wavelets, 273
morphological profile
derivative of, 181, 182
motion
descriptors, 216, 217
detection, 321, 324
distribution, 216
estimate, 322
filtering, 175
homogeneity criterion, 172
segmentation, 215
motion detection
quality of, 327
MPEG-4, 223, 233
MPEG-7, 223, 233
MRF, 406, 411
MRF-Gibbs field equivalence, 411
MSE, 367
multi-classifier, 373
multi-scale gradient, 199
multimedia applications, 223
multiresolution
connectivity, 159, 161-163, 166
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enhancement, 125
features, 159

multiresolution connectivity
based on morphological sampling,

163

based on pyramids of operators, 163
dilation-based, 163

multiscale
closing characteristic, 182
dilation, 292, 416
erosion, 292, 416
morphological analysis, 416
morphological fingerprints, 416
opening characteristic, 182
representation, 291
segmentation, 189
segmentation algorithm, 293, 294

negation, 101
neighborhood, 409

of a point, 140
nonlinear control system, 61

object deformation, 81
morphological-affine, 81
object-oriented coding, 166
objective functional, 34
observability, 68
occurrence threshold, 326
OCR, 371
OCR classifier, 371
open-closing
soft, 131
opening, 109, 150, 169, 301, 363, 407
a-connectivity, 162, 165, 166
algebraic, 8, 109, 151
area, 173
attribute, 312
connected, 72, 312
directional, 401, 402
flexible linear, 109
soft, 131
straight line, 109
top-hat, 407
trivial, 312
opening profile, 181
derivative of, 182
opening spectrum, 183
operator, 19
analysis, 165, 274
approximation, 164

attribute, 312
connected, 55, 169, 235
discretization of, 28
dual, 19
embedding, 25
fillhole, 383
fold-space morphological, 104
folding, 102, 103
idempotent, 9
increasing, 20
invertible, 9
localy defined, 19, 372
morphological scale-space, 283, 287
mutually negative, 144, 147
negation, 19
optimal, 373
partition lattice, 233, 235
reconstruction, 164
reference sampling, 265
sampling, 164
self-dual, 101
signa lattice, 64
sup-generating, 13
SVO extractor, 235
synthesis, 165, 274
translation invariant, 19, 64, 66,
120, 372
vector lattice, 64
optical charecter recognition, 371
optimal path, 110
order index, 131
order relation, 53
ordered queue, 341
orientation parameter, 244
output response, 67
oversegmentation, 180, 207, 291, 296,
347

parallepiped, 52

partial
order relation, 100
ordered set, 4, 5, 160
ordering, 4, 7

partition, 160, 234
coarser, 160
connected, 160
connected hierarchical, 166
finer, 160
hierarchical, 166

partition feature, 167
upper semi-continuous, 167
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partition operator
based on regiona maximum likeli-
hood, 236
statistical validation of, 239
partition tree
binary, 172
path, 342
path cost, 342
pattern spectrum, 183
PDE, 92
peak component, 313
phase, 5
pixel queue algorithm, 314
pixel similarity rule, 179
PNG, 364, 370
Poisson process, 425
polyhedron
edge representation, 35
facet representation, 34
vertex representation, 35
pores, 167
portable networks graphics format, 364
poset, 4, 101, 160
posterior probability, 412
posterior probability distribution, 410
potential, 411
power set, 14
prediction-adjustment process, 233
prefix max-min problem, 306
prefix-suffix max problem, 304
prefix-suffix max-min, 308
principal component analysis, 415
prior probability, 4 10
of labelings, 411
probabilistic automata, 63
proper concave function, 24, 26
pruning, 172
3D skeleton graph, 358
region-tree, 169
pseudo-
anti-granulometry, 256
closing, 57, 58
convex hull, 389, 390
granulometry, 256
inverse, 6
medial axis, 408
opening, 57
random noise, 366
pyramid, 5
condition, 274

decomposition, 159, 165
of closings, 164

of dilations, 163

of operators, 163
projection, 225, 227
scheme, 362

transform, 273, 274

quadrangular  zone, 52
guadtree decomposition, 3
Quantization, 4, 7, 322

by rounding, 7

by truncation, 7

lossy, 362

of direction, 326
quasi-ordering, 100
guench points, 354

random
function, 255
set, 255, 371, 373
structure, 255
texture, 219
reachable set, 68
receiver operation curve, 416, 422
reconstruction, 72
reconstruction set, 72
recursive morphological filters, 62
refractive index, 352
region growing, 179, 180, 215
seeded, 215, 217
region merging, 235
region representation, 217
region tree representation, 170
max-tree, 170
min-tree, 170
regiond maximum, 181, 313
regiona maximum likelihood, 238
relative contrast, 183
relative entropy, 366
repetition parameter, 131
representation tree, 20
resolution conversion, 119
rest function, 26
restoration, 4
restriction class, 120
RGB color space, 208
ridges, 359
Riemannian geometry, 352
road identification, 405
root marker, 165
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root marker set, 166

saliency measure, 409
sample complexity, 374
sampling
element, 164
grid, 164
quincunx scheme, 273, 275
scheme, 273
scale parameter, 92
scale-space, 283, 285, 291
affine invariant, 92
construction, 285
contrast invariant, 92
fingerprints of, 417
idempotent, 294
linear, 283, 416
linear Gaussian, 283
local, 92
morphological, 293, 416
parabolic morphological, 288
smoothing, 92
theory, 292, 416
scaling, 5, 284
anamorphic, 284, 288
umbral 288
scanning
binary, 361
grayscale, 361
scene contrast, 322
Schréder’s theorem, 100
segmentation, 122, 160, 179, 189, 207,
215, 223, 234, 291, 341, 361,
363, 381, 397, 398
color, 199
color with watersheds, 203
evaluation function, 211
from markers, 231
hierarchical, 159, 166
hierarchical watershed, 207
interactive, 197, 223
mask, 363
motion-based, 216
multiscale, 189
of color images, 207
of electrophoresis image, 296
of figures, 397
of text, 397
pyramid, 223, 225, 226
quality measures, 211
region-based, 216

unsupervised, 197
velocity-based, 216
with markers, 196
semantic video object, 233, 234
semi-lattice, 57
semi-ring operation, 302
semigroup, 285
+y-scale, 285
additive, 285
commutative, 285
linearly ordered, 285
supremal, 285
sensor
contrast adjustment, 322
modelization, 322
separating functions, 51
separation, 152
sequential  decomposition, 13, 21
set operator, 372
shape
description, 95
parameter, 244
recognition, 91
representation, 351
shock waves
propagation of, 357
shortest-path forest problem, 343
shortest-path tree, 343
signa energy, 10
signa lattice, 66
signal processing, 4, 10
on posets, 7
signal-to-noise ratio, 133
simplicity measure, 8
simulated anneadling, 412
singular set, 48
size distribution, 256
size parameter, 244
skeleton, 245, 351
by influence zones, 245, 249, 343
SKl1Z, 249, 343
slope diagram representation, 34
for convex polyhedra, 34
smoothing
curvature-based, 92
SNR, 133
soft boundary, 130
soft morphological filters, 129, 130
optimization, 131
spanning tree, 191
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spherical arc, 37
spherical point, 37
stability, 67
stamp, 371, 377
state response, 67
state-space, 61
structuring element, 19, 169, 301
affine, 93
connected, 152
structuring function, 23, 24, 131, 286
concave, 23, 24
cone shaped, 23
decomposition, 23, 26
flat convex, 288
quadratic, 29
scale-space, 416
scaled, 293
separable, 25
sphere, 417
structuring system, 131
sublinear function, 287
subpolynomial function, 286
subset adjacency, 146
sup-
decomposition, 13, 21
generating family, 160
generator, 160
supercover discretization, 46
support function, 33
support set, 33
SVO, 234
extraction, 235
tracking, 235
swamping, 194
synthesis operator, 274
synthetic aperture radar, 405

T-invariance, 151
Tarjan’s union-find algorithm, 311
telecommunication networks, 425
template matching, 4, 418
text separation, 400
texture
classification, 253
mapping, 263, 267
simulation, 249
top-hat, 181, 266
inverse, 181
transform, 202
topographic map, 92
topology, 141

digital, 139, 140
training set, 133

ultrametric
distance, 192
structure, 192
union-find algorithm, 315
upper accumulation point, 161, 166
upper semicontinuous function, 155

valley removal, 204

valleys, 359

variogram, 243, 244

vector lattice, 65

vector translation, 65
vectorial functions, 51
velocity estimation, 215
velocity model, 322

video object plane, 234
video sequence, 223

video sequence processing, 224
Viterbi algorithm, 173
volume extraction value, 227
Voronoi diagram, 426
Voronoi regions, 357

watershed, 189, 191, 199, 207, 224, 225,
257, 292, 341
algorithm, 345
color techniques, 203
from markers, 342
line detection, 180
segmentation, 180
transform, 199, 226, 406, 408
wave propagation
as a morphological (set) operation,
352
discrete, 351
wavefront propagation, 204
wavelet, 278
lazy, 278
lifted, 278
transform, 273, 276

Young-Fenchel conjugate, 287
zero crossings, 292

zone
of a partition, 160, 234
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