
Distributed
Autonomous
Robotic Systems

Roderich Groß · Andreas Kolling
Spring Berman · Emilio Frazzoli
Alcherio Martinoli · Fumitoshi Matsuno
Melvin Gauci Editors

The 13th International Symposium

Springer Proceedings in Advanced Robotics 6
Series Editors: Bruno Siciliano · Oussama Khatib

Springer Proceedings in Advanced Robotics

Series editors

Prof. Bruno Siciliano
Dipartimento di Ingegneria Elettrica
e Tecnologie dell’Informazione
Università degli Studi di Napoli
Federico II
Via Claudio 21, 80125 Napoli
Italy
E-mail: siciliano@unina.it

Prof. Oussama Khatib
Robotics Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010
USA
E-mail: khatib@cs.stanford.edu

Editorial Advisory Board

Gianluca Antonelli, University of Cassino, Italy
Dieter Fox, University of Washington, USA
Kensuke Harada, Osaka University, Japan
M. Ani Hsieh, University of Pennsylvania, USA
Torsten Kröger, Karlsruhe Institute of Technology, Germany
Dana Kulić, University of Waterloo, Canada
Jaehung Park, Seoul National University, South Korea

6

More information about this series at http://www.springer.com/series/15556

http://www.springer.com/series/15556

Roderich Groß • Andreas Kolling
Spring Berman • Emilio Frazzoli
Alcherio Martinoli • Fumitoshi Matsuno
Melvin Gauci
Editors

Distributed Autonomous
Robotic Systems
The 13th International Symposium

123

Editors
Roderich Groß
Department of Automatic Control
and Systems Engineering

University of Sheffield
Sheffield
UK

Andreas Kolling
Department of Automatic Control
and Systems Engineering

University of Sheffield
Sheffield
UK

Spring Berman
School for Engineering of Matter,
Transport and Energy (SEMTE)

Arizona State University
Tempe, AZ
USA

Emilio Frazzoli
Massachusetts Institute of Technology
Cambridge, MA
USA

Alcherio Martinoli
ENAC, IIE, DIAL
École Polytechnique Fédérale
de Lausanne (EPFL)

Lausanne
Switzerland

Fumitoshi Matsuno
Department of Mechanical Engineering
and Science

Kyoto University
Kyoto
Japan

Melvin Gauci
Wyss Institute for Biologically
Inspired Engineering

Harvard University Wyss Institute
for Biologically Inspired

Cambridge, MA
USA

ISSN 2511-1256 ISSN 2511-1264 (electronic)
Springer Proceedings in Advanced Robotics
ISBN 978-3-319-73006-6 ISBN 978-3-319-73008-0 (eBook)
https://doi.org/10.1007/978-3-319-73008-0

Library of Congress Control Number: 2017962037

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Robots! Robots on Mars and in oceans, in hospitals and homes, in factories and
schools; robots fighting fires, making goods and products, saving time and lives.
Robots today are making a considerable impact from industrial manufacturing to
healthcare, transportation, and exploration of the deep space and sea. Tomorrow,
robots will become pervasive and touch upon many aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with
the goal of bringing to the research community the latest advances in the robotics
field based on their significance and quality. During the past 15 years, the STAR
series has featured publication of both monographs and edited collections. Among
the latter, the proceedings of thematic symposia devoted to excellence in robotics
research, such as ISRR, ISER, FSR, and WAFR, have been regularly included in
STAR.

The expansion of our field as well as the emergence of new research areas has
motivated us to enlarge the pool of proceedings in the STAR series in the past few
years. This has ultimately led to launching a sister series in parallel to STAR. The
Springer Proceedings in Advanced Robotics (SPAR) is dedicated to the timely
dissemination of the latest research results presented in selected symposia and
workshops.

This volume of the SPAR series brings the proceedings of the thirteenth edition
of the DARS symposium on Distributed Autonomous Robotic Systems, whose
proceedings have been previously published within STAR. This symposium took
place at the Natural History Museum in London from November 7th to 9th, 2016.
The volume edited by Roderich Groß, Andreas Kolling, Spring Berman, Emilio
Frazzoli, Alcherio Martinoli, Fumitoshi Matsuno, and Melvin Gauci contains 47
scientific contributions organized in seven chapters. This collection focuses on
robotic exploration, modular and swarm robotics, multi-robot control, estimation,
planning, and applications.

v

From its excellent technical program to its warm social interaction, DARS
culminates with this unique reference on the current developments and new
advances in distributed autonomous robotic systems—a genuine tribute to its
contributors and organizers!

Naples, Italy Bruno Siciliano
Stanford, CA, USA Oussama Khatib
November 2017 SPAR Editors

vi Foreword

Preface

These proceedings contain the papers presented at DARS 2016, the 13th
International Symposium on Distributed Autonomous Robotic Systems, which was
held at the Natural History Museum in London, UK, from November 7th to 9th,
2016. The goal of DARS is to provide a forum for scientific advances in the theory
and practice of distributed autonomous robotic systems. Distributed robotics is an
interdisciplinary and rapidly growing area, combining research in computer science,
communication and control systems, and electrical and mechanical engineering.
Distributed robotic systems can autonomously solve complex problems while
operating in highly unstructured real-world environments. They are expected to
play a major role in addressing future societal needs, for example, by improving
environmental impact assessment, food supply, transportation, manufacturing,
security, and emergency and rescue services.

Building upon previous editions, the symposium presented a strong and varied
technical program. We received a record 120 paper submissions—a testament to the
thriving and growing nature of the field. The review process was overseen by the
Program Chairs. Each paper was reviewed by at least three reviewers. Moreover,
each paper received a final evaluation by a Program Chair. We would like to thank
all members of the Program Committee as well as the additional referees for their
diligent and constructive reviews—a crucial element for upholding the high tech-
nical standard of DARS. The review process yielded 47 papers to be included in the
symposium, corresponding to an acceptance rate of 39%. Of the 47 papers, 30
papers were presented orally, and 17 papers were presented as posters. The method
of presentation was chosen not only based on the quality of each paper, but also on
content in order to ensure a well-balanced oral track, which is of interest to most
of the attendees. Additionally, the papers for oral presentation were divided into
seven thematic areas, namely Distributed Coverage and Exploration, Multi-Robot
Control, Multi-Robot Estimation, Multi-Robot Planning, Modular Robots and
Smart Materials, Swarm Robotics, and Multi-Robot Systems in Applications. All
47 accepted papers are included in these proceedings.

The program also featured four invited keynote addresses by researchers who are
making a lasting contribution to science and robotics: “Material-Integrated

vii

Intelligence for Robot Autonomy” by Nikolaus Correll (University of Colorado
Boulder, USA), “Coordination, Cooperation and Collaboration in Multi-Robot
Systems” by Vijay Kumar (University of Pennsylvania, USA), “Go to the Bee and
Be Wise: Swarm Engineering Inspired by House-Hunting Honeybees” by James
Marshall (University of Sheffield, UK), and “Robust Human Control of
Multi-Robot Swarms” by Katia Sycara (Carnegie Mellon University, USA). The
abstracts of these four keynote addresses are included in the proceedings.

This edition of DARS included three awards: Best Paper, Best Application
Paper, and Best Poster. The awards committee was chaired by Michael Rubenstein
(Northwestern University, USA) and included Melvin Gauci (Harvard University,
USA), Sabine Hauert (Bristol University, UK), and Bahar Haghighat (EPFL,
Switzerland). For the Best Paper award, the Program Chairs nominated six papers
as finalists from among all the accepted papers based on the reports and award
nominations by the referees, as well as on the revised contributions included in the
digital proceedings. The final decision also took into account the presentation
quality at the symposium. The Best Paper award went to “Robust Coordinated
Aerial Deployments for Theatrical Applications Given Online User Interaction via
Behavior Composition” by Elen Cappo et al. The Best Application Paper award
was sponsored by the Institution of Engineering and Technology. All
orally-presented papers were eligible for this award, and the decision took into
account the degree to which the work addressed problems of practical implemen-
tation, and the quality of the presentation. This award went to “Multi-Swarm
Infrastructure for Swarm Versus Swarm Experimentation” by Duane Davis et al.
All posters were eligible for the Best Poster award, and the decision was based on
the quality of the work and the poster presentation. This award went to “Vertex: A
New Distributed Underwater Robotic Platform for Environmental Monitoring” by
Felix Schill et al.

We would like to thank everyone involved in making DARS 2016 a success,
including VICON Motion Systems (DARS 2016 Platinum Sponsor), RS
Components (DARS 2016 Gold Sponsor), the Advisory Committee, the Program
Committee and additional referees, the Organizing Committee, and all the authors
of all submitted papers. Finally, we would like to thank the local organization team,
in particular Ana Macintosh and Stefan M. Trenkwalder.

Sheffield, UK Roderich Groß
July 2017 Andreas Kolling

Spring Berman
Emilio Frazzoli

Alcherio Martinoli
Fumitoshi Matsuno

Melvin Gauci

viii Preface

Organization

General Chair
Roderich Groß, The University of Sheffield, UK

General Co-Chair
Andreas Kolling, iRobot, USA

Technical Program Co-Chairs
Spring Berman, Arizona State University, USA
Emilio Frazzoli, MIT, USA
Alcherio Martinoli, EPFL, Switzerland
Fumitoshi Matsuno, Kyoto University, Japan

Publication Chair
Melvin Gauci,
Harvard University, USA

Publicity Chair
Sabine Hauert, University of Bristol, UK

Local Organization Team
Louise A. Caffrey, The University of Sheffield, UK
Ana MacIntosh, The University of Sheffield, UK
Stefan M. Trenkwalder, The University of Sheffield, UK

Advisory Committee
Hajime Asama, University of Tokyo, Japan
Marcelo H. Ang, National University of Singapore, Singapore
Tamio Arai, University of Tokyo, Japan
Raja Chatila, UPMC, France
Gregory S. Chirikjian, Johns Hopkins University, USA
Young-Jo Cho, ETRI, Republic of Korea
Nak Young Chong, JAIST, Japan
Nikolaus Correll, University of Colorado Boulder, USA

ix

Rüdiger Dillmann, KIT, Germany
Toshio Fukuda, Nagoya University, Japan
Maria Gini, University of Minnesota, USA
M. Ani Hsieh, University of Pennsylvania, USA
Alcherio Martinoli, EPFL, Switzerland
Francesco Mondada, EPFL, Switzerland
Lynne E. Parker, University of Tennessee, USA

Program Committee

William Agassounon, Textron Defense Systems Inc., USA
Antonio P. Aguiar, University of Porto, Portugal
Rachid Alami, LAAS-CNRS, France
Javier Alonso-Mora, MIT, USA
Francesco Amigoni, Polytechnic University of Milan, Italy
Marcelo H. Ang, National University of Singapore, Singapore
Adrian Arfire, EPFL, Switzerland
Ryo Ariizumi, Nagoya University, Japan
Filippo Arrichiello, University of Cassino and Southern Lazio, Italy
Masoud Asadpour, University of Tehran, Iran
Shun-ichi Azuma, Kyoto University, Japan
Nicola Basilico, University of Milan, Italy
Meysam Basiri, EPFL, Switzerland
Jacob Beal, Raytheon BBN Technologies, USA
Kostas Bekris, Rutgers University, USA
Gerardo Beni, University of California, Riverside, USA
Sarah Bergbreiter, University of Maryland, USA
Navneet Bhalla, Harvard University, USA
Subhrajit Bhattacharya, University of Pennsylvania, USA
Mauro Birattari, Université Libre de Bruxelles, Belgium
Nicolas Bredeche, Pierre and Marie Curie University, France
Andreas Breitenmoser, University of Southern California, USA
Zack J. Butler, Rochester Institute of Technology, USA
Stefano Carpin, University of California, Merced, USA
Luiz Chaimowicz, Federal University of Minas Gerais, Brazil
Han-Lim Choi, KAIST, Republic of Korea
Anders L. Christensen, University Institute of Lisbon, Portugal
Timothy H. Chung, DARPA, USA
Brian Coltin, Carnegie Mellon University, USA
Nikolaus Correll, University of Colorado Boulder, USA
Jorge Cortés, University of California, San Diego, USA
Raffaello D’Andrea, ETH Zurich, Switzerland
Philip Dames, Temple University, USA
Karthik Dantu, SUNY Buffalo, USA

x Organization

Prithviraj Dasgupta, University of Nebraska Omaha, USA
Carrick Detweiler, University of Nebraska Lincoln, USA
Gianni A. Di Caro, IDSIA USI, Switzerland
Rüdiger Dillmann, KIT, Germany
Dimos Dimarogonas, KTH, Sweden
Clare Dixon, University of Liverpool, USA
Marco Dorigo, Université Libre de Bruxelles, Belgium
Takahiro Endo, Kyoto University, Japan
William C. Evans, Google, USA
Alessandro Farinelli, University of Verona, Italy
Eliseo Ferrante, University of Leuven, Belgium
Rafael Fierro, The University of New Mexico, USA
Robert Fitch, The University of Sydney, Australia
Ryusuke Fujisawa, Hachinohe Institute of Technology, Japan
Rui Fukui, University of Tokyo, Japan
Simon Garnier, New Jersey Institute of Technology, USA
Andrea Gasparri, Roma Tre University, Italy
Melvin Gauci, Harvard University, USA
Veysel Gazi, Istanbul Kemerburgaz University, Turkey
Katie Genter, University of Texas Austin, USA
Maria Gini, University of Minnesota, USA
Heiko Hamann, University of Paderborn, Germany
Kiyohiko Hattori, NICT, Japan
Sabine Hauert, University of Bristol, UK
Tomohisa Hayakawa, Tokyo Institute of Technology, Japan
Geoffrey Hollinger, Oregon State University, USA
Satoshi Hoshino, Utsunomiya University, Japan
Jonathan P. How, MIT, USA
M. Ani Hsieh, University of Pennsylvania, USA
Hiroyuki Iizuka, Hokkaido University, Japan
Volkan Isler, University of Minnesota, USA
Yoshiaki Katada, Setsunan University, Japan
Takashi Kawakami, Hokkaido University of Science, Japan
Mirko Kovac, Imperial College London, UK
Masao Kubo, National Defense Academy, Japan
Daisuke Kurabayashi, Tokyo Institute of Technology, Japan
Haruhisa Kurokawa, AIST, Japan
Konstantinos J. Kyriakopoulos, National Technical University of Athens, Greece
Dongjun Lee, Seoul national University, Republic of Korea
Somchaya Liemhetcharat, Uber Advanced Technologies Center, USA
Pedro U. Lima, University of Lisbon, Portugal
Ali Marjovi, EPFL, Switzerland
Lino Marques, University of Coimbra, Portugal
Fulvio Mastrogiovanni, University of Genova, Italy

Organization xi

Nathan Michael, Carnegie Mellon University, USA
Dejan Milutinovic, University of California, Santa Cruz, USA
Melanie Moses, The University of New Mexico, USA
Masaaki Nagahara, Kyoto University, Japan
Radhika Nagpal, Harvard University, USA
Toru Namerikawa, Keio University, Japan
Nils Napp, SUNY Buffalo, USA
Daniele Nardi, Sapienza University of Rome, Italy
Keitaro Naruse, University of Aizu, Japan
Iñaki Navarro, EPFL, Switzerland
Giuseppe Notarstefano, University of Salento, Italy
Michael Novitzky, Georgia Institute of Technology, USA
Shinsuke Oh-hara, University of Yamanashi, Japan
Kazuhiro Ohkura, Hiroshima University, Japan
Derek Paley, University of Maryland, USA
Lucia Pallottino, University of Pisa, Italy
Antonio Pascoal, University of Lisbon, Portugal
Marco Pavone, Stanford University, USA
José Pereira, EPFL, Switzerland
Kirstin H. Petersen, Cornell University, USA
Hemma Philamore, University of Bristol, UK
Luciano C. A. Pimenta, Federal University of Minas Gerais, Brazil
Carlo Pinciroli, Ecole Polytechnique de Montréal, Canada
Amanda Prorok, University of Pennsylvania, USA
Subramanian Ramamoorthy, The University of Edinburgh, UK
Andreagiovanni Reina, The University of Sheffield, UK
Ioannis Rekleitis, University of South Carolina, USA
Paolo Remagnino, Kingston University London, UK
Alessandro Renzaglia, LAAS CNRS, France
Paolo Robuffo Giordano, IRISA/INRIA Rennes, France
Michael Rubenstein, Northwestern University, USA
Lorenzo Sabattini, University of Modena and Reggio Emilia, Italy
Brian Sadler, US Army Research Laboratory, USA
Erol Sahin, Middle East Technical University, Turkey
Kazunori Sakurama, Tottori University, Japan
Ketan Savla, University of Southern California, USA
Thomas Schmickl, University of Graz, Austria
Mac Schwager, Stanford University, USA
Iman Shames, University of Melbourne, Australia
Dylan A. Shell, Texas A&M University, USA
Wei-Min Shen, University of Southern California, USA
Tomohiro Shirakawa, National Defense Academy of Japan, Japan
Stephen L. Smith, University of Waterloo, Canada
Paolo Stegagno, Cornell University, USA

xii Organization

Kasper Stoy, IT University of Copenhagen, Denmark
Ken Sugawara, Tohoku Gakuin University, Japan
Ikuo Suzuki, Kitami Institute of Technology, Japan
Keiki Takadama, The University of Electrocommunications, Japan
Herbert G. Tanner, University of Delaware, USA
Danilo Tardioli, University Center of Defense, Spain
Guy Theraulaz, Paul Sabatier University and CNRS, France
Jonathan Timmis, University of York, UK
Vito Trianni, ISTC CNR, Italy
Elio Tuci, Aberystwyth University, UK
Kazuki Umemoto, Kanagawa University, Japan
Richard T. Vaughan, Simon Fraser University, Canada
Rodrigo Ventura, University of Lisbon, Portugal
Richard Voyles, Purdue University, USA
Justin Werfel, Harvard University, USA
Kazuaki Yamada, Toyo University, Japan
Masahito Yamamoto, Hokkaido University, Japan
Toshiyuki Yasuda, Hiroshima University, Japan
Jingjin Yu Rutgers, University, USA
Ikemoto Yusuke, Meijo University, Japan
Uwe R. Zimmer, Australian National University, Australia

Additional Referees

Charuvahan Adhivarahan
Jacopo Banfi
Florian Berlinger
Barbara Bruno
Levi DeVries
Sedat Dogru
Kevin Eckenhoff
Elizabeth Esterly
Andres Faina
Boris Gromov
Bahar Haghighat
Christoph Hintz
Lucas Janson
Matthew Kelly
Yara Khaluf
Jose Marcio Luna
Massimo Mecella
Michael Otte
Alyssa Pierson
Ragesh K. Ramachandran
Daniel Selvaratnam

Organization xiii

Sara Spedicato
Khalil Taheri
Stefan M. Trenkwalder
Constantinos Vrohidis
Jonathan West
Sean Wilson
Indrajeet Yadav
Dingjiang Zhou
Saeed Ahmadizadeh
Cenk Baykal
Dimitris Boskos
Alessio Capitanelli
Krishna Doddapaneni
Miguel Duarte
Iñaki Esnaola
Mark Fabbro
Jorge Gomes
Meng Guo
Shahab Heshmati-Alamdari
Frank Imeson
Aris Kanellopoulos
Monroe Kennedy
Ganesh Kumar
Yoshiyuki Matsumura
Ivano Notarnicola
Cammy Peterson
Hasan Poonawala
Philipp Schillinger
Wenceslao Shaw-Cortez
Adam Stager
Andrea Testa
Andrea Vanzo
Zijian Wang
Michael Whitzer
Peter Wurman
Michael Zavlanos

xiv Organization

Contents

Part I Distributed Coverage and Exploration

A Probabilistic Topological Approach to Feature Identification
Using a Stochastic Robotic Swarm . 3
Ragesh K. Ramachandran, Sean Wilson and Spring Berman

Communication-Restricted Exploration for Search Teams 17
Elizabeth A. Jensen, London Lowmanstone and Maria Gini

From Ants to Birds: A Novel Bio-Inspired Approach to Online
Area Coverage . 31
Luca Giuggioli, Idan Arye, Alexandro Heiblum Robles
and Gal A. Kaminka

Information Based Exploration with Panoramas and Angle
Occupancy Grids . 45
Daniel Mox, Anthony Cowley, M. Ani Hsieh and C. J. Taylor

Multirobot Persistent Patrolling in Communication-Restricted
Environments . 59
Marta Romeo, Jacopo Banfi, Nicola Basilico and Francesco Amigoni

Part II Multi-Robot Control

A Comparative Study of Collision Avoidance Algorithms
for Unmanned Aerial Vehicles: Performance
and Robustness to Noise . 75
Steven Roelofsen, Denis Gillet and Alcherio Martinoli

A Decentralized Control Strategy for Resilient Connectivity
Maintenance in Multi-robot Systems Subject to Failures 89
Cinara Ghedini, Carlos H. C. Ribeiro and Lorenzo Sabattini

xv

Chase Your Farthest Neighbour . 103
Rotem Manor and Alfred M. Bruckstein

OuijaBots: Omnidirectional Robots for Cooperative Object
Transport with Rotation Control Using No Communication 117
Zijian Wang, Guang Yang, Xuanshuo Su and Mac Schwager

Persistent Multi-robot Formations with Redundancy 133
Alyxander Burns, Bernd Schulze and Audrey St. John

Triangular Networks for Resilient Formations . 147
David Saldaña, Amanda Prorok, Mario F. M. Campos and Vijay Kumar

Part III Multi-Robot Estimation

Construction of Optimal Control Graphs
in Multi-robot Systems . 163
Gal A. Kaminka, Ilan Lupu and Noa Agmon

Decision-Making Accuracy for Sensor Networks
with Inhomogeneous Poisson Observations . 177
Chetan D. Pahlajani, Indrajeet Yadav, Herbert G. Tanner
and Ioannis Poulakakis

Distributed Laplacian Eigenvalue and Eigenvector
Estimation in Multi-robot Systems . 191
Mehran Zareh, Lorenzo Sabattini and Cristian Secchi

Distributed Object Characterization with Local Sensing
by a Multi-robot System . 205
Golnaz Habibi, Sándor P. Fekete, Zachary Kingston and James McLurkin

Optical Wireless Communications for Heterogeneous DARS 219
Patricio J. Cruz, Christoph Hintz, Jonathan West and Rafael Fierro

Part IV Multi-Robot Planning

Bundling Policies for Sequential Stochastic Tasks
in Multi-robot Systems . 237
Changjoo Nam and Dylan A. Shell

Decomposition of Finite LTL Specifications for Efficient
Multi-agent Planning . 253
Philipp Schillinger, Mathias Bürger and Dimos V. Dimarogonas

Informative Path Planning and Mapping with Multiple UAVs
in Wind Fields . 269
Doo-Hyun Cho, Jung-Su Ha, Sujin Lee, Sunghyun Moon
and Han-Lim Choi

xvi Contents

Multi-robot Informative and Adaptive Planning
for Persistent Environmental Monitoring . 285
Kai-Chieh Ma, Zhibei Ma, Lantao Liu and Gaurav S. Sukhatme

The Effectiveness Index Intrinsic Reward for Coordinating
Service Robots . 299
Yinon Douchan and Gal A. Kaminka

United We Move: Decentralized Segregated Robotic Swarm
Navigation . 313
Fabrício R. Inácio, Douglas G. Macharet and Luiz Chaimowicz

Part V Modular Robots and Smart Materials

A Rule Synthesis Algorithm for Programmable Stochastic
Self-assembly of Robotic Modules . 329
Bahar Haghighat and Alcherio Martinoli

Distributed Adaptive Locomotion Learning in ModRED Modular
Self-reconfigurable Robot . 345
Ayan Dutta, Prithviraj Dasgupta and Carl Nelson

Distributed Camouflage for Swarm Robotics and Smart
Materials . 359
Yang Li, John Klingner and Nikolaus Correll

Evo-Bots: A Simple, Stochastic Approach to Self-assembling
Artificial Organisms . 373
Juan A. Escalera, Matthew J. Doyle, Francesco Mondada
and Roderich Groß

Geometrical Study of a Quasi-spherical Module for Building
Programmable Matter . 387
Benoît Piranda and Julien Bourgeois

HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable
Modular Robot and its Extensions . 401
Christopher Parrott, Tony J. Dodd and Roderich Groß

Network Characterization of Lattice-Based Modular Robots
with Neighbor-to-Neighbor Communications . 415
André Naz, Benoît Piranda, Thadeu Tucci, Seth Copen Goldstein
and Julien Bourgeois

Part VI Swarm Robotics

Decentralized Progressive Shape Formation with Robot Swarms 433
Carlo Pinciroli, Andrea Gasparri, Emanuele Garone
and Giovanni Beltrame

Contents xvii

Discovery and Exploration of Novel Swarm Behaviors
Given Limited Robot Capabilities . 447
Daniel S. Brown, Ryan Turner, Oliver Hennigh and Steven Loscalzo

Effects of Spatiality on Value-Sensitive Decisions Made
by Robot Swarms . 461
Andreagiovanni Reina, Thomas Bose, Vito Trianni
and James A. R. Marshall

Emergence and Inhibition of Synchronization
in Robot Swarms . 475
Fernando Perez-Diaz, Stefan M. Trenkwalder, Rüdiger Zillmer
and Roderich Groß

Evolving Behaviour Trees for Swarm Robotics 487
Simon Jones, Matthew Studley, Sabine Hauert and Alan Winfield

Evolving Group Transport Strategies for e-Puck Robots:
Moving Objects Towards a Target Area . 503
Muhanad H. Mohammed Alkilabi, Aparajit Narayan, Chuan Lu
and Elio Tuci

From Formalised State Machines to Implementations
of Robotic Controllers . 517
Wei Li, Alvaro Miyazawa, Pedro Ribeiro, Ana Cavalcanti,
Jim Woodcock and Jon Timmis

Human Responses to Stimuli Produced by Robot
Swarms - the Effect of the Reality-Gap on Psychological State 531
Gaëtan Podevijn, Rehan O’Grady, Carole Fantini-Hauwel
and Marco Dorigo

Localization of Inexpensive Robots with Low-Bandwidth
Sensors . 545
Shiling Wang, Francis Colas, Ming Liu, Francesco Mondada
and Stéphane Magnenat

Modelling Mood in Co-operative Emotional Agents 559
Joe Collenette, Katie Atkinson, Daan Bloembergen and Karl Tuyls

Programmable Self-disassembly for Shape Formation
in Large-Scale Robot Collectives . 573
Melvin Gauci, Radhika Nagpal and Michael Rubenstein

xviii Contents

Towards Differentially Private Aggregation of Heterogeneous
Robots . 587
Amanda Prorok and Vijay Kumar

Part VII Multi-Robot Systems in Applications

Construction Planning for a Modularized Rail Structure: Type
Selection of Rail Structure Modules and Dispatch Planning of
Constructor Robots . 605
Rui Fukui, Yuta Kato, Gen Kanayama, Ryo Takahashi
and Masayuki Nakao

Distributed Convolutional Neural Networks for Human Activity
Recognition in Wearable Robotics . 619
Dana Hughes and Nikolaus Correll

Formation Control of a Drifting Group of Marine Robotic Vehicles . . . 633
Nicholas R. Rypkema and Henrik Schmidt

Multi-swarm Infrastructure for Swarm Versus Swarm
Experimentation . 649
Duane T. Davis, Timothy H. Chung, Michael R. Clement
and Michael A. Day

Robust Coordinated Aerial Deployments for Theatrical Applications
Given Online User Interaction via Behavior Composition 665
Ellen A. Cappo, Arjav Desai and Nathan Michael

Vertex: A New Distributed Underwater Robotic Platform for
Environmental Monitoring . 679
Felix Schill, Alexander Bahr and Alcherio Martinoli

Author Index . 695

Contents xix

Abstracts of Invited Keynote Presentations

Material-Integrated Intelligence for Robot Autonomy

Prof. Nikolaus Correll, University of Colorado Boulder, USA

Advances in miniature electronics, distributed algorithms and manufacturing
technology have enabled a new generation of smart composites that tightly integrate
sensing, actuation, computation and communication. Such “robotic materials” are
inspired by multifunctional natural structures such as the skin of the cuttlefish that
can change its color and patterning, bird wings that can change their shape, or the
human skin that provides tactile sensing at high dynamic range. I will describe a
series of recent results that best illustrate the benefits of material integrated com-
putation: high-bandwidth sensing for texture recognition and localization in artifi-
cial skins, distributed optimization for controlling shape change, distributed
classification for recognizing gestures drawn onto a modular facade, and feedback
control of soft robotic actuators. I will then describe current challenges in robotic
grasping and manipulation, and demonstrate how robotic materials can provide
critical sensing and control during a series of manipulation tasks with applications
to warehouse automation, manufacturing and lab automation.

Coordination, Cooperation, and Collaboration in Multi-Robot
Systems

Prof. Vijay Kumar, University of Pennsylvania, USA

The central challenge in multi-robot systems lies in the synthesis of collective
behaviors which enable group performance that exceeds the ability of individuals.
We explore three different paradigms for collective behaviors. At a fundamental
level, coordination is beneficial when individuals are confronted with a task that
they can complete but can do so more efficiently as a group. Cooperation refers to

xxi

the ability of robots to accomplish tasks they could not have completed on their
own. Collaboration is useful for groups with different types of robots with diverse
capabilities and tasks which cannot be completed with a single type of robot. This
talk will discuss biological inspiration for these paradigms, mathematical frame-
works, and resilience in collective behaviors with applications to ground and aerial
robots.

Go to the Bee and Be Wise: Swarm Engineering Inspired
by House-Hunting Honeybees

Prof. James A. R. Marshall, The University of Sheffield, UK

Distributed autonomous systems are likely to become increasingly important for
robotics and other applications, due to their potential for resilience, scalability,and
flexibility. However, designing grouplevel behaviors that are implemented by
simple individual-level rules operating with local information is an inherently hard
problem, and guaranteeing properties of that behavior is even harder. For example,
search techniques and formal methods applied to swarms both rapidly fall foul
of the curse of dimensionality as number of agents increase. However natural
selection has successfully designed such systems repeatedly, and tools from the
natural sciences have rigorously described the behaviour of very large systems of
interacting components. In this talk, I will recount how observations of
house-hunting honeybees led to the design of a new class of distributed
decision-making algorithm, and its deployment on hundreds of small and simple
robots. Rather than simply imitating nature, however, the algorithm’s principled
development requires the integration of concepts and techniques from areas as
diverse as behavioural ecology and statistical physics.

Robust Human Control of Multi-Robot Swarms

Prof. Katia Sycara, Carnegie Mellon University, USA

As robotic platforms become cheaper and more reliable, multirobot deployment
becomes possible and desirable. Since complete robot autonomy for these
deployments is not yet possible, the presence of a human operator is necessary.
Multiple human studies have shown that cognitive limitations prevent effective
human control of multi-robot systems of tens of robots. Another difficulty is that
many different types of human interactions may be necessary to maintain and
control multi-robot systems. Additionally, the coordination scheme of multiple
robots can vary which has consequences on the operator’s difficulty of control. We
have developed a characterization of human-robot tasks, and appropriate human

xxii Abstracts of Invited Keynote Presentations

robot interaction modes, based on the task's cognitive complexity of control. This
scheme helps explicate the forms of control likely to be needed and the demands
they pose on human operators. This talk will present two lines of research following
from this characterization. The first evaluates the potential for using scheduling
techniques to improve the performance of systems in which operators must attend
to multiple independently operating robots. The second presents challenges and
results pertaining to human control of autonomously cooperating robotic swarms.

Abstracts of Invited Keynote Presentations xxiii

Part I
Distributed Coverage and Exploration

A Probabilistic Topological Approach
to Feature Identification Using a Stochastic
Robotic Swarm

Ragesh K. Ramachandran, Sean Wilson and Spring Berman

Abstract This paper presents a novel automated approach to quantifying the topo-
logical features of an unknown environment using a swarm of robots with local
sensing and limited or no access to global position information. The robots ran-
domly explore the environment and record a time series of their estimated position
and the covariance matrix associated with this estimate. After the robots’ deploy-
ment, a point cloud indicating the free space of the environment is extracted from
their aggregated data. Tools from topological data analysis, in particular the concept
of persistent homology, are applied to a subset of the point cloud to construct barcode
diagrams, which are used to determine the numbers of different types of features in
the domain. We demonstrate that our approach can correctly identify the number
of topological features in simulations with zero to four features and in multi-robot
experiments with one to three features.

Keywords Unlocalized robotic swarm · Stochastic robotics · Mapping
GPS-denied environments · Topological data analysis · Algebraic topology

1 Introduction

Many potential applications for robotic swarms, such as environmental monitoring,
exploration, disaster response, search-and-rescue, andmining, will require the robots
to operate in uncertain environments. Constraints on the robots’ onboard power may
preclude the use of GPS and inter-robot communication, and even if the robots are

R. K. Ramachandran · S. Wilson · S. Berman (B)
School for Engineering of Matter, Transport and Energy, Arizona State University,
Tempe, AZ, USA
e-mail: spring.berman@asu.edu

S. Wilson
e-mail: sean.t.wilson@asu.edu

R. K. Ramachandran
e-mail: rageshkr@asu.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_1

3

4 R. K. Ramachandran et al.

equipped with localization devices, they may be deployed in GPS-denied environ-
ments (e.g., indoors or underground). Despite these constraints, the robots may be
required to map their environment in order to perform desired tasks. For instance, the
robots may need to identify target payloads to transport or obstacles and hazardous
regions to avoid. Since the robots will have limited sensing and computational capa-
bilities, it would not be feasible to implement existing techniques such as occupancy
grid mapping [24], simultaneous localization and mapping (SLAM) [21, 24], and
Probability Hypothesis Density (PHD) filtering [27] to address this problem.

As an initial step toward constructing amapwithmetric information,wepresent an
automated method for computing the number of topological features in an unknown
domain from data obtained by a swarm of inexpensive robots with local sensing, no
inter-robot communication, and limited or no access to global position information.
The features represent obstacles or other regions of interest that robots do not pass
through. The data consist of robots’ position estimates and the covariancematrices of
these estimates, recorded by the robots during random exploration of the domain. The
robots collect this data autonomously and independently during their deployment,
without relying on input from a supervisory agent. We assume that after a set period
of time, the robots navigate to an easily identifiable landmark (e.g., a beacon), where
they transfer this data to a central computer. The computer then processes the data
from the entire swarm to extract a point cloud that covers the domain’s free space and
applies tools from Topological Data Analysis (TDA), namely persistent homology, to
identify the numbers of different types of topological features. Our approach scales
with the number of robots and is robust to the failure of a small portion of the swarm.

Although topological mapping has been extensively studied, TDA has only
recently been applied in robotics for environmental characterization. For a scenario
with a single robot, [7] presents a method for topological SLAM that encodes the
topology of the environment in a generalized Voronoi graph. Few works address the
problem of mapping an environment using a robotic swarm with limited sensing, no
inter-robot communication, and no global localization. In [19], we presented an opti-
mal control approach to mapping a GPS-denied environment with a robotic swarm
using a partial differential equation model of the swarm population dynamics. This
strategy works best when the domain contains only a few sparsely distributed fea-
tures, whereas the approach presented here can be applied to domains that are more
densely populated with features. In [20], the authors propose an algorithm that covers
the free space of the environment with robots and then constructs an approximate
generalized Voronoi graph of the covered region. This algorithm requires the robots
to communicate with a central server that commands their actions. In contrast, our
approach does not require a centralized decision maker during the robots’ operation.
Alternatively, [13] obtains a simplicial approximation of a region of interest as a
topological map using dual pairs of nerves that are constructed using relevant vis-
ibility and observation covers. Contrary to our strategy, [13] requires the robots to
have the ability to detect and maintain a record of landmarks in the domain, such as
obstacle corners and edges. The mapping approach in [8] is similar to ours in that it
generates a point cloud of the domain’s free region and uses persistent homology to
compute topological features in the environment. However, unlike our strategy, this

A Probabilistic Topological Approach to Feature Identification … 5

approach requires each robot to have an identification label that can be recognized
by other robots.

The paper is structured as follows. Section2 introduces the tools of TDA that
are used in our methodology. Section3 presents the problem statement and describes
assumptions about the robot capabilities andmotionmodel. Our approach for extract-
ing topological features of the domain from the robots’ data is discussed in Sect. 4.
Sects. 5 and 6 validate our approach with simulations and multi-robot experiments,
respectively. Finally, Sect. 7 concludes the paper and proposes future work.

2 Background

Topological Data Analysis (TDA) [5] is an emerging field that aims to provide algo-
rithmic and mathematical tools for studying topological and geometric attributes
of data. The fundamental idea underlying TDA is that data has an inherent shape
that encodes important information regarding the connectivity of the data and yields
insight into its global structure. TDA exploits the mathematical framework of alge-
braic topology [15], especially the concept of persistent homology [9], to characterize
the topological structure of data. In many applications, data is obtained as a point
cloud consisting of noisy samples of an intensitymap in aEuclidean space. Prominent
topological features of a point cloud can be computed using TDA and presented in
the form of compact representations such as persistence diagrams [10] and barcode
diagrams [11]. TDA has been extensively applied to problems in computer vision
and image processing [23], sensor networks [6, 14], robotics [4, 18], localization
[22], and map comparison [3].

We provide a brief introduction to persistent homology, which is central to our
mapping methodology. More detailed treatments of the associated theory and com-
putations are given in [10, 16, 28]. Persistent homology is a method of analyzing the
correlation of homological information gathered across different scales. This tech-
nique enables the identification of topological features that are present over a large
range of scales, as opposed to those which are only temporarily present (short-scale
features). Homology is a robust tool that facilitates the study of global attributes of
spaces and functions from local computations on noisy data. A topological space T
can be associated with a collection of vector spaces called homology groups, denoted
by Hk(T), k = 0, 1, 2, ..., dim(T) − 1, each of which encodes a particular topologi-
cal feature of T. In persistent homology, these features are characterized using Betti
numbers, which are the ranks of the homology groups. These numbers are topo-
logical invariants. The kth Betti number of T, denoted by βk , is the rank of Hk(T)

and represents the number of independent k-dimensional cycles inT. For example, if
T ⊂ R

2, then β0 is the number of connected components inT and β1 is the number of
holes in T. If T ⊂ R

3, then β0, β1, and β2 are the numbers of connected components,
tunnels, and voids in T, respectively.

In a typical TDA application, a finite set of samples from a spaceM is available.
These samples, along with the metric associated with M, comprise the point cloud

6 R. K. Ramachandran et al.

C of the space. In TDA, the metric is used to map C onto a collection of simplices
called a simplicial complex. Simplices are combinatorial objects constructed from
the subsets ofC. A k-simplex σ = [v0, v1, ..., vk] is an ordered list of k +1 elements
{v0, v1, ..., vk} ∈ C, called vertices. The simplicial complex provides a discrete repre-
sentation of the underlying topological space using a combinatorial structure that can
be represented algebraically using linear operators (matrices). It is this combinatorial
structure that permits us to develop algorithms for homological computation. There
are various ways to build a simplicial complex from a point cloud. The simplest way
is to choose a parameter δ > 0 and add a k-simplex to the simplicial complex if
every vertex in the simplex is within a distance δ from every other. The simplicial
complex constructed in this manner is called the Vietoris–Rips complex [12] or Rips
complex for short, often denoted as Rips(C, δ).

For large datasets, the number of simplices in the simplicial complex can be enor-
mous, making the computations highly inefficient. We reduce the computational
requirements by choosing a subset of the point cloud consisting of landmark points,
denoted by L ⊂ C, as vertices for the Rips complex. These landmark points were
selected using a greedy inductive selection process called a sequential max-min algo-
rithm [1]. In order to compute persistentBetti numbers,we require afiltration, defined
as a family of Rips(C, δ) parametrized by δ such that Rips(C, δ1) ⊆ Rips(C, δ2)

for all δ1 > 0, δ2 > 0 where δ1 ≤ δ2.
The persistent topological features ofT over multiple values of δ can be identified

using a barcode diagram, which is a graphical representation of Hk(T) in terms of the
homology generators. A barcode plots a set of horizontal line segments on a graph
whose x-axis spans a range of δ values andwhose y-axis depicts an arbitrary ordering
of homology generators. The numbers of arrows in the barcode for dimension 0
and dimension 1 indicate the numbers of connected components and features in
the domain, respectively. A barcode diagram can be computed automatically using
algorithms that find the homology generators of the homology that is constructed on
a point cloud. Figure1 illustrates a barcode diagram that is obtained from an example
point cloud.

3 Problem Statement

We consider a scenario in which N robots are deployed into a bounded, unknown,
GPS-denied 2D environment in order to collect data that can be used to determine
the number of topological features in the domain. The robots have local sensing
capabilities and can identify features and other robots at distanceswithin their sensing
range to perform collision avoidance maneuvers. Each robot is equipped with a
compass and wheel encoders, which enable it to estimate its position and orientation
with uncertainty.

The robots perform correlated randomwalks in the domain, avoiding features and
other robots. During its motion, each robot estimates its position in a global reference
frame using its onboard odometry and a Kalman filter. At fixed time intervals, the

A Probabilistic Topological Approach to Feature Identification … 7

Fig. 1 An example barcode diagram of a filtration formed from a Rips complex. βk(δi) is the
number of horizontal segments in the barcode for Hk(T) that intersect the dashed line at δ = δi

robot records its estimated position and the covariance matrix corresponding to the
uncertainty of the estimate.After a time span T , all robots travel to a common location
where their stored data is retrieved and processed. We assume that T is sufficiently
large for the robots to thoroughly cover the domain and that the robots have sufficient
memory to store the data that they obtain during their deployment.

The robots follow the motion model described in [25]. Each robot has a con-
stant translational speed v and an orientation θ(t) at time t with respect to a global
frame. We define a robot’s velocity vector at time t as V(t) = [vx (t), vy(t)]T =
[v cos(θ(t)), v sin(θ(t))]T and its position vector as X(t) = [x(t), y(t)]T . The
displacement of a robot over a time step Δt is given by

X(t + Δt) = X(t) + V(t)Δt + W(t), (1)

where W(t) ∈ R
2 is a vector of independent, zero-mean normal random variables

that are generated at time t to model the randomness in the robot’s motion due to
sensor and actuator noise. At the beginning of a time step, each robot generates a
random number between 0 and 1. If this number is below a predefined threshold
pth , the robot randomly chooses a new θ(t) ∈ [−π, π]. At time t = 0, the start of
a deployment, each robot is assigned the parameters v and pth and obtains accurate
measurements of its position X(0) and orientation θ(0).

We consider two types of scenarios. In Type I scenarios, robots receive accu-
rate estimates of their global positions when they are close to the boundary of the
domain. For example, robots on the exterior of a building will have access to GPS
measurements that are unavailable to robots inside. In Type II scenarios, robots do
not receive global position updates anywhere in the domain, which may for instance
be located underground or underwater.

8 R. K. Ramachandran et al.

4 Feature Extraction Methodology

During a deployment, the data that robot j ∈ {1, ..., N } obtains at time tk ∈ [0, T],
k ∈ {1, ..., K }, consists of the element d j

k = {μ j
k ,Σ

j
k }, whereμ

j
k ∈ R

2 is the mean of
the robot’s estimate of its (x, y) position at time tk , and Σ

j
k ∈ R

2×2 is the covariance
matrix of its position estimate at this time. In this section, we present a three-step
methodology for extracting the topological features of the domain from this data.

In the first step, we discretize the domain into a high-resolution uniform grid,
as in the occupancy grid mapping algorithms described in [25]. Let mi denote the
grid cell with index i ∈ {1, ..., M} and M = {mi } denote the set of all grid
cells. The goal of this step is to use the robots’ data to assign each grid cell mi a
probability p f

i of being free, or unoccupied by a topological feature. Toward this end,
we compute pi jk , the probability that robot j occupied grid cell mi at time tk , for all
robots, cells, and measurement times. This probability is obtained by numerically
integrating the Gaussian distribution with mean μ

j
k and covariance matrix Σ

j
k over

the region [xli , xui] × [yli , yui] occupied by the cell:

pi jk =
∫ yui

yli

∫ xui

xli

N (μ
j
k ,Σ

j
k) dx dy (2)

Next, we assign a score si ∈ [0,∞) to each grid cell mi according to the formula

si =
N∑
j=1

K∑
k=1

log

(
1

1 − pi jk

)
(3)

We rescale each score si to a value sCi ∈ [0,C], whereC is chosen such that the value
of 1 − exp(C)−1 is close to one. This rescaling improves numerical stability when
converting the scores to probabilities, especially values near zero and one. Finally,
the probability of each grid cell being free is computed as p f

i = 1 − exp(sCi)−1.
In the second step, we extract a point cloud C and select a subset L of these

points as landmark points. The point cloud is constructed by sampling a dense,
uniformly random set of points from the domain and rejecting those points that
are inside a grid cell mi for which p f

i is below a given threshold (i.e., there is a
high probability of cell mi being occupied by a feature). In this work, we set the
threshold heuristically. Landmark points are selected from the point cloud using the
sequential max-min algorithm [1]. This algorithm initially chooses a random point
in C as the first landmark. Given a set of i − 1 landmarks denoted by Li−1, the
algorithm selects the i th landmark as the point c ∈ C that maximizes the function
d(c,Li−1) = min{‖c − l‖ l ∈ Li−1}. The landmarks chosen in this manner tend to
cover the point cloud.

A Probabilistic Topological Approach to Feature Identification … 9

Finally, we use the landmark points to construct a filtration using the tools dis-
cussed in Sect. 2, and we extract barcode diagrams from this filtration. We chose the
Rips complex as a basis for constructing the filtration [11] and used the MATLAB-
based JavaPlex package [2] to perform all persistent homology computations and
generate the barcodes. We computed persistent homology only for dimensions zero
and one, since higher dimensions are not relevant for our application.

5 Simulations

We applied the methodology described in Sect. 4 to estimate the number of topologi-
cal features in the simulated environments shown in Fig. 2 for both Type I and Type
II scenarios. The simulations were coded in Python, and all other computations were
performed in MATLAB. The simulated swarm consisted of 30 point robots, each
with a sensing radius of 5cm, an average speed of v = 20 cm/s, and pth = 0.2. The
robots explored a 200cm × 200cm domain over a time period T = 200 s. At the
start of each simulation, the robots were placed at random locations near the domain
boundary. The robots dispersed throughout the domain according to the model
Eq.1, where the covariance matrix of the random variables in W(t) was set to be a
diagonal matrix with 0.1 on the diagonal. Upon encountering a feature, the domain
boundary, or another robot within a distance of 5cm, a robot would randomly choose
a different direction to avoid a collision. After each simulated swarm deployment,
we randomly sampled 16,000 points from the domain, extracted a point cloud C
by using a threshold of 0.2 for p f

i , and selected a set L of 1,000 landmark points
from C. The maximum filtration value (maximum value of δ) used for the barcode
computation was heuristically chosen to be 3Δ, where Δ = max{d(c,L) : c ∈ C}.

Figures3, 4, 5, 6, 7, 8, 9 and 10 plot the outputs of the different steps of our
methodology for both Type I and Type II scenarios: contour plots of p f

i (Figs. 3
and 4), point clouds (Figs. 5 and 6), landmark points (Figs. 7 and 8), and barcode
diagrams (Figs. 9 and 10). The contour plots of p f

i in the Type I scenarios are more
accurate than the plots in the Type II scenarios, in the sense that they display higher
probabilities of free space in areas that are actually unoccupied by features. However,
the plots in the Type II scenarios do correctly estimate very low probabilities of free
space in areas that are occupied by features. The barcode arrows for both Type I and
Type II scenarios give the correct numbers of connected components and features for

Fig. 2 Snapshots of a simulated swarm moving through different domains

10 R. K. Ramachandran et al.

Fig. 3 Contour plots of p f
i , the probability that grid cellmi is free, over all grid cells of discretized

domains in Type I scenarios. Colorbar values range from 0 to 0.9

Fig. 4 Contour plots of p f
i , the probability that grid cellmi is free, over all grid cells of discretized

domains in Type II scenarios. Colorbar values range from 0 to 0.9

Fig. 5 Point clouds computed over domains in Type I scenarios

Fig. 6 Point clouds computed over domains in Type II scenarios

each simulated environment. These results show that ourmethodology can accurately
extract topological features even when the robots do not receive accurate estimates
of their global positions.

We also examined the effect of the quantity of robot position data on the accuracy
of our approach for Type II scenarios. Larger quantities of robot data can be obtained
by extending the time period T of the swarm deployment or by deploying a larger
number of robots, N .We ran simulations with 30 robots over the four domains shown
in Fig. 2 with deployment times T that varied from 40 to 240s, at intervals of 20 s.
At the end of each deployment, the number of topological features was computed
from the resulting barcode diagram. Figure11 plots the computed number of features
in each domain for every value of T . The figure shows that the correct number of

A Probabilistic Topological Approach to Feature Identification … 11

Fig. 7 Landmark points selected over domains in Type I scenarios

Fig. 8 Landmark points selected over domains in Type II scenarios

Fig. 9 Barcodes computed for domains in Type I scenarios

Fig. 10 Barcodes computed for domains in Type II scenarios

features is identified in each domain when T ≥ 100 s. For shorter deployments, the
robots do not always cover a sufficiently large area of the domain for their recorded
position data to yield an accurate count of the number of features. Hence, Fig. 11
shows that the shortest possible time period overwhich the swarm should be deployed
in the simulated scenarios is T ∈ (80 s , 100 s]. We also ran simulations over the
four domains in Fig. 2 with robot population sizes N ∈ {5, 10, 20, 30, 40, 50} and
T = 200 s and computed the numbers of connected components and topological

12 R. K. Ramachandran et al.

Fig. 11 Computed number
of features versus swarm
deployment time period T
(in seconds) for simulations
with 30 robots on the
domains shown in Fig. 2 for
Type II scenarios

Fig. 12 Computed numbers
of connected components
(top) and features (bottom)
versus number of robots N
for simulations with
T = 200 s on the domains
shown in Fig. 2 for Type II
scenarios

features in each domain. Figure12 plots these numbers for every value of N and
shows that they are accurate when data is obtained by N ≥ 30 robots. In practice,
such simulations can be performed to determine estimates of the minimum values of
T and N that will yield accurate counts of the number of features in an environment.

We also note that the effectiveness of our approach depends on the degree of
uncertainty in the robots’ position estimates, as quantified by the covariance matrices
associated with the position data. A large covariance indicates a highly uncertain
position estimate and results in a low probability p f

i of the corresponding grid cell
being free. This low value reduces the likelihood that the central computer will
misidentify the grid cell as being free (i.e., a possible location for a robot) if it is
already known to be occupied by an obstacle. In addition, since covariances in robot
positions will increase over time, newly acquired position data will not result in
significant changes in the value of p f

i .

A Probabilistic Topological Approach to Feature Identification … 13

6 Experimental Results

In addition to simulations, we validated our methodology through experiments with
four Pheeno mobile robot platforms [26] in a Type II scenario with one to three
features. The robots were initially placed at random locations in a 1.5 × 2.1 meter
rectangular arena that was bounded by wooden walls, as shown in Fig. 13. The
robots were controlled to move at 10 cm/s with an avoidance radius of 10 cm.
Whenever a robot detected a feature, wall, or another robot, it avoided a collision
by moving according to a specular reflection from the detected object and then
continued in a straight line. The robots were marked with 2D binary identification
tags to enable real-time tracking of their positions and orientations by an overhead
camera (Microsoft Life Cam, resolution of 1920× 1080 pixels). A control computer
broadcast each robot’s initial state x = [x, y, φ]T over WiFi, where x and y are
the robot’s position coordinates in the arena and φ is its heading. Each robot used
an Extended Kalman Filter (EKF) to estimate its state at intervals of 200 ms. This
state was updated according to a kinematic unicycle model and a measurement state
vector, z = [Δde,Δφe, φc]T , where Δde is the encoders’ measurement of the linear
distance traveled, Δφe is the change in heading angle measured by the encoders,
and φc is the orientation of the robot in the global frame measured by the compass.
The state error covariance matrix P, process covariance matrixQ, and measurement
covariance matrix R were set to P = diag(0.2, 0.2, 0.1), Q = diag(2, 2, 4), and
R = diag(0.1, 5, 0.4)Thesematriceswere chosen to favor the robot’smeasurements
over the kinematic motion model. The initial state estimate covariance was chosen
to reflect errors in tag placement on the robots and camera discretization error. The
EKFwas implemented on Pheeno’s Arduino ProMinimicrocontroller (3.3V 8MHz),
while the state data and covariance matrices were stored onboard its Raspberry Pi 2
Model B.

The results in Fig. 14a–d confirm that our methodology correctly extracts one
connected component and two topological features from the robots’ data after being
deployed in the environment in Fig. 13b. The plots in Figs. 15 and 16 show that given
a sufficiently long deployment time T and a sufficiently large number of robots N ,
our approach produces accurate counts of the numbers of connected components
and features in environments with one, two, and three features. There is a trade-off
between the robots’ deployment time and the reliability of their position data, since
the EKF state estimateswill drift due to the robots’ wheel slip and sensor noise. These
factors cause the covariances of the position estimates to eventually grow larger than
the environment and thus yield no useful information for mapping. This uncertainty
can be reduced in a Type 1 scenario by correcting the drift with direct GPS mea-
surements or with estimates of global position using local measurements of known
objects in the environment. From our experiments, it is evident that larger numbers of
robots yield more accurate mapping results, since there is a higher chance of robots
exploring small gaps between features before the covariances of their position data
grow too large to provide useful information.

14 R. K. Ramachandran et al.

Fig. 13 The experimental arena with four Pheeno robots and (a) one feature, (b) two features, or (c)
three features. At the start of the experiment, the control computer identifies the robots’ positions
and orientations, indicated by the red dots and cyan lines, from the robots’ 2D binary identification
tags. This identification is done using the thresholding, boxpoint, and contouring OpenCV libraries
on a Windows computer

Fig. 14 Experimental results from a Type II environment containing two objects

Fig. 15 Computed numbers
of connected components
(top) and features (bottom)
versus swarm deployment
time period T (in seconds)
for experiments with four
robots on the domains shown
in Fig. 13 for Type II
scenarios

A Probabilistic Topological Approach to Feature Identification … 15

Fig. 16 Computed numbers
of connected components
(top) and features (bottom)
versus number of robots N
for experiments with
T = 180 s on the domains
shown in Fig. 13 for Type II
scenarios

7 Conclusion

We have formulated a new approach to identifying the numbers of topological fea-
tures in an unknown domain by applying tools from Topological Data Analysis
(TDA) to data collected by a robotic swarm. The proposed methodology was shown
to be effective through simulations on different domains and experimentswithmobile
robots. We note that the point cloud generated in our procedure is embedded with
a metric, making it a metric space. In future work, we will extend our approach
to incorporate the metric in order to construct a metric map of the unknown envi-
ronment. This can be done using the techniques of manifold learning [17], which
focus on identifying manifolds from a point cloud. In addition, we will employ TDA
techniques to compute the optimal threshold of p f

i for extracting the point cloud.

Acknowledgements R.K.R. thanks Dr. Subhrajit Bhattacharya for his valuable input on this work.
This work was supported by NSF Award CMMI-1363499 and DARPA Young Faculty Award
D14AP00054.

References

1. Adams, H., Carlsson, G.: On the nonlinear statistics of range image patches. SIAM J. Imaging
Sci. 2(1), 110–117 (2009)

2. Adams, H., Tausz, A., Vejdemo-Johansson, M.: JavaPlex: a research software package for
persistent (co)homology. In: Mathematical Software – ICMS, pp. 129–136. Springer, Berlin
(2014)

3. Ahmed,M., Fasy, B.T., Wenk, C.: Local persistent homology based distance betweenmaps. In:
ACMSIGSPATIAL InternationalConference onAdvances inGeographic Information Systems
(SIGSPATIAL), pp. 43–52 (2014)

4. Bhattacharya, S., Ghrist, R., Kumar, V.: Persistent homology for path planning in uncertain
environments. IEEE Trans. Robot. 31(3), 578–590 (2015)

5. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

16 R. K. Ramachandran et al.

6. Chintakunta, H., Krim, H.: Distributed localization of coverage holes using topological persis-
tence. IEEE Trans. Signal Process. 62(10), 2531–2541 (2014)

7. Choset, H., Nagatani, K.: Topological simultaneous localization andmapping (SLAM): toward
exact localizationwithout explicit localization. IEEETrans. Robot. Autom. 17, 125–137 (2001)

8. Dirafzoon, A., Bozkurt, A., Lobaton, E.J.: Dynamic topological mapping with biobotic swarms
(2015). CoRR arXiv:1507.03206

9. Edelsbrunner, H., Harer, J.L.: Persistent homology - a survey. Contemp. Math. 453, 257–282
(2008)

10. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathe-
matical Society, Providence, RI (2010)

11. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am.Math. Soc. 45(1), 61–75 (2008)
12. Ghrist, R.: Elementary Applied Topology, 1st edn. Createspace, USA (2014)
13. Ghrist, R., Lipsky, D., Derenick, J., Speranzon, A.: Topological landmark-based navigation

and mapping. University of Pennsylvania, Department of Mathematics, Technical Report Vol.
8 (2012)

14. Ghrist, R., Muhammad, A.: Coverage and hole-detection in sensor networks via homology. In:
International Symposium on Information Processing in Sensor Networks (IPSN) (2005)

15. Hatcher, A.: Algebraic Topology. Cambridge University Press, New York (2002)
16. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York

(2004)
17. Ma, Y., Fu, Y.: Manifold Learning Theory and Applications, 1st edn. CRC Press Inc., Boca

Raton (2011)
18. Pokorny, F.T., Stork, J.A., Kragic, D.: Grasping objects with holes: a topological approach. In:

IEEE International Conference on Robotics and Automation (ICRA), pp. 1100–1107 (2013)
19. Ramachandran, R.K., Elamvazhuthi, K., Berman, S.: An optimal control approach to mapping

GPS-denied environments using a stochastic robotic swarm. In: International Symposium on
Robotics Research (ISRR) (2015)

20. Ramaithitima, R.,Whitzer,M., Bhattacharya, S., Kumar, V.: Automated creation of topological
maps in unknown environments using a swarm of resource-constrained robots. IEEE Robot.
Autom. Lett. 1(2), 746–753 (2016)

21. Robertson, P., Angermann, M., Krach, B.: Simultaneous localization and mapping for pedes-
trians using only foot-mounted inertial sensors. In: International Conference on Ubiquitous
Computing (Ubicomp), pp. 93–96 (2009)

22. Robinson, M.: Topological Signal Processing. Springer, Berlin (2014)
23. Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of

deformable shapes. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Workshops, pp. 45–52 (2010)

24. Thrun, S.: A probabilistic online mapping algorithm for teams of mobile robots. Int. J. Robot.
Res. 20(5), 335–363 (2001)

25. Thrun, S., Burgard, W.: Probabilistic Robotics. Intelligent Robotics and Autonomous Agents.
MIT, Cambridge (2005)

26. Wilson, S., Gameros, R., Sheely, M., Lin, M., Dover, K., Gevorkyan, R., Haberland, M.,
Bertozzi, A., Berman, S.: Pheeno, a versatile swarm robotic research and education platform.
IEEE Robot. Autom. Lett. 1(2), 884–891 (2016)

27. Zajic, T., Ravichandran, R.B., Mahler, R.P.S., Mehra, R.K., Noviskey, M.J.: Joint tracking and
identification with robustness against unmodeled targets. Signal Process. Sens. Fusion Target
Recognit. XII 5096, 279–290 (2003)

28. Zomorodian, A.J., Ablowitz, M.J., Davis, S.H., Hinch, E.J., Iserles, A., Ockendon, J., Olver,
P.J.: Topology for Computing (Cambridge Monographs on Applied and Computational Math-
ematics). Cambridge University Press, New York, NY (2005)

http://arxiv.org/abs/1507.03206

Communication-Restricted Exploration
for Search Teams

Elizabeth A. Jensen, London Lowmanstone and Maria Gini

Abstract Exploring an unknown environment comes with risks and complications,
and in some cases an environment may be too dangerous for humans to explore,
but immediate exploration is critical, as in the aftermath of an earthquake. Robots,
however, can be deployed to seek out points of interest and report back to the waiting
human operators. One aspect of a disaster scenario is that communication is often
more limited than we are accustomed to in everyday life, so these robots cannot rely
on having constant contact with the outside world, or even with all other robots in
the environment. In this paper, we present two algorithms for a small team of robots
to explore an unknown environment, and use both simulation and experiments with
physical robots to demonstrate the algorithms’ performance. We provide proofs of
correctness and guarantee full coverage of the environment, even with attrition.

1 Introduction

When a search and rescue team arrives on the scene of a disaster, it may be prevented
from entering immediately due to the instability of the environment. Earthquakes
may have aftershocks well after the main quake ends, and fires may have burned
through the support structure of a building, making it too dangerous for humans
to enter. Many researchers have developed robots or the means to use them in an
initial exploration, to map points of interest such as the location of survivors or weak
supports, and send this information to the human rescuers waiting outside [2, 24].

While this is necessary, many of these previous avenues of research have consid-
ered using only one robot for the exploration, or a pairing of a ground robot and an

E. A. Jensen (B) · L. Lowmanstone · M. Gini
University of Minnesota, Minneanapolis, MN, USA
e-mail: ejensen@cs.umn.edu

L. Lowmanstone
e-mail: london4@comcast.net

M. Gini
e-mail: gini@cs.umn.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_2

17

18 E. A. Jensen et al.

aerial robot to reach more locations. Instead, we are interested in algorithms which
allow teams of robots to enter and explore unknown and dangerous environments,
leveraging greater numbers of robots to more quickly cover the environment, while
providing guarantees of full coverage even in the face of individual failures. However,
we are also aware that a common feature of a disaster scenario is that communica-
tion may be more limited than we are accustomed to in everyday life [27], so these
robots cannot rely on having constant contact with the outside world, or even with
each other inside the environment. We therefore focused on developing algorithms
which can function under various communication restrictions, such as chemical or
line-of-sight means of communicating between robots.

Our primary contributions in this work are two distributed algorithms for explo-
ration using small teams of robots. The innovation in these algorithms comes from
how the robots disperse into and subsequently explore the environment, even with
communication restrictions. We provide proofs that the algorithms will achieve full
coverage of the environment, return all functioning robots to the entry point, and that
points of interest are marked in such a way that the human rescuers can go directly to
those points when the environment is deemed safe for them to enter. We demonstrate
the algorithms’ functionality through simulations and experiments using physical
robots.

2 Related Work

A multi-robot system has several advantages over a single robot, including cost,
efficiency and robustness [5, 11]. While a single robot can be designed to efficiently
complete its task, it may then be suitable for only a small set of tasks, and if even
a small part fails, the robot may be unable to complete the desired task. In contrast,
a multi-robot system comprised of smaller, individually less-capable robots, with
several types to complete various parts of the task, can still accomplish their goal
even if some robots fail.

There are multiple methods for a team of robots to explore an unknown environ-
ment. Gage [10] proposed three types of coverage. Blanket coverage provides simul-
taneous coverage of the entire area. Barrier coverage sets up a complete perimeter
around an area. In sweep coverage, the robots make a pass over the environment
and ensure every point has been seen by at least one robot, but don’t stay in any one
location, instead moving progressively through the environment.

Most coverage algorithms are focused on surveillance, and thus aim to achieve
either blanket or barrier coverage. However, the number of robots required to achieve
either can be prohibitively large. In contrast, sweep coverage can be accomplished
with a small team, down to a single robot, if necessary, should all other robots fail
[9]. Thus, in our approach, we use an exploration algorithm in which the team of
robots completes a single sweep of the environment to locate points of interest that
can be relayed to the search and rescue team.

Communication-Restricted Exploration for Search Teams 19

An additional consideration is whether the system should be centralized or dis-
tributed. In a centralized system, a controller issues instructions and keeps the group
coordinated. Stump et al. [29], used a robot as a base station, while the other robots
formed a communication bridge as they moved into the unknown region. Similarly,
Rekleitis et al. [26] used one robot as a stationary beacon for another robot, thus
reducing odometry errors. The centralized approach also has the advantage of mak-
ing it easy to create a global map, which can later be used to direct other agents,
human or robot [4, 28, 31]. However, a centralized approach fails completely if the
controller fails, and does not scale well.

A distributed approach, on the other hand, is inherently more scalable and can
also take better advantage of the robustness of having multiple robots. Each robot
is responsible for its own movements and data collection, and relies on only local
neighbors for coordinating exploration and dispersion. It may seem that the robots
are working together on a global scale, but in actuality the decisions are made indi-
vidually on a local scale. Information can be passed throughout the group, similar to
the communication bridge [29], but using broadcast messages rather than point-to-
point messages. An alternative approach is to allow the robots to separate to explore
distant frontiers, and work towards each other to build a map of the environment
[15]. This allows a single sweep through the environment, but also relies on precise
measurements from the robots’ sensors to fuse the maps together into a global whole.

Fusing the maps together is often made easier by using a grid-based approach
to the coverage problem [27, 30]. Grid-based approaches can be quite effective in
ensuring full coverage of an environment, and are particularly well suited to smaller,
indoor spaces [11], but the size of the grid cells can require longer travel distances
to achieve full coverage. In contrast, a graph based approach allows the robots more
latitude in choosing where to explore [3, 18], and decomposes the environment in a
way that is more tuned to that particular environment, but with less structure, there
can also be more overlap in the robots’ sensor coverage. Brass et al. [3] are able
to provide optimal paths for two robots using their algorithms for exploration of
undirected graphs, particularly in environments such as office buildings or caves. In
our work, we use a graph-based approach to help provide flexibility in how the robots
disperse.

Ma and Yang [21] show that the most efficient dispersion of mobile nodes is
triangular, producing themaximal overall coverage withminimal overlap or gap. The
dispersion formation is achieved through the nodes’ local communication, in which
they determine distance and bearing to their neighbors. Lee et al. [18] use online
distributed triangulation to break the environment into discrete areas,which the robots
can thenmonitor and update in both coverage and patrolling tasks. Liu et al. [19] have
shown that repeated location updates can lead to better coverage over time. Similar
approaches byHoward et al. [12] andCortes et al. [7] usedpotential fields andgradient
descent, respectively, to disperse the nodes. In simulation, thesemethods successfully
spread the nodes throughout the environment to achieve blanket coverage, but a
sufficient number of robots may not be available outside of simulation.

20 E. A. Jensen et al.

Another method is tomodel distributedmulti-robot algorithms on insect behavior.
The robots have very little individual ability, but can communicate with local neigh-
bors and arrange themselves according to a desired dispersion pattern. McLurkin
and Smith [23] have developed robots and several algorithms for dispersion and
exploration in indoor environments. Their algorithms rely on the robots maintaining
connectivity in order to perform correctly. These algorithms are similar to those in
[7, 12, 19], but allow for greater variability in the dispersion pattern, including clus-
ters and perimeter formations. Additional work based on insect behavior includes
pheromone-based algorithms [1, 16, 22, 25], which rely on items placed in the
environment for communication and navigation.

Dirafzoon et al. [8] provide an overview of many sensor network coverage algo-
rithms which can be applied to multi-robot systems as well. However, many of these
rely on individual robots knowing the distance and bearing of other robots around
them,which requiresmore sophisticated sensors. For example, Kurazume andHirose
[17] developed an algorithm in which the team of robots was split into two groups,
one of which remained stationary as landmarks while the other moved, and then they
traded roles. On the other hand, research has shown that a team of robots can dis-
perse into an unknown environment using only wireless signal intensity to guide the
dispersion [14, 20]. This method allows the use of simple robots, without the need to
carry a heavy payload of sensors, so that the robots can run longer and explore further.
Smaller, simpler robots are also less expensive, so more robots can be acquired for a
task. Overall, a distributed system allows an individual robot to work independently,
while also sharing data with neighbors as necessary. It also does not rely on long
distance communication.

3 Communication-Restricted Exploration

Our primary objective is for our algorithms to achieve full exploration of an unknown
environment using a team of robots. Our algorithms aim for sweep coverage, and
thus can function with a single robot, if needed (due to availability or attrition). Our
distributed approach takes advantage of the robustness inherent in having multiple
robots, and is not impeded by the communication restrictions, since only local com-
munication is required. Lastly, as in insect-based algorithms, the robots carry and
drop off beacons (such as ZigBee motes or RFID tags) to provide longer lasting trails
and information to mobile agents that may pass by later.

We assume that the robots can detect and avoid obstacles, communicate with
each other in some manner (wi-fi, line-of-sight, chemical, etc.), and can carry and
drop off beacons. We also assume that the specifics of the environment are currently
unknown, even if pre-disaster information, such as a map, is available.

Our algorithms use the communication signal intensity to direct the robots’ move-
ments, keeping them linked as a group during the entire exploration. This provides
the benefit of reducing both the likelihood of robots getting lost and the possibility
that part of the environment will be overlooked. Our innovation lies in making the

Communication-Restricted Exploration for Search Teams 21

algorithms independent of the type of communication used, while still making the
robot team capable of achieving full coverage in an efficient manner even with some
attrition.

3.1 Algorithm Details

In the Rolling Dispersion Algorithm (RDA) the robots are either explorers, which
move into the frontier, or sentries, which maintain a return path to the entrance. Each
robot uses connectivity with its neighbors and distance to nearby obstacles to choose
which of the following behaviors it will execute on each iteration of the algorithm.
We show the finite state machine, using the initials of the behaviors for the node
labels in Fig. 1.

Avoid Collisions: Use proximity sensors to avoid obstacles.
Disperse: Move towards open space and the frontier, away from neighbors.
Follow Path: Accept request and follow the path to the requesting robot.
Guard: Stay in place and act as a sentry for other robots.
Retract: Dead-end reached, drop a beacon and return to the frontier.
Seek Connection: Re-establish communication with the rest of the group.

Definition 1 An exploring robot is in a dead-end when every direction in which it
might move is towards an obstacle, be it a wall, a beacon, or another robot.

The robots initially disperse to the furthest extent of their communication range.
When the robots can no longer move apart without losing communication with
another robot, they call for reinforcements, which leap-frog their way to the frontier,
leaving behind beacons to mark the path to the entrance and any unexplored regions
as necessary. When robots encounter a dead-end (see Definition 1), they drop off a
beacon to mark the area as explored, and retract to the previous intersection before
moving to a new frontier. This retraction process is repeated for every robot along
that path until all robots have moved on to the frontier, leaving the entire path marked
as explored by beacons. The direction of the dispersion and exploration is primarily
informed by the wireless signal intensities between agents, as in [20], though the
individual robots also make decisions based on their proximity sensors to avoid col-
lisions. When there are no more paths left to explore, the robots will retract back
to the entry and we can then guarantee that all parts of the environment have been
explored.

The Sweep Exploration Algorithm (SEA) is based on RDA, but is intended for use
in scenarios with much more restrictive communication, such as chemical signals,
or line-of-sight using a camera and color LEDs. With such restrictions, it is critical
to reduce the number and size of messages to be able to ensure full exploration, so
the robots decide their next action based on the states of their neighbors. There are
two states used only by robots, one state used only by beacons, and five states used
by both.

22 E. A. Jensen et al.

Branch: Robot or beacon marking an intersection.
Call Path: Robot or beacon on the path to the unexplored frontier.
Explorer: Robot moving along a path to answer a call or failure notification.
Failure Path: Robot or beacon along the path leading to a location where an agent

failed and needs to be replaced.
Repel: Beacon marking an area as explored, preventing repeated exploration.
Retract Path: Robot or beacon that has received notice of a retracting robot on

its way.
Retractor: Robot has reached a dead-end, dropped a beacon to mark the explored

area and is in the process of retracting to the nearest branch.
Sentry: Robot or beacon marking a path where there are no active notifications

(call, failure, or retract).

However, this also means that only one robot can be moving at a time, or the
messages get mixed up and parts of the environment may be missed. Therefore,
instead of the robots initially dispersing in any direction, as in RDA, they travel one
at a time down a single path, until it is completely explored, and then retract and
explore a new path. We show the finite state machine for robots using SEA and give
the transitions in Fig. 1. The nodes are labeled with the initials of the states.

A robot in the Explorer state will move away from the rest of the robots into the
unexplored frontier, while a robot in the Retractor state will return along the path of
robots and beacons to the previous intersection (see Definition2) and then become
an Explorer again. A robot in any of the other states will remain in place, marking the
path and providing other robots with the status of those robots further down the path
(passing along calls for additional Explorers, or notices of retraction or failures).
Robots in intersections use the state Branch to alert the Retractors that they have
reached the point where there is again a frontier to explore.

Definition 2 Intersections are defined as locations where either there is an obsta-
cle creating multiple paths (such as a corner), or where the robot could move in
perpendicular directions without obstruction.

Fig. 1 (left) Rolling
dispersion algorithm finite
state machine. (right) Sweep
exploration algorithm finite
state machine

Communication-Restricted Exploration for Search Teams 23

3.2 Algorithm Correctness

We present here formal proofs that the robots running our algorithms will, even with
communication restrictions, complete the exploration without missing any point in
the environment, will not end up in infinite loops (so that the robots exit when done),
and can succeed in these goals even with robot and beacon failures.

Though SEA has more restrictions on communication than RDA, both algorithms
operate in the samemanner at their core, so the following properties and proofs apply
to both algorithms. The differences in the algorithms shows in how the robots move
(multiple or one at a time), and how much information is shared between robots.

Lemma 1 The algorithms avoid unnecessarily repeated exploration.

Proof We will do this proof in two parts: first assuming that the beacons do not fail
and then assuming that they may fail. In either case we will prove by contradiction
that the algorithms will avoid unnecessary repeated exploration.

First, assume that the robots explore an area that has been previously explored.
This produces an immediate contradiction because, when an exploring robot reaches
a dead-end it drops a beacon to mark the explored area. Any re-explorations are
prevented by the presence of these beacons.

Second, in the case when a beacon marking an explored area fails, the area around
that beacon becomes unmarked. If the failed beacon is surrounded by beacons mark-
ing the path as explored, thenno robotwill reach that area, so itwill not be re-explored.
If, however, the beacon was bordering unexplored regions, then the robots will have
to re-explore the now unmarked area until reaching a dead-end, and then once again
mark the area as explored, preventing future unnecessary visits. The important caveat
here is that we need to assume a finite number of beacon failures, otherwise robots
would re-mark areas infinitely, which would lead to other areas not being explored or
the robots not returning to the entrance to report the completed exploration. There-
fore, given a finite number of beacon failures, which is a reasonable assumption, we
again derive a contradiction. ��
Lemma 2 The algorithms avoid infinite loops.

Proof Wewill again consider two cases in this proof: first assuming that the beacons
do not fail; and then assuming that they may fail. In both cases, we will prove by
contradiction that the algorithms will not get stuck in infinite loops.

First, assume that a robot is repeatedly exploring a loop in the environment. This
is immediately a contradiction of Lemma 1 because the point at which the exploring
robot first closed the loop (by reaching a previously explored location), it would have
detected it was in a dead-end, and dropped a beacon tomark the area as explored. That
beacon will break the loop, since the robots will treat it as an impassable obstacle no
matter the direction from which they approach.

Second, in the case where beacons can fail, the area surrounding a beacon’s
location becomes unmarked. If there are still surrounding beacons marking the area
as explored, then there will be no effect on the robots’ exploration. If the beacon is

24 E. A. Jensen et al.

neighbors with a robot or the path to the frontier or entrance, then the area will be
re-explored, as in Lemma 1, but will again be stopped when a dead-end is once again
located. We must assume that there will be a finite number of beacon failures, which
is a reasonable assumption, so we again derive a contradiction. ��
Lemma 3 The algorithms achieve full coverage with a single robot.

Proof Assume we have one robot and an infinite number of beacons. In both algo-
rithms, the robot will advance, leaving beacons to mark the return path and areas
that have been explored. The explore/retract behaviors are the same as Depth-First
search, which is complete in a finite search space when repeated states and loops are
avoided. By Lemmas 1 and 2, we have proven that our algorithms avoid repeated
states and loops. Our environment is finite. Thus, our algorithms will achieve full
coverage with only one robot. ��
Theorem 1 The algorithms will achieve full coverage of the environment with mul-
tiple robots, and all functional robots will return to the entrance.

Proof We prove by induction that the algorithms function correctly when multiple
robots are used.

Base Case: The base case is that the algorithms achieve full exploration when
only one robot explores the environment. The proof is given in Lemma3.

Induction Step: Assuming that the algorithms achieve full exploration with k
robots and the remaining functional robots return to base, we want to prove that
the algorithms achieve full exploration when 1 more robot is added. Suppose that
there are k+1 robots, then we need to show that: (1) the robots will not continuously
explore overlapping areas, and (2) that the robots will not miss an area because they
lost contact with the other agents, and (3) that no robot will be stranded.

First, in Lemma 1, we have already shown that there will not be unnecessary
repeated exploration of an area, so long as the beacons remain active. Every robot
that approaches the area will detect the beacons and move to a different area, and
this remains true no matter how many robots are added.

Second, both algorithms enforce the restriction that the robots remain in contact
with at least one other agent at all times, and when that connection is lost, the robots
will immediately stop exploring and retreat in order to reconnect. This is required
for ensuring complete coverage, because the connectivity means that robots will not
miss any area, and will not re-explore areas previously covered.

Third, the connectivity keeps the robots from being stranded in the environment,
because only the exploring robot in a dead-end will mark an area as explored. The
retraction step then brings the robot back into the group before the next robot marks
an area as explored, so that no robot is left behind or trapped. In addition, the fact
that the robots explore a path and then retract to the previous intersection, and then
repeat the process, similar to Depth-First search, means that all the still functional
robots will eventually retract back to the entrance when the exploration is complete.
Once again, adding another robot to the team does not change this functionality.

Thus, with k+1 robots, the algorithms achieve full exploration, and the remaining
functional robots return to the entrance when the exploration is complete. ��

Communication-Restricted Exploration for Search Teams 25

3.3 Algorithm Properties

In addition to the previous proofs, there are several important properties of the algo-
rithms. Using multiple robots reduces the individual load on each robot, but the
coordination adds costs in location visits and number of messages.

We can represent the environment as a graph, in which nodes representing loca-
tions that are separated by the distance of the communication range, in order to keep it
to a finite number of nodes.We show a possible graph as an overlay on the simulation
environment map in Fig. 2, though this depends on how the robots move about the
environment, so subsequent runs may lead to different locations for the intersections
and dead-ends. With a single robot, each node is visited at most twice (leaf nodes
are visited only once), assuming there are no failures. With multiple robots, each
intermediate node n is visited at most 2n’ times, where n’ is the number of nodes
beyond node n on that path, and that number is bounded by the number of robots, in
the case where the total number of robots is less than n’.

In RDA, the robots must send many messages to confirm that they are still within
communication range of each other, since multiple robots can move at the same time.
This is quite costly in terms of bandwidth, processing, and power consumption, and
may not be feasible with some kinds of communication. If we use chemical signals,
flooding the environment with those chemicals will cause us to lose new messages
in the old ones. But in restricting the communication in SEA, we lose the ability
for multiple robots to move at the same time. However, it does put bounds on the
number ofmessages being sent, whichmakes the coordination easier aswell. In SEA,
we require only eight message types to complete the exploration, which correspond
directly to the eight states listed previously. Because of this, the robots can complete
the exploration with very little required in terms of information sharing, which is
often one of the more expensive aspects of multi-robot systems.

Fig. 2 (left) Cave-like environment used in simulations, showing overlay graph. (right) One possi-
ble exploration. The star marks the start, the square marks a location where exploration was begun,
then left to finish a different path, resulting in the filled circles becoming dead-ends

26 E. A. Jensen et al.

Fig. 3 A simple
environment with RDA
exploration partially
completed. The robots (red
and blue) are moving right to
left, and have dropped two
beacons (green) so far

4 Simulation Results

We have conducted experiments in Player/Stage and ROS/Stage, using the same
robot models and movement/sensor attributes, in order to test the viability of our
algorithms. The testing environments, shown in Figs. 2 and 3, provide two very
different types of spaces–one very open, with several large obstacles at varying
intervals and in non-uniform shapes that leave wide open areas and potential loops,
and one a series of rooms off a single long hallway. The robots start from the same
location for each run in each environment. The robots choose their directions with
some randomness to avoid hitting each other, especially at the start of each run, so
results are averaged over 15 runs of each environment and number of robots.

Figure4 shows the rate of coverage for the RDA and SEA algorithms in the cave
environment. While in most cases the simulations show fairly steady increase in
the percentage of coverage, the RDA with 5 robots does show a plateau, due to
the fact that the robots initially disperse in all directions, and then must wait for
others to leap-frog out to the frontier. The SEA algorithm does not have this plateau
because the robots explore along only a single path at a time. The experiments using
SEA start with a higher initial coverage, due to the fact that the algorithms use
different initial dispersion methods, and using the exact same cluster at the start led
to many robot collisions. Accounting for that difference, and comparing times from

Fig. 4 Average time to full
exploration for simulations
using 1, 5 and 8 robots with
each algorithm in the cave
environment simulation

Communication-Restricted Exploration for Search Teams 27

Fig. 5 Total distance, average distance per robot, and total time for simulations using 1, 2, and 4
robots with each algorithm in the office environment

the same starting percentage to full coverage, SEA is 1.35 times faster at achieving
full coverage than RDA. SEA outperforms RDA in environments where there are
long paths, because SEA fully explores only one path at a time, while RDA will
attempt to explore many paths simultaneously, but will run into delays when robots
have to be pulled from other paths to fully explore long paths.

In the office building environment, with its long corridor and single rooms off of
it, both methods performed the same for 1 and 2 robots (shown in Fig. 5), because
with only two robots, they are constantly leap-frogging around each other to continue
exploring. However, with 4 robots RDA took significantly less time, even though the
robots traveled approximately the same total distance as the 4 robots running SEA.
While the robots using RDA could explore in multiple directions simultaneously, the
robots using SEA had wait for each individual path and room to be cleared, and then
had to move back to the corridor one at a time.

For our experiments, we used the Scribbler robots with the IPRE Fluke [13]
attachment. We made use of the camera to read beacons and IR sensors to locate
intersections. Due to the limitations of the robots, only SEA could be implemented.
However, an advantage to using the Scribblers in testing is that we will be able to
run experiments with 10–30 robots in the future. The Clearpath Jackal [6] would be
a more appropriate robot for search and rescue operations.

5 Experimental Results

Our experimental environment has a more structured lay-out, similar to a house or
apartment floor-plan, with small doorways and multiple rooms and hallways, shown
in Fig. 6. We ran the experiments with 1, 2 and 3 robots, which was the maximum
number of robots that couldmaneuver given the size of the environment.Wemeasured
the time to complete the exploration, number of messages sent, and distance traveled

28 E. A. Jensen et al.

Fig. 6 (left) Overlay graph of experimental set-up (dotted line denotes start area). The star is the
first point in the environment, and the filled circles mark dead-ends. (right) Experimental set-up
with robots in start and cardboard walls

(see Fig. 7). SEA does not perform well in this environment due to the restrictions on
movement. The short paths mean that by the time additional robots arrive, the first
has completed the branch and moved onward, leading to significant overlap in areas
covered.

6 Conclusion

Wehave presented twodistributed algorithms formulti-robot exploration of unknown
environments. Both algorithms make use of signal intensity to direct the movement
of the robots, and beacons are used to mark explored areas in the environment in
addition to creating a trail to the entrance and other points of interest within the
environment. We have provided formal proofs that each of the algorithms will allow

Fig. 7 Experimental results runs with 1, 2, or 3 robots using SEA

Communication-Restricted Exploration for Search Teams 29

a team of robots to fully explore the environment, so long as at least one member of
the robot team is still functional at the end of the exploration.

In future work, we plan to test the algorithms in other types of environments,
including larger ones with many loops, open areas that create the potential for loops,
and varying path lengths. We will also include human interaction during the explo-
ration and rescue stages.

References

1. Batalin, M.A., Sukhatme, G.S.: The design and analysis of an efficient local algorithm for
coverage and exploration based on sensor network deployment. IEEE Trans. Robot. 23(4),
661–675 (2007). https://doi.org/10.1109/TRO.2007.903809

2. Birk, A., Carpin, S.: Rescue robotics - a crucial milestone on the road to autonomous systems.
Adv. Robot. 20(5), 595–605 (2006)

3. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.:Multirobot tree and graph exploration. Trans.
Robot. 27(4), 707–717 (2011). https://doi.org/10.1109/TRO.2011.2121170

4. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration.
IEEE Trans. Robot. 21(3), 376–386 (2005). https://doi.org/10.1109/TRO.2004.839232

5. Choset, H.: Coverage for robotics – a survey of recent results. Ann. Math. Artif. Intell. 31,
113–126 (2001). https://doi.org/10.1023/A:1016639210559

6. ClearpathRobotics: Jackal ugv. Technical report (2015)
7. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks.

IEEETrans. Robot.Autom. 20(2), 243–255 (2004). https://doi.org/10.1109/TRA.2004.824698
8. Dirafzoon, A., Emrani, S., Salehizadeh, S.M.A., Menhaj, M.B.: Coverage control in unknown

environments using neural networks. Artif. Intell. Rev. 237–255 (2012)
9. Fazli, P., Davoodi, A., Pasquier, P., Mackworth, A.K.: Complete and robust cooperative robot

area coverage with limited range. In: IEEE/RSJ Int’l Conference on Intelligent Robots and
Systems (IROS), pp. 5577–5582. IEEE (2010)

10. Gage, D.W.: Command control for many-robot systems. In: 19th Annual AUVS Technical
Symposium, pp. 22–24 (1992)

11. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton.
Syst. 61(12), 1258–1276 (2013)

12. Howard, A.,Mataric,M.J., Sukhatme, G.S.:Mobile sensor network deployment using potential
fields: A distributed, scalable solution to the area coverage problem. In: Proceedings of the
International Symposium on Distributed Autonomous Robotic Systems, pp. 299–308 (2002)

13. IPRE: Myro hardware. Technical report (2011)
14. Jensen, E.A., Gini, M.: Rolling dispersion for robot teams. In: Proceedings Int’l Joint Confer-

ence on Artificial Intelligence (IJCAI), pp. 2473–2479 (2013)
15. Khawaldah, M.A., Nuchter, A.: Enhanced frontier-based exploration for indoor environment

with multiple robots. Adv. Robot. 29(10), 657–669 (2015)
16. Koenig, S., Liu, Y.: Terrain coverage with ant robots: a simulation study. In: Proceedings Fifth

Int’l Conference on Autonomous Agents, pp. 600–607. ACM, New York, NY, USA (2001).
http://doi.acm.org/10.1145/375735.376463

17. Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning system. Auton.
Robot. 00, 43–52 (2000)

18. Lee, S.K., Fekete, S.P.,McLurkin, J.: Structured triangulation inmulti-robot systems:Coverage,
patrolling, voronoi partitions, and geodesic centers. Int. J. Robot. Res. 35(10), 1234–1260
(2016)

https://doi.org/10.1109/TRO.2007.903809
https://doi.org/10.1109/TRO.2011.2121170
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1023/A:1016639210559
https://doi.org/10.1109/TRA.2004.824698
http://doi.acm.org/10.1145/375735.376463

30 E. A. Jensen et al.

19. Liu, B., Brass, P., Dousse, O., Nain, P., Towsley, D.: Mobility improves coverage of sensor
networks. In: MobiHoc ’05: Proceedings 6th ACM Int’l Symposium on Mobile ad hoc Net-
working and Computing, pp. 300–308. ACM, New York, NY, USA (2005). http://doi.acm.org/
10.1145/1062689.1062728

20. Ludwig, L., Gini, M.: Robotic swarm dispersion using wireless intensity signals. In: Proceed-
ings Int’l Symposium on Distributed Autonomous Robotic Systems (DARS), pp. 135–144
(2006)

21. Ma, M., Yang, Y.: Adaptive triangular deployment algorithm for unattended mobile sensor
networks. IEEETrans. Comput. 56(7), 946–958 (2007). https://doi.org/10.1109/TC.2007.1054

22. Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with rfid tags. ACMTrans.
Auton. Adapt. Syst. 2(2), 4 (2007). https://doi.org/10.1145/1242060.1242061

23. McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environments using
a swarm of autonomous mobile robots. In: Proceedings Int’l Symposium on Distributed
Autonomous Robotic Systems (DARS) (2004)

24. Murphy, R.R.: Disaster Robotics. The MIT Press (2014)
25. O’Hara, K.J., Walker, D.B., Balch, T.R.: Physical path planning using a pervasive embed-

ded network. IEEE Trans. Robot. 24(3), 741–746 (2008). https://doi.org/10.1109/TRO.2008.
919303

26. Rekleitis, I., Dudek, G., Milios, E.: Multi-robot exploration of an unknown environment, effi-
ciently reducing the odometry error. In: Proceedings Int’l Joint Conference on Artificial Intel-
ligence (IJCAI), vol. 2, pp. 1340–1345. Morgan Kaufmann Publishers, Inc., Nagoya, Japan
(1997)

27. Rooker, M.N., Birk, A.: Multi-robot exploration under the constraints of wireless networking.
Control Eng. Pract. 15(4), 435–445 (2007)

28. Stachniss, C., Burgard, W.: Exploring unknown environments with mobile robots using cov-
erage maps. In: Proceedings Int’l Joint Conference on Artificial Intelligence (IJCAI) (2003)

29. Stump, E., Jadbabaie, A., Kumar, V.: Connectivity management in mobile robot teams. In: Pro-
ceedings IEEE Int’l Conference on Robotics and Automation (ICRA), pp. 1525–1530 (2008).
https://doi.org/10.1109/ROBOT.2008.4543418

30. Viet, H.H., Dang, V.H., Choi, S.: Bob: an online coverage approach for multi-robot systems.
Appl. Intell. 42(2), 157–173 (2015)

31. Wurm, K.M., Stachniss, C., Burgard,W.: Coordinated multi-robot exploration using a segmen-
tation of the environment. In: Proceedings IEEE/RSJ Int’l Conference on Intelligent Robots
and Systems, pp. 1160–1165 (2008). https://doi.org/10.1109/IROS.2008.4650734

http://doi.acm.org/10.1145/1062689.1062728
http://doi.acm.org/10.1145/1062689.1062728
https://doi.org/10.1109/TC.2007.1054
https://doi.org/10.1145/1242060.1242061
https://doi.org/10.1109/TRO.2008.919303
https://doi.org/10.1109/TRO.2008.919303
https://doi.org/10.1109/ROBOT.2008.4543418
https://doi.org/10.1109/IROS.2008.4650734

From Ants to Birds: A Novel Bio-Inspired
Approach to Online Area Coverage

Luca Giuggioli, Idan Arye, Alexandro Heiblum Robles
and Gal A. Kaminka

Abstract Online coverage path planning is a canonical multi-robot task, where
the objective is to minimize the time it takes for robots to visit every point in an
unknown area. Two general major approaches have been explored in the literature:
a stigmergic approach, inspired by ant behavior, relies on active marking of the
environment. In contrast, the collaborative approach relies instead on localization,
memory of positions, and global communications. In this paper, we report on a new
approach, inspired by territorial bird chirping, which borrows from both previous
approaches: it relies on localization and memory, but not on global communications.
We provide a detailed analytic and empirical evaluation of this model.

1 Introduction and Background

Coverage path planning is a canonical robotics task, with many applications such
as environmental monitoring, surveillance, exploration, and search [5]. In online
coverage, one ormore robots is tomove inside an unknown target area, such that every
point in the area is visited by one or more robots, often with the secondary objective
of minimizing the time for such full coverage [8]. For multiple robots, two major
approaches emerge for online coverage: A stigmergic [25] approach, which relies

L. Giuggioli (B)
Bristol Centre for Complexity Sciences, Department of Engineering Mathematics
and School of Biological Sciences, University of Bristol, Bristol BS81TH, UK
e-mail: luca.giuggioli@bristol.ac.uk

I. Arye · G. A. Kaminka
The MAVERICK Group, Computer Science Department, Bar Ilan University,
5290002 Ramat Gan, Israel
e-mail: idanarye@gmail.com

G. A. Kaminka
e-mail: galk@cs.biu.ac.il

A. Heiblum Robles
Department of Engineering Mathematics, University of Bristol, Bristol BS81TH, UK
e-mail: alex.heiblum@bristol.ac.uk

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_3

31

32 L. Giuggioli et al.

on environmental marking by the robots to direct their motion towards uncovered
territory, and a collaborative approach, which relies on global communications to
have robots explicitly—and remotely—coordinate their actions.

The stigmergic approach is often thought to be inspired byants, though it is used by
some mammals as well [7], e.g., foxes [20]. Here, robots mark visited points as they
move around, simultaneously reading previously left markings. Robots move away
frompointsmarkedbyothers [10, 17, 27]. This causes them todivide the environment
into territories, each maintained by a single robot. Clear benefits of this approach
include simplicity of the control algorithm (a random walk), and the fact there is no
need for localization or memory of markings; robots use the markings themselves to
identify locations visited by themselves or others. Unfortunately, coverage is often
redundant, and relies strongly on the duration of the markers existence; moreover,
building robots with actual marker reading and writing mechanisms is quite difficult
in practice [10].

The collaborative approach is often associated with artificial methods (though
it could just as easily be inspired by human teamwork). Here robots communicate
with each other (in most studies, regardless of their distance), and divide up the area
between them, e.g., [1, 11, 13]. The coverage time can be minimized using such
collaborative algorithms. However, this approach requires not only localization (to
identify current position) and navigation (tomove to agreed-upon new locations), but
also memory (to store visited locations and future positions), communications that
allow task assignment, and most importantly, a shared coordinate system that allows
a shared understanding of the regions to be divided between the robots. Satisfying
these requirements in practice is again difficult. While memory and localization can
perhaps be fairly easily had (some commercial vacuumcleaners nowemploySLAM),
establishing global communications, and a shared coordinate system in an unknown
area, with unknown initial poses, is a difficult challenge [18, 24].

There have been surprisingly few attempts at addressing these challenges. Rek-
leities et al. have worked on coverage with range-limited communications [21], yet
still rely on a shared coordinate systems. Batalin et al. have replaced the need for com-
munications and localization with the need to sense others remotely, distinguishing
robots from other objects in the environment [2]. Rutishauser et al. examine col-
laborative algorithms that display graceful degradation (to random motions) when
positional, sensory, and communication failures accumulate [22], and are therefore
less reliant on explicit collaboration. Durham et al. have discussed a related approach
to ours, for offline coverage, whereby robots that meet exchange information by pair-
wise gossip communications, to statically partition a known an area between them
[4]. In contrast, our online coverage approach only requires robots to detect each
other, but no information exchange is necessary.

In this paper we propose a novel online coverage approach that is inspired by the
territorial behaviour of higher organisms in particular certain species of birds [12]
and mammals [23]. The key idea is that when two robots meet, they detect each
other (in birds, this is done by chirping a challenge which is then countered), then
remember the location of the encounter and treat it as a border landmark.Robots using
this approach are assumed to have localization and memory, but do not need global

From Ants to Birds: A Novel Bio-Inspired Approach … 33

communications or a shared coordinate system. Moreover, they utilize the simple-
to-implement random walk algorithm for their motion. We provide a comprehensive
mathematical and empirical analysis of this approach. Specifically, we analyze its
characteristics and determine its efficiency in terms of coverage time as a function
of its control parameters.

2 The Memory-Based Territorial Exclusion Model

We are given a set of N identical circular robots of radius r with a radially uniform
detection distance d ≥ r that move in continuous space with speed of magnitude
|−→v | within an arena of size A with periodic boundary conditions (toroidal domain).
Every time a robot detects another, they both remember the location (in their own
coordinate system), and move away from it. They mark the location in memory,
and then use this to avoid the location if they run into it again. Thus upon detecting
another robot or remembering a mark, the robots turn away.

Algorithm 1 Single- Step
Require: Current position −→p
1: Randomly choose λ, ϑ

2:
−→
� ←RandomWalk(λ, ϑ)

3: if A robot is detected in position
−→
b within d

OR
Remembered location

−→
b is within d then

4:
−→
� ← −→

b
5: Move to new position

−→
�

6: If robot or mark detected, Repel.

The position of each robot is updated following Algorithm 1, which controls a
singlemotion step of size d atmost. First (line 2), a newmotion vector

−→
� is generated

by calling a correlated randomwalk procedure with parameters λ, ϑ described below
(Sect. 2.1). Then, the robot considers whether another robot is detected along the
motion vector, within the detection distance d (line 3). If so, the robot remembers
the location (line 4) and sets a revised, shortened motion vector to it,

−→
b , reaching

the detected robot or mark by not moving beyond them. Alternatively, if a previously

marked location is retrieved from memory, it is used to set
−→
� (line 5–6). The robot

thenmoves along
−→
� . If it encounters a robot or remembers amark in the new location,

it repels towards the opposite direction, following the exclusion rule described in
Sect. 2.2.

34 L. Giuggioli et al.

2.1 Selecting a Motion Vector

The robots possess a degree of persistence in their motion and move as correlated
random walkers (see e,g. [3]). At one extreme each new step is uncorrelated with the
direction of the previous step and their movement is random. At the other extreme
the direction of movement is always identical to the one at the preceding step and
their movement is ballistic. At each time step, each robot randomly selects a step
size λ and an angle ϑ . The step size is sampled from an exponential distribution of
mean size equal to half the size of the robot diameter. The new angular direction
is selected relative to the previous movement direction. Except at the start of the
simulations when the choice of angle is completely random, each robot selects from
a distribution of turning angles f (θ). This distribution is a (symmetric) wrapped
Cauchy distribution, that is a Cauchy distribution C (x) = ρ

[
π(ρ2 + x2)

]−1
, which

is wrapped around the origin. For values between −π ≤ θ ≤ π [16]. The parameter
ρ is called the concentration parameter and represents the mean cosine of the distri-
bution 〈cos(θ)〉 = ∫ π

−π
cos(θ) f (θ) dθ = ρ. In other words it indicates the ‘strength’

by which a robot would go forward at each step. Integration and inversion of f (θ)

allows to sample from a uniform distributionU between 0 and 1 and obtain θ angles

distributed according to f (θ) via θ = 2 arctan
{
1−ρ

1+ρ
tan

[
π

(
U − 1

2

)]}
.

In the limit ρ → 0 the distribution f (θ) reduces to a uniform one between−π and
π , while in the limit ρ → 1 the distribution f (θ) reduces to aDirac delta distribution.
In the former case, sampling turning angles from a uniform distribution means that
the robotmoves at random,whereas in the latter limit the robotmoves ballistically, i.e.
always going straight (except upon encountering others). For intermediate values, the
robot moves as a so-called correlated random walker with the degree of persistence
determined by ρ. For computational simplicity the random step length for which a
robot is initially selected to move is rounded down to its first integer. The call to
Algorithm RandomWalk represents the computation of a new motion vector based
on the sampled parameters λ, ϑ .

2.2 Repelling Away from a Collision or a Remembered Mark

Two robots detect each other whenever their distance becomes equal to d. Upon
detection the two robots will mark the positions where such detection has occurred
and retreat from each other. The retreat represents an exclusion interaction at the
moment of detection, but the detection position is also a virtual mark is remembered
by the robots for the duration T (called memory time). Neither of the two robots will
cross the virtual mark. As each robot may interact with any neighbour that comes
within a detection distance, the number of active marks that a robot has with any
other members of the population fluctuates over time and depends on the various
parameters of the model.

From Ants to Birds: A Novel Bio-Inspired Approach … 35

Consider a robot R1 executing Algorithm 1. Assume that it is in collision course
with another robot, robot R j , which is considered static initially. At the predicted

location of collision, robot R1 marks the terrain at location
−→
b . Robot R1’s location

now gets updated by accounting for the presence of the virtual mark at
−→
b with

robot j fixed. We assume symmetrical detection, i.e., Robot R j now also remember

a virtual mark at
−→
b , though in its own coordinate system.

The geometry of the collision is as follows (see Fig. 1). After the mark location
at

−→
b is established, robot 1 moves up to −→a when it collides with the virtual mark

at position
−→
b . The mark now acts as a virtual barrier since robot 1’s velocity gets

reflected as if a barrier tangent to the robot’s detection circle was present at
−→
b .

Formally the reflected velocity vector −→v ′ changes from the old velocity −→v through
the relation

−→v ′ = −→v − 2

〈
−→v ,

̂−→a −→
b

〉
· ̂−→a −→

b , (1)

where
̂−→a −→

b is the normalized vector from −→a to
−→
b and 〈−→z ,

−→z ′〉 represents the
scalar product between −→z and −→z ′, that is the projection of −→z along −→z ′. As the
reflection of the velocity is performed only when the robot is moving towards the

virtual barrier, the exclusion rule applies only when

〈
−→v ,

̂−→a −→
b

〉
> 0. All of this

computation is carried out by the Repel algorithm.

Fig. 1 Representation of the
robot exclusion (repel) rule
whereby one agent changes
its direction upon
encountering a virtual barrier

36 L. Giuggioli et al.

Fig. 2 Visualization of the simulator with Voronoi partitioning in panel (a) and home range size
in panel (b). The circles around each robot represent half the size of the robot’s detection distance,
while the long lines centered on a robot indicate the locations of the virtual marks. The direction of
motion of each robot is shown by a small radial vector pointing outward from each robot. Although
home ranges and Voronoi tessellation are correctly computed also for the agents that are close to
the ‘edges’ of the toroidal domain, they are not visualized here. The home range size are computed
with a minimum convex polygon estimate over 50 time steps. Overlaps between the estimated home
ranges are colored in green

3 Simulating the Behavior of Robotic Birds

The simulator was developed in Java using the MASON simulation framework
(https://cs.gmu.edu/~eclab/projects/mason/). The simulator uses MASON’s visu-
alization facilities to draw the moving robots. It portraits each robot as a small disk
of radius r . The radius is drawn in a different color to indicate the current move-
ment direction from the robot’s centre to the radius tip. A larger circle around the
robot’s disk indicates its detection circle. For ease of visualization the detection cir-
cle’s radius is half its true value, so that the touching of two circles indicates that a
collision between two robots has occurred.

There are in total eight parameters in themodel. Those that we have kept fixed are,
in arbitrary units, the size of the toroidal arena A = 100 × 100, the magnitude of the
robots’ speed |	v| = 1, their size (robot radius r = 1) and the mean of the distribution
of step length λ = 1. We have changed the remaining four parameters consisting of
the number of robots 1 ≤ N ≤ 100, the detection distance 2 ≤ d ≤ 30 (arb. units),
the memory time 0 ≤ T ≤ 100 (arb. units), and the random walk persistence 0 ≤
ρ ≤ 1.

Additionally, the simulation draws lines from each robot to the virtual marks that
were generated when other robots were detected. These lines remain visible for an
amount of time T and show the mark locations where the robot may collide with.

https://cs.gmu.edu/~eclab/projects/mason/

From Ants to Birds: A Novel Bio-Inspired Approach … 37

To get a perception of the global patterns we display at each time step the Voronoi
tessellation [19] of the arena and the size and locations of the boundaries of the
so-called agent home range (see e.g. [6]) that gives an indication of where a robot
has been over a prescribed amount of time. Figure2 shows the Voronoi partitioning
and the outer boundaries of the home ranges measured by computing the minimum
convex polygon (MCP) (see e.g. [28]) of a robot’s localizations. Although other more
sophisticated procedures exist (see e.g. [14]), MCP is sufficient for our purpose.

To mimic experimental conditions where no global clock exists that causes all the
elements of the system to update their state at the same time [9], we use the following
asynchronous update scheme. At the start of a simulation the N robots are numbered.
At each time step robots are displaced sequentially from1 to N .Within one simulation
step, say robot R1 is selected, then its position is updated considering all other robots
as static. When R2 is then selected, R1’s updated position is accounted for in moving
R2, and so on with all other robots. A discrete simulation step is considered elapsed
once all the N robot positions have been updated. This sequential scheme has also the
advantage of reducing the computational costs of dealing withmulti-agent detections
if synchronous updating were to be used.

3.1 Measured Outputs

For each parameter set of the model the measured outputs are obtained by running
1000 simulations starting from the same initial condition (the number of simulations
for each figure is specified in the caption). The outputs that aim at giving an indication
of the degree of spatial heterogeneity of the system are of two kinds. One kind is
instantaneous and is obtained by observing the locations of each robot at a given
time and averaging over simulation runs. The instantaneous measurements include
the size of each Voronoi cell, the distance with respect to Voronoi neighbours, the
number of active virtual marks both within each Voronoi cell and within Voronoi
neighbours. The time-integrated measurements require accumulation of the data
over each simulation run for a certain period of time and include the robot home
range size, the spatial overlap and the coverage time. Outputs of the simulations are
represented via the values of the mean, the standard deviation and the coefficient of
variation (CV), that is the ratio of the standard deviation divided by the mean.

Whenever a simulation run starts, the initial directions of the robots are ran-
domized and the robots are placed in an hexagonal pattern. To do so it calculates
the maximal circle radius for packing N circle in the toroidal arena of size A, and
chooses initial placements for the robots as if they were circles of that radius. After
the initial placement, to ‘thermalize’ the initial configuration the simulation is run
for a burning time tb = 100 T .

38 L. Giuggioli et al.

4 Results

Given our interest in proposing a new coverage algorithm, we have focused on the
analysis of thememory-based territorial exclusionmodel rather than on a comparison
between the various algorithms employing stigmergic or collaborative approaches.
We do so by characterizing the heterogeneity of the spatial arrangement of the robots
and computing coverage times.

The degree of spatial heterogeneity of the emerging spatial segregation patterns is
obtained by studying the variability of the Voronoi partitioning. In Fig. 3 we display
CV of the Voronoi tile size at time tb as a function of detection radius and memory
time. The CV of Voronoi partitioning is a measure of the relative strength of the
fluctuations in the Voronoi cells among each robot and is mainly dependent on
the detection distance d. For a given T the robots are allowed to wander more
throughout space the smaller is d. Voronoi tiles with varying shape and size appear
more frequently the smaller is the detection distance as indicated by the increase
in CV while d is decreased in panel (a) and (b). The dependence of the spatial
heterogeneity of the robot position on T for a fixed d is in general very minor, as
shown in panel (a) with 100 robots. However, this is not the case anymore when
one uses a small number of robots for which a decrease in T reduces the movement
constraints and allows formore variability between the positions of the robots (and the
resulting Voronoi tiles) as displayed in the top right part of panel (b). The associated
heat maps with (d, T) = (3, 15) and (d, T) = (8, 15) in panels (a) and (b), which
represent the spatial occupation probability where a single agent have been, also
gives some indication of a wider range and variability in the sizes of the Voronoi
cells when a smaller number of robots is being deployed.

Away tomeasure the efficiency of the swarm algorithm is to estimate the coverage
time (CT) of the domain A for different choice of detection distance d and number

(a) (b)

Fig. 3 Coefficient of variation of Voronoi cell size as a function of the memory time and detection
distance for 100 robots in panel (a) and 10 robots animals in panel (b). Variability is evaluated
through 1000 simulation runs for each parameter combination. Heat maps of one simulation run
that indicate where one robot (selected at random) has been over 1000 time steps are also plotted
for different combinations of values of d and T . The concentration parameter ρ is set to 0

From Ants to Birds: A Novel Bio-Inspired Approach … 39

Fig. 4 Coverage time as a function of the concentration parameter ρ and memory time T for
different choices of packing fraction η averaged over 1000 simulations. The black line in each panel
tracks the minimum as a function of T for each different value of ρ. In computing the coverage
time a grid of 104 rectangles is superimposed on the spatially continuous domain contained in A.
Whenever the centroid of a robot is within a distance d from any point of a rectangle, that rectangle
is considered covered. Once all rectangles have been covered the simulation runs are halted and the
number of time steps are recorded

of robots N as a function of the concentration parameter ρ and the memory time
T . We do so in Fig. 4 and for a better appreciation of the robot density we actually
use the packing fraction η in place of N . As the robot collision distance is d/2 we
define η = π N (d/2)2/A, i.e. as the ratio between the maximum total area robots
may occupy as they collide with each other, π N (d/2)2, and the domain size A.
For low packing fraction we notice a general decrease of coverage time towards
higher persistent walk and lower memory time. We also notice that for a given fixed
concentration ρ, the value of memory time T that minimizes the coverage time,
drawn as a continuous black curve in all three panels, is neither random nor ballistic,
but intermediate between the two, with larger values the smaller the memory time.
Eventually for higher packing fraction, the coverage time develops a region in the
T − ρ parameter domain where minimization of the CT is possible. The transition
to the appearance of a region of global minimization of the coverage time is smooth
and is noticeable when η � 0.49.

It is also of interest to know the dependence of the coverage time for a given
memory time T as a function ofρ and the number of robots,which can also be evinced
from Fig. 4. As shown in panel (a) and (b), when packing fraction is sufficiently low,
the minimum coverage time is obtained with a ballistic walk. To show clearly this
effect we plot in Fig. 5 the coverage time as a function N for different concentration ρ

and we compare to the ‘perfect’ coverage algorithm whereby each location is visited
only once by one robot and based on an initial configuration of the robots that gives
the lowest possible coverage time. Considering the torus we construct the perfect
algorithm by computing CT = √

A + (2d)2
√
A/(2dN) − 2d where

√
A + (2d)2 is

the length that a robot needs to travel towrap around the torus’ edge before its original
place and

√
A/(2d) is the number of required trips to go to cover the available area

for each robot. The final subtraction is included because robots stop before reaching
their original location.

40 L. Giuggioli et al.

Fig. 5 Coverage time as a function of the number of robots averaged over 1000 simulations. From
top to bottom the first ten curves have been drawn with values of ρ increasing by 0.1 starting from
the random case at ρ = 0 to the ballistic case at ρ = 1. The detection distance is d = 15 and the
memory time is T = 20. The bottom curve is the perfect algorithm. Due to optimal initial placement
the perfect algorithm possess a zero coverage time beyond 14 robots

Fig. 6 Dimensionless coverage time as a function of the inverse normalized persistence parameter
ζ for a single robot in a circular arena averaged over 1000 simulations following the samemovement
and interaction (reflection) rules as those in the swarm. Random movement corresponds to ζ = 0
(ρ = 0) and ballistic movement corresponds to ζ = ∞ (ρ = 1). The circular arena and the speed
of the agents were set at 1. From top to bottom the curves correspond to a choice of a square grid
superimposed on the arena, respectively, of size L =1000, 316, 100, 31, and 10

From Ants to Birds: A Novel Bio-Inspired Approach … 41

To understand better the role of the walk persistence and spatial constraints due
to the collisions with other robots, in Fig. 6 we plot CT of a single robot with zero
detection distance and zero radius in a circular geometry of radius R. The robot
follows the movement rules as in the swarm and reflects the normal component of
the velocity vector by colliding with the circular confining wall in the same way
robots in the swarm get reflected upon encountering a virtual barrier. We study how
the coverage time changes as a function of the robot directional persistence.We do so
by plotting CT versus the dimensionless ratio ζ = −λ/[R ln(ρ)], which represents
an effective persistence parameter being the ratio between −λ/ ln(ρ), the average
distance a correlated random walker would move without turning [26], and the size
of the confining domain R.

To measure the coverage time we partition the circular arena with a rectangular
grid of L × L cells, and only the n cells whose centers are inside the arena are
taken into account. The coverage time C(n) is then defined as the time that takes
a walker to visit all these n sites. We make C(n) dimensionless by considering the
ratio φ = C(n)/τn , where τn is the time it takes a random walker with no correlation
(ρ = 0) to cover n distinct sites in open space.

5 Discussions

We have proposed a bio-inspired distributed spatial coverage algorithm that does not
require robots to deposit ‘marks’ on the terrain. Rather than exploiting the stigmergic
nature of scent-mediated territorial exclusion,wemimic a formof cognitive territorial
behaviour whereby animals remember the locations where they exchange visual
or auditory signals with neighbouring individuals to make each others’ presence
conspicuous. A robotic implementation of this behaviour consists of making each
agent consider, for a finite amount of time, the locations of direct collision with or
proximity to other robots as virtual barriers that cannot be encroached. This form
of interaction generates a dynamical segregation that reduces spatial oversampling
between the robots.

Two extreme regimes of spatial heterogeneity of the swarm are present depending
on the number and detection distance of the robots. At one extreme, when packing
fraction is sufficiently small, robots wander over all space with rare encounter occur-
rences and the system resembles a fluid-like material with homogeneous mixing. At
the other extreme, when packing fraction is relatively high, robots are nearly jammed
and the system may be highly heterogeneous. In some areas robots may move very
little around their initial placements, while in others robots move very little around
their initial placement.s

While the analysis of a single robot moving within a confined arena showed
that an intermediate degree of correlation minimizes coverage time, we found no
evidence of such minimization in our robotic swarm except by increasing packing
fraction (black line Fig. 4). For lower packing coverage minimization was achieved
instead when robots moved ballistically with increasingly poorer performance as

42 L. Giuggioli et al.

persistence was reduced (Fig. 5). We ascribe this difference to the fact that virtual
barriers, when robot encounters are rare, do provide a degree of confinement but only
partially. Although persistence reduces spatial oversampling in a single robot, it also
diminishes the chance to revisit or return towards the area where a barrier was created
thus preventing the robots to generate collectively long-lasting space partitioning.

As robot confinement is only partial, a natural measure to determine the size of the
confining domains is necessary. Home range estimates, being based on an arbitrary
integration time, do not offer a proper representation of the spatial confinement. As
a consequence it is not evident how to estimate the ζ parameter regime in which
robots operate. To explain the shift in optimal coverage between the ballistic and
the correlated regime between low and high packing fractions future work should
address the lack of a proper tool to estimate the size of the partial confinement.

Promising directions to improve the spatial coverage in the proposed algorithm
include the choice ofmore informed alternatives for themovement paths of the robots,
e.g. by avoiding recently visited locations, a variant of the so-called self-avoiding
walk [15], or by systematic plowing of the emerging territory of each robot [1].

Finally, we would like to add that although we have left unexplored the impact of
robot failures, the presence of obstacles and the confining geometry of a real arena,
we do not expect qualitative changes in our findings because the movement response
upon encountering an immobile robot, an obstacle or a reflecting wall would follow
the same interaction mechanism that a robot undergoes when encountering a virtual
mark. On the other hand, the same cannot be said about perception errors as these
would affect the degree of confinement of the robots and their effects on spatial
coverage would need to be studied. For an empirical test careful considerations
should also be made on the robot sensing mechanisms and how malfunctioning of
the detection or recording systems would change the efficiency of the algorithm.

Acknowledgements LG thanks the support of the Bar Ilan Robotics Consortium (BIRC) and the
office of the vice president during his stay at Bar Ilan University and acknowledges discussions
with Adham Sabra and Alan Winfield. The research was supported in part by ISF grant #1511/12
and EPSRC grant EP/I013717/1. As always, thanks to K. Ushi.
Data Access Statement The Java code to run the stochastic simulations is openly available in the
data.bris University of Bristol repository under DOI: https://doi.org/10.5523/bris.i1rl4lk2boj410h
6ui4cpblfh.

References

1. Agmon, N., Hazon, N., Kaminka, G.A.: The giving tree: constructing trees for efficient offline
and online multi-robot coverage. Ann. Math. Artif. Intell. 52(2–4), 143–168 (2008)

2. Batalin, M.A., Sukhatme, G.S.: Spreading out: a local approach to multi-robot coverage. In:
Asama, H., Arai, T., Fukuda, T., Hasegawa, T. (eds.) Distributed Autonomous Robotic Systems
5, pp. 373–382. Springer, Tokyo (2002)

3. Codling,E.A., Planck,M.J., Benhamou, S.:Randomwalkmodels in biology. J.R. Soc. Interface
95(5), 813–834 (2008)

https://doi.org/10.5523/bris.i1rl4lk2boj410h6ui4cpblfh
https://doi.org/10.5523/bris.i1rl4lk2boj410h6ui4cpblfh

From Ants to Birds: A Novel Bio-Inspired Approach … 43

4. Durham, J.W., Carli, R., Frasca, P., Bullo, F.: Discrete partitioning and coverage control for
gossiping robots. IEEE Trans. Robot. 28(2), 364–378 (2012)

5. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton.
Syst. 61(12), 1258–1276 (2013). https://doi.org/10.1016/j.robot.2013.09.004

6. Giuggioli, L., Kenkre, V.M.: Consequences of animal interactions on their dynamics: emer-
gence of home ranges and territoriality. Mov. Ecol. 2, 1–20 (2014)

7. Giuggioli, L., Potts, J.R., Rubenstein, D.I., Levin, S.A.: Stigmergy, collective actions, and
animal social spacing. Proc. Natl. Acad. Sci. USA 110(42), 16904–16909 (2013)

8. Hazon, N., Kaminka, G.: On redundancy, efficiency, and robustness in coverage for multiple
robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)

9. Huberman, B.A., Glance, N.S.: Evolutionary games and computer simulations. Proc. Natl.
Acad. Sci. 90(16), 7716–7718 (1993)

10. Koenig, S., Liu, Y.: Terrain coverage with ant robots: a simulation study. In: Autonomous
Agents, pp. 600–607. ACM (2001). https://doi.org/10.1145/375735.376463

11. Kong, C.S., Peng, N.A., Rekleitis, I.: Distributed coverage with multi-robot system. In: Pro-
ceedings of the 2006 IEEE International Conference on Robotics and Automation (2006)

12. Krebs, J.R.: Song and territory in the great tit parus major. In: Stonehouse, B., Perrins, C. (eds.)
Evolutionary Ecology, pp. 47–62. Macmillan Education, London (1977)

13. Luo, C., Yang, S.X., Stacey, D.A.: Real-time path planningwith deadlock avoidance ofmultiple
cleaning robots. In: Proceedings IEEE International Conference on Robotics and Automation,
2003. ICRA ’03, vol. 3, pp. 4080–4085 (2003). https://doi.org/10.1109/ROBOT.2003.1242224

14. Lyons, A.J., Turner, W.C., Getz, W.M.: Home range plus: a space-time characterization of
movement over real landscapes. Mov. Ecol. 1(1), 1 (2013)

15. Madras, N., Slade, G.: The self-avoiding walk. Springer, Berlin (2013)
16. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, Chichester (2000)
17. Menezes, R., Martins, F., Vieira, F.E., Silva, R., Braga, M.: A model for terrain coverage

inspired by ant’s alarm pheromones. In: Proceedings of the 2007 ACMSymposium on Applied
Computing, SAC ’07, pp. 728–732 (2007). https://doi.org/10.1145/1244002.1244164

18. Nagavalli, S., Lybarger, A., Luo, L., Chakraborty, N., Sycara, K.: Aligning coordinate frames
in multi-robot systems with relative sensing information. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 388–395. IEEE (2014)

19. Okabe,A.,Boots,B., Sugihara,K.,Chiu, S.N.: Spatial Tessellations:Concepts andApplications
of Voronoi Diagrams, 2nd edn. Wiley, Chichester (2000)

20. Potts, J.R., Harris, S., Giuggioli, L.: Quantifying behavioral changes in territorial animals
caused by sudden population declines. Am. Nat. 182(3), E73–82 (2013)

21. Rekleitis, I.,New,A.P., Rankin, E.S., Choset,H.: Efficient boustrophedonmulti-robot coverage:
an algorithmic approach. Ann. Math. Artif. Intell. 52(2), 109–142 (2008). https://doi.org/10.
1007/s10472-009-9120-2

22. Rutishauser, S., Correll, N., Martinoli, A.: Collaborative coverage using a swarm of networked
miniature robots. Robot. Auton. Syst. 57(5), 517–525 (2009). https://doi.org/10.1016/j.robot.
2008.10.023

23. Shettleworth, S.J.: Cognition, Evolution, and Behavior, 2nd edn. Oxford University Press,
NewYork (2010)

24. Suzuki, I., Yamashita,M.: Agreement on a common x-y coordinate system by a group ofmobile
robots. In: In proceedings of the 1996 Dagstuhl Workshop on Intelligent Robots: Sensing,
Modeling and Planning, pp. 305–321. World Scientific Press (1997)

25. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116 (1999)
26. Viswanathan, G.M., Raposo, E.P., Bartumeus, F., Catalan, J., da Luz, M.G.E.: Necessary crite-

rion for distinguishing true superdiffusion from correlated random walk processes. Phys. Rev.
E 72(1), 011–111 (2005)

27. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-robots using
evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1999). https://doi.org/10.
1109/70.795795

28. White, G.C., Garrott, R.A.: Analysis of Wildlife Radio-Tracking Data. Academic Press, Sand
Diego (1990)

https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1145/375735.376463
https://doi.org/10.1109/ROBOT.2003.1242224
https://doi.org/10.1145/1244002.1244164
https://doi.org/10.1007/s10472-009-9120-2
https://doi.org/10.1007/s10472-009-9120-2
https://doi.org/10.1016/j.robot.2008.10.023
https://doi.org/10.1016/j.robot.2008.10.023
https://doi.org/10.1109/70.795795
https://doi.org/10.1109/70.795795

Information Based Exploration
with Panoramas and Angle Occupancy
Grids

Daniel Mox, Anthony Cowley, M. Ani Hsieh and C. J. Taylor

Abstract In this work we present a multi-robot information based exploration strat-
egywith the goal of constructing high resolution 3Dmaps.Weuse aCauchy–Schwarz
Quadratic Mutual Information (CSQMI) based objective which operates on a novel
angle enhanced occupancy grid to guide robots in the collection ofRGBDpanoramas,
which have been shown to provide memory efficient high quality representations of
space. To intelligently collect panoramas, we introduce the angle enhanced occu-
pancy grid which emphasizes perspective in addition to coverage, a characteristic
we believe results in the construction of higher quality maps than traditional occu-
pancy gridmethods. To show this, we conduct simulations and compare our approach
with frontier exploration. Using our angle enhanced occupancy grid, only 11.4% of
decimeter wall segments were covered by fewer than 20 pixels as compared with
33.5% for the frontier method.

1 Introduction

A central pillar of robotics research is the development of efficient autonomous
mapping and exploration strategies with the attendant development of suitable rep-
resentations of the environment. Suitable representations serve as a prerequisite for
fundamental tasks such as exploration and localization, with a plethora of forms
emerging to suit each case. Metric maps that render spatial attributes in terms of
their location in a shared coordinate frame have enjoyed immense popularity in the

D. Mox (B)
Drexel University, Philadelphia, PA, USA
e-mail: dcm64@drexel.edu

A. Cowley · M. A. Hsieh · C. J. Taylor
University of Pennsylvania, Philadelphia, PA, USA
e-mail: acowley@seas.upenn.edu

M. A. Hsieh
e-mail: mhsieh1@drexel.edu

C. J. Taylor
e-mail: cjtaylor@seas.upenn.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_4

45

46 D. Mox et al.

literature. Examples of de facto standards for metric maps include occupancy grids
for exploration [4] and landmark maps for simultaneous localization and mapping
(SLAM) [10]. On the other hand, topological maps seek to relate semantic informa-
tion about the environment gleaned from sensor observations, and have been used to
aid in rapid exploration [3] and efficient task allocation [8].

In typical SLAM scenarios, localization and mapping are the motivating factors
of the entire system. However, choices made in support of those goals may not be
well-suited for other uses of map data. For example, in landmark based maps only
a few patches of images representing regions of interest are extracted from source
imagery, while in voxel based grids the fine details of a point cloud are lumped into
a small number of cells. The effects of filtering out significant portions of sensor
data have only been magnified with the emergence of low cost off the shelf RGBD
cameras. These sensors combine depth and visual information that can be used to
create dense, high fidelity three dimensional maps [11], but the torrent of available
data must must be carefully navigated.

New approaches using RGBD cameras include the influential work of Newcombe
in which dense mapping and tracking is achieved by fusing depth frames for surface
reconstruction [7]. Henry employed surfels, e.g., surface orientation, patch size,
and color, gleaned from RGBD frames to build 3D maps of indoor environments
[5]. Recent work by Taylor [9] focuses on panoramic views comprising multiple
depth frames captured at a location. Panoramic depth images are advantageous for
mapping because they provide both spatial information for motion planning and fine
grained detail for object recognition. Furthermore, when compared to traditional grid
based approaches, panoramic images have the potential to provide significantly more
detail while consuming only a modest amount of memory resulting in better scaling
characteristics.

In this work, we build upon [9] to develop a novel information maximizing explo-
ration strategy for teams of robots to map an unknown environment. Recent advances
in our understanding of information theory andhow to apply it to the robot exploration
problem have lead to a slew of new algorithms based on a powerful principle: themap
provides hints about what observations to expect at different locations and vice versa.
This notion is at the heart of mutual information, which seeks to quantify the amount
of information one random variable contains about another [2]. Julian demonstrated
that mutual information eventually drives the robot towards unknown space and
used it as an objective function for autonomous exploration using a range sensor [6].
A similar approach was shown by Charrow who used Cauchy–Schwarz Quadratic
Mutual Information (CSQMI), a metric closely related to mutual information, to
guide a robot equipped with an RGBD camera to map an unknown environment [1].

Different from existing work, we present a novel spatial grid representation that
emphasizes perspective in addition to coverage to guide robots in exploring unknown
spaces while collecting useful panoramas to create a detailed map of the environ-
ment. We leverage existing grid maps and their simplifying power for reasoning
about exploration tasks to guide a group of robots to collect panoramas which can
then be used to construct a detailed map of the environment. In our strategy, we
employ an occupancy grid based representation of the environment to enable each

Information Based Exploration with Panoramas and Angle Occupancy Grids 47

robot to execute a CSQMI based collaborative exploration strategy that uses minimal
communication bandwidth. A high fidelity representation of the environment is then
reconstructed using the collective sequence of panoramic images.

This paper is organized as follows: A detailed description of our methodology is
provided in Sect. 2. Simulation and experimental results are presented in Sect. 3. We
conclude with a summary of our work and a discussion on directions for future work
in Sect. 4.

2 Methodology

The objective is to efficiently explore an unknown environment usingmultiple robots
to collect high resolution panoramic images that can be used to produce a detailed,
memory conscious representation of space.

Using panoramas to represent the environment offer a number of advantages over
traditional grid basedmaps [9]. First, they capture the surface structure of interest and
nothing more as free space is implicit in the representation, offering a high level of
detail for the memory used as compared to an occupancy grid. While memory usage
may not be of significant concern when the workspace is small, it quickly becomes a
significant issue when exploring and mapping realistically detailed and expansive
spaces. Our work capitalizes on the unique perceptual data provided by RGBD
panoramas presented in [9]. By capturing such views of the space surrounding a
robot at specific locations in the workspace, a detailed map of the environment can be
created. Our work focuses on the development of a suitable exploration strategy and
we refer the interested reader to [9] for the details on the synthesis of the panoramas
and an overview of comparable state-of-the-art mapping techniques.

From [9], the panoramas are pieced together from a series of color and depth
images collected at regular intervals while the robot turns in place. As such, the
images can be stitched and refined locally on the robot, alleviating the need for
high bandwidth networking. As such, our exploration strategy is decomposed into
two main components: (1) collecting and storing panoramas for reconstruction and
updating local maps maintained for planning purposes and (2) determining the next
best location to collect more panoramas. We briefly describe our approach.

2.1 Angle Enhanced Occupancy Grid

While many exploration techniques focus on coverage of free space, the ideal map
should also afford clear and diverse views of surfaces within that space. Consider a
scenario where a robot is advancing down a hallway. A panorama is captured, and
a sign on the wall just manages to fall within the cameras range. The free space has
been identified and, from a traditional free space coverage standpoint, no more value
can be gleaned from observing the robot’s immediate surroundings. However, from

48 D. Mox et al.

Fig. 1 Objects of interest on display in a hallway captured at different perspectives (left). Illustration
of cells in an angle occupancy grid begin intercepted by beams, depicted as orange arrows (right)

a surface reconstruction standpoint, the face of the sign was captured at a shallow
angle andmay be rendered illegible in the resulting map. Here the utility of capturing
space from advantageous perspectives is made plain as can be seen in Fig. 1.

To encourage perspective in addition to coverage, we employ an angle enhanced
2D occupancy grid such that each point in space contains four values representing the
cardinal directions. As new observations are integrated into the map, the appropriate
bin is updated according to the angle at which the cell was observed by the sensor.
This creates an incentive for the robot to collect different views of the same physical
space. Since free space contains the same information from all perspectives this
binning strategy is not applied to unoccupied cells.

The principle behind this choice in map representation is that an occupancy grid
naturally breaks environmental surfaces into segments. These segments are, at a fine
enough scale, well approximated by star convex functions that we can drastically
subsample by only considering a small number of view angles between sensor and
surface. The primary tuning parameter then is the occupancy grid resolution, but not,
as is typical, to directly capture finer geometry. Instead, occupancy grid resolution
must be sufficient for the above convexity assumption to hold. Thus complex surface
geometry that may be captured in an image complements the efficient, if coarse,
geometric approximationofferedby theunderlyingoccupancygrid used for planning.

2.2 Exploration Planning

To select useful exploration goals, it is important to estimate howmuch future obser-
vations will tell us about the space they can cover. This notion is captured by com-
puting the mutual information between a predicted sensor reading and the map given
by

IM I [m; z] = H [m] − H [m | z]. (1)

Information Based Exploration with Panoramas and Angle Occupancy Grids 49

Since a future measurement is implicitly conditioned on the robot’s position, an
objective function naturally arises whereinmutual information is calculated for a col-
lection of candidate poses and used to determine the quality of a candidate panorama
capture location.

In this work, we employ the Cauchy–Schwarz Quadratic Mutual Information
(CSQMI) between a predicted measurement and the map to determine the next best
position for the robot to obtain a panorama during its exploration of the space.
In general, mutual information can be computationally expensive since it requires
integrating the likelihood over entire space, often represented by a grid. Since a
closed form expression for the CSQMI exists [1], it enables the quantification of the
value of future measurements in a computationally efficient manner. Furthermore,
CSQMI has been shown to produce similar results to mutual information [1]. Thus,
when coupled with our angle enhanced 2D occupancy grid representation of the
workspace for navigation purposes, the result is a scalable exploration strategy with
well bounded computational and memory complexities for any given workspace.
We briefly summarize the computation of CSMI using the proposed angle enhanced
occupancy grid and refer the interested reader to [1] for the details.

Let z denote the set of random variables representing future sensor measurements
that model the distance a beam at image pixel k travels before encountering an
obstacle. Since our sensor measurement is a panoramic RGBD image, we evenly
distribute k beams on the interval [0, 2π) originating at pose x . To model the noise
inherent in a depth measurement, we use the piecewise normal distribution given by

p(zk = z | d) =

⎧
⎪⎨

⎪⎩

N (z − 0, σ 2) d ≤ zmin

N (z − zmax , σ
2) d ≥ zmax

N (z − d, σ 2) otherwise

(2)

where zmin and zmax are the minimum andmaximum range of the sensor respectively
andN (z − μ, σ 2) is a Gaussian with meanμ and variance σ 2. While more complex
beam based models exist [10], this simple model is sufficient for our purposes.

Using the beam model given by (2), a distribution over possible measurements
denoted by p(zk) can be found by computing the marginal distribution over the list
of c cells belonging to the map m intercepted by the beam

p(zk) =
C∑

i=0

p(c = ei)p(zk | c = ei) (3)

where for i > 1, ei means that the i th cell is the first occupied cell in c, e0 means that
no cells in c are occupied, and C = |c|.

The CSQMI between the map, m, and a predicted observation, z, collected at a
location in space, x , is expressed as

50 D. Mox et al.

ICS[m; z | x] = (
∑∫

p(m, z | x)p(m)p(z | x)dz)2
∑∫

p2(m, z | x)dz ∑∫
p2(m)p2(z | x)dz (4)

where each sum is over all possible maps and the integrals are over all possible
measurements.

Due to the camera’s high resolution and the fact that panoramas comprise many
images stitched together, the number of beams k in themeasurement zk could be quite
large. However, exactly representing each pixel in a panorama with a beam is not
necessary. Depending on the resolution of the grid, beams very close together often
intercept many of the same cells which leads to the double counting of information
gained from each beam. As such, we only consider the subset of beams that can be
reasonably considered independent of one another given the range of the camera and
the resolution of the grid. Assuming independence between elements of this subset
of beams, (4) is computed by summing the individual contribution of each beam as
follows

ICS[c; zk | x] = log
C∑

l=0

wlN (0, 2σ 2)

+ log
C∏

i=1

(o2i + (1 − oi)
2)

C∑

j=0

C∑

l=0

p(e j)p(el)N (μl − μ j , 2σ
2)

− 2 log
C∑

j=0

C∑

l=0

p(e j)wlN (μl − μ j , 2σ
2).

(5)

Here oi = p(ci = 1) is the probability that the i th cell in c is occupied and p(e j) is
the probability that the first occupied cell in c is c j . Additionally, eachwl is calculated
as follows

wl = p2(el)
C∏

j=l+1

(o2j + (1 − o j)
2). (6)

with 0 < l < C , w0 = p(e0), and wC = p2(eC). The final result then becomes

ICS[m; z | x] =
k∑

i=0

ICS[c; zk | x]. (7)

CSQMI is computed for a list of poses,χ , sampled fromknown free space. Figure2
shows the CSQMI reward surface computed for the corresponding workspace using
a traditional 2D occupancy grid and using an angle enhanced occupancy grid. By
incorporating the notion of perspective into the occupancy grid, the CSQMI reward
surface computed using the angle enhanced grid results in better coverage of the all
accessible sides of objects and obstacles.

Information Based Exploration with Panoramas and Angle Occupancy Grids 51

Fig. 2 A sample environment after three panoramas have been captured (left) and the resulting
CSQMI reward surface for a traditional 2D occupancy grid (center) and the angle enhanced occu-
pancy grid (right)

To choose between the highest CSQMI poses, travel costs in the form of distance
along a path calculated using A* from the robot to the candidate pose are used. Thus,
the next best position is given by

x� =argmax
x∈χ

ICS[m; z | x]
Cost (x)

(8)

whereCost (x) is the path distance from the robot’s current pose to the candidate goal,
x . Integrating the travel cost results in emphasizing completion of locally accessible
space before advancing towards uncharted territory.

2.3 Multi-robot Strategy

From (4) we see that our approach provides a computationally efficient strategy to
determine next best locations for measurements in a scalable way. Accordingly, our
strategy is particularly well suited for small, resource constrained platforms since
each robot only has to compute the CSQMI objective function once to determine the
next best position to capture a panorama. This enables us to develop a simple coor-
dination strategy where the single robot exploration strategy is executed in parallel
by a team of robots.

52 D. Mox et al.

The deployment of multiple robots speeds up the exploration process, especially
when robots are tasked to focus on distinct regions of the workspace. Since travel
costs are already accounted for during planning, our coordination strategy simply
requires individual robots to share their localmaps and goals to ensure panorama cap-
ture locations do not overlap. Assuming the relative pose of each agent is available,
a small grid circumscribing the latest panorama is broadcasted to the other robots
and integrated into their local maps. The active goals of other agents are also consid-
ered during planning to prevent multiple robots from traveling to the same region.
We note that this communication strategy only requires the communication of local
maps and goals which are only updated each time a panorama is captured and as such
are only transmitted occasionally, reducing the required bandwidth. The result is a
distributed strategy for cooperative mapping of an unknown environment. Critically,
this approach relies on the exchange of small occupancy grids rather than accu-
mulated imagery or detailed surface reconstructions. This is the difference between
megabytes-per-second and kilobytes-per-hour in terms of communication cost.

3 Results

To validate our approach, simulations and experiments were conducted in a variety
of indoor environments with teams of one to five robots. An Asus Xtion Pro Live
RGBD camera was used to provide observations of the environment. Each panorama
comprised of 36 images, one for every 10 degrees of rotation. Throughout our simula-
tions and experiments, we assume the pose of each robot in a global coordinate frame
is provided. While robot localization remains a non-trivial problem, our objective is
validating the proposed exploration strategy. As such, we assume robot localization
can be achieved via existing on-board localization methods.

3.1 Simulations

To evaluate the proposed angle aware exploration strategy, we compare our approach
with the well established frontier method [12]. We use two simulated environments
shown in Fig. 3a, b to compare the resulting exploration locations. Figure3c, d show
the capture locations of panoramas in a simple indoor environment spanning a space
of 8 × 14 m2. High level results of each iteration of the simulation are summarized
int Table1.

The benefit of the angle enhanced occupancy grid approach may be seen by a
detailed analysis of image coverage of the 2D surfaces in the Hallway environment.
As a proxy for data quality, we consider the maximum image size of every 10 cm
segment of wall across all simulated panoramas using a linear imaging resolution
of 8229 pixels for each 360◦ panoramic image as used by the experiments in [9].
Visibility is calculated for each decimeter as a whole by ray-casting from the capture

Information Based Exploration with Panoramas and Angle Occupancy Grids 53

(a) (b)

(c) (d)

Fig. 3 a Curving hallway environment used with 1 robot; b larger office environment used with 5
robots; and simulation results for the curved hallway for frontier (c) and angle aware (d) planning
methods. The red line shows the path of the robot and the blue circles represents panorama capture
locations

Table 1 Summary of the area covered and panoramas captured by each method in the Hallway
(Fig. 3a) and Office (Fig. 3b) environments

Environment Method Area covered (m2) Panoramas captured

Hallway Angle aware 110.9 11

Hallway Frontier 105.9 6

Office Angle aware 572.0 140

Office Frontier 571.3 38

54 D. Mox et al.

location to the center of a wall segment. This is a simplification of the benefits of
multiple observations, but is immediately applicable to common tasks such as optical
character recognition of writing on walls, or face recognition applied to pictures on
walls. Image size relates to our approach in so far as shallow observation angles
correspond with lower resolution imaging of a surface. Put plainly, though we are
not optimizing specifically for this metric, we expect some correlation. Note that
while the numbers used throughout our analysis are arbitrary, they provide a context
to compare eachmethod that proves valuable regardless of the exact image resolution
chosen.

For the set of simulated experiments shown in Fig. 3c, d, the frontier approach
fully explored the Hallway environment after collecting 6 panoramas, while the
angle aware approach selected 11 locations to faithfully capture all surfaces. With
these panorama collection locations, we can calculate that 33.5% of wall segments
observed during the frontier exploration strategy were captured by fewer than 20
pixels in any given panorama. For the angle enhanced occupancy grid approach, only
11.4% of wall segments were observed below the same threshold resolution. If we
evenly subdivide the frontier exploration trajectory to result in an equivalent number
of panoramas (“augmented frontier”), 17.9% of wall segments are observed below
the resolution threshold. This demonstrates that angle sensitivity in the exploration
strategy results in substantially fewer “blind spots” along surfaces in the environment
as it hasmore informationwithwhich to plan. A naïve increase in panorama locations
alone, however, does not result in the same coverage gains.

The prevalence of low resolution blind spots in the augmented frontier strategy
is visible in the overlayed histograms in the lower-right of Fig. 4. In this figure, the
green histogram bars of the augmented frontier observations stand out on the left of
the chart. Precisely where these blind spots arise may be seen in the top row of Fig. 4
where the light blue wall segments on the right side of the map approximately one
third of the way up the image, for example, indicate poor coverage.

Lastly, Fig. 5 shows the panorama capture locations for a team of five robots
deployed in the office environment shown in Fig. 3b. Initially each robot balances
capturing local space with pushing into uncharted territory. As each robot explores
more space, the simple assignment strategy ensures that each robot does not interfere
with its neighbor.

3.2 Experiments

We have also conducted live experiments in the space shown in Fig. 6b which covers
an area of approximately 5 × 5m2. The two differential drive ground robots shown in
Fig. 6a traversed the environment to collect panoramas, sharing maps and goal loca-
tions as described in Sect. 2.3. Each robot was equipped with an Asus Xtion Pro Live
RGBD camera providing synchronized color and depth frames for the panoramas
and spoofing a laser rangefinder for construction of the angle occupancy grid used
during planning. All software was written in C++ and executed on an Odroid-XU4

http://dx.doi.org/10.1007/978-3-319-73008-0_2

Information Based Exploration with Panoramas and Angle Occupancy Grids 55

Fig. 4 Top row: map renderings with walls colorized by the resolution at which they were cov-
ered for frontier (left), augmented frontier (center), and angle aware (right) approaches. Hue indi-
cates imaging resolution with red indicating high resolution, and blue indicating low resolution. In
grayscale, the less saturated wall segments indicate poor coverage. Panorama capture locations are
denoted by green circles. Bottom row: histograms of pixels per decimeter for augmented frontier
(left), angle aware (center), and augmented frontier overlaid on angle aware (right)

Fig. 5 Five robots collaboratively exploring an office environment after 4 panoramas (left) and
after 10 panoramas (right)

56 D. Mox et al.

(a) (b)

(c)

Fig. 6 The ground robots (a), lab space used for live experiments (b), and experimental results
showing the panorama capture locations for the two robot team (c)

single board computer on-board the robot running Linux and the Robotic Operating
System (ROS). Localization was provided by an external motion capture system.

In order to predict future measurements and compute CSQMI, several parameters
were specified. Panoramas were modeled as a collection of 360 beams distributed
over the interval [0, 2π). Given a map resolution of 0.05m, increasing the number
of beams only resulted in additional dependent beams which intercepted the same
cells and would be factored out of the CSQMI calculation. Values of zmin = 0.5m
and zmax = 4.5m were used for the minimum and maximum range of the Xtion, and
the noise was modeled with σ = 0.03.

The results of the experiment can be see in Fig. 6c with the two robots beginning at
{−2, 0} and {−2, 1.5} respectively. Starting at the same time, the team executed our
exploration strategy simultaneously and collected a total of 13 panoramas. Operating
in proximity, the team successfully avoided capturing panoramas from the same
location demonstrating the effectiveness of our proposed multi-robot coordination
strategy.

Information Based Exploration with Panoramas and Angle Occupancy Grids 57

4 Conclusion and Future Work

Panoramas comprised of images collected from an RGBD sensor provide a new
way to generate high fidelity representations of environments without demanding
significant memory resources. This opens up the need for new exploration strate-
gies that leverages the unique perceptual characteristics provided by the sensor. Our
angle aware exploration strategy enables a team of robots to effectively map an
unknown environment by searching for locations that yield high information gain
while accounting for diverse perspectives when creating a comprehensive 3D map.
Since the approach is computationally efficient, it can be used by a wide variety
of robotic platforms, even ones with limited computational resources. Furthermore,
the approach places minimal demands on inter-agent wireless communication and
computation at both the planning and coordination level.

As depth panoramas contain rich information about the environment, an alterna-
tive approach could be constructing and using them online directly in the planning
phase. This has the added benefit that the final map is included in the planning loop
which ensures some level of quality. Additionally, extending this approach to plat-
forms not constrained to the plane such as unmanned aerial vehicles would require
modifications to the angle enhanced occupancy grid employed. However, we believe
the proposed exploration strategy will enable heterogeneous teams of robots to bet-
ter leverage the distinct perceptual and mobility capabilities of the various sensing
resources within the team. These are all directions we are pursuing for future work.

Acknowledgements The authors gratefully acknowledge the support of ARL grant W911NF-08-
2-0004 and NSF grant OISE-1131011.

References

1. Charrow, B., Liu, S., Kumar, V., Michael, N.: Information-theoretic mapping using Cauchy–
Schwarz quadratic mutual information. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA) pp. 4791–4798 (2015). https://doi.org/10.1109/ICRA.2015.7139865

2. Cover, T.M., Thomas, J.A.: Elements of Information Theory (2005). https://doi.org/10.1002/
047174882X

3. Cowley, A., Taylor, C.J., Southall, B.: Rapid multi-robot exploration with topometric maps.
In: Proceedings-IEEE International Conference on Robotics and Automation pp. 1044–1049
(2011). https://doi.org/10.1109/ICRA.2011.5980403

4. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6),
46–57 (1989). https://doi.org/10.1109/2.30720

5. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras
for dense 3D modeling of indoor environments. Springer Tracts in Adv. Robot. 79, 477–491
(2014). https://doi.org/10.1007/978-3-642-28572-1_33

6. Julian, B.J., Karaman, S., Rus, D.: On mutual information-based control of range sensing
robots for mapping applications. Int. J. Robot. Res. 33(10), 1375–1392 (2014). https://doi.org/
10.1177/0278364914526288

7. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P.,
Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and

https://doi.org/10.1109/ICRA.2015.7139865
https://doi.org/10.1002/047174882X
https://doi.org/10.1002/047174882X
https://doi.org/10.1109/ICRA.2011.5980403
https://doi.org/10.1109/2.30720
https://doi.org/10.1007/978-3-642-28572-1_33
https://doi.org/10.1177/0278364914526288
https://doi.org/10.1177/0278364914526288

58 D. Mox et al.

tracking. In: 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR
2011 (July 2016), pp. 127–136 (2011). https://doi.org/10.1109/ISMAR.2011.6092378

8. Stachniss, C., Martínez Mozos, Ó., Burgard, W.: Efficient exploration of unknown indoor
environments using a team of mobile robots. Ann. Math. Artif. Intell. 52(2), 205–227 (2008).
https://doi.org/10.1007/s10472-009-9123-z

9. Taylor, C.J., Cowley, A., Kettler, R., Ninomiya, K., Gupta, M., Niu, B.: Mapping with depth
panoramas. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2015), pp. 6265–6272 (2015)

10. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT press, USA (2005)
11. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous:

Spatially extended kinectfusion (2012)
12. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second

International Conference On Autonomous Agents, pp. 47–53. ACM (1998)

https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1007/s10472-009-9123-z

Multirobot Persistent Patrolling in
Communication-Restricted Environments

Marta Romeo, Jacopo Banfi, Nicola Basilico and Francesco Amigoni

Abstract In multirobot patrolling, a team of robots is deployed in an environment
with the aim of keeping under observation a set of locations of interest. In sev-
eral realistic mission scenarios, only human operators sitting at a base station are
able to assess the situation on the basis of data sent by robots. Examples include
watching pictures or video streams to detect intruders and correlating measurements
to detect leaks of contaminants. We assume that a communication infrastructure is
available only in some regions of the environments, from where messages can be
exchanged with a sufficient bandwidth between the robots and the base station. In
this paper, we first extend the classical multirobot persistent patrolling framework
and the related idleness evaluation metrics to such environments with a limited num-
ber of “communication zones”. Then, we present some centralized and distributed
patrolling strategies tailored for this communication-restricted framework. Finally,
we evaluate their performance using ROS/Stage simulation.

1 Introduction

In the last few years, a lot of effort has been devoted in the autonomous robotics
community to the study of effective patrolling strategies in different problem set-
tings and under different assumptions [1–4, 9, 10, 13, 15]. In the basic formulation
of the multirobot persistent patrolling problem, a team of robots is deployed in an

M. Romeo · J. Banfi (B) · F. Amigoni
Politecnico di Milano, Milan, Italy
e-mail: jacopo.banfi@polimi.it

M. Romeo
e-mail: marta.romeo@mail.polimi.it

F. Amigoni
e-mail: francesco.amigoni@polimi.it

N. Basilico
University of Milan, Milan, Italy
e-mail: nicola.basilico@unimi.it

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_5

59

60 M. Romeo et al.

environment represented as an undirected weighted graph, with the aim of minimiz-
ing the idleness of each location (vertex) to be patrolled, defined as the time elapsed
since that location has received the visit of a robot [10]. Evaluation metrics related to
this notion, such as average and worst-case idleness, are introduced and investigated
for different patrolling strategies and in a number of different conditions [4, 9, 10,
13, 15].

Some realisticmission scenarios challenge an (often implicit) assumptionmade in
the above formulation, namely that a single robot is able to assess the situation of the
visited vertices solely on the basis of the data it collected. In these cases, data must be
reported to a base station, acting as a mission central room, where human operators
can assess the situation and take appropriate countermeasures. For instance, think
about the presence of an intruder or about a leak of contaminants, when the robots
might not have the physical capabilities required to detect the problem and intervene
to solve it, because operators need to watch pictures or video streams and to correlate
measurements. In this paper, we assume that communication between the robots and
the base station can only use existing communication infrastructures, such as tactical
networks or cellular networks, that are characterized by the fact that only some
regions of the environment are covered by a sufficiently strong signal. The presence
of such “communication zones” in the environment to patrolwas recently investigated
in [1], where a centralized inspection tour for a team of robots is calculated with the
aim of minimizing the time lag between the visit of a location and its report to the
base station.

In this paper, we propose some strategies for multirobot persistent patrolling in
communication-restricted environments characterized by the presence of a limited
number of communication zones. More precisely, we extend the classical idleness
evaluation criteria for the communication-restricted patrolling framework introduced
in [1]. Then, we present some patrolling strategies for such a framework. One of these
strategies is centralized and optimal, while the other two are distributed. Although
non optimal in general, these last strategies are less computationally demanding and
are particularly suited for coping with unpredictable events (e.g., temporary unavail-
ability of communication links). The proposed patrolling strategies are implemented
within a ROS-based architecture, and ROS/Stage simulations are run to analyze and
compare them in a number of different settings. The results show that a centralized
planning scheme is not actually needed to obtain good performance and that both
the proposed distributed strategies perform well.

2 Related Work

The study of multirobot patrolling strategies is nowadays a rather lively sub-field of
autonomous robotics, especially from the theoretical point of view (although some
practical systems have been proposed [9]). Approaches can be broadly divided in
two categories: those considering an adversarial setting and those considering a
non-adversarial setting. In the former category, patrolling strategies are developed
considering a specific model of rational intruder [2, 3], while, in the latter category,

Multirobot Persistent Patrolling in Communication-Restricted Environments 61

the patrolling strategies are in general agnostic about the particular events to be
monitored, preferring to maximize the frequency of visit of some locations that
need to be kept under constant observation [4, 6, 9, 10, 13, 15] (hence the name
“persistent patrolling”). In this paper, we concentrate on the last category of works.
To the best of our knowledge, there are few works in the literature considering
communication constraints in robotic patrolling and in the more general context of
robotic information-gathering missions. For example, in [11], the authors consider a
generic multirobot routing task, in which robots are required to maintain, by means
of local and multi-hop transmissions, a global communication infrastructure while
visiting some target areas at minimum traveling cost. More recently, [16] considers
the same general setting, but with the additional requirement of planning robots’
paths while maintaining a given minimum end-to-end data rate between robots.

Another problem setting is investigated in [7], where robots plan informative paths
under the constraint of regaining multi-hop connectivity after a fixed number of time
steps. The assumption on the communication infrastructure we make in this paper
is rather different from that adopted in these works, because we do not rely on a
multi-hop network to deliver data to a base station, but on an existing infrastructure
that is available only in some areas. More precisely, motivated by recent military
and civil case-studies [12, 17], in [1] we have introduced a patrolling framework
modeling the presence of an existing communication infrastructure (for example, a
tactical network, awireless network, or a cellular network) that robots could exploit to
reliably communicate with a base station. (This setting is similar to that investigated
in [5], but in the context of static target search.)

In this paper, we investigate further along this line through the adoption of the
same communication model. However, instead of considering a patrolling mission
consisting of a single inspection tour computed offline (as in [1]), we focus on
persistent patrolling, in which vertices need to be visited multiple times in order to
keep them under constant observation.

3 Problem Definition

A team R = {1, . . . ,m} of robots must persistently patrol some locations of a given
environment while sending reports to, and exploiting information provided by, a base
station (BS). Robots can communicate with the BS by exchanging messages through
a pre-existing communication infrastructure, which is only accessible from some
regions of the environment. To formalize this setting,we represent the environment by
means of an undirected graphG = (V, E) inwhich vertices represent all the locations
robots can visit, while edges encode physical connections between them (without
considering self-loops). Each edge (vi , v j) ∈ E is associated with a positive integer
d(vi , v j) representing the physical distance between vi and v j in the environment.
We assume that our graph represents a physical environment. For this reason, we
impose that the distance d(vi , v j) associated to any physical edge (vi , v j) ∈ E is not
greater than that of any other (vi , v j)-path inG. Vertices V are used to represent both

62 M. Romeo et al.

locations to patrol and communication zones. Accordingly, following the notation
introduced in [1], each vertex in V is preassigned to up to two types: m, if the
vertex needs to be persistently monitored (patrolled), and c, if the vertex allows to
exchange messages with the BS. We denote with Vm, Vc ⊆ V the two subsets of m-
type and c-type vertices, respectively. (Notice that Vm and Vc may share a non-empty
intersection.) Robots move on the graph G by traversing the physical edges E : once
they reach an m-type vertex, they accomplish a (instantaneous) patrolling visit at it;
once they reach a c-type vertex, they are allowed to communicate with the BS. At
the moment, we do not assume any limit on the communication from a c-type vertex
to the BS. In Sect. 5, we consider errors in the transmission of messages.

In order to define the objective of the patrolling, we now generalize the classi-
cal evaluation metrics related to the notion of idleness [4] to our communication-
restricted framework. The persistent patrolling task unfolds across an arbitrary long
time horizon T in which time evolves in discrete steps {1, . . . , T }. The mission
undertaken by a robot r is represented by a walk on the graph G of the form
wr = (v0, v1, . . . , vk), where v0 denotes the robot’s starting vertex, vk denotes the
last vertex visited before T , and a generic vi denotes the i-th vertex visited by the
robot. (Notice that, being wr a walk on G, it is not possible to stay still at the same
vertex, but this can appear multiple times in wr .) For each walk wr , we define a
function tr : {1, . . . , k} → {1, . . . , T } mapping the i-th visited vertex by robot r to
the time step in which the visit takes place. In particular, each tr (i) is determined
by the total distance traveled until the i-th vertex visited in wr (

∑i−1
j=0 d(v j , v j+1))

and by robot r ’s (possibly varying) speed along that portion of the walk. Now, for
any i ∈ {1, . . . , k} such that vi ∈ Vm , let vc̄, c̄ ≥ i be the first vertex after the i-th
vertex visited s.t. vc̄ ∈ Vc, and call c(i) = c̄. Following this notation, we define robot
r ’s reporting time of visit i to the BS (only for vertices vi s.t. vi ∈ Vm) as tr (c(i)),
assuming that this quantity will be infinite if the visit is never reported before the
patrolling task ends at T . (Notice that tr (c(i)) = tr (i) if and only if vi ∈ Vc ∩ Vm .)

Contrarily to many other patrolling settings, it may be possible in our frame-
work that the BS receives reports containing outdated information. This happens
when there exist two robots r, r ′ ∈ R (not necessarily different), two walks wr =
(v0, v1, . . . , vk),wr ′ = (v0, v1, . . . , vk ′), and two visits i ∈ {1, . . . , k}, j ∈
{1, . . . , k ′} s.t. vi = v j , tr (i) < tr ′(j), and tr (c(i)) ≥ tr ′(c(j)). In such a case, we
say that the i-th visit of robot r is outdated, in the sense that the corresponding
report to the BS will contain outdated information. We are now ready for introducing
metrics related to communication idleness.

We define the instantaneous communication idleness of vertex v ∈ Vm at time
t̄ ∈ {1, . . . , T } as:

ICv(t̄) = t̄ − t̄ ′, (1)

where t̄ ′ ≤ t̄ denotes the time step of the last not outdated report of vertex v to the
BS not after time step t̄ . We assume that the initial situation of all the vertices to be
monitored is known, andhence that ICv(t̄) = t̄ if there exists novisit to v that has been
communicated (by any robot) until time t̄ . Notice that, according to our definition, in

Multirobot Persistent Patrolling in Communication-Restricted Environments 63

case Vm = Vc = V no visit is considered outdated, and the notion of instantaneous
communication idleness collapses into the notion of idleness classically adopted in
multirobot persistent patrolling (see, e.g., [4]).

The instantaneous graph communication idleness at time t̄ is defined as the aver-
age instantaneous communication idleness among the vertices to be patrolled:

ICG(t̄) =
∑

v∈Vm
ICv(t̄)

|Vm | . (2)

In this paper, we are mainly interested in studying patrolling strategies allowing
to minimize the average graph communication idleness at the end of the mission,
formally defined as:

ICG =
∑

t̄∈{1,...,T } ICG(t̄)

T
. (3)

Another interesting performance indicator we will investigate is the worst-case
graph communication idless at time T , W ICG , which can be informally defined
as the largest instantaneous vertex communication idleness encountered through the
patrolling task. Average andworst-case idleness for the single vertices can be defined
in a similar way.

4 Communication-Aware Patrolling Strategies

In this section, we present three different multirobot patrolling strategies (plus a
random baseline one) suitable for the patrolling setting introduced above, aimed
at minimizing the average graph communication idleness ICG . First, we present
a strategy in which the BS performs the planning phase by computing centralized
optimal visit plans for all the robots. Then, we present two distributed strategies in
which robots query the BS about the current situation of the environment in terms of
vertices idlenesses and teammates current commitments (plans) and then calculate
their plans.

4.1 Globally Optimal Strategy

The globally optimal strategy (G-OPT) is an optimal, centralized, and offline strategy
working as follows. At the beginning of the patrolling mission, the BS computes
(using brute force) the best set of joint robot walksw∗ = (w∗

1,w
∗
2, . . . ,w

∗
m) spanning

the whole task horizon T and minimizing ICG ; then, it communicates the plans
to the robots (that are assumed to be initially placed in possibly different starting

64 M. Romeo et al.

vertices belonging to Vc), which can then start to execute them. The pseudo-code of
the planning algorithm of G-OPT is shown in Algorithm1.

About the computational complexity of such a planning scheme, notice that the
evaluation of ICG for a candidate set w of joint robots’ walks may require pseudo-
polynomial time O(mT) in general, while the number of (the longest) joint walks of
length not exceeding T on G grows not less than exponentially with the size of the
input: therefore, this strategy is suitable only for small problem settings. Moreover,
it is evident that the walks obtained by adopting this planning approach will be
actually optimal w.r.t. the minimization of ICG (if the errors in the predictions of
their execution can be assumed to be negligible).

Algorithm 1 G-OPT planning algorithm
W ← {all the longest joint walks of m robots on G with maximum length T }
for all w ∈ W do

simulate the concurrent execution of w and compute the corresponding ICG
end for
w∗ ← {the obtained joint walk w that minimizes ICG}
return w∗

We remark that an optimal strategy could also be obtained by formalizing the
problem as aMixed Integer Linear Program, in the spirit of [1]. However, with respect
to [1], such an approach would require the additional modeling of the possibility of
multiple passages through the same vertices at any time step along the whole mission
horizon, making the MILP overly complicated.

4.2 Individually Optimal Strategy

The individually optimal strategy (I-OPT) can be thought as the distributed and
online version of G-OPT. When adopting this strategy, robots iteratively compute
new portions of their own walks as soon as they reach a new c-type vertex, querying
the BS about (a) the currentm-type vertices instantaneous communication idlenesses
and (b) their teammates intentions, expressed in terms of portions of the walks they
are currently following. More specifically, let t̄ be a generic time step in which a
robot r reaches a c-type vertex, and let ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm the portions of
walks its teammates are going to follow from step t̄ . (Notice that such portions of
walks may be outdated, as they depend on the previous arrivals of the robots to c-
type vertices.) Robot r computes a new portion of its walk ŵr on G of estimated
travel time H (the planning horizon) as the walk minimizing the average graph
communication idleness between t̄ and t̄ + H , while taking into account the walks
followed by its teammates (if a teammate has communicated a plan that ends before
t̄ + H , it is assumed to remain still at the last vertex of the communicated plan).
If H is sufficiently small, a complete evaluation of all the possible walks of length

Multirobot Persistent Patrolling in Communication-Restricted Environments 65

H can be completed in reasonable time; otherwise, a sampling strategy needs to be
adopted. The pseudo-code of this planning scheme is reported in Algorithm2.

Algorithm 2 I-OPT planning algorithm for robot r at time t̄
ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm ← {query the BS about the walks followed by other robots}
query the BS about instantaneous communication idlenesses of vertices Vm
Wr ← {enumerate/sample walks from r ’s current position along [t̄, t̄ + H]}
for all wr ∈ Wr do

ŵ ← (ŵ1, . . . , ŵr−1,wr , ŵr+1, . . . , ŵm)

simulate the execution of ŵ and compute the corresponding ICG in [t̄, t̄ + H]
end for
ŵr ← {the obtained walk wr that minimizes ICG in [t̄, t̄ + H]}
return ŵr

4.3 A Simple Reactive Strategy

The reactive strategy (RE) is still distributed, but does not involve long-term planning
up to horizon H as the previous one; instead, it is inspired by the Cognitive Coordi-
nated strategy studied in [4, 10]. (This strategy empirically showedgood performance
when considering the classical notion of idleness.) By adopting this strategy, robots
iteratively choose a new m-type vertex v̂ to reach according to a heuristic in which
vertices with the highest instantaneous communication latency have higher priority,
and, in case the chosen vertex does not belong also to Vc, subsequently move to the
closest c-type vertex in order to communicate back data relative to v̂ and to obtain
from the BS the data needed for computing a new plan.

More specifically, when a robot r arrives at the c-type vertex selected for commu-
nicating the data relative to the previous v̂′ ∈ Vm at a generic time step t̄ , it queries
the BS about (a) the currentm-type vertices instantaneous communication idlenesses
and (b) their teammates intentions, expressed in terms of portions of walks currently
being followed (as in the previous strategy). It then decides to reach the m-type
vertex v̂ displaying the highest communication idleness that is currently not in the
portion of walk followed by any other robot (if each vertex will be visited by at
least one robot, it chooses one randomly). The path from the current vertex of robot
r to v̂ is computed on G, so that, as a side-effect of the choice, additional m-type
and c-type vertices can be visited (in the latter case, the data relative to the visited
m-type vertices are sent to the BS). In case v̂ /∈ Vc, the path is augmented with the
shortest path connecting v̂ to the closest c-type vertex. The pseudo-code each robot
runs for implementing this strategy is shown in Algorithm3. Clearly, the algorithm
runs in linear time w.r.t. the number of graph vertices (more precisely, in O(m|V |))
if the shortest paths composing ŵr are already available (notice that they can be
pre-computed at the beginning of the mission).

66 M. Romeo et al.

Algorithm 3 RE planning algorithm for robot r at time t̄
ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm ← {query the BS about the walks followed by others}
query the BS about instantaneous communication idlenesses of vertices Vm
v̂ ← argmaxv∈Vm ,v/∈ŵi ,i∈R\{r} ICv(t̄)
compute ŵr as the shortest path on G from r ’s current position to v̂
if v̂ /∈ Vc then

let v̂c be the c-type vertex closest to v̂
augment ŵr with the shortest path on G from v̂ to v̂c

end if
return ŵr

In the next section, we will investigate the behavior of these strategies by also
comparing them against a baseline random strategy (RANDOM) inwhich each robot
chooses randomly a new vertex of G to reach, regardless of its current idleness and
membership to Vm and/or Vc.

5 Experimental Evaluation

We validated the proposed patrolling strategies in simulated, yet realistic, scenarios
within the ROS/Stage framework [14, 18]. To enrich the Stage simulator with regions
providing a communication link with a BS, we implemented an additional ROS node
calledCommunication Server (CS) in charge of handling the communication between
the robots and theBS. TheCSnode receives all themessages from the robots (BS) and
appropriately forwards them to the BS (robots), considering robots locations in the
environment.We selected three representative environments, described by 800 × 600
pixels bitmap images, upon which we constructed the patrolling graph G = (V, E)
by randomly selecting vertices sufficiently far from the obstacles, manually pruning
some of them, and by adding edges only between vertices in line-of-sight to obtain
a reasonable topological representation of the environment. In all the environments,
communication vertices are chosen manually. The three selected environments are
(see Fig. 1):

• the Leonardo campus of the Politecnico di Milano (Poli – approx. size 200 ×
150m), characterized by the presence of several buildings and discretized in 40
m-type vertices, 9 of which also belong to Vc;

• the “acapulco_convention_center” of the Radish dataset repository [8] (Open –
approx. size 80 × 60m), characterized by a large hall and discretized in 32 vertices,
11 of which only belong to Vc, and the remaining 21 only belong to Vm ;

• an imaginary grid-block environment similar to those used in [4, 13] (Grid), dis-
cretized in 20 vertices, 4 of which only belong to Vc, 12 only to Vm , and the
remaining 4 to both Vm and Vc.

Each simulated robot is equipped with a controller allowing to choose between
one of the proposed patrolling strategies, and it is assumed to be able to perfectly

Multirobot Persistent Patrolling in Communication-Restricted Environments 67

Fig. 1 The three environments. Green, blue, and light-blue vertices define the sets Vm \ Vc, Vm ∩
Vc, and Vc \ Vm , respectively

localize itself in the environment (by using its true position as given by Stage).
Given a waypoint to reach, path planning is performed by means of the A* algorithm
run on a grid-based discretization of the environment, followed by a simple path-
smoothing phase. Robots move at a maximum speed of 10 px/s, avoiding each other
by means of a simple behavioral rule according to which the robot with highest ID
takes precedence to pass.

Each run is repeated 5 times in order to cope with the non-deterministic outcome
of the experiments due to the message exchange protocol adopted by ROS (graphs
report averages over the runs and corresponding standard deviation bars). For each
team size,we initially place the robots in the corners of the environments, andwekeep
fixed their initial positions across the different runs. The planning horizon of I-OPT
is kept fixed at H = 150 s, except where indicated otherwise, as this value allows
to perform a complete walk enumeration in reasonable time in all the environments.
(Notice that this is possible since robots’ movements along the edges consume a
significant amount of time steps.) All the simulations are performed on a laptop
equipped with an Intel P7450 processor and 2 GB of RAM.

68 M. Romeo et al.

Fig. 2 Comparison of G-OPT, I-OPT, RE, and RANDOM in short mission durations with 2 robots

We start by reporting in Fig. 2 the average idleness values obtained in the three
environments by the four proposed patrolling strategies (G-OPT, I-OPT, RE, and
RANDOM) through short mission durations T with 2 robots. Such durations are
chosen as the ones in which G-OPT is able to calculate a complete plan in the same
amount of time required by I-OPT (a few seconds); notice that the durations are
not equal for the different environments, as they depend on the complexity of the
planning graphs G (which follows from the topology of the environments, as well
as from the selected discretization method). All the performance curves remain very
close until the end of the mission, where the random baseline starts to behave slightly
worse than all the other strategies in the Poli and Grid environments. These results
show that I-OPT and RE are able to perform as well as G-OPT on short mission
horizons and justify their employment on longer mission durations for which G-
OPT is not a viable choice. Notice that, in the Open environment, I-OPT behaves
slightly better than G-OPT towards the end. This is due to several factors, such as
robots interfering with each other while executing their paths, and a non-perfect
simulation of the concurrent walks execution during the planning phase.

Wenow focus on T = 30min patrollingmissions (the average idleness values tend
to stabilize after this amount of time), and examine the impact of different team sizes
on the average andworst-case idleness values obtainedby I-OPT,RE, andRANDOM.
Figure3 shows the average idleness values obtained in the three environments by the
three strategies for a number of robotsm varying from 1 to 4. In all the environments
and for all the values ofm, RE outperforms RANDOM and it is in turn outperformed
by I-OPT. These results show that the increased planning complexity of the three
strategies is immediately reflected in their effectiveness. Increasing the value of
m leads to an advantage for all the strategies, but the performance gain becomes
smaller. (For larger graphs with similar structures, we argue that the performance
should follow the same decreasing trend for a fixed ratio |V |/m.) If we now look
at the worst-case idleness values (Fig. 4), we can see that I-OPT is outperformed
by RE in Poli and Open. This is not surprising, as RE is designed to always lead
the robots towards the vertex currently displaying the highest idleness, while I-OPT
plans without considering worst-case idleness values. Again, larger team sizes lead
to lower worst-case idleness values in all the environments and for all the strategies,

Multirobot Persistent Patrolling in Communication-Restricted Environments 69

Fig. 3 Average idleness values of I-OPT, RE, and RANDOM for different team sizes for a 30 min
mission

Fig. 4 Worst-case idleness values of I-OPT, RE, and RANDOM for different team sizes for a 30
min mission

Fig. 5 Different parameters in the Poli environment (m = 3)

with the only exception of RANDOM in Open, where there is always at least one
vertex whose situation is never reported to the BS.

To conclude, we report in Fig. 5 the results obtained with different parameters
on the Poli environment for 3 robots. Figure5a shows the average idleness values
obtained for different planning horizons H in I-OPT.As expected, a planning horizon
too short or too long leads to worse performance than a balanced one: in the former
case, the plan is obtained quickly, but it is not effective; in the latter case, the longer
time spent during planning is not compensated by its effectiveness. A way to select a
good value for H is to start from a value that allows to reach every node from any node
(closely related to the diameter of G) and, then, decrease it if computing strategies
takes too long. Figure5b investigates the impact of varying the ratio |Vc|/|V |, while

70 M. Romeo et al.

keeping each vertex also in Vm . For |Vc|/|V | = 0.05, I-OPT behaves as badly as
RANDOM. The reason is that, in this case, there are only two c-type vertices, placed
at two opposite corners of the map: therefore, a planning horizon of H = 150 s
always leaves out from the plans somem-type vertices that are too far. For |Vc|/|V | =
0.1, 0.2 the performance is substantially similar for I-OPT and RE, and augmenting
the ratio to 0.4 does not lead to substantial improvements for RANDOM and I-OPT,
while RE is somehow biased by the presence of several communication vertices since
it is more rare that the obtained walk needs to be augmented to reach a c-type vertex,
implying that less m-type vertices are visited as a side-effect.

Finally, we focus on a realistic case in which we simulate the temporary unavail-
ability of a communication link. Faults are assumed to happen independently from
each other as follows: once a robot reaches a c-type vertex, with probability p f the
expected communication link will not be present (due, e.g., to a temporary network
congestion), while with probability 1 − p f the robot and the BS will be able to
communicate as before. To deal with these unexpected events, we employ a simple
recovery procedure in which the robots decide to move towards the closest c-type
vertex. In Fig. 5c, we report results on how performance of I-OPT in the Poli environ-
ment degrades with increasing p f (note that the recovery procedure is independent
of the chosen patrolling strategy). Our simple recovery procedure is effectively able
to mitigate the impact of communication failures up to 25%, while for higher values
of p f the performance worsens less gracefully, but not dramatically.

6 Conclusions

In this paper, we extended the classical multirobot persistent patrolling framework
and the related idleness evaluation metrics in order to account for the presence of a
limited number of communication areas and we presented some patrolling strategies
tailored for such a setting.Experimental results show the effectiveness of the proposed
patrolling strategies in the optimization of our idleness-based evaluation criteria in
different environments and settings.

As future works, we intend to adapt the theoretical analysis of cyclic strategies
of [4] (relative to the classical worst-case idleness metric) to our framework and to
validate our multirobot system also on real robots.

References

1. Banfi, J., Basilico, N., Amigoni, F.:Minimizing communication latency inmultirobot situation-
aware patrolling. In: Proceedings of the IROS, pp. 616–622 (2015)

2. Basilico, N., Carpin, S.: Online patrolling using hierarchical spatial representations. In: Pro-
ceedings of the ICRA, pp. 2163–2169 (2012)

3. Basilico, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling in envi-
ronments with arbitrary topologies. In: Proceedings of the AAMAS, pp. 57–64 (2009)

Multirobot Persistent Patrolling in Communication-Restricted Environments 71

4. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: Proceedings of
the IAT, pp. 302–308 (2004)

5. Dames, P., Kumar, V.: Cooperativemulti-target localizationwith noisy sensors. In: Proceedings
of the ICRA, pp. 1877–1883 (2013)

6. Elmaliach, Y., Agmon, N., Kaminka, G.: Multi-robot area patrol under frequency constraints.
Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)

7. Hollinger, G., Singh, S.: Multirobot coordination with periodic connectivity: theory and exper-
iments. IEEE Trans. Robot. 28(4), 967–973 (2012)

8. Howard, A., Roy, N.: The robotics data set repository (Radish). http://radish.sourceforge.net/
(2003)

9. Iocchi, L., Marchetti, L., Nardi, D.: Multi-robot patrolling with coordinated behaviours in
realistic environments. In: Proceedings of the IROS, pp. 2796–2801 (2011)

10. Machado, A., Ramalho, G., Zucker, J.D., Drogoul, A.: Multi-agent patrolling: an empirical
analysis of alternative architectures. In: International Workshop on Multi-Agent Systems and
Agent-Based Simulation, pp. 155–170 (2002)

11. Mosteo, A., Montano, L., Lagoudakis, M.: Guaranteed-performance multi-robot routing under
limited communication range. In: Proceedings of the DARS, vol. 8, pp. 491–502 (2009)

12. Ochoa, S., Santos, R.: Human-centric wireless sensor networks to improve information avail-
ability during urban search and rescue activities. Inf. Fus. 22, 71–84 (2015)

13. Portugal, D., Rocha, R.P.: Multi-robot patrolling algorithms: examining performance and scal-
ability. Adv. Robot. 27(5), 325–336 (2013)

14. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,
Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source
Software (2009)

15. Santana, H., Ramalho, G., Corruble, V., Ratitch, B.: Multi-agent patrolling with reinforcement
learning. In: Proceedings of the AAMAS, pp. 1122–1129 (2004)

16. Stephan, J., Fink, J., Kumar, V., Ribeiro, A.: Hybrid architecture for communication-aware
multi-robot systems. In: Proceedings of the ICRA, pp. 5269–5276 (2016)

17. Tortonesi, M., Stefanelli, C., Benvegnu, E., Ford, K., Suri, N., Linderman, M.: Multiple-uav
coordination and communications in tactical edge networks. IEEE Commun. Mag. 50(10),
48–55 (2012)

18. Vaughan, R.: Massively multiple robot simulations in stage. Swarm Intell. 2–4(2), 189–208
(2008)

http://radish.sourceforge.net/

Part II
Multi-Robot Control

A Comparative Study of Collision Avoidance
Algorithms for Unmanned Aerial Vehicles:
Performance and Robustness to Noise

Steven Roelofsen, Denis Gillet and Alcherio Martinoli

Abstract Over the past years, the field of small unmanned aerial vehicles has grown
significantly and several applications have appeared, requiring always more au-
tonomous flight. An important remaining challenge for fully autonomous unmanned
aerial vehicles is collision avoidance between aircraft. In this work, we will compare
two collision avoidance algorithms in terms of performance and robustness to sensor
noise. We will leverage both experiments with real vehicles and calibrated, realistic
simulations to get an insight of the effect of noise on collision avoidance. Our results
show that although algorithms that use velocity as input are better in minimizing
velocity variation and generally produces more efficient trajectories, they are less ro-
bust to perception noise. On the other hand, position-based algorithms that typically
generate slower and longer avoidance maneuvers, become competitive at high levels
of sensor noise.

Keywords Collision avoidance · Unmanned aerial vehicle · Robustness

1 Introduction

Over the past years, the field of small Unmanned Aerial Vehicles (UAVs) has grown
significantly and more applications appear as time goes on, ranging from surveillance
and mapping to delivering of goods, and require always more autonomy for the

S. Roelofsen (B) · A. Martinoli
Distributed Intelligent Systems and Algorithms Laboratory (DISAL), School of Architecture,
Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
e-mail: steven.roelofsen@epfl.ch

A. Martinoli
e-mail: alcherio.martinoli@epfl.ch

S. Roelofsen · D. Gillet
Coordination and Interaction System Group (REACT), School of Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
e-mail: denis.gillet@epfl.ch

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_6

75

76 S. Roelofsen et al.

UAVs. Up to date, research activities have focused mainly on self-localization [12],
path planning [6] and navigation [13, 14]. Importantly, ensuring safety is one of the
remaining challenges that needs to be overcome in order to achieve fully autonomous
UAVs. More specifically, there is yet no Sense And Avoid (SAA) system reliable
enough to allow for fully autonomous UAVs.

The robustness of a SAA system is not only determined by the individual ro-
bustness of its components (i.e., sensors, estimators or control algorithms) but also
the interaction among them. Imperfections in one component of the system (e.g.,
sensing) can lower the performance and robustness of another one (e.g., control). An
example of the effect of sensor imperfection having significant effect on the actuation
is presented in [9].

Several collision avoidance algorithms exist in the literature and most of them fall
in one of the two following categories. First, the algorithms based on Velocity Obsta-
cle (VO) [5]. VO-based algorithms allow for collision avoidance while minimising
the change in velocity and are applicable to a large set of systems [1]. Second, the
algorithms derived from Potential Fields (PF) [7]. Those algorithms allow for more
diverse behaviors than VO but usually at the expense of optimality in the velocity
space (i.e. minimizing changes in velocity). The algorithms are also less generaliz-
able than those of the VO class, but allow for integration of a large range of both
actuation [8] and sensing constraints [10].

In this paper we present our effort to assess the robustness of different collision
avoidance algorithms in presence of sensor noise by leveraging both real experiments
and simulations. We performed real experiments for calibration and validation of sim-
ulation tools. We use high-fidelity simulation to go beyond our experimental facility’s
space limitations and systematically assess the performance avoidance algorithms in
more generalizable scenarios.

1.1 Collision Avoidance Algorithms

In this work, two algorithms are investigated as case study: those that only use
position information and those that use both position and velocity information of the
other aircraft. So far we implemented two collision avoidance algorithms.

ORCA The Optimal Reciprocal Collision Avoidance [2] is based on the concept
of Velocity Obstacle (VO) which is the set of all velocities that will lead to a
collision. Based on the VO, ORCA builds one half plane of forbidden velocities
per obstacle. Putting all the half-planes together results in a convex polygon of
allowed velocities from which the optimal velocity (i.e., the closest to the desired
velocity) is computed. ORCA also relies on reciprocity where each quadrotor
only performs half of the velocity change that would be needed if they would not
cooperate. ORCA has already been implemented on real quadrotors in [4].

FOVA The Field Of View Avoidance algorithm was presented in [10]. The algo-
rithm uses a virtual potential field to navigate in its environment and smoothly
switches to a turning behavior when another quadrotor approaches. Because

A Comparative Study of Collision Avoidance … 77

the motion of the quadrotor is constrained to always go forward by design, the
quadrotors will move away from the collision point as soon as the quadrotor turned
enough for the collision point to be out of its field of view (i.e., rear). The turn rate
increases as the distance between the quadrotor decreases in order to guarantee
avoidance. Once the collision point is out of the field of view of the quadrotor,
the quadrotor goes back to its navigation function. A boundary zone makes for
a smooth transition. Contrary to ORCA, this algorithm relies only on position
information. It has been proven to avoid collision even with constraints on the
sensor’s field of view. FOVA has already been implemented on real quadrotors in
[9].

2 Technical Approach

In this work, the experiments are carried out with two quadrotors, highly agile plat-
forms limiting the impact of the dynamical constraints of the vehicles on the results.
To be as generic as possible, the sensory input is emulated, leveraging the millimetric
precision of an external Motion Capture System (MCS). Such a solution also allows
us to set the level of sensing noise with ease and precision.

To allow for fair comparison between the collision avoidance algorithms, the noise
level needs to be equivalent, despite the fact that the two algorithm use different
inputs. Both algorithms use position, but only ORCA uses velocity. To remain fair,
the errors in position and velocity need to be linked to a single parameter. This is
done by considering a sensor that only returns a position measurement that is affected
by some Gaussian noise. The velocity is derived from the position using a Kalman
filter. This way, both algorithms have access to the same information (filtered position
information) but may not use all of the information available (FOVA does not use
the velocity information that is contained in the position measurements).

For a meaningful comparison, the algorithms are implemented to take into consid-
eration the effect of sensor uncertainty. All algorithms have been made noise-resistant
similarly, using similar techniques to what is presented in [11]. More specifically, in
both algorithms, the radius of the other UAV is increased by one standard deviation
of the estimated position error given by the Kalman filter’s covariance matrix. This
increased radius is the only modification needed for the FOVA algorithm. For ORCA,
the VO is also shifted by half a standard deviation of the velocity error as described
in [11].

Finally, because the FOVA algorithm uses the sensor range as a key parameter, the
sensing range is limited in the same way for both algorithms. This also guarantees
that the quadrotors do only sense each other in a collision avoidance situation (i.e., not
in standby mode). Additionally to a limited range, the field of view of the quadrotors
for the FOVA algorithm is 220◦, a parameter explained in [10]. This parameter is
needed as it is key in the FOVA algorithm. The ORCA algorithm has no such FOV
limitation.

78 S. Roelofsen et al.

(a) Experimental facility (b) Two quadrotors in Webots

Fig. 1 On the left: photo of the experimental facility with two quadrotors flying (the second
quadrotor is in the lower left corner of the flying arena). The bright redish dots all around the flying
arena are the cameras of the MCS. On the right: two quadrotors simulated in the high-fidelity robotic
simulator

2.1 Experimental Setup: Reality and Simulation

All algorithms are experimentally evaluated with off-the-shelf Hummingbird quadro-
tors from Ascending Technologies. The quadrotors are equipped with a Gumstix
Airstorm computation module, providing a Linux-based operating system and a
wireless communication link. The Kalman filter, the collision avoidance algorithms,
and most of the control run on the embedded Gumstix. They are implemented using
the Robotic Operating System (ROS) framework, leveraging the recording func-
tionality of rosbag. Part of the low-level control (e.g., motor speed control) runs on
dedicated, proprietary hardware of the Hummingbird quadrotor and is thus not di-
rectly accessible. We used a similar technique for estimating both the parameters of
the proprietary, low-level control software as well as the physical parameters of our
vehicles (e.g., thrust coefficient of the propellers). The Gumstix and the Humming-
bird are interfaced using the asctec_hl_interface ROS package. The localization was
provided by a MCS, providing millimetric precision pose information. The experi-
ments were performed in a room of size 6×8×3 m. A picture of the experimental
facility with two quadrotors flying can be seen in Fig. 1a.

Due to the limited size of our experimental facility, the number and variety of
possible scenarios is limited. For a more thorough study, simulations are leveraged
to provide a larger palette of scenarios. Our simulations are performed using We-
bots, a realistic sub-microscopic simulator. The simulator is able to interface with
ROS, allowing it to run the same code as the one implemented on our quadrotors.
A screenshot of the simulation environment can be seen in Fig. 1b.

2.2 Implementation

Several software modules are necessary in order to perform the experiments pre-
sented in this paper: the MCS management software, a Kalman filter, the avoidance

A Comparative Study of Collision Avoidance … 79

Fig. 2 Interaction between the different rosnodes on one of the two real quadrotors used in the
experiments

algorithm, and both the high-level and the low-level control algorithms. The MCS
management and the low-level control software are proprietary modules and each
one has a dedicated rosnode that allows to communicate with them. The Kalman
filter node gets position data from the MCS (which is assumed to be noiseless) at
100 Hz, adds artificial Gaussian noise, and filter the data using a Kalman filter with
optimized gain to obtain both a position and velocity estimate. Both position and
velocity are forwarded to the collision avoidance algorithm, which computes a de-
sired velocity and heading that both avoids collision and brings the aircraft to the
goal. ORCA has been implemented leveraging the existing library [3], as the FOVA
algorithm has been implemented by us based on the available literature. The desired
velocity and heading are sent to the high-level control node, which translate then
to desired thrust and orientation of the quadrotor. The control loop is performed at
20 Hz. Those commands are sent to the low-level control node that is in charge of
setting the motors speeds of the quadrotor to ensure convergence to the desired state.
The data flow in the quadrotor is shown in Fig. 2.

To automatize the simulations, we added two more types of ROS nodes. Each sim-
ulated quadrotor has a Flight Manager node responsible to send commands to other
rosnodes (e.g., command to take off the quadrotor). The Flight Manager nodes are
supervised by a Scenario Manager common to all quadrotors; the Scenario Manager
coordinates the quadrotor on how and when the maneuver should be performed. The
MCS is replaced with a Webots supervisor that is able to retrieve the position of the
simulated quadrotors and send the data to other rosnodes. The interactions between
the rosnodes in simulation is presented in Fig. 3.

2.3 Simulation Calibration

To obtain simulation results comparable to reality, the simulation needs to be cal-
ibrated. Physical parameters such as weight are directly measured on the aircraft.
Because the internal structure of the low-level control (responsible to control the
motor speeds to bring the quadrotor to the correct attitude) is unknown to us, its
parameters need also to be estimated. The unknown control scheme is assumed to
be a PID controller and to have the structure described by Eqs. 1–3:

80 S. Roelofsen et al.

Fig. 3 Interaction between the different rosnodes in the simulation. The simulation framework uses
the same avoidance and sensor emulation code that is implemented on the quadrotors

Mx = Ka(φt − φ) − KdaΩφ (1)

My = Ka(θt − θ) − KdaΩθ (2)

Mz = Kdy(Ωψ,t − Ωψ) − Kddy
dΩψ

dt
− KIy

∫
Ωψ (3)

with φ, θ and ψ being roll, pitch and yaw respectively, and Ωφ , Ωθ and Ωψ their
respective angular rates. φt and θt are target roll and pitch respectively. Ωψ,t is a
target yaw rate. Mx , My and Mz and the desired torques to apply along the x , y and
z axis in order to get the quadrotor to the desired state. Ka , Kda , Kdy , Kddy and KIy

are the control parameters that need to be calibrated.
The five control parameters are optimized to minimize the difference between

trajectories obtained from simulation and real experiments. The optimization was
carried out using Particle Swarm Optimization (PSO), where each particle is a vec-
tor containing the five control parameters. Their fitnesses are defined as the RMS
difference between the average trajectory obtained through real experiments and the
average trajectory generated in simulation. The real experiment data set is composed
of a quadrotor trying to follow a predefined trajectory eleven times. The simulation
trajectory is obtained by simulating the quadrotor following the same predefined tra-
jectory. The simulations are performed four times to average out the timing variability
of the ROS framework (i.e., messages do not arrive with a deterministic timing).

While performing the experiments, it was observed that the quadrotors were af-
fected by the airflow they were generating, resulting in a not perfectly steady flight.
To replicate this disturbance in simulation, we added a first order Gauss–Markov
process on the thrust and torques in roll, pitch and yaw. The disturbances for each
time step are described as:

A Comparative Study of Collision Avoidance … 81

Td [n + 1] = 0.995Td [n] + 0.005(W (0, 2)) (4)

Mx,d [n + 1] = 0.995Mx,d [n] + 0.005(W (0, 0.12)) (5)

My,d [n + 1] = 0.995My,d [n] + 0.005(W (0, 0.12)) (6)

Mz,d [n + 1] = 0.995Mz,d [n] + 0.005(W (0, 0.02)) (7)

with W (μ, σ) a Gaussian process of mean μ and standard deviation σ . The time step
is 10 ms. The parameters have been set empirically so that the average acceleration
between experimental and simulated data is similar. The validation on the simulator’s
faithfulness to reality is presented in Sect. 3.2.

2.4 Scenarios

The scenario for the real experimental setup is rather simple because of the limited
space available; it is a head-on collision between two quadrotors, where each one
starts on one side of the room and tries to get to other quadrotor’s position. The initial
position of the quadrotors are [0, 1.6, 1]m and [0,−1.6, 1]m, the initial inter-vehicle
distance is therefore of 3.2 m. The desired speed was set to 0.3 m/s for all algorithms.
The experiments have been carried out with Gaussian noise levels of 0.01, 0.03, 0.1,
0.3 and 1.0 m (standard deviation). Table 1 presents the error in position and velocity
after the emulated measurements went through the Kalman filter. The values reported
in Table 1 are directly used in the avoidance algorithms to make them resistant to
noise. For simplicity, it is assumed that both algoritms know the radius, without
considering noise, of the other quadrotor to be 0.35 m. For the real experiments, over
20 collision avoidance maneuvers have been carried out for each algorithm and noise
level combination, for a total of more than 200 data points.

In simulation, we are not limited by spatial constraints, allowing for more extended
scenarios. There are two main differences between simulated and real scenarios. First,
the initial distance between the quadrotors is 8 m for a head-on configuration, or put
differently, each quadrotor starts 4 m away from the collision point and try to reach
a point 8 m in front of them. Second, the angle between the desired directions of the
quadrotors is changed. The initial and final positions are modified in order to have the
lines defined by the two points to have the desired angle. The angles are 180◦ (head-
on), 150◦, 120◦, 90◦, 60◦. For each possible angle, 20 collision avoidance maneuvers
are performed. The plots presented in Figs. 6, 7 and 8 report aggregated results for
the five angles defined above. As a result, each curve of Figs. 6, 7 and 8 represents

Table 1 Noise levels expressed with their standard deviations, and their corresponding errors in
position and velocity obtained after the Kalman filter

Noise level [m] 0.01 0.03 0.1 0.3 1

Position RMSE [m] 0.0071 0.0174 0.0448 0.1044 0.2614

Velocity RMSE [m/s] 0.0770 0.1052 0.1454 0.1936 0.2640

82 S. Roelofsen et al.

500 avoidance maneuvers for each algorithm (5 noise levels, each with 5 different
angles, each angle and noise level combination repeated 20 times). Other parameters
(e.g., desired speed of 0.3 m/s) are left the same, unless explicitly mentioned.

2.5 Metrics

To compare the algorithms, we use three metrics: first, we compare the proportion of
collisions as an indicator of safety; we consider a collision occurs when the horizontal
distance between the two quadrotors is below twice their radius, or 0.7 m. Second,
we also compare the path length as an approximation of the energy consumption
and as a result an indication of the efficiency of the collision avoidance algorithms.
Finally, we compare the average acceleration during the avoidance maneuver, as an
indicator of overreaction due to noisy sensing. For all plots in Figs. 4, 6, 7 and 8, the
thick solid lines represent the median over the multiple runs of the same experiment.
For the average acceleration and path length metrics, the color patches represent the
interval between the upper and lower quartiles while for the proportion of collision
they represent the 95% confidence intervals computed with the Clopper–Pearson
method.

(a) Average acceleration (b) Path length

(c) Proportion of collisions

Fig. 4 The evolution of different metrics as function of sensor noise. The data were acquired using
real quadrotors. a The average acceleration for the two algorithms as function of sensor noise. b
The path length as function of the sensor noise. c The proportion of collisions for different noise
levels

A Comparative Study of Collision Avoidance … 83

(a) Average acceleration (b) Path length

(c) Minimum distance

Fig. 5 Comparison between simulation and real experiments

3 Results

In this section, we first present the results of the real experiments followed by simu-
lation and a related discussion on how they compare with reality.

3.1 Real Experiment Results

Figure 4 shows the results obtained for the two algorithms when deployed on real
robots. Clearly, the performance of ORCA degrades more as the sensor noise in-
creases. The most significant difference is in the proportion of collisions. Where the
FOVA algorithm never had a collision, ORCA has collisions for higher noise levels.
The non-zero proportion of collisions for ORCA at the lowest noise level is due
to actuation perturbations. In that case, ORCA avoids with such a small distance
margin that any actuation perturbation (e.g., turbulent airflow) experienced by the
quadrotors can bring them below the collision distance. This is not the case for the
FOVA algorithm, which, similarly to most of PF-based approaches, always avoids
with a distance larger than the strict minimum. In order for ORCA to become totally
noise-resistant, an additional margin on the obstacle radius needs to be considered.
However, doing so will lower its performance in the other metrics. For the average
acceleration metric, the FOVA algorithm starts with the highest acceleration but re-
mains relatively constant compared to ORCA, the latter increasing as noise increases.

84 S. Roelofsen et al.

(a) Average acceleration (b) Path length

(c) Proportion of collisions

Fig. 6 The evolution of different metrics as function of sensor noise. The data was obtained in
simulation. a The average acceleration for the two algorithms as function of sensor noise. b The
path length as function of the sensor noise. c The proportion of collisions for different noise levels

(a) Average acceleration (b) Path length

(c) Proportion of collisions

Fig. 7 The evolution of different metrics as function of sensor range. The data were obtained in
simulation. a The average acceleration for the two algorithms as function of sensor noise. b The
path length as function of the sensor noise. c The proportion of collisions for different noise levels

A Comparative Study of Collision Avoidance … 85

(a) Average acceleration (b) Path length

(c) Proportion of collisions

Fig. 8 The evolution of different metrics as function of vehicles’ maximum speed. The data were
obtained in simulation. a The average acceleration for the two algorithms as function of sensor
noise. b The path length as function of the sensor noise. c The proportion of collisions for different
noise levels

Finally, both algorithms show longer path lengths as noise increases, partially due
to the increase of the collision radius, correspondingly a priori implemented in the
algorithms (see Sect. 2). Again, the difference of performance between position and
velocity-based algorithms decreases as sensor noise increases.

3.2 Simulation Results

To validate the calibration of our simulator, we compared the performance of the three
metrics described above for the FOVA algorithm in simulation and with real data,
both with a Gaussian noise level of 0.01 m. The resulting data are shown in Fig. 5.
Contrary to all other simulations that use the extended scenario, the simulations
carried out for Fig. 5 faithfully reproduced the scenario used in reality (i.e., same
initial position and heading as used for the real experiments). We see that for all the
metrics considered (acceleration, path lenght, and minimum distance between the
quadrotors) the simulated data assume smaller values than those gathered through
experiments. This is probably due to the airflow generated by a quadrotor that tends
to push away the other one, an effect that is, only roughly approximated in simulation
(i.e. the approximation does not simulate that the airflow push the quadrotors away
from each other).

86 S. Roelofsen et al.

Figure 6 presents the evolution of the three metrics for different sensory noise
levels. For the FOVA metric, experimental and simulation data show similar trends.
On the contrary, ORCA shows differences between simulation and experimental
results, especially in the metric concerned with the proportion of collisions. The
explanation for such differences is two-fold. First, the scenario is spatially more
extended and does not only consists of head-on collisions. Head-on collision is harder
to avoid as it is the configuration where the relative speed between the quadrotors is
maximal, giving them less time to avoid and therefore explaining why experiments
show a higher proportion of collision at high sensor noise levels. Second, the real
quadrotors are pushing each other away with their airflow, which is not the case in
simulation, explaining the flat curve over different levels of noise of Fig. 6c.

The effect of sensor range on avoidance capability for both algorithms was also
investigated in simulation (see Fig. 7). For this investigation, the noise level was kept
constant at 0.1 m. From Fig. 7, the sensor range does not appear to have a significant
effect on both algorithms, except for two aspects. First, the path length for the FOVA
algorithm at small sensor range has a large variance. This is because with such a
small sensor range, the FOVA algorithm has to perform very aggressive turns to
avoid. Due to its inertia, the quadrotor overshoots its desired yaw angle, doing a
full 360◦ turn. Because the FOVA avoids by only turning in one direction, both
quadrotors spin quickly without being able to move away from each-other. When
they eventually are able to separate (after some long time), all the spinning sums
up to a long distance. The second notable effect of sensor range is that the proportion
of collisions decreases as the sensor range increases for the ORCA algorithm. The
reason is that the ORCA algorithm does not prefer a specific side on which to avoid;
both quadrotors need thus to converge on which side the avoidance will be done. With
sensing noise, the ORCA algorithm will oscillate between sides, a phenomenon also
known as reciprocal dance. A larger sensor range provides the ORCA algorithm
more time to converge to a stable solution.

The effect of the quadrotor’s maximal speed was also investigated. As for the
sensor range, the simulations were performed with a noise level of 0.1 m. The results
of the simulations are shown in Fig. 8. The ORCA algorithm is not significantly
affected an increased speed of the vehicles. However, it is notable an increase of
the average acceleration for higher speeds due to the corresponding need for more
aggressive maneuvers. The FOVA algorithm is more affected by an increase in speed.
Besides an increase of the average acceleration for higher speed, the path length is also
increased and even suffered from a collision when a maximal speed of 0.6 m/s was
allowed. This is the result of the FOVA algorithm relying on turning, which is a less
effective type of maneuver on a quadrotor when compared to ORCA’s acceleration
sideways.

A Comparative Study of Collision Avoidance … 87

4 Conclusion

In this work, we compare the performance of two collision avoidance algorithms in
presence of noisy sensing. In particular, we evaluate the impact of the noise level,
the sensing range, and the speed of the vehicles using a combination of calibrated
simulation tools and real robot experiments. One algorithm is based on a Potential
Field approach and only relies on positional data to perform avoidance, as the second
algorithm based on Velocity Obstacles also needs velocity information. For fairness,
the sensor only provides position measurements, velocity being acquired through
Kalman filtered successive position measurements.

From this work, we draw two main lessons. First, the VO approach, due to its
optimal nature, will show better performance in fuel-consumption-related metrics
(in this case path length). Second, VO is significantly more collision prone because
the algorithm tries to avoid as close as possible the obstacles on the vehicle’s path.
On the other hand PF-based algorithms stay at a safer distance from encountered
obstacles.

Future work will include additional experimental scenarios and a thorough theo-
retical analysis. It will also consider the performance of the algorithms under specific
sensor and actuator constraints (e.g., limited field of view, acceleration limits, dif-
ferent vehicle dynamics).

Acknowledgements This work has been financially supported by Honeywell, and has benefited
of the administrative and technical coordination of the EPFL Transportation Center.

References

1. Bareiss, D., van den Berg, J.: Generalized reciprocal collision avoidance. Int. J. Robot. Res.
34(12), 1501–1514 (2015)

2. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In:
Proceedings of International Symposium on Robotics Research 2009, Series Springer Tracts
in Advanced Robotics, pp. 3–19. Springer, Berlin (2011)

3. van den Berg, J., Guy, S.J., Snape, J., Lin, M.C., Manocha, D.: RVO2 Library: Reciprocal
Collision Avoidance for Real-Time Multi-Agent Simulation (2008–2015). http://gamma.cs.
unc.edu/RVO2/

4. Conroy, P., Bareiss, D., Beall, M., van den Berg, J.: 3-D Reciprocal Collision Avoidance
on Physical Quadrotor Helicopters with On-board Sensing for Relative Positioning (2014).
arXiv:1411.3794

5. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int.
J. Robot. Res. 17(7), 760–772 (1998)

6. Forster, C., Faessler, M., Fontana, F., Werlberger, M., Scaramuzza, D.: Continuous on-board
monocular-vision-based elevation mapping applied to autonomous landing of micro aerial
vehicles. In: IEEE International Conference on Robotics and Automation, pp. 111–118 (2015)

7. Kim, J.O., Khosla, P.K.: Real-time obstacle avoidance using harmonic potential functions.
IEEE Trans. Robot. Autom. 8(3), 338–349 (1992)

8. Panyakeow, P., Mesbahi, M.: Decentralized deconfliction algorithms for unicycle UAVs. In:
American Control Conference, pp. 794–799 (2010)

http://gamma.cs.unc.edu/RVO2/
http://gamma.cs.unc.edu/RVO2/
http://arxiv.org/abs/1411.3794
https://arxiv.org/abs/1411.3794

88 S. Roelofsen et al.

9. Roelofsen, S., Gillet, D., Martinoli, A.: Reciprocal collision avoidance for quadrotors using
on-board visual detection. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4810–4817 (2015)

10. Roelofsen, S., Martinoli, A., Gillet, D.: Distributed deconfliction algorithm for unmanned aerial
vehicles with limited range and field of view sensors. In: American Control Conference, pp.
4356–4361 (2015)

11. Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity obstacle.
IEEE Trans. Robot. 27(4), 696–706 (2011)

12. Weiss, S., Achtelik, M.W., Lynen, S., Chli, M., Siegwart, R.: Real-time Onboard Visual-Inertial
State Estimation and Self-Calibration of MAVs in Unknown Environments. In: IEEE Interna-
tional Conference on Robotics and Automation, pp. 957–964 (2012)

13. Yang, S., Scherer, S.A., Schauwecker, K., Zell, A.: Autonomous landing of MAVs on an
arbitrarily textured landing site using onboard monocular vision. J. Intell. Robot. Syst. 27–43
(2013)

14. Zufferey, J., Beyeler, A., Floreano, D.: Autonomous flight at low altitude with vision-based col-
lision avoidance and GPS-based path following. In: IEEE International Conference on Robotics
and Automation, pp. 3329–3334 (2010)

A Decentralized Control Strategy
for Resilient Connectivity Maintenance
in Multi-robot Systems Subject to Failures

Cinara Ghedini, Carlos H. C. Ribeiro and Lorenzo Sabattini

Abstract This paper addresses the problem of topology control for dealing with
node failures in networks of multiple robots. While connectivity maintenance has
been widely addressed in the literature, issues related to failures are typically not
considered in such networks. However, physical robots can fail (i.e. stop working)
due to several reasons. It is then mandatory to consider this aspect, as connectivity
maintenance is usually critical. In fact, failures of a small fraction of robots —
in particular on those that play a crucial role in routing information through the
network — can lead to connectivity loss. In this paper, we present a decentralized
estimation procedure for letting each robot (a) assess its degree of robustness w.r.t.
to connectivity maintenance under the occurrence of failures in its neighborhood,
and (b) take actions to improve it when needed. This estimation is combined with
a connectivity maintenance control law, thus providing a mechanism that ensures,
in the absence of failures, both the network connectivity and an improvement in the
overall robustness to failures. In addition, for failures scenarios, the mechanism is
able to postpone, or even avoid network fragmentation, as verified through a set of
validation experiments.

1 Introduction

Applications based on groups of self-organized mobile robots are becoming per-
vasive in communication, monitoring, traffic and transportation systems. Groups of

C. Ghedini (B) · C. H. C. Ribeiro
Computer Science Division, Aeronautics Institute of Technology,
São José dos Campos, São Paolo, Brazil
e-mail: cinara@ita.br

C. H. C. Ribeiro
e-mail: carlos@ita.br

L. Sabattini
Department of Sciences and Methods for Engineering (DISMI),
University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
e-mail: lorenzo.sabattini@unimore.it

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_7

89

90 C. Ghedini et al.

Fig. 1 Example of an application scenario

mobile robots, if equippedwith appropriate communication devices, can be exploited
to create an infrastructure network to provide communication services. For instance,
interconnected mobile robots can provide rescuing, acting as devices in an explo-
ration task, or serving clients (e.g., mobile phones, laptops, tablets, etc.) in a network,
with the advantage of doing so without the existence of a previously defined infras-
tructure and with a high degree of autonomy (Fig. 1). In fact, these features are
the key requirements for extending a pressing issue nowadays: how to provide the
communication infrastructure that makes it possible for generic clients to access the
Internet, cloud technologies, and communication services in several unstructured
environments and situations. Thus, the applicability of interconnected mobile robots
is expanding from the classical monitoring and exploration tasks to an essential
technology that supports several kinds of services to be available everywhere and at
any time. In particular, the Internet, considered as an indispensable part of the crit-
ical information infrastructure for many personal and business applications, is now
expected to be always available, offering uninterrupted service regardless of domain
constraints [1, 16, 18].

In this sense, a critical aspect of providing network services for unstructured
environments employing interconnected mobile robotic systems is that robots are
prone to failures due to hardware or communication issues, and — as it is well
known from the literature on Complex Networks— successive or cascading failures,
particularly of agents playing a central role in the network topology, may easily result
in inoperative or reduced services [3, 5, 8, 11, 15].

Figure2a illustrates random network topologies highlighting some agents whose
failures can strongly affect the network connectivity, characterizing vulnerable topo-
logical configurations. In the context of this work, a vulnerable topological config-
uration means that the network is potentially able to fragment if some nodes fail.

A Decentralized Control Strategy for Resilient … 91

(a) Random network topologies. Failures in highlighted nodes
can negatively affect the network connectivity, thus producing
inoperative or reduced communication services.

(b) A network with larger alge-
braic connectivity (top) is more
affected w.r.t. central node fail-
ure.

Fig. 2 Failures affect the connectivity of the network

Thus, we define the resilience of the multi-robot systems regarding its robustness to
failures, that is the system’s capacity to mitigate the effects of node failures through
predictive actions that avoid topological configurations vulnerable to such effects.

Detecting such vulnerable configurations is not trivial because the topology emer-
gent from these applications is dynamic; thus, its size and properties are most of the
time unknown, costly to estimate and time varying. These features impose constraints
on the design of solutions, such as a need for relying mostly on information that is
locally available and straightforward to obtain, compute and update.

Being a fundamental issue in multi-robot systems, the connectivity maintenance
problem has been widely addressed in the literature. Therefore, several approaches
can be found that ensure that, if the communication graph is initially connected, then it
will remain connected as the systemevolves [2, 4, 6, 12, 13, 17, 19–21]. In particular,
the control strategy proposed in [20] ensures the network connectivity maintenance
through a decentralized estimation of the algebraic connectivity, using the well-
known property that the algebraic connectivity approaches 0 when the network is
poorly connected. It is worth noting, however, that the algebraic connectivity per
se is not effective as an indicator of the overall network fragility. A representative
example of this fact is depicted in Fig. 2b: the network on the top has a larger algebraic
connectivity (λ) than the network on the bottom, but it is more affected by a central
node failure that might disconnect it into three subgraphs.

We, therefore, argue that, despite the algebraic connectivity being an estimator
of how well a network is globally connected, it is not a suitable indicator to detect
local vulnerable configurations and, thus, does not provide enough information to
produce a more resilient network topology. On the other hand, connectivity is a cru-

92 C. Ghedini et al.

cial requirement in decentralized multi-robot systems: in order to achieve a common
objective robots may need to exchange information. Thus, enhancing the robustness
to failures is a fundamental requirement to be addressed in connectivity maintenance
approaches. In this sense, a recentwork proposesmechanisms, based on locally avail-
able information, for detecting and mitigating vulnerable topological configurations,
consequently increasing the network resilience [9].

The contribution of this paper is the definition of a novel combined control law
that, in the absence of failures, guarantees connectivity maintenance while improv-
ing the network robustness to failure and ensuring collision avoidance of robots with
obstacles among them. It is important to emphasize that there is no way of guaran-
teeing that networks will remain connected in case of failures because the failure
probability distribution is usually unknown and failures are not controllable. Hence,
the central aspect of providing more resilient networks is to improve their capacity
to tolerate disturbance without fragmenting. More generally, a resilient network is
expected to exhibit the ability to react to undesirable states or unpredictable events
through adaptive processes.

The proposed control law is validated comparing its performance regarding differ-
ent parameterizations of gains in the presence of failures. The results demonstrate that
the combined control law is able to increase the resilience of the system by adapting
the network topology to accommodate failures, postponing or even avoiding network
disconnection.

The rest of this paper is organized as follows. The necessary background on
network properties is presented in Sect. 2. Section3 discusses in details the problem
of connectivity maintenance considering failures. Section4 describes the proposed
combined model, and Sect. 5 presents the simulation model and discusses the results.
Concluding remarks are given in Sect. 6.

2 Background on Network Properties

We will hereafter define some quantities that can be useful for evaluating node and
network connectivity, and robustness to failures.

Consider an undirected graph G , where V (G) and E (G) ⊂ V (G) × V (G) are
the node set and the edge set, respectively. Moreover, let W ∈ R

N×N be the weight
matrix: each element wi j is a positive number if an edge exists between nodes i and
j , zero otherwise. Since G is undirected, then wi j = wji .

Now, letL ∈ R
N×N be the Laplacian matrix of graph G and D = diag ({ki }) be

the degreematrix ofG ,where ki is the degree of the i-th nodeofG , i.e. ki = ∑N
j=1 wi j .

The (weighted) Laplacian matrix of G is then defined as L = D − W .
As is well known from algebraic graph theory, the Laplacian matrix of an undi-

rected graph exhibits some remarkable properties regarding its connectivity [10]. Let
λi , i = 1, . . . , N be the eigenvalues of the Laplacian matrix, then:

A Decentralized Control Strategy for Resilient … 93

• The eigenvalues are real, and can be ordered such that 0 = λ1 ≤ λ2 ≤ . . . ≤ λN .
• Define now λ = λ2. Then, λ > 0 if and only if the graph is connected. Therefore,

λ is defined as the algebraic connectivity of the graph.
• Considering a weighted graph, λ is a non-decreasing function of each edge weight.

In addition, we want to evaluate the number of node failures a network can stand
before disconnecting. It is well-known that failures of nodes playing a central role in
the network communication are likely to affect most its connectivity. In particular,
referring to connectivity maintenance, we consider the concept of Betweenness Cen-
trality (BC) for ranking the network nodes [23]. For a given node i and pair of nodes
j, l, the importance of i as a mediator of the communication between j and l can be
established as the ratio between the number of shortest paths linking nodes j and l
that pass through node i (g jl(i)), and the total number of shortest paths connecting
nodes j and l (g jl). Then, the BC of a node i is simply the sum of this value over all
pairs of nodes, not including i :

BC(i) =
∑

j<l

g jl (i)
g jl

. (1)

Once the BC has been computed for all the nodes, it is possible to order them from
the most central (i.e. the node with highest value of BC) to the less central (i.e. the
node with lowest value of BC). Hence, let [v1, . . . , vN] be the list of nodes ordered
by descending value of BC .

We therefore introduce the following definition of Robustness level.

Definition 1 (Robustness level [9]) Consider a graph G with N nodes, and let
[v1, . . . , vN] be the list of nodes ordered by descending value of BC . Let ϕ < N
be the minimum index i ∈ [1, . . . , N] such that, removing nodes [v1, . . . , vi] leads
to disconnecting the graph, that is, the graph including only nodes

[
vϕ+1, . . . , vN

]
is

disconnected. Then, the robustness level of G is defined as:

Θ(G) = ϕ

N . (2)

The robustness level defines the fraction of central nodes that need to be removed
from the network to obtain a disconnected network. Small values ofΘ(G) imply that
a small fraction of node failures may fragment the network. Therefore, increasing
this value means increasing the network robustness to failures. Notice that Θ(G)

is only an estimate of how far the network is from getting disconnected w.r.t. the
fraction of nodes removed. In fact, it might be the case that different orderings of
nodes with the same BC produce different values of Θ(G).

From a local perspective, a heuristic for estimating the magnitude of the topo-
logical vulnerability of a node by means of information acquired from its 1-hop and
2-hops neighbors is proposed in [9]. Let d(v, u) be the shortest path between nodes v
and u, i.e., the minimum number of edges that connect nodes v and u. Subsequently,
define Π(v) as the set of nodes from which v can acquire information:

94 C. Ghedini et al.

Π(v) = {u ∈ V (G) : d(v, u) ≤ 2}.

Moreover, let |Π(v)| be the number of elements ofΠ(v). In addition, defineΠ2(v) ⊆
Π(v) as the set of the 2-hop neighbors of v, that comprises only nodes whose shortest
path from v is exactly equal to 2 hops, namely

Π2(v) = {u ∈ V (G) : d(v, u) = 2}.

Now define L(v, u) as the number of paths between nodes v and u, and let
Pathβ(v) ⊆ Π2(v) be the set of v’s 2-hop neighbors that are reachable through
at most β paths, namely

Pathβ(v) = {u ∈ Π2(v) : L(v, u) ≤ β}.

Thus, β defines the threshold for the maximal number of paths between a node v and
each of its u neighbors that are necessary to include u in Pathβ(v). Therefore, using
a low value for β allows to identify the most weakly connected 2-hop neighbors.
Hence, the value of |Pathβ(v)| is an indicator of the magnitude of node fragility
w.r.t. connectivity, and the vulnerability level of a node regarding failures is given
by Pθ (v) ∈ (0, 1):

Pθ (v) = |Pathβ(v)|
|Π(v)| . (3)

where |Π(v)| is the number of v’s 1-hop and 2-hops neighbors, and |Pathβ(v)| is
the number of nodes that are exactly at 2-hops from node v and relying on at most β
2-hops paths to communicate with v.

3 Problem Statement

Consider a multi-robot system composed of N robots that are able to communicate
with other robots within the same communication radius R. The resulting com-
munication topology can be represented by an undirected graph G where each
robot is a node of the graph, and each communication link between two robots
is an edge of the graph. Let each robot’s state be its position pi ∈ R

m , and let
p = [

pT1 . . . pTN
]T ∈ R

N×m be the state vector of the multi-robot system. Let each
robot be modeled as a single integrator system, whose velocity can be directly con-
trolled, namely

ṗi = ui , (4)

A Decentralized Control Strategy for Resilient … 95

where ui ∈ R
m is a control input.1 In order to guarantee the connectivity of G , [20]

proposes an approach to solve the connectivity maintenance problem in a decentral-
ized manner, utilizing the algebraic connectivity property. For this purpose, consider
a weighted graph, where the edge weights wi j are defined as follows:

wi j =
{

e
−

(‖pi−p j‖2
)
/(2σ 2) if

∥
∥pi − p j

∥
∥ ≤ R

0 otherwise.
with e−(R2)/(2σ 2) = Δ (5)

where Δ is a small predefined threshold.2

Define now ε > 0 to be the desired lower-bound for the value of λ. The control
strategy is then designed to ensure that the value λ never goes below ε. As in [20],
the following energy function can then be utilized for generating the decentralized
connectivity maintenance control strategy:

V (λ) =
{
coth (λ − ε) if λ > ε

0 otherwise.
(6)

The control design drives the robots to perform a gradient descent of V (·), in
order to ensure connectivity maintenance. Namely, considering the dynamics of the
system introduced in (4), the control law is defined as follows:

ui = uci = − ∂V (λ)

∂pi
= − ∂V (λ)

∂λ
∂λ
∂pi

. (7)

The connectivity maintenance framework can be enhanced to consider additional
objectives. In particular, as shown in [19], the concept of generalized connectivity can
be utilized for simultaneously guaranteeing connectivitymaintenance and collision
avoidance with environmental obstacles and among the robots. This is achieved
considering the following generalized edge weights:

ωi j = wi jγi j , (8)

∀i, j = 1, . . . , N . In particular, the edge weights wi j represent the standard connec-
tivity property. The multiplicative coefficients γi j represent the collision avoidance
edge weights:

1It is worth remarking that, by endowing a robotwith a sufficiently good cartesian trajectory tracking
controller, it is possible to use this simple model to represent the kinematic behavior of several types
of mobile robots, like wheeled mobile robots [22], and UAVs [14].
2This definition of the edge–weights introduces a discontinuity in the control action, that can be
avoided introducing a smooth bump function, as in [7].However, froman implementation viewpoint,
the effect of the discontinuity can be made negligible by defining the thresholdΔ sufficiently small.

96 C. Ghedini et al.

Definition 2 The collision avoidance edge weights γi j exhibits the following prop-
erties, ∀i, j = 1, . . . , N :

(P1) γi j = γi j
(∥
∥pi − p j

∥
∥
) ≥ 0.

(P2) γi j = 0 if
∥
∥pi − p j

∥
∥ = 0, and γi j = 1 if

∥
∥pi − p j

∥
∥ ≥ ds .

(P3) γi j (d) is non-decreasing w.r.t. its argument d.

The parameter ds > 0 represents the safety distance: if the distance between two
robots is larger than δs , then the collision avoidance action is not necessary. As
shown in [19], the same formalism can be exploited for avoiding collisions with
environmental obstacles as well.

Utilizing the generalized edge weights ωi j defined in (8), we can compute the
generalized Laplacian matrix L G , whose second smallest eigenvalue ϕ represents
thegeneralized connectivity of the graph.As shown in [19], guaranteeing positiveness
of the generalized connectivity ϕ simultaneously guarantees maintenance of the
algebraic connectivity (i.e. it ensures thatλ remains positive) and collision avoidance.
This can then be achieved using the control law (7) replacing λ with ϕ, namely

ui = uci = − ∂V (ϕ)

∂pi
= − ∂V (ϕ)

∂ϕ

∂ϕ

∂pi
. (9)

Since ϕ and its gradient are global quantities, the proposed control law is cen-
tralized. Decentralized implementation can be achieved replacing ϕ and its gradient
with their estimates, computed by each robot in a decentralized manner applying the
procedure proposed in [20].

Thismethodology does not consider the fact that robots can unexpectedly fail, thus
stopping their activity due to mechanical, electrical or software issues. As described
in the introduction, it is necessary to reduce the effects of robot failures on the overall
network connectivity, avoiding vulnerable topological configurations. In this paper
we address the following problem:

Problem Given amulti-robot system, design a local estimation procedure that allows
each robot to assess its vulnerability level, based on locally available information,
and subsequently exploit this estimate for controlling the motion.

4 Combined Control Law

This section describes the unified model that aims at improving the robustness of
networks to failures while, in the absence of failures, maintaining connectivity and
avoiding collisions. In particular, considering the dynamics introduced in (4), we
define the following control law:

ui = σuci + ψuri , (10)

where uci is the generalized connectivity maintenance control law introduced in (9),
and uri is the additional control law that will be hereafter defined for improving

A Decentralized Control Strategy for Resilient … 97

robustness to failures. Moreover, σ,ψ ≥ 0 are design parameters, that represent
control gains. Setting either σ or ψ equal to zero leads to removing the effect of one
of the control laws. Conversely, if both parameters are greater than zero, both control
actions are simultaneously active.

Based on the vulnerability level definition, given in (3), the purpose of the control
strategy is to increase the number of links of a potentially vulnerable node i towards
its 2-hop neighbors that are in Pathβ(i), for a given value of β. Hence, define
xiβ ∈ R

m as the barycenter of the positions of the robots in Pathβ(i), namely

xiβ = 1|Pathβ (i)|
∑

j∈Pathβ (i)

p j . (11)

Considering the dynamics of the system introduced in (4), the control law is defined
as follows:

uri = ξi
xiβ−pi

‖xiβ−pi‖α (t) , (12)

where α (t) ∈ R is the linear velocity of the robots.3 The parameter ξi is introduced
to take into account the vulnerability state of a node i , i.e. ξi = 1 if node i identify
itself as vulnerable or ξi = 0 otherwise. As we aim at setting as vulnerable those
robots i exhibiting high values for Pθ (i), ξi is defined as follows:

ξi =
{
1 if Pθ (i) > r
0 otherwise

(13)

where r ∈ (0, 1) is a random number drawn from a uniform distribution. Namely, if
Pθ (i) > r , then the i-th robot considers itself as vulnerable. It is worth noting that (3)
provides a decentralized methodology for each robot to evaluate its vulnerability
level.

Summarizing, this control law drives vulnerable robots towards the barycenter of
the positions of robots in their Pathβ , thus decreasing their distance to those robots
and eventually creating new edges in the communication graph. We will hereafter
analyze the performance of the proposed combined control law introduced in (10).
In particular, the control law uci was proven in [19, 20] to guarantee positiveness
of the generalized connectivity in a disturbance free environment. The following
theorem extends these results considering the presence of the additional robustness
improvement control law uri .

Theorem 1 Consider the dynamical system described by (4), and the control laws
described in (9), (10) and (12). Then, if the initial value of ϕ (t), namely ϕ (0), is

3Wewould like to remark that pathological situations exist in which (12) is not well defined, namely
when pi = xiβ . However, this corresponds to the case where the i-th robot is in the barycenter of
its weakly connected 2-hop neighbors: hence, in practice, this never happens when a robot detects
itself as vulnerable.

98 C. Ghedini et al.

greater than ε, then the value of ϕ (t) will remain positive, as the system evolves,
thus implying algebraic connectivity maintenance and collision avoidance.

Proof It is possible to show that, under the proposed control law, for constant values
of Pθ , the energy function V (ϕ (p)) in (6) does not increase over time. As a conse-
quence, it is possible to conclude that the generalized connectivity ϕ remains greater
than zero, as the system evolves. Considering the definition of the generalized edge
weights ωi j in (8), this implies that the algebraic connectivity λ will remain posi-
tive, while avoiding collisions. This result can be extended to the case where Pθ is
time-varying, assuming that variations are sufficiently slow. The proof is analogous
to that of [20], and is then omitted due to space limitations. �

5 Simulations

The proposed control strategy was validated using a simulation model, developed in
MATLAB®. The initial network topologies were generated over a bounded area of
sizeA inR2, through a random positioning of N robots, connected according to the
communication radius R. For this simulationweconsider N = 20,A = 502 and R =
16. The experimental setup also considers a set of randomly generated failure times,
distributed during the total simulation time of 80 seconds. At every 1 second, the
vulnerability level estimation and the network properties were computed.We utilized
the following model parametrization: ε = 0.25, β = 1, and σ,ψ = {0, 0.1, 0.5, 1}.
Moreover, we considered a constant linear velocity α (t) = 0.25R/s.

For evaluation purposes, at the specific times, a disturbance is introduced into the
network by removing its most central node according to the updated BC ranking, as
defined in (1). Given an initial network topology and the combined control law, it is
expected that the proposed mechanism significantly reduces the impact of failures on
the network connectivity, providing robots with means not only for accommodating
but also for responding to failures, adapting the interconnection topology.

For demonstrating the fragility of randomnetworks to failures of elements, Fig. 3(a
exhibits snapshots of a network during the simulation process without the proposed
control law active (i.e.ψ = 0 and σ = 0). These snapshots correspond to simulation
time t = 0, t = 20, t = 50 and t = 80, depicted by black, blue, green and red nodes,
respectively. Notice that at t = 20 the network fragmented into two clusters, and as
the simulation evolves the number of clusters increases. Of course, different failure
distributionmight accelerate or delay thenetwork fragmentation.However, cascading
failures or a high vulnerable topological configuration are surely harmful to the
network connectivity and, as a consequence, to its operation.

Consider now the performance of the combined control law for the same scenario
(ψ = 1 and σ = 1), illustrated in Fig. 3b. The resulting network topology is still con-
nected at the end of the simulation despite failures of central elements, emphasizing
the effectiveness of the combined control law to produce amore resilient network. As
alreadymentioned, the connectivity can not always be guaranteed, but postponing the

A Decentralized Control Strategy for Resilient … 99

Fig. 3 Snapshots of a
network topology at t = 0
(black), t = 20 (blue),
t = 50 (green) and t = 80
(red) simulation times

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

30

35

40

45

50

55

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

(σ=0, ψ=0)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I obstacles links nodes
(a) Performance without the control law.

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

30

35

40

45

50

55

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

(σ=1, ψ=1)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I obstacles links nodes
(b) Performance with the control law.

network fragmentation or increasing the number of elements in the largest connected
component are significant achievements for those applications where connectivity is
crucial.

As a proof of concept, the experiments were performed for 50 different network
topologies. For each gain combination, the averaged results for the algebraic con-
nectivity and the robustness level are illustrated in Figs. 4 and 5, respectively. The
vertical axis represents the initial scores for the respective property and its evolution
when exposed to continuous failures through the fraction f of nodes removed from
the network (horizontal axis).

As expected, networks were heavily affected by failures in scenarios where the
robustness improvement mechanism was not significantly active (ψ = 0 and ψ =
0.1), as the algebraic connectivity approaches 0 with a few node failures. Notice that

100 C. Ghedini et al.

Fig. 4 Control law
performance - The algebraic
connectivity (λ)

f

0.5

1

1.5
=0

f

0.5

1

1.5
=0.1

f

0.5

1

1.5
=0.5

f
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

1

1.5
=1

=0 =0.1 =0.5 =1

Fig. 5 Control law
performance - The
robustness level (Θ)

f

0.2

0.4

0.6
=0

f

0.2

0.4

0.6
=0.1

f

0.2

0.4

0.6
=0.5

f
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6
=1

=0 =0.1 =0.5 =1

the robustness to failure level increases according to ψ gain setting. On the other
hand, it is not significantly affected by the σ gain setting, i.e., improving theweight of
the connectivity maintenance control through the algebraic connectivity estimation
does not mean improving the robustness to failures. These findings support the claim
that the algebraic connectivity is not a suitable property for supporting mechanisms
to produce more robust networks.

In contrast to the robustness level evolution, the algebraic connectivity exhibits a
slight improvement as theψ value increases, i.e., improving the robustness to failures
implies increasing the overall network connectivity. It is important to highlight that

A Decentralized Control Strategy for Resilient … 101

the algebraic connectivity control law plays an important role: when there are no
vulnerable nodes in the network the connectivity must be ensured.

In general, the experiments demonstrate the impact of failures on the network
connectivity and, mainly, the feasibility of combining connectivity maintenance and
robustness to failures improvement mechanisms, even in the presence of obstacles.
Besides, the gain modeling allows the design of tools for adaptively setting gains
according to the application requirements and the devices/network states (e.g., battery
level, sensor feedbacks, failure occurrences), which can result in a desirable control
law behavior. Some additional examples can be freely viewed online on https://youtu.
be/ueo7nYEAm24.

6 Conclusions

Multi-robot applications that require deploying services in unstructured domains
should remain operative, regardless of the possibility of device failures, as service
availability is a crucial requirement for most applications. In this paper, we present a
model, based on local procedures, that combines control laws for both connectivity
maintenance and failure effect mitigation in multi-robot networks, thus allowing a
robust operation of the robotic network. The control laws are combined as a weighted
sum, and failure mitigation is achieved by a vulnerability assessment that is also
performed locally. The results demonstrate the feasibility of the model: the tested
networks were able to postpone disconnection or to maintain the network connected
even in scenarios of frequently occurring failures. Current work aims at implement-
ing the proposed methodology on real robotic systems, to evaluate its performance
in operational scenarios. Moreover, we are investigating the impact of different fail-
ure time distributions on the mechanism performance. For future work, we aim at
developing methodologies for achieving online adaptation of the gains according to
the network configuration and the application requirements, as a means of improving
the overall performance. Finally, we aim at considering the presence of additional
control objectives, such as formation control or environmental coverage.

References

1. Agarwal, P.K., Efrat, A., Ganjugunte, S., Hay, D., Sankararaman, S., Zussman, G.: The
resilience of WDM networks to probabilistic geographical failures. In: INFOCOM, 2011 Pro-
ceedings IEEE, pp. 1521–1529 (2011). https://doi.org/10.1109/INFCOM.2011.5934942

2. Ajorlou, A., Momeni, A., Aghdam, A.G.: A class of bounded distributed control strategies for
connectivity preservation in multi-agent systems. IEEE Trans. Autom. Control 55, 2828–2833
(2010)

3. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature
406(6794), 378–382 (2000)

https://youtu.be/ueo7nYEAm24
https://youtu.be/ueo7nYEAm24
https://doi.org/10.1109/INFCOM.2011.5934942

102 C. Ghedini et al.

4. Cao, Y., Ren, W.: Distributed coordinated tracking via a variable structure approach – part I:
consensus tracking. part II: swarm tracking. In: Proceedings of the American Control Confer-
ence, pp. 4744–4755 (2010)

5. Dall’Asta, L., Barrat, A., Barthelemy, M., Vespignani, A.: Vulnerability of weighted networks.
Theory Exper. 2006, 04,006 (2006)

6. Dimarogonas, D.V., Johansson, K.H.: Bounded control of network connectivity in multi-agent
systems. IET Control Theory Appl. 4, 1751–8644 (2010)

7. Do, K.D.: Formation tracking control of unicycle-type mobile robots with limited sensing
ranges. IEEE Trans. Control Syst. Technol. 16, 527–538 (2008)

8. Ghedini, C., Ribeiro, C.H.C.: Rethinking failure and attack tolerance assessment in complex
networks. Phys. A Stat. Mech. Appl. 390(23–24), 4684–4691 (2011)

9. Ghedini, C., Secchi, C., Ribeiro, C.H.C., Sabattini, L.: Improving robustness in multi-robot
networks. In: Proceedings of the IFAC Symposium on Robot Control (SYROCO). Salvador,
Brazil (2015). https://doi.org/10.1016/j.ifacol.2015.12.011

10. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, Berlin (2001)
11. He, Z., Liu, S., Zhan, M.: Dynamical robustness analysis of weighted complex networks. Phys.

A Stat. Mech. Appl. 392(18), 4181–4191 (2013)
12. Hsieh, M.A., Cowley, A., Kumar, V., Talyor, C.J.: Maintaining network connectivity and per-

formance in robot teams. J. Field Robot. 25(1), 111–131 (2008)
13. Ji, M., Egerstedt, M.: Distributed coordination control of multiagent systems while preserving

connectedness. IEEE Trans. Robot. (2007)
14. Lee, D., Franchi, A., Son, H., Ha, C., Bulthoff, H., Robuffo Giordano, P.: Semiautonomous

haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE/ASME
Trans. Mechatron. 18(4), 1334–1345 (2013)

15. Manzano,M., Calle, E., Torres-Padrosa, V., Segovia, J., Harle, D.: Endurance: a new robustness
measure for complex networks under multiple failure scenarios. Comput. Netw. 57(17), 3641–
3653 (2013)

16. Nelakuditi, S., Lee, S., Yu, Y., Zhang, Z.L., Chuah, C.N.: Fast local rerouting for handling
transient link failures. IEEE/ACM Trans. Netw. 15(2), 359–372 (2007). https://doi.org/10.
1109/TNET.2007.892851

17. Notarstefano, G., Savla, K., Bullo, F., Jadbabaie, A.: Maintaining limited–range connectivity
among second–order agents. In: Proceedings of the American Control Conference, pp. 2134–
2129 (2006)

18. Rak, J.: Resilient Routing in Communication Networks. Computer Communications and Net-
works, 1st edn. Springer International Publishing, Berlin (2015)

19. Robuffo Giordano, P., Franchi, A., Secchi, C., Bülthoff, H.H.: A passivity-based decentralized
strategy for generalized connectivity maintenance. Int. J. Robot. Res. 32(3), 299–323 (2013)

20. Sabattini, L., Chopra, N., Secchi, C.: Decentralized connectivity maintenance for cooperative
control of mobile robotic systems. Int. J. Robot. Res. (SAGE) 32(12), 1411–1423 (2013)

21. Sabattini, L., Secchi, C., Chopra, N.: Decentralized estimation and control for preserving the
strong connectivity of directed graphs. IEEE Trans. Cyber. 45(10), 2273–2286 (2015)

22. Soukieh, R., Shames, I., Fidan, B.: Obstacle avoidance of non-holonomic unicycle robots based
on fluid mechanical modeling. In: Proceedings of the European Control Conference. Budapest,
Hungary (2009)

23. Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis: Methods and Applications
(Structural Analysis in the Social Sciences). Cambridge University Press, Cambridge (1994)

https://doi.org/10.1016/j.ifacol.2015.12.011
https://doi.org/10.1109/TNET.2007.892851
https://doi.org/10.1109/TNET.2007.892851

Chase Your Farthest Neighbour

A Simple Gathering Algorithm for Anonymous,
Oblivious and Non-communicating Agents

Rotem Manor and Alfred M. Bruckstein

Abstract We consider a group of mobile robotic agents, identical and indistinguish-
able, having no memory (oblivious) and no common frame of reference (neither
absolute location nor a common orientation). Furthermore, these agents are assumed
to posses only rudimentary sensing and computational capabilities (limited visibility
and basic geometric sorting). We prove that, such robots, implementing a “Chase
the farthest neighbour” policy, preform the task of gathering to a point within a
finite time or a finite expected number of time steps. In continuous time, preforming
such a gathering task is rather straightforward, while in the discrete time, we prove
that a randomized semi-synchronised timing model leads to gathering within a finite
expected number of time-steps.

1 Introduction

Recently there is interest in using swarms of very simple robotic agents in performing
various tasks. The simple robots are assumed to have only very basic sensing, motion
and computing capabilities. It turns out that oblivious agents with very elementary
data processing skills and limited sensing capabilities can be programmed to per-
form several useful tasks, and the study of what such agents can do is interesting
and often quite challenging. A lot of research was already devoted to this topic and
led to a wealth of interesting results. Jadbabaie and Moreau and their collaborators,
see e.g. [11, 13], dealt with networked agents where the interconnections between
them are intermittent, and proved that flocking and gathering can be ensured, pro-
vided enough interactions occur over time. Suzuki and Yamashita, [15], suggested
several interesting algorithms for gathering agents under limited sensing and comput-
ing capabilities, and interestingly, among them also a “chase-the-farthest” neighbor
process. Moreau, in [14], proved that moving inside the convex hull of the current

R. Manor (B) · A. M. Bruckstein
Technion, Haifa, Israel
e-mail: manorrotem@gmail.com

A. M. Bruckstein
e-mail: freddy@cs.technion.ac.il

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_8

103

104 R. Manor and A. M. Bruckstein

agent locations leads, under some mild restrictions, to gathering, while Bruckstein
and his co-workers, in a series of papers [3, 8–10], proved that gathering can be
ensured in finite time with crude, limited range, and sometimes even bearing only,
sensing. Gross, in [6, 7] proposed an aggregation algorithm for groups of robots
employing binary sensing, reporting only the existence of other agents in the robots’
line of sight.

This paper discusses themulti-agent gathering problem in continuous and discrete
time, showing that a swarm of simple agents can gather to a point within a finite
expected time by applying a very simple motion law, implementing a “chase the
farthest neighbour” policy. Suzuki and Yamashita, in an early version of their paper
[15], suggested such an algorithm for a discrete-timemulti-agent systemof oblivious,
anonymous and unlimited visibility agents for point convergence in the R

2 plane.
In their paper they also proved that preforming this task within a finite number of
time-steps is impossible, if the agents cannot agree on a common meeting point.

We here first analyse a similar algorithm in the continuous-time framework for
the case of limited-visibility or sensing by the agents. In the discrete case, we suggest
a stochastic algorithm using the same, “chase the farthest”, idea which provides a
solution to the task of gathering within a finite expected number of time-steps.

This paper first discusses some basic concepts, and then proceeds with point
gathering of agents having unlimited and limited visibility in a continuous time
framework. Then, problems that arise from implementing the “chase the farthest
neighbour” policy in a discrete time framework are discussed, showing that a system
of agents having unlimited visibility clusters to a small region. Gathering to a point
under unlimited and limited visibility and randomized semi-synchronized timing of
the agents’ movements is then proved to occur in finite expected time.

2 Preliminaries

We deal with a system of n identical and anonymous oblivious agents in the R
2

plane specified by their time varying locations {pi (t)}i=1,2,...,n . The agents interact
with each other in such a way that their position updates are determined by their
current location and by interaction with their neighbours. The neighbours of each
agent i at time t are defined as the set of agents located within a given visibility
range, V , form pi (t), and this set denoted by Ni (t). The neighbourhood relation
between agents is described by a time dependent visibility-graph. Notice that when
dealing with unlimited visibility, the set Ni (t) comprises all the agents except i , and
the visibility-graph is complete, i.e. all agents “see” each other.

This paper provides proofs of gathering for a swarmof agentsmodelled as points in
the plane, that employ a “chase the farthest neighbour” rule of motion. The robots are
assumed to be able to cross each other’s paths with no obstructions, in the continuous
time there are no decision or computation-induced delays, while in the discrete case
we assume either synchronous or semi-synchronous, probabilistic motion schedules.

Note that, we bring only the essence of the proofs of the theorems in this paper.
The full proofs can be found in [12].

Chase Your Farthest Neighbour 105

3 Continuous Time Gathering

3.1 Unlimited Visibility

The main idea of the “chase the farthest” gathering law is that each agent continu-
ously moves toward the position of its current farthest neighbour. If more than one
neighbour is at the farthest distance from it, the agent arbitrarily selects one of its
farthest neighbours, and moves toward its location. This dynamic law is simple, and
we shall prove that if all agents of the system act by it, then the system eventually
gathers to a point.

In order to define a formal dynamic law, we consider the set of the farthest agents
(neighbours). Let N Far

i (t) ⊂ Ni (t) be the set of the agents located at the maximal
distance from agent i at time t .

j ∈ N Far
i (t) ⇐⇒ ∀q ∈ Ni (t) | ‖pi (t) − p j (t)‖ ≥ ‖pi (t) − pq(t)‖

The agents’ formal dynamic law is that each agent moves with a constant speed
σ > 0 toward the position of j an arbitrary agent from the set N Far

i (t), unless it is
collocated with j (in which case, obliviously the agents are all gathered!).

ṗi (t) =
⎧
⎨

⎩

σ
p j (t)−pi (t)

‖p j (t)−pi (t)‖ ‖p j (t) − pi (t)‖ > 0, j ∈ N Far
i (t)

0 o.w.

(1)

Notice that in (1) j is an arbitrary agent from the set N Far
i (t). Hence, a delicate issue

here is the continuous need to select the farthest neighbour from a set Ni (t) possibly
containing more than one agent (this makes it necessary to assess the well-posedness
of the velocity control rule, ṗi (t), since in principle infinitely many switches in the
choice of i are possible. However, one can argue that all choices yield similar effects
on pi (t), and monotonicity argument can be used to prove well-posedness of the
evolution with correct bounds on the rates of changes of distances between agents.
For a discussion of a similar issue see [4, 5].

Theorem 1 A system of n agents with dynamic law (1) gathers to a point within a
finite time.

The proof is based on the analysis of the rate of change of D(P(t)), the current
diameter of the convex-hull of the system’s agents, i.e.

D(P(t)) = max
i j

‖pi (t) − p j (t)‖

We show that each agent being located at an edge of a diameter necessarily moves
in a velocity with a strictly positive projection on the direction to the other edge of
the diameter of at least σ cos(π/3). As a result we have that the system gathers to

106 R. Manor and A. M. Bruckstein

a point within a finite time D(P(0))/σ , proving Theorem 1 (see full proof in [12]
Theorem 1).

3.2 Limited Visibility

In this section we apply the concept of “chase the farthest” to agents with limited
visibility. By assumption, here each agent senses only the agents located within a
visibility range of V . We clearly cannot use the former algorithm, since agents may
lose visibility with their neighbours during their movement, and hence cluster into
disconnected groups. For example, assume an agent has two neighbours which are
both located at a distance V from it and the angle between the vectors pointing to
them is larger than π/2. Then, moving towards one of them will result in losing
visibility to the other.

A solution for this problem is given by a slightly more complicated algorithm.We
suggest a new dynamic law which addresses the connectivity problem and gathers
the system to a point, within a finite time. This algorithm is again based on “chase
the farthest” concept, and is similar to the former dynamic law, however in situations
where an agent senses more than one farthest neighbour, according to the motion
law we consider, it will not move away from any one of them.

The presentation of a formal dynamic law requires us to adjust some of our
definitions. Let N Far

i (t) ⊂ Ni (t) be the subset of the farthest visible neighbours of
agent i , i.e. all the agents in N Far

i (t) are equally distanced from i , while the other
agents in the set Ni (t) are located closer to i .

Each agent i continuously calculatesψ Far
i (t), the angle of theminimal disk sector

anchored at pi (t) and containing its farthest neighbours N Far
i (t). If ψ Far

i (t) is equal
to or greater than π (hence i is “surrounded” by its farthest neighbours), the agent
stays put. Otherwise, it moves with speed σ > 0 in the direction of U Far

i (t) a unit
vector in the direction of the bisector of the angle ψ Far

i (see Fig. 1). The motion law
of agent i is therefore

ṗi (t) =
⎧
⎨

⎩

σ Û Far
i (t) ψ Far

i (t) < π

0 ψ Far
i (t) ≥ π

(2)

Notice that most of the time an agent has a single farthest neighbour, thenψ Far
i =

0, and the agent i moves toward its only farthest neighbour (see Fig. 1a).
Before proving convergence we show that the motion law (2) maintains the con-

nectivity of the system’s visibility-graph, i.e. if all the agents of the system obey this
law, they maintain visibility with all their current neighbours.

Lemma 1 The motion law (2) ensures that neighbours in the initial configuration
remain neighbours forever.

Chase Your Farthest Neighbour 107

(a) (b) (c)

Fig. 1 The motion law (2), in case of limited visibility. a {ψ Far
i (t) = 0} Agent i moves toward

j its only farthest agent within its visibility range. b {ψ Far
i (t) < π} Agent i moves toward the

bisector of the minimal sector containing all its farthest neighbours. j and k are the neighbours that
define the minimal angular-sector containing all the farthest neighbours. c {ψ Far

i (t) ≥ π} Agent i
does not move. (Here agents j and q define the sector S(t))

Proof Let {i, j} be a pair of neighbours. In order for this pair to disconnect in the
visibility-graph, li j (t), the distance between those agents, must cross V . At that state
i and j are necessarily in the set of the farthest neighbours of each other, since none
of them may sense agents beyond the range of V , i.e.

‖pi (t) − p j (t)‖ = V ⇒ j ∈ N Far
i (t) and i ∈ N Far

j (t)

By themotion rule (2), for the agent i , Ifψ Far
i (t) ≥ π , then it stays put. Otherwise

(if ψ Far
i (t) < π), it moves with speed of σ in the direction of U Far

i (t). Hence, if the
agent does not stay put, its moves in a direction with an angle smaller than or equal
to π/2 relative to the direction pointing to the agent j ∈ N Far

i . Denote this angle by
θi j (t). Then considering a pair {i, j} where j ∈ N Far

q (t) and i ∈ N Far
j (t), we have

that

l̇i j (t) = pi (t) − p j (t)

‖pi (t) − p j (t)‖
ᵀ
(ṗi (t) − p j (t)) =

= − (‖ ṗi (t)‖ cos(θi j (t)) + ‖ ṗ j (t)‖ cos(θ j i (t))
) ≤ 0

showing that the distance between i and j can not increase upon reaching V , and
hence can not exceed V . This proves the lemma.

Notice that the agents of this system need not be “aware” of their visibility range
V in order not to lose neighbours, however we need to have the same visibility range
for all the agents (and this is ensured by our assumption that all agents are identical!).

Theorem 2 A system of n agents moving according to motion rule (2), having a
connected initial visibility-graph, will gather to a point within a finite time.

The proof of this theorem is based on considering the dynamics of s, the agent
located at a (currently) sharpest corner of the system’s convex-hull, which by
Lemma 1, has to be connected to at least one other agent at any time. Let ϕs(t)
be the inner angle of this corner, which by Proposition 2 in [12] is upper bounded

108 R. Manor and A. M. Bruckstein

by ϕ∗ = π(1 − 2/n). Hence, ψ Far
s (t) ≤ ϕ∗, and we have that agent s necessarily

moves inside the systems convex-hull with the speed of σ > 0, while by the motion
law (2), clearly, no other agent may move out of it.

As a consequence, lC H (t), the perimeter of the convex-hull of the system contin-
uously drops with a rate bounded away from zero by a constant as long as its length
is not equal to zero, as follows:

l̇C H (t) ≤ −2σ cos2(
ϕ∗(t)
2

)

Hence, the system gathers to a point within a finite time as claimed in Theorem 2
(see full Proof of Theorem 2 in [12]).

Figure2 presents simulation result of 5 agents starting in a constellation of a
connected visibility net, and gathers to a point. Notice that the discontinuity of the
agents’ velocity is a consequence of the dynamic law dictating sudden switching
events, due to the changes in their farthest neighbours (and/or their selections of the
farthest neighbours!).

4 Discrete Time “Chase the Farthest” Gathering

In the sequel we analyse the “chase-the-farthest” concept in the discrete-time frame-
work. We start by showing that a group of agents with unlimited visibility applying a
“chase-the-farthest” algorithm with steps of length σ > 0, gather to a disk of radius
σ . We prove this using an unusual geometric Lyapunov function. Then, we further
prove that such a group gathers to a point within a finite expected number of steps,
in a semi-synchronous model, provided they can also take steps less than or equal to
σ in length. We end this section by showing that a simple constraint on the agents’
step size, ensures their gathering even if the agents have limited visibility.

Fig. 2 Simulation result of 5
agents with dynamics (2).
The empty big squares are
the initial configuration of
the agents, the dashed grey
lines are the initial
connection topology, and the
doted lines are the agents’
trajectories, which meet in
the black circle, i.e. the
gathering point

Chase Your Farthest Neighbour 109

4.1 Unlimited Visibility

We assume next that each agent i jumps a step of size σ towards the position of an
arbitrary agent of the set N Far

i (k):

pi (k + 1) = pi (k) + σ
p j (t)−pi (t)

‖p j (t)−pi (t)‖

where j is an arbitrary agent in the set N Far
i (k)

(3)

The motion rule (3) does not gather the system to a point (except in some special
cases, where the initial configuration of the agents leads them to jump exactly to the
same point at the same time step), since the agents of the system may jump over
each other when they are in close proximity. Nevertheless, we show that the system’s
dynamics brings all agents together to a small bounded region in R

2 within a finite
number of time steps.

Theorem 3 A system of n agents with dynamic law (3) gathers to a disk of radius
σ within a finite number of time steps.

The proof of this theorem is based on the analysis of the rate of change of the
radius of the agents’ minimal enclosing circle. By geometry the farthest neighbour
of each agent is located in an area beyond C(k), the center of the minimal enclosing
circle, as presented in Fig. 3. Therefore, if the distance between C(k) and the current
location of an agent is greater than σ/2, it jumps to a position significantly closer to
C(k). Otherwise, it jumps to position with a distance less than or equal to σ from
C(k). Hence, if the radius of the enclosing circle at time-step k, is greater then σ ,
it significantly decreases. As a consequence, we have that all agents of the system
gathers to a disk of radius σ within a finite number of time-steps, proving Theorem
3 (see Theorem 3 in [12]).

4.1.1 Gathering to a Point

Suzuki and Yamasita in [15], proved that a multi-agent system of oblivious agents
which can not agree on a meeting point are unable to gather to a point within a finite
number of time-steps. Agents with the capability to compute their minimal enclosing
circle or their convex-hull (calculation that has a complexity ofO(n log n)), can agree
on ameeting point, and were used to prove gathering to a point within a finite number
of time steps in several previous works, see e.g. [1, 2].

Suzuki and Yamasita in [15], also suggested a “Chase the farthest”algorithm (a
calculation that has a complexity of O(n)) which yields asymptotical point conver-
gence. Their algorithm is that each agent jumps towards its farthest neighbour a step
with a size equal to the distance to that neighbour multiplied by a positive constant
smaller than 1. Hence, at each time-step all agents jump into their convex-hull, and
if the initial configuration is not a point, this process will never end, resulting in
asymptotic convergence to a point.

110 R. Manor and A. M. Bruckstein

Fig. 3 A valid area for the
location of i ′, the farthest
neighbour of agent i , is
marked as dashed area. The
full-line circle is the minimal
enclosing circle of the
agents’ locations, and the
dashed circle is the outcome
of the distance between the
position of agent i and the
closest point where its
farthest neighbour may be
located at, so that the
minimal enclosing circle will
be defined properly
(Proposition 1 in [12])

We here suggest an alternative simplemotion law for the gathering of the oblivious
agents, which also requires calculations ofO(n) complexity. The consequence of the
simplicity is that the system gathers within a finite expected number of time-steps
instead of within a finite number of time-steps.

In order to achieve point-gathering, we adjust the motion law (3) as follows. We
limit the step-size of each agent to the distance to its current goal, i.e. if the relative
position of the goal is within the range of σ , the agent will simply move to the goal
agent’s position. We therefore define the length of the step of an agent i at time k as:

μi (k) � min{σ , ‖p j (k) − pi (k)‖}

where j is the goal agent.
This restriction is, however, not sufficient, since once all the agents are in close

proximity, they may switch locations with each other at every time-step, rather than
gather to a point. Therefore, we also adjust the timing of the motion law (3) to a
semi-synchronous model, so that at each time-step an agent i may be active with
some probability ρ.

pi (k + 1) = pi (k) + χi (k)μi (k)
p j (t) − pi (t)

‖p j (t) − pi (t)‖ (4)

where j is an arbitrary agent of the set N Far
i (k), and χi (k) equals 1 or 0 with

probabilities ρ or 1 − ρ, respectively.

Chase Your Farthest Neighbour 111

We next show that a system of n agents with the motion law (4) gathers to a point
within a finite expected number of time steps, since it obeys a “strong asynchronicity
assumption” (as defined in Gordon et al. [9, 10]).

Definition 1 “Strong asynchronicity assumption”: There exist a strictly positive
constant ε such that for any subset A of the agents, at each time-step k, the probability
that A will be the only set of active agents is at least ε.

Theorem 4 A system of n agents with dynamics law (4) will gather to a point within
a finite expected number of time-steps.

The essence of the proof is that by the motion law (4), clearly, the perimeter of
the system’s convex-hull cannot increase. Furthermore, if the agents are not confine
to a σ -diameter disk, by the “Strong asynchronicity assumption”, there is always
a strictly positive probability ε, that the agent located at the sharpest corner of the
convex-hull, and the agents with close proximities to it will be the only active agents,
and therefore will jump into the convex-hull, yielding a bounded away from zero
decrease in lC H (k), the perimeter of the system’s convex-hull, as follows: (Lemma
3 in [12])

lC H (k + 1) ≤ lC H (k) − σ

3

(
1 − sin

(ϕ∗
2

))

Consequently, the perimeter decreases until the system gets to a state where all
the agents are confined to a σ -diameter disk. At this state, by the motion law (4), an
active agent jumps to another agent’s current position. Therefore, at each time step
there is a strictly positive probability ε that the agents constellation will comprise
less and less points in R2 until it becomes a single point.

As a consequence, the expected number of time-step for a point gathering to occur
is upper bounded by

(⌈
lC H (0) − 2σ

σ
3

(
1 − sin

(
ϕ∗
2

))

⌉

+ n − 1

)

�ε−1

proving Theorem 4 (see Theorem 4 in [12]).

4.2 Limited Visibility

In this section we assume that the agents have limited visibility, hence the system’s
visibility-graph may break into disconnected components while the agents move.
The “chase the farthest” motion law (2) maintains the connectivity of the visibility-
graph in a continuous-time framework, but a straightforward discretization does not
work, since the agents jump steps with significant lengths, and, as a consequence,
they may lose connectivity to their neighbours.

We resolve this problem by adding constraint on the step-size of the agents, as
was also suggested by Ando et al. in [2].

112 R. Manor and A. M. Bruckstein

Let θi j (k) be the angle between the two vectors pointing from pi (k) to p j (k) and
from pi (k) to the current “goal” of agent i , and let li j (k) be the current distance
between the positions of agents i and j . Then, the maximal step size agent i may
take, in order to ensure visibility with j is given by

Limiti j (k) = li j (k)

2
cos(θi j (k)) +

√
(

V

2

)2

−
(

li j (k)

2

)2

sin2(θi j (k))

and the maximal step size agent i may take, in order to ensure visibility with all its
neighbours, is given by

Limiti (k) = min
j∈Ni (k)

{Limiti j (k)} (5)

The meaning of this constraint is that each pair of agents {i, j} may not leave a
disk of diameter V centered at the average of their locations. Hence, after they both
take a step, the distance between them will not exceed V . If an agent has more than
one neighbour, it cannot leave the intersection of the disks associated with all its
neighbours (see Fig. 4).

The addition of restriction (5) to a “chase the farthest” motion law yields a new
law which maintains the connectivity of the system’s visibility-graph. In the sequel,
we formally present this new motion law, and prove that it gathers the agents of the
system to a point.

Prior to presenting themotion law,we also need to adjust the definition of N Far
i (k),

the set of the farthest neighbours of an agent i , as follows:
Let l Far

i (k) be the distance between agent i and its farthest neighbour, and let
δ < 1/2 be a small but strictly positive constant. Then, agent i’s farthest set of
neighbours is the subset of its neighbours to which the distance from i is in the range
between l Far

i (k)(1 − δ) and l Far
i (k), i.e.

(a) (b)

Fig. 4 Limiti j (k) and Limiti (k): a Limiti j (k) - Maximum distance agent i can move towards
ci (k), its “goal” position, without leaving a circle of radius V/2 centred at mi j (k), the average
position of pi (k) and p j (k) at time-step k. b Limiti (k) = min

j∈Ni (k)
{Limiti j (k)}

Chase Your Farthest Neighbour 113

j ∈ N Far
i (k) ⇐⇒ l Far

i (k)(1 − δ) ≤ ‖pi (k) − p j (k)‖ ≤ l Far
i (k)

Then, the assumed behaviour of the agents is that at any time step k, each active
agent i calculatesψ Far

i (k) the angle of the current minimal angular-sector containing
the agents of the set N Far

i (k). If ψ Far
i (k) is greater than or equal to π , agent i stays

put. Otherwise, it jumps a step of size μi (k) in the direction of U Far
i (k), the unit

vector defining the bisector associated with the angle ψ Far
i (k), where μi (k) is the

minimal value from the following quantities:

• σ < V/2 - maximal step size
• Limiti (k) - connectivity maintenance restriction
• l L R

i (k) the projection of U Far
i (k) on half the sum of the vectors pointing from

pi (k) to pExt R
i (k) and to pExt L

i (k), the extremal right and left agents defining the
minimal angular-sector. As a consequence, the current step of agent i cannot cross
the line-segment defined by the positions of these two extremal neighbours.

pi (k + 1) = pi (k) +
⎧
⎨

⎩

χi (k)μi (k)U Far
i (k) ψ Far

i (k) < π

0 ψ Far
i (k) ≥ π

(6)

where μi (k) = min{σ, Limiti (k), l L R
i (k)}, and χi (k) equals 1 or 0 with probability

ρ or 1 − rho, respectively.
Notice that for a very small δ, except in some rare cases, there is always a single

farthest neighbour, and then the minimal sector angle is zero, so that the preformed
movement is toward this single farthest neighbour’s position.

Lemma 2 By the dynamic law (6), any pair of current neighbouring agents remain
neighbours forever.

Proof Dynamics (6) yields that if a pair of agents {i, j} are neighbours at time-step
k, then at time step k + 1 their positions are limited to a disk of diameter V , due to
(5) (one of the step size limits). Therefore, the distance between any pair of current
neighbours cannot exceed V at any future time step.

Theorem 5 A system of n agents with dynamic law (6) and with an initial configu-
ration having a connected visibility-graph, gathers to a point within a finite expected
number of time steps.

In the proofwe address two situations in the process of gathering. First, we address
a situation where the agents of the system are not contained in a σ -diameter disk.
Hence, due to some geometrical consideration and the fact that the constellation
of the agents comprises a connected visibility-graph, each sequence of two time-
steps, having a specific activity schedule, may result in a significant decrease of the
perimeter of the system’s convex-hull. By the “Strong asynchronicity assumption”,
the probability for such a sequence to occur is at least ε2 (see Lemma 7 in [12]).

114 R. Manor and A. M. Bruckstein

Furthermore, clearly, by the motion law (6), the perimeter of the system’s convex-
hull cannot increase, hence the agents will gather to a disk of diameter σ within finite
expected number of time-steps.

Second, we address a situation where the agents of the system are contained in a
σ -diameter disk. Hence, any active agent that may move jumps to the position of its
farthest neighbour or to a convex combination of the positions of two of its farthest
neighbours. Consequently a specific activity schedule of five consequent time-steps
gathers the system to a point.

Let agents i and j be the most distanced pair of agents at time-step k, let mi j (k)

be the point located at the mean position of point pi (k) and p j (k), and let the line
crossing point pi (k) and p j (k) divide the plane into two half plans, denoted by H p1
and H p2. Then, the mentioned above schedule, given by the active set of agents in
each consequent step, starting at time-step k, is as follows:

1. At time-step k, the agents located in H p1 (not include agents i and j)
2. At time-step k + 1, the agents located in H p2 (not include agents i and j)
3. At time-step k + 2, the agents located on the segment (pi (k), mi j (k))

4. At time-step k + 3, the agents located on the segment (mi j (k), p j (k)]
5. At time-step k + 4, the agents located at point mi j (k)

By the “Strong asynchronicity assumption” the probability that such a sequence of
steps will occur is at least ε5 (see Lemma 8 in [12]).

Clearly, once all agents gathered to a σ -diameter disk, they remain confined to
such a disk, hence the agents will gather to a point within a finite expected number
of time-steps, as claimed in Theorem 5 (see full proof in [12] Theorem5).

Figure5 presents simulation result of 5 agents starting in a constellation of a
connected visibility net, and gather to a point.

5 Discussion

In this work, we analysed several “Chase the farthest” motion laws for multi-agent
systems in order to address the problem of gathering identical and oblivious agents.
We proved that such simple motion laws provide elegant solutions to the gathering
problem in several settings.

First, we showed that in a continuous-time framework, agents that act by a “Chase
the farthest” motion law, whether they have unlimited visibility or limited-visibility,
gather to a point within a finite time. The suggested motion laws and the proofs of the
resulting gathering are quite simple, however even in this case one has to carefully
deal with issues of well definedness and non-differentiability.

In the discrete time framework, the situation is different and requires more work
in order to define the motion rules and obtain meaningful convergence results. We
have proved that agents with unlimited visibility and fixed steps sizes, gather to a
disk of diameter twice their step size within a finite number of time-steps. To do so,
we used as a Lyapunov function the radius of the minimal enclosing circle of the

Chase Your Farthest Neighbour 115

Fig. 5 Simulation results of
5 agents with dynamics (6),
where V = 10, δ = 0.001
and ρ = 0.4 for all the
agents. The empty big
squares are the initial
configuration of the agents,
the dashed grey lines are the
initial connection topology,
and the small squares are the
agents. a The agent
configuration after the first
time step; b The
configuration reacted to a
complete visibility graph; c
Last time step where the
agents occupy 5 points in the
plane; d The agents occupy 3
collinear points in the plane;
e The agents occupy 2 points
in the plane; f The agents
gathered to a point

agents locations, and showed that it necessarily decreases until it reaches a value
below the step size of the agents.

Furthermore, we have suggested an alternative motion law to resolve the problem
of gathering within a finite number of time-steps. Solutions of this problem demand
the agents to have the ability to agree on a meeting point. This ability requires
high computational capabilities, which we try to avoid. Our alternative, allows the
agents of the system to gather without agreeing on a meeting point, however as a
consequence, the agents gather only within a finite expected number of time steps.

Wepresent algorithms andproofs formulti-agent systems in theR2 plane, however
those can simply be adapted to multi dimensional spaces, as well.

References

1. Agmon,N., Peleg,D.: Fault-tolerant gathering algorithms for autonomousmobile robots. SIAM
J. Comput. 36(1), 56–82 (2006)

2. Ando, H., Oasa, Y., Suzuki, Y., Yamashita, Y.: Distributed memory less point convergence
algorithm for mobile robots with limited visibility. In: IEEE Transactions on Robotics and
Automation, vol. 15(5), pp. 818–828 (1999)

116 R. Manor and A. M. Bruckstein

3. Bellaiche, L.I., Bruckstein, A.: Continuous time gathering of agents with limited visibility and
bearing-only sensing. Technical report, CIS Technical report, TASP (2015)

4. Bruckstein, A., Zeitouni, O.: A puzzling feedback quantizer. Technical report 879, EE Depart-
ment Technion IIT (1993)

5. Cortes, J.: Discontinuous dynamical systems. IEEE control Syst. 28(3), 36–73 (2008)
6. Gauci, M., Chen, J., Dodd, T.J., Gross, R.: Evolving aggregation behaviors in multi-robot

systemswith binary sensors. DistributedAutonomousRobotic Systems, pp. 355–367. Springer,
Berlin (2014)

7. Gauci, M., Chen, J., Li, W., Dodd, T.J., Gross, R.: Self-organized aggregation without compu-
tation. Int. J. Robot. Res. (2014). https://doi.org/10.1177/0278364914525244

8. Gordon,N.,Wagner, I., Bruckstein,A.:Gatheringmultiple robotic a(ge)ntswith limited sensing
capabilities. Ant Colony Optimization and Swarm Intelligence. Lecture Notes in Computer
Science, p. 142–153. Springer, Berlin (2004)

9. Gordon, N., Wagner, I., Bruckstein, A.: A randomized gathering algorithm for multiple robots
with limited sensing capabilities. In: Proceedings of MARS 2005 workshop at ICINCO
Barcelona (2005)

10. Gordon, N., Elor, Y., Bruckstein, A.: Gathering multiple robotic agents with crude distance
sensing capabilities. Ant Colony Optimization and Swarm Intelligence. Lecture Notes in Com-
puter Science, pp. 72–83. Springer, Berlin (2008)

11. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using
nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

12. Manor, R., Bruckstein, A.: Chase Your Farthest Neighbour: A simple gathering algorithm for
anonymous, oblivious and non-communicating agents. Technical report CIS-2016-01 (2016)

13. Moreau, L.: Stability of continuous-time distributed consensus algorithms. In: Proceedings of
the 43rd IEEE Conference on Decision and Control, 2004. CDC. vol. 4, p. 3998–4003 (2004)

14. Moreau, L.: Stability of multi-agent systems with time-dependent communication links. IEEE
Trans. Autom. Control 50, 169–182 (2005)

15. Suzuki, I., Yamashita, M.: A theory of distributed anonymous mobile robots formation and
agreement problems. Technical report, DTIC Document (1994)

https://doi.org/10.1177/0278364914525244

OuijaBots: Omnidirectional Robots for
Cooperative Object Transport with Rotation
Control Using No Communication

Zijian Wang, Guang Yang, Xuanshuo Su and Mac Schwager

Abstract We propose a distributed force and torque controller for a group of robots
to collectively transport objects with both translation and rotation control. No explicit
communication among robots is required. This work goes beyond previous works
by including rotation control and experimental demonstrations on a custom built
robot platform. We prove that follower robots can synchronize both their forces and
torques to a leader (either a robot or human) that guides the group, and thus con-
tribute positively to the transport. We introduce a custom-designed omnidirectional
robot platform, called the OuijaBot, with sensing and actuation capabilities for coop-
erative manipulation. Our approach is verified by experiments with four OuijaBots
successfully transporting and rotating a payload through a narrow corridor.

Keywords Multi-robot manipulation · Cooperative mobile manipulation

1 Introduction

Multi-robot cooperative manipulation and object transport is an emerging field
[1, 3, 6, 15, 17, 19, 23] that exploits the power of collaboration among a team
of robots to move objects that are too large and heavy for any single robot to handle

Z. Wang (B) · M. Schwager
Department of Aeronautics and Astronautics, Stanford University,
Stanford, CA, USA
e-mail: zjwang@stanford.edu

M. Schwager
e-mail: schwager@stanford.edu

G. Yang · X. Su
Department of Mechanical Engineering, Boston University, Boston, MA, USA
e-mail: gyang101@bu.edu

X. Su
e-mail: sxs99@bu.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_9

117

118 Z. Wang et al.

alone. Most work in this area has focused on controlling the translation of the object,
and leaves the rotation of the object uncontrolled. However, rotation control is also
an important part of cooperative transport. Rotation control is necessary in reaching
an appropriate orientation to navigate through spatially constrained environments,
for example, when the robots must transport a long object through a narrow corridor.

In this work, we propose a novel solution for multi-robot cooperative manipula-
tion, with a particular concentration on rotation control. The feature of our approach
is that no communication is required between any two robots, yet the robots have to
contribute positively to both the object’s translation and rotation motion. The robots
coordinate themselves by sensing the linear and angular velocity of the object, and
then applying a force and torque to reinforce the sensed motion. A leader (either
a robot or human), who is the only one in the group that knows the destination or
desired trajectory, can steer the entire group by adjusting its input. In our previous
work [19–21], we verified that translation can be controlled without communication
by properly designing the robots’ forces. In this paper, we extend our prior work by
incorporating rotation sensing and torque input, so that the orientation of the object
can be independently controlled along with the translation.

The main challenge in combining rotation and translation control is due to the
complexity of the object dynamics and the kinematics of joint motion of the robots-
object assembly. Our method naturally takes into account both the dynamics and
kinematics, leading to a provably convergent and physically realizable approach. In
order to verify our algorithm, we introduce a new robot platform for cooperative
manipulation called the OuijaBot. The OuijaBot platform is custom designed to
realize the sensing and actuation required for our force and torque controller. Our
approach is successfully verified in experiments with four OuijaBot robots carrying a
loaded pallet, with rotation being controlled in order to go through a narrow passage.

1.1 Related Work

Our work has been inspired by the multi-disciplinary research on cooperative trans-
port in robotics and in cooperative ant behavior in biology. Amulti-robot systemwas
utilized in [17] to move furniture under different sensing and communication con-
figurations. A formation-based approach called caging was studied in [5, 15], where
the robots move the object by maintaining a formation to trap the object as if in a
cage. An important issue in multi-robot manipulation is impedance control [4, 12],
which has been used to regulate internal forces [22] among multiple manipulators.
Massive manipulation experiments were done by [16] with up to 100 robots using
flocking. The kinematic multi-robot motion controller proposed in [11] is capable
of both translating and rotating the object, by specifying the robots’ speeds with
respect to the centroid of the object. There are also approaches that achieve coopera-
tive manipulation without communication, using vision occlusion [3], passive caster
[18], and inter-robot force measurements [8, 9]. In addition to the robotics research,

OuijaBots: Omnidirectional Robots for Cooperative Object … 119

the behavior study of ant colonies also backs our assumption that ants use measured
motion information for cooperative object transport [14], and that ants tend to align
their manipulation forces during collective transport behaviors [2].

2 Problem Formulation

We consider manipulation in a 2D environment Q ⊂ R
2, potentially cluttered with

obstacles. The object has a mass M and moment of inertia J . The acceleration of
the gravity is g, and points downward, perpendicular to the environment plane. The
object is subject to two kinds of friction from the ground, kinetic friction and viscous
friction, whose coefficients are μk and μv respectively.

There is a fleet of N robots, indexed as {R1, R2, . . . , RN }. We choose R1 as the
leader robot, and others as the followers. Only the leader knows the destination or
desired trajectory for the object. The followers do not know where the object needs
to be transported, nor the control actions of other robots. The robots are attached to
the object, and can apply 2D forces to the object, denoted by {F1,F2, . . . ,FN }, as
well as 1D torques about the z-axis (using the standard right hand rule) represented
by {T1, T2, . . . , TN }. As the robots cannot communicate, they rely on their sensors
to determine what forces and torques to apply. We require the robots to be able to
measure the linear and angular velocity of the object, denoted by vc and ω. A more
detailed sensing model for the robots will be introduced in Sect. 3.1.

Under the manipulation inputs from the robots, the object can translate and rotate
in Q. The translation dynamics is governed by Newton’s second law,

M v̇c =
N∑

i=1

Fi − μvvc − μk Mg
vc

‖vc‖ , (1)

where vc denotes the linear velocity of the object at the center of mass. The rotation
dynamics, while the object is in motion, can be written as

J ω̇ =
N∑

i=1

Ti +
N∑

i=1

ri × Fi − μv

M
Jω, (2)

where the position vector ri points from the center of mass of the object to the
attachment point of robot Ri . The derivation of the rotational dynamics can be found
in our previous work [19], where we have shown that the friction model in (2) is
linearly damped by −μv Jω/M .

The objective of this paper is to design a communication-free controller for the
robots’ forces and torques, Fi and Ti , so that the robots can guide the objects’ linear
velocity vc and angular velocity ω to navigate the object along a desired trajectory.
Furthermore, only the leader (either a robot or a human) knows this desired trajectory.

120 Z. Wang et al.

In order to achieve the coordination with no communication, we need a few
assumptions for the robots, which are summarized below.

Assumptions

1. All robots know the value of M, J, μk, μv, g, N , which correspond to the mass
of the object, moment of inertia of the object, coefficients of friction, acceleration
of gravity, and the number of robots, respectively;

2. Every robot Ri knows its own position relative to the object’s center of mass, ri ;
3. The robots’ attachment points are centrosymmetric around the center of mass of

the object, meaning that for any robot Ri , there exists another robot j �= i such
that ri = −r j .

Note that Assumption 1 can be achieved by existing distributed parameter estima-
tion approaches [7]. The position information in Assumption 2 can also be estimated
online by the robots in practice, for example, by using the pipelined consensus algo-
rithm from our previous work [10]. We require Assumption 3 for our convergence
analysis, since when force coordination is achieved (i.e., all Fi are equal), the resul-
tant

∑N
i=1 ri × Fi = 0 in (2). In practice, our controller is sufficiently robust to

tolerate some lack of centrosymmetry.1

3 Distributed Force and Torque Controller Design

3.1 Robot Sensing

Our controller requires the follower robots to measure the linear and angular velocity
of the object, denoted as vmi and ωmi , where the subscript “m” refers to “measured”
and i specifies the robot Ri . Theoretically, ωmi should be the same for all the robots
since we assume the robots are rigidly attached to the object. However, vmi will be
different for all the robots if the object is rotating, since the robots can only measure
the velocities at their local attachment points, which can be characterized by

vmi = vc + ω × ri . (3)

In addition to velocity sensing, the robots are also equipped with force and torque
sensors in order to perform feedback control, so that the desired force and torque
specified by the high-level controller (Sect. 3.3) can be achieved. The measured force
and torque of robot Ri are denoted by fmi and τmi .

1Even though strict centrosymmetry is hard to achieve, when the number of robots is large with
respect to the size of the object, it is likely that the robots will spread evenly around the object, so
that the centrosymmetry can be nearly satisfied.

OuijaBots: Omnidirectional Robots for Cooperative Object … 121

3.2 Robot Kinematics

We must deal with both the dynamics and kinematics of our combined robot-object
system. On one hand, the movement of the object is governed by the dynamics (1),
(2). On the other hand, the robots are physically connected to the object, resulting in
complex interactions between the object and the robots. Our approach aims to take
into account both kinematics and dynamics involved in the process.

Many previous approaches for multi-robot manipulation use differential-drive
robots, which suffer from non-holonomic constraints whenmovingwith the object as
awhole system.To effectively reduce the complexity involved in this jointmotion, the
OuijaBots that we present in this paper feature holonomic dynamics using an omni-
directional wheel design. Therefore, for our robots the 2D linear velocity, denoted
by vdi , and angular velocity, denoted by ωdi , can be independently controlled, where
the subscript “d” means “desired” and i refers to a specific robot Ri .

Another advantage of the holonomic configuration is that the force and torque
generated by the robot can be controlled independently. As was done in [1], we
characterize the force/torque generation by the tendency of the robot to move/rotate
faster or slower than the object. The larger this tendency is, the greater the resultant
force/torque will be and vice versa. Mathematically, we characterize this tendency
as the difference between the commanded (or desired) velocity of the robot and the
actual velocity of the object. Thus,weuse a linearmodel to describe this phenomenon,
as follows,

vdi = vmi + K f (Fi − fmi), (4)

ωdi = ωmi + Kτ (Ti − τmi), (5)

where Fi and Ti are the desired force and torque, respectively, of robot Ri , and fmi

and τmi are the measured force and torque, respectively. The parameters K f and Kτ

are constants that need to be tuned experimentally. Using (4) and (5), the resulting
velocity command vdi and ωdi can be implemented by the robot’s motion controller
(i.e., generate motor voltages to fulfill the desired velocities), so that the desired force
and torque can be generated. The physical realization of vdi and ωdi , as well as how
to measure vmi and ωmi , will be presented in detail in Sect. 4, where we introduce
the hardware design and control system of our OuijaBots.

3.3 Force and Torque Controller

3.3.1 Follower’s Controller

Our motivation in designing the follower’s controller is that every robot should be
equally responsible for 1/N share of the effort to overcome the friction or resistance
of the motion. Thus, the torque controller for the followers can be written as,

122 Z. Wang et al.

Fi (t) = 1

N

(
μvvc(t) + μk Mg

vc(t)

‖vc(t)‖
)

, i ∈ {2, 3, . . . , N }. (6)

Since vc is not directly measurable, using (3) we can rewrite (6) as

Fi (t) = 1

N

(
μv(vmi (t) − ωmi (t) × ri) + μk Mg

vmi (t) − ωmi (t) × ri

‖vmi (t) − ωmi (t) × ri‖
)

, (7)

which can be computed by all the robots since they either know or can measure the
quantities in (7). Similarly, the torque controller is defined as

Ti (t) = μv J

N M
ωmi (t), i ∈ {2, 3, . . . , N }. (8)

Note that in (8), the possible resistance from the term
∑N

i=1 ri × Fi in (2) is not
included. We show in Theorem 1 below that we can safely ignore this term under
Assumption 3. Evenwhen this term is not equal to zero, a PI controller on the leader’s
torque input will effectively reject this disturbance.

A quick observation reveals that the controllers (7), (8) themselves imply no
communication and rely on only local measurements. The outcome of (7), (8), Fi (t)
and Ti (t), can be used by (4), (5) to generate appropriate motor commands. Also
note that (7), (8) require no global reference frame information. The sensing and
force/torque actuation can all be performed in the robots’ local reference frames.

3.3.2 Leader’s Controller

The goal of the leader robot is to steer the group towards the destination or follow
a pre-defined trajectory by adjusting its own force and torque input. Suppose that
we already know the desired linear and angular velocities from a higher-level path
planning algorithm.2 Then we define the leader’s force controller as follows,

F1(t) = fd
vd(t)

‖vd(t)‖ , (9)

where vd is the desired velocity, and

fd = K1 max{‖vd(t)‖ − ‖vc(t)‖, 0} (10)

= K1 max{‖vd(t)‖ − ‖vm1(t) − ωm1(t) × r1‖, 0},

where K1 is a proportional gain. The philosophy behind the leader’s force controller
is as follows. From (9) it can be seen that the leader aligns its force along the direction
of vd , which tends to drag the object’s velocity towards vd . The magnitude of F1 is

2There are many off-the-shelf algorithms we can choose, and this is not the focus of this paper.

OuijaBots: Omnidirectional Robots for Cooperative Object … 123

determined by a proportional controller (10), aiming to reduce the difference between
‖vd‖ and ‖vc‖. The max function is used to ensure that F1 does not point opposite
to vd .

The torque controller of the leader is

T1(t) = K2e(t) + K3σ(t), (11)

where K2 is the proportional gain, K3 is the integral gain, and

σ̇ (t) = e(t) = ωd(t) − ωm1(t). (12)

The rotation controller (11) is essentially a PI controller that drives the angular
velocity of the object to the desired ωd .

3.3.3 Convergence Proof

Theorem 1 Using the followers’ force/torque controller (7), (8) and the leader’s
force/torque controller (9), (11), the object’s linear and angular velocity, vc and ω

track vd and ωd as a first order filter. Furthermore, if vd and ωd are constant, and
assuming negligible measurement noise ωmi = ω, ∀i , vc and ω converge asymptot-
ically to vd and ωd .

Proof For force convergence and the convergence of vc to vd , refer to Lemma 1
and Theorem 1 in our previous work [21], where similar proof procedures can be
applied. For rotation, if noise is not present in the sensing, we have ωmi = ω, ∀i ∈
{1, 2, . . . , N }. Thenplugging the followers’ torque inputs (8) into the rotation dynam-
ics (2) yields

ω̇ = 1

J
T1 + 1

J

N∑

i=1

ri × Fi − 1

N

μv

M
ω. (13)

If we treat ω as the state and T1 as the input, (13) is a stable first-order linear system
with

∑N
i=1 ri ×Fi/J as the disturbance, which we know will diminish to zero when

the force convergence is achieved under the centrosymmetric assumption. Further-
more, given a constant desired angular velocity ωd , the leader’s torque input (11)
implements a PI controller with ωd as the set point. Therefore, we know that ω will
converge to ωd [13]. �

Note that in (13), the followers’ torque inputs help reduce the magnitude of the
resistance significantly. Also, in the steady state of (13), the torque inputs from all
the robots (including the leader) are equal.

124 Z. Wang et al.

4 OuijaBot Hardware and Control System

We designed and manufactured an omnidirectional robot platform, named OuijaBot,
which brings together unique sensing and actuation capabilities to implement the
controllers proposed in the previous section, as shown in Fig. 1. The OuijaBot con-
tains four symmetrically-placed omnidirectional wheels, with free rollers along the
perimeter that enable sideways movements. The wheels are independently driven by
four DC motors, each of which is rated at 5A stall current under 12V, generating
a maximal torque of 0.78Nm. Encoders are mounted with the motors to measure
the velocity. We designed a custom Printed Circuit Board (PCB) for low-level motor
control and processing sensor measurements, including encoders, motor currents,
accelerometer, gyroscope, and magnetometer. A Raspberry Pi is used as a more
powerful computation hub and for running the Robot Operating System (ROS). Oui-
jaBot weighs 2.7kg and can move up to 1m/s.

For cost and complexity considerations, OuijaBot currently does not have a sus-
pension system, which is left for future work. Instead, we test our robots mainly on
a resilient surface with plastic mats, to help alleviate the suspension problem.

Fig. 1 Our custom-built omnidirectional robot platform called OuijaBot. a The overall appear-
ance. Four brushed DC motors are mounted symmetrically underneath the chassis. Battery and all
electronics are enclosed compactly inside the aluminum shell. The top layer of the robot can be
used to install additional equipment, such as a gripper, robotic arm, camera, or lidar as shown in
this picture. b Our PCB design. The low-level microcontroller is an ARM Cortex-M4 running at
100MHz. Four motors are driven by four full H-bridges through PWM signals. The motor currents
are measured using four Hall effect current sensors. Other sensors including encoders, 9-axis IMU
are also handled by the Cortex-M4. Various interfaces such as Serial, I2C, SPI, and PWM are
reserved for connecting future add-on devices

OuijaBots: Omnidirectional Robots for Cooperative Object … 125

Fig. 2 Configuration of OuijaBot’s motors and wheels. M1-4 are the four motors. The positive
directions of different quantities are as marked. We choose the body-frame xB and yB axis as such
because these are the two directions in which the robot can generate the maximal amount of force,
and also move at the highest speed

4.1 Motion Control

Given a desired linear vdi and angular velocityωdi , as computed by (4), (5), the robot
needs to realize the velocity by controlling the speeds of its four wheels. A schematic
of the motors and wheels are shown in Fig. 2. We denote the output angular velocity
of the wheel as ωi , i ∈ {1, 2, 3, 4}. We assume that each wheel is controlled by the
corresponding motor in the nominal direction, while free to slide sideways. Then the
mapping from the wheel speeds to the robot speed is

vdi =
√
2rw

4
[ω3 − ω1 + ω4 − ω2, ω3 − ω1 + ω2 − ω4]

T , (14)

ωdi = (ω1 + ω3)rw

2rB
= (ω2 + ω4)rw

2rB
, (15)

where rw is the radius of the wheel and rB is the radius of the robot. Note that in
(15), we impose an additional artificial constraint since four wheels are redundant
in generating the 3-DOF velocity. Using (14) and (15), we have four equations to
uniquely determine four wheel speeds. Standard PID controllers are implemented
on the PCB to handle the motor control and achieve the required wheel speeds
ω1,ω2,ω3,ω4.

4.2 Velocity Measurement and Traction Control

The wheel speeds are measured by four encoders mounted on the back of the motors.
In order to measure vmi , as required in (4), (7), (10), we can use the same kinematic

126 Z. Wang et al.

equation in (14) and substitute ω1−4 with the measured wheel speeds. In order to
measure ωmi , as used in (5), (7), (8), (12), the reading from the gyroscope is used
rather than solving (15) since this is a more accurate approach.

A possible factor that may degrade the accuracy of measuring the linear velocity
is the wheel slipping along the nominal direction. We use a practical approach for
detecting wheel slippage and to enhance traction control, similar to what has been
done in the automobile industry. In every detection period (200ms in our case), we
calculate the robot velocity using the encoder readings using (14), (15). In parallel,
we also estimate the linear velocity by integrating the acceleration, and the angular
velocity by reading the gyroscope, using IMU data. If the difference between the
two sets of measurements exceeds a pre-defined threshold, then the robot knows that
slipping occurred and then tries to reduce speed to regain traction.

4.3 Force and Torque Measurements

The torque generated by each motor can be measured by the current sensor through
the linear relationship T = Ki I , where Ki is a coefficient. Denote I1, I2, I3, I4, along
directions shown in Fig. 2, as the effective current of each motor corrected with the
no-load current, then the force and torque generated by the robot with respect to the
center of the mass, as required by (4), (5), can be measured as

fmi =
√
2Kirw

2
[−I1 − I2 + I3 + I4, −I1 + I2 + I3 − I4]

T , (16)

tmi = Kirwrb(I1 + I2 + I3 + I4). (17)

5 Simulation

We have successfully verified our distributed force and torque controller first in
simulation using Open Dynamic Engine (ODE), a well-known physics engine in
the robotics community. Twenty robots are employed to transport a simulated chair
which weighs 2kg. The task setup is visualized in Fig. 3, and the goal is to navigate
the chair through the narrow corridor on the right. Since the opening of the corridor is
smaller than the length of the chair, the robots have to rotate the chair by 90 degrees.
The robots are placed symmetrically around the chair, each of which is able to apply
force and torque calculated by (7), (8) or (9), (11). In this simulation we focus on the
force and torque rather than the specific mechanics of the robot, so we visualize the
robots as spheres. The leader, drawn in blue and located at one corner of the chair,
is the only that knows the desired destination and orientation of the object. During
the entire process, no communication occurs between any two robots. Additionally,

OuijaBots: Omnidirectional Robots for Cooperative Object … 127

(a) Initial position (b) Intermediate position (c) End position

Fig. 3 Twenty robots successfully transport and rotate a chair to cross a narrow corridor in sim-
ulation. The leader robot is drawn in blue while follower robots are in yellow. The robots use the
communication-free force and torque controller described in Sect. 3

0 5 10 15

0

0.5

1

Fx

Time / s

F
or

ce
 /

N Leader Fx

0 5 10 15

0.5

0

0.5

Fy

Time / s

F
or

ce
 /

N Leader Fy

(a) Robots’ Forces.

0 5 10 15
0.4

0.2

0

0.2

0.4

0.6

0.8

Time / s

T
or

qu
e

/ N
m

Leader Torque

(b) Robots’ Torques.

Fig. 4 The forces and torques of the robots during the simulation. The leader’s force and torque
are in bold black lines, while the other lines correspond to the followers. Despite the noises, it is
clear that all the followers respond and follow the trend of the leader’s input

0 5 10 15

0

1

2

3

4

Time / s

x (m)
y (m)
 (rad)

(a) Trajectory in simulation.

0 5 10 15 20 25 30

0

1

2

3

4

Time / s

x (m)
y (m)
 (rad)

(b) Trajectory in experiment.

Fig. 5 Trajectory of the object in simulation (left) and experiment (right). In both cases, the robots
are successful in transporting the object along x direction, and rotating the object by 90 degrees.
The displacements on y axis in both cases are maintained around zero (the offset values are not
meaningful), which ensure the desired straight line motion to the right side

128 Z. Wang et al.

in order to simulate the noisy sensing and actuation, the force and torque applied by
the robots are corrupted by zero-mean Gaussian noise.

The forces and torques of the robots are plotted inFig. 4,where the leader’s steering
on the followers’ forces and torques is evident. The trajectory of the object is shown
in Fig. 5. For the purpose of comparison, we place the trajectory in the simulation
next to that of the experiment (Sect. 6), where the task objective is similar. The two
trajectories present resemblance to each other in terms of reaching the desired x and
θ value, and holding the position in y direction (the offset value does not matter).

6 Experiments

Our approach is validated experimentally using four OuijaBots. The scenario of our
experiment is shown in Fig. 6. Four OuijaBots are rigidly attached to the corners
of a piece of square wood (0.6m × 0.6m), together serving as a modular pallet
system. The imagined payload, three round bars, are fixed onto the pallet. The goal
of the experiment is to first track a straight line to move the pallet towards the right
of the field, which is about 4.5m away, and then cross the narrow corridor between
the two piles of boxes. As shown in Fig. 6a, the initial orientation of the pallet cannot
go through the corridor since the length of the bar is larger than the opening of the

(a) t = 0 (b) t = 10s

(c) t = 20s (d) t = 33s

Fig. 6 Snapshots of the cooperative transport experiment. The locations of the robots are marked in
a. The robots are able tomove the pallet to the right side and also rotate 90 degrees counterclockwise
in order to go through the narrow corridor. The experiment video is available online at https://youtu.
be/4nLMYjqUoJ4

https://youtu.be/4nLMYjqUoJ4
https://youtu.be/4nLMYjqUoJ4

OuijaBots: Omnidirectional Robots for Cooperative Object … 129

Time / s
0 10 20 30

F
or

ce
 /

N

0

5

10

15

20

Leader
R2
R3
R4

(a) Magnitude of robots’ forces

Time / s
0 10 20 30

T
or

qu
e

/ N
m

-2

-1

0

1

2

Leader
R2
R3
R4

(b) Torques applied by the robots

Fig. 7 Forces and torques applied by the robots during the transport process. The plots confirm
that the follower robots contribute positively to the manipulation

corridor. Therefore, the robots must rotate the pallet before reaching the corridor, as
shown in the final moment in Fig. 6d.

Upon the start of the experiment, all the robots are issued the same initial speed
to establish the initial movement.3 After that, all the follower robots perform all the
sensing and computation as described in Sects. 3 and 4 completely onboard without
any inter-robot communication. The leader’s controller (9), (11) is implemented
offboard by integrating the external positioning information from Vicon,4 which is
consistent with our assumption that only the leader knows the desired trajectory. The
actual trajectory of the object is plotted in Fig. 5. The forces and torques applied by
all the robots are shown in Fig. 7, which are recorded at 100Hz. The plots indicate
that the follower robots share a large amount of the force in order to help the leader
overcome the friction. Also, the torque inputs from the followers tend to follow
the changes of the leader’s torque, and are mostly positive, verifying the followers’
contribution to help rotate the object counterclockwise. Moreover, our approach
allows the leader’s force and torque to be from a human. We verify this by letting a
human operator control the leader robot using a joystick to carry out the same task,
while the follower robots run the same program as before. Due to the space limit,
this result is shown in the online video: https://youtu.be/4nLMYjqUoJ4.

3Initial movement can be also triggered without communication using random trials [19]. For the
sake of clear presentation, we skip this phase, which is not the focus of this paper.
4http://www.vicon.com/.

https://youtu.be/4nLMYjqUoJ4
http://www.vicon.com/

130 Z. Wang et al.

7 Conclusion and Future Work

In this paper, we present a decentralized force and torque controller for a group
of robots to control both the translation and rotation of an object during coopera-
tive manipulation without communication. We show theoretically and in hardware
experiments that the robots can rely on their measurements of the object’s motion to
coordinate their force and torque inputs, rather than using explicit communication.
We designed and built a new omni-directional robot platform, the OuijaBot, and
successfully validated our approach in real time experiments with four OuijaBots
cooperatively transporting a loaded pallet.

In the future, we plan to leverage machine learning to estimate parameters such
as M, μk, μv, N , ri online. Also, we are interested in more advanced filtering on the
multi-sensor data, and extending our approach to the 3D using aerial robots.

Acknowledgements Thisworkwas supported byNSFgrantCNS-1330036, and also by theToyota-
SAIL Center for AI Research. The authors are grateful for this support.

References

1. Alonso-Mora, J., Knepper, R., Siegwart, R., Rus, D.: Local motion planning for collaborative
multi-robot manipulation of deformable objects. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 5495–5502 (2015)

2. Berman, S., Lindsey, Q., Sakar, M.S., Kumar, V., Pratt, S.: Study of group food retrieval by ants
as a model for multi-robot collective transport strategies. In: Robotics: Science and Systems
(RSS), pp. 259–266 (2010)

3. Chen, J., Gauci, M., Li, W., Kolling, A., Groß, R.: Occlusion-based cooperative transport with
a swarm of miniature mobile robots. IEEE Trans. Robot. 31(2), 307–321 (2015)

4. Erhart, S., Sieber, D., Hirche, S.: An impedance-based control architecture for multi-robot
cooperative dual-armmobile manipulation. In: Proceedings of the International Conference on
Intelligent Robots and Systems (IROS), pp. 315–322 (2013)

5. Fink, J., Hsieh, M.A., Kumar, V.: Multi-robot manipulation via caging in environments with
obstacles. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 1471–1476 (2008)

6. Fink, J., Michael, N., Kim, S., Kumar, V.: Planning and control for cooperative manipulation
and transportation with aerial robots. Int. J. Robot. Res. 30(3), 324–334 (2011)

7. Franchi,A., Petitti, A., Rizzo,A.:Decentralized parameter estimation and observation for coop-
erative mobile manipulation of an unknown load using noisy measurements. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pp. 5517–5522
(2015)

8. Groß, R., Dorigo, M.: Group transport of an object to a target that only some group members
may sense. In: International Conference on Parallel Problem Solving fromNature, pp. 852–861
(2004)

9. Groß, R.,Mondada, F., Dorigo,M.: Transport of an object by six pre-attached robots interacting
via physical links. In: IEEE International Conference on Robotics and Automation (ICRA),
pp. 1317–1323 (2006)

10. Habibi, G., Kingston, Z., Wang, Z., Schwager, M., McLurkin, J.: Pipelined consensus for
global state estimation in multi-agent systems. In: Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1315–1323 (2015)

OuijaBots: Omnidirectional Robots for Cooperative Object … 131

11. Habibi, G., Kingston, Z., Xie, W., Jellins, M., McLurkin, J.: Distributed centroid estimation
and motion controllers for collective transport by multi-robot systems. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pp. 1282–1288 (2015)

12. Kennedy, M.D., Guerrero, L., Kumar, V.: Decentralized algorithm for force distribution with
applications to cooperative transport. In: ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (2015)

13. Khalil, H.K.: Nonlinear systems, 2nd edn. Prentice Hall, New Jersey (1996)
14. McCreery,H.F., Breed,M.D.: Cooperative transport in ants: a reviewof proximatemechanisms.

Insectes Soc. 61(2), 99–110 (2014)
15. Pereira,G.A.,Campos,M.F.,Kumar,V.:Decentralized algorithms formulti-robotmanipulation

via caging. Int. J. Robot. Res. 23(7–8), 783–795 (2004)
16. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., Nagpal, R.: Collective

transport of complex objects by simple robots: theory and experiments. In: Proceedings of
International Conference on Autonomous Agents and Multi-agent Systems (AAMAS), pp.
47–54 (2013)

17. Rus, D., Donald, B., Jennings, J.: Moving furniture with teams of autonomous robots. In:
Proceedings of the International Conference on Intelligent Robots and Systems (IROS), vol.
1, pp. 235–242. (1995)

18. Stilwell, D.J., Bay, J.S.: Toward the development of a material transport system using swarms
of ant-like robots. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 766–771 (1993)

19. Wang, Z., Schwager,M.:Multi-robot manipulation without communication. In: Proceedings of
the International Symposium on Distributed Autonomous Robotic Systems (DARS), Daejeon,
Korea, 2–5 November, pp. 135–149 (2014)

20. Wang, Z., Schwager, M.: Multi-robot manipulation with no communication using only local
measurements. In: Proceedings of the IEEE International Conference on Decision and Control
(CDC), pp. 380–385 (2015)

21. Wang, Z., Schwager, M.: Kinematic multi-robot manipulation with no communication using
force feedback. In: Proceedings of the IEEE International Conference onRobotics andAutoma-
tion (ICRA), pp. 427–432 (2016)

22. Williams, D., Khatib, O.: The virtual linkage: Amodel for internal forces inmulti-graspmanip-
ulation. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 1025–1030 (1993)

23. Wilson, S., Pavlic, T.P., Kumar, G.P., Buffin, A., Pratt, S.C., Berman, S.: Design of ant-inspired
stochastic control policies for collective transport by robotic swarms. Swarm Intell. 8(4), 303–
327 (2014)

Persistent Multi-robot Formations
with Redundancy

Alyxander Burns, Bernd Schulze and Audrey St. John

Abstract A multi-robot formation composed of autonomous agents may need to
maintain an overall rigid shape for tasks such as collective transport of an object.
To distribute control, we construct leader-follow formations in the plane that are
persistent: designated “leader” robots control the movement of the entire formation,
while the remaining “follower” robots maintain directed local links sensing data to
other robots in such a way that the entire formation retains its overall shape. In this
paper, we present an approach based on rigidity theory for constructing persistent
leader-follower formations with redundancy; specified robots may experience sensor
link failure without losing the persistence of the formation. Within this model, we
consider the impact of special positions due to certain geometric conditions and
provide simulation results confirming the expected behavior.

1 Introduction

For applications such as collective transport, multi-robot formations need tomaintain
a global shape. To do so in a distributed fashion, we focus on formations composed
of autonomous agents that use local sensing to maintain a global rigid structure.
In particular, we consider persistent leader-follower formations where designated
leader robots control the trajectory of the entire formation; the remaining robots

A. Burns · A. St. John (B)
Computer Science Department, Mount Holyoke College,
South Hadley, MA, USA
e-mail: astjohn@mtholyoke.edu

A. Burns
e-mail: burns22l@mtholyoke.edu

B. Schulze
Department of Mathematics and Statistics, Fylde College,
Lancaster University, Lancaster, UK
e-mail: b.schulze@lancaster.ac.uk

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_10

133

134 A. Burns et al.

autonomously sense and adjust their positions locally to follow specified robots in a
way that maintains the global structure.

In our model, each autonomous robot is represented as a point in the plane, and
weworkwith range-onlymeasurements, represented as distance constraints between
pairs of points. This model is known in an area called “rigidity theory” as the 2D
bar-and-joint framework (see, e.g., [19]) and is well-understood, with a quadratic
algorithm for determining the bar-and-joint rigidity properties [8].While rigidity the-
ory has been applied to the construction and analysis of formations of autonomous
agents [3, 11], the approach assumes undirected constraints, leading to amodelwhere
both agents would be responsible for the constraint. Since this may increase sensing
and communication costs, a “persistence theory” for directed distance constraints
between points was proposed by Hendrickx et al. [5] (see also [4]), effectively cut-
ting costs in half by assigning one of the two agents to be responsible for sensing
and maintaining a distance. Unlike decentralized approaches for collective trans-
port where robots maintain constraints to the transported object (e.g., [7, 16]), a
persistent formation could be used to carry delicate items, such as a partially con-
structed vehicle. In particular, we use a leader-follower architecture [2]; as described
in [15], local sensing and communication can achieve specific geometric formations,
allowing dynamic adaptation based on the surrounding environment.

Contributions. In this paper, we focus on accommodating sensing and com-
munication failures by incorporating redundancy into our model. Redundancy is
well-understood in (undirected) rigidity theory, and the associated objects form the
foundation for the main contribution of this paper: an approach for constructing
(directed) persistent leader-follower formations with redundancy.

Wework within the basic model of persistence, following the definitions from [5],
and present a class of directed graphs where any edge from a vertex with out-degree
3 is redundant; after removal of such an edge, the resulting formation remains per-
sistent. Algorithms for constructing these graphs, as well as simulation results con-
firming the expected behavior of acyclic formations, are presented.We also include a
discussion of the impact of special geometric conditions that can affect the “generic”
behavior of the combinatorial model. To the best of our knowledge, these graphs
are the first to incorporate redundancy into persistent formations. While the redun-
dancy is restricted to specified sets of edges, it is a first step towards the stronger
notion of redundantly persistent formations, defined in Sect. 3, where any edge in
the formation could be removed.

Structure. In Sect. 2, we provide an overview of the relevant definitions and results
from rigidity and persistence theory. We present an approach for constructing persis-
tent leader-follower formationswith redundancy in Sect. 3 before considering special
geometric conditions that may affect persistence in Sect. 4. However, restricting to
acyclic formations implies that such special conditions do not impact our construc-
tion, and we present simulation results (Sect. 5) verifying our approach.We conclude
with future directions in Sect. 6.

Persistent Multi-robot Formations with Redundancy 135

21

43
43

(a) A flexible framework with another (gray) incon-
gruent embedding satisfying the distance function.

21

43

(b) Adding the edge 14 results in a mini-
mally rigid framework.

Fig. 1 Flexible and rigid frameworks in the plane

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set V = [1 . . . n] and edge set
E of unordered pairs of vertices. An embedding of G in the Euclidean plane is an
assignment p ∈ (R2)n of the vertices to points in the plane; the pair (G,p) is called
a framework. Another embedding q is congruent to p if ||pi − p j || = ||qi − q j ||
for every pair of vertices i and j . Given a framework, we can extract a distance
function d : E → R, where d(i j) = ||pi − p j ||. If all q in the neighborhood of p
satisfying the distance function d are congruent to p, the framework is (locally) rigid
and flexible otherwise; refer to Fig. 1. The rigid framework of Fig. 1b is minimally
rigid as the removal of any edge results in a flexible framework.

For a given graph, almost all associated embeddings, called generic embeddings,
share the same rigidity properties (see, e.g., [19]). Therefore, we may call a graph
generically rigid or flexible, referring to the behavior of generic embeddings. The
formal definition of genericity is captured by a polynomial whose vanishing indicates
a non-generic embedding, or special position, and is outside the scope of this paper.
The impact of special positions is discussed in Sect. 4.

For multi-robot formations, where minimizing the cost of communication and
sensing is desirable, we work with a notion closely related to rigidity called per-
sistence. We build upon the foundations of [5] and include here only the relevant
definitions and results. Persistence is framed in terms of a directed graph and intu-
itively defines the directed analog of rigidity. One can interpret each of the vertices
as representing an autonomous agent with out-going edges specifying distance con-
straints to neighbors that it is responsible for satisfying. This eliminates the cost for
sensing and communication costs on one endpoint of a constraint edge, which would
be required if working with undirected graphs and rigidity. If (1) every agent can find
a position to satisfy its distance constraints, and (2) the corresponding framework is
rigid, then the formation is considered persistent.

Let H = (V, E) be a directed graph with vertex set V = [1 . . . n] and edge set E
of ordered pairs of vertices. For clarity, we denote a directed edge from the source
i to target j with

−→
i j to contrast with an undirected edge i j . For a graph H and an

embedding p, the pair (H,p) is called a formation. Given a formation, we can extract
the distance function d as before.

136 A. Burns et al.

We can now state the technical definitions from [5] for persistence. Given d, let
q ∈ (R2)n be an embedding of the vertices of H . If

−→
i j ∈ E and ||qi − q j || = d(

−→
i j),

then the edge
−→
i j is active in q. The set Aq(i) denotes the set of active edges in

q whose source is i . The position qi is fitting for vertex i if there does not exist
another embedding q∗ such that (1) q∗

i �= qi , (2) q∗
j = q j for all j �= i , and (3)

Aq(i) � Aq∗(i). Intuitively, a position is fitting for a vertex if it cannot be moved to
satisfy additional constraints. If the positions for all vertices are fitting, then q is a
fitting embedding. With this notion of fitting embeddings formalized, we can define
persistence.

Definition 1 Let (H,p) be a formation. If all fitting embeddings q in the neighbor-
hood of p are congruent to p, then the formation is persistent.

See Fig. 2 for examples of persistent and non-persistent formations. While the for-
mations in Fig. 2a, b have the same underlying (rigid) undirected graph, only one is
persistent. The embedding shown in Fig. 2c is fitting for the formation in Fig. 2d as
each vertex is in a position that maximizes the number of its out-going constraints;
vertex 4 cannot satisfy the dashed constraint to 3 without violating at least one of its
other constraints to 1 or 2. Since it is not congruent, this certifies that the formation
in Fig. 2b is not persistent.

As with rigidity, almost all embeddings of a directed graph exhibit the same
persistence properties, so we may refer to a directed graph as generically persistent.
We rely on the following result of [5]:

Theorem 1 (Theorem 3 of [5]) A graph is generically persistent if and only if the
underlying undirected graph of every subgraph obtained by removing out-edges from
vertices with out-degree>2 until all vertices have out-degree≤2 is generically rigid.

Leader-follower formations. In this paper, we consider a specific type of persistent
formations called leader-follower formations. In the persistent formations of Fig. 2a,
d: only vertex 1 has out-degree 0 and is called the leader, only vertex 2 incident to it
has out-degree 1 and is called the co-leader, and all other vertices (3 and 4) have out-
degree ≥2 and are called followers. Since a point in 2D has two degrees of freedom
(translation along the x- and y-axes), but an entire formation has three (translation

21

43

(a) A persistent for-
mation with leader 1,
co-leader 2 and fol-
lowers 3 and 4.

21

43

(b) Reversing the
edge from 3 to 4
results in a non-
persistent formation.

21

43

(c) A fitting embed-
ding for the forma-
tion in (b) that is not
congruent.

21

43

(d) Adding an edge
from 3 to 2 results
in a persistent forma-
tion.

Fig. 2 Persistent and non-persistent frameworks in the plane

Persistent Multi-robot Formations with Redundancy 137

along the x- and y-axes along with rotation about the origin), the simplest leader-
follower formation must have both a leader and a co-leader; the entire formation
cannot be controlled by a single lead point agent.

3 Redundancy for Persistence Theory

Communication links and sensors can fail, motivating the need for redundancy in a
multi-robot system. In this section,we present an approach for constructing persistent
leader-follower formations with redundancy.

We begin by reviewing redundancy in rigidity; a graph is generically redundantly
rigid if removing any edge results in a rigid graph. Minimality is defined as follows:
an undirected graph is a generic rigidity circuit if removing any edge results in a
generically minimally rigid graph. Circuits are standard in matroid theory (see, e.g.,
[12]) and the 2D bar-and-joint rigidity matroid captures the behavior of the distance
constraints described in Sect. 2 [18]. In this section, we only consider the generic
behavior of graphs; for brevity, we omit the word “generically” for the remainder.
The smallest example of a rigidity circuit can be seen in Fig. 2d; removing any edge
from the (undirected) K4 graph gives a minimally rigid graph.

We analogously define a directed graph to be redundantly persistent if the removal
of any edge results in a persistent graph. However, the behavior of redundant rigidity
does not easily extend to the persistence model. Refer back to the formation in
Fig. 2d. While its underlying undirected graph is redundantly rigid, the formation is
not redundantly persistent; without the edge

−→
32, the resulting formation (of Fig. 2b)

is no longer persistent. We leave the question of redundantly persistent graphs open;
it is challenging to even come up with a simple formation that satisfies the definition.

In the remainder of this section, we present a class of graphs with a more
restricted notion of redundancy. These arise from considering leader-follower for-
mations whose underlying undirected graphs are rigidity circuits, beginning with the
following result.

Proposition 1 Let G be a rigidity circuit. Then there exists a leader-follower ori-
entation of G that is persistent.

Proof Let G = (V, E) be a rigidity circuit and let e = i j ∈ E be any edge. Then
G ′ = (V, E \ {e}) is aminimally rigid graph. By using an algorithm called the (2, 3)-
pebble game [8, 10], there exists an orientation of G ′ where every vertex has out-
degree at most 2. Furthermore, we can use “pebble collection” moves in the pebble
game to find an orientation H where exactly one vertex vL has out-degree 0, another
vertex vC incident to vL , has out-degree 1 and all other vertices have out-degree 2.
By Theorem 1, this formation is persistent; there are no vertices with out-degree >

2, so we only need to consider the underlying undirected graph G ′ of H , which is
(minimally) rigid.

138 A. Burns et al.

We now add the edge i j back to the formation, orienting it as
−→
i j if i �= vC , vL and−→

j i otherwise. By this construction, the source of the edge e now has out-degree 3.
Consider the undirected graphs underlying the three subgraphs obtained by dropping
each out-edge from the source of e; since G is a rigidity circuit, each is (minimally)
rigid. Therefore, by Theorem 1, this formation is persistent. �

Note that the proof is constructive, as captured by Algorithm 1.

Algorithm 1 Constructing a persistent leader-follower formation from a rigidity
circuit.
Input: a rigidity circuit G = (V, E), a desired leader vertex vL and a desired co-leader vertex vC
incident to vL .
Output: a persistent leader-follower formation.

1. Remove any edge e = i j �= vCvL ∈ E .
2. Play the (2, 3)-pebble game on G ′ = (V, E \ {e}) to obtain a directed graph H .
3. Use pebble collection moves on H to collect 2 pebbles on vL and one pebble on vC .

4. Output the resulting directed graph with the additional edge
−→
i j , if i �= vC , vL , or

−→
j i otherwise.

Algorithm 1 runs in O(n2) time; Steps 1 and 4 are constant, and Steps 2 and 3 take
O(n2) and O(n) time, respectively [10]. The produced persistent formation has the
following properties: (1) there is a single leader vertex vL ; (2) there is a single co-
leader vertex vC incident to the leader; (3) there is exactly one follower vertex (the
source of e) that has out-degree 3 and removal of any of its out-edges will maintain
persistency; and (4) every other follower vertex has out-degree 2.

As an example, refer again to Fig. 2d. It was constructed by first dropping the edge
24. Then the pebble game algorithm was executed, giving the orientation without−→
42, with vertex 1 as the leader and 2 the co-leader. Adding the edge back in with
direction

−→
42 (since 2 is the co-leader) gives a persistent leader-follower formation,

where vertex 4 is the one follower vertex with out-degree 3.
The formations produced by Algorithm 1 contain redundancy via the out-going

edge set of the vertex with out-degree 3. For the K4 example, this implies that, if
a sensor link were to fail, there is a 50% chance of that failure not impacting the
persistence of the formation; exactly 3 of the 6 edges are in the redundant set of
edges leaving vertex 4. While this does not give a formation where the redundancy
is uniformly distributed through the formation, it is a step towards a more robust
theoretical model.

Recursively constructing persistent formations. By using the formations from
Algorithm 1 as seed formations, we can recursively construct larger formations with
more vertices permitting sensor failures. We rely on the following result from [6],
specialized to our setting. See Fig. 3a for a visual depiction of the construction.

Proposition 2 (Proposition 3 of [6]) Let H = (U, E) and I = (V, F) be persistent
leader-follower graphs with leaders uL ∈ U, vL ∈ V and co-leaders uC ∈ U and

Persistent Multi-robot Formations with Redundancy 139

Lv

Cv

IH iu

ju

ku

(a) The construction adds 3 out-edges
from the leader and co-leader of one for-
mation to the other.

1

2 4

3

5

6 8

7

(b) Applying the construction to two per-
sistent leader-follower “seeds” formations.

Fig. 3 Proposition 2’s recursive construction produces additional (double-outlined) vertices with
out-edge sets containing redundancy

vC ∈ V . Then the graph (U ∪ V, E ∪ F ∪ {e = −−→vLui , f = −−→vLu j , g = −−→vCuk} is a
persistent leader-follower graph, where ui , u j , uk ∈ U and |{ui , u j , uk}| > 1.

Proposition 2 gives a recursive approach for constructing persistent leader-
follower formations with any desired number of vertices whose out-edge sets each
contain redundancy. We refer to the leaves of the recursion as seeds in the construc-
tion.

Lemma 1 Let H = (V, E) be a graph resulting from any number of applications
of the construction step described in Proposition 2 using formations produced
by Algorithm 1 as seeds. Let R1, . . . , Rk denote the out-edge sets of the vertices
v1, . . . , vk with out-degree 3 and let r1 ∈ R1, . . . , rk ∈ Rk. Then H ′ = (V, E ′ =
E − {r1, . . . , rk}) is a persistent leader-follower formation.
Proof By (strong) induction on k. For the base case of k = 1, no applications of
the construction step have occurred and H ′ is persistent from Algorithm 1. For the
inductive step, assume the statement holds for graphs with less than K vertices of
out-degree 3 and suppose H has k = K > 1. Then at least one construction step has
occurred. Let I = (VI , EI) and J = (VJ , EJ) be the two input graphswithV = VI ∪
VJ and E \ (EI ∪ EJ) = {e1, e2, e3}, so that e1, e2, e3 are the edges added by the
construction. Since the number of vertices of out-degree 3 in I and J must both be at
least 1 and thus less than K , I ′ = (VI , E ′

I = EI ∩ E ′) and J ′ = (VJ , E ′
J = EJ ∩ E ′)

are persistent leader-follower graphs by induction. Since e1, e2, e3 have sources in
H with out-degree exactly 2, H ′ is precisely (VI ∪ VJ , E ′

I ∪ E ′
J ∪ {e1, e2, e3}), a

persistent leader-follower formation constructed using Proposition 2. �

Figures3b and 4 depict examples of this recursive construction, using the persistent
K4 formation of Fig. 2d as the seeds. An out-edge from each of the double-outlined
vertices with out-degree 3 may be dropped without losing persistence.

Acyclic persistent formations for simulation. Persistent formations without cycles
are of particular interest when considering autonomous agents. We consider the
situation where the leader and co-leader may move first (e.g., via tele-operation); the
followers will then move to satisfy their constraints. If a directed cycle is present in

140 A. Burns et al.

1

2 4

3

5

6 8

7

9

10 12

11

13

14

15

16

Fig. 4 The recursive construction can be applied several times to obtain additional vertices whose
out-edge sets have redundancy. In this case, an out-edge from each of the 4 double-outlined vertices
(4, 8, 12, 16) can be dropped without losing persistence

the graph, the formation may not be able to converge to an embedding satisfying the
constraints, even if it is persistent.

However, if a persistent graph is acyclic, then there exists an ordering of the
vertices such that (1) the first vertex has out-degree 0, (2) the second out-degree 1,
and (3) every other vertex has ≥2 out-edges to vertices earlier in the ordering [5].
Graphs of this type are a generalization of Henneberg I graphs, given the use of the
“vertex addition” step for the followers that was first described by Henneberg for
minimally rigid graphs [18, 19]. The formations in Figs. 2d, 3b and 4 are acyclic,
certified by the orderings indicated via the vertex labels. Such an ordering permits a
simple algorithm for the formation to satisfy all constraints within O(n)movements,
one per robot, as described in Sect. 5.

We conclude this section by observing that, if the seeds of the recursive construc-
tion described in Proposition2 are acyclic, the resulting formation is also acyclic.
This allows us to construct persistent acyclic formations with vertices whose out-
edge sets contain redundancy. Section5 provides simulation results that verify the
ability of such formations to remain persistent even when sensing links fail.

4 Special Geometric Conditions

In Sect. 3, we presented approaches for constructing generically persistent graphs,
applying to situations where agents are positioned with a generic embedding in the
plane. In practice, however, agents are often placed in a systematic way so that

Persistent Multi-robot Formations with Redundancy 141

the formation takes on a specific shape or pattern. Using a symmetric or repetitive
configuration to execute certain tasks, or simply for aesthetic reasons, may lead to
a non-generic embedding. In this section we discuss how such special geometry in
the formation of the agents can impact the formation’s redundancy and persistence.

As noted in Sect. 2, for particular geometric configurations, a generically rigid
graph may become flexible. Such configurations, however, are in general difficult
to detect; the problem of determining whether a framework is rigid is coNP-hard
[1]. A highly active research area in geometric rigidity theory is to study under what
conditions non-trivial symmetries in a framework lead to flexibility in a generically
rigid graph. We refer the reader to [9, 13, 14] for some key results in this area.

Given a formation of autonomous agents, it follows that special geometric condi-
tions (as induced by symmetry in the formation, for example) can affect redundancy.
For the situation we study, where the underlying undirected graph is a generic rigid-
ity circuit, a special geometric embedding may: (1) cease to be redundant, with the
removal of some edge yielding a flexible graph; or (2) cease to be rigid. We illustrate
these two types of special positions with some simple examples.

Figures5 and 6 depict two examples for type 1. Each of the graphs is a generic
rigidity circuit, but are in special positions that cause the dashed edges to cease
to be redundant; their removal yields flexible frameworks. For the triangular prism
“Desargues” graph obtained by removing the edge 24 from the graph in Fig. 5a, it
is well-known (and easy to verify) that if 1346 and 2345 are parallelograms then

1 2

6 5

4

3

(a) The edge 24 is no
longer redundant.

6 5

4

1 2

3

(b) Without the edge
24, the framework is
flexible.

6 5

4

1 2

3

(c) A non-persistent
formation contains
the cycle 456.

6 5

4

1 2

3

(d) Reversing edge
45 gives a persistent,
acyclic formation.

Fig. 5 A generic rigidity circuit in a special geometric position

2
3

5
7

1

8

6
4

9

(a) The edge 34 is no
longer redundant.

23

5 7

1

8

6

4

9

(b) Without the edge 34,
the framework is flexi-
ble.

2
3

5
7

1

8

6
4

9

(c) A non-persistent for-
mation contains the cy-
cle 485.

2
3

5
7

1

8

6
4

9

(d) Reversing edge
48 gives a persistent,
acyclic formation.

Fig. 6 A generic rigidity circuit in a special geometric position

142 A. Burns et al.

2

3 65

1

7

4

(a) A special geometric embedding with points
on the x-axis and y-axis.

2
3 65

1

7
4

(b) In this position, the framework is flexible.

Fig. 7 The bipartite graph K3,4, a generic rigidity circuit, is flexible in this special position

the framework becomes flexible, as in Fig. 5b. A geometric analysis verifies that an
embedding of the graph obtained by removing the edge 34 from the graph in Fig. 6a
becomesflexible if the three congruent faces 1354, 2367 and 5698 are parallelograms,
as shown in Fig. 6b.

As observed in [5], the formation shown in Fig. 5c is not persistent. This follows
from the result:

Theorem 2 (Remark 2(b) of [5]) A formation with no vertex having a position
collinear with two or more of its neighbours is persistent if and only if the framework
of every subgraph obtained by removing out-edges from vertices with out-degree >2
until all vertices have out-degree ≤2 is rigid.

In Fig. 5c, only vertex 4 has out-degree 3, but removing the edge
−→
42 leads to a flexible

framework. However, the formation in Fig. 5d is persistent; only vertex 5 has out-
degree 3 and removal of any of its edges maintains rigidity. Similarly, Fig. 6c depicts
a formation that is not persistent (the only vertex of out-degree 3 is 4, and removal
of the edge

−→
43 gives a flexible framework), while Fig. 6d depicts a formation that is

persistent (the only out-degree 3 vertex is 8).
Figure7 depicts an example for type 2: the complete bipartite graph K3,4, which

is again a generic rigidity circuit. It can be shown that if the vertices of each partite
set are collinear and the two lines are perpendicular, then the framework becomes
flexible.We note that there exists a range of further examples of generically rigid (and
redundant) graphs which become flexible due to special geometric configurations.
See [9, 14], for example, for situations where continuous flexibility is induced by
symmetry in the framework. It follows from Theorem 2 that any formation with an
underlying framework of this type will not be persistent.

Acyclic formations with underlying special positions. Observe that the persistent
formations of Figs. 5 and 6 are acyclic, while the non-persistent formations are not.
This is not a coincidence; removing edge 24, respectively 34, is the only way to
obtain a flexible framework. Therefore, a generically persistent graph would become
a non-persistent formation with these embeddings exactly when the vertex of out-
degree 3 is incident to the “essential” edge. Without the essential edge, though, one
can check that any generically persistent orientation contains a cycle. The same is
true if we drop any edge in the graph in Fig. 7. However, if we restrict ourselves to

Persistent Multi-robot Formations with Redundancy 143

acyclic leader-follower formations on generic rigidity circuits as described in Sect. 3,
the following result shows that special positions cannot destroy persistence.

Lemma 2 If H is an acyclic generically persistent graphwith: (1) exactly one vertex
of out-degree 0, (2) exactly one vertex of out-degree 1, (3) exactly one vertex of out-
degree 3 and (4) an underlying undirected generic rigidity circuit, then any formation
of H (having no vertex collinear with two neighbors) is persistent.

Proof Remove an edge from the vertexwith out-degree 3 in H . Then, by Propositions
1 and 3 in [5], we obtain an acyclic generically minimally persistent graph G. As
shown in [5], such graphs can be constructed from a single edge using only vertex
additions, and hence any embedding of G is rigid. Moreover, every vertex of G has
an out-degree of at most 2. The result now follows from Theorem 2. �

5 Simulation

To verify the expected behavior of the approach in Sect. 3, we simulated three for-
mations using Webots [17]: one produced by Algorithm 1 and depicted in Fig. 2d,
one using a single construction step of Proposition2 as per Fig. 3b, and one using 3
construction steps as depicted in Fig. 4.

Setup. Each vertex in the graph is implemented by a robot that is equipped with a
generic emitter, and each directed edge by equipping the source robot with a receiver
that listens to the target robot’s emitter. From the strength and direction of the signal,
the source robot computes the relative position of the target; these measurements
are without noise. Every follower computes and moves to a goal position based
on its assigned distance constraints: with two constraints, the closest point of the
(generally) 2 intersection points of 2 circles, and, with three constraints, the average
of 3 points computed for each pair of constraints. To simplify control of the formation,
the leader and co-leader vertices are attached to a single leader robot with emitters
at each location.

The implementation assumes an acyclic persistent formation. While the associ-
ated ordering is not explicitly used, each robot waits for a “go” signal from the 2 or
3 robots it is following. We know that each follower robot must adjust its position
only once by using this approach, but we do not know a priori the time required
for actuation to its goal position. Once it has moved within a specified constraint
accuracy threshold, it emits a “go” signal that can be received by any subsequent
followers. We accommodate for the unknown actuation time by moving the leader
robot in steps with a delay between steps that will allow for the formation’s move-
ments; after each such simulation step, we assume the formation has converged to
an embedding that satisfies the constraints within the constraint accuracy threshold.

Results. As a control, one simulation was executed for each formation with all
edges present. To confirm expected redundancy, an edge was randomly chosen and
dropped from each robot with out-degree 3; the leader robot follows the same path
as the control. Random simulations were repeated 20 times.

144 A. Burns et al.

The expected position of the follower robots is computed using the position of the
leader and co-leader positions; since the co-leader is on the same robot as the leader,
its distance constraint is always satisfied. The results of the simulations are summa-
rized in Table1, with leader and co-leader vertices omitted from the calculations; the
expected and actual paths for Formation 1 are shown in Fig. 8. For each simulation
step t , the difference δti between the expected and actual positions of follower i was
computed to obtain mt = mini δti , μt = meaniδti and Mt = maxi δti values. Data
for each simulation was then computed as the mean of the mt , μt and Mt across
all simulation steps. The mean distance constraint length was 1.66325 ± 0.577504
meters across all formations; simulations were performed with a 0.02m constraint
accuracy threshold. We expect the accuracy threshold to accumulate error for robots
later in the sequence, as reflected in themaximumdata values. The results confirm the
expected behavior of the formations; the simulations testing redundancy performed
comparably to the control with all edges present.

Table 1 Mean with standard deviation data for simulations (constraint accuracy threshold 0.02);
for random simulations, mean values across the 20 experiments are provided

Mean of minimums Mean of means Mean of maximums

Formation 1 control 0.0132058 ± 0.004 0.0173324 ± 0.006 0.021459 ± 0.010

Formation 1 random 0.0131554 ± 0.004 0.0179166 ± 0.006 0.0235468 ± 0.010

Formation 2 control 0.00826846 ± 0.004 0.0810221 ± 0.011 0.191657 ± 0.034

Formation 2 random 0.00769588 ± 0.004 0.0872681 ± 0.012 0.261483 ± 0.104

Formation 3 control 0.0087836 ± 0.004 0.0766168 ± 0.051 0.362899 ± 0.361

Formation 3 random 0.00835823 ± 0.004 0.0608315 ± 0.045 0.197745 ± 0.162

Fig. 8 Simulation paths for Formation 1, with starting (single-outlined) and ending (double-
outlined) positions highlighted. Coordinates are in meters

Persistent Multi-robot Formations with Redundancy 145

6 Conclusions and Future Work

This paper introduces a new class of generically persistent leader-follower graphs
with redundancy for formations in the plane along with a constructive approach for
generating them. The approach can be restricted to generate acyclic formations, for
which a simple approach can be used to satisfy all constraints within O(n) move-
ments. Simulations verified the expected behavior of the formations when redundant
constraints were dropped.

Under special geometric conditions, certain non-generic embeddings may no
longer maintain the persistence and redundancy properties; while acyclic forma-
tions are not susceptible, it remains open to characterize the behavior of persistent
formations with cycles. We recognize that the redundancy property exhibited by the
class of graphs presented here is quite restrictive and wish to address the strong
notion of redundantly persistent formations defined in Sect. 2. Finally, our model
does not incorporate noise, as it is based on equality constraints stemming from clas-
sical rigidity theory.We hope to further develop and evaluate a theoretical framework
that would be robust to noise and disturbances.

Acknowledgements We are grateful for discussions at the 2014 AIMWorkshop on Configuration
spaces of linkages, 2015 BIRS Workshop on Advances in Combinatorial and Geometric Rigidity
and the 2016 ICMSWorkshop on Geometric Rigidity Theory and Applications. We would also like
to thank Joydeep Biswas for insightful conversations that stimulated the results in this paper and
reviewers for their helpful feedback. A. Burns and A. St. John were partially supported by NSF
IIS-1253146 and the Clare Boothe Luce Foundation. B. Schulze was supported by EPSRC grant
EP/M013642/1.

References

1. Abbott, T.G.: Generalizations of Kempe’s universality theorem.Master’s thesis, Massachusetts
Institute of Technology (2008). http://web.mit.edu/tabbott/www/papers/mthesis.pdf

2. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based
formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

3. Eren, T., Anderson, B.D.O., Morse, A.S., Whiteley, W., Belhumeur, P.N.: Operations on rigid
formations of autonomous agents. Commun. Inf. Syst. 3(4), 223–258 (2004)

4. Eren, T.,Whiteley,W.,Anderson,B.D.O.,Morse,A.S., Belhumeur, P.N.: Information structures
to secure control of rigid formations with leader-follower structure. In: Proceedings of the
American Control Conference, pp. 2966–2971 (2005)

5. Hendrickx, J.M., Anderson, B.D.O., Delvenne, J.C., Blondel, V.D.: Directed graphs for the
analysis of rigidity and persistence in autonomous agent systems. Int. J. Robust Nonlinear
Control 17(10–11), 960–981 (2007)

6. Hendrickx, J.M., Yu, C., Fidan, B., Anderson, B.D.O.: Rigidity and persistence for ensuring
shapemaintenance inmultiagentmeta-formations. Asian J. Control (special issue onCollective
Behavior and Control of Multi-Agent Systems) 10(2), 131–143 (2008). arXiv:0710.2659

7. Hichri, B., Adouane, L., Fauroux, J.C.,Mezouar, Y., Doroftei, I.: Cooperativemobile robot con-
trol architecture for lifting and transportation of any shape payload. In: The 12th International
Symposium on Distributed Autonomous Robotic Systems, pp. 177–191 (2016)

8. Jacobs, D., Hendrickson, B.: An algorithm for two-dimensional rigidity percolation: the pebble
game. J. Comput. Phys. 137(CP975809), 346–365 (1997)

http://web.mit.edu/tabbott/www/papers/mthesis.pdf
http://arxiv.org/abs/0710.2659

146 A. Burns et al.

9. Jordán, T., Kaszanitzky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the
plane. Discret. Comput. Geom. 55(3), 314–372 (2016)

10. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discret. Math. 308(8), 1425–
1437 (2008)

11. Olfati-Saber, R., Murray, R.M.: Graph rigidity and distributed formation stabilization of multi-
vehicle systems. In: Proceedings of the IEEE InternationalConference onDecision andControl,
pp. 2965–2971 (2002)

12. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)
13. Schulze, B.: Symmetry as a sufficient condition for a finite flex. SIAM J. Discret. Math. 24(4),

1291–1312 (2010)
14. Schulze, B., Whiteley, W.: The orbit rigidity matrix of a symmetric framework. Discret. Com-

put. Geom. 46(3), 561–598 (2011)
15. Vilca, J., Adouane, L., Mezouar, Y.: Adaptive leader-follower formation in cluttered environ-

ment using dynamic target reconfiguration. In: The 12th International Symposium on Dis-
tributed Autonomous Robotic Systems, pp. 237–254 (2016)

16. Wang, Z., Schwager,M.:Multi-robot manipulation without communication. In: The 12th Inter-
national Symposium on Distributed Autonomous Robotic Systems, pp. 135–149 (2016)

17. Webots (2016). http://www.cyberbotics.com. Commercial Mobile Robot Simulation Software
18. Whiteley, W.: Some matroids from discrete applied geometry. In: Bonin, J., Oxley, J.G., Ser-

vatius, B. (eds.)Matroid Theory. ContemporaryMathematics, vol. 197, pp. 171–311. American
Mathematical Society, Providence (1996)

19. Whiteley, W.: Rigidity and scene analysis. In: Goodman, J., O’Rourke, J. (eds.) Handbook of
Discrete and Computational Geometry, 2nd edn, pp. 1254–1315. Chapman & Hall/CRC, Boca
Raton (2004)

http://www.cyberbotics.com

Triangular Networks for Resilient
Formations

David Saldaña, Amanda Prorok, Mario F. M. Campos
and Vijay Kumar

Abstract Consensus algorithms allowmultiple robots to achieve agreement on esti-
mates of variables in a distributed manner, hereby coordinating the robots as a team,
and enabling applications such as formation control and cooperative area cover-
age. These algorithms achieve agreement by relying only on local, nearest-neighbor
communication. The problem with distributed consensus, however, is that a single
malicious or faulty robot can control and manipulate the whole network. The objec-
tive of this paper is to propose a formation topology that is resilient to one malicious
node, and that satisfies two important properties for distributed systems: (i) it can
be constructed incrementally by adding one node at a time in such a way that the
conditions for attachment can be computed locally, and (ii) its robustness can be
verified through a distributed method by using only neighborhood-based informa-
tion. Our topology is characterized by triangular robust graphs, consists of a modular
structure, is fully scalable, and is well suited for applications of large-scale networks.
We describe how our proposed topology can be used to deploy networks of robots.
Results show how triangular robust networks guarantee asymptotic consensus in the
face of a malicious agent.

D. Saldaña (B) · A. Prorok · V. Kumar
University of Pennsylvania, Philadelphia, PA, USA
e-mail: dsaldana@seas.upenn.edu

A. Prorok
e-mail: prorok@seas.upenn.edu

V. Kumar
e-mail: kumar@seas.upenn.edu

M. F. M. Campos
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
e-mail: mario@dcc.ufmg.br

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_11

147

148 D. Saldaña et al.

1 Introduction

Coordination of distributed autonomous systems with nearest neighbor communica-
tion has been widely used in swarms and multi-robot systems [5, 9, 15]. A majority
of these applications build on information diffusion (or consensus) algorithms to
synchronize the network with respect to a specific variable. However, such systems
rely on the fact that all robots in the network are reliable, and contribute only legiti-
mate information. As a consequence, the systems are susceptible to failure when one
or several robots are non-cooperative and share wrong information. This situation
can be due to malicious attacks (e.g., a malicious outsider trying to manipulate the
whole network) or due to platform-level faults (e.g., a robot sharing an incorrect
location due to a defective GPS sensor). Hence, the question of network resilience is
of utmost importance. In this work, we focus on topological properties that guarantee
resilience to faults and attacks on individual nodes. We build on a distributed con-
sensus algorithm, termed Weighted-Mean Subsequence-Reduced (W-MSR) algo-
rithm [20], which guarantees resilience if certain topological requirements are met.
Throughout this paper, we use the terms node and agent to refer to a robot in a
network.

1.1 Related work

The topic of robustness has received considerable attention, in particular in the
domain of complex networks [4, 8]. A main result of this body of work states that
robustness can be achieved through sufficiently high connectivity: if the connec-
tivity of the network is 2F or less, then F malicious nodes can prevent some of
the nodes from receiving legitimate information from other nodes in the network.
Conversely, when the network connectivity is 2F + 1 or higher, there are various
algorithms that enable a reliable diffusion of information [13, 16]. However, these
algorithms not only depend on high connectivity, but also require non-local informa-
tion in order to compute updates. As a consequence, Zhang et al., and later LeBlanc
et al. [7, 20]introduced an alternative definition of network robustness that can deal
with purely local update rules, and that provides resilient asymptotic consensus. The
strength of the proposed approach is that it can deal with an arbitrary number F of
malicious agents, the identities of which are unknown to the normal nodes in the
network. However, in order to build the required topologies, the method assumes
that any node can be connected to any other node in the network (i.e., in absence
of sophisticated node placement algorithms, the networks must provide full connec-
tivity). Hence, it remains unclear how the approach is practically implemented in
networks where nodes have constrained communication radii. Also, it is notewor-
thy that the prior approach mainly deals with the problem of distributed estimation,
and it remains to be explored how it applies to problems that require robust control
of shapes and distributions, such as for cooperative exploration and coordination

Triangular Networks for Resilient Formations 149

tasks [18, 19]. Finally, the problem of robustness has also been considered in mobile
robot systems [2, 11, 12], with a particular focus on rendez-vous (i.e., the applica-
tion of consensus algorithms to induce a gathering of robots in n-dimensional space).
Most similarly to our work, the work in [12] considers the presence of non-compliant
robots, and develops a solution that controls a team of robots so that rendez-vous
can be achieved robustly. However, since their systems are mobile, they assume that
communication radii can be adjusted over time (to ensure connectivity). As a conse-
quence, their method requires a relatively large local neighborhood size: for a single
malicious robot, the neighborhood size must be at least 5 (cf. assumption 5.1 in their
paper).

1.2 Contribution

The main contribution of our work is the definition of a network topology that can be
constructed in a distributed and fully scalable manner, and that guarantees resilient
asymptotic consensus in the face of malicious agents. In addition, our method is also
able to deal with networked robots that have fixed communication radii. We consider
the special case when a network is susceptible to a single fault or malicious node, and
we identify a particular class of networks (which we term triangular robust graphs)
for this case. We derive proofs of all our claims.

2 Preliminaries

Consider a network composed of a set of nodes V = {1, 2, ..., n} that are represented
by points in a planar space vi ∈ R

2, for all i ∈ V . Every node is equipped with a
communication module that allows it to communicate with other nodes. The ability
to communicate with adjacent nodes defines the set of connections E ⊆ V × V .
Therefore, we model the network as an undirected graph G = (V, E). The neighbors
of node i areNi = { j |(i, j) ∈ E}. For a node subset S ⊂ V , we denote its complement
by S̄ = {i | i /∈ S, i ∈ V}.

2.1 Consensus

In distributed networked systems, each node is an autonomous entity that can adapt
to changing conditions based on incoming data streams originating from neighboring
nodes. As there is no central master, the nodes need to find an agreement with respect
to the shared information in order to make unified decisions. The question of how
to do this is solved by consensus algorithms [5, 9, 10, 14]. When performing a
consensus algorithm, each node i has a variable of interest xi , e.g., that describes the

150 D. Saldaña et al.

1
2

3

4

5
6

0

(a)

0 100 200 300 400 500
t

0

20

40

60

80

100

x

(b)

0 100 200 300 400 500
t

0

20

40

60

80

100

x

(c)

Fig. 1 Consensus in a circular formation with seven robots. Panel (a) shows the network topology.
Panel (b) shows a successful consensus for the variable xc, where all nodes perform the same
averaging update rule. Panel (c) shows an unsuccessful consensus that is manipulated by node 0,
who shares an oscillatory value to avoid convergence for the non-malicious robots

locations of the nodes, or that measures local temperatures. Subsequently, the whole
network may want to estimate a global variable, such as the centroid of the network,
or the average temperature of the environment, respectively, based on the distributed
information available to the network as a whole. This goal can be achieved by local
interaction, where each node i updates its own value at time-step t based on an update
function:

xi [t + 1] = f (xi [t], {x j [t]| j ∈ Ni }). (1)

In [5], the authors show that, given a connected and balanced graph G, every
node i ∈ V reaches consensus on the average of the initial values, xi [t] → x̄[0] =
1
n

∑
i∈V xi [0], when t → ∞ by exchanging messages with the local neighborhood

and applying an averaging function xi [t + 1] = 1
|Ni |+1 (xi [t] + ∑

j∈Ni
x j [t]). We

illustrate an example of consensus in Fig. 1 for a circular formation in a biconnected
ring topology (Fig. 1a). In this context, each robot i moves to the location (xi , yi),
given by xi = x̂c + ρ cos(i 2π/n) and yi = ŷc + ρ sin(i 2π/n), where (x̂c, ŷc) is the
center of the circle, estimated by consensus, and ρ > 0 is the known radius of the cir-
cle. Figure 1b shows how the robots achieve consensus on the average of the variable
x̂c (consensus for the variable ŷc is analogous). This kind of robotic system works
scales well when every node is functional and trustworthy. However, when a mali-
cious node1 stops adhering to the consensus update rule due to a hardware failure or a
malicious attack, that robot can affect the behavior of all other robots in the network.
As we observe in Fig. 1c, when robot 0 starts to share an arbitrary oscillatory value,
the values of all robots in the network are affected and consensus is not achieved. We
see that a single malicious agent can hinder convergence and manipulate the whole
network. For this reason, it is desirable to devise a resilient strategy. The problem
of consensus in the presence of malicious nodes (such as robot 0 seen above) can
be solved by deploying a resilient consensuss algorithm on all nodes. The following
section introduces this method.

1We consider an attack or a failure as the same case, where a node shares a value that does not
adhere to the consensus update rule. We call this kind of node a malicious node.

Triangular Networks for Resilient Formations 151

2.2 Resilient Consensus

A robust network is defined as a network that can reach consensus, even in the pres-
ence of F malicious nodes.Neither the identity nor the strategy of themalicious nodes
is known.Aknownmethod that achieves consensus by converging to aweighted aver-
age is the Weighted Mean-Subsequence-Reduced (W-MSR) algorithm [7, 20]. Yet,
for this method to work in the presence of malicious nodes, the network must satisfy
certain topological conditions, which we detail below.

The W-MSR algorithm consists of three steps, executed at time t . First, node
i creates a sorted list, from smallest to largest, with the received values from its
neighbors Ni . Second, the list is compared to xi [t], and if there are more than F
values that are larger than xi [t], the F largest values are removed. The same removal
process is applied to the smaller values. The remaining values in the list are denoted
byRi [t]. Third, node i updates its value with the following rule:

xi [t + 1] = wi i [t]xi [t] +
∑

j∈Ri [t]
wi j [t]x j [t], (2)

where wi j > 0, and
∑

j wi j [t] = 1. In the remainder of this paper, we consider all
weightswi j = 1/(|Ri [t]| + 1). An extended explanation of this algorithm is given in
[7]. Using this algorithm, it is possible to achieve asymptotic consensus in a network
with at most F malicious nodes, if the communication graph G is (F + 1, F + 1)-
robust.

Definition 1 A graph G = (V, E) is (r ,s)-robust, with constants r ∈ Z≥0, and 0 ≤
s ≤ |V|, if for any pair of disjoint subsets S1, S2 ⊂ V , at least one of the following
conditions is satisfied:

1. |X r
S1

| = |S1|;
2. |X r

S2
| = |S2|;

3. |X r
S1

| + |X r
S2

| ≥ s,

where the r -reachable setX r
Sk

= {i ∈ Sk | Ni\Sk ≥ r}, k ∈ {1, 2} is composed of the
nodes in Sk with at least r neighbors outside Sk .

Based on this definition of the communication topology, LeBlanc et al. [7] stated
the following theorem, which specifies the conditions for asymptotic consensus in
presence of F malicious agents.

Theorem 1 (Theorem 1, [7]) Consider a network modeled by a graph G = (V, E)
where each normal node updates its value based on the W-MSR algorithm with an
upper bound of F malicious agents. Then, resilient asymptotic consensus is achieved
if the G is (F + 1, F + 1)-robust.

Although these recent works provide a rigorous study of the topological charac-
teristics that are necessary to provide resilience against a number of malicious agents
[7, 12], they do not consider the physical constraints that real-world systems often

152 D. Saldaña et al.

have, such as limited or non-adjustable communication radii. Hence, it is not clear
how the methods are applicable in real settings, and it is still an open question if their
implementations are suitable to distributed actuator/sensor networks.

2.3 Biconnected Graphs

In the following, we describe a concept that is relevant to the derivations in the
subsequent sections.

Definition 2 AgraphG = (V, E) is biconnected if it stays connected after removing
any vertex i ∈ V .
An example of a biconected graph in shown in Fig. 1a. Biconnected graphs have two
special properties. First, they have two disjoint paths (no common vertices) between
every pair of vertices (Theorem2), and second, they can be extended/grownby adding
nodes iteratively, as described by the expansion lemma below (Lemma 1).

Theorem 2 (Theorem 4.2.1, [17]) If a graph G = (V, E), with at least three nodes,
is biconnected, then there exist at least two disjoint paths between any pair of nodes
i, j ∈ V .
Lemma 1 (Lemma 4.2.2, [17]) If G is a biconnected graph, and G ′ is obtained
from G by adding a new vertex k adjacent to at least two vertices of G, then G ′ is
biconnected.

3 Triangular Robust Graphs

The creation of robust and (r, s)-robust networks is challenged by three main items:
(i) high connectivity is required; (ii) verifying if a graph is (r, s)-robust is an NP-hard
problem [6]; (iii) default algorithms for creating robust networks are not designed
for physically embedded systems, which potentially have hard constraints on edge
lengths. In this section, we propose a particular network topology, termed triangular
robust graph, that is resilient to one malicious node (i.e., F = 1) whose identity is
unknown to the rest of the nodes. Our proposed network topology has the following
convenient properties: it is (2, 2)-robust; it is incrementally expandable; and it can
be verified in polynomial time and in a distributed manner. Furthermore, due to the
inherent geometric properties of triangles, the topology is well suited to networked
robotic systems with agents that have homogeneous, constrained communication
radii. As a consequence, triangular robust graphs arewell-suited to distributed robotic
systems.

Definition 3 A graph G = (V, E) is triangular robust if it has at least three nodes
and satisfies the following conditions:

Triangular Networks for Resilient Formations 153

Fig. 2 In the whole set of
connected graphs, this Venn
diagram represents the set of
the triangular robust graphs
and its relationship with
biconnected graphs and
(2, 2)-robust graphs

1. The graph G is biconnected.
2. The neighbors of node i form a connected sub-graph, Gi = (Ni , E), for all i ∈ v.

Property 1 Based onCondition 1, theminimum degree of any node is two, Deg(i) ≥
2 for all i ∈ V .
In Fig. 2, we show a Venn diagram that represents in the whole set of connected
graphs, our proposed topology is a subset of the Biconnected graphs and also a
subset of the (2, 2)-robust graphs. We highlight that not all the (2, 2)-robust graphs
have the properties that we describe along this section.

Theorem 3 Consider a networkmodeled by the graphG = (V, E). IfG is triangular
robust, then it is (2,2)-robust.

Proof We show that the triangular robust graph G is (2,2)-robust, as it satisfies the
conditions of Definition 1. Given any pair of disjoint subsets S1, S2 ⊂ V , by Defini-
tion 3, and Theorem2, the graph G is biconnected and there exist two disjoint paths
between any source node s ∈ S1 and any target node g ∈ S2. It implies that there
are also two edges, e1 = (i, j) and e2 = (o, p), for each path respectively, such that
i, o ∈ S1 and j, p ∈ S̄1. Figure3 illustrates both paths and their intermediate edges
e1 and e2. The conditions of robustness are satisfied by checking the neighbors of j .
There are only the following two cases:

1. If the node j does not have any neighbors outside S1, i.e. |N j ∩ S̄1| = 0. It implies
that the node j is the target node, j = p = g, and S2 = { j}. Then, the condition
of robustness |X r

S2
| = |S2| = 1 is satisfied for any S1 (Definition 1, Condition 2).

Figure4a illustrates this case.
2. Otherwise, the node j has at least one neighbor outside S1, i.e., |N j ∩ S̄1| ≥ 1.

By Definition 3, Condition 2, since the neighbors of j are connected, there exists
an edge (k, l) ∈ E such that k ∈ N j ∩ S1, and l ∈ N j ∩ S̄1. Then the node k has
two neighbors (j and l) outside S1, and the 2-reachable set of S1 contains at least
one element |X 2

S1
| ≥ 1. Figure4b illustrates this case.

Applying the same sequence of statements for S2, there exist at least one node
with two neighbors outside S2, then |X 2

S2
| ≥ 1. In this way, we show that the

condition of robustness |X 2
S1

| + |X 2
S2

| ≥ 2 is satisfied.

With the two cases above, we show that the conditions of robustness are satisfied for
any pair of sets in a triangular robust network. �

154 D. Saldaña et al.

Fig. 3 A graph with two partitions S1 and S2 and two disjoint paths between the nodes s ∈ S1 and
g ∈ S2

Fig. 4 Possible cases based on the neighbors of node j

Remark 1 The converse of the Theorem3 does not hold, i.e., not all (2, 2)-robust
graphs are triangular robust (see Fig. 6 in [7]).

3.1 Determining Triangular Robustness

Checking if a graph is (r,s)-robust is an NP-hard problem [6], but we can check
if a graph is triangular robust in polynomial time, based on the two conditions of
Definition 3.

Condition 1: A simple centralized algorithm to check if G is biconnected can
also be done in polynomial time. For each node i ∈ N , we check if the graph
maintains connectivity after removing i . It is possible to check connectivity based
on breadth-first-search (BFS)with time complexity O(|V| + |E |). Then, the result
of checking connectivity |V| times is O(|V|2 + |V||E |). It is also possible to check
it in distributed way by using the algorithm presented in [1].

Condition 2: Checking if the neighbors are connected can be compute in linear
time and in a distributed way. First, every node i ∈ V only needs to know the
neighbors of its neighbors to create the sub-graph Gi = (Ni , E). The worse case
is the complete graph, for which the time complexity to check connectivity for
the neighbors of node i is O(|V| + |E |). For the complete network it is O(|V|2 +
|V||E |).

Triangular Networks for Resilient Formations 155

Since Conditions 1 and 2 are checked independently, we conclude that it is possible
to check triangular robustness in polinomial time O(|V|2 + |V||E |).

3.2 Inductive Construction

In the following, we show a simple method that expands a (2, 2)-robust network,
starting from an initial network configuration. Our starting point is a strongly con-
nected graph with three nodes, which is the most basic form of a triangular robust
graph. This configuration is then extended by adding one node at a time, while main-
taining the (2, 2)-robust property at all times, by ensuring that each new node is
connected to two or more nodes (that are also connected among themselves). The
following theorem shows that a triangular robust graph is expandable.

Theorem 4 If G is a triangular robust graph, and G ′ is obtained from G by adding
a node k, which is connected to a subset of nodes S ⊂ V , |S| ≥ 2 that are connected
among themselves. Then G ′ is also a triangular robust graph.

Proof We check that the conditions of Definition 3 are satisfied by G ′.

Condition 1: By the Expansion Lemma 1, G ′ is biconnected as it is an expansion
of G by adding the node k, which is adjacent to two nodes.

Condition 2: As node k is connected to a set of connected nodes, its neighbors are
also connected.

It follows that G ′ satisfies the conditions of a triangular robust graph. �

Property 2 By constructing a triangular graph iteratively, we have that the mini-
mum number of edges of a triangular robust graph is 2n − 3, n ≥ 3. This is the same
minimum number of edges for a (2, 2)-robust graph [6].

Using our inductive construction method, we guarantee that the resulting graph
has the minimum number of edges, which is in constrast to the construction method
proposed in [7].2 Also, Theorem4 leads to the particularly practical property that tri-
angular robust graphs can be constructed incrementally, in a fully distributedmanner.
In fact, triangles are geometric configurations that can be easily formed during the
deployment of networked robot teams, where each agent has a communication mod-
ule that is constrained by a fixed radius R > 0. These robotic networks determine
the set of connections based on the Euclidean distance E = {(i, j)| ∥

∥v j − vi
∥
∥ ≤

R, ∀i, j ∈ V}. For example, a simple formation with three robots maximizes its
connectivity and its covered area by positioning the robots at the extremes of a
regular triangle. Figure5 shows a basic example of how an initial formation can
be incrementally extended in order to cover a certain area with a triangular robust
network.

2In the specific case of (2, 2)-robustness, the algorithm of LeBlanc et al. requires three new edges
for every new node (cf. Th. 5), whereas our algorithm requires only two new edges.

156 D. Saldaña et al.

(a) (b) (c)

Fig. 5 Incremental expansion of a triangular robust network. Panel (a) shows the initial triangular
robust network. By placing a subsequent node in the shaded area, the conditions for inductive
construction are satisfied. Panels (b) and (c) depict how the network is grown to cover a given area
iteratively, for n = 12 and n = 20, respectively

4 Consensus in Triangular Robust Networks

In this section, we compare three different formations, and show how consensus is
affected by their differing topologies. The formations consist of seven nodes. The
nodes’ initial values are x[0] = [60, 75, 2, 85, 66, 83, 20]. We consider a malicious
node that shares an arbitrary (oscillatory) value, attempting to hinder convergence.
Figure6 shows the three different topologies, and demonstrates how the values
of the nodes behave after applying the W-MSR algorithm (see Eq. (2)). Panel 6a
shows a biconnnected, rigid and pseudo-triangular graph, which is known as Laman
graph [3]. Although the Laman graph has similar properties, as well as the same num-
ber of edges 2n − 3, it is neither (2, 2)-robust,3 nor triangular robust (the neighbors
of node 3 are not connected among themselves). We can see in Fig. 6d that the node
values do not reach consensus, with two different values among the normal nodes
that remain unchanged as time progresses. A triangular robust network is shown in
Fig. 6b. It is a simple variation of the previous Laman graph, where the edge (0, 6)
is replaced by the edge (2, 4). As we stated earlier in Section 3, a successful con-
vergence will reach consensus to a value within the range of initial values, i.e., a
weighted average. This is demonstrated in Fig. 6e. Finally, in Fig. 6c, we show a
triangular robust graph that is not planar (with intersecting edges), and that has two
fully connected nodes. This topology represents the worst possible case, since one of
the fully connected nodes is the malicious node (node 6 in the graph), with maximal
influence over the other nodes in the graph. Also in this case, we see that the nodes
reach consensus to a weighted average, as shown in Fig. 6f. This particular example
shows how the maximum value of the normal nodes does not change when the mali-
cious node’s value is the greatest value; instead, we see that the minimum value of
the normal nodes increases. An analogous behavior is observed when themalicious

3Consider the sets S1 = {0, 1, 2} and S2 = {4, 5, 6} since there are not 2-reachable nodes, the
conditions for (2, 2)-robustness are not satisfied.

Triangular Networks for Resilient Formations 157

0

1

2

3

4

5

6

(a)

0

1

2

3

4

5

6

(b)

0

1

2

3

4

5

6

(c)

0 100 200 300 400 500 600
t

0

20

40

60

80

100

x

(d)

0 100 200 300 400 500 600
t

0

20

40

60

80

100
x

(e)

0 100 200 300 400 500 600
t

0

20

40

60

80

100

x

(f)

Fig. 6 Results of the resilient convergence method for different network topologies in the presence
of amalicious agent. The network topologies are shown in (a)–(c), with themalicious agent shown in
red, encircled by the dashed line. Panel (a) shows a Laman graph, panel (b) shows a planar triangular
robust graph, and panel (c) shows a triangular robust graph with two fully-connected nodes. All
normal nodes in the network perform the W-MSR update rule. The corresponding convergence
behavior is shown in graphs (d)–(f), respectively. The average of the initial values is represented
by the green dotted line, and the minimum and maximum of the initial values are depicted by the
blue dotted lines. The malicious agent does not follow the update policy by sharing an arbitrary
oscillatory value, denoted by the red dashed line

node’s value the smallest value. As a consequence, the difference between the maxi-
mum and the minimum values of the normal nodes is continuously reduced, and the
network achieves asymptotic convergence.

5 Conclusions and Future Work

In this paper,we proposed a particular network topology that is resilient to amalicious
member node. We showed that this topology provides robustness, and guarantees
asymptotic consensus in the presence of illegitimate information originating from
one of the nodes. Especially, we showed that it satisfies two important properties for
distributed systems: (i) it can be constructed incrementally by adding one node at
a time such that the conditions for attachment can be computed locally, and (ii) its
robustness can be verified through a distributed method by using only neighborhood-
based information. The topology is fully scalable, and its robustness property can be
validated in polynomial time.Also, its geometric properties lend themselves elegantly
to applications of coverage and formation control for networked robot teams. In
future work, we intend to study how our current method can be extended to withstand

158 D. Saldaña et al.

more than one malicious agent, i.e., (F + 1, F + 1)-robust graphs for F > 1. This is
challenging because prior approaches assume unbounded communication radii (i.e.,
unlimited edge lengths between nodes that are being deployed in physical space).
Furthermore, we will investigate the applicability of our methods to mobile problem
settings, such as robust formation control.

Acknowledgements We gratefully acknowledge the support of the Colombian Innovation Agency
(COLCIENCIAS), and the Brazilian agencies CAPES, CNPq, FAPEMIG. We also acknowledge
the support of ONR grants N00014-15-1-2115 and N00014-14-1-0510, ARL grant W911NF-08-2-
0004, NSF grant IIS-1426840, and TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA.

References

1. Ahmadi,M., Stone, P.: A distributed biconnectivity check. In: DistributedAutonomousRobotic
Systems 7, pp. 1–10. Springer, Berlin (2006)

2. Cortés, J., Martínez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents via prox-
imity graphs in arbitrary dimensions. IEEE Trans. Autom. Control 51(8), 1289–1298 (2006)

3. Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu,
I., Whiteley, W.: Planar minimally rigid graphs and pseudo-triangulations. In: Proceedings of
the Nineteenth Annual Symposium On Computational Geometry, pp. 154–163. ACM (2003)

4. Hromkovič, J.: Dissemination Of Information In Communication Networks: Broadcasting,
Gossiping, Leader Election, And Fault-tolerance. Springer Science & Business Media (2005)

5. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using
nearest neighbor rules. In: Proceedings of the 41st IEEE Conference on Decision and Control,
2002, vol. 3, pp. 2953–2958 (2002). https://doi.org/10.1109/CDC.2002.1184304

6. LeBlanc, H.J., Koutsoukos, X.D.: Algorithms for determining network robustness. In: Pro-
ceedings of the 2nd ACM International Conference On High Confidence Networked Systems,
pp. 57–64. ACM (2013)

7. LeBlanc, H.J., Zhang, H., Koutsoukos, X., Sundaram, S.: Resilient asymptotic consensus in
robust networks. IEEE J. Sel. Areas Commun. 31(4), 766–781 (2013). https://doi.org/10.1109/
JSAC.2013.130413

8. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
9. Murray, R.M, Olfati Saber, R.: Consensus protocols for networks of dynamic agents. In: Pro-

ceedings of the 2003 American Controls Conference (2003)
10. Olfati-Saber, R., Fax, J.A.,Murray, R.M.: Consensus and cooperation in networkedmulti-agent

systems. Proc. IEEE 95(1), 215–233 (2007)
11. Park, H., Hutchinson, S.: A distributed robust convergence algorithm for multi-robot systems

in the presence of faulty robots. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2980–2985. IEEE (2015)

12. Park, H., Hutchinson, S.: An efficient algorithm for fault-tolerant rendezvous of multi-robot
systems with controllable sensing range. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA), pp. 358–365. IEEE (2016)

13. Pasqualetti, F., Bicchi, A., Bullo, F.: Consensus computation in unreliable networks: a system
theoretic approach. IEEE Trans. Autom. Control 57(1), 90–104 (2012)

14. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordi-
nation. In: American Control Conference (ACC), pp. 1859–1864. IEEE (2005)

15. Ren,W., Beard, R.W.,Atkins, E.M.: Information consensus inmultivehicle cooperative control.
IEEE Control Syst. 27(2), 71–82 (2007). https://doi.org/10.1109/MCS.2007.338264

https://doi.org/10.1109/CDC.2002.1184304
https://doi.org/10.1109/JSAC.2013.130413
https://doi.org/10.1109/JSAC.2013.130413
https://doi.org/10.1109/MCS.2007.338264

Triangular Networks for Resilient Formations 159

16. Sundaram, S., Hadjicostis, C.N.: Distributed function calculation via linear iterative strategies
in the presence of malicious agents. IEEE Trans. Autom. Control 56(7), 1495–1508 (2011)

17. West, D.B., et al.: Introduction To Graph Theory. Prentice hall Upper Saddle River (2001)
18. Yang, P., Freeman, R.A., Lynch, K.M.: Multi-agent coordination by decentralized estimation

and control. IEEE Trans. Autom. Control 53(11), 2480–2496 (2008)
19. Zhang, F., Leonard, N.E.: Cooperative filters and control for cooperative exploration. IEEE

Trans. Autom. Control 55(3), 650–663 (2010)
20. Zhang, H., Sundaram, S.: Robustness of information diffusion algorithms to locally bounded

adversaries. In: American Control Conference (ACC), pp. 5855–5861 (2012). https://doi.org/
10.1109/ACC.2012.6315661

https://doi.org/10.1109/ACC.2012.6315661
https://doi.org/10.1109/ACC.2012.6315661

Part III
Multi-Robot Estimation

Construction of Optimal Control Graphs
in Multi-robot Systems

Gal A. Kaminka, Ilan Lupu and Noa Agmon

Abstract Control graphs are used in multi-robot systems to maintain information
about which robot senses another robot, and at what position. Control graphs allow
robots to localize relative to others, and maintain stable formations. Previous work
makes two critical assumptions. First, it assumes edge weights of control graphs
are deterministic scalars, while in reality they represent complex stochastic factors.
Second, it assumes that a single robot is pre-determined to serve as the global anchor
for the robots’ relative estimates. However, optimal selection of this robot is an open
problem. In this work, we address these two issues. We show that existing work may
be recast as graph-theoretic algorithms inducing control graphs for more general
representation of the sensing capabilities of robots. We then formulate the problem
of optimal selection of an anchor, and present a centralized algorithm for solving it.
We evaluate use of these algorithm on physical and simulated robots and show they
very significantly improve on existing work.

1 Introduction

Control graphs are used in multi-robot systems to maintain information about which
robot senses another robot, and at what position. In such control graphs, nodes rep-
resent robots in given positions. Weighted edges represent sensing capabilities; an
edge from node A to node B, with weight w, represents the fact that robot A can
sense robot B, with preferencew (typically, smaller weight indicates stronger prefer-

G. A. Kaminka
Computer Science Department and Gonda Brain Research Center, Bar Ilan University,
Ramat Gan, Israel
e-mail: galk@cs.biu.ac.il

I. Lupu · N. Agmon (B)
Computer Science Department, Bar Ilan University, Ramat Gan, Israel
e-mail: agmon@cs.biu.ac.il

I. Lupu
e-mail: lupu.ilan@gmail.com

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_12

163

164 G. A. Kaminka et al.

ence). On the basis of such graphs, it is possible to build a shared coordinate system
(e.g., [10]), compute message passing paths in ad-hoc networks, and maintain stable
formations (e.g., [2, 6]).

Existing work utilizing control graphs raises several open challenges. First, it
offers no systematic treatment of the edge weights, how they are determined, and
how they should be utilized in the computation of optimal control graphs. Different
tasks (e.g., building a coordinate system versus formation maintenance) utilizes the
edge weights differently. Second, it makes the assumption that a single robot is
given, chosen to serve as the global anchor of the shared coordinate system, leader
of the formation, or origin of a message whose position is taken as the basis for the
robots’ relative positioning and location estimates. Third, it ignores uncertainty in
the weights of edges, such that, for instance, if the edge weight denotes a distance,
it assumes the distance is known with certainty, despite the inherent uncertainty that
exists in real-world sensing. In this work, we tackle these open challenges.

First, we synthesize from existing work, and then generalize the notion of control
graphs and their uses.We begin by refining the definition ofmonitoring multi-graphs
[6], which distinguish between different sensing configurations of robots. We show
how existing techniques (e.g., for computing shared coordinate systems) can be
optimized by re-casting them in terms of graph-theoretic algorithms for inducing
directed trees from the multi-graphs, such that the trees optimize for a given criteria
(e.g., team costs, individual position error). Each such tree is an optimal control
graph for a given task (e.g., message passing, formation maintenance).

Second, on the basis of this more general understanding of how control graphs
are generated from monitoring multi-graphs, we formulate the problem of optimal
selection of leader or global anchor in a given monitoring multi-graph. A leader
robot serves as the root of the control graph (tree) generated from it. We present a
centralized algorithm that efficiently determines the optimal leader for a given task,
as well as the resulting control graph.

We evaluate use of the novel algorithms on physical and simulated robots equipped
with depth and image sensors (RGB-D cameras), and contrast them with results
obtained from existing work. The results show very significant improvements from
using these algorithms for coordinate frame alignment, in both simulated and real
robots, in static and dynamic settings.

2 Related Work

The use of graph theory for reasoning about roles of robots in cooperativemulti-robot
tasks has a long history. We survey below only the most related, recent work.

Formation maintenance. Here the robots move while maintaining a shape, dictated
by their relative positions. Desai et al. [2] defined a control graph as an unweighted
directed graph (digraph) whose vertices are the robots in the formation. An edge
from A to B represents that robot A monitors robot B’s position. They show that a

Construction of Optimal Control Graphs in Multi-robot Systems 165

formation can be stably maintained if the control graph implies each robot (except a
single leader) maintains its bearing (angle) and separation (distance) with respect to
one other robot (target). This type of formation control is known as SBC (Separation-
Bearing Control). Without referring to control graphs, Fredslund and Matarić [3]
propose a distributed algorithm for generating SBC monitoring rules (i.e., which
robot monitors whom) given a target placement of the robots and the leader. In
contrast, we consider weighted edges in our control graphs, and show how to induce
optimal control graphs for different tasks (not just formations). We also address the
question of leader selection. However, our algorithms here are centralized.

Kaminka et al. [6] generalized on these works. They defined a weighted moni-
toring multi-graph, which compactly represents all possible SBC control graphs for
a given placement of robots. Each edge represents a possible configuration of the
follower robot by which it can sense a target robot, and its weight represents its cost.
They present a centralized algorithm for inducing a specific control graph, which
optimizes the selection of targets, assuming a pre-determined leader. We show that
their representation and algorithm is in a special case of a broader definition of mon-
itoring multi-graphs, and we address the question of leader selection, which they
leave open.

Lemay et al. [7] present a distributed method of assigning robots to formation
positions. The computation relies on a cost function that considers distances and
angles to the teammates; it outputs the lowest-cost assignment of robots to positions,
and a leader that minimizes costs over all possible assignments. In contrast, we
begin with robots already assigned to positions, and only then select a leader and
SBC targets. However, we explicitly consider sensor capabilities, including errors.

Shared Coordinate Systems (Coordinate Frame Alignment). Another common
task is that of multiple robots agreeing on a common coordinate system (axes and
origin), e.g., as the basis for multi-robot mapping. There are several studies regarding
the construction and alignment of coordinate systems (e.g., [4, 9, 11, 13]). Briefly,
the task here is for robots to identify their alignment (translation and rotation) with
respect to each other (typically one of the robots serves as a global anchor). As not
all robots can sense the global anchors, they may instead localize via anchor chains,
i.e., localize with respect to local anchors, who sense other anchors, etc. This is also
referred to as coordinate frame alignment.

Most such work focuses on the filtering mechanisms able to cope with the uncer-
tainty inherent to this process, and with various types of errors (e.g., receiving only
range information). However, recently, Nagavalli et al. [10] presented a distributed
method for improving the accuracy of such alignments, by utilizing a breadth-first
search (BFS) to minimize the number of anchors in anchor chains, all beginning
with a selected global anchor. In this paper we present a centralized algorithm for
selecting an optimal global anchor in this task, and show that this further improves
(significantly) the position estimates of the robots.Moreover, this workswith anchors
that are not part of the team, such as objects in the team surroundings that the robots
can identify.

166 G. A. Kaminka et al.

3 Optimal Construction of Control Graphs

We begin with robots placed in fixed relative positions, and no leader assigned. In
Sect. 3.1 we show how to compactly represent all the different possibilities for robots
to sense each other in their positions, using a refined definition of monitoring multi-
graphs, originally presented in [6]. Then, in Sect. 3.1 we show how existing work
can be re-cast in terms of graph-theoretical algorithms, properly extended to run on
monitoring multi-graphs. Existing work leaves open the question of optimal leader
selection, which we address in Sect. 3.2.

3.1 Monitoring Multi-graphs

A monitoring multigraph captures all the potential control graphs for a group of
robots in fixed positions. As defined in [6], it is a directed, weighted multigraph
G = 〈V, E〉, where V is a set of vertices representing robots, and E is a bag (multi-
set) of weighted edges between vertices.

Each vi ∈ V represents a unique robot i , identified by its index, and having a
specific pose in space. The function pos : V �→ �n identifies the unique pose of
each robot v ∈ V (typically, n = 3, with the pose determined by the position and
orientation of the robot v).

Let vi , v j ∈ V be two robots. Suppose vi can use a specific configuration of its
sensors to sense v j , i.e., vi computes an estimate of pos(v j), denoted by ˆpos(v j).
Denote the specific configuration by x . For instance, it may refer to a specific pan of a
camera or Lidar, combined with a specific sensor processing algorithms (e.g., visual
marking recognition, depth perception), or a specific choice of resolution or focus.
Reference [6] propose using a single scalar value cxi j as the edge weight, indicating
preferences for using the sensor in this configuration, e.g.. based on reliability. We
depart from this definition in two ways. First, we distinguish between directly mea-
surable resource costs (such as expenditure of power, computation time, or sensor
processing latency), and errors in the estimate ˆpos(v j), which are given in terms of
deviations from the ground truth. Second, we accept that realistically, costs and errors
can only be estimated with uncertainty. Thus we model them as random variables,
with a known probability distribution function.

More precisely, with each measurable cost factor k in the operation of the sensor,
and each component of error m resulting from it in ˆpos(v j), we associate a known
probability distribution Cx,k

i j (Rx,m
i j , respectively), explicitly or parametrically repre-

sented. For instance, if the perception latency l is known to be uniformly distributed in
the range 20–30ms, this may be explicitly represented by setting Cx,l

i j ≡ U (20, 30).
If the distance from vi to v j is d, measured by a Lidar with a 3% error, we may
set Rx,d

i j ≡ U (−0.015d,+0.015d). As vi only approximates the true position of v j
with ˆpos(v j)), we use an approximate distance measure d, and update it as addi-
tional measurements are made. The overall costs associated with the edge ei j are

Construction of Optimal Control Graphs in Multi-robot Systems 167

then drawn from the joint distribution of all Cx,k
i j , denote Cx

i j . Likewise, we denote

the errors by Rx
i j .

Given these definitions, we define the edges in E as follows. An edge exi j ∈ E is

a tuple exi j = 〈vi , v j ,Cx
i j , R

x
i j 〉. When clear from the context, we omit the superscript

x . This definition departs from [6] in that we add the representation of errors, and
distinguish multiple components in costs and errors. We also depart from [6] in that
we assume that the sensing robot can identify the sensed robot id and contrast the
graph with the existing edges without assuming all possible edges can exist and
eliminating edges that are occluded by other robots. Alternative configurations may
result in improved costs or lower errors; often a robot may trade these off, e.g., by
spending more computation time or more energy to improve its position estimate
of the other robot. Given |X | configurations for robot vi to monitor v j (which are
usually determined by the number of different sensors the robot has), there exist
edges e1i j , e

2
i j , . . . , e

|X |
i j ∈ E .

Inducing Control Graphs with Uncertainty: Managing Risk. Following [8], we
refer to a multigraph with random-variable weights as a stochastic multigraph. Dif-
ferent tasks, such as formation maintenance, may reduce to selecting paths in the
multigraph. The length of a path in a stochastic graph is a function of random events
characterized by the probability distributions associated with the cost along the path.
We therefore have to decide how we would like to deal with the uncertainty. The
common approach to dealing with uncertainty is by considering the risk involved in
the decision. Standard policies include risk-aversion (hoping to reduce risk, even at
higher cost, i.e., minimize the expectedmaximal cost/error); risk-seeking (inversely);
and risk-neutrality (perfectly balancing risk and costs). Different decision strategies
can lead to different shortest path selections.

Several such algorithms appear elsewhere [5, 8], and are outside the scope of this
paper. However, it has been shown that risk-neutral selection both works correctly
[8], and is safe, in the sense that it minimizes notions of regret [12]. For the remainder
of the work, and in the experiments, we therefore used the risk-neutral policy, by
using the expected (mean) value of the distributions E[Cx

i j] (or, as needed, E[Rx
i j])

as the edge weights. Here E[P] is the expected (mean) value of the probability
distribution P .

InducingControl Graphs (for aGivenRobot). Monitoringmultigraphs compactly
represent all potential ways in which robots could monitor each other in their posi-
tions. Given a task which requires robots to monitor each other’s positions (e.g.,
formation maintenance), we want to induce a control graph: a subset of the moni-
toring graph, which specifies for each robot which sensor configuration to use, and
what other robot(s) to monitor, in order to improve task performance.

Table1 summarizes the progression in previous work. In the column marked
“Arbitrary leader, arbitrary control graph”we list previousworkswhichutilize heuris-
tic algorithms for constructing control graphs which are not guaranteed to be optimal
(in the sense of reducing accumulating errors or costs). In the next column, marked
“Arbitrary leader, Optimal control graph”, we list investigations which, for a pre-

168 G. A. Kaminka et al.

Table 1 Related work utilizing accumulating factors, re-cast by type of algorithm and problem set-
tings. Reference [6] uses costs to represent errors. Reference [10] assumes uniform errors, allowing
use of BFS instead of Dijkstra’s algorithm

Arbitrary leader,
arbitrary control graph

Arbitrary leader,
optimal control graph

Optimal leader,
optimal control graph

Algorithm type Heuristic Dijkstra’s All pairs shortest path

Formation
maintenance

[3] [6] This work

Relative localization [4, 13] [10]

determined leader, generate an optimal control graphs minimizing accumulating
errors or costs (assuming scalar edge weights). A variant of Dijkstra’s single-source
shortest path (S3P), described in [6] is optimal for such cases.

3.2 Inducing Control Graphs with Optimal Global Anchor

Thus the challenge remains of determining the optimal leader (i.e., one whose asso-
ciated control graph is superior to those of other leaders). Our task here is to select
a single robot which will serve as a leader of a formation, or the origin point (global
anchor) for an agreed-upon shared coordinate system. We will therefore optimize
the leader selection and associated control graph to reduce the errors Rx

i j .

3.2.1 Problem Formulation

K robots are positioned in space. Each robot is equipped with sensors, allowing it to
identify (some) other robots in its vicinity, and to estimate their position with respect
to itself (i.e., their position in its own ego-centric coordinate frames). Furthermore,
we assume robots are able to communicate with their peers, at least with those they
are able to observe. The settings are captured by a monitoring multi-graph GK .
The task is to extract a control graph where the coordinate frame of a single robot
(global anchor) is used as the origin, and all robots align their coordinate frames to
it. Because not all robots can directly sense the global anchor, each robot can decide
to align its coordinate system with respect to one other robot (called local anchor),
who aligns itself to the global anchor, or to another local anchor. Thus a coordinate
frame alignment control graph has the following properties:

• The vertex representing the global anchor has an out-degree of 0.
• All other vertices (robots) have an out-degree of 1.
• There exist a path from every vertex (robot) to the vertex representing the global
anchor.

Construction of Optimal Control Graphs in Multi-robot Systems 169

A coordinate frame alignment control graph is optimal with respect to the selected
global anchor vA if it minimizes the errors in position estimates of the robots. Suppose
we have a robot v0. Its position estimate in the shared coordinate system accumulates
errors with every local anchor it uses on a path from itself to the global anchor in the
control graph. It thus seeks to minimize the sum of expected errors

∑

ei j
E[Ri j] where

ei j is an edge on the path from v0 to vA. The question is how to choose vA.

3.2.2 Optimal Global Anchor Selection

A global anchor vA is called optimal, if its associated control graph is superior to
the control graphs associated with any other potential global anchor. We consider
two different ways a control graph may be superior to another: It may reduce the
average position error for the group (a societal view of errors), or it may reduce the
maximal position error (an individual view of errors). Our task here is to determine
the optimal global anchor for both definitions. The process includes the following
steps (see details next).

1. Transform the stochastic monitoring multigraph GK into an intermediate repre-
sentation,G ′

K , which is a deterministically-weighted regular digraph (embedding
errors, and reversing direction of edges). This step is carried out in time O(|E |),
where E is the bag of edges in GK .

2. Apply an All Pairs Shortest Path (APSP) algorithm to the graph G ′
K . The time

needed depends on the algorithm chosen, but is generally O(|V |3), where V is
the set of vertices in G ′

K (normally, |V | = K).
3. Determine for each robot v ∈ V the set of shortest paths leading from it Pv. For

each such set Pv, determine the sum of the path lengths Sv, or the maximal path
length Mv, depending on the global anchor selection criteria. This is carried out
in time O(|V |2).

4. The global anchor vA is one that minimizes SvA or MvA . This is determined in
time O(|V |).

Transformation of GK into G ′
K . This step is carried out to transform the stochastic

directed monitoring multigraph into a deterministic graph, which embeds the neces-
sary information, yet amenable to the execution of familiar graph-theoretic algorithm.
The graph G ′

K = 〈V ′, E ′〉 is built as follows (see example in Fig. 1).
First, we set V ′ ← V . Then, for each pair of vertices vi , v j ∈ V , we do the fol-

lowing: (1) If an edge exi j exists, with error distribution Rx
i j , then create a temporary

reversed edge, e′x
ji , with scalar weight r xji = E[Rx

i j]. (2) Among all edges e′x
ji , select

the one with minimum r xji , i.e., e ji = argmin
e′x
ji

(r xji). Finally, (3) add e ji to E ′. The

result is a directed graph, with scalar deterministic edge weights, in which all errors
have been folded into the edge weights using the risk-neutral policy, redundant edges
in the multigraph removed, and edge direction reversed.1

1Note that one can decide at this step to use any function combining C and R.

170 G. A. Kaminka et al.

Kinect RGB
Kinect RGB & Depth

Hokuyo URG04

Kinect RGB
Kinect RGB & Depth

Hokuyo URG04

Kinect RGB
Kinect RGB & Depth

Hokuyo URG04

Fig. 1 An example for a monitoring multigraph (left), and two resulting monitoring graphs: one
that minimizes the maximal path length (middle), and one that minimizes the sum of path lengths
(right)

All Pairs Shortest Paths.We now run an algorithm for determining the shortest paths
for all pairs of vertices. In our implementation we utilized Johnson’s algorithm [1].
Given the size of V ′ is the number of robots K , the algorithm runs inO(K 2 log K +
K |E |). The result is often represented in a matrix L , such that matrix cell l ji contains
the length of the shortest path from vertex j to vertex i (or∞ if none exists). As edges
are reversed in direction compared to the sensing direction, l ji is the accumulating
error in position estimates, from robot vi to robot v j , where vi , v j ∈ V .

Determine Sv and/or Mv. We propose two different criteria for selecting a global
anchor that, if used as the origin for a shared coordinate system, would result in
smaller position estimate errors for the team of K robots. One possible criterion is
to minimize the mean position error of all K robots. This is a societal criterion, as
it balances the errors across all robots. An alternative criterion is to minimize the
worst-case error of any single robot, possibly resulting in some robots accepting a
larger error than individually needed, in order to reduce the error of the other robots.

We examine the matrix L . Let S,M be vectors of dimension K . We denote Sv
the component of S associated with a given v (and similarly, Mv). For all v ∈ V ,

Sv = 1
K

K∑

i=1
lvi , i.e., the sum of all cells in row v divided by K , or more intuitively,

the mean length of shortest paths from all robots i to robot v. As these shortest path
represent smallest errors, this is the mean smallest error in position estimates, if v is

selected as global anchor. Similarly, for all v ∈ V , Mv = K
max
i=1

lvi , i.e., the maximal

smallest error in position estimate for any robot i , if v is the global anchor.

Determine global anchor vA. Finally, a new global anchor can be chosen, by setting
vA = argminv∈V ′ Sv, if we prefer a global anchor that minimizes the average position
error, or vA = argminv∈V ′ Mv, if we prefer to minimize the maximal error instead.
If there are ties, they can be broken by preferring according to the other criterion, or
arbitrarily.

Construction of Optimal Control Graphs in Multi-robot Systems 171

(a) Six simulated robots. (b) Three real robots.
Simulated robots placed
like wise.

Fig. 2 Formation in static experiments

4 Evaluation

Toevaluate the effects of using the techniques presented in thiswork,we implemented
the algorithms for optimal global-anchor selection and coordinate frame alignment in
ROS (RobotOperatingSystem), to be usedonGazebo-simulated and realRoboTICan
Lizi robots (shown in Fig. 2b). All robots in the teamwere marked with unique visual
markers identifying each robot. Using image and depth data from an RGB-D sensor,
each robot identified its neighbors andmeasured their relative position in its reference
frame. A calibrated sensor model was used to estimate the error measurements Ri j .

We compared the global position errors resulting from using the optimal vA algo-
rithm above, to the errors resulting from using an arbitrary robot [10]. Specifically,
we contrast the robots’ estimates with the ground truthmeasured externally. This was
done by carrying out five repeated trials in each setting, each lasting two minutes,
resulting in thousands of data points, for each robot.

We have carried out experiments in three types of settings: robots standing still,
robots moving while maintaining a static formation, and robots moving while chang-
ing formation. In the first two settings, the relative positions of the robots are main-
tained: by definition in the first setting, and using feedback control in the second.
In the third setting, moving robots changed their initial formation, requiring them to
select a new global anchor.

Our first experiment recreates an experiment in [10]. Six Lizi robots are placed as
shown in Fig. 2a. All robots are static, and align their coordinate system with respect
to the selected global anchor. Similar experiments involve placing three robots as
shown in Fig. 2b. These were conducted both in simulation, as well as in real robots.
Robot 1 (bottom of the image) could monitor robot 2 (center) and vice versa; robot
3 could see robot 2.

172 G. A. Kaminka et al.

(a) Static formation place-
ment.

(b) Static real robots. (c) Dynamic formation. Robot
#4 overtaking others.

Fig. 3 Formations maintained while moving

We then turned to experiments where robots moved while continually estimating
their position based on a shared coordinate system, with the origin at the selected
global anchor. We placed four robots in the formation shown in Fig. 3a, again both in
simulation as well as in the lab. Robot 1 (front of the formation) could monitor robot
2 (center) and vice versa, robots 3 and 4 (side by side, bottom) could monitor robot
2. Figure3b shows the real robots in one of the trials. In the arbitrary ID settings,
robot 1 was selected as the global anchor. In the optimal settings, our algorithm chose
robot 2 as the global anchor.

As a final experiment, we tested the ability of the algorithm to adjust the global
anchor while moving, when the relative position of robots is changed. Four simulated
robots were placed as shown in Fig. 3c. All robots moved forward; robots 1–3 at
constant speed, and robot 4 three time faster, along the dotted path shown in the
figure, anduntil it pulled aheadof everyone else.Whilemoving, the robots continually
checked and recomputed the global anchor appropriate to their current settings. At
the beginning of each run, robot 1 was chosen as global anchor vA, and the algorithm
chose local anchors for all other robots: robot 4 monitored 3, which monitored 2,
which monitored 1. However, as robot 4 begins to overtake it peers, its local anchor
changes from 3 to 2, then to 1, until finally it overtakes robot 1, at which point it
becomes the global anchor, and root 1 switches to monitor it.

Figure4 shows the mean error (error bars indicate standard deviation) of robot 4
during the experiment. It shows that between 0.1 and 0.5min into a trial, when robot
4’s local anchor is robot 3, the error in position (in the shared coordinate system
where robot 1 is the origin) is around 40cm. After passing robot 3, robot 4 changes
local anchor based on the optimal selection, first to robot 2 and then to robot 1.
Approximately 0.95min into the run, and until 1.15min in it, robot 4’s local anchor
is robot 1 which is still the global anchor vA. We see a corresponding decrease in
robot 4’s position error as it now monitors the global anchor directly. After 1.15min,

Construction of Optimal Control Graphs in Multi-robot Systems 173

Fig. 4 Changing control graph in real time

robot 4 cannot see any other robot and its error increases due tomoving and assuming
location in its last position. With real robot it is possible to change the localization
method to less accurate one such as GPS in this situation. After robot 4 enters robot
1’s field of view, the algorithm sets robot 4 to serve as vA.

Results. The results, summarized in Table2, show the use of the leader-selection
algorithm leads to very significant improvements in the position estimates of the
robots in the shared coordinate system. In many cases, the mean error is reduced
by 50% or more. For example, in the experiment with six standing robots, when
using the minimal robot ID as a global anchor the farthest robot (#6) was located
five hops away, and accumulated approximately 13cm in error. However, using the
global anchor selected by our algorithm, the average error for the same robot, now
located 3 hops away, drops to 6cm. This improvement is statistically significant
(one tailed t-test, p < 7.49 × 10−16). Similar improvements can be seen in the other
experiments, both in simulated and real robots. Over all trials, these results are over
approximately 5000 measurements in each settings, for each robot.

5 Conclusions and Future Work

Control graphs are used in multi-robot systems to maintain information about which
robot senses another robot, and at what position. On the basis of such graphs, it is
possible to compute a shared coordinate system, localize relative to others, andmain-
tain stable formations. In this work, we demonstrated that previous work assumes
that a robot is pre-determined, to serve as global anchor (origin point) for coordi-
nate frame alignment. We extended previous notions of monitoring multigraphs, a
construct intended to compactly represent all possible control graphs. We focused
on risk-neutral decision policy, which allows us to replace stochastic edge weights
with the deterministic expected value of the distributions. Second, we demonstrated

174 G. A. Kaminka et al.

Table 2 All experiment results, including mean errors in meters (standard deviations), and t-test
significance testing. Robot ID is shown for robots not acting as global anchor vA in either setting.
The optimal global anchor column shows significant improvement in all experiments

Type Experiment Robot ID Arbitrary vA
error in meters

Optimal vA
error in meters

Significance p
value
(one-tailed
t-test)

Standing 3-line
(simulation)

3 0.058 (0.102) 0.036 (0.009) 7.12 × 10−15

3-line (real
robots)

3 0.107 (0.019) 0.049 (0.001) 0 (below excel
limit)

6 zigzag
(simulation)

2 0.031 (0.021) 0.014 (0.006) 2.62 × 10−78

4 0.073 (0.142) 0.030 (0.005) 4.12 × 10−15

5 0.086 (0.181) 0.032 (0.005) 4.90 × 10−15

6 0.134 (0.239) 0.061 (0.033) 7.49 × 10−16

Moving Simulation 4
center

3 0.036 (0.014) 0.019 (0.018) 1.72 × 10−98

4 0.032 (0.017) 0.013 (0.012) 5.92 × 10−143

Real moving 4
center

3 0.155 (0.076) 0.095 (0.009) 8.31 × 10−6

4 0.140 (0.105) 0.084 (0.038) 0.00056

that an All Pairs Shortest Path algorithm can be utilized, on the extended mon-
itoring multi-graph, through some transformations. This facilitates the automatic
determination of an optimal robot to lead a formation or serve as a global anchor.
We conducted extensive experiments in real and simulated robots; these show very
significant improvement to the robots’ position estimates. In future work, we hope to
examine alternative methods for dealing with decision policies that are risk-averse,
or risk-seeking.

The algorithms presented herein assume that all information about the sensing
capabilities and location of the robots is known - either to a centralized unit, or to
one of the robots. Using this information, the optimal local and global anchors are
determined. It would be interesting to extend these results to a decentralized setting.
In this case, choosing a local anchor may be straightforward, yet choosing an optimal
global anchor would require using innovative methods.

Acknowledgements We gratefully acknowledge support by ISF grants #1511/12 and #1337/15.
As always, thanks to K. Ushi.

Construction of Optimal Control Graphs in Multi-robot Systems 175

References

1. Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, USA
(1990)

2. Desai, J.P.: Modeling multiple teams of mobile robots: a graph-theoretic approach. IROS 1,
381–386 (2001)

3. Fredslund, J., Mataric, M.J.: A general algorithm for robot formations using local sensing and
minimal communications. IEEE Trans. Robot. Autom. 18(5), 837–846 (2002)

4. Howard, A., Matarić, M.J., Sukhatme, G.S.: Putting the ‘i’ in ‘team’: an ego-centric approach
to cooperative localization. In: ICRA, pp. 868–892 (2003)

5. Hwang, L.K.: Stochastic shortest path algorithm based on lagrangian relaxation. Master’s
thesis, University of Illinois at Urbana-Champaign (2010)

6. Kaminka, G.A., Schechter-Glick, R., Sadov, V.: Using sensor morphology for multi-robot
formations. IEEE Trans. Robot. 24, 271–282 (2008)

7. Lemay, M., Michaud, F., Létourneau, D., Valin, J.M.: Autonomous initialization of robot for-
mations. In: ICRA-04 (2004)

8. Loui, R.P.: Optimal paths in graphs with stochastic or multidimensional weights. Technical
report TR115, Computer Science Department, University of Rochester (1982)

9. Martinelli, A., Pont, F., Siegwart, R.: Multi-robot localization using relative observations. In:
ICRA-05, pp. 2797–2802. IEEE (2005)

10. Nagavalli, S., Lybarger, A., Luo, L., Chakraborty, N., Sycara, K.: Aligning coordinate frames in
multi-robot systems with relative sensing information. In: IROS-14, pp. 388–395. IEEE (2014)

11. Piovan, G., Shames, I., Fidan, B., Bullo, F., Anderson, B.D.O.: On frame and orientation
localization for relative sensing networks. Automatica 49(1), 206–213 (2013)

12. Traub, M., Kaminka, G.A., Agmon, N.: Who goes there? using social regret to select a robot
to reach a goal. In: AAMAS-11 (2011)

13. Trawny, N., Zhou, X.S., Zhou, K., Roumeliotis, S.I.: Interrobot transformations in 3-d. IEEE
Trans. Robot. 26(2), 226–243 (2010). https://doi.org/10.1109/TRO.2010.2042539

https://doi.org/10.1109/TRO.2010.2042539

Decision-Making Accuracy for Sensor
Networks with Inhomogeneous Poisson
Observations

Chetan D. Pahlajani, Indrajeet Yadav, Herbert G. Tanner and
Ioannis Poulakakis

Abstract The paper considers a network of sensors which observes a time-
inhomogeneous Poisson signal and has to decide, within a fixed time interval,
between two hypotheses concerning the intensity of the observed signal. The focus
is on the impact of information sharing among individual sensors on the accuracy
of a decision. Each sensor computes locally a likelihood ratio based on its own
observations, and, at the end of the decision interval, shares this information with
its neighbors according to a communication graph, transforming each sensor to a
decision-making unit. Using analytically derived upper bounds on the decision error
probabilities, the capacity of each sensor as a decision maker is evaluated, and conse-
quences of ranking are explored. Example communication topologies are studied to
highlight the interplay between a sensor’s location in the underlying communication
graph (quantity of information) and the strength of the signal it observes (quality
of information). The results are illustrated through application to the problem of
deciding whether or not a moving target carries a radioactive source.

1 Introduction

We currently rely on networks of distributed sensors for triggering a timely response
to emergency situations, including natural disasters such as hurricanes [8], earth-
quakes [10] and tsunamis [6]. Existing work on decision-making over networks of

C. D. Pahlajani
Indian Institute of Technology, Gandhinagar, India
e-mail: cdpahlajani@iitgn.ac.in

I. Yadav · H. G. Tanner · I. Poulakakis (B)
University of Delaware, Newark, DE, USA
e-mail: poulakas@udel.edu

I. Yadav
e-mail: indragt@udel.edu

H. G. Tanner
e-mail: btanner@udel.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_13

177

178 C. D. Pahlajani et al.

observers that monitor a physical process and have to decide on its state, suggests
that the performance of decision-making is affected by the structure of the network.
For example, in the context of a network of stochastic evidence accumulators, each
represented by a drift-diffusion process accruing evidence in continuous time by
observing a noisy signal, information exchange among individual nodes affects the
certainty of each node in a way that is governed by information centrality [14, 15].
Information centrality is a structural property of the underlying interconnection graph
that depends on the totality of paths connecting that node with the rest of the net-
work [17]. Heterogeneity in the network has been introduced in [5] by allowing only
a limited number of units—termed leaders—to observe the external signal directly.
Although these results refer to continuous-time implementations of sequential prob-
ability ratio tests inspired by human decision-making models [2], they still highlight
the effect of general network topologies on decision-making performance.

Only specific communication topologies for the network have been explored, due
to the explosive combinatorial complexity of decision making in distributed sensor
systems [20]. There is emphasis on particular directed rooted trees [19, 21–23],
where the root is a designated fusion center node that makes the final decision. In this
context, and for this limited range of topologies where information from all observers
eventually trickles down in some compressed form to the designated fusion center,
results show that decision performance is affected by the structure of the network.
In addition, to avoid the complexity associated with distributed decision making, the
results formore general tree topologies are restricted to an asymptotic analysis, where
the order of the graph grows unbounded. For some applications, however—such as
nuclear detection—practical and economic considerations preclude the deployment
of large-scale networks [18]. In that smaller-scale regime, and particularly for the
case where decision makers do not have access to (compressed) information from all
other observers, there is not enough knowledge and insight to determine the specific
effect of general network topologies on decision-making performance.

The present paper focuses on the case of a sensor network which observes a time-
inhomogeneous Poisson process, and has to decide, within a fixed time interval,
between two hypotheses concerning the intensity of the observed process. Armed
with analytical expressions for bounds on error probabilities for this test in the clas-
sical networking case where all sensors, after observing this inhomogeneous process
for a time period, submit a statistic to a central decision maker (fusion center) [11],
this paper explores alternative cases where the topology of the network can vary, and
any sensor can potentially become the decision maker. The goal here is to explore
the effect of information sharing on the capacity of individual sensors in the network
to make accurate decisions.

The topology of the sensor network is modeled by a directed graph; each sensor
is represented by a node, and a directed edge from node i to node j signifies that
there is directed flow of information from sensor i to sensor j . Sensors do not need
to communicate until time instant T , at which a decision needs to be made by the
network. At that time instant each sensor sends its local likelihood ratio LT (i) along
outgoing edges in the communication graph. Next, each sensor—now referred to
as a Decision Maker (DM)—implements a Likelihood Ratio Test (lrt) where the

Decision-Making Accuracy for Sensor Networks … 179

product of the available LT (i)’s is compared against a threshold to make a (local)
decision. The problem is now to assess the relative accuracy of the DMs.

Intuitively, the factors improving decision accuracy are large numbers of incom-
ing edges in the information-sharing graph, and availability of LT (i)’s collected from
sensorswhich observe strong signals. The principal challenge now lies in formalizing
exactly how these factors mathematically influence the decision error probabilities,
given that these probabilities are, in all but perhaps the simplest cases, intractable to
analytic computation. The paper circumvents this difficulty by working with Cher-
noff upper bounds on the error probabilities for each DM, borrowing the analytic
expressions of which from existing work [12]. Treating these explicitly computable
bounds as proxies for the true (unknown) error probabilities, an index for decision-
making accuracy can be formulated and subsequently used to rank the DMs. The
advantage of this approach is that it recasts the problem of ranking incomputable
probabilities for each of the DMs in terms of ranking natural computable surrogates,
at the expense of some sharpness.

These results find natural application in the problem of detecting, using a dis-
tributed network of radiation sensors, illicit nuclear material in transit. The severity
of the threat associated with radioactive materials falling into the hands of potential
terrorists has been recognized [4]. Possible mitigation strategies include networks of
detectors deployed along roads and highways, tasked with detecting illicit material
that has slipped through border checks or portal alarms [4].

There are at least two reasons thatmakenuclear detection—irrespective ofwhether
the sensors are static or mobile—extremely challenging. The first is that radiation
detectors pick up signals emitted not just by the illicit radioactive material to be
detected, but also from ubiquitous, naturally occurring, background radiation. From
a counter’s perspective, the two signals are of identical nature and indistinguishable
once superimposed. The second reason relates to attenuation: although a kilogram of
Highly EnrichedUranium (heu) can emit asmany as 4 × 107 gamma rays per second
[4], shielding and attenuation can limit the effective detection range to a few feet, and
require detection times that can range from several minutes to hours. To put these in
perspective, the gamma-ray emission of nuclear missiles containing heu becomes
comparable to background just 25cm away from the warhead [16]. The problem
is exacerbated by the motion of the signal source. Not only does the mathematical
model of the physical phenomenon change (becoming time-inhomogeneous), but
now detectors have limited time to decide before the target disappears from sight:
the sensors are faced with a problem of detecting in a matter of seconds, a weak
time-varying signal, buried inside another signal of same nature.

It is important to note that while the technical approach in this paper is particu-
larized in the context of nuclear detection, the impact of the methods proposed here
can also reach other application domains which involve networked decision-making
with Poisson process observations.

180 C. D. Pahlajani et al.

2 Background

As noted above, our analysis focuses on the effect of information sharing on decision-
making by a network of sensors observing a time-inhomogeneous Poisson process,
and as such, is applicable in a variety of domains. That said, it will be convenient
from this point on to frame the discussion largely in terms of applications to nuclear
detection. It goes without saying that the treatment can be carried over to other
applied problems after suitably reinterpreting various mathematical quantities.

With the aforementioned application domain in mind, consider a network of k
radiation sensors that is deployed over a spatial region of interest for the purpose of
detecting illicit nuclear materials in transit; see Fig. 1. The typical detection scenario
involves a vehicle (target) suspected of being a carrier of nuclear material (source)
moving through the sensing field of this network. The objective is to decide, at the
end of a fixed time interval [0, T], whether the counts recorded at the sensors can be
attributed solely to ubiquitous background radiation (hypothesis H0) or whether they
contain, in addition, radiation from a source carried by the moving target (hypothesis
H1). Local decision making can be enhanced through allowing, at the terminal time
T , limited communication among sensors according to a suitable communication
topology, following which each sensor is enabled to act as a DM operating on the
information available to it. The primary goal of the present work is to formulate a
metric for ranking the decision-making accuracy of the individual DMs. To wit, it
is desirable to develop an index that mathematically captures the interplay between
centrality of a DM in the network (quantity of information) and proximity to the
suspected source (quality of information) in a way that naturally mimics the true, but
incomputable, error probabilities.

A review of some existing notation and results [11] helps set the stage for the
decision-making rules considered in this paper. The probabilistic setup is as follows.

Fig. 1 A sourcemoving (red line) in the sensing field of a network of sensors. Different information
sharing scenarios are depicted. a All sensors send their LT ’s to a fusion center. b The sensors share
their LT ’s according to a directed graph. Communication is allowed only at time T

Decision-Making Accuracy for Sensor Networks … 181

On the measurable space (Ω,F), there is a k-dimensional vector of counting pro-
cesses N t � (Nt (1), . . . , Nt (k)), t ∈ [0, T]. Here, Nt (i) represents the number of
counts recorded at sensor i ∈ {1, 2, . . . , k} up to (and including) time t ∈ [0, T].
The two hypotheses, H0 and H1, regarding the state of the environment correspond,
respectively, to two distinct probability measures P0 and P1 on (Ω,F). With respect
to P0, the Nt (i)’s, 1 ≤ i ≤ k, are assumed to be independent Poisson processes with
Nt (i) possessing intensity βi (t), while with respect to P1, the Nt (i)’s, 1 ≤ i ≤ k, are
assumed to be independent Poisson processes with intensities βi (t) + νi (t), respec-
tively. The functions βi (t), νi (t), 1 ≤ i ≤ k, defined for t ∈ [0, T] are assumed to
be bounded, continuous and strictly positive as in [11]. Here, βi (t) is the (possibly
time-varying) intensity at time t due to background radiation at the spatial location
of sensor i , while νi (t) represents the intensity due to the source (if present) as
perceived by sensor i at time t . Note that the time-dependence of νi (t) arises from
relative motion between the source and the sensor; indeed, in the context of radiation
measurement it is generally accepted that νi (t) is proportional to the inverse square
of the distance ri (t) between the source and sensor i [9].

A test for deciding between H0 and H1 can be thought of as an event B1, whose
occurrence or non-occurrence can be ascertained on the basis of sensor observations
over [0, T], and has the following significance: If the outcome ω ∈ B1, decide H1;
if the outcome ω ∈ B0 � Ω \ B1, decide H0. For such a test, two types of errors
can occur. A false alarm occurs if ω ∈ B1 with H0 being the correct hypothesis; this
occurs with probability P0(B1). A miss occurs if the outcome ω ∈ B0 while H1 is
the true hypothesis; this occurs with probability P1(Ω \ B1).

In this setting, the optimal test for deciding between H0 and H1 is an lrt obtained
as follows [3, 11]. For i ∈ {1, 2, . . . , k}, let τn(i) for n ≥ 1 denote the nth jump time,
i.e., time at which the sensor generates a count, of Nt (i), and let

LT (i) � exp

(
−

∫ T

0
νi (s)ds

) NT (i)∏
n=1

(
1 + νi (τn(i))

βi (τn(i))

)
(1)

with the convention that
∏0

n=1(. . .) = 1. Assuming that P1 is absolutely continuous
with respect to P0, the test

{LT ≥ γ } where LT �
k∏

i=1

LT (i) and γ > 0 (2)

is optimal in the (Neyman–Pearson) sense that if B is any test whose probability of
false alarm P0(B) ≤ P0(LT ≥ γ), then the probability of miss for the test (2) is at
least as low as that for B, i.e., we have P1(LT < γ) ≤ P1(Ω \ B).

In the context of the test (2), the decision is made at a single network node that
receives all sensory information from the network, and processes it by computing
the product LT to issue the decision. This node is called the fusion center; see
Fig. 1a. Before proceeding further, note that the only information needed from sensor

182 C. D. Pahlajani et al.

i ∈ {1, 2, . . . , k} includes the functions βi (·) and νi (·) together with the single real
number LT (i). Put another way, once the problem parameters βi (·), νi (·) and the
local likelihood ratios LT (i) are known, there is no increase in accuracy that can be
obtained through knowledge of the sample path t �→ Nt (i).

3 Deciding Without a Fusion Center

One of the drawbacks of the setup of Fig. 1a described above is the vulnerability of the
system to targeted attacks or failures: if the fusion center is lost, the entire detection
system collapses. This motivates one to study the following problem: Suppose that
at the terminal time T (or just after), there is some sharing of the LT (i)’s (and the
problem parameters βi (·), νi (·)) among the sensors according to a directed graph, as
depicted in Fig. 1b. Assume that no single sensor has access to all local likelihood
ratios, i.e., there is no obvious choice of fusion center. If each sensor is now enabled
to act as a DM operating on the information available to it, one can ask which DM
is the most reliable in terms of decision-making accuracy.

To formulate this problem precisely, a directed graph is first specified. This graph
encodes the allowed communication among the sensors. Recall that a directed graph
is an ordered pair G = (V, A) where V is a set of vertices or nodes, and A is a set
of ordered pairs of nodes, referred to as arcs or directed edges. For the problem at
hand, the vertex set V = {1, 2, . . . , k} indexes the set of observers (sensors). The
arcs in A correspond to inter-sensor communication in the sense that (i, j) ∈ A if,
and only if, there is directional flow of information from sensor i to sensor j . Thus,
if there is two-way communication between sensors i and j , both (i, j) and (j, i)
are included in A. Self-loops are meaningless in this context and therefore excluded.
Finally, it will be convenient to assume that information travels exactly one directed
edge, and no further. In other words, if there are directed edges (i, j) and (j, �) in
A, it is assumed that LT (i) is sent from sensor i to sensor j and no further, while
LT (j) is sent from sensor j to sensor � and no further.1

The probabilistic setup and notation are exactly as in Sect. 2. The quantities LT (i)
and LT are defined as in (1), (2); and each sensor i ∈ {1, 2, . . . , k} observes Nt (i)
over time interval t ∈ [0, T] and computes the quantity LT (i) at time T . Now that
each sensor is armed with its own LT (·), inter-sensor communication takes place.
For each sensor i , let Si comprise the set of sensors whose information is made
available to sensor i just after time T . Thus, for 1 ≤ i ≤ k,

Si � { j ∈ {1, 2, . . . , k} : Sensor i knows LT (j) and β j (·), ν j (·) just after time T } .

Since a sensor always has access to its own information, we have i ∈ Si for all
1 ≤ i ≤ k. Thus,Si consists of the index i , together with the indices corresponding
to incoming edges. Once inter-sensor communication has taken place, each sensor

1This entails no loss of generality; indeed, if information is to be sent from sensor i to sensor �, this
can be accommodated at the expense of introducing the additional directed edge (i, �).

Decision-Making Accuracy for Sensor Networks … 183

can be considered a DM. Thus, for 1 ≤ i ≤ k, DM(i) refers to sensor i once it has
access to the quantities {LT (j), β j (·), ν j (·) : j ∈ Si }. Letting DM(i) use the test

{LT (i) ≥ γi } where LT (i) �
∏
j∈S i

LT (j) and γi > 0

the probabilities of false alarm and miss for DM(i) are given by

PF,i � P0 {LT (i) ≥ γi } , PM,i � P1 {LT (i) < γi } ,

respectively. If function Λi : R → R is defined by Λi (p) � logE0
[
(LT (i))p

]
for

p ∈ R, then it follows [12, Theorem 8] that

PF,i ≤ exp

(
inf
p>0

[Λi (p) − pηi]
)

, PM,i ≤ exp

(
inf
p<1

[Λi (p) + (1 − p)ηi]
)

,

(3)
where ηi � log γi ∈ R, and Λi (p) is explicitly computable via

Λi (p) =
∑
j∈S i

∫ T

0
[μ j (s)

p − pμ j (s) + p − 1]β j (s)ds . (4)

Note that the bounds (3), (4) hold for any ηi = log γi ∈ R. The reader is referred to
[12] for a detailed proof of the bounds in (3).

In order to effectively use these bounds, onewould need to knowwhere, if at all, the
infima in (3) are realized, and further, whether the infima are negative—to ensure that
the bounds are non-trivial. One proceeds here bymaking repeated use of convexity of
the functions p �→ Λi (p). Indeed, it follows [12, Lemmas 16–19] that the function
p �→ Λi (p) is C2 with derivatives given by differentiating under the integral sign;
further, Λ′′

i (p) > 0 for all p ∈ R, implying that the function p �→ Λi (p) is strictly
convex; and finally that Λ′

i (0) < 0, Λ′
i (1) > 0. It now follows [12, Proposition 13]

that if ηi is chosen to lie in (Λ′
i (0),Λ

′
i (1)), then the infima in (3) are attained at a

unique p∗
i ∈ (0, 1) and the infima are negative. More precisely, there exists a unique

p∗
i ∈ (0, 1) given by Λ′

i (p
∗
i) = ηi such that

inf
p>0

[Λi (p) − pηi] = EF,i (p
∗
i) < 0 , inf

p<1
[Λi (p) + (1 − p)ηi] = EM,i (p

∗
i) < 0 ,

where the error exponents EF,i (p), EM,i (p) mapping (0, 1) to R are

EF,i (p) � Λi (p) − pΛ′
i (p) and EM,i (p) � Λi (p) + (1 − p)Λ′

i (p) . (5)

Thus, if ηi ∈ (Λ′
i (0),Λ

′
i (1)), then the tightest error probability bounds for DM(i)

are given by

PF,i ≤ exp[EF,i (p
∗
i)] < 1 , PM,i ≤ exp[EM,i (p

∗
i)] < 1 . (6)

184 C. D. Pahlajani et al.

To rank the DMs in terms of their capacity to make accurate decisions, one ide-
ally solves the following problem: Let α ∈ (0, 1) (acceptable upper bound on the
probability of false alarm) be given. Allowing each DM to choose its own threshold
to comply with the constraints that PF,i ≤ α and PM,i is minimized, rank the nodes
in increasing order of PM,i . The node with the smallest PM,i is the best DM, at least
for the particular α. The challenge, as noted earlier, is that the error probabilities
PF,i and PM,i are not amenable to analytic computation. We therefore work with the
corresponding Chernoff bounds (6) and study the problem stated above with PF,i

and PM,i replaced by the corresponding tightest upper bounds.
To solve this problem, the threshold selection algorithm [12, Proposition 14]

is employed. The algorithm implies that if, for some 1 ≤ i ≤ k, we have logα >

−Λ′
i (1), then there exists a unique p†i ∈ (0, 1) which solves the equation

EF,i (p
†
i) = logα . (7)

Moreover, p†i minimizes EM,i (p) over all p ∈ (0, 1) which satisfy EF,i (p) ≤ logα.
This minimum value of EM,i (p) is given by

EM,i (p
†
i) = logα + Λ′

i (p
†
i) .

Thus, choosing ηi = Λ′
i (p

†
i), i.e. letting DM(i) select the threshold γi = exp

(Λ′
i (p

†
i)), yields

PF,i ≤ α , PM,i ≤ α exp(Λ′
i (p

†
i)) = α γi .

To provide some insight on the foregoing expressions—see [12] for details—one
can use convexity to show that on (0, 1), the functions EF,i , EM,i are differentiable
and negative, with EF,i being strictly decreasing while EM,i is strictly increasing.
The threshold selection algorithm can be summarized as follows: Take the threshold
γi = exp(Λ′

i (p)) and select p ∈ (0, 1) as small as possible to make EM,i as small as
possible, while ensuring that the false alarm constraint is met, i.e., EF,i (p) ≤ logα.
The latter is possible only if logα is strictly greater than the infimum of EF,i on
(0, 1), which is easily computed to be −Λ′

i (1). Of course, one should now find p†i
by solving (7).

One can now rank the DMs from most reliable to least reliable by ranking the
quantities EM,i (p

†
i), 1 ≤ i ≤ k (or, equivalently, exp(EM,i (p

†
i)) = αγi) from small-

est to largest. These findings are summarized as follows.

Theorem 1 For α ∈ (0, 1) with logα > max1≤i≤k(−Λ′
i (1)), define the functions

Mi (α), 1 ≤ i ≤ k, by
Mi (α) � exp(Λ′

i (p
†
i)) , (8)

where p†i ∈ (0, 1) solves EF,i (p
†
i) = logα; thus, Mi (α) is the threshold at DM(i).

Then,Mi (α) can be used as an index for decision-making accuracy in the following
sense: If (i1, i2, . . . , ik) is an ordering of {1, 2, . . . , k} such that

Decision-Making Accuracy for Sensor Networks … 185

Mi1(α) ≤ Mi2(α) ≤ · · · ≤ Mik (α) ,

then (i1, i2, . . . , ik) provides a ranking of the DM’s from most accurate to least
accurate, as measured by the Chernoff bounds.

Remark 1 Note that the accuracy indexMi (α) is tied to the specific α ∈ (0, 1). This
naturally prompts the question: for a given network and set of problem parameters,
does the sensor which has the smallest Mi (α) vary with α. It is also natural to ask,
for a given network and set of problem parameters, whether the ranking based on
Mi (α) coincides with the ranking based on minimizing PM,i subject to PF,i ≤ α, i.e.,
do the Chernoff bounds faithfully capture the relative decision-making accuracies of
various sensors. These questions are the subject of ongoing work.

4 Examples

This section presents two examples of networks of nuclear detectors deciding about
the observed process. In the first case, it is assumed that the process at each sensor has
identical characteristics, and heterogeneity is introduced only through the network
topology. In the second example, in addition to the differences among sensors due to
their location in the underlying interconnection graph, heterogeneity is introduced in
the quality of each sensor’s observations. The objective is to highlight the interplay
between the network topology and the quality of individual observations, and its
impact on the ability of individual sensors to make decisions.

4.1 Example 1: Identical Measurement Characteristics

This example addresses the following question. If the measurement quality charac-
teristics at all sensors are the same, is it true that the DMwith the most LT (·)’s is the
most accurate? The answer, as will be seen below, is affirmative, implying that the
node with the largest in-degree is better equipped to make a decision.

Indeed, suppose that βi ≡ β, νi ≡ ν, μi ≡ μ = 1 + ν/β. We will use |Si | to
denote the cardinality of Si , 1 ≤ i ≤ k, that is, the in-degree of node i that corre-
sponds to the number of incoming edges to i . It is easily seen from (4), (5), that
EF,i (p) = −g(p) · |Si | where g(p) � −βT [μp − pμp logμ − 1] and EM,i (p) =
−h(p) · |Si | where h(p) � −βT [μp + (1 − p)μp logμ − μ]. Since EF,i (p),
EM,i (p) are negative for p ∈ (0, 1) with the former being strictly decreasing and
the latter strictly increasing (see [12, Lemma 19]), it follows that g(p) is positive
and strictly increasing for p ∈ (0, 1), while h(p) is positive and strictly decreasing
for p ∈ (0, 1).

186 C. D. Pahlajani et al.

Fix α as in Theorem 1. Let i, j ∈ {1, 2, . . . , k} with i
= j . The claim is that

1. If |Si | > |S j |, then Mi (α) < M j (α),
2. If |Si | = |S j |, then Mi (α) = M j (α),
3. If |Si | < |S j |, then Mi (α) > M j (α).

The first of these three claims will only be proven here; the arguments can be easily
modified to prove the other two. Suppose |Si | > |S j |. By (7), one has EF,i (p

†
i) =

logα and EF, j (p
†
j) = logα. Recalling the notation above,

g(p†i) = − logα

|Si | and g(p†j) = − logα

|S j | .

Noting that − logα > 0 and |Si | > |S j |, one writes g(p†i) < g(p†j). Since g is

strictly increasing, it now follows that p†i < p†j . If it can be shown that EM,i (p
†
i) <

EM, j (p
†
j), then it follows (see Theorem 1) that Mi (α) < M j (α). The argument for

establishing the former statement is as follows. Since the function h is strictly decreas-
ing, it must be the case that h(p†i) > h(p†j). Since h is positive and |Si | > |S j |
(by assumption), |Si | · h(p†i) > |S j | · h(p†j). Taking negatives, yields EM,i (p

†
i) <

EM, j (p
†
j) as required.

This example shows that, under the assumption that the measurement process has
identical statistical characteristics at each node, the nodes with the largest in-degree
are the most accurate DMs. It is interesting to note that this observation is in contrast
to the diffusive models studied in [14, 15], in which local centrality measures such
as those based on nodal degrees cannot capture the certainty of each unit in terms of
the collected evidence.

4.2 Example 2: Non-identical Measurement Characteristics

Particular examples of directed graphs in the setting of Fig. 1b help examine the
effect of heterogeneity not only in the underlying communication topology, but also
in the characteristics of the measurements process at each sensor. Similarly to [9],
five sensors are arranged along a straight line at fixed locations with 0.5m distance
from each other and with the first sensor positioned at 0.5m. A radioactive source
moves parallel to this array of sensors with a constant speed of 0.03m/s. As a result of
the source’s motion, the measurement characteristics among different sensors are not
the same, since certain sensors may spend longer intervals in close proximity to the
source than others. The source’s straight line path is at a distance of 0.5m above the
array of the sensors, and the initial source position is 0.5m behind the sensor array.
The activity of the source and background radiation are measured in gamma rays
emitted per second, i.e., counts per second (cps). For the source, it is taken at a = 3
cps, while for the backgroundwe assume 0.167 cps. The numerical simulation of the

Decision-Making Accuracy for Sensor Networks … 187

Fig. 2 Different
communication topologies
studied in Example 2. A
directed edge from node i to
node j indicates that at time
T , the locally computed LT
and μ at node i is
transmitted to node j

corresponding arrival process with the aforementioned intensities has been generated
using a thinning algorithm [7, 13]. The maximum acceptable probability of false
alarm is taken as α = 10−3 and for numerical purposes the sensor cross-section is
assumed to be 1m2. Note that these figures are too big for practical applications, and
are used here only for reasons of numerical convenience to emphasize the differences
in sensor performance; see [12] for details.

Figure2 depicts three different interconnection topologies with which locally
processed information can be disseminated among sensors. Directed edges mark
unidirectional flow of likelihood ratios LT and the histories of the intensities β, ν

between (network) adjacent sensors at time T . These three communication topolo-
gies (graphs) result in different sensor network performance in terms of accuracy of
decision making, at least to the degree that the latter can be reflected on the com-
puted bounds on the probability of missed detection. Various detection scenarios
are depicted in Figs. 3 and 4, showing that for a constant background activity, the
performance of each sensor as a decision-making unit depends on the strength of the
signals perceived by the sensors and the time available to make the decision. In these
figures, individual sensors are denoted by S1 to S5, and the motion of the source is
indicated by the blue line at the top of each figure. Different decision times T are
examined, resulting to different time intervals over which the source remains in the
close vicinity of each sensor, thereby introducing heterogeneity in the measurement
characteristics of each sensor. In each of the Figs. 3 and 4, the vertical axis corre-
sponds to the logarithm of the bound of the probability of missed detection computed
by (6) and the horizontal axis shows the distance between sensors.

Figure3 shows that the performance of the sensors undermore information sharing
(graph 2 in Fig. 2) is better than their performance under less information sharing
(graph 1 in Fig. 2). A major advantage of exchanging information among individual

188 C. D. Pahlajani et al.

Fig. 3 The communication topologies of Fig. 2 result in different bounds for the probability of
missed detection for each sensor S1 to S5. These are bounded by the two extreme cases: no infor-
mation is shared (magenta curve), and fusion center having data from all sensors (black curve).
Missing line segments indicate that the corresponding sensors do not satisfy the constraint on the
probability of false alarm

Fig. 4 The left plot shows the logarithm of the bound on the probability on missed detection
with decision time T using graph 1 of Fig. 2. The right plot shows Monte-Carlo estimates of the
probability of missed detection using graph 1 of Fig. 2

sensors is evident from the performance of node 3 in Fig. 3 (left), which corresponds
to graph 3 of Fig. 2. Indeed, due to the larger distance from the source, sensor 3
neither makes good quality measurements nor it receives signals from sensor 1; yet
it performs better than 1 or 2 because of its location in the graph. However, more
incoming edges to a sensor does not always result into better performance. To see
this, Fig. 3 (right) describes network performance when the spatial arrangement is
scaled up by 2 such that all the distances are doubled (1m instead of 0.5m). Doubling
the distances between sensors, results in weakening the observed signal, in the sense
that the intensity of the arrival process perceived by each sensor decreases. In this
case of larger inter-sensor distance, more sensors do not satisfy the constraint on
the probability of false alarm at the end of the decision interval T = 40 s, and the
additional information available to sensor 3 due to its location in graph 3 does not
compensate for the overall weak quality of the signals received by all the sensors.

Decision-Making Accuracy for Sensor Networks … 189

The dependency of node ranking on the available decision time is illustrated in
Fig. 4 (left) for the case of graph 1. It can be seen that as more time is allowed tomake
the decision, the location of the best performing sensor shifts in the direction of the
motion of the source. This observation reflects the intuitive fact that the sensor that
remains closer than the rest to the source during the detection time window performs
better. As a final remark it should be mentioned that the aforementioned observations
on node ranking in terms of their decision-making capability are based on the Cher-
noff bounds (6). To compare the prediction of the bounds with that obtained by the
actual probabilities, Fig. 4 (right) depicts an estimate for the logarithm of the proba-
bility of missed detection obtained using Monte-Carlo simulations. In this particular
example, the source intensity is assumed to be 1.75 cps and the network topology
corresponds to graph 1 of Fig. 2. As can be seen, the prediction of the bounds is the
same with that of the estimated probabilities of missed detection. It is important to
note, however, that although the general trend of actual error probabilities is captured
by the bounds [12], one must be aware that the loss of sharpness associated with the
use of bounds may result in node rankings that do not faithfully reflect the actual
ranking; for example, this is the case when neighboring sensors exhibit compara-
tively similar decision-making performance in a way that cannot be differentiated
by the bounds.

5 Conclusions

The paper argues that the decision-making accuracy of individual nodes in a network
of radiation detectors can be quantified using explicitly computed Chernoff upper
bounds as proxies for true error probabilities. The resulting ranking of nodes can be
used to choosewhich node shouldmake the final decision in a distributed setupwhere
each individual node can act as a potential decision maker. Examples show how the
capability of each sensor to make a decision about the observed process depends on
the interplay between the location of the sensor in the underlying network architecture
(reflecting the quantity of information available to the sensor) and the spatial location
of the sensors with respect to the source (reflecting the quality of individual sensor
measurements). Performance comparable to that of decision making with a fusion
center can be achieved by allowing partial information sharing between the nodes
over some fixed, directional communication topology. This paper lays the foundation
for future work in which the network performance is optimized by reconfiguring
the underlying communication topology (cf. [1]) given the number of sensors, the
strength of the signal, and the time available to make the decision.

Acknowledgements This work is supported in part by DTRA under award #HDTRA1-16-1-0039.

190 C. D. Pahlajani et al.

References

1. Bhambhani, V., Valbuena, L., Tanner, H.G.: Spatially distributed cellular neural networks. Int.
J. Intell. Comput. Cybern. 4(4), 465–486 (2011)

2. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D.: The physics of optimal decision
making: a formal analysis of models of performance in two-alternative forced-choice tasks.
Psychol. Rev. 113(4), 700–765 (2006)

3. Brémaud, P.: Point Processes and Queues. Martingale Dynamics. Springer, Berlin (1981)
4. Byrd, R., Moss, J., Priedhorsky, W., Pura, C., Richter, G.W., Saeger, K., Scarlett, W., Scott Jr.,

S., Wagner, R.: Nuclear detection to prevent or defeat clandestine nuclear attack. IEEE Sens.
J. 5(4), 593–609 (2005)

5. Fitch, K., Leonard, N.E.: Information centrality and optimal leader selection in noisy networks.
In: IEEE Intenrational Conference on Decision and Control, pp. 7510–7515 (2013)

6. González, F.I., Bernard, E.N., Meinig, C., Eble, M.C., Mofjeld, H.O., Stalin, S.: The NTHMP
tsunameter network. Nat. Hazards 35, 25–39 (2005)

7. Lewis, P.A.W., Shedler, G.S.: Simulation of nonhomogeneous Poisson processes by thinning.
Nav. Res. Logist. Q. 26(3), 403–413 (1979)

8. Morreale, P., Qi, F., Croft, P.: A green wireless sensor network for environmental monitoring
and risk identification. Int. J. Sens. Netw. 10(1–2), 73–82 (2011)

9. Nemzek, R.J., Dreicer, J.S., Torney, D.C., Warnock, T.T.: Distributed sensor networks for
detection of mobile radioactive sources. IEEE Trans. Nucl. Sci. 51(4), 1693–1700 (2004)

10. Ogata, Y.: Seismicity analysis through point-process modeling: a review. Pure Appl. Geophys.
155, 471–507 (1999)

11. Pahlajani, C.D., Poulakakis, I., Tanner,H.G.:Networked decisionmaking for Poisson processes
with applications to nuclear detection. IEEE Trans. Autom. Control 59(1), 193–198 (2014)

12. Pahlajani, C.D., Sun, J., Poulakakis, I., Tanner, H.G.: Error probability bounds for nuclear
detection: improving accuracy through controlled mobility. Automatica 50(10), 2470–2481
(2014)

13. Pasupathy, R.: Generating nonhomogeneous Poisson processes. Wiley Encyclopedia of Oper-
ations Research and Management Science. Wiley, New York (2009)

14. Poulakakis, I., Scardovi, L., Leonard, N.E.: Node classification in collective evidence accumu-
lation toward a decision. In: Proceedings of the IEEE International Conference on Decision
and Control (2012)

15. Poulakakis, I., Young, G.F., Scardovi, L., Leonard, N.E.: Information centrality and ordering
of nodes for accuracy in noisy decision-making networks. IEEE Trans. Autom. Control 61(4),
1040–1046 (2016)

16. Srikrishna, D., Chari, A.N., Tisch, T.: Deterance of nuclear terrorism with mobile radiation
detectors. Nonproliferation Rev. 12(3), 573–614 (2005)

17. Stephenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11(1),
1–37 (1989)

18. Sundaresan, A., Varshney, P.K., Rao, N.S.V.: Distributed detection of a nuclear radioactive
source using fusion of correlated decisions. In: Proceedings of the International Conference on
Information Fusion, pp. 1–7. IEEE (2007)

19. Tenney, R.R., Sandell Jr., N.R.: Detection with distributed sensors. IEEE Trans. Aerosp. Elec-
tron. Syst. 17(4), 501–510 (1981)

20. Tsitsiklis, J., Athans, M.: On the complexity of distributed decision problems. IEEE Trans.
Autom. Control AC-30, 440–446 (1985)

21. Tsitsiklis, J.N.: Decentralized detection. Adv. Stat. Signal Process. 2, 297–344 (1993)
22. Varshney, P.K.: Distributed Detections and Data Fusion. Springer, New York (1997)
23. Viswanathan, R., Varshney, P.K.: Distributed detection with multiple sensors: part I - funda-

mentals. Proc. IEEE 85(1), 54–63 (1997)

Distributed Laplacian Eigenvalue and
Eigenvector Estimation in Multi-robot
Systems

Mehran Zareh, Lorenzo Sabattini and Cristian Secchi

Abstract In many multi-robot systems applications, obtaining the spectrum and the
eigenvectors of the Laplacian matrix provides very useful information. For example,
the second smallest eigenvalue, and the corresponding eigenvector, can be used for
connectivity maintenance (see for example Freeman et al., Stability and convergence
properties of dynamic average consensus estimators, 2006, [5]). Moreover, as shown
in Zareh et al. (Decentralized biconnectivity conditions inmulti-robot systems, 2016,
[22], Enforcing biconnectivity in multi-robot systems, 2016, [23]), the third small-
est eigenvalue provides a metric for ensuring robust connectivity in the presence
of single robot failures. In this paper, we introduce a novel decentralized gradient
based protocol to estimate the eigenvalues and the corresponding eigenvectors of the
Laplacian matrix. The most significant advantage of this method is that there is no
limit on the multiplicity of the eigenvalues. Simulations show the effectiveness of
the theoretical findings.

1 Introduction

The last decade haswitnessed a dramatically growing interest inmulti-robot systems.
The application of such systems can be found in environment monitoring, submarine
exploration, and distributed sensing [11, 12, 17–19]. A multi-robot system is com-
posed of distributed nodes, and each of them has the ability of sensing, processing,
communicating, and moving. Recent technological advances have led to the emer-
gence of pervasive networks of small, low-power devices that integrate sensors and

M. Zareh · L. Sabattini (B) · C. Secchi
Department of Sciences and Methods for Engineering (DISMI),
University of Modena and Reggio Emilia, Modena and Reggio Emilia, Italy
e-mail: lorenzo.sabattini@unimore.it

M. Zareh
e-mail: mehran.zareh@unimore.it

C. Secchi
e-mail: cristian.secchi@unimore.it

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_14

191

192 M. Zareh et al.

actuators with limited on-board processing and wireless communication capabili-
ties. Several researches in the control system community are dedicated to provide
algorithms for coordination and estimation in networks of multi-robot systems [4–6,
20, 21].

The network topology of multi-robot systems can be described by a graph, in
which nodes represent robots and edges represent links between the nodes. The
behavior of such systems depend both on the interactions between the nodes and on
the network topology. Some useful characteristics of a graph can be provided using
algebraic graph theory tools. For instance, the spectrum of the Laplacian matrix
associated to a graph can be used to estimate topological properties such as connec-
tivity, average degree, diameter, spectral gap, biconnectivity, etc [2]. In the context
of multi-robot systems, these quantities provide relevant information regarding the
performance of the overall system. As stated in [13], the algebraic connectivity, i.e.,
the second smallest eigenvalue, is a fundamental parameter to estimate the worst
case convergence rate of consensus algorithms. The algebraic connectivity can also
be exploited, as shown in [14], for implementing connectivity maintenance control
strategies. Conditions for enforcing biconnectivity, based on the third smallest eigen-
value of the Laplacian matrix, are introduced in [22, 23]. Algebraic conditions for
ensuring k-connectivity are discussed in [10].

While several centralized methods exist in the literature that allow to computing
the spectrum of the Laplacian matrix [1, 3], there are only a few articles that present
decentralized approaches. In [16], the authors proposed a distributed estimator for the
algebraic connectivity of a weighted Laplacian matrix based on the power iteration
algorithm, that exploits the estimation of the corresponding eigenvector. Since this
approach is based on power iteration and matrix deflation, its convergence is slow
and requires a large computational effort. A decentralized algorithm to estimate the
eigenvalues of the Laplacian matrix of undirected graphs is proposed in [4], based on
local interaction rules among the nodes defined in such away that their state trajectory
is a linear combination of sinusoids oscillating only at frequencies function of the
eigenvalues of the Laplacian matrix. Eigenvalues are then found by using standard
signal processing techniques. Using this method, only the value of the eigenvalues
can be determined and themultiplicity of each eigenvalue is not given. Reference [15]
presents an algorithm for estimating eigenvalues of the Laplacian matrix associated
with the graph describing the network topology a multi-agent system, while [8]
studies a constrained consensus optimization problem for estimating the Laplacian
eigenvalues of the network graph.None of theseworks discuss eigenvector estimation
problem.

Also the eigenvectors of the Laplacian matrix provide some information about
the graph. For example, [9] studies the relation between the eigenvector associated
to the second smallest eigenvalue, or the Fiedler vector, and the Perron components
of a graph. In [10], k-connectivity based on the elements of the Fiedler vector is
studied. Reference [16] proposes a gradient controller to maximize the value of
the second smallest eigenvalue, in which the controller is formed from the Fiedler
vector. Very recently, in [23], we presented a controller, which is a function of the
eigenvector associated to the third smallest eigenvalue of the Laplacian matrix, to
enforce biconnectivity in the network.

Distributed Laplacian Eigenvalue and Eigenvector … 193

In this paper we develop a novel distributed estimator to find all the eigenvalues
and eigenvectors of the Laplacian matrix simultaneously. Each node runs a local
consensus protocol to estimate an eigenvalue, and the associated eigenvector, of the
Laplacian matrix. Once the estimation error has become sufficiently small, the nodes
renovate this protocol to obtain another eigenvalue-eigenvector pair. This continues
until each node estimates all the eigenvalues and the associated eigenvectors. Amajor
novelty of this paper, with respect to the existing literature, is that the eigenvectors
and the eigenvalues are computed all at the same time. Moreover, the simulations
show that the estimation procedure can converge very rapidly if proper gains are
selected and the computational loads are not constrained. The convergence rate and
the computational constraints are left for the future studies. In addition, this method
has the benefit of giving the algebraic multiplicity for each eigenvalue (for example,
the method introduced in [4] does not determine the algebraic multiplicity).

The outline of the paper is as follows. In Sect. 2 we introduce notations and some
basic notions on graph theory, whichwill be used in thiswork. The problem statement
is introduced in Sect. 3. Section4 provides the main contribution of this paper. We
provide some theorems on decentralized eigenvector and eigenvalue estimation. In
Sect. 5, the simulation results are given to verify the theoretical findings. Finally, in
Sect. 6, we conclude the paper and describe the open problems.

2 Preliminaries and Notations

The topology of bidirectional communication channels among the robots is repre-
sented by an undirected graph G = (V ,E)where V = {1, . . . , n} is the set of nodes
(robots) and E ⊂ V × V is the set of edges. An edge (i, j) ∈ E exists if there is a
communication channel between robots i and j . Self loops (i, i) are not considered.
The set of robot i’s neighbors is denoted by Ni = { j : (j, i) ∈ E ; j = 1, . . . , n}.
The network graph G is encoded by the so-called adjacency matrix, an n × n matrix
A whose (i, j)th entry ai j is greater than 0 if (i, j) ∈ E , 0 otherwise. Obviously,
in an undirected graph matrix A is symmetric. The degree matrix is defined as
D = diag(d1, d2, . . . , dn) where di = ∑n

j=1 ai j is the degree of node i . The Lapla-
cian matrix of a graph is defined as L = D − A. The Laplacian matrix of a graph
has several structural properties. It has non-negative real eigenvalues for any undi-
rected graph G . Furthermore, let 1 and 0 be, respectively, the vectors of ones and
zeros with proper dimensions, then L 1 = 0 and 1TL = 0T . If the weights ai j are
not equal to 1, the graph and the associated adjacency and Laplacian matrices are
called weighted. Denote by λi (·) the i th leftmost eigenvalue, and by vi (·) and wi (·)
the right and left eigenvectors associated with λi (·). In this way, the eigenvalues of
the Laplacian matrix can be ordered as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L). In G
a node i is reachable from a node j if there exists an undirected path from j to i .
If G is connected then L is a symmetric positive semi-definite irreducible matrix.
Moreover, the algebraic multiplicity of the null eigenvalue of L is one.

194 M. Zareh et al.

3 Problem Statement

We study the problem of distributed estimation of the eigenvalues and eigenvectors
of the Laplacian matrix in multi-robot systems. Communications are assumed to be
between each robot and its 1-hop neighbors. The connectivity of the initial network
is also assumed. Then, we raise the following problem.

Problem 1 For a multi-robot system with a connected undirected interaction graph
G , find a decentralized protocol to estimate the eigenvalues and eigenvectors of the
Laplacian matrix.

4 Proposed Algorithm

In this section we introduce an algorithm for estimating, in a decentralized manner,
the eigenvalues of the Laplacian matrix and the corresponding eigenvectors. The
proposed method can be summarized as follows:

• For estimating n eigenvalue-eigenvector pairs, n steps are necessary. Each step
includes a run of a distributed estimator.

• At the cth step, the i th robot computes αi as the estimate of the eigenvalue λc, and
zi as the estimate of the corresponding eigenvector vc. Note that the eigenvalue-
eigenvector pairs are computed without following any specific order.

• The cth step concludes when the estimator reaches a steady state. The estimator
is then re-initialized, and a new eigenvalue-eigenvector pair is estimated.

We will now describe in details the proposed methodology.
Assume that, in a multi-robot system, the network graph G is connected and

undirected. Define by αi the estimation of the eigenvalue λc ofL performed by the
robot i at step c. Let L̃i (αi) = L − αi I . From the eigenvector properties [7], we
know that the eigenvectors of L and L̃i (αi) are identical. Denote by l̃ i ∈ R

n the
i th column of L̃i (αi). Let Pi (αi) = l̃ i l̃ i

T
, i = 1, . . . , n, and define a block-diagonal

matrix P(α) = diag(P1(α1), . . . , Pn(αn)).
Now, consider the following decentralized estimator

żi (t) = kz

⎡

⎣
n∑

j=1

ai j (z j (t) − zi (t)) − Pi zi (t)

⎤

⎦ , i = 1, . . . , n, (1)

in which zi , i = 1, . . . , n is the i th agent’s normalized estimation for the eigenvector
vc of L , at step c. kz ∈ R

+ is the estimator gain. The estimate of the eigenvalue-
eigenvector pair is achieved by means of the following protocol:

Distributed Laplacian Eigenvalue and Eigenvector … 195

α̇i (t) = kα

⎡

⎣
n∑

j=1

ai j (α j (t) − αi (t)) − 2zii l̃
i T zi (t)

⎤

⎦ , (2)

where zii is the i th element of zi , and kα ∈ R
+. We can rewrite the above equations

in state-space form as

{
ż(t) = −kzM(α)z(t),
α̇ = −kα(L α(t) − G(α)z(t)).

(3)

in which z = [zT1 , . . . , zTn]T , M(α) = L ⊗ I + P(α), α = [α1, . . . , αn]T , and

G(α) = 2diag(z11l̃
1T , z22l̃

2T , . . . , znnl̃
nT).

We need the following lemmas to explain some properties of M(α).

Lemma 1 P(α) is a positive semi-definite matrix.

Proof According to its definition, P(α) is a symmetric matrix, and we can rewrite
it as

P(α) = PT
0 (α)P0(α),

where P0(α) = diag(l̃1
T
, . . . , l̃n

T
). Consequently

xT P(α)x = xT PT
0 (α)P0(α)x = (x P0(α))T (x P0(α)) ≥ 0.

This completes the proof. �

In the next lemma we use the fact that any two eigenvectors of any real symmetric
matrix are perpendicular.

Lemma 2 The eigenvalues ofL ⊗ I are achieved by n-times repeating each eigen-
value of L , i.e.,

λkn+1(L ⊗ I) = · · · = λ(k+1)n(L ⊗ I) = λk(L), k = 0, . . . , n − 1.

The set {vk(L) ⊗ vl(L), l = 1, . . . , n} formsanorthogonal basis for the eigenspace
of L ⊗ I associated with λk(L), k = 1, . . . , n.

Proof See the proof of Lemma 2 in [23]. �

Corollary 1 For a connected undirected graph G , the set {1 ⊗ v1(L), . . . , 1 ⊗
vn(L)} forms an orthogonal basis for the kernel of L ⊗ I .

Proof Since G is a connected undirected graph, L has a unique null eigenvalue
and, based on Lemma 2, L ⊗ I has n null eigenvalues. Let v1(L) = 1 be the first
eigenvector. The result then follows from straightforward computations. �

196 M. Zareh et al.

Lemma 3 For a connected graph G , the kernels of L ⊗ I and P(α) intersect if
and only if α = λk(L)1, k = 1, . . . , n. This unique intersection lies in span(1 ⊗
vk(L)).

Proof By direct calculation, we can show that, for α = λk1, span(1 ⊗ vk(L)) is in
the kernel of P(α) and, based on Corollary 1, it is in the intersection of the kernels
of L ⊗ I and P .

Now, using contradiction, we show that this intersection is unique. Suppose that
the intersection of the kernels is not unique. Suppose αi �= λm(L)1 and let span{1 ⊗
vm(L)}, m ∈ {i = 1, . . . , n,m �= k}, be another intersection for the kernels ofL ⊗
I and P . Then P(1 ⊗ vm(L)) = 0. From the definition of P we get that

l̃ i l̃ i
T
vm(L) = l̃ i

(
l̃ i

T
vm(L)

)
= 0, i = 1, . . . , n,

which is the product of a vector and a scalar. Since the graph G is connected, l̃ i �= 0,
and hence

l̃ i
T
vm(L) = 0, ⇒ li

T
vm(L) = αi vmi (L), i = 1 . . . , n.

which gives
λm(L)vmi (L) = αi vmi (L), i = 1, . . . , n,

or
λm(L)vm(L) = diag(α)vm(L). (4)

If αi �= λm(L), i = 1, . . . , n, then the unique solution for the above equation
is vm(L) = 0, which is not acceptable. As a consequence, the intersection of the
kernels of L and P(α) exists, if and only if α = λm(L)1, m = 1, . . . , n, and this
intersection that lies in span(1 ⊗ vm(L)). �

Lemma 4 For a connected undirected graph G , the matrix M(α) in (3) is positive
semi-definite, and has, at most, one null eigenvalue, and z lies in the kernel of M(α)

if and only if z ∈ span{1 ⊗ vm(L)} and α = λm(L)1, m = 1, . . . , n.

Proof For any non-zero normalized vector x ∈ R
n2 , xT x = 1, the Rayleigh quotient

[7] of M is defined as
R (M(α), x) = xT M(α)x . (5)

Let γ1 ≤ · · · ≤ γn2 be eigenvalues of M . Since M(α),L ⊗ I , and P are symmetric
matrices, and hence Hermitian, from the min-max theorem [7] we get

γ1 = min{R(M(α), x) : x �= 0} = min{R(L ⊗ I, x) + R(P(α), x) : x �= 0}
= min{R(L ⊗ I, x) : x �= 0} + min{R(P(α), x) : x �= 0}
= λmin(L) + λmin(P) = 0.

Distributed Laplacian Eigenvalue and Eigenvector … 197

FromLemma2,we know that 1 ⊗ v j , j = 1, . . . , n, forms an orthogonal basis for the
kernel ofL ⊗ I . FromLemma 3, we know that the kernels ofL ⊗ I and P intersect
if and only if α = λm(L)1, m = 1, . . . , n, and otherwise there is no intersection.
This means that

γ1 = min{R(M(α), x)} = 0

if and only if x is in the intersection of the kernels of P and L ⊗ I which, from
Lemma 3, is x ∈ span{1 ⊗ vm(L)}. �

In the next step, by adding an additional term to the estimator in (3), we propose
a protocol that leads the system to estimate the eigenvalues and eigenvectors of the
Laplacian matrix. Consider

żi (t) = kz

⎛

⎝
n∑

j=1

ai j (z j (t) − zi (t)) − kz

⎡

⎣Pi +
∑

k∈S
vk(L)vTk (L)

⎤

⎦ zi (t)

⎞

⎠ , i = 1, . . . , n,

(6)
where S ⊂ {1, . . . , n}. αi (t) is obtained from (2). In the state-space form we get

{
ż(t) = −kzM1(α)z(t),
α̇ = −kα(L α(t) − G(α)z(t)),

(7)

where
M1(α) = M(α) + M2,

with

M2 = I ⊗
[

∑

k∈S
vk(L)vTk (L)

]

.

Notice that the protocol (6) uses only locally known information, and hence, it is
a decentralized estimator. The next lemmas describe some properties of M1(α) and
M2.

Lemma 5 M2 is a positive semi-definite matrix and any x = 1 ⊗ vm, where m /∈ S
lies in the kernel of M2.

Proof Note that M2 is a block diagonal matrix with all blocks
∑

k∈S
vk(L)vTk (L)

positive semi-definite. Hence, M2 is a positive semi-definite matrix. The second part
can be shown by direct calculations. �

Lemma 6 Fora connected graphG , thematrix M1(α) in (3) is positive semi-definite,
and has, at most, one null eigenvalue. Moreover, z lies in the kernel of M(α) if and
only if z ∈ span{1 ⊗ vm(L)} and α = λm(L)1, m /∈ S .

Proof Based on Lemmas 4 and 5, M1(α) is a sum of two positive semi-definite
matrices, hence is a positive semi-definite matrix. Similar to what we showed in the

198 M. Zareh et al.

proof of Lemma 4, for any non-zero normalized vector x ∈ R
n2 , xT x = 1, define

the Rayleigh quotient [7] of M1 as

R(M1(α), x) = xT M1(α)x = xT M(α)x + xT M2x . (8)

From Lemma 4, M(α) has at most one null eigenvalue, and therefore, R(M1(α), x)
may be equal to zero if x ∈ ker(M(α)). Hence, M1(α) can get at most one null
eigenvalue where, due to Lemma 4, it occurs for x = 1 ⊗ vm and α = λm(L)1.
Now from Lemma 5, we can conclude that the intersection of the kernels of M(α)

and M2 is
x = 1 ⊗ vm(L), m ∈ {1, . . . , n} − S .

Therefore, M1(α) is a positive semi-definite matrix with at most one null eigenvalue
and the kernel which is given by the above equation. �

Now, we are ready to show the stability of the estimators in (3) and (7).

Theorem 1 If the graph G is undirected and connected, the system in (3) is asymp-
totically stable, and the estimator reaches

lim
t→∞ zi = 1 ⊗ vm(L), and lim

t→∞ αi = λm(L), m ∈ {1, . . . , n} − S

where λm(L) and vm(L) are a pair of associated eigenvalue and eigenvector of
theL .

Proof From (7), we know that the equilibrium points must be located in the kernel
of M1(α). Again, due to the fact that the vectors zi are normalized, we get

zT z = zT1 z1 + · · · + zTn zn = n,

So the point z = 0 cannot be an equilibrium point. Then, according to Lemma 6, the
equilibrium points of the system in (7) are z = span(1 ⊗ vm(L)) and α = λm(L)1
where m ∈ {1, . . . , n} − S .

Consider the following candidate potential function

V = kzz
T (t)M1(α)z(t) + kααT (t)L α(t). (9)

Notice that
∂V

∂z
= kzM1(α)z,

and

∂V

∂α
= kαL α + kα

∂

∂α
(zT M(α)z) = kαL α + kα

∂

∂α
(zT (L ⊗ I)z) + ∂

∂α
(zT P(α)z).

(10)

Distributed Laplacian Eigenvalue and Eigenvector … 199

From the definition of P(α) we get

∂

∂α
(zT P(α)z) = ∂

∂α
(zT P(α)z) = ∂

∂α

n∑

i=1

(zTi Pi (αi)zi) =
n∑

i=1

(

zTi
∂Pi (αi)

∂αi
zi

)

(11)
Let li be the i th column of L and μi be a vector with all elements equal to zero,
except for the i th element which is equal to 1. From the definition of li we have
l̃ i = li − αiμi

Pi (αi) = li li
T − αi (l

iμT
i + μi l

i T) + α2
i μiμ

T
i .

Derivation with respect to αi gives

∂Pi (αi)

∂αi
= −(liμT

i + μi l
i T) + 2αiμiμ

T
i .

Hence

zTi
∂Pi (αi)

∂αi
zi = −2zii l

i T zi + 2αi z
2
i i = −2zii l̃

i T zi . (12)

By replacing from (12) in (10), we get

∂V

∂α
= kαL α − G(α)z. (13)

In order to guarantee convergence to aminimum of the potential function V in (9),
we need to show its time derivative V̇ to be non-positive. It is worth noting that the
proposed estimator in (7) implements a gradient descent of the potential function V .
In fact: ⎧

⎪⎨

⎪⎩

ż(t) = −kzM1z = −∂V

∂z

α̇(t) = −kα(L α − G(α)z) = −∂V

∂α
.

We can then ensure that

V̇ = ∂V

∂z
ż + ∂V

∂α
α̇ = −ż2(t) − α̇2(t) ≤ 0.

In addition, notice that V̇ is zero if and only if ż = 0 and α̇ = 0, i.e., when the
system reaches the equilibrium point. This proves that the estimator (7) asymp-
totically converges to the equilibrium point z = 1 ⊗ vm(L) and α = λm(L)1,
m ∈ {1, . . . , n} − S . �

Now, we introduce our main algorithm to estimate the eigenvalues and eigenvec-
tors of the Laplacian matrix.

As the diagram in Fig. 1 shows, each node i first runs the protocol (7) with M1 =
M until the distance from the equilibrium point (here we measured the distance

200 M. Zareh et al.

Fig. 1 Distributed eigenvalue and eigenvector estimation algorithm

by ‖żi‖ + ‖α̇i‖) gets a sufficiently small value ε. Since S is an empty set, from
Theorem 1, this leads to an estimate of a random eigenvalue and its associated
eigenvector. Parameter c is a counter and counts the number of eigenvalues already
calculated. Based onTheorem1,αi converges to an eigenvalue ofL and zi converges
to the corresponding eigenvector. Without loosing generality, we call the estimated
eigenvalue λc and the eigenvector vc at each step. Notice that this does not indicate
the order of the eigenvalues from the minimum to the maximum. In order to find
another eigenvalue and eigenvector, node i implements the protocol (7) by updating
M1 = M1 + vcvTc . As shown in Theorem 1, the estimator (7) is asymptotically stable
and αi converges to an eigenvalue of L , which is different from the previously
estimated λ1, . . . , λc. Accordingly, zi converges to the corresponding eigenvector.
Again, when the distance from the equilibrium point gets close enough to zero, the
counter is increased by 1. This procedure is continued until the counter is equal to
n, that is when each agent has estimated all the eigenvalues and eigenvectors of L .

Remark 1 In this algorithm, we do not have any assumption on the algebraic multi-
plicity. Notice that each eigenvalue can be repeated several times. SinceL is a real
symmetric matrices, is has orthogonal eigenvectors, and the conditions in Lemmas
5, 6, and Theorem 1 hold. This means that we can achieve orthogonal (orthonormal
in our case) eigenvectors associated with the equal eigenvalues.

Remark 2 Based on the connectivity assumption, λ1(L) = 0 is always a simple
eigenvalue of L , and v1 = 1/

√
n is the corresponding normalized eigenvector.

Hence, we exclude this eigenvalue by initially updating M1 = M + 11T /n.

Remark 3 At each step, the eigenvector obtained from the previous step is used.
Therefore, an accumulative error can be expected. Moreover, from the asymptotic
stability, one cannot estimate any bounded convergence time. We leave these open
problems, as well as the effect of kz and kα , for the future studies.

Distributed Laplacian Eigenvalue and Eigenvector … 201

Fig. 2 Examples

5 Simulations

In this section we provide simulation results. Two different cases are demonstrated.
In the first one, a small unweighted graphwith some non-simple eigenvalues is given.
Conversely, the second one presents a larger weighted graph.

Example 1 Consider the network graph given in Fig. 2a. We suppose that the edge
weights are all equal to one. The eigenvalues of the Laplacian matrix are 0, 3, 3, 5, 5.
Select kz = 1 and kα = 10. Figure3 demonstrates the estimated eigenvalues and
eigenvectors in the order in which the algorithm calculated them, which is random
and varies from one simulation to another. In our future work, we want to study the
relation between the initial values and the estimated eigenvectors and eigenvalues.

Example 2 Now, we use the proposed algorithm to estimate the eigenvalues and
eigenvectors of a weighted graph. Consider the Laplacian matrix in Fig. 2b. The
estimator parameters are selected kz = 20 and kα = 50. Due to space limitations,
only the first two estimated eigenvalues and eigenvectors are shown in Fig. 4a–d,
and the estimation error for the other eigenvalues and eigenvectors are given in the
Table in Fig. 4e. The order of the estimated eigenvalues and eigenvectors is kept as
obtained from the algorithm.

The results show that the estimation errors are sufficiently small. This errors
depend on the initial values and the estimator gains. We leave finding the relation
between the errors and the mentioned parameters for the future works.

6 Conclusions

In this paper we developed a novel distributed algorithm to estimate all the eigen-
values and their corresponding eigenvectors of the Laplacian matrix. The major
advantage of the proposed algorithm with respect to the main approaches in the
literature is that it is possible to estimate simultaneously both eigenvalues and the
eigenvectors. In addition, there is no limit on the multiplicity of the eigenvalues. The
algorithm was tested for weighted and unweighted graphs. In each of the cases the

202 M. Zareh et al.

Time
0 2 4 6 8 10

3

3.5

4

4.5

5

(a) λ4(L)
Time

0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) v4(L)

Time
0 5 10 15

3

3.5

4

4.5

5

(c) λ5(L)
Time

0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(d) v5(L)

Time
0 1 2 3 4 5

3

3,1

(e) λ2(L)
Time

0 1 2 3 4 5 6 7
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(f) v2(L)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

(g) λ3(L)

0 1 2 3 4 5 6 7
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(h) v3(L)

E
ig

en
va

lu
e

es
tim

at
io

n

E
ig

en
ve

ct
or

 e
st

im
at

io
n

E
ig

en
va

lu
e

es
tim

at
io

n

E
ig

en
ve

ct
or

 e
st

im
at

io
n

E
ig

en
va

lu
e

es
tim

at
io

n

E
ig

en
ve

ct
or

 e
st

im
at

io
n

E
ig

en
va

lu
e

es
tim

at
io

n

E
ig

en
ve

ct
or

 e
st

im
at

io
n

Time Time

Fig. 3 Laplacian eigenvalue and eigenvector in Example 1 (estimated (solid) and exact value
(dashed))

Distributed Laplacian Eigenvalue and Eigenvector … 203

Time
0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

(a) λ3(L)
Time

0 0.5 1 1.5
-1

-0.5

0

0.5

1

(b) v3(L)

Time
0 0.5 1 1.5 2

0.4

0.6

0.8

1

1.2

1.4

(c) λ4(L)
Time

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

(d) v4(L)

Estimation error Estimation error
λ5(L) 4.04e-6 v5(L) 3.03e-6
λ2(L) 1.65e-6 v2(L) 1.10e-6
λ7(L) 4.71e-7 v7(L) 1.98e-7
λ6(L) 1.24e-6 v7(L) 3.52 e-7
λ8(L) 7.54e-7 v8(L) 3.97e-7

(e)

E
ig

en
va

lu
e

es
tim

at
io

n

E
ig

en
ve

ct
or

 e
st

im
at

io
n

E
ig

en
va

lu
e

es
tim

at
io

n

E
ig

en
ve

ct
or

 e
st

im
at

io
n

Fig. 4 Laplacian eigenvalue and eigenvector in Example 2 (estimated (solid) and exact value
(dashed))

estimation errors were very small. The relation between the errors and the design
parameters and the initial values for the estimator, as well as the convergence rate,
are left for the future studies.

References

1. Bapat, R.B., Pati, S.: Algebraic connectivity and the characteristic set of a graph. Linear Mul-
tilinear Algebra 45(2–3), 247–273 (1998)

2. Bapat, R.B., Lal, A.K., Pati, S.: On algebraic connectivity of graphs with at most two points
of articulation in each block. Linear Multilinear Algebra 60(4), 415–432 (2012)

3. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 298–305 (1973)

204 M. Zareh et al.

4. Franceschelli, M., Gasparri, A., Giua, A., Seatzu, C.: Decentralized estimation of Laplacian
eigenvalues in multi-agent systems. Automatica 49(4), 1031–1036 (2013)

5. Freeman, R., Yang, P., Lynch, K.: Stability and convergence properties of dynamic average
consensus estimators. In: 2006 45th IEEE Conference on Decision and Control, pp. 338–343
(2006). https://doi.org/10.1109/CDC.2006.377078

6. Guo, J.M.: The Laplacian spectral radius of a graph under perturbation. Comput. Math. Appl.
54(5), 709–720 (2007)

7. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)
8. Kibangou, A.Y., et al.: Distributed estimation of Laplacian eigenvalues via constrained con-

sensus optimization problems. Syst. Control Lett. 80, 56–62 (2015)
9. Kirkland, S., Fallat, S.: Perron components and algebraic connectivity for weighted graphs.

Linear Multilinear Algebra 44(2), 131–148 (1998)
10. Kirkland, S., Rocha, I., Trevisan,V.:Algebraic connectivity of k-connected graphs. Czechoslov.

Math. J. 65(1), 219–236 (2015)
11. Olfati-Saber, R.: Flocking formulti-agent dynamic systems: algorithms and theory. IEEETrans.

Autom. Control 51(3), 401–420 (2006)
12. Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor

fusion. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05, pp. 6698–6703. IEEE (2005)

13. Olfati-Saber, R., Fax, A., Murray, R.M.: Consensus and cooperation in networked multi-agent
systems. Proc. IEEE 95(1), 215–233 (2007)

14. Sabattini, L., Chopra, N., Secchi, C.: Decentralized connectivity maintenance for cooperative
control of mobile robotic systems. Int. J. Robot. Res. 32(12), 1411–1423 (2013)

15. Tran, T.M.D., Kibangou, A.Y.: Consensus-based distributed estimation of Laplacian eigenval-
ues of undirected graphs. In: 12th Biannual European Control Conference (ECC 2013), pp.
227–232 (2013)

16. Yang, P., Freeman, R.A., Gordon, G.J., Lynch, K.M., Srinivasa, S.S., Sukthankar, R.: Decen-
tralized estimation and control of graph connectivity for mobile sensor networks. Automatica
46(2), 390–396 (2010)

17. Zareh, M.: Consensus in multi-agent systems with time-delays. Ph.D. thesis, University of
Cagliari (2015)

18. Zareh, M., Seatzu, C., Franceschelli, M.: Consensus of second-order multi-agent systems with
time delays and slow switching topology. In: 2013 10th IEEE International Conference on Net-
working, Sensing and Control (ICNSC), pp. 269–275 (2013). https://doi.org/10.1109/ICNSC.
2013.6548749

19. Zareh,M., Seatzu, C., Franceschelli,M.: Consensus on the average in arbitrary directed network
topologies with time-delays. In: 4th IFAC Workshop on Distributed Estimation and Control
in Networked Systems, pp. 342–347 (2013). https://doi.org/10.3182/20130925-2-DE-4044.
00022

20. Zareh, M., Dimarogonas, D.V., Franceschelli, M., Johansson, K.H., Seatzu, C.: Consensus in
multi-agent systems with non-periodic sampled-data exchange and uncertain network topol-
ogy. In: 2014 International Conference on Control, Decision and Information Technologies
(CoDIT), pp. 411–416. IEEE (2014)

21. Zareh, M., Dimarogonas, D.V., Franceschelli, M., Johansson, K.H., Seatzu, C.: Consensus in
multi-agent systems with second-order dynamics and non-periodic sampled-data exchange.
In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp.
1–8. IEEE (2014)

22. Zareh, M., Secchi, C., Sabattini, L.: Decentralized biconnectivity conditions in multi-robot
systems. In: IEEE International Conference on Decision and Control (CDC). IEEE (2016)

23. Zareh, M., Secchi, C., Sabattini, L.: Enforcing biconnectivity in multi-robot systems. In: IEEE
International Conference on Decision and Control (CDC). IEEE (2016)

https://doi.org/10.1109/CDC.2006.377078
https://doi.org/10.1109/ICNSC.2013.6548749
https://doi.org/10.1109/ICNSC.2013.6548749
https://doi.org/10.3182/20130925-2-DE-4044.00022
https://doi.org/10.3182/20130925-2-DE-4044.00022

Distributed Object Characterization with
Local Sensing by a Multi-robot System

Golnaz Habibi, Sándor P. Fekete, Zachary Kingston and James McLurkin

Abstract This paper presents two distributed algorithms for enabling a swarm of
robots with local sensing and local coordinates to estimate the dimensions and ori-
entation of an unknown complex polygonal object, i.e., its minimum and maximum
width and its main axis. Our first approach is based on a robust heuristic of distributed
Principal Component Analysis (DPCA), while the second is based on turning the
idea of Rotating Calipers into a distributed algorithm (DRC). We simulate DRC and
DPCA methods and test DPCA on real robots. The result show our algorithms suc-
cessfully estimate the dimension and orientation of convex or concave objects with
a reasonable error in the presence of noisy data.

1 Introduction

Computing the geometric features of an object has many applications in robotics and
autonomous manufacturing. Collective transport, imaging, fitting the bounding box,
assembly and manipulation are some examples that involve object characterization.
In collective transport, agents require the dimensions of the object and the orientation
to transport the object safely through narrow corridors or environmentswith obstacles
[6]. Another application is to use object shape and orientation tomanipulate an object
by a robot or by an industrial arm. If we can measure the object’s main axes vectors
(which implies the object orientation) as well as the object’s main dimensions, fitting

G. Habibi (B) · Z. Kingston · J. McLurkin
Rice University, Houston, TX 77005, USA
e-mail: golnaz.habibi@gmail.com

Z. Kingston
e-mail: zk11@rice.edu

J. McLurkin
e-mail: mclurkin@rice.edu

S. P. Fekete
TU Braunschweig, Braunschweig, Germany
e-mail: s.fekete@tu-bs.de

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_15

205

206 G. Habibi et al.

(a) (b)

Fig. 1 a A polygonal object. The three key dimensions we need to measure are object minimum
width (width), object maximumwidth (diameter), and orientation(θ). The centroid is marked with a
blue circle.Major axis is vector l.bSeven r-onemanipulator robotswith grippers (black circles) [10]
are moving the orange object. Our goal is to transport the object along the path marked by the guide
robots (blue circles). In our previous work [6], we described algorithm that enable each guide robot
to compute a collision-free pose for the object at the robots location. This path planning algorithm
requires the object dimension to generate a safe path through narrow corridors. Previously, we
presented distributed controllers that use the guide robots navigation information to control a group
of manipulator robots [7]. In order to navigate the object and avoid obstacles, manipulator robots
measure the object orientation and use it as a feedback to rotate the object during the transport.
This paper presents distributed algorithms to estimate object dimensions and orientation

the bounding rectangle or bounding box is easy; the latter has its own applications
in manufacturing and pattern recognition.

A common approach is to use Principal Component Analysis for finding the
major axes of the object by finding the eigenvector of the points on the boundary [3]
or inside the object [4, 8]. However, most of the previous work requires global
sensing and central processing [3]. See Fekete et al. [4, 8] for the use of Distributed
Principal ComponentAnalysis in the context of a sensor grid of smart pixelswith only
local information and communication, based on very limited computation; however,
[4, 8] makes use of the discretized grid geometry of the underlying sensor field, while
this paper considers robot positions at a limited number of continuous locations.

We aim to address situations in which global sensing, communication, and geom-
etry are not readily available or too costly to implement. Multi-robot systems offer
the potential to estimate a global state by using distributed algorithms. In situations
without GPS or global positioning, inferring global information from local informa-
tion is essential.We usemulti-hop communications [1] to exchange local information
and local geometry in order to cooperate with other robots, avoiding the need for a
shared global coordinate frame [9].

Using distributed algorithms, we can break a complex task into simple subprob-
lems. In the same way, multi-robot systems are usually simple at the individual level,
but they collaboratively accomplish a task that cannot be achieved by a single robot.

We consider a scenario in which there are only sensors or robots around the
boundary of an object. We consider three key parameters of the object including (1)
centroid or center of geometry, (2) object minimum and maximum dimension, and
(3) object orientation (see Fig. 1a). These agents use local information andmay not be
fully connected. These include line-of-sight communication, so robots on different
sides of the object cannot communicate directly. Calculating these features helps

Distributed Object Characterization with Local Sensing … 207

Fig. 2 A potential application of object characterization in collective transport: by computing the
centroid and orientation of the object, a swarm of manipulator robots can maneuver the object to
valid free configurations and safely transport the object

in estimating the shape of a closed region by using sensors on the corners of the
region with limited sensing. These features are also useful for manipulating a large
polygonal object by robots without prior knowledge of the object.

Our objective is to estimate object geometric features (centroid, object dimen-
sion and orientation) in order to use them in collective transport problem, assuming
a subgroup of robots attach themselves to the object [2, 12]. These robots, called
manipulator robots, are equipped with grippers [7]. These are responsible for esti-
mating the object dimensions, orientation and centroid. This information is provided
to the rest of the robots that cover the environment [6]; we call these guide robots.
Given the dimension of the object, guide robots generate a safe path from the object
to the goal. The last step is to transport the object through the path. By computing the
centroid and orientation of the object, themanipulator robots canmaneuver and safely
transport the object (see Fig. 2). Figure1b shows a result of a collective transport. The
path is generated based on the dimension of the object. During the transport, manipu-
lator robots rotate the object to avoid the collision. The details of collective transport
are out of the scope of this paper and are discussed in future work. We developed
two distributed algorithms for estimating the centroid of the object in previous work
[5, 7]. Here we present two algorithms for object characterization, which compute
three key geometric properties of our polygonal object: its minimumwidth, diameter,
and orientation. The minimum width determines the narrowest corridor the object
can negotiate, assuming it is in the proper orientation.We define the orientation as the
direction that is perpendicular to the object’s minimum width. The object diameter
determines the minimum distance from an obstacle at which it is safe to rotate the
object.

Our first approach is Distributed Principal Component Analysis (DPCA). This
is an approximation, but it is easy to implement on real hardware and produces
good results for symmetric objects. Our second approach is a distributed version
(called DRC) of a Rotating Calipers algorithm [13] that computes exact geometry
if the manipulator robots are positioned at object vertices. We test our algorithms in
simulation and on hardware. Our results are promising, the algorithm successfully
estimates the dimension of most convex or concave objects.

208 G. Habibi et al.

Robot v

Robot u

Buv

Ouv

Ruv

Fig. 3 Local network geometry of robot v measured from robot u. Buv is the bearing, the relative
angle of robot’s heading u from robot v. Ouv is the orientation, the relative heading of robot v from
robot u, and Ruv is the distance between two robots

The rest of the paper is organized as follows. The model and assumptions are
explained in Sect. 2.We briefly describe our previous algorithm of average consensus
in Sect. 3. Our object characterization algorithms are described in Sect. 4. Our results
are discussed in Sect. 5, and we conclude the paper in Sect. 6.

2 Model and Assumptions

Object characterization can be divided into two steps. (1) Detect the boundary of
the object. (2) Estimate the object parameter based on the boundary points. We
assume the first is done by an existing algorithm [2, 12], and robots have already
attached to the object, ideally at the vertices of the object, which we assume to be
simply connected, so that there are no interior boundaries. The robots have no prior
knowledge of the shape or size of the object. A communication network is built by
the robots using inter-robot communications between nearby robots within a fixed
distance d, where d is much smaller than the size of the environment. We can model
the robot’s communications network, G = (V, E), as an undirected unit disk graph,
obstructed by the geometry of the object. Each robot constitutes a node u ∈ V , where
V is the set of all robots and E is the set of all robot-to-robot communication links.
The set Vm is the set of all manipulator robots. The neighbors of each node u are
the set of robots with unobstructed line of sight and communication range d of robot
u, denoted N (u) = {v ∈ V | {u, v} ∈ E}. We assume that G is connected and that it
contains a cycle that surrounds the object, so that a message sent by a robot to one
of its neighbors can be passed all the way around until it reaches the other neighbor.

Our robots are homogeneous and are modeled as disks, moving with the help
of a non-holonomic differential drive. Each robot u has a unique id, u.id, and is
situated at the origin of its own local coordinate frame with the x̂-axis aligned with
its current heading. Robots can measure the relative pose of their neighbors (See
Fig. 3).Note that themessage-passing protocol used forDistributedRotatingCalipers
works even in an asynchronous manner; for easier description, we still describe the
algorithm execution as proceeding in a series of discrete rounds. While the robots
actual operation is asynchronous, implementing a synchronizer simplifies analysis
greatly and is easy to implement [9].

Distributed Object Characterization with Local Sensing … 209

3 Pipelined Consensus

In some parts of this paper, we need to estimate the average of values, including
the centroid. By definition, the centroid of a polygon with m vertices is the average
position of its vertices:

(xc, yc) = 1

m

m∑

i=1

(xi , yi) (1)

Thanks to consensus-based algorithms, one can find the global estimate of vari-
ables such as max/min/average by continuously finding a local estimate of that
value [11]. In our previous work, we presented a pipelined consensus algorithm,
an extension of pairwise gossip-based consensus for multi-agent systems [5] to esti-
mate global values including the object’s centroid as the average of the object’s
vertices. As a result, each robot estimates the average value (i.e., its centroid) in its
local coordinate; see [5] for more detail. In this approach, each agent starts a new
consensus in each round of gossiping, and stores the intermediate results for the
previous k consensus in a pipeline message with size k. After k rounds of gossiping,
the results of the first consensus are ready. In this paper, pipelined consensus is used
to estimate the object’s centroid as well as estimating the other parameters that are
essential for computing the object orientation. We will explain these key parameters
in the next section.

4 Object Characterization

In this section we present two distributed algorithms for extracting key geometric
features of the object including: object dimension (width and diameter) and object
orientation (see Fig. 1a).

4.1 Distributed Principal Component Analysis (DPCA)

Principal Components Analysis allows us to compute the orientation of the main
axis of the object using the vertices around the boundary [3]. We assume that the
robots are in heading consensus [11], i.e., they have agreed to a common heading.
This condition does not necessarily mean that the robots have the same orientation.
Instead, the robots can reach a common virtual heading alignment. In the beginning,
each robot estimates the position of the objects centroid at its reference frame by
using the pipelined consensus algorithm [5]. In the next part, we show that this is
sufficient information to estimate the object’s dimension and orientation.

210 G. Habibi et al.

4.1.1 Computing the Object Orientation

Given the position of centroid and robots, Chaudhuri et al. [3] presented an algorithm
to compute the object orientation θ , as follows.

tan 2θ = 2

∑m
i=1 (xi − xc)(yi − yc)∑m

i=1 [(xi − xc)2 − (yi − yc)2] (2)

In this equation, (xi , yi), i = 1, . . . ,m is the global position of vertices on the
boundary of the object, and (xc, yc) is the centroid position in a global reference.

Lemma 1 Given the object’s centroid and a common heading for all robots (either
virtual or real), the object orientation θ is calculated byEq. (2) in the local coordinate
frame of each robot. The communication complexity is O(1) per robot, i.e., each robot
a constant number of messages of constant size.

Proof We have to show that the components of Eq. (2), i.e.,(xi − xc) and (yi − yc),
are invariant with respect to local frames if the local frames reach the common
heading. In other words, a vector in a coordinate frame does not change when it
is transformed to another coordinate frame if the axes of two frames are parallel.
To show this, we use homogeneous coordinates. Assume there are two different
coordinate frames i and j with the same orientation. If the origin of i with respect to
j is (xt , yt , 1) and these frames are parallel, the vector AB in the i-coordinate, i.e.
iAB = (xA − xB, yA − yB, 1), is transformed to j-coordinates as follows. j

i T is the
transformation matrix in homogeneous coordinates.

j
i T =

⎡

⎣
1 0 xi j
0 1 yi j
0 0 1

⎤

⎦ , (jAB) = (
j
i T)(iAB) =

⎡

⎣
1 0 xi j
0 1 yi j
0 0 1

⎤

⎦

⎛

⎝

⎡

⎣
xA
yA
1

⎤

⎦ −
⎡

⎣
xB
yB
1

⎤

⎦

⎞

⎠ (3)

(jAB) =
⎡

⎣
xA + xi j
yA + yi j

1

⎤

⎦ −
⎡

⎣
xB + xi j
yB + yi j

1

⎤

⎦ =
⎡

⎣
xA − xB
yB − yB

1

⎤

⎦ = (iAB) (4)

�
This gives us exactly the same vector in coordinate frame i . This holds for arbi-

trary points in space, as well as for centroid positions. Therefore, we can show the
following.

(xi − xci , yi − yci , 1) = (x ′
ci , y

′
ci , 1), i = 1, . . . ,m. (5)

Here, (xi , yi) is the position of the robot i in the global reference, (xci , yci) is the
estimated position of the centroid by robot i in global coordinate. (x ′

ci , y
′
ci) is the

estimated position of the centroid in local coordinate i . This proves that vectors are
invariant under translation transformation of endpoints of the vector. The second
step is to show that Eq. (2) can be computed in a distributed fashion. By applying the
invariance feature of centroid vector, Eq. (2) can be rewritten in local coordinates, as
follows.

tan(2θ) = 2
1
m

∑m
i=1 (x ′

ci)(y
′
ci)

1
m

∑m
i=1 [(x ′

ci)
2 − (y′

ci)
2] (6)

Distributed Object Characterization with Local Sensing … 211

We have inserted 1
m in both enumerator and denominator to simplify this equation.

By using the definition of the average S = 1
m

∑m
i=1 si , we get

[(x ′
c)(y

′
c)] = 1

m

m∑

i=1

[x ′
ci y

′
ci] and

(
x ′
c
2 − y′

c
2
) = 1

m

m∑

i=1

[x ′
ci
2 − y′

ci
2]. (7)

Equation (2) is simplified to

tan(2θ) = 2x ′
c y

′
c/x

′
c
2 − y′

c
2. (8)

Equation (8) requires consensus algorithms to estimate the averages x ′
c y

′
c and

x ′
c
2 − y′

c
2. We use our pipelined consensus (see Sect. 3) to compute these averages,

as well as the centroid vector on each robot (x, y) and η as the heading consensus.
This is the total of five averages, requiring a message of a constant size 5W for each
robot per round, where W is constant. Therefore, the message complexity is O(1)
per robot. �

4.1.2 Approximation of Diameter and Minimum Width by DPCA

Oncewehave estimated the orientation of the object,we calculate theminimumwidth
and the diameter with two leader election algorithms [9]. Computing the diameter
is straightforward: the robots run a leader election algorithm to find the largest cen-
troid distance. Using the triangle inequality, we see that the diameter is bounded
by twice this distance. Computing the minimum width requires a bit more work.
Figure4a shows how each robot u can compute its distance to the principal axis,
du = Ru sin(αu). We define vector l as a vector passing through the centroid (C)
and its orientation is θ . We also define dmax = maxmj=1 du . If the polygon is symmet-
ric across its principal axis and the vertices are balanced around the boundary, the

(a) (b) (c)

Fig. 4 a Geometric computation of distance from a vertex (robot) to the main axis l. b DPCA
illustration on minimum-width estimation. The DPCA error estimate is zero and c the DPCA
estimation error is bounded by 2e (top), where e is the offset of object centroid (letter C) from the
principal axis l

212 G. Habibi et al.

(a) (b)

Fig. 5 a The basic setup for the algorithm DRC. The object contour is blue, convex hull edges
are shown in red. Messages are passed along the chain of robots in order to compute and compare
geometric information. b The aperture angle γi at a robot ri . ri is on the (strict) convex hull if and
only if γi is at most (strictly smaller than) 180◦

object’s centroid lies on the principal axis (l). In that case, the minimum width of the
polygon is exactly 2dmax for all robots u (Fig. 4b). Otherwise, the minimum width
of the polygon is no greater than 2dmax , which gives us an upper bound estimate of
min-width ≤ 2max(du) (Fig. 4c). DPCA has a good performance for most objects
and the straightforward implementation on physical systems.

4.2 Distributed Rotating Calipers

Tightening the bounds of our estimates requires more algorithmic machinery. We
must determine the best of a quadratic number of pairs of object vertices, or pairs
of vertices and object edges. In a centralized setting, reducing the computation time
can be achieved with the method of Rotating Calipers. The idea was first conceived
by Shamos [13], the name coined by Toussaint [14]; the key is to keep track of a
pair of opposite tangents enclosing the object; updating the contact points during a
full rotation gives rise to a (centralized) Θ(n) algorithm for computing minimum
and maximum width, i.e., the diameter. In our distributed setting, a straightforward
implementation ends up being quadratic, as a single update of opposite contact points
requires long-distance communication, which may take Ω(n) communication steps.
In the following,wedevelop a distributed variantwith overall timeO(n). The key idea
is to use pipelined communication along the perimeter of the object, with geometric
updates performed on the fly, such that only the minimum and maximum width for
each object vertex and each object edge are tracked. See Fig. 5a for the basic idea. This
method yields exact results when we have accurate coordinate measurements, but
requires a more sophisticated overall protocol. This model also uses the assumption

Distributed Object Characterization with Local Sensing … 213

that the robots can perceive any part of the object or any other robot that can be
reached by an unobstructed line of sight.

4.2.1 Convex Hull

First, each robot determines whether it lies on the convex hull by checking the angle
under which it sees the object P , based on the following lemma; see Fig. 5b.

Lemma 2 A robot ri on the perimeter of P is on the (strict) convex hull, if and only
if it sees P within an aperture angle γi at most (strictly smaller than) 180◦.

This yields the set of h corner robots that lie on the boundary of the convex hull.
In the following, we focus on communication between corner robots; implicitly,
this may use non-hull robots as relays. We assume that, adjacent hull robots are
connected, and non-hull robots lie between precisely between two hull robots, with
direct access to other hull vertices blocked by the geometry of the object.

4.2.2 Computing Minimum Width

The minimum width of P is the the width of a narrowest corridor that can be passed
by the object. This can be evaluated as follows.

Lemma 3 Let P be a convex polygon with h vertices. Then for polygon vertices
r0, . . . , rh−1 and polygon edges e0 = (rh−1, r0), . . . , eh−1 = (rh−2, rh−1), the mini-
mum width of P is minh−1

i=0 maxh−1
j=0 di, j , where di, j := d(�(ei), r j) is the Euclidean

distance between the line �(ei) through edge ei and r j .

The following observation is the basis for the idea of rotating calipers, i.e., parallel
tangents at opposite sides of the polygon: a pair of opposite sides that attainsminimum
distance induces a pair of parallel tangents, i.e., a minimum-width corridor. For any
edge ei , we denote by o(i) the corresponding “opposite” index, such that vertex ro(i)
is the first one after ri (in counterclockwise order) that attains maxh−1

j=0 di, j .

Lemma 4 Let P be a convex polygon with h vertices. For i∗ and j∗ with minh−1
i=0

maxh−1
j=0 di, j = d(�(ei∗), r j∗), there is a tangent, �′((e)i∗), to P through r j∗ = ro(i∗)

that is parallel to �(ei∗), such that P lies between �((e)i∗) and �′((e)i∗).

Based on this lemma, we describe a distributed algorithm. In the following, the
vertex description Di for a corner robot ri consists of its own coordinates (xi , yi),
along with the coordinates of both of its neighbors, (xi−1, yi−1) and (xi+1, yi+1). The
angle αi of (ri , ri+1) with the x-axis and the angle βi of (ri , ri−1) with the x-axis can
be deduced from this information; they describe the visibility cone in which robot
ri sees P . (In a practical setting, it is easiest to simply measure these angles, rather
than computing them by means of trigonometry.) Originally, Di is unappended, if
it contains only the vertices; it is appended and denoted by D∗

i , if it also contains
an “enclosure bit”, i.e., the information by robot ro(i)) opposite to edge ei that the

214 G. Habibi et al.

parallel tangents �(ei) to P through (ri−1, ri) and �′(ei) through ro(i) enclose P , along
with distance di,o(i) between those tangents. Overall, the smallest of these distances
is computed as follows.

Distributed Rotating Calipers (DRC)

(1) Any robot checks whether it is a corner robot by considering its visibility cone.
(2) Elect a leader corner robot, r0, as the one with the smallest ID.
(3) By passing a message from r0 around the hull, establish the (counterclockwise)

cyclic order of corner robots along the hull; let this be r0, . . . , rh−1, r0, such that
each corner robot knows its predecessor and successor. This also determines the
hull edges, e0, . . . , eh−1.

(4) Pass around vertex descriptions, as follows.

(4.1) All robots start in “unappended” mode.
(4.2) Robot r0 begins with sending its own (unappended) D0 to robot r1.
(4.3) While in “unappended” mode, a robot r j :

• based on angle information, checks for any incoming unappended Di

(originating from some robot ri �= r j) whether the line parallel to �(ei)
through r j separates r j−1 from r j+1, i.e., whether the angle of (ri , ri−1)

with the x-axis lies between α j and β j ;
• if not, then r j is a robot furthest from the line �(ei), i.e., j = o(i), and Di

is appended with di, j , turning Di into D∗
i ;• passes on Di or D∗

i (whether appended or not) to its successor;
• upon receiving Dj−1 from its predecessor r j−1, passes it on to its successor
r j+1, followed by its own (newly minted) Dj in the next round;

• upon receiving its own D∗
j , switches into “appended” mode.

(4.4) While in “appended” mode, a robot r j :
• keeps track of the smallest encountered di,o(i) for a D∗

i ;• when receiving D∗
0 for the second time, passes on D∗

0 , then STOPs;
• passes on any received D∗

i .

We claim the following; note that bookkeeping applies to the convex hull vertices,
with possible relays counted implicitly.

Theorem 1 After the preprocessing steps (1)–(3), the algorithm DRC stops after
time 3h, with at most 2h + 1 messages passed on by any robot, with all robots
knowing the minimum di∗o(i∗), the indices i∗ and o(i∗) at which it is attained, and
the orientation of the corresponding tangents. Thus, the total number of messages is
O(h2), with O(h) per robot. Each message size depends only on the encoding size
of coordinate information.

Distributed Object Characterization with Local Sensing … 215

Proof Full details are omitted due to limited space. To see that the algorithms stops
with the required information as claimed, note that any message Dj must have come
through a robot ro(j) opposite to r j after being passed around P once, so any robot
r j receives its own annotated D∗

j in h communication rounds after sending out the
unannotated Dj . When receiving D∗

j for the second time, all D∗
i must have been

encountered, so the current minimum d((ri∗−1, r∗
i), ro(i∗)) is the global minimum.

Even if non-hull relay robots are used, the number of messages per robot remains
O(h); the total number of messages becomes O(ah) for a total of a active robots.

4.2.3 Computing Diameter

The diameter of a polygon is attained between two vertices of the convex hull. We
augment the above algorithm to compute themaximumdistance betweenhull vertices
simultaneously by keeping track of the maximum encountered distance in the vertex
descriptions.

5 Results

5.1 Simulation Results

In this section we analyze our algorithms in simulation and compare their perfor-
mance. In the first experiment, we assume there is no error in measurement and we
have enough robots to be placed at the vertices of the object (Fig. 6). As expected,
DRC estimates the exact dimension and orientation for the objects, while the DPCA
estimate is quite good for most of the objects.

(a) (b)

Fig. 6 Comparison ofDPCA (a) andDRC (b) for four different objects. Shown are objectminimum
width (solid black), diameter (blue line), orientation (dashed black) and centroid (blue circle). The
convex hull of the objects is shown in red color. Robots (blue circles) are placed at the vertices of
orange objects. The estimates are also compared quantitatively. The letter d stands for diameter,
mw is the minimum width, theta is the orientation estimate in radians

216 G. Habibi et al.

We also analyzed DPCA and DRC performances when the number of robots
around the object varies from 4 robots to 45 for the R-shaped object in Fig. 6. Robots
are assumed to be randomly placed at the vertices of the object. The sensors are
assumed with perfect measurement. Figure7(top) shows the improvement of DRC
and DPCA for estimating the object dimension by increasing the number of robots.
For small numbers of robots, the polygon that is induced by the robots is very different
from the original object, causing a large error. The mean of the object orientation
error is small even for a small number of robots, because of the symmetric nature
of the orientation value. By picking vertices randomly, the average for orientation
estimation gets close to the actual value. By increasing the number of robots, the
orientation errors of DPCA and DRC tend to zero. Increasing the number of robots
may cause an imbalanced distribution of robots around the object, which affects the
centroid estimation and thus the object dimension estimates. While DRC tends to
picks the closest value to the optimum, which causes it to underestimate dimensions,
DPCAalways picks themaximumdistance to the centroid, causing it to overestimate.

Lastly, we consider the setting in which robots are placed at all vertices of an
almond-shaped object, as shown in Fig. 7 (bottom), andmeasurement errors exist. As
shown, DRCusually underestimates theminimumwidth, while DPCAoverestimates
it, for the same reason described above. However, the error of estimating diameter by
DRC has a normal distribution around zero, while DPCA overestimates the polygon
diameter.

(a) (b) (c)

(d) (e) (f)

Fig. 7 (Top) The mean and standard deviation of the estimation error for a minimum width, b
diameter, c orientation, by DRC (blue) and DPCA (red) for 1000 trials, when the sensors are ideal,
but the number of robots varies from m = 4 to m = 40. The R-shaped object has 30 vertices, with
12 convex vertices. (Bottom) The almond-shaped object and estimation error distribution of DPCA
(red) and DRC (blue), when sensor errors exist: d minimum width e diameter f object orientation

Distributed Object Characterization with Local Sensing … 217

(a) (b)

Fig. 8 Experimental result of object characterization by DPCA for three different objects. 12 trials
for each experiment are shown with standard deviation (shadows) and mean error (solid lines): a
orientation estimation error (radians). b object diameter (blue) and object minimum width (green)
estimation error

5.2 Experimental Results

We used th r-one robot platform [10] to implement DPCA on a real robotic system.
DPCA is used to estimate dimensions and orientation of three different symmetric,
concave and convex objects (Fig. 8). We used 4, 5 and 8 robots to estimate the
dimension and orientation of rectangle, arrow, and bean-shaped objects, respectively.
In this setup, robots are placed on the vertices of the convex hull of the object. Robots
use our pipelined consensus algorithm to reach the heading consensus and estimate
the object dimension and orientation simultaneously. As shown, DPCA successfully
estimates the object orientation and dimensions with a reasonable error.

6 Conclusion

We have presented two distributed algorithms for estimating the dimension and ori-
entation of polygonal complex objects. Our algorithms are useful in different applica-
tions in robotics when global sensing is not available. We have tested our algorithms
in simulations and experiment. Our algorithms successfully estimate the dimension
and orientation of convex and concave objects. We compared our algorithm in dif-
ferent experiments. While DRC estimates the optimal values when there are enough
robots to sample the object boundary, DPCA is more sensitive to the distribution of
the robots around the object. In the presence of small errors, the more accurate DRC
yields the better results; in the presence of larger errors, DPCA is to be preferred, as its
inherent tendency to overestimate object width may be safer for avoiding tight corri-
dors in applications of collective object transport. Our algorithms are self-stabilizing
and robust to dynamic network topology and population changes.Wewill show these
features in our future work. One of the future applications of these algorithms is in
collective transport. Manipulator robots estimate the orientation of the object and
adjust the object orientation during motion. Another potentially interesting direc-
tion for future work is to intelligently select subsets of vertices that lead to accurate
estimates of the shapes.

218 G. Habibi et al.

Acknowledgements We thank several anonymous reviewers for helpful input that improved the
presentation of this paper. We also thank Madeleine Nikirk, James Gringe, Sam Caroll, and Randy
Zhang for helping us in data collection.

References

1. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Ad Hoc
Netw. 3(3), 325–349 (2005)

2. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: ICRA, pp. 348–353. Citeseer
(2000)

3. Chaudhuri, D., Samal, A.: A simple method for fitting of bounding rectangle to closed regions.
Pattern Recognit. 40(7), 1981–1989 (2007)

4. Fekete, S.P., Fey,D.,Komann,M.,Kröller,A.,Reichenbach,M., Schmidt,C.:Distributed vision
with smart pixels. In: Proceedings of the 25th ACM Symposium Computional Geometery, pp.
257–266. ACM (2009)

5. Habibi, G., Kingston, Z.,Wang, Z., Schwager,M.,McLurkin, J.: Pipelined consensus for global
state estimation in multi-agent systems. In: Proceedings of the 2015 International Conference
on Autonomous Agents and Multi-agent Systems, AAMAS ’15. International Foundation for
Autonomous Agents and Multiagent Systems (2015)

6. Habibi, G., Xie,W., Jellins,M.,McLurkin, J.: Distributed path Planning for collective transport
using homogeneous multi-robot systems. In: Proceedings of the International Symposium on
Distributed Autonomous Robotics Systems (2014)

7. Habibi, G., Zachary, K., Xie, W., Jellins, M., McLurkin, J.: Distributed centroid estimation and
motion controllers for collective transport bymulti-robot systems. In: International Conference
on Robotics and Automation (ICRA). IEEE (2015)

8. Komann, M., Kröller, A., Schmidt, C., Fey, D., Fekete, S.P.: Emergent algorithms for cen-
troid and orientation detection in high-performance embedded cameras. In: Proceedings 5th
Conference on Computing Frontiers, pp. 221–230. ACM (2008)

9. McLurkin, J.: Analysis and implementation of distributed algorithms for multi-robot systems.
Ph.D. thesis, MIT, USA (2008)

10. McLurkin, J., McMullen, A., Robbins, N., Habibi, G., Becker, A., Chou, A., Li, H., John, M.,
Okeke, N., Rykowski, J., Kim, S., Xie, W., Vaughn, T., Zhou, Y., Shen, J., Chen, N., Kaseman,
Q., Langford, L., Hunt, J., Boone, A., Koch, K.: A robot system design for low-cost multi-robot
manipulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, 14–18 September 2014, pp. 912–918. IEEE (2014)

11. Olfati-Saber, R., Fax, J.A.,Murray, R.M.: Consensus and cooperation in networkedmulti-agent
systems. Proc. IEEE 95(1), 215–233 (2007)

12. Ota, J.,Miyata,N.,Arai, T.,Yoshida, E.,Kurabatashi,D., Sasaki, J.: Transferring and regrasping
a large object by cooperation of multiple mobile robots. In: Intelligent Robots and Systems 95.
HumanRobot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International
Conference on, vol. 3, pp. 543–548. IEEE (1995)

13. Shamos, M.I.: Computational geometry. Ph.D. thesis, Yale University (1978)
14. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proceedings IEEE

Melecon, vol. 83, p. A10 (1983)

Optical Wireless Communications
for Heterogeneous DARS

Patricio J. Cruz, Christoph Hintz, Jonathan West and Rafael Fierro

Abstract Distributed autonomous robotic systems (DARS) can provide essential
support to human task forces in a variety of missions. Maintaining reliable commu-
nications on these mobile networks is critically important for cooperative autonomy.
Radio-frequency is the common wireless communication technology employed for
task coordination. However, it has some limitations that can be mitigated by com-
plementing radio-frequency systems with optical wireless communications. In this
chapter, we present our efforts for the development and implementation of an op-
tical wireless communication link in DARS, more specifically between aerial (e.g.,
quadrotors) and ground robots. We describe a line-of-sight directed optical link be-
tween these two platforms. In addition, we detail our strategy tomaintain an adequate
transmitter-receiver relative position to enhance the optical signal strength. Further-
more, we provide some details about our optical transceiver prototype that can be
mounted on small aerial and ground autonomous robotic systems.

1 Introduction

Surveillance of complex environments, search and rescue and localization of targets
are just few mission examples that place special requirements on robotic systems.
Man-portable autonomous robots with lengths between 0.1–0.5 m and weights rang-
ing from hundreds of grams to a few kilograms can be deployed and coordinated

P. J. Cruz · C. Hintz · J. West · R. Fierro (B)
Department of Electrical & Computer Engineering, University of New Mexico,
Albuquerque, NM, USA
e-mail: rfierro@unm.edu

P. J. Cruz
e-mail: pcruzec@unm.edu

C. Hintz
e-mail: chintz@unm.edu

J. West
e-mail: jmwest@unm.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_16

219

220 P. J. Cruz et al.

to successfully perform these tasks. Furthermore, the use of multiple small robotic
platforms with different dynamics and/or capabilities can overcome some of the lim-
itations of using a homogeneous robotic network. For example, aerial autonomous
vehicles have a large sensor footprint but with a low resolution. On the other hand,
ground mobile robots can sense a limited area but they do so with much more ac-
curacy. Therefore, these autonomous robotic systems are complementary and by
coordinating them, it is possible to mitigate their weaknesses.

For this type of distributed autonomous system, radio-frequency (RF) communi-
cation is the common method that allows the robotic network to operate wirelessly.
However, RF has some limitations such as security issues, a congested spectrum, a
limited available data rate and hostile jamming [3, 10]. One possible alternative to
overcome these limitations is to complement RF with optical wireless (OW) com-
munications [3, 9, 10, 14]. In fact, free-space optical (FSO) links have augmented
the transmission capacity of RF networks for large-scale applications [2, 12, 15].
These hybrid OW/RF systems offer temporary point-to-point links within the net-
work and provide wireless access when RF can be jammed or can create undesired
interference. In addition, indoor OW systems are currently being revisited as part of
the visible light communication (VLC) framework that aims to combine lighting and
communications employing commercially visible light emitting diodes [5, 16].

OW communications have been explored for the case of distributed sensor net-
works [13] where this technology can provide coherent connectivity to large numbers
of compact sensor nodes. For the case of robotic platforms, OW systems have been
principally applied to underwater vehicles. RF is not effective in the aquatic domain
due to the high absorption of electromagnetic radiation bywater, so acoustic modems
are commonly used for underwater operations. However, they are extremely slow
with a high latency. Thus, OW communication has become an alternative technology
forwireless transmission in underwater settings [8, 18, 20]. For example, [8] presents
a real-time video streaming solution for autonomous underwater vehicles based on
a VLC system. For the case of land applications, different tracking and pointing
mechanisms for establishing an OW link between mobile agents have been proposed
in the literature [1, 7, 17]. However, the size, weight and power requirements for
these pointing systems generally limits their application to robots with large payload
and energy capacity and not micro/mini autonomous robotic platforms.

To the best of our knowledge, OW communications has not been proposed for
the case of a robotic team of small aerial and ground vehicles. Possibly the major
shortcoming of OW technology is the line-of-sight (LOS) pointing and tracking
requirement. This challenge has to be addressed to fully exploit the benefits of using
an OW link. In our previous work [6], we introduced a model for a directed line-of-
sight optical link between an unmanned aerial robot and a ground mobile vehicle.
Based on the link model, we defined a connectivity cone over the receiver where
a minimum transmission rate is guaranteed. This chapter is an extension of this
preliminary work. Here, we present our framework to track a ground mobile receiver
by an aerial transmitter to establish a point-to-point optical link. Also, we detail our
efforts for the development and implementation of a prototype of an OW transceiver
that can be mounted and used by small aerial and ground robotic platforms.

Optical Wireless Communications for Heterogeneous DARS 221

2 OW Communications

Compared toRF,OWsystems replace the radiowaveswith light and the antennaswith
free-space optical transceivers. Indeed, OW has unique advantages respect to RF [3,
10, 14]. For example, OW systems use a wide unlicensed spectrum, i.e., the infrared
and visible spectrum, offering a cost-effective link with largemodulation bandwidths
for communication. Optical components are also smaller, lighter and cheaper than
high-speed RF components.Moreover, OW links have a high level of security against
jamming and eavesdropping due to the high directionality of the optical beam. Even
though OW links can support high data rate, their reliability is severely affected by
atmospheric conditions like snow or fog [3, 10]. Besides, the main disadvantage for
optical-based communications is the necessity of alignment and pointing between
the transmitter and receiver. Thus, directed LOS systems require tracking solutions
to allow user mobility.

A simple block diagram of an indoor OW communication system is shown in the
inset of Fig. 1a. A light-emitting diode (LED) or a laser diode (LD) is used as optical
transmitter and a PINphotodiode or an avalanche photodiode (APD) is used as optical
receiver. Due to its simplicity and reduced cost, intensity modulation with direct
detection (IM/DD) is de-facto method of implementing OW systems. A modulated
signal m(t) drives the current of the optical source varying its intensity I (t). The
optical receiver integrates the incident optical signal generating a photocurrent i(t)
which is directly proportional to the instantaneous optical power incident on it.

In our previous work [6], we introduced a model of a directional LOS optical link
between an aerial and a ground robot. Next, we summarize this model. A diagram
showing the main parameters is illustrated in Fig. 1a. Let d be the distance between
the two optical transceivers, φ be the pointing angle relative to the optical transmitter
axis, and ψ be the incidence angle relative to the optical receiver axis. Notice that
the transmitter is perfectly pointed at the receiver when φ = 0◦, so φ is also known
as the pointing error. Similarly, the receiver is perfectly pointed at the transmitter

Fig. 1 a Diagram of the LOS optical link with its main parameters. The inset presents a block
diagram of the OW communication system. b Signal strength contour map for the OW link

222 P. J. Cruz et al.

when ψ = 0◦, so ψ is sometimes referred to as the receiver pointing error. Even
though all the angles in Fig. 1a are in the same plane, the link model presented next
is generally valid with circularly symmetric beam and FOV.

The radiant intensity of the optical source can be described by

Is = PTx
m + 1

2πd2
cosm φ, (1)

where PTx is the average transmitted optical power, and m is the Lambert’s mode
number expressing directivity of the source beam. This number is defined as m =

− ln 2
ln(cosΦ1/2)

.
Here, Φ1/2 is the half-angle at half-power which describes the transmitter beam

width.
The optical receiver can bemodeled as an effective area Aeff collecting the incident

radiation. This area is given by

Aeff(ψ) = g(ψ)A cosψ, (2)

where A is the receiver active area, and g(ψ) is the light-concentrator gain which
for an ideal case is given by

g(ψ) =
{

n2

sin2 ΨC
if |ψ | ≤ ΨC ,

0 otherwise.
(3)

Here, n is the refractive index and ΨC is the half-angle field-of-view (FOV) of the
optical detector.

Using (1) and (2), the received signal power is given by

PRx = Is Aeff. (4)

2.1 Connectivity Cone

Using (4), we can plot the signal strength as a function of the receiver position
relative to the transmitter. The contour map of the signal strength in dBm is shown
in Fig. 1b. The parameters to plot this map are adopted from [19]. We plot the signal
strength for the azimuth plane (x-y plane) assuming that the receiver is fixed at the
origin. For plotting this contour map, we assume that the pointing error is zero, i.e.,
φ = 0◦. Also, we consider that the receiver is always pointing up. The white regions
in the contour map indicate that no optical signal can be detected in these areas.
These regions appear because the concentrator gain g(ψ) becomes zero, according
to (3), if the receiver pointing error is greater than the half-angle FOV, i.e., ψ = ΨC .

Optical Wireless Communications for Heterogeneous DARS 223

Fig. 2 a Connectivity cone C and its parameters. b Sketch of the required parameters to find the
reference position by using Algorithm 1

Therefore, the receiver does not detect any optical signal when the transmitter is
within these areas.

Using (1) to (4), it is possible to find the range ρ to achieve a desired received
signal power PRx assuming a maximum pointing error φ = φmax

d =
√

Aeff(m + 1)(cosm φmax)PTx
2π PRx

. (5)

Combining this range with the maximum receiver pointing error that happens when
ψ = ΨC , it is possible to define a right circular cone as shown in Fig. 2a. Hence,
a received signal strength greater or equal to the desired one would be sufficiently
guaranteed if the transmitter lies in this cone. We call this the connectivity cone and
denote it asC . The apex or vertex ofC is given by the position of the ground receiver.
Furthermore, C can be defined by its apex angle ΨC and by its slant height dc which
can be found using Eq. (5). Employing these parameters, it is easy to find the base
radius of the cone rC and the height of the cone hC , see Fig. 2a. Also, notice that the
normal vector of the cone axis is given by e3 = [

0 0 1
]T
.

3 Target Tracking to Maintain OW Communications

From our discussion in Sect. 2, the aerial transmitter sis required to track the ground
mobile receiver in order to approach and stay inside of the connectivity cone C . For
chapter completeness, we summarize next our target tracking controller presented
in [6].

224 P. J. Cruz et al.

Let
[
xRx yRx θ

]T ∈ SE(2) be the state of themobile ground receiver, where qRx =[
xRx yRx 0

]T
is its 3-D position, θ is its heading angle and SE(2) is the Special

Euclidean Group in two dimensions. We assume the ground receiver moves with
a constant linear velocity v, but it can change its heading angle. Now let qTx =[
xTx yTx zTx

]T ∈ R
3 be the position of the aerial transmitter. We define its state as

x = [
qTx q̇Tx

]T ∈ R
6. Since the dynamics of the aerial vehicle can be approximated

as those of a point mass capable of accelerating in any direction [11], the aerial
transmitter dynamics can be written in discrete time as

xt+1 = Axt + But , (6)

where

A =
⎡
⎣ 1 0 0 τ 0 0

0 1 0 0 τ 0
0 0 1 0 0 τ
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ , B =

⎡
⎣ 0 0 0

0 0 0
0 0 0
τ 0 0
0 τ 0
0 0 τ

⎤
⎦ ,

u ∈ R
3 is the acceleration control input, t is the time index, and τ is the time step.

We assume that the aerial transmitter knows the state of the ground vehicle and
its linear velocity at all times. Then our goal is to design a control input u such that
the flying transmitter gets first inside the connectivity cone C and stays within it. As
control input, we consider a proportional-derivative controller given by

u = Kp (qref − qTx) + Kv (vref − q̇Tx) . (7)

Here, Kp and Kv are control gains, qref is a reference position to be determined, and

vref = [
v cos θ v sin θ 0

]T
is the reference velocity.

In order to find qref , we need to compute ρ the distance between transmitter and
receiver, and α the elevation angle of the transmitter respect to the receiver. These
parameters are illustrated in Fig. 2b. Notice that if ρ is less than or equal to dC and
α is greater than or equal to (π/2 − ΨC) then the aerial transmitter is inside of C .
Algorithm 1 details the method to find the reference position qref . Notice that this
algorithm gives as result qref = qTx for the case that the flying transmitter is inside
the connectivity cone.

3.1 Results

The proposed target tracking controller is validated by running numerical simula-
tions. The 3-D environment developed for visualization purposes is shown in Fig. 3a.
The aerial transmitter is represented as a thin cross with four circles at each side,

Optical Wireless Communications for Heterogeneous DARS 225

Algorithm 1 Reference position qref
Require: dC slant height of C , ΨC apex angle of C , qRx receiver position, qTx transmitter position
1: ρ ← ‖qTx − qRx‖ � transmitter-receiver distance
2: if ρ > dC then
3: href ← dC cosΨC� transmitter outside of C
4: else
5: href ← zTx
6: end if
7: r ← [

xTx − xRx yTx − yRx 0
]T � transmitter distance with respect to the cone axis

8: α ← atan (zTx/‖r‖) � elevation angle
9: if α < (π/2 − ΨC) then
10: αref ← π/2 − ΨC� elevation angle outside of cone region
11: else
12: αref ← α

13: end if
14: rref ← href/ tan αref� reference point at the cone base
Output: qref ← qRx + rref

r
‖r‖ + hrefe3� reference point inside C

while the mobile ground receiver is depicted as a cuboid with a sensing field-of-view
in its front. We have drawn in red the connectivity cone C on top of the receiver, the
reference position qref found using Algorithm 1 by an asterisk marker “*”, and the
distance between the aerial transmitter and pref by a dash-dot line “−·”, see Fig. 3a.

For the simulation, the transmitter-receiver distance at the beginning is approxi-
mately 9.18 m. The parameters for the optical link used for simulation are the same
ones we employed to plot the contour maps in Fig. 1b. The control constants are set
up to Kp = 8 and Kv = 2.5. The constant linear velocity of the mobile ground robot
is assumed equal to 12 m/s. The time step τ is assumed equal to 0.01 s and we ran
the simulations for 10 s.

The ground receiver follows the trajectory shown in Fig. 3b by the black dotted
line. The empty square and circle denotes the initial xy position of receiver (Rx) and
transmitter (Tx), respectively. The filled square and circle indicates the position of Rx
and Tx after 10 seconds, respectively. The transmitter-receiver distance d is shown
in Fig. 3c. The slant height of the connectivity cone dC is drawn by the dash-dot line
in this figure. Notice that after around 0.92 s, d is less than dC and it remains less
than this value during the rest of the simulation. Furthermore, the aerial transmitter
remains within the connectivity cone from this time on. This time is outlined in the
plots by a dashed black line. The transmitter remains inside the cone after 0.92 s,
the received signal power exceeds the desired PRx which is set to −34 dBm. The
received signal power is shown in Fig. 3d where the desired limit of −34 dBm is
represented by the dash-dot line. The minimum bit rate after the 0.92 s is −34.42
dBm with an average of −31.28 dBm. Consequently, our goal of establishing and
maintaining an optical link of at least −34 dBm is accomplished after 0.92 s.

226 P. J. Cruz et al.

(a) (b)

(d)(c)

Fig. 3 a 3-D environment for numerical simulations. b xy trajectories described by the mobile
ground receiver (Rx) and the aerial transmitter (Tx). c The distance d between transmitter and
receiver. The dash-dot line is the value of dC . d The received signal strength (RSS) PRx calculated
applying (4). The variations in the RSS is due to the changing distance between transceivers

4 Experimental System

4.1 OW Communication System

We have designed and prototyped a bidirectional OW communication system so
that each unit can both send and receive data. It consists of two main components:
(1) a transducer comprising the physical receiver and transmitter units, and (2) a
tracking mechanism based on a vision sensor, color LEDs, and a pan/tilt (PT) unit.
The transducer, the vision sensor and the color LED array are all housed on one board
which is then mounted to the PT mechanism. In particular, the board has the option
of mounting the Pixy in two configurations: right-side up and up-side down. These
options are shown in Fig. 4a. Having two units of our OW communication system,
one for each configuration facing each other, the transmitter will line up with the
receiver and the color LED array will be in the center of the field of view of the

Optical Wireless Communications for Heterogeneous DARS 227

Fig. 4 aOW transceiver prototypes. OW transceiver mounted in b a Swarmie mobile ground robot,
and c an AscTec hummingbird quadrotor

Table 1 Specifications of the receiver PIN photodiodes

Part # Active area
A [mm2]

Half-angle
FOV
ΨC [◦]

Responsivity
R [A/W]

Response time
tr [ns]

Wavelength
λmax [nm]

SFH 230 P 1 ±75 0.62 5 850

PDB-C160SM 8 ±60 0.62 20 850

vision sensor on each board, see Fig. 4a. Therefore, it is possible to establish and
maintain the LOS between these two units by learning the color LEDs and using the
vision sensor to track this feature. In this fashion, the modules will lock and the data
transmission can occur. To transmit and receive data to/from our OW communication
system, we have used in our tests a serial UART interface supporting a data transfer
rate up to 1Mbps.

4.1.1 Optical Transmitter and Receiver

The transmitter consists of a high-speed infrared (IR) emitting diode produced
by Vishay Semiconductors (part number VSLY-5850). This IR diode has a peak
wavelength λp = 850 nm, a radiant power P = 55 mW, an angle of half intensity
Φ1/2 = ±3◦, and a response time tr = 10 ns. The narrow transmitting beam deter-
mines the necessary accuracy of the tracking system.

Two different types of photodiodes are used for the receiver as shown in Table1.
Since the receiver has a wide viewing angle, the tracking of the receiver is not as
critical as that of the transmitter.

The data transmission uses amplitude modulation. The communication protocol
is a standard UART at 1Mbps which is converted to USB using an FTDI TTL-232R-
5V-PCB converter for communication with the computer.

Custom printed circuit boards were designed to support the Pixy, LED tracking
target, and the data transmitter and receiver. The Pixy is located in the center of the
board with the LED target above it. The board has the transmitter and receiver on
the opposite sides of the Pixy so that they are properly aligned when one board is
rotated 180◦ relative to the other. The entire circuit assembly is mounted on a servo

228 P. J. Cruz et al.

driven pan-tilt head which is directly controlled by the Pixy. The boards are powered
by 12VDC. The assembled and mounted boards are shown in Fig. 4a.

4.1.2 Tracking System

The key to maintaining an optimal wireless communication is to have the receiver
and transmitter properly aligned.

As an initial proof of concept, the tracking function is achieved using the Pixy
CMUcam5 [4]. The Pixy is chosen because it is light, low-power, and relatively
small. It is readily available and is functional off-the-shelf, which saves a great deal
of development time. It comeswith servo connections for controlling a pan-tilt mount
and can be programmed to track objects through the free software PixyMon.

The tracking update rate is 50Hz which allows tracking at reasonable speeds. The
Pixy is a color based tracker which requires a distinctly colored object as a target. In
our application an LED strip is used as a tracking target to improve the robustness
of the system under varying light conditions.

4.2 Ground Mobile Robot

As ground robotic agent, we use a platform known as a Swarmie which is available
as part of the NASA Swarmathon competition. The Swarmie is controlled by an
Intel NUC computer running the Robot Operating System (ROS) which allowed
us to easily integrate our serial communication software to the existing system. It
communicates with a server usingWiFi so it is ideally suited to demonstrate a Hybrid
OW/RF system. The OW system can be mounted to the top of the Swarmie as shown
in Fig. 4b.

4.3 Quadrotor Unmanned Aerial Vehicle

In order to incorporate the OW system into an unmanned aerial vehicle (UAV),
an Asctec Hummingbird, shown in Fig. 4c, is being developed to carry the optical
wireless link. This quadrotor is a widely used research platform, which is well docu-
mented and supported and is equipped with an internal flight control processor. For
our experiment we plan to add an Odroid XU4 micro-controller which runs ROS to
provide the control and data processing on the quadcopter. The Odroid will receive
position data from the Vicon motion capture system and send it to the Humming-

Optical Wireless Communications for Heterogeneous DARS 229

Fig. 5 Snapshot of the experimental evaluation

bird’s controller. The controller will use this feedback for position control loop that
is running at 1kHz which allows us to control the hummingbird precisely. A 12V
regulator board will be added to supply power to the optical communication system.

Supporting hardware elements are designed and printed to mount the hardware
and protect the communication system during landing. Legs are added to raise the
hummingbird by 5.5 inches to allow clearance for the optical link. The mount for the
optical communication system is printed to mount the board at the center of gravity
of the platform to minimize its effects on the flight dynamics. Amount is also printed
to secure the Odroid XU4 to the top of the body. The 3D prints utilize an internal
honeycomb structure to reduce weight.

4.4 Experimental Evaluation

We carry out preliminary experimental evaluations of the optical communication
prototype. The initial experiment consists of two Swarmies with OW systems com-
municating with each other by having one stream video to the other. Two ground
robots are used in order to simplify the dynamics of the tracking system and to vali-
date the performance of the OW system under stable conditions which are difficult
to achieve with UAVs. The OW system is able to maintain communication as the two
Swarmies moved throughout the area. The video from one Swarmie is transmitted
optically to the other and then relayed to the server where it is displayed. Figure5
shows a snapshot of the experiment, while Fig. 6 shows the result in the video trans-
mission when the LOS between modules is blocked or they are not aligned. A video
of this experiment can be found at https://youtu.be/gCyFTMlMi9o.

https://youtu.be/gCyFTMlMi9o

230 P. J. Cruz et al.

Fig. 6 Faulty video transmission due when the LOS between transceivers is blocked

5 ROS/Gazebo Simulation Environment

To facilitate the development and validation of the algorithms to maintain connec-
tivity when an optical link is used between mobile platforms, a detailed simulation
environment is required since hardware testing is time consuming and expensive. The
ROS system includes the Gazebo simulator which allows highly accurate, physics
based modeling of complex robotic systems. The ROS software is tightly integrated
with the Gazebo simulator allowing the same code that will run on the hardware plat-
forms to run in a simulated environment. The Gazebo system receives the control
outputs from the rover ROS software, models the physical response in the simulated
world and then produces simulated sensor feedback to the control software.

The simulations take place in a Gazebo world which is customizable to reproduce
almost any terrain or situation. For our simulation, the Marhes indoor test bed as
seen in Fig. 7a was used as a model. The test bed includes two ground robots and
two aerial vehicles. One ground robot and one aerial vehicle are equipped with the
OW transceiver. A Vicon Motion capture system helps to coordinate the robots. The
corresponding Gazebo environment is shown in Fig. 7b. This room includes a flat
floor surface and several obstacles as would be present during the indoor testing at
our lab.

In this environment we place 3 ground robots using existing models of the Swar-
mathon rovers. On top of each of these rovers we place a cone which visually rep-
resents the area in which the optical receiver can maintain communication as shown
in Fig. 7c.

A quadcoptermodel is then added using the existingROS“hector”model. This is a
generic quadcopter model but it incorporates all of the necessary simulation elements
and will be refined in the future to closely match the actual flight characteristics of
our UAVs.

For this simulation, the ground rovers move according to a randomwalk/collision
avoidance pattern and collect images of the environment. The UAV is currently
operator controlled using a joystick.

Optical Wireless Communications for Heterogeneous DARS 231

Fig. 7 a Test bed atMarhes Lab with 2 aerial robots and 2 ground robots. 2 Robots are equipped
with OW transceivers. b Gazebo simulation of our lab testing area. c Gazebo simulation showing
connectivity cones

We plan to use this simulation environment to develop new algorithms under
the assumption of a hybrid RF/OW communication system which can be used for
accessing to cloud-based services. As the ground rovers move about, the UAVwill go
among them and as it enters each connectivity cone, it will establish communication,
upload the images and other data, transmit this to the server and then proceed to the
other rovers.

A simulation of the RF communication will provide low-bandwidth command
and control information which will be used to give the ground rovers their route
information and to guide the UAV to each ground rover. As the UAV enters the
connectivity cone of a ground rovers, the quality of the communication channel will
be simulated by calculating the line of sight distance and incident angle between the
UAV and the ground rover. These distances are readily available from the Gazebo
system and will be used in conjunction with the formulas given in Sect. 2 to compute
a maximum usable bitrate and applicable bit error rates which will then be used to
simulate the data transfer. TheUAVwill then transfer the collected data to a simulated
server which will process the data, develop the maps and then send instructions to

232 P. J. Cruz et al.

the rovers. The UAV flight controls will use the same ROS code as will be run on
the actual hardware UAV and ground rovers.

The simulation allows us to run the hardware flight code on a simulated system
to validate algorithms without lengthy real-time tests. Once validated in Gazebo, the
same code is then deployed to the actual hardware and the results can be validated.

6 Conclusions

In this chapter, we studied an optical wireless link between aerial and ground au-
tonomous vehicles. The combination of OW and RF has the potential to dramatically
expand communications rates in DARS. Based on a model for a directed LOS optical
link, we defined a connectivity cone on top of the mobile ground optical receiver
where a minimum signal strength is guaranteed if the aerial transmitter stays within.
The numerical simulation results validates our control strategy for the aerial trans-
mitter so that it tracks the ground receiver and remains inside this connectivity cone.
In addition, we presented the details and the initial tests of our optical transceiver pro-
totype to implement a point-to-point link between small ground and aerial robots. As
part of our assumptions, we considered perfect knowledge of the state of the receiver
which generally is not the case. Future work will consist on modifying our approach
to take into account noisy measurements of the receiver. Also, we will implement the
proposed methodology through hardware experiments by using the designed optical
transceiver. We will also validate the performance of a larger network of robots by
expanding our simulation and through real world experiments.

Acknowledgements This work was supported in part by the Army Research Lab Micro Au-
tonomous Systems and Technology Collaborative Alliance ARL MAST-CTA #W911NF-08-2-
0004. We would like to thank the Ecuadorian scholarship program administrated by the Secretaría
de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) for providing part of the
financial support for Patricio J. Cruz.

References

1. Ahmad, M.H., Kerr, D., Bouazza-Marouf, K.: Fast pointing and tracking system for mobile
robot short range control via free space optical laser line of sight communication link. In: Tokhi,
M.O., Virk, G.S., Hossain, M.A. (eds.) Climbing and Walking Robots, pp. 147–154. Springer,
Berlin (2006). https://doi.org/10.1007/3-540-26415-9_17

2. Bagley, Z.C., Hughes, D.H., Juarez, J.C., Kolodzy, P., Martin, T., Northcott, M., Pike, H.A.,
Plasson, N.D., Stadler, B., Stotts, L.B., Young, D.W.: Hybrid optical radio frequency airborne
communications. Opt. Eng. 51(5), 055,006–1–055,006–25 (2012). https://doi.org/10.1117/1.
OE.51.5.055006

3. Borah, D., Boucouvalas, A., Davis, C., Hranilovic, S., Yiannopoulos, K.: A review of
communication-oriented optical wireless systems. EURASIP J. Wirel. Commun. Netw.
2012(1), 91 (2012). https://doi.org/10.1186/1687-1499-2012-91

https://doi.org/10.1007/3-540-26415-9_17
https://doi.org/10.1117/1.OE.51.5.055006
https://doi.org/10.1117/1.OE.51.5.055006
https://doi.org/10.1186/1687-1499-2012-91

Optical Wireless Communications for Heterogeneous DARS 233

4. Charmed Labs: CMUcam5 Pixy - Overview (2016). http://charmedlabs.com/default/pixy-
cmucam5/ (Pixy is a collaboration between Charmed Labs and Carnegie Mellon University.
Retrieved April 2016)

5. Chowdhury, H., Katz, M.: Data download on move in indoor hybrid (radio-optical) WLAN-
VLC hotspot coverages. In: Proceedings of the IEEE Vehicular Technology Conference (VTC
Spring), pp. 1–5 (2013). https://doi.org/10.1109/VTCSpring.2013.6692499

6. Cruz, P.J., Fierro,R.: Towards opticalwireless communications betweenmicro unmanned aerial
and ground systems. In: Proceedings of the International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 669–676 (2015). https://doi.org/10.1109/ICUAS.2015.7152349

7. Derenick, J., Thorne, C., Spletzer, J.: On the deployment of a hybrid free-space optic/radio
frequency (FSO/RF) mobile ad-hoc network. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3990–3996 (2005). https://doi.org/
10.1109/IROS.2005.1545193

8. Doniec, M., Xu, A., Rus, D.: Robust real-time underwater digital video streaming using op-
tical communication. In: Proceeding of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 5117–5124 (2013). https://doi.org/10.1109/ICRA.2013.6631308

9. Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-
of-the-art. IEEE Commun. Mag. 49(9), 56–62 (2011). https://doi.org/10.1109/MCOM.2011.
6011734

10. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System
and Channel Modelling with MATLAB®. Taylor & Francis, Boca Raton (2012)

11. Hoffmann, G.M., Tomlin, C.J.: Mobile sensor network control using mutual information meth-
ods and particle filters. IEEE Trans. Autom. Control 55(1), 32–47 (2010). https://doi.org/10.
1109/TAC.2009.2034206

12. Izadpanah, H., ElBatt, T., Kukshya, V., Dolezal, F., Ryu, B.: High-availability free space optical
and RF hybrid wireless networks. IEEEWirel. Commun. 10(2), 45–53 (2003). https://doi.org/
10.1109/MWC.2003.1196402

13. Kahn, J.M., Katz, R.H., Pister, K.: Emerging challenges: mobile networking for “smart dust”.
J. Commun. Netw. 2(3), 188–196 (2000). https://doi.org/10.1109/JCN.2000.6596708

14. Majumdar, A., Ricklin, J.: Free-Space Laser Communications: Principles and Advances. Op-
tical and Fiber Communications Reports. Springer, Berlin (2010)

15. Milner, S.D., Davis, C.C.: Hybrid free space optical/RF networks for tactical operations. In:
Proceedings of the IEEE Military Communications Conference (MILCOM), vol. 1, pp. 409–
415 (2004). https://doi.org/10.1109/MILCOM.2004.1493303

16. O’brien, D., Zeng, L., Le-Minh, H., Faulkner, G., Walewski, J., Randel, S.: Visible light com-
munications: challenges and possibilities. In: IEEE 19th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), pp. 1–5 (2008). https://doi.org/10.1109/
PIMRC.2008.4699964

17. Rabinovich, W.S., Murphy, J.L., Suite, M., Ferraro, M., Mahon, R., Goetz, P., Hacker, K.,
Freeman, W., Saint Georges, E., Uecke, S., Sender, J.: Free-space optical data link to a small
robot using modulating retroreflectors. In: Proceedings of the SPIE, vol. 7464, pp. 746,408–
746,408–9 (2009). https://doi.org/10.1117/12.828869

18. Rust, I.C., Asada, H.H.: A dual-use visible light approach to integrated communication and
localization of underwater robotswith application to non-destructive nuclear reactor inspection.
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pp. 2445–2450 (2012). https://doi.org/10.1109/ICRA.2012.6224718

19. Shen, T.C., Drost, R.J., Davis, C.C., Sadler, B.M.: Design of dual-link (wide- and narrow-beam)
LED communication systems. Opt. Express 22(9), 11107–11118 (2014)

20. Tian, B., Zhang, F., Tan, X.: Design and development of an LED-based optical communication
system for autonomous underwater robots. In: Proceedings of the IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), pp. 1558–1563 (2013). https://doi.
org/10.1109/AIM.2013.6584317

http://charmedlabs.com/default/pixy-cmucam5/
http://charmedlabs.com/default/pixy-cmucam5/
https://doi.org/10.1109/VTCSpring.2013.6692499
https://doi.org/10.1109/ICUAS.2015.7152349
https://doi.org/10.1109/IROS.2005.1545193
https://doi.org/10.1109/IROS.2005.1545193
https://doi.org/10.1109/ICRA.2013.6631308
https://doi.org/10.1109/MCOM.2011.6011734
https://doi.org/10.1109/MCOM.2011.6011734
https://doi.org/10.1109/TAC.2009.2034206
https://doi.org/10.1109/TAC.2009.2034206
https://doi.org/10.1109/MWC.2003.1196402
https://doi.org/10.1109/MWC.2003.1196402
https://doi.org/10.1109/JCN.2000.6596708
https://doi.org/10.1109/MILCOM.2004.1493303
https://doi.org/10.1109/PIMRC.2008.4699964
https://doi.org/10.1109/PIMRC.2008.4699964
https://doi.org/10.1117/12.828869
https://doi.org/10.1109/ICRA.2012.6224718
https://doi.org/10.1109/AIM.2013.6584317
https://doi.org/10.1109/AIM.2013.6584317

Part IV
Multi-Robot Planning

Bundling Policies for Sequential Stochastic
Tasks in Multi-robot Systems

Changjoo Nam and Dylan A. Shell

Abstract This paper studies multi-robot task allocation in settings where tasks are
revealed sequentially for an infinite or indefinite time horizon, and where robots may
execute bundles of tasks. The tasks are assumed to be synergistic so efficiency gains
accrue from performing more tasks together. Since there is a tension between the
performance cost (e.g., fuel per task) and the task completion time, a robot needs to
decide when to stop collecting tasks and to begin executing its whole bundle. This
paper explores the problem of optimizing bundle size with respect to the two objec-
tives and their trade-off. Based on qualitative properties of any multi-robot system
that bundles sequential stochastic tasks, we introduce and explore an assortment of
simple bundling policies. Our experiments examine how these policies perform in a
warehouse automation scenario, showing that they are efficient compared to baseline
policies where robots do not bundle tasks strategically.

1 Introduction

Multi-robot task allocation (MRTA) considers optimizing collective performance of
a team of robots that execute a set of tasks [5]. In the canonical formulation, the sets
of robots and tasks are fixed, and a decision-maker has full access to all information
about the tasks. In practice, knowledge of the complete set of tasks may unavailable
beforehand. In many applications, tasks are only revealed sequentially in an online
fashion, e.g., dial-a-ride, e-commerce orders, etc. Compared to the case where the
tasks are known a priori, work examining online instances of MRTA is scant (cf.
discussion at length in [6]).

C. Nam (B)
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: cjnam@cmu.edu

D. A. Shell
Department of Computer Science and Engineering, Texas A&M University,
College Station, TX, USA
e-mail: dshell@cs.tamu.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_17

237

238 C. Nam and D. A. Shell

Fig. 1 Asimple example of online synergistic tasks: cherriesmust be transported from the conveyor
to the storage facility. The robot may reduce traveling costs (fruitility = Joules per fruit) by waiting
for multiple items, aggregating and transporting them together at once (i.e., filling a bundle). But
as the robot forms larger sets of items, the items wait longer on average

In addition to considering sequential revelation of information, here we are con-
cerned with synergistic tasks. By this we mean that work performed toward one task
may be useful for others too, and planning with larger sets of tasks is beneficial. Also,
in addition to conventional cumulative cost measures (e.g., fuel, time), we consider
the timespan of tasks, viz. the elapsed time from creation until completion. There
can be a tension between these two objectives. If robots wait and execute multiple
tasks together (i.e., as a bundle), the costs per task may be less than for independent
executions. But one incurs a delay in waiting for tasks to arrive in order to fill a
bundle, so bundling drives up the timespan. Figure1 shows an example of a setting
where the robot fills its bundle by waiting for more items. Over and above the stan-
dard question of ‘how should the tasks be allocated among robots?’ one asks ‘how
many tasks should the robots bundle?’

This paper explores the structure of the bundling question at a high-level, abstract-
ing away details of task performance itself, so that the findings can apply to a variety
of settings. We begin with a qualitative study of the most basic instances in which
tasks are revealed deterministically at a fixed frequency and where the task cost is
a function of the task’s location, and the location is independently and identically
drawn from a known probability distribution. Also, robots are initially assumed to
have no interactions. Based on the models of task arrival and execution, we com-
pute the bundle sizes that minimize each objective. The simplifying assumptions that
give this result are often violated in reality; to consider more realistic and complex
settings, we explore a set of policies which efficiently adapt in order to improve
performance.

This paper formulates of the problem of optimal task bundling for MRTA for
sequentially revealed, synergistic tasks (Sect. 3). After analyzing the most basic
scenario (Sect. 4), we introduce models that describe performance objectives as a
function of bundle size. Using these models, our study of iterated bundle execution
leads us to propose simple and efficient bundling policies suitable for variations of
the problem which generalize the basic instance (Sect. 5). Evaluation of our policies
is carried out quantitatively with extensive experiments (Sect. 6).

Bundling Policies for Sequential Stochastic Tasks in Multi-robot Systems 239

2 Related Work

Most previous work in online MRTA focuses on the question of how to allocate
tasks. Early work on auction and market mechanisms [3, 4] studied the allocation of
tasks when no model of their arrival was known. Some recent work [1, 10] considers
online tasks with unpredictable arrivals, but the option of bundling is not considered.
Online bipartite matching solves the underlying optimization problem of the online
MRTA, but does not consider the bundling as a first-class question.

Bundling has been the focus of some prior attention. Koenig et al. [8] proposed
Sequential Single-Item (SSI) auctions with bundles, wherein robots submit bids for
subsets of tasks from a known set of tasks. The bidding phase and the winner deter-
mination phase iterate sequentially until all tasks have been assigned. Compared to
standard parallel auctions, SSI reduces the team’s cost by exploiting synergies among
tasks. It also reduces the time spent bidding compared to the standard combinatorial
auctions since not all permutations of assignments are considered. Zheng et al. [13]
propose SSI with roll-outs where the cost of a task is evaluated together with the
previously allocated tasks in order to exploit synergies. The aspect we study, which
is absent for these prior works, is the meta-reckoning that weighs the consequences
of choosing to delay decision-making since doing so may improve per-task system
costs but worsen completion times.

Bullo et al. [2] show a variety of routing policies for multi-vehicle servicing
demands in various scenarios, applying spatial-queuing theoretic models to vehicle
routing where visiting locations arrive through a stochastic process. They provide
theoretical analyses showing the stability (i.e., the number of waiting demands is
bounded at all times) and the service quality of each routing policy. Their work
provides thorough analyses and extensive comparisons of routing policies, demon-
strating deep understanding in the routing domain. The techniques have yet to be
shown to be directly applicable to more generic synergistic tasks. This paper adopts
the hypothesis that the fundamentals of bundling and the principle trade-offs are not
tied to the particular task-type or setting. It is possible that our study concerning the
optimal bundle size would improve some of the routing policies of [2]. For example,
the unbiased TSP policy has a design parameter n determining the size of sets to plan
a TSP tour for all n demands. The set is analogous to our task bundle so n could be
determined based on our result.

3 Problem Description

This section formulates the problem, expresses constraints on the problem, and
describes the objectives. Warehouse automation is used as an example.

240 C. Nam and D. A. Shell

3.1 Problem Formulation

Given n robots, a task arrives and is inserted to a structureT every α seconds (α > 0).
The total number of tasks is unknown and the sequence may be unbounded. Here α

could be deterministic or a random variable—in the latter case, we abuse notation
slightly by using α to denote the mean of a distribution. The robots are assumed
to share all available task information (i.e., T) through a communication network
or some other similar mechanism. The cost of performing a task is a function of
both the robot and the task locations; we assume the locations of tasks are drawn
from a probability distribution. Performing multiple tasks together enables some
common work to be lumped together so that the cost, as a function of number of
tasks performing in a bundle, is sub-linear.

Definition 3.1 (Synergistic task) Let c(S) be the cost of performing a set of tasks S.
Tasks are synergistic if c(S1) + c(S2) > c(S1 ∪ S2) where S1 �= S2.

Definition 3.2 (Task bundle) Each robot owns a task bundle which is a group of
x ∈ Z

+ tasks extracted from T. The bundling time is the average time that a task
waits until the bundle of itself is completed.

We assume that the tasks in T are taken by order of arrival. Once a task is assigned to
a bundle, it is no longer available to other robots. Once a robot has its bundle, it must
finish the tasks without further modifications of that bundle. Tasks continue to arrive
concurrently while the robots perform the work assigned to them. The robots iterate
bundling and executing tasks in turn. A robot may be idle while waiting to fill its
bundle and so idleness will depend on x . The simplifications in the preceding (e.g.,
no task reordering, no out-of-order execution, no pre-emption) ensure the operation
will be starvation-free; judicious relaxation of these constraints may improve overall
performance, but remains for future work.

Strategies for assigning tasks to robots make use of flexibility in (i)making the
choice of whom to assign to a certain task, and (ii)when to assign the task. In
general, waiting increases the available opportunities to optimize performance but
waiting induces delays. Since (ii) is a central consideration in the present work, it is
important to delineate the requirements of the strategies for assigning tasks. We do
this by noting two necessities for the performance of online tasks:

• Unconditional task acceptance: any task that arrives, must be inserted to T.
• Non-starvation: no task may be abandoned to remain in T indefinitely.

We consider two objectives to minimize, subject to fulfillment of both these
requirements. Since there is no fixed set of tasks, the conventional sum-of-cost mea-
sure is no longer directly applicable, though average values of the following are:

Definition 3.3 (System cost or execution cost) The system cost per task c̄ ∈ R
≥0 is

the average cost spent to finish a task by the system. The average is taken over all
robots and task pairs.

Bundling Policies for Sequential Stochastic Tasks in Multi-robot Systems 241

Fig. 2 A warehouse scenario where delivery tasks arrive sequentially. Delivering multiple items
in one tour reduces the traveling cost but would delay the shipment of some items. Bundling
strategically can manage this efficiency trade-off

Definition 3.4 (Timespan or end-to-end time) The timespan of a task τ̄ ∈ R
≥0 is the

average time elapsed for a task from its insertion into T until its completion. The
average is taken over all tasks.

3.2 An Example: Warehouse Automation

We use a warehouse automation problem (Fig. 2) as a running example to explore
the properties of strategic bundling. Our study is not tied to this particular example
as we have studied the optimization of bundle size for the vehicle routing problem
too, see [11] for details. The reader interested in the generality of the model may find
those additional examples beneficial.

In awarehouse, n robots are taskedwith transporting items from racks to a packing
station using baskets. Each rack has its own fixed location and contains identical
items. Each rack has a space below permitting robots to navigate under it. The floor is
discretized into grid cells where one cell contains one robot or one rack. Robots must
navigate to their destinations while avoiding collisions. Once a robot is underneath
its assigned rack, the rack dispenses its items in the quantity requested. The robot
can visit multiple racks until its basket is full.

A job managing server (JM) receives orders that arrive sequentially and indefi-
nitely according to a stochastic process. The JM splits each order into atomic trans-
portation tasks: robots must deliver items from racks to the packing station. The JM
inserts these intoT. A robot bundles k tasks fromT after it has completed its previous
tasks. The extraction of tasks is done from the head of T. Also, robots execute their
bundles from the head.1

1Again, robots may employ more advanced methods rather than this in-order task bundling and
execution. The focus of this paper is not on elaborate methods for these aspects, so we leave them
as modules that can be replaced by well-designed allocation and planning methods.

242 C. Nam and D. A. Shell

Fig. 3 Illustrative functions that describe the system cost (red) and timespan (gray) per task. The
time in T, s(·), is infinite for x < xD and the same with f (·) otherwise. There exists a finite bundle
size x that makes g(·) minimum, and g(·) for x < xD is not shown since the value is infinite

4 An Analysis of Bundle Size

This section develops models for the optimization objectives. We begin with a sim-
plified setting in which enables introduction of basic execution cost and task arrival
models. Next, some complexity is added to help improve realism and applicability.

4.1 The Basic Case: Independent Robots and Regular Task
Arrivals

4.1.1 The General Model

Consider a multi-robot system with negligible physical interference among robots
and tasks in T that are sufficiently abundant so no contention occurs. The degree
to which this is an over-simplification depends on practical circumstances, but this
model results in objective values possessing invariant, steady-state properties. We
assume stochastic taskswith locations independently and identically distributed from
a uniform distribution over a rectangular grid with area S. A new task is revealed
every α seconds. In what follows, refer to Fig. 3 as it showsmodels of both the system
cost c̄ per task and the average timespan τ̄ of a task.

A model for c̄ is given by f (x |S, v) where x is the bundle size and v is the task
performance rate (e.g., velocity) of a robot (red in Fig. 3). Task synergies imply that
f (·) is decreasing and, hence, the bundle size thatminimizes the systemcost is infinite
(x∗

f = ∞). A model for bundling time is given by a functional h(x |α, f). Note that
h(·) is discontinuous since h(x |α, f) = 0 if x < xD (blue in Fig. 3). The quantity xD

denotes the bundle size when f (x |S, v) = α, that is, the point of balance between the
rate of task arrivals and (average) executions. Below equilibrium xD , a task arrives
before an existing task is completed. Thus, tasks accumulate (|T| is unbounded)
and robots remove tasks from T without waiting, i.e., the bundling time is zero. For

Bundling Policies for Sequential Stochastic Tasks in Multi-robot Systems 243

x ≥ xD , tasks do not accumulate in T, and a robot must wait for tasks in order to fill
its bundle and so the bundling time is nonzero. So, h(x |α, f) = h′(x |α) for x ≥ xD ,
where h′(·) represents the bundling timewithout considering the potential unbounded
accumulationof tasks inT. But there is also another component s(x |α, f), the average
time a task resides in T before it is taken by a robot. We have s(x |α, f) = ∞ for
x < xD because T keeps accumulating tasks so it has a significant number of tasks
that wait indefinitely to be bundled. Otherwise, s(x |α, f) = f (·) since tasks only
stay in T while robots are executing their bundles.

A model of timespan per task τ̄ is given by g(x |S, v, α, f), which describes the
component that dominates the time:

g(x |S, v, α, f) := max(f (x |S, v), h(x |α, f), s(x |α, f)), (1)

illustrated with the thick gray curves in Fig. 3. For x < xD , g(·) the value is infinite.
The x value that minimizes g(·) is the optimal bundle size x∗

g . The value x∗
g can

be determined via two cases, shown in Fig. 3a, b respectively. In Fig. 3a, xm is the
equilibrium between the task bundling time and the execution time. At xm , the robot
finishes executing a bundle when the next bundle has just been filled, thus g(·) takes
the minimum at this point, so x∗

g = xm . It is worth noting that there is no waiting
time between iterations. In Fig. 3b, xm does not exist because the number of tasks
in T are unbounded. The execution time dominates the (zero) bundling time, and
f (xD|·) takes the minimum at xD , so x∗

g = xD .

4.1.2 The Warehouse Example

We derive analytic models of c̄ and τ̄ for the warehouse example. We assume that
robots move one grid cell (with no diagonal) at each step. Robots bundle k tasks and
execute them sequentially using a path planner (e.g., A∗). Collisions are avoided by
dynamic replanning. In ana × b rectangular space, racks are locatedwithin ana′ × b′
rectangle. The packing station is located at (x0, y0). Figure4a shows an example
setting where a = b = a′ = 20, b′ = 5, and (x0, y0) = (10, 1). Tasks arrive every α

steps and their locations are uniformly distributed within the a′ × b′ rectangle.
At steady-state, executing a bundle consists of three trips: (i) the trip from the

station to a rack, (ii) the trip among the k racks, and (iii) the trip to the station. Let d
be the expected distance from the station to a random rack and Ed be the expected
distance between two random racks. We do not write out the expressions for d and
Ed owing to limited space, but their computation requires nothing more than basic
calculus. From (i) and (iii) we have 2d. From (ii), we have (k − 1) trips among k
racks. Thus, it takes 2d + (k − 1)Ed time steps for k tasks. The system cost (time
traveled) per task is

f (k|S, v) =
(
2d + (k − 1)Ed + (k + 1)

k

)
. (2)

244 C. Nam and D. A. Shell

Fig. 4 A snapshot of the warehouse simulator and the validation of the models from simulations

The term (k + 1) is added because we assume that planning a path between two
points takes one time step. There are total k + 1 runs of the A∗ planner. Notice that
all environmental variables are represented by S.

A task waits in a bundle for kα − jα steps where j is the step when the task
is inserted. Then, the sum of the bundling time for all tasks is

∑k
j=1 kα − jα =

k2α − k(k+1)
2 α = α

2 k(k − 1). The function describing the bundling time per task is

h(k|α, f) =
{
0 if k < xD,

h′(k|α) = α
2 (k − 1) otherwise.

(3)

Interestingly, h′(·) is a special case of themean residual life of a customer in a renewal
process presented in [7]. The residual life is the amount of time that the customer
must wait until being served. The general form of (3) when task arrivals follow a
Poisson process is

h′(k|α, λ) = α

2

(
1 + λ

α2

)
(k − 1), (4)

where λ is the variance of the arrival interval. If λ = 0, then (4) reduces to (3).
Figure4b shows (2) as a function of bundle size (red) along with the values from

experiments (green) where α = 15, and a = b = 20. The blue line represents (3).
One may derive models analytically as above or make use of a body of research that
provides such the models (e.g., the optimal length of a TSP tour, which is a function
of the number of visit locations [9, 12]).

Bundling Policies for Sequential Stochastic Tasks in Multi-robot Systems 245

4.2 Adding Realism: Robot Interactions and Stochastic Task
Arrivals

Next,we consider settingswhere tasks involve uncertainty via a stochastic arrival pro-
cess. In addition, non-negligible robot interactions are taken into account. These gen-
eralizations introduce a gap between the basic models and the performance observed
in the system (different from Fig. 3). Factors responsible for the gap include:

1. Task location: Owing to the stochasticity of task locations, the system cost
described above should really describe the mean of a random variable. There-
fore f (·) is no longer deterministic, but has some variance.

2. The task arrival process: Stochastic arrivals mean that h(·) is no longer deter-
ministic, making h(·) a random function with some variability.

3. Physical interference: Robots may interfere with one another, increasing the sys-
tem cost so that f (·) in the basic model underestimates the actual cost.

4. Task contention: Robots may experience contention for tasks, increasing the
bundling time while waiting to fill bundles. Thus, the h(·) in the basic model
underestimates the actual bundling time.

5. Robot coordination: Robots that coordinate to optimize performance will reduce
the system cost per task; thus, the basic model f (·)may overestimate actual costs.

In sum, the optimal bundle size x∗
g in the basic case is likely to differ from the

optimal value for realistic settings. But the modifications needed depend on aspects
of the domain and many details of the particular instance. This fact motivates our
exploration of adaptive bundling policies to adjust to circumstances, improving per-
formance of idealized treatments which ignore complicated aspects of the system.
In Sect. 5, we propose model-free policies with a dynamic bundle sizes.

4.2.1 Remarks on Synergies in the Realistic Case

The factors given above may have ramifications, not only for the parameters (e.g.,
slope, y-intercept) of f (·), but also its monotonicity.We assume that the tasks remain
synergistic as negative robot interactions caused by resource contention can often
be mitigated by (far-sighted or globally aware) planning algorithms—even if some
optimality must be sacrificed, approximations should suffice in this regard. Thus, we
believe that f (·) usually continues to decrease even if synergism diminishes.

Nevertheless, some extreme configurations (e.g., a very narrow warehouse caus-
ing heavy congestion on every passage) could make f (·) non-synergistic when no
algorithm can reduce these negative effects. The analysis remains valid even though
it becomes more involved when handling non-idealized cases: the question of what
bundle size, x , makes g(·) a minimum still persists. If g(·) is always infinite or con-
stant, the fact that the optimal set is empty or all of Z+ is informative. And, if there
are multiple bundle sizes which minimize g(·), any of them can be chosen. And, of
course, when f (·) is no longer synergistic, the optimal bundle size is 1, as there is
no benefit from executing tasks in concert.

246 C. Nam and D. A. Shell

5 Bundling Policies

Before considering adaptive policies, we describe static policies where bundle sizes
remain constant. Later, these static policies will serve as a performance baseline.
Next, we propose simple policies that are flexible with agreeable behavior across a
range of circumstances. We provide a condition for a stable policy (i.e., ensuring |T|
is bounded) and a bound that describing the best possible performance, which no
bundling policy can exceed. We consider only policies that minimize the timespan τ̄ ,
since minimizing c̄ has limited practical value, leading to infinite bundles.

• Baseline static policies:

– The ideal policy: If the basic model g(·) is available, finding a k that minimizes
(1), the timespan, gives x∗

g . In this ideal static policy, each robot keeps k = x∗
g .

When a robot finishes its current bundle and tries to execute the next bundle,
there may be insufficient tasks in T to form that next bundle, causing the robot
to wait, idly, for new tasks. If |T| ≥ k, the robot takes k tasks and executes
them immediately. Since this policy does not handle uncertainties in the task
profile (discussed in Sect. 4.2) it is possible that the timespan can diverge if T
is unbounded.

– The min- and max-load policies: Another reasonable policy is to execute,
instantaneously, tasks one by one (i.e., k = 1). This min-load policy does not
exploit synergies but would yield a small timespan since robots never bundle
multiple tasks. We also consider the max-load policy where bundles take up to
some given capacity (e.g., the capacity of baskets of robots, the memory size of
robots where task information is stored).

• Model-free policies:

– The sweeping policy: This policy takes all tasks k = |T| if |T| ≥ 1, never incur-
ring any bundling time as long as at least one task is available. The policy
exploits synergies among available tasks. Figure5a shows the bundle size vs.
time (30,000 steps). The black dotted line shows the ideal bundle size reflect-
ing the equilibrium in which the execution and bundling times are equal. The
average bundle size (blue dotted) would reflect the equilibrium when the task
uncertainties and robot interactions are accounted for.

– The averaging policy: The sweeping policy’s equilibrium is constant unless the
stochastic parameters describing the task location and arrival process change.
The sweeping policy does not make explicit use of any representation of the
equilibrium. Instead, it tracks the equilibrium via history: the averaging policy
begins with k = 1 and averages the previous bundle sizes saved in a history
window W . The smaller the window size, the more sensitive the policy to vari-
ability.

Bundling Policies for Sequential Stochastic Tasks in Multi-robot Systems 247

Fig. 5 Plots showing bundle size versus time steps. Bundle sizes (red) stay around the blue value,
which is the optimal bundle size for the given task setting

5.1 An Analysis of the Bundling Policies

We say a policy is stable if the number of waiting tasks in T is bounded.

Proposition 5.5 Let x D′
be the value of x D, incorporating the various non-

idealizations for more realistic settings. A bundling policy is stable if k ≥ xD′
.

Proof Even in circumstances outside of the basic case, the shape of the objectives
(Fig. 3) is invariant: non-idealized circumstances elevate or lower the lines, but do not
affect their shape. Thus, the analysis of the models in Sect. 4.1.1 may still holds. Task
queue T does not accumulate tasks if the bundle size is greater than the equilibrium
between the task execution rate and the arrival rate (i.e., x ≥ xD′

). In other words,
a task is completed before or when a new task arrives and, thus, a bundling policy
with k ≥ xD′

is must be stable. �

The ideal policy should be stable in the basic case but is cannot be guaranteed to be
stable in more realistic settings, since xD′

is not known exactly. Also, it is not obvious
whether the sweeping and the average polices are stable. In practice, however, they
appear to be stable as Fig. 5 shows. Specifically, x∗

g ≥ xD′
in any case as shown in

Sect. 4.1.1. In Fig. 5, the average bundle size (blue) is larger than x∗
g (black) so larger

than xD′
. The stability of the two is shown empirically in the following experiments.

Next, we show the lower bound in which any bundling policy cannot exceed.

Proposition 5.6 The lower bound of τ̄ is limk→∞ f (k|·) for any policy.
Proof From (1), the lower bound of τ̄ is g(·) = max(min f (·),min h(·),min s(·)).
Theminimumof f (·) is at k → ∞. Theminimumof others are zero (i.e., no bundling
at k = 1 and no residing time for k < xD). Then, the maximum is min f (k|·) =
limk→∞ f (k|·). No policy can exceed this bound. �

For example, in the warehouse problem, limk→∞ f (k|·) = Ed + 1.

248 C. Nam and D. A. Shell

6 Quantitative Study: Comparisons of the Policies

This section describes experiments in the warehouse setting. We provide experi-
mental settings and analyze the results where task locations are i.i.d. with a fixed
task interval. Then, we show results when tasks arrive according to a Poisson pro-
cess whose arrival intervals and locations are non-i.i.d. Both cases involve physical
interference and task contention among robots.

6.1 Experimental Settings and Results

The size of the warehouse is a = b = 30 where the number of racks is 300 so
a′ = 30, b′ = 10, Ed = 11.11. The packing station is at (15, 1) so d = 25.50. For a
fixed number of robots (n = 5), we assume that all robots move at the same velocity,
one grid cell per one time step. As discussed above, using x∗

f is unrealistic so we
minimize the timespan only and scrutinize how the system cost changes.

We set α = 2 for the regular intense task arrival.2 The parameter for the Poisson
arrival process isλ = 1

α
, where themean arrival interval isλ−1 = α. Those two arrival

processes have the same mean interval. In addition, we ran experiments for α = 30
which represent intermittent arrivals (i.e., Ed + 1 < α). For the ideal policy, k = 10
for α = 2 and k = 2 for α = 30. The max-load and the min-load have k = 30 and
k = 1, respectively. The size of window is |W | = 20 for the averaging policy. We
measure the two objective values over 10,000 steps and run 10 repetitions. Table1
summarizes the results. Figure6 shows the size of T over time.

6.2 Analysis of Results

6.2.1 Regular Task Arrivals and an i.i.d. Spatial Distribution

The results of the intense arrivals (Table1a) show that any bundling policy outper-
forms non-bundling (the min-load). The min-load policy does not make use of the
synergies of tasks so its task execution time (system cost) is larger than other policies.
Thus, tasks accumulate rapidly in T (Fig. 6a) which increases the timespan signifi-
cantly. Themax-load policy yields the smallest system cost since it exploits synergies
maximally. Bundling that many tasks increases the bundling time which contributes
to the total timespan. Thus, tasks are accumulated moderately in T (Fig. 6b) while
robots spend time bundling. The ideal policy is outperformed by themax-load policy.
It is possible that k = 30 is closer to the actual optimal bundle size than k = 10 when
robot interactions are taken into account. Task accumulation (Fig. 6c) is faster than

2The lower bound of the execution time per task is greater than the arrival interval of a task, i.e.,
Ed + 1 = 26.50 > α = 2.

Bundling Policies for Sequential Stochastic Tasks in Multi-robot Systems 249

Table 1 Comparisons of policies. The values are the mean and standard deviation (10 repetitions)

(a) Regular task arrivals with an i.i.d. task distributions

Bundling policy Intense (α = 2) Intermittent (α = 30)

System cost Timespan System cost Timespan

Min-load 64.64 (0.2614) 4231 (4.557) 67.54 (5.599) 65.74 (5.532)

Max-load 16.47 (0.0906) 2142 (30.41) 24.83 (14.49) 1131 (246.7)

Ideal 22.89 (0.1766) 2845 (23.22) 51.51 (7.291) 116.7 (14.43)

Sweeping 20.73 (1.784) 1488 (49.41) 71.98 (9.627) 69.87 (9.200)

Averaging 21.43 (0.3958) 1441 (25.59) 70.13 (9.627) 74.34 (0.7071)

(b) A Poisson task arrival process with a non-i.i.d. task distribution

Bundling policy Non-i.i.d. interval

System cost Timespan

Min-load 65.28 (0.5991) 4046 (38.98)

Max-load 11.38 (0.0675) 396.9 (12.79)

Sweeping 12.57 (0.4441) 301.3 (65.04)

Averaging 18.69 (2.234) 1921 (98.11)

0 1000 2000 3000 4000 50000
1000
2000

(a) Min-load

0 1000 2000 3000 4000 5000
0

1000
2000

(b)Max-load

0 1000 2000 3000 4000 5000
0

1000
2000

(c) Ideal

0 1000 2000 3000 4000 5000
0

1000
2000

(d) Sweeping

0 1000 2000 3000 4000 5000
0

1000
2000

(e) Averaging

Fig. 6 Plots showing bundle size (y-axis) over time (x-axis). We show the case of regular and
intense intervals. The sweeping and averaging policies are able to bound T

the max-load policy but slower than the min-load policy. The sweeping and aver-
aging policies show the similar timespan, which outperform all the baseline polices
because they can ensure T remains bounded as shown in (Fig. 6d, e). Their system
costs are not the most efficient found, but are competitive.

250 C. Nam and D. A. Shell

Themost important aspect of the performance is howapolicy ensuresT is bounded
because it relates directly to the timespan at steady-state. If T is not bounded, the
timespan, which includes the time a task resides in T will itself diverge. The max-
load policy seems to have a moderate timespan, but must diverge if experiments are
run longer. On the other hand, the proposed model-free policies are able to keep T
short.

To determine the appropriate policy, one’s overall purpose must be borne in mind.
To help in choosing a policy, we show the results in the objective space in Fig. 7. For
intense arrivals, we would use one of the model-free policies for the timespan. In
considering system cost, one would choose the max-load policy.

The intermittent case shows a slightly different result. The min-load policy has
the smallest timespan. For the system cost, the max-load policy still has the smallest
value. Since tasks arrive slowly, only few robots (most times only one robot) executes
tasks, resulting in little physical interference, and, thus, f (·) in Fig. 3 is the same as
the basic case. On the other hand, severe task contention means that h(·) is steeper
than the basic model. This causes the optimal bundle size to shrink. The min-load
policy has the closest bundle size to this small value so its timespan is the smallest.
All policies ensure that T is bounded since tasks arrive slowly. It would be beneficial
for the robots to move to the centroid of the area of racks when they are idle since the
expected distance to a random rack is the shortest at the point. This waiting location
changes depending on the spatial distribution of tasks.

6.2.2 A Poisson Arrival of Tasks and a Non-i.i.d. Spatial Distribution

We also ran experiments to explore how the policies work inmore complex situations
with task locations chosen so as not to be independently and identically distributed.
Specifically, a task is drawn from a uniform distribution within the area that robots
workwith a probability of 0.5.With a probability of 0.5, a task is drawn from a normal
distribution that has the location of the previous task as the mean. The task arrival
process also has a mean interval between tasks that is non-i.i.d. With a probability
of 0.5, the arrival process follows the Poisson process with λ which is a sinusoidal
function. With a probability of 0.5, the interval is drawn from a uniform distribution
where the upper bound is related to the previous value of λ.

In Table1b and Fig. 7c, we show the results (no ideal policy is reported as we
have no appropriate model). Except for the averaging policy, the policies exhibit a
tendency similar to that of intense and regular arrivals before. As noted, the max-
load policy accumulates tasks over time, so the timespan will increase with longer
experiments. In the regular arrival case, the averaging policy shows performance
that is competitive with the sweeping policy, but is now far worse. This is because
of the frequent switching of the task profile (both arrivals and locations) disrupts the
averaging policy’s local estimates of the rate and various system costs.

Bundling Policies for Sequential Stochastic Tasks in Multi-robot Systems 251

0 20 40 60
System cost

0

1000

2000

3000

4000
Ti

m
es

pa
n

Ideal
Min-load
Max-load
Sweep
Avg.

(a) Regular intense

0 20 40 60
System cost

0

500

1000

1500

Ti
m

es
pa

n

Ideal
Min-load
Max-load
Sweep
Avg.

(b) Regular intermittent

0 50 100
System cost

0

2000

4000

6000

Ti
m

es
pa

n

Min-load
Max-load
Sweep
Avg.

(c) Poisson non-i.i.d.

Fig. 7 The objective space showing a Pareto frontier

This problem is resolved by having a short history: setting |W | = 1, the result is
c̄ = 11.98 and τ̄ = 427.9, which is now comparable to sweeping. The size of T in
this experiment is essentially the same as with Fig. 6 and is therefore omitted.

7 Conclusion and Future Work

This paper treats a variant of the MRTA problem where stochastic tasks arrive con-
tinuously, and the system must determine how to bundle tasks in order to make best
use of synergies between tasks. First, we proposed idealized models to understand
the foundations of the bundling question. Then we explored how the models change
for more realistic cases where task uncertainties and robot interactions are involved.
We proposed adaptive bundling policies in order to deal with uncertainties, com-
paring the results to baseline policies which do not have a particular strategy for
bundling. Evidence is provided to show that the proposed policies outperform the
baseline. More importantly, the proposed policies can bound the number of waiting
tasks at all time for intense task arrivals whereas the baseline policies cannot. Also,
the results show that the policies are able to deal with other sources of complexity
and uncertainty, such as probabilistic task arrivals or non-i.i.d. task locations and
arrival intervals—which can express aspects of spatio and temporal locality.

Further study of related strategies can improve the performance of bundling. For
example, preemption of bundle executions may be useful so that some robots can
stop working to perform other tasks. Or robots may swap the tasks in their bundles
to reduce costs during execution. Out-of-order task insertion to T or bundles is also
interesting. Several applications naturally impose temporal constraints between tasks
which are worth considering. Lastly, it would be desirable to give the analytic bound
of the team performance using the policies to compute the minimum number of
robots to bound T for a given frequency of task arrivals.

Acknowledgements This work was supported in part by NSF awards IIS-1302393 and IIS-
1453652.

252 C. Nam and D. A. Shell

References

1. Amador, S., Okamoto, S., Zivan, R.: Dynamic multi-agent task allocation with spatial and
temporal constraints. In: International Conference on Autonomous Agents and Multi-agent
Systems, pp. 1495–1496 (2014)

2. Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.: Dynamic vehicle routing for robotic
systems. Proc. IEEE 99, 1482–1504 (2011)

3. Dias, M., Stentz, A:. Amarket approach to multirobot coordination. Technical report, Carnegie
Mellon University, 2000

4. Gerkey, B., Matarić, M.: Sold!: auction methods for multi-robot coordination. IEEE Trans.
Robot. 18, 758–768 (2002)

5. Gerkey, B., Matarić, M.: A formal analysis and taxonomy of task allocation in multi-robot
systems. Int. J. Robot. Res. 23, 939–954 (2004)

6. Heap, B.: Sequential single-cluster auctions for multi-robot task allocation. Ph.D. thesis, The
University of New South Wales, 2013

7. Kleinrock, L.: Queuing Systems. Wiley, New York (1975)
8. Koenig, S., Tovey, C., Zheng, X., Sungur, I.: Sequential bundle-bid single-sale auction algo-

rithms for decentralized control. In: Proceedings of International Joint Conference on Artificial
intelligence, pp. 1359–1365 (2007)

9. Lee, J., Choi, M.: Optimization by multicanonical annealing and the traveling salesman prob-
lem. Phys. Rev. E 50, R651 (1994)

10. Meir, R., Chen, Y., Feldman, M.: Efficient parking allocation as online bipartite matching with
posted prices. In: International Conference on Autonomous Agents and Multi-agent Systems,
pp. 303–310 (2013)

11. Nam, C., Shell, D.: An empirical study of task bundling for sequential stochastic tasks in multi-
robot task allocation. Technical Report TAMU-CSE-16-7-1, CSE Department, Texas A&M
University, 2016

12. Stein, D.: An asymptotic, probabilistic analysis of a routing problem. Math. Oper. Res. 3,
89–101 (1978)

13. Zheng, X., Koenig, S., Tovey, C.: Improving sequential single-item auctions. In: Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and System, pp. 2238–2244 (2006)

Decomposition of Finite LTL Specifications
for Efficient Multi-agent Planning

Philipp Schillinger, Mathias Bürger and Dimos V. Dimarogonas

Abstract Generating verifiably correct execution strategies from Linear Tempo-
ral Logic (LTL) mission specifications avoids the need for manually designed robot
behaviors. However, when incorporating a team of robot agents, the additional model
complexity becomes a critical issue. Given a single finite LTL mission and a team of
robots, we propose an automata-based approach to automatically identify possible
decompositions of the LTL specification into sets of independently executable task
specifications. Our approach leads directly to the construction of a team model with
significantly lower complexity than other representations constructed with conven-
tional methods. Thus, it enables efficient search for an optimal decomposition and
allocation of tasks to the robot agents.

1 Introduction

High-level planning based on Linear Temporal Logic (LTL) specifications creates the
opportunity to deploy robots in increasingly sophisticated scenarios while being able
to provide guarantees regarding correctness and optimality, e.g. [14, 16, 17]. In such
scenarios, systems often benefit from utilizing multiple agents in order to flexibly
distribute workload. Instead of executing tasks sequentially, they can be allocated to

Dimos V. Dimarogonas was supported by the H2020 ERC Starting Grant BUCOPHSYS and
the Swedish Research Council (VR).

P. Schillinger (B) · M. Bürger
Corporate Research - Cognitive Systems (CR/AEY2), Robert Bosch
GmbH Renningen, Stuttgart, Germany
e-mail: philipp.schillinger@de.bosch.com; schillin@kth.se

M. Bürger
e-mail: mathias.buerger@de.bosch.com

P. Schillinger · D. V. Dimarogonas
EES, KTH Centre for Autonomous Systems and ACCESS Linnaeus Center,
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: dimos@kth.se

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_18

253

254 P. Schillinger et al.

different agents and carried out in parallel. Nonetheless, considering multiple agents
for a set of tasks introduces significant additional planning complexity.

Consider as a motivating example a hospital station. In addition to caring for
patients, nurses are required to refill medical supplies, guide visitors, deliver meals,
or clean equipment. To support them, a multi-robot system can automate required
transportation. Similarly, workflows in an intelligent factory can be improved using
a multi-robot system. Machines for assembly can monitor required components and
request supplies if they run low. In such scenarios, missions are typically given as
one specification, implicitly based on a set of independent finite tasks, e.g., deliver
meals to all rooms or supply a machine with several components. In the following,
we formally define problems of this type, based on an LTL mission specification and
a system model, with the goal to obtain execution strategies for all robots such that
the mission is guaranteed to be fulfilled with minimal costs.

Approaches for multi-agent task planning include Mixed-Integer Linear Program
(MILP) formulations [9, 21], numerical vector-based allocation [1], or market-based
contracting [23]. However, these approaches involve forming a team product or
require separate cost calculation for all combinations of allocation options, given
that these options are explicitly known. An automata-based approach is proposed in
[10] and assumes synchronous team motions to plan motion sequences from an LTL
specification. This assumption is relaxed in [19] by a two-phase model reduction
approach, and in [3, 20] by employing trace-closed languages [18] to abstract over
asynchronous motions of the agents. However, these approaches only decompose
the LTL specification into independent tasks in the special case of disjoint agent
alphabets. Their focus is rather to coordinate execution between a known team of
agents given explicit allocation options.

If task allocation to the agents is explicitly provided, approaches like [8, 15] take
communication and motion coordination between the agents into account; [11, 13]
choose a Petri-Net based approach for explicit coordination whereas [6] uses a game
theoretic approach for negotiation, able to consider adversarial agents. In contrast,
our approach does not assume known allocation and instead decomposes the mission
such that execution does not require coordination between the agents, enabling them
to operate independently based on their assigned task.

The contributions of this paper are as follows: (i) A formal definition of the
decomposition of finite LTL specifications into tasks is introduced and several rel-
evant properties of such decompositions are discussed. (ii) It is shown how such
decompositions can be efficiently identified in an automaton representation of the
LTL specification. (iii) Based on these results, a method is presented for construct-
ing a team model of tractable complexity with respect to the team size that can be
used for efficientmulti-agent planning. The proposed approach and its computational
advantages are illustrated on an example system setup motivated by the scenarios
mentioned above. Specifically, we evaluate state space complexity of the teammodel
and planning time based on a ROS implementation of our approach.

Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning 255

2 Preliminaries

2.1 LTL Semantics

AnLTL specificationφ over a set of atomic propositionsΠ identifies a set of temporal
sequences σ = σ(1)σ (2) . . . which fulfill this specification, written as σ � φ. At
each discrete time t ∈ T with T ⊆ N, a set of propositions σ(t) ⊆ Π is true, i.e., a
sequence is defined as σ : T → 2Π . A sequence is called finite if it is bounded by a
maximum time T and then we say it has length T . Finite LTL is a variant of LTL that
can be interpreted over finite sequences. Classes of finite LTL are formulas which
are insensitive to infiniteness [5], for example co-safe LTL [12] or LT L f [4].

The semantics of LTL over a finite sequence σ(1) . . . σ (T) are defined as fol-
lows: (1) σ(t) � π iff π ∈ σ(t); (2) σ(t) � ¬ϕ iff σ(t) � ϕ; (3) σ(t) � ϕ1 ∧ ϕ2

iff σ(t) � ϕ1 and σ(t) � ϕ2; (4) σ(t) � ϕ1 ∨ ϕ2 iff σ(t) � ϕ1 or σ(t) � ϕ2; (5)
σ(t) � ◦ϕ iff σ(t + 1) � ϕ; (6) σ(t) � ϕ1 U ϕ2 iff there exists t2 ∈ [t, T] such
that σ(t2) � ϕ2 and σ(t1) � ϕ1 for all t1 ∈ [t, t2 − 1]; (7) σ(t) � ϕ1 R ϕ2 iff for all
t2 ∈ [t, T] either σ(t2) � ϕ2 or there exists a t1 ∈ [t, t2 − 1] such that σ(t1) � ϕ1.

Furthermore, we derive the operators eventually �ϕ = 	 U ϕ and always �ϕ =
Ω R ϕ with Ω = ⊥ for all t ≤ T , where 	 denotes true and ⊥ denotes false. Note
that, as usual for finite LTL [5], the scope of always is limited to the range t ∈
{1, . . . , T }, not considering an infinite future.

In the case of finite LTL specifications, a finite automaton can be constructed from
the given LTL formula φ [2].

Definition 1 (NFA)A nondeterministic finite automaton (NFA) is given as the tuple
F = (Q, Q0, α, δ, F) consisting of (1) a set of states Q, (2) a set of initial states
Q0 ⊆ Q, (3) an alphabet α of Boolean formulas over π ∈ Π , (4) a set of transition
conditions δ : Q × Q → α, (5) a set of accepting (final) states F ⊆ Q.

Note that we define the set of transitions as Boolean conditions which need to
be fulfilled for taking a transition. Especially, the absence of a transition is denoted
by the formula δ(q1, q2) = ⊥, which can never be fulfilled. A finite sequence of
states q ∈ Q is called a run ρ : {0, 1, . . . , T } → Q with δ(ρ(t − 1), ρ(t)) �= ⊥ for
all t ∈ {1, . . . , T }. We say that a sequence σ describes ρ if σ(t) � δ(ρ(t − 1), ρ(t))
for all t ∈ {1, . . . , T }. In the case that a run ρ leads from an initial state ρ(0) ∈ Q0

to an accepting state ρ(T) ∈ F , this run is called accepting. If F is constructed
appropriately [22], a finite sequence σ fulfills a finite LTL formula φ if and only if
σ describes an accepting run ρ in the NFAF constructed from φ.

In general, constructing an NFA from an LTL formula has worst-case time and
space complexity exponential in the length of the formula |φ| [2]. The actual com-
plexitymight be lower depending on the specific formula. However, this construction
complexity is usually still a limiting factor.

256 P. Schillinger et al.

2.2 Closure Labeling

In order to decide if a sequence σ fulfills an LTL specification φ, [22] defines a
closure labeling τ : N → 2cl(φ) corresponding to σ and constructed as given below.
The closure of φ is the set of its subformulas, given by cl(φ) with φ ∈ cl(φ) and
recursively for all operations ◦ϕ1 =⇒ ϕ1 ∈ cl(φ) and (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 U
ϕ2), (ϕ1 R ϕ2) ∈ cl(φ) =⇒ ϕ1, ϕ2 ∈ cl(φ).

The closure labeling enables to formally reason about requirements imposed by
the part of a sequence σ from 1 to t , in the following denoted by σ(1, . . . , t). Follow-
ing the intuition of [7], we divide the construction of τ into two parts, one defining
expectations from the previous step τ e and one consequently required observations
τ o. Then, τ is given by τ(t) = τ e(t) ∪ τ o(t).

Definition 2 (Expectations) Expectations τ e(t + 1) on the next time step are con-
structed such that:

• if ◦ϕ1 ∈ τ(t) then ϕ1 ∈ τ e(t + 1)
• if ϕ1 U ϕ2 ∈ τ(t) and ϕ2 /∈ τ(t), then ϕ1 U ϕ2 ∈ τ e(t + 1)
• if ϕ1 R ϕ2 ∈ τ(t) and ϕ1 /∈ τ(t), then ϕ1 R ϕ2 ∈ τ e(t + 1).

Definition 3 (Observations) Observations τ o(t) on the current time step are con-
structed such that:

• ⊥ /∈ τ o(t)
• if ϕ1 ∧ ϕ2 ∈ τ(t) then ϕ1 ∈ τ o(t) and ϕ2 ∈ τ o(t)
• if ϕ1 ∨ ϕ2 ∈ τ(t) then ϕ1 ∈ τ o(t) or ϕ2 ∈ τ o(t)
• if ϕ1 U ϕ2 ∈ τ(t) then either ϕ2 ∈ τ o(t), or ϕ1 ∈ τ o(t) and ϕ1 U ϕ2 ∈ τ e(t + 1)
• if ϕ1 R ϕ2 ∈ τ(t) then ϕ2 ∈ τ o(t), and either ϕ1 ∈ τ o(t) or ϕ1 R ϕ2 ∈ τ e(t + 1).

Requirements on observations τ o(t) at time t initially come from the expectations
τ e(t) on this time step. Thus, starting from t = 1, the closure labeling τ can be
constructed consecutively. Finally, the following rules regarding propositions need to
hold true for all π ∈ Π with respect to σ . If π ∈ τ(t) then π ∈ σ(t) and if¬π ∈ τ(t)
then π /∈ σ(t). Otherwise, we say that σ violates the requirements imposed by the
LTL specification φ.

By this construction of τ , σ(t, . . . , T) fulfills all ϕ ∈ τ(t) if and only if τ e(T +
1) ∩ cl(ϕ) = ∅. In particular, we can check if σ � φ by constructing τ from the
expectation τ e(1) = {φ} and then check if τ e(T + 1) = ∅. Note that [22] additionally
requires that there exists a t ′ ≥ t such that ϕ2 ∈ τ(t ′) for the until operation ϕ1 U
ϕ2 ∈ τ(t). However, this requirement is already covered in our extended acceptance
condition τ e(T + 1) = ∅ and does not need to be explicitly required here.

Illustratively speaking, observations τ o formally describe what needs to be
observed at a given time, while expectations τ e specify expected future observations.
Intuitively, if not all observations are fulfilled at a certain time, the corresponding
LTL formula is violated. If this is not the case and at some point, there are no implied
expectations anymore, the LTL formula is satisfied.

Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning 257

2.3 System Model

Every agent is represented by a transition system to model its available actions and
define which propositions are true consequently. It usually combines a topological
map of the environment with discrete actions, which can be executed at certain
locations, and is formally defined as follows.

Definition 4 (Agent Model) An agent model is given as the transition system A =
(SA , s0,A , AA ,Π, λ,CA) consisting of (1) a set of states SA , (2) an initial state
s0,A ∈ SA , (3) a set of actions AA ⊆ SA × SA , (4) a set of propositions Π , (5) a
labeling function λ : SA → 2Π , (6) action costs CA : AA → R.

Forming a product between the agent modelA and the NFAF constructed from
the LTL specification φ creates an automaton that combines properties ofA andF .

Definition 5 (Product Automaton)A product automaton is a tupleP = F ⊗ A =
(SP , S0,P , AP ,CP) consisting of (1) a set of states SP = Q × SA , (2) a set
of initial states S0,P = {(q, s0,A) ∈ SP : q ∈ Q0}, (3) a set of actions AP =
{((qs, ss), (qt, st)) ∈ SP × SP : (ss, st) ∈ AA ∧ λ(ss) � δ(qs, qt)}, (4) action costs
CP : AP → R with CP (aP) = CA (aA).

Consequently, only actions that do not violate φ are contained in the model. A
run ending in a state sn = (q, sA) with q ∈ F being an accepting state in F gives
an action sequence which fulfills φ.

Definition 6 (ActionSequence)Anaction sequenceβ is givenbyβ = s0a1s1 . . . ansn
with si ∈ SP , s0 ∈ S0,P , and a j = (s j−1, s j) ∈ AP .

3 LTL Decomposition

Considering a multi-agent system with N agents, we can represent each robotic
agent r ∈ {1, . . . , N } according to the above definitions by an individual product
automaton P (r) created from its agent model A (r) and the NFA F , obtained from
the complete LTL mission specification denoted by M .

Problem 1. Given a team of agents r ∈ {1, . . . , N }, each modeled as A (r), and
the finite LTL mission specification M , provide independent action sequences β(r)

for all agents such thatM is fulfilled in an optimal way for the specified team cost.

In order to utilize the team of agents, it is desirable to decompose the missionM
such that parts of it can be allocated to different agents, i.e., automatically identify
independently executable task specifications if there exist some. This decomposition
will allow us to distributeM and solve Problem 1 as if the mission has been specified
by one LTL formula for each agent. Based on the above LTL semantics, we define
what we accept as a semantically valid decomposition of a finite LTL mission M
following the motivation of specifying M as a set of independent tasks.

258 P. Schillinger et al.

Definition 7 (Finite Decomposition) Let Ti with i ∈ {1, . . . , n} be a set of finite
LTL task specifications and σi denote any sequence such that σi � Ti . These tasks
are called a decomposition of the finite LTL mission specificationM if and only if:

σ j1 . . . σ ji . . . σ jn � M (1)

for all permutations of ji ∈ {1, . . . , n} and all respective sequences σi .

Note that this decomposition condition (1) includes that each Ti is a safe, i.e.,
non-violating, prefix ofM . Furthermore, by requiring all permutations of sequences
to be feasible, we make sure that no σi implies expectations to be respected by other
sequences of the decomposition, and that the set of tasks completely covers M .
In the following, we discuss how to decompose the mission M into independently
executable tasks Ti such that M is fulfilled if the set of tasks is fulfilled.

Example. Consider the LTLmission specificationM = �a ∧ �b ∧ �(b → c). In
this simple case, as will be more clear at the end of this section, a possible decom-
position of M is given by T1 = �a ∧ �(b → c) and T2 = �b ∧ �(b → c). For
example, the sequence σ = σ1σ2 with σ1 = {c}{a}, σ2 = {a}{b, c} would fulfillM ,
and also the permutation σ2σ1 = {a}{b, c}{c}{a} would be valid. However, note that
the modification of the above solution such thatT1 = �a would not constitute a valid
decomposition. In this case, for example, σ ′

1 = {b}{a} � T1 and still, σ2 � T2, but
σ ′
1σ2 � M .
For more complex LTL formulas, the explicit LTL formulation of a decomposi-

tion can be significantly different from simply splitting the mission specification or
replicating some parts. However, a boolean conjunction of all tasks Ti always gives
the complete specification M .

Notation Remark. The following notation conventions are used throughout the
rest of this paper. M is the finite LTL mission specification, σ a sequence such
that σ � M and τ the closure labeling of σ . A different σ will have a different τ .
Furthermore, Ti is a finite LTL task specification, i.e., a subformula of M , σi a
sequence such that σi � Ti and τi the closure labeling of σi . Note that τi is defined
over the closure cl(Ti) ⊂ cl(M) while τ is defined over cl(M). Accordingly for τ

and τi , T and Ti denote the ending times, τ e and τ e
i the expectations, and so on.

In order to efficiently determine a valid LTL decomposition as discussed above,
note the following observation.

Theorem 1 (Transitivity) IfT1,T2 is a decomposition ofM andT3,T4 is a decom-
position of T2, then T1, T3, T4 is a decomposition ofM .

Proof We need to show that all six permutations of the sequences σ1, σ3, σ4 fulfill
M . Four of them are rather trivial by substitution of σ2 with σ3σ4 or σ4σ3. However,
for proving σ3σ1σ4 � M and σ4σ1σ3 � M , the closure labeling is used. Specifically,
we need to show that we can construct a closure labeling τ of M from the closure
labelings τi of the tasksTi , i ∈ {1, 3, 4}, such that τ e(1) = {M } and τ e(T + 1) = ∅
for completion time T = T1 + T3 + T4.

Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning 259

For this purpose, we construct a candidate τ with τ e(1) = {M } from the given
set of τi , and then show that this always leads to τ e(T + 1) = ∅. Since T1, T2 are
a decomposition of M , following decomposition condition (1), τ e(1) = {M } is
equivalent to τ e(1) = {T1,T2}, which itself is equivalent to τ e(1) = {T1,T3,T4}
for T3,T4 being a decomposition of T2. Consequently, we have τ(1) = τ e(1) ∪
τ o(1) with τ o(1) following Definition 3.

We start by considering the permutation σ3σ1σ4. For the first part, t ∈ [2, T3],
we construct the candidate τ from τ3 such that τ(t) = τ3(t) ∪ (τ (1) \ cl(T3)). From
using τ3 we get that this part fulfillsT3, and extend τ3 by all requirements which are
not covered by T3, i.e., which are not in cl(T3). τ is still valid because the tasks are
decomposition pairs as stated in the theorem. Specifically, σ2,1 = σ2σ1 � M implies
T1 ∈ τ2,1(t)with t ∈ [1, T2 + 1] for the closure labeling τ2,1 of the permutation σ2σ1.
This means that the requirement T1 cannot be violated at any time during execution
of σ2 = σ3σ4, and thus, also during σ3.

We can repeat this construction for the remaining two parts, continuing with
τ e(T3 + 1) = {T1,T4}. Finally, this leads to τ e(T3 + T1 + T4 + 1) = ∅, meaning
that M is fulfilled. Thus, we see that the constructed candidate is a valid closure
labeling respecting all requirements and consequently, σ3σ1σ4 � M . The proof for
the last permutation σ4σ1σ3 � M follows accordingly. �

Theorem 1 has especially two consequences. First, only n specific permutations
instead of all n! permutations need to be checked in order to decide if a set of n tasks
Ti is a valid decomposition ofM . This is obtained by forming pairs, each of one task
Ti and combination of the other n − 1 tasks, for example by a conjunction. Then, it is
sufficient to check the decomposition condition (1) only for these n permutations in
order to decide if these tasks form a decomposition ofM . Illustratively, the specific
n permutations individually separate tasks Ti from the rest to decide whether Ti is
independent.

Second, it is not required to find a complete set of tasks decomposing M at
once. Instead, it is possible to step-wise identify individual parts to be isolated into
a separate task Ti of the final decomposition and continue with the rest of M . This
progress can be repeated until no further task is found to be isolated and especially
enables automata-based approaches for finding possible decompositions.

3.1 Decomposition Set

In general, different decompositions of M can exist and a task Ti does not need to
be minimal in the sense that it cannot be further decomposed. Thus, we propose an
efficient automata-based approach to identify all possible choices of decomposition
as shown in the remainder of this section. First, note the following relation between
states q ∈ Q of the NFAF constructed from the LTL mission specificationM and
the closure cl(M).

260 P. Schillinger et al.

Lemma 1 (Subformula Labeling) Each state q ∈ Q of the NFAF constructed from
M can be labeled with subformulas Φq ∈ 2cl(M) which are required to be true at
this particular state.

We refer the interested reader to [22], Sect. 4.4, for a detailed proof, covering the
more general case of infinite sequences. In summary, F is explicitly constructed
fromM such that its state space Q is given by 2cl(M) as discussed in Sect. 2.1, and
there is a transition if and only if the successor state fulfills the requirements of the
closure labeling of its predecessor. In particular, note that M ∈ Φq for all q ∈ Q0

and Φq = ∅ for all q ∈ F . Lemma 1 shows the connection between the NFAF and
the closure labeling τ , since τ is as well defined over the subformulas 2cl(M) and
construction of F respects the requirements imposed by τ .

Furthermore, we introduce the following notion of essential sequences to gener-
alize over sequences by associating them with runs ρ in the NFA.

Definition 8 (Essential Sequence) A sequence σ is called essential for an NFA F
if and only if it describes a run ρ in F and σ(t) \ {π} � δ(ρ(t − 1), ρ(t)) for all t
and propositions π ∈ σ(t), i.e., σ only contains required propositions.

This notation is motivated by the closure labeling τ of σ . By restricting σ to
satisfy only the conditions explicitly required by τ , we get the following property.

Lemma 2 (Closure Coverage) Let τ denote the closure labeling of a sequence σ . If
σ is an essential sequence, any other τ ′ satisfied by σ is at most as restrictive as τ ,
in the sense that τ ′(t) ∩ Π ⊆ τ(t) ∩ Π for every t and the set of propositions Π .

Proof Assume there would be a π ∈ Π such that π ∈ τ ′(t) and π /∈ τ(t). τ ′
would then require that π ∈ σ(t). However, this cannot be the case since σ is
essential. �

This property ensures that if an essential sequence describes a run in one part
of the NFA corresponding to τ as well as one corresponding to τ ′, any other non-
essential sequence conforming with τ will not violate τ ′ neither. This can be used to
generalize over sequences without explicitly constructing the closure labeling, but
instead finding an essential sequence.

Finally, we can associate a pair of tasks T q
1 , T

q
2 with a state q ∈ Q ofF . Every

sequence σ1 describing a run ρ1 from an initial state q0 ∈ Q0 to q satisfies T
q
1 ,

specified by the set of fulfilled subformulas Φq0 \ Φq. T
q
2 is given accordingly by

Φq \ ΦqF = Φq with qF ∈ F and represents the rest ofM not fulfilled by T
q
1 .

It remains to decide if the pair T q
1 , T

q
2 resulting from a split forms a valid

decomposition of M , and we define the decomposition set of F as follows.

Definition 9 (Decomposition Set) The decomposition set D ⊆ Q of the NFA F
constructed fromM contains all states q for which the pair of tasksT q

1 ,T
q
2 defines

a valid decomposition ofM according to Definition 7.

This decomposition set can then be constructed as follows, giving all possible
decomposition choices of the finite LTL mission specification M .

Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning 261

Theorem 2 (Decomposability) Let q ∈ Q be a state in the NFAF constructed from
M , and σ = σ1σ2 be an essential sequence such that σ1 describes a run from an
initial state to q and σ2 describes a run from q to an accepting state of F . Then,
q ∈ D if and only if σ̂ = σ2σ1 describes an accepting run inF .

Proof The “only if”-part follows directly from the decomposition condition in Def-
inition 7. For the “if”-part, it remains to show that σ generalizes over all possible
σ ′
1 � T

q
1 and σ ′

2 � T
q
2 , i.e., all pairs of sequences describing a run through q. Note

that, given that σ = σ1σ2 is an essential sequence, also σ1 and σ2 are essential.
First, we show that the essential sequence σ1, generalizes over σ ′

1 � T
q
1 . This

means, if σ̂ = σ2σ1 describes an accepting run, then also any other σ2σ
′
1 describes an

accepting run. According to Lemma 2, the closure labeling τ̂ (t), t ∈ [T2 + 1, T2 +
T1] of σ̂ is at most as restrictive as τ(t), t ∈ [1, T1] of σ . This means that no sequence
can violate τ̂ if it conforms with τ .

Next, following Lemma 1, we can retrieve the closure labeling τ ′ of a sequence
σ ′
1 from a run ρ ′ described by σ ′

1, given by τ ′(t) = Φq for q = ρ ′(t). By construction
of the NFA and T

q
1 , all sequences leading to the respective last state ρ ′(T) fulfill

all requirements imposed by ρ ′(0). Although these sequences may have a differ-
ent closure labeling τ ′, this always satisfies the same requirements as τ , given by
σ ′
1 � T

q
1 = Φq0 \ Φq with q0 = ρ ′(0) = ρ(0) and q = ρ ′(T1) = ρ(T1) where ρ is

described by σ1. Consequently, σ ′
1 cannot violate τ̂ as shown by Lemma 2.

Finally for the permutation σ2σ
′
1, this gives that any σ ′

1 � T
q
1 applied to the same

state as σ1 leads to an accepting state and thus, σ2σ
′
1 describes an accepting run

if σ̂ = σ2σ1 does, i.e., the essential sequence σ1 indeed generalizes over possible
different realizations of T q

1 . The same then holds true accordingly for σ2 and thus,
we get σ ′

2σ
′
1 � M if and only if σ2σ1 � M , given that σ1 and σ2 are essential. �

Note that Theorem 2 only requires to check one essential sequence, which is
much more efficient than the requirement to check every single possible sequence.
Furthermore, an essential sequence σ to a specific state q can be easily constructed
from an NFAF , for example by representing the set of transition conditions α ofF
in disjunctive normal form (DNF). Then, the essential sequence to q is given by the
propositions which are true in one of the conjunctive clauses along the path to q. By
step-wise constructing these sequences σ for all states first, all essential sequences
can be found in linear time with respect to |Q|, which is non-critical compared to
constructing F as discussed earlier in Sect. 2.1.

4 Team Model Construction

Based on the results of the previous section, a team model can be constructed as
follows in order to solve Problem 1. First, the mission specificationM is translated
to an equivalentNFAF . Next,we forma local product automatonP (r) = F ⊗ A (r)

for each agent r ∈ {1, . . . , N }. Unlike previous task allocation approaches, we do

262 P. Schillinger et al.

not explicitly calculate the costs for each subset of tasks resulting from a possible
decomposition choice in each of the local P (r). Instead, we combine these local
product automata into a team model of tractable complexity in which the optimal
task allocation can be calculated much more efficiently.

The basis for this team model is given by a union of all P (r), resulting in N
unconnected partitions. Afterwards, additional switch transitions connect these par-
titions. They represent an option in the planning process to consider a different agent
for allocation of the part of the mission which is not yet assigned. Such a switch
transition is only present if both parts of the mission form a valid decomposition.
Formally, the team automaton is defined as follows.

Definition 10 (Team Automaton) The team automaton G is a union of N local prod-
uct automataP (r) with r ∈ {1, . . . , N }given byG = (SG , S0,G , AG ,CG) consisting
of (1) a set of states SG = {(r, q, s) : r ∈ {1, . . . , N }, (q, s) ∈ S(r)

P }, (2) a set of initial
states S0,G = {(r, q, s) ∈ SG : r = 1} equivalent to the initial states of one arbitrary
agent, (3) a set of actions AG = ⋃

r A
(r)
P ∪ ζ where the individual agent actions A(r)

P
are extended by the set of switch transitions ζ as defined below, (4) action costs
CG : AG → R with CG (aG) = C (r)

P (a(r)
P) and CG (ς) = 0 for all ς ∈ ζ .

Core part of this composition is constructing the set of switch transitions ζ

connecting states in the partitions of two different agents and preserving mission
progress, restricted to states corresponding to a valid mission decomposition.

Definition 11 (Switch Transition) The set ζ ⊂ SG × SG denotes switch transitions
in the team automaton G and ς ∈ ζ for ς = ((i, qs, ss), (j, qt, st)) if and only if it
(i) connects different agents: i �= j , (ii) preserves the NFA progress: qs = qt , (iii) is
directed: ri ≺ r j for an arbitrary ordering of agents r1 ≺ r2 ≺ · · · ≺ rN , (iv) points
to an initial agent state: st = s(j)

0,A , (v) implies a valid decomposition ofF : qs ∈ D.

While condition (i) is trivial, (ii) characterizes the main purpose of a switch tran-
sition, which is transferring the mission progress to another agent. Condition (iv) in
combination with (iii) requires to account for the initial state of each agent. Specif-
ically, (iii) ensures that each agent is considered exactly once for participating in
solving the mission. Finally, (v) guarantees that any possible decomposition result-
ing from switch transitions is valid.

The model G has a much lower state space complexity than the complete product
CProd = P (1) ⊗ · · · ⊗ P (N) of all local automata, which would be required if we
did not decompose the LTL mission into independent tasks. Specifically, the number
of states of G is linear in the number of agents N and given by O(N · |Q| · |SA |).
|SA | denotes the number of states of the agent model and |Q| the number of states
of the NFAF . In contrast, the state space complexity of CProd would be exponential
in the number of agents with O(|Q| · |SA |N).

A team model G constructed as defined above enables to employ conventional
graph-search algorithms for obtaining optimal action sequences β(r) for all agents
such that the LTL mission specification M is fulfilled. Consequently, this solves
Problem 1 and is summarized by the following properties.

Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning 263

Correctness. P (r) = F ⊗ A preserves the acceptance criterion ofF . A union
of the state spacewhen constructingG out of allP (r) does not add any new transitions
except ζ and because condition (ii) requires allς ∈ ζ to preserve theNFAcomponent,
any accepting run ρ in G satisfies M .

Independence. Given by switch condition (v) and the construction of the decom-
position set D as discussed above, parts of ρ referring to different agents r solve
independent tasksTr and thus, do not affect each other. Especially, eachTr is a safe
prefix of all other tasks, i.e., all constraints ofM are covered by Tr .

Completeness. Any set of individual agent action sequences β(r) resulting from
a run in the complete product automaton CProd is also present in the reduced team
model G , since the parts referring to different agents are independent. Especially,
also the optimal solution in CProd is as well contained in G .

5 Evaluation

The presented approach has been implemented in ROS and evaluated both in simu-
lation and on a real system. In the following, we discuss our performance evaluation
results for a set of simulated scenarios and compare them to the conventional product
model approach. For planning the optimal action sequence based on the constructed
team model, we used a conventional Bellman–Ford graph-search and minimize the
largest individual agent costs, i.e., aim to distribute the mission equally. Note that,
although action costs are usually positive, we cannot use a greedy graph-search such
asDijkstra orA*becausewe aim to distribute themission equally and not tominimize
the sum of all action costs.

To evaluate applicability in scenarios as motivated in Sect. 1, we assume a hospital
environment, depicted left in Fig. 1, and form the agent model A as the product
between this topological map (left) and a transition model of robot actions (right).
The set of states SA is given as the product between the map locations and the
robot states. Propositions Π according to the state labels describe specific properties
of locations and robot states, e.g., p for pick-up locations, s for station rooms, c
for carrying an object. The actions AA consist of navigation actions according to
the undirected edges in the map and further robot actions according to the robot

d

p

s,s1

s,s4

s,s2 s,s3

a
s,s5 p

d

r d n
"normal"

c
"carrying"

e
"equipped"

w "soiled"

{p} {p}
{s}

{s}
{d}

{d}

Fig. 1 Map (left) and robot capabilities (right) used in the scenarios. State labels denote propositions
which are true at this state, transition labels denote requirements for performing an action

264 P. Schillinger et al.

model. These robot actions are limited to certain locations such that an action is only
feasible if the respective state contains the propositions listed by the transition label,
e.g., the transition from “normal” to “carrying” is only possible at pick-up locations
p. Finally, action costs CA are chosen to approximately represent the execution
times of actions.

5.1 Scenarios

Before we present illustrative scenarios in the presented environment, we discuss two
mission specifications representing corner cases with respect to the decomposition of
the mission, specifically for the size of the decomposition set D. First, requiring the
team to visit the five station rooms in any order is essentially a multi-agent traveling
salesman problem (TSP) and given by themissionMT SP = �s1 ∧ �s2 ∧ �s3 ∧ �s4 ∧
�s5. Consequently, all 32 states of the NFAF are in the decomposition set: D = Q.
In this case, construction of F took approximately 56ms and determination of D
around 2.2ms. Note that, although the decomposition set contains the full state space
of F , the proposed team automaton G still has a significantly lower state space
complexity than the complete product CProd. In fact, the state space complexity is
independent of the size of the decomposition set and |D| only determines the density
of switch transitions.

In contrast, requiring visits to occur in a specific order is given by the mission
MSeq = �(s3 ∧ �(s4 ∧ �(s2 ∧ �(s5 ∧ �s1)))). Different robots cannot execute parts
of MSeq independently since the correct order could not be guaranteed. Thus, the
decomposition set only contains trivially the initial and accepting states: D = Q0 ∪
F , totaling to 2 of 6 states and reducing the mission to an allocation problem of
choosing the single best robot to execute the mission alone. Construction of F
took approximately 50ms and determination of D around 0.1ms. For both cases,
specialized solutions exist to solve problems of this type. However, most missions
in the motivated scenarios usually combine characteristics of both cases.

In the following, we consider three scenarios with different characteristics in the
presented hospital environment to represent the most common use cases. Teams
consist of three robots, although also the performance for varying team sizes is
investigated at the end of this section as well.

Scenario 1 (Station Tour)

M1 = �s1 ∧ �s2 ∧ �s3 ∧ �s4 ∧ �s5 ∧ �(s → e) ∧ �(e → ¬a)

The robots are required to visit all five station rooms. In addition, a robot needs to
carry medical equipment (proposition e) in order to be at any station room s and
should avoid the public area a while being equipped. As presented before, robots
know from the agent model A that equipment can only be picked up at pick-up
locations p. This mission is similar to a constrained TSP, but requires robots to

Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning 265

perform additional actions before visiting a room, regardless of which room they
would choose to visit first.

Scenario 2 (Room Cleaning)

M2 = �(s3 ∧ ◦δ) ∧ �(s4 ∧ ◦δ) ∧ �(s5 ∧ ◦δ) ∧ �((¬s ∧ ◦s) → n)

with δ := w U (d ∧ ◦(d U ¬w)). The robots need to pick up waste w at three of
the rooms. In this scenario, robots are only required to be in “normal” state n in order
to enter a state room s. But in addition, they are required to visit a dispose location d
as consequence of visiting a room, given by δ. Again, this combines goal allocation
with sequential action planning as consequence of servicing one of the goals.

Scenario 3 (Medication Delivery)

M3 = �(s1 ∧ n) ∧ �(s2 ∧ n) ∧ �(s3 ∧ n) ∧ �(s4 ∧ n) ∧ �(s5 ∧ n) ∧ �((¬s ∧ ◦s) → c)

The robots need to deliver medication to all station rooms. They can only enter a
room s when carrying medication c and need to deliver it by switching back to their
“normal” state n. Consequently, robots need to repeatedly visit pick-up locations.

Figure2 summarizes our performance results for the three scenarios, each ran-
domly initialized. t is the average planning time in seconds, including model con-
struction, calculation of the decomposition set and planning, and |S| the total number
of states in the model. We compare the team model G of our presented approach
with the conventional complete product model CProd. Already for the small team of
three robots, our approach is much more efficient.

tG |SG | tCProd |SCProd |
M1 0.965 6,912 1.71 × 104 1.19 × 107

M2 0.946 9,504 1.52 × 104 1.64 × 107

M3 2.908 13,824 >4.32 × 104 2.39 × 107

Fig. 2 Analysis of the evaluation scenarios for teams of three agents, time given in seconds

1 2 3 4 5 6
103

108

1013

G

CProd

agents

|S| agents tG |SG | tCProd |SCProd |
1 ×10 3 0.342 2.3×103

2 ×10 3 94.75 1.6×105

3 ×10 3 1.7×104 1.2×107

6 ×10 4 n/a 4.5×1012
10 ×10 4 n/a 1.2×1019
100

0.324 2.3
0.525 4.6
0.965 6.9
2.324 1.4
3.896 2.3
92.46 2.3×10 5 n/a 1.7×10187

Fig. 3 Complexity analysis with respect to the team size, performed for scenario M1. Planning
time in seconds, missing entries exceeded the maximum time of 8h

266 P. Schillinger et al.

Furthermore, Fig. 3 provides an analysis of how both approaches scale with an
increasing number of agents, evaluated for scenarioM1. The significantly increasing
planning times on the product model CProd reflect the exponential growth of its state
space. In contrast, our team model G scales well with increasing team size and
produces reasonable results even for large teams.

6 Conclusion

Motivated by the need for efficient methods for multi-robot team planning, we
presented an approach for decomposition of finite LTL mission specifications into
independent tasks, resulting in a team model of tractable complexity for increasing
team sizes. On this model, graph-search algorithms can efficiently distribute action
sequences for the available robots, such that the LTL mission is completed by the
team best suitable, which can dynamically change between missions. We illustrated
the computational advantages of our approach over the conventional product model
in example scenarios, resulting in significantly lower planning times.

References

1. Agarwal, M., Kumar, N., Vig, L.: Non-additive multi-objective robot coalition formation.
Expert Syst. Appl. 41(8), 3736–3747 (2014)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Chen, Y., Ding, X.C., Stefanescu, A., Belta, C.: Formal approach to the deployment of dis-

tributed robotic teams. IEEE Trans. Robot. 28(1), 158–171 (2012)
4. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on finite traces.

In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 854–860. Association
for Computing Machinery (2013)

5. De Giacomo, G., DeMasellis, R., Montali, M.: Reasoning on LTL on finite traces: insensitivity
to infiniteness. In: AAAI, pp. 1027–1033. Citeseer (2014)

6. Fu, J., Tanner, H., Heinz, J.: Concurrent multi-agent systems with temporal logic objectives:
game theoretic analysis and planning through negotiation. IET Control Theory Appl. 9(3),
465–474 (2015)

7. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification of linear
temporal logic. In: International Symposium on Protocol Specification, Testing and Verifica-
tion. IFIP (1995)

8. Guo, M., Dimarogonas, D.V.: Bottom-up motion and task coordination for loosely-coupled
multi-agent systems with dependent local tasks. In: CASE, pp. 348–355. IEEE (2015)

9. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic specifications.
In: Conference on Decision and Control (CDC), pp. 3953–3958. IEEE (2008)

10. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from temporal
logic motion specifications. IEEE Trans. Robot. 26(1), 48–61 (2010)

11. Kloetzer, M., Mahulea, C.: Accomplish multi-robot tasks via Petri net models. In: International
Conference on Automation Science and Engineering (CASE), pp. 304–309. IEEE (2015)

12. Kupferman, O., Vardi, M.: Model checking of safety properties. Form. Methods Syst. Des.
19(3), 291–314 (2001)

Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning 267

13. Lacerda, B., Lima, P.: LTL-based decentralized supervisory control of multi-robot tasks mod-
elled as Petri nets. In: International Conference on Intelligent Robots and Systems (IROS), pp.
3081–3086. IEEE (2011)

14. Luna, R., Lahijanian, M., Moll, M., Kavraki, L.: Asymptotically optimal stochastic motion
planning with temporal goals. In: Algorithmic Foundations of Robotics XI, pp. 335–352.
Springer, Berlin (2015)

15. Raman, V., Kress-Gazit, H.: Synthesis for multi-robot controllers with interleaved motion. In:
International Conference on Robotics and Automation (ICRA), pp. 4316–4321. IEEE (2014)

16. Raman, V., Finucane, C., Kress-Gazit, H.: Temporal logic robot mission planning for slow and
fast actions. In: International Robots and Systems (IROS), pp. 251–256. IEEE (2012)

17. Smith, S., Tumova, J., Belta, C., Rus, D.: Optimal path planning for surveillance with temporal
logic constraints. Int. J. Robot. Res. 30, 1695–1708 (2011)

18. Stefanescu, A.: Automatic synthesis of distributed transition systems. Ph.D. thesis, University
of Stuttgart (2006)

19. Tumova, J., Dimarogonas, D.V.: Decomposition of multi-agent planning under distributed
motion and task LTL specifications. In: CDC, pp. 1775–1780. IEEE (2015)

20. Ulusoy, A., Smith, S., Ding, X.C., Belta, C.: Robust multi-robot optimal path planning with
temporal logic constraints. In: International Conference on Robotics and Automation (ICRA),
pp. 4693–4698. IEEE (2012)

21. Wolff, E., Topcu, U.,Murray, R.: Optimization-based trajectory generationwith linear temporal
logic specifications. In: International Conference on Robotics and Automation (ICRA), pp.
5319–5325. IEEE (2014)

22. Wolper, P.: Constructing automata from temporal logic formulas: a tutorial. In: Lectures on
Formal Methods and Performance Analysis, pp. 261–277. Springer, Berlin (2001)

23. Zlot, R., Stentz, A.: Complex task allocation for multiple robots. In: International Conference
on Robotics and Automation (ICRA), pp. 1515–1522. IEEE (2005)

Informative Path Planning and Mapping
with Multiple UAVs in Wind Fields

Doo-Hyun Cho, Jung-Su Ha, Sujin Lee, Sunghyun Moon
and Han-Lim Choi

Abstract Informative path planning (IPP) is used to design paths for robotic sen-
sor platforms to extract the best/maximum possible information about a quantity
of interest while operating under a set of constraints, such as dynamic feasibility of
vehicles. The key challenges of IPP are the strong coupling inmultiple layers of deci-
sions: the selection of locations to visit, the allocation of sensor platforms to those
locations; and the processing of the gathered information along the paths. This paper
presents an systematic procedure for IPP and environmental mapping using multiple
UAV sensor platforms. It (a) selects the best locations to observe, (b) calculates the
cost and finds the best paths for each UAV, and (c) estimates the measurement value
within a given region using the Gaussian process (GP) regression framework. An
illustrative example of RF intensity field mapping is presented to demonstrate the
validity and applicability of the proposed approach.

1 Introduction

Unmanned autonomous vehicles (UAVs) have been used as mobile sensor platforms
for data collection in a variety of fields, including intelligence, surveillance, and
reconnaissance missions, where the vehicles’ mobility enables a large-scale sensing.
Nonetheless, it can be difficult with just a single UAV to cover a huge area in a

D.-H. Cho (B) · J.-S. Ha · S. Moon · H.-L. Choi
Department of Aerospace Engineering, KAIST, Daejeon, Republic of Korea
e-mail: dhcho@lics.kaist.ac.kr

J.-S. Ha
e-mail: jsha@lics.kaist.ac.kr

S. Moon
e-mail: shmoon@lics.kaist.ac.kr

H.-L. Choi
e-mail: hanlimc@kaist.ac.kr

S. Lee
Agency for Defense Development, Daejeon, Republic of Korea
e-mail: sjlee@lics.kaist.ac.kr

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_19

269

270 D.-H. Cho et al.

short time, particularly when the environment is changing rapidly. Also, from an
economical perspective, data collection using multiple small UAVs with inexpensive
onboard sensors is relatively cheaper and safer than carrying out the mission with a
single UAV.

Path planning for UAV missions is one of the key methods of ensuring efficient
information acquisition, measurement, and mapping of a region of interest. Path
planning problem have been studied for a long time, and most of that research has
focused on minimizing the path length or the moving cost of the robot. However, in
most cases, the highest priority of UAV path design should be to make the best use
of the sensor and maximize the amount of information acquired in a given mission.
Especially considering that the value or quantity of information is not equally dis-
tributed at every point in most cases, the planned path should prioritize areas that are
information-rich.

At the same time, one of the main constraints in path generation when operating a
UAV system is the limited power source. In multiple studies, it has been shown that
exploiting wind-energy is one of the most effective ways of decreasing UAV energy
consumption [1, 11, 20]. Especially inmountainous regions, the wind blows strongly
and can have a strong influence on the system dynamics of UAVs. This raises the
question of whether a wind field can be exploited to operate the UAV system in a
more efficient way.

Several information measurement criteria have previously been used to formulate
informative path planning (IPP) problems, such as the Fisher information [12], the
Kullback–Leibler divergence (relative entropy) [14], the Gaussian process uncer-
tainty [2], and the mutual information [3]. Of these, we borrowed the meaning of
information from [17], and the concept of ‘mutual information’ with entropy is used
in the following sections. In papers dealing with IPP problem information is gener-
ally defined as a signal obtained by missions, such as reconnaissance about a region
or targets of interest. Also, there exist some studies [13, 18] which use an adaptive
path planning in IPP problem since the non-adaptive setting of the problem is known
as NP-hard [6, 19], the non-linear solver was used in this study to avoid the local
optimal solution.

In this study, we focus on a mission which involves mapping the magnitude of
measured data (e.g. an RF signal) in a specific region using a set of fully connected
UAVs which are affected by wind. It is assumed that the mathematical model of the
collected data is unknown, and therefore a probabilistic model, Gaussian Process, is
applied to calculate an estimate [16]. We develop a procedure for online mapping
using path planning for multiple UAVs which maximizes the acquisition of infor-
mation. Although there exist many studies involving the informative path planning
problem, all of them were focusing on the partial side of the problem and there
does not exist any studies which presented the whole procedure of the problem as
mentioned above.

Most of the studies about IPP have formulated target visitation to acquire infor-
mation as a constraint [10] or a reward [2]. Depending on the original intention, the
obtained information can be used for classification of the target or for a decision

Informative Path Planning and Mapping … 271

making process. But that is beyond the scope of this paper, and here we only focus
on the acquisition of the information.

2 Problem Formulation

The problem to be handled in this paper is as follows: given a set of initial locations
of UAVs in a bounded non-convex region with a wind field exerting an influence on
the UAV dynamics, generate a path set which traverses every sensing points with
minimum cost, and finally have all of the UAVs return to their initial locations. After
the path set is generated, the UAV creates a map of the information to be measured
along the path. Since the scope of the problem is wide and can be considered obscure,
we subdivide the problem into 4 subproblems:

1. Given the number of tasks, optimize the set of task locations (representative spots
to visit) for the maximum acquisition of information within the region of interest.
(Sect. 3.1, Eq. (2).)

2. Calculate the paths andmoving costs of aUAVbetween everypair of task locations
obtained from subproblem #1. Because of the wind field dynamics, the paths and
costs for both directions should be calculated separately. (Sect. 3.2, Eq. (4).)

3. Using the output of the subproblem #2, determine the minimum cost route which
traverses all of the task locations and finally returns to the starting point. Since the
situation is a multiple-UAV case, this subproblem can be modeled as a Multiple-
Depot Multiple Traveling Salesmen Problem (MDMTSP). (Sect. 3.3, Eqs. (5),
(6))

4. Each UAV obtains an information along the generated path. During travel, a map
of the information to be measured is created for the region of interest. (Sect. 3.4,
(15))

Below are the assumptions that outline the constraints used in the problem.

• The energy consumption of each UAV is affected by the wind field dynamics.
• The UAVs are fixed wing and homogeneous; all of them share the same dynamics.
• The wind field dynamics and amount of information are stationary within a given
region.

• The wind field dynamics is known in advance.
• Sensing is carried out by an onboard omni-directional sensor (e.g., radar, sonar)
mounted on the UAVs, discretely along the paths (discrete time measurement).

• After sensing is finished, the UAVs return to their initial location.

272 D.-H. Cho et al.

3 Procedure

3.1 Task Location Optimization Based on Entropy
and Mutual Information with Gaussian Random
Variables

3.1.1 Entropy and Mutual Information

Entropy, which measures the amount of uncertainty, in a random variable (R.V.) X
with probability mass function pX (x) is H (X) = −E

[
log(p(x))

]
[5]. It can be also

said that H (X) is approximately equal to how much information the R.V. X has on
average. Formultiple R.V.s, the joint entropy can be derived from the above definition
and isH (X1,X2, · · · ,Xn) = ∑n

i=1 H (Xi|Xi−1, · · · ,X1). Specifically, if a set of R.V.s
follows the multivariate Gaussian distribution with mean μ and covariance matrix
K ,X ∼ N (μ,K), thenH (X) = 1

2 log(2πe)
n|K |where |K | denotes the determinant

of K and n for the dimension of X.
The mutual information is the relative entropy (of KL-divergence) between the

joint distribution and the product distribution between R.V. X1 and R.V. X2,

I(X1;X2) = E

[
log

p(X1,X2)

p(X1)p(X2)

]
= H (X1) − H (X2).

It is also said that I(X1;X2) is a measure of the amount of information that one
R.V. X1 contains about another R.V. X2, and can be interpreted as the reduction of
entropyX1 by conditioning onX2. Themutual information for two sets of R.V.swhich
follow the multivariate Gaussian distribution, X1 ∼ N (μ1,K1), X2 ∼ N (μ2,K2),
and (X1,X2) ∼ N (μ,K), can be written as

I(X1;X2) = 1

2
log

det(K1) det(K2)

det(K)
. (1)

3.1.2 Task Location Optimization

To solve the first subproblem mentioned in Sect. 2, assume the interesting region
A ⊂ R

2 and the number of task locations n are given. The optimal set of locations
P∗
T ⊂ A for a task set T = {1, 2, · · · , n} which maximizes the mutual information,

I(XT (PT);Xo(Po)), is [3, 4]

P∗
T = argmax

PT∈A
I(XT (PT);Xo(Po)). (2)

Here,XT (PT), the function ofPT , is termed the verification variablewhich represents
the variables (or data set) obtained from the set of task locations T , where pt =

Informative Path Planning and Mapping … 273

(xt, yt) ∈ PT is the location of tth task, and t ∈ T . Xo is a set of variables from the
points called test points. To calculate the entropy and the mutual information for the
whole region of interest, locations for the test points are equally spaced inside the
region A, and denoted as Po. The verification variable XT is obtained from the set of
locations PT , and Xo is obtained from Po. In this study, Eqs. (1) and (2) were taken
into the nonlinear programming solver1 to obtain the set of optimal points P∗

T . The
number of task locations n depends on the effective range and the noise level of the
sensor.

3.1.3 Meaning of Assigning Task Locations

The set of optimal task locations, P∗
T , is considered to be the set of representative

spots, where the maximum amount of information can be obtained when the UAV
tours around those locations. Suppose a set of task locations are given, and a UAV
moves along the path which traverses all of the given locations. Since it is assumed
that the UAV is gathering information discretely during a tour evenwhen it is not near
one of the task locations, it is important to set the number of task locations properly
for the path to be set well. In Fig. 1, the tasks with the Hamiltonian path in the region
A ∈ [0, 100] × [0, 100] are drawn for each case - the number of tasks N = 200, 40,
and 5. Here the figure shows three cases of the generated path, overfitted, normal,
and underfitted. If the number of tasks is set too high, then a region of overlapped
sensing exists which is superfluous. Costs of moving increase unnecessarily, and we
define this situation as overfitted. Or if the number of tasks is too small to cover all
of the region, the information obtained will be insufficient to estimate the data of
interest after finishing the mission. We define this situation as underfitted.

The noise level and the length scale of a system model are important factors
when setting the proper number of tasks for the mission. Described below is the
relationship between the number of task locations and the number of sensing points.
Assume that if the effective range of the sensor is very wide compared to the region of
interest, then only few sensing points are enough to cover the whole region and there
would be no problem to consider the task locations as the sensing points. However,
in most of the cases, the inverse situation is given, and a lot of sensing points are
needed to obtain the information of the whole region of interest. In this situation, if
the number of task locations is given as the number of sensing points as mentioned
above, and each UAV has to visit every task locations, then the overfitting situation
happens naturally. To avoid the overfitting situation, the number of task locations
should be less than the number of sensing points, and the proper number depends on
the measuring frequency and the effective range of the sensor.

To reduce the gap between the amount of mutual information obtained only on
the task locations and the sensing points along the generated path for each UAV, it is
necessary to assume that the noise level is less and the length scale is longer than the
effective sensor rangewhen optimizing the locations of tasks. LetMI1 be the expected

1MATLAB fminsearch function was used in this study.

274 D.-H. Cho et al.

0 50 100
0

10

20

30

40

50

60

70

80

90

100
N=200

0 50 100
0

10

20

30

40

50

60

70

80

90

100 N=40

0 50 100
0

10

20

30

40

50

60

70

80

90

100 N=5

Fig. 1 Randomly generated task locations with Hamiltonian path. Left: #Tasks: 200, Mid: #Tasks:
40, Right: #Tasks: 5. Left plot shows the path is overfitted, and right is underfitted

−2 −1 0 1 2

−2

−1

0

1

2

3

region

ou
tp

ut

a priori uncertainty
posterior uncertainty
mean
task location

−2 −1 0 1 2

−2

−1

0

1

2

3

region

ou
tp

ut
a priori uncertainty
posterior uncertainty
mean
sensing point

Fig. 2 Uncertainty difference between before and after sensing. Left plot shows the concept of a
role of task locations, and right plot shows the uncertainty level decreases with sensing

amount of mutual information gathered only from optimal task locations with low
noise level and wide sensor range, and MI2 be the expected amount of a mutual
information gathered along the path by sensors mounted on a UAV. Using the above
procedure mentioned in Sect. 3.1.2 with proper leveling, the difference between the
amount of MI1 and MI2 converges to 0. The amount of mutual information can be
interpreted as the difference between a priori uncertainty and posterior uncertainty,
and this is indicated by the gray field in Fig. 2. In the plots, the blue dots represent the
verification variables with equally distributed locations in the 1-dimensional region,
and the output was set to be 0. The output can be regarded as the measurement value
of the sensor. We assume that the variables follow a Gaussian distribution with a
linear mean function and a non-isotropic squared exponential covariance function.
Details are shown in Sect. 3.4.

Informative Path Planning and Mapping … 275

3.2 Calculation of Moving Cost with FMT* Algorithm

In order to compute the distances between every pair of task locations while con-
sidering the wind field, we adopted the Fast Marching Tree star (FMT*) algorithm
which was recently proposed by Janson et al. [8]. The FMT* algorithm is a batch
processing sampling-based path planning algorithm and it performs a direct dynamic
programming process and lazy collision checking which dramatically accelerates the
speed of the algorithm.

The algorithm was modified to be suitable for the problem stated in this study.
First, while assuming that theUAVs follow the planned path, σ : [0, τ] → R

2 (where
τ denotes the duration of the path), with constant speed, v0, the effect of the wind
field, w ∈ R

2, was incorporated in the cost of the path planning problem. For the
path direction, suppose that the UAV has a simple 2nd order dynamics with external
force and drag as:

v̇(t) = F(t)

m
− k(v(t) − wσ),

where F,m and k denote the force, mass and drag coefficients of the UAV, respec-
tively; wσ = w(σ (t)) · σ̇ (t)

||σ̇ (t)|| represents wind speed along the path direction. In
order to maintain the constant speed, v0, the required force is given as F0(t) =
mk(v0 − wσ). Then, we obtained the total energy consumption along the trajectory
as:

E(σ) =
∫ τ

0
F0(t)d ||σ(t)||

=
∫ τ

0
(mkv0 − mkwσ) d ||σ(t)||

= mkv20τ − mk
∫ τ

0
w(σ (t)) · dσ(t), (3)

where we assume v0 > wσ so that F0(t) > 0 for simplicity. The cost function of
the path planning problem is obtained by simplifying the energy equation C(σ) =
E(σ)/mkv20:

C(σ) = τ − 1

v20

∫ τ

0
w(σ (t)) · dσ(t). (4)

Note that there is a trade-off between path length and path direction: the cost penal-
izes the longer trajectory for the high desired speed v0, while the path direction is
encouraged to be aligned with the wind direction for lower v0. Second, rather than
solving the planning problem for every pair of task locations individually, we mod-
ified the algorithm into a multi-query version: with a fixed starting location, one
planning problem finds all the paths to the other locations. As a result, if there are n
task locations, only n (rather than n2) planning problems need to be solved. Finally,
we made all of the n planning problems share the edge information. This was done

276 D.-H. Cho et al.

Fig. 3 a Wind field and task locations. b–c Some resulting paths. Magenta stars and black lines
represent starting locations and resulting paths, respectively

because, in general, cost evaluation and the collision checking of edges are compu-
tational bottlenecks for the planning algorithm. Sharing edge information through
the problems significantly improves the scalability of the algorithm. Figure3 shows
some of the resulting paths in an environment with an arbitrary wind field. It can be
seen that the overall directions of the resulting paths are aligned with those of the
wind field.

3.3 Mathematical Formulation of the Min-Max Multiple
Depots Multiple Traveling Salesmen Problem
(MMMDMTSP)

TheMMMDMTSP [9] is defined with a set of task locations T = {1, 2, · · · , n} and a
set of depot locations (the initial location of the UAVs) D = {n + 1, n + 2, · · · , n +
m}. The cardinality of T and D is denoted as |T | = n and |D| = m, and it is assumed
that n,m ≥ 1. In this study, we let each UAV have a separate location, so if there are
multiple vehicles in a depot, then the location of the depot will be repeated with how
ever many vehicles exist in there. Therefore, m also represents the number of UAVs.

Let G = (V,E) be a directed graph where V = T ∪ D = {1, 2, · · · , n,
n + 1, · · · , n + m} is the union of sets of the task locations and depot locations, and
E = {(i, j)|∀(i, j) ∈ (V × V)\(D × D)} is the edge set (note that E doesn’t include
any edge between depots) with the cost denoted by cij. The reason that G is not an
undirected graph is that the cost from i to j, cij and the cost from j to i, cji are different
because of the wind field dynamics model.

For each edge, θijk ∈ {0, 1}, is defined to be equal to one if UAV k takes the edge
e = (i, j) as a part of its route and zero otherwise, where i, j ∈ V, i
= j, and k ∈ D.
To prevent a UAV taking a loop for a certain task location, θiik = 0 should be added
as a constraint.

From the above definitions, the cost sum of the kth UAV route can be formulated
as:

Informative Path Planning and Mapping … 277

Ck =
n∑

j=1

θkjkckj +
n∑

i=1

n∑

j=1

θijkcij +
n∑

i=1

θikkcik . (5)

The first term represents the cost from the kth UAV’s depot to the first task location.
The second term is a sum of the costs along the route for set of task locations, and
the final term is the cost from the last task location to the UAVs’ depot.

Tominimize the longest tour for everyUAV,Cmax = maxk∈D Ck is defined as a con-
tinuous decision variable, and the following is the formulation of theMMMDMTSP:

Minimize Cmax (6)

such that

m∑

k=1

θkik +
n∑

j=1

m∑

k=1

θjik = 1 ∀i ∈ N (7)

θkik +
n∑

j=1

θjik −
⎛

⎝θikk +
n∑

j=1

θijk

⎞

⎠ = 0 ∀i, j ∈ T ,∀k ∈ D (8)

n∑

i=1

θkik ≤ 1 ∀k ∈ D (9)

n∑

i=1

θkik −
n∑

i=1

θikk = 0 ∀k ∈ D (10)

Ck ≤ Cmax ∀k ∈ D (11)
∑

i∈S

∑

j∈S
θijk ≤ |S| − 1

i
= j,∀k ∈ D,

|S| = 2, 3, · · · , n − 1
(12)

The constraint (7) ensure that all the task locations are visited exactly once by
the set of routes, and (8) guarantees that each task is not the final destination of the
routes. Equations (9) and (10) are the constraints that respectively ensure that each
UAV has at most one route, and if it does have more, then the UAV should return
to its initial depot (this makes the problem a TSP(traveling salesman problem), not
a VRP(vehicle routing problem)). Equation (11) balances the cost of each route for
every UAV. Finally, (12) is a constraint for subtour elimination. Here, a subtour is a
route which only has vertices i ∈ T and is not from the set of depots, D [9].

Since it is intractable to set up the subtour elimination constraint equation for every
cases, the number of this constraint equation is a determining factor for solving this
MILP formulation. The GA (Genetic algorithm) was adopted in this work, and we
followed the details shown in [15].

278 D.-H. Cho et al.

3.4 Gaussian Process Regression

Gaussian Process Regression [16] (GPR) is one of the supervised modeling scheme
that approximates the interesting target points (output points) using the function of
training points (input points). This scheme regards the relationship between input
and output points as one of the examples of Gaussian process, and thus the output
points can be approximated as a kind of Bayesian inference which computes the
posterior distribution of output points of interest conditioned on the experimentally
obtained input points. In particular, it is assumed that all of the relevant probability
distributions of input and output points follow a joint Gaussian distribution. With
input points, theGPRprocedure consists of defining amean function and a covariance
function and learning their hyperparameters, to maximize the probability of the GPR
generating interesting output points. Here the hyperparameters determine the shape
and characteristics of the GPR.

The most used mean function and covariance in GPR are described below; for the
mean function, a constant function is enough to estimate the model in many cases:

E[f (x)] = m(x). (13)

For the covariance function, the non-isotropic squared exponential covariance func-
tion is used:

cov
(
f (xp), f (xq)

) = k(xp, xq) = σ 2
f exp

[
−1

2
(xp − xq)TΣ−2

l (xp − xq)
]

(14)

where σf is the signal’s standard deviation, and Σl = diag
(
σl1 , · · · , σln

)
, which rep-

resents the characteristic length-scale for each input dimension. These parameters,
σf and Σl , are called hyperparameters.

In Gaussian Process, for an arbitrary input point set {x1, · · · , xn} ∈ X, the output
point set {f (x1), · · · , f (xn)} follows the following Gaussian distribution.

⎡

⎢
⎣

f (x1)
...

f (xn)

⎤

⎥
⎦ ∼ N

⎛

⎜
⎝

⎡

⎢
⎣

m(x1)
...

m(xn)

⎤

⎥
⎦ ,

⎡

⎢
⎣

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

⎤

⎥
⎦

⎞

⎟
⎠

In the case of predicting with noisy observations, it is known that the predictive
equations for GPR are

f∗|X , y,X∗ ∼ N
(
f̄∗, cov(f∗)

)
(15)

where f̄∗ = KOI
[
KII + σ 2

n I
]−1

y and cov(f∗) = KOO − KOI
[
KII + σ 2

n I
]−1

KIO. Here
y is the observation vector with additive Gaussian noise. The subscript I indicates
the input data of size I, and O is the interesting point to be verified. KII denotes the
I × I matrix of the covariances evaluated at all pairs of input and input points, and
similarly for the other matrices KOI and KOO.

Informative Path Planning and Mapping … 279

As mentioned above, the hyperparameters determine the characteristics of the
GPR structure; so an optimization process to obtain the proper hyperparameters is
needed for an accurate approximation. The most commonly used method of opti-
mization is to choose the hyperparameters which maximize the log likelihood of the
given input points, in other words:

(σf ,Σl) = argmax
σf ,Σl

log p(y|X) (16)

In subproblem #4, an information map of an interesting region A can be con-
structed with GPR, (15) and (16). From Sect. 3.1.2, the training points are PT with
the values XT (PT), and the target points are the set of locations Po to obtain Xo(Po).

4 Numerical Example

This section shows the detailed results of the simulation for the problem given in
Sect. 2, using the suggested procedure (Sect. 3). The information to be measured is
assumed to be the intensity of the RF signal, and a signal intensity map is generated
with the obtained information. The parameters and conditions used in the simulation
are as follows.

4.1 Simulation Parameters and Conditions

4.1.1 Wind-Field

There are several kinds of wind field models that can be used for generating wind
field data. Each model depends on the degree of simplification of the Navier–Stokes
equation, and this point determines the spatial resolution of the output data. It is
necessary to choose the wind field model with the appropriate spatial resolution
when the size of the region is given. In this simulation the size was fixed as 20km
× 20km. The wind field data was generated with software called WindSim, which
is based on the Computational Fluid Dynamics model, with a spatial resolution
of 20m, and this resolution size fits the assumed size of the interesting region. If
the temperature is assumed to be constant, the streamline of the wind differs with
the following factors: variation in the altitude of the surface, and land uses (forest,
farm, downtown, mountain, etc.). To obtain wind field data, a digital elevation model
(DEM), land uses, and the boundary conditions of the wind field are needed as
inputs of the program. In the simulation the region of interest was assumed to be a
mountainous area. The boundary condition of the wind was set to be 10m/s from
the northeast. The 3D wind field data was obtained with these inputs and conditions,
and the data at specific altitude, which is the 2D data along the xy plane, was chosen

280 D.-H. Cho et al.

to be used in the simulation below. In Fig. 5, the generated wind field is shown as a
vector plot (blue arrow).

4.1.2 RF Signal Intensity Data

The basic RF propagation model can be expressed using the free space path loss

model, PL(dB) = log10
Pt

Pr
= −10 log10

Gλ2

(4πd)2
where λ is the signal wavelength,

d is the distance from the transmitter, and G is the gain value. But a change in
intensity always happens because of geographical features, and this effect is called
shadowing. It is usually assumed that shadowing follows lognormal distribution, and
an RF signal intensity map can be generated for a region with complex geographical
features using the combined path loss and shadowingmodel [7]. The program called
Radio mobile was used to obtain an RF signal intensity map of an interesting region
at the frequency band of 146MHz. The type of transmitter antennawas assumed to be
omni-directional, and the gains of the transmitter/receiver antenna were 6.0/2.0dBi
respectively. It was assumed that one transmitter was in the center of the region. A
signal intensity map of the region is shown in Fig. 4. The intensity plot is drawn for
an altitude of 3,000m.

4.1.3 Information Acquisition with Onboard Sensor

It was assumed that a total of 3 UAVs were used to obtain information in this simula-
tion, and that each of them moved along the generated path inside the given region.
The initial locations of each UAV can be arbitrarily chosen, but it was assumed that
the locations were given far away moderately from each other. The altitude of the
UAVs was fixed at 3,000m. The UAV dynamics followed the simple Dubins path
model, where ẋ = v cos(θ), ẏ = v sin(θ), and θ̇ = u where u is bounded. The speed
and the minimum turning radius were v = 100m/s, rmin = 50m each. To generate an

Fig. 4 RF Signal Intensity
with altitude 3km. Unit:
dBm

-120
20

-110

-100

15

dB
m

20

-90

Signal Intensity

-80

y (km)
1510

-70

x (km)
105 5

0 0

-110

-105

-100

-95

-90

-85

-80

-75

Informative Path Planning and Mapping … 281

RF signal intensitymap usingGPR, Eqs. (13), (14) were used as themean and covari-
ance function. We set the hyperparameters as follows: σf = 30dBm, σn = 1dBm,
and lx, ly = 4km. Each sensor measured the data for every 10s, and during the data
acquisition the optimization of these hyperparameters were carried out with Eq. (16)
to maximize the amount of mutual information. σn is a sensor dependent value which
is not the subject of a hyperparameter optimization.

4.2 Simulation Result

The results are shown in Figs. 5 and 6a, b. These were obtained with the parameters
and conditions in Sect. 4.1. Figure5 shows the results of the subproblems #1 to #3.
Since it is assumed that the amount of information is equally distributed within the
region, the task locations are spread apart from each other. The moving costs for
every pair of tasks were obtained using the FMT* algorithm to construct a distance
matrix. This matrix becomes an input of the MDMTSP problem, and the output of
this problem (reference paths for each UAV) is drawn as a black line. The depot
locations are marked as red stars; one is located in the top center, and the others are
on the left and right bottom in the given region. Red lines are the paths generated by
the UAV dynamics for the given reference paths.

Figure6a, b show the mapping results for RF signal intensity and the level of
uncertainty within the region. The bottom contour shows how far the UAVs have
gone along the paths. The 3D plot in the middle is the estimated RF map using
GPR. Each of the blue dots are the points where sensing is performed, and the
mapping is based on this obtained data. The level of uncertainty is shown in the
upper contour; a domain with bright color indicates that the uncertainty level is low
(or the information has been obtained), otherwise if the color is dark, the uncertainty
level is high. Figure6a shows the early stage of the mission, and the final result is
shown in Fig. 6b. As the UAVs move and take measurements, the mapping becomes
similar to the original data and the level of uncertainty gets lower.

5 Conclusion

An IPP procedure to measure and map a region of interest using multiple UAVs
has been proposed, in the framework of mutual information and Gaussian process
regression. The validity of the procedure was demonstrated by simulation using a
realistic wind field and RF signal intensity data, and the target region was assumed
to be a mountainous area.

In future work, a more realistic MDMTSP with Dubins path concept will be
considered as well as various amounts and distribution of information inside the
region. Also, the problem can be extended to time-varying situations, which makes
the problem harder to analyze and solve.

282 D.-H. Cho et al.

0 5 10 15 20

x (km)

0

5

10

15

20
y

(k
m

)

1

2
3

4

5
6

7

8

1

2

3

4

56

7

8

9

10

12

3

4

5

6

7

8

9 10

Wind
Depot
Task
Reference Path
UAV Path

Fig. 5 Locations of depots (red stars) and tasks (blue dots), reference paths (black line), and UAV
paths (red line)

-200
-180

20

-160
-140
-120

2015

-100

18

dB
m

-80

16

-60

y (km)
14

-40

10

-20

12

x (km)

0

1085 6420 0

(a)

-200
-180

20

-160
-140
-120

2015

-100

18

dB
m

-80

16

-60

y (km)
14

-40

10

-20

12

x (km)

0

1085 6420 0

(b)

Fig. 6 Simulation Results. a Initial stage - High uncertainty level, low information gained. b Final
stage - Low uncertainty level, high information gained. Top: The uncertainty level of the region of
interest. Middle: The estimated RF map. Bottom: The portion of the paths executed by the UAVs

Informative Path Planning and Mapping … 283

Acknowledgements This work was supported by Agency for Defense Development (contract
#UD140053JD).

References

1. Al-Sabban,W.H., Gonzalez, L.F., Smith, R.N.:Wind-energy based path planning for unmanned
aerial vehicles usingmarkov decision processes. In: IEEE InternationalConference onRobotics
and Automation (ICRA), pp. 784–789. IEEE (2013)

2. Binney, J., Sukhatme, G.S.: Branch and bound for informative path planning. In: ICRA, pp.
2147–2154. Citeseer (2012)

3. Choi, H.L., How, J.P.: Continuous trajectory planning of mobile sensors for informative fore-
casting. Automatica 46(8), 1266–1275 (2010)

4. Choi, H.L., Ahn, J., Cho, D.H.: Information-maximizing adaptive design of experiments for
wind tunnel testing. Eng. Optim. 2014, 329 (2014)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)
6. Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in gaussian processes.

In: Proceedings of the 22nd International Conference onMachine learning, pp. 265–272. ACM
(2005)

7. Hufford, G.A., Longley, A.G., Kissick, W.A., et al.: A guide to the use of the ITS irregular
terrain model in the area prediction mode. US Department of Commerce, National Telecom-
munications and Information Administration (1982)

8. Janson, L., Schmerling, E., Clark,A., Pavone,M.: Fastmarching tree: a fastmarching sampling-
basedmethod for optimal motion planning inmany dimensions. Int. J. Robot. Res. 34, 883–921
(2015)

9. Kivelevitch, E., Cohen, K., Kumar, M.: A binary programming solution to the multiple-depot,
multiple traveling salesman problem with constant profits. In: Proceedings of 2012 AIAA
Infotech Aerospace Conference (2012)

10. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian processes:
theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008)

11. Langelaan, J.W., Alley, N., Neidhoefer, J.: Wind field estimation for small unmanned aerial
vehicles. J. Guid. Control. Dyn. 34(4), 1016–1030 (2011)

12. Levine, D.S.: Information-rich path planning under general constraints using rapidly-exploring
random trees. Ph.D. thesis, Citeseer (2010)

13. Lim, Z.W., Hsu, D., Lee, W.S.: Adaptive informative path planning in metric spaces. Int. J.
Robot. Res. 35(5), 585–598 (2016)

14. Lu, W.: Autonomous sensor path planning and control for active information gathering. Ph.D.
thesis, Duke University (2014)

15. Ombuki-Berman, B., Hanshar, F.T.: Using genetic algorithms for multi-depot vehicle routing.
Bio-inspired Algorithms for the Vehicle Routing Problem, pp. 77–99. Springer, Berlin (2009)

16. Rasmussen, C.E.: Gaussian Processes for Machine Learning. Citeseer (2006)
17. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput.

Commun. Rev. 5(1), 3–55 (2001)
18. Singh, A.: Nonmyopic adaptive informative path planning for multiple robots. Center for

Embedded Network Sensing (2009)
19. Singh, A., Krause, A., Guestrin, C., Kaiser, W.J., Batalin, M.A.: Efficient planning of informa-

tive paths for multiple robots. IJCAI 7, 2204–2211 (2007)
20. Ware, J., Roy, N.: An analysis of wind field estimation and exploitation for quadrotor flight in

the urban canopy layer. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1507–1514. IEEE (2016)

Multi-robot Informative and Adaptive
Planning for Persistent Environmental
Monitoring

Kai-Chieh Ma, Zhibei Ma, Lantao Liu and Gaurav S. Sukhatme

Abstract To gain a better understanding of environmental processes we are inter-
ested in the problem of deploying multi-robot systems for efficient collection of
environmental data. For long-term autonomy, enabling persistent monitoring, it is
important to consider the spatio-temporal variations of environmental phenomena.
We develop a multi-robot persistent path planning method that reduces uncertainty
in the environmental model. Our framework contains two components: the first com-
ponent computes potential observation points that minimize model prediction uncer-
tainty, and the second component uses this for online planning of multi-robot paths,
while also taking into account the efficiency of information collection. We validated
our method via simulations, and the results show that it produces multi-robot routing
paths that are conflict-free, informative, and adaptive to the environmental dynamics.

1 Introduction

We are interested in the problem of deploying multiple robots for efficient collection
of environmental data, to gain a greater understanding of environmental processes.
In particular, we are interested in reconstruction of physical, chemical or biological
scalar fields. One example is the use of autonomous underwater vehicles (AUVs)
for ocean monitoring, to map physical or biological properties of the ocean, such as
temperature, salinity, and chlorophyll contents. Environmental monitoring is inher-

K.-C. Ma · Z. Ma · L. Liu (B) · G. S. Sukhatme
Department of Computer Science, University of Southern California,
Los Angeles, CA, USA
e-mail: lantao.liu@usc.edu

K.-C. Ma
e-mail: kaichiem@usc.edu

Z. Ma
e-mail: zhibeima@usc.edu

G. S. Sukhatme
e-mail: gaurav@usc.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_20

285

286 K.-C. Ma et al.

ently a continuous and persistent task, becausemany of the underlying environmental
processes vary both spatially and temporally. Therefore, in order to obtain a good
estimate of the state of the environment at any time, robots need to perform persistent
monitoring [15, 16].

One aspect that sets apart persistent monitoring from conventional path planning
methods, is that travel costs (e.g. travel time and distance) are not the only concern,
because the robots are performing the task in a continuous, lasting manner. Instead,
the objectives of a planning framework for multi-robot, long-term autonomy mis-
sions, are:

• Maximization of information gain: At any time, the robots’ observations along
their paths can not cover the entire environmental space. We will need to model
and predict continuous environmental phenomena with these limited observations,
which inevitably causes uncertainty. Any planning approach should thus minimize
model uncertainty, or equivalently, maximize information gain.

• Multi-robot coordination: Any paths planned for all robots should resolve poten-
tial conflicts. For example, two paths should avoid cross or transit the same loca-
tion. Furthermore, each robot’s path should collaboratively optimize for the global
objective, namely the collective informativeness of the model.

• Adaptive and online routing: The robots should be capable of adapting to the
collected data. Given the spatio-temporal variability of the environmental fields,
it is crucial that the paths are adapted as the robots progress. This requires online
routing of the vehicles; dynamic goals and re-planning of paths.

We use Gaussian Process (GP) regression to model the phenomenon of interest
[17]. To characterize the amount of information collected, we utilize the mutual
information between visited locations and the remainder of the space [19]. This
allows us to obtain a set of “most informative” future observation points. However,
these observation points do not yet form a path (ormultiple paths), because no routing
information is provided. Many traditional path planning methods require all routing
goals to be determined in advance. However, such goals are unrealistic for long-term
autonomy path planning, because vehicles need to continuously visit infinite number
of goals. Therefore,we extend an existingmatchinggraph-based routingmethod [12],
such that the routing destinations can be dynamically determined, and conflict-free
paths can be adaptively computed, while taking into account the information gain.

2 Related Works

Planning methodologies designed for the spatio-temporal environmental monitoring
are often called informative path planning, because the objective is to maximize the
collected information (informativeness) [1]. Representative informative path plan-
ning approaches include approaches based on recursive-greedy path planning using
mutual information on top of Gaussian Process regression [2, 15, 19], where the
informativeness is generalized as submodular functions built on which a sequential-

Multi-robot Informative and Adaptive Planning … 287

allocation mechanism is designed in order to obtain subsequent waypoints. Recently,
a differential entropy based method was proposed, in which a batch of waypoints
can be obtained through solving a dynamic program [3, 13]. However, the frame-
work is formulated with an assumption that the underlying map is transected (sliced)
column-wise, so that each algorithmic iteration computeswaypointswithin a separate
column and the navigation paths are obtained by connecting those waypoints among
the pairwise adjacent columns. In recent works, we have extended such a framework
by allowing the path to be searched and computed across the entire space at any stage
[14]. In this work, we further extend our approach to persistent monitoring tasks for
multi-robot systems.

Recent works that investigate informative path planning approaches for persistent
ocean monitoring include [9, 16]. In [16], an active sensing based method was pro-
posed, which uses a criterion that trades off between gathering the most informative
observations for estimating unknown local regions, and predicting the phenomenon
given the current estimates of those regions. To capture and adapt to the environ-
ment’s model dynamics, we plan paths within short time horizons. In [9], paths were
also planned over short time horizons, using receding horizon planning. However,
they used a different metric, and they did not consider multi-robot coordination.

Other related works include the Orienteering Problem (OP). The OP is a routing
problem in which the goal is to determine a subset of nodes to visit, and in which
order, such that the total collected score is maximized, and the given time budget
is not exceeded [7, 8]. Heuristics have been designed to approximate this NP-hard
problem in an efficient way [5, 6, 11]. However, one drawback of approaching this
problem as an OP lies in that the time limit or cost can be hard to determine for long-
term autonomy scenarios. In this paper, we extend an efficient matching graph based
planning method by strategically integrating metrics of information gain and travel
cost. We compare our method to a popular heuristic for the OP, and our results show
that ourmethod performs better for persistent multi-robot environmental monitoring.

3 Informative and Adaptive Planning Framework

Environmental phenomena vary not only spatially but also temporally. We regard the
temporal process as a sequence of short horizons of equal length, and assume that
within each short horizon the latent environmental phenomena are time-invariant.
This allows us to eliminate the temporal parameter and focus on constructing the
environment’s spatial properties, using existing methods from spatial statistics, such
as Gaussian Processes (GPs). In this section, we explain how a set of potential infor-
mative observation points can be obtained from the GP. Following that, we construct
routes over observation points using conflict-free paths. The observations along the
paths are then used as a prior for generating a new set of potential observation points
for the next time horizon. Note that these priors are time-varying, which means that
the entropy (model uncertainty) of earlier observed points grows again gradually
after the last observation. Therefore we need to be able to update the routing solution

288 K.-C. Ma et al.

for each new horizon. Our observation point selection procedures thus repeat, and
routes are updated, such that we carry out environmental monitoring persistently.

3.1 Gaussian Process Regression and Information Gain

We model the environment using Gaussian Process (GP) regression [17], similar to
previous works [13, 19]. AGP’s behavior is specified by its prior covariance function
(also known as kernel), which describes the relation between two independent data
points. The GP is further defined by its hyperparameters, which can be estimated
using training data, typically through maximum likelihood estimation [17]. In our
implementation, we use the squared exponential automatic relevance determination
kernel function. The mean and variance of each sample location can be predicted via
the GP. The variance represents the uncertainty of the predicted data value, which
can be used to find future observation points.

To assess prediction uncertainty, we use mutual information as a metric. In infor-
mation theory, the mutual information is used to describe the mutual dependence
between two variables. It is derived from the concept of entropy which is defined to
quantify the uncertainty of random variables. For two arbitrary vectors of sampling
points A, B, the mutual information between A and B can be expressed in terms of
(conditional) entropy

I (ZA; ZB) = I (ZB; ZA) = H(ZA) − H(ZA|ZB) (1)

where Z represent random variables, H(ZA) is the entropy of ZA, and the conditional
entropy H(ZA|ZB) can be calculated via

H(ZA|ZB) = 1

2
log

(
(2πe)k |ΣA|B |

)
. (2)

The conditional covariance matrix ΣA|B can be calculated from the GP’s posterior
covariance matrix.

3.2 Generating Informative Observation Points

Let W denote the sampling set of the grid map, and let n be the desired number
of observation points. The objective is to find a subset of sampling points, P ⊂ W
with a size |P| = n, which gives us the most information for our model. This is
equivalent to the problem of finding observation points that maximize the mutual
information between observed and unobserved locations of the map. The optimal
subset of sampling points, P∗, with maximal mutual information is

Multi-robot Informative and Adaptive Planning … 289

P∗ = argmax
P∈X

I (ZP ; ZW\P) (3)

where X represents all possible combinatorial sets, each of which is of size n. P∗
can be computed efficiently using a dynamic programming approach [14].

The dynamic programming approach is as follows: Formally, let wi ∈ W denote
an arbitrary sampling point at stage i and wa:b represent a sequence of sampling
points from stage a to stage b. Following Eq. (9), the mutual information between P
and the unobserved part at the final stage n can then be written as I (Zw1:n ; ZW\{w1:n}).
This mutual information can be expanded using the chain rule:

I (Zw1:n ;ZW\{w1:n}) = I (Zw1; ZW\{w1:n}) +
n∑

i=2

I (Zwi ; ZW\{w1:n}|Zw1:i−1). (4)

One can utilize this form ofmutual information to calculatewi step by step. However,
at every stage i before the final stage, the entire unobserved set W \ {w1:n} is not
known in advance, therefore we make an approximation:

I (Zw1:n ;ZW\{w1:n}) ≈ I (Zw1; ZW\{w1}) +
n∑

i=2

I (Zwi ; ZW\{w1,...,wi }|Zw1:i−1), (5)

which can be formulated in a recursive form, i.e. for stages i = 2, . . . , n, the value
Vi (wi) of wi is:

Vi (wi) = max
wi∈W\{w1,...,wi−1}

I (Zwi ; ZW\{w1,...,wi }|Zw1:i−1) + Vi−1(wi−1), (6)

with the base case for this recursion:V1(w1) = I (Zw1; ZW\{w1}).Note that the optimal
waypoint in the last stage n is

w∗
n = argmaxwn∈W Vn(wn). (7)

With the optimal solution in the last stage, w∗
n , we can backtrace all optimal

sampling points (optimal with respect to the approximation made in Eq. (9)) until the
first stage w∗

1 , and get the whole set of observation points w∗ = {w∗
1,w

∗
2, . . . ,w

∗
n}.

3.3 Planning Multi-robot Paths Among Observation Points

Given the most informative observation points, we can then plan the paths for each
robot. Our path planning framework differs from traditional path planning methods
in three ways: First, we need to plan paths for multiple robots, where each path starts
from the robot’s current location and ends at a unique destination, and these paths
should not interfere (e.g. no intersection). Second, the metric for path quality is not

290 K.-C. Ma et al.

only the travel distance/time (a minimization problem), but combined with informa-
tion gain (a maximization problem). In our work, we evaluate the path quality via the
information gain in unit time, i.e. the relative information gain given the time needed
to collect such information. Third, the planning needs to adapt to the spatio-temporal
dynamics. Observation points with time-varying priors are generated online, and the
routing of paths needs to be able to adapt to such variations. We address these prob-
lems as follows.

Multi-robot Conflict-Free Path Planning: We use a graph G = (V, E) to
describe the possible paths between observation points V . Each point vi ∈ V is
weighted by its information gain τ(vi). Each edge ei j = (vi , v j) ∈ E is weighted by
w(vi , v j), the travel time between the two ending vertices. Motivated by the embed-
ding of both vertex weight and edge weight as well as the capacity for describing
multi-agent assignment, we opt to extend our routing method based on bipartite
graphs (also called matching graphs) [12], to plan the multi-robot informative and
conflict-free paths. In essence, the bipartite graph G̃ = (V, V ′, Ẽ) is an augmented
version of the standard graph G = (V, E), if we regard it in the way that each vertex
weight in G is uniquely transformed to some edge weight in G̃ (such that all ver-
tex weights are eliminated). Such a bipartite graph can well represent the matching
(assignment) problem, and the optimal matching solution to it can be converted and
interpreted as a routing path on the standard graph. We briefly describe the idea as
follows, more details can be found in [12].

A bipartite graph G̃ has two sets of nodes, V and V ′, where V ′ is simply a copy
of V ∈ G such that |V | = |V ′|, and an edge ẽi j = (vi , v′

j) ∈ Ẽ connects the vertices
vi ∈ V and v′

j ∈ V ′ if there is an edge ei j = (vi , v j) ∈ E ∈ G. Edge ẽi j = (vi , v′
j) is

weighted the same as the counterpart edge ei j = (vi , v j), i.e., w̃(vi , v′
j) = w̃(v′

i , v j) =
w(vi , v j).

Figure1 shows an example of bipartite graph. If we insert some starting vertices
Vs and some goal/ending vertices Vg , a new matching problem is formed and we can

Fig. 1 Bipartite graph in the form of a 3D mesh, where V = {v1, v2, v3}, V ′ = {v′
1, v

′
2, v

′
3}. The

starting nodes (i.e. robots’ current locations) are put in a set Vs = {vs}; similarly, the goal nodes for
each robot are in set Vg = {vg}. In this example, we have only one start node and one goal node for
each robot, and these are mutually exclusive. aMatched edges are in red bold, others are unmatched
edges; b Optimal matching solution after running the Hungarian Method. The projected routing
path is vs—v1—v2—vg , the vertices of which are only in routing graph G. The path is illustrated
by dashed arrows in the top layer

Multi-robot Informative and Adaptive Planning … 291

employ the Hungarian Method [10] (with time complexity O(n3)) to solve it. The
output is a mapping that matches each vi ∈ V ∪ Vs to a unique v′

j ∈ V ′ ∪ Vg . The

matched pair (vi , v′
j) form a matched edge in G̃. Matched edges in Fig. 1 are colored

in red. To retrieve a routing path, all vertices on the matched edges except those in
the set V ′, form the path waypoints. For instance, in Fig. 1b, the path starting from
vs and ending at vg is: vs—v1—v2—vg . Note that, from multiple starting vertices
Vs to multiple pre-specified goal nodes Vg , multiple paths can be obtained. Because
each vertex can not simultaneously be on more than one matched edge, the retrieved
routing paths are conflict-free with no shared vertices. The paths do not cross or
overlap due to the matching optimization mechanism [20].

Incorporating Informativeness: A useful property of the bipartite graph method
is that paths can be tuned. This can be achieved bymanipulating the weights w̃(vi , v′

i)

of the corresponding vertical edges in Fig. 1. The path tuning feature allows us to
incorporate the information gain metric. Specifically, we set each weight:

w̃(vi , v
′
i) = λi w̃0(vi , v

′
i)

λi = f (τ (vi , t)),
(8)

where w̃0(vi , v′
i) is initialized to be the minimum weight among all the outgoing

edges, and 0 ≤ λi ≤ 1 is a parameter for scaling the importance of the information
gain versus the travel cost. λi is a function of τ(vi , t), which is the information gain
for vertex vi ∈ G at time t . Function f is empirically pre-defined to express how the
raw information gain should be transformed to reflect the importance. For example,
f can be a linearly increasing function. Intuitively, as λ increases, the paths become
more winding and include more nearby informative observation points.

Adaptive Routing for Spatio-Temporal Dynamics: We want our path planning
approach to be able to adapt to the spatio-temporal dynamics, and to handle online
routing. Pre-defining routing goals for all future horizons is impractical, because
the persistent monitoring task can be infinitely long. Instead, we want the planner
to determine the goals online. We achieve this by further extending the above rout-
ing mechanism to address the online goal selection and path optimization problem.
Specifically, we start by setting V as an empty set, Vs as the current locations of all
robots, and Vg as all potential observation points, within the current time horizon.
Then we solve the matching problem, which matches Vs to a set, say, V ′

g ⊂ Vg . Note
that this step is optimal only with respect to the one step planning horizon since it
does not account for the future observation points. Therefore, we manipulate the sets
by letting V = V ∪ V ′

g , Vg = Vg \ V ′
g and solve the new matching again. By repeat-

ing this process, vertices are incrementally moved from Vg to V , and the sequentially
obtained vertices in V ′

g form the routing paths, with the last waypoint at the end of
each path as its routing destination. Algorithm 1 shows this incremental adaptive
planning in pseudo-code.

292 K.-C. Ma et al.

Algorithm 1: Incremental Adaptive Path Planner

1 Given the starting locations of k robots s = {s1, . . . , sk}, the sampling waypoints
w = {w1, . . . ,wn}, and the planning horizon, h.

2 Initialize, V = ∅, Vs = s, Vg = w, V ′
g = ∅

3 for t = 1 to h do
4 V = V ∪ V ′

g , Vg = Vg \ V ′
g

5 Build a bipartite graph G̃ = (V, V ′, E), where ẽi j = (vi , v′
j) ∈ E, w̃(vi , v′

j) = d(vi , v′
j),

and the Euclidean distance d(vi , v′
j) represents travel cost.

6 Parameterize V : w̃(vi , v′
i) = λi min∀v′

j
w̃(vi , v′

j)

7 Insert Vs , Vg to the above graph as starting/ending vertices, then solve the matching
problem using the Hungarian Method.

8 Let V ′
g be the resultant matchings.

9 Transform V ′
g to k routing paths as described in Fig. 1b

4 Experimental Results

Experimental Set-Up: We validate our method through simulations, using the sce-
nario of ocean environmental monitoring. The simulation environment is constructed
as a two-dimensional ocean surface which is tessellated into a grid map. We use
salinity and ocean currents data, observed in the Southern California Bight region,
obtained via ROMS [18]. Figure2a, b show visualizations of these data. The grid
map resolution, as well as the hyperparameters of GP, aremanually tuned and pre-set,
such that approximately 30 observation points from the entire space can be generated
and they can well cover the space. The robot used in simulation is an underwater
AUV (marine glider).

Fig. 2 a Ocean temperature field near southern California generated by ROMS. b Ocean currents
predicted by ROMS. c Potential observation points (blue) with priors in the corners (yellow)

Multi-robot Informative and Adaptive Planning … 293

We use a hierarchical model for motion planning, with two levels. At the higher
level, the robots follow the planned paths presented in Sect. 3. At the lower level, the
robots follow disturbance-aware motion policies, built on Markov Decision Process
(MDP) (formulation details of the low level planner can be found in [14]). These
motion policies let us integrate external disturbances (such as ocean currents) into
the stochastic transition model. Therefore we take into account the robots’ motion
uncertainty caused by the ocean currents. By setting succeeding path waypoints as
the short-horizon goal states, the low-level motion planner generates policies for
local guidance.

Figure2c demonstrates a set of 10 observation points that maximize mutual infor-
mation in the map. In the figure, the black region represents land and the gray area
represents the ocean. The yellow dots in the corners represent prior observation
points, and the blue blobs are the resultant observation points. With the observa-
tion points obtained, we run the path planner described in Algorithm 1 to generate
the informative and adaptive paths for the multi-robot system. As shown in Fig. 3,
the routing paths are incrementally and adaptively augmented in each time step.
Figure3d, e show that the paths are adapted to avoid conflicts.

Results: Figure4a–d shows the simulation results for two robots. Each robot fol-
lows its local decision-policy computed from an MDP model, combining both the
ocean current disturbances and the reward information for the next waypoint. The
colormap in these figures denotes the significance of uncertainty (red = low uncer-
tainty, green = high uncertainty), from which we can see that the proposed method
produces informative paths that explore and cover the regions with high uncertainty.
As noted previously, the information gain is time-varying, i.e. the uncertainty of an
observed point starts increasing again after a robot finishes its observation at this
location and moves to somewhere else. Therefore, we incorporate the fact that the
uncertainty of predictions increases as time elapses. Figure4c, d show us that the
earlier explored regions become uncertain again as time elapses, and that the robots
always explore the most uncertain parts of the environment, as the environment
changes.

Fig. 3 Intermediate results of our multi-robot routing process. The routing points are incrementally
and adaptively chosen during the process, as illustrated from d and e.

294 K.-C. Ma et al.

Fig. 4 Demonstration of environmental monitoring with 2 AUVs. The regions with warmer col-
ors indicate less uncertainty (high confidence), whereas regions with colder colors indicate high
uncertainty (low confidence). For the purpose of clarity, only one robot’s MDP policy map (small
arrows) is shown

Fig. 5 Average computation
time for different numbers of
deployed robots and
planning horizons

Computational Performance:We also evaluated the computational performance
of our approach. Figure5 shows the computation times given different numbers of
deployed robots and planning horizons, as run on a computer with an 8-core 2.6GHz
CPU and 12GB DDR3 memory. All statistics are mean values of 20 trials for each
setting. In every simulation, 30 observation points are generated, and the prior data
are randomly selected points. We can see that the computation time generally grows
polynomially with the planning horizon increases, for each fixed number of robots.
This can be justified by inspecting Algorithm 1. We can see that the bottleneck
step is the Hungarian Method, whose time complexity is O(n3) and therefore the
overall complexity is polynomial. The growth in computation time is mostly due to
the generation of observation points. Table1 shows the comparison of computation
time between the generation of observation points, and themulti-robot path planning.
Three robots are deployed and the planning horizon for path planning is set to cover as
many observations points as possible. The informative observation point generation
part is more costly due to the large search space; the observation point algorithm
needs to evaluate all grid points in the grid map, whereas the path planning method
only needs to compute routing solutions from the subset of obtained observation
points.

Multi-robot Informative and Adaptive Planning … 295

Table 1 Computation time (sec) for two components of our informative path planning approach:
finding informative observation points, and calculating a path between these

Stages = 5 10 15 20 25 30

Observation
points

5.5752 12.8784 20.7266 28.6449 36.9960 47.2544

Path
planning

0.0001 0.0007 0.0038 0.0070 0.0216 0.0659

To assess the quality of planned paths, we compare our method with an algorithm
that solves the Orienteering Problem (OP). The OP solver aims at maximizing the
collected score along the paths within some given time limits, thus it also considers
two competing metrics (score collection and travel time). We implemented a well-
known heuristic called the centre-of-gravity heuristic [7], which combines other
local refining heuristics such as the well-known 2-Opt heuristic [4]. One drawback
of such OP solution lies in that both the ending vertices and the time limits must be
specified. In contrast, our method plans the paths with their goals adaptively, in order
to achieve better scores. To address the goal specification requirement for the OP,
we first run our method and obtain the goals, then we assign these obtained goals to
the centre-of-gravity OP. The time limits fed to the OP are the recorded time of each
path computed from our method.

Figure6 provides two sets of results for our proposed planning method (green
paths) and the orienteering algorithm (red paths). The score for each vertex is
scorei ∈ [0, 100] and λi is set to be

λi =
{
scorei/100, if scorei > 20

0, otherwise,
(9)

Specifically, Fig. 6a, b are planned paths from the two methods on the same set of
artificially created observation points. The physical size of a node in the environment
represents the significance of information gain (or score). We can observe that the
paths produced from our method transit many high-score waypoints, whereas the
centre-of-gravity heuristic transit fewer. Then, we manipulated the scores so that the
score distribution is imbalanced, see Fig. 6c, d. We can see that our method can skip
those low-score regions and transit only those high score nodes. Similar behavior
can also be observed from the orienteering algorithm.

Next we compare these two approaches on their scoring performance. Figure7
shows the detailed numerical results for 50 trials with randomly generated loca-
tions and scores. The y-axis is the average score collected, corrected for the path
length. Figure7b shows the average statistics of the two scenarios depicted in Fig. 6,
from which we can also conclude that our method is superior in terms of scoring
performance.

296 K.-C. Ma et al.

Fig. 6 Two different scenarios used to compare results between our method (green a, c) and the OP
algorithm (red, b, d). Two robots are deployed. The circled nodes indicate their starting locations,
and the squared nodes the ending locations. The size of each node reflects their significance of
score. a and b compare performance on artificially created observation points, c and d compare
performance on a skewed score distribution

Fig. 7 The scoring performance comparison between our method and the OP solver: a average
scores for 50 trials with uniformly distributed scores, b average scores for the scenarios shown in
Fig. 6

Multi-robot Informative and Adaptive Planning … 297

5 Conclusions

In this paper, we presented an informative path planning approach for persistent
multi-robot environmental monitoring. Taking into account the spatio-temporal vari-
ations of ocean phenomena,we first developed an information-driven component that
computes the observation points, by minimizing the environmental model’s predic-
tion uncertainty. Multi-robot paths are then obtained by extending a matching graph
based routing method, which allows the vehicles to transit the obtained informative
observation points in an efficient manner. We validated our method through simula-
tions with real ocean data. The results show that our method generates informative
paths, which are conflict-free for multiple robots, and adaptive to the dynamics of
the environment. Our approach is polynomial in the planning horizon, and linear in
the number of robots. Furthermore, we have shown that our approach outperforms
a well-known orienteering problem solver. Thereby we have developed an approach
well suited for persistent monitoring with a multi-robot system.

Acknowledgements The authors would like to thank Stephanie Kemna and Hordur Heidarsson
for their valuable inputs on this paper.

References

1. Binney, J., Krause, A., Sukhatme, G.S.: Informative path planning for an autonomous underwa-
ter vehicle. In: International Conference on Robotics and Automation, pp. 4791–4796 (2010).
http://robotics.usc.edu/publications/642/

2. Binney, J., Krause, A., Sukhatme, G.S.: Optimizing waypoints for monitoring spatiotemporal
phenomena. Int. J. Robot. Res. (IJRR) 32(8), 873–888 (2013)

3. Cao, N., Low, K.H., Dolan, J.M.: Multi-robot informative path planning for active sensing of
environmental phenomena: a tale of two algorithms. In: Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, pp. 7–14 (2013)

4. Croes, A.: A method for solving traveling salesman problems. Oper. Res. 5, 791–812 (1958)
5. Fomin, F.V., Lilngas, A.: Approximation algorithms for time-dependent orienteering. Inf. Pro-

cess. Lett. 83(2), 57–62 (2002)
6. Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective

travelling salesman problem. Euro. J. Oper. Res. 106(2–3), 539–545 (1998)
7. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Nav. Res. Logist. (NRL) 34(3),

307–318 (1987)
8. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants,

solution approaches and applications. Euro. J. Oper. Res. 255(2), 315–332 (2016)
9. Hitz, G., Gotovos, A., Garneau, M.É., Pradalier, C., Krause, A., Siegwart, R.Y., et al.: Fully

autonomous focused exploration for robotic environmental monitoring. In: 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2658–2664. IEEE(2014)

10. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97
(1955)

11. Laporte, G., Martello, S.: The selective travelling salesman problem. Discret. Appl. Math.
26(2), 193–207 (1990)

12. Liu, L., Shell, D.A.: Physically routing robots in a multi-robot network: flexibility through a
three dimensional matching graph. IJRR 32(12), 1475–1494 (2013)

http://robotics.usc.edu/publications/642/

298 K.-C. Ma et al.

13. Low, K.H., Dolan, J.M., Khosla, P.: Active markov information-theoretic path planning
for robotic environmental sensing. In: Proceedings of the 10th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS-11), pp. 753–760 (2011)

14. Ma, K.C., Liu, L., Sukhatme, G.S.: An information-driven and disturbance-aware planning
method for long-termoceanmonitoring. In: Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems (2016)

15. Meliou, A., Krause, A., Guestrin, C., Hellerstein, J.M.: Nonmyopic informative path planning
in spatio-temporal models. In: Proceedings of National Conference on Artificial Intelligence
(AAAI), pp. 602–607 (2007)

16. Ouyang, R., Low, K.H., Chen, J., Jaillet, P.: Multi-robot active sensing of non-stationary gaus-
sian process-based environmental phenomena. In: Proceedings of the 2014 International Con-
ference on Autonomous Agents and Multi-agent Systems, pp. 573–580 (2014)

17. Rasmussen, C.E.,Williams, C.K.I.: Gaussian Processes forMachine Learning (Adaptive Com-
putation and Machine Learning). The MIT Press, Cambridge (2005)

18. Shchepetkin, A.F., McWilliams, J.C.: The regional oceanic modeling system (ROMS): a split-
explicit, free-surface, topography-following-coordinate oceanic model. Ocean. Model. 9(4),
347–404 (2005)

19. Singh, A., Krause, A., Guestrin, C., Kaiser, W., Batalin, M.: Efficient planning of informative
paths formultiple robots. In: Proceedings of the 20th International Joint Conference onArtifical
Intelligence, IJCAI’07, pp. 2204–2211 (2007)

20. Turpin, M., Michael, N., Kumar, V.: Capt: Concurrent assignment and planning of trajectories
for multiple robots. Int. J. Robot. Res. 33(1), 98–112 (2014)

The Effectiveness Index Intrinsic Reward for
Coordinating Service Robots

Yinon Douchan and Gal A. Kaminka

Abstract Modern multi-robot service robotics applications often rely on coordina-
tion capabilities at multiple levels, from global (system-wide) task allocation and
selection, to local (nearby) spatial coordination to avoid collisions. Often, the global
methods are considered to be the heart of themulti-robot system,while local methods
are tacked on to overcome intermittent, spatially-limited hindrances. We tackle this
general assumption. Utilizing the alphabet soup simulator (simulating order picking,
made famous by Kiva Systems), we experiment with a set of myopic, local methods
for obstacle avoidance. We report on a series of experiments with a reinforcement-
learning approach, using the Effectiveness-Index intrinsic reward, to allow robots to
learn to select betweenmethods to use when avoiding collisions.We show that allow-
ing the learner to explore the space of parameterized methods results in significant
improvements, even compared to the original methods provided by the simulator.

1 Introduction

Modern service robotics applications often rely today onmultiple robots which coor-
dinate tasks between them, and the user, in order to fulfill their design goals. Such
multi-robot systems require coordination capabilities at multiple levels, from global
(system-wide) task allocation and task selection, to local (nearby) spatial coordina-
tion to avoid collisions.

Often, the global methods are considered to be the heart of themulti-robot system,
as they are responsible for the scheduling and allocation of tasks to the robots. Local

Y. Douchan
School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University,
Tel Aviv, Israel
e-mail: yinondouchan@mail.tau.ac.il

G. A. Kaminka (B)
Computer Science Department and Gonda Brain Research Center, Bar Ilan University,
Ramat Gan, Israel
e-mail: galk@cs.biu.ac.il

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_21

299

300 Y. Douchan and G. A. Kaminka

methods, on the other hand, are often added on, to overcome intermittent, spatially-
limited hindrances to the tasks assigned to individual robots.

TheKiva Systems (AmazonRobotics) pick ordering andmaterial handling system
is a highly successful example of this design [13]. Here, hundreds of individual robots
are sent around a warehouse to fetch and place back shelves containing products to
be shipped to online customers. A centralized market allocation algorithm is used to
optimize decisions as towhich robot shouldmovewhich shelf, andwhere. Each robot
is then responsible to plan and execute a path from its current location to the target
location, in order to maximize its own individual performance. Potential collisions
between robots are resolved dynamically, ad-hoc.1

This paper examines the role of such local, dynamic collision-avoidance methods
withinmulti-robot systems.We utilize the alphabet soup simulator [7], written by the
founders of Kiva Systems to encourage research into their application domain. Here,
as described in [13], a centralized optimization algorithm globally assigns tasks to
robots. But planning paths and moving, to execute these tasks, is left to the robots.

We first experiment with a set of myopic, local methods for obstacle avoidance,
which we demonstrate to work much worse than the methods provided with the
simulator. Indeed, it turns out that it is quite difficult to get a local method to work
well: the simulator’s best method is a non-trivial stochastic combination of a myopic
random direction selection, and predictive collision avoidance, a simple variant of
the dynamic window algorithm [5].

Then,we report on a series of experimentswith a reinforcement-learning approach
using an intrinsic reward, to allow robots to learnwhichmethod to usewhen handling
collisions. The reward function, called effectiveness index (EI), first proposed in [8],
seeks to minimize resource usage when avoiding obstacles, and does not rely on
communications or any information about the decisions or state of other robots. It
is thus easily implementable in existing service robots, as it only relies on their own
estimates of their own resource use.

While a first attempt at such learning generates mediocre results, we show that
allowing the learner to explore the space of parameterized methods, results in sig-
nificant improvements, even compared to the original methods provided by the sim-
ulator. The results demonstrate clearly that using the effectiveness-index reward, a
reinforcement-learning technique can outperform manually-designed coordination
methods, in a non-trivial real-world task. This, despite the simplicity of the learning
mechanism itself.

A second key lesson touches on the significant impact of local collision avoidance
within a sophisticated multi-robot system utilizing global coordination methods. The
extreme differences in system performance when using different local methods—but
all using the same centralized task allocation method—shows that good coordination
cannot be carried out only at the global task allocation and team-plan level, but is
instead an important factor at all levels of decision-making.

1This is actually not stated explicitly in [13], but is implied by the design, which explicitly leaves
path-planning and motion-planning to each robot’s individual controlling agent.

The Effectiveness Index Intrinsic Reward for Coordinating … 301

2 Related Work

Earlywork on local decision-making investigated reactivemethods that proved useful
in canonical multi-robot tasks, such as foraging, formations, or exploration. Balch
and Arkin [1] describe a method, which we term noise in this paper, where once a
robot is about to collide with another robot it moves backwards with some random
directional noise. Vaughan et al. [12] describe aggression, a method in which when
two robots collide with each other the robot with the highest aggression factor goes
forward while the other backs away. Vaughan et al. describe three ways to determine
the aggression factor for each of the two colliding robots: randomly, fixed, or based
on each robot’s free personal space behind them. We use the random version in the
experiments reported below. Rosenfeld et al. [9] discuss the repel method, where by
a collision is avoided by the robots moving backwards for a fixed amount of time.

Reactive methods are myopic, in the sense that they do not engage in, or rely on,
any prediction of the future position or velocity of colliding robots. At a cost of more
computation, a variety of sophisticatedmethods utilize predictions of othersmotions.
Dynamic window [5] is one such method, which takes the motion constraints of the
robot into account. It works by generating a search space for a navigation solution,
and then selecting a heading and velocity within the space, that maximizes clearance
from obstacles and other robots. The Reciprocal Velocity Obstacles (RVO) family
of predictive methods takes into account not only the motions allowed for the robot,
but also the responses of other robots to the these motions [11]. PassPMP [3] and
related algorithms focus on safety in collision avoidance, at a cost of significant
computation. In this paper, we utilize the best-evade and original methods supplied
with the simulation (and seem to be variants of the dynamic window algorithm), and
add the reactive methods discussed above.

Regardless of the method used—whether myopic or predictive—no method is
always best. Both Rosenfeld et al. [9] and Rybski et al. [10] demonstrated that no
local method is always better than others, but instead its performance depends on the
density of robots. To address this, learning approaches have been utilized to try to
dynamically adjust the collision-avoidance method to the density and other dynamic
settings.

Rosenfeld et al. [9]measured aCombinedCoordinationCost (CCC), the sum total
of costs (time, energy, communications) that rise from a robot’s attempt to coordi-
nate away from collisions. The CCC was shown to be negatively correlated with
performance in multi-robot foraging, and then used to guide dynamic selection of a
reactive method for each robot. Each robot estimated its own CCC—relying on the
estimation of the local density—and switched method if thresholds were passed. The
thresholds were determined offline (before deployment), via hill-climbing. They do
not change with robot deaths, or with other dynamic changes to the task. Recent work
by Godoy et al. [6] uses reinforcement learning to tackle the problem of multi-agent
navigation. Their ALAN reward function controls the robot’s velocity according to a
weighted sum of two factors: a goal-oriented component factors the robot’s distance
to the goal; a second component considers how the robot’s velocity vector affects

302 Y. Douchan and G. A. Kaminka

others’ velocities—using a variant of RVO to carry out this computation. A key dif-
ficulty with this reward function is that both of its components are extrinsic, relying
on information external to the robot (e.g., the distance to the goal), which can be
challenging to sense, and requires more sophisticated—and costly—capabilities.

To address this challenge, Erusalimchik et al. [8] proposed an intrinsic reward
function, called the effectiveness index (EI). EI is a measure of the robot’s own
resource usage dealing with collisions. The robot only evaluates its own resources,
and does not need any extrinsic information.However, EI has only been demonstrated
to use in foraging, and its application inmore structured settings is not straightforward
(aswe show) in particularwhere the navigation goals are given by a top-level decision
process. We address this in this paper.

3 Reinforcement Learning Using Effectiveness Index

Webriefly remind the reader of the EI reward function and its rationale. Please see [8]
for details. The execution time of each robot’s task can be divided into intervalswhere
the robot is carrying out its task, uninterrupted, and these are interleavedwith intervals
where the robot is avoiding or otherwise actively handling an impending collision.
This division of the task’s time into interleaved execution and interruption intervals
is characteristic of many service robotics tasks.

From the perspective of collision-handling there is a repeating pair of intervals:
an active time interval, denoted Ia , where the robot is busy coordinating to avoid a
collision, followed by a passive time interval Ip where the robot performs its task.
Given these, the EI for a given conflict, where a coordination method α was used, is

E I (α) = I α
a

I α
a + I α

p

. (1)

This measures how costly a coordination method was (time spent Ia) against how
effective it was (large Ip). The smaller EI is, the more effective the method. For
example, assume it took for a robot 1 millisecond to coordinate but had a passive
time of 1 millisecond afterwards EI will be 0.5. It took it a short time to coordinate
but it also entered another conflict almost immediately. If it took a robot 5 seconds to
coordinate but it had a passive time of 20 seconds then EI will be 0.2. It coordinated
for quite a long time, but focused on the task afterwards for a much longer time and
therefore, it is more effective.

Each robot independently uses the Q-learning algorithm with EI as a reward.
We defined the action space to be the coordination methods. In particular, we use
a single-state version of Q-learning [4], Qt (α) = Qt−1(α) + ρ(Rt (α) − Qt−1(α)),
with Rt (α) = E I . When a collision occurs, the robot calculates EI using the active
and passive times before this collision and updates the Q-value of the method used
in the previous collision. It then proceeds to making a selection as to the next method
to be used.

The Effectiveness Index Intrinsic Reward for Coordinating … 303

4 Experiments in Learning Order Picking

We introduce the experiment test-bed and setup in Sect. 4.1. The following sections
then systematically explore the use of learning in this environment.

4.1 Experiment Setup: Robotic Order Picking

Order picking is the task of bringing products from various locations in a ware-
house, to a centralized handling station where they can be packed together to fulfill
an incoming order. It is a task carried out by people all around the world, and is
considered to be particularly arduous: In some warehouses, pickers walk up to 15
miles a day in the warehouse.

In the mid 2000s, Kiva Systems began developing and selling robotic order pick-
ing systems, where robots would carry entire shelves and bring them to a human
employee, who would be responsible for grasping the relevant products off the shelf,
and packing them together. Kiva was sold in 2012 to Amazon, becoming Amazon
Robotics, for a reported amount of $775 million.

4.1.1 The Alphabet Soup Simulator

Alphabet soup is a simulator used to simulate amulti robot system in awarehouse [7].
It was developed by one of the Kiva Systems co-founders, in hope of encouraging
research into algorithms that can be effective in this task. Multiple simulated robots
deliver buckets containing letters to “word stations”. Each word station contains
words to be completed and robots must deliver letters for these stations in order to
complete the demanded words. In order to place a letter in a word station, a robot
must take the bucket, move it to the word station and take it back. There also exist
letter stations in order to replenish a bucket’s letter stash.

The simulator comes with a default set of settings (which we use, unless otherwise
noted), including two local coordination methods: a best-evademethod which makes
a prediction as to a good obstacle-free direction, and a default originalmethod, which
is a stochastic combination of best-evade and random motions. The simulator also
contains a task-allocation procedure, which makes allocations to the robots. We used
it as is. A screen shot appears in Fig. 1.

4.1.2 Coordination Methods

Learning occurs over a set of base coordination methods, which can be applied to
handle impending collisions. In addition to the best-evade and original methods, we
implemented three additional coordination methods: repel, noise, and aggression

304 Y. Douchan and G. A. Kaminka

Fig. 1 The alphabet soup simulator. Circles on the right side are the word stations, on the left side
are letter stations, in the center are the buckets and the small lines are the robots

(as discussed in Sect. 2). All methods, except original which cannot be adjusted,
are time-based in the manner that they act for a limited time interval. For example,
Repel with a parameter 200 milliseconds, given a conflict, will go back for 200
milliseconds.

4.1.3 Initial Results Using EI

Despite its success in foraging [8], EI is not a magic bullet that works any time.
Figure2 shows the baseline results from applyingEI to the five basemethods,without
any tweaking, and with arbitrary parameters for the different methods’ timing set at
20ms. Each data point is the mean of 60 runs, each 10min with measurement taking
place only in the latter 5min, to allow training to take place. The learning rate
parameter ρ was set to 0.5. Exploration rate was set at 0.1. In all the figures below,
beginning with Fig. 2, the X axis measures the number of robots within the fixed
default working area. The Y axis measures the total number of letters (products)
collected by all robots. Error bars mark a single standard deviation.

The results are shown to highlight that applying learning blindly does not work
here, unlike in foraging [8]. The figure shows that the three reactive methods (repel,

The Effectiveness Index Intrinsic Reward for Coordinating … 305

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

TO
TA

L
PL

AC
ED

 L
ET

TE
RS

NUMBER OF ROBOTS

Repel Noise Aggression Original Best Evade Random EI

Fig. 2 Initial results using EI

noise, aggression) are significantly and clearly inferior to the original and best-evade
methods. Indeed, they do worse than random selection of coordination methods (line
marked random). EI-based learning improves on the base methods by combining
them effectively (as each robot makes its own selections), but is only on par with
random selection, the Original method and the Best Evade method.

4.2 Stateless EI Q-Learning with Parameters

We have several directions to try to improve these results. One is to improve the
base methods used in the learning, by allowing modification of the parameters used
with each method. We demonstrate that a hierarchical learning of these parameters
works much better than any manual tweaking. This is the approach we take in this
section. In Sect. 4.3 we instead focus on enriching the state description at the basis
of learning.

4.2.1 Choosing Parameters According to Area Under Curve

We first begin by attempting to choose a single best parameter for each coordination
method. Todo this,wefirst conducted simulations for each of themethod, for a variety
of timing parameter values: 20, 100, 200, 500, 1000 and 2000.We then computed the
area under curve for the resulting curves, with the rationale that the parameter with
the largest area under curve would be the most reliable, across changes in density.
The resulting parameters are: repel(200ms), noise(500ms), aggression(2000ms), and
best evade(200ms).

306 Y. Douchan and G. A. Kaminka

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45

TO
TA

L
PL

AC
ED

 L
ET

TE
RS

NUMBER OF ROBOTS

Repel Noise Aggression Original Best Evade Random EI

Fig. 3 Applying stateless Q-learning [4] with EI reward, with reactive best-parameter methods

Armed with this improved set of actions, we ran the EI learning. The results
are shown in Fig. 3. They show repel and aggression were the worst with at most
around 100 placed letters, only slightly improving on their earlier versions (different
parameters). Noise improves clearly using the best parameter chosen for it. Random
selection and the EI-based learned selection are now clearly distinguished: a random
mix of these improved fixed-parameter methods does worse than earlier, while the
learned selection improves on the original and best evade methods.

Choosing parameters for coordinationmethods based on area under curve is a long
and dull process, and offers no guarantees to produce good results, despite its relative
success in this case. This is likely because the result of the process is a parameter that
works well on average, and remains fixed through out the task. Indeed, we show that
combinations of worse parameterized methods (in terms of their area-under-curve)
can do better.

Figure4 shows the results from using EI to learn when the underlying methods
have been changed. Instead of using best-evade with a parameter of 200ms, we
instead switch to using best-evade at 2000ms (which is worse, as the figure shows),
and keeping all other methods as above. The combination of the other methods with
best-evade 2000ms (worse by itself), does much better than with best-evade 200ms.

4.2.2 Stateless EI with Parameter Sweep

We now move away from fixed parameters, and use EI to not only choose the best
coordination method, but also in order to adjust the parameters of the coordination
methods. Thiswas done by learning using a hierarchical version of EI andQ-learning.
Q-learning with EI was used to select a general class coordination method. A second
Q-learning with EI was used to learn the parameter that works best with this method.

The Effectiveness Index Intrinsic Reward for Coordinating … 307

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45

TO
TA

L
PL

AC
ED

 L
ET

TE
RS

NUMBER OF ROBOTS

Best Evade 200 EI with Best Evade 200 Best Evade 2000 EI with Best Evade 2000

Fig. 4 A comparison between Best Evade 200 and 2000 and stateless EI with best-evade 200 and
best-evade 2000. X-Axis is the number of robots and Y-Axis is the total amount of letters placed

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45

TO
TA

L
PL

AC
ED

 L
ET

TE
RS

NUMBER OF ROBOTS

EI EI, adaptive parameters EI, learned parameters

Fig. 5 Stateless EI with fixed parameters learned from adaptation against EI with highest area
under curve parameters. X-Axis is the number of robots and Y-Axis is the total amount of letters
placed

The two learning mechanisms run simultaneously, both using the same learning rate
as before. The results, in Fig. 5, show that learning also what parameter to select
improves results significantly. To convince ourselves of the benefit of the learned
parameters, we fixed the parameters for each method based on the results of the
learning, and went back to trying Q-learning over the (small) set of methods, with
the fixed parameters: Repel 700ms, Noise 540ms, Aggression 500ms and Best Evade
600ms. The results are shown in Fig. 5, and match the simultaneous learning results.

308 Y. Douchan and G. A. Kaminka

4.3 Stateful (Multi-state) EI

We had also experimented with a different approach to improving the performance of
the team using reinforcement-learning and EI. In particular, in this section we report
on experiments where the set of coordination methods was once again restricted to
atomic, non-parameterize simple actions, while the Q-learning method was used
to maintain multiple states. In this section we use the original Q-learning for-
mula for multiple states Qt (s, α) = Qt−1(s, α) + ρ(Rt (α) + γ · maxa′ Q(s ′, a′) −
Qt−1(s, α)) with γ = 0.7 and ρ = 0.5. Each data point is the mean of 10 runs, each
10min with measurement taking place only in the latter 5min, to allow training to
take place.

We had explored two different ways of specifying state. The first state factor
maintained position of the robot. This was done by a discretization of the work area
into a grid (not necessarily regular), and keeping track of the grid cell the robot was
in. A second factor consisted of the heading of the robot. A final factor consisted of
the task state of the robot (e.g., “taking a bucket to be processed” vs. “taking a bucket
back to home position”).

Using stateful (multi-state) Q-learning with these state spaces and the five afore-
mentioned coordinationmethods as the action space yielded results that were, at best,
like stateless EI. We therefore moved to defining new sets of coordination methods
and tested stateful EI with them. We first used motion in absolute directions—West,
East, North and South. Given a conflict the robot goes to this direction for a fixed
amount of time. We arbitrarily determined the parameters of these methods to be
500 milliseconds. We ran the same simulations with the above set of coordination
methods and compared group performance of random method selection, stateless EI
and stateful EI with different state spaces.

Figure6 shows that with absolute directions to resolve collisions, stateless EI
improves performance significantly in comparison to random selection. However,
stateful EI with direction as a state (40 Directions) does not improve results in
relation to stateless EI. Using position on a 10 × 4 grid (40 positions) as the basis for
the learning improved results significantly over the original method. However, it still
is not as good as simply using stateless EI with parameter sweeping, as introduced
in the previous section.

We have also experimented with trying relative motions, instead of absolute
motions. Just like we can define absolute directions as coordination methods, we
can define relative directions: Left, Right, Forward, or Back. Figure7 shows the
results with these relative motions. Clearly, they are quite disappointing: None of
the state feature combinations tested lead to results that improve over the original
method used in the simulation.

It is shown that with relative motions stateless EI does not improve performance
over random selection. Stateful EI, using various combinations of state features,
incrementally improves over stateless learning. First by incorporating the position
on a 10 × 4 grid as the state, then using the heading (distinguishing 40 angles),
and then finally in combination of position and heading. We have also attempted to

The Effectiveness Index Intrinsic Reward for Coordinating … 309

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45

TO
TA

L
PL

AC
ED

 L
ET

TE
RS

NUMBER OF ROBOTS

Random Stateless EI 40 Direc ons 10x4 Grid Original

Fig. 6 Learning over absolute actions: West, East North and South

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

TO
TA

L
PL

AC
ED

 L
ET

TE
RS

NUMBER OF ROBOTS

Random EI 10x4 Grid 40 Directions Original 10x4 Grid, 10 directions

Fig. 7 Relative directions Left, Right and Back. X-Axis is the number of robots and Y-Axis is the
total number of letters placed

incorporate the task state (“bucket to station”, “bucket to storage”, etc.) into the state,
but this did not change the results.

What can be concluded from here is that the problem is not only choosing what
state space, but what state space we should choose given an action space or what
action space should we choose given a state space. This leaves an opening for a
more formal investigation as to when a state-action space works better than another
state-action space for a specific problem, given a learning method.

310 Y. Douchan and G. A. Kaminka

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40 45

TO
TA

L
PL

AC
ED

 L
ET

TE
RS

NUMBER OF ROBOTS

GoThru EI

Fig. 8 EI with learned parameters (best EI variant) compared to GoThru. X-Axis is the number of
robots and Y-Axis is the total amount of letters placed

4.4 Comparison to Ideal Conditions

In the previous sections we experimented with various learning techniques which
improve performance to a certain extent. We would like to know how an ideal
system—one with no collisions—will perform comparing to the best we achieved
with learning. Therefore, following [9] wemodified the simulator so that robots were
able to go through other robots and measured the system’s performance with this
modification. We will call this modificationGoThru. We ran simulations for GoThru
in the same manner we did for EI. For GoThru averaging was done over 10 runs per
sample and for EI over 60.

Figure8 shows that GoThru performs at least almost 3 times better than EI and
at most more than 5 times better than EI. This shows that not only there is a large
room for improvement, but also shows the significance of local collision avoidance
even in lower densities.

5 Summary and Future Work

This paper explores the use of an intrinsic reward function, called effectiveness index,
applied to local multi-robot coordination, in particular in addressing impending col-
lisions. The function is used with simple, plain Q-learning [4]. The results demon-
strate clearly that with an appropriate set of base actions, a reinforcement-learning
technique using the effectiveness index reward can outperform complex, manually-
designed coordination methods, in non-trivial tasks for service robots. Indeed, the
improved learning system utilizes simultaneous learning in two layers: the robots

The Effectiveness Index Intrinsic Reward for Coordinating … 311

learned which method to select, while also learning which parameter to use for the
selectedmethod.We look forward to experimentingwith additional advancedmethod
for parameter learning (e.g., [2]). In addition, we plan to apply this learning approach
to settings requiring more complex, structured task execution.

Acknowledgements We gratefully acknowledge support by ISF grants #1511/12, and #1865/16,
and good advice from Avi Seifert. As always, thanks to K. Ushi.

References

1. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans.
Robot. Autom. 14(6), 926–939 (1998)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn.
Res. 12, 281–305 (2012)

3. Bouraine, S., Fraichard, T., Azouaoui, O., Salhi, H.: Passively safe partial motion planning for
mobile robots with limited field-of-views in unknown dynamic environments. In: Proceedings
of the IEEE International Conference on Robotics and Automation (2014)

4. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent
systems. In: Proceedings of the FifteenthNationalConference onArtificial Intelligence (AAAI-
98), pp. 746–752 (1998)

5. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE
Robot. Autom. Mag. 4(1), 23–33 (1997)

6. Godoy, J.E., Karamouzas, I., Guy, S.J., Gini, M.: Adaptive learning for multi-agent navigation.
In: Proceedings of the Fourteenth International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-15), pp. 1577–1585 (2015)

7. Hazard, C.J., Wurman, P.R.: Alphabet soup: a testbed for studying resource allocation in multi-
vehicle systems. In: Proceedings of the 2006 AAAI Workshop on Auction Mechanisms for
Robot Coordination, pp. 23–30 (2006)

8. Kaminka, G.A., Erusalimchik, D., Kraus, S.: Adaptive multi-robot coordination: a game-
theoretic perspective. In: Proceedings of IEEE International Conference on Robotics and
Automation (ICRA-10) (2010)

9. Rosenfeld, A., Kaminka, G.A., Kraus, S., Shehory, O.: A study of mechanisms for improving
robotic group performance. Artif. Intell. 172(6), 633–655 (2008)

10. Rybski, P., Larson, A., Lindahl, M., Gini, M.: Performance evaluation of multiple robots in
a search and retrieval task. In: Proceedings of the Workshop on Artificial Intelligence and
Manufacturing, pp. 153–160. Albuquerque, NM (1998)

11. van den Berg, J., Guy, S., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In:
Robotics Research pp. 3–19 (2011)

12. Vaughan, R., Støy, K., Sukhatme, G., Matarić, M.: Go ahead, make my day: robot conflict
resolution by aggressive competition. In: Proceedings of the 6th International Conference on
the Simulation of Adaptive Behavior. Paris, France (2000)

13. Wurman, P.R., DÁndrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous
vehicles in warehouses. AI Mag. (2008)

United We Move: Decentralized Segregated
Robotic Swarm Navigation

Fabrício R. Inácio, Douglas G. Macharet and Luiz Chaimowicz

Abstract A robotic swarm is a particular type of multi-robot system that employs
a large number of simple agents in order to cooperatively perform different types
of tasks. In this context, a topic that has received much attention in recent years
is the concept of segregation. This concept is important, for example, in tasks that
require maintaining robots with similar features or objectives arranged in cohesive
groups, while robots with different characteristics remain separated on their own
groups. In this paper we propose a decentralized methodology to navigate hetero-
geneous groups of robots whilst maintaining segregation among different groups.
Our approach consists of extending the ORCA algorithm with a modified version of
the classical flocking behaviors to keep robots segregated. A series of simulations
and real experiments show that the groups were able to navigate in a cohesive fash-
ion in all evaluated scenarios. Furthermore, the methodology allowed for a faster
convergence of the group to the goal when compared to state-of-the-art algorithms.

Keywords Swarm robotics · Segregative navigation · Flocking · ORCA
1 Introduction

The use of multi-robot systems in different contexts can bring several advantages
over single-robot systems. In this sense, we consider the specific scenario of robotic

This work was developed with the support of CNPq, CAPES, FAPEMIG, and ITV - Instituto
Tecnologico Vale.

F. R. Inácio (B) · D. G. Macharet · L. Chaimowicz
Computer Vision and Robotics Laboratory (VeRLab), Department of Computer Science,
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
e-mail: fabricio.rod@dcc.ufmg.br

D. G. Macharet
e-mail: doug@dcc.ufmg.br

L. Chaimowicz
e-mail: chaimo@dcc.ufmg.br

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_22

313

314 F. R. Inácio et al.

swarms, which are systems composed of a large number of agents seeking to co-
operatively accomplish a particular task. Inspired by colonies of social insects that
cooperate with each other to carry out tasks of common interest, robotic swarms
emerged as an alternative to solve complex problems.

In general, swarms usually consist of simple agents with little processing power
and able to perform a limited set of actions. Another common feature in swarms
is the limitation of perception and communication between agents. Normally, each
agent is capable of sensing a small portion of the environment and communicating
locally, i.e., the communication takes place only between agents who are close to
each other.

Similarly to different swarms found in nature (e.g. some insects colonies, bird
flocks or fish schools), an important aspect in robotic swarms is the absence of a
central entity responsible for coordinating the entire swarm. Hence, each individual
behavior contributes to emergent group behaviors that are able to guide the swarm
to its objectives [9].

One of these group behaviors is segregation, a natural phenomenon that is com-
monly used as a sorting mechanism by several biological systems and can be useful
in many different tasks and scenarios. This behavior can be important for maintain-
ing robots with similar features or objectives arranged in cohesive groups, while the
groups with different characteristics remain separated [11].

In this paper we present a methodology capable of navigating heterogeneous
groups of robots whilst maintaining segregation among distinct groups. Our ap-
proach consists of extending the Optimal Reciprocal Collision Avoidance(ORCA)
algorithm [14] with amodified version of the classical flocking behaviors [8]. The set
of possible velocities is informed with the flocking demands, which enables different
robot groups to avoid collisions and navigate in a cohesive manner. This methodol-
ogy improves our previous approach, which was based on velocity obstacles [10],
presenting a much better performance. Moreover, differently from other segregation
works found in the literature [7, 11], the proposed technique is fully decentralized
and assumes local perception only.

2 Related Work

2.1 Navigation and Collision Avoidance

Finding feasible paths for mobile agents that are either length or time optimized is
fundamental in any task that requires the navigation froman initial to a goal position in
the environment. However, in general, path planners consider single-agent systems,
a static and known environment with a given map, and may not be able to adapt to
dynamic issues that may arise during the execution of the path.

An approach that has received much attention in recent years is called Veloci-
ty Obstacles (VO). Proposed in [4], this technique uses the agents’ velocities and

United We Move: Decentralized Segregated Robotic Swarm Navigation 315

obstacles’ positions to calculate the VO-set of all velocities that, if applied to the
agents, will result in a collision and then must be considered obstacles. Next, linear
and angular speeds that do not belong to the VO-set must be chosen, which ensures
a safe navigation to the agents. Several extensions over the VO algorithm have been
proposed in the literature [6, 12, 13, 15], which aim to improve its performance and
increase the possibilities for use.

The concept of using the agents velocity space in order to choose acceptable
velocities, i.e., the ones that avoid collisions, was further extended resulting in the
ORCA algorithm [14]. This technique computes for each other robot a half-plane of
allowed velocities. The robot must select its optimal velocity from the intersection of
all permitted half-planes, which can be done efficiently by solving a low-dimensional
linear system. Moreover, differently from the VO, the ORCA algorithm guarantee
local collision-free navigation [14].

2.2 Group Segregation in Robotic Swarms

A characteristic found in social insect communities is the existence of specific roles
that segregate the individuals into distinct groups (e.g. bees and ants). Each group
of individuals has a distinct set of activities and responsibilities that promote the
perpetuation of the colony.

In robotic swarms, as well, it might also be interesting to keep different groups of
agents segregated, allowing for example to assign specific tasks according to certain
characteristics of each group.

One of the first works to deal with this problem was [7]. It presented an algorithm
capable of segregating distinct types of agents by applying different potential func-
tions on the robot according to the type of the agents which are in its neighborhood.
The technique produced satisfactory results, however, it can only be applied in sce-
narios where there are only two different types of agents. In applications that use a
very large number of robots, there may be the need to segregate the swarm in more
than two groups.

The aforementioned technique was later extended in [11] in order to deal with
more than two types of robots. In order to calculate the potential to be used, each
agent evaluates whether the neighbors are of their same type or of a different type.
Thus, it is possible to obtain the artificial force which must be applied to each agent
in order to make the robots with the same type come closer, while robots of different
types remain spaced apart. The main restrictions of this technique are the need for
global sensing and a balanced number of agents in all groups. More recently, an
approach based on abstractions and using an artificial potential function to segregate
the groups was proposed [3]. Differently from other works on swarm segregation, it
is mathematically guaranteed that the system will always converge to a state where
multiple dissimilar groups are segregated. A different segregation algorithm, based
on the Brazil Nut Effect, is discussed in [5]. A distributed controller considers robots

316 F. R. Inácio et al.

as having distinct virtual sizes, and local interactions make “larger” robots move
outwards, segregating the robots in annular structures.

A segregative navigation strategy is proposed in [10], combining the concepts of
flocking [8] and the use of abstractions to represent the groups. Built upon the clas-
sical VO algorithm [4], it introduces a novel concept called Virtual Group Velocity
Obstacles (VGVO). In this algorithm, a robot i senses the relative position and ve-
locity of every robot j within its neighborhood ni and builds shapes containing other
teams of robots, with the exception of its own. These shapes can be considered as the
smallest enclosing disc, the convex hull, or the more general class of α-shapes [2].
In the workspace of robot i , these shapes are considered as virtual obstacles moving
at the average velocity of their respective underlying robots. Thus, robot i can build
a virtual velocity obstacle specifying all velocities that will lead to a collision with
these shapes, assuming that they maintain their current average velocities. However,
the cost of computing the virtual shape for each group can be prohibitive, slowing
down the navigation.

To cope with this problem, in this paper we propose a decentralized methodology
in order to navigate heterogeneous groups of robots whilst maintaining segregation
among different groups.We propose a modification over the classical flocking model
established by Reynolds [8] and combine it with the ORCA algorithm [14] in order
to avoid collisions and keep the group cohesion.

3 Methodology

Asmentioned, ourmethodology is based on a combination of flocking behaviorswith
theORCAalgorithm.Using local sensors, each robot is able to sense its neighborhood
and compute the velocity that will guide it to the goal, while keeping it close to its
group. This velocity is used as the preferred velocity by the ORCA algorithm, which
is responsible for navigating the robot while avoiding other agents. As in the original
algorithms,we assume that an agent has access to the position and velocity of all other
agents present in its neighborhood, or can infer these values based on its observations.
They can also detect if its neighbors belong to its group and infer their state. Finally,
we consider that the robots start in a segregated state and know the direction of a
specific goal in the environment. The next sections detail our methodology.

3.1 Robot and Group Modeling

We consider a scenario in which a swarm R = {
R1, . . . ,Rη

}
of η robots must

navigate in a static 2D environment. Each robot i is represented by its pose qi =
〈xi , yi , θi 〉, with kinematic model given by q̇i = ui .

Robots are holonomic and can move in any direction given by the velocity vector
ui . Thus, θi is the direction of the movement of robot i in a global frame.

United We Move: Decentralized Segregated Robotic Swarm Navigation 317

The entire swarm is formed by distinct types (groups) of robots, which we repre-
sent by the partition Γ = {Γ1, . . . , Γm}, where each Γk contains all agents of type k.
We assume that ∀ j, k : j �= k → Γ j ∩ Γk = ∅, i.e., each robot is uniquely assigned
to a single type.

3.2 Flocking

In order tomaintain a cohesive behavior during navigation, we use a slightlymodified
version of the classical flocking behaviors presented in [8]. These behaviors are
obtained by applying three simple rules, which are described next.

Initially, we define a robot’s neighborhood based on its sensing range. During nav-
igation, robot i maintains a neighborhoodNi around its current position. A neighbor-
hood consists of a circular region of radius λ around the current position of a robot.
Within the neighborhood, we may have robots from the same group and robots from
different groups. Therefore,wedefineN +

i = {R j : ‖p j − pi‖ ≤ λ ∧ R j ,Ri ∈ Γk}
as the set of all robots of the same group currently located in the neighborhood. Sim-
ilarly, we define N −

i = {R j : ‖p j − pi‖ ≤ λ ∧ (R j ∈ Γu ∧ Ri ∈ Γk, u �= k)} the
set of all robots of other groups in its neighborhood.

The first flocking rule is related to cohesion. This rule is used to keep the agents
close to each other. Therefore, agent i must compute the midpoint of the positions
of all agents in N +

i . Next, a velocity vector that moves the agent to the computed
point is calculated. Formally:

vcohesion =
⎛

⎝ 1

|N +
i |

∑

j∈N +
i

p j

⎞

⎠ − pi . (1)

The second rule was originally proposed to keep a safe distance among agents,
with the objective of avoiding collisions between them. However, as will be further
detailed, we use the ORCA algorithm in order to ensure obstacle avoidance during
navigation. Therefore, we use the separation rule in order to keep distinct groups of
agents apart from each other. The agent should move to a position that respects a
minimum distance from agents of other groups in its neighborhood, given by:

vseparation =
∑

j∈N −
i

(pi − p j). (2)

We emphasize that the safety distance among robots of the same group are guaran-
teed by the ORCA algorithm. Therefore, the proposed algorithm does not use the
separation rule for agents that belong to the same type.

Finally, the third rule evaluates the alignment of agents of the same group. In
order to respect this rule, each agent calculates the average of the spatial orientation

318 F. R. Inácio et al.

of all agents in its group inside its neighborhood. After that, the agent is guided by
the calculated average alignment, i.e.,

valignment = 1

|N +
i |

∑

j∈N +
i

θ j . (3)

The final resulting vector vflock that will be used in the control phase is given by:

vflock = kc · vcohesion + ks · vseparation + ka · valignment, (4)

which is composed by the weighted sum of the three vectors. Constants kc, ks , and
ka are determined empirically, and normally kc receives a larger value.

3.3 Setting Robot Velocities

The robot velocities can be adjusted according to the different situations an agent
may face during its navigation. For example, it can be surrounded by agents from its
own group only, or it may be in a position where there are no other agents between
itself and the goal or may be close to agents who belong to another group. Thus the
control input is composed by a combination of different velocities:

u = α.vgoal + β.v f lock + γ.vaux . (5)

vgoal is an attractive velocity that drives the agent towards its goal, v f lock is a flocking
velocity set according to Eq.4 and vaux is an auxiliary velocity. Constants α, β and
γ , as well as the auxiliary velocity, are set according to the scenario faced by the
robot. This is controlled by a finite state machine depicted in Fig. 1 and explained
next.

5

1

3
4

2

3

2
4

5
Turn Right

Single Group

Vision FreeFollower

1) It detects agents of another group.
2) It has unobstructed view toward its goal.
3) It has no clear view, but one of its neighbors have.
4) It has neither free vision nor neighbor who has.
5) It does not perceive any agent of another group.

Fig. 1 Finite state machine describing the possible situations faced by each robot

United We Move: Decentralized Segregated Robotic Swarm Navigation 319

Single Group: This first state is enabled whenever a robot does not perceive any
agent of a different group within its neighborhood. In this case, its action is to move
straight to the goal while also keeping cohesion with its group. For this behavior, the
constants are set in such way that α β and γ = 0.

Vision Free: The state Vision Free is enabled if the agent perceives the presence
of one or more robots of different groups, but still has a free line of sight to its goal.
More specifically, in a sector defined from the current position of the agent towards
its goal and within his field of view there is no agent of a different group. In this
case, the agent still tends to move to the goal, but also gives more importance to the
flocking factor. Thus, constants are set so that α > β and γ = 0.

Follower: If the robot does not have a clear view towards the goal but detects a
neighbor of its own group that is in one of the previous states, it enters in a follower
mode, following the agent that has a clear path to the goal, but also keeping the
flocking behavior. In this case, the vaux component is set to move the robot towards
this neighbor, with α = 0 and β < γ .

Turn right: Finally, if the agent does not fit into any of the situations described
above, it probably has a congested situation in front of it and should move to avoid
this. So, a “traffic rule” is imposed that makes the robot move perpendicularly to its
goal direction, i.e., vaux is set in a direction that is perpendicular to vgoal . With this
behavior, the agents try to get around this congested area rather than trying to cross
it. Constants are set to balance this velocity and the flocking component: α = 0 and
β � γ.

3.4 ORCA

The ORCA algorithm [14] is a velocity-based navigation strategy based on the con-
cept of velocity obstacles [4].

Consider two robots RA and RB with radii rA and rB , positions pA and pB and
velocities vA and vB , respectively. Robot RA tries to reach an assigned goal point
gA by selecting a preferred velocity vpre fA . The objective is to choose an optimal v∗

A,
which lies as close as possible to vpre fA , such that collisions among the robots are
avoided for at least a time horizon τ .

The velocity obstacle V Oτ
A|B for RA induced by RB in the local time interval

[0, τ] is the set of velocities ofRA relative toRB that will cause a collision between
RA andRB at somemoment before time τ has elapsed. It is assumed that both robots
maintain a constant trajectory within that time interval. Formally:

V Oτ
A|B = {v|∃t ∈ [0, τ] :: t (v − vB) ∈ D(pB − pA, rA + rB)} (6)

where D(pB − pA, rA + rB) denote an open disc of radius (rA + rB) centered at
position (pB − pA). IfRA andRB each choose a velocity outsideV Oτ

A|B andV Oτ
B|A,

respectively, then they will be collision-free for at least the period of time τ .

320 F. R. Inácio et al.

The half-plane of velocities ORCAτ
A|B can be constructed geometrically as fol-

lows. Let us assume thatRA andRB adopt velocities vA and vB , respectively, and that
these velocities causesRA andRB to be on collision course, i.e. vA − vB ∈ V Oτ

A|B .
Letw be the vector from vA − vB to the closest point on the boundary of the velocity
obstacle:

w = (argminv∈∂V Oτ
A|B ||v − (vA − vB)||) − (vA − vB). (7)

Then, w is the smallest change required to the relative velocity of RA and RB to
avert collision within τ time. To “share the responsibility” of avoiding collisions
among the robots, RA adapts its velocity by (at least) 1

2w and assumes that B takes
care of the other half. Hence, the set ORCAτ

A|B of permitted velocities forRA is the
half-plane pointing in the direction of n starting at the point vA + 1

2w, where n is the
outward normal of V Oτ

A|B at vA−vB +w [14]:

ORCAτ
A|B = {v|(v − (vA + 1

2
w)).n ≥ 0}. (8)

In our methodology, the finite state machine described in the previous section is
used to calculate the preferred velocity. This velocity is passed along to the classic
ORCA algorithm that sets the new velocity to be applied to the agent. In other words,
the velocity computed by Eq.5 is fed to ORCA as the preferred velocity, which is a
value used as a reference to determine the actual velocity that will be assigned to the
robot during navigation. Consequently, the value belonging to that half-plane that
most closely matches the preferred velocity is calculated using linear programming
and passed as the new velocity that the robot should take.

4 Experiments

To evaluate the proposedmethodologywith regards to its performance and feasibility,
we executed a series of simulations and compared it with the classical versions of
the ORCA and VGVO algorithms.We also performed proof-of-concept experiments
with a group of e-puck robots to show its applicability with real robots.

The parameters used in these experiments are shown inTable1.Ourmain objective
when selecting the values was to keep the robots segregated, even if this requires
spending more time for the groups to achieve their goals.

In Fig. 2, we show snapshots of the execution of the three algorithms. In this first
example, we have 4 distinct groups, represented by different colors, each one formed
by 40 agents. Each group must navigate to its opposite direction, changing sides
with another group. As can be seen in Fig. 2a, as expected, ORCA does not keep
robots segregated when groups meet in the center of the scenario. Figures2b, c show,
respectively, the results obtained by the VGVO algorithm and the proposed method-
ology for the same scenario. As shown, with both algorithms, robots belonging to

United We Move: Decentralized Segregated Robotic Swarm Navigation 321

Table 1 Parameters used in the experiments

Agent status kc ks ka α β γ

Single group 10 0 10 10 1 0

Vision free 15 5 5 3 1 0

Follower 15 10 0 0 20 50

Turn right 5 2.5 1 0 20 30

(a) Execution of the ORCA algorithm.

(b) Execution of the VGVO algorithm.

(c) Execution of the proposed algorithm.

Fig. 2 Execution of the evaluated algorithms in a scenario composed of 160 agents evenly dis-
tributed into 4 groups

the same group remain united during the entire navigation, while seeking to move
away from other groups.

To better evaluate the segregation, we use a metric proposed in [7], which consists
of calculating the average distances between agents of the same group and agents
from different groups. According to this metric, two different groups of agents, e.g.
A and B, are said to be segregated if the average distance between the agents of the
alike types (type A or type B) is less than the average distance between the agents
of the unlike types (i.e., between the agents of type A and type B). More formally,
we should have:

dAA < dAB and dBB < dAB, (9)

322 F. R. Inácio et al.

0

5

10

15

20

25

30

1

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

Av
er

ag
e

di
st

an
ce

 (m
)

Time (s)
AA AB AC AD

(a) 4 distinct groups.

0

5

10

15

20

25

30

35

1

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

Av
er

ag
e

di
st

an
ce

 (m
)

Time (s)
AA AB AC AD AE AF AG AH

(b) 8 distinct groups.

Fig. 3 Average distance among agents during the execution of the proposed algorithm. Two sce-
narios were considered: a 4 distinct groups and b 8 distinct groups

where dXY is the average distance between the agents of types X and Y . Formally:

dXY = 1

|ΓX |
∑

i∈ΓX

⎛

⎝ 1

|ΓY |
∑

j∈ΓY

(pi − p j)

⎞

⎠. (10)

The segregative behavior of the methodology may be confirmed by using the
aforementioned metric pairwise. As can be seen in Fig. 3, the average distance be-
tween agents in the group A are smaller than the average distance between agents
from group A relative to agents of all other groups, i.e., dXX < dXY ∀ ΓX , ΓY ∈ R.

In the following experiments, we varied the number of robots and groups. Initially,
the algorithm was evaluated considering a fixed number of groups and an increasing
number of agents in each group. Next, we have fixed the number of agents and
varied the quantity of distinct groups in the environment. Finally, we have evaluated
the methodology in a scenario where each group has a different number of agents.

In the first experiment we investigated the performance of the approach relative to
the variation in the number of agents on each group. The simulations were performed
with 4 groups consisting of 10, 20, 30 and 40 agents. We emphasize that on these
first set of simulations all the groups have the same number of agents.

The methodology was evaluated considering the average time the groups take to
converge to their goals and the results were compared to the ones obtained by the
ORCA and the VGVO algorithms. We recall that ORCA does not sort (segregate)
agents into distinct groups, i.e., each agent is considered as a single entity and no
group information is used during its execution. The main objective of this evaluation
is to verify if the restriction to keep the groups segregated would affect the navigation
time and if our approach is able to increase the performance of the VGVO algorithm.

Since the proposed technique (as well as the VGVO algorithm) may produce
different results during executions (due to a non-deterministic factor on the velocity
selection), we performed 100 simulations for each experiment and the average time

United We Move: Decentralized Segregated Robotic Swarm Navigation 323

0,0
25,0
50,0
75,0

100,0
125,0
150,0
175,0
200,0
225,0
250,0
275,0

10 20 30 40

Ex
ec

ut
io

n
Ti

m
e

(s
)

Group size

ORCA VGVO Proposed Algorithm

Fig. 4 Average execution time of the algorithms varying group size

was used for comparison. Figure4 presents the results for each technique for this
scenario.

As might be expected, the time required for all the agents to reach their goals
increaseswith the number of agents.Also,we canobserve that the proposed algorithm
has a much better performance than ORCA and VGVO when the number of robots
increase. This may be explained by the fact that in ORCA, robots have to deal with
a very congested situation when all groups meet, which makes it difficult for the
algorithm to find feasible velocities. Regarding VGVO, as explained in [10], the
algorithm prioritizes slower speeds in order to maintain stable relative distances and
velocities among robots. We can also note that, due to its characteristics, VGVO has
a large variation in its running time within the 100 runs, while in ORCA and our
algorithm the standard deviation is relatively small.

Next, the second experiment aims to evaluate our approach in scenarios with a
fixed number of agents that were distributed in a different number of groups in each
set of runs. The simulations consist of scenarios composed by a total of 160 agents
evenly distributed into 2, 4, 6, and 8 groups. As shown in Fig. 5, the increase in the
number of groups causes the time required for the agents to reach their targets to also
increase. However, we observe that the proposed approach improves considerably
the average navigation time. Another point to note is the difference between the times
obtained using VGVO algorithm and the proposed algorithm. The VGVO algorithm
makes the groups to be positioned uniformly in the conflict area, causing the agents to
take a long time to find a new path that would allow the group to contour the obstacles
that hinder its movement. On the other hand, our approach allows the agents to start
diversion maneuvers when a new group is detected, causing a reduction on the time
needed to solve the problem.

Finally, the last experimentwas performed in order to investigate themethodology
behavior in scenarioswith groups of different sizes. One of the experiments evaluated
a scenario with 220 agents divided into 8 groups with sizes ranging from 10 to 40
agents. Figure6 shows snapshots of the navigation over time.

324 F. R. Inácio et al.

0,0
50,0

100,0
150,0
200,0
250,0
300,0
350,0
400,0
450,0
500,0
550,0
600,0

2 4 6 8

 E
xe

cu
tio

n
Ti

m
e

(s
)

Number of Groups

ORCA VGVO Proposed Algorithm

Fig. 5 Average execution time of the algorithm with different number of groups

(a) (b) (c) (d) (e)

Fig. 6 Execution of the proposed algorithm in a scenario with 220 agents distributed in 8 groups
of different sizes

It is possible to observe that the proposed algorithm has the same segregating
behavior when used in environments having different group sizes. We call attention
to the trajectory performed by the pink group during this simulation. As shown in
Fig. 6c–e, despite the definition of an explicit rule that requires the agents to move to
the right when another group is blocking its way, the pink group managed to find a
better path than the path resulting from applying the rule. This occurs because at least
one of the agents on the pink group could directly see the goal and, consequently,
the other agents began to follow it.

Finally, real experiments were conducted indoors using six e-puck robots. These
proof-of-concept experiments are important in order to show the feasibility of the
algorithm in real scenarios, where uncertainties caused by sensing and actuation
errors may have a great impact on the results.

In these experiments, we used a swarm localization framework based on an over-
head camera and fiduciary markers for estimating robot’s pose, orientation. Also, as
the e-puck’s IR sensors have a very small range, we implemented a virtual sensor
based on the localization system to detect neighboring agents. To account for non-
holonomic constraints, input velocities were transformed following the approach
presented in [1].

The Figs. 7 and 8 show snapshots from executions of the proposed algorithm
with two and three groups of robots (we overlay colored circles to highlight the

United We Move: Decentralized Segregated Robotic Swarm Navigation 325

Fig. 7 Execution of the proposed algorithm in a scenario with 6 e-puck robots distributed in 2
groups

Fig. 8 Execution of the proposed algorithm in a scenario with 6 e-puck robots distributed in 3
groups

different groups). We can visually inspect that the behaviors obtained with the real
robots is pretty similar to the simulation results, i.e., robots maintain cohesion and
segregation during navigation. Despite not showing the graphs, we observed that
average distances follow the trend shown in Fig. 3: the average distance between
robots in the same group is always less than the average distance among robots in
different groups. These proof of concept experiments indicate that the algorithm
can work well to coordinate groups of real robots, allowing them to navigate while
maintaining a segregative behavior in an efficient way.

5 Conclusion

In this paper we proposed a decentralized methodology to navigate heterogeneous
groups of robots maintaining segregation among different groups. Our approach
consists of extending the ORCA algorithm with a modified version of the classical
flocking behaviors: using local sensors, each robot is able to sense its neighborhood
and, using a variation of the flocking rules, compute the velocity that will guide it
to the goal, while keeping it close to its group. This velocity is used as the preferred
velocity by the ORCA algorithm, which is responsible for navigating the robot while
avoiding other agents.

Several experiments were performed to evaluate the proposed methodology and
the results showed that our algorithm is an effective alternative to maintain different
robots groups segregated whilst they navigate on a shared environment. By choosing
better trajectories and avoiding congested areas, it achieved a better performance
when compared to other state-of-the-art algorithms.

As in ORCA and VGVO, in our methodology the robots must be able to infer
the position and velocities of the neighboring robots. Moreover, robots should infer

326 F. R. Inácio et al.

the state (considering the FSM) and orientation of their neighbors and also know
the position of a common goal for the group. This can be considered a limitation of
the proposed methodology, mainly considering that swarms of robots are normally
comprised of simple robots with limited sensing capabilities.

Future research directions include the evaluation of different segregation metrics,
such as the intersection area of the convex hull formed by the agents and a possible
network connectivity inside the group. We also intend to consider standard metrics
of separation used in cluster analysis, for example, the distance between centroids of
the groups weighted by their variance. More experiments should also be performed
using a larger number of real robots to better analyze the behavior of the algorithm
in real scenarios.

References

1. De Luca, A., Oriolo, G., Vendittelli, M.: Stabilization of the unicycle via dynamic feedback
linearization. In: 6th IFAC Symp. on Robot Control, pp. 397–402 (2000)

2. Egerstedt, M., Hu, X.: Formation constrained multi-agent control. In: ICRA’01. IEEE Interna-
tional Conference on Robotics and Automation, 2001, vol. 4, pp. 3961–3966 (2001)

3. Ferreira Filho, E.B., Pimenta, L.C.A.: Segregating multiple groups of heterogeneous units in
robot swarms using abstractions. In: Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS), pp. 401–406 (2015)

4. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int.
J. Robot. Res. 17(7), 760–772 (1998)

5. Groß, R., Magnenat, S., Mondada, F.: Segregation in swarms of mobile robots based on the
brazil nut effect. In: Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS), pp. 4349–4356 (2009)

6. He, L., van den Berg, J.: Meso-scale planning for multi-agent navigation. In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA) (2013)

7. Kumar, M., Garg, D.P., Kumar, V.: Segregation of heterogeneous units in a swarm of robotic
agents. IEEE Trans. Autom. Control 55(3), 743–748 (2010)

8. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM Siggraph
Computer Graphics, vol. 21, pp. 25–34. ACM (1987)

9. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Swarm
robotics, pp. 10–20. Springer (2005)

10. Santos, V.G., Campos, M.F., Chaimowicz, L.: On segregative behaviors using flocking and
velocity obstacles. In:DistributedAutonomousRobotic Systems, pp. 121–133. Springer (2014)

11. Santos, V.G., Pimenta, L.C., Chaimowicz, L., et al.: Segregation of multiple heterogeneous
units in a robotic swarm. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1112–1117. IEEE (2014)

12. Snape, J., Guy, S.J., Vembar, D., Lake, A., Lin, M.C., Manocha11, D.: Reciprocal collision
avoidance and navigation for video games. In: Game Developers Conference, San Francisco
(2012)

13. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Optimal reciprocal collision avoidance for
multi-agent navigation. In: Proceedings of the IEEE International Conference on Robotics and
Automation, Anchorage (AK), USA (2010)

14. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In:
Robotics research, pp. 3–19. Springer (2011)

15. Wilkie, D., Van den Berg, J., Manocha, D.: Generalized velocity obstacles. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 5573–
5578. IEEE (2009)

Part V
Modular Robots and Smart Materials

A Rule Synthesis Algorithm for
Programmable Stochastic Self-assembly
of Robotic Modules

Bahar Haghighat and Alcherio Martinoli

Abstract Programmable self-assembly of modular robots offers promising means
for structure formation at different scales. Rule-based approaches have been previ-
ously employed for distributed control of stochastic self-assembly processes. The
assembly rate in the process directly depends on the concurrency level induced by
the employed ruleset, i.e. the number of concurrent steps necessary to build one
instance of the target structure. Our aim here is to design a formal synthesis algo-
rithm to automatically derive rulesets of high concurrency for a given target structure
composed of robotic modules. In the literature, self-assembly of (simulated or real)
robotic modules has been realized through manually designed rulesets or manu-
ally adjusted rulesets generated by employing graph-grammar formalisms or meta-
heuristic methods. In this work, we employ an extended graph-grammar formalism,
adapted for self-assembly of robotic modules, and propose a novel formal synthesis
algorithm capable of generating rulesets for robotic modules by natively considering
the morphology of their connectors. The synthesized rulesets induce a high level
of concurrency in the self-assembly scheme by exploiting controlled information
propagation, using solely local communication. Simulation results of microscopic
(non-spatial) and submicroscopic (spatial) models of our robotic platform confirm
higher performance of rulesets synthesized by our algorithm compared to related
work in the literature.

B. Haghighat (B) · A. Martinoli
École Polytechnique Fédérale de Lausanne (EPFL), Distributed Intelligent
Systems and Algorithms Laboratory (DISAL), Lausanne, Switzerland
e-mail: bahar.haghighat@epfl.ch

A. Martinoli
e-mail: alcherio.martinoli@epfl.ch

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_23

329

330 B. Haghighat and A. Martinoli

1 Introduction

Self-assembly (SA) is defined as the reversible and spontaneous phenomenon of an
ordered spatial structure emerging from the aggregate behavior of simpler preex-
isting entities, through inherently local and random interactions in the system. In
recent years, SA has been extensively studied both as an enabling technique for
micro/nano-fabrication, and as a coordination mechanism for distributed robotic
systems of miniaturized modules with limited capabilities, where highly stochastic
sensing, actuation, and interactions are inevitable [1, 4, 13]. Various implementations
of SA have been demonstrated in engineered systems. For instance, a deterministic
and quasi-serial approach to shape formation through programmable SA has been
implemented in a large swarm of miniaturized Kilobot robots [13]. A completely
different approach is to achieve SA by taking advantage of the stochastic ambient
dynamics for module transportation. Such approach typically enables simpler inter-
nal design of the programmable roboticmodules aswell as their on-board algorithms.
The robotic modules in [9] stochastically self-assemble on an air table based on their
behavioral ruleset which is first derived for SA of a similar abstract target graph by
a synthesis algorithm, then tuned to suit the specific modules’ morphology.

The problem of ruleset synthesis for programmable SA of graphs was first
addressed in [8]. In principle, all proposed formal synthesis algorithms in this context
generate rules by iteratively browsing and parsing a description of the target struc-
ture. In [10], the formalism of graph-grammar is applied to the SA of graphs and two
rule synthesis algorithms are proposed for acyclic and then cyclic target graphs. Both
algorithms result in rulesets which build the target graph serially, i.e. by adding one
atomic agent (graph vertex) at a time. The same work also discusses the deadlock sit-
uation, where the number of copies of the target being built in parallel is higher than
the maximally feasible number, considering the total number of available agents. In
order to avoid deadlocks the authors then propose a disassociating rulewhich requires
implementation of a consensus algorithm among the agents. In [3, 12], SA of graphs
is achieved while avoiding deadlocks by employing probabilistic dissociating rules.
In order to accelerate the SA process induced by an inherently serial ruleset, the
authors in [12] employ a broadcast radio communication scheme to decompose less
advanced sub-assemblies in favor of the others. The formalism of graph-grammar
is employed in [3] for modeling and control of SA of abstract graphs. Two formal
synthesis algorithms, Singleton and Linchpin, are then introduced. While Singleton
generates utterly serial rulesets, Linchpin induces a more parallel scheme and allows
for sub-assemblies of bigger sizes to merge and form the target graph. Two main
factors limit the concurrency induced by the Linchpin rulesets. First, in an attempt
to fully avoid information propagation for scalability reasons, all sub-assemblies
including the ones with identical structure are labeled distinctly, determining their
final placement in the target structure. As a consequence, several rules are required
to form the target, meaning more assembly time. Second, at each branching point
in the target, i.e. at any vertex with two or more neighbors, the algorithm generates
rules to build the branches in parallel and eventually join them, regardless of the size

A Rule Synthesis Algorithm for Programmable … 331

Fig. 1 a The Lily robot [5]. b Sketch of the full experimental setup [6]

of the branches. This imbalance in the size of the concurrently built branches can
result in unnecessary delay, as the longer branch may need more rules to form. The
slow nature of stochastic SA highlights the importance of inducing a high level of
concurrency in the process in order to reduce the total assembly time.

In a previous contribution, we presented an extended graph-grammar formal-
ism adapted for formulating the problem of SA of robotic modules. The formalism is
based on the notion of extended vertices [7]. In addition, we showed that our extended
formalism allows for a ruleset of complexity O(N) compared to the O(N 2) in the
previous literature. In this work, we employ the extended graph-grammar formalism
presented in [7], and propose a new synthesis algorithm with two key features: first,
our algorithm automatically derives rules for roboticmodules considering their latch-
ing connectors morphology, and second, it achieves a parallel assembly scheme by
exploiting update rules (i.e. information propagation) of controllable depth between
neighboring robots. In order to avoid deadlocks, our algorithm incorporates reversible
rules. We consider two target structures composed of our floating Lily robots (see
Fig. 1) and compare the performance of rulesets derived by our algorithm and those
of the extended Linchpin, adapted to generate rules for robotic modules [7], in sim-
ulation. To this end, we leverage non-spatial microscopic simulations in Matlab and
high-fidelity spatial submicroscopic simulations in Webots [11] (see Fig. 2).

2 Fluidic Self-assembly of Lily Robots

In this paper, we study the SA of our robotic modules in simulation. For the sake
of thoroughness, here we give a brief summary of the SA process in our real world
experimental system [6]. Our system consists of two main components: (1) the Lily
robots, originally presented in [5], which serve as the building blocks of the SA pro-
cess, and (2) the experimental setup built around them. Lilies are not self-locomoted,
instead, they float on water and are stirred by the flow field produced within a tank
by several peripheral pumps, colliding randomly with other robots. The robots are
endowed with four custom-designed Electro-PermanentMagnets (EPM) to latch and

332 B. Haghighat and A. Martinoli

also to communicate locally with their neighbors. Given a target structure, an appro-
priate ruleset is programmed on all robots. The robots’ EPM latches are by default
enabled, resulting in a default latching upon meeting another robot. Once latched,
the EPM-to-EPM inductive communication channel is physically established. The
robots then exchange their internal states and look for applicable rules in their rule-
set. If no applicable rule is found, they unlatch by switching off their EPM latches;
otherwise they remain latched and update their internal states accordingly.

3 Graph Grammars for Self-assembly of Robotic Modules

In this section, we summarize the graph-grammar formalism adapted for formulating
SA of robotic modules [7].

Definition: An extended labeled graph is a quadruple G = (V, E, S, �) where V =
{1, . . . , N } is the set of extended vertices, E ⊂ V × V is the set of edges, S : E →
K × K , with K = {1, . . . , Ns} and Ns the total number of link-slots associated with
an extended vertex, defines which slots are involved in a link between two vertices.
� : V → � is a labeling function, with � being a set of extended labels. A pair
of vertices {x, y} ∈ E is represented by xy. The nE (k) represents the neighbors
of vertex k relative to the edge set E . Two extended graphs are considered to be
isomorphic when there exists a bijection h : VG1 → VG2 such that ∀i j ∈ EG1 ⇔
h(i)h(j) ∈ EG2. The function h is called a witness. A label-preserving isomorphism
has the additional property that �G1(x) = �G2(h(x)),∀x ∈ VG1.

Definition: An extended vertex has ordered link-slots which correspond to the latch-
ing connectors of a robotic module. The numbering on the slots is assumed to match
the one of the physical module, following a counter-clockwise (CCW) rotation con-
vention. We assume that the robotic modules have a rotational symmetry. As a result,
for an isolated module the connectors are anonymous.

Definition: An extended label is a pair l = (la, ln) encoding the internal state of a
module. la represents the control state of the robotic module and ln represents the
index of the most recently engaged connector.

Once twomodules are latched, each communicates its internal state in the form of
a relative extended label of l = (la, lh) with la being the module’s control state and
lh being a relative hop number representing the relative orientation of the currently
engaged connector with respect to its predecessor, assuming a CCW hop convention.
For a vertex with an extended label of (la, ln) on a robotic module with N connectors,
the communicated lh is [(ln − lc)modN] + 1, where ln and lc are the indexes of the
most recently and the currently engaged connectors, respectively. For further details
on application of extended labels see [7].

A Rule Synthesis Algorithm for Programmable … 333

Definition: An extended rule is an ordered pair of extended graphs r = (L , R). An
extended binary rule can be depicted as l1 l2 ⇀ l3 − l4, with the li = (lia, lih) values
being the relative extended label of the engaged vertex i .

Definition: A rule r = (L , R) is applicable to a graph G if there exists I ⊂ VG such
that the subgraph G ∩ I has a label-preserving isomorphism h : I → VL .

Definition: The triple (r, I, h) is called an action. Application of an action with
r = (L , R) to G gives a new graph G ′ = (VG, EG ′ , lG ′) defined by

EG ′ = (EG − xy : xy ∈ EG ∩ I × I) ∪ (xy : h(x)h(y) ∈ ER)

�G′(x) =
{

�G(x), ifx ∈ VG − I

�R(h(x)), otherwise

Definition: The complement or reverse of a rule r = (L , R), is r̄ = (R, L), such that

G
r,I,h−−→ G ′ r̄ ,I,h−−→ G ′′ = G.

Note: When forming an edge, the rule is denoted as a “link rule”. When severing an
edge, the rule is denoted as an “unlink rule”.

Definition: An update rule can be depicted as l1 − l2 ⇀ l3 − l4; it does not create or
sever an edge between two vertexes, instead it modifies their labels.

Definition: A trajectory of a system (G0, φ), where G0 is the initial graph of the

system and φ is a ruleset, is a sequence of G0
r1,I,h−−−→ G1

r2,I,h−−−→ G2
r3,I,h−−−→ ...

Given a set of rules φ, we can study the sequences of graphs obtained from succes-
sive application of the rules contained in φ. For a probabilistic ruleset, a probability
may be associated with each rule by the mapping P : φ → (0, 1], indicating the ten-
dency for the corresponding event to take place provided that the conditions under
which the rule is applicable are met.

4 Proposed Synthesis Algorithm

Given an acyclic target structure composed of rotationally symmetrical robotic mod-
uleswith anynumber of connectors, our proposed synthesis algorithmderives rulesets
based on two principles: (1) limiting the size of the concurrently built sub-assemblies
to a user-defined value, and (2) unifying the rules which give rise to sub-assemblies
with similar structures. The algorithm comprises two stages, each realizing one of
the two principles. The first stage parses a graphical description of the target, and
derives a ruleset which builds the target by merging sub-assemblies with sizes no
more than the user-defined value and with distinct labelings, as a result of employing
distinct rules. The second stage then processes this ruleset to identify the rules pro-
ducing structures with identical morphology; such rules are then merged in a single

334 B. Haghighat and A. Martinoli

one. As a result of the second principle, i.e. unifying the rules and consequently
the labelings, the rulesets need to include update rules. Consider the case where the
maximum user-defined size is 2. With the rules unified properly, all dimers (sub-
assemblies composed of 2 modules) are labeled similarly. As the dimers join to build
the target, the labelings of both consisting modules need to be updated to reflect their
placement in the forming target structure to allow for proper further reactions, com-
pleting the target eventually. In other words, the use of update rules is an alternative
to building the target out of distinctly labeled sub-assemblies, as a result of being
formed through distinct link rules, according to their intended placement in the target
structure. Thus in general, introducing update rules into the rulesets can reduce the
number of link rules necessary to build the target, at the expense of possibly increas-
ing the total ruleset size to include several update rules. However, this can offer a
significant advantage in terms of assembly time. The occurrence of the link rules is
probabilistic and is determined by the stochastic nature and dynamics of the system
which is relied upon to provide proper interactions in order for the SA process to
progress. The occurrence rate for link rules is usually in the order of once in tens of
seconds. On the other hand, update rules are purely communicational rules and do
not depend on the system dynamics. Once a proper interaction has happened and two
modules have bonded successfully, the occurrence of a proper update rule is solely
determined by the modules communication rate, usually in the order of once in less
than a second. Fewer link rules can thus significantly decrease the total assembly
time. The first principle addresses the propagation delay concerns which can cause
scalability issues. Limiting the size of the concurrently built sub-assemblies allows
for restricting the extent by which the update rules need to propagate. Therefore, in
a robotic system with measurable propagation delay and interaction rate, the update
propagation depth can be set accordingly to allow for a parallel assembly scheme
while minimizing possible propagation delay faults. In order to avoid deadlocks, we
employ probabilistic dissociating rules. Appropriate reverse rules are generated at
the end of Stage II. It should be noted that the algorithm only generates the ruleset.
Appropriate probabilities should be assigned to the rules to reliably build the target
while avoiding deadlocks.

4.1 Stage I: Grow Subtrees (GS)

Stage I allows for creating concurrently built sub-assemblies similar to the concur-
rency created by the Linchpin algorithm [3], with the additional capability to control
the maximum permitted size of such sub-assemblies. The GS algorithm employed
in Stage I tries to build a given target structure using as many sub-assemblies of a
defined size as possible built in parallel, before trying to join them to make a bigger
sub-assembly and eventually form the target. In principle, the algorithm addresses
the second issue with the Linchpin algorithm (see Sect. 1). Linchpin generates rules
to build parallel substructures for every branch split in the target recursively in order
to build the target using one final finishing rule. With one finishing rule in the rule-

A Rule Synthesis Algorithm for Programmable … 335

set, it is shown in [3] that the target can be built reliably while avoiding deadlocks
by having probabilisitic dissociating rules for all rules except for the finishing rule.
The GS algorithm on the other hand, permits a maximum size for the concurrently
built sub-assemblies and as a result may end up building the target using several
concurrent finishing rules. Stage II then processes this ruleset and results in one fin-
ishing rule. Algorithm 1 shows the pseudo code of the GS algorithm. The first call
to GS is by Size = 0. The algorithm then recursively proceeds to create extended
labels and corresponding rules, moving outwards from a starting vertex k. The rule-
set returned by GS for a chain structure of size 6 and maximum sub-assembly size
of 2, is depicted below along with the link rules generated by Linchpin. In order to
simplify the comparison, the rulesets have been designed for an abstract graph.

φGS =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 → 1 − 2 (r1)

0 0 → 3 − 4 (r2)

0 0 → 5 − 6 (r3)

4 5 → 7 − 8 (r4)

2 3 → 9 − 10 (r5)

φLinchpin =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 → 1 − 2 (r1)

0 0 → 3 − 4 (r2)

0 2 → 5 − 6 (r3)

0 4 → 7 − 8 (r4)

5 7 → 9 − 10 (r5)

Consider a set of initially isolated atomic agents, all labeled 0. The rules generated
by GS allow for the target to be built in two concurrent steps, i.e. first (r1, r2, r3) and
then (r4, r5), while the rules synthesized by Linchpin require three concurrent steps,
i.e. first (r1, r2), then (r3, r4), and eventually (r5).

4.2 Stage II: ReGroup Subtrees (RGS)

Stage II processes the ruleset generated by Stage I to unify the link rules which create
up to the maximum size sub-assemblies and add proper update rules. The key idea of
processing is to apply the rules synthesized by GS to two graphs with initially fully
isolated vertices. The two graphs evolve identically in structure but differ in labeling,
one graph is labeled according to the original ruleset, while in the other graph the
forming sub-assemblies are processed to identify the rules with products of identical
shapes. In order to identify structures with identical shapes the shape recognition
algorithm explained in Sect. 5.1.2 is utilized. We omit the pseudo code for the RGS
algorithm employed in this stage for brevity. The RGS algorithm can be explained
in four phases:

336 B. Haghighat and A. Martinoli

1: C : (V, E, S, L , k, l, Size, Smax)

2: procedure GS(C)
3: φ ← ∅
4: φ̄ ← ∅
5: Size ← Size + 1
6: if |nE (k)| = 0 then
7: return (l, φ)

8: else
9: {v j : j = 1, 2, . . . , |nE (k)|} ← nE (k)

10: for j = 1 to |nE (k)| do
11: sk ← S(vk , v j)

12: s j ← S(v j , vk)

13: lk ← GVL(L , sk , vk)
14: if Size < Smax then
15: l j ← GVL(L , s j , v j)

16: l̄ ← IncrementState(l, 1)
17: l ← IncrementState(l, 2)
18: φ̄ ← φ ∪ {lk l j � l̄ − l}
19: SVL(L , vk , sk , l̄)
20: SVL(L , v j , s j , l)
21: Size j ← Size

22: else
23: φ̄ ← ∅
24: Size j ← 0

25: end if
26: Let (V j , E j , S j) be the

component of (V, E − {kv j }) containing v j
27: C : (V j , E j , S, L , v j , l, Size j , Smax)

28: (l, φ j , Size j) ← GS(C)

29: φ ← φ ∪ φ̄ ∪ φ j
30: if Size == Smax then
31: l j ← GVL(L , s j , v j)

32: l̄ ← IncrementState(l, 1)
33: l ← IncrementState(l, 2)
34: φ ← φ ∪ {lk l j � l̄ − l}
35: else
36: Size ← Size j
37: end if
38: end for
39: end if
40: return (l, φ, Size)
41: end procedure

42: procedure GVL(L , s, v)
43: (la , ln) ← L(v)
44: lh ← (ln − s + 1) (mod N)

45: return (la , lh)

46: end procedure

47: procedure SVL(L , v, s, l)
48: (la , lh) ← l(1 : 2)
49: ln ← s
50: L(v) ← (la , ln)

51: end procedure

52: procedure IncrementState(l, k)
53: return (la + k, ln)
54: end procedure

Algorithm 1 Pseudo code of the GS algorithm employed in Stage I

Forming dimers Unify the rules (of Stage I) which form dimers.
Forming larger sub-assemblies Grow on the dimers. Recognize the shape of the

resulting sub-assemblies. Unify the rules producing identical structures.
Relabeling max-size sub-assemblies Create update rules for relabeling all themod-

ules in sub-assemblies of up to the max-size (i.e. user-defined value) size.
Growing on max-size sub-assemblies Create necessary rules, both link and update,

to form the target assembly out of the max-size sub-assemblies.

Considering the target shape of a chain of size 6 for an abstract graph, the rules
generated by RGS are as below:

φRGS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 → 1 − 2 (r1)

1 2 → 4 − 3 (r2)

1 8 → 10 − 9 (r3)

1 − 3 → 6 − 5 (ru4)

2 − 4 → 8 − 7 (ru5)

7 − 9 → 12 − 11 (ru6)

2 − 10 → 14 − 13 (ru7)

A Rule Synthesis Algorithm for Programmable … 337

Two points are noteworthy here. First, the existence of the update rules in the rule-
set (ru4 to ru7). And second, the number of concurrent steps necessary for forming the
target being equal to 3. Assuming that the update events are instantaneous and that
the number of availablemodules is limited, RGS can on average build the target faster
than Linchpin with the same number of necessary concurrent steps (see Sect. 6). This
is due to the fact that RGS makes a better use of the available modules by limiting
the number of distinctly labeled sub-assemblies with identical shapes. At the end of
Stage II, the ruleset is augmented with proper reverse rules accounting for both the
link and the update rules. The application of a reverse rule essentially takes the SA
process back in time by reversing the labeling and/or the bonding.

Proposition 1 The complete ruleset φ f ull generated by our proposed method for
assembling a target structure described as an extended graph G = (V, E, S, l) will
eventually achieve the maximum possible number of copies of the target structure
(i.e. maximum yield) provided that the available assembly modules executing the
ruleset interact often enough and that the corresponding execution probability is set
to p = 1 for link and update rules and to p < 1 for reverse rules.

Proof The rulesetφ f ull contains an unlink rule for each link and update rule. Only the
last link rule has no corresponding reversal rule. Therefore, while all partially formed
structures dis-assemblewith a non-zero probability, the finishing rule is reversedwith
zero probability, therefore leading to a stable target structure. �
Proposition 2 The complete ruleset φ f ull generated by our proposed method for
assembling a target structure described as an extended graph G = (V, E, S, l) will
achieve an assembly rate at least as fast as that of a ruleset derived by the Linchpin
algorithm, assuming that the update rules are applied instantaneously.

Proof Rulesets generated by Stage I have as many link rules as the ones generated
by the Linchpin algorithm, i.e. the number of edges in the target graph, as a result
of forming the target out of uniquely labeled sub-assemblies. As a result of merging
the link rules in Stage II, φ f ull contains at most as many link rules as the ruleset φGS

created in Stage I. Therefore, φ f ull achieves the target structure in the same or fewer
concurrent steps than rulesets derived by Linchpin. �

4.3 Synthesized Rulesets for Lily Robots

We consider two targets, a chain and a cross structure, each composed of six Lily
robots (see Fig. 3). The rulesets returned by our algorithm (with the maximum user-
defined size set to 2) for the chain structure φ−, and for the cross structure φ+, are
reported below. The (la, lh) notation is used for the relative extended labels and the
reverse rules are separated. Note that the reverse rules do not correspond to a single
link or update rule, but rather have a time reversal effect, taking the labeling back in

338 B. Haghighat and A. Martinoli

time. For the sake of brevity we skip functional explanation of these rulesets, further
details can be found in [7].

φ− =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) (0, 0)
r1−→ (1, 1) − (2, 1)

(1, 3) (2, 3)
r2−→ (4, 1) − (3, 1)

(1, 3) (8, 3)
r3−→ (10, 1) − (9, 1)

(1, 1) − (3, 3)
ru4−→ (6, 1) − (5, 1)

(2, 1) − (4, 3)
ru5−→ (8, 1) − (7, 1)

(7, 1) − (9, 3)
ru6−→ (12, 1) − (11, 1)

(2, 1) − (10, 3)
ru7−→ (14, 1) − (13, 1)

(1, 1) − (2, 1)
r̄1−→ (0, 0) (0, 0)

(5, 3) − (7, 3)
r̄2/4/5−−−→ (3, 1) (4, 1)

(3, 3) − (6, 1)
r̄2/4−−→ (2, 1) − (1, 1)

(4, 3) − (8, 1)
r̄2/5−−→ (1, 1) − (2, 1)

φ+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) (0, 0)
r1−→ (1, 1) − (2, 1)

(0, 0) (2, 4)
r2−→ (4, 1) − (3, 1)

(0, 0) (5, 2)
r3−→ (8, 1) − (7, 1)

(2, 3) (7, 2)
r4−→ (10, 1) − (9, 1)

(1, 1) − (3, 2)
ru5−→ (6, 1) − (5, 1)

(1, 1) − (10, 3)
ru6−→ (12, 1) − (11, 1)

(1, 1) − (2, 1)
r̄1−→ (0, 0) (0, 0)

(4, 1) − (5, 4)
r̄2−→ (0, 0) (3, 1)

(6, 1) − (3, 2)
r̄2/5−−→ (1, 1) − (2, 1)

(7, 1) − (8, 1)
r̄3−→ (5, 3) (0, 0)

5 Modeling Levels and Simulation Frameworks

In order to compare the performance of our rulesets for SA of robots and to study
the transient behavior, we conduct simulated studies using two different simulation
frameworks. In the non-spatial microscopic framework implemented in Matlab, the
system is modeled as an extended graph (see Sect. 3), with each extended vertex
in the extended graph corresponding to a robotic module. In the high-fidelity sub-
microscopic simulation framework realized inWebots [11], the physics of the system
including the embodiment of the robotic modules, the hydrodynamic forces acting
on the robots, and the software running on them are recreated.

5.1 Microscopic Model and Simulation Framework

In this framework, the physical dynamics of our robotic system is abstracted into
randomized interactions between atomic units in favor of gaining simulation speed.
The system is represented as an extended graph which evolves over time. Each
robotic modules corresponds to an extended vertex in the system graph. In order to
model interactions between the robotic modules a randomized scheme along with
appropriate geometrical constraints is utilized. In order to track the progress of the
SA process in the system, we employ a shape recognition algorithm which is an
extension over a graph isomorphism check.

A Rule Synthesis Algorithm for Programmable … 339

5.1.1 Random Pairwise Interactions

In our extended formalism, a random pairwise interaction dynamics is defined as
a quadruple (G, F, φ, P). Rule probabilities are assigned by P : φ → (0, 1]. The
set of pairs of disjoint vertices is defined as PW (G) = {(x, y) : �I ⊂ G|(x, y) ∈
VI , x �= y}, where I is a connected subgraph of G. The set PW (G) defines modules
among which an interaction is feasible as they are not on the same sub-assembly.
F(G) maps an extended graph G to probabilities of pairwise vertex selections from
VG . A random trajectory of the system, is generated by sampling F(Gt) at each
time instant to obtain a pair (x, y) and then executing an appropriate action on the
selected pair. For two selected vertices to interact, the link-slots are chosen randomly
from the available slots. Sampling from F(Gt) introduces an inherent stochasticity
to the trajectories even if the ruleset contains only deterministic rules. The interaction
probabilities, definedby F(Gt), dependon the current graphGt and can be calibrated.

5.1.2 Shape Recognition

Tracking the progress of the SA process of the simulated system requires a mapping
between the connected components of the graph of the system and the shape of
the corresponding sub-assemblies. For the case of SA of graphs where the system
is represented by an abstract graph at each time instant, this describes a problem
of graph isomorphism. However, for the case of our extended graphs, the relative
position of the engaged slots need to be taken into account to recognize the shapes.
We employ a simple method for recognizing the shapes based on traversing the
connected components of the extended graph and constructing a series of locations
of the Center Of Mass (COM) of the robotic modules. The relative ordering of the
slots of neighboring modules determines the orientation of each traverse. The series
of locations are then rotated and translated such that all coordinates are positive. The
resulting ordered set is used as the identifier of the structure. This method can be
applied to modules with a variety of shapes forming structures in 2D.

Fig. 2 a Velocity field of the tracked globe and the computed fluid flow. b and c Simulated world
of Lily robots in Webots

340 B. Haghighat and A. Martinoli

5.2 Sub-Microscopic Model and Simulation Framework

In this context, submicroscopic means that it provides a higher level of detail than a
canonical microscopic model, faithfully reproducing intra-robot details (e.g., body
shape, individual sensors and actuators). In order to realistically recreate our self-
assembling system in simulation, we use Webots [11], a physics-based robotics
simulator. Webots uses the Open Dynamics Engine (ODE) for simulating rigid body
dynamics. Additionally, in order to simulate specific not natively supported physics,
it is possible to employ custom designed physics plugins. The Lily modules’ CAD
design aswell as the robots’ controller software is imported into theWebots simulated
world. The rulesets programmed on the simulated robots are also identical to the case
of the microscopic simulation in the previous section. The latest version of Webots
supports a basic fluid node which allows for a simple uniform stream velocity, but is
not capable of simulating a complex fluidic field. We used a similar approach as [2]
to reproduce the complex flow field and the hydrodynamic forces.

We record the trajectory of a single floating globe (diameter of 3cm), roughly
the same size of a Lily robot, for 3 experiments with random starting positions and
duration of 10min each. The globe’s weight is tuned such that the submersion level is
similar to that of a Lily robot (25mm belowwater level). The captured velocity fields
are then augmented and discretized on a regular grid of 50 cells on each side, for
our water tank of 120cm in diameter. For each cell of the grid, the observed velocity
vectors are averaged and assigned as the velocity of that cell. The fluid velocity field
can be computed considering the drag force. The value of the Reynolds number Re
determines the flow regime and the form of the drag force:

Re = ρV L

μ
� 2000 |−→F drag| = 1

2
ρAC |−→v block − −→v f low|2 (1)

where ρ = 103 kg/m3 is the density of water, V � 20cm/s the experimentally-
measured mean velocity of the globe, L = 3cm the characteristic dimension, and
μ = 8.90 . 10−4 Pa.s the dynamic viscosity of water. The submerged area of the
globe is, A = 7cm2 and the drag coefficient constant in all directions C = 0.47. The
velocity and acceleration of the globe are computed using the captured trajectory
data. Considering the mass of the globe m, the flow velocity is then computed as:

−→v f low = −→v block + m−→a√
1
2ρACm

√
a2x + a2y

(2)

We developed a physics plugin for Webots that applies the drag force to the
simulated Lily module based on the velocity of the robot and the flow velocity at its
location at each time instant. In order to account for rotational effects, the drag force
is integrated over each face of the Robot. Each face is divided into N = 10 sections,
and the drag force is computed for each section usingEq.1withC being the estimated

A Rule Synthesis Algorithm for Programmable … 341

Lily robot’s drag coefficient CLily . The physics plugin also adds a stochastic force
Fs ∼ N (0, σ 2

f) to the center of mass of each robotic module in order to account
for non-modeled effects (e.g., physical irregularities, turbulences). The values of
CLily = 0.7 and σ f = 50 mN were empirically set based on our previous findings in
[2]. Two independent Kolmogrov-Smirnov (KS) tests showed that the simulated and
real distributions of the step lengths and step angles extracted from the trajectories
have a KS distance of less than 0.2.

6 Experiments and Results

We evaluate our algorithm leveraging the two modeling levels and corresponding
simulation frameworks of Sect. 5, studying the SA process in a swarm of 24 initially
isolated Lily robots. Two target shapes of a chain and a cross shape, each composed
of 6 robotic modules, are considered. A maximum of 4 copies of each target can
be assembled thus. The microscopic simulation framework (see Sect. 5.1) employs
a random pairwise interaction dynamics. All interactions among microscopic nodes
are set to be equiprobable, i.e. we make the assumption that the system is perfectly
mixed. We employ rulesets synthesized by our algorithm (see Sect. 4.3) and the
extended Linchpin algorithm [7], for our simulated Lily robots. For forward and
update rules P(.) = 1 and for reverse rules P(.) = 0.01 is set. The finishing rule is
set to be irreversible in all the rulesets, giving rise to stable target assemblies once
they are formed. Figure3 depicts the performance of the rulesets derived by our
algorithm along with the ones of the extended Linchpin for the two target shapes.
While for the submicroscopic simulations the results are reported as a function of
the experimental time (emulating the real time progress in a real experiment), the
results of the microscopic simulations are reported as a function of steps, each step
representing a formation event in the system. While such choice makes the results of
the two modeling levels not directly comparable, the adopted progress unit is well
suited for measuring the concurrency of the rulesets. It can be seen that our proposed
algorithm achieves higher assembly rates in all cases. Interestingly, the maximum
yield of 4 is not obtained in the case of the submicroscopic simulations within the 1
hour simulated time. This can be ascribed to several reasons. First, it is observed in
the submicroscopic simulation that larger structures with several corners trap other
sub-assemblies and stall the SA process. In addition, as the structures grow the
conditions diverge from perfect mixing since the shape of the sub-assemblies affects
their orientation in the fluidic field and certain interactions tend to be less probable.

342 B. Haghighat and A. Martinoli

Fig. 3 Results of microscopic (a and d, 100 runs averaged) and submicroscopic models (b and e,
30 runs averaged) for two target shapes, cross c and chain f

7 Conclusion

In this paper, we addressed the problem of synthesizing parallel rulesets for pro-
grammable SA of robotic modules. We employed an extended graph-grammar for-
malism to account for the morphology of the modules and proposed a formal syn-
thesis algorithm to automatically synthesize rules. Using our new algorithm, we
synthesized rulesets for two target structures. Studies on the synthesized rulesets in
simulation, using both non-spatial microscopic and spatial submicroscopic models,
demonstrated the superior performance of our algorithm compared to the Linchpin
algorithm [3], appropriately extended to be deployed on our robotic modules [7].
This evidenced the functionality of update rules in increasing the concurrency in
the SA process resulting in higher assembly rates. In the future, we plan to con-
duct studies in simulation and on real robots to investigate the effects and mitigation
strategies of propagation delays on the performance of the rulesets generated by
our algorithm. Additionally, we plan to fully utilize our real experimental setup to
conduct systematic real experiments involving up to 50 Lily robots.

A Rule Synthesis Algorithm for Programmable … 343

Acknowledgements We gratefully acknowledge the contributions of Loic Waegeli and Brice
Platerrier to the microscopic simulation framework. This work has been sponsored by the Swiss
National Science Foundation under the grant numbers 200021_137838/1 and 200020_157191/1.

References

1. Cademartiri, L., Bishop, K.J.: Programmable self-assembly. Nat. mater. 14(1), 2–9 (2015)
2. Di Mario, E., Mermoud, G., Mastrangeli, M., Martinoli, A.: A trajectory-based calibration

method for stochastic motion models. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4341–4347 (2011)

3. Fox,M., Shamma, J.: Probabilistic performance guarantees for distributed self-assembly. IEEE
Trans. Autom. Control 60(12), 3180–3194 (2015)

4. Gilpin, K., Rus, D.: Modular robot systems. IEEE Robot. Autom. Mag. 17(3), 38–55 (2010)
5. Haghighat, B., Droz, E., Martinoli, A.: Lily: A miniature floating robotic platform for pro-

grammable stochastic self-assembly. In: IEEE International Conference on Robotics and
Automation, pp. 1941–1948 (2015)

6. Haghighat, B., Martinoli, A.: Characterization and validation of a novel robotic system for
fluid-mediated programmable stochastic self-assembly. To appear in IEEE/RSJ International
Conference on Intelligent Robots and Systems (2016)

7. Haghighat,B., Platerrier,B.,Waegeli, L.,Martinoli,A.: Synthesizing rulesets for programmable
robotic self-assembly: A case study using floating miniaturized robots. In: International Con-
ference on Swarm Intelligence (ANTS), pp. 197–209 (2016)

8. Klavins, E.: Automatic synthesis of controllers for distributed assembly and formation forming.
In: IEEE International Conference on Robotics and Automation, pp. 3296–3302 (2002)

9. Klavins, E.: Programmable self-assembly. IEEE Control Syst. 27(4), 43–56 (2007)
10. Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing robotic systems.

IEEE Trans. Autom. Control 51(6), 949–962 (2006)
11. Michel,O.:Webots: professionalmobile robot simulation.Adv.Robot. Syst. 1(1), 39–42 (2004)
12. Rai, V., Van Rossum, A., Correll, N.: Self-assembly of modular robots from finite number of

modules using graph grammars. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4783–4789. IEEE (2011)

13. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot
swarm. Science 345(6198), 795–799 (2014)

Distributed Adaptive Locomotion Learning
in ModRED Modular Self-reconfigurable
Robot

Ayan Dutta, Prithviraj Dasgupta and Carl Nelson

Abstract We study the problem of adaptive locomotion learning for modular self-
reconfigurable robots (MSRs). MSRs are mostly used in unknown and difficult-to-
navigate environments where they can take a completely new shape to accomplish
the current task at hand. Therefore it is almost impossible to develop the control
sequences for all possible configurations with varying shape and size. The modules
have to learn and adapt their locomotion in dynamic time to be more robust in nature.
In this paper, we propose a Q-learning based locomotion adaptation strategy which
balances exploration versus exploitation in a more sophisticated fashion. We have
applied our proposed strategy mainly on the ModRED modular robot within the
Webots simulator environment. To show the generalizability of our approach, we
have also applied it on a Yamor modular robot. Experimental results show that our
proposed technique outperforms a random locomotion strategy and it is able to adapt
to module failures.

1 Introduction

Modular self-reconfigurable robots (MSRs) are composed of multiple autonomous
modules which can change their connections with each other to form different con-
figurations [20]. This enables the robot to navigate through different types of terrains
and environments where it is usually difficult to do so. Therefore MSRs can be

A. Dutta (B) · P. Dasgupta
Computer Science Department, University of Nebraska Omaha, Omaha, NE, USA
e-mail: adutta@unomaha.edu

P. Dasgupta
e-mail: pdasgupta@unomaha.edu

C. Nelson
Mechanical and Materials Engineering Department, University of Nebraska Lincoln,
Lincoln, NE, USA
e-mail: cnelson5@unl.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_24

345

346 A. Dutta et al.

used for unmanned extra-terrestrial exploration, information collection in nuclear
radiation plants or for search-and-rescue tasks [20].

In our recent work [9], we have proposed a solution for configuration formation
from singleton modules. After the configuration is formed, the newly built config-
uration needs to move to different locations to complete the tasks at hand, such as
exploration or information collection. If both the size (number of modules) and the
topology of the configuration are known, then coordinated locomotion for all
the member modules can be planned a priori in a deterministic manner [15].
But the difficulty arises when either the size or the shape, or both, is unknown.
In that case, determining the control sequences a priori for locomotion is impos-
sible. Finding the best set of actions for a particular configuration has exponential
complexity on the number of modules in the configuration O(|A||M |) where A and
M are the set of actions available to each module and the set of modules present in
the configuration [5]. Moreover, if one or some of the modules in the configuration
become faulty during the operation, then finding the best set of actions for the other
operational modules is an important task.

To solve this problem, we propose a Q-learning-based adaptive locomotion strat-
egy which learns the best action for each module. We have observed that each mod-
ule’s locomotion performance (e.g., distance traveled) is highly dependent not only
on the action that particular module is taking, but also on the actions taken by its
neighboring modules (i.e., the modules directly connected to it). This observation
led us to build our learning strategy in such a way that it does not only learn from its
own previous actions, but it also learns from the correlation of that past action with
the neighboring modules’ actions at that particular time-step.

2 Related Work

Although locomotion planning in modular robotic systems has been studied in liter-
ature extensively, it has still remained a big challenge for MSR researchers to find a
solution which quickly adapts to the shape of the current configuration of the MSR
and consequently, the configuration learns to move within a short amount of time [1].
Most of the research in MSR locomotion tried to develop pre-defined locomotion
plans for any particular configuration, one of the first of which is due to [19]. Many
of these works on locomotion planning in MSRs have proposed solutions based on
gait tables. Gaits are synchronized patterns of locomotion used by animals, humans
and machines such as robots [14]. Hand-coded locomotion patterns using gait con-
trol tables for the ModRED MSR have been proposed in [6]. Though popular, this
approach can be mostly useful for chain type modular robotic systems [5]. In [5],
the authors have proposed a novel reinforcement learning based technique for gait
adaptation for locomotion learning inMSRs. Central pattern generators (CPGs) have
also been studied for locomotion planning in MSRs [11]. The goal of the CPG is
to generate synchronized oscillations (locomotion patterns/rhythms) in connected
oscillators (modules) [17]. Locomotion in MSRs using CPGs has been first studied

Distributed Adaptive Locomotion Learning … 347

by Kamimura et al. for their M-TRANMSR [12]. In [17], the authors have proposed
a CPG-based approach for locomotion learning in Yamor, a chain-type modular
robotic system.

Synchronization plays a very important role in locomotion planning. If the
movements of multiple modules are not synchronized, then the locomotion is not
synchronized and therefore the configurationwill notmove towards the correct direc-
tion and/or the speed of the configuration will be very slow [15]. Several different
approaches for maintaining synchronization among modules in a configuration have
been proposed. A biology-inspired hormone based approach has been proposed in
[15] where modules pass hormones (information-coded) among themselves in the
configuration and can detect any change in the topology of the current configuration;
this is also used for synchronization of their actions in a distributed manner. In a
leader-follower approach, every module detects its local leader module and coordi-
nates its actions with that leader module only, and thus the synchronized behavior
flows through the configuration [16]. On the other hand, in a master-slave approach,
a central leader is elected for the whole configuration (called the master) and control
is passed to all other slave modules [4].

Our proposed approach for locomotion learning is inspired by the online loco-
motion adaptation works [5, 7, 10] in which the modules learn to adapt the locomo-
tion for the current configuration on the fly. We also employ a leader-follower-like
distributed synchronization method which is more robust against failures than the
master-slave approach.

3 Problem Setup

LetM = {m1,m2, . . . ,mN } denote the set of N modules connected together forming
a certain configuration. The configuration is connected, i.e., any two modules in the
configuration are connected either physically or through other modules. neigh(mi)

denote the set of neighboring modules, i.e., the modules which are physically con-
nected tomi . Eachmodule has a unique identification (ID).Modulemi ’s position and
orientation are denoted by (xi , yi , θi). We assume that each module knows the topol-
ogy of the configuration [3]. We also assume that each module is able to calculate
its own position using a GPS or an overhead tracking system.

Each module performs an action by actuating its motors. An action a j is a vector
which specifies the actuation provided to each of the K motors present in themodule,
i.e., a j = {ac1, ac2, . . . , acK }. Each module is provided a library of actions, A, from
which it can choose its action at any given time-step. The actions present in the
library are known beforehand and given as an input by the user. Each module, mi ,
receives a reward by performing an action a j in a specific time-step t , denoted by
Ri (a j , t). Reward can be calculated as the Euclidean distance traveled by a module
since its last time step, given by:

Ri (a j , t) = ||pi (t) − pi (t − 1)|| (1)

348 A. Dutta et al.

where pi (t) is the position of the module mi at time-step t . Let abesti denote the best
(highest reward earning) action. We have modeled the learning strategy as a stateless
Q-learning approach [5, 13, 18]. Let Q(a j) denote the Q-value of an action a j . The
Q-value provides an estimate of the usefulness of executing any action in the next
iteration, and this value is updated after each learning cycle according to the reward
received for the action. Also, let ε denote the ratio between exploration of new actions
and exploitation of past high reward-earning actions.

4 Q-Learning Based Approach for Distributed Locomotion
Learning

In our proposed approach for locomotion learning, we try to capture the following
idea: each module not only learns from its own current and past actions, but also
from the relationship among the actions performed by its neighboring modules at
any particular time-step. The pseudo-code of our proposed approach is shown in
Algorithm 1.

Algorithm 1: Q-Learning Based Distributed Locomotion Learning Algorithm

1 Perform every action a j ∈ A in sequential order.
2 Receive corresponding rewards Ri (a j , t).
3 Q(a j) ← Ri (a j , t),∀a j ∈ A.
4 ADS ← Data structure for storing best action-pair.
5 Loop
6 abesti ← arg max

ak∈A
Q(ak).

7 With ε probability, anxt ← abesti .
8 With (1 − ε) probability, anxt ← arand .
9 apres ← Prescribed best action for anxt to be send to neighbor modules.

10 Send {anxt , apres , Ri (anxt , t)} to the neighboring modules.
11 Receive similar message from the neighbor modules: {a′

nxt , a
′
pres , R j (anxt , t)′}.

12 Let a′′
pres be the already prescribed action stored with mi in ADS for a′

nxt with
corresponding reward Ri (a′

nxt , t)
′′.

13 if R j (anxt , t)′ > Ri (anxt , t)′′ then
14 With τ probability, anxt ← a′

pres ./*switch to prescribed action*/

15 Perform the action anxt and receive reward Ri (anxt , t).
16 Update Q-value: Q(anxt) = Q(anxt) + α · (Ri (anxt , t) − Q(anxt)).
17 Update abesti and {a′

nxt , a
′′
pres , Ri (a′

nxt , t)
′′} if necessary.

First each module, mi ∈ M , performs every action, a j , available in the action
library, A, in a sequential order and calculates the rewards, Ri (a j , t), for all the
actions. Q-values of all the actions are also initialized to these reward amounts, i.e.,
Q(a j) = Ri (a j , t). Next, the modules follow the modified Q-learning strategy as
shown in Algorithm 1. In the beginning of every learning iteration, each module

Distributed Adaptive Locomotion Learning … 349

finds out which action has maximum Q-value associated with it so far, i.e., the best
action. This information is local to every module, i.e., each module has its local best
action, abesti , calculated by the following equation: abesti ← arg max

ak∈A
Q(ak). We have

observed that the behavior of the modules are highly coupled and if the actions taken
by them are not synchronized in any way, then the modules take a longer time to
reach the final learned behavior [1]. To alleviate this problem, each module commu-
nicates its next action information with its neighboring modules before performing
any action. Each module chooses its best action seen so far abesti , to execute in the
next learning iteration with ε probability or a random action arand with (1 − ε) prob-
ability. Each module sends this calculated next action for the next iteration, anxt , to
the neighboring modules. Similarly, it receives the next actions of its neighboring
modules for the next iteration.

Each module mi maintains an action-pair data-structure ADS which can be imag-
ined as a |A| × 3 matrix. Each row in ADS contains an action ak ∈ A (first col-
umn), a prescribed best (highest reward earning) action apres ∈ A for ak (second
column) and corresponding reward received by mi by performing apres : Ri (apres, t)
(third column). ak ∈ ADS represents the action performed by a neighboring module,
m j ∈ neigh(mi), at any particular time-step t . apres represents the corresponding
action from the action set performed by mi at that time-step t and which earned mi

a reward of Ri (apres, t). For any module mi , ADS contains only one copy of each
action ak ∈ A in its first column, even if multiple neighboring modules might have
performed that action. Only the corresponding best action performed by mi at those
time-steps and the reward earned by it (column 2 and 3) change over time. Initially
all the prescribed actions in ADS and the corresponding rewards earned for those
actions are unknown and therefore initialized to a null value. Over time, when the
modules start communicating their current actions, this data structure gets populated
accordingly. While communicating, each module not only sends its next action, anxt ,
but also the information about the corresponding prescribed best action available
with it, apres , for its neighboring modules and the reward received for that action
pair, Ri (anxt , t).

Once themodule receives this information from its neighboringmodules, it checks
whether anyof the neighboringmodules has anyprescribedbest action for that current
learning iteration or not. Only if the prescribed action received from the neighboring
module, apres , has been shown to earn higher reward than the prescribed action
already available with the module, then the module selects apres as its next action
with τ probability or keeps anxt to be its next action with (1 − τ) probability. After
the next action is decided, the module performs that action and receives reward for
that action. Following [13, 18], each module then updates the Q-value of the action
performed following the update equation:

Q(anxt) = Q(anxt) + α · (Ri (anxt , t) − Q(anxt)) (2)

where α ∈ [0, 1] is the learning rate. Also, it updates the best action and action-pair
data structure ADS as necessary.

350 A. Dutta et al.

Table 1 a Simulated ModRED Modules within Webots Robot Simulator and b Hardware of
ModRED

(a)

(b)

5 Experimental Evaluation

5.1 Settings

We have mainly implemented our proposed adaptive locomotion learning strat-
egy on simulated ModRED modules within the Webots robot simulator. Each
ModRED module is a 4-DOF robot with connectors in both ends. For more details
on ModRED hardware architecture and features, readers are referred to [2]. Simu-
lated ModREDmodules within the Webots simulator and actual ModRED hardware
are shown in Table1. We have tested our approach onModRED chain configurations
having 2, 3, 4, 5 modules (denoted by M2, M3, M4, and M5 respectively).1

ModRED actions: Each ModRED module can have 54 unique actions [6]. In this
paper, we have shortlisted 10 of them for inchworm locomotion and 5 actions for
rolling motion which have been used for our testing purpose. These actions have also
been used in [6] for creating hand-coded gaits. More actions can always be used for
more robust locomotion behavior, but at the same time it will slow down the learning
process exponentially.

1Because each module has 4 DOF, testing with ModREDmodules becomes computationally inten-
sive with more than 5 modules. Testing with larger configurations is reported for a 1-DOF robot
called Yamor.

Distributed Adaptive Locomotion Learning … 351

Table 2 Actions available to
single ModRED module for
inchworm locomotion

FC T R RC

Action 1 0 −1 0 0

Action 2 −1 −1 0 1

Action 3 −1 1 0 1

Action 4 1 −1 0 −1

Action 5 −1 −1 0 0

Action 6 0 1 0 −1

Action 7 1 1 0 1

Action 8 −1 −1 0 −1

Action 9 0 −1 0 −1

Action 10 −1 1 0 0

Table 3 Actions available to
single ModRED module for
rolling locomotion

FC T R RC

Action 1 0 −1 0 0

Action 2 −1 −1 0 1

Action 3 −1 −1 1 1

Action 4 1 −1 0 −1

Action 5 1 −1 1 −1

In [6], the authors have described hand-coded gait tables for ModRED’s loco-
motion (inchworm and rolling). As described earlier, ModRED has 4 degrees of
freedom and consequently 4 motors. Tables2 and 3 summarize the action set used
for ModRED modules for inchworm and rolling locomotion. Two end connectors
(front (FC) and rear (RC) connector) can go up (0.7 rad), down (−0.7 rad) or stay
in neutral (0 rad) positions represented as +1,−1 and 0 respectively in the action
table. Similarly, the translational motor (T) of ModRED helps to extend or contract
the body of the module and is represented by +1 and −1 in the gait tables. The
rotational degree of freedom (R) of the module either rotates the module in clock-
wise (+1: 6.28 rad) or anti-clockwise (−1:−6.28 rad) directions or just stays neutral
(0: 0 rad). For inchworm locomotion, the rotational motor is always inactive
(0 throughout the column). After one action is executed, the module calculates its
local reward for that particular performed action using Eq.1.

We have also tested our approach on Yamor modular robots, which is a 1-DOF
robot [8]. We have used the sample of Yamor’s simulated model provided inWebots.
For more details on Yamor hardware, readers are referred to [8]. We have tested on
10, 12 and 14 Yamor chain configurations (denoted by Y10, Y12, and Y14 respec-
tively). Each Yamor module has 3 available actions: go up (+0.5 rad), go down
(−1.57 rad) or stay neutral (0 rad).

Wehave compared our proposed approach against a random locomotion approach.
Modules select a random action in every iteration and execute that. Random action

352 A. Dutta et al.

(a) (b)

Fig. 1 Performance comparison of our proposed approach when applied on ModRED configura-
tions: a 2-module chain and against hand-coded gaits b 5-module chain and against the random
approach

(a) (b)

Fig. 2 Performance comparison of our proposed approach when applied on ModRED configura-
tions: a 4-module and b 5-module chains against the random approach

strategies have been shown to provide steady performance in ATRON andM-TRAN
robots [5]. The main performance metrics shown here are: distance traveled from the
start point by the front module, maximum speed achieved by the configuration and
number of messages passed between modules. The faint lines in the plots (Figs. 1,
2, 3 and 7) denote multiple runs and the bold red/blue lines indicate the best-fit line.
Three variables in the Q-learning approach, α, ε and τ , have been set to 0.1, 0.8 and
0.9 respectively for all the tests (these valueswere determined experimentally). In our
tests, each configuration runs Algorithm 1 for learning different types of locomotion
(such as inchworm and rolling motions). Each test has been run for 30min and 10
times each. Videos can be found here: https://youtu.be/8YiAj5xF8ag and https://
youtu.be/zjKkNW_r0ZI.

https://youtu.be/8YiAj5xF8ag
https://youtu.be/zjKkNW_r0ZI
https://youtu.be/zjKkNW_r0ZI

Distributed Adaptive Locomotion Learning … 353

(a) (b) (c)

Fig. 3 Performance of our proposed approachwhen applied onYamor configurations: a 10-module,
b 12-module and c 14-module chains

5.2 Results

Inchworm Locomotion: As the hand-coded gait tables for the 2-module ModRED
chain configuration are already available [6], we first compare the performance (dis-
tance metric) of our proposed algorithm applied on the 2-module ModRED chain
configuration against the same using the hand-coded gaits. The result is shown in
Fig. 1a. This result shows that using our approach, the ModRED configuration was
able to move further than by using hand-coded gaits. The reason for this is the hand-
coded gaits were built in such a way that no part of the chain is dragged along the
ground, but our proposed approach learns from all available actions - does not nec-
essarily restrict some modules being dragged. That is why our approach performed
better.

Next we compare our algorithm’s performance (distance metric) on M3, M4 and
M5 against the random approach (Figs. 1b and 2). Although in almost all of the
cases, the random approach initially performed better than our approach, but over
time our algorithm was able to perform better than the random approach. In some
of the plots one might notice that the distance metric (y-axis) decreases sometimes.
The reason for this is we have calculated the distance from the start point - not the
total distance traveled. The reward is based on distance traveled (regardless of the
direction). In some cases, after traveling towards a certain direction for some time,
the configurations started to move towards the start direction again. This behavior of
the configurations caused the dips in distance metric in some of the plots.

Next we show the result of applying our proposed approach for locomotion learn-
ing in the Yamor modular robot [8]. As Yamor modules have fewer DOFs and each
Yamor module can perform a very limited set of actions (only 3), we could test on
longer Yamor chain configurations than we could do with ModRED within Webots.
The performance (distance metric) of our proposed approach when applied on differ-
ent Yamor configurations has been shown in Fig. 3. The results show that Yamor con-
figurations could travel longer distances than ModRED configurations. We believe
the main reason for this is the smaller size and lighter Yamor modules compared
to ModRED modules. Also due to larger chain sizes, we have noticed some abrupt

354 A. Dutta et al.

(a) (b) (c)

Fig. 4 a Maximum distance traveled in any direction from the start location by different configu-
rations, bMaximum speed achieved by different configurations and c Average number of messages
sent by each module in different configurations

Fig. 5 Snapshot of inchworm locomotion performed by (top) ModRED and (bottom) Yamor con-
figurations using our proposed approach

jumps during locomotion which helped the configurations to travel a longer distance
in one learning cycle.

Next we summarize the results for maximum distance traveled in any direction
from the start location by different configurations (Fig. 4a),maximum speed achieved
(Fig. 4b) and the number of messages sent by eachmodule in different configurations
(Fig. 4c). As can be seen in Fig. 4a, maximum distance has been traveled by M3, but
at the same time we can also observe a very high variance in that performance. As we
have run each test for 30min, in the case of (larger)ModRED configurations, M4 and
M5, due to the slow simulation, we notice a low overall distance traveled. Although
these configurations achieved the maximum speeds among all ModRED configu-
rations (Fig. 4b). In terms of maximum achieved speed, the Yamor configurations
performed very similarly, though we can notice a slight increase in maximum speed
in Y14. This makes us believe that the longer chain sizes and corresponding (rare)
abrupt jumps during inchworm locomotionwere the reasons for larger configurations
achieving higher maximum speed in both ModRED and Yamor. Figure5 shows the
snapshots of inchworm locomotion in ModRED and Yamor configurations (M3 and
Y12 respectively). Green and red marks denote the start location in those pictures.

Fault Adaptation: We are also interested in understanding how our proposed
approach adapts itself if some module becomes faulty during the operation.

Distributed Adaptive Locomotion Learning … 355

0 100 200 300 400 500 600 700
0

5

10

Number of cyclesD
is

ta
nc

e
tra

ve
lle

d
(m

et
er

s) All modules are functional

800 900 1000 1100 1200 1300 1400
7

8

9

10

11

Number of cyclesD
is

ta
nc

e
tra

ve
lle

d
(m

et
er

s) After the end module becomes non−functional

y = 0.011x + 0.39

y = 0.003x + 5

0 100 200 300 400 500 600 700
0

5

10

Number of cyclesD
is

ta
nc

e
tra

ve
lle

d
(m

et
er

s) All modules are functional

800 900 1000 1100 1200 1300 1400
5

10

15

20

25

Number of cycles

D
is

ta
nc

e
tra

ve
lle

d
(m

et
er

s) After the middle module becomes non−functional

y = 0.019x - 0.16

y = 0.016x - 7

(a) (b)

Fig. 6 Performance of our proposed algorithm after a the end and b the middle module becomes
non-operational

We have tested the fault adaptability of our approach on M3 and have performed
three adaptability tests: how the algorithm performs when the middle, end or last two
modules stop working (i.e., stop moving and communicating). For the first 30min
in the experiment, all modules were functional, and then for the next 30min one of
the above situations occurs. Depending on the relative position of the faulty module
within the configuration, the performance of the algorithm (distance metric) varies.
For example, when the middle module becomes faulty, we can see a very nominal
change in the distance traveled by the configuration: the slope of the best-fit lines are
almost the same (Fig. 6b). But when the end module stops working (irrespective of
middle module’s faulty condition), then the total amount of distance traveled by the
configuration drops drastically (Figs. 6a and 7a). But even with any type of fault, we
can notice that our algorithm performs steadily and was able to adapt to anymodule’s
fault in the configuration.

Rolling motion of ModRED: We also present preliminary results of applying our
proposed approach on a ModRED 2-module chain configuration for rolling locomo-
tion.Wecompare the performance of our approach applied on the 2-moduleModRED
chain for rolling motion against the hand-coded gaits for ModRED proposed in [6].
The result is shown in Fig. 7b. This figure shows that using our proposed approach the
ModRED configuration was able to travel almost double the distance than by using
the hand-coded gaits. We also observe that using rolling actions modules were able
to travel longer distances than using the inchworm locomotion. There are two main
reasons for that: (1) modules have fewer actions to learn from and (2) in one rotation
(clockwise/anti-clockwise) of the rotational DOF, one module travels further than
any action provided for inchworm locomotion.

356 A. Dutta et al.

0 100 200 300 400 500 600 700
0

5

10

Number of cyclesD
is

ta
nc

e
tra

ve
lle

d
(m

et
er

s) All modules are functional

800 900 1000 1100 1200 1300 1400
11

12

13

14

15

16

Number of cyclesD
is

ta
nc

e
tra

ve
lle

d
(m

et
er

s) After two end modules become non−functional

y = 0.014x - 0.13

y = 0.004x + 8

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

Number of cycles

D
is

ta
nc

e
tr

av
el

le
d

(m
et

er
s)

Our Approach

Hand-coded Gaits

(a) (b)

Fig. 7 a Performance of our proposed algorithm after two end modules become non-operational.
b Comparison of performance of our algorithms for rolling locomotion against the same by using
hand-coded gaits

6 Conclusion and Future Work

In this paper, we have proposed a Q-learning based adaptive locomotion learning
strategy which learns from the module’s past actions as well as from the relationship
between its own actions with its neighboring modules’ actions. We have empirically
shown that using our proposed approach both ModRED and Yamor modular robots
learn to move forward. Our approach has also been shown to be adaptive to module
failure. In the future, we plan to implement this algorithm on more complex configu-
rations built using second-generation ModREDmodules. We also plan to investigate
the effect of neighborhood size in learning. In this paper, eachmodule uses action-pair
data structure only for its immediate neighbors, i.e., physically connected modules.
But we plan to extend this approach in which each module will learn its optimal (i.e.,
provides best learning behavior) neighborhood size in dynamic time. Also we plan
to implement this algorithm in actual ModRED hardware.

References

1. Ahmadzadeh, H., Masehian, E.: Modular robotic systems: methods and algorithms for abstrac-
tion, planning, control, and synchronization. Artif. Intell. 223, 27–64 (2015)

2. Baca, J.,Hossain, S.,Dasgupta, P.,Nelson,C.A.,Dutta,A.:Modred: hardware design and recon-
figuration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial
exploration. Robot. Auton. Syst. 62(7), 1002–1015 (2014)

3. Baca, J., Woosley, B., Dasgupta, P., Dutta, A., Nelson, C.: Coordination of modular robots
by means of topology discovery and leader election: improvement of the locomotion case. In:
Distributed Autonomous Robotic Systems, pp. 447–458. Springer, Berlin (2016)

Distributed Adaptive Locomotion Learning … 357

4. Castano, A., Behar, A., Will, P.M.: The conro modules for reconfigurable robots. IEEE/ASME
Trans. Mech. 7(4), 403–409 (2002)

5. Christensen, D.J., Schultz, U.P., Stoy, K.: A distributed strategy for gait adaptation in modular
robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp.
2765–2770. IEEE (2010)

6. Chu, K.D., Hossain, S., Nelson, C.A.: Design of a four-dof modular self-reconfigurable robot
with novel gaits. In: ASME 2011 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, pp. 747–754. American Society of
Mechanical Engineers (2011)

7. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature
521(7553), 503–507 (2015)

8. Dietsch, J., Moeckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., Jan Ijspeert, A.:
Exploring adaptive locomotion with yamor, a novel autonomous modular robot with bluetooth
interface. Ind. Robot. Int. J. 33(4), 285–290 (2006)

9. Dutta, A., Dasgupta, P.: Simultaneous configuration formation and information collection by
modular robotic systems. In: 2016 IEEE International Conference on Robotics andAutomation
(ICRA), pp. 5216–5221 (2016)

10. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review.
Neural Netw. 21(4), 642–653 (2008)

11. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic
locomotion design and experiments for a modular robotic system. IEEE/ASME Trans. Mech.
10(3), 314–325 (2005)

12. Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., Murata, S.: Distributed
adaptive locomotion by a modular robotic system, m-tran ii. In: 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings, vol. 3, pp.
2370–2377. IEEE (2004)

13. Kapetanakis, S., Kudenko, D.: Reinforcement learning of coordination in cooperative multi-
agent systems. AAAI/IAAI 2002, 326–331 (2002)

14. Nutt, J., Marsden, C., Thompson, P.: Human walking and higher-level gait disorders, particu-
larly in the elderly. Neurology 43(2), 268–268 (1993)

15. Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and distributed
control for conro self-reconfigurable robots. IEEETrans. Robot. Autom. 18(5), 700–712 (2002)

16. Shen, W.M., Will, P.: Docking in self-reconfigurable robots. In: 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001. Proceedings, vol. 2, pp. 1049–1054.
IEEE (2001)

17. Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in modular robots using
central pattern generators and online optimization. Int. J. Robot. Res 27(3–4), 423–443 (2008)

18. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press, Cambridge
(1998)

19. Yim, M.: Locomotion with a unit-modular reconfigurable robot. Ph.D. thesis, Citeseer (1994)
20. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.:

Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEERobot. Autom.
Mag. 14(1), 43–52 (2007). https://doi.org/10.1109/MRA.2007.339623

https://doi.org/10.1109/MRA.2007.339623

Distributed Camouflage for Swarm Robotics
and Smart Materials

Yang Li, John Klingner and Nikolaus Correll

Abstract We present a distributed algorithm for a swarm of active particles to cam-
ouflage in an environment. Each particle is equipped with sensing, computation, and
communication, allowing the system to take color and gradient information from the
environment and self-organize into an appropriate pattern. Current artificial cam-
ouflage systems are either limited to static patterns, which are adapted for specific
environments, or rely on back-projection, which depend on the viewer’s point of
view. Inspired by the camouflage abilities of the cuttlefish, we propose a distributed
estimation and pattern formation algorithm that allows to quickly adapt to different
environments. We present convergence results both in simulation as well as on a
swarm of miniature robots “Droplets” for a variety of patterns.

1 Introduction

We wish to design artificial camouflage systems that can quickly adapt to a large
variety of environments. Inspired by the capabilities of cephalopods, which tightly
integrate sensing, actuation (color change), neural computation, and communication,
we are interested in a distributed artificial approach that mimics this tight integration
[9, 21].While animals employ camouflagemostly for escapingpredators, camouflage
in an engineering context is typically motivated by clandestine military operations.
More broadly, everything from small robots to buildings could use these techniques
to more seamlessly be a part of their environment. Nature employs a large variety
of techniques to achieve these goals. For example, moths mimic patterns that they
would expect in their environments, sea animals use mottle patterns to soften their

Y. Li (B) · J. Klingner · N. Correll
Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
e-mail: yang.li-4@colorado.edu

J. Klingner
e-mail: john.klingner@colorado.edu

N. Correll
e-mail: nikolaus.correll@colorado.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_25

359

360 Y. Li et al.

contours, and other animals decorate their body with artifacts from the environment
[17]. Two animals with notable camouflage abilities are the cuttlefish and octopus,
who can dramatically alter the coloration and patterning of their skin and switch
between different environments in a matter of seconds [5]. These creature’s camou-
flage behavior is not only driven by the animals’ visual system (which is color-blind
[11]) or brain [12], but has also been shown to rely on local sensing and control [15].

There have been multiple attempts to achieve active camouflage using a combi-
nation of cameras and projection [6, 8]. Although such systems provide “perfect”
camouflage, they are highly dependent on the observer’s viewpoint. Mimicking the
background exactly is rarely employed in the animal kingdom, where a few simple
families of patterns — mottled, striped, or simply uniform [4] — dominate. Creat-
ing such patterns requires only local coordination [10], suggesting a combination of
high-level selection of appropriate motor programs [12] and self-organization [10].
Here, we are not concerned with perfectly matching the background, but rather aim
to replicate the pattern matching ability of natural systems, which are able to fool
sophisticated predators.

Distributing the sensing and actuation for camouflage generation makes an imple-
mentation scalable for a variety of factors, such as resolution of the camouflage
pattern, the size of the area being camouflaged, and robustness against the failure
of individual units. Further, a distributed camouflage system could respond to local
changes in the environment, in particular when deployed on non-trivial 3D surfaces.

In this paper, we present a fully distributed approach, which we implement on a
swarm of Droplets [2], each equipped with the ability to sense and emit color as well
as communicate with its local neighbors. Although there exist multiple attempts to
design artificial chromatophores, most work focuses on component technology, i.e.
the ability to color change in a soft substrate [14, 16], but very few works articulate
the systems challenges that require not only local color changes, but also local sensing
and computation [21], or investigate the ability to co-locate simple signal processing
with the sensors themselves [3].

Our algorithm can be broken into three phases, each described in detail below.
First, we estimate a color and gradient histogram with a consensus algorithm among
the particles. This information is then used to determine the parameters of a pattern
formation algorithm. Finally, the pattern is formed using a reaction-diffusion pro-
cess. Motivated by the mottled and striped patterns which dominate in the animal
kingdom, this paper focuses on reproducing three different types of patterns: spots,
horizontal stripes, and vertical stripes. The “background” in to which the swarm is
trying to camouflage is projected on to the particles from above, requiring them to
have color sensors. To simplify the color-identification process, the paper focuses on
two-tone patterns. Finally, we arrange the particles in a grid pattern, which allows us
to implement a discrete convolution operation and simplifies debugging the pattern
at the low resolution that swarms in the order of tens of particles can afford.

Distributed Camouflage for Swarm Robotics and Smart Materials 361

2 Distributed Camouflage Algorithm

In this section, we describe the distributed camouflage algorithm. Figure1 illustrates
the steps of the algorithm in broad strokes. First, each robot measures the color
projected on it. Then, it exchanges themeasured color with neighboring robots. Once
received, neighbors’ color information is used to compute an estimated probability
for the various pattern types (Sect. 2.1). Next, the swarm communicates their local
pattern probabilities, using a weighted-average consensus algorithm to compute the
most likely global pattern (Sect. 2.2). Once consensus has been achieved, the swarm
reproduces the pattern collaboratively with a reaction-diffusion process (Sect. 2.3).

2.1 Pattern Descriptor

Once each robot has measured the local environment’s color, and communicated that
information, they apply a filter mask (see Fig. 2) to compute a discrete approximation
of the second-order color derivative in both the horizontal and vertical directions. This
is quite similar in concept to kernels used in edge detection and other computer-vision
tasks [1]. Indeed, if the grid of robots is viewed as an image with each robot a pixel,
these two pattern descriptors are simply the value the pixel would have after each
of the two convolutions. These second-order derivatives are the Pattern Descriptors
– denoted Px and Py for the horizontal and vertical directions respectively – and
are used to calculate the most probable local pattern. Note that this requires either
that the robots all have a common orientation, or that they are able to sense their
orientation relative to other robots.

To be specific, with M denoting my local color and T , R, B, and L denoting the
color of my top, right, bottom, and left neighbors, Px and Py are given by:

Fig. 1 Pipeline of the distributed camouflage algorithm

362 Y. Li et al.

Fig. 2 Illustration of
applying the two second
order derivative masks

Px = L + R − 2M

Py = T + B − 2M

A pattern-probability array p = [ph, pv, pm] is used to record each robot’s pattern,
where ph represents the probability of a horizontally-striped pattern, pv the prob-
ability of a vertically-striped pattern, and pm the probability of a mottled pattern.
One pattern-type is selected and given a probability of 1 based on our local Pattern
Descriptors, and the other probabilities are all 0. This is shown in the equation below,
where T is some threshold value and |val| is used to indicate abs (val).

p = [ph, pv, pm] =

⎧
⎪⎨

⎪⎩

[1, 0, 0] if
∣
∣Py

∣
∣ − |Px | > T

[0, 1, 0] if |Px | − ∣
∣Py

∣
∣ > T

[0, 0, 1] otherwise

(1)

Note that a grid representation has only been chosen for the simplicity of performing
(and explaining) themathematical operations, but one could equally well perform the
described convolutions using continuous representations and local range and bearing
information.

2.2 Distributed Average Consensus Scheme

Once each robot has computed the most likely local pattern (i.e., computed p =
[ph, pv, pm]), they need to achieve consensus on the global pattern. We use the
distributed average consensus scheme [19] for this purpose. In each step of this
scheme, the robot updates its local p to be a weighted average of its own and its
neighbors’. This step is repeatedmany times, allowing information to diffuse through
the swarm. Since theweighted average just uses local information, each step takes the

Distributed Camouflage for Swarm Robotics and Smart Materials 363

same amount of time regardless of the number of robots in the swarm. The number
of steps needed was determined experimentally.

The weighted-average calculation uses Metropolis weights, defined as

Wi, j =
⎧
⎨

⎩

1
1+max{di ,d j } if (i, j) ∈ E,

1 − ∑
(i,k)∈E Wi,k if i = j,

0 otherwise.
(2)

The Metropolis weights are well-suited for distributed algorithms, since weight-
calculation requires only local knowledge. Further, it is proven in [19] thatMetropolis
weights guarantee convergence of the average consensus provided that the infinitely
occurring communication graphs are jointly connected. Once the robots have con-
verged, the largest value in p represents the most likely global pattern. For example,
ph > pv and ph > pm indicate that the most likely global pattern is horizontal
stripes.

2.3 Pattern Generator

In this section, we describe the distributed pattern formation algorithm to generate a
proper pattern to match the environment.

Now that a global pattern has been selected, the robots next need to generate an
appropriate camouflage pattern. We use the pattern-formation algorithm presented
by Young [20]: a local activator-inhibitor model. In this model, each cell (robot) is
either ‘on’ or ‘off’, and can generate two kinds of morphogens: activator morphogen
and inhibitor morphogen. Together, these form a “morphogenetic field”. Note that
the activator should be inside of the inhibitor (see left of Fig. 3). The cells (robots)

Fig. 3 Illustration of local activator-inhibitor model: on the left, the activation region (orange) is
defined by Ax and Ay while the inhibition region (gray) is defined by Ix and Iy ; on the right, W1
and W2 are the two field values. R1 is related to Ax and Ay and R2 is related to Ix and Iy

364 Y. Li et al.

Fig. 4 Activator (orange) and inhibitor (gray) regions for each of the three patterns

in the activator morphogen contribute to stimulate change for nearby ‘on’ cells, and
cells in the inhibitor morphogen contribute to stimulate change for nearby ‘off’ cells.

During each step of this algorithm, each cell changes its ‘off’/‘on’ status based on
the combined effect of all nearbymorphogenetic fields.More specifically, a ‘strength’
is calculated with each ‘on’ robot contributing a positive value (W1) if in the activator
region, or contributing a negative value (W2) if in the inhibitor region. The robot
then changes its state to ‘on’ if the strength is greater than 0, and to ‘off’ otherwise.
This step is repeated until the states converge to a stable pattern. In [20] the author
observes that convergence typically takes around five steps. This is consistent with
our observations.

In this framework, the different types of patterns are represented with differently
shaped activator and inhibitor regions. The regions for each pattern are shown in
Fig. 4. Note that the region sizes mean that each robot only requires information
from robots within two hops of it.

3 Simulation Results

We implemented the algorithm introduced above on a centralized system for sim-
ulation. By presenting some simulated results here, we hope to demonstrate the
algorithm’s functionality and add clarity to the explanation above. We run these tests
with three images, one for each of the pattern types. Each image is 128×128 pixels,
and gray scale. We simulate 64 (8 × 8) robots.

Note that this grid of 8 × 8 robots is in many ways analogous to the sensor
of a digital camera, albeit a camera with only 8 × 8 sensors and thus with very
low resolution. If you were to recapture our test images with such a low resolution
camera, many different pixels in the test image would contribute to the camera’s
output, resulting in a very blurry image. We therefore downsample the input image

Distributed Camouflage for Swarm Robotics and Smart Materials 365

by taking the average of 16×16 pixel blocks. This blurred image is used as the color
sensed by each robot for selecting the most likely pattern. For pattern generation, the
initial ‘on’/‘off’ state is determined by making the blurred image binary (i.e. white
and black). Figure5 shows the entire process for each of the three input images.

Once the Droplets calculate the local pattern based on their sensed color and that
of their neighbors, they need to achieve consensus on the global pattern. As has been
discussed in Sect. 2.2, convergence of this value is guaranteed.

Next, the pattern generator described above is used (Sect. 2.3) with the activator
and inhibitor regions seen in Fig. 4. The activator field value of W1 = 1 was used,
as suggested in paper [20]. The inhibitor field value, W2, is a parameter which gives
rough control over what proportion of the robots are ‘on’ in the final pattern. We
found that W2 = −0.75 gave qualitatively good results for all three of the pattern
generators.

Finally, we start pattern generation with each robot’s initial state to be ‘on’ or
‘off’ status based on the sensed value. If the value is less than 127 we set it black,
otherwise we set it white. The pattern generator runs for ten iterations. Robots on
the image boundary use a reflection of their neighbors. A robot on the top row, for
example, would count its bottom neighbor twice, as the top row is empty.

To further test the simulated algorithm, we added a simple noise model. For
measurement error, instead of always assigning the appropriate color to a robot
based on its position, we assign a uniformly random color with probability ρmeas .
For communication error, at each step in the algorithm where information from a
neighbor is shared with a robot for a calculation (including the step where a robot’s
neighbors are calculated in the first place), a robot does not share this information
with probability ρcomm .

For a quantitative measure of the effects of error, we calculated the total absolute
difference between the final generated pattern in the presence of error, and the final
generated pattern without any error (as visible in the bottom row of Fig. 5). These
results are charted in Fig. 6. Note that, with the 8 × 8 images used, a purely random
image should give us a difference of 32, on average. The algorithm seems quite
robust to errors of up to 0.15−0.2. After these thresholds, the error increases sharply.
(Results shown here are for the forest image, with other images yielding similar
results.) Qualitatively, we observe that even as errors started to appear, many of
the resulting patterns still looked ‘good’, i.e., still had prominent vertical stripes.
The main determining factor as the probability of error increased seemed to be in
the global pattern detection. If the correct pattern (vertical stripes in this case) is
selected, the resulting pattern will fit well even with large errors. Correct pattern
selection grows increasingly infrequent, however.

366 Y. Li et al.

Fig. 5 The algorithm takes in the gray images (row a) and blurs them to images with 8 × 8
resolution (row b). These are the values sensed by each robot, and are used to calculate the pattern
probabilities and choose the most probable local pattern. Row c shows consensus convergence for
the most likely global pattern. For each of the charts in row c: the y axis shows pattern probability
p from 0 to 1, and the x axis shows the number of steps taken from 0 to 35. The red horizontal line
marks p = 0.5. The blurred image from row b is converted to binary (row d) to get initial states
for the pattern generator, which generates the resultant pattern (row e)

Distributed Camouflage for Swarm Robotics and Smart Materials 367

Fig. 6 The y-axis is the
pixel difference from
the ‘correct’ pattern and the
x-axis is the error probability.
The red line shows the effect
of measurement errors
(ρmeas). The blue line shows
the effect of communication
errors (ρcomm). The green
line shows the effect of both
measurement and
communication errors
(ρcomm = ρmeas). Each data
point reflects the mean result
over 10 trials of the forest
image

4 Hardware Implementation

To validate the proposed algorithm and to understand the sorts of errors that real
hardware introduces, we implemented the algorithm described above on a swarm
of “Droplets” [2, 7]. The Droplets are an open-source platform, with source code
and manufacturing information available online.1 Each Droplet is roughly cylin-
drical with a radius of 2.2 cm and a height of 2.4 cm. The Droplets use an Atmel
xMega128A3U micro-controller, and receive power via their legs through a floor
with alternating strips of +5V and GND. Each Droplet has six infrared emitters,
receivers, and sensors, which are used for communication and for the range and bear-
ing system [2]. The top of each board has sensors to detect the color and brightness
of ambient light, and an RGB LED. Each droplet has a 16-bit unique ID.

In our implementation, each Droplet maintains an array of neighbors’ IDs. Mes-
sages are labeled with phase flags and attached with Droplets’ IDs. The Droplets are
synchronized using a firefly synchronization algorithm [13, 18]. A simple TDMA
protocol is used with 37 slots, each 350ms long. Each frame is thus 12.95s long.
Each robot is assigned a slot based on its unique ID modulo 37. The number of slots
(37) was chosen to be large enough that the probability of two adjacent robots sharing
a slot is low, but small enough that the algorithm runs quickly.

In Phase 0 (neighbor identification), we initialize and configure the neighbor ID
arrays which store neighboring Droplets’ IDs. Range and bearing information is
used to calculate positions for each Droplet’s immediate neighbors, and neighbors-
of-neighbors are learned by listening to the messages sent by Droplets each slot,
which contain that Droplet’s neighbors. The positions of Droplets and their indices
in the array are illustrated in Fig. 7. Though the Droplets can sense their relative

1http://github.com/correlllab/cu-droplet.

http://github.com/correlllab/cu-droplet

368 Y. Li et al.

Fig. 7 Neighbor array. The
orange neighbors(0–3) are
used for pattern recognition;
the green neighbors(4–7) are
used in addition to the
orange for pattern consensus.
All pictured neighbors
(orange, green and gray) are
used for pattern formation

orientations, we positioned them with a common orientation for simplicity. We allot
20 frames for Phase 0, since the neighbor information is critical to the three phases.

In Phase 1 (color sensing and recognition), eachDroplet communicates the color it
senses, and stores the colors its neighbors sense, as learned through communications.
Once this is complete, each (non-boundary) Droplet should know the ID and position
of 12 neighbors, as well as those neighbor’s sensed colors. With this information,
the Droplets calculate an pattern probability array p, as described in Sect. 2.1. This
phase is allotted 10 frames.

In Phase 2 (pattern consensus), each Droplet communicates its pattern probability
array p and receives pattern probability arrays from its neighbors. At the end of each
frame, each Droplet updates its pattern probability array according to the weighted-
average consensus algorithm, as described in Sect. 2.2. Each ‘step’ of the consensus
algorithm spans one frame. This phase is allotted 35 frames.

In Phase 3 (pattern formation), each Droplet communicates its intended color
for the generated pattern, and receives that information from neighboring Droplets.
At the end of each frame, each Droplet updates its color in the generated pattern
from corresponding Droplets. Each Droplet exchanges pattern color message with
neighbors. At the end of each frame, each Droplet updates its pattern color according
to the pattern generation algorithm described in Sect. 2.3. This phase is allotted 20
frames.

5 Hardware Results

A hardware implementation of the swarm camouflage algorithm is shown in Fig. 8.
For this test, the projected image for the Droplets to sense is a tiger stripe pattern.
The results of this test are interesting because a striped pattern is maintained, despite
the failure of two units. This, in addition to the more-difficult-to-count failures in
communication and color sensing.

Figure9 shows the pattern probability convergence for a random sampling of
Droplets, when run with a simple horizontal stripe pattern projected on them. The
swarm reaches consensus on a horizontal pattern, converging to ph = 0.61.

Distributed Camouflage for Swarm Robotics and Smart Materials 369

Fig. 8 Initial condition (left), final pattern with projected pattern (middle) and final pattern (right)
for camouflaging the tiger stripe pattern

Fig. 9 Convergence of
pattern probabilities of
randomly chosen Droplets
camouflaging tiger stripe
pattern

6 Conclusion

We present a distributed camouflage system, in which a robot swarm can sense
the environment color, recognize the local pattern, achieve consensus on the global
pattern, and generate a camouflage pattern consistent with the environment the robots
are in. In our design, pattern descriptors are proposed for recognizing local patterns.A
weighted-average consensus scheme is then utilized, allowing the swarm to converge
to a global pattern. Finally, a pattern formation model is applied to each robot which
generates a pattern appropriate for the background. This is accomplished using local
communication and simple mathematical operations.

We simulated the proposed algorithm on a couple of patterns from nature: a desert,
a forest, and leopard skin. After going through all the phases in the algorithm, and
successfully agreeing on a global pattern, the simulation results show that robots
with wrong color reading can correct themselves to match the global pattern. This is
especially obvious for the horizontal and vertical patterns.We also tried to test the dis-
tributed algorithm by applying it on the Droplet swarm robotics platform. The results

370 Y. Li et al.

from the Droplets is promising since the robots can agree on the global pattern and
display a proper matching pattern even if individual Droplets stop working.

We can see that the simulations are based on a regular grid of robots and the stripes
in patterns are simply one pixel (or, equivalently, one robot) width. It should be
possible to produce more complicated stripe patterns of varying width, for example:
Young’s pattern-generation model can generate patterns with stripes of different
width if the parameters are carefully set. Thiswould requiremore complicated pattern
descriptors to correctly recognize the patterns and set appropriate corresponding
parameters. Furthermore, the robots don’t have to be placed regularly if the swarm
is large and dense enough.

As communication on the Droplets is not perfectly reliable, the resultant patterns
exhibit some random variations; they do not perfectly match simulation. Even these
variations, however, will roughly follow the desired background pattern, seeming to
bend or twist around the erroneous robot. In the future, we wish to test the algorithm
on a more purpose-built hardware platform, which would allow for higher resolution
patterns, and extend the algorithm to include consensus on the dominant colors and
patterns consisting of more than two colors.

Acknowledgements This research has been supported by NSF grant #1150223.

References

1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE
Computer Society Conference onComputer Vision and Pattern Recognition (CVPR’05), vol. 1,
pp. 886–893. IEEE (2005)

2. Farrow, N., Klingner, J., Reishus, D., Correll, N.: Miniature six-channel range and bearing sys-
tem: algorithm, analysis and experimental validation. In: 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 6180–6185. IEEE (2014)

3. Fekete, S.P., Fey,D.,Komann,M.,Kröller,A.,Reichenbach,M., Schmidt,C.:Distributed vision
with smart pixels. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational
Geometry, pp. 257–266. ACM (2009)

4. Hanlon, R.: Cephalopod dynamic camouflage. Curr. Biol. 17(11), R400–R404 (2007)
5. Hanlon, R.T., Messenger, J.B.: Adaptive coloration in young cuttlefish (sepia officinalis l.): the

morphology and development of body patterns and their relation to behaviour. Philos. Trans.
R. Soc. Lond. B: Biol. Sci. 320(1200), 437–487 (1988)

6. Inami, M., Kawakami, N., Tachi, S.: Optical camouflage using retro-reflective projection tech-
nology. In: Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Aug-
mented Reality, p. 348. IEEE Computer Society (2003)

7. Klingner, J., Kanakia, A., Farrow, N., Dustin, R., Correll, N.: A stick-slip omnidirectional
drive-train for low-cost swarm robotics: Mechanism, calibration, and control. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2014)

8. Lin, H.Y., Lie, W.N., Wang, M.L.: A framework of view-dependent planar scene active cam-
ouflage. Int. J. Imaging Syst. Technol. 19(3), 167–174 (2009)

9. McEvoy, M., Correll, N.: Materials that couple sensing, actuation, computation, and commu-
nication. Science 347(6228), 1261689 (2015)

10. Meinhardt, H.:Models of Biological Pattern Formation, vol. 6. Academic Press, London (1982)
11. Messenger, J.B.: Evidence that octopus is colour blind. J. Exp. Biol. 70(1), 49–55 (1977)

Distributed Camouflage for Swarm Robotics and Smart Materials 371

12. Messenger, J.B.: Cephalopod chromatophores: neurobiology and natural history. Biol. Rev.
76(4), 473–528 (2001)

13. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM
J. Appl. Math. 50(6), 1645–1662 (1990)

14. Morin, S.A., Shepherd, R.F., Kwok, S.W., Stokes, A.A., Nemiroski, A., Whitesides, G.M.:
Camouflage and display for soft machines. Science 337(6096), 828–832 (2012)

15. Ramirez, M.D., Oakley, T.H.: Eye-independent, light-activated chromatophore expansion
(lace) and expression of phototransduction genes in the skin of octopus bimaculoides. J. Exp.
Biol. 218(10), 1513–1520 (2015)

16. Rossiter, J., Yap, B., Conn, A.: Biomimetic chromatophores for camouflage and soft active
surfaces. Bioinspiration Biomimetics 7(3), 036009 (2012)

17. Stevens, M., Merilaita, S.: Animal camouflage: current issues and new perspectives. Philos.
Trans. R. Soc. B: Biol. Sci. 364(1516), 423–427 (2009)

18. Werner-Allen, G., Tewari, G., Patel, A.,Welsh, M., Nagpal, R.: Firefly-inspired sensor network
synchronicity with realistic radio effects. In: Proceedings of the 3rd international conference
on Embedded networked sensor systems, pp. 142–153. ACM (2005)

19. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average
consensus. In: Fourth International Symposiumon Information Processing in SensorNetworks,
2005. IPSN 2005, pp. 63–70. IEEE (2005)

20. Young, D.A.: A local activator-inhibitor model of vertebrate skin patterns. Math. Biosci. 72(1),
51–58 (1984)

21. Yu, C., Li, Y., Zhang, X., Huang, X., Malyarchuk, V., Wang, S., Shi, Y., Gao, L., Su, Y., Zhang,
Y., et al.: Adaptive optoelectronic camouflage systems with designs inspired by cephalopod
skins. Proc. Natl. Acad. Sci. 111(36), 12998–13003 (2014)

Evo-Bots: A Simple, Stochastic Approach
to Self-assembling Artificial Organisms

Juan A. Escalera, Matthew J. Doyle, Francesco Mondada
and Roderich Groß

Abstract This paper describes an alternative path towards artificial life—one by
which simple modular robots with novel hybrid motion control are used to represent
artificial organisms. We outline conceptually how such a system would work, and
present a partial hardware implementation. The hardware, a set of self-reconfigurable
modules called the evo-bots, operates on an air table. The modules use a stop-start
anchormechanism to either rest ormove. In the latter case, they undergo semi-random
motion. The modules can search for, harvest and exchange energy. In addition, they
can self-assemble, and thereby form compound structures. Six prototypes of the
evo-bot modules were built. We experimentally demonstrate their key functions,
namely hybrid motion control, energy harvesting and sharing, and simple structure
formation.

J. A. Escalera (B) · M. J. Doyle · R. Groß
Department of Automatic Control and Systems Engineering,
The University of Sheffield, Sheffield, UK
e-mail: juan.antonio.escalera@gmail.com

M. J. Doyle
e-mail: matthew.doyle@sheffield.ac.uk

R. Groß
e-mail: r.gross@sheffield.ac.uk

J. A. Escalera
Department of Automatics and Systems Engineering,
University Carlos III of Madrid, Leganés, Spain

F. Mondada
Laboratoire de Systèmes Robotiques, Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland
e-mail: francesco.mondada@epfl.ch

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_26

373

374 J. A. Escalera et al.

1 Introduction

A long term goal of robotics is to produce not only robotic organisms, but entire
robotic ecosystems. Such systems are not only a scientific curiosity in and of them-
selves, but could allow us to better understand the biological processes that they
mimic. Although much work has been conducted on populations of virtual creatures
with evolving morphology [8, 20, 23, 25], relatively few examples have been trans-
ferred into reality [3, 19]. This motivates one of the grand challenges in evolutionary
robotics—to create ecosystems of physically evolving robots [9].

Fundamental to an evolving ecosystem is the ability of its members to reproduce.
Jacobson [15] studied self-replicating sequences of track-bound modules. Chirikjian
et al. [4] evaluated the feasibility of self-reproducing robots. Zykov et al. [27] demon-
strated structured duplication using a lattice-based reconfigurable robotic system. In
the Symbrion/Replicator project, a heterogeneous system of reconfigurable robots
was considered [16]. The systems in these examples involved self-propelling mod-
ules of high complexity. While this may enable them to interact multifariously with
their environments, the modules were expensive to make, limiting the number of
them in practical experiment.

An alternative approach to a self-reproducing system is to usemodules that require
external stimulation to move. Penrose and Penrose developed a self-replicating
mechanical system [21]. This was extended by Breivik [2] and Virgo et al. [24].
Griffith et al. developed self-replicating modules with programmable on-board con-
trollers [12]. Other works with programmable modules present structure formation,
but not replication [14, 17, 26]. The modules used in these examples were simple,
externally propelled devices. While this made them relatively inexpensive to con-
struct and therefore producible in large quantities, the modules could only interact
with their environment in a limited manner.

In this paper we present the evo-bots,1 a system of reconfigurable modules that
combine the advantages of the above two classes of systems. Due to being externally
propelled, the evo-bot modules are mechanically simple. Yet, they can indirectly
control where to move, by using stop-start mechanisms (an approach seen only in
simulation [6]). In addition, they can search for, harvest and share energy, as well as
self-assemble, and thereby organize into distinct morphologies.

The paper is organized as follows. Section2 concerns the evo-bot concept. Here
we describe how simple modular robots can potentially be used to form an artifi-
cial life system. Section3 describes our hardware, inspired by the evo-bot concept.
Section4 presents proof-of-concept experiments, showing that our hardware imple-
ments several features of the evo-bot concept. Section5 concludes the paper.

1The conceptual foundation is based on preliminary work presented in [13]. This work also presents
simulation results and a preliminary module implementation (described further in [7]).

Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms 375

2 Evo-Bots: Toward Artificial Life Systems

In nature, living beings exhibit a high degree of autonomy. Individually, they can
adapt to the environment to obtain from it what they need to survive. Whilst as
species, they have developed mechanisms to persist through time. These qualities
should be mimicked by artificial systems to become truly autonomous.

The evo-bots system consists of building blocks, called modules, which do not
move by themselves. Rather they require an external agitation apparatus, which
causes the modules to undergo semi-random motion. The modules have a squared
shape and four identical connectors—one per side. When two modules collide, they
can connect to one another by chance. Once connected, they can exchange informa-
tion and decide whether to remain connected. By disconnecting selectively, the mod-
ules can organize into linear composite structures called polymers (similar to [12]).

The evo-bot modules come in three types, each one endowed with unique func-
tions:

• e-module: This module can harvest, store and provide energy.
• i-module: This module can interact with the environment. It can sense the envi-
ronment and control its motion using a stop-start anchor mechanism.

• b-module: This module acts as a boundary, once it connects to a polymer, the
latter stops growing and becomes an organism.

Eachmodule assumes one of these types during each experiment. Organismsmust
accrete specific modules to perform specific functions. They need energy to sustain
themselves. Therefore, they must contain at least one e-module. The e-modules
share their energy with any module that is part of their compound structure. If the
energywithin a structure is depleted, the structure will decompose into its constituent
modules.

Once a polymer accretes a b-module and becomes a complete organism, it can
begin to replicate itself using free modules in the environment. This process is illus-
trated in Fig. 1. The replication of organisms that can sustain themselves and the
decomposition of those that cannot is envisaged to give rise to populations of organ-
isms well adapted to their environment [13]. Replication can be exact, resulting in a
pair of identical organisms, or involve mutation.

Various definitions of life have been proposed [5, 18, 22]. We argue that the
evo-bot concept encompasses at least one of these definitions—the seven pillars of
life proposed by Koshland Jr. [18]. These pillars represent attributes that an organ-
ism should exhibit in order to be considered as a living being. They are program,
improvisation, compartmentalization, energy, regeneration, adaptability and seclu-
sion. We justify our claim that the evo-bots embody this concept as follows. Each
organism encodes the information of its constituent modules, their functionality and
how they interact (program). The modules are able to alter said program between

376 J. A. Escalera et al.

Fig. 1 Process by which an organism builds a replica of itself. a The organism’s b-module activates
its connectors; b and c two matching modules connect to the organism; d a non-matching module
connects but is rejected; e a matching module connects; the child organism is complete and receives
energy from the parent organism; f the parent organism repels the child organism

generations (improvisation). Each organism defines its own space, which is protected
by a boundary, wherein internal processes run protected from external disturbances
(compartmentalization). Organisms are able to harvest, store and distribute energy
from the environment (energy). Organisms possess the capacity of self-replication
(regeneration). They can vary their behavior according to external stimuli (adaptabil-
ity). Finally, the information within each organism is protected from external agents
(seclusion).

3 Evo-Bot Hardware

This section describes the evo-bot hardware. The physical modules do not yet rep-
resent a full implementation of the evo-bot concept, but form the basis of one. Con-
ceptually there are three different types of evo-bot modules (e, i, b). However, from
a mechatronic point of view, each module is identical. Each module is configured
to assume only one of these types during an experiment. This generic design allows
each module to execute any of the three roles, which eases fabrication and usage.

Figure2a shows an evo-bot module. The overall dimensions of the module are
60×60×35mm.Themoduleweighs 50 g. It has a 3-DprintedABS structure (Fig. 2a-
A) with a 60 mm square base, which is surrounded by walls (faces) of 25 mm height.
Viewed from above, the walls have a mildly serrated structure in order to engender
self-alignment when modules connect.

The evo-bot modules float on an air table. They exploit this by using a motion
control method suited to their environment. The module incorporates a stop-start
mechanism, shown in Fig. 3a, b. It consists of a flanged cylinder (anchor) fitted

Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms 377

(a) (b)

A
B

C

D
E

Fig. 2 a A single evo-bot module. b Six evo-bot modules, five of which are connected

vertically into the base of the module. The anchor contains one permanent magnet
(A), and is positioned directly beneath a second magnet (B). Magnet B is rotatable
by a servomotor. In the ‘start’ state magnet B is rotated to attract magnet A, pulling
the anchor upwards, away from the air table surface. This allows the module to float
freely. In the ‘stop’ state, magnet B is rotated to repel magnet A, thereby pushing
the anchor down onto the air table. This causes friction between the module and
the air table and renders the module incapable of floating, pinning it in place. The
effectiveness of the anchor mechanism in a polymer depends on the configuration
of the polymer itself. For instance, a single i-module activating its anchor may be
unable to prevent translational motion of an entire organism.

Physical connectionbetweenmodules is facilitatedby apair of permanentmagnets
in each face. One magnet per pair is fixed into the plastic wall. The other is mounted
on a servomotor (Fig. 2a-D) and can be rotated in order to attract or repel another
module [1].

The module can derive information about its environment by using its solar panel
as a light sensor. This, in addition to the module’s stop-start mechanism, allows it to
interact with its environment.

A square, 52 mm printed circuit board (PCB) (Fig. 3c, d) is mounted on the
top of the structure (Fig. 2a-E). The double-sided PCB contains the control cir-
cuitry, including the energymanagement system, a lowpower 16-bitmicro-controller
(the PIC24FJ128GA306) and five load switches. This provides four serial interface
(UART) channels through which data can be exchanged with other modules. The
micro-controller can estimate the energy balance of the module by measuring cur-
rent and voltage. In addition, it can use digital outputs to switch some circuits of the
module on or off.

Spring loaded contacts are mounted into each face of the PCB (Fig. 2a-B). As two
modules physically connect, the contacts are brought together. This allows modules

378 J. A. Escalera et al.

(a) (b)

(c) (d)

B B

A A

C

B4

D

C

B1

B2

B3

A4

A3

A2

A1

B1

A1

A2 B2

A3

B3

B4 A4

G

F1

F4

F2

F3

F5

C

E

Fig. 3 a–b The anchor mechanism (CAD and real) showing the anchor magnet (A), the rotatable
magnet (B), and the servo (C). The anchor is shown in start position a and stop position b. c–d The
top (c) and bottom (d) layers of the PCB, showing the spring-loaded connectors (A1 to A4), the pad
connectors (B1 to B4), the microprocessor (C), the programming port (D), the on/off switch (E),
the servo connectors (F1 to F5), and the battery connector (G)

to share power and information. As shown in Fig. 4, each set of contacts passes five
signals: load sharing (LS), serial transmit (TX), serial receive (RX), bus voltage
(VBUS) and reference voltage (GND).

Figure4 shows the electrical/electronic architecture used for themodule tomanage
energy. This is carried out by two systems: powermanagement and energy harvesting.
In the following, both systems are described in detail.2

2In [11] the authors presented preliminary work about the energy management system.

Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms 379

µ

Fig. 4 Block diagram of systems within the evo-bot module. The energy management is accom-
plished by two systems: The energy harvesting system (yellow area) and the power management
system (green area). The former comprises battery, solar charging and power bus charging. The
latter includes an output voltage controlled DC/DC converter, an OR-ing diode and a load sharing
IC. The remaining elements of the module (blue area) are elements for computation and actuation.
Themodule also has four spring-loaded/pad connectors to share data and energy with other modules

3.1 Power Management System

The evo-bot module uses a 300mAh lithium ion battery to store energy. This supplies
unregulated voltage from 2.7 to 4.2 V to a high-efficient (up to 96% efficiency) buck-
boost switching voltage converter that, in turn, provides 4.9 V regulated voltage
output and up to 700 mA constant current. A load sharing integrated circuit (IC)
varies the converter’s output voltage to control the current it supplies. The output
stage consists of an OR-ing circuitry that connects the regulated voltage output to
the module bus voltage (line VBUS). It comprises a P-channel MOSFET controller
IC and a low resistance P-channel MOSFET, which together act as a diode with
negligible losses.

If a charged e-module is connected with other modules, it energises them. An
ad hoc controlled voltage power bus emerges through the sharing lines (VBUS) and
(GND). The OR-ing circuitry preserves the integrity of the power bus formed in the
polymer. Within each module, the power bus supplies two current/voltage sensors,
five micro servomotors along with their switches and one micro-controller plus its
additional converter (4.9/3.3 V).

If a polymer comprisesmore than one charged e-module among other types, power
management becomes more complex as multiple regulated sources are connected
to a common power line. Although such a situation may be favourable, it implies
some additional elements to consider. Namely, the aforementioned OR-ing diode
prevents the whole bus from collapsing if one source fails. Furthermore, it allows
hot plugging. On the other hand, diodes prevent sources with different voltage levels
from providing current simultaneously to the power bus. Therefore, only the highest

380 J. A. Escalera et al.

voltage source would provide current at a time, which is undesirable. The e-module
solves this situation by using a load sharing circuit. This circuit is placed between
the converter and the OR-ing diode. The function of this circuit is to balance the
current of the different e-modules connected through the power bus. To that end, it
compares its own converter’s current to that of other e-modules by sensing a dedicated
signal (LS). This signal can be both input and output. The converter that provides the
highest current sets the voltage of line (LS). The others use this information to adjust
their current by adjusting the voltage of their converter until each module provides
a similar current. Thus, not only do e-modules supply energy to other modules, but
they also coordinate themselves to balance the power they supply to the bus.

3.2 Energy Harvesting System

The e-module uses a solar panel to obtain energy from the environment. The panel
is mounted on the top of the module in a 3-D printed ABS holder (Fig. 2a-C). It
consists of three photovoltaic (PV) cells (14 × 45 mm each) that convert radiation
into electrical power. Each PV cell has an efficiency of 22% and can harvest up to
270mW. The output of the panel feeds a non-linear charger IC, which is connected
to the module’s battery. This charger, which uses the MPPT3 algorithm, performs
with an efficiency of up to 95%. Moreover, as the battery is connected to the power
management system’s converter, the solar panel charger is also connected to it. Thus,
the solar panel can also supply power directly to that converter.

Energy can be transferred between e-modules.A lowenergy e-module can provide
energy to its own battery by drawing it from a high energy e-module through the
power bus using dedicated battery charger circuitry. This circuitry integrates the same
buck-boost converter as the power management system along with a current limiter
circuit. As a result, a high-efficiency constant current/constant voltage charger is
implemented, which is suitable for recharging lithium ion batteries.

3.3 Fabrication and Software Loading

3-D printing a set of four chassis for the evo-bot modules took 17h. Assembling an
evo-bot module given a 3-D printed chassis and populated PCB takes 1–2h. This
involves sanding the module and attaching the magnets, servo horns, servos and PV
cells. The total cost to construct a single module is approximately £175, including
PCB manufacture and 3-D printing costs. The evo-bot software, written in C code,
is loaded onto the modules via a suitable programmer.

3Maximum Power Point Tracking. Weak sources may collapse if they have to supply power that
exceeds their limit. MPPT algorithms reach the maximum power point of a source and stay at this
level. Therefore, the source supplies its maximum power in a safe way.

Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms 381

A

B3

B2

B1

B8 B7

B6

B5

B4

C

D

Fig. 5 Left: The evo-bot air table, showing the overhead lamp (A), the side fans (B1 to B8), the
overhead camera (C), and the fan control box (D). Right: The light detection and motion control
experiment. The side fans are indicated by large blue circles. The yellow circle in the bottom right
indicates the position of the light source, and the green circle in the top left the module starting
position. The colored dots represent the final positions of the modules (10 trials per color), from
top left to bottom right: orange—0.3V, teal—0.4V, blue—0.5V, red—0.8V, brown—2.0V

4 Experiments

In this section we demonstrate the key features of the evo-bots. Videos of the exper-
iments are available [10].

The experimental environment is shown in Fig. 5 (left side). It consists of a square
air table of side-length 85cm. The surface is a 10mm thick acrylic sheet with holes
drilled in a square pattern with a spacing of 10mm. The holes have a diameter of
2.5mm. The main upward force is supplied by four industrial air blowers positioned
below the table. The environment has foam boundaries of height 30mm, which
protect the modules from damage as they contact the borders. Eight side fans (two
per side) are mounted on rails around the table, pointing inwards. These supply
motive forces to the modules on the air table. Each fan can rotate in the horizontal
plane up to 180◦. The rotation and speed of each fan can be set via a control box,
which allows the fans to be activated in preset patterns throughout the experiments.
An 18.5W LED lamp with a 25◦ beam angle is used as the light source for the
experiments unless otherwise noted. Mounted on a lamp stand it can be positioned
arbitrarily over the air table. Finally, an overhead camera is used to track the modules
throughout the experiments for post-analysis.

4.1 Light Detection and Motion Control

For an organism to maintain a constant supply of energy it must be able to locate an
energy source. To do this, an evo-bot module must be capable of detecting whether

382 J. A. Escalera et al.

it is located beneath an energy (light) source, and of activating its anchor mechanism
to stop and charge. We test this capability here. The specific set up is shown in Fig. 5
(right). An evo-bot module was placed in the top left corner of the table. The light
source was positioned 12cm above the surface of the table in the bottom right corner,
facing downwards vertically. For this experiment a bulb with a 360◦ beam angle was
used, in order to provide a smooth light gradient over the air table. The two side
fans in the top left corner were pointed in the direction of the bottom right corner.
The bottom left and top right side fans were set to oscillate over a 180◦ range. The
bottom right side fans were not used. The fans were set up in this manner in order to
push the evo-bot module towards the light source. The evo-bot module was given a
certain threshold for the intensity of light incident on its solar panel (determined by
measuring the voltage across the PV cells). The module was blown towards the light
source and deployed its anchor once the threshold was exceeded. Its final position
was recorded.

We conducted 50 trials: 10 trials each for 5 different voltage thresholds. Figure5
(right) shows the recorded positions at the end of each trial. As can be seen, the final
positions of the module are stratified depending on their thresholds—modules with
higher thresholds get closer to the light source before stopping. This confirms that
the module interacts with its environment as intended.

4.2 Energy Harvesting and Sharing

We examine the ability of an evo-bot module to be charged via charging station (at
4.9V), solar panel, or anothermodule (whichwe refer to as trophallaxis). In each case,
the module started fully discharged. It was then charged for a certain period, and then
discharged to evaluate its operating time. During the charging period only the micro-
processor was running. During the discharging period, in addition, one servomotor
was activated every 2 s in order to simulate the typical energy expenditure of amodule
during experimentation. This value was chosen based on the other experiments we
conduct in this paper. However less time-sensitive experiments may not require such
frequent activity, reducing energy expenditure and increasing operating time.

The charging/discharging curves are shown in Fig. 6. Via charging station the
module charging period lasted until the battery was charged to 4.2V. This took
140min, and provided 240min of operating time. Due to the slow rate of charge via
solar panel, charging up to 4.2V was not feasible. Instead, the charging period was
set to 500min. This charged to 3.9V and provided 120min of operating time. For
trophallactic charging, the donor module started fully charged (4.2V). The receiving
module was then charged by the donor module until the donor module was fully
discharged. The receiving module charged to 3.9V over 160min, subsequently pro-
viding 30min of operating time. An artificial ecosystem could see these charging
methods combined. All organisms could feed from a limited number of charging
stations, but demand would be high. Those organisms with e-modules would be able
to locate and charge from a distribution of light sources.

Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms 383

0 240 480 720
Time (minutes)

1.5

2.5

3.5

4.5
Ba

tte
ry

vo
lta

ge
(V
) 4.2V

Charging station

0 240 480 720
Time (minutes)

3.9V

Solar panel

0 240 480 720
Time (minutes)

3.9V

Trophallaxis(a) (b) (c)

Fig. 6 Graphs showing the charging and subsequent discharging of an evo-bot module. Charging
via a charging station, b solar panel, or c another evo-bot module

4.3 Polymer Formation

We examine the ability of the evo-bots to form linear polymers. The modules were
set up as follows. Individual modules were able to form a connection on any of
their faces. Once a module connected to another, it refused connections with new
modules on faces orthogonal to its existing connection(s). In this way only linear
polymers could form permanently (other configurations could form temporarily until
incorrectly attachedmoduleswere rejected).Modules periodically closed and opened
their connections in order to free themselves if connected in the wrong position. At
the outset of each trial four evo-botmoduleswere positioned at the corners of a square
of side-length 34cm, concentric with the air table. The fifth module was placed at the
center of the table. The rotation of the modules was arbitrary. The modules were not
given any specific type designation (e-module, i-module, b-module) for the purpose
of this experiment.

A total of ten trials were performed. The average length of time needed to form
a 5-module polymer was 188s. The longest time taken was 407s. The shortest time
taken was 62s. Figure7 shows stills from an example trial.

4.4 Summary

The experiments we have detailed in this section relate the evo-bot hardware to
the concept discussed in Sect. 2. We have shown that the evo-bots can grow via
module accretion, locate energy of various intensities, and harvest energy and share
it with connected modules. These attributes represent the first stages of a hardware
implementation of the evo-bot concept.

384 J. A. Escalera et al.

0s 3s 11s

19s 63s 103s

Fig. 7 A sequence of stills taken from a video of five evo-bot modules forming a linear polymer

5 Conclusion

This paper described the evo-bot concept—a simple modular system that could be
used to physically implement artificial life. We have shown that a potential full
implementation of the concept, in which artificial organisms are capable of growing,
harvesting energy and replicating, satisfies at least one definition of life. We have
developed and presented a set of physical modules inspired by the evo-bot concept.
While these modules do not yet represent a full implementation of the concept,
they form the basis of one. The evo-bots feature a novel stop-start motion control
mechanism, which requires only a single binary actuator, but allows them control
over their movement. We have performed experiments with up to five prototypes
to demonstrate the system’s main capabilities: hybrid motion control, light sensing,
energy harvesting and trophallaxis, and self-assembly. Our next aim is to introduce
polymer self-replication in order to fully implement the evo-bot concept. In addition
we will conduct long-term experiments involving a large number of modules.

Acknowledgements This research was supported by a Marie Curie European Reintegration
Grant within the 7th European Community Framework Programme (grant no. PERG07-GA-2010-
268354). It was also funded by the Engineering and Physical Sciences Research Council (EPSRC)
through scholarship support (M. Doyle) and grant no. EP/K033948/1. In addition the authors would
like to thank Paul Eastwood and Michael Port for their invaluable assistance in preparing the exper-
imental environment.

References

1. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Pro-
grammable parts: A demonstration of the grammatical approach to self-organization. In: 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3684–3691. IEEE
(2005)

Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms 385

2. Breivik, J.: Self-organization of template-replicating polymers and the spontaneous rise of
genetic information. Entropy 3(4), 273–279 (2001)

3. Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-
free phenotype development. PLOS ONE 10(6), e0128,444 (2015)

4. Chirikjian, G.S., Zhou, Y., Suthakorn, J.: Self-replicating robots for lunar development.
IEEE/ASME Trans. Mechatron. 7(4), 462–472 (2002)

5. Cleland, C.E., Chyba, C.F.: Defining life. Origins of Life Evol. Biosph. 32(4), 387–393 (2002)
6. Demir, N., Açıkmeşe, B.: Probabilistic density control for swarm of decentralized on-off agents

with safety constraints. In: 2015 American Control Conference (ACC), pp. 5238–5244. IEEE
(2015)

7. Ding, R., Eastwood, P., Mondada, F., Groß, R.: A stochastic self-reconfigurable modular robot
with mobility control. In: TAROS 2012, vol. 7229 pp. 416–417. LNCS, Springer (2012)

8. Eiben, A.: Evosphere: The world of robot evolution. In: International Conference on Theory
and Practice of Natural Computing, vol. 9477, pp. 3–19. LNCS, Springer (2015)

9. Eiben, A.E.: Grand challenges for evolutionary robotics. Front. Robot. AI 1(4), 1–2 (2014)
10. Escalera, J.A., Doyle, M.J., Mondada, F., Groß, R.: Online supplementary material (2016).

http://naturalrobotics.group.shef.ac.uk/supp/2016-006/
11. Escalera, J.A., Mondada, F., Groß, R.: Evo-bots: A modular robotics platform with efficient

energy sharing. In: Modular and Swarm SystemsWorkshop at IROS 2014 (2014). https://sites.
google.com/site/iros2014mss/abstracts

12. Griffith, S.,Goldwater,D., Jacobson, J.M.:Robotics: self-replication from randomparts.Nature
437(7059), 636 (2005)

13. Groß, R., Magnenat, S., Küchler, L., Massaras, V., Bonani, M., Mondada, F.: Towards an
autonomous evolution of non-biological physical organisms. In: ECAL 2009, vol. 5777 pp.
173–180. LNAI, Springer (2011)

14. Haghighat, B., Droz, E., Martinoli, A.: Lily: A miniature floating robotic platform for pro-
grammable stochastic self-assembly. In: ICRA 2015, pp. 1941–1948. IEEE (2015)

15. Jacobson, H.: On models of reproduction. Am. Sci. 46(3), 255–284 (1958)
16. Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J., Laneri, D.,

Winkler, L., Schmickl, T., Thenius, R., et al.: Symbiotic robot organisms: replicator and sym-
brion projects. In: 8th Workshop on Performance Metrics for Intelligent Systems, pp. 62–69.
ACM (2008)

17. Klavins, E.: Programmable self-assembly. IEEE Control Syst. 27(4), 43–56 (2007)
18. Koshland, D.E.: The seven pillars of life. Science 295(5563), 2215–2216 (2002)
19. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature

406(6799), 974–978 (2000)
20. Miconi, T.: Evosphere: evolutionary dynamics in a population of fighting virtual creatures. In:

2008 IEEE Congress on Evolutionary Computation, pp. 3066–3073. IEEE (2008)
21. Penrose, L.S., Penrose, R.: A self-reproducing analogue. Nature 179(4571), 1183 (1957)
22. Ruiz-Mirazo, K., Peretó, J., Moreno, A.: A universal definition of life: autonomy and open-

ended evolution. Origins Life Evol. Biosph. 34(3), 323–346 (2004)
23. Spector, L., Klein, J., Feinstein, M.: Division blocks and the open-ended evolution of develop-

ment, form, and behavior. In: 9th Annual Conference on Genetic and Evolutionary Computa-
tion, pp. 316–323. ACM (2007)

24. Virgo, N., Fernando, C., Bigge, B., Husbands, P.: Evolvable physical self-replicators. Artif.
Life 18(2), 129–142 (2012)

25. Weel, B., Crosato, E., Heinerman, J., Haasdijk, E., Eiben, A.: A robotic ecosystem with evolv-
able minds and bodies. In: 2014 IEEE International Conference on Evolvable Systems (ICES),
pp. 165–172. IEEE (2014)

26. White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: ICRA
2004, vol. 3, pp. 2888–2893. IEEE (2004)

27. Zykov,V.,Mytilinaios, E., Adams, B., Lipson,H.: Robotics: self-reproducingmachines. Nature
435(7039), 163–164 (2005)

http://naturalrobotics.group.shef.ac.uk/supp/2016-006/
https://sites.google.com/site/iros2014mss/abstracts
https://sites.google.com/site/iros2014mss/abstracts

Geometrical Study of a Quasi-spherical
Module for Building Programmable Matter

Benoît Piranda and Julien Bourgeois

Abstract Theaimof theClaytronics project is to build sphericalmicro-robots, called
catoms for Claytronics atoms able to stick to each other and able tomove around each
other. An ensemble of catoms is therefore a huge modular self-reconfigurable robot.
However, the shape of these catoms have not been studied yet and remains a difficult
problem as there are numerous constraints to respect. In this article, we propose a
quasi-spherical catom which answers to all the constraints to build programmable
matter.

1 Introduction

On a broad scope, programmable matter is a matter which can change one or sev-
eral of its physical properties, most likely its shape, according to an internal or an
external action. An example of a mug being created by an ensemble of micro-robots
is presented in Fig. 1. Programmable matter can have different properties depend-
ing on the underlying technology chosen: evolutivity, programmability, autonomy,
interactivity [2].

Only modular self-reconfigurable robots (MSR) can implement this full set of
properties as they can embed computation. MSR [15, 18] also named earlier as
metamorphic robotic systems [3] or as cellular robotic systems [6] are composed of
individual modules able to move relatively to each other to create different config-
urations. There are four kinds of MSR: lattice-based when modules are aligned on
a lattice, chain-type when the module are aligned but with more degree of freedom,
hybrid which is a mix between lattice-based and chain-type and mobile when each
module can move autonomously. The expected properties of MSR are: versatility,

B. Piranda (B) · J. Bourgeois
University of Bourgogne Franche-Comté (UBFC), University of Franche-Comté (UFC)
FEMTO-ST Institute, Montbéliard, France
e-mail: benoit.piranda@femto-st.fr

J. Bourgeois
e-mail: julien.bourgeois@femto-st.fr

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_27

387

388 B. Piranda and J. Bourgeois

Fig. 1 A simulation view of a mug and a toy car made of programmable matter and composed of
micro robots

used to fulfill different tasks, robustness as a faulty module can be discarded and
affordable price as the mass production of identical modules is likely reducing the
overall cost [20]. MSR is an active field of research which has produced interesting
hardware starting from CEBOT [5], or Polybot [17], as pioneered approaches, to
SMORES [4], ATRON [11] or M-Blocks [14], for the latest ones.

This work is part of the Claytronics project. Claytronics, which stands for Clay-
Electronics is an implementation of programmable matter initiated by CarnegieMel-
lon University and Intel Corporation, and then joined by FEMTO-ST Institute. In
Claytronics, mm-scale robots called catoms, for Claytronics Atoms, are assembled
to form larger objects. The idea is that each micro-robot has very restricted or, let us
say, only strictly mandatory functionalities and as each catom is simple, hundreds
of thousands can be assembled all together to create new solid objects of any shape
or size. A catom should be a mass-producible, sub-mm, MEMS using computation-
ally controlled forces for adhesion and locomotion. Each catom therefore embeds a
chip for computation and for driving its actuators and communication capabilities.
A first Claytronics prototype has been realized which embeds actuation and a chip
for managing the movement of the micro-robots [9]. There are many challenges to
solve before Claytronics could transform matter into programmable matter. These
challenges and perspectives have been enumerated in [1].

In the context of programmable matter, the size of each module should be as
small as possible, mm-scale seems a good resolution for approximating a shape.
Scaling down the hardware is a difficult task but it also offers benefits. For example,
actuation could be easier at the micro-scale by using electrostatic forces. MSR are
usually composed of few modules whereas the objective of programmable matter is
to have hundred thousands modules, at least, which adds even more complexity in
the whole design.

To implement programmable matter as an MSR several solutions are possible.
We think a lattice-based MSR, in which each module is aligned on a lattice, is
the best solution. Chain-type MSR is not suitable as it is limited in the number
of modules, hybrid could be used but lattice-based allows more flexibility for hav-
ing a better approximation of the shape, more nodes are also able to move during
self-reconfiguration and robustness is increased as any module can fail without com-
promising the rest.

Geometrical Study of a Quasi-spherical Module … 389

For lattice-basedMSR, different types ofmodules have been studied: cubic, cylin-
dric, polyhedral and spherical. Cubic modules offer a good adhesion surface but
they are difficult to move, that is why Miche [7] and Pebbles [8] have opted for
self-disassembly which drastically reduces the possibilities of self-reconfiguration.
Smart Blocks [12] uses electro-permanent magnets for 2D moves but they are not
strong enough to fight against gravity. The best realization so far are M-blocks [14]
in which each module turns around another one using a gyroscope. However, this
technology is difficult to miniaturize.

Within the Claytronics project, two kinds of cylindrical modules have been built:
a macro-size vertical cylinder linked with others by electromagnetic forces [10] and
a mm-scale horizontal cylinder using electrostatic forces to stick and move [9]. This
latest realization has pushed the limits of miniaturization for an autonomous micro-
robot and is a source of inspiration for the future of Claytronics.

Designing a miniaturized sphere is complex. A macro-size example is ATRON
[11]. The latching is mechanical and each quasi-spherical module is split in two and
can rotate. However, as for M-blocks, the technologies employed cannot be used at
the mm-scale. In the Claytronics project, a sphere has been fabricated using petals
closing the shape [13]. This sphere was a first prototype of a mm-scale 3D shape
although it is not autonomous, did not embed the connectors and the structure was
too fragile.

The rhombic dodecahedron (RD) shape proposed by Yim et al. [19] is an inter-
esting geometrical solution. It allows to place a set of modules that completely fills
the 3D space without hole. But the main drawback is mentioned in the document, it
concerns the 120 rotation around an edge of a module in order to pass from a cell to
a neighbor. This motion requires an actuator technically difficult to produce.

To sum up, cubes are difficult to move in 3D, cylinder cannot move in 3D and
a real sphere is difficult to built at a mm-scale from a 2D sheet of material. In this
article, we present a proposition of a quasi-spherical module, called a catom in the
context of the Claytronics project, able to fit all the requirements of programmable
matter.

2 Objectives and Constraints

Programmable matter needs a very large set of connected small modules, called
catoms, that can move to change their global shape. The goal of our work is to
produce very small (about 1mm diameter) and reliable catoms, without complex
mechanical systems. At this scale, the latching and moving forces can be produced
by electrostatic electrodes. The proposed systemmust satisfy a number of constraints.
The catoms composing this system must:

1. Be combined in order to regularly fill a 3D space (following a predefined grid).
2. Have a large surface of contact (we call this area ‘a connector’) allow to use these

surfaces for communication, presence sensors and power transfer.

390 B. Piranda and J. Bourgeois

3. Be free to move from one position of the grid to a neighboring free one.
4. After a motion, a module must be oriented in order to place each of its connectors

in front of one connector of its neighbor modules.
5. Be physically connected to many neighbors, in order to allow power transfer and

P2P communication.
6. Have a finite number of connectors that are always in the same place on the surface

of the catom.
7. Be fabricated from a deformation of a flat shape.

In the next section,we study the possible organization and geometry of the catoms.
In Sect. 4, we present a quasi-sphere geometry and try to solve all the constraints. In
Sect. 5, we discuss the catom movements.

3 Study of Candidate Shapes and Organizations

Here, we study the shape of the catoms by examining three different solutions and
then the organization of the lattice which is also of prime importance. In the rest of
this article, we consider that our catoms have a diameter d and a radius r .

The first idea of shape for defining a catom consists in adapting the cubic model
where each catom is placed along a regular grid oriented along

(−→x ;−→y ;−→z)
axes.

Rotation of catoms around a neighbor is facilitated by using rounded angles at the
edges of the cubes. A face of a cube is therefore composed by a flat centered area for
connectors and a curved border allowing the cube to move by turning around. But,
with a rounded cube, the slip-free rolling of a cube A around another cube B does
not allow to reach a neighbor cell of the grid. The distance between two connected
cells is equal to the length of the cube (2 × r) and each rotation produces a α × ρ

long motion (where α is the rotation angle of the rounded cube and ρ the radius
of the curved part). Then, if a cube A has to reconnect on to a face of B, we must
have π

2 × ρ = π
2 × r as shown in Fig. 2. But, as ρ < r , rounded boxes do not verify

constraints #3.
The second proposition for this micro-robot is a sphere, that can be naturally

organized in a grid. Spheres can be placed in a regular grid that reduces the distance
between center and empty areas. Spheres are placed in a regular 2D grid (along−→x and −→y and d large cells) for the first floor and the second floor is placed

√
2
2 r

higher and shifted by r along −→x and −→y . Under this organization each sphere has

Fig. 2 Limits of the rounded
cube solution: when A turns
around B, it can not reach a
position juxtaposing a face
of A to a face of B

Geometrical Study of a Quasi-spherical Module … 391

a maximum of 12 connected neighbors. But, two spheres only admit a single point
as contact area. Moreover, manufacturing a perfect sphere is difficult. Therefore, a
sphere shape does not satisfy constraints #2 and #7.

As the cube and the sphere do not meet all the requirements, the idea is to use a
mix between them.Wewant to take advantage of the large surfaces of the cube for the
latching, together with the easiness of rotation offered by the sphere, by designing a
quasi-sphere.

4 Solving the Constraints for the Quasi-sphere

The design of the 3D catoms starts with a sphere on which we add connectors. We
have to place these connectors and define their shape, size and orientation in order
to verify the constraints. We will then define curves between connectors to construct
paths for the rotation of a catom around one of its neighbors.

4.1 Designing Connectors for Latching

In order to answer constraint #2, connectors must be 12 planar surfaces centered in
P0 . . . P11, where Pi are contact points of spheres in the Face-Centered Cubic lattice
(FCC) as presented in [16]. Considering a sphere of radius r centered at the origin
(O), these points are respectively placed at the following coordinates:

P0(r, 0, 0) P6(−r, 0, 0) P1(0, r, 0) P7(0,−r, 0)
P2(

r
2 ,

r
2 ,

r√
2
) P8(− r

2 ,− r
2 ,− r√

2
) P3(− r

2 ,
r
2 ,

r√
2
) P9(

r
2 ,− r

2 ,− r√
2
)

P4(− r
2 ,− r

2 ,
r√
2
) P10(

r
2 ,

r
2 ,− r√

2
) P5(

r
2 ,− r

2 ,
r√
2
) P11(− r

2 ,
r
2 ,− r√

2
)

(1)

On these points, we must define a regular planar surface which will contain the
connectors. As we have seen in Sect. 3, the rotation path to move from one connector
to another must be equal to the distance from two connectors. The obvious choice
about the connector shape is therefore a square. Furthermore, a square is a simple
surface to manufacture. We then search which size (c) of the edges of the connectors
allow to construct a regular 3D shape. The orientation of square is partially imposed
by connection constraints #2 and #4: The squares must be placed tangentially to the
sphere surface.

Figure3 presents two c width connectors, we name corners of these connectors
respectively {A0, B0,C0, D0} and {A2, B2,C2, D2}. Constraint #4 states the distance
C0A2 must be equal to c in order to be able to reconnect two connectors after a
movement. In this section, we want to express c to define the size of the connectors.
We can easily express the coordinates of A0 and C0, and deduce A2 as the image of
A0 by rotation of π

4 around −→y axis and then rotation of π
4 around −→z axis (given by

the matrix M):

392 B. Piranda and J. Bourgeois

Fig. 3 Geometry used to
calculate the width of square
connectors c

A0 =
(
r,− c

2
,− c

2

)
(2)

M =

⎛

⎜⎜⎜
⎝

1
2 −

√
2
2 − 1

2

1
2

√
2
2 − 1

2
√
2
2 0

√
2
2

⎞

⎟⎟⎟
⎠

(3)

A2 = M × A0 =

⎛

⎜⎜⎜
⎜
⎝

r
2 + c

4

(
1 + √

2
)

r
2 + c

4

(
1 − √

2
)

√
2
2 r −

√
2c
4

⎞

⎟⎟⎟
⎟
⎠

(4)

As the distance C0A2 must be equal to c. We can solve
−−−→
C0A2

2 = c2.

C0 =
(
r,

c

2
,
c

2

)
(5)

−−−→
C0A2

⎛

⎜⎜⎜⎜
⎜
⎝

− r
2 + c

4

(
1 + √

2
)

r
2 − c

4

(
1 + √

2
)

√
2
2 r − c

2

(
1 +

√
2
2

)

⎞

⎟⎟⎟⎟
⎟
⎠

(6)

We can then express
−−−→
C0A2

2:

−−−→
C0A2

2 = r2 + c2

4

(
2
√
2 − 1

)
− r × c

(√
2 + 1

)
=

(

r −
√
2 + 1

2
c

)2

(7)

In order to obtain an expression of c, we solve:

r −
√
2 + 1

2
c = c (8)

Geometrical Study of a Quasi-spherical Module … 393

Fig. 4 Design phases of the 3D catoms: a Connectors are defined as squares and placed in order to
be connected to neighbors. b The geometry of a regular filled volume linked to square connectors
appears. c Curved actuators are placed over octagonal and hexagonal surfaces. d Final catoms

Finally, the connectors width c only depends on the radius r of the inscribed sphere:

c = 2 × r

3 + √
2

≈ 0.45308 × r (9)

This is indeed a very interesting result which shows that the size of the connectors
cannot be arbitrarily fixed but must have a size only related to the size of the catom.

The geometry is therefore defined by a regular geometrical shape composed of
12 squares representing the connectors (in red, in Fig. 4b). To bind the connectors
all together, 8 hexagons and 6 octagons are added (resp. in green and blue). Each
connector is connected to 2 hexagons and 2 octagons. Each octagon is bound to 4
squares and 4 hexagons and each hexagon is connected to 3 squares and 3 octagons
alternatively along its border. All the edges for all the shapes (squares, hexagons and
octagons) have the same length c: it is an important condition to reconnect catoms
after a rotation.

4.2 Designing Actuators for Allowing Movements

4.2.1 Defining the Shape of the Actuators

Curved actuators need to be placed between connectors in order to propose a path of
contact during rotation of a catom around another one. The shape of this surface is
relatively free, but the constraint is that the rotation must not go through any angular
edges. These curved actuators need to be placed between the connectors in order to
have a path of contact during rotation of a catom around another one.

We propose to define a C1 class surface for the actuators to avoid angles. We
point out that considering that a surface S(s, t) is defined by two curves S(s, t) =
u(s) + v(t), the surface is a C1 class surface if respectively u and v are derivable
relatively to s (respectively t), and their derivative are continuous. The proposed
actuators shape are made of a curved part (slice of a cylinder) and a plane, in order

394 B. Piranda and J. Bourgeois

to obtain a C1 class surface as shown in Fig. 4c. One catom will roll and stick onto
another one between two connectors using an actuator as rotation path.

On the surface of the catom, we can define two kinds of actuators, one over octag-
onal faces and another one over hexagonal faces in order to link all the connectors
with actuators.

4.2.2 Characterization of the Actuator on the Octagonal
and Hexagonal Faces

On the octagonal faces, the actuator is formed by a square, centered on the octagon,
and linked to a curved slice of a cylinder on its four sides. The square sides have the
same size as the actuator width (See Fig. 4d). In order to find the radius of curvature
r1, the angle β and the center M of the blue arc, we consider two connectors C0

and C1 (with a side size of c, drawn in red in Fig. 5). C0 is centered at (r, 0, 0), with
two corners P0

(
r,− c

2 ,− c
2

)
and P1

(
r, c

2 ,− c
2

)
. C1 is centered at (0, r, 0), with two

corners P2
(− c

2 , r,− c
2

)
and P3

(
c
2 , r,− c

2

)
. Then, we have to place a square S (drawn

in orange in Fig. 5) between the two connectors C0 and C1. In order to respect the

symmetry, the center of S is placed along the axis (O,
−→u), with −→u =

(√
2
2 ,

√
2
2 , 0

)

and is tangent to the orthogonal vector−→t =
(

−√
2

2 ,
√
2
2 , 0

)
.We canwrite the position

of M as the intersection of the two radii MP1 and MQ0:
{−−→
OM = (r − r1)

−→x + c
2
−→y−−→

OM = (k − r1)
−→u − c

2
−→
t

(10)

where k is the distance between the center of S and the center of the catom. In order
to obtain the position of M , we express

−−→
OM .

−→y with the two previous relations:

Fig. 5 Cross section of
domes for octagonal area,
w = c. Main connectors are
drawn in red, flat connector
in intersection of actuators
are drawn in orange and
curved actuator are in blue

o

r

r1=c

c

c
P0 P1

Q0

P2

P3

C0

C1

S
u

Q1

M

x

y

t

Geometrical Study of a Quasi-spherical Module … 395

c

2
=

√
2

2

(
k − r1 − c

2

)
(11)

We deduce k − r1 = 1+√
2

2 c, and obtain the position of M :

M

(
1 + √

2

2
c,

c

2
,− c

2

)

(12)

In order to calculate r1, we evaluate
−−→
OM .

−→
t with the relations of Eq.10:

−
√
2

2
(r − r1) +

√
2

2

c

2
= − c

2
(13)

We obtain r1 = c. Finally, as β is the angle between −→x and −→u , then β = 45◦
or π

4 rad. The cylindrical part of the actuator admits a center at M , a radius r1 = c
and a height c, all the other cylinders are obtained by rotations (corresponding to
combinations of matrix M presented in Eq.3).

The calculation for the hexagonal faces follows the same process as for octagonal
ones. The intersection of the paths are equilateral triangles of c side long. These
triangles are linked to connectors by a portion of cylindrical actuator. We calculate
the radius of curvature:

r ′
1 ≈ 0.4670 × r (14)

and the angle of slice:

α = tan−1

(√
2

2

)

≈ 0, 6155 rad or (35.26◦) (15)

Then, the length of the path is:

l ′1 = r ′
1 × α ≈ 0.28745 × r (16)

4.2.3 Adapting Geometry to Allow Movement

In the first case, that uses orthogonal domes displacements Ro (cf. in Fig. 6) are easy
to apply: from a square connector face, 4 orthogonal directions are available to reach
an other connector face. 90◦ rotations around axes are associated to each motion. In
the second case, catoms use hexagonal faces to roll over another catom (following
the Rh displacement in Fig. 6). From each square connector face, 4 ways are available

396 B. Piranda and J. Bourgeois

Fig. 6 A catom with two methods of rotation: Rh in the hexagonal area and Ro in the octagonal
area

Fig. 7 Two cases where one of each kind of motions is possible but not the other one

too, but there are more difficult to follow. Each way is composed of two rotations of

α where α = tan−1
(√

2
2

)
≈ 0.615 rad or 35.26◦.1

The main drawback of these two motions is the volume crossed by the moving
catom. Several local configurations of neighbors prevent at least one of thesemotions.
Images in Fig. 7 show two blocking situations, one for each motion mode. The left
image shows a configuration where motion Ro is possible but not Rh , whereas the
right image shows the opposite situation.

As we have found blocking situations for the first two solutions of actuation, we
need to evaluate the last one using actuator on both octagonal and hexagonal faces.
In Fig. 6, we can see that from the connector #0, there exists 6 other connectors that
can be directly reached by rotations (#1, #2, #5, #7, #9 and #10).

More generally, we consider a mobile catom A and a fixed catom B. Graph shown
in Fig. 8 details the set of rotations that can be applied from each connector. In that
graph, nodes represent connectors of B (ID written in squares) and links represent
rotations of α for hexagonal actuators or 45◦ for octagonal ones. Information in

1These motions are presented in a video available at the address https://youtu.be/tXbu7rB86OM.

https://youtu.be/tXbu7rB86OM

Geometrical Study of a Quasi-spherical Module … 397

0

25 4;109;3

2;811;5

7;1

109

4

8

3

11

17 6

1;7

5;1110;4

3;98;2

0;6

6;0

2;811;5

10;43;9

1;7

7;1

3;98;2

5;1110;4

6;0

0;6

z

(1,-1,0)

z

(1,-1,0)

z

(1,1,0)

z

(1,1,0)

z

(1,1,0)

z

(1,1,0)

z

(1,-1,0)

z

(1,-1,0)

(1,1,0) (1,1,0)(1,-1,0) (1,-1,0)

(1,1,0) (1,1,0)(1,-1,0) (1,-1,0)

Fig. 8 Graph of possible rotations from each connector of the catom (index written in squares)

ellipses gives axes of rotation, directly specifying the rotation vector or a couple of
connector centers that defines a rotation axis.2

5 Defining Ensemble of Catoms

In this section, we study the organization of the catoms in an ensemble.
The catoms have been designed to be organized in a FCC lattice following a

hexagonal close packing placement. Figure9 presents an example of the organization.
Placing catoms on the floor on actuators (that replace one of their octagonal face), and
orienting them in order that connected faces are square connectors, aligned along−→x and −→y axes, similarly to catoms shown in Fig. 6. Centers of these catoms are
respectively placed at coordinates (i x × d; iy × d; 0) where i x ∈ Z and iy ∈ Z.

On the second floor, catoms are staggered over previous catoms, they center
coordinates are: (r + i x × d; r + iy × d;

√
2d
2).

Then on the third floor, catoms are vertically placed above catoms of the first floor,
3 blue catoms in Fig. 9 are placed at: (d; 0;√

2d) (2d; 0;√
2d) (d, d,

√
2d) .

For programming algorithm using catoms, we need a relation between their posi-
tion in space coordinates and their position in the grid. For example, during a rotation
a catom turns around another one in the space coordinates, when it finishes its motion
we can deduce its new position in the grid. We can write a relation between coor-
dinates of a catom (i x; iy; i z) in a regular array in memory and its position in the

2The video at https://youtu.be/20xRLOfoJQ4 shows a more complex succession of motions com-
bining the two kinds of rotations as an example of the possibilities offered.

https://youtu.be/20xRLOfoJQ4

398 B. Piranda and J. Bourgeois

Fig. 9 Placement of 3d
catoms in a regular grid

visualization space (x; y; z) using σ = i z%2, i.e. σ = 0 if i z is even and σ = 1 if
i z is odd:

(

x = d × (i x + 0.5σ); y = d × (iy + 0.5σ); z =
√
2d

2
× i z

)

(17)

Similarly we can express array coordinates from space coordinates:

(

i x =
⌊ x

d
− 0.5σ

⌋
; iy =

⌊ y

d
− 0.5σ

⌋
; i z =

⌊√
2

d
× z

⌋)

(18)

Considering this approach, we express the coordinates of 12 neighbors of a catom
placed at (i x; iy; i z) in the regular grid.

Plane Neighbors coordinates if i z is even Neighbors coordinates if i z is odd
i z + 1 (i x − 1; iy − 1) (i x − 1; iy) (i x; iy) (i x; iy) (i x; iy + 1) (i x + 1; iy)

(i x; iy − 1) (i x + 1; iy + 1)
i z (i x − 1; iy) (i x + 1; iy) (i x; iy − 1) (i x − 1; iy) (i x + 1; iy) (i x; iy − 1)

(i x; iy + 1) (i x; iy + 1)
i z − 1 (i x − 1; iy − 1) (i x − 1; iy) (i x; iy) (i x; iy) (i x; iy + 1) (i x + 1; iy)

(i x; iy − 1) (i x + 1; iy + 1)

6 Conclusion

We have proposed a detailed model for the realization of a quasi-spherical mod-
ule for the programmable matter. This module, called catom in the context of the
Claytronics project, satisfies all the constraints listed for the needs of the project.
The 7th constraint has not been detailed in this paper for our catom, but an origami
like unfold of our shape is possible and will be presented in future works.

Geometrical Study of a Quasi-spherical Module … 399

We believe our quasi-spherical module will ease the movements using semi-
curved shape actuators and also provide sufficiently strong connectors. Future works
include a study of the physics parameters of the catom:weight, latching and actuation
forces.We have already 3D printed catoms shells embedded with magnets to validate
the latching and themovements. The next step is now to design the fabrication process
for the MEMS/LSI integration on a flexible substratum. The major challenge will be
the attachment of all the catom parts.

Acknowledgements This work has been funded by the Labex ACTION program (contract ANR-
11-LABX-01-01) and ANR/RGC (contracts ANR-12-IS02-0004-01 and 3-ZG1F).

References

1. Bourgeois, J., Goldstein, S.C.: Distributed intelligent MEMS: progresses and perspectives.
IEEE Syst. J. 9(3), 1057–1068 (2015)

2. Bourgeois, J., Piranda, B., Naz, A., Lakhlef, H., Tucci, T., Mabed, H., Douthaut, D.,
Boillot, N.: Programmable matter as a cyber-physical conjugation. In: IEEE (ed.) IEEE Inter-
national Conference on Systems, Man and Cybernetics (SMC) (2016)

3. Chirikjian, G.S.: Kinematics of a metamorphic robotic system. In: IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 449–455. IEEE (1994)

4. Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots - design of the smores
system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4464–4469. Vilamoura, Algarve, Portugal (2012)

5. Fukuda, T., Kawauchi, Y.: Cellular robotic system (cebot) as one of the realization of self-
organizing intelligent universal manipulator. In: IEEE International Conference on Robotics
and Automation (ICRA), pp. 662–667 (1990)

6. Fukuda, T., Kawauchi, Y., Buss, M.: Communication method of cellular robotics cebot as a
selforganizing robotic system. In: IEEE/RSJ International Workshop on Intelligent Robots and
Systems’ 89. The Autonomous Mobile Robots and Its Applications. IROS’89. Proceedings,
pp. 291–296. IEEE (1989)

7. Gilpin, K., Kotay, K., Rus, D.: Miche: modular shape formation by self-dissasembly. In: Pro-
ceedings 2007 IEEE International Conference on Robotics and Automation, pp. 2241–2247
(2007)

8. Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: one centimetermodules for programmablemat-
ter through self-disassembly. In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 2485–2492 (2010)

9. Karagozler,M.E., Thaker,A.,Goldstein, S.C.,Ricketts,D.S.: Electrostatic actuation and control
of micro robots using a post-processed high-voltage soi cmos chip. In: IEEE International
Symposium on Circuits and Systems (ISCAS) (2011)

10. Kirby, B., Campbell, J., Aksak, B., Pillai, P., Hoburg, J., Mowry, T., Goldstein, S.C.: Catoms:
Moving robots without moving parts. In: Proceedings of the National Conference on Artificial
Intelligence, vol. 20, p. 1730. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999 (2005)

11. Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the atron lattice-based self-
reconfigurable robot. Auton. Robot. 21(2), 165–183 (2006)

12. Piranda, B., Laurent, G.J., Bourgeois, J., Clévy, C., Le Fort-Piat, N.: A new concept of planar
self-reconfigurable modular robot for conveying microparts. Mechatronics 23(7), 906–915
(2013). https://doi.org/10.1016/j.mechatronics.2013.08.009

13. Reid, J.R., Vasilyev, V., Webster, R.T.: Building micro-robots: a path to sub-mm3 autonomous
systems. In: Proceedings of nanotech (2008)

https://doi.org/10.1016/j.mechatronics.2013.08.009

400 B. Piranda and J. Bourgeois

14. Romanishin, J., Gilpin, K., Rus, D.: M-blocks: momentum-driven, magnetic modular robots.
In: IROS, pp. 4288–4295. IEEE (2013)

15. Stoy,K.,Brandt,D.,Christensen,D.J., Brandt,D.: Self-reconfigurableRobots:An Introduction.
Mit Press, Cambridge (2010)

16. Vad, V., Csebfalvi, B., Rautek, P., Gr"oller, M.E.: Towards an unbiased comparison of cc, bcc,
and fcc lattices in terms of prealiasing. Comput. Graph. Forum 33(3), 81–90 (2014)

17. Yim, M., Duff, D.G., Roufas, K.D.: Polybot: a modular reconfigurable robot. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA) vol. 1, pp. 514–520 (2000)

18. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.:
Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEERobot. Autom.
Mag. 14(1), 43–52 (2007)

19. Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed control for 3d metamorphosis. Auton.
Robot. 10, 41–56 (2001)

20. Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. Encyclopedia of
Complexity and Systems Science, pp. 5618–5631. Springer, New York (2009)

HyMod: A 3-DOF Hybrid Mobile
and Self-Reconfigurable Modular Robot and
its Extensions

Christopher Parrott, Tony J. Dodd and Roderich Groß

Abstract This paper presents HyMod, a hybrid self-reconfigurable modular robot,
and its extensions. HyMod units feature three rotational degrees of freedom and four
connectors, allowing them to move independently via differential wheels and group
with other units to form arbitrary cubic lattice structures. The design is built around
the high-speed genderless (HiGen) connectionmechanism, allowing for single-sided
disconnect and enabling units to rotate freely in place within their lattice positions.
To our knowledge, HyMod is the first modular robot to combine efficient single
module locomotion with free in place rotation. An analysis of HyMod is presented,
as well as details of its mechanics and electronics. To augment the capabilities of
HyMod, a number of extension modules are introduced. Hybrid modular robots
with extensions, such as the system presented here, could see use in the areas of
reconfigurable manufacturing, search and rescue, and space exploration.

1 Introduction

Modular robotics has seen numerous advances over the past decades, with the
likes of M-TRAN III [9] and ATRON [14] successfully demonstrating the self-
reconfiguration and collective motion of large chain and lattice structures. Each
module within a modular robot is relatively simple, with typically only one or two
degrees of freedom (DOF), allowing many modules to be produced at relatively low
cost. Unfortunately, this means that such modules have limited or no mobility out-
side of a configuration. Efforts have been made to address this, with swarm systems

C. Parrott (B) · T. J. Dodd · R. Groß
Department of Automatic Control and Systems Engineering, The University of Sheffield,
Sheffield, UK
e-mail: c.parrott@sheffield.ac.uk

T. J. Dodd
e-mail: t.j.dodd@sheffield.ac.uk

R. Groß
e-mail: r.gross@sheffield.ac.uk

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_28

401

402 C. Parrott et al.

Fig. 1 HyMod: a new self-reconfigurable modular robot with three degrees of freedom (two of
which form differential wheels), and four genderless connectors with single-sided disconnect. The
module is shown from an a isometric, b front, and c side view, with its central rotational joint at
zero degrees. The central joint is also shown at d −90, and e +90◦

gaining the ability to self-assemble [6], and modular systems gaining dedicated drive
mechanisms to provide efficient single module locomotion [11, 20]. These systems
demonstrate the advantages of mobile modular robots, but compromise module self-
reconfigurability in favor of individual autonomy. So far, only one modular system,
to our knowledge, features efficient module mobility without sacrificing on self-
reconfigurability [3, 7]; however, it lacks important features from the field such as
inter-module communication and power sharing. This highlights the need for fur-
ther modular robots that retain the features and reconfigurability of past successful
systems, whilst also offering efficient single module locomotion.

This paper presents HyMod (Fig. 1), a self-reconfigurable modular robot that is
a hybrid between chain, lattice, and mobile reconfigurable robots [23]. It extends
upon preliminary work presented in [16]. Inspired by systems such as PolyBot [22]
and CKbot [24], HyMod features a central rotational DOF capable of moving ±90
degrees, and is designed to form arbitrary cubic lattice structures. Two further ro-
tational DOFs are mounted perpendicular to the central rotational joint, serving the
dual purpose of emulating a spherical joint and enabling the module to drive around
using a differential wheel setup. The arrangement of rotational axes shares similari-
ties with the RobMAT [21] platform, and the use of reconfiguration joints as wheels
has been explored on the iMobot [17], M3 [10], and SMORES [3] platforms. This
implementation removes the need for a separate drive mechanism for locomotion, as
is the case with the modules of the Symbrion/Replicator project [8].

Connections to neighboring modules are achieved using four high-speed gender-
less (HiGen) connectionmechanisms [15], one in eachwheel and two alongHyMod’s
central rotational axis. The connectors operate by extending hooks out of their hous-
ings to latch on to the hooks of an opposing connector, making a connection. The

HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot 403

Fig. 2 The transition from the side view of a 3-DOF spherical joint (left) to a top view of a
differential wheel setup (right), via an intermediate step where the middle DOF is locked at 0
degrees

use of HiGen connectors gives HyMod several advantages over other connection
mechanisms, most notably the ability to independently disconnect from and produce
clearance between neighboring modules. The choice of connector gave rise to the
HyMod’s spherical design, which allows all three of its degrees of freedom to actuate
simultaneously without colliding with neighboring modules.

The remainder of this paper describes the design and implementation of HyMod
(Sect. 2), and presents experiments conductedwith a single unit (Sect. 3).Anumber of
extension modules for HyMod are then explored (Sect. 4). Finally, Sect. 5 concludes
the paper and discusses future work.

2 The HyMod Unit

The goal of HyMod was to create a module to address the division between mobile
and self-reconfigurable systems, by integrating an efficient locomotion method that
could also have a use on modules within chain or lattice structures (e.g. as a degree
of freedom in a kinematic manipulator). Although the modules of systems such as
M-TRAN can move independently, they are slow and have limited control over their
heading when moving. A more efficient method of locomotion is that of wheels, as
these can provide a constant velocity to a robot and allow for controlled turning.

To incorporate wheels into HyMod, the concept of a spherical joint was adopted
(Fig. 2, left). Typically modules designed to reside in a cubic lattice have a central
rotational DOF that goes from −90 to +90 degrees, allowing for a free end to move
between three faces of a cube, relative to afixed end.By adding a rotationalDOF to the
fixed end, the free end is able to move between five faces. Additionally, by applying
a rotational DOF to the free end, any item attached to it can be oriented arbitrarily. If
the central rotation axis of this spherical joint is set to zero degrees (Fig. 2, center),
the remaining axes become in-line. By placing wheels on these axes a differential
wheel setup is created (Fig. 2, right), granting HyMod locomotion capabilities on par
with various mobile swarm robotic systems available.

404 C. Parrott et al.

1

0 2

3

1

0

2

3

1

02

3

Z

X

Y

Z
X Y Z

Y

X

1

0

2

3
Z

Y X

1

0 2

3

1

0

2

3

1

02

3

Z

X

Y

Z
X Y Z

Y

X

1

0

2

3
Z

Y X

0 deg 90 deg 180 deg 270 deg
A B C D

E F G H

N
or

m
al

Fl
ip

pe
d

Fig. 3 The eight ways a HyMod unit can be oriented, as viewed on a 2D plane. Connectors are
depicted using yellow rectangles, and are labelled 0 to 3. Rotational DOFs are depicted using
connected triangles and are labelled X to Z. In this arrangement, connectors 1 and 3 can be rotated
continuously, whereas connectors 0 and 2 can only be rotated ±90 degrees

2.1 Geometry Analysis

From examining the 3-DOF spherical joint (Fig. 2, left), it is apparent that an element
of symmetry exists, as swappingwhich end is fixed can result in the samemovements,
provided appropriate control remapping occurs. By discovering what these symme-
tries are, the isomorphic configurations that can be created with a given number of
HyMod units can be determined, thereby reducing the search space complexity of
any self-reconfiguration algorithm that may be employed on the system.

Figure3 shows the eight possible orientations of a HyMod unit. The orientations
are depicted on a 2D plane with the central rotational joint set to zero degrees. This
can either be thought of as a top-down view of the modules resting on their wheels,
or a side view with the modules anchored to a surface via their bottom connectors.
The module has a rotational symmetry of two, meaning that of the eight orientations
shown, only four are unique. The connector and joint mapping to go between one
orientation and its symmetric version are shown in Table1. As an example, to map
orientation A to C, commands that would be sent to connectors 0, 1, 2 and 3, would
instead need to be send to connectors 2, 3, 0 and 1. Similarly, commands to joints X
and Y would instead be sent to joints Y and X, with Z remaining unchanged.

Using the knowledge of module symmetry and the four times symmetry of
HiGen connectors, the number of isomorphic configurations of two modules can
be determined. By applying the mapping and discarding configurations where a
connector symmetry offset (e.g. 90°) is equivalent to a wheel rotation, six isomor-
phic configurations are produced. These can be seen in Fig. 4. Of the six, the two

HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot 405

Table 1 The connector and joint index changes when mapping one HyMod orientation to another

Map Connectors Joints

A B E F 0 1 2 3 X Y Z

� � � � � � � � � � �
C D G H 2 3 0 1 Y X Z

1

0 2

3

Z

X

Y

1

0 2

3

Z

X

Y

1

0 2

3

Z

X

Y

1

0 2

3

Z

X

Y

1

0 2

3

Z

X

Y

20
3

Z

1

0 2

3

Z

X

Y

0 2
1

Z

α

β γ

1

0 2

3

Z

X

Y

1

0

2

3
Z

X Y 1

0

2

3
Z

X Y1

0

2

3
Z

X Y

1 2

1

2

1

2

Fig. 4 All six of the isomorphic configurations that exist for two connected HyMod units

configurations labelled α offer a higher number of quantized joint angle combina-
tions, 36 (3 × 4 × 3) versus the 9 (3 × 3) of the four other configurations. This is
because those two configurations contain at least one continuous rotational degree of
freedom between the two modules, featuring four quantized angles versus the three
of the central joint. Note that rotations of wheels not connected to another module
were discounted here, as they can be cancelled out by connector symmetry. Similar-
ly, when two wheels are connected together their rotational degrees of freedom are
in-line and can therefore be considered as a single joint.

As the designofHyMod is basedon a spherical joint, it only occupies a single cubic
lattice position. This means that in order to self-reconfigure, either four modules are
needed so that a loop can be formed, or twomodules and some kind of support surface
(either a custom made structure or a grid of modules). By using a support surface,
and provided both modules are adjacent to it, all of the isomorphic configurations

406 C. Parrott et al.

Fig. 5 Examples of four possible HyMod robot configurations, using scale models: a snake, b
6-wheeled vehicle, c rolling track, d crawler

of two modules (Fig. 4) can transform in to each other without moving between
lattice positions.1 If only one module is adjacent however, and the configuration is
one of the four labelled β or γ , self-reconfiguration is not possible as there are no
perpendicular rotational axes available tomove the other module to be adjacent to the
surface. This suggests that one or both of the α configurations should be considered
the metamodules [2] of the HyMod system. By using these metamodules, arbitrary
connected 3D structures can be formed. For example, a cube structure can be built
using n3/2 metamodules, opening up the possibility for configurations of HyMod
unit to be formed via self-disassembly, whereby modules in the cube can either
become part of the final configuration or act as a temporary scaffold to support the
disassembly process. A render of a cube formed out of 32 HyMod unit metamodules
can be seen in the online supplementary material [13].

2.1.1 Example Configurations

To explore the possibilities of the HyMod unit’s design before production, six scale
models were produced. They consist of four 3D printed components each and four
perpendicularly mounted permanent magnets per face. This arrangement of magnets
emulates the genderless property of the HiGen connector. Examples of common
modular robot configurations using the scale modules are shown in Fig. 5.

2.2 Hardware Details

The module is built from two mirrored halves, forming a rotational hinge joint. This
arrangement of identical halves is common with several modular robots, such as
ATRON [14], Molecubes [25], UBot [19], and CoSMO [11]. Each half consists of a

1Note, if a surface is made up of passive HiGen connectors, that being connectors without the ability
to retract their hooks, then it is not possible to self-reconfigure in to, out of, or between the two
configurations labelled γ even if they are adjacent to the surface, as clearance cannot be created
between the surface and the modules to allow for such a rotation.

HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot 407

chassis housing twoHiGen connectors; one in parallel to, and the other perpendicular
to the hinge axis. The parallel connector is fixed to the chassis whereas the perpen-
dicular connector has a rotational degree of freedom through its center, forming a
wheel. This gives a total of four connectors and two wheels per module.

HiGen connectors (described in more detail in [15]) operate by using a central
drive motor to translate and rotate four hooks. These hooks latch on to hooks of
an opposing connector, creating a genderless connection that allows for single-sided
disconnect. As part of this latching process, electrical connections aremade, allowing
for communication and power transfer across the connectors.

Each HyMod unit consists of sixteen custom ABS plastic components (excluding
the four connectors) created using 3D printing technology, fifteen custom circuit
boards, two slip rings, two battery packs, and several off-the-shelf items. Four DC
geared motors are used to drive the three degrees of freedom of the module (two
paired together for the hinge joint), each with a ratio of 154:1 and a quoted torque
of 847 mNm at 6 V. An additional 5:1 gear ratio is applied on top of each motor
gearbox, increasing the torque of the rotational joints and allowing the motors to be
offset from each drive axis. This setup is what facilitates the use of two motors to
drive the hinge joint, enabling all motors to be identical whilst allowing the hinge
joint to offer effectively twice the torque of the other degrees of freedom. This also
simplifies their control because the same driver electronics can be used for each
motor. The housings of the four connectors are modified from the original design to
allow for extramounting points for thewheel hubs and the addition of infrared sensors
for distance sensing. Internal sensing is achieved using a potentiometer, two optical
encoder setups, and an Inertial Measurement Unit (IMU). To allow for continuous
rotation of the wheels whilst passing power and communication to their connectors,
slip ring components are used. This is a solution adopted by past systems [14, 18].

The module measures 128mm × 128mm × 94mm, when the hinge is at zero
degrees. The size is governed by the dimensions of the HiGen connector, the height
of the slip rings, and the chosen wheel diameter of 94mm. This wheel diameter
gives the module a 4mm ground clearance when oriented for driving. The separation
between modules in a cubic lattice is 140mm due to the connectors extending out
of their housings by 12mm during connection. To take advantage of this ability the
module is designed to fit within a spherical volume, allowing for rotation around
three axes without risk of colliding with neighboring lattice modules [15, see Fig. 4].
As such the module shares visual similarity with the Roombots [18] platform, which
uses its spherical design to enable the wheel-based locomotion of modules, rather
than to provide clearance for self-reconfiguration. Figure6 shows renders of the three
main sections that form a complete HyMod unit. Additionally, a breakdown of the
main HyMod unit properties is shown in Table2.

408 C. Parrott et al.

Fig. 6 3D renders of the HyMod unit’s a wheel, b processing half, and c power half

Table 2 Properties of a HyMod unit

Property Value

Size 128× 128× 94mm

Lattice spacing 140mm

Ground clearance 4mm

Weight 810 g

Controllers 1 × PJRC Teensy 3.2

4 × Atmel ATmega324P (HiGen controller)

Communication 1 × EGBT-046S Bluetooth modem

1 × NXP fault-tolerant CAN transceiver

Sensors 1 × Sparkfun 9 DOF sensor stick IMU (accelerometer, gyro, magnetometer)

12 × Vishay reflective optical sensor (infrared proximity)

Motors 4 × Pololu 154:1 metal gearmotor

4 × Solarbotics 298:1 mini metal sealed gear motor

Power supply 1 × Pololu step-up voltage regulator (set to 9 V)

Batteries 2 × Turnigy 3.7 V, 750 mAh round li-po cells (total 7.4 V, 750 mAh)

2.2.1 Electronics

HyMod contains 15 custom circuit boards: 1 × processing board, 1 × Bluetooth
board, 1 × power board, 4 × HiGen controller, 2 × motor driver, 2 × encoder
board, and 4 × contact ring. The arrangement of boards is shown in Fig. 7a.

The main microcontroller for each HyMod unit is a Teensy 3.2, a 32-bit ARM
Cortex-M4 based development board running at 96 MHz. This board has built-in
USB, a Controller Area Network (CAN) controller, and can be programmed with
the popular Arduino development environment. The Teensy is sandwiched between
the Bluetooth board and processing board; the former acts as an adapter to an off-
the-shelf modem, and the latter houses additional CAN components and connects to
an Inertial Measurement Unit. Figure7b shows the assembled board stack.

Each HyMod unit is powered by two 750 mAh lithium polymer (li-po) battery
packs (one in each module half) connected in series to give 7.4 V. The power board
(Fig. 7c) takes this voltage and, via a boost regulator, produces a 9V output. This

HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot 409

B
attery

Bluetooth
Teensy

Processing
IMU

HiGen Controller - Wheel

HiGen Controller - Wheel

H
iG

en C
ontroller - Side H

iG
en

 C
on

tro
lle

r -
 S

id
e

Power
Boost

Regulator
B

at
te

ry

IR
IR

IR IR

IR
IR

IRIR

Encoder

Encoder

M
otor

D
river

Contact Ring

C
ontact R

ing

Contact Ring

C
on

ta
ct

 R
in

g

M
ot

or
D

riv
er

(a)

(b) (c)

(d)

Fig. 7 a Block diagram showing how the circuit boards and other components within a HyMod
unit connect together. White blocks are the custom boards created for this project. Assembled
b processing, c power and d HiGen controller boards are also shown

output is used to power the two motor driver boards, which each drive two joint
motors. Additionally, to enable power sharing between modules, the power board
passes the 9V output through an ideal diode to create a power bus. The diode prevents
the current of one power supply from feeding back in to another and potentially
causing damage. The power bus is then used to produce a 5V supply for the rest of
the electronics within the module.

The connectors in HyMod units are controlled using custom HiGen controller
boards. These boards feature an ATmega324P, a motor driver, two contact switches,
an analogue switch, and contact ring connections. The use of a separate microcon-
troller allows for each connector to be treated as a device on an internal commu-
nication network. Additionally, it reduces the number of connections that need to
be passed through the slip rings. There are two versions of the HiGen controller
board in each module (Fig. 7d), one for the wheel connectors and one for the side
connectors. Both boards perform the same basic functions (e.g. connector actuation,
infrared proximity sensing, and neighbor communication) but differ in geometry and
specialized features. For instance the wheel HiGen controller has a grey code disc
etched into it for absolute positioning of the wheel, whereas the side controller has
a RGB LED for state indication and general debugging of a module.

2.2.2 Communication

Modular systems can be thought of as computer networks, where eachmodule acts as
a node, able to communicate with other nodes. There are two main ways this can be
achieved, referred to as local and global communication [5]. Local communication

410 C. Parrott et al.

CAN
I2C

Serial

Connector 1

C
onnector 0

Connector 3

μC

μC

μCPower
System

μC

S S

S

S

M M

M

M
C

on
ne

ct
or

 2

BT

IMU

USB

Teensy

Power

Connector 1

C
onnector 0

Connector 3

μC

μC

μCPower
System

μC

S S

S

S

M M

M

M

C
on

ne
ct

or
 2

BT

IMU

USB

Teensy

Fig. 8 The power and communication network formed between two HyMod units. BT, µC, M,
and S denote Bluetooth, microcontrollers, connector motors, and bus switches, respectively

allows each module to communicate with its immediate neighbors, but requires that
messages be relayed in order to reach modules other than direct neighbors. Global
communication allows eachmodule to sendmessages directly to any othermodule on
the same network, but the identifier of the recipient must be known in advance. Due
to the different use cases of local and global communication, both are implemented
by HyMod. In addition, each unit features an internal I2C network to communicate
between components, with the Teensy acting as the master.

Local communication between two HyMod units is achieved using a serial link.
Messages sent from one module to another are first sent from the Teensy over I2C
to the HiGen controller in question. This controller buffers the message and sends it
over the serial link to the neighboring module’s HiGen controller, which stores the
message until the neighboring Teensy is ready to collect it.

Global communication between HyMod units is achieved using CAN. CAN al-
lows for multiple connected nodes to communicate with each other by broadcasting
messages on a common bus. The messages are picked up by all other networked
nodes, which can then act upon the data based on an identifier. By default, CAN is
designed for fixed networks where there is a single line with termination resistors
at the ends. Because HyMod units are self-reconfigurable, fault-tolerant CAN was
used, as this places the termination resistors at each node instead. By using digital
potentiometers along with FT CAN, the network resistance can be dynamically ad-
justed based on the number of nodes, maintaining a stable network. Additionally, to
avoid looping CAN networks that get created during self-reconfiguration, HyMod
employs analogue switches at its connectors to break the network. The use of these
switches also allows for hybrid networks to exist [5], whereby the global network
is divided in to smaller sub-networks for task processing, with local communication
being used to bridge sub-networks when necessary. Figure8 shows both the power
and communication networks produced between two HyMod units.

HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot 411

Fig. 9 The experimental setups used for conducting a driving and b lifting experiments with a
single HyMod unit, tethered to a bench power supply

3 Experiments
To verify the capabilities of HyMod, a single unit was used. Three main experiments
were performed using the unit, examining driving speed, lifting capability and con-
nector actuation. For the purpose of these experiments the unit was tethered to a
bench power supply set to 8.4 V (replicating the maximum battery voltage). Videos
of the experiments can be found in the online supplementary material [13].

The driving speed ofHyModwas determined by placing themodule on the ground
and timing how long it took for it to travel 2m in a straight line. The experimental
setup can be seen in Fig. 9a. The result of this experiment is that the module has a
driving speed of 0.1m s −1.

The lifting capability of HyMod was tested using a 3D printed variable mass
holder that attaches via a HiGen connector. The holder weights 520 g, and supports
up to 1000 g (in 100g increments) of additional weight. The distance from the center
of theHyModunit to the center ofmass of the holder is 280mm (two lattice spacings).
Lifting tests were conducted by clamping the HyMod unit to a table and having its
hinge joint rotate between −90 and +90 degrees (decelerating on the downward
arc). The experimental setup used for these tests can be seen in Fig. 9b. The unit
was tested lifting masses up to 1120 g, which is equivalent to lifting 1.8 modules
in-line. Greater masses than 1120g were attempted, but resulted in the failure of the
3D printed gears on the hinge joint’s motors, followed by the docking hooks on the
HiGen connectors themselves. If these components were constructed with stronger
materials, the stated torque value of the motors suggests that higher lifting capacities
would be achievable.

A final test was performed with HyMod, verifying that the two HiGen controller
boards were able to operate the connectors as intended. Each connector was pro-
grammed to drive their motors between retracted and extended states every 2 s. The
result was that both controller boards were able to successfully actuate the connec-
tors. Further experiments involving HiGen can be found in [15].

412 C. Parrott et al.

Fig. 10 Four of the extensions created for the HyMod system: a Gripper extension, b Mecanum
Wheel extension, c Camera extension, d Modular Surface extension. a–c are placed on a holder,
which can be attached to the side of (d) to create a pick-up location

4 HyMod Extensions
Unlike bespoke robotic systems made for specific tasks, modular robotic systems
are intended to perform a wide variety of tasks. Some of these tasks may require
specialized hardware, meaning that all modules in a homogeneous modular robot
would need to feature this hardware in order for said tasks to be accomplished.
This would increase the cost and complexity of each module. To overcome this
problem, the HyMod system allows for extensions; modules built to add specialized
capabilities to a modular robot. Past systems to employ extensions include [12, 26].

HyMod extension modules must contain processing and local communication
(primarily for identification purposes), as well as at least one passive HiGen connec-
tor. A passive connector is one that is in a constant extended state, allowing for an
active connector to attach to it without prior communication. This removes the need
for extensions to contain their own power source. Extensions could therefore reside
in known pick-up locations to be collected by modular robots when needed.

Figure10 shows four extensions that have been developed for the HyMod system:
(a) the Gripper extension uses an off-the-shelf end effector controlled by a servo
motor, (b) the Mecanum Wheel extension allows for omni-directional motion when
four or more are placed on a system (inspired by [1]), (c) the Camera extension
uses a Raspberry Pi Zero 1.3 and Pi Cam to add video and high-powered processing
to the system, and (d) the Modular Surface extension allows for square grids to
be produced for modules to self-reconfigure across (inspired by [4]). The Gripper,
Mecanum Wheel, and Camera weight 220 g, 560 g, and 125 g, respectively.

Figure11 illustrates how (a) a manipulator arm and (b) an omni-directional rover
can be constructed out of combinations of HyMod units and extensions. The manip-
ulator arm takes advantage of the 3-DOF of each unit to create a 7-DOFmanipulator,
with the Gripper extension mounted as the end effector. The omni-directional rover
takes advantage of the two continuous rotational degrees of freedom of each HyMod
unit to drive MecanumWheel extensions to produce motion in any direction on a flat
surface. A Camera extension is mounted at the front of the rover to allow for either
tele-operation or autonomous operation (e.g. object following).

HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot 413

Fig. 11 Two example configurations of HyMod system modules; a three units and two extensions
(one Gripper extension and one Modular Surface extension) forming a manipulator arm, and b two
units and five extensions (one Camera extension and four MecanumWheel extensions) forming an
omni-directional rover

5 Conclusions
This paper presented HyMod, a hybrid modular robot capable of self-reconfiguration
and wheel-based locomotion. The module integrates the HiGen connector, allowing
for single-sided disconnect and enabling units to rotate freely in place within a
cubic lattice position. Details of the module were given and experiments conducted,
examining the movement and lifting capabilities of a single unit. Additionally, four
extensions were constructed, augmenting the capabilities of the HyMod system in
the areas of manipulation, mobility, perception, and support.

Future work will involve the completion of additional HyMod units, allowing
several configurations of units and extensions to be demonstrated, as well as enabling
self-reconfiguration strategies to be explored.

Acknowledgements This research was funded by the Engineering and Physical Sciences Research
Council (EPSRC) through scholarship support (C. Parrott) and grant no. EP/K033948/1.

References

1. Anderson, J.: RoboPlay 2014 - mecanum linkbot interlude. YouTube Video. http://www.
youtube.com/watch?v=GqClygCJpKs (2016). Accessed 8 July 2016

2. Christensen, D.J., Østergaard, E.H., Lund, H.H.: Metamodule control for the ATRON self-
reconfigurable robotic system. In: Proceedings, 8th Conference on Intelligent Autonomous
Systems, pp. 685–692 (2004)

3. Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots - design of the SMORES
system. In: Proceedings, 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4464–4469 (2012)

4. Dinh, T.K., Spröwitz, A., Bonardi, S., Ijspeert, A.: Alignment of a Roombot metamodule and
extendable grid (2010) (Summer Project)

5. Garcia, R.F.M., Stoy, K., Christensen, D.J., Lyder, A.: A self-reconfigurable communication
network for modular robots. In: Proceedings, 1st International Conference on Robot Commu-
nication and Coordination, pp. 23–30 (2007)

6. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots.
IEEE Trans. Robot. 22(6), 1115–1130 (2006)

http://www.youtube.com/watch?v=GqClygCJpKs
http://www.youtube.com/watch?v=GqClygCJpKs

414 C. Parrott et al.

7. Jing, G., Tosun, T., Yim, M., Kress-Gazit, H.: An end-to-end system for accomplishing tasks
with modular robots. In: Proceedings, 2016 Robotics: Science and Systems (2016)

8. Kernbach, S., Schlachter, F., Humza, R., Liedke, J., Popesku, S., Russo, S., Ranzani, T., Man-
fredi, L., Stefanini, C.,Matthias, R.: Heterogeneity for increasing performance and reliability of
self-reconfigurable multi-robot organisms. In: Proceedings, IROS 2011 Reconfigurable Mod-
ular Robotics Workshop (2011)

9. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distributed self-
reconfiguration of M-TRAN III modular robotic system. Int. J. Robot. Res. 27(3–4), 373–386
(2008)

10. Kutzer, M.D.M., Moses, M.S., Brown, C.Y., Scheidt, D.H., Chirikjian, G.S., Armand, M.:
Design of a new independently-mobile reconfigurable modular robot. In: Proceedings, 2010
IEEE International Conference on Robotics and Automation, pp. 2758–2764 (2010)

11. Liedke, J., Matthias, R., Winkler, L., Wörn, H.: The collective self-reconfigurable modular
organism (CoSMO). In: 2013 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, pp. 1–6 (2013)

12. Lyder, A., Garcia, R.F.M., Stoy, K.: Genderless connection mechanism for modular robots
introducing torque transmission between modules. In: Proceedings, ICRA 2010 Workshop on
Modular Robots, State of the Art, pp. 77–81 (2010)

13. Online Supplementary Material (2016). http://naturalrobotics.group.shef.ac.uk/supp/2016-
005/

14. Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the ATRON lattice-based self-
reconfigurable robot. Auton. Robot. 21(2), 165–183 (2006)

15. Parrott, C., Dodd, T.J., Groß, R.: HiGen: a high-speed genderless mechanical connectionmech-
anism with single-sided disconnect for self-reconfigurable modular robots. In: Proceedings,
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3926–3932
(2014)

16. Parrott, C., Dodd, T.J., Groß, R.: Towards a 3-DOF mobile and self-reconfigurable modular
robot. In: IROS 2014 Modular and Swarm Systems Workshop (unpublished) (2014)

17. Ryland, G.G., Cheng, H.H.: Design of iMobot, an intelligent reconfigurable mobile robot
with novel locomotion. In: Proceedings, 2010 IEEE International Conference on Robotics and
Automation, pp. 60–65 (2010)

18. Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A.: Roombots: a hardware
perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot.
Robot. Auton. Syst. 62(7), 1016–1033 (2014)

19. Tang, S., Zhu, Y., Zhao, J., Cui, X.: The UBot modules for self-reconfigurable robot. In:
Proceedings, 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms
and Robots, pp. 529–535 (2009)

20. Wei, H., Chen, Y., Tan, J., Wang, T.: Sambot: a self-assembly modular robot system. Proc.
IEEE/ASME Trans. Mech. 16(4), 745–757 (2011)

21. Yerpes, A., Baca, J., Escalera, J.A., Ferre, M., Aracil, R.: Modular robot based on 3 rotational
DoFmodules. In: Proceedings, 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 889–894 (2008)

22. Yim, M., Duff, D.G., Roufas, K.D.: Polybot: a modular reconfigurable robot. In: Proceedings,
2000 IEEE International Conference on Robotics and Automation, pp. 514–520 (2000)

23. Yim, M., m. Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian,
G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot.
Automa. Mag. 14(1), 43–52 (2007)

24. Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.J.: Towards robotic
self-reassembly after explosion. In: Proceedings, 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2767–2772 (2007)

25. Zykov, V., Chan, A., Lipson, H.: Molecubes: an open-source modular robotics kit. In: Proceed-
ings, IROS 2007 Self-Reconfigurable Robotics Workshop (2007)

26. Zykov,V.,William, P., Lassabem,N., Lipson,H.:Molecubes extended: diversifying capabilities
of open-source modular robotics. In: Proceedings, IROS 2008 Self-Reconfigurable Robotics
Workshop (2008)

http://naturalrobotics.group.shef.ac.uk/supp/2016-005/
http://naturalrobotics.group.shef.ac.uk/supp/2016-005/

Network Characterization of Lattice-Based
Modular Robots with Neighbor-to-Neighbor
Communications

André Naz, Benoît Piranda, Thadeu Tucci, Seth Copen Goldstein
and Julien Bourgeois

Abstract Modular robots form autonomous distributed systems in which mod-
ules use communications to coordinate their activities in order to achieve common
goals. The complexity of distributed algorithms is generally expressed as a func-
tion of network properties, e.g., the number of nodes, the number of links and the
radius/diameter of the system. In this paper, we characterize the networks of some
lattice-based modular robots which use only neighbor-to-neighbor communications.
We demonstrate that they form sparse and large-diameter networks. Additionally, we
provide tight bounds for the radius and the diameter of these networks. We also show
that, because of the huge diameter and the huge average distance of massive-scale
lattice-based networks, complex distributed algorithms for programmable matter
pose a significant design challenge. Indeed, communications over a large number of
hops cause, for instance, latency and reliability issues.

1 Introduction

Modular robots form autonomous distributed systems in which modules communi-
cate with each other to coordinate their activities in order to achieve common goals.

A. Naz (B) · B. Piranda · T. Tucci · J. Bourgeois
FEMTO-ST Institute UMR CNRS 6174, University of Bourgogne
Franche-Comte (UBFC), Montbeliard, France
e-mail: andre.naz@femto-st.fr

B. Piranda
e-mail: thadeu.tucci@femto-st.fr

T. Tucci
e-mail: benoit.piranda@femto-st.fr

J. Bourgeois
e-mail: julien.bourgeois@femto-st.fr

S. Copen Goldstein
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: seth@cs.cmu.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_29

415

416 A. Naz et al.

In this paper, we focus our attention on lattice-based modular robots composed of
identical modules that communicate together using only neighbor-to-neighbor com-
munications. In lattice-based modular robots, modules are arranged in some regular
2-dimensional or 3-dimensional lattice structure. Modules are connected to their
immediate neighbors in the lattice. We consider different kinds of lattices, namely
the square, the hexagonal, the simple cubic and the face-centered cubic lattices (see
Fig. 1). In the neighbor-to-neighbor communication model, modules communicate
only with adjacent modules. This communication model is fundamentally different
than the global communication model where all modules can directly communicate
together through a global bus. This approach works well in small networks but it
is not scalable. Indeed, the number of hosts a bus can support is limited and packet
collisions may frequently occur. Some hybrid approaches have been proposed but
they are not common in modular robotics.

The considered class ofmodular robots captures awide variety of existing systems,
e.g., the Telecubes [28], theMiche [12] and theDistributed Flight Array [24]modular
robots, some of the self-assembling systems used in [4] and the modular robotic
systems developed in the Smart Blocks [26] and the Claytronics [13, 14] projects.
As this work is part of the Smart Blocks and the Claytronics projects, we illustrate
it using the modular robots designed in these projects, namely the Smart Blocks, the
millimeter-scale 2DCatoms [18], theBlinkyBlocks [19] and the 3DCatoms [25] (see
Fig. 1). These modular robots are respectively arranged in the square, the hexagonal,
the simple cubic, and the face-centered cubic lattice.

The Smart Blocks and the Claytronics projects propose some interesting applica-
tions based on large-scale modular robotic systems. The Smart Blocks project aims
to build a large distributed modular system to convey small and fragile objects, by
attaching many modules together, each one equipped with a conveyance surface.
The goal of the Claytronics project is to use up to millions of modules to build pro-
grammable matter, i.e., matter that can change its physical properties in response to
external and programmed events.

Communication is central tomodule coordination.Message and time complexities
of distributed algorithms are generally expressed as a function of network properties
(e.g., number of nodes, number of links, node degree, radius/diameter of the system).
Many algorithms target a specific class of networks. For instance, somealgorithms are
more efficient in sparse networks than in dense networks (e.g., the virtual coordinate-
based routing protocol in [31]). Moreover, the diameter indicates the number of hops
that is required to broadcast information through the whole system.Many distributed
algorithms have a worst-case time complexity that is linear to the diameter (e.g.,
leader election algorithms [21, 22]) or a precision that decreases with the number of
hops that messages have to travel (e.g., time synchronization protocol [23]). Thus, it
is crucial to take into account the network properties in order to design and choose
appropriate algorithms, especially in large-scale systems.

The contribution of this paper is to characterize the network of our class ofmodular
robots based on their lattice type and the number of modules in the system. We
demonstrate that these modular robots form sparse and large-diameter networks.
Moreover, we provide tight bounds on the radius and the diameter of these networks.

Network Characterization of Lattice-Based … 417

Fig. 1 The different
arrangement lattices
considered in this paper
associated with the modular
robots used to illustrate our
work. For a lattice L , ΔL
denotes its coordination
number, i.e., the maximum
number of modules to which
a module can be connected

Note that we assume perfect alignment of themodules in the lattice. However, defects
in the lattice which may cause unreliable and intermittent connections, will only
make the network sparser and increase both its radius and its diameter. We also
discuss our results and show that efficient and effective distributed algorithms for
programmable matter and more generally for massive-scale lattice-based networks
may be challenging to design. Indeed, communications over a large number of hops
cause, for instance, latency and reliability issues. To the best of our knowledge, this
paper is the first work to characterize the networks of our class of modular robots.

The rest of this paper is organized as follows. Section2 presents the related work.
Then, Sect. 3 defines the system model and some terms. Afterwards, Sect. 4 charac-
terizes the network density for our class of modular robots. Section5 provides tight
bounds of the radius and the diameter of the networks for our class of modular robots.
Then, Sect. 6 discusses our results. Finally, Sect. 7 concludes this paper and Sect. 8
suggests future research directions.

2 Related Work

To the best of our knowledge, network characterization has attracted little attention
in the modular robotic community. In [10], the authors compare the efficiency of
neighbor-to-neighbor communication and global communication. Based on experi-
mentally validated models, the authors compare the information transmission time
in different scenarios for systems composed of 10–1000 modules. As mentioned in

418 A. Naz et al.

Sect. 1, global communication through a shared medium is less scalable with system
size. Since we envision systems composed of millions of units, global communica-
tion is not an option. In this paper, we focus our attention on lattice-based modular
robots in which modules communicate with each other using neighbor-to-neighbor
communications. These modular robots form lattice-based networks.

As characterizing network properties is crucial for choosing appropriate algo-
rithms and designing efficient new ones, graphs and networks have been extensively
studied. Studies have been conducted on various graphs and networks, e.g., the Inter-
net [7, 17, 20], theWorldWideWeb [1], sensor networks [16], small-world networks
[15, 30], unit disk graphs [9], and lattice-based networks [2, 3, 15]. These studies
are network specific. They are either measurement based (e.g., [1, 7, 20]), or purely
theoretical using the intrinsic characteristics of the network (e.g., [2, 3, 9, 16]).

Due to the regular tiling of the space in lattices, lattice-based networks obey certain
geometric rules that can be used to analyze these networks. In [2, 15], the authors
study some lattice-based networks, but they only consider networks embedded in
the square lattice and restrict their analyze to specific network topologies, e.g., the
square, the ring, etc. Their results are not generalizable to other lattices and arbitrary
network topologies. In [3], the author states that the average distance between nodes

in lattice networks is on the order of n
1
DL , where n is the number of nodes and DL is

the dimension of the considered lattice.
In this paper, we consider lattice-based networks embedded in any of the square,

hexagonal, simple-cubic and face-centered lattices. We show that these networks are
sparse and large diameter. Moreover, we provide tight lower and upper bounds for
the radius and the diameter of these networks.

3 System Model and Definitions

In this paper, we consider lattice-based modular robots with neighbor-to-neighbor
communications. In lattice-based modular robots, modules are arranged in some reg-
ular 2-dimensional or 3-dimensional lattice L . Here, we consider the Square (S), the
Hexagonal (H), the Simple Cubic (SC) and the Face-Centered Cubic (FCC) lattices.
Modules can only occupy a set of discrete positions defined by L . Note that modular
robots may contain holes, i.e., some positions of L may be unoccupied. Because we
assume neighbor-to-neighbor communications, L also defines the module connec-
tivity: Modules can directly communicate only with their immediate neighbors in L .
DL denotes the dimension of L and ΔL its coordination number, i.e., the maximum
number of modules to which a module can be connected.

Arbitrarily arranged modular robotic systems form lattice-based networks that
can be modeled by connected, undirected, unweighted and lattice-based graphs G =
(V, E), where V is the set of vertices (representing the modules), E the set of edges
(representing the connections), |V | = n, the number of vertices and |E | = m, the
number of edges. δ(vi) denotes vi ’s degree, i.e., the number of vertices to which vi is

Network Characterization of Lattice-Based … 419

connected. d(vi , v j) refers to the distance between vertices vi and v j , i.e., the number
of edges on a shortest path between vi and v j . The radius, r , and the diameter, d, of
G are respectively defined as r = min

vi∈V
max
v j∈V

d(vi , v j) and d = max
vi∈V

max
v j∈V

d(vi , v j).

Notice that we assume perfect alignment of the modules in the lattice. However,
defects in the lattice which may cause unreliable and intermittent connections, will
only make the network sparser and increase both its radius and its diameter.

We now define some specific graphs used in this paper. Let VL be the infinite set
of vertices representing the infinite set of positions in L . L-Sphere(vc, r) is a sphere
embedded in L , where vertex vc is the center of the sphere and r ∈ N its radius. It
contains the set of vertices in VL whose distance from vc is equal to r :

L-Sphere(vc, r) = {vi ∈ VL | d(vi , vc) = r} (1)

L-Ball(vc, r) is a ball embedded in L , where vc the center of the ball and r ∈ N

its radius. It contains the set of vertices in VL whose distance from vc is less than or
equal to r :

L-Ball(vc, r) = {vi ∈ VL | d(vi , vc) ≤ r} (2)

=
r⋃

i=0

L-Sphere(vc, i) (3)

By abuse of notation, L-Sphere and L-Ball can respectively refer to sphere and
ball graphs embedded in L where the connectivity between vertices is induced by the
lattice structure of L . L-Sphere(r) and L-Ball(r) respectively refer to a sphere and
a ball of radius r in the lattice L . In all the illustrations of this paper, L-Sphere(r)
are gradually colored from red to blue according to the value of r .

4 Network Density

In this section, we show that the networks formed by our class of modular robots are
all sparse.

Corollary 1 Let G = (V, E) be the network graph of an arbitrarily arranged mod-
ular robotic system that fits the model described in Sect. 3. The vertex degree, δ(vi),
of any vertex vi ∈ V is bounded by:

0 ≤ δ(vi) ≤ ΔL (4)

Lemma 1 Let G = (V, E) be the network graph of an arbitrarily arrangedmodular
robotic system that fits the model described in Sect. 3. The number of edges of G, m,
is bounded as follows:

420 A. Naz et al.

n − 1 ≤ m ≤ nΔL (5)

Proof Lower Bound. A connected graph must have at least n-1 edges [15]. Upper
Bound. Because of Corollary 1, every module cannot be connected to more than ΔL

others. Thus, the number of edges of G is upper-bounded by nΔL . Note that a tighter
upper bound can be established by considering the lattice structure of L .

Theorem 1 Let G = (V, E) be the network graph of an arbitrarily arranged mod-
ular robotic system that fits the model described in Sect. 3. If |V | = n is large, then
G is a sparse graph, i.e., m � n2.

Proof If n is large, then ΔL � n. Thus, we have nΔL � n2. Then, because of
Lemma 1, we obtain m � n2.

5 Network Radius and Diameter

In this section, we establish tight lower and upper bounds of the radius and the
diameter of the networks of our class of modular robots.

5.1 Preliminary Materials

This section presents some preliminary results used in the computations and the
demonstrations of the radius and the diameter bounds of modular robot networks.
We recall that VL is the infinite set of vertices representing the set of positions in the
lattice L .

Corollary 2 ∀vc ∈ VL , ∀r ∈ N, L-Ball(vc, r) is centrally symmetric: The reflec-
tion v j of every vertex vi at distance d(vi , vc) = k through vc is also at distance k
from vc and d(vi , v j) = 2k.

Proof Let L-Ball(vc, 1) be the ball of radius 1 and vc its center. All the vertices
except vc are at distance 1 from vc. Along every axis of the lattice L , two vertices, v1
and v2, are connected to vc, one in each direction. These two vertices are symmetric
through vc, at distance 1 from vc and at distance 2 from each other.

Let L-Ball(vc, r) be the ball of radius r and vc its center. We assume that
L-Ball(vc, r) is centrally symmetric. Let L-Ball(vc, r + 1) be the ball of radius r +
1with vc its center.Byconstruction, L-Ball(vc, r + 1) is obtained from L-Ball(vc, r)
by adding all the vertices at distance r + 1 from vc. Let us consider v3 and v4 in
L-Ball(vc, r) such that v3 and v4 are symmetric through vc and d(v3, v4) = 2r . In
order to construct L-Ball(vc, r + 1), we add to v3 and v4 two vertices v5 and v6 on
the same axis but in the opposite direction such that d(v5, vc) = d(v6, vc) = r + 1. v5
and v6 are symmetric through vc. Moreover, there is no shortcut between v5 and v6,

Network Characterization of Lattice-Based … 421

thus, d(v5, v6) = 1 + d(v3, v4) + 1 = 2 + 2r = 2(r + 1). Thus, L-Ball(vc, r + 1)
is centrally symmetric.

By induction, ∀vc ∈ VL , ∀r ∈ N, L-Ball(vc, r) is centrally symmetric.

Lemma 2 ∀vc ∈ VL , ∀r ∈ N, the diameter, d, of L-Ball(vc, r) is equal to 2r .

Proof As stated in Corollary 2, L-Ball(vc, r) is centrally symmetric. Thus, ∀vi ∈
L-Ball(vc, r) such that d(vi , vc) = r, ∃v j ∈ L-Ball(vc, r) with d(vi , v j) = 2r . By
construction, �vi ∈ L-Ball(vc, r), d(vi , vc) > r . As a consequence, the diameter of
L-Ball(vc, r), i.e., the largest distance between any two vertices is equal to d = 2r .

Corollary 3 ∀vc ∈ VL , ∀r ∈ N, L-Ball(vc, r) is the minimum-radius and mini-
mum-diameter existing graph composed of nL-Ball(vc, r) = | L-Ball(vc, r)| vertices
in L.

Proof By construction, in L-Ball(vc, r) all the positions of the lattice L at dis-
tance less than or equal to r from vc are occupied. Thus, if we remove a ver-
tex v1 and add it to an empty place adjacent to a full one (the system should
remain connected) occupied by the vertex v2, the new location of v1 must be at
distance r + 1 from vc. Moreover, every vertex would be at distance r + 1 or more
from at least one other vertex. Thus, the radius of the graph would be equal to
r + 1. Moreover, because L-Ball(vc, r) is centrally symmetric (See Corollary 2),
∃v3 ∈ L-Ball(vc, r), d(v2, v3) = 2r . Because of Lemma 2, d(v2, v3) is the diameter
of L-Ball(vc, r). Since there is no shortcut between v1 and v3 in its new location,
d(v1, v3) = d(v2, v3) + 1 = 2r + 1. Thus, the diameter of the graph would be equal
to 2r + 1.

5.2 Radius and Diameter Bounds

Theorem 2 Let G = (V, E) be the network graph of an arbitrarily arranged mod-
ular robotic system that fits the model described in Sect. 3. Let L-Ball(rb) and
L-Ball(rb + 1) be two ball graphs embedded in L such that the number of ver-
tices of G, n, is between the number of vertices of these two balls, i.e., nL-Ball(rb) ≤
n < nL-Ball(rb + 1). The radius, r , and the diameter, d, of G are tightly bounded as
follows:

rb ≤ r ≤ �n − 1

2
� (6)

2rb ≤ d ≤ n − 1 (7)

Proof Upper Bound. In a connected graph, any two vertices are at most separated
by all the others. In such a graph, the n vertices form a line of n − 1 edges. Thus, the
largest distance between any two vertices, i.e., the diameter of G, is at most equal to
n − 1 edges. The radius of G is at most equal to the half of that line, i.e., r ≤ � n−1

2 �.

422 A. Naz et al.

Fig. 2 An S-Ball(4) and an H -Ball(4) with color gradient from the center of the ball

Lower Bound. Because of Corollary 3, L-Ball(rb) is the minimum-radius and
minimum-diameter graph composed of nL-Ball(rb) vertices. Thus, with n vertices,
G has a radius at least equal to rb and a diameter at least equal to the diameter of
L-Ball(rb), which is, because of Lemma 2, equal to 2rb.

In the rest of this section, we establish the formula to compute the exact radius of
an L-Ball according to its number of vertices in the different lattices we consider.

5.2.1 Systems in Two Dimensions: The Square and Hexagonal Lattices

In this section, we compute the exact radius of an L-Ball given the number of
vertices it has for the case of two-dimensional systems embedded in the Square (S)
and Hexagonal (H) lattices. Figure2 depicts an S-Ball and an H -Ball of radius 4,
respectively composed of Smart Blocks and 2D Catoms.

Lemma 3 In the square and the hexagonal lattices, the number of vertices in a
sphere of radius r ≥ 1, nL-Sphere(r,ΔL), can be computed by:

nL-Sphere(r,ΔL) = rΔL (8)

Proof As illustrated in Fig. 2, in the square and the hexagonal lattices, a sphere of
radius r ≥ 1 is composed of ΔL segments of length r modules. Consequently, the
number of vertices is equal to rΔL .

Theorem 3 In the square and the hexagonal lattices, the radius of a ball composed
of n ≥ 1 vertices, rL-Ball(n,ΔL), can be computed by:

rL-Ball(n,ΔL) = 1

2

(√

1 + 8(n − 1)

ΔL
− 1

)
(9)

Network Characterization of Lattice-Based … 423

Proof By definition, L-Ball(r) is the union of all the L-Sphere(i) for i ranging
from 0 to r . Thus, in the square and the hexagonal lattices, for r ≥ 1, the number of
vertices in an L-Ball(r), nL-Ball(r,ΔL), can be computed as follows:

nL-Ball(r,ΔL) =
r∑

i=0

nL-Sphere(i,ΔL) (10)

= 1 +
r∑

i=1

iΔL (11)

= 1

2
r2ΔL + 1

2
rΔL + 1 (12)

To obtain Eq.9, we solve Eq.10 for r and keep only the positive root.

5.2.2 Systems in Three Dimensions: The Simple Cubic
and Face-Centered Cubic Lattices

In this section, we compute the exact radius of an L-Ball given the number of vertices
it contains for the case of three-dimensional systems embedded in the Simple Cubic
(SC) and Face-Centered Cubic (FCC) lattices. Figures3 and 4 depict the SC-Ball
and the FCC-Ball of radius 2, respectively composed of Blinky Blocks and 3D
Catoms. Both systems can be decomposed into horizontal layers.
The Simple Cubic Lattice

Lemma 4 In the simple cubic lattice, the number of vertices in a sphere of radius
r ≥ 1, nSC-Sphere(r), can be computed by:

Fig. 3 An SC-Ball(2) of
Blinky Blocks and its
decomposition in horizontal
layers with color gradient
from the center of the ball

424 A. Naz et al.

Fig. 4 An FCC-Ball(2) of
3D Catoms and its
decomposition in horizontal
layers with color gradient
from the center of the ball

nSC-Sphere(r) = nS-Sphere(r) + 2
r−1∑

i=0

nS-Sphere(i) (13)

= 2(2r2 + 1) (14)

Proof As illustrated in Fig. 3, a sphere of radius r in the simple cubic lattice can
be decomposed into 2r + 1 horizontal S-Spheres of different radii. Equation13 is
obtained by summing up all the size of the S-Spheres.

Theorem 4 In the simple-cubic lattice, the radius of a ball composed of n ≥ 1
vertices, rSC-Ball(n), can be computed by:

rSC-Ball (n) = 1

2

(
(
√
3
√
243n2 + 125 + 27n)

1
3

3
2
3

− 5

3
1
3 (

√
3
√
243n2 + 125 + 27n)

1
3

− 1

)

(15)

Proof By definition, L-Ball(r) is the union of all the L-Sphere(i) for i ranging
from 0 to r . Thus, for r ≥ 1, the number of vertices in an SC-Ball(r), nSC-Ball(r),
can be computed as follows:

nSC-Ball(r) =
r∑

i=0

nSC-Sphere(i) (16)

= 1 +
r∑

i=1

2(2i2 + 1) (17)

= 4

3
r3 + 2r2 + 8

3
r + 1 (18)

To obtain Eq.15, we solve Eq.16 for r and keep only the real root.

Network Characterization of Lattice-Based … 425

The Face-Centered Cubic Lattice

Lemma 5 In the face-centered cubic lattice, the number of vertices in a sphere of
radius r ≥ 1, nFCC-Sphere(r), can be computed by:

nFCC-Sphere(r) = 4r + 2(r + 1)2 + 2(r − 1)4r (19)

= 2(5r2 + 1) (20)

Proof As shown in Fig. 4, a sphere of radius r in the face-centered cubic lattice can
be decomposed into 2r + 1 horizontal layers. The base layer is an S-Sphere(r) and
contains 4r vertices. The bottomand the top layers both contain (r + 1)2 vertices. The
2(r − 1) other layers contain 4r vertices each. Equation19 is obtained by summing
up the number or vertices of each layer.

Theorem 5 In the face-centered cubic lattice, the radius of a ball of n ≥ 1 vertices,
rFCC-Ball(n), can be computed by:

rFCC-Ball(n) = 1

2

(
(
√
15

√
4860n2 + 343 + 270n)

1
3

15
2
3

−
7

15
1
3 (

√
15

√
4860n2 + 343 + 270n)

1
3

− 1

)

(21)

Proof Bydefinition, L-Ball(r) is the union of all the L-Sphere(i) for i ranging from
0 to r . Thus, for r ≥ 1, the number of vertices in an FCC-Ball(r), nFCC-Ball(r),
can be computed as follows:

nFCC-Ball(r) =
r∑

i=0

nFCC-Sphere(i) (22)

= 1 +
r∑

i=1

2(5i2 + 1) (23)

= 10

3
r3 + 5r2 + 11

3
r + 1 (24)

To obtain Eq.21, we solve Eq.24 for r and keep only the real root.

6 Discussion

In this paper, we demonstrated some properties of networks of lattice-based modular
robots with neighbor-to-neighbor communications. As shown in [5], this class of
modular robots is particularly suitable to design programmable matter, i.e., matter

426 A. Naz et al.

that can change its physical properties in response to some events. In our vision,
programmable matter will be composed of up to millions of modules [13, 14]. This
section discusses our theoretical results and the impact on the efficiency of distributed
algorithms for programmable matter and more generally for massive-scale lattice-
based networks.

More precisely, we compare lattice-based networks to small-world networks [30]
(e.g., the Internet network [17]) and to wireless ad-hoc networks (e.g., wireless
sensor networks, multi-robot networks, etc.). Since many large real-world networks
are small-world networks, it is legitimate to consider them for comparison. Wireless
ad-hoc networks are highly spatially dependent, like our class of networks. Indeed,
in wireless ad-hoc networks, nodes can only communicate with some neighboring
nodes within some limited range. Note that wireless ad-hoc networks can fall in the
class of lattice-based networks if they are deployed in a lattice structure.

We demonstrated that lattice-based networks are sparse networks (i.e., m � n2).
Because of Lemma 1 and because ΔL is bounded by a constant for all the lattices we
consider, the number of edges isΘ(n). Thus, lattice-based networks are sparser than
small-world networks that have Ω(nlog(n)) edges [30]. Wireless ad-hoc networks
can be sparse or dense depending on the deployment environment (area/volume,
obstacles, etc.), the deployment density and the node communication range.

In regular lattice networks, the typical distance between two nodes is ∼n
1
DL [3].

Thus, in lattice-based networks, i.e., lattice networks with potential holes, this dis-

tance is lower bounded by Ω(n
1
DL), while in small-world networks, this distance is

∼log(n) [3]. Small-world networks have typically short distances between arbitrary
pairs of nodes due to the presence of few long-range edges. As a consequence, small-
world networks tend to have a small diameter. In lattice-based and sparse wireless
ad-hoc networks, such long-range edges do not exist. Thus, these networks tend to
have a larger average distance and a larger diameter. These phenomena are accentu-
ated as the number of nodes in the network increases. Because programmable matter
is formed of millions of modules [13, 14], the networks we consider are much larger
and thus have a larger diameter than usual wireless ad-hoc networks that are typically
composed of dozens of nodes to tens of thousands of nodes. We demonstrated that
the radius and the diameter of lattice-based networks are lower bounded by Ω(3

√
n)

(Eqs. 9, 15 and 21 are all Ω(3
√
n)).

Studies indicate that the diameter of the Internet is around 30 hops [7, 20]. This is
corroborated by the suggested values for Time-To-Live (TTL) for Internet Protocol
(IP) packets. The TTL should be twice the diameter of the Internet [6] and the actual
value recommended is 64 [27, 29]. As shown in Fig. 5, systems with a million 3D
Catoms have a diameter of at least 132 hops, while systems with 100 million 3D
Catoms have a diameter of at least 620 hops. Blinky Blocks systems have similarly
large diameter, e.g., a 40,000 Blinky Blocks system has a diameter greater than 30
hops. Thus, a 40,000 Blinky Blocks system which fits in a 1.4m3 cube, would have
a diameter larger than the entire Internet that spans the whole world.

It is crucial to take into account the large diameter and large average distance to
design efficient and effective distributed algorithms for large-scale modular robotic

Network Characterization of Lattice-Based … 427

1

10

100

1000

101 102 103 104 105 106 107 108

D
ia

m
et

er
 (

ed
ge

)

Number of vertices

UB
S-Lattice LB
H-Lattice LB

SC-Lattice LB
FCC-Lattice LB

Fig. 5 Diameter bounds versus the number of vertices in the network graph for the different
considered lattices. The terms “LB” and “UB” respectively stand for “lower bound” and “upper
bound”

systems. For example, communication over a large number of hops causes latency and
reliability issues. Assuming link faults are independent and identically distributed,
the probability that a multi-hop communication fails increases exponentially with
the number of hops [8]. Let us consider time synchronization and data sharing algo-
rithms. These algorithms are required for real-time responsive programmable matter
and to distribute, store and access geometry data for self-reconfiguration. However,
these algorithms are challenging to design for such huge diameter and huge average
distance systems. Unpredictable delays (due, for example, to queueing or retrans-
missions) accumulate every hop, which tends to disturb the time synchronization
process and decrease the achievable synchronization precision. Moreover, in data
sharing algorithms, lookup latency may be extremely long if it involves messages
that have to travel a large number of hops.

7 Conclusions

In this paper, we characterize the networks of some lattice-based modular robots
which use only neighbor-to-neighbor communications. We demonstrate that they
form sparse and large-diameter networks. Moreover, we provide tight bounds of the
radius and the diameter of these networks. Our results are generalizable to other net-
works embedded in the considered lattices. We also show that, it may be challenging
to design efficient distributed algorithms for massive-scale lattice-based networks
because of their huge diameter and their huge average distance.

428 A. Naz et al.

8 Future Work

In future work, we will take into account the properties of huge diameter and huge
average distance of massive-scale lattice-based networks in order to design efficient
and effective distributed algorithms for programmable matter.

In addition, we will experimentally evaluate the practical impact of the diameter
and the average distance values on the performance of some distributed algorithms
executed in our class of modular robotic systems.

As previously mentioned, different communication models exist in modular
robotic systems. In large-scale systems, the global communication model where
all modules can directly communicate together through a global bus is not an option
because the number of hosts a bus can support is limited by packet collisions. As
shown in this paper, using the neighbor-to-neighbor communication model in large-
scale systems implies a large diameter and a large average distance. In futurework,we
plan to study the network properties of modular robotic systems that use hybrid com-
munication models in which modules communicate together through small buses,
each one with a few participating modules, as proposed in [11].

Acknowledgements This work has been funded by the Labex ACTION program (contract ANR-
11-LABX-01-01) and ANR/RGC (contracts ANR-12-IS02-0004-01 and 3-ZG1F) and ANR (con-
tract ANR-2011-BS03-005).

References

1. Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature
401(6749), 130–131 (1999)

2. Barrenetxea, G., Berefull-Lozano, B., Vetterli, M.: Lattice networks: capacity limits, optimal
routing, and queueing behavior. IEEE/ACM Trans. Netw. (TON) 14(3), 492–505 (2006)

3. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)
4. Bhalla, N., Jacob, C.: A framework for analyzing and creating self-assembling systems. In:

2007 IEEE Swarm Intelligence Symposium, pp. 281–288. IEEE (2007)
5. Bourgeois, J., Piranda, B., Naz, A., Lakhlef, H., Boillot, N., Mabed, H., Douthaut, D., Tucci,

T.: Programmable matter as a cyber-physical conjugation. In: Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics. IEEE, Budapest, Hungary (2016)

6. Braden, R.: Requirements for Internet Hosts – Communication Layers. RFC 1122, RFC Editor
(1989)

7. Cardozo, T.B., Silva, A.P.C., Vieira, A.B., Ziviani, A.: On the end-to-end connectivity evolution
of the internet

8. Di Ianni, M., Gualà, L., Rossi, G.: Reducing the diameter of a unit disk graph via node addition.
Inf. Process. Lett. 115(11), 845–850 (2015)

9. Ellis, R.B., Martin, J.L., Yan, C.: Random geometric graph diameter in the unit disk with p
metric. In: International Symposium on Graph Drawing, pp. 167–172. Springer (2004)

10. Garcia, R.F.M., Schultz, U.P., Stoy, K.: On the efficiency of local and global communication
in modular robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
2009. IROS 2009, pp. 1502–1508. IEEE (2009)

11. Garcia, R.F.M., Stoy, K., Christensen, D.J., Lyder, A.: A self-reconfigurable communication
network for modular robots. In: Proceedings of the 1st international conference on Robot
communication and coordination, p. 23. IEEE Press (2007)

Network Characterization of Lattice-Based … 429

12. Gilpin, K., Kotay, K., Rus, D., Vasilescu, I.: Miche: modular shape formation by self-
disassembly. Int. J. Robot. Res. 27(3–4), 345–372 (2008)

13. Goldstein, S.C., Mowry, T.C.: Claytronics: A scalable basis for future robots. In: RoboSphere.
Moffett Field, CA (2004)

14. Goldstein, S.C., Mowry, T.C.: Claytronics: An instance of programmable matter. In: Wild and
Crazy Ideas Session of ASPLOS. Boston, MA (2004)

15. Hayes, B.: Graph theory in practice: Part ii. Am. Sci. 88(2), 104–109 (2000)
16. Jennings, E.H., Okino, C.M.: On the diameter of sensor networks. In: Aerospace Conference

Proceedings, 2002, vol. 3, pp. 3–1211. IEEE (2002)
17. Jin, S., Bestavros, A.: Small-world characteristics of internet topologies and implications on

multicast scaling. Comput. Netw. 50(5), 648–666 (2006)
18. Karagozler, M.E., Goldstein, S.C., Reid, J.R.: Stress-driven mems assembly+ electrostatic

forces = 1mm diameter robot. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2009, pp. 2763–2769 (2009)

19. Kirby, B.T., Ashley-Rollman, M., Goldstein, S.C.: Blinky blocks: a physical ensemble pro-
gramming platform. CHI ’11 Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’11, pp. 1111–1116. ACM, New York, NY, USA (2011)

20. Latapy, M., Magnien, C.: Measuring fundamental properties of real-world complex networks
(2006). arXiv:cs/0609115

21. Naz, A., Piranda, B., Goldstein, S.C., Bourgeois, J.: ABC-Center: Approximate-center election
in modular robots. In: IROS 2015, IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2951–2957. Hamburg, Germany (2015)

22. Naz, A., Piranda, B., Goldstein, S.C., Bourgeois, J.: Approximate-centroid election in large-
scale distributed embedded systems. In: AINA 2016, 30th IEEE International Conference on
Advanced Information Networking and Applications, pp. 548–556. IEEE, Crans-Montana,
Switzerland (2016)

23. Naz, A., Piranda, B., Goldstein, S.C., Bourgeois, J.: A time synchronization protocol for mod-
ular robots. In: PDP 2016, 24th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pp. 109–118. IEEE, Heraklion Crete, Greece (2016)

24. Oung, R., DAndrea, R.: The distributed flight array. Mechatronics 21(6), 908–917 (2011)
25. Piranda, B., Bourgeois, J.: Geometrical study of a quasi-spherical module for building pro-

grammable matter. In: DARS 2016, 13th Internatinal Symposium on Distributed Autonomous
Robotic Systems. Springer (2016)

26. Piranda, B., Laurent, G.J., Bourgeois, J., Clévy, C., Möbes, S., Le Fort-Piat, N.: A new concept
of planar self-reconfigurable modular robot for conveying microparts. Mechatronics 23(7),
906–915 (2013)

27. Reynolds, J.K., Postel, J.: Assigned Numbers. RFC 1700, RFC Editor (1994)
28. Suh, J.W., Homans, S.B., Yim, M.: Telecubes: Mechanical design of a module for self-

reconfigurable robotics. In: IEEE International Conference on Robotics and Automation, Pro-
ceedings. ICRA’02, vol. 4, pp. 4095–4101. IEEE (2002)

29. The Internet Assigned Numbers Authority (IANA): Internet protocol version 4 (IPv4) parame-
ters (2016). http://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml

30. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684),
440–442 (1998)

31. Zhao, Y., Chen, Y., Li, B., Zhang, Q.: Hop id: a virtual coordinate based routing for sparse
mobile ad hoc networks. IEEE Trans. Mobile Comput. 6(9), 1075–1089 (2007)

http://arxiv.org/abs/cs/0609115
http://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml

Part VI
Swarm Robotics

Decentralized Progressive Shape Formation
with Robot Swarms

Carlo Pinciroli, Andrea Gasparri, Emanuele Garone
and Giovanni Beltrame

Abstract We tackle the problem of achieving any given shape defined as a point
cloud in a distributed manner with a swarm of robots. The contributions of this paper
are (i) An algorithm that transforms a point cloud into a acyclic directed graph; (ii)
A motion control law that, from the acyclic directed graph, allows a swarm of robots
to achieve the target shape in a decentralized manner; and (iii) A theoretical model,
which provides sufficient conditions on the convergence of the control law. The key
idea of our approach is to achieve the target shape progressively by inducing an
ordering among the robots. More precisely, we construct an acyclic directed graph
so that any free robot (i.e., not part of the shape) finds its location with respect to
the already placed robots. We prove that, for a 2D shape, it is sufficient for a free
robot to calculate its location with respect to two already placed robots to achieve
this objective. We validate our method through accurate physics-based simulations
of non-holonomic robots.

1 Introduction

Swarm robotics [5] is a branch of collective robotics that focuses on decentralized
approaches to the problem of coordinating large teams of robots. A common assump-

C. Pinciroli (B)
Worcester Polytechnic Institute, Worcester, MA, USA
e-mail: cpinciroli@wpi.edu

A. Gasparri
Università Roma Tre, Rome, Italy
e-mail: gasparri@dia.uniroma3.it

E. Garone
Université Libre de Bruxelles, Bruxelles, Belgium
e-mail: egarone@ulb.ac.be

G. Beltrame
Polytechnique Montréal, Montreal, QC, Canada
e-mail: giovanni.beltrame@polymtl.ca

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_30

433

434 C. Pinciroli et al.

tion in many existing approaches is that all of the robots involved in the execution of
a certain algorithm are ready to take part in it. However, especially when swarm sizes
involve more than a dozen robots, it is hardly conceivable that all of the robots will be
available. Economical and technological constraints are major drivers in the limita-
tionof the number of robots that canbedeployed in a specific time frame. For instance,
in exploratorymissions of planets or deep ocean floors, it is probable that only a small
number of robots can be successfully deployed in a singlemission. In addition, future
missions involving complex, heterogeneous robot swarms will naturally unfold in a
phase-wise fashion. In a large-scale Mars exploration mission, for instance, a first
wave of radiation-hardened robotsmight be dedicated to creating shelter and network
infrastructure for future waves of cheaper, more mission-specific robots.

A new class of swarm algorithms is necessary, which focuses on swarms that
are progressively deployed over time [3]. As a step in this direction, we present a
progressive, decentralized algorithm that allows a robot swarm to achieve a spe-
cific shape. Shape formation is an important application for robot swarms. Typical
examples include monitoring of large-scale areas, satellite displacement in orbit, and
the creation of ad hoc, large-scale network infrastructure. In these applications, it is
desirable that even if the final form of the target shape has not been attained yet, the
already placed robots can begin performing their assigned tasks. Thus, the time taken
to complete the shape is, at least to an extent, less important than the time taken to
add a new robot to the shape and the precision of the positioning.

The core of our idea is to express the target shape as an acyclic directed graph,
in which each robot finds and maintains its position by considering only two other
robots in the shape, called the parents. All robots know the acyclic directed graph,
but initially no robot is assigned to any specific position in the shape. The shape is
constructed dynamically and in an iterative fashion—each robot joins upon being
granted permission by one of the parents. Based solely on local communication, our
algorithm is completely decentralized. The algorithm is also parallel, since at any
time multiple robots can join different parts of the shape.

The rest of the paper is organized as follows. We discuss related work in Sect. 2.
In Sect. 3, we illustrate a mathematical model that proves the convergence properties
of our decentralized algorithm. In Sect. 4, we present an algorithm to construct an
acyclic directed graph starting from a point cloud which represents the target shape.
In Sect. 5, we describe the behavior the robots follow to achieve the target shape.
We report experimental evaluation in Sect. 6. The paper is concluded by Sect. 7, in
which we outline future research directions.

2 Related Work

The problem of formation control has been widely studied in the literature. Relevant,
recent examples of decentralized methodologies are consensus-based approaches
[11, 15, 20] and rigidity-based approaches [2, 7, 19]. The interested reader is referred
to [6, 10] and references therein for a more comprehensive overview of the formation
control problem.

Decentralized Progressive Shape Formation … 435

Considering the vastness of the literature, and that we deal with the problem of
achieving any given shape defined as a point cloud in a decentralized manner, we
focus on approaches with a similar objective.

Spletzer and Fierro [17] consider the task of repositioning a formation of robots to
a new shape while minimizing either the maximum distance that any robot travels, or
the total distance traveled by the formation. Ravichandran et al. [14] present a scal-
able distributed reconfiguration algorithm to achieve arbitrary target configurations
built on top of a distributed median consensus estimator which requires only local
communication. Yu and Nagpal [21] present a theoretical study of decentralized con-
trol for sensing-based shape formation on modular multi-robot systems, where the
desired shape is specified in terms of local sensor constraints between neighboring
robot agents. Alonso-Mora et al. [1] consider arbitrary target patterns and detect a
proper representation with an optimal robot deployment, using a method that is inde-
pendent of the number of robots. Liu and Shell [8] tackle the problem of changing
smoothly between formations of spatially deployed multi-robot systems, and show
that this can be achieved by routing agents on a Euclidean graph that corresponds to
paths computed on—and projected from—an underlying three-dimensional match-
ing graph.

3 Mathematical Model

3.1 Problem Statement

Let us consider a team of N mobile robots moving in R2, each of which is assigned
a label i ∈ {1, ..., N }. For each robot, let the vector pi (t) = [xi (t), yi (t)]T ∈ R

2

describe its position with respect to a fixed global reference frameOg
xy . It is assumed

that each robot has a dynamics
ṗi = ui . (1)

We assume that each robot i does not know its absolute position pi (t), but it can
measure the relative distance di j (t) = ‖pi (t) − p j (t)‖ and the relative bearing θi j (t)
with respect to any neighboring robot j . We also assume that the nodes can com-
municate with their neighboring robots, i.e., the robots in their direct line-of-sight.
Communication and distance/angle estimation can be achieved through situated com-
munication [18] devices present on commercial robots such as the e-puck [9].

The problem statement can be defined as follows.

Problem 1 Given a desired formation expressed as a set of of desired positions
{q̄1, q̄2, . . . , q̄N }, there exists a translation r ∈ �2 and a rotation R(θ) such that

lim
t→∞ R(θ)pi (t) + r = q̄i .

436 C. Pinciroli et al.

In this problem formulation,we are not interested in having the formation converge
to a specific position in the environment. Rather, we impose that the target shape can
be arbitrarily rototranslatedw.r.t. the fixed global reference frame. In the remainder of
this section, for the sake of simplicity and without loss of generality, we will consider
q̄1 = [0, 0]T and q̄2 = [x2, 0]T with x2 > 0. Under this assumption, we call p12i the
coordinates of the i-th robot in the reference frame centered in p1. The x axis is
oriented as the vector connecting p1 to p2, while the y axis is obtained through a π/2
anti-clockwise rotation of x around p1. We then restate Problem 1 as the following
control problem:

Problem 2 Given a desired formation {q̄1, q̄2, . . . , q̄n}where q̄1 = [0, 0]T and q̄2 =
[x2, 0]T and x2 > 0, ensure that ṗi → 0 and pi → q̄i ∀i ∈ {1, . . . , N }.

3.2 Proposed Solution

For robot 1, a simple solution to Problem 2 is to maintain its current position, i.e.,

u1 = 0. (2)

For robot 2, an equally simple solution is to apply any control law of the form

u2 = f2(d1,2(t)) (3)

that ensures that d1,2(t) globally asymptotically tends to ‖q̄1(t) − q̄2(t)‖. A distance-
based attraction/repulsion law, such as the Coulomb potential [16], is a good choice
for f2.

Concerning the other robots (i > 2),we associate to each of them twoparent nodes
j and k and define a continuously differentiable potential field Φi (pi ,p j ,pk), Φi :
�2 × �2 × �2 → �, such that, for any two bounded p j and pk , these assumptions
hold:

A1: Φi (pi ,p j ,pk) is invariant to rototranslations:

Φi (R(θ)pi + r, R(θ)p j + r, R(θ)pk + r) = Φi (pi ,p j ,pk).

A2: Φi (pi ,p j ,pk) is unbounded for unbounded pi :

lim‖pi ‖→∞ Φi (pi ,p j ,pk) = ∞.

A3: If p j and pk are distinct, Φi (pi ,p j ,pk) admits only one stationary point,
which we denote as p̄i (p j ,pk), and that point is a minimum of the potential field.
This corresponds to forcing robot i to only have one possible position to reach
when communicating with robots j and k.

Decentralized Progressive Shape Formation … 437

A4: There exist two finite scalars αmax and βmin such that for any p j , pk

−∇Φi (pi ,p j ,pk)
T ∇Φi (pi ,p j + d j ,pk + dk) ≤ 0

for any ‖b j‖, ‖bk‖ ≤ αmax, and for any pi = p̄i (p j ,pk) + di with ‖di‖ ≥ βmax.
This means that, for bounded perturbations of the parents p j and pk , if pi is
sufficiently far from the equilibrium, the perturbed anti-gradient is still a direction
of descent of the non-perturbed potential field.

We prove the following theorem by using a control law in the form:

ui = −∇Φi (pi ,p j ,pk), (4)

Theorem 1 Consider the system described by Equation (1) controlled by control
laws in the form of Equations (2)–(4) that comply with assumptions A1–A4. Under
the constraints

1. If j and k are parents of i , then j < i and k < i ;
2. p̄i (q̄ j , q̄k) = q̄i ∀i ∈ {1, . . . , N };
Problem 2 is solved for any initial condition.

Since every position q̄i in the target shape is expressed with respect to two other
positions q̄ j and q̄k , and j < i and k < i , we can represent the target shape as an
acyclic directed graph in which every node i is connected to its parents j and k.
Thus, the process of positioning a specific robot i can ideally be seen as a cascade of
positioning processes, which starts with robot 1 and proceeds with all other robots.
If every step of the positioning dynamics is globally asymptotically stable, then the
entire process converges to the desired shape. This is the core idea behind the proof
in [12].

For some applications, assumptions A3 and A4 might prove too strong. For
instance, the existence of a single stationary point topologically forbids the use of
repulsion terms among robots that are usually used for collision avoidance. To fix
this, consider the following relaxed condition:

A3bis: If p j and pk are distinct there exists p̄i (p j ,pk) which is an isolated mini-
mum of Φi (pi ,p j ,pk).

By usingA3bis instead of A3 and dropping assumption A4, the formation is asymp-
totically stable. This means that there exists a basin of attraction around the config-
uration of equilibrium ṗ1,2i = q̄i for which Problem 2 is solved.

Theorem 2 Consider the system described by Equation (1) controlled by Equations
(2)–(4) that comply with assumptions A1, A2, and A3bis. Under the contraints:

1. If j and k are parents of i , then j < i and k < i ;
2. p̄i (q̄ j , q̄k) = q̄i ∀i ∈ {1, . . . , N };

438 C. Pinciroli et al.

Problem 2 is solved for initial conditions in a suitable neighborhood of the equilib-
rium configuration of ṗ1,2i = qi ∀i ∈ {1, . . . , N }.
The proof is reported in [12].

4 From Point Cloud to Acyclic Directed Graph

The target shape is expressed as a 2D point cloud. In this section, we present an
algorithm that produces an acyclic directed graph starting from the 2D point cloud
(see also Fig. 1). The specific frame of reference used to express the point cloud is not
important, since the labeled graph must only encode the relative distances between
a robot and its two predecessors.

The algorithm proceeds iteratively and collects the points in three lists:

• the unlabeled list contains the points for which no label was found yet;
• the delayed list contains the points for which a label was searched, but it was
impossible to find one in the current iteration;

• the labeled list stores the labeled points.

The algorithm starts by storing all points as unlabeled, and by calculating the center
of mass of the point cloud. The points are then sorted by their distance to the center
of mass. The two closest points are labeled 0 and 1, 0 is stored as a predecessor of
1, and the points are moved to labeled. Using the center of mass allows the shape
formation process to start at the center of the shape and to grow outwards, making it
easier for joining robots to navigate to their target position.

Subsequent points are labeled as follows. First, a candidate point is drawn from
the unlabeled set. Next, the viable predecessors among the points in labeled are

5 1 6

2 0 3

7 4 8

100 141 100 100141

100

141

100

100 100

100 100

100100 100

Fig. 1 Depiction of the input and output of the algorithm presented in Sect. 4. The left side shows
the input, an unlabeled point cloud. The right side illustrates the labeled acyclic directed graph
output by the algorithm. In the output, numerical labels identify the position in the acyclic directed
graph; arrows indicate the parents of a specific shape node, and the associated numbers denote the
parent-child distance in cm. Square nodes are those located on the positive side with respect to
the vector joining the two parents; diamond nodes are on the negative side. Sides are calculated
considering the right-hand rule

Decentralized Progressive Shape Formation … 439

searched. Two points are viable if, with the candidate point, they form a triangle in
which every robot has unobstructed line-of-sight with the other two. If no pair of
predecessor can be found, the candidate is moved to delayed and a new candidate
point is drawn. As soon as two viable predecessors are found, the candidate point is
stored into labeled and a new graph element is added (each node stores labeled node,
predecessors, and positional information—see Fig. 1, right). The delayed points are
moved back to unlabeled, and a new iteration of the algorithm is performed.

The algorithmendswhen no points are present in unlabeled. If delayed is an empty
set, the algorithm finished successfully, as all points have been labeled; otherwise,
the algorithm fails.

5 Robot Behavior

Assumptions. At time zero, no robot is part of the structure. The process that brings
a robot to the decision of triggering the shape formation behavior depends on the
specific experiment under study. Here, we assume that a single robot makes such
decision, i.e., the process is not started twice in the same swarm. For simplicity, we
also assume that every robot knows the acyclic graph of the target shape. However,
this assumption could be lifted. For instance, the robot that triggers the behavior
could broadcast the data of the labeled graph chosen for the task at hand. Nearby
robots, upon receiving this data, could help diffuse it either unconditionally, or only
when they join the shape.

Behavior Structure. The behavior is composed of four states (see Fig. 2):

FREE: A robot is this state is not part of the structure, nor actively requesting to
join. In this state, a robot monitors its neighborhood searching for a label i that is
not currently part of the shape nor being requested by other robots. If such label
is found and both parents for it are in direct line-of-sight, the robot switches to
state Asking.

FREE ASKING

JOININGJOINED

(1)

(2) (3)(4)

(5)

transition condition
(1) both parents seen for free label i
(2) lost sight of a parent for label i
(3) accepted to join with label i
(4) rejected or reply timeout expired
(5) distance to target within tolerance

Fig. 2 A finite state machine representation of the robot behavior

440 C. Pinciroli et al.

ASKING: A robot in this state broadcasts a request to join with label i . If the
request receives no response for a predefined time, or if another robot is accepted,
any rejected robot switches back to Free. Otherwise, the robot switches to state
Joining.

JOINING: A robot in this state uses the two parents as references to join the shape.
The robot navigates to the target position. As soon as its distance to the target is
smaller than a tolerance ε, the robot switches to Joined.

JOINED: A robot in this state is part of the shape and performs two activities: (i)
It maintains its position with respect to the relevant robots around it—the relevant
robots are its direct parents and children; and (ii) It collects requests from Asking
robots, granting access to the one in the best position to assume a specific label.

Communication. During the construction of the shape, every robot broadcasts a
message to inform its neighbors of its current state. In addition, some states require
extra information to be broadcast. When a robot is Asking, it broadcasts a request
structured as a tuple 〈Asking,i ,z〉, in which z is the request id. The latter is drawn
uniformly at random between 1 and a sufficiently large number Z .1 A robot in
Asking state is such that the parents of label i are in direct line-of-sight. Thus,
both parents receive the request. The parent with the higher label m is in charge
of responding to the request. This parent collects the requests received in the last
time step and ranks them from the simplest to achieve (i.e., the requesting robot is
close to its target position) to the hardest to achieve. The best request is granted by
broadcasting amessage 〈Joined,m,i ,z̄,granted〉, where z̄ identifies the request for
label i univocally. The accepted robot switches to Joining, while the other robots that
asked for i switch back to state Free. Rarely, it might happen that two robots choose
the same request id z for the same label i . In this case, the robot in charge replies with
〈Joined,m,i ,repeat〉, which forces the conflicting robots to repeat their request,
while informing other robots that their request for i was refused.

Navigation. The mathematical model described in Sect. 3 neglects aspects such as
non-holonomic motion, body size, and collision avoidance to guarantee tractability.
In a physical implementation of the algorithm, however, these aspects play a cru-
cial role in system dynamics. As discussed in Sect. 3, we assume that the robots are
capable of detecting their distance and angle to a number of neighbors in range. Nav-
igation is based solely on this information—we do not require the robots to estimate
their global position in the environment. Navigation is implemented following the
well-known virtual physics approach [16], whereby virtual forces are calculated by
overlapping multiple potential fields according to the state of the robots.

FREE: When a robot is in this state, it must keep at a safe distance from the
structure being built to prevent congestion. In addition, Free robots follow the

1In our experiments we set Z = 216 − 1. With this value, 302 robots must simultaneously request
the same label i to have a probability > 0.5 that at least two robots choose the same value for z. We
observed that, on average, a robot has only about 8 neighbors; assuming that all of them request
the same i simultaneously, the probability that at least two requests have the same value for z is
≈4.27 · 10−4.

Decentralized Progressive Shape Formation … 441

external perimeter of the shape and search for free labels. This is obtained by
combining two virtual forces: one that imposes a sufficiently large distance from
the shape, and one that pushes the robots perpendicularly to any Joining or Joined
robot in sight.

ASKING: Robots in this state must keep in sight to the two parents of the label
being requested. The virtual force is calculated by imposing bounded repulsion
to Free robots and bounded attraction to Joined robots.

JOINING: To join the shape, a robot must follow the complex, position-dependent
force field depicted in Fig. 3, which corresponds to −∇Φi (pi ,p j ,pk), discussed
in Sect. 3.

JOINED: Robots that already joined the shape must keep their distance to their
parents and direct children. In our implementation, we used a field based on
Coulomb forces analogous to [16].

In addition to these primary states, we added a fifth state, Escape, to deal with Free
robots that got trapped in the middle of Joined robots. This extra behavior proved
important to drop the failure rate of the shape formation process from about 30% to
0.37% (see Sect. 6). An example of the dynamics of the navigation behavior can be
seen in Fig. 4.

j k

Fig. 3 Virtual force field experienced by a joining robot with respect to its parents j and k. The
black star indicates the target position to be reached by the joining robot. This force field is a
realization of −∇Φi (pi ,p j ,pk), discussed in Sect. 3

(a) t = 10sec (b) t = 400sec (c) t = 1500sec

Fig. 4 The dynamics of the presented behavior with a heart-like shape formed by 114 robots. The
black robots are Free, and the green-yellow robots are Joined. Screenshot taken with the ARGoS
simulator. A video is available at http://carlo.pinciroli.net/DARS2016/heart.mp4

http://carlo.pinciroli.net/DARS2016/heart.mp4

442 C. Pinciroli et al.

6 Experimental Evaluation

We evaluated the performance of our shape formation algorithm through a set a
simulated experiments. We employed a realistic, physics-based simulator for multi-
robot systems called ARGoS.2 The models present in ARGoS have been validated,
and robot controllers developed with this simulator have been succesfully ported to
real platforms in many works [13].

Performance measures. We concentrated our analysis on three aspects of the shape
formation process: completion time, joining time, and absolute positioning error.
Completion time is the time necessary to form a complete shape. Joining time is
the time elapsed between two successive join events, i.e., the moments in which the
robots become part of the shape, switching to Joined. In the context of a progressive
algorithm, this measure is more interesting than completion time, because it accounts
for recruitment efficiency. The absolute positioning error Ei j between robots i and
j is calculated as Ei j = ∣

∣(di j − d̄i j)/d̄i j

∣
∣ where d̄i j is the expected distance between

robots i and j (as stored in the labeled graph), and di j is the actual distance measured
at the end of the experiment.

The target shape. While our algorithm can form generic shapes, to ensure com-
parability among different experimental conditions, the robots are tasked with the
formation of a grid. We worked with three grid sizes—5 × 5, 10 × 10, and 15 × 15.

Experimental setup. The experimental arena is an empty square of side L , in which
M robots are uniformly distributed with a certain density D. We considered three
density configurations—broad (D = 0.01), medium (D = 0.05), and tight (D =
0.1). To enforce a specificvalue of D across different choices of M ,we calculated L =
√

(Nπ R2)/D, where R is the radius of the robot (R = 8.5 cm). For our experiments,
we utilized the marXbot [4], a wheeled robot equipped with a range-and-bearing
sensor that allows for situated communication; itsmaximumspeedwas set to 10cm/s.
We also studied the effect that different numbers of available robots have on the shape
formation algorithm. To this aim, we defined N as the number of robots necessary to
complete a shape (e.g., N = 25 for a 5 × 5 grid) and set M = k N , with k ∈ {1, 2, 3}.
Every configuration 〈grid size, D, k〉 was tested 30 times, for a total of 810 runs.

Discussion. Out of the 810 runs, in only 3 of them the shape was not completed,
for a failure rate of 0.37%. In all of the failed runs, a Free robot remained trapped
in the middle of the shape, unable to exit. These failures occurred in high-density
configurations (D = 0.1), and involved a robot that remained trapped at the very
beginning of the experiment, when the swarm dynamics is most chaotic. Low- and
middle-density runs, on the other hand, all completed successfully. Regarding per-
formance measures, the results are reported in Fig. 5. Both completion time and
joining time decrease with k. When k = 1, all of the robots must find their spot in
the shape. Towards the end of an experiment, however, the number of available spots
diminishes, and the remaining few robots must spend a long time looking for it. For

2http://www.argos-sim.info/.

Decentralized Progressive Shape Formation … 443

Fig. 5 Experimental evaluation of the shape formation behavior presented in Sect. 5. Each box
corresponds to the distribution of a performance measure of a specific experimental configuration
〈grid size, D, k〉 over 30 runs (see Sect. 6). The whiskers in the box plots indicate the 5th and 95th
percentile. The top plot reports the completion time in seconds; the middle plot reports the joining
time in seconds; and the bottom plot reports the positioning error

higher values of k, however, the probability that a free robots finds a vacant label
increases, thus lowering the joining time. The effect of the deployment density D
is a slight decrease of completion time for tighter initial distributions. Although this
effect is only minor, through observation we could notice that, with tighter initial
distributions, the robots have to travel shorter distances and, as a consequence, tend
to find vacant labels more frequently. The positioning error does not seem to be sig-
nificantly affected in any configuration, remaining always lower than 8% and with
a median slightly above 4%. The fact that these parameters do not affect the error
is expected, because the behavior is designed to separate Free and Asking robots
from Joining and Joined robots. None of the considered parameters can affect this
separation. The actual value of the error is due to the parameter configuration of the
force field that a robot follows to reach its place in the shape. With non-holonomic
robots, it is common to be unable to reach the exact designated position due tomotion

444 C. Pinciroli et al.

limitations. For instance, a 8% error over a distance of 100cm (i.e., the node distance
in all of our experiments) corresponds to 8cm, which is comparable to the radius of
the marXbot (R = 8.5 cm).

7 Conclusions

Progressive deployment is a milestone towards the creation of real-world robot
swarms for complex scenarios. In this paper, we presented an approach to the for-
mation of any shape described through a 2D point cloud. Through a mathematical
model, we provided sufficient conditions to ensure convergence; we proposed an
algorithm to derive an acyclic directed graph from a 2D point cloud; and illustrated a
decentralized robot behavior that attains the target shape represented by the acyclic
directed graph. We validated our approach through a set of experiments that consid-
ered swarm size, available robots, and density of the initial robot distribution.

Future work involves the validation of our approach on real robots. In addition,
joining and completion time could be improved by allowing Joined robots to guide
Free robots to places where vacant labels are present.

References

1. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Multi-robot sys-
tem for artistic pattern formation. In: 2011 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4512–4517 (2011)

2. Anderson,B.,Yu,C., Fidan,B.,Hendrickx, J.: Rigid graph control architectures for autonomous
formations. IEEE Control Syst. 28(6), 48–63 (2008)

3. Beal, J.: Functional blueprints: an approach to modularity in grown systems. Swarm Intell.
5(3), 257–281 (2011)

4. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F.,
Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot opening new perspectives
for the collective-robotic research. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE Press, Piscataway, NJ (2010)

5. Brambilla,M., Ferrante, E., Birattari,M., Dorigo,M.: Swarm robotics: a review from the swarm
engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

6. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathe-
matics Series. Princeton University Press (2009). http://coordinationbook.info

7. Krick, L., Broucke, M.E., Francis, B.A.: Stabilisation of infinitesimally rigid formations of
multi-robot networks. Int. J. Control 82(3), 423–439 (2009)

8. Liu, L., Shell, D.A.: Distributed autonomous robotic systems: The 11th international sympo-
sium. In:M. Ani Hsieh, G. Chirikjian (eds.)Multi-Robot FormationMorphing through aGraph
Matching Problem, pp. 291–306. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

9. Mondada, F.,Bonani,M.,Raemy,X., Pugh, J.,Cianci,C.,Klaptocz,A., Zufferey, J.C., Floreano,
D., Martinoli, A.: The e-puck, a Robot Designed for Education in Engineering. In: Gonçalves,
P.J.S., Torres, P.J.D., Alves, C.M.O. (eds.) Proceedings of Robotica 2009–9th Conference on
Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65. IPCB, Castelo Branco,
Portugal (2006)

http://coordinationbook.info

Decentralized Progressive Shape Formation … 445

10. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53,
424–440 (2015)

11. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent
systems. Proc. IEEE 95(1), 215–233 (2007)

12. Pinciroli, C., Gasparri, A., Garone, E., Beltrame,G.:Decentralized progressive shape formation
with robot swarms: Proofs. Technical report, École Polytechnique deMontréal, Canada (2016).
http://carlo.pinciroli.net/DARS2016/proofs.pdf

13. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N.,
Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS:
a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–
295 (2012)

14. Ravichandran, R., Gordon, G., Goldstein, S.: A scalable distributed algorithm for shape trans-
formation inmulti-robot systems. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2007, pp. 4188–4193 (2007)

15. Ren, W.: Consensus strategies for cooperative control of vehicle formations. IET Control The-
ory Appl. 1(2), 505–512 (2007)

16. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of
swarms of vehicles. Auton. Robots 17(2/3), 137–162 (2004)

17. Spletzer, J., Fierro, R.: Optimal positioning strategies for shape changes in robot teams. In:
Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA
2005, pp. 742–747 (2005)

18. Støy, K.: Using situated communication in distributed autonomous mobile robots. Proceedings
of the 7th Scandinavian Conference on Artificial Intelligence, pp. 44–52 (2001)

19. Williams, R., Gasparri, A., Priolo, A., Sukhatme, G.: Distributed combinatorial rigidity control
in multi-agent networks. In: 2013 IEEE 52nd Annual Conference on Decision and Control
(CDC), pp. 6061–6066 (2013)

20. Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems.
Automatica 45(11), 2605–2611 (2009)

21. Yu, C.H., Nagpal, R.: Sensing-based shape formation on modular multi-robot systems: A the-
oretical study. Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems -. AAMAS ’08, vol. 1, pp. 71–78. International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC (2008)

http://carlo.pinciroli.net/DARS2016/proofs.pdf

Discovery and Exploration of Novel Swarm
Behaviors Given Limited Robot Capabilities

Daniel S. Brown, Ryan Turner, Oliver Hennigh and Steven Loscalzo

Abstract Emergent collective behaviors have long interested researchers. These
behaviors often result from complex interactions between many individuals follow-
ing simple rules. However, knowing what collective behaviors are possible given a
limited set of capabilities is difficult. Many emergent behaviors are counter-intuitive
and unexpected even if the rules each agent follows are carefully constructed. While
much work in swarm robotics has studied the problem of designing sets of rules and
capabilities that result in a specific collective behavior, little work has examined the
problem of exploring and describing the entire set of collective behaviors that can
result from a limited set of capabilities. We take what we believe is the first approach
to address this problem by presenting a general framework for discovering collective
emergent behaviors that result from a specific capability model. Our approach uses
novelty search to explore the space of possible behaviors in an objective-agnostic
manner. Given this set of explored behaviors we use dimensionality reduction and
clustering techniques to discover a finite set of behaviors that form a taxonomy over
the behavior space. We apply our methodology to a single, binary-sensor capability
model. Using our approach we are able to re-discover cyclic pursuit and aggrega-
tion, as well as discover several behaviors previously unknown to be possible with
only a single binary sensor: wall following, dispersal, and a milling behavior often
displayed by ants and fish.

Research performed by all authors while at AFRL, Rome NY.

D. S. Brown (B)
Computer Science Department, University of Texas, Austin, TX, USA
e-mail: dsbrown@cs.utexas.edu

R. Turner · O. Hennigh · S. Loscalzo
Air Force Research Laboratory, Rome, NY, USA
e-mail: ryan.turner.10@us.af.mil

O. Hennigh
e-mail: oliver.hennigh@us.af.mil

S. Loscalzo
e-mail: steven.loscalzo@ecs-federal.com

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_31

447

448 D. S. Brown et al.

1 Introduction

Biological swarms have long fascinated researchers and laymen alike. The ability
of these swarms to perform complex tasks such as building temperature-controlled
nests, comparing potential new nest sites, and coordinating and synchronizing flight
patterns [4] have caused some observers to attribute these behaviors to supernatu-
ral abilities such as telepathy between flying birds [19] or centralized control from
a queen. This notion has continued to persist in the popular media where swarm
intelligence is often portrayed as many individuals controlled simultaneously by a
single individual.However, despite humans’ seemingly innate desire to attribute com-
plex behaviors to higher-level, complex intelligence, researchers in robotics, biology,
computer science, and physics continue to show that complex swarm behaviors are
often a result of extremely simple local rules. Indeed,much of the research on swarms
is focused on finding mappings between sets of specific rules and sets of specific
behaviors and can be broken down into two questions: (1) Given a desired behavior,
can we determine a set of rules that synthesize this behavior? and (2) Given a specific
set of rules, can we determine what the resulting emergent collective behavior will
be?

We propose to study a third fundamental, yet less well-defined question, that has
received little attention: (3) Given a set of capabilities (i.e., computational power,
number and type of sensors, communication range, etc.) what are the possible col-
lective behaviors that can emerge?

Knowing what collective behaviors are possible given a limited set of capabilities
is often quite difficult.Many emergent behaviors are counterintuitive and unexpected.
Furthermore, even if the rules each agent follows are carefully constructed, it is
difficult to predict what behavior will emerge. While much work has studied the
problem of designing sets of rules and capabilities that result in a desired collective
behavior, little work has examined the problem of characterizing the set of possible
collective behaviors that can result from a limited set of rules or behaviors. We take
what we believe is the first approach to address this problem.

In particular, we propose a general architecture for discovering a taxonomy of
possible emergent swarm behaviors given a set of capabilities. Similar to Wolfram’s
work on characterizing the behaviors of simple cellular automata [23] we take the
approach of a naturalist and seek a taxonomy of possible collective behaviors that can
result from a set of capabilities. To form a taxonomy of the emergent behaviors that
result from a given capability model, we use an approach based on novelty search
[13] which allows us to explore the space of possible behaviors in an objective-
agnostic manner. By optimizing novelty rather than any particular task or objective,
and keeping track of novel behaviors in an archive, we are able to generate a large
number of controllers that synthesize a wide variety of behaviors. Given this set of
explored behaviors we use dimensionality reduction and clustering techniques to
explore and categorize the space of possible behaviors.

We evaluate our architecture on a simple agent capability model that assumes only
a single line-of-sight sensor that has only two possible values. Despite this parsimo-

Discovery and Exploration of Novel Swarm … 449

nious agent model, we show that there is a surprising variety of interesting collective
behaviors. This approach allows us to “re-discover” previously studied computation-
free circling and aggregation [7] as well as identify several behaviors previously
unknown to be possible given a swarm of memory-less, single-sensor agents. These
new behaviors include wall following, dispersal, and coordinatedmilling often found
in ants and schools of fish [18, 21].

Our main contributions are summarized as follows:

• We propose the first general architecture to explore and form a taxonomy of the
space of possible behaviors given a limited-capability robot model.

• We demonstrate the feasibility of using novelty search and archive clustering to
generate a set of representative behaviors for a simple single-sensor robot capa-
bility model.

• Wevalidate our approach by showing that it discovers previously knownbehaviors,
as well as discovering several behaviors previously unknown to be possible for
swarms of single-sensor robots.

2 Problem Statement

The main question this research seeks to answer can be stated as follows:

What is the set of possible emergent behaviors in a swarm of robots
possessing a specific set of individual capabilities?

To formalize this problem we provide the following definitions. We define a
capability model as a three-tuple 〈S, M, A〉 composed of sensors S, memory and
computational processing resources M , and actuators A. The capability model cap-
tures what information a robot can collect from the world, how it can process that
information, and how it can change its state and the state of its environment. Given a
set of N agents each with capability model ci = 〈Si , Mi , Ai 〉 for i = 1, . . . , N , we
define the capability model of the swarm as C = {ci : i = 1, . . . , N }.1

Wedefine an emergent behavior as a global pattern or structure resulting from local
interactions between a collection of agents. We denote the set of possible emergent
behaviors as B.

We also define an environment E . Given a capability modelC and an environment
E we desire to find a mapping from capabilities and environments to behaviors. Note
that we have made no mention of how the capabilities are used by an agent with
capability ci ∈ C in environment E . Rather than specifying the controller, we desire
to find the image of a function Φ that maps from all possible controllers that can be
instantiated on capability modelC for environment E to the set of possible emergent
behaviors B. Thus we desire to find B where

1This formalism also captures homogeneous swarms which can be modeled by letting ci = c, ∀i .

450 D. S. Brown et al.

Fig. 1 Simple neural
network controller for a
single binary line-of-sight
differential drive robot. The
sensor value is input to the
network which outputs the
left and right wheel
velocities (a) Robot

Sensor Bias

(b) Controller

Φ : U (C) × E → B (1)

where U (C) is the controller space resulting from the capability model C .
It is worth noting that in general the controller space is enormous. For example,

consider the popular, and very simple, Kilobot robot platform [17]. A Kilobot could
be modeled as a three-tuple 〈Sk, Mk, Ak〉where Sk includes the infrared receiver and
the ambient light sensor,Mk represents all programs programmable on anAtmega328
microprocessor with 32K of memory, and Ak includes the speed of the two vibrating
motors, as well as the output of the infrared LED transmitter.

As a first step towards discovering novel collective behaviors, we examine an
even simpler capability model based on the e-puck robot [16], where S is a single,
on/off, binary sensor, A consists of two differential drive wheels, and M is a fully
connected 2 layer neural network connecting sensor inputs to wheel velocities. This
capability model is depicted in Fig. 1. Even for this simple example, the controller
space is R4, the space of all neural network weights.

Given the size of the controller-space, brute force or analytical methods for deter-
mining the mapping Φ would be incredibly difficult, if not impossible. Thus, we
resort to a genetic search methodology outlined in the next section.

3 Behavior Discovery Architecture

Our proposed architecture relies heavily on novelty search as a means for exploring
the space of emergent behaviors. Lehman and Stanley [13] proposed novelty search
as a way to avoid getting stuck in local minima and to overcome deceptive fitness
landscapes in genetic algorithms.Rather than using an objective function that rewards
fitness, they show that simply trying to maximize the novelty of an evolved behavior
will often generate a solution to the original problem more quickly than using pure
fitness.

Rather than measuring similarity on the actual genotype, novelty measures sim-
ilarity on the phenotype—the actual behavior resulting from executing the evolved
controller. There are many potential ways for a user to define a behavior space;
however, behavior spaces are typically represented by a vector with components

Discovery and Exploration of Novel Swarm … 451

that contain statistics over the state of the simulation collected periodically [10, 13].
Given a representation of a learned behavior in d dimensional behavior space, the
typical measure of novelty as used in [13] is the sparseness of a point b ∈ R

d in
behavior space, defined as Novelty(b) = 1

k

∑k
i=0 dist(b, βi), where βi is the ith

nearest neighbor of b with respect to the distance metric dist . The nearest neighbor
calculations take into consideration both individuals in the current population as well
as previous members of the population that are stored in an archive that is updated
each generation.

Novelty search has been used successfully to evolvemany different types of single
agent [6] and swarm behaviors [10]. The success of novelty search is attributed to its
success in exploring the behavior space and discovering successively more complex
behaviors [13]; however, to the best of our knowledge, our approach is the first to
use novelty search purely for exploration without a specific task in mind.

Our approach proceeds as follows, we first start with a random population of
controllers. Each controller is evaluated in our environment and a feature vector
describing the resulting behavior is calculated. Given these behavior features, each
policy is evaluated for novelty. Based on some archiving scheme, some or all of the
policies are stored in an archive. Then, artificial evolution and mutation is used to
create the next generation of controllers, where novelty is used as the fitness score.
This process is repeated until it reaches some stopping criterion, at which point the
discovered behaviors in the archive are clustered and representatives of each cluster
are used to form an approximate taxonomy of possible emergent behaviors. The basic
algorithmic outline is given in Algorithm 1.

Algorithm 1 NovelBehaviorDiscovery
Require: environment E , capability model C , and controller model U
P ← InitializePolicies(U (C)) � Generate initial population P0
archive ← InitializeArchive(P)

while stopping criterion not met do
for each policy pi in population P do

fi ← ExtractFeatures(pi , E) � extract features by evaluating policy
ni ← Novelty(fi , archive) � evaluate novelty
if addToArchive(〈pi , fi 〉) then

archive.add(pi , fi) � store individual in novelty archive
end if

end for
P ← Update(P, n) � update population using a GA with fitness replaced by novelty

end while
K ← Cluster(archive) � Cluster on archive and return K representative behaviors
return K � Return cluster representatives as taxonomy

452 D. S. Brown et al.

4 Implementation

4.1 Simple Capability Model

We use a homogeneous capability model based on Gauci et al.’s recently proposed
single, binary-sensor, line-of-sight robots [7]. Each robot is equipped with a differen-
tial drive and a single line-of-sight sensor that provides it with one bit of information
that lets the robot know whether it is facing another agent (see Fig. 1a).

Using this simple robot capability model, Gauci et al. optimized controllers to
perform aggregation [7] demonstrating that highly robust aggregation was possible
despite extremely limited capabilities. Subsequent research has shown that increasing
the robot capability to include trinary sensors allows specific controllers to be evolved
to accomplish tasks such as collecting pucks [8] and forming a perimeter, aggregating
to a specific location, and foraging [11]. Our work extends previous work on simple,
single-sensor swarms by examining the entire space of collective behaviors that are
possible given a swarm of robots whose input is limited to a single, binary, line-of-
sight sensor.

4.2 Simulation Environment

Due to the infeasibility of evaluating thousands of controllers on physical robots,
we follow the common practice of using a simulator [7, 10] to allow rapid explo-
ration of the behavior space. Following recent work on novelty search for swarms
[10], we used the MASON multi-agent simulation environment [14] to simulate the
physics of simple differential drive robots modeled after the e-puck robot [16]. Agent
movement is simulated within a frictionless walled region of 50 by 50 units, where
one unit equals one robot diameter. Each agent has two differential drive wheels.
The controller for each robot is a simple neural network with one input node for the
binary sensor and one output node for each wheel. The output is fixed in the range
[−1, 1] by a tanh function. The actual robot velocity on each wheel is then the output
multiplied by the maximum speed. Figure1 shows a representation of the robot and
the controller architecture.

Following the approach used by [10], we use NeuroEvolution of Augmenting
Topologies (NEAT) [20] with novelty search to optimize the weights on the neural
network controller shown in Fig. 1b. We computed novelty using the 15 nearest
neighbors in the archive, consistent with best practices found by Gomes et al. [9]. In
our work we are interested in the full space of behaviors so we keep all individuals
from each generation and add them to the novelty archive.

Discovery and Exploration of Novel Swarm … 453

4.3 Behavior Vector

To explore the impacts of different behavior features on the discovered behaviors,
we used a five element behavior vector. The five element behavior vector measures
the average speed, scatter, radial scatter, angular momentum, and group rotation.
Average speed measures the average speed of the agents in the swarm. Scatter [7]
measures the average squared distance of the agents to the center of mass μ where
μ = 1

N

∑N
i=1 xi . Radial variancemeasures the variance of the distance of the agents

to the center of mass μ. Angular momentum measures the true angular momentum
about the center of mass of the swarm. Finally, group rotationmeasures a normalized
angularmomentum, ignoring the length of themoment arm [21]. R is theworld radius
(distance from center of world to corner in the case of a square world). The value R
is used to normalize several of the features to be invariant to the size of the world. To
create our final behavior vector, we used a sliding window average of each feature
over the last 100 time steps. The details of these behavior vectors are shown in
Table1.

4.4 Dimensionality Reduction and Clustering

While it is possible to cluster in the high-dimensional behavioral space, interpret-
ing the clusters becomes more difficult and single behaviors tend to be falsely split
into multiple clusters. To reduce the dimensionality of our data we use t-distributed
stochastic neighbor embedding (t-SNE) [22], a state-of-the-art dimensionality reduc-
tion technique shown to outperform other standard techniques such as PCA, Sammon
mapping, and Isomap. t-SNE is especially suited for taking high-dimensional data
that lies on several low-dimensional manifolds and mapping it to a 2-dimensional
mapping that preserves and reveals this structure. We used t-SNE [22] to reduce
the dimensionality and compare two types of clustering: k-means and hierarchical
single-link (min distance) agglomerative clustering to partition the behaviors.

Table 1 Behavior vector feature descriptions

Name Equation Name Equation

Average speed
1

N

N∑

i=1

‖vi‖2 Scatter
1

R2 · N
N∑

i=1

‖xi − μ‖2

Ang. momentum
1

R · N
N∑

i=1

(vi × (xi − μ)) Group rotation
1

N

N∑

i=1

(

vi × xi − μ

‖xi − μ‖
)

Radial variance
1

R2 · N
N∑

i=1

(

‖xi − μ‖ −

1

N

N∑

i=1

‖xi − μ‖
)2

454 D. S. Brown et al.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) group rotation vs.
angular momentum

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) group rotation vs.
scatter

−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) group rotation vs.
radial variance

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d) group rotation vs.
average speed

Fig. 2 Two-dimensional projections of the behavior space. The y-axis is group rotation

5 Results and Analysis

Usingnovelty searchwe ran100generations of 100populations usingNEAT toobtain
an archive of 8020 data points2 in 5 dimensional behavior space. Each experiment
used 30 simulated robots. Figure2 shows several 2-dimensional projections of the
5-dimensional data. Based on these results we see that there is definite structure
captured by these features. We also see that group rotation and angular momentum
are highly correlated, as expected, but do capture different information.

We used the MATLAB implementation of t-SNE3 to map our 5-dimensional
data to 2 dimensions. The resulting 2-dimensional data has definite structure and
visible clusters as seen in Fig. 4, as opposed to the projected data shown in Fig. 2.
We performed the dimensionality reduction before clustering to both reduce the
computation time required for clustering and to make the results easy to visualize.

5.1 K-Medoids

k-Means is the de facto clustering algorithm to begin data exploration. We use a
related clustering algorithm called k-Medoids that returns k actual data points as
cluster centers. We use the medoids as the representative behaviors.

Because our goal is to discover and categorize emergent behaviors, we do not have
any way of knowing the number of clusters ahead of time. Thus, we explored the
resulting clusters for values of k between 2 and 10 and visually inspected the behavior
of the resulting medoids for each value of k. The results are shown in Table3a using
the abbreviations listed in Table2. Sample trajectories of these behaviors are shown
in Fig. 3.

2Due to the elitism feature of NEAT, the best performing policies (most novel) in one generation
are kept in the population for the next generation. Thus, the algorithm explores fewer than 10,000
unique controllers.
3https://lvdmaaten.github.io/drtoolbox/.

https://lvdmaaten.github.io/drtoolbox/

Discovery and Exploration of Novel Swarm … 455

Table 2 Abbreviations used to describe common behaviors

Abbreviation Description Abbreviation Description

cycp Cyclic pursuit mill Milling

wall Wall slide rand Individual circling w/out
emergence

aggr Aggregation cw Clockwise motion

disp Dispersal ccw Counterclockwise motion

Table 3 Results of examining centers from k-Medoids and Hierarchical clustering on the t-SNE
embedded behavioral data. #x denotes that # cluster medoids were of that type

(a) k-Medoids

cycp wall aggr disp mill rand

k cw ccw cw ccw cw ccw

2 x x

3 x x x

4 x x x x

5 x 2x 2x

6 x x x x x x

7 x x x x x x x

8 x x 2x x x x x

9 x x 2x x x x x

10 x 2x 2x x x x x x

(b) Hierarchical clustering

cycp wall aggr disp mill rand

k cw ccw cw ccw cw ccw

2 x x

3 x x x

4 x 2x x

5 x 2x x x

6 x 3x x x

7 x 4x x x

8 x 4x 2x x

9 2x 4x x x x

10 4x 4x x x

456 D. S. Brown et al.

Fig. 3 Partial trajectories of
swarm behaviors possible
given a single, line-of-sight
sensor. Cyclic pursuit forms
a perfectly spaced, revolving
circle.Wall following
consists of agents spreading
out to the boundary and then
sliding along the walls. In
Aggregation, the robots
spiral into a single cluster.
Robots in the Milling
behavior constantly chase
each other around in circles
without ever forming a
perfect circle. Dispersal is
the opposite of the
aggregation behavior, and
results in agents spiraling
away from each other.
Finally, some behaviors were
classified as Random due to
agents never forming a
coherent behavior

(a) Cyclic pursuit (b) Wall following

(c) Aggregation (d) Milling

(e) Dispersal (f) Random

An example of the results is shown in Fig. 4a. We evaluated each cluster by
comparing the medoids. While k-Medoids works well for forming equally sized
clusters, it also ignores much of the structure in the 2-dimensional embedding. This
is a common downside to k-Means and k-Medoids clustering.

5.2 Hierarchical Single-Link Clustering

The previous section showed that just a simple k-Medoids approach allows us to
partition the behavior space into roughly equal cells. We then examined the medoids
returned from each cluster to determine how many distinct behaviors were discov-
ered.However, even a superficial examinationof the2-dimensional t-SNEembedding
and the clustering shown in Fig. 4a shows that clusters in many cases do not fit well
with the underlying structure. To try to remedy this we next examined hierarchical
agglomerative single-link clustering.

Fig. 4 An example
clustering from k-medoids
with k = 6. This approach
partitions the t-SNE
embedded behavior space
into roughly equal partitions (a) k-Medoids (b) Hierarchical Clustering

Discovery and Exploration of Novel Swarm … 457

As shown in Fig. 4b hierarchical clustering sequentially picks out isolated islands
in the embedded 2-d space. However, the resulting cluster centers do not exhibit
the range of behaviors found through k-Medoids. We inspected the clusters and
representative behaviors and found that many of the small clusters were simply
different variations of cyclic pursuit with variations in radius and speed.

6 Discussion

Our clustering results show that k-Medoids provides themost representative sampling
of distinctly different behaviors, while hierarchical clustering tended towards finding
different variations of cyclic pursuit while failing to find the milling behavior. One
method is not clearly better than the other. If finding the largest number of clearly
distinct behaviors is desired, then k-Medoids seems to perform the best. On the other
hand, if a more nuanced definition of emergent behavior is desired, the hierarchical
clustering seems better at uncovering the variations within behaviors.

Our clustering analysis found six possible behaviors. However, one of them, ran-
dom circling, appears to not have any kind of collective behavior but is instead just a
collection of robots moving in circles with no emergent properties. Thus, we focus
on the five behaviors that we classify as emergent: cyclic pursuit, aggregation, wall
following, dispersal, and milling. Cyclic pursuit resulting from robots with a single,
binary sensor was first mentioned by Gauci et al. [7], but treated as a local minima
in the search for an aggregation controller. Our method is able to “rediscover” this
emergent behavior without an explicit objective. Cyclic pursuit is also well studied
problem in control theory [15]; however, these problems are often solved using com-
plex policies requiring positional and heading information, as opposed to the simple
capability model we study here.

Aggregation is another behavior re-discovered by out method. Gauci et al. [7]
first explored the problem of using a single-binary sensor to investigate whether they
could evolve an aggregation algorithm that required no computation or memory.

Unlike cyclic pursuit or aggregation, the wall following behavior found by our
algorithm is, to the best of our knowledge, a novel behavior for our capability model.
While this behavior is a result of our specific environment, namely a walled environ-
ment without friction, it shows the power of our method in finding a novel behavior
unknown to be possible in a swarm of memoryless single sensor robots. While it is
possible to argue that wall following is simply a circle that is too big for the world
size, this ignores the fact that the space of behaviors is inherently tied to the charac-
teristics of the environment. As stated in our problem formalism, we are interested
in discovering the different behaviors that are possible given both a capability model
as well as an environment. Thus, for our specific environment, we argue that the wall
following and cyclic pursuit are different behaviors due to their unique movement
patterns and behavioral features.

The dispersal behavior is also a novel behavior that has not been previously shown
to exist for single sensor swarms. Given that aggregation has previously been shown

458 D. S. Brown et al.

possible, it is not surprising that dispersal is also possible; however, the fact that our
method finds both aggregation and dispersal shows the effectiveness of our approach.

The final emergent behavior that our method discovered in the milling, or torus
behavior. The existence of this behavior is rather remarkable given the limited capa-
bility model we studied. It is well known that ants and fish form these types of
milling patterns in the wild. However, we believe this is the first demonstration of
these patterns shown to be possible with no memory and only a single bit of sensory
information. This behavior is well-studied in the swarming community and is one
of the four fundamental group types shown to emerge from the celebrated Couzin’s
model [5]. However, unlike Couzin’s model, which makes strong assumptions about
every agent being able to sense and respond to its neighbor’s relative positions and
velocities, we have discovered that a milling behavior is possible using only a single
binary sensor.

7 Conclusions and Future Work

In this paper we formalized the problem of determining the emergent behaviors
possible given a limited set of capabilities. Applying our method to a single binary
sensor model, first proposed by Gauci et al. [7], we found that our method was
able to rediscover a cyclic pursuit circling behavior, as well as aggregation. We
also discovered three new behaviors not previously shown to be possible given our
assumed capabilities: wall following, dispersal, and milling. We investigated both
k-means clustering and hierarchical clustering after reducing the dimensionality of
our data. We found that the centers of the k-Medoids clusters resulted in a wider
variety of behaviors than the centers of clusters obtained from hierarchical clustering.
Hierarchical clustering found fewer distinctly different behaviors, but was able to
better select for variations within behaviors, such as speed, rotation direction, and
radius.

While we believe that the problemwe have studied is of fundamental and practical
importance, we acknowledge the fundamental subjectivity in assigning boundaries
between behavior types. Though this is an inherently subjective problem that may
never admit an objective solution, we believe we have made some progress towards
the goal of discriminating between qualitative behavioral groups in a principled
way. While emergent behaviors will always, in some sense, be relative to the eye
of the beholder, our approach allowed us to find a set of visually distinct behaviors,
some of which were not previously known to exist for the single binary sensor
capability model. While is it still difficult to know how well our approach will scale
to more complex capability models, our proposed methodology could be useful to
both scientists wanting to understand why some collective behaviors are present in
a given animal species as well as engineers wishing to explore and design emergent
behaviors to accomplish different tasks.

Future work should extend our method to investigate the space of possible emer-
gent behaviors given more complex models, such as multiple sensors with more

Discovery and Exploration of Novel Swarm … 459

than two possible inputs, limited communication between agents, and more complex
environments that include obstacles and movable items. It also remains to be seen
how changes in the size and shape of the environment and number of robots affect
the behaviors that are possible.

Future work should also investigate better techniques for determining what fea-
tures are important for clustering. Our results have shown the difficulty in defining
a behavior and in partitioning the explored space of behaviors without requiring a
user to visually inspect the results and hand-tune parameters such as the number
of clusters. There has been some work on using hand-crafted or learned features
for classifying swarm behaviors [1, 2]; however, these methods are designed for
already known behaviors, whereas we are interested in finding features that allow
us to discover new behaviors. One possible avenue toward better disambiguation
between behaviors would be to leverage crowd sourcing or machine learning. We
hypothesize that human feedback combined with more advanced machine learning
techniques such as deep convolutional neural networks [12] could allow us to better
learn behavior features and similarities and improve the scalability of our approach.

Finally, we note that while discovering emergent behaviors is an interesting sci-
entific question, there are also many open questions about how to interact with and
use these behaviors. As more complex emergent behaviors are discovered, we hope
there will also be research into how to use simple interactions with a swarm, either
by changing the behavior of a subset of the agents [3], or even by changing the
environment [11], to control and switch between different collective behaviors to
accomplish interesting tasks.

References

1. Berger, M., Seversky, L.M., Brown, D.S.: Classifying swarm behavior via compressive sub-
space learning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA),
pp. 5328–5335. IEEE (2016)

2. Brown, D.S., Goodrich, M.A.: Limited bandwidth recognition of collective behaviors in bio-
inspired swarms. In: Proceedings of the 2014 International Conference on Autonomous Agents
and Multi-agent Systems, pp. 405–412 (2014)

3. Brown, D.S., Kerman, S.C., Goodrich, M.A.: Human-swarm interactions based on managing
attractors. In: Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot
Interaction, pp. 90–97. ACM (2014)

4. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study
Behav. 32(1), 1–75 (2003)

5. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial
sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

6. Doncieux, S., Mouret, J.B.: Behavioral diversity with multiple behavioral distances. In: 2013
IEEE Congress on Evolutionary Computation (CEC), pp. 1427–1434. IEEE (2013)

7. Gauci, M., Chen, J., Dodd, T.J., Groß, R.: Evolving aggregation behaviors in multi-robot sys-
temswith binary sensors. In:DistributedAutonomousRobotic Systems, pp. 355–367. Springer,
Berlin (2014)

8. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Clustering objects with robots that do not
compute. In: Proceedings of the 2014 International Conference on Autonomous Agents and
Multi-agent Systems, pp. 421–428 (2014)

460 D. S. Brown et al.

9. Gomes, J., Mariano, P., Christensen, A.L.: Devising effective novelty search algorithms: a
comprehensive empirical study. In: Proceedings of the 2015 on Genetic and Evolutionary
Computation Conference, pp. 943–950. ACM (2015)

10. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems with novelty
search. Swarm Intell. 7(2–3), 115–144 (2013)

11. Johnson,M.,Brown,D.S.: Evolving and controllingperimeter, rendezvous, and foragingbehav-
iors in a computation-free robot swarm. In: International Conference on Bio-inspired Informa-
tion and Communications Technologies (2015)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

13. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty
alone. Evol. Comput. 19(2), 189–223 (2011)

14. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multiagent simulation
environment. Simulation 81(7), 517–527 (2005)

15. Marshall, J.A., Broucke, M.E., Francis, B.A.: Formations of vehicles in cyclic pursuit. IEEE
Trans. Autom. Control 49(11), 1963–1974 (2004)

16. Mondada, F., Bonani,M., Raemy,X., Pugh, J., Cianci, C., Klaptocz, A.,Magnenat, S., Zufferey,
J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In:
Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1,
pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco (2009)

17. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective
behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp.
3293–3298. IEEE (2012)

18. Schneirla, T.C.:Aunique case of circularmilling in ants, considered in relation to trail following
and the general problem of orientation. Citeseer (1944)

19. Selous, E.: Thought transference (or what?) in birds (1931)
20. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.

Evol. Comput. 10(2), 99–127 (2002)
21. Tunstrøm, K., Katz, Y., Ioannou, C.C., Huepe, C., Lutz, M.J., Couzin, I.D.: Collective states,

multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9(2), e1002,915
(2013)

22. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(2579–
2605), 85 (2008)

23. Wolfram, S.: A New Kind of Science, vol. 5. Wolfram Media, Champaign (2002)

Effects of Spatiality on Value-Sensitive
Decisions Made by Robot Swarms

Andreagiovanni Reina, Thomas Bose, Vito Trianni
and James A. R. Marshall

Abstract Value-sensitive decision-making is an essential task for organisms at all
levels of biological complexity and consists of choosing options among a set of
alternatives and being rewarded according to the quality value of the chosen option.
Provided that the chosen option has an above-threshold quality value, value-sensitive
decisions are particularly relevant in case not all of the possible options are available
at decision time. This means that the decision-maker may refrain from deciding until
a sufficient-quality option becomes available. Value-sensitive collective decisions are
interesting for swarm roboticswhen the options are dispersed in space (e.g., resources
in a foraging problem), and may be discovered at different times. However, current
design methodologies for collective decision-making often assume a well-mixed
system, and clever design workarounds are suggested to deal with a heterogeneous
distribution of opinions within the swarm (e.g., due to spatial constraints on the
interaction network). Here, we quantify the effects of spatiality in a value-sensitive
decision problem involving a swarm of 150 kilobots. We present a macroscopic
model of value-sensitive decision-making inspired by house-hunting honeybees, and
implement a solution for both a multiagent system and a kilobot swarm. Notably, no
workaround is implemented to deal with the spatial distribution of opinions within
the swarm. We show how the dynamics presented by the robotic system match or
depart from the model predictions in both a qualitative and quantitative way as a
result of spatial constraints.

A. Reina (B) · T. Bose · J. A. R. Marshall
Department of Computer Science, The University of Sheffield, Sheffield, UK
e-mail: a.reina@sheffield.ac.uk

T. Bose
e-mail: t.bose@sheffield.ac.uk

J. A. R. Marshall
e-mail: james.marshall@sheffield.ac.uk

V. Trianni
ISTC, Italian National Research Council, Rome, Italy
e-mail: vito.trianni@istc.cnr.it

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_32

461

462 A. Reina et al.

1 Introduction

Engineering large robot swarms with predictable performance is a very challenging
problem, which is exacerbated by the spatiality aspects inherent to robotic systems
that are widely distributed in space and that feature a highly heterogeneous and
dynamic interaction network. For this reason, available design methods for sys-
tem control resort to space-time models or low-dimensional abstractions [3, 9, 14].
Indeed, even with simple mobility models such as random walks [5], the system
dynamics are the more difficult to predict the more the individual actions are influ-
enced by information available only locally. If the state of a robot strongly depends
on its spatial location (which in turns determines the interactions with neighbours),
it is very likely that the swarm robotic system will present heterogeneities through
space that may have a bearing on the macroscopic dynamics. The effects of spa-
tiality are negligible only if the swarm is “well-mixed”: in analogy with chemical
systems [8], a certain robot state should be uniformly distributed within the swarm,
or, in alternative, interactions between any two robots in the swarm should be equally
likely. This condition is however not customary in swarm robotics, due to limited
motion speed and local communication abilities that prevent sufficient mixing. As
a result, the system dynamics may strongly deviate from the predictions of abstract
macroscopic models [4, 25].

In collective decision-making problems, spatiality may be determinant for the
system dynamics, especiallywhen the decision is the result of the formation of spatial
heterogeneities (e.g., in self-organised aggregation [1, 7]). In other cases, it can play
against convergence to a coherent outcome due to the formation of spatially isolated
clusters that do not sufficiently interact, resulting in a decision deadlock or in long
convergence times [25]. The attentive design of the individual robot behaviour can
cancel out or even exploit the effects of spatiality [15, 20, 26]. Designmethodologies
based on well-mixed assumptions propose clever workarounds to deal with spatial
constraints, such as limiting the interaction between agents fromdifferent populations
only when/where the agents populations mix, e.g., at a home location [21].

In this work, we address the design of a collective decision-making behaviour in
a swarm robotics scenario characterised by spatial heterogeneities, and analyse the
effects of spatiality in the system dynamics. The decision problem falls in the general
class of value sensitive decision-making [17], that is, it requires that a decision is
taken only if there is at least one option that has a sufficiently high quality (i.e., above
a given threshold θv). In case such a high-quality option is not available, a decision
should not be taken in the expectation that a supra-threshold option would become
available at a later time (see Sect. 2). Due to spatiality, it may be possible that only
low-quality alternatives are discovered first, due to random exploration, so that the
decision should be delayed until a high-quality one is eventually found. Quantifying
the effects of spatiality in such a decision problem is therefore a fundamental step
toward the engineering of swarm robotics systems.

We provide an implementation for the value-sensitive decision problem follow-
ing a recently introduced design pattern for decentralised decision-making [21], as

Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms 463

detailed in Sect. 3. Although the design pattern provides some guideline to deal
with spatiality—at least to a certain extent—, in this work we implement no spe-
cial workaround apart from parameterising the system in a way to enhance mixing
among robots.We study the system behaviour in the special case of binary symmetric
decisions, that is, two options are available with the same quality v ∈ [vm, vM], and
we analyse when the system is able to break a decision deadlock or remain stuck
at indecisions (i.e., in the expectation that a high-quality option would later appear,
see Sect. 4). We provide results for an abstract multiagent system characterised by
point-mass particles not physically interacting with each other, and for experiments
with a swarm of 150 kilobots. We conclude in Sect. 5 by discussing the relevance of
the obtained results for the engineering of large-scale swarm robotics systems.

2 Case Study: Value-Sensitive Decision-Making by a Robot
Swarm

Problem description. We consider a case study in which a robot swarmmust search
and select among options deployed in a bidimensional environment, with an option
becoming visible to a robot only in its immediate surroundings. The collective deci-
sion is taken when a large fraction xQ of robots commits to the same option. Each
option, Oi is characterised by its quality vi ∈ [vm, vM]. The robots have no a priori
information about the decision problem they have to solve, that is, the robots do not
know: (i) how many options are available, (ii) where the options are located, and
(iii) which is the quality of the options. The swarm is asked to explore the environ-
ment in order to identify all the available options and estimate their quality. Finally,
the swarm must select the option with the highest quality if the quality is above a
given threshold θv, otherwise should remain undecided.

The system property of committing or not to a decision as a function of the
estimated quality of the options reflects value-sensitivity: The swarm response is
sensitive to the value of the perceived options’ quality. Value-sensitivity is relevant
to engineering [21], biology [17] and also neuroscience [18], and is an advantageous
property for systems that have to make decisions among an unknown number of
optionswhich have to be discovered. This is typicalwhen the discovery of alternatives
is an episodic event. In similar conditions, options may become available at various
moments in time, for example, some options may need more time to be discovered
or may appear later in the environment. In these cases, committing too early to
the current best option may preclude the opportunity of selecting a better option that
would get discovered later. This situationmay be frequent in scenarios where options
are deployed in a spatial environment (e.g., nest-sites in house-hunting social insects
[24]). Farther options may take longer to get discovered although they might have
a better quality than nearer options. This phenomenon is well-known in biology:
for instance, ant colonies that change their nest are able to select the best new nest
independently of the distance from the old nest [6].

464 A. Reina et al.

Experimental setup. The robot used in this study is the kilobot [23], a small and
simple robot with limited sensing and actuation capabilities. A kilobot operates at
a clock frequency of about 32Hz (which corresponds to a clock period τc � 31ms).
It can move on a flat surface and control its movements through the modulation
of the power applied to two vibration motors. The motion speed varies from robot
to robot and also depends on the ground friction. In our experiments, a robot can
move straight at a speed of 13mm/s and rotates at 40◦/s, on average. Through IR
communication, a robot can exchange 9 bytes messages with neighbours in a limited
range ds which varies in relation to the reflectance of the ground and the brightness of
the environment. In our experiments, the communication range was about 100mm.
Finally, each robot is equipped with a RGB LED that we use to let the robot display
their current state.

The environment is a circle with a radius of 750mm and glass ground. Each option
is signalled through two static kilobot robots acting as beacons (which hereafter we
call simply beacons to differentiate them from the robots that compose the swarm).
Each beacon broadcasts every second a message with the option ID and its quality.
We consider a binary decision problem characterised by two options, and we assign
a unique colour to each of them (i.e., red and blue); the colours will help later to
visualise each robots commitment state (see Sect. 4). We allocate two beacons for
each option to allow the robots to perceive the option messages in a larger area. The
two beacons are located at a distance of 150mm from each other and thus cover
an area of AO � 0.058m2. Therefore, each robot can perceive an option in a very
limited portion of space compared to the whole environment which has an area of
AE = 1.77m2. The two options are located at a distance of about 380mm from the
environment center at diametrical opposite position. Thus, the distance between the
two options is about 760mm.

We analyse the robot experiments postprocessing the video of the experiments
that we record through four overhead cameras. The cameras have overlapping fields
of view and have been calibrated in order to match the coordinates of each tracked
robot in a common reference frame to remove duplicate detection. We use a four-
camera tracking system to maximise the probability of detecting the LED colour of
every robot. In fact, multiple reduced fields of view allow a view on each area that is
more orthogonal to the ground plane and reduces the occurrence of robots occluding
the view of the LED with their own body.

Given the specification of the environment and of the robots communication capa-
bilities, the swarm size (i.e., the number of robots) determines the average number
of neighbours for each robot. Given N robots moving in an environment of size AE

and interacting over a range ds , the resulting interaction network has average degree
〈k〉 = πNds/AE [25]. We size the swarm to 150 robots which corresponds to hav-
ing a network with an average interaction degree of 〈k〉 � 2.67. This value allows to
have frequent interactions but remains below the percolation threshold 〈k〉 � 4, 51
which determines the emergence of a single connected component in the interaction
network [25].

Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms 465

3 Top-Down Implementation Through the Design Pattern

We implemented a swarm robotics system for decentralised decision-making fol-
lowing a design methodology based on the concept of design patterns, as proposed
in [21]. The agent behaviour takes inspiration from a mathematical model for honey-
bee nest-site selection [24]. This model describes the dynamics of a honeybee swarm
collectively deciding their future nesting site through a system of ODEs. In [21], the
honeybee model is formalised in a design pattern supporting the design of swarm
systems (e.g., robot swarms) by linking the macroscopic model parameters to the
individual agent behavioural rules.

Preconditions. The decentralised decision strategy that we implemented requires
a set of abilities at the individual robot level, as prescribed by the design pattern
of [21]. Each robot must be able to:

• explore the environment searching for available options;
• recognise available options once found;
• individually estimate the options’ quality;
• exchange with other robots the options’ ID and quality.

Each robot modulates its actions as a function of the estimated quality of the opinion
to which it is committed to. All these preconditions are met by the kilobot platform,
hence the design pattern methodology can be applied.

Individual robot rules. The decision process works as follows. Robots can be com-
mitted to an option i (state Ci , and the total number of robots committed to i is
Ni) or uncommitted (state CU , and the total number of uncommitted robots is NU).
An uncommitted robot explores the environment and upon discovery of a potential
option i it gets committedwith probability Pγi . A robot committed to option i actively
recruits uncommitted robots (which also become committed to i) with probability
Pρi . A robot committed to option i sends stop signals to robots committed to option
j , with j �= i . The robot that receives the stop signal becomes inhibited and reverts
to an uncommitted state with probability Pβi . Finally, a robot committed to option i
spontaneously abandons its commitment and reverts to an uncommitted state with
probability Pαi .

Each robot, every second, broadcasts a message with information of its commit-
ment state and, if committed to an option, the estimated option’s quality. A robot
updates its commitments state every τu = 400 clock cycles through one of the four
transitions: discovery, abandonment, recruitment and cross-inhibition. The mecha-
nism of state update is described by the probabilistic finite state machine presented
in Fig. 1. Some of the transitions are available only if in the latest τu clock cycles the
robots has encountered an option (necessary for discovery) or received a message
from other committed robots (necessary for recruitment and cross-inhibition).

Every robot moves in the environment through an isotropic random walk deter-
mined by the alternate sequence of straight motions for τm = 300 clock cycles and
on-place rotations in a random direction for τr clock cycles, which are chosen ran-
domly from a uniform distribution U (1, 150). The random walk is necessary (i) to

466 A. Reina et al.

Fig. 1 Robot behaviour described as a probabilistic finite state machine. A robot updates its com-
mitment state every τu clock cycles. Solid arrows are spontaneous individual transitions that can
happen at any update. Dot-dashed lines are spontaneous individual transitions that can happen only
if the robot has found an option in the latest τu clock cycles. Dashed and dotted arrows represent
interactive transitions that can happen only if the latest message received by the robot in the last τu
clock cycles is from another robot committed to option O1 or O2, respectively

let uncommitted robot explore the environment to discover potential options, and
(ii) to allow robots to mix with each other and thus change their communication
neighbourhood [5].

The robot software is available online at http://diode.group.shef.ac.uk/resources/.

Macroscopic parameterisation. The macroscopic model of the decision process
can be described through a system of stochastic differential equations (SDEs) that
describe the changes in the proportion of agents committed to each option. In this
paper, we limit the study to binary decisions, hence the model describes the changes
of the proportion of agents committed to option O1 and O2 as x1 = N1/N and
x2 = N2/N , where N = NU + N1 + N2 is the total number of robots composing
the swarm. The macroscopic model is:

⎧
⎨

⎩

dx1 = (γ1xU − α1x1 + ρAx1xU − β2x1x2)dt + σdW1(t)
dx2 = (γ2xU − α2x2 + ρBx2xU − β1x1x2)dt + σdW2(t)
xU + x1 + x2 = 1

, (1)

where γi , αi , ρi and βi are the transition rates, respectively, of discovery, abandon-
ment, recruitment and cross-inhibition for option i ; and σdWi is a Wiener process
which represents additive noise with strength σ ≥ 0. In order to implement a sys-
tem able of value-sensitive decisions, we use a parameterisation similar to the one
proposed in [17]. We make two modifications prescribed by the design pattern [21]:
(i) The transition rate of discovery (γi) is changed in order to take into account the
episodic nature of a discovery; (ii)All transition rates are scaled tomeet themaximum
speed of the process. The employed parameterisation is:

γi = vi · PD, αi = v−1
i , ρi = vi , βi = β, dt = dτ/s, i ∈ {1, 2}

(2)
with PD the episodic discovery probability, vi ∈ (1, 5] the option i quality and
s = 0.008 the temporal scaling. Similarly to [13], we estimate geometrically the
probability of encountering an option, PD = AO/AE � 0.033, where AO is the area
where an option can be detected by a robot and AE is the full environment area.

http://diode.group.shef.ac.uk/resources/

Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms 467

Deadlock
breaking

Decision
deadlock

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.1

0.2

0.3

0.4

v

(a)

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

v

x 1

(b)

Fig. 2 Analysis of the macroscopic model of Eq. (1) with parameterisation (2) for the binary case
v = v1 = v2. b Stability diagram in the parameter space (v, β). In the shaded area, the system has
a single attractor with an equal number of committed robots to both options. In the white area, the
system has two stable solutions with committed population biased for either of the two options. The
horizontal red dashed line shows the selected value of β = 0.3. b Bifurcation diagram for β = 0.3
as a function of the option quality v. The solid blue lines are stable equilibria, the green dashed line
is an unstable saddle point. As desired, the system undergoes a pitchfork bifurcation and breaks the
decision deadlock for quality values greater than the threshold θv � 1.5

The macroscopic dynamics of the system in (1) can be studied analytically for
varying option values [17]. A particularly interesting case is the symmetric condition
in which both options have the same quality (i.e., v1 = v2 = v). In this situation, the
two options are equivalent, therefore the swarm must select any of the two but only
if their value is higher than θv. The study presented in this paper focuses on this case,
as it is paradigmatic for evaluating the value-sensitivity property.

Figure2a shows the stability diagram as a function of the options’ quality v and the
cross-inhibition rate β. The diagram shows that there exist two zones determining
the macroscopic behaviour: In the grey shaded area, there exist a single attractor
corresponding to a decision deadlock, which means that the swarm remains locked at
indecision; In thewhite area, the systempresents two stable attractors that correspond
to decisions for the one or the other option, and a third unstable saddle point. This
diagram can be exploited to select the system parameterisation that provides a desired
value-sensitive behaviour. For instance, in order to have a value-sensitive behaviour
with θv = 1.5, it is necessary to select β = 0.3 (displayed as a horizontal red dashed
line in Fig. 2a). Figure2b shows the bifurcation diagram for the selected value of β,
highlighting how the system breaks the decision deadlock when the options’ quality
v is greater than θv � 1.5.

Microscopic parameterisation. The design pattern of [21] explains how to convert
themacroscopic parameters in the individual robot probabilities. Themain difference
between the macroscopic model and the agent implementation concerns the change
of the temporal domain. While the macroscopic description is a continuous time
model, the robots operate, as the most part of electrical devices, in discrete time (i.e.,
CPU clock cycles). Following the conversion rules of [21], we obtain:

468 A. Reina et al.

Pγi = γi · T, Pαi = αi · T, Pρi = ρi · T, Pβi = βi · T, i ∈ {1, 2} (3)

with T the update timestep length, which is determined by the time between two com-
mitment updates τu = 400τc (where τc is the kilobot clock period) and the timescale
of the macroscopic model, which is rescaled by the term s. In our experiments,
T = sτu .

4 Results

In this study, we contrast the dynamics predicted by the macroscopic models with
the results obtained from the swarm robotics system which we implemented both
in simulation and on real robots. At the macroscopic level, we study the system
dynamics through time integration of Eq. (1) via a generalised Heun method. Using
this numerical scheme the computed solution converges to the Stratonovich solu-
tion of the SDEs [10]. Starting from the SDEs model, it is possible to derive the
corresponding master equation, which allows the analysis of the finite size effects
where the magnitude of the stochastic fluctuations is determined by the finite num-
ber of robots composing the swarm [21]. We approximate the solution of the master
equation through the simulation of the Gillespie algorithm [8].

The swarm robotics system has been implemented and analysed both through
multiagent simulations and through a 150 kilobot swarm. The multiagent system
is implemented in MASON [12] and simulates point-mass particles that move in a
bidimensional plane. The scenario, the agent behaviour and its parameterisation are
coherent with the kilobot implementation described in Sects. 2 and 3. However, in
this system, noise and collisions among agents are not taken into account. The kilobot
swarm implementation, instead, allows us to study the dynamics of a real physical
system that includes all the aspects inherent to robotic experimentation. Figure3
shows a screenshot of one experiment, while two videos of the robot experiments
are available online1.

A first assessment of the effects of spatiality can be obtained looking at the asymp-
totic dynamics of the system of Eq. (1) using the parameterisation (2), in comparison
with the dynamics of the multiagent simulations.We performed a large set of simula-
tions by extensively varying the quality value v, and Fig. 4 contrasts the macroscopic
bifurcation diagram as a function of the options’ quality v with the final distribution
of the simulated swarm at convergence. We can appreciate a good qualitative agree-
ment of the multiagent dynamics with the stable attractors of Eq. (1). The existence
of a bifurcation is well predicted by the macroscopic model, although the multiagent
simulations appear to break the symmetry for slightly higher values of v. Figure5
shows the comparison of the temporal dynamics of the macroscopic models and of
the swarm robotics systems (both real and simulated). The plots show aggregated

1https://www.youtube.com/watch?v=Gdy5o18y5lg and https://www.youtube.com/watch?v=EJt
cpuj1Q5o.

https://www.youtube.com/watch?v=Gdy5o18y5lg
https://www.youtube.com/watch?v=EJtcpuj1Q5o
https://www.youtube.com/watch?v=EJtcpuj1Q5o

Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms 469

Fig. 3 Screenshot of a 150 kilobots experiment taken from the four-overhead-camera tacking
system. The overlaying coloured circles show the two options localised in the environment. The
robots light up their LED in a colour that corresponds to their internal commitment state: green for
the uncommitted state CU , red or blue for commitment to the option of the respective colour. This
screenshot shows the final state of the swarm, after 30min, for an experiment with v1 = v2 = 5.
The swarm has a majority of robots committed to the blue option (108), only 35 robots committed
to option red and 7 uncommitted robots

results of several experiments for two options’ quality values: v = 1.5 and v = 5.
The results show that both the multiagent simulations and the kilobot swarm have
slightly different dynamics compared to themacroscopic description (SDE andGille-
spie simulations). For v = 1.5, the system is close to the critical bifurcation point,
and the dynamics are not quantitatively matched by the spatial system (see Fig. 5a).
For v = 5 instead, the asymptotic behaviour is very similar, but the dynamics of the
swarm robotics system are slower (see Fig. 5b). A slower convergence is the conse-
quence of spatiality that leads to a drift of the system from a well-mixed condition.
We observe indeed a slightly heterogeneous distribution of the commitment state
among robots, with the emergence of clusters of robots with uniform commitment
and a slow mixing of the two populations. Such a slowing-down effect is typical of
consensus problems on regular lattices [2], and appears also with mobile agents in
case the mobility pattern is not sufficient to produce an adequate mixing [25]. Addi-
tionally, collisions among kilobots represent an additional factor that slows down the

470 A. Reina et al.

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

v

x 1

Fig. 4 Comparison between the predicted behaviour of the macroscopic system (as in Fig. 2b) and
the multiagent simulations (underlying density histogram). The results of the multiagent simulation
correspond to the final distribution of population x1 in 100 runs of length 5h

(a) v= 1.5 (b) v= 5

Fig. 5 Comparison of the temporal dynamics of the macroscopic models and the swarm robotics
system. The solid lines show the dynamics of Eq. (1) with noise strength σ = 0.0032 (average over
500 runs). The empty boxplots are the dynamics of the master equation describing the process with
N = 150 agents (the solution is approximated with 500 runs of the Gillespie algorithm). The darker
boxplots are the results of the spatial multiagent simulations (500 runs). Finally, the lighter boxplots
are the results of 150-robots experiments (5 runs). Colours represent the three subpopulations: gray
the uncommitted robots, blue/red the committed robots. Since both options have the same quality,
the results show each time as blue the selected option and as red the discarded option

Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms 471

diffusion of robots in the environment, which justifies the slower dynamics detected
during the kilobots experiments with respect to multiagent simulations, as shown in
Fig. 5.

5 Discussions

The study we have presented highlights the complexity of dealing with spatiality in
the engineering of a swarm robotics system. Although the specific decision prob-
lem we tackle seems ideal for obtaining a quantitative match between macroscopic
models and experimental system—due to the agents/robots living (and mixing) in
the same space—a non-negligible deviation from the model predictions is observed
in both the multiagent simulations and the experiments with kilobots, especially in
the transitory dynamics, which are slower for the spatial system. The design pat-
tern for decentralised decision-making [21] is key for achieving a good qualitative
match, as demonstrated with the extensive multiagent simulations we performed.
Similarly to the results presented in this study, other work [27] obtained a qualita-
tive match between spatial systems’ dynamics and non-spatial mathematical models.
However, a quantitative micro-macro link requires some additional workaround to
better approximate a well-mixed system. For instance, the introduction of a distinc-
tion between latent and interactive agents as suggested in [21] could be key to allow a
bettermixing of the populations. In futurework, wewill implement suchworkaround
and evaluate the extent towhich thewell-mixed condition is attained.More generally,
effects of spatiality should be included in the macroscopic models, possibly resorting
to heterogeneous mean-field approximations [8, 16]. In this way, the design pattern
methodology could be enriched with tools to deal with spatially heterogeneous sys-
tems, and also for systems interacting on networks with heterogeneous topology
(e.g., scale-free networks) [16]. Another possible approach to obtain a quantitative
match of the system dynamics influenced by spatiality consists in including such
factors into the macroscopic models [3, 9, 19].

An additional problem we recognise is given by collisions among robots, which
further reduce mobility and limit mixing within the system, as already noted in
previous studies [11, 25]. The kilobot platform does not provide means for efficient
collision avoidance, and the high density that characterises experimentation with
large groups plays against the population mixing. Indeed, besides being well-mixed,
large-scale systems need also be “diluted” to ensure a good micro-macro link [8].
Efforts to provide guidelines to deal with less dilute systems will greatly benefit
the engineering practice for swarm robotics systems. Indeed, we plan to investigate
through further studies the effects of density on robot mobility in order to provide a
model with diffusion coefficient as a function of the robot density.

The experimentationwe performed in this study is limited to the symmetric binary
decision case, which we deem sufficient to identify the relevant dynamics and com-
parewith themodel predictions. However, the implementationwe provide is agnostic
on the number of possible alternatives, and on the relative difference in quality, as

472 A. Reina et al.

already demonstrated in [21]. This means that the implemented system would work
out-of-the-box also with an increasing number of alternatives. In such a best-of-
n scenario, however, the macroscopic dynamics may be influenced by the number
of available options, and the specific parameterisation we selected (i.e., the tran-
sitions rate strengths, as suggested by [17]) may need to be adjusted to produce
value-sensitive decisions for any given number of options. Analytical studies in this
direction are ongoing [22], and tests with a swarm robotics system will allow the
validation of the design method beyond the binary case also for large-scale physical
systems.

Acknowledgements Thisworkwas partially supported by the EuropeanResearchCouncil through
the ERCConsolidator Grant “DiODe: Distributed Algorithms for Optimal Decision-Making” (con-
tract 647704). Vito Trianni acknowledges support from the project DICE (FP7 Marie Curie Career
Integration Grant, ID: 631297). Finally, the authors thank Michael Port for the valuable help in
building the infrastructure necessary to conduct the robot experiments.

References

1. Amé, J.M., Halloy, J., Rivault, C., Detrain, C., Deneubourg, J.L.: Collegial decision making
based on social amplification leads to optimal group formation. Proc. Natl. Acad. Sci. 103(15),
5835–5840 (2006)

2. Baronchelli, A., Dall’Asta, L., Barrat, A., Loreto, V.: Topology-induced coarsening in language
games. Phys. Rev. E, Stat. Nonlinear, Soft Matter Phys. 73(1), 015,102 (2006)

3. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomogeneous
robot swarms with application to commercial pollination. In: Proceedings of the 2011 IEEE
InternationalConference onRobotics andAutomation (ICRA), pp. 378–385. IEEEPress (2011)

4. Correll, N.,Martinoli, A.: Collective inspection of regular structures using a swarmofminiature
robots. In: The 9th International SymposiumonExperimental Robotics (ISER) (Springer Tracts
in Advanced Robotics), vol. 21, pp. 375–385. Springer, Berlin (2006)

5. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experiment with
kilobots. In: Dorigo, M. et al. (ed.) Proceedings of the 10th International Conference on Swarm
Intelligence (ANTS 2016). LNCS, vol. 9882, pp. 185–196. Springer, Berlin (2016)

6. Franks, N.R., Hardcastle, K.A., Collins, S., Smith, F.D., Sullivan, K.M., Robinson, E.J.,
Sendova-Franks, A.B.: Can ant colonies choose a far-and-away better nest over an in-the-way
poor one? Anim. Behav. 76(2), 323–334 (2008)

7. Garnier, S., Jost, C., Gautrais, J., Asadpour,M., Caprari, G., Jeanson, R., Grimal, A., Theraulaz,
G.: The embodiment of cockroach aggregation behavior in a group of micro-robots. Artif. Life
14(4), 387–408 (2008)

8. Gillespie, D.T., Hellander, A., Petzold, L.R.: Perspective: stochastic algorithms for chemical
kinetics. J. Chem. Phys. 138(17), 170,901–170,915 (2013)

9. Hamann, H., Wörn, H.: A framework of spacetime continuous models for algorithm design in
swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008)

10. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Stochastic
Modelling and Applied Probability, vol. 23. Springer, Berlin (1992)

11. Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots: effect of
interference. Auton. Robot. 13(2), 127–141 (2002)

12. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multiagent simulation
environment. Simulation 81(7), 517–527 (2005). Transactions of the society for Modeling and
Simulation International

Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms 473

13. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a case study in
collaborative distributed manipulation. Int. J. Robot. Res. 23(4), 415–436 (2004). Special Issue
on Experimental Robotics, Siciliano, B. (ed.)

14. Michael, N., Kumar, V.: Control of ensembles of aerial robots. Proc. IEEE 99(9), 1587–1602
(2011)

15. Montes, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M.: Majority-rule
opinion dynamics with differential latency: amechanism for self-organized collective decision-
making. Swarm Intell. 5(3–4), 305–327 (2010)

16. Moretti, P., Liu, S., Baronchelli, A., Pastor-Satorras, R.: Heterogenous mean-field analysis of
a generalized voter-like model on networks. Eur. Phys. J. B 85(3), 1–6 (2012)

17. Pais,D.,Hogan, P.M., Schlegel, T., Franks,N.R., Leonard,N.E.,Marshall, J.A.R.:Amechanism
for value-sensitive decision-making. PLoS ONE 8(9), e73,216 (2013)

18. Pirrone, A., Stafford, T., Marshall, J.A.R.: When natural selection should optimise speed-
accuracy trade-offs. Front. Neurosci. 8(73) (2014)

19. Prorok, A., Corell, N., Martinoli, A.: Multi-level spatial modeling for stochastic distributed
robotic systems. Int. J. Robot. Res. 30(5), 574–589 (2011)

20. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro link for collective
decisions: the shortest path discovery/selection example. Swarm Intell. 9(2–3), 75–102 (2015)

21. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for
decentralised decision making. PLoS ONE 10(10), e0140,950 (2015)

22. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-N nest-site selection
process in honeybees. Phys. Rev. E. 95(5), 052411 (2017)

23. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with
scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975
(2014)

24. Seeley, T.D., Visscher, P.K., Schlegel, T., Hogan, P.M., Franks, N.R., Marshall, J.A.R.: Stop
signals provide cross inhibition in collective decision-making by honeybee swarms. Science
335(6064), 108–11 (2012)

25. Trianni, V., De Simone,D., Reina, A., Baronchelli, A.: Emergence of consensus in amulti-robot
network: from abstract models to empirical validation. IEEE Robot. Automat. Lett. PP(99),
1–1 (2016)

26. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 kilobots:
speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst.
30(3), 553–580 (2016)

27. Valentini, G., Hamann, H.: Time-variant feedback processes in collective decision-making
systems: influence and effect of dynamic neighborhood sizes. Swarm Intell. 9(2–3), 153–176
(2015)

Emergence and Inhibition of
Synchronization in Robot Swarms

Fernando Perez-Diaz, Stefan M. Trenkwalder, Rüdiger Zillmer
and Roderich Groß

Synchronization can be a key requirement to perform coordinated actions or reach
consensus in multi-robot systems. We study the effect of robot speed on the time
required to achieve synchronization using pulse coupled oscillators. Each robot has
an internal oscillator and the completion of oscillation cycles is signaled by means of
short visual pulses. These can, in turn, be detected by other robots within their cone
of vision. In this way, oscillators influence each other to attain temporal synchrony.
We observe in simulation and in physical robotic experiments that synchronization
can be fostered or inhibited by tuning the robot speed, leading to distinct dynamical
regimes. In addition, we analyze the effect of the involved parameters on the time it
takes for the system to synchronize.

1 Introduction

Timing synchronization in multi-robot systems can be a prerequisite to coordinate
actions or achieve consensus in a decentralized manner [9, 15]. For instance, certain
approaches to box-pushing involve synchronization messages to ensure that robots

F. Perez-Diaz (B)
Department of Computer Science, The University of Sheffield, Sheffield, UK
e-mail: fernando.perez.diaz@sheffield.ac.uk

S. M. Trenkwalder · R. Zillmer · R. Groß
Department of Automatic Control and Systems Engineering, The University of Sheffield,
Sheffield, UK
e-mail: s.trenkwalder@sheffield.ac.uk

R. Groß
e-mail: r.gross@sheffield.ac.uk

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_33

475

476 F. Perez-Diaz et al.

push an object simultaneously [9, 19]. Temporal synchronization has also been used
in distributed sensing and data gathering in groups of robots [14, 23]. For example, a
swarm of robots is able to track a target that moves faster than any individual robot by
synchronizing the timings of the robots’ observations [4]. Synchronization has been
also proposed as a means to save power in distributed robotic systems and sensor
networks by keeping their communication channels idle most of the time and only
using them at precise times [24].

Pulse-coupled oscillators (PCOs) are one of the simplest methods for clock syn-
chronization. They have been applied in swarm robotics [2, 10] as well as other
multi-agent systems, such as sensor networks [20, 21] and ad-hoc networks [18,
22]. Each agent has an internal clock and signals the completion of a full clock cycle
by means of a short pulse. This pulse is detected by the emitter agent’s neighbors,
which, in turn, update their clocks in an attempt to match the incoming stimulus [1].
Over time, the system can achieve global synchronization through the interactions
between agents. PCOs are specially suitable in noisy or communication-limited envi-
ronments because they operate at the physical layer by transmitting simple identical
pulses, rather than packet messages [20–22].

Typically, communication among agents in a swarm only spans a certain local
vicinity. Depending on the density of agents in the environment, they may not form
a connected communication network. Therefore, agent mobility is usually needed to
form a continuously evolving network that allows for synchronization to be achieved
at the global scale.

Previous work in mobile pulse-coupled oscillators (MPCOs) has shown that syn-
chronization occurs monotonically faster with higher agent speed if each agent in-
fluences others lying within a certain range [13]. At high speeds all agents interact
with each other frequently, whereas at low speeds the neighborhood of any particular
agent remains unchanged for long periods of time, leading to a rapid local synchrony
but needing a longer time to achieve global synchronization.

In contrast, if the agents influence only their nearest neighbor a regime of inter-
mediate speeds is observed where synchronization is retarded, while both the slow
and fast regimes remain the same [12]. In a preliminary study, we observed with sim-
ulated agents that an interaction based on a cone of vision could link both monotonic
and nonmonotonic behaviors by appropriately selecting the dimensions of such cone
[10, 11].

This paper extends our previous work and focuses on embodied agents that sig-
nal their pulses visually using LED lights and are influenced only by others in their
cone of vision. We study the parameters that influence synchronization in a simu-
lated robotic environment and present a validation of the results with physical robot
experiments.

This paper is structured as follows. Section2 introduces the methodology, with an
overview of the system as well as a description of the agents’ temporal and spatial
dynamics. Section3 presents the simulation setup and results, with an analysis of the
effect of the parameters involved. Section4 describes the robotic trials and confirms
experimentally the simulated results. Section5 concludes the paper.

Emergence and Inhibition of Synchronization in Robot Swarms 477

Fig. 1 aAn e-puck robot. b Simulation setup in the Enki simulator. The overlaid drawing illustrates
an e-puck’s field of view, where a few pixels have detected a flashing robot (note that the actual
amount of pixels in Enki is 60)

2 Methods

We consider a group of N robots moving in a walled square arena of length L .
Every robot possesses an associated internal oscillator. The completion of a robot’s
oscillation cycle is signalled visually, and can be detected by neighboring robots
(see details below). Thereby, the robots can influence each other in an attempt to
synchronize their oscillators.

2.1 Robotic and Simulation Platforms

The robot used is the e-puck [7], which is a differential-wheeled cylindrical robot
of 7.4cm in diameter (Fig. 1a). The distance between the wheels is 5.1 cm, and their
speed can be set independently within the range [−12.8, 12.8] cm/s. The e-puck is
equipped with a ring of red LED lights, eight short-range infra-red proximity sensors
and a camera located at its front. The camera has a 56◦ horizontal viewing angle,
with a resolution of 640 × 480 RGB pixels. Each robot signals the completion of
a cycle of its internal oscillator by activating its red LED ring for a short duration.
This, in turn, can be detected by another robot with its camera if the flash is in its
field of view (cone of vision).

The robot simulation was performed using the open-source Enki library [6], see
Fig. 1b. Enki provides a faster than real time 2-D simulation of the physics and
dynamics of groups of robots, and it contains a built-in model of the e-puck. In Enki
the camera capture is a single row of 60 pixels spanning the field of view of the
e-puck.

478 F. Perez-Diaz et al.

2.2 Oscillator Dynamics

Algorithm1 presents the dynamics of each agent’s internal oscillator. The dynamics
is described by the value of its phase φ ∈ [0, τ], which is initialized at random.1 The
procedureOscillator is executed every control cycle (�t � 1 s). At the beginning
of each cycle φ is advanced by �t (Line 2). When the threshold φ = τ is reached a
firing event occurs (Lines 8–11). At that moment the oscillator starts a new cycle by
resetting its phase to 0, and turns on its red LEDs for a certain period of time to signal
the firing to neighboring agents. The active LEDs of an agent can be perceived by the
camera of another agent. In that case, the later would update its phasemultiplicatively
by a factor ε [2, 10, 12, 13] (Lines 4–6),

φ ← (1 + ε)φ . (1)

The LEDs of a robot need to be active for a sufficient amount of time, φ ∈
[0, φLED] (Lines 12–14) to ensure that the cameras of other robots can detect it.
In addition, because of the necessary duration of the flashing signal and the delays in
processing it, an oscillator could get displaced from synchrony if it detected a firing
shortly after starting a new cycle. To compensate for this effect, a refractory period,
φ ∈ [0, φre f]was added during which an oscillator is not influenced by any other [5]
(Line 3).

We found empirically that accounting for the average delay due to the frame rate
(� = ½ f ramerate−1 � φLED) yielded a more stable synchronization in the real
e-puck implementation. The function phaseUpdate in Algorithm1 is replaced by
phaseUpdate’, defined in Algorithm2. The basic principle is to apply the phase
update due to an LED flash detected at time t to the phase at time t − �, as if it had
been perceived instantaneously (Line 2). Subsequently the phase is advanced by �

to obtain the current value (Line 10). Note that setting � = 0 in Algorithm2 yields
the original behavior described in Algorithm1.

2.3 Motion Controller

Each robotmoves in a straight linewith speed V while there are no obstacles blocking
its way. A collision avoidance algorithm is used to avoid running into walls or other
robots. This algorithm implements a small turn if a robot is detected and a random
reorientation upon encounter with a wall. The distinction between other robots and
walls is determined heuristically by the time spent near the obstacle (see supporting
material for code and detailed description [8]).

1All random numbers used in this paper are generated using uniform distributions.

Emergence and Inhibition of Synchronization in Robot Swarms 479

Algorithm 1 Oscillator dynamics
Require: φ ← random (0, τ) � Initialize φ randomly within [0, τ)

Require: φref ∈ [0, τ) ∧ φLED ∈ [0, τ) ∧ φre f ≥ φLED
Require: ε > 0
1: procedure Oscillator
2: φ ← φ + �t � Linear increase of phase
3: if φ > φre f then � If phase is outside the refractory period
4: if wasFlashDetected then
5: φ ← PhaseUpdate(φ) = (1 + ε)φ

6: end if
7: end if
8: if φ ≥ τ then � If a full oscillation cycle is complete
9: φ ← 0
10: turnLEDsOn();
11: end if
12: if φ > φLED then � If the cycle is outside the flashing period
13: turnLEDsOff();
14: end if
15: end procedure

Algorithm 2Modified phase update function to compensate for camera delay
Require: � ≥ 0, � � φLED � Average camera delay
Require: φref ∈ [0, τ)

Require: ε > 0
1: function phaseUpdate′(φ)
2: φ ← (φ − �) mod τ � Phase at estimated time of flash
3: if φ > φre f then � If phase at time of flash is outside the refractory period
4: φ ← (1 + ε)φ

5: end if
6: if φ > τ then � If this would have triggered a new oscillation cycle
7: φ ← 0
8: turnLEDsOn();
9: end if
10: φ ← φ + � � Calculate current phase
11: return φ

12: end function

3 Simulation

3.1 Setup

Simulations were performed for a range of values of the system parameters: size of
the environment L , number of robots N , oscillator period τ and phase update factor
ε. The LED and refractory periods were fixed to φLED = 0.075 τ and φre f = 0.15 τ

respectively for all simulations. In addition, the effects of the dimensions of the
cone of vision were studied by considering only certain fractions of the total camera
pixels: from 4 to 60 pixels centered at the middle of the row. All the combinations of
parameters were simulated in 200 trials for a range of 20 agent speeds V , from near

480 F. Perez-Diaz et al.

stop to the maximum e-puck speed. In all trials the initial positions, orientations and
phases of each robot were set at random.

In order to measure the level of synchrony, a certain robot is selected as reference.
At the time of its kth firing, Tk , the complex order parameter is calculated as follows
[1],

r(Tk)e
i 2πφ(Tk)

τ = 1

N

N∑

j=1

ei
2πφ j (Tk)

τ , (2)

where φ(Tk) is the mean phase and modulus r(Tk) measures the level of synchrony,
from r(Tk) = 0 for a totally incoherent system, to r(Tk) = 1 for complete synchro-
nization. The simulations were stopped once r(Tk) reaches a threshold rsync, set here
to rsync = 0.95 [10].We have observed that from this point synchronization becomes
stable.2 The number of cycles k to synchronization is recorded. We refer to this value
as the synchronization time Tsync. This measure represents how long it takes the
system to synchronize independently of the oscillation period.

3.2 Results

Figure2 shows the synchronization time Tsync for a variety of parameters. We ob-
serve three clearly distinct regimes. For slow agent speed the system takes long to
synchronize and Tsync decreases with V . For high enough speeds synchronization oc-
curs significantly faster and Tsync also decreases with V . For an intermediate range of
speeds the monotonically decreasing dependence observed in the other two regimes
is broken, observing a local maximum. The precise position and strength of this peak,
as well as the local minimum that precedes it, depend on the oscillator parameters.

We performed a least-square fitting of Vp and Vm , the speeds at which the inter-
mediate regime peak and the preceding minimum occur respectively (Fig. 2c), with
respect to each parameter and found that,

Vm ∝ εL

N 3/2
and Vp ∝ εL

N 1/2
,

which agreeswith the analysis by Prignano et al. [12] on point-like agents influencing
their nearest neighbor. No clear dependence of either point with τ was found. In
addition, we found the following relationships for the corresponding synchronization
times, Tp and Tm , for both points,

Tp,m ∝ LeN

τ 2
+ Kp,m ,

2We consider the synchronization to be stable if the system continues in coherence (r(Tk) � rsync)
from that point in time onwards.

Emergence and Inhibition of Synchronization in Robot Swarms 481

(a) (b)

(c) (d)

Fig. 2 Synchronization time Tsync (in number of cycles) as a function of agent speed V for a
variety of parameters. a Varying the arena size L while fixing N = 10, τ = 5s and ε = 0.1. b
Varying the number of agents N while fixing L = 60cm, τ = 5s and ε = 0.1. c Varying the update
factor ε while fixing L = 60 cm, N = 10 and τ = 5s. d Varying the oscillation period τ while
fixing L = 60cm, N = 10 and ε = 0.1. In all cases φLED = 0.075 τ , φre f = 0.15 τ and the full
image was considered (i.e. 60 pixels). The four dashed lines correspond to the exact same parameter
configuration. Points (Vm , Tm) and (Vp, Tp) denote the synchronization speed and time for the local
minimum and the peak in the intermediate regime

where Kp,m are some constant offsets. No evident dependence with ε was found.
Figure3 shows the effect of changing the dimensions of the cone of vision by

considering different amounts of pixels as described in the previous section. The
three synchronization regimes can be clearly identified over the whole considered
range of pixels. In addition, we observe that the synchronization time increases for
all speeds as the number of pixels is reduced (narrower cone of vision).

4 Physical Implementation and Experiments

4.1 Setup

Physical experiments were run in parallel with two groups of 10 e-pucks3 in one
of two adjacent 60 × 60cm2 white-walled arenas. Five trials for 10 different robot
speeds were performed, starting with random initial phases until the system achieved

3Hardware revision HWRev 1.2. http://www.gctronic.com/doc/index.php/E-Puck.

http://www.gctronic.com/doc/index.php/E-Puck

482 F. Perez-Diaz et al.

Fig. 3 Time Tsync (in number of cycles) required to synchronize 10 agents moving at speed V
in a square arena of side 60cm while observing different fractions of the total camera image. The
oscillator parameters are the same as for the dashed lines in Fig. 2: τ = 5 s, ε = 0.1,φLED = 0.075 τ

and φre f = 0.15 τ

global synchrony (see below for details). The robots’ initial positions were randomly
selected from a 5 × 5 grid with 10cm spacing between points and equal padding to
the walls. The initial orientations were randomly selected at 45◦ degree intervals. The
experiments were performed in total darkness, and the robots only started moving
once the room lights were switched off. In a few trials, a robot stopped moving and
was unable to recover, or the battery ran out and accidentally restarted (resetting its
phase). In such cases, the trial was discarded and repeated.

The software was implemented utilizing functions of OpenSwarm, an embedded
operating system running directly on each e-puck [16]. The LED detection was
performed at approximately 8 frames per second (FPS) by analyzing a single row
of the acquired camera image (20 pixels with a 32× digital zoom). If two or more
pixels were identified as red, a firing was considered to be detected. In addition, the
LED indicating a low battery voltage was covered with tape to prevent false-positive
flash detections.

A web camera was positioned at 110cm above each arena and was used to record
the trials and tomeasure the level of synchrony in real time. For this purpose, tracking
software was developed using OpenCV that counted the number of detected red
LED rings at each frame. The system was considered to be synchronized when the
standard deviation of the ring counts over time was smaller than two frames, which
corresponds to approximately 130mswith our setup and ensured that synchronization
was stable thenceforth. This threshold approximately corresponds to rsync = 0.95 in
accordance with the simulation setup (Sect. 3.1) (see supplementary material for a
detailed calculation [8]). The time required to achieve synchrony, Tsync, measured in
number of cycles, is recorded. Figure4 shows a snapshot of one experiment with the
detected LED rings and a histogram of the ring count over time.

Emergence and Inhibition of Synchronization in Robot Swarms 483

Fig. 4 Snapshot of the
experimental setup with 10
physical e-puck robots in a
square arena of side length
L = 60 cm. The active LED
rings are detected and
superimposed as green
circles. The lower strip
shows an evolving histogram
of the number of LED rings
detected over time. The
system is considered to be
synchronized if the
distribution of the histogram
around the current peak has a
standard deviation smaller
than two frames

4.2 Results

Figure5 shows the synchronization time Tsync (in number of cycles) required to
synchronize the group of 10 e-pucks as a function of speed. The obtained curve
qualitatively displays the same behavior as in simulation. The slow, intermediate and
fast regimes can be clearly identified.

Observation of the trials yields visual confirmation of previous hypothesis regard-
ing the underlying mechanisms governing each regime [10–12] (see accompanying
trial videos in the online supplementary material [8]). In the slow regime an agent
spends many cycles observing the same agent(s), or not seeing any other. This helps
to form locally synchronized clusters. However, the whole system does not synchro-
nize globally until a sufficient amount of neighborhood changes occur. In the fast
regime, the opposite effect takes place. Each agent frequently changes the agents
it sees. Therefore, global synchrony becomes much easier to attain. In the inter-
mediate regime, the two mechanisms compete with each other. Local clusters are
synchronized as in the slow regime, but they are constantly displaced by the frequent
neighborhood changes.

5 Discussion

This paper studied the presence of three synchronization regimes on a system of
moving embodied pulse-coupled oscillators where the influence between agents is
dictated by their cone of vision. The time Tsync required to synchronize the system

484 F. Perez-Diaz et al.

Fig. 5 Time Tsync (in
number of cycles) needed to
synchronize 10 physical
e-pucks moving at speed V
in a 60 × 60 cm2 arena.
Black markers: average
values over 5 trials. Grey
contour: minimum and
maximum values over the
trials. The oscillator
parameters are the same as
for the dashed lines in Fig. 2:
τ = 5 s, ε = 0.1,
φLED = 0.075 τ and
φre f = 0.15 τ

decreases as a function of agent speed in the slow and fast speed regimes. How-
ever for an intermediate range of speeds this dependence does not hold and a local
maximum of Tsync is observed. Building on previous work [10, 12] we extended the
understanding of the system by finding correlations between key features (namely
the local minimum and maximum) and the involved parameters. In addition, the sim-
ulation results were experimentally validated in 50 trials with a group of 10 physical
e-puck robots.

The quantitative differences between the simulation and the physical system may
be attributed to several factors. Firstly, real robots present differences from one
another: the system clocks may be slightly different or experience jitter; the onboard
cameras are not equally sensitive; and the proximity sensors vary greatly, both within
the same robot and between robots,whichmay results in robots not avoiding obstacles
efficiently and getting stuck for periods of time. Secondly, real systems present other
imperfections. For instance, due to the low frame rate of the robot’s camera, it can
miss certain flashings when turning, or when other robots are too close or far away.
Lastly, the simulation does not take into account reflections of the LED flashes on
the arena walls, which can affect the effective field of view.

The simulations presented here extended a preliminary study [10]. In contrast to
[10], in this occasion priority was given to practical realism in order to later translate
the results to the physical experiments. Firstly, in this work, the number of pixels
was used to manipulate the dimensions of the cone of vision, instead of using the
camera angle as in [10], which may be practically unfeasible. Secondly, obstacle
avoidance and realistic reorientation at walls were implemented using the robots’
infrared sensors, whereas [10] used random reorientation at walls and no obstacle
avoidance mechanisms. Despite adding further constraints, this paper showed that
the three dynamical regimes are still present, and that our results are translatable to
a team of real robots.

Emergence and Inhibition of Synchronization in Robot Swarms 485

One shortcoming of our experiments resides on the motion dynamics. As de-
scribed in Sect. 2.3, robots move in a straight line except when avoiding other robots
or reorienting at random when a wall is reached. The choice was made in order
to build on the work of Prignano et al. [12] and Perez-Diaz et al. [10]. One could
argue that this is not a realistic motion for robots in a swarm, which may move inde-
pendently or coordinately to perform some task. In lieu of our controller, different
random walks could be explored. For instance, Dimidov et al. [3] presented an in-
depth study of random walks (from Brownian motion to Lévi walks) in the context
of target searching in swarms of robots. It would be worth investigating the effect of
the described motion models on firefly synchronization in the future.

It isworth noting that, to the best of our knowledge, this nonmonotonic dependence
has only been observed elsewhere with a phase update such as the one described in
Eq.1 and with agents influencing their nearest neighbor [12].

Future work could study whether the effect of speed on synchronization observed
here is translatable to other related consensus problems. For instance, Trianni et al.
[17] studied the time required for a group of robots to converge to consensus in a sim-
ilar setup to the one presented here. The authors studied a system of moving robots
interacting with local neighbors within a certain range. As described in Sect. 1, a sys-
tem of MPCOs influencing neighbors within a certain range yields a monotonically
decreasing dependence of Tsync with agent speed [13], whereas a cone of vision leads
to a nonmonotonic behavior. It would be worth investigating whether neighborhood
type has similar effect on the convergence time in described consensus problem.

This work could also be extended to other robot platforms. The current method
depends on LED flashing, cameras and darkness (to maximize visibility), which
may not be the dominant communication method used by other robot systems. Our
approach could be generalized to systems where wireless communication is the
utilized signaling method.

Acknowledgements S.M. Trenkwalder is recipient of a DOC Fellowship of the Austrian Academy
of Sciences.

References

1. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex
networks. Phys. Rep. 469(3), 93–153 (2008). https://doi.org/10.1016/j.physrep.2008.09.002

2. Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of ro-
bots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009). https://doi.org/10.1109/TEVC.2009.
2017516

3. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: An experiment with
kilobots. In: International Conference on Swarm Intelligence, pp. 185–196. Springer, Berlin
(2016)

4. Khaluf, Y., Mathews, E., Rammig, F.J.: Self-organized cooperation in swarm robotics. In: 14th
IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distrib-
uted Computing Workshops, pp. 217–226. IEEE (2011)

https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1109/TEVC.2009.2017516
https://doi.org/10.1109/TEVC.2009.2017516

486 F. Perez-Diaz et al.

5. Kuramoto,Y.:Collective synchronization of pulse-coupled oscillators and excitable units. Phys.
D: Nonlinear Phenom. 50(1), 15–30 (1991)

6. Magnenat, S., Waibel, M., Beyeler, A.: Enki: the fast 2D robot simulator (2007). http://home.
gna.org/enki/

7. Mondada, F., Bonani,M., Raemy,X., Pugh, J., Cianci, C., Klaptocz, A.,Magnenat, S., Zufferey,
J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In:
Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1,
pp. 59–65 (2009)

8. Online supplementary material. http://naturalrobotics.group.shef.ac.uk/supp/2016-004
9. Parker, L.E.: Multiple mobile robot systems. In: Springer Handbook of Robotics, pp. 921–941.

Springer, Berlin (2008)
10. Perez-Diaz, F., Zillmer, R., Groß, R.: Firefly-inspired synchronization in swarms of mobile

agents. In: Proceedings of the 2015 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’15, IFAAMAS, pp. 279–286 (2015). http://dl.acm.org/citation.
cfm?id=2772879.2772917

11. Perez-Diaz, F., Zillmer, R., Groß, R.: Robustness of synchronization regimes in networks of
mobile pulse-coupled oscillators. Phys. Rev. Appl. 7, 054002 (2017)

12. Prignano, L., Sagarra, O., Díaz-Guilera, A.: Tuning synchronization of integrate-and-fire
oscillators through mobility. Phys. Rev. Lett. 110, 114,101 (2013). https://doi.org/10.1103/
PhysRevLett.110.114101

13. Prignano, L., Sagarra, O., Gleiser, P.M., Diaz-Guilera, A.: Synchronization of moving integrate
and fire oscillators. Int. J. Bifurc. Chaos 22(07), 1250,179 (2012). https://doi.org/10.1142/
S0218127412501799

14. Ranganathan, P., Morton, R., Richardson, A., Strom, J., Goeddel, R., Bulic, M., Olson, E.:
Coordinating a team of robots for urban reconnaissance. In: Proceedings of the Land Warfare
Conference (2010)

15. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordina-
tion. In: Proceedings of the American Control Conference, 2005, vol. 3, pp. 1859–1864 (2005).
https://doi.org/10.1109/ACC.2005.1470239

16. Trenkwalder, S., Lopes, Y., Kolling, A., Christensen, A., Prodan, R., Groß, R.: Openswarm:
an event-driven embedded operating system for miniature robots. In: Proceedings of the 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4483–4490 (2016)

17. Trianni, V., De Simone, D., Reina, A., Baronchelli, A.: Emergence of consensus in a multi-
robot network: from abstract models to empirical validation. IEEE Robot. Autom. Lett. 1(1),
348–353 (2016)

18. Tyrrell, A., Auer, G., Bettstetter, C.: Fireflies as role models for synchronization in ad hoc
networks. In: Proceedings of the 1st International Conference on Bio Inspired Models of
Network, Information and Computing Systems. ACM (2006)

19. Vig, L., Adams, J.A.: Multi-robot coalition formation. IEEE Trans. Robot. 22(4), 637–649
(2006). https://doi.org/10.1109/TRO.2006.878948

20. Wang, Y., Núñez, F., Doyle III, F.J.: Energy-efficient pulse-coupled synchronization strategy
design for wireless sensor networks through reduced idle listening. IEEETrans. Signal Process.
60(10), 5293–5306 (2012). https://doi.org/10.1109/TSP.2012.2205685

21. Wang, Y., Núñez, F., Doyle III, F.J.: Mobility induced network evolution speeds up synchro-
nization of wireless sensor networks. In: Proceedings of the American Control Conference,
2014, pp. 3553–3558. IEEE (2014). https://doi.org/10.1109/ACC.2014.6858641

22. Wang, J., Xu, C., Feng, J., Chen, M.Z., Wang, X., Zhao, Y.: Synchronization in moving pulse-
coupled oscillator networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 62(10), 2544–2554
(2015). https://doi.org/10.1109/TCSI.2015.2477576

23. Winfield, A.F.: Distributed sensing and data collection via broken ad hoc wireless connected
networks of mobile robots. In: Distributed Autonomous Robotic Systems, vol. 4, pp. 273–282.
Springer, Berlin (2000)

24. Yu, C., Werfel, J., Nagpal, R.: Collective decision-making in multi-agent systems by implicit
leadership. In: Proceedings of the 2010 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’10, IFAAMAS, pp. 1189–1196 (2010)

http://home.gna.org/enki/
http://home.gna.org/enki/
http://naturalrobotics.group.shef.ac.uk/supp/2016-004
http://dl.acm.org/citation.cfm?id=2772879.2772917
http://dl.acm.org/citation.cfm?id=2772879.2772917
https://doi.org/10.1103/PhysRevLett.110.114101
https://doi.org/10.1103/PhysRevLett.110.114101
https://doi.org/10.1142/S0218127412501799
https://doi.org/10.1142/S0218127412501799
https://doi.org/10.1109/ACC.2005.1470239
https://doi.org/10.1109/TRO.2006.878948
https://doi.org/10.1109/TSP.2012.2205685
https://doi.org/10.1109/ACC.2014.6858641
https://doi.org/10.1109/TCSI.2015.2477576

Evolving Behaviour Trees for Swarm
Robotics

Simon Jones, Matthew Studley, Sabine Hauert and Alan Winfield

Abstract Controllers for swarms of robots are hard to design as swarm behaviour
emerges from their interaction, and so controllers are often evolved. However, these
evolved controllers are often difficult to understand, limiting our ability to predict
swarm behaviour. We suggest behaviour trees are a good control architecture for
swarm robotics, as they are comprehensible and promote modular reuse.We design a
foraging task for kilobots and evolve a behaviour tree capable of performing that task,
both in simulation and reality, and show the controller is compact and understandable.

1 Introduction

Swarm robotics is the field of robotics inspired by social insects, flocks of birds,
schools of fish and other natural collective phenomena. By using many simple and
cheap robots, it is hoped that goals such as pollution control, mapping and explo-
ration, and disaster recovery could be met in ways which are resilient, scalable and
decentralised [3]. The desired collective behaviour of the swarm emerges in a self-
organised way from the interactions of the many individual agents that make up the
swarm. Designing the controller for these agents is notoriously hard. A commonly
used approach is the use of evolutionary methods to discover suitable controller
designs.

Behaviour trees are widely used in the games industry to represent the decision
processes of non-player characters. Recently, they have been applied to robotics,

S. Jones (B) · M. Studley · S. Hauert · A. Winfield
Bristol Robotics Laboratory, University of the West of England, Bristol BS161QY, UK
e-mail: simon.jones@brl.ac.uk

M. Studley
e-mail: matthew2.studley@uwe.ac.uk

S. Hauert
e-mail: sabine.hauert@bristol.ac.uk

A. Winfield
e-mail: alan.winfield@uwe.ac.uk

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_34

487

488 S. Jones et al.

although not to our knowledge to swarm robotics. They have desirable properties
that make them interesting to consider in the context of swarm robotics. They are
human readable. They are hierarchical, all subtrees are themselves behaviour trees,
encapsulating a complete behaviour that can exist within a larger tree, offering pos-
sibilities for modularity and building block reuse. Finally, they can be created and
optimised using the techniques of Genetic Programming [26].

In this work, we design a behaviour tree controller architecture suitable for instan-
tiation in a swarm of kilobots. We then automatically evolve behaviour trees in simu-
lation to enable the swarm to perform a collective foraging task. The fittest behaviour
tree is then evaluated in a swarm of real robots and analysed.

This paper is organised as follows; Sect. 2 gives a brief overview of swarm robotics
and the kilobot platform, and introduces behaviour trees, Sect. 3 describes the experi-
mental procedure, Sect. 4 details the results and Sect. 5 discusses results and possible
further work.

2 Background and Previous Work

We work within the paradigm of swarm robotics as described by Şahin [35] taking
inspiration from social insects, where many simple, homogeneous and not partic-
ularly capable robots with only local sensing and knowledge interact to produce
a desired collective behaviour. There are no principled solutions to designing the
controller to produce a given collective behaviour, common approaches are based
on bioinspiration, evolutionary methods and gaining insight by reverse engineering
the discovered controllers [19, 20, 33]. See [15] for a recent survey of the state of
automatic swarm controller generation.

One problem with automatic generation of swarm controllers is that of bootstrap-
ping; it is difficult to devise fitness functions to get complex behaviours [10, 29],
the evolutionary process will often get stuck in uninteresting local maxima. Iter-
ative approaches, with a gradually complexifying fitness function can work well,
but this requires the designer to a priori specify the path to the eventual complex
behaviour, lessening the likelihood of discovering novel behaviours. Hierarchical
modular approaches are a promising alternative. AutoMoDe by Francesca et al. [16,
17] uses hand-designed modular and parameterised sub-behaviours which are com-
binedwithin a Probabilistic Finite StateMachine (PFSM), and themodule parameters
and PFSM topology constitute a search space over which optimisation is automati-
cally carried out. Interestingly their automatically generated controllers have a lower
reality gap compared to pure neural net approaches. Another modular approach is
work byDuarte et al. [12, 13]where individual sub-behaviours are separately evolved
neural net controllerswhich are again combined in a higher level Finite StateMachine
(FSM), this time hand-designed.

A behaviour tree (BT) is a hierarchical structure of nodes, with leaves that interact
with the state of the world, and inner nodes that link these actions together in various
conditional and sequential ways. The whole tree is evaluated at regular intervals, this
is termed a tick. The tick is propagated down to the leaves and results are propagated

Evolving Behaviour Trees for Swarm Robotics 489

back up according to the node types. Ogren [30] shows that all Hierarchical Dynamic
Systems and therefore Finite State Machines (FSMs) can be represented by a BT,
provided there are both sequence and selection type operators. With the addition
of a probabilistic selector, Probabilistic Finite state Machines (PFSMs) can also be
represented. Compared to an FSM or PFSM, the state transitions are implicit in the
tree structure, and modular1 structure is explicit; all subtrees are legal behaviour
trees. Behaviour trees have their origins as a graphical software engineering tool
before being adopted by the games industry for describing the decision processes
and actions of non-player characters. Recently they have been formalised and applied
to robotics [1, 2, 5, 7–9, 11, 22, 25, 27, 28, 30–32, 36, 37].

Kilobots are small cheap robots introduced by Rubenstein et al. [34]. They are
capable of motion using two vibrating motors, communication with each other over
a limited range using IR, distance sensing using the communication signal strength,
environmental sensing with an upwards facing photo detector, and signalling with
a multicolour LED. They are cheap enough to make it practical to build very large
swarms and capable enough to run interesting experiments. Collective control of the
kilobots in order to program and to start or stop them is achieved using a high intensity
IR system using the same protocol as the inter-kilobot communication system.

3 Materials and Methods

Foraging as a collective task is often used as a benchmark for swarm systems [38]. It
involves robotic agents leaving a nest region, searching for food, and returning food
to the nest. Cooperative strategies are often more effective.

We designed a simple foraging experiment for a swarm of kilobots in an arena
upon which we can project patterns of light to define the environment (Fig. 1). At the
centre of the arena is a circular nest region. Surrounding this is a gap, then beyond that
is the food region. A kilobot which moves into the food region is regarded as having
picked up an item of food, a kilobot which is carrying an item of food that enters
the nest region is regarded as depositing the food in the nest. Multiple kilobots are
placed in the central region in a grid and all execute the same controller (homogenous
swarm) for a fixed amount of time. The fitness of the swarm is related to the total
amount of food returned to the nest within the test time. The maximum possible
number of food items depends on the starting spatial distribution of the kilobots.
Assume that the kilobots start on the edge of the nest region and for the duration of
the test move directly back and forth between nest and food regions by the shortest
distance. Let f oodmax be the maximum food items, ttest be the test time, vavg be the
average linear velocity of the kilobots, n be the number of kilobots, f ndist be the
shortest (radial) distance between the food and nest regions:

1Perhaps mirroring a fundamental property of nature [6].

490 S. Jones et al.

3m

2m

3.
5m

200mm 100mm

FoodNest

Kilobots

Fig. 1 Left: Kilobot arena. The arena is a 3×2m surface upon which a projector defines the
environment with patterns of light. Right: Starting configuration for kilobot foraging experiment.
25 kilobots are placed in a 5×5 grid in the centre of the nest region, with random orientations.
Surrounding the nest is a 100mm gap, then outside that is the food region

f oodmax = n · vavg · ttest
2 · f ndist

(1)

We normalise the actual collected food items within the time of the test to give a
fitness value. Let f oodcollected be the total collected food items and k be a derating
factor. The fitness f of the controller is given by:

f = k · f oodcollected
f oodmax

(2)

The derating factor k is used to exert selection pressure towards smaller behaviour
trees to ensure they will fit within the limited RAM resources of the kilobots. It is
related to rusage (4) in the following way: k = 1.0 when rusage < 0.75 decreasing
linearly to 0 when rusage = 1.0.

Kilobots.For our experiments, wewant to be able to sensewhetherwe arewithin a
particular region (nest or food) of the arena.Regions are delineatedwithin the arenaby
using different coloured light from a video projector and detected with the upwards-
facing phototransistor of the kilobots. In order to create a robust region sensing
capability with a monochrome sensor, we exploited some particular characteristics
of low cost DLP projectors [21].

The optical path of these type of projectors consists of a white light source, an
optical modulator array, and a spinning colour wheel with multiple segments. Dif-
ferent full intensity primary and secondary colours produce different, quite distinct
brightness modulation patterns in the light, which our eyes integrate but which we

Evolving Behaviour Trees for Swarm Robotics 491

can detect easily with a series of samples from the photodetector. In our case, the
projector had a wheel spinning at 120Hz.Within each 8.3ms period, primary colours
were represented with a single pulse of about 1.2ms, cyan and yellow with a pulse
of 3.5ms, and magenta with two pulses of 1.2ms separated by a gap of 2ms, giving,
including black, four distinguishable patterns. We take 16 brightness samples from
the phototransistor at 520us intervals, covering one complete cycle, and classify the
pattern.

The IR communication system between the kilobots has a range of about 100mm.
Twice a second, the kilobot system software sends any available outgoing message,
retrying if the sending attempt collided with another sender. A kilobot receiving a
valid message calls a user specified function to handle it. The message has a payload
of nine bytes, and associatedwith themessage is signal strength information to enable
the distance from the sender to be calculated.

Controller. In order to control a robot with a behaviour tree, we need to define
the interface between the behaviour tree action nodes and the robot, and the action
nodes that act on the interface. This interface is known as the blackboard. Here there
is a trade-off between the capabilities that we choose to hard code and those that we
hope will evolve in the BT. We do not design the behaviour of the swarm but we
do make assumptions about what kind of sensory capabilities might be useful for
the evolutionary algorithm. This is often implicit in swarm robotics. The kilobot has
no in-built directional sensors, like the range-and-bearing sensors that are common
in swarm robotics experiments, so we synthesise collective sensing such that it is
possible for a robot to tell if it is moving towards or away from the food or nest. We
also give the capability of sensing the environment and the local density of kilobots,
and of sending and receiving signals to other kilobots.

This relatively rich set of hardwired capabilities is outlined in Table1. There are
ten blackboard entries,motors maps to the motion control commands of the kilolib
API, The send_signal and receive_signal entries allow for communication between

Table 1 Behaviour tree blackboard, defining interface between the behaviour tree and the robot

Index Name Access Description

0 motors W 0 = off, 1= left turn, 2 = right turn, 3 = forward

1 scratchpad RW Arbitrary state storage

2 send_signal RW >0.5 = Send a signal flag

3 received_signal R 1 = A signal flag has been received

4 detected_ f ood R 1 = Light sensor showing food region

5 carrying_ f ood R 1 = Carrying food

6 densi ty R Density of kilobots in local region

7 Δdensi ty R Change in density

8 Δdist f ood R Change in distance to food

9 Δdistnest R Change in distance to nest

492 S. Jones et al.

kilobots initiated within the BT; send_signal is writeable from the BT. When the
value is greater than 0.5, it is considered true, and a signal flag will be set in the
stream of outgoing message packets. The receive_signal entry will be set to 1 if any
message packets were received over the previous update cycle that had their signal
flag set, otherwise it will remain zero. The scratchpad can be read and written, and
has no defined meaning, it makes available some form of memory for the evolution
of the BT to exploit.Detected_food is read-only, and is 1 if the environment sensing
shows that the kilobot is in the food region, and zero otherwise, and carrying_food
denotes whether the kilobot is considered to be carrying a food item. This entry is
set to 1 if the kilobot enters the food region, and cleared to zero if the kilobot enters
the nest region.

The remaining four entries are all metrics derived from the incoming stream of
messages and their associated distance measurements. densi ty and Δdensi ty are
measures of the local population density and how it is changing. Each kilobot has
a unique ID, which is embedded in its outgoing message packets. By tracking the
number of unique IDs and the distances associated with messages from them, we
can estimate the local density. Let U I Dreceived be the set of unique IDs received in
the last update cycle, disti be the distance in mm associated with the unique ID, the
raw local density in kilobots · m−2 in an update cycle draw is given by:

draw =
∑

i∈U I Dreceived

1

π(disti/1000)2
(3)

This value is filtered with a moving average over w = 5 update cycles2 to give
densi ty(t) at update cycle t and Δdensi ty(t) = densi ty(t) − densi ty(t − 1).

The two distance metrics Δdist f ood and Δdistnest are calculated by tracking the
minimum communication hops [18] needed to reach the respective region, illustrated
in Fig. 2. For both food and nest, within themessage packet are two fields, a hop count
and an accumulated distance. The hop count is theminimumnumber ofmessage hops
to reach either the food or the nest region. The accumulated distance is the total length
of those hops. Kilobots receiving messages select the lowest hop count, increment it
and forward it and the new accumulated distance in the outgoing message stream. If
no messages are received, we default to a distance of 0mm if in a food or nest region,
or 500mm if not in a region. At every update cycle, we calculate two raw distance
measures dist f ood_raw and distnest_raw. These are then filtered with amoving average
in the same way as the densi ty value.

The behaviour tree nodes we implement are outlined in Table2. Nodes are divided
into two types; composition and action. Composition nodes are always inner nodes
of the tree and combine or modify the results of subtrees in various ways. Action
nodes are always leaf nodes and interface with the blackboard. Every update cycle,
occurring at 2Hz, the root node of the tree is sent the tick event. Each node handles the
tick according to its function and returns success, failure, or running. The propagation
of tick events down the tree and the return of the result to the root happen every cycle.

2Chosen in simulation as a reasonable compromise between responsiveness and stability.

Evolving Behaviour Trees for Swarm Robotics 493

Fig. 2 Calculation of
distance metrics. Kilobot ‘A’
is in a food or nest region,
kilobot ‘B’ is connected to
‘A’ via two routes. Grey
circles denote maximum
communications radius. ‘B’
selects the message from the
top route because the hop
count is lowest, giving an
accumulated distance along
hops to the region of 300mm

Table 2 Behaviour tree nodes. Ch ≡ children, S ≡ succeeded , F ≡ f ailed, R ≡ running,
N ≡ num children, I ≡ repeat i terations, r ≡ randomly selected child, t ≡ ticks, v,w ≡
blackboard entr y, k ≡ contant . Notation from [28]

Node Size success if failure if running
if

Description

Composition nodes

seqm 2, 3, 4 7, 9, 11 N Ch S 1 Ch F 1 Ch R Sequence, tick until failure

selm 2, 3, 4 7, 9, 11 1 Ch S N Ch F 1 Ch R Selection, tick until success

probm 2, 3, 4 11, 17, 23 Chr S Chr F Chr R Probabilistic choice

repeat 6 I Ch S 1 Ch F Ch R Repeat subtree I times

succeed 4 Ch R̄ never Ch R Always succeed subtree

failured 4 never Ch R̄ Ch R Always fail subtree

Action nodes

mf 2 t = 1 never t = 0 Move forward for 1 tick

ml 2 t = 1 never t = 0 Turn left for 1 tick

mr 2 t = 1 never t = 0 Turn right for 1 tick

ifltvar 4 v1 < v2 v1 ≥ v2 never If v1 < v2
ifgevar 4 v1 ≥ v2 v1 < v2 never If v1 ≥ v2
ifltcon 7 v < k v ≥ k never If v < k

ifgecon 7 v ≥ k v < k never If v ≥ k

set 7 always never never Set w ← k

successl 2 always never never Always succeed

failurel 2 never always never Always fail

494 S. Jones et al.

The composition nodes seqm, selm, probm can have either 2, 3, or 4 children. On
receiving a tick they process their child nodes in the following way: seqm will send
tick to each child in turn until one returns failure or all children have been ticked,
returning failure or success respectively, selm will send tick to each child in turn
until one returns success or all children have been ticked, returning success or failure
respectively, probm will probabilistically select one child node to send tick to and
return what the child returns. They all have memory, that is, if a child node returns
running the parent node will also return running, and the next tick event will start
from that child node rather than the beginning of the list of child nodes. The repeat,
succeed, failured nodes have a single child. repeat sends up to a constant number
of ticks to its child for as long as the child returns success, successd and failured
send tick to their child and then always return success or failure respectively. The
action nodes are leaf nodes and interface with the blackboard, described in Table1.
ml, mr, mf turn left, right, or move forward, returning running for one cycle, then
success. The various if nodes compare blackboard entries with each other or with a
constant, and the set node writes a constant to a blackboard entry.

The controller runs an update cycle at 2Hz. Message handling takes place asyn-
chronously, and amessage is always sent at each sending opportunity. Environmental
sensing takes place at 8Hz, synchronously with the update cycle, with a median filter
over 7 samples to remove noise. Each cycle, the following steps take place: (1) New
blackboard values are calculated based on the messages received and the environ-
ment. (2) The behaviour tree is ticked, possibly reading and writing the blackboard.
(3) The movement motors are activated, and the message signal flag set according to
the blackboard values.

Implementation of the behaviour tree for execution on the kilobot required careful
use of resources; the processor has only 2kbytes RAM,whichmust hold all variables,
the heap, and the stack. The tree structure is directly represented in memory, with
each node being a structure with type, state, and additional type-dependent data such
as pointers to children. Execution of the behaviour tree involves a recursive descent
following node child pointers and as such, each deeper level uses entries on the stack.

The compiled kilobot code uses about 500 bytes for all non-heap variables. We
allocate 1024 bytes to the tree storage, leaving another 500 bytes for the stack and
some margin for Interrupt Service Routine stack usage. Each level of tree depth uses
16 bytes of stack. Let trsi ze be tree storage bytes and trstack be tree stack usage. The
resource usage is given by:

rusage = max

(
trsi ze
1024

,
trstack
500

)
(4)

This gives a maximum tree depth of about 30 and a maximum number of about 140
nodes at the average node size.

Evolutionary algorithm and simulator.

Behaviour trees are amenable to evolution using genetic programming techniques.
Using the DEAP library [14] a primitive set of strongly typed nodes were defined to

Evolving Behaviour Trees for Swarm Robotics 495

represent behaviour tree nodes and their associated allowable constants. There are
several types of constants: if and set k ∈ [−1.0, 1.0], repeat iterations I ∈ [1..9],
if blackboard index vi ∈ [1..9], set blackboard index w ∈ [1..2], prob probability
p ∈ [0.0, 1.0]

Evolution proceeds as follows: The population of npop is evaluated for fitness by
running 10 simulations for each individual, each simulation with a different starting
configuration. The starting position is always a 5×5 grid with 50mm spacing in
the centre of the nest region, but the orientation is randomly chosen from interval
(−π, π) radians. The simulation runs for 300 simulated seconds and fitness is as
Eq.2.

An elite of neli te is transferred unchanged to the next generation. The remain-
der are chosen by tournament selection with size tsi ze. A tree crossover operator is
applied with probability pxover to all pairs of non-elite, then three different mutation
operators are applied to the non-elite individuals. Firstly, with probability pmutu , a
node in the tree is selected at random and the subtree at that point is replaced with a
randomly generated one. Next, with probability pmuts , a branch is chosen randomly
and replaced with one of its terminals. Next, with probability pmutn a node is picked
at random and replaced with another node with the same argument types. Lastly, with
probability pmute, a constant is picked randomly and its value changed. Parameters
are shown in Table3.

We wrote a simple 2D simulator based on the games physics engine Box2D [4].
The physics engine is capable of simulating interactions between simple convex geo-
metric shapes. We model the kilobots as disks sliding on a flat surface with motion
modelled using two-wheel kinematics, with forward velocity of 8 × 10−3ms−1 and
turn velocity of 0.55 rad s−1, based on measurements of 25 kilobots. Physical colli-
sions between kilobots, and movement into and out of communication range were
handled by Box2D, with an update loop running 10Hz. Simulator deficiencies
were masked using the addition of noise [23]. Gaussian noise was added to linear

Table 3 Parameters for a single evolutionary run

Parameter Value Description

ngen 200 Generations

ttest 300 Test length in seconds

n pop 25 Population

neli te 3 Elite

tsi ze 3 Tournament size

pxover 0.8 Crossover probability

pmutu 0.05 Probability of subtree replacement

pmuts 0.1 Probability of subtree shrink

pmutn 0.5 Probability of node replacement

pmute 0.5 Probability of ephemeral constant
replacement

496 S. Jones et al.

(σ = 1 × 10−3ms−1) and angular (σ = 0.2 rad s−1) components of motion at every
simulator timestep, and each kilobot had a unique fixed linear (σ = 1.3 × 10−3ms−1)

and angular (σ = 0.06 rads−1) velocity bias added, to reproducemeasured noise per-
formance and variability of real kilobots. Message reception probability was fixed
at 0.95. Simulation performance racc, measured using the methodology described in
[24] on an iMac 3.2GHz machine was approximately 8 × 104.

Twenty five independent evolutionary runs were conducted, each one using the
parameters in Table3. Each individual fitness evaluation was the mean over ten
simulations with different starting configurations. A total of 1.1 million simulations
were run.3

The fittest individual across the 25 separate populations was evaluated again for
fitness, this time over 200 simulations with different starting configurations. This
individual controller was then instantiated uniformly across a swarm of real kilobots,
giving a homogenous swarm. The real kilobots were run 20 times with different
starting configurations and their fitness measured.

4 Results and Discussion

The results (Fig. 3) show that we have successfully evolved a behaviour tree for use
as a swarm robot controller to perform a foraging task. When instantiated in a swarm

Fig. 3 Result of evolutionary runs. The left hand graph shows the maximum individual fitness
across all 25 independent evolutionary runs, with a box plot every 5 generations to show the
distribution. The right hand shows the distribution of fitnesses of the fittest individual, measured
over 200 simulation and 20 real runs

3Due to the elitism policy, three individuals per generation are unchanged and need no fitness
evaluation.

Evolving Behaviour Trees for Swarm Robotics 497

Fig. 4 Kilobot trails from simulation of the fittest controller in the first generation (left) and the
200th generation (right) of the fittest lineage

of real robots, it performs similarly to the simulation, validating the applicability
of using this simulator for evolving kilobot swarm controllers. The performance is
slightly lower in real life (0.058) compared to the simulated (0.075) performance,
this is expected due to reality gap [23] effects. It is worth noting this is still a good
outcome, the robots are able to effectively forage.

Fitness rises fast to about 0.03 after the first generation. This is due to the fact that
an extremely simple controller that does nothing exceptmove forwardwill still collect
some food; because of the variability of the kilobots, some will move in large arcs
that leave the nest, enter the food region and return to the nest. This type of controller
is easily discovered by the evolutionary algorithm, confirmed by examining the fittest
controller after one generation in the fittest lineage. The kilobot paths in simulation
are shown in Fig. 4. It is noteworthy that the fittest of the 25 lineages ismuchfitter than
the median, and the innovation seems to have been discovered around generation 30.
This suggests that the evolutionary algorithm is not exploring the fitness landscape
very effectively, otherwisewewould expect evolution to discover similar behavioural
innovations within other lineages.

We can examine the fittest BT, shown in Fig. 5, to gain insights into its workings.
First of all, it is interesting to note that not all of the hardwired capabilities are used,
onlydetected_ f ood,Δdist f ood , andΔdistnest . Both scratchpad and send_signal
are read but never written, so are equivalent to zero. This is not the case with all the
evolved behaviour trees, see Table4 for details of the blackboard usage of the top
five fittest trees from different lineages. Between these individuals, every behaviour
tree construct and blackboard entry is used. There is no obvious correlation between
the features used and the fitness of the individual, perhaps indicating that there are
multiple ways to solve this foraging problem.

The overall structure is a three-clause selm, the child trees will be ticked in turn
until one returns success. Consider a single kilobot, with no neighbours in commu-
nication with it. The first clause causes the kilobot to move forward as long as it
is not in the food region. If it enters the food, the second clause comes into play,
performing a series of left turns and forward movements until it moves out of the
food region. Behaviour will then revert to the first clause and it will move forward

498 S. Jones et al.

Fig. 5 Fittest behaviour tree. Left shows the code as evolved. Right shows the code with redundant
lines removed by hand, the seqm nodes condensed, and conditionals simplified. Boxes highlight
the three functional clauses

Table 4 Individuals from top five lineages and their usage of the blackboard and behaviour tree
constructs. All individuals use at least the forward and one other of the motor action nodes. Usage
is after redundant or unreachable nodes have been removed

Rank Fitness Blackboard entry BT Nodes

1 2 3 4 5 6 7 8 9 SEQ SEL PROB REPEAT IF SET

1 0.104 x x x x x x x

2 0.0873 x x x x x x x x

3 0.0853 x x x x x x x x

4 0.0723 x x x x x x x x x x x x x x

5 0.0710 x x x x x x x

again, likely hitting the nest region. We can see that this will produce reasonable
individual foraging behaviour, and this pattern is visible in the right hand trail plot
in Fig. 4. The foraging behaviour will be enhanced in the presence of neighbours,
since in this case the second clause will promote movement away from food gener-
ally, rather than just on the food region boundary. Finally, if the kilobot is executing
the second clause, manages to leave the food then re-enters it, or moves towards it
in the presence of neighbours, the third clause is triggered, which produces some
additional left turning. The repeat sub-clause will fail on the first iteration since it is
not physically possible for the kilobot to move 59mm in one update cycle of half a
second.

Evolving Behaviour Trees for Swarm Robotics 499

This evolved behaviour tree is sufficiently small that it can be analysed by hand
relatively easily. It may be that greater foraging performance could be obtained by
removing the selective pressure to small trees, and a larger tree would be harder
to analyse. But, in contrast to evolved neural networks, which are a black box for
which there are no adequate tools to predict behaviour apart from direct testing [29],
it is possible at least in principle to analyse any behaviour tree, in the same way it
is possible to analyse any computer program. The behaviour of each sub-tree can
be analysed in isolation, descending until the size of the sub-tree is tractable, and
automatic tools can simplify and prune branches which will never be entered, or will
always do nothing.

Understanding the behaviour of an evolved BT does not mean that it becomes
possible to predict the emergent swarm behaviour that the interaction between the
kilobots will produce. However, we believe that the more easily we can understand
the controller, the more likely we are to gain insights into the problem of predicting
these higher-level behaviours.

5 Conclusions and Further Work

Evolved controllers for swarm robotics are generally hard to understand. We have
introduced the use of behaviour trees as an architecture for evolved swarm robot con-
trollers that are more easily human readable. A simple foraging task was designed,
a behaviour tree node set and blackboard interface specified, and a population of
behaviour trees were evolved for a swarm of kilobot robots. The fittest individual
was tested in real robots and showed good correspondence in performance to the indi-
vidual in simulation. The individual was then analysed for insight into the discovered
foraging algorithm.

There are many possible avenues for exploration in the application of genetic
programming to behaviour trees since little work in this area exists. Choices of
the evolutionary parameter values, and the filtering of environmental signals are
somewhat arbitrary andwill be explored further. The choice of blackboard and action
nodes is another area for further investigation. We also want to develop automatic
tools for simplifying the analysis of evolved trees.

We intend to apply the evolution of behaviour trees to other collective swarm robot
tasks, using a more computationally capable platform that will not be so limited in
possible tree size, and will also allow the on-board adaptive co-evolution of new BT
controllers in response to changing environmental conditions. We are interested in
the possibility of encapsulation of various swarm behaviours such as aggregation,
flocking, and dispersion. In this, we are inspired by the argument of Francesca et al.
[17] that restricting the representational power of the controller allows the automatic
discovery of solutions that are more resistant to reality gap effects, and feel the
hierarchical structure of behaviour trees may lend themselves to tuning the bias-
variance tradeoff.

500 S. Jones et al.

Finally, we believe the increased human readability of evolved behaviour trees
compared to other forms of evolved controller achieves progress towards more fully
comprehending the emergence of collective behaviour from the interactions of indi-
vidual agents.

References

1. Abiyev, R.H., Bektaş, Ş., Akkaya, N., Aytac, E.: Behaviour trees based decision making for
soccer robots. Recent Advances in Mathematical Methods Intelligent Systems and Materials
(2013)

2. Bagnell, J.A., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., Klingensmith,
M., Libby, J., Liu, T.Y., Pollard, N., et al.: An integrated system for autonomous robotics
manipulation. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2955–2962. IEEE (2012)

3. Brambilla,M., Ferrante, E., Birattari,M., Dorigo,M.: Swarm robotics: a review from the swarm
engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Catto, E.: Box2D: A 2D physics engine for games. World Wide Web electronic publication
(2009). http://box2d.org/about

5. Champandard, A.: Behavior trees for next-gen game ai. In: Game developers conference, audio
lecture (2007)

6. Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. Lond.
B: Biol. Sci. 280(1755), 20122–20863 (2013)

7. Colledanchise, M., Ogren, P.: How behavior trees modularize robustness and safety in hybrid
systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2014), pp. 1482–1488. IEEE (2014)

8. Cutumisu, M., Szafron, D.: An architecture for game behavior ai: behavior multi-queues. In:
AIIDE (2009)

9. Dill, K., Martin, L.: A game ai approach to autonomous control of virtual characters. In:
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) (2011)

10. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics: what, why,
and where to. Front. Robot. AI 2, 4 (2015)

11. Dromey, R.G.: From requirements to design: formalizing the key steps. In: Proceedings of the
First International Conference on Software Engineering and Formal Methods 2003, pp. 2–11.
IEEE (2003)

12. Duarte, M., Gomes, J., Costa, V., Oliveira, S.M., Christensen, A.L.: Hybrid control for a real
swarm robotics system in an intruder detection task.Applications ofEvolutionaryComputation,
pp. 213–230. Springer, Cham (2016)

13. Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms of aquatic
drones. In: Proceedings of the 14th International Conference on the Synthesis and Simulation
of Living Systems, pp. 785–792. Citeseer (2014)

14. Fortin, F.A., Rainville, D., Gardner, M.A.G., Parizeau, M., Gagné, C., et al.: DEAP: evolution-
ary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

15. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges.
Front. Robot. AI 3, 29 (2016)

16. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., Reina,
A., Soleymani, T., Salvaro, M., Pinciroli, C., et al.: Automode-chocolate: automatic design of
control software for robot swarms. Swarm Intell. 9(2–3), 125–152 (2015)

17. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel
approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2),
89–112 (2014)

http://box2d.org/about

Evolving Behaviour Trees for Swarm Robotics 501

18. Hauert, S., Winkler, L., Zufferey, J.C., Floreano, D.: Ant-based swarming with positionless
micro air vehicles for communication relay. Swarm Intell. 2(2), 167–188 (2008)

19. Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning information:
an application in aerial communication relay. Auton. Robot. 26(1), 21–32 (2009)

20. Hauert, S., Zufferey, J.C., Floreano, D.: Reverse-engineering of artificially evolved controllers
for swarms of robots. In: IEEE Congress on Evolutionary Computation 2009. CEC’09, pp.
55–61. IEEE (2009)

21. Hutchison, D.C.: Introducing BrilliantColor™ Technology. Texas Instruments white paper
(2005)

22. Isla, D.: Handling complexity in the halo 2 ai. In: Game Developers Conference, vol. 12 (2005)
23. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolu-

tionary robotics. Advances in Artificial Life, pp. 704–720. Springer, Berlin (1995)
24. Jones, S., Studley, M., Winfield, A.: Mobile GPGPU acceleration of embodied robot simu-

lation. In: Artificial Life and Intelligent Agents: First International Symposium, ALIA 2014,
Bangor, UK, November 5–6, 2014. Revised Selected Papers, Communications in Computer
and Information Science. Springer (2015)

25. Klöckner, A.: Interfacing behavior trees with the world using description logic. In: AIAA
conference on Guidance, Navigation and Control, Boston (2013)

26. Koza, J.R.: On the programming of computers bymeans of natural selection. Genetic Program-
ming, vol. 1. MIT press, Cambridge (1992)

27. Lim, C.U., Baumgarten, R., Colton, S.: Evolving behaviour trees for the commercial game
defcon. Applications of Evolutionary Computation, pp. 100–110. Springer, Berlin (2010)

28. Marzinotto,A., Colledanchise,M., Smith,C.,Ogren, P.: Towards a unified behavior trees frame-
work for robot control. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 5420–5427. IEEE (2014)

29. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey
and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)

30. Ogren, P.: Increasing modularity of uav control systems using computer game behavior trees.
In: AIAA Guidance, Navigation and Control Conference, Minneapolis, MN (2012)

31. Pereira, R.d.P., Engel, P.M.: A framework for constrained and adaptive behavior-based agents
(2015). arXiv preprint arXiv:1506.02312

32. Perez, D., Nicolau, M., O’Neill, M., Brabazon, A.: Evolving behaviour trees for the mario
ai competition using grammatical evolution. Applications of Evolutionary Computation, pp.
123–132. Springer, Berlin (2011)

33. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIG-
GRAPH Computer Graphics, vol. 21, pp. 25–34. ACM (1987)

34. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system for collective
behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp.
3293–3298. IEEE (2012)

35. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. Swarm
Robotics, pp. 10–20. Springer, Berlin (2005)

36. Scheper, K.Y., Tijmons, S., de Visser, C.C., de Croon, G.C.: Behavior trees for evolutionary
robotics. Artificial life (2015)

37. Shoulson, A., Garcia, F.M., Jones, M., Mead, R., Badler, N.I.: Parameterizing behavior trees.
In: International Conference on Motion in Games, pp. 144–155. Springer (2011)

38. Winfield, A.E.: Towards an engineering science of robot foraging. Distributed Autonomous
Robotic Systems 8, pp. 185–192. Springer, Berlin (2009)

http://arxiv.org/abs/1506.02312

Evolving Group Transport Strategies
for e-Puck Robots: Moving Objects Towards
a Target Area

Muhanad H. Mohammed Alkilabi, Aparajit Narayan,
Chuan Lu and Elio Tuci

Abstract This paper describes a set of experiments in which a homogeneous group
of simulated e-puck robots is required to coordinate their actions in order to transport
cuboid objects towards a target location. The objects are heavy enough to require
the coordinated effort of all the members of the group to be transported. The agents’
controllers are dynamic neural networks synthesised through evolutionary compu-
tation techniques. The results of our experiments indicate that the most effective
transport strategies generated by artificial evolution are those in which the robots
exploit occlusion by pushing the objects across the portion of their surface, where
they occlude the direct line of sight to the goal. The main contribution of this study is
the analysis of the relationships between the characteristics of the object (i.e., mass
and length), the morphology of the robots, and the group performance. We also test
the scalability of the occlusion-based transport strategies to group larger than those
used during the evolutionary design phase.

1 Introduction

This paper shows the results of a series of studies on cooperative object transport in
a swarm of autonomous simulated robots required to push a cuboid object towards a

M. H. Mohammed Alkilabi (B) · A. Narayan · C. Lu · E. Tuci
Computer Science Department, Aberystwyth University, Aberystwyth, UK
e-mail: mhm1@aber.ac.uk

A. Narayan
e-mail: apn3@aber.ac.uk

C. Lu
e-mail: cul@aber.ac.uk

E. Tuci
e-mail: elt7@aber.ac.uk

M. H. Mohammed Alkilabi
Computer Science Department, College of Science,
Kerbala University, Kerbala, Iraq

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_35

503

504 M. H. Mohammed Alkilabi et al.

target location. Cooperative transport refers to the process of transporting large item
by multiple individuals simultaneously [4]. Cooperative transport is quite common
in social insects, in particular in ants; the literature has documented cooperative
transport in more than 40 genera of ants [10]. Ants can retrieve items/preys that are
too large to be transported by single foragers without the need to dissect them on site,
with the benefit of a reduced retrieval time that frees resources for other tasks, and a
reduced exposure to predation [5, 14, 19]. Cooperative transport in ants is a source
of inspiration for roboticists, that try to mimic the behaviour of natural swarms to
design autonomous robots capable of cooperatively carry out tasks that are beyond
the competencies of single individuals [2, 8, 18].

Our long term objective is to contribute to the design of more effective robotic
swarms engaged in cooperative object transport tasks, by using evolutionary compu-
tation techniques to automate the design process of the individual mechanisms and
rules of interactions that underpin effective group transport strategies. In [11] and
more recently in [12], we showed that the individual perception of the direction of
movement of the object to be transported is sufficient to allow a swarm of robots to
align their pushing forces and effectively transport a heavy object. In other similar
group transport studies described in the literature (e.g., [15–17]), the authors have
equipped the robots with a more complex sensory apparatus which features force
sensors, and an a priori defined allocation of roles (e.g., leader and follower) that is
meant to facilitate the group coordination of action. Our results suggest that feedback
on the movement of the object modulates the frequency with which a robot changes
the point of application of its pushing forces. This modulation is sufficient for a robot
to sense a quorum with respect to the direction of travel, and to break “deadlocks”
in which the robots cancel each others’ forces.

In this study, our objective is to extend the work describe in [11, 12] by design
mechanisms to allow the robots to align their forces to initially push the object
in any arbitrarily chosen direction, and, when the transport is initiated, to direct
the transport toward a target location. The cooperative transport towards a target
location is a challenging task in particular when the object is large enough to occlude
the perception of the target (see [3]). In [3] is described an alternative group transport
method which, rather than trying to overcome the limitations imposed by occlusion,
it exploits occlusion. The robots are design to push the object across the portion of its
surface, where it occludes the direct line of sight to the goal. The authors also provide
an analytical proof of the effectiveness of the method, and results of successful
empirical tests with objects of different shapes. Our study is very much related to the
one described in [3], with which we share the same type of robots (i.e., the e-puck),
and the use of large objects that occlude the target location. Contrary to [3], we did
not explicitly program our robots to exploit occlusion to push the object toward a
target. We use instead artificial evolution to integrate into a single neuro-controller
the mechanisms to align the pushing forces, and to direct the transport toward a
target location.Moreover, we look at scenarios in which the object is heavy enough to
require the coordinated effort of all the robots of the group to be transported. The first
interesting results of this study is that, as in [3], the most effective transport strategies
generated by artificial evolution are those in which the robots exploit occlusion by
pushing each object across the portion of its surface, where it occludes the direct

Evolving Group Transport Strategies for e-Puck Robots … 505

line of sight to the goal. The original contribution of this study is in complementing
the results shown in [3] with an analysis of the effects of object’s mass and length,
and of the group cardinality on the effectiveness of the occlusion-based transport
strategy. We are aware that one of the criticism moved to the evolutionary approach
concerns the loss of performance during transfer of the evolved solutions on real
hardware [6]. Although our work is in simulation, our simulator (i.e., the robot
model and the physics of the robot-world interactions) have been already used to
design controllers that have being successfully ported on real e-pucks required to
perform cooperative object transport tasks (see [12]). We are currently testing and
comparing performances of the system in simulation and on real robots. At the time
of writing, this comparative analysis has not been completed yet. However, as shown
in https://www.aber.ac.uk/en/cs/research/ir/dss/#swarm-robotics, the results of few
initial tests demonstrate that the best evolved solutions can be successfully ported
on real robots. This paper is organized as follow: Sect. 2 describes the task and the
simulation model; Sect. 3 reports the experimental results and the analysis of the
operational mechanisms underpinning the single robot’s behaviour; in Sect. 4 we
discuss and comment on the results of this study and we point to interesting future
research directions.

2 The Task and the Simulation Model

In this study, neuro-controllers are synthesised using artificial evolution to allow a
homogeneous group of six autonomous simulated robots to push an elongated cuboid
object (30cm length, 6cm width and height, 900g mass) towards a target location
(hereafter, the nest). The robots are initially positioned at 50cm from the object
centroid, facing the object. The experimental task is divided into two sub-tasks: the
transport task, and the nesting task. During the transport task, the robots have to
approach the object and to transport it, by collectively pushing it in an arbitrarily
chosen direction. The transport task terminates when the group manages to displace
the object 1m away from its initial position. The transition from the transport to
the nesting task is characterised by the appearance of the nest, towards which the
object has to be moved. The nest is a circular area of 20cm radius, whose centre is
positioned 1m away from the object centroid, at a randomly chosen angle (α) in the
range [60◦, 90◦] left or right with respect to the current object heading (see Fig. 1a).
The nesting task successfully terminates when the object’s centroid is inside the nest
area. The object mass is set so that the coordinated effort of all six robots is required
to move the object. The nest intentionally appears at the end of the transport task to
avoid to provide robots with a perceptual cue that could significantly facilitate the
coordination of actions required to align the pushing forces at the beginning of the
trial.

The parameters of the neuro-controllers are set in a simulation environment which
models kinematic and dynamic features of e-puck robots [13] operating in a bound-
less arena with flat terrain (see also [11] for a detailed description of the simulation

https://www.aber.ac.uk/en/cs/research/ir/dss/#swarm-robotics

506 M. H. Mohammed Alkilabi et al.

(a)

(b)

Fig. 1 a Experimental scenario; the empty circles refer to the robots, the grey rectangle refers
to the object to be transported, the dashed arrows delimit to the angles (α) within which the nest
can appear, the dotted circle refers to the nest. b The robot controller. The continuous line arrows
indicate the efferent connections for only one neuron of each layer. Robot sensors to sensor neurons
correspondence is indicated underneath the input layer, with IRi referring to the infra-red, Ci to the
camera sensors, R&Bi to the range and bearing, +X, −X, +Y, −Y to the optical flow sensor, and
Oi referring to the output of the network at previous time step

environment). To take into account the dynamic aspects of this group transport sce-
nario (e.g., forces, torque, friction, etc.), the agents and their environment have been
simulated usingBullet physics engine. The robotmodel consists of three rigid bodies,
a cylindrical chassis (3.55cm radius, 6.2 cm height 200g mass), and two motorised
cylindrical wheels (2.05cm radius, 0.2 cm height, 20 gmass) connected to the chassis
with hinge joints. Both wheels can rotate forwards and backwards at a maximum
speed of 8cm/s.

The simulated robots are equipped with eight infra-red sensors (IRi with i =
{0, . . . , 7}), a camera, the range and bearing (R&B) board (see [9]), and the optic-
flow sensor. Infra-red sensors give the robot a noisy and non-linear indication of the
proximity of an obstacle (e.g., the object or another robot). The IR sensor values are
computed using a non-linear regression model of the sensor readings collected from
the real e-puck. The camera is used to perceive coloured items (i.e., the object which
is always green, or robots which are all red). The camera has a receptive field of 30◦,
divided in three equal sectors Ci, with i = {1, 2, 3}, each of which can return one of
four possible values: 0 if no item falls within the sector’s field of view; 0.4 if one or
more red items are perceived; 0.7 if a green item is perceived; 1.0 if red and green
items are perceived. The camera can detect coloured objects up to a distance of 50cm.
The R&B board has a circular shape, same diameter of the robot, and it is located
on top of the robot. The board features 12 infra-red sensors uniformly distributed
around its perimeter. Our robots can use only 8 sensors (R&Bi, with i = {1, . . . , 8})
which return 1 when they receive a signal, 0 otherwise. In our scenario, this board
is used by the robots to detect the infra-red signals emitted by the nest, which emits
in any direction. The position of the sensors receiving the nest signal can be used to

Evolving Group Transport Strategies for e-Puck Robots … 507

compute the relative orientation of the nest with respect to the current robot heading.
Due to physical properties and dimensions of robots and the object, the nest infra-red
signals are not perceived if the object is in between the nest and the robot receiver.

The optic-flow sensor is an optical camera mounted underneath the robot chassis.
It is located inside the slot originally hosting the robot battery. This sensor captures
a sequence of low resolution images (i.e., 18× 18pixels) of the ground at 1500
frames per second. The images are sent to the on board DSP which, by comparing
them, calculates the magnitude and the direction of movement of the robot. This
information is subsequently communicated to the robot controller in the form of four
normalized real values in [0, 1]: +X and −X representing the displacement on the
positive and negative direction of the x axis, respectively; +Y and −Y representing
the displacement on the positive and negative direction of the y axis, respectively.
The optic-flow sensor generates a sensory stimulus which is a direct feedback on
the consequences of the signals sent to the motors. In a collective object transport
scenario multiple contingencies can result in a robot failing to execute its desired
action. For example, a forward movement command may not produce the desired
action if the robot is pushing a stationary object, or an object that is moving in
the opposite direction due to forces exerted by other robots. The optic-flow sensor
generates readings that can be used by the agents to differentiate between these
circumstances and to respond accordingly. The results of the study described in [12]
show that this simple feedback, generated by the optic-flow sensor, is sufficient to
allow a group of real e-puck robots to coordinate their effort in order to collectively
transport in an arbitrary direction an object that can not be moved by a single robot.

All robots’ sensors and actuators are subject to random noise to facilitate the
porting on real hardware (see [12] for details).

2.1 The Controller and the Evolutionary Algorithm

The robot controller is composed of a continuous time recurrent neural network
(CTRNN) of 27 sensor neurons, 6 internal neurons, and 4 motor neurons (see [1] and
also Fig. 1b which illustrates structure and connectivity of the network). The states of
the motor neurons are used to control the speed of the left and right wheels. Sensory,
internal, and motor neurons are updated using Eqs. 1–3:

yi = gIi; i ∈ {1, . . . ,N }; with N = 27; (1)

τi ẏi = −yi +
j=N+6∑

j=1

ωjiσ(yi + βj); i ∈ {N+1, . . . ,N+6}; (2)

yi =
j=N+6∑

j=N+1

ωjiσ(yj + βj); i ∈ {N + 7, . . . ,N + 10}; (3)

508 M. H. Mohammed Alkilabi et al.

with σ(x) = (1 + e−x)−1. In these equations, using terms derived from an analogy
with real neurons, yi represents the cell potential, τi the decay constant, g is a gain
factor, Ii with i = 1, . . . ,N is the activation of the ith sensor neuron (see Fig. 1 for
the correspondence between robots sensors and sensor neurons), ωij the strength of
the synaptic connection from neuron j to neuron i, βj the bias term, σ(yj + βj) the
firing rate fi. All sensory neurons share the same bias (βI), and the same holds for
all motor neurons (βO). τi and βi of the internal neurons, βI , βO, all the network
connection weights ωij, and g are genetically specified networks’ parameters. At
each time step, the output of the left motor isML = fN+7 − fN+8, and the right motor
is MR = fN+9 − fN+10, with ML, MR ∈ [−1, 1]. Cell potentials are set to 0 when
the network is initialised or reset, and Eq.2 is integrated using the forward Euler
method with an integration time step T = 0.2. A simple evolutionary algorithm
using roulette wheel selection is employed to set the parameters of the networks
[7]. The population contains 100 genotypes. Generations following the first one are
produced by a combination of selection with elitism, recombination, and mutation.
For each new generation, the eight highest scoring individuals (the elite) from the
previous generation are retained unchanged. The remainder of the new population
is generated by fitness proportional selection from the 60 best individuals of the old
population. A detailed description of the evolutionary algorithm can be found in [11].

2.2 The Fitness Function

During evolution each group undergoes a set of E = 12 evaluations or trials. A trial
lasts 1200 simulation steps (i.e., 240 s, with 1 stimulation step corresponding to 0.2 s).
A trial is terminated earlier if the groupmanages to transport the object inside the nest
area (see Fig. 1a). As mentioned in Sect. 2, the nest intentionally appears at the end
of the transportation task to avoid to provide robots with a perceptual cue that could
significantly facilitate the coordination of actions required to align the pushing forces
at the beginning of the trial. The nest appears with equal probability on the left and
on the right of the object. In this study, we are interesting in generating controllers
that allow the robots: (i) to agree on a common direction of transport solely through
the interactions with the object, during the transport task; (ii) to adjust the direction
of the object motion towards a specific target, during the nesting task.

At the beginning of each trial the controllers are reset, and the robots are posi-
tioned in the arena. Each trial differs from the others in the initialisation of the random
number generator, which influences all the randomly defined features of the envi-
ronment, such as the noise added to sensors and actuators, the robots initial position
and orientation, and the relative angle between the object and the nest. The robots
initial relative positions with respect to the object is an important aspect which bears
upon the complexity of this task. During evolution, the robots starting positions cor-
respond to randomly chosen points on a circle’s circumference of 50cm radius that
has the object at it’s centre. This circle is divided into six equals segments. Each
robot is randomly placed in one part of this circle with random orientation in a way

Evolving Group Transport Strategies for e-Puck Robots … 509

that the object can be within an angular distance of ±60◦ from its facing direction.
These criteria should generate the required variability to develop solutions that are
not sensitive to the robots initial positions.

In each trial (e), an evaluation function Fe = f1 + f2 + f3 + f4 rewards groups in
which the robots: (i) remain close to the object to be transported (see f1); (ii) initially
transport the object 1m from its initial position in an arbitrary direction (see f2); (iii)
adjust the direction of motion of the object towards the nest (see f3); (iv) transport the
object to the nest (see f4). The four fitness components are computed in the following:

f1 =
{

1
TR

∑T
t=1

∑R
r=1(1 − d(ptr,O

t)); if d(ptr,O
t) > 20 cm;

1
TR

∑T
t=1

∑R
r=1 1; if d(ptr,O

t) <= 20 cm;

f2 = d(Ot=0,Ot=k); f3 = 1

T

T∑

t=1

(
π − θ(Ot,N)

)

π
; f4 = 1 − d(Ot=T ,N);

where, d(ptr,O
t) is the normalised Euclidean distance between the centroid of robot

ptr and the centroid of the object Ot at time t; d(Ot=0,Ot=T) is the normalised
Euclidean distance between the position of the object’s centroid at the beginning of
the trial (t = 0) and at the end of the transportation task (t = k); d(Ot=T ,N) is the
normalised Euclidean distance between the centroid of the objectOt and the centroid
of the nest N at the end of the trial (t = T); θ(Ot,N) is the smallest angular distance
of the nest with respect to the object heading, chosen between the one measured
clockwise and the one measured counter-clockwise. The fitness of a genotype (F̄) is
the average group evaluation score after it has been assessed E = 12 times.

3 Results

The primary aim of this study is to design control systems for homogeneous groups
of robots required to transport objects to a target destination cooperatively. The con-
trollers should be robust enough to deal with some variability in the object mass and
length, and scalable to larger groups. During the design phase, we run 20 differently
seeded evolutionary simulations, each simulation lasting2000generations.After evo-
lution, in order to choose the best controller, we re-evaluated the best genotypes (i.e.,
groups) of the last 1000 generations of each evolutionary run. During re-evaluations,
the groups are evaluated under the same experimental conditions experienced during
evolution (i.e., group cardinality 6, object length 30cm, object mass 900g). Each
group undergoes a set of 100 trials in which initial robots’ positions and orientations
are systematically varied. In all re-evaluation tests, we chose to measure the group
performance using two binarymetrics: the percentage of success in the transport task,
and the percentage of success in the nesting task. Within a trial, a group succeeds
in the transport task if, within the trial time limit (240s), it manages to transport the
object 1m away from its initial position in any arbitrarily chosen direction. A group

510 M. H. Mohammed Alkilabi et al.

0

10

20

30

40

50

60

70

80

90

100

su
cc

es
s

ra
te

runs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 2 Graphs showing the success rate of the best groups for each evolutionary run in the transport
(grey bars) and in the nesting task (black bars). The groups are ranked from the best to the worst

succeeds in the nesting task if, within the trial time limit (240s), it succeeds in the
transport task, and it pushes the object centroid less than 20cm away from the centre
of the nest.

Figure2 shows the performances of the best groups of each of the 20 evolutionary
runs ranked in descending order with respect to success rate in the nesting task (see
black bars). The graph also show the percentage of success in the transport task
(see grey bars). The graph tells us that, apart from few runs, all best evolved groups
are quite successful in the transport task, where the robots have to coordinate their
actions and agree on a common direction of transport. The performances slightly
drop for what concerns the percentage of success in the nesting task to a 70% for
the very best group, and lower percentages for the others. This performance drop
has to be interpreted with respect to the performance metrics used, which on the one
hand it represents an easy and intuitive way to evaluate nesting behaviour. On the
other hand, it punishes too severely groups that in spite of being able to accomplish
the hardest part of the nesting task (i.e., the steering and simultaneous pushing the
object towards the nest), they fail to take the object centroid less than 20cm from
the nest’s centre within the trial time limit. In the remainder of this section, we will
focus on the characteristics of behaviour of the very best evolved group, by looking
at the robustness of the group strategy with respect to object length and mass, and at
its scalability to larger group size.

Evolving Group Transport Strategies for e-Puck Robots … 511

su
cc

es
s

ra
te

 (%
)

0

10

20

30

40

50

60

70

80

90

100

820 900 980 820 900 980 820 900 980 820 900 980
30 40 50 60

object mass (g) and length (cm)

Fig. 3 Graph showing the success rate of the best evolved group for the transport (grey bars) and
the nesting task (black bars) in different operational conditions, in which we varied the length of
the longest object side (30, 40, 50, 60cm) and its mass (820, 900, and 980g)

3.1 Analysis of Best Evolved Group

For the robustness-test, the best evolved group was re-evaluated in 12 different oper-
ational conditions in which we varied the length of the longest object side (30,
40, 50, 60cm) and its mass (820, 900, and 980g). For each condition, the group
underwent a set of 100 trials in which the initial robots’ positions and orientations
were systematically varied. The results of this robustness-test are shown in Fig. 3. The
graph indicates that, while the initial transport is almost optimal for all conditions,
the performance at the nesting task tends to drop with the increment of the object
mass. There is a common performance trend for every object’s length; the group
does better with object of 820g mass compared to the other two masses. This trend
is particularly evident for the shorter object. The lighter the object the easier it is for
the robots to transport/steer it without losing coordination. With longer objects (50
and 60cm), the mass tends to have a smaller impact on the capability of the group to
push the object toward the nest. This can be attributed to the fact that the longer the
object the less momentum force required to move it. Consequently, the group can
steer a heavy long object with less effort compared to shorter object with same mass.
Table1 shows the mean and the standard deviation of the distance between object
and nest at the end of unsuccessful trials (i.e., trials in which the group failed to take
the object centroid inside the circular nest area of 20cm radius). Given that the initial
distance between the object centroid and the centre of the nest is 1 m, the data in the
Table indicates that, for all conditions, even in unsuccessful trials the group tends to

512 M. H. Mohammed Alkilabi et al.

Table 1 Table showing the mean and the standard deviation of the distance between the object and
the centre of the nest area at the end of unsuccessful trials during the first post-evaluation test of the
best evolved group. The object-nest distance at the beginning of the nesting phase is 1m

Object Distance (cm)

Length (cm) Mass (g) Mean Sd

30 820 39.9 24.0

900 34.3 25.7

980 37.6 22.0

40 820 42.7 29.5

900 36.9 30.1

980 41.9 25.4

50 820 51.1 19.1

900 53.1 15.8

980 52.7 18.4

60 820 54.1 18.2

900 52.0 21.7

980 50.7 24.1

shorten the initial gap between the object and the nest, thanks to an effective pushing
strategy that successfully steers the object towards the nest. Failure are primarily
caused by the low speed of the transport manoeuvres with the consequence that the
object does not get into the nest area within the trial time limit.

We have run a statistical analysis on the data generated by the robustness-test,
using a logistic regression model, taking into account the random effects of the
starting positions. Let p be the probability of success, and M the object mass, then
the fitted model could be represented as log(p/(1 − p)) = 5.03 − 0.0046 × M . The
model shows that themass has a significant effect on the group success rate, indicating
that the higher themass, the lower the likelihood of success (see Fig. 4a). The analysis
indicates that the object length has no significant effect on the group performance in
this particular test.

We also run a further post-evaluation test, the scalability-test, to evaluate the
scalability of the best evolved group strategy in larger group sizes, and with respect
to different object lengths. The results of this test are shown in Fig. 5. Similar to
the previous graphs, black bars refer to the percentage of success in the nesting
task, while grey bars refers to the percentage of success in the transport task. Each
condition is repeated 100 times (trials) by systematically varying the robots’ initial
position and orientation. The object mass does not vary within each condition. The
group of 7 robots uses object of 1000g for all 4 object’s lengths. 100g is added to
the object mass for every extra robot added to the group. In each condition, all robots
are required to transport the object. Results show that shorter the object, worst the
group performance. This trend applies to almost all conditions for the nesting task
(see Fig. 5, black bars) and to the largest groups for the transport task (see Fig. 5,

Evolving Group Transport Strategies for e-Puck Robots … 513

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

●

●

● length = 30 cm
length = 40 cm
length = 50 cm
length = 60 cm

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

object mass (g)

0.0

0.2

0.4

0.6

0.8

1.0

500 600 700 800 900 1000 1100 1200 10 20 30 40 50 60 70 80

6

8

10

12

14

16

18

20

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

nu
m

. r
ob

ot
s

object length (cm)

(a) (b)

Fig. 4 aGraph showingmass versus probability of success at the nesting task during the robustness-
test. The fitted logistic regression model prediction is plotted as the black curve; different symbols
depict the experimental data (mass vs. empirical probability) for different sets of trials at different
object lengths. b Graph showing the num. robots and object length versus probability of success
at the nesting task during the scalability-test. The filled contour plot represents the fitted logistic
regressionmodel prediction; the experimental data are depicted in circleswhose size are proportional
to the empirical probability of success for various sets of trials

su
cc

es
s

ra
te

 (%
)

0

10

20

30

40

50

60

70

80

90

100

30 40 50 60 30 40 50 60 30 40 50 60 30 40 50 60 30 40 50 60 30 40 50 60 30 40 50 60
7 8 9 10 11 12 18

object length (cm) and num. robots

Fig. 5 Graph showing the success rate of the best evolved group for the transport (grey bars) and
the nesting task (black bars) in different conditions, in which we varied the length of the longest
object side (30, 40, 50, 60cm) and the cardinality of the group (7, 8, 9, 10, 11, 12, 18)

514 M. H. Mohammed Alkilabi et al.

black bars). This indicates that, in this test, the object length plays an important role
on the effectiveness of the group nesting strategies.

We have run a statistical analysis on the data generated by the scalability-test,
using a logistic regression model, taking into account the random effects of the
starting positions. Let N be the number of robots in the group, and L the object
length, the fitted model could be written as: log(p/(1 − p)) = −0.156 − 0.205 ×
N + 0.057 × L. The model indicates that the number of robots and object length
have a significant effect on the robots collaborative performance. Increasing the
number of robots would lower the success rate for the same object length; whilst
increasing the object length would increase the success rate if the number of robots
were kept the same (see also Fig. 4b). These effects are mainly due to the type of
strategy used by the best evolved group in steering the object toward the nest. By
visually inspecting the group behaviour, we observed that, during the nesting phase,
the robots tend to place the object in between themselves and the nest by moving
to locations in which the infra-red signals emitted by the nest are occluded by the
object. With the nest appearing either on the left or on the right side of the current
direction of object motion, the tendency to hide from the nest signal let the robots to
concentrate the pushing forces on the farther object side from the nest. Consequently,
the object direction of motion is adjusted towards the nest.

Shorter the object, smaller is the area in which the robots are occluded from the
nest signal. This implies that with shorter objects and large group sizes, the small
occlusion area forces the robots to form long chains, in which progressively less
robots are directly in contact with the object, while many of them push other robots.
Pushing forces applied to other robots are less effective than those directly applied to
the object since the robots have a cylindrical shape, and when they are in contact to
each other they tend to slide one over the other. This phenomenon strongly reduces
the total force applied to the object and clearly affects the capability of the group to
steer the object toward the nest.

4 Conclusions

We have presented the results of a set of simulations in which a group of robots have
to first transport a cuboid object 1m away from its initial position in an arbitrary
direction, and then to push it towards a nest area. The task described in this study
is characterised by two distinctive features which distinguish it from similar swarm
robotics studies focused on object transport, and make the task particularly challeng-
ing. First, the object is heavy enough to require the collaborative effort of all the
robots of the group to be transported. Second, the initial coordination of actions and
alignment of pushing forces has to be achieved through the interactions among the
robots and between the robots and the object. The nest can not be used as perceptual
cue to align the pushing forces since it appears only when the object is displaced 1m
away from its initial position.

Evolving Group Transport Strategies for e-Puck Robots … 515

The first contribution of this study is to show that, in spite of the complexity of
the scenario, artificial evolution manages to integrate in a single neuro-controller
the individual mechanisms underpinning the robot behaviour in all the phases of
the task (e.g., during the initial alignment of pushing forces, and during the steering
of the object towards the nest). Another significant contribution of this study is the
analysis of the relationships between the characteristics of the object (i.e., mass and
length), the morphology of the robots, and the group performance. As in [3], artificial
evolution exploits an occlusion-based strategy to adjust the direction of the pushing
forces, and to transport the object towards the nest. As in [3], we showed that the
occlusion-based transport can be an effective cooperative strategy. We complement
the results discussed in [3] by showing how the object length and mass as well as the
shape of the robots relate to the effectiveness of the occlusion-based group transport
strategies. In particular, with the results of our post-evaluation tests and by visually
inspecting the behaviour of the best evolved group we noticed that the higher the
number of e-puck robots pushing each other rather than directly the object (due to the
object length and/or mass), the lower the group performance. The robots’ cylindrical
shape seems to be a limiting factor in the occlusion-based group transport strategy
when the object surface that occludes the robots’ direct line of sight to the goal is
rather short. However, as discussed in [11], the same cylindrical shape facilitates the
initial alignment of pushing forces by allowing the robots to move horizontally with
respect to the object’s side. Future work will try to overcome the limitations of the
robots shape with respect to occlusion-based transport strategies without losing the
beneficial effects during the alignment of pushing forces.

Acknowledgements Muhanad H. Mohammed Alkilabi thanks Iraqi Ministry of Higher Education
and Scientific Research for funding his Ph.D.

References

1. Beer, R., Gallagher, J.: Evolving dynamic neural networks for adaptive behavior. Adapt. Behav.
1(1), 91–122 (1992)

2. Berman, S., Lindsey, Q., Sakar, M., Kumar, V., Pratt, S.: Experimental study and modeling of
group retrieval in ants as an approach to collective transport in swarm robotic systems. Proc.
IEEE 99(9), 1470–1481 (2011)

3. Chen, J., Gauci, M., Li, W., Kolling, A., Gross, R.: Occlusion-based cooperative transport with
a swarm of miniature mobile robots. IEEE Trans. Robot. 31(2), 307–321 (2015)

4. Czaczkes, T., Ratnieks, F.: Cooperative transport in ants (hymenoptera: Formicidae) and else-
where. Myrmecol. News 18, 1–11 (2013)

5. Feener, J., Donald, H., Moss, K.: Defense against parasites by hitchhikers in leaf-cutting ants:
a quantitative assessment. Behav. Ecol. Sociobiol. 26(1), 17–29 (1990)

6. Francesca, G., et al.: An experiment in automatic design of robot swarms. In: Proceedings of
the 9th International Conference on Swarm Intelligence, pp. 25–37. Springer (2014)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization andMachine Learning. Addison-
Wesley, Reading (1989)

8. Groß, R., Dorigo, M.: Evolution of solitary and group transport behaviors for autonomous
robots capable of self-assembling. Adapt. Behav. 16(5), 285–305 (2008)

516 M. H. Mohammed Alkilabi et al.

9. Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., Monasterio-Huelin, F.: An
open localization and local communication embodied sensor. Sensors 8(11), 7545–7563 (2008)

10. Hölldobler, B., Wilson, E.: The Ants. Harvard University Press, Cambridge (1990)
11. Mohammed Alkilabi, M.H., Lu, C., Tuci, E.: Cooperative object transport using evolutionary

swarm robotics methods. In: Proceedings of the European Conference on Artificial Life, vol.
1, pp. 464–471. MIT (2015)

12. Mohammed Alkilabi, M.H., Narayan, A., Tuci, E.: Design and analysis of proximate mecha-
nisms for cooperative transport in real robots. In: Dorigo, M., et al. (ed.) Proceedings of the
10th International Conference on Swarm Intelligence (ANTS 2016). Springer (2016, in Press)

13. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Proceedings
of the 9th International Conference on Autonomous Robot Systems and Competitions, vol. 1,
pp. 59–65 (2009)

14. Tanner, C.: Resource characteristics and competition affect colony and individual foraging
strategies of the wood ant formica integroides. Ecol. Entomol. 33(1), 127–136 (2008)

15. Wang, Z., Schwager, M.: Multi-robot manipulation with no communication using only local
measurements. In: Proceedings of the 54th IEEE Conference on Decision and Control (CDC),
pp. 380–385. IEEE (2015)

16. Wang, Z., Schwager, M.: Kinematic multi-robot manipulation with no communication using
force feedback. In: Proceedings of the IEEE International Conference onRobotics andAutoma-
tion (ICRA), pp. 427–432. IEEE (2016)

17. Wang, Z., Schwager, M.: Multi-robot manipulation without communication. In: Distributed
Autonomous Robotic Systems, pp. 135–149. Springer (2016)

18. Wang, Z., Takano, Y., Hirata, Y., Kosuge, K.: A pushing leader based decentralized control
method for cooperative object transportation. In: Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, vol. 1, pp. 1035–1040. IEEE (2004)

19. Yamamoto, A., Ishihara, S., Fuminori, I.: Fragmentation or transportation: mode of large-prey
retrieval in arboreal and ground nesting ants. Insect Behav. 22, 1–11 (2009)

From Formalised State Machines to
Implementations of Robotic Controllers

Wei Li, Alvaro Miyazawa, Pedro Ribeiro, Ana Cavalcanti,
Jim Woodcock and Jon Timmis

Abstract Controllers for autonomous robotic systems can be specified using state
machines. However, these are typically developed in an ad hoc manner without for-
mal semantics, which makes it difficult to analyse the controller. Simulations are
often used during the development, but a rigorous connection between the designed
controller and the implementation is often overlooked. This paper presents a state-
machine based notation, RoboChart, together with a tool to automatically create
code from the state machines, establishing a rigorous connection between speci-
fication and implementation. In RoboChart, a robot’s controller is specified either
graphically or using a textual description language. The controller code for simula-
tion is automatically generated through a direct mapping from the specification. We
demonstrate our approach using two case studies (self-organized aggregation and
swarm taxis) in swarm robotics. The simulations are presented using two different
simulators showing the general applicability of our approach.

W. Li (B) · J. Timmis
Department of Electronics, University of York, York, UK
e-mail: wei.li@york.ac.uk

J. Timmis
e-mail: jon.timmis@york.ac.uk

A. Miyazawa · P. Ribeiro · A. Cavalcanti · J. Woodcock
Department of Computer Science, University of York, York, UK
e-mail: alvaro.miyazawa@york.ac.uk

P. Ribeiro
e-mail: pedro.ribeiro@york.ac.uk

A. Cavalcanti
e-mail: ana.cavalcanti@york.ac.uk

J. Woodcock
e-mail: jim.woodcock@york.ac.uk

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_36

517

518 W. Li et al.

1 Introduction

Safety is a major concern for autonomous robots, and the ability to provide evidence
that a robotic system is safe can be demanding. Formal verification is the process
of checking whether a design satisfies some requirements (properties) or that an
implementation conforms to a design, and it has been used to verify a variety of
robotic systems such as service robots [23] and swarming robots [20, 24].

Swarm robotics investigates how multiple robots, each with limited ability, com-
municate, coordinate and self-organize to accomplish certain tasks. Swarm robotics
has potential in a wide range of real-world applications such as search and rescue,
object transportation and environmental monitoring [4]. While using a number of
simple robots to collectively perform complex tasks is desirable, designing individ-
ual controllers to guarantee the emergence of certain swarm behaviour is challenging.
If swarm robotic systems are to transfer from lab-based experiments to real appli-
cations, especially those that are safety-critical, the verification of the individual
controllers as well as their resulting emergent swarm behaviours needs to be con-
ducted in a rigorous way.

Typically, the implementation of a robotic control system is conducted with-
out establishing a strong connection between the controller code and the high-level
design specifications. Here we explore the usage of a state-machine based notation,
RoboChart [17], for designing robotic controllers. RoboChart has a formal semantics
that allows for verification. In this paper, we extend RoboChart to support automatic
code generation from the designed controllers to simulations.

Finite state machines are often adopted to design robot controllers in swarm
robotics [2, 5, 10, 11, 14]. A commonly used state-machine notation is that of UML
[1]. RoboChart takes inspiration from UML, and provides facilities to model timed
and probabilistic systems, composed of one or more controllers.

Formal verification has been investigated in the design of controllers in swarm
robotic systems [3, 7, 12, 20, 24]. In [7, 24], the authors used a temporal logic to for-
mally specify and verify the emergent behaviour of a swarm robotic system perform-
ing aggregation. In [12], the authors used PRISM, a model checker for probabilistic
automata, to formally verify the global behaviour of a foraging case scenario through
exhausting all possible swarm behaviours. The analysis results were compared with
those reported in [14], which used the test-driven simulation and showed a good cor-
respondence. In these works, finite state-machine controllers were described using
natural language, and there was no direct mapping from the high-level specification
to low-level controller code.

In [15], the authors applied supervisory control theory to control a swarm of
robots. Their approach supported automatic code generation. The controllers were
specified using standard finite state machines, without any of the extra facilities for
architectural modelling available, for example, in UML.

Various researchers have also explored the use of model-driven approaches to
develop the high-level control of robots [6, 8, 21, 22]. The architecture analysis
and design language (AADL) is a unifying component-based framework for mod-

From Formalised State Machines to Implementations … 519

elling software systems with a particular focus on embedded real-time systems [8].
RoboChart could in principle be integrated into the controller component in AADL.
In [22], a language was developed to program self-assembling robots. They pro-
posed a role-based language that allowed the programmer to define the behavioural
roles of each component independently from the concrete physical structure of the
robots. However, in these works, the controllers of robots (e.g. state machine) were
not formally specified, which makes it difficult to reason about robotic systems.

The main contribution of this paper is to reduce the gap between high-level spec-
ification and implementation of robotic controllers.

This paper is organized as follows. Section2 briefly introduces RoboChart. This
includes the elements of RoboChart and the approach to automatic code generation
for simulation and deployment. Section3 presents two case studies (self-organized
aggregation [11] and swarm taxis [2]) in swarm robotics. The simulations using the
automatically generated C++ code are presented. Section4 concludes the paper and
presents future work.

2 RoboChart

Figure1 shows the RoboChart framework to combine formalised state machines and
automatic implementation of robotic controllers. Once the controller is developed,
code is generated automatically to be used in different simulation platforms or physi-
cal robots. Formal semantics are also automatically generated for verification.Details
of the formal semantics of RoboChart can be found in [17]. In the following section,
we focus on the automatic code generation for simulation and deployment.

Fig. 1 The RoboChart framework for combining formalised state machines and implementation
of robotic controllers

520 W. Li et al.

2.1 Elements of RoboChart

Central to RoboChart is a state-machine notation. RoboChartmachines include states
and their entry, during and exit operations (actions), as well as transitions possibly
triggered by events. The entry operation is executed when the robot enters a state,
and followed by the execution of the during operation.When a transition is triggered,
the exit operation of the source state is executed. If an action is associated with the
transition, it is also executed before the state machine enters the target state.

Operations and events of a state machine are described in an interface. A state
machine can requires an interface. An operation can either be described without
implementation or implemented by the user in a state-machine style. An operation
can include a precondition and a postcondition.

Variables can be defined in a state machine, an interface or an operation. Different
data types (primitive or composite) can be defined. When the behaviour is complex,
multiple (potentially interacting) state machines can be used.

In addition to state machines, RoboChart also includes elements to organize spec-
ifications such as modules and robotic platforms [17]. A module defines a system,
including a robotic platform and associated controllers. Each controller can be spec-
ified by one or more state machines.

RoboChart also includes time constraints. A clock can be defined inside a state
machine to record the instant in time #T in which a transition is triggered. For
example, the primitive since(T) yields the time elapsed since the most recent time
instant #T. If since(T) is used as a condition (guard) on a transition with no events,
then the transition will be taken immediately once the guard is true. Unless time is
specified, we assume an operation takes no (or a significantly small) time.

For full details of RoboChart, refer to [17].

2.2 Simulation and Deployment

In RoboChart, the robot’s controller is specified either graphically or using a textual
description language. The automatically generated controller code can be imported
into a wide variety of simulation platforms.

We adopt the model-view-controller (MVC) pattern in the design of simulations,
where, the terms model and controller are used in a different way from that adopted
in RoboChart. Figure2 maps the RoboChart constructs to an MVC architecture.
The model (M) component contains a simulation of the environment and of the
RoboChart controller. We can generate a simulation of the RoboChart controller,
potentially together with a simulation of the environment.1 The controller compo-
nent (C) implements the robotic platform, which corresponds to a particular robot

1The specification of environment is still under development. Currently the environmental stimuli
are manually defined in the simulation.

From Formalised State Machines to Implementations … 521

Fig. 2 RoboChart simulations pattern

RoboChart State machine class
states attribute of enumerated type
clocks attribute of timer class
interfaces inherit interface class

RoboChart Interface class
events attribute of enumerated type
variables attribute
operations methods

Fig. 3 RoboChart state machine and interface classes

in a simulation. Finally, the view component (V) defines the visualisation of the
simulation.

We now describe how the controllers defined in RoboChart can be mapped into
an executable language, specifically C++. Other object-oriented languages can be
considered in a similar way, but are currently outside the scope of our work. The
simulation of a controller is the simulation of its state machine(s). Each machine is
implemented by a class. If the machine requires an interface, that interface is also
implemented by a class, which is inherited by the state machine.

Figure3 defines how constructs of a state machine and interface are mapped to
elements of a class. The variables and events defined in an interface are generated as
attributes of the class. The operations (entry, during and exit) that the robot executes
in a state give rise to methods. We note that, even if an operation is specified in a
state-machine style, it is generated as a method. To update the state machine, some
other methods such as MakeTransition are also generated.

If a clock is defined in a state machine, a timer class is generated. It has a attribute
counter, indicating the elapsed time, andmethods such as StartTimer andResetTimer.
The state machine includes an object of the timer class as an attribute. The timer is
used as a service of the state machine, which means the state machine can assess the
counter. The state of the robot is updated in a cyclic manner, with the length of the
cycle linked to the length of time required to capture events. The counter of the timer
is updated in each control cycle.

A primitive data type is directly mapped into one in C++. For example, the type
real corresponds to double in the code. A composite type is generated as a pre-defined
class. For example, vector2d corresponds to a 2D vector class. The data-type system
in RoboChart as well as its mapping are still under development.

522 W. Li et al.

3 Modelling Robotic Controllers Using RoboChart

To demonstrate our approach, we investigate two case studies on canonical problems
in swarm robotics: aggregation [11] and swarm taxis (flocking towards a beacon) [2].
In these case studies, the robots are homogeneous. The controller of each robot is
defined by a single state machine, and it is executed in the e-puck [18], which is a
differential wheeled robot. It has an inter-wheel distance of 5.1cm. The maximum
speed for the left and right wheels of the e-puck is 12.8cm/s, forward or backward.

3.1 Case Study One: Aggregation

3.1.1 Aggregation Behaviour

In this behaviour, each robot is equipped with a line-of-sight sensor that detects the
type of item in front of it. The range of this sensor is unlimited in simulation. It gives
a reading of I = 1 if there is a robot in the line of sight, and I = 0 otherwise. The
environment is free of obstacles. The objective for the robots is to aggregate into a
single compact cluster as fast as possible.

Each robot implements a reactive behaviour by mapping the sensor input (I) onto
the outputs, that is, a pair of predefined speeds for the left and right wheels, (v�I , vrI),
v�I , vrI ∈ [−1, 1], where −1 and 1 correspond to the wheel rotating backwards and
forwards respectively with maximum speed.

The parameters of the aggregation controller were found by performing a grid
search over the space of possible combinations [11]. The controller exhibiting the
highest performance was:

p = (v�0, vr0, v�1, vr1) = (−0.7,−1.0, 1.0,−1.0) . (1)

When I = 0, a robot moves backwards along a clockwise circular trajectory with
a linear speed of −10.88cm/s and an angular speed of −0.75 rad/s. When I = 1, a
robot rotates clockwise on the spot with a linear speed of 0 and the maximum angular
speed of −5.02 rad/s.

3.1.2 Modelling the Aggregation Controller in RoboChart

Figure4 shows the diagram of the aggregation controller modelled in RoboChart. An
interface,AggregationIface, declares the variables, operations and events. The state
machine (AggregationFSM) requires AggregationIface. The state machine has an
initial node, i, pointing to the initial state. The aggregation controller includes two
states (S1 and S2), two events (seeWall and seeRobot, which correspond to I = 0
and I = 1 respectively), and two operations (MoveClockwise and RotateClockwise).

From Formalised State Machines to Implementations … 523

Fig. 4 Diagram of the aggregation controller modelled in Robochart

Fig. 5 Textual description of the aggregation controller and an operation in RoboChart

These operations are implemented in a state machine style with only an initial stateS
andfinal stateF. Different from theAggregationFSM statemachine, both operations
have a final state. An operation can include precondition that must be satisfied by
the caller to guarantee that the functionality of this operation is realised as specified.
For example, in the MoveClockwise operation, the precondition requires that its
first argument, an angular speed, is negative, and the second, the linear speed, is
not zero. In the generated C++ code, this is realized using the assert function. A
textual description of the AggregationFSM state machine and the MoveClockwise
operation is shown in Fig. 5.

In the generated C++ code, two classes (AggregationIface and Aggregation-
FSM) are generated. The class AggregationIface includes the attributes of two
double variables (linearSpeed and angularSpeed), two methods (MoveClockwise
and RotateClockwise) and two boolean events (seeWall and seeRobot). The oper-
ations are generated as virtual functions that can be overridden if necessary. The

524 W. Li et al.

initial configuration after 20 s after 40 s after 60 s

Fig. 6 Snapshots of the aggregation behaviour of 20 robots in simulation, using the automatically
generated controller code from the RoboChart model

AggregationIface class is inherited by the state machine AggregationFSM class.
It has the attributes of states S1 and S2, and other methods that are used to run
the state machine. The generated C++ controller code can be found in the online
supplementary materials [13].

3.1.3 Simulating the Aggregation Behaviour

The automatically generated code of the aggregation controller is tested in Enki [16],
which has a built-in model of the e-puck robot. Enki is a 2D simulator and it can
simulate swarms of robots a hundred times faster than real time. The speed of the left
and right wheels of the e-puck can be set separately. The line-of-sight sensor in Enki
is simulated by casting a ray from the e-puck’s front and checking the first item with
which it intersects (if any). The arena size is 250 × 250cm2, and the initial position
and orientation of the robots are randomly distributed. The length of the control step
is set to 0.1 s, and the physics is updated every 0.01 s.

We performed 10 simulation trials with 20 robots, and in each trial the robots
can aggregate into a single cluster. Figure6 shows snapshots from a simulation trial
using the automatically generated controller code from the model in RoboChart.

3.2 Case Study Two: Swarm Taxis

3.2.1 Swarm Taxis Behaviour

In the swarm taxis behaviour, the robots move towards a beacon while maintaining a
coherent group. Each robot has three states: Forward, Coherence and Avoidance.
The initial state is Forward. If the robot is in the Forward state for a certain number
of time units without detecting any robots within avoidance radius, it enters the
Coherence state. In this state, the robot turns towards the estimated center of the
nearby robots. If the robot detects any robot within the avoidance radius while it is in
the Forward state, it enters the Avoidance state. In this state, the robot turns away
from the estimated center of the robots being avoided.

From Formalised State Machines to Implementations … 525

The robot can be illuminated by a beacon in the environment or shadowed by
other robots (unilluminated). The avoidance radius when the robot is illuminated is
larger. The avoidance radius is updated while the robot is in the Forward state. It is
this mechanism that leads to the emergent swarm taxis behaviour [2].

3.2.2 Modelling the Swarm Taxis Controller in RoboChart

Figure7 shows the diagram of the swarm taxis controller in RoboChart. The full
model can be found in the online supplementary materials [13]. The interface
SwarmTaxisIface defines the variables, operations and an event. A clock is defined
inside the controllerSwarmTaxisFSM. The initial state of the controller isForward,
where a timer T is started immediately. The timer records the time the robot stays
in the state Forward. In RoboChart, an expression marked in square brackets (such
as reached == true or since(T) < 25 in Fig. 7) is a guard for the transition. If there
is no event associated with a transition, satisfaction of the condition will trigger the
transition immediately. For example, once 25 time units have elapsed since the robot
is in the Forward state, a transition from the Forward state to the Coherence state
is triggered.

In the Forward state, the robot updates its avoidance radius through the operation
UpdateAvoidanceRadius. The actual avoidance radius is set based on the boolean
variable illuminated resulting from the operation CheckIlluminationStatus. If the
robot is illuminated, the avoidance radius is set to 0.2; otherwise it is set to 0.1.
As a consequence of this choice, the robots that have longer avoidance radius (are
illuminated) tend to move towards the beacon and thus give rise to the beacon taxis
behaviour of the whole swarm. Note that although we have declared the opera-
tion CheckIlluminatedStatus, we have chosen not to specify it in the RoboChart
model, since it relies on the usage of the robot’s sensors, which is platform depen-
dent. If the robot detects any other robots nearby within the avoidance radius, it
enters the Avoidance state, where the robot calculates the desirable turning degree

Fig. 7 Model of the swarm taxis controller in Robochart

526 W. Li et al.

initial configuration after 120 s after 240 s after 400 s

Fig. 8 Snapshots of the swarm taxis behaviour in simulation, using the automatically generated
controller code from the RoboChart model. There are 20 robots (green) and one beacon (yellow)

(desiredTurningDegree) using the operation CalcAvoidanceHeading and then exe-
cutes the operation Turn. In the operation Turn, the boolean variable reached is
updated to indicate whether the robot has turned the desirable degree. Once the
desirable turning degree has been achieved, the variable reached is set to true, which
triggers the transition from Avoidance to Forward. Every time a transition is trig-
gered, the timer T is started. Similar operations occur in the transition from Coher-
ence to Forward.

For a full description of the model, refer to [13].

3.2.3 Simulating the Swarm Taxis Behaviour

The swarm taxis behaviour is simulated in ARGoS [19], which also has a built-in
model of the e-puck. It is a 3D simulator. The simulated space can be divided into
several sub-spaces that run different physics engines in parallel. The arena size is 400
× 400cm2. There is one beacon located in the right of the arena, and the robots are
randomly initialized in the left region of the arena. Each robot is equipped with light
sensors (to detect the beacon) and range-and-bearing sensors (to detect other robots
nearby). The length of control step is set to 0.1 s. Note that in the model shown in
Fig. 7 we did not attempt to optimize the value of each parameter (such as the time
threshold and avoidance radius).

We performed 10 simulation trials with 20 robots, and in each trial the robots can
successfully move towards the beacon while maintaining a coherent group. Figure8
shows snapshots from a simulation trial, using the automatically generated controller
code in RoboChart. A video showing the simulation of the two case studies and the
automatically generated C++ code of the controllers can be found in the online
supplementary materials [13].

4 Conclusion

In this paper, we have presented a state-machine based framework RoboChart for
modelling the controllers of autonomous robots, combined with the automatic gen-

From Formalised State Machines to Implementations … 527

eration of C++ code. We believe that this is the first framework that allows for both
automatic code generation for robotic simulation, deployment and formal verifica-
tion. The applicability of our approach has been demonstrated through modelling
two case studies (self-organized aggregation and swarm taxis) in swarm robotics.
The automatically generated code of the robot’s controller was run in two different
simulators, which again, demonstrates the flexibility of our approach.

Our vision is to significantly reduce the gap between the high-level reasoning and
low-level implementation through the use of formal methods and automatic code
generation. Thework presented can be seen as a first step towards the goal of verifying
emergent behaviour, which is a potential application of our work to be investigated
in the future. Our current focus is, however, to enrich the state machine specification
of RoboChart by adding time and probability constructs, so that the framework can
be applied to model a wide variety of robotic control systems. The formal semantics
of RoboChart will also be enriched to make the verification feasible. In RoboChart,
we focus on modelling the controller of a single robot, but we are investigating the
possibility of using RoboChart models to simulate and analyse robotic swarms.

Currently, the generated controller code is a direct mapping from the elements in
RoboChart to simulation. In the future, soundness of the simulation will be estab-
lished by verifying the code generator. This can be realized using various software
engineering techniques. In particular, we envisage that the CSP model generated
from the RoboChart specification is a basis for establishing the correctness of the
generated code using refinement. Practical verification can be carried out using a
model checker like FDR (which also provides a facility to animate the model, and
thus perform some validation), or using a theorem prover.

In this paper, we only automatically generate the code of controllers, however
the simulation configurations (e.g. length of control step) in the case studies are
manually defined. We intend to define simulations in an extended notation, from
which the simulation configurations can also be specified. The simulation notation
will be independent of specific programming languages such as C++ and Java, and
of specific robotic platforms.

Possible avenue for future work is the integration of RoboChart in other tools
[3, 9]. For example, in [9], an automatic design method was used to tune the free
parameters of a predefined parametric architecture (e.g. probabilistic state machine)
for the individual robot controller of a swarm. In this case, the controller architecture
can be modelled in RoboChart, so that the obtained solution can be formally verified.
In [3], a property-driven approach was proposed to design the controller of swarming
robots. The designed controller can also be modelled in RoboChart to support both
formal verification and code generation.

Finally, we intend to model the environmental stimuli and generate code for
physical robots.

Acknowledgements The authors would like to acknowledge the support from EPSRC grant
EP/M025756/1.

528 W. Li et al.

References

1. Bergenti, F., Poggi, A.: Exploiting uml in the design of multi-agent systems. In: Omicini, A.,
Tolksdorf, R., Zambonelli, F. (eds.) Engineering Societies in the Agents World: First Interna-
tional Workshop, pp. 106–113. Springer, Berlin, Germany (2000)

2. Bjerknes, J.D.,Winfield,A.F.T.: On fault tolerance and scalability of swarm robotic systems. In:
Martinoli, A.,Mondada, F., Correll, N.,Mermoud, G., Egerstedt,M., Hsieh, A.M., Parker, E.L.,
Støy, K. (eds.) Distributed Autonomous Robotic Systems: The 10th International Symposium,
pp. 431–444. Springer, Berlin, Germany (2013)

3. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for swarm
robotics. In: Proceedings of 2012 International Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 139–146. IFAAMS, Richland, SC, USA (2012)

4. Brambilla,M., Ferrante, E., Birattari,M., Dorigo,M.: Swarm robotics: a review from the swarm
engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

5. Chen, J., Gauci, M., Li, W., Kolling, A., Groß, R.: Occlusion-based cooperative transport with
a swarm of miniature mobile robots. IEEE Trans. Robot. 31(2), 307–321 (2015)

6. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-specific lan-
guage to design, simulate and deploy robotic applications. In: Noda, I., Ando, N., Brugali,
D., Kuffner, J.J. (eds.) Simulation, Modeling, and Programming for Autonomous Robots, pp.
149–160. Springer, Berlin, Germany (2012)

7. Dixon, C., Winfield, A.F.T., Fisher, M., Zeng, C.: Towards temporal verification of swarm
robotic systems. Robot. Auton. Syst. 60(11), 1429–1441 (2012)

8. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introdution to the SAE
Architecture Analysis and Design Language. Addison-Wesley, Boston (2012)

9. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., Reina,
A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V., Birattari, M.: AutoMoDe-
Chocolate: amethod for the automatic design of robot swarms that outperforms humans. Swarm
Intell. 9(2–3), 125–152 (2015)

10. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Clustering objects with robots that do
not compute. In: Proceedings of 2014 International Conference on Autonomous Agents and
Multiagent Systems, pp. 421–428. IFAAMS, Richland, SC, USA (2014)

11. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation without compu-
tation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

12. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic model
checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

13. Li, W., Miyazawa, A., Ribeiro, P., Cavalcanti, A., Woodcock, J., Timmis, J.: Online supple-
mentary material (2016). http://www.york.ac.uk/robot-lab/dars2016/

14. Liu, W., Winfield, A.F.T.: Modeling and optimization of adaptive foraging in swarm robotic
systems. Int. J. Robot. Res. 29(14), 1743–1760 (2010)

15. Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R.: Supervisory control theory
applied to swarm robotics. Swarm Intell. 10(1), 65–97 (2016)

16. Magnenat, S., Waibel, M., Beyeler, A.: Enki: the fast 2D robot simulator (2011). http://home.
gna.org/enki/

17. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J., Woodcock, J.C.P.:
RoboChart: a state-machine notation for modelling and verification of mobile and autonomous
robots. Technical report, University of York, Department of Computer Science, York, UK
(2016). www.cs.york.ac.uk/circus/publications/techreports/reports/MRLCTW16.pdf

18. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Proceeding
of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65.
IPCB: Instituto Politécnico de Castelo Branco (2009)

19. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N.,
Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS:
a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–
295 (2012)

http://www.york.ac.uk/robot-lab/dars2016/
http://home.gna.org/enki/
http://home.gna.org/enki/
www.cs.york.ac.uk/circus/publications/techreports/reports/MRLCTW16.pdf

From Formalised State Machines to Implementations … 529

20. Rouff, C.A., Hinchey, M.G., Pena, J., Ruiz-Cortes, A.: Using formal methods and agent-
oriented software engineering for modeling NASA swarm-based systems. In: 2007 IEEE
Swarm Intelligence Symposium, pp. 348–355. IEEE, Honolulu, Hawaii (2007)

21. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic software systems: from code-driven
to model-driven designs. In: Proceedings of the 14th International Conference on Advanced
Robotics, pp. 1–8. IEEE, Munich, Germany (2009)

22. Schultz, U.P., Christensen, D.J., Stoy, K.: A domain-specific language for programming self-
reconfigurable robots. In: Proceedings of the 2007WorkshoponAutomaticProgramGeneration
for Embedded Systems, pp. 28–36. ACM, Salzburg, Austria (2007)

23. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L., Dautenhahn, K.,
Saez-Pons, J.: Toward reliable autonomous robotic assistants through formal verification: a
case study. IEEE Trans. Hum. Mach. Syst. 46(2), 186–196 (2016)

24. Winfield, A.F.T., Sa, J., Fernandez-Gago, M.C., Dixon, C., Fisher, M.: On formal specification
of emergent behaviours in swarm robotic systems. Int. J. Adv. Robot. Syst. 2(4), 363–370
(2005)

Human Responses to Stimuli Produced by
Robot Swarms - the Effect of the Reality-Gap
on Psychological State

Gaëtan Podevijn, Rehan O’Grady, Carole Fantini-Hauwel
and Marco Dorigo

Westudy the reality-gap effect (the effect of the inherent discrepancy between simula-
tion and reality) on the human psychophysiological state, workload and reaction time
in the context of a human-swarm interaction scenario. In our experiments, 37 par-
ticipants perform a supervision task (i.e., the participants have to respond to visual
stimuli produced by a robot swarm) with a real robot swarm and with simulated
robot swarms. Our results show that the reality-gap significantly affects the human
psychophysiological state, workload and reaction time. Our results also show that
conducting a human-swarm interaction experiment in a virtual reality environment
can be an alternative to conducting an experiment with robot swarms simulated on a
computer screen. These results suggest that virtual reality can mitigate the effect of
the reality-gap in human-swarm interaction experiments.

G. Podevijn (B) · R. O’Grady · M. Dorigo
IRIDIA, Université Libre de Bruxelles, Bruxelles, Belgium
e-mail: gpodevij@gmail.com

R. O’Grady
e-mail: rogrady@ulb.ac.be

M. Dorigo
e-mail: mdorigo@ulb.ac.be

C. Fantini-Hauwel
Research Center of Clinical Psychology, Psychopathology and Psychosomatic,
Université Libre de Bruxelles, Bruxelles, Belgium
e-mail: chauwel@ulb.ac.be

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_37

531

532 G. Podevijn et al.

1 Introduction

There are fundamental differences between the way a human interacts with a robot
swarm and the way a human interacts with a single robot. Firstly, because robots in a
swarm robotics system do not have the same communication capabilities as most of
the other robotics systems (e.g., text-based or voice-based communication hardware).
Secondly, because even if they were augmented with communication capabilities,
the large number of robots that compose a swarm robotics system would make it
impractical for a human operator to interact with each individual robot—there would
be too many data-points for the human operator to process.

Because of these fundamental differences, human-swarm interaction (HSI) has
become an active and independent field of research. In the current HSI literature,
most research tackles technical aspects of the interaction (e.g., gesture-based inter-
action, speech-based interaction, haptic-based interaction, leader-based robot swarm
control) and only few researches are validated with user studies (see [8] for a com-
prehensive survey of HSI). Moreover, with the exception of [17, 19], the majority of
these user studies are performed in simulation only [2, 3, 7, 12–14, 22, 23]. Though
simulation is convenient for the repeatability of the experiments and for the low-cost
of the infrastructure (i.e., robots and experimental room), simulation suffers from the
so-called reality-gap—the inherent discrepancy between simulation and reality.

These user studies, performed in simulation only, have motivated us to investigate
the effect of the reality-gap in the context of HSI. We are interested in understanding
whether the reality-gap affects the psychology of humans interacting with a robot
swarm. For instance, do human operators feel more stressed or overloaded when
they interact with a real robot swarm than with a simulated robot swarm displayed
on a computer screen (which is used in the majority of the human-swarm interaction
user studies)? In [16], we have already shown that the reality-gap had an effect
on the human psychophysiological state (i.e., the psychological state of a human
assessed by physiological measures) when humans are passively interacting with
a robot swarm. In this paper, we also study the effect of the reality-gap on the
human psychophysiological state, however, our participants are not purely passive
anymore. Even thoughour participants do not issue any commands to the robot swarm
(because an interaction interface could influence the psychophysiological responses
of the participants, thus limiting the visibility of the reality gap effect [16]), they
are asked to press a button each time a robot illuminates its LEDs in red. Thanks to
this task, we show in this paper that the reality-gap has also significant impacts on
the human workload (i.e., the mental effort) and reaction time. In the experimental
scenario designed for our experiments, 37 participants interact with a simulated robot
swarm displayed on a computer screen, with a simulated robot swarm displayed in
a virtual reality environment and with a real robot swarm. Figure1 shows the three
experimental scenarios.

This paper contributes to the literature in two ways. The first contribution is that
our results show that our participants have stronger psychophysiological reactions
and higher workload and reaction time when they interact with a real robot swarm

Human Responses to Stimuli Produced by Robot Swarms … 533

Fig. 1 Experimental scenario. Left: A participant interacts with a simulated swarm of 20 robots
displayed on a computer screen. Middle: A participant is attached to a virtual reality head set and
interacts with a simulated swarm of 20 robots.Right:Aparticipant interacts with a swarm consisting
of 20 real robots. The participant shown in this figure is the first author of this paper and did not
take part in the experiment. The pictures shown in this figure were taken for illustration purpose

than when they interact with a simulated robot swarm displayed on a computer
screen. The second contribution is that we show that our participants’ workload and
reaction time are higher when they interact with a robot swarm simulated in a virtual
reality environment than with a robot swarm simulated on a computer screen. These
results suggest that conducting simulation-based experiments in a virtual reality
environment can mitigate the effect of the reality-gap in HSI and, therefore, HSI
researchers can avoid to buy and maintain expensive real robots.

2 Related Literature

The effect of the reality-gap on the human psychology has been studied in human-
robot interaction, and more specifically, in the context of social robotics. In social
robotics, the majority of the studies show that human beings enjoy more to interact
with a real robot than with a simulated one [4, 6, 10, 15, 18, 21, 24]. In these
studies, the authors measured the level of enjoyment either with a self-developed
questionnaire or with the game flow model—a model initially developed to measure
the players enjoyment in games [20]. In HSI, though, we were the first to study
the effect of the reality-gap on the human psychology [16]. We showed that due
to the reality-gap, humans had stronger psychophysiological responses when they
passively interacted with a real robot swarm than with a simulated robot swarm.

In HSI research, several studies had already taken into account the human psy-
chology during the interaction with a robot swarm. In [14], the authors showed that
the human workload (assessed by a subjective questionnaire) is not affected by the
size of a robot swarm (i.e., the number of robots in a swarm). In [17], however, we
showed that the size of a robot swarm has a significant effect on the human psy-
chophysiological state. In this research, we studied the psychophysiological state
with a combination of objective physiological measures (skin conductance and heart
rate) and subjective psychological measures (via a questionnaire). The effect of
two types of command propagation methods (i.e., methods to disseminate a human

534 G. Podevijn et al.

command among the robots of a swarm)was studied in an experiment where a human
operator had to guide a swarm of robots by controlling a leader robot’s velocity and
heading [1, 22]. The authors showed that workload is lower with the so-called flood-
ing method (non-leader robots all set their velocity and heading to those of the leader
robot) than with the so-called consensus method (non-leader robots set their veloc-
ity and heading to the average velocity and heading of their neighbours). Workload
can also be affected by different types of communication network topologies made
by the robots [3]. In [19], finally, the authors showed that the mapping between the
manipulability of a swarm (i.e., whether it is easy or hard to guide a robot swarm) and
haptic forces also impacts the human workload. With the exception of [17, 19], all
the aforementioned studies were performed in simulation. Because of the reality-gap,
though, it is difficult to confirm that these results would be similar if the experiments
were conducted with a real robot swarm instead of a simulated one.

This paper is different from [16] for two reasons. Firstly, because our participants
are not purely passive during the interaction with a robot swarm. Secondly, because
in addition to studying the reality-gap effect on the human psychophysiological state,
we also study its effect on the human workload and reaction time, providing a more
complete understanding of the reality-gap effect in HSI.

3 Methodology

3.1 Hypotheses

We based the experiment presented in this paper on two hypotheses:

1. The psychophysiological reactions, workload and reaction time of humans are
higher when they interact with a real robot swarm than with a simulated one.

2. The psychophysiological reactions, workload and reaction time of humans are
higher when they interact with a simulated robot swarm displayed in a virtual
reality environment than with a simulated robot swarm displayed on a computer
screen.

Confirming the first hypothesis would allow us to show that, not only the reality-
gap has an effect on the human psychophysiological state, but equally importantly,
that it has also an effect on the human workload and reaction time. Confirming
the second hypothesis would suggest that conducting HSI experiments in a virtual
reality environment could mitigate the effect of the reality-gap—the way humans
would react when interacting with a robot swarm in a virtual reality environment
would be more similar to the way they would react with a real robot swarm than to
the way they would react with a robot swarm simulated on a computer screen.

In the next section, we present the experimental scenario used to test these two
hypotheses.

Human Responses to Stimuli Produced by Robot Swarms … 535

3.2 Experimental Scenario

In order to test our two hypotheses, we designed an experimental scenario similar
to that of [16]. In this experimental scenario, our participants’ task is to supervise a
swarm consisting of 20 robots for a period of 60s. In this paper, the supervision tasks
consists for our participants to watch attentively a robot swarm and press a button
each time a robot of the swarm illuminates its LEDs in red.

The experimental scenario is divided into three sessions—the Screen Simulation
session, theVirtual Reality session and theReal Robots session. In these sessions, our
participants conduct the supervision task with three types of visualization interfaces.
In the Screen Simulation session, the robot swarm is simulated in 2D and displayed
on a computer screen (the participants see the robot swarm from the top view). In the
Virtual Reality session, the robot swarm is simulated in 3D and displayed in a virtual
reality environment (the participants see the robot swarm as they would see it in
reality). In the Real Robots session, the robot swarm is composed of real robots. We
decided to compare a 2D (top-view) simulation with the reality because this is how
themajority of the user studies in human-swarm interaction display the robot swarm.1

We decided to compare a 3D simulation (virtual reality) to the 2D simulation and to
reality in order to test our second hypothesis. The order our participants encounter
these 3 sessions is random.

3.3 Measures

In this study, we used a combination of subjective measures and objective mea-
sures. The subjective measures consist of two questionnaires—the Self-Assessment
Manikin (SAM) questionnaire [9] and the NASA Task Load Index Scale (NASA-
TLX) questionnaire [5]. We use the SAM questionnaire to study the participants’
subjective valence (measure of pleasure-displeasure) and arousal (measure of the
mental alertness and physical activity). The SAM questionnaire has 2 scales, each
scale being composed of 9 pictures. In a scale, a picture represents a value of that
scale (valence or arousal). We use the NASA-TLX questionnaire to study the partic-
ipants’ workload. In the NASA-TLX questionnaire, the workload is divided into 6
scales. In this paper, we use a simpler version of the NASA-TLX questionnaire—the
NASA-RTLX, in which the result is the average of the raw score of the six scales.
The objective measures consist of the physiological activity and of the reaction time
of our participants. We study the physiological activity of our participants by moni-
toring their heart rate (number of beats per minute) and skin conductance level (slow
variation of the skin conductance over time). We collect our participants’ reaction

1Please note that this particular choice introduces the question of whether any differences observed
between virtual reality and simulation are due to the different perspective. As discussed in the
conclusions, this aspect will be considered in future work.

536 G. Podevijn et al.

time by measuring the time taken by our participants to press a button after a robot
illuminates its LEDs in red.

The baseline physiological activity of an individual (i.e., the physiological activity
at rest) can be highly different from the baseline of another individual. In order to
be able to compare physiological responses across our participants, we monitored
our participants’ physiological responses at rest and our participants’ physiological
responses during the experiment. To conduct our analyses, we used the difference
between our participants’ physiological responses during the experiment and at rest.

3.4 Physiological Data Acquisition and Robot Platform

Physiological measures were acquired by a PowerLab 26T data acquisition system
and by a supplementary GSR Amp device connected to the PowerLab 26T system
(ADInstruments). A pulse transducer was directly connected to the PowerLab 26T
(for monitoring the heart rate) and two finger electrodes were connected to the GSR
Amp device (for monitoring the skin conductance level). The PowerLab 26T system
was connected to a laptop computer runningMac OSXYosemite. We used LabChart
8 to collect the physiological data.

The robotic platform used in this study is the e-puck robot platform. The e-puck
robot is a robotic platform used for educational purposes [11]. In this study, we only
used a subset of the e-puck’s sensors and actuators. We used the proximity sensors
for obstacle avoidance (i.e., to detect walls and other robots) and the wheel actuators
to control the robots’ motion (see Sect. 3.5).

3.5 Environment and Robot Behaviour

In our experimental scenario (see Sect. 3.2), we used a 2m × 2m environment, as
shown in Fig. 2. The 20 robots used in this experiment are randomly placed in this

Fig. 2 Robots and environments used in the three sessions. Left: The environment displayed in the
Screen Simulation session.Middle: The environment displayed in theVirtual Reality session. Right:
The real environment. The views of these three environments are displayed from the participant’s
perspective

Human Responses to Stimuli Produced by Robot Swarms … 537

environment at the beginning of each of the three sessions (i.e., Screen Simulation,
Virtual Reality, Real Robots). When a session starts, the 20 robots perform a random
walk with obstacle avoidance behaviour that lasts 60 s. In this behaviour, each robot
follows two rules. The first rule is to go straight with a constant velocity of 10cm/s.
The second rule is to change its direction when it encounters either a wall or a
robot. In addition to performing a random walk with obstacle avoidance behaviour,
each robot illuminates its LEDs in red with a certain probability. The probability is
computed by an external software running on the experimenter’s computer (there
is a TCP communication link between the software and each robot). The software
computes this probability as follows. Each 100ms, with a probability of 0.02, the
software randomly chooses a robot’s identification number (each robot has a unique
identification number). With a probability of 0.98, the software does not choose any
robot’s identification number. When the software selects an identification number, it
sends a signal (i.e., amessagevia theTCPcommunication link) to the robot associated
to that identification number. When a robot receives a signal, it illuminates its LEDs
in red for 2 s. When the software chooses an identification number, it also makes sure
to wait 2 additional seconds in order to prevent two robots from being illuminated at
the same time.

3.6 Participants

For this experiment, we recruited 37 participants. These participants came from
the campus population of the Université Libre de Bruxelles (no participant had a
robotic background). They were between 17 and 30years old with an average age of
23.2years old (SD = 3.54). People with current or anterior cardiovascular problems
could not participate to the experiment. Our participants had to read and sign an
informed consent form explaining that we monitored their physiological activity
during the experiment. We offered a 7 e financial incentive for their participation.

3.7 Experimental Procedure

The experiments took place at IRIDIA, the artificial intelligence laboratory of the
Université Libre de Bruxelles.We started the experiment by explaining to the partici-
pant the supervision task (i.e., watch a swarm of robots attentively and press a button
each time a robot in the swarm illuminates its LEDs in red). Then, we showed to the
participant the three interfaces used in each session (the simulated robots displayed
on a computer screen, the simulated robots displayed in a virtual reality headset and
the real robots in the real environment). We allowed the participant to carefully look
at the robots in each interface in order to get familiarised with each of them. Once
familiarised with the three interfaces, we explained how to answer the SAM and the
NASA-RTLXquestionnaires. After the participant signed the consent form,we asked

538 G. Podevijn et al.

the participant to take a seat on a chair placed in a corner of the environment used in
the Real Robots session. The participant stayed seated on the chair during the whole
duration of the three sessions (we placed a computer screen in front of the participant
prior to the Screen Simulation session and we attached a virtual reality headset to
the participant prior to the Virtual Reality session). Once seated, we attached the
physiological sensors to the participant’s non-dominant hand. Prior to the first ses-
sion, we collected the participant’s baseline (i.e., physiological responses at rest) for
five minutes. After these five minutes, we proceeded with the first session. After the
first session, we administrated the SAM and the NASA-RTLX questionnaires to the
participant. We pursued by collecting the participant’s baseline for three minutes.
This three minute baseline period allowed the participant to calm down and get back
to their physiological activity at rest. We followed the same procedure for the second
and third session. After the experiment, we explained the goal of the experiment to
the participant and we answered their questions. The whole experiment’s duration
was 30 min per participant.

4 Data Analysis and Results

Due to the fact that our participants had to press a button during the experiment, the
heart rate data became too noisy to be usefully analysed (the pulse transducer sensor
is extremely sensible to small movements). We, therefore, decided not to analyse our
participants’ heart rate data. Out of the 37 participants, we had to remove the skin
conductance data of 6 participants due to sensor misplacement. We also removed the
SAM questionnaire data and the NASA-RTLX questionnaire data of 3 participants
due to an error of the experimenter in the administration of the questionnaires. We
finally removed the reaction time data of 4 participants due to a hardware problem
with the button. We performed, therefore, our statistical analyses on 31 skin con-
ductance data (17 female and 14 male), 34 SAM and NASA-RTLX questionnaire
data (19 female and 15 male) and on 33 reaction time data (19 female and 14 male).
We analysed our data with the R software by performing a repeated measure design
analysis.We used the non-parametric Friedman test to determine whether the reality-
gap has a significant effect on our participants’ measures (i.e., skin conductance,
arousal, valence, NASA-TLX and reaction time). In case of statistical significance
of the Friedman test, we performed multiple Wilcoxon rank-signed tests with Bon-
ferroni corrections to evaluate the significance of the differences between sessions.
In Table1, we summarise the results by giving the median and the Friedman’s mean
ranks and the inference statistics of the Friedman tests (i.e., p-values and χ2).

Skin conductance level – The results of the Friedman test on the skin conduc-
tance level show a main effect of the reality-gap on our participants (χ2(2) = 14,
p < 0.001). A Wilcoxon rank-signed test on the skin conductance level data high-
lights a statistically significant difference between the Virtual Reality session and the
Real Robots session (Z = 3.58, p < 0.001) and between the Screen Simulation ses-
sion and the Real Robots session (Z = 3.68, p < 0.001). TheWilcoxon rank-signed

Human Responses to Stimuli Produced by Robot Swarms … 539

Table 1 Descriptive statistics of the psychophysiological data, of the self-reported data and of the
reaction time data. We report the median and the Friedman’s mean rank (in parentheses) of the three
sessions (Screen Simulation, Virtual Reality, Real Robots). We also report the inference statistics
of the Friedman test (i.e., χ2 and p value)

Dependent
variable

n Scree- simulation Virtual-
reality

Real-robots χ2 p

SCL 31 1.47 (1.71) 1.93 (1.74) 4.54 (2.54) χ2(2) = 14 <.001

Arousal 34 3 (1.33) 5 (2.35) 5 (2.31) χ2(2) = 25.35 <0.001

Valence 34 7 (1.9) 7 (1.9) 7 (2.14) χ2(2) = 1.38 1

NASA-RTLX 34 18.33 (1.23) 35 (2.47) 27.5 (2.29) χ2(2) = 32.25 <0.001

Reaction time 33 0.72 (1.39) 1.02 (2.6) 0.87 (2) χ2(2) = 24.24 <0.001

●

●

●

●

●p < .001
p < .001

−5

0

5

10

15

Skin conductance level

● ●

● ●

p < .001
p < .001

3

6

9

Arousal
● ●

●

● ●

●4

6

8

Valence

Fig. 3 Boxplots showing the skin conductance level values (left), the arousal values (middle) and
the valence values (right) of all three sessions (Screen Simulation, Virtual Reality, Real Robots).
The median value of each session is shown using the bold horizontal line in the box. Outliers are
represented using dots. We also report the results of the pairwise Wilcoxon rank-signed test by
connecting the boxplots of the sessions showing pairwise statistically significant differences

test does not show any statistically significant difference between the Screen Simu-
lation session and the Virtual Reality session (Z = 0, p = 1), see Fig. 3.

SAMquestionnaire – The Friedman test on the SAMquestionnaire data reports a
main effect of the reality-gap on our participants’ arousal (χ2(2) = 25.35,
p < 0.001). It does not show any main effect of the reality-gap on our participants’
valence (χ2(2) = 1.38, p = 1). The Wilcoxon rank-signed test on the arousal data
shows that there is a statistically significant difference between the Screen Simula-
tion session and the Real Robots session (Z = 4.08, p < 0.001), and between the
Screen Simulation session and the Virtual Reality session (Z = 4.37, p < 0.001).
The Wilcoxon rank-signed test does not show any statistically significant difference
between the Virtual Reality session and the Real Robots session (Z = −0.06, p =
0.9), see Fig. 3.

NASA-RTLX questionnaire – The results of the Friedman test on our partic-
ipants’ workload (NASA-RTLX) show a main effect of the reality-gap (χ2(2) =
32.25, p < 0.001). The Wilcoxon rank-signed test shows a statistically significant

540 G. Podevijn et al.

●

●

●

●

p < .001
p < .001

20

40

60

80
NASA−TLX (Workload)

●

●

●

●

●

p < .01
p < .001

p < .001

0.8

1.2

1.6

R
ea

ct
io

n
Ti

m
e

(s
)

Reaction Time

Fig. 4 Boxplots showing the workload level values (left), and the reaction time values (right) of
all three sessions (Screen Simulation, Virtual Reality, Real Robots)

difference in the workload level of our participants between the Screen Simula-
tion session and the Real Robots session (Z = 4.54, p < 0.001) and between the
Screen Simulation session and the Virtual Reality session (Z = 4.46, p < 0.001).
There was no statistical difference between the Virtual Reality session and the Real
Robots session (Z = −0.52, p = 0.61), see Fig. 4.

Reaction time – Finally, the results of the Friedman test on our participants’
reaction time report a main effect of the reality-gap (χ2(2) = 24.24, p < 0.001).
The Wilcoxon signed-rank test shows a statistically significant difference between
the Real Robots session and the Virtual Reality session (Z = −2.84, p < 0.05),
between the Screen Simulation session and the Real Robots session (Z = 3.42,
p < 0.001) and between the Screen Simulation session and the Virtual Reality ses-
sion (Z = 4.58, p < .001), see Fig. 4.

5 Discussion and Conclusions

In this paper, we have shown that the reality-gap affects the psychology of humans
whoperforma supervision taskwith a robot swarm.More specifically,wehave shown
that the human psychophysiological state, workload and reaction time measured for
the case of interaction with a real robot swarm and for the case of interaction with a
simulated robot swarm displayed on a computer screen were significantly different.
These results show that it is vital to take into account the reality-gapwhen researchers
design an HSI experiment.

A solution to avoid the reality-gap effect would be to perform HSI experiments
with real robots. However, real robot experiments are expensive and time consuming.
Therefore, we investigated the possibility to use virtual reality as an alternative to
using real robots. Our results show a difference between simulation in a virtual reality

Human Responses to Stimuli Produced by Robot Swarms … 541

environment and simulation on a computer screen—our participants’ arousal, work-
load and reaction time were significantly higher when they were interacting with the
robot swarm in the virtual reality environment than when they were interacting with
the simulated robot swarm displayed on the computer screen. These results suggest
that virtual reality can mitigate the effect of the reality-gap. However, we should
qualify these results because our participants’ reaction time was also significantly
higher when they were interacting with the robot swarm in the virtual reality envi-
ronment compared to when they were interacting with the real robot swarm. Though
these results do not contradict our hypothesis, we believe more research is necessary
to better understand the use of virtual reality in HSI studies. In addition, we should
account for the possibility that the difference of perspectives (top-view in the 2D
Screen Simulation session and similar to the reality in the 3D Virtual Reality ses-
sion) has also an effect on the participants’ psychophysiological state, workload and
reaction time. Future work should investigate whether the difference of perspectives
has a significant impact on the human psychophysiological state (e.g., replicating
the experiment presented in this paper by replacing the 2D top-view perspective
of the Screen Simulation session with a 3D perspective of the robots and of the
environment).

In the experimental scenario used in this paper, our participants did not issue
commands to the robot swarm they interacted with. The reason behind this choice
was to isolate the effect of the reality-gap—it would have been difficult to associate
higher psychophysiological reactions or higher workload and reaction time to the
reality-gap if our participants were, at the same time, requested to issue commands
to the robot swarm. This is because the interaction interface might have some effects
on our participants as well, making less clear the effect of the reality-gap. Now that
we have shown the effect of the reality-gap in an experimental scenario in which
human operators do not issue commands to a robot swarm, future work should focus
on the effect of the reality-gap in an experimental scenario in which human operators
do send commands to a robot swarm (using the results presented in this paper as a
baseline).

Acknowledgements Thisworkwas partially supported by the EuropeanResearchCouncil through
the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” (contract
246939) to Marco Dorigo. Rehan O’Grady and Marco Dorigo acknowledge support from the
Belgian F.R.S.-FNRS.

542 G. Podevijn et al.

References

1. Amraii, S.A., Walker, P., Lewis, M., Chakraborty, N., Sycara, K.: Explicit vs. tacit leadership
in influencing the behavior of swarms. In: Proceedings of IEEE/RSJ International Conference
on Robotics and Automation (ICRA), pp. 2209–2214. IEEE Press (2014)

2. Bashyal, S., Venayagamoorthy, G.: Human swarm interaction for radiation source search and
localization. In: Swarm Intelligence Symposium, pp. 1–8. IEEE, St. Louis, MO, USA (2008)

3. De la Croix, J.P., Egerstedt, M.: Controllability characterizations of leader-based swarm inter-
actions. In: AAAI Fall Symposium Series Technical Reports. AAAI Press (2012)

4. Fasola, J.,Matarić,M.:A socially assistive robot exercise coach for the elderly. J. Human-Robot
Interact. 2(2), 3–32 (2013)

5. Hart, S., Staveland, L.: Development of NASA-TLX (Task Load Index): results of empirical
and theoretical research. Adv. Psychol. 52, 139–183 (1988)

6. Kidd, C., Breazeal, C.: Effect of a robot on user perceptions. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and System (IROS), vol. 4, pp. 3559–3564.
IEEE Computer Society Press, Los Alamitos, CA (2004)

7. Kolling, A., Sycara, K., Nunnally, S., Lewis, M.: Human swarm interaction: an experimental
study of two types of interactionwith foraging swarms. J. Human-Robot Interact. 2(2), 103–128
(2013)

8. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., Lewis, M.: Human interaction with robot
swarms: a survey. IEEE Trans. Human-Mach. Syst. 46(1), 9–26 (2016)

9. Lang, P.J.: Behavioral treatment and bio-behavioral assessment: computer applications. In:
J.B. Sidowski, J.H. Johnson, T.H. Williams (eds.) Technology in Mental Health Care Delivery
Systems, pp. 119–137. Ablex (1980)

10. Leite, I., Pereira, A., Martinho, C., Paiva, A.: Are emotional robots more fun to play with?
In: Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive
Communication (ROMAN), pp. 77–82. IEEE Press (2008)

11. Mondada, F., Bonani,M., Raemy,X., Pugh, J., Cianci, C., Klaptocz, A.,Magnenat, S., Zufferey,
J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering.
In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions,
pp. 59–65. Instituto Politècnico de Castelo Branco, Portugal (2009)

12. Nagavalli, S., Chien, S., Lewis,M., Chakraborty, N., Sycara, K.: Bounds of neglect benevolence
in input timing for human interaction with robotic swarms. In: Proceedings of ACM/IEEE
International Conference on Human-Robot Interaction, pp. 197–204. ACM, New York (2015)

13. Nunnally, S., Walker, P., Lewis, M., Kolling, A., Chakraborty, N., Sycara, K.: Connectivity
differences between human operators of swarms and bandwidth limitations. In: Proceedings of
the Third international conference on Swarm, Evolutionary, and Memetic Computing, Lecture
Notes in Computer Science, vol. 7677, pp. 713–720. Springer, Berlin, Germany (2012)

14. Pendleton, B., Goodrich, M.: Scalable human interaction with robotic swarms. In: Proceedings
of theAIAA Infotech@AerospaceConference, pp. 633–645.American Institute ofAeronautics
and Astronautics, Va, USA (2013)

15. Pereira, A., Martinho, C., Leite, I., Paiva, A.: iCat, The chess player: the influence of embod-
iment in the enjoyment of a game. In: Proceedings of the 7th Iternational Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1253–1256. International Foundation for
Autonomous Agents and Multiagent Systems (2008)

16. Podevijn, G., O’Grady, R., Fantini-Hauwel, C., Dorigo, M.: Investigating the effect of the
reality gap on the human psychophysiological state in the context of human-swarm interaction.
Peer J Comput. Sci. 2(e82) (2016)

17. Podevijn, G., O’Grady, R., Mathews, N., Gilles, A., Fantini-Hauwel, C., Dorigo, M.: Investi-
gating the effect of increasing robot group sizes on the human psychophysiological state in the
context of human-swarm interaction. Swarm Intell. 10(3) (2016)

18. Powers, A., Kiesler, S., Fussell, S., Torrey, C.: Comparing a computer agent with a humanoid
robot. In: Proceedings of the 2nd ACM/IEEE International Conference on Human-Robot Inter-
action (HRI), pp. 145–152. ACM, New York (2007)

Human Responses to Stimuli Produced by Robot Swarms … 543

19. Setter, T., Fouraker, A., Kawashima, H., Egerstedt, M.: Haptic interactions with multi-robot
swarms using manipulability. J. Human-Robot Interact. 4(1), 60–74 (2015)

20. Sweetser, P.,Wyeth, P.: GameFlow: amodel for evaluating player enjoyment in games. Comput.
Entertain. (CIE) 3(3), 3–3 (2005)

21. Wainer, J., Feil-Seifer, D., Shell, D., Matarić, M.: Embodiment and human-robot interaction: a
task-based perspective. In: Proceedings of the 16th IEEE International Symposium on Robot
and Human Interactive Communication (ROMAN), pp. 872–877. IEEE Press (2007)

22. Walker, P., Amraii, S., Lewis, M., Chakraborty, N., Sycara, K.: Human control of leader-
based swarms. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pp. 2712–2717. IEEE Press (2013)

23. Walker, P., Nunnally, S., Lewis, M., Kolling, A., Chakraborty, N., Sycara, K.: Neglect benev-
olence in human-swarm interaction with communication latency. In: Proceedings of the Third
International Conference on Swarm, Evolutionary, and Memetic Computing, Lecture Notes in
Computer Science, vol. 7677, pp. 662–669. Springer, Berlin, Germany (2012)

24. Wrobel, J., Wu, Y.H., Kerhervé, H., Kamali, L., Rigaud, A.S., Jost, C., Le Pévédic, B., Duhaut,
D.: Effect of agent embodiment on the elder user enjoyment of a game. In: Proceedings
of the 6th International Conference on Advances in Computer-Human Interactions (ACHI),
pp. 162–167. IARIA XPS Press (2013)

Localization of Inexpensive Robots with
Low-Bandwidth Sensors

Shiling Wang, Francis Colas, Ming Liu, Francesco Mondada
and Stéphane Magnenat

Abstract Recent progress in electronics has allowed the construction of affordable
mobile robots. This opens many new opportunities, in particular in the context of
collective robotics. However, while several algorithms in this field require global
localization, this capability is not yet available in low-cost robots without external
electronics. In this paper, we propose a solution to this problem, using only approx-
imate dead-reckoning and infrared sensors measuring the grayscale intensity of a
known visual pattern on the ground. Our approach builds on a recursive Bayesian fil-
ter, of which we demonstrate two implementations: a denseMarkov Localization and
a particle-basedMonteCarlo Localization.We show that both implementations allow
accurate localization on a large variety of patterns, from pseudo-random black and
white matrices to grayscale images. We provide a theoretical estimate and an empir-
ical validation of the necessary traveled distance for convergence. We demonstrate
the real-time localization of a Thymio II robot. These results show that our system
solves the problem of absolute localization of inexpensive robots. This provides a
solid base on which to build navigation or behavioral algorithms.

S. Wang (B)
ETH Zürich, Zurich, Switzerland
e-mail: shilingwang0621@gmail.com

F. Colas
INRIA Nancy Grand Est, Nancy, France
e-mail: francis.colas@inria.fr

M. Liu
City University of Hong Kong, Hong Kong, China
e-mail: mingliu@cityu.edu.hk

F. Mondada · S. Magnenat
Mobots, LSRO, EPFL, Lausanne, Switzerland
e-mail: francesco.mondada@epfl.ch

S. Magnenat
e-mail: stephane@magnenat.net

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_38

545

546 S. Wang et al.

1 Introduction

Driven by consumer products, the technologies of electronics, motor and battery have
made tremendous progress in the last decades. They are nowwidely available at prices
which make affordable mobile robots a reality. This opens many new opportunities,
in particular in the contexts of collective robotics.

Collective and swarm robotics focus on the scalability of systemswhen the number
of robots increases. In that context, global localization is a challenge, whose solution
depends on the environment the robots evolve in. A common approach is to measure
the distance and orientation between robots [12], but this approach relies on beacons
to provide absolute measurements. Yet, several state of the art algorithms require
global positioning [1]. In experimental work, it is often provided by an external aid
such as a visual tracker, bringing a non-scalable single point of failure into the system,
and breaking the distributed aspect. Therefore, there is the need for a distributed and
affordable global localization system for collective robotics experiments.

This paper answers this need by providing a distributed system using only approx-
imate dead-reckoning and inexpensive infrared sensors measuring the grayscale
intensity of the ground, without knowing the initial pose of the robots. As sensors are
mounted on the robot, the localization is a local operation, whichmakes the approach
scalable.Our solution is based on the classicalMarkov [6] andMonteCarlo [2] Local-
ization frameworks that can be seen as respectively a dense and a sampling-based
implementation of a recursive Bayesian filter.While these approaches are commonly
used in robots with extensive sensing capabilities such as laser scanners, their imple-
mentation on extremely lowbandwidth sensors is novel, and raises specific questions,
such as which distance the robot must travel for the localization to converge.

In this paper, we deploy these algorithms on the Thymio II differential-wheeled
mobile robot. The robot reads the intensity of the ground using two infrared sensors
(Fig. 1, middle, circled red) and estimates the speed of its wheels by measuring
the back electromotive force, which is less precise than encoder-based methods.
For evaluation purposes, a Vicon tracking system (http://www.vicon.com/) provides
the ground-truth pose (Fig. 1, right). Our first contribution is a predictive model of
the necessary distance to travel to localize the robot. Our second contribution is a
detailed analysis of the performances of the two implementations in comparison

Fig. 1 The block scheme of the online system (left), the Thymio II robot with the placement of its
ground sensors (middle), and markers for tracking its ground-truth pose by a Vicon system (right)

http://www.vicon.com/

Localization of Inexpensive Robots with Low-Bandwidth Sensors 547

with ground-truth data. Our last contribution is an experimental validation of online,
real-time localization (Fig. 1, left). The source code and all experimental data are
available online1 and the system can be seen running in a video.2

2 Related Work

The main challenges of solving the localization problem on affordable mobile robots
are the constraints on the environment and the limited information content that inex-
pensive sensors can typically provide.

The work of Kurazume and Nagata [8] first raised the idea of performing
inexpensive localization through the cooperative positioning of multiple robots.
Prorok et al. [12] is a modern work representative of this approach. These authors
have used an infrared-based range and bearing hardware along with a distributed
Monte Carlo Localization approach, allowing a group of robots to localize down to
a precision of 20cm. However, this methods would require fixed robots acting as
beacons to provide absolute positioning. Moreover, both radio and infrared-based
range and bearing systems require complex electronics. Finally, when the cost of all
robots is added, the system is far from cheap.

A cheaper approach is to use walls around an experimental arena to localize. For
example, Zug et al. [13] have developed an algorithm using an array of triangulation-
based infrared distance sensors. A Kalman filter algorithm is applied to localize the
robot within a 2 by 1m box. No experimental result is provided, but a simulation
shows the estimated error to be within 2cm. Dias andVentura [3] used two horizontal
lines from a vga camera to read barcodes on the walls of an arena and localize an
e-puck robot. Their system employs an Extended Kalman Filter (EKF) algorithm
and reaches a precision of 1cm and 5◦. However, these systems require no obstacles
between the robot and the walls, and thus are not scalable to a large number of robots.

This problem can be alleviated by detecting a known pattern visible on the ceiling
and fusing this information with odometry. This approach was proven effective for
localization usinghigh-quality cameras [2]. Focusingon a lowcost,Gutmann et al. [7]
have developed a system using only 3 or 4 light detectors, able to localize a mobile
robot in a roomwith an accuracy of 10cm.However, thismethod requires a controlled
ceiling arrangement and empty space over the robots.

Another approach is to exploit the ground for localization. Park andHashimoto [11]
proposed to localize a mobile robot over a ground equipped with randomly distrib-
uted passive rfid tags. The average localization error of this method is lower than
10cm. However, this approach requires the ground to be equipped with tags which
can become expensive and tedious to deploy when the area grows.

The system proposed in this paper builds on the idea of using information from the
ground for absolute localization, with performance comparable with relatedwork. To
the best of our knowledge, existing solutions for localization of multi-robot systems

1https://github.com/epfl-mobots/thymio-ground-localisation.
2https://www.youtube.com/watch?v=70euPzixzus.

https://github.com/epfl-mobots/thymio-ground-localisation
https://www.youtube.com/watch?v=70euPzixzus

548 S. Wang et al.

either rely on an expensive adaptation of the environment using markers or beacons,
or necessitate the embedding of expensive sensing capabilities on every robot. In
contrast, our system is affordable since it only requires a low number of inexpensive
infrared sensors onboard the robot (which are typically used as cliff detectors), and
a simple grayscale pattern on the ground that can be achieved using a printed poster.

3 Model

The generic Bayesian filter used to estimate the pose of a robot in its environment
uses the following variables:

• X1:t 2-D pose at times 1..t , consisting of x, y coordinates and an angle θ .
• Z1:t observations at times 1..t , consisting of the output of the sensors measuring
the grayscale intensity of the ground.

• U1:t odometry at times 1..t , consisting of the left and right wheel speeds.

It is classically formulated as a recursive Bayesian filter with the following joint
probability distribution:

p(X1:t , Z1:t ,U1:t) = p(Zt |Xt)p(Xt |Xt−1,Ut)p(Ut)p(X1:t−1, Z1:t−1,U1:t−1). (1)

This filter is based on a few assumptions. First it assumes that the current observation
is independent on the past observations, the past states and odometry commands
conditionally to the current state. It also features the Markov assumption: the next
state is independent on former states, commands and observations conditionally to
the previous state and the current command. Finally, it assumes that the actions are
independent from the past. All these assumptions are standard and can be found in
Kalman filtering and other classical models.

This joint probability distribution allows to formulate the problem as the estima-
tion of the pose Xt at time t given the observations Z1:t and the commands U1:t :

p(Xt |Z1:t ,U1:t) ∝ p(Zt |Xt)
∑

Xt−1

p(Xt |Xt−1,Ut)p(Xt−1|Z1:t−1,U1:t−1). (2)

This inference involves two distributions to be specified: the observation model
p(Zt |Xt) and the motion model p(Xt |Xt−1,Ut), whose parametrizations depend on
the robot. In addition, we define a self-confidence metrics and outline the implemen-
tation.

Observation model. Our observation model p(Zt |Xt) = ∏Nsensors
i=0,1 p(Zi

t |Xt)

assumes all sensor noises to be independent, and the ground color to be in the range of
[0, 1] (0 being black and 1 being white). We take p(Zi

t |Xt) ∼ N (v, σobs), for robot
pose Xt , sensor i , and a corresponding ground intensity v according to the map. The
parameter σobs is selected based on the knowledge of the sensor. Thymio II has two

Localization of Inexpensive Robots with Low-Bandwidth Sensors 549

sensors (Fig. 1, center). For binary (black and white) patterns, we chose σobs = 0.5.
For grayscale images, based on measurement on a Thymio II, we set σobs to 0.15.

Motion model. Based on themodel of Eliazar et al. [4], we assume that themotion
has a Gaussian error model, hence p(Xt | Xt−1,Ut) ∼ N (μt ,Σt). The mean μt is
built by accumulating the estimated displacements by dead-reckoning between times
t − 1 and t . Therefore, if Δxt , Δyt , Δθt are the displacement between t − 1 and t ,
expressed in the robot local frame at t − 1, μt is:

μt =
⎡

⎣
xt
yt
θt

⎤

⎦with

[
xt
yt

]
=

[
xt−1

yt−1

]
+ R(θt−1)

[
Δxt

Δyt

]

θt = θt−1 + Δθt

(3)

where R(θ) is the 2-D rotation matrix of angle θ . The 3 × 3 diagonal covariance
matrix Σt is a function of the distance traveled, the amount of rotation, and two
parameters αxy, αθ :

Σt =
⎡

⎣
σ 2
xy,t 0 0
0 σ 2

xy,t 0
0 0 (αθ |Δθt |)2

⎤

⎦ (4)

with σxy,t = αxy

√
Δx2t + Δy2t .

To cope with the possibility of the robot being kidnapped and therefore its pose
becoming unknown, a uniform distribution with a weight puniform is added to Xt . The
parameters αxy, αθ and puniform are estimated using maximum likelihood (Sect. 5).

Implementations.We compare two variants of this filter. InMarkovLocalization,
the distributions are discretized using regular grids [6]. For our experiments, the x, y
cell resolution is 1cm and the angular resolution varies from 20◦ (18 discretization
steps for 360◦) to 5◦ (72 discretization steps for 360◦). The estimated pose is the
coordinates of the cell of maximum probability. In Monte Carlo Localization [2],
the distributions are represented using samples in a particle filter. In order to extract
a single pose estimate out of the many particles, we find a maximum density area
in which we average the particles. It is similar to a 1-point ransac scheme [5].
We implemented both algorithms in Python with some Cython (http://www.cython.
org) procedures used for time-critical inner loops. The algorithms run on an embed-
ded computer or laptop (Fig. 1, left). Thymio II is programmed through the aseba
framework [10], which connects to Python using D-Bus.

Self confidence. We define a self-confidence term that corresponds to the ratio of
the probability mass of p(Xt) that is within a distance dxy and an angle difference
dθ to the estimated pose. In our experiments, we use dxy = 3cm and dθ = 10◦.

http://www.cython.org
http://www.cython.org

550 S. Wang et al.

4 Theoretical Analysis of Convergence

One can estimate the time required for the robot to localize itself in a given space,
by comparing the information needed and the information gained while traveling.

Information need. For theMarkovLocalization approach, there is a given number
of discrete cells. The amount of information needed to unambiguously specify one
among them all is Hloc = log2(Ncells), with Ncells the number of cells.

Information gain. We can estimate the information gain at each time step. Let us
consider the case of a binary map and a binary sensor. This sensor ideally yields 1bit
of information per measurement. In practice, there is a loss in information due to the
sensor noise, characterized by the pcorrect probability of the sensor to be correct:

Hnoise = Hb(1 − pcorrect), (5)

where Hb is the binary entropy function: Hb(p) = −p log2(p) − (1 − p) log2(1 −
p).

We also need to take into account that the sensormeasurements are not completely
independent. For example, when the robot is not moving, it always observes the
same place and thus cannot really gain additional information besides being sure of
the intensity of the current pixel. In a discretized world, we thus need to estimate
the probability of having changed cell in order to observe something new, which
depends on the distance traveled and the size of the cells. This problem is equivalent
to the Buffon-Laplace needle problem of finding the probability for a needle thrown
randomly on a grid to actually intersect the grid3 [9]. In our case, the probability of
changing cell is given by:

pdiff = 4dh − d2

πh2
, (6)

with d the distance traveled and h the size of the cells.
We can then compute the conditional entropy for two successive ideal binary

measurements Ot−1 and Ot separated by d based on the conditional probability.
There are two cases: either the robot has not moved enough to change cell (with
probability 1 − pdiff) and the new observation is the same as the old, or the robot has
changed cell (with probability pdiff) and the new observation has the same probability
to be the same or the opposite of the old. This can be summarized by the following
conditional probability distribution (b/w = black/white):

p(Ot = {b/w} | Ot−1 = {b/w}) =
(

(1 − pdiff) + pdiff/2 pdiff/2
pdiff/2 (1 − pdiff) + pdiff/2

)

(7)

After rearranging the terms of the conditional entropy, the loss of information due to
redundancy in the traveled distance is:

3The needle is the segment joining the start and end points of the robot movement and the grid is
the borders of the cells.

Localization of Inexpensive Robots with Low-Bandwidth Sensors 551

Hloss,d = 1 − Hb(pdiff/2). (8)

There is also redundancy between several sensors placed on the same robot. The
probability that they see the same cell based on the distance between them is exactly
the same as the probability of a sensor to see the same cell after a displacement
of the same distance. The information loss due to the redundancy from the sensor
placement is noted Hsensors and follows the same formula as Hloss,d, but with d being
the distance between the two sensors in Eq.6.

Finally, we can approximate the information that our robot gathers at each time
step by assuming that the trajectory of the robot does not loop (no redundancy
between distant time steps) and that the trajectories of the sensors are independent.
The information gathered in a time step is then:

H(O1
t , O

2
t | O1

1:t−1, O
2
1:t−1) = H(O1

t , O
2
t | O1

t−1, O
2
t−1)

= H(O1
t | O1

t−1) + H(O2
t | O2

t−1) − H(O2
t | O1

t)

= 2 · (1 − Hnoise − Hloss,d) − Hsensors

(9)

This formula also ignores the uncertainty in the robot motion. With these assump-
tions, it is an upper bound on the average information gain.

Outlook. Faster localization can be achieved by moving at a greater speed to
reduce redundancy in the successive measurements, with proportional increase in
sampling frequency. If designing a new robot, better sensors would reduce cross-
over noise. Setting the sensors apart would also reduce the redundancy between their
information but, for our specific grid size, they are sufficiently separated in Thymio II.

5 Empirical Analysis of Performance

To evaluate the performance of our localization algorithms, we remotely controlled
the robot and recorded datasets covering all possible robot motions:

• trajectory 1 and 2: The robot alternates forward and backward movements
with rotations on spot, at a speed of 3–5cm/s.

• linear trajectory: The robot simply goes straight ahead along the x-axis
of the map, at a speed of 3–5cm/s.

• trajectory with kidnapping: The robot alternates phases of forward
movement, at a speed of 15cm/s, and turning on spot. To test the algorithm’s
ability of recovering from catastrophic localization failures, we perform “robot
kidnapping” by relocating the robot to another part of the map every minute.

The robot moves on a 150 × 150cm ground pattern containing 50 × 50 cells of 3
× 3cm, each randomly black or white (Fig. 1, right). The robot is connected to ros
to synchronize its sensor values and odometry information with ground-truth data
from Vicon, sampled at a period of 0.3 s. We chose this period so that with basic
trajectories, at maximum speed the robot travels approximately half the length of
one cell between every sample.

552 S. Wang et al.

Fig. 2 The error between the estimation by the localization algorithm and the ground truth on
trajectory 1 and trajectory 2. For Monte Carlo Localization, the solid lines show the
average over 10 trials, while the light dots show the individual trials

Parameter estimation. We estimated the noise parameters of the motion model
using maximum likelihood, considering the error between the ground truth and the
odometry data in the local frame between two time steps. Using trajectory 1
and trajectory 2, we found the values for αxy and αθ to be in the order of 0.1.
Similarly, using trajectory with kidnapping, we also found the value for
puniform to be in the order of 0.1.

Basic localization. Figure2 shows the error in position and orientation for the first
two trajectories. In these plots, distance traveled represents the cumulative distance
traveled by the center point between the two ground sensors of the robot.

For the Markov Localization approach, all discretization resolutions allow the
robot to localize down to a precision of 3cm and 5◦. However, in trajectory 1,
the resolution of 18 discretization steps is not enough to keep tracking the orientation
at a distance traveled of 50 and 80cm. These both correspond to the robot rotating
on spot. Finer discretizations do not exhibit this problem, they are more robust and
have similar precision. Therefore, we see that an angular discretization of 36 (10◦
resolution) is sufficient to provide accurate tracking. In trajectory 2, we see
that an angular discretization of 54 allows for a better angular precision than 36, but
72 does not improve over 54. All discretizations provide equal position precision.

For the Monte Carlo Localization approach, we see that on trajectory 1,
the robot localizes already with 50k particles, but in twice the distance it takes with

Localization of Inexpensive Robots with Low-Bandwidth Sensors 553

Markov Localization
for different number of discretization angles

Monte Carlo Localization
for different number of particles

0 10 20 30 40 50 60 70

distance traveled [cm]

0

10

20

30

40

50

po
si
tio

n
er
ro
r
[c
m
]

18

36

54

72

0 10 20 30 40 50 60 70

distance traveled [cm]

0

10

20

30

40

50

po
si
tio

n
er
ro
r
[c
m
]

50k

100k

200k

400k

Fig. 3 The error between the estimation by the localization algorithm and the ground truth on 10
segments from the first two trajectories. The solid lines show the median while the light dots show
the individual trials

100k particles. Increasing the number of particles beyond this value only marginally
decreases localization time. While 50k particles are sufficient to localize on this
run on average, in some trials, the robot loses orientation when it turns on spot. On
trajectory 2, using 50k particles is not enough to localize the robot. Increasing
this number to 100k leads to a good localization, except after the robot has traveled
130cm. This corresponds to a long moment during which the robot rotates on spot,
leading to less information acquisition, and therefore degraded performances.

Overall, both approaches have similar accuracy.When angular precision is critical,
the Monte Carlo Localization approach might achieve better performance, as the
Markov Localization approach is limited in precision by its angular discretization.

Distance to converge. Figure3 shows the error in position for 5 different starting
points in each of the first two trajectories, in which the robot moves at a speed of
3–5cm/s. We see that, with the Markov Localization approach, the correct pose is
found after about 20cm.There are also outliers: this happenswhen the robot is turning
on spot, in which case there is not enough information to localize the robot. With
400k particles, the Monte Carlo Localization approach also converges after about
20cm. Decreasing the number of particles quickly increases the distance needed
for convergence, reaching 60cm for 100k particles. Using only 50k particles, some
trajectory segments fail to converge within 80cm length.

It is interesting to compare these distances with theoretical estimates (see Sect. 4).
One difficulty is that the theoretical model specifies the probability pcorrect of the
sensor to be correct. In our observation model, instead, we specify σobs the noise
of the sensor. Therefore, we propose to compute pcorrect from σobs by considering
a sensor positioned over a black ground, and by assuming that all values below a
threshold of 0.5 (0 being black and 1 being white) are correctly read:

pcorrect = p(Z < 0.5|X = 0) =
∫ 0.5

−∞
N (0, σobs) (10)

In these runs, we have assumed σobs = 0.5, leading to pcorrect = 0.84 (Eq.10) and
Hnoise = 0.63 (Eq.5). Our robot moves at 3cm/s with a time step of 0.3 s on a grid of

554 S. Wang et al.

0 5 10 15 20 25 30 35

distance traveled [cm]

0

10

20

30

40

50
po

si
tio

n
er
ro
r
[c
m
]

full map

1/2 map

1/4 map

0 5 10 15 20 25 30 35

distance traveled [cm]

0
10
20
30
40
50
60
70
80
90

an
gu
la
r
er
ro
r
[d
eg
re
es
]

full map

1/2 map

1/4 map

Fig. 4 The error between the estimation by the localization algorithm and the ground truth, using
Markov Localization, for different map sizes on linear trajectory. The solid lines show
the median over 3 different trajectory parts, while the light dots show the individual parts

3 cm ×3cm cells in which the color is known to be similar; this yields Hloss,d = 0.33
(Eq.8). Moreover, the sensors are 2.2cm apart, which yields Hsensors = 0.041. As
such the robot gathers on average at most 0.036bit per time step, or 0.040bit/cm
(Eq.9). With a 150 cm × 150cm environment discretized with cells of 1cm and
5◦ angle, the amount of information needed for the localization is Hloc = 20.6. This
means that, on average, the robot should not be localized before traveling around
520cm.4 This distance is far larger than the observed one of about 20cm. The reason
is that using σobs = 0.5 for the binary case was an arbitrary choice and therefore the
value of pcorrect does not correspond to the reality.

Computing the value of pcorrect to match the observed convergence distance by
inverting the computation, we find 0.97, corresponding to σobs = 0.26. If we consider
σobs = 0.15 as measured on grayscale images, then pcorrect = 0.99957. This leads to
a minimum theoretical localization distance of about 14.3cm. This value is slightly
lower than our experimental results, which makes sense as it is a lower bound.
Moreover, this lower boundwould be attained with a perfect filter observing a perfect
pattern. Our filter is not perfect, because we have run it with an overestimated σobs

of 0.5. Nevertheless, the filter works well, showing that it degrades gracefully with
respect to imprecision in its parameters. This is important in practice, as users might
not be able to provide extremely precise parameters.

Effect of map size. Figure4 shows the effect of reducing the map size. The robot
runs linearly on one quarter of the map, while the Markov Localization is performed
on the whole map, half of it, and a quarter of it. We see that reducing the map size
does reduce the distance traveled necessary to converge, in accordance to the theory,
because less information have to be acquired to reduce the uncertainty of the pose.

Robot kidnapping. Figure5 shows the error in position, orientation and the self
confidence for the run with kidnapping. In this run, the robot is kidnapped twice,
after having traveled 550 and 1000cm. It takes the robot approximately 100cm to re-
localize, and does so successfully with both Markov and Monte Carlo Localization
approaches. This difference of distance with previous runs is mostly due to the speed
of the robot, which is about 5 times faster. With the Markov Localization approach,

4see https://github.com/epfl-mobots/thymio-ground-localisation/blob/master/theory/d_conv_from
_pcorrect.py
.

https://github.com/epfl-mobots/thymio-ground-localisation/blob/master/theory/d_conv_from_pcorrect.py.
https://github.com/epfl-mobots/thymio-ground-localisation/blob/master/theory/d_conv_from_pcorrect.py.
https://github.com/epfl-mobots/thymio-ground-localisation/blob/master/theory/d_conv_from_pcorrect.py.

Localization of Inexpensive Robots with Low-Bandwidth Sensors 555

Fig. 5 The error between the estimation by the localization algorithm and the ground truth, and
the self confidence of the algorithm, on the run with kidnapping. For Monte Carlo Localization, the
solid lines show the median over 10 trials, while the light dots show the individual trials. The gray
areas show the time during the robot is being held in the air at the occasion of kidnapping

all discretization resolutions are approximately equivalent in position performance,
but 18 leads to a lower orientation precision, as well as to a lower self confidence,
due to the large discretization step. Other resolutions have a confidence of about 0.5
when the robot is localized, and this value drops below 0.1 after kidnapping, clearly
showing that the algorithm is able to assess its status of being lost.

With the Monte Carlo Localization approach, the robot localizes most of the time
with 100k particles, and always with 200k particles or more. With 50k particles, the
robot eventually localizes, but this might take more than 2m of traveled distance. We
see that the self confidence increaseswithmore particles, and, similarly to theMarkov
Localization approach, drops after kidnapping. This confirms the effectiveness of the
self confidence measure.

Computational cost. Table 1 shows the execution duration of one step for the two
algorithms with different parameters. These data were measured on a Lenovo laptop
T450s with an Intel Core i7 5600U processor running at 2.6GHz, and are averages
over the two first trajectories. We see that with the Markov Localization approach,
the duration scales linearly with the number of discretization angles. With the Monte
Carlo Localization approach, the scaling is linear but amortized (50k particles is

556 S. Wang et al.

Table 1 The execution duration of one step for the two algorithms

Duration (s) 0.64 1.43 2.15 2.94 1.97 2.97 6.08 12.22

Algorithm Markov localization Monte Carlo localization

Parameter 18 36 54 72 50k 100k 200k 400k

Discretization angles particles

not twice faster as 100k). This is due to the selection of pose estimate, which uses
a ransac approach and is therefore independent of the number of particles. For
similar localization accuracy, the Monte Carlo Localization approach is slower than
the Markov Localization approach, and therefore we suggest to use the former with
an angular discretization of 36 in practical applications. However, the Monte Carlo
Localization approach might be preferred if a high angular precision is required, but
at least 100k particles are necessary for proper localization.

6 Real-Time Localization

Figure6 shows the performance of the online, real-time localization of a Wireless
Thymio II (Fig. 1, left). We tested different grayscale images of 59 × 42cm, printed
on A2 paper sheets with a resolution of 1pixel/cm. We used Markov Localization
with an angular discretization of 36 and a spatial resolution of 1cm; the localization
is performed every 0.4 s. The localization algorithm runs on a Lenovo laptop X1 3rd
generation with an Intel Core i7-5500U processor running at 2.4GHz, at a cpu load
of approximately 80%. The algorithm localizes the robot globally on all images. The
images with more contrast lead to a more robust and faster localization, while the
ones with lower contrast lead to more imprecise trajectories. In Fig.6, we see that
the parts of trajectories in red are less precise than the ones in green. This shows that
the self confidence measure is effective in assessing the quality of the localization.

Embedded use. The runtime cost is dominated by themotionmodel, as it involves
convoluting a small window for every cell of the probability space. With the current
parameters, this leads to approximately 250 floating-point multiplications per cell.
For comparison, VideoCore® IV, the built-in gpu in the Raspberry Pi 3 (costing
e33), has a peak processing power of 28 gflops. Assuming that, due to limitations
in bandwidth and dependencies between data, it can only be used at 10% of its peak
floating point throughput, it could run a gpu version of our algorithm at 10Hz on a
map of 1.8 by 1.8m with a resolution of 1cm. Therefore, our approach can truely be
used for distributed collective experiments with affordable robots.

Scalability. The computational speed of the system and the necessary distance to
converge scale linearly with the size of the localized area. Also, a prolonged use of
the robot might wear off the ground, slightly shifting the grayscale intensities and
jeopardizing the localization. Nevertheless, modern printing options allow to use
strong supports that only degrade slowly with time. Therefore, our system can be
helpful for conducting collective experiments in a laboratory environment.

Localization of Inexpensive Robots with Low-Bandwidth Sensors 557

Fig. 6 The image, estimated trajectory and self confidence for different 59 × 42cm grayscale
patterns printed on A2 papers with a resolution of 1pixel/cm. The robot is remotely controlled to
draw a 8-shape figure, with similar motor commands for each image. Markov Localization with 36
discretization angles used. The color of the lines vary from red (confidence 0) to green (confidence
1). Trajectories are plotted starting from a confidence level of 0.2

Optimality. An interesting question is what is an optimal pattern. However, this
question has two sides. On the one hand, a pattern could be optimal in term of
quantity of information, allowing the robot to localize as fast as possible. In that
case, a white-noise pattern would be ideal. On the other hand, if the robot has to
interact with humans, or only be monitored by humans, such a pattern would be
highly disturbing. Our experimental results with paintings and drawings show that,
even with a pattern having a lot of regularities and symmetries, our system is still
able to localize. Therefore, we believe it is usable with natural patterns such as
photographies, drawings and grayscale schematics.

7 Conclusion

In this paper, we have implemented and empirically evaluated Markov- and Monte
Carlo-based approaches for localizing mobile robots on a known ground visual pat-
tern. Each robot requires only inexpensive infrared sensors and approximate odom-
etry information. We have shown that both approaches allow successful localiza-
tion without knowing the initial pose of the robot, and that their performances and
computational requirements are of a similar order of magnitude. Real-time localiza-
tion was successful with a large variety of A2 grayscale images, using the Markov
Localization approach with 36 discretization steps for angle. Should larger patterns
be desired, the code could be further optimized by implementing it in the gpu, allow-
ing it to run on inexpensive boards such as the Raspberry Pi.

In addition, we have outlined, and empirically validated, a method to estimate
the localization performance in function of the sensor configuration. This method
provides a guide for taking decisions about the placement of sensors in a future robot

558 S. Wang et al.

design: localization performance can be improved by placing the sensors far apart
on a line perpendicular to the direction of movement of the robot; moreover, more
sensors allow for collecting more information, if they are separated by the size of
the smallest visual structure in the map.

These contributions to the state of the art enable absolute positioning of inexpen-
sive mobile robots costing in the e100 range. In the context of distributed collective
robotics, they provide a solid base to build navigation or behavioral algorithms.

Acknowledgements The authors thank Emmanuel Eckard and Mordechai Ben-Ari for insightful
comments on the manuscript and Ramiz Morina for his drawings. This research was supported by
the Swiss National Center of Competence in Research “Robotics”.

References

1. Breitenmoser, A., Martinoli, A.: On combining multi-robot coverage and reciprocal collision
avoidance. In: Distributed Autonomous Robotic Systems, pp. 49–64. Springer (2016)

2. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In:
International Conference on Robotics and Automation (ICRA), pp. 1322–1328. IEEE Press
(1999)

3. Dias, D., Ventura, R.: Absolute localization for low capability robots in structured environments
using barcode landmarks. J. Autom. Mob. Robot. Intell. Syst. 7(1), 28–34 (2013)

4. Eliazar, A.I., Parr, R.: Learning probabilistic motion models for mobile robots. In: Twenty-first
International Conference on Machine Learning, pp. 32–39. ACM (2004). https://doi.org/10.
1145/1015330.1015413

5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395
(1981). https://doi.org/10.1145/358669.358692

6. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environ-
ments. J. Artif. Intell. Res. 11, 391–427 (1999). https://doi.org/10.1613/jair.616

7. Gutmann, J.S., Fong, P., Chiu, L., Munich, M.: Challenges of designing a low-cost indoor
localization system using active beacons. In: International Conference on Technologies for
Practical Robot Applications (TePRA), pp. 1–6. IEEE Press (2013). https://doi.org/10.1109/
TePRA.2013.6556348

8. Kurazume, R.Y., Nagata, S., Hirose, S.: Cooperative positioning with multiple robots. In:
International Conference on Robotics and Automation (ICRA), pp. 1250–1257. IEEE Press
(1994)

9. Laplace, P.S.: Théorie analytique des probabilités, 3rd rev. Veuve Courcier, Paris (1820)
10. Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: ASEBA: a modular

architecture for event-based control of complex robots. IEEE/ASME Trans. Mechatron. 16(2),
321–329 (2010). https://doi.org/10.1109/TMECH.2010.2042722

11. Park, S., Hashimoto, S.: An approach for mobile robot navigation under randomly distributed
passive rfid environment. In: International Conference on Mechatronics (ICM), pp. 1–6. IEEE
Press (2009)

12. Prorok, A., Bahr, A., Martinoli, A.: Low-cost collaborative localization for large-scale multi-
robot systems. In: International Conference on Robotics and Automation (ICRA), pp. 4236–
4241. IEEE Press (2012)

13. Zug, S., Steup, C., Dietrich, A., Brezhnyev, K.: Design and implementation of a small size
robot localization system. In: International Symposium on Robotic and Sensors Environments
(ROSE), pp. 25–30. IEEE Press (2011)

https://doi.org/10.1145/1015330.1015413
https://doi.org/10.1145/1015330.1015413
https://doi.org/10.1145/358669.358692
https://doi.org/10.1613/jair.616
https://doi.org/10.1109/TePRA.2013.6556348
https://doi.org/10.1109/TePRA.2013.6556348
https://doi.org/10.1109/TMECH.2010.2042722

Modelling Mood in Co-operative Emotional
Agents

Joe Collenette, Katie Atkinson, Daan Bloembergen and Karl Tuyls

Abstract Simulating emotions based on psychological models has been a topic
where work has focused on social dilemmas using simulated emotions to inform
decisionmakingwithin artificial agents. However human decisionmaking is affected
not only by emotions but also by other aspects of people’s temperament: the mood of
the person also affects their decision making, in conjunction with other factors such
as inequity aversion. We propose a simulated model of mood, which is formed and
validated through psychological research. We use this to inform decision making in
conjunction with simulated emotions to improve the decision making within agents
compared to emotions alone. We empirically evaluate our simulated model of mood
in addition to emotions. We show that our mood model can be implemented in a
robotic setting which can clarify aspects of multi-agent systems, such as cooperation
within an agent society.

1 Introduction

We have developed an understanding of how simulated emotions and mood can be
used to inform decision making in agents so as to avoid expensive computation. We
propose a functional model of mood that can be used independently or in conjunction
with the current work on simulated emotions. We show that our model of simulated
mood can be used to allow cooperation in a social dilemma to be achieved through

J. Collenette · K. Atkinson (B) · D. Bloembergen · K. Tuyls
University of Liverpool, Liverpool, UK
e-mail: k.m.atkinson@liverpool.ac.uk

J. Collenette
e-mail: j.m.collenette@liverpool.ac.uk

D. Bloembergen
e-mail: d.bloembergen@liverpool.ac.uk

K. Tuyls
e-mail: k.tuyls@liverpool.ac.uk

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_39

559

560 J. Collenette et al.

choice in a multi-agent setting. With the addition of simulated mood, there is an
improvement when compared to using simulated emotions exclusively. Our mood
model is grounded in psychology research, using aspects of human emotions and
mood to inform decision making [10, 13].

We use this developed mood model in practise to explore how cooperation flour-
ishes within a society of agents. The resilience of cooperation growth is tested by
the addition of defectors, indicating the stability of the cooperation strategy that uses
our model.

Psychology research has shown emotions affect human decision making [21].
Recent work has shown that simulating these emotions within artificial agents affects
the evolution of cooperation within the prisoner’s dilemma game [15]. Similarly,
psychology shows that mood affects decision making in humans [10]. There is a
clear distinction between mood and emotion, emotions are short-term feelings that
are directed towards a particular object or person [13]. Mood in contrast is a long
term feeling which does not have this focus on a particular object or person [8].

Previous research has focused on simulating emotions within agents without
regards for the effects that mood will have on the decision making process. [22]
gives an overview of the different methods of integrating emotions into a compu-
tational model, however there has been no previous attempts to model mood. Our
model for mood is integrated into previous research using a psychological back-
ground to justify the model. Whilst we recognise that emotions and mood both have
physiological affects [11], we will only be considering the functional aspect where
mood and emotions change the behaviour of the agents [13, 17].

We aim to provide a generic framework ofmood that can be integrated into existing
emotional models, which in turn provides a deeper level within the decision making
captured.Within this framework interactions between agents can occur yet the agents
do not need to know each others’ strategies in order for cooperation to flourish. Our
model of mood is grounded in psychology research. We have shown how this mood
model reacts to an unknown strategy, which in our experiments is pure defection.

2 Background

We will first introduce the emotional model we will be using as part of our mood
model and our experiments. Then we continue with the prisoner’s dilemma game
which is the setting for our experiment.

2.1 Emotional Characteristics

The simulated emotions that will be implemented in our agents are based on the
Ortony, Clore and Collins model of emotions, known as the OCC model [18]. The
model was developed through psychology research and has been used throughout the

Modelling Mood in Co-operative Emotional Agents 561

Table 1 Emotional
characters used

Anger
threshold

Gratitude
threshold

Character

1 1 Responsive

1 2 Active

1 3 Distrustful

2 1 Accepting

2 2 Impartial

2 3 Non-accepting

3 1 Trustful

3 2 Passive

3 3 Stubborn

AI community [1, 4, 15, 19]. The OCC model takes a functional view of emotions,
in which emotions influence changes in behaviour. The action taken is a result of
the emotional makeup of the person. The emotional makeup is a result of previous
outcomes.This functional view lends itself to being a goodplatform for implementing
emotions as the descriptions are of the outward effects of the emotions rather than
how emotions are processed internally. Of the 22 emotions defined in the OCC
model we will be modelling anger , grati tude and admiration, so we can compare
to previous work [4].

As in [4] each emotion has a threshold and a value. When that value increases
past the threshold for anger or grati tude the action of the agent will change. When
admiration reaches the threshold then that agent will imitate the emotional charac-
teristic of the agent that triggered the admiration. This is how replication is imple-
mented in our experiment. In this paper we will be using 9 different types of emo-
tional characters who have differing emotional makeups but they all have admiration
thresholds of 3. We have chosen that value based on previous work as it gives the
highest payoff in [4]. The different characteristics can been seen in Table1.

An agent’s anger increases by one when its opponent defects; gratitude increases
when the opponent cooperates. For example take the two characteristics Responsive
and Active. If Responsive chooses to cooperate, Active’s gratitude increases to one,
if Active chose to Defect then Responsive’s anger increases to one. Responsive’s
anger level is at the anger threshold, so in the next game with that agent, Responsive
will choose to defect and the anger level will return to 0.

Admiration increases when the agent believes that its opponent is performing
better than itself. When a threshold is reached, the agent’s behaviour changes to the
emotional character that triggered the admiration emotion and the admiration value
is then reset back to 0. When a mobile agent completes five games of the prisoner’s
dilemma, after that, the mobile agent will request the average payoff per game of
its next opponent, before the game has started, and compares this value to its own
average payoff. The agent will increase its admiration value towards whoever has
the highest average, this will be either itself or its opponent.

562 J. Collenette et al.

Table 2 Payoff matrix of the
prisoner’s dilemma

COOPi DEFECTi

COOP j 3 j , 3i 0 j , 5i
DEFECT j 5 j , 0i 1 j , 1i

We are using average payoff, rather than total payoff which was used by [14],
because we cannot be sure that each mobile agent has engaged in the same number
of games as its opponent. When the admiration threshold has been reached, the agent
takes on the emotional characteristics of the agent that triggered the threshold, which
may be itself, so the agent will then respond to other opponents in the same way as
the agent who triggered the admiration threshold. Then the admiration threshold is
reset to zero. Finally, the agent plays the game with its opponent.

2.2 Prisoner’s Dilemma

The prisoner’s dilemma is a social dilemmawhere two players are given the choice of
cooperation or defection. This choice ismade simultaneouslywith no communication
prior to the decisionmade. Each player thenwill get a payoff according to the choices
made by both players. The payoff matrix is shown in Table2.

When looking at the prisoner’s dilemma outcomes, it seems in the best interest of
both players to both play cooperatively since thiswould lead to the largest total payoff
for the group as a whole. However, there is a temptation to defect as this can lead to
a higher individual payoff. When both players reason this way, this then leads to the
Nash equilibrium of (DEFECT, DEFECT), which gives the worst outcome for the
group as a whole. This highlights the dilemma of the game. Investigating methods
by which self-interested agents can be incentivised to cooperate in the prisoner’s
dilemma has been an active area of research in the past decades, with a particular
focus on the evolution of cooperation within groups of agents [2, 3, 20]. It is for this
reason that we adopt this model of interaction in the current work as well.

3 Mood Model

Here we define our model of mood, with justifications for each mood state from
psychological research and how this mood will affect decision making. We split the
mood into three parts: negative, neutral, and positive. Our mood model only affects
the decision made as we interested in what decisions are made rather than simulating
how mood can affect the agent physically.

It was shown in [10, 21] that negative moods can lead to a more rational outcome
in general as people tend to think more thoroughly about the action they will take. In
our experimentswe use lowmoods to lead to defection, as this is theNash equilibrium

Modelling Mood in Co-operative Emotional Agents 563

and can be considered the more rational decision. Very low mood levels will lead to
defection regardless of the emotional state of the agents.

Positive moods tend towards an ideal outcome even if that affects themselves
negatively [10]. In our experiment the riskiest behaviour is cooperation as it can lead
to the worst outcome for the individual agent. Cooperation is the most ideal outcome
as it gives the highest payoff for the group as a whole.

For neutral moods themoodmodel will not affect the agents decisionmaking. The
mood will affect how agents react to unknown opponents since they do not have any
emotional attachment to them. When the mood levels are extreme they will override
the current emotional decision. We have done this to represent that mood levels in
humans do not necessarily reflect cooperation as a whole, but affect the choice made
[16].

We define the representation of each mood state as follows: a mood of below 10
is characterised as extremely low, below 30 as low, higher than 70 as high and above
90 as extremely high, and between 30 and 70 as neutral. Equation1 shows how the
agent chooses an action based on our mood model with the simulated emotions. We
define an initial action, as the action an agent would take if the mood model is unable
to provide an action, this is often the first interaction the agent makes. The simulated
emotions in our model are defined as one of the emotional characters as described in
Sect. 2.1. How and when an interaction occurs in our experiment is given in Sect. 4.

Definition 1 Let Ag be the set of all agents, with i and j ∈ Ag. Let t denote time.
Let mt

i return the mood of agent i at time t , in the range]0, 100[. Let ηi, j return
the number of interactions agent i as with agent j . Let Ii return the initial action of
agent i . Let Et

i, j return the action that agent i would take against agent j based on
i’s simulated emotions, at time t .

Acti, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

COOP, If mt
i > 90 or (mt

i > 70 and ηi, j = 0)

DEFECT , If mt
i < 10 or (mt

i < 30 and ηi, j = 0)

Et
i, j , If (30 <= mt

i >= 70 and ηi, j �= 0

Ii , Otherwise

(1)

Our representation of positive mood values comes from psychology literature
showing how people take riskier behaviour to achieve a more ideal outcome [10].
However if the mood is too positive, as it is when a person has mania, then the
behaviour becomes extremely likely to hurt that person [12]. In [10, 21] it is shown
that negative moods can be more likely to lead people to make a more logical and
thought out choice. Research into human patients with depression shows that these
people are more likely to choose defection. The research also showed that depressed
patients were more critical of themselves [9]. This provides up with grounding for
our choice of defection as part of our implementation of the mood model in the
prisoner’s dilemma, and validates how the mood values are more greatly affected
when the mood is low.

The agent’s mood value will go up or down based on the difference between the
payoff received and their average payoff, as this represents how well the agent thinks

564 J. Collenette et al.

they have done in that game [5]. Then additionally the mood value will go up or
down based on how the agent feels towards inequity between the average payoffs.
We will be using the inequity aversion model Homo Egualis to represent inequity as
a value [5]. In this model we need to find an α and β, where α represents how much
an agent cares when they are doing badly and β represents how much an agent cares
when their opponent is doing badly. Since we want to represent an ideal solution we
will take α = β. This represents that an agent cares about an opponent as much as it
cares about itself.

The amount the agent cares is represented by applying the mood to our α value,
such that higher moods give a lower α. This results in mood changes being larger
when the mood is low. If the mood is low then the agent “thinks” that they are doing
poorly in the environment when compared to other agents. We do this to represent
the property that humans care more about equality when doing poorly in society [5].

Definition 2 Let Ag be the set of all agents, with i and j ∈ Ag. Let t denote time.
Let pti return the payoff of agent i at time t . Let mt

i return the mood of agent i at
time t , in the range]0, 100[. Let μt

i denote the average payoff for agent i up to time
t . Let Ft

i return the opponent of agent i at time t .

αt
i = (100 − mt−1

i)/100 (2)

Ω t
i, j = μt

i − αt
i · max (μt

j − μt
i , 0) − αt

i · max (μt
i − μt

j , 0) (3)

mt
i = mt−1

i + (pti − μt−1
i) + Ω t−1

i, j where j = Ft
i (4)

In Eq.2 we show how we get our α value from the current mood of an agent;
this places the mood value in the range of]0, 1[so it can be used as the α. For
example a mood value of 75 will return an α of 0.25. Equation3 is the simplified
version of the Homo Egualis function [7], as we have only two agents in a single
interaction and α = β. The equation gives us a numerical representation of inequity
that the agent has for that interaction. Equation4 shows the overall implementation
of mood using the previous mood value, the average payoff, the received payoff,
and the Homo Egualis function to update the mood value after an interaction with
another agent. This equation gives us the current mood value of an agent. The mood
will increase or decrease depending on the difference in the received payoff and the
average payoff, meaning that the mood will increase when this agent is doing better
than expected and decrease when it is doing worse than expected. With the inclusion
of Ω the amount that the mood moves can change based on how fair the agent thinks
the result was for both agents.

Modelling Mood in Co-operative Emotional Agents 565

4 Method

In this work, the agents are simulated mobile robots that drive around in an envi-
ronment. The agents are given a random walk behaviour with some basic obstacle
avoidance procedures. The prisoner’s dilemma game is initiatedwhenever two agents
are within close proximity, and have line of sight of each other. The game is played
once, after which the agents will then continue their random walk behaviour.

The agents are placed in a random location in the environment with emotional
characteristics andmoods distributed randomly, uniformly and independently among
the agents, given the specific proportions of each experiment. The details for the
experiments conducted are given in Sect. 5.

Agents move randomly throughout their environment, while avoiding collisions
with the environment or other agents. Each agent has proximity sensors located at
{−90◦, −45◦, −15◦, 15◦, 45◦, 90◦} w.r.t. the robot’s heading. When the left sensors
detect something the robot will stop and turn to the right and the reverse for the right
sensors. The agents move forward at up to 10cm/s (The speed is constant except
when accelerating from stationary as built into the simulator) and can turn 45 deg/s.
When there are no obstacles detected the agent moves forward with a turn speed
that is between −45◦ or 45◦ per second. A new heading is generated when the robot
receives data from the sensors, resulting in a random movement pattern.

In terms of the agents’ knowledge of the world they are able to differentiate
between agents, but have no knowledge of the strategies others will be using. They
also have no knowledge of the environment apart from the sensor data they have
at that moment in time. In addition the agents have no knowledge of the payoff
matrix and will purely use their mood and emotion strategy to determine whether to
cooperate or defect.

5 Experiment Outline

We will be describing the experiments that we have conducted to test our mood
implementation. The first experiment will explore howmood affects the evolution of
cooperation. Our second experiment introduces pure defectors as an invasion force
to our environment and answers the question of how resilient the cooperation is to
outside defectors.

Both of the experiments will be conducted in the environment which is four
corridors in a square with each corridor having a length of 5m and a width of 1m.
This is shown in Fig. 1. The experiments will run for 10min for each run. A run
consists of a scenario and if applicable a sub-scenario, to ensure consistency of
results we will be running each of the 10min runs 10 times. In our experiments
each emotional characteristic is represented equally to prevent any characteristic
becoming dominate due to them having a higher initial representation. In addition
the initial actions of the emotional agents will be an equal split between cooperation

566 J. Collenette et al.

Fig. 1 Environment used in
this work. The environment
has dimensions of 5 × 5m
with the agents themselves
having a radius of 7cm, with
the traversable areas shown
in white

and defection. The initial location of the agents will be generated randomly. Each of
these aspects will be distributed randomly and independently of each other. For our
experiments we will be simulating agents using the Player/Stage simulator [6].

5.1 Mood Experiments

The first experiment will explore how the evolution of cooperation is affected by
differing initial mood levels. The initial level of mood will be categorised into three
types, low, medium and high where low has a mood level of 30, medium is 50 and
high is 70. There will be seven scenarios each with a different distribution of these
levels among the agents which can be seen in Table3.We refer to the outcomes given
by neutral moods as medium as this better reflects the current mood value.

Each of these scenarios will be run against a number of sub-scenarios. The sub-
scenarios define how many agents will be in the environment, with a range from 45
to 144 agents, the details of the scenarios can be seen in Table4. We will be looking
to see how different initial moods affect cooperation. We will explore if our mood
model allows cooperation to increase in the society of agents over time.

Table 3 Mood experiment
scenarios showing as a
percentage the different
distributions of starting mood
levels for the agents

Scenario Low
mood

Medium
mood

High
mood

1 100 0 0

2 0 100 0

3 0 0 100

4 33 33 33

5 70 15 15

6 15 70 15

7 15 15 70

Modelling Mood in Co-operative Emotional Agents 567

Table 4 Mood experiment
sub-scenarios, showing the
number of agents that will be
simulated for each scenario

Sub-scenario No. of agents

1 - Low density 45

2 - Medium density 81

3 - High density 117

4 - Very high density 144

Table 5 Resilience
experiment scenarios showing
the starting level of mood for
the agents with our mood
model and the number of pure
defectors that will be added

Scenario Mood level No. of defectors

1 Low 43

2 Low 63

3 Low 83

4 Medium 43

5 Medium 63

6 Medium 83

7 High 43

8 High 63

9 High 83

5.2 Resilience Experiments

Our next experiment is to test the resilience of the cooperation that evolves over
time. To test this we will be introducing pure defectors at the beginning of the
experiment into our environment; they cannot replicate themselves but the emotional
agents may take on the role of a pure defector due to their admiration emotion. Each
scenario will have 63 agents whose initial mood is dictated by the scenario: the
moods are categorised as high (70), medium (50) and low (30). The numbers of pure
defectors are 43 (minority defectors), 63 (equal defectors and emotional agents) and
83 (majority defectors). The details of each scenario are shown in Table5. This will
show the resilience that our mood model has to these pure defectors.

6 Results

6.1 Mood Results

Figure2 shows us the percentage of cooperation between each the number of inter-
actions for each scenario with an extra scenario which excluded the mood model and
only used the emotional strategy. The results given are quite intuitive, we see that
cooperation evolves throughout the agents, and the speed at which this is achieved
is directly proportional to the average level of mood. The fastest is the scenario with

568 J. Collenette et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·104

40

60

80

100

Interactions

%
of

(C
O
O
P,
C
O
O
P)

ou
tc
om

es

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6
Scenario 7

Without Mood

Fig. 2 Percentage (COOP, COOP) outcomes over all runs for each scenario in themood experiment

100% of agents starting with high mood levels and the slowest is the scenario with
100% of agents having low mood levels. To attribute this to the mood model we
ran the same experiments but without our mood model, where the decision making
was purely based on their emotional decision making. We can attribute the rise in
cooperation to the mood model as when it is removed the cooperation does not rise
as quickly. The number of iterations between scenarios being uneven is due to the
random nature of the agents movement.

This shows us that our mood model can support the evolution of cooperation over
time and sustain cooperation; this was an expected result as when cooperation is
high the mood moves very little. When two agents play the game, with one being in
a high mood and one being in a low mood, the low mood will rise faster than the
high mood can go down which is a property of our implementation of the egualis
equation. This leads to more agents in a cooperative state raising cooperation. This
effect is most apparent in the later stages of the simulation when the agents start with
low moods, as the agents which are cooperating meet a group of agents which are
not cooperating. This lead to a dip in cooperation followed by the continuing rise of
cooperation when a large amount of agents with opposing moods meet.

To justify our claim that the speed at which cooperation is achieved is proportional
to the starting level of mood we have plotted the average mood values against the
number of (COOP,COOP) actions, as can be seen in Fig. 3. We have shown this
against scenario 1 as this is where the effect is most pronounced; we can see that
cooperation between agents falls from 77% to 73% as agents who are cooperating
meet larger groups of defecting agents. However the average mood level still rises,
from 71.7% to 74.5%. When the cooperation rises again the standard deviation of
mood levels is reduced to 26.9 from 27.5. This shows us that the mood reflects the
level of cooperation, and the higher the starting level of mood the faster cooperation
is achieved.

Modelling Mood in Co-operative Emotional Agents 569

20

40

60

80

100

M
oo
d
V
al
ue

Average Mood Value

0.5 1 1.5 2 2.5 3 3.5

·104
20

40

60

80

100

Interactions

%
of
(C
O
O
P,
C
O
O
P)
ou
tc
om

es

Average Mood Value
(C,C) Outcomes

Fig. 3 Average mood value with standard deviation against percentage of (COOP,COOP)

outcomes in scenario 1 of the mood experiment

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·104

10

20

30

Interactions

%
of

(C
O
O
P,
C
O
O
P)

ou
tc
om

es

Low Mood
Medium Mood
High Mood

Fig. 4 Percentage of (COOP, COOP) outcomes for each initial mood level in the resilience exper-
iment

6.2 Resilience Results

Figure4 shows that when the mood is low, the emotional agents as a group are more
resilient to an invading population of pure defectors. In high moods, cooperation
between the emotional agents rises quickly, this in turn raises the mood of the agents
as well. It therefore does not take long for the mood to increase to the point where
the agents can be considered pure cooperators due to the mood level being very high.
When this happens and agents are faced with the pure defectors the only outcome
between an emotional agent and a pure-defector can be (COOP, DEFECT). This
causes the average score of the defectors to increase and the emotional agents’ average
to decrease. These changes in average payoffs will be affected rapidly because of the
payoff difference. When replication occurs in the emotional agents they choose to
become pure defectors because of this payoff difference, which leads to the collapse
of cooperation as there are more pure-defectors.

570 J. Collenette et al.

In contrast when the emotional agents are in a low mood it takes longer for
them to get their moods to the level where they are indistinguishable from pure
cooperators; this allows them to protect themselves from the pure defectors by using
their emotional choice which switches their action to defection for that particular
opponent. Actions driven by emotions rather than mood are bounded to a particular
opponent. This allows the agents to evolve cooperation with other emotional agents
without replicating into pure defectors since the defectors have a low average as the
number of (DEFECT, DEFECT) actions they receive increasing over time.

These results show both expected and unexpected results. We had expected that
cooperation would continue to be stable over time as the simulated moods and emo-
tions would adapt to the invasion force, as seen in the low and medium starting
moods. However the collapse of the high mood was unexpected.

To justify our hypothesis about why the mood levels have collapsed, we have
shown that high moods do not adapt quickly to the pure defectors and therefore are
taken advantage of. The advantage taken then leads to the emotional agents becoming
pure defectors as their average score is not high enough when compared to the pure
defectors. We took the difference between average score of the defectors and the
average score of the emotional agents for each starting level of mood. The results
showed that the difference in average score between low starting moods and the
pure defectors was 0.04, for medium moods was 0.22, finally for the high moods the
difference was 0.5. We can see that the high mood difference is more than double the
medium mood difference. The defectors are clearing taking advantage of the high
moods the most.

As the high moods are being taken advantage of the most, we expect that the
payoffs for the defectors should be the highest when faced with the highest mood.
The average scores of the defectors are shown in Table6 and clearly show that the
defectors do the best when faced with high moods, meaning that they will replicate
the fastest in the high moods. The medium and low moods do not collapse as they
adapt to the newly replicated defectors through the use of their directed emotion
strategy. The high moods do not adapt, as when the mood is very high they act as
pure cooperators.

Table 6 Average scores with
standard deviation of the
defectors, for each mood level
in the resilience experiment

Starting mood
level

Average Standard deviation

Low 1.45 0.49

Medium 1.82 0.69

High 2.17 0.85

Modelling Mood in Co-operative Emotional Agents 571

7 Conclusions

We have proposed a model of mood that can be used either independently or in
conjunction with emotions. We have constructed this model using psychological
research, with general cases for type of outcomes for varying mood levels. We have
then applied this to an experiment with validation from psychology research for our
choices made, which explores cooperation in a multi-agent setting.

For our experiments conducted we have shown that a combination of mood and
emotion can support positive levels of cooperation within an agent society. We have
also shown that mood levels in our agents are related to the level of cooperation that
is achieved as a group. By adding an invasion force of pure defectors the coopera-
tion between the emotional agent collapses over time when the mood levels of the
emotional agents are high. In contrast when the mood is not high the cooperation
over time is more stable since the agents do not give the benefit of doubt to the
pure defectors, preventing the defectors from achieving a higher average. For future
work we will looking into adapting our mood model to take into consideration mood
fluctuations over time.

References

1. André, E., Klesen, M., Gebhard, P., Allen, S., Rist, T.: Integrating models of personality and
emotions into lifelike characters. In: Paiva, A. (ed.) Affective Interactions. LNCS, vol. 1814,
pp. 150–165. Springer, Berlin (2000)

2. Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211(4489), 1390–1396
(1981)

3. Bloembergen, D., Ranjbar-Sahraei, B., BouAmmar, H., Tuyls, K.,Weiss, G.: Influencing social
networks: an optimal control study. In: Proceedings of ECAI‘14, pp. 105–110 (2014)

4. Collenette, J., Atkinson, K., Bloembergen, D., Tuyls, K.: Mobility effects on the evolution of
co-operation in emotional robotic agents. In: Proceedings of ALA Workshop (2016)

5. Fehr, E., Schmidt, K.M.: A theory of fairness, competition, and cooperation. Q. J. Econ. 114,
817–868 (1999)

6. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and
distributed sensor systems. In: Proceedings of ICAR‘03, pp. 317–323 (2003)

7. Gintis, H.: Game Theory Evolving: A Problem-centered Introduction to Modeling Strategic
Behavior. Princeton university press, Princeton (2000)

8. Gray, E.K., Watson, D., Payne, R., Cooper, C.: Emotion, mood, and temperament: similari-
ties, differences, and a synthesis. Emotions At Work: Theory, Research and Applications for
Management, pp. 21–43. Wiley, Chichester (2001)

9. Haley,W.E., Strickland, B.R.: Interpersonal betrayal and cooperation: effects on self-evaluation
in depression. J. Pers. Soc. Psychol. 50(2), 386 (1986)

10. Hertel, G., Neuhof, J., Theuer, T., Kerr, N.L.: Mood effects on cooperation in small groups:
Does positive mood simply lead to more cooperation? Cogn. Emot. 14(4), 441–472 (2000)

11. Keltner, D., Gross, J.J.: Functional accounts of emotions. Cogn. Emot. 13(5), 467–480 (1999)
12. Leahy, R.L.: Clinical implications in the treatment of mania: Reducing risk behavior in

manic patients. Cogn. Behav. Pract. 12(1), 89–98 (2005). https://doi.org/10.1016/S1077-
7229(05)80043-4

13. Levenson, R.W.: Human emotion: a functional view. Nat. Emot. Fundam. Quest. 1, 123–126
(1994)

https://doi.org/10.1016/S1077-7229(05)80043-4
https://doi.org/10.1016/S1077-7229(05)80043-4

572 J. Collenette et al.

14. Lloyd-Kelly, M., Atkinson, K., Bench-Capon, T.: Developing co-operation through simulated
emotional behaviour. In: 13th InternationalWorkshop onMulti-AgentBased Simulation (2012)

15. Lloyd-Kelly, M., Atkinson, K., Bench-Capon, T.: Fostering co-operative behaviour through
social intervention. In: 2014 International Conference on Simulation and Modeling Method-
ologies, Technologies and Applications (SIMULTECH), pp. 578–585. IEEE (2014)

16. Lount, R.B.J.: The impact of positivemood on trust in interpersonal and intergroup interactions.
J. Pers. Soc. Psychol. 98(3), 420–433 (2010)

17. Morris, W.N.: A functional analysis of the role of mood in affective systems. Emotion (1992)
18. Ortony,A.,Clore,G.L.,Collins,A.: TheCognitiveStructure ofEmotions.Cambridgeuniversity

press, Cambridge (1990)
19. Popescu, A., Broekens, J., van Someren, M.: Gamygdala: an emotion engine for games. IEEE

Trans. Affect. Comput. 5(1), 32–44 (2014). https://doi.org/10.1109/T-AFFC.2013.24
20. Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of coop-

eration in public goods games. Nature 454(7201), 213–216 (2008)
21. Schwarz, N.: Emotion, cognition, and decision making. Cogn. Emot. 14(4), 433–440 (2000).

https://doi.org/10.1080/026999300402745
22. Ventura, R.: Emotions and empathy: a bridge between nature and society? Int. J. Mach. Con-

scious. 2(02), 343–361 (2010)

https://doi.org/10.1109/T-AFFC.2013.24
https://doi.org/10.1080/026999300402745

Programmable Self-disassembly for Shape
Formation in Large-Scale Robot Collectives

Melvin Gauci, Radhika Nagpal and Michael Rubenstein

Abstract We present a method for a large-scale robot collective to autonomously
form a wide range of user-specified shapes. In contrast to most existing work, our
method uses a subtractive approach rather than an additive one, and is the first such
method to be demonstrated on robots that operate in continuous space. An initial
dense, stationary configuration of robots distributively forms a coordinate system,
and each robot decides if it is part of the desired shape. Non-shape robots then remove
themselves from the configuration using a single external light source as a motion
guide. The subtractive approach allows for a higher degree ofmotion parallelism than
additive approaches; it is also tolerant of much lower-precision motion. Experiments
with 725 Kilobot robots allow us to compare our method against an additive one
that was previously evaluated on the same platform. The subtractive method leads to
higher reliability and an order-of-magnitude improvement in shape formation speed.

1 Introduction and Related Work

In nature, groups of thousands to millions of units can self-assemble into complex
structures, purely through local interactions. For example, cells self-assemble into
complex organisms, colonies of ants self-assemble into bridges and bivouacs made
out of their own bodies, and fish self-assemble into complex schooling patterns
[1, 3]. In all of these cases, a group can dramatically change its interaction with
its environment through collective shape formation. In the fields of collective and
modular robotics, many groups have taken inspiration from these natural examples to

M. Gauci (B) · R. Nagpal
Harvard University, Cambridge, MA, USA
e-mail: mgauci@g.harvard.edu

R. Nagpal
e-mail: rad@eecs.harvard.edu

M. Rubenstein
Northwestern University, Evanston, IL, USA
e-mail: rubenstein@northwestern.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_40

573

574 M. Gauci et al.

create novel robotics systems that achieve higher functionality through self-assembly
and shape formation. For example, researchers have designed small mobile robots
that are envisioned to work together in large groups, including assembling together to
achieve complex tasks [8, 9, 11, 12]. Similarly, using inspiration from multicellular
development, several groups have developedmodular robots that can self-reconfigure
into different morphologies for grasping or locomotion tasks [16]. The ultimate goal
is to shrink the size of these systems to create “programmable matter”, where large
numbers of tiny robotic modules can rapidly self-assemble into user-specified tools
such as a wrench or a key [2, 7].

Self-assembling robot collectives and programmable matter systems pose a
global-to-local algorithmic challenge: How does one program large numbers of
agents to self-organize into a user-specified shape, when each agent can only interact
locally with nearby agents at a scale much smaller than the global outcome? There
is also the hardware challenge: How do such algorithms scale to large numbers of
real robots, where individual errors can amplify into global errors?

There has been considerable progress on answering these algorithmic questions.
Inspiration is often drawn from conventional engineering manufacturing processes,
which can be broadly divided into two classes: additive and subtractive. In additive
processes, material is added and fused to form the desired shape; examples include
injection molding and 3D printing. In subtractive processes, material is removed
from an initial bulk until only the desired shape remains; examples include lathing
and milling. It is noteworthy that both additive and subtractive processes can also
be observed in nature, such as the growth of limbs (additive) and the removal of
inter-digit webs in the hand (subtractive) [15].

In additive self-assemblymethods, the shape starts with a seedmodule that defines
the origin and orientation of a coordinate system. The remaining modules then local-
ize relative to the seed and form the shape in layers. This approach is often referred
to as “directed growth” [13] and has been implemented both in mobile collectives
where the robots move freely in space [8, 11, 12], and in self-reconfigurable systems
where the robots are constrained to move along docking sites [16, 17]. In some cases,
instead of actively mobile agents, the system uses agents that move passively in the
environment, based on some source of random motion such as the mixing of a fluid
or a low friction surface [2, 9, 14]. Althoughmany additive self-assembly algorithms
have been explored, most have only been validated in simulation or in at most tens
of hardware agents. One recent exception is a demonstration by our group on a 1024
robot collective, namely the Kilobot system [12]. Using cooperative error correction,
this approach was able to robustly self-assemble large shapes with diameters of up to
45 times the radius of local interactions without human intervention. However, it has
limited parallelism in robot motion, and requires this motion to be highly precise.
These factors lead to long shape formation times.

The subtractive self-assembly approach (hereafter called self-disassembly) has
received considerably less attention so far, but a few examples do exist. In this
approach, the system starts with the agents in a large, dense, stationary group. A
seed module then initiates the formation of a coordinate system, and finally, non-
shape agents remove themselves from the system. In the Pebbles system [7], modules

Programmable Self-disassembly for Shape Formation … 575

are arranged in a 2D rectangular lattice, and non-shape modules release themselves
and move away by exploiting surface vibrations. In the Miche system [6], larger
modules are arranged into a 3D rectangular lattice, using magnetic connections to
maintain the structure. The removal of non-shape modules is achieved by exploiting
gravity. Both the Pebbles and the Miche systems attempt to replace active precision
mobility with external actuation, in order to be able to shrink the size of modules
and bring the system closer to the vision of programmable materials.

The subtractive approach has several potential advantages over the additive
approach, including a high level of motion parallelism, and a low level of required
motion precision, both of which become more attractive as the scale of the collective
increases. The self-disassembly examples discussed above were both implemented
on modular robots that can be arranged into a regular lattice structure. In this case,
coordinates can be easily assigned since the modules can exploit directional commu-
nication [7, 13]. However, requiring modules to align in perfect lattices makes the
hardware design more complex and any manufacturing imperfections can negatively
affect the perceived locations of modules. Moreover, these systems have so far only
been tested on limited numbers of modules (≤30).

In this paper, we present an approach to programmable self-disassembly that
extends the conceptual ideas from the Miche and Pebbles systems to a fully-
autonomous mobile robot collective that operates in free space, and uses only local
sensing and interactions. The robots distributively form a continuous coordinate sys-
tem through distance sensing and multilateration, allowing for a larger tolerance to
the localization errors of individual robots [10, 12]. The robots then use a decentral-
ized consensus algorithm to transition from the coordinate system formation phase
to the self-disassembly phase. Finally, the non-shape robots autonomously remove
themselves from the shape without distorting it, using a single external light source
as a motion guide. We present theoretical results to showwhich classes of shapes can
be formed by our approach, and how the shape class determines the self-disassembly
procedure. We then validate our approach on the Kilobot platform, using 725 robots,
and present experimental results demonstrating high reliability and accuracy despite
the noise and failures present in large-scale collectives. We also present a direct com-
parison of additive and subtractive algorithms, as experimentally tested on the same
hardware platform, and show that while the additive approach is able to form larger
shapes for a given number of robots, the subtractive approach achieves much higher
motion parallelism, as well as tolerance to simpler and noisier motion. This results
in a significant improvement in shape formation speed.

2 Self-disassembly Algorithm

2.1 Robot Model

Here we describe the model for a Kilobot robot; note, however, that its feature set
matches closely with those of many other robots designed for large-scale collective
behaviors. More details on the Kilobot platform can be found in [12]. An indi-

576 M. Gauci et al.

vidual Kilobot has the following capabilities: external light sensing, computation
(via amicrocontroller), and non-holonomic locomotion using vibrationmotors. Each
robot can also communicate with nearby neighbors within a radius of 3 body lengths
(at most around 36 robots) via shared channel wireless broadcast; the group thus acts
as a large multi-hop wireless network. Furthermore, each robot can measure its dis-
tance to its neighbors based on the communication signal strength, with a resolution
of 1mm. However, it cannot measure the bearings or headings of its neighbors.

The collective is inherently decentralized, multi-hop, and asynchronous. In addi-
tion, all aspects experience noise and manufacturing variation. The light sensor has a
limited resolution and accuracy. Open-loop robot motion drifts quickly with time and
the robots do not have internal odometry capabilities. Messages are communicated
via a shared wireless channel which is asynchronous and experiences message loss.
Distance measurements based on wireless signal strength are inherently noisy. Even
after calibration, there are significant variations between robots in all aspects.

2.2 Algorithm and Implementation

The goal of the algorithm is to form a user-specified shape, starting from a config-
uration where all the robots are in a tightly packed group. We assume that the size
of the desired final shape fits within the starting configuration. Three pre-localized
seed robots are placed within the initial configuration, representing the origin and
orientation of the coordinate system. All the robots in the configuration are given an
identical program, which includes a representation of the shape to be formed and the
location of a light source (with respect to the seed robots) that will serve to guide the
motion of non-shape robots. The algorithm proceeds in three steps: (i) Distributed
Coordinate System Formation - each robot localizes itself within the collective (with
respect to a seed) and decides whether or not it is part of the desired shape; (ii) Tran-
sition Using a Consensus Algorithm: the robots collectively determine when every
robot has localized in order to transition to the next step; (iii) Self-Disassembly:
robots that are in the desired shape remain stationary while non-shape robots move
away from the shape.

Distributed Coordinate System Formation

Since Kilobots can measure distance to and communicate with neighbors, a robot
can localize itself with respect to 3 or more other localized neighbors using multi-
lateration. If robot i has n localized neighbors with distances d1, . . . , dn away from
it and positions p1, . . . ,pn , then robot i computes its best-guess position as:

p∗
i = argmin

pi

n∑

j=1

∣∣d j − ‖pi − p j‖
∣∣

d j
, (1)

where |·| denotes the absolute value and ‖·‖ denotes the Euclidean norm. The d j in the
denominator serves to implement inverse variance weighting, giving less importance

Programmable Self-disassembly for Shape Formation … 577

to larger measured distances, which tend to be less accurate. The robots localize in
a ‘wave’ that propagates outward from the 3 pre-localized seed robots.

Although distributed coordinate system formation is a simple process at an
abstracted level, it is well-known that in practice, it can be highly sensitive to ini-
tial conditions and several types of noise [10]. As such, at large scales, it requires
significant additional constraints to operate reliably. As shown in the experimental
section, we have developed a highly-robust distributed coordinate system formation
algorithm by using the following measures.

(i) In order to account for asymmetry in distance sensing, robots exchange mea-
sured distances with each other for two-way averaging. Let di j be the distance to
robot j as measured by robot i , and vice-versa for d ji . Then both robots estimate
the distance between them as being 1

2

(
di j + d ji

)
. Robot i only takes robot j into

account for multilateration purposes (i.e. Eq.1) if: (a) both di j and d ji are available,
(b) 1

2

(
di j + d ji

) ≤ 3 body lengths, and (c) |∗| di j − d ji ≤ 1 body length. (ii) A robot
only considers localizing after it has at least one set of 3 neighbors that meets the
following criteria: (a) the minimum angle of the triangle formed by the positions of
these 3 neighbors is larger than 35◦, and (b) 2 of these neighbors are within 1.25 body
lengths and the other is within 2.5 body lengths. The first criterion avoids localiz-
ing with respect to almost-collinear neighbors, in which case the best-guess position
might have a flip ambiguity. The second criterion ensures that the estimated distances
of the robots making up this triangle are reasonably accurate. After condition (ii) has
beenmet, a robot waits up to 30 seconds to check if it can acquiremore neighbors that
satisfy condition (i). Each time a new such neighbor is acquired, this timer is reset
and the waiting starts again. This ensures that each robot uses as many neighbors as
possible for multilateration, increasing the amount of averaging in the process, and
thus improving consistency.

Once localized, a robot determines if it is part of the shape. The shape is specified
in the robots’ program as a polygon with an arbitrary number of vertices (≥3), and a
simple point-in-polygon algorithm is used to decide if the robot’s position lies inside
its perimeter. At this point, if a robot is not part of the shape, it also decides based
on geometric considerations which type of motion it will execute when it is its turn
to start moving (this will be explained further in Sect. 2.3).

Transition using a Consensus Algorithm

Once all the robots have localized, the collective must autonomously transition to the
next phase where the non-shape robots remove themselves from the configuration.
This is done using a simple gossip-based consensus algorithm, as follows. Each
robot transmits a consensus value. For a non-localized robot, this value is always 0.
A localized robot, on the other hand, determines its value by adding 1 to theminimum
of its neighbors’ values (all neighbors within the communication range are used for
this algorithm). As long as there is at least one non-localized robot, its 0 value will
hold down the values of all the other robots; a ‘gradient’ pattern will form across the
group, with the maximum possible value of any robot being the maximum distance
in the configuration (in terms of the communication range).When there are no longer
robots transmitting a value of 0, all the robots start to count up. Once a robot’s value
exceeds a predefined threshold (chosen to be larger than the maximum possible

578 M. Gauci et al.

hop count with an unlocalized robot still present), the robot decides that consensus
has been reached. This algorithm is sensitive to cases where a single robot fails
to localize permanently, due to not meeting one of the conditions described above.
In our experiments, this happened rarely. Nevertheless, in the future, this phase of
the algorithm can be improved by using a quorum algorithm in place of a consensus
algorithm, whichwould ‘only’ require a high percentage (but not 100%) of the robots
to have localized.

Self-disassembly

To remove themselves from the shape, non-shape robots rely on three motion types:
collision avoidance, phototaxis, and antiphototaxis. All moving robots perform col-
lision avoidance if they are too close to their neighbors, but each robot will only
perform one of phototaxis and antiphototaxis, depending on its initial position rela-
tive to the shape. After a robot has localized, its program casts a ray from its position
to the light source; if this does not intersect with the shape, the robot decides on
performing phototaxis; otherwise, it decides on performing antiphototaxis.

The self-disassembly process starts from the edge of the initial configuration, and
proceed inwards towards the shape. In this manner, robots that are completely locked
by other robots do not needlessly start moving, which could potentially distort the
shape. Each robot only starts movingwhen it has had 4 or fewer neighbors (stationary
or moving) within 1.25 body lengths for a predefined amount of time (30s). After
starting to move, robots execute the following behavior.

A robot does collision avoidance if it perceives a stationary neighbor with 2 body
lengths (i.e. one that is either part of the shape, or is not but has not yet started
moving). This is done to minimize the chances of moving robots colliding with the
shape and distorting it, at the cost of a slower self-disassembly process.When a robot
senses no stationary localized robots within 2 body lengths, it switches to phototaxis
or antiphototaxis. A robot that is doing phototaxis or antiphototaxis only reverts to
collision avoidance if it perceives a stationary neighbor within 1.5 (rather than 2)
body lengths. This hysteresis prevents robots from continuously switching between
behaviors. Note that, moving robots do not avoid each other, allowing them to move
quickly and aggressively, even in the face of congestion.

Themotion behaviors are implemented as follows. Collision avoidance starts with
the robot turning, and looking at its distance to its closest stationary neighbor. The
robot searches for a valley in the profile of this distance versus time, i.e., a transition
from a negative to a positive rate of change. This indicates that the robot is facing
away from its stationary neighbor, and at this point, it switches to straight motion. In
phototaxis, the robot starts turning and looking at its light sensor reading. It searches
for a valley in the intensity profile versus time,which indicates that it is facing towards
the light source (the light sensor is on the back of the robot). At this point, the robot
keeps rotating in its current direction for a small time period, then reverses its turning
direction, and starts looking for a new valley. Due to the configuration of the robot’s
legs, this oscillatory turning causes a net motion towards the light. Antiphototaxis is
implemented in the same way, but the robot now looks for peaks rather than valleys
in the intensity versus time profile.

Programmable Self-disassembly for Shape Formation … 579

2.3 Achievable Shape Classes

In order to successfully form a desired shape, all non-shape robots must move away
from the shape without disturbing it. Our current system relies on phototaxis and
antiphototaxis, which have the advantage of being fast and highly tolerant of robot
sensory and actuation noise. However, this imposes a constraint on the system: all (or
in practice most) of the robots must be able to leave the shape using one of these two
motion types. We now describe which shape types are solvable by self-disassembly
under this constraint. We use polygon representations for the shapes, and divide
polygons into 3 classes. An example from each class is provided in Fig. 1.

• Class 1: Solvable by antiphototaxis alone: “Star-shaped polygons” is awell-known
class of polygons that can be defined as follows: There is at least one point within
the polygon such that any ray cast from this point intersects the polygon’s perimeter
exactly once. For our application this means that, if the light source is placed at
such a point, any robot outside the shape can move away from it in a straight line
(i.e., antiphototaxis) without encountering the shape. Note that convex polygons
are a subclass of star-shaped polygons, having the additional property that every
point inside the polygon satisfies the light placement condition. In general, a linear-
time algorithm exists for determining which points inside a given polygon, if any,
satisfy this condition; if none are found, the polygon is not Class 1 [5].

• Class 2:Solvable by a combination of phototaxis and antiphototaxis.Wedefine this
class of polygons according to the following property: There is at least one point
outside the polygon such that every ray cast from this point either does not intersect
the polygon’s perimeter, or intersects it exactly twice. If a ray does not intersect
the perimeter, both phototaxis and antiphototaxis are viable from every point on
this ray; we prioritize phototaxis over antiphototaxis due to its better reliability
on Kilbots. If a ray intersects the perimeter twice, then phototaxis is viable from
points that lie on the segment between the light source and the first intersection,
while antiphototaxis is viable from points beyond the second intersection. In the
supplementary material [5], we supply a linear-time algorithm that determines the

Fig. 1 Examples of shapes in the 3 classes (see the text for details). Orange dots indicate the light
source location; blue indicates the shape; red and greed indicate regions from which phototaxis and
antiphototaxis are possible, respectively; yellow indicates blocked regions

580 M. Gauci et al.

set of feasible light source positions, if any, for a Class 2 shape; if none exist, the
polygon is not Class 2.

• Class 3: Not solvable by a combination of phototaxis and antiphototaxis alone. A
polygon is in Class 3 if it is not Class 1 or Class 2. For a Class 3 polygon, wherever
the light source is located, there will always be regions in the environment from
which a robot can do neither phototaxis nor antiphototaxis without encountering
the shape. In general, self-disassembly into Class 3 polygons is not possible under
our constraints. In practice, some robots might still manage to navigate away from
blocked regions using collision avoidance, but this depends on the depth of the
blocked regions. It is a promising avenue for future research to investigate how
our method can be augmented for such shapes.

3 Experimental Validation

3.1 Setup and Protocol

In order to validate our algorithm, we performed 3 experiments with two shapes in
Class 1 and on shape in Class 2. The Class 1 shapes constituted a 5-point starfish
and a wrench, both with the light source placed in the center such that all robots
could perform antiphototaxis. The Class 2 shape was a U shape, with the light source
placed above the U ’s cavity such that robots in the cavity could perform phototaxis
and the rest could perform antiphototaxis. We used the experiments to look at the
time efficiency and the accuracy at each stage of the algorithm.

The experimental protocol was as follows. The robots were initially arranged in
an approximate hexagonal grid. For the starfish and the U shapes, this consisted of
29 rows by 25 columns (=725 robots), which yields a roughly square arrangement
since 29 × √

3/2 ≈ 25. For the wrench shape, the initial configuration consisted of
17 rows by 42 columns (=714 robots), which yields a rectangular arrangement. In
all cases, the seed robots were placed in the middle of the initial configuration.

All the robots were simultaneously programmed with the algorithm described
previously. At the beginning of each experiment, the light source was placed in
the appropriate location, and recording was started on an overhead camera. A run
signal was then issued to all the robots, and the formation of the coordinate system
was monitored by the operator based on the robots’ LED colors. In order to collect
data on how well the robots were estimating their own coordinates, we used an extra
robot thatwas programmed to receivemessages from localized robots and report their
positions to a PC. This robot was waved over the group of robots when the coordinate
system formation process had finished, and before the transition happened. During
the self-disassembly phase, no manual intervention was made, including in cases of
dead or stuck robots. The experiment was stopped after one hour had elapsed from
the start of the self-disassembly phase.

Programmable Self-disassembly for Shape Formation … 581

3.2 Results and Discussion

Figure2 shows the (a) initial and (c) final states of the robots for both experiments,
as well as (b) where each robot believes its coordinates to be, with colors indicating
whether it believes to be part of the shape (blue), or should leave the shape via
phototaxis (red) or antiphototaxis (green). Figures3 and 4 show snapshots of the self-
disassembly process over time for the starfish shape and the U shape, respectively.
The supplementary material [5] includes full-length overhead video recordings of
the self-disassembly process for the starfish and the U shape experiments.

Qualitatively, it can be visually observed in Fig. 2b that in all three cases, the
coordinate system formation algorithm achieved a good accuracy in all three cases.
A slight rotation of the coordinate system is present in the case of the starfish shape.
Note, however, that this is a global rotation, and does not cause any significant warp
in the coordinate system; as such, the user-specified shape is not distorted. As a
first quantitative measure of coordinate system accuracy, we look at the estimated
distances between all pairs of robots that are adjacent in reality (i.e. the real distance is
1 body length = 33mm). We looked at the distribution statistics of the error (defined
as distanceestimated − distancetrue). In the starfish experiment, the median error was
+1.00mm; the 25th and 75th percentile errors were −1.74mm and +4.00mm,
respectively; and the extreme errorswere−13.79mm and+13.32mm. In thewrench
experiment, themedian errorwas+1.01mm; the 25th and 75th percentile errorswere
−1.94mm and +4.05mm, respectively; and the extreme errors were −33.00mm

Fig. 2 Self-disassembly overview. a Robots start arranged in a grid. b A coordinate system is
formed in a distributed fashion, and each robot decides if it is part of a user-specified shape (blue).
If it is not, it also decides which motion type it should use to leave the configuration—phototaxis
(red) or antiphototaxis (green); c Final state: non-shape robots have left the shape

582 M. Gauci et al.

Fig. 3 Experimental self-disassembly of a starfish shape. a Initial configuration; only the seed
robots are localized. b t = 40min: All the robots are localized, and each robots has decided if it is
part of the shape (blue) or not (green). c t = 50min: The non-shape robots start leaving the shape.
d, t = 55min, e t = 63min. f 90min: Final state

Fig. 4 Experimental self-disassembly of a U shape. a Initial configuration; only the seed robots are
localized. b t = 40min: All the robots are localized, and each robots has decided if it is part of the
shape (blue), and if not, whether it should leave the shape using phototaxis (red) or antiphototaxis
(green). c t = 50min: The non-shape robots start leaving the shape. d, t = 55min, e t = 63min.
f 90min: Final state

Programmable Self-disassembly for Shape Formation … 583

and +13.96mm. In the U shape experiment, the median error was +1.06mm; the
25 and 75th percentile errors were −0.98mm and +3.68mm, respectively; and the
extreme errors were −21.34mm and +13.39mm.

As a second quantitative measure of coordinate system accuracy, we calculated
the error between the area of the estimated configuration (defined as the area enclosed
by the convex hull of the estimated coordinates) and the area of the true configura-
tion. The error is defined as 100 × (areaestimated − areatrue)/areatrue%. For the starfish,
wrench, and U shape experiments, this error was +0.62%, −0.81%, and +2.37%,
respectively.

As a third quantitative measure of coordinate system accuracy, we compared
the error between the number of robots that considered themselves to be part of
the shape according to the coordinate system and the theoretically-expected num-
ber (assuming a fully-packed hexagonal initial configuration). The error is defined
as 100 × (numbercoordinate system − numberexpected)/numberexpected%. In the starfish
experiment, the actual and expected numbers were 164 and 181, respectively (error
= −9.39%). In the wrench experiment, the actual and expected numbers were 336
and 356, respectively (error = −5.62%). In the U shape experiment, the actual and
expected numbers were 284 and 298, respectively (error = −4.70%).

These three quantitative measures of coordinate system accuracy together suggest
that the robots are systematically overestimating the distances to their neighbors.
Note that in the first measure, the median error is positive in all three cases; if there
were no systematic error in the distance sensing, a median error of 0mm would be
expected. In the second measure, the estimated area is larger than the true are in
two out of three cases. In the third measure, in all three cases, the number of robots
that considered themselves to be in the shape according to the coordinate system
is smaller than the expected number. This is because the estimated configuration is
expanded, and therefore sparser.

All three runs of the coordinate system reached steady-state after around 40min.
This time mainly reflects the strict conditions imposed on when a robot can start to
localize (see Sect. 2.2). We observed that relaxing some of these conditions would
cause the coordinate system to form faster, but at the cost of reduced accuracy and
reliability. In the starfish experiment, 2 robots at one of the edges of the configuration
failed to localize. Upon inspection, it turned out that these were neighboring a robot
that had switched off due to low battery. This was exacerbated by the fact that edge
robots have the fewest neighbors. They were therefore failing to meet one or more
of conditions to localize described in Sect. 2.2. These two robots were manually
removed to allow the consensus-based transition to take place. In the future, this
problem could be addressed by: (i) slightly relaxing the conditions to localize for
edge robots, and/or (ii) replacing the consensus-based transition algorithm with a
quorum-based one. Both transition procedures lasted around 10min.

The final shape formations in all three experiments shows good agreement with
the formed coordinate system (see Fig. 2). In the starfish experiment, the final

584 M. Gauci et al.

configuration contained 167 robots,1 whereas 164 robots had considered themselves
to be part of the shape according to the coordinate system (error = +1.82%). In
the wrench experiment, the corresponding numbers were 363 and 356 (error =
+1.97%), and in the U shape experiment, they were 294 and 284 (error = +3.52%).
Additionally, in the wrench experiment there were four robots in the final config-
uration that were not connected to the shape, but still inside its convex hull. The
reasons for the number of robots left in the final shape being larger than the count
from the coordinate system count are twofold, and due to hardware issues. Firstly,
some robots stopped working due to a low battery level, and robots close to the shape
are more susceptible to this because they have to wait the longest before starting to
move. Secondly, some robots suffered from miscalibration or malfunction of their
light sensor and/or motors, and as such failed to perform successful phototaxis or
antiphototaxis, occasionally becoming stuck to the shape. In the U shape experiment,
three in-shape robotswere knocked out of place bymoving robots; no in-shape robots
suffered this effect in the starfish experiment. These low errors and the high fidelity
of the final shapes confirm that although the motion strategy of the non-shape robots
is highly-parallelized and aggressive, the shape is not significantly distorted thanks
to a successful collision avoidance behavior.

4 Comparison of Self-disassembly to Additive
Self-assembly

The Kilobot platform not only allows us to validate complex collective behaviors
at scale, but also allows for a direct comparison of different algorithmic approaches
on the same hardware testbed. Here we compare two approaches to shape formation
using the Kilobot platform: (i) an additive self-assembly approach, where the shape
grows in layers starting from a seed [12] (similar to approaches such as [13]), and
(ii) the subtractive self-disassembly approach presented here, which is similar to the
Pebbles [7] and Miche [6] systems.

The self-disassembly algorithm has some disadvantages, most importantly the
fact that it is more wasteful because not all robots are used in the shape. This effect is
exacerbated in cases where the shapes bounding box (or convex hull) is only sparsely
populated by the shape. Also, the shape classes formed by both approaches have
different constraints. The self-assembly algorithm in [12] could form any simply-
connected shape (i.e. no holes), and there exist self-assembly algorithms that can
handle holes as well [4]. In contrast, the self-disassembly algorithm presented is
currently limited to shapes classes 1 and 2, and by its nature fundamentally lacks
the ability to handle holes in the shape. However, the self-disassembly algorithm can
form disjointed shapes from a single seed, which is much harder to achieve with
self-assembly algorithms.

1The number of robots in the final shape is defined as the maximal connected subgraph, with two
robots being considered adjacent if they are within 1 body length apart.

Programmable Self-disassembly for Shape Formation … 585

At the same time, the self-disassembly algorithm has a significant advantage
in terms of motion parallelism and time efficiency, both theoretically and exper-
imentally. Theoretically, the additive self-assembly approach builds in layers that
severely restricts parallelism, resulting in an O (n) scalability [12]. In contrast, self-
disassembly has a high level of parallelism, and the time taken is bounded by the
longest path that a non-shape robot takes in order to exit the convex hull, resulting in
O

(√
n
)
for a square or diameter of the shape in other cases. Experimentally however,

this effect is even more dramatic. The wrench experiment took around 6 hours to
self-assemble, and only around 40 minutes to form through self-disassembly. The
high efficiency comes from the fact that self-disassembly relies on fast imprecise
motion; phototaxis and antiphototaxis are simple robot behaviors that are feasible
at higher speeds and are collectively robust without collision avoidance. In contrast,
self-assembly requires precise edge-following motion which is reliable only at lower
speeds, and collectively creates traffic lanes that allow the slowest robot’s speed to
dominate. Finally, the wrench experiment also demonstrates that self-disassembly
algorithms can potentially achieve higher accuracy; in the previous self-assembly
algorithm the final wrench coordinate system had a significant bend whereas with
self-disassembly the coordinate system was close to perfect. For shapes with high-
aspect ratios, small errors and drift can easily accumulate in additive algorithms
whereas in a subtractive algorithm, the initial layout creates a long-range consistent
localization which the shape can take advantage of.

5 Conclusion and Future Work

In this paper we present and experimentally demonstrate a self-disassembly algo-
rithm on a large-scale robot collective (up to 725 Kilobots). Our theoretical and
experimental results suggest that such a self-disassembly algorithm can achieve a
wide class of shapes with high efficiency and accuracy, making it a good candidate
for shape formation in modular robots and programmable materials. In the future,
we intend to extend this algorithm by introducing a stochastic motion component,
in order to deal with a class of shapes for which phototaxis and antiphototaxis alone
are not sufficient for self-disassembly.

References

1. Anderson, C., Theraulaz, G., Deneubourg, J.L.: Self-assemblages in insect societies. Insectes
Sociaux 49(2), 99–110 (2002)

2. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Pro-
grammable parts: a demonstration of the grammatical approach to self-organization. In: Pro-
ceedings of the 2005 International Conference on Intelligent Robots & Systems (IROS) (2005)

3. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeu, E.: Self-
organization in Biological Systems. Princeton University Press, Princeton (2003)

586 M. Gauci et al.

4. De Rosa, M., Goldstein, S.C., Lee, P., Campbell, J., Pillai, P.: Scalable shape sculpting via hole
motion: motion planning in lattice-constrained modular robots. In: Proceedings of the ICRA
(2006)

5. Gauci, M., Nagpal, R., Rubenstein, M.: Programmable self-disassembly for shape formation
in large-scale robot collectives: online supplementary material (2016). http://goo.gl/VKnMmk

6. Gilpin, K., Kotay, K., Rus, D.: Miche: modular shape formation by self-disassembly. Int. J.
Robot. Res. 27, 345–372 (2008)

7. Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: One centimeter modules for programmable
matter through self-disassembly. In: Proceedings of the 2010 International Conference on
Robotics and Automation (ICRA) (2010)

8. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots.
IEEE Trans. Robot. 22, 1115–1130 (2006)

9. Haghighat,B., Platerrier,B.,Waegeli, L.,Martinoli,A.: Synthesizing rulesets for programmable
robotic self-assembly: a case study using floating miniaturized robots. In: Proceedings of the
10th International Conference Swarm Intelligence (ANTS) (2016)

10. Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with noisy
range measurements. In: Proceedings of the 2nd International Conference on Embedded Net-
worked Sensor Systems, pp. 50–61. ACM (2004)

11. O’Grady, R., Christensen, A.L., Dorigo, M.: Swarmorph: multirobot morphogenesis using
directional self-assembly. IEEE Trans. Robot. 25(3), 738–743 (2009)

12. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot
swarm. Science 345, 795–799 (2014)

13. Stoy, K., Nagpal, R.: Self-reconfiguration using directed growth. In: Proceedings of the 7th
International Conference on Distributed Autonomous Robotic Systems (DARS) (2004)

14. White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of
modular robots. In: Proceedings of the Robotics: Science and Systems I (2005)

15. Wolpert, L., Tickle, C., Lawrence, P., Meyerowitz, E., Robertson, E., Smith, J., Jessell, T.:
Principles of Development, 4th edn. Oxford University Press, Oxford (2011)

16. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.:
Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

17. Zykov,V.,Mytilinaios, E., Adams, B., Lipson,H.: Robotics: self-reproducingmachines. Nature
435, 163–164 (2005)

http://goo.gl/VKnMmk

Towards Differentially Private Aggregation
of Heterogeneous Robots

Amanda Prorok and Vijay Kumar

Abstract We are interested in securing the operation of robot swarms composed of
heterogeneous agents that collaborate by exploiting aggregation mechanisms. Since
any given robot type plays a role that may be critical in guaranteeing continuous and
failure-free operation of the system, it is beneficial to conceal individual robot types
and, thus, their roles. In our work, we assume that an adversary gains access to a
description of the dynamic state of the swarm in its non-transient, nominal regime.
We propose a method that quantifies how easy it is for the adversary to identify the
type of any of the robots, based on this observation. We draw from the theory of
differential privacy to propose a closed-form expression of the leakage of the system
at steady-state. Our results show how this model enables an analysis of the leakage
as system parameters vary; they also indicate design rules for increasing privacy in
aggregation mechanisms.

1 Introduction

To date, the issues of privacy and security remain poorly addressed within robotics at
large. These issues are particularly important in heterogeneous multi-robot systems:
by introducing heterogeneity by design, we impose a certain degree of uniqueness
and specialization. Indeed, it is generally acknowledged that exploiting heterogeneity
by design leads to more versatile systems [5, 19]. However, as a consequence, any
given robot type may be critical to securing the system’s ability to operate without
failure. Hence, we must find ways of protecting the system to avoid threats that arise
when the roles within the swarm can be determined by adversaries.

A. Prorok (B) · V. Kumar
University of Pennsylvania, Philadelphia, PA, USA
e-mail: prorok@seas.upenn.edu

V. Kumar
e-mail: kumar@seas.upenn.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_41

587

588 A. Prorok and V. Kumar

Fig. 1 Example scenario: an
adversarial spy-plane can
take a snapshot of a
heterogeneous robot swarm.
Even when the behavioral
state is observable, the goal
is to ensure that individual
robot types/roles remain
hidden

In order to collaborate and reap the benefits of their complementarity, robots cre-
ate coalitions. By doing so, the robots assemble into virtual or physical formations
of higher complexity and functionality. Indeed, aggregation is a mechanism that is
exploited by nature to enable interactions and information exchange between bio-
logical individuals (e.g., for predator protection and collective decision-making [10,
12, 18]). Inspired by the potential of such systems, swarm roboticists have tackled
the problem of engineering and analyzing aggregation behaviors [3, 4, 11, 16, 17].
The work in this paper goes beyond previous approaches by including privacy as
a novel component, and by posing a complementary problem formulation. Let us
consider the example application shown in Fig. 1. The scenario considers a heteroge-
neous robot swarm that is dynamically aggregating, in order to solve an underlying
problem. The swarm is observable from an outside vantage point, and is visually
homogeneous. By taking a snapshot of the swarm’s behavioral state, an adversary
gains access to observable system-level information that may allow him to infer
the role of a particular robot. By exploiting this knowledge, the adversary can then
scheme attacks on the system (e.g., by targeting a specific robot type that he knows
is critical to the system’s operation). As a consequence, we aim at answering the fol-
lowing question: How easy is it for the adversary to guess the role/type of any robot
in the system? To answer this question, we develop a model that enables the analysis
of privacy as a function of the parameters that define the swarm’s aggregation behav-
ior. In other words, we measure the loss of privacy caused by the observable state of
the swarm. The following sections develop our models, and elaborate the interplay
between privacy and swarm behavior.

Towards Differentially Private Aggregation of Heterogeneous Robots 589

2 Model of Robot System

We define a system of robots, where each robot is classified according to its capa-
bilities, and belongs to a species [19]. The system is composed of NS species
S = {1, . . . , NS}, with a total number of robots N , and N (s) robots per species such
that

∑
s∈S N (s) = N . At a high level of abstraction,wemodel the robots’ actions (and

interactions) as discrete stochastic events. We denote the states that compose the sys-
tem as aggregates aI , where the superscriptI is the list of species that compose the
aggregate. For example, a{1,2} is an aggregate of species 1 and 2. Aggregation mech-
anisms can be expressed very elegantly using the formalism of Chemical Reaction
Networks (CRN) [13, 15, 17]. Indeed, CRNs are a powerful means of representing
complex systems, and allow us to represent species interactions through linear aswell
as non-linear functions — though not a new field of research, many recent research
findings that simplify the calculations are accelerating the adoption of CRNs into
domains other than biology and chemistry [9]. Figure2 shows an example of three
species that aggregate.

We define our CRN as a tripletN = (A ,C ,R), whereA is the set of aggregate
states, C is the set of complexes, and R is the set of reactions.

State set A : The state set encompasses all states that arise in the system, withA =
{A1, . . . , ANA} where NA is the number of states. States relating to a specific species
s are denoted by A (s). The set of all states is denoted

A = NS∪
s=1

A (s) and A (s) = ∪
s∈I

aI (1)

We can identify the interactive (interspecific) states of an arbitrary subset of species
S̃ ⊂ S by considering the intersection of sets ∩i∈ ˜S A (i). Trivially, if ∩i∈ ˜S A (i) =
∅, then the species in S̃ do not interact. The CRN is a population model, and allows
us to keep track of the number of robots in each of the states (aggregates) inA . Hence,
we define a population vector x = [x1, . . . , xNA] ∈ N

NA≥0, where xi corresponds to the
population present in state Ai. We refer to the population vector x as the system-level
state. In order to simplify the formulation of our case study later on, we will also use
the notation xI to refer explicitly to the population in state aI .

Fig. 2 Example of
aggregation with three
heterogeneous species that
complement each other
within their aggregates.
Species 1 and 2 are
topologically equivalent

a{1}

a{2}

a{3}

a{1,2}

a{1,2,3}

r1

r2
r3

r4

590 A. Prorok and V. Kumar

Complex set C : The complex set is defined as C = {C1, . . . , CNC }, with NC the

number of complexes, and where Cj = ∑NA
i=1 ρijAi for j = 1, . . . , NC , with vec-

tor ρj = [ρ1j, . . . , ρNAj]� ∈ N
NA≥0. A complex is a linear combination of states, and

denotes the net input or output of a reaction. In other words, a complex denotes either
(i) the states that are required for a certain reaction to take place, or (ii) the states that
occur as an outcome of a certain reaction that took place. The non-negative integer
terms ρij are coefficients that represent the multiplicity of the states in the complexes.

Reaction set R : We use complexes to formulate reactions Rl : Cj
rl−→ Ck . The reac-

tion set is defined as R = {R1, . . . , RNR}, with NR the number of reactions, such
that Rl ∈ {(Cj, Ck)|∃ Cj, Ck with Cj → Ck} for j, k = 1, . . . , NC , and where rl is
the rate function rl(x; κl) : NNA≥0 �→ R≥0 parameterized by rate constant κl . In this

work, we use non-linear mass-action rate functions, and rl(x; κl) = κl
∏NA

i=1 x
ρij

i for
all Rl = (Cj, ·). A set of complexes that is connected by reactions is termed a linkage
class. The net loss and gain of each reaction is summarized in a NA × NR stoichiom-
etry matrix Γ , the columns of which encode the change of population per reaction.
In particular, the ith column of Γ corresponds to the ith reaction Ri = (Cj, Ck) and
thus, the column is equal to ρk − ρj. The elements Γji are the so-called stoichiomet-
ric coefficients of the jth state in the ith reaction. Positive and negative coefficients
denote products and reactants of the reaction, respectively.

A simple stochasticmodel forCRNs treats the systemas a continuous timeMarkov
chainwith state x ∈ N

NA≥0 (i.e., the population vector), andwith each reactionmodeled
as a possible transition for the state. Hence, the number of transitions between two
neighboring states is Poisson distributed (equivalently, the time between two transi-
tions is exponentially distributed). In order to calibrate rate constants κl on hand of
a real system, we proceed by measuring the effective transition rates (by observing
the number of transitions, assuming the number of robots is known), and using the
mass-action rate functions to solve for the parameter values.

Finally, we describe the dynamics of our system with help of two functions: an
execution function fN , and a query function q:

fN (x0, t) : N
NA≥0 × R≥0 �→ N

NA≥0

q(x) : N
NA≥0 �→ N

NO , NO ∈ N>0 (2)

The execution function fN samples a trajectory that describes the system’s evo-
lution over time, as defined by the states and reactions defined inN , and returns the
population vector x(t), evaluated at a fixed time t. The query function q allows us
to formalize the notion of an observable system-level state. It takes the population
vector x as input, and returns a vector of observable values y. In its most basic form,
the query function is the identity function, meaning that an observer is able to cap-
ture the exact (true) system-level state, and x = y. In this work, we assume that the
observed values take the form of simple summations over the population vector. This
assumption is well motivated when individual robots are not distinguishable from
an outside vantage point, and thus, only aggregated values can be observed. I.e.,

Towards Differentially Private Aggregation of Heterogeneous Robots 591

yi = ∑
j∈Ωi

xj with Ωi ⊂ {1, . . . , NA}, ∪i∈{1,...,NO}Ωi = {1, . . . , NA}, and all Ωi dis-
joint. In our aggregation case-studies, we use yi = ∑

I s.t.|I |=i xI for all aI ∈ A ,
which counts the number of aggregates of a given size.

3 Definition of Differentially Private Swarm

In the following, we put forward a model that measures the privacy of a dynamic
swarm of robots. Various measures of privacy have been proposed in the database
literature so far. The early work in [1] proposes a quantification of privacy in terms of
the amount of noise added to a true value, or, in other words, how closely the original
value of a modified attribute can be estimated. This measure, however, omits the
notion of side-information, i.e., any additional information about the underlying dis-
tribution that the adversary might own. The work in [8] extends the notion of privacy
to include such prior knowledge. The proposed measure suggests a quantification of
the largest difference between an adversary’s a-priori to a-posterior beliefs (which
corresponds to the worst-case scenario). It turns out that this model is significantly
stronger, since it accounts for infrequent, but noticeable privacy breaches. In 2006,
Dwork et al. introduced the notion of ε-indistinguishability, a generalization of the
measure in [8], and later coined the term of differential privacy [7]. Today, differ-
entially private mechanisms are enjoying tremendous success, due to their ability
of dealing with arbitrary side-information (a future-proof quality) and worst-case
scenarios [6]. For these reasons, we build our formalism on the theory of differential
privacy.

In a nutshell, differential privacy is the statistical science of trying to learn as
much as possible about a group while learning as little as possible about any of
its individuals. It considers two key components: a database that holds sensitive
information pertaining to individuals, and a query that releases information obtained
from the database via a mechanism. If an observer, who can request data from the
database (through a query), cannot significantly reduce the uncertainty of her prior
knowledge (i.e., side information) using the requested data, the query is considered
private.1 In particular, if an individual’s presence or absence in the database does not
alter the distribution of the output of the query by a significant amount, regardless of
the side information, then the privacy of that individual’s information is assured. Our
analogy applies the concepts of database and query to the context of heterogeneous
swarms. First, we consider a database that represents the composition of our robot
swarm, and that records the species of each of the robots. Second, we consider an
adversary who ‘queries the system’ by taking a snapshot of its observable state. The

1Side information can be understood as a prior probability distribution over the database [14].

592 A. Prorok and V. Kumar

robot 1

robot 2

robot N

...
database internalstate observable state

D fN (x0(D),τ) q◦ fN (x0(D),τ)x y

Fig. 3 The composition of the robot swarm is recorded in a database D . The function fN is a
stochastic process that executes the swarm and returns a system-level state output x. Query function
q reads the (internal) system-level state, and returns the observable output y. Parameter τ denotes
the time at which the system is observed

adversary may also own arbitrary side-information.2 Then, our analogous definition
of privacy is the notion that the adversary cannot infer to which species individual
robots belong.The compositionof our robot swarm is recorded in a databaseD ∈ S N

that consists of N entries, where each entry Di denotes the species of robot i. We
define an adjacency set Adj(D) that encompasses all databases D’ adjacent to D .
TwodatabasesD andD’ are adjacent if they differ by one single entry. In otherwords,
two robot swarms (represented byD andD’) are adjacent if they differ by one robot i,
meaning that robot i belongs to si inD (i.e.,Di = si), and to a different species s′

i = si

in D’ (i.e., Di = si). As previously described, the behavior of the robot swarm can
be described by tracking the system-level states. If we let the system run, it produces
a trajectory that can be evaluated at a given time τ , resulting in a snapshot of the
population vector x.3 Our query/response model consists of a user (adversary) who is
able to query this system-level state (at time τ). Hence, the query q ◦ fN (x0(D), τ)

depends on the swarm compositionD , and the time at which the system is observed
τ . The function x0(D) : S N �→ N

NA≥0 distributes the robots inD to their initial states.
A schema of this system is shown in Fig. 3.

Our aim is to analyze the differential privacy of the observed system output.
To this end, we propose a definition of differential privacy that applies to dynamic
swarms [20]:

Definition 1 (ε − indistinguishable heterogeneous swarm) A heterogeneous
swarm with dynamics defined by a system N is ε-indistinguishable (and gives
ε-differential privacy) if for all possible swarm compositions recorded in databases
D , we have

L (D) = max
D ′∈Adj(D)

∣
∣
∣
∣ln

P[q ◦ fN (x0(D), τ)]
P[q ◦ fN (x0(D ′), τ)]

∣
∣
∣
∣ ≤ ε. (3)

2In our context of a robotic swarm, an example of side information could be the number of man-
ufacturing parts ordered to build the swarm. If different robot species are made of different parts,
such information can be used to construct an initial guess about the number of robots per species.
Thus, one would be able to derive the probability of a robot belonging to a given species.
3We assume a snapshot adversary that gains system-level information at a specific time. This
system-level information is a design variable, called the observable system-level state.

Towards Differentially Private Aggregation of Heterogeneous Robots 593

where P[y] denotes the probability of the output y, obtained through query q of the
system-level state given by fN .

The value ε is referred to as the leakage. Intuitively, this definition states that if two
swarm systems are close, in order to preserve privacy they should correspond to
close distributions on their observable outputs. The above definition is stringent: for
a pair of distributions whose statistical difference is arbitrarily small, the ratio may
still result in an infinite value (leakage), when a point in one distribution assigns
probability zero and the other non-zero. Later, in our evaluations, we use a smooth
version of the leakage formula above, by adding an arbitrary, negligibly small value
ν, uniformly over the support of the probability distributions. This allows us to
differentiate between large and small mismatches of the output when one point of
a probability distribution returns zero. Due to this addition, we are able to show
continuous privacy trends as a function of the underlying parameters.

4 Complex-Balanced Swarms

The formula in Eq. (3) provides strong privacy guarantees. Yet, it requires that we
have a way of specifying the probability distribution over the swarm’s observable
output. The choice of method for computing this probability distribution depends on
the time at which the adversary takes the snapshot of the swarm. In [20], we presented
a method that computes the probability distribution at a specific time (which can be
during any regime, transient or stationary). Here, we present a method that computes
the probability distribution at steady-state, in the swarm’s operationalmode.We show
how this can be done very efficiently for a class ofCRNswhose stationary distribution
can be formulated analytically: complex-balanced CRNs. Later, in Sect. 5, we prove
that aggregation mechanisms are complex-balanced.

4.1 Preliminaries

If a CRN is complex-balanced, it admits a single equilibrium point x̄ ∈ R
NA [21].

When modeled deterministically, the average population (rather than an exact robot
count) in system states changes according to an ODE, described as follows4:

ẋ = MAψ(x), (4)

where ψ(x) returns a vector in RNC in which each entry ψj is the product of states in
complex j (i.e., ψj = ∏NA

i=1 x
ρij

i), whereM ∈ R
NA×NC is a matrix in which each entry

Mij is the coefficient of state j in complex i, and where matrixA ∈ R
NC×NC is defined

4The symbol x denotes the discrete state, whereas x denotes the average population.

594 A. Prorok and V. Kumar

as

Aij =

⎧
⎪⎨

⎪⎩

κji, if i = j, (Ci, Cj) ∈ R
0, if i = j, (Ci, Cj) /∈ R

−∑

(Ci,Ck)∈R
κki, if i = j

If this system admits Aψ(x̄) = 0, then the system is complex balanced, with equi-
librium point x̄ ∈ R

NA . Following Theorem (4.2) of [2], we can use the equilibrium
point x̄ to define the stationary distribution π̄D (x) = limt→∞ P[fN (x0(D), t)] of the
stochastically modeled system. If the system is irreducible, this stationary distribu-
tion consists of a product of Poisson distributions and is given by

π̄D (x) =
NA∏

i=1

x̄xi
i

xi! e−x̄i , x ∈ XN (D) (5)

where XN (D) is the set of all possible population vectors x that can arise from
the CRN N and the robot species specified by D . We note that when the system is
reducible, a similar equation exists, see [2].

4.2 Privacy

If the swarm’s CRN model is complex-balanced, we are able to derive a stationary
probability density function describing the steady-state of the system. We use this
description to formulate a closed-form measure of the loss of privacy.

Proposition 1 If a swarm’s CRN is complex-balanced and irreducible, then the
leakage at the steady-state of the corresponding swarm system defined by D , and
observed through the identity query qN (x) = x is

L (D) = max
D ′∈Adj(D)

x∈XN (D)∪XN (D ′)

∣
∣
∣
∣
∣

NA∑

i=1

xiln
x̄i

x̄′
i

− x̄i + x̄′
i

∣
∣
∣
∣
∣

(6)

where x̄ and x̄′ are the steady-states resulting from D and D’.

Proof Starting with Eq. (3), and using query qN (x) = x, we have

L (D) = max
D ′∈Adj(D)

∣
∣
∣
∣ln

P[fN (x0(D), τ)]
P[fN (x0(D ′), τ)]

∣
∣
∣
∣ . (7)

At steady-state we have limτ→∞ P[fN (x0(D), τ)] = π̄D (x), hence

L (D) = max
D ′∈Adj(D)

x∈XN (D)∪XN (D ′)

∣
∣
∣
∣ln

π̄D (x)
π̄D ′(x)

∣
∣
∣
∣ . (8)

Towards Differentially Private Aggregation of Heterogeneous Robots 595

Continuing with Eq. (5) we get

L (D) = max
D ′∈Adj(D)

x∈XN (D)∪XN (D ′)

∣
∣
∣
∣
∣
ln

(
NA∏

i=1

x̄xi
i

xi! e−x̄i

)

− ln

(
NA∏

i=1

x̄′xi
i

xi! e−x̄′
i

)∣
∣
∣
∣
∣
, (9)

which yields Eq. (6). �

Corollary 1 If a swarm’s CRN is complex-balanced and irreducible, then the leak-
age at steady-state of the corresponding swarm system defined by D , and observed
through the query qN (x) = y, with y ∈ N

NO≥0 and each yi of the form
∑

j∈Ωi
xj, with

Ωi ⊂ {1, . . . , NA}, ∪i∈{1,...,NO}Ωi = {1, . . . , NA}, and all Ωi disjoint is

L (D) = max
D ′∈Adj(D)

y

∣
∣
∣
∣
∣
∣
∣
ln

∑

{x|y=qN (x)∧x∈XN (D)}
π̄D (x)

∑

{x|y=qN (x)∧x∈XN (D ′)}
π̄D ′(x)

∣
∣
∣
∣
∣
∣
∣
. (10)

This formulation, even though less compact than Eq. (6) above, still provides a fast
means of computing the leakage for complex-balanced swarms — in particular, the
alternative to using this formulation is to compute the PMF via the Chemical Master
Equation [20], which, in our experience, is at least one order of magnitude slower.
Moreover, we note that Eq. (6) is linear in x, and can, thus, be solved by integer
linear programming (ILP) methods. In summary, the analytical formulation for the
privacy of complex-balanced swarms allows us to compute the leakage efficiently.
In the remainder of this work, we demonstrate the benefit of this formulation with
case studies on aggregation.

5 Aggregation

To apply Corollary 1, we must first show that aggregation is a complex-balanced
mechanism. In order to develop our proof, we represent the topology of the reaction
networks through directed acyclic graphs (DAG) (see the example in Fig. 4).

Definition 2 (Aggregation − DAG) An aggregation-DAG is a topological represen-
tation of a CRN that defines an aggregation mechanism. It is a directed acyclic graph,
such that each node forms a complex Ck , the sum of its in-neighbors form complex
Cj, and its incoming edges form the reactionsCj

rm−−⇀↽−−
rn

Ck , with rm, rn > 0. Furthermore,

a node has either 0 or > 1 in-neighbors.

Proposition 2 The aggregation of a heterogeneous swarm of robots described by a
CRN is a complex-balanced mechanism if and only if the underlying CRN can be
represented by an aggregation-DAG.

596 A. Prorok and V. Kumar

a{1} a{2} a{3} a{3} a{4}

a{1,2} a{3,4,5}

a{1,1,2} a{1,2,3,4,5}

Fig. 4 Example of an aggregation mechanism that is represented as a directed acyclic graph. There
are L = 4 linkage classes, NC = 8 complexes, and rank(Γ) = 4

Proof According to Theorem 4.1 of [21], a CRN is complex-balanced if (i) it is
weakly reversible and (ii) it has deficiency zero. Condition (i) requires all complexes
to be connected via some reaction pathway (cf. Definition 2.2 in [2]). If all aggregates
can be decomposed as well as composed, this is trivially satisfied. The deficiency
of a reaction network is δ = NC − L − rank(Γ), which is the number of complexes
minus the number of linkage classes, each of which is a set of complexes connected
by reactions, minus the network rank, which is the rank of the stoichiometry matrix
Γ . Hence, wewill show thatNC = L + rank(Γ). FromDefinition 2 it follows that the
number of linkage classes L is equal to the number of parent nodes, and the number
of complexes NC is equal to twice the number of parent nodes. Thus, NC = 2L, and it
remains to be shown that rank(Γ) = L. Matrix Γ is of size NA × NR, with NR = 2L
(the network is weakly reversible). Since each new linkage class includes a new
parent node (i.e., aggregate state), there are L linearly independent columns in Γ ,
and, hence, rank(Γ) = L. �

5.1 Example

We consider the example shown in Fig. 2. The system is composed of three species,
S = {1, 2, 3}. Aggregates are formed with one robot per species, and with species 1
and 2 aggregating prior to species 3. This behavior is formalized with the following
reactions:

a{1} + a{2} r1−⇀↽−
r2

a{1,2}, a{1,2} + a{3} r3−⇀↽−
r4

a{1,2,3} (11)

The states of this system are A = {a{1}, a{2}, a{3}, a{1,2}, a{1,2,3}}. Our population
vector keeps track of the number of robots per state, and is written

x = [x{1}, x{2}, x{3}, x{1,2}, x{1,2,3}] (12)

We consider an adversary who is able to observe the number of non-aggregated
robots, the number of 2-aggregates, and the number of 3-aggregates. Hence, we
formulate the observable data as y = [y1, y2, y3] with

y1 = x{1} + x{2} + x{3}, y2 = x{1,2}, y3 = x{1,2,3}. (13)

Towards Differentially Private Aggregation of Heterogeneous Robots 597

5.1.1 Analysis

We compute the steady-state x̄ by solving the deterministic system MAκψ(x̄) = 0:

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

−κ1 0 κ2 0
0 −κ3 0 κ4
κ1 0 −κ2 0
0 κ3 0 −κ4

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎣

x̄{1}x̄{2}
x̄{1,2}x̄{3}
x̄{1,2}
x̄{1,2,3}

⎤

⎥
⎥
⎦ = 0. (14)

Since the number of robots per species is constant, we have

x̄{1} + x̄{1,2} + x̄{1,2,3} = N (1)

x̄{2} + x̄{1,2} + x̄{1,2,3} = N (2)

x̄{3} + x̄{1,2,3} = N (3). (15)

The equations above can be plugged into Eq. (14) to give a quartic equation:

0 = κ1

(

N (1) − N (3) − x̄{1,2} + κ4N (3)

κ3x̄{1,2} + κ4

)

·
(

N (2) − N (3) − x̄{1,2} + κ4N (3)

κ3x̄{1,2} + κ4

)

− κ2x̄{1,2}

(16)

which only depends on variable x̄{1,2}. The solution to the remaining variables x̄{1},
x̄{2}, x̄{3}, x̄{1,2,3} of this system can be found by substitution. Of the four possible
solutions, there is only a single all-positive solution (which corresponds to the single
equilibrium of the complex-balanced system). Finally, we can compute the leakage
L (D) of the observed system according to Corollary 1.

5.1.2 Evaluation

The observable state is a function of the system-level state, and is defined by the
number of robots per species N (s), and by reaction rates κ . Hence, we vary these
values to identify their relation to privacy. We note that this relationship is made
mathematically evident in Eq. (16). We compute the leakage for two settings, shown
in Figs. 5 and 6. In the first setting, we fix the reaction rates and vary the robot
populations of two species, while keeping the third species fixed. In Fig. 5a, we
observe a clear “valley" of minimum leakage values for an equal number of species
1 and 2. The overall minimum is at N (1) = N (2) = 220, N (3) = 200. The plot also
reveals that increasing the total number of robots increases privacy, as shown by the
expansion of the valley in the upper right corner. Panel Fig. 5b shows the resulting
leakage for varying species 2 and 3. We observe a sharp drop in privacy as the
population N (2) deviates from N (1), with a minimum at N (1) = N (2) = 220, N (3) =
200 (as previously observed in Fig. 5a).

598 A. Prorok and V. Kumar

(a) (b)

300150

300

150

N(1)

N(2)

9.6

3.2
300150

300

150
N(2)

N(3)

L
ea
ka
ge

Fig. 5 Leakage for varying populations in the range [150, 300], while keeping the third species
fixed, and with fixed reaction rates κ = 1. In a N (1) and N (2) vary, with N (3) =200, and in b N (2)

and N (3) vary, with N (1) =220

(a) (b)
2.0

0.0
2.00.0

κ1

κ3

8.0

0.0

2.0

0.0
2.00.0

κ2

κ4

L
ea
ka
ge

Fig. 6 Leakage for varying aggregation rates with robot populations fixed at N (1) = N (2) = 220,
N (3) = 200. In c we vary the rates κ1, κ3 at which aggregates form, while fixing κ2 = κ4 = 1. In
d we show the reverse (varying the rates at which aggregates decompose)

We conclude that species that are topologically equivalent (species 1 and 2, as
visible in Fig. 2) should have a balanced number of robots for increased privacy. In
the second setting (Fig. 6), we vary the reaction rates while keeping the robot popu-
lations fixed. Figure5b and c indicate that if we increase the probability of reaching
larger sized aggregates, either by increasing the number N (3), or by increasing the
aggregation rates, we decrease privacy. Indeed, in this setting, the 2-aggregates and
3-aggregates are unique, hence, they expose more information about the system.

5.2 Evaluating the Impact of Topology and Parameters

The results of the preceding example indicate that both the topology and parameters
of the CRN affect privacy. To expose the impact of a CRN’s topology on the leakage,
we proceed by considering aggregation-DAGs that can be represented by binary
trees. For a system composed of 16 species, we evaluate the leakage for each of the

Towards Differentially Private Aggregation of Heterogeneous Robots 599

Fig. 7 Leakage for binary
aggregation trees of varying
topology (with 16 leaves).
Trees of same depth are
assembled by one violin plot
that features a kernel density
estimation of the underlying
distribution. The Pearson
correlation coefficient
evaluated on this data is 0.74

4

6

8

10

4 5 6 7 8 9 10 11 12 13 14 15
L

Depth of Tree

Fig. 8 Leakage for 2000
trees with identical topology
(symmetric binary tree, with
8 leaves), and with all 7
aggregation rates varied
uniformly and randomly in
the range [0.1, 2]
(decomposition rates are
held constant, equal to 1).
The Pearson correlation
coefficient evaluated on this
data is 0.97

1.05 1.15 1.25 1.35 1.45

2

4

6

8

0

L

Average Aggregate Size

possible 10905 unlabeled binary rooted trees with 16 leaves (which corresponds to
theWedderburn-Etherington number). Figure7 shows the leakage as a function of the
depth of the tree.We see a clear correlation between irregular, unbalanced topologies
(with greater depth) and high leakage values, and betweenmore balanced, symmetric
topologies (with smaller depth) and low leakage values.

Next, to expose the impact of a CRN’s parameters (i.e., aggregation rates) on the
leakage, we proceed by considering a symmetric binary tree with 8 leaves (of depth
3), and we vary the aggregation rates uniformly and randomly in the range [0.1, 2],
gathering 2000 datapoints. Figure8 shows the leakage as a function of the average
aggregate size (at steady-state) for each set of rates. We see that as the average size
increases, so does the leakage.

These results together indicate that privacy can be increased by (i) designing
aggregation mechanisms that are balanced (asymmetric aggregation mechanisms
createmore unique aggregates, and hence, revealmore information about the system),
or by (ii) throttling the aggregation of larger aggregates (which tend to be more
unique).

600 A. Prorok and V. Kumar

6 Conclusion

In this work, we showed how to analyze the privacy of aggregation mechanisms
in heterogeneous robot swarms. Our main contribution consists of a closed-form
expression that quantifies the leakage of dynamic swarms that can be modeled as
complex-balanced reaction networks.Wedemonstrated that aggregationmechanisms
are complex-balanced, and hence, were able to use our formula to efficiently evaluate
various settings. The reported results showed how privacy levels vary, as the topology
as well as the parameters of the aggregation mechanism are varied. This means that
we are able to identify the relation between privacy loss at a macroscopic level,
and swarm design parameters (such as reaction rates, reaction topology, and swarm
composition). As a consequence, our framework paves the way for methods that
control the swarm, while guaranteeing bounds on privacy loss. We intend to further
this line of work by developing active privacy mechanisms that are able control the
loss of privacy, while maintaining the overall performance of the underlying swarm
system.

Acknowledgements The authors would like to thank the anonymous referees for their constructive
feedback. We gratefully acknowledge the support of ONR grants N00014-15-1-2115 and N00014-
14-1-0510, ARL grant W911NF-08-2-0004, NSF grant IIS-1426840, and TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and
DARPA.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving datamining.ACMSigmodRecord 29(2), 439–450
(2000)

2. Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency
zero chemical reaction networks. Bull. Math. Biol. 1–23 (2010)

3. Cheng, J., Cheng, W., Nagpal, R.: Robust and self-repairing formation control for swarms of
mobile agents. AAAI (2005)

4. Correll, N., Martinoli, A.:Modeling self-organized aggregation in a swarm ofminiature robots.
In: IEEE International Conference Robotics and Automation (ICRA) (2007)

5. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., et al.: Swarmanoid: a
novel concept for the study of heterogeneous robotic swarms. IEEERobot. Autom.Mag. 20(4),
60–71 (2013)

6. Dwork, C.: Differential privacy: a survey of results. In: Theory and Applications of Models of
Computation, pp. 1–19. Springer, Berlin (2008)

7. Dwork, C.: Differential privacy. In: Encyclopedia of Cryptography and Security, pp. 338–340
(2011)

8. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data
mining. In: the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium, pp. 211–222.
ACM Press, New York (2003)

9. Feinberg,M.: Some recent results in chemical reaction network theory. In: Patterns andDynam-
ics in Reactive Media, pp. 43–70. Springer, New York (1991)

10. Garnier, S., Jost, C., Gautrais, J., Asadpour,M., Caprari, G., Jeanson, R., Grimal, A., Theraulaz,
G.: The embodiment of cockroach aggregation behavior in a group of micro-robots. Artif. Life
14(4), 387–408 (2008)

Towards Differentially Private Aggregation of Heterogeneous Robots 601

11. Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508
(2008)

12. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tache, F., Said, I., Durier, V.,
Canonge, S., Ame, J.M., Detrain, C., Correll, N., Martinoli, A., Mondada, F., Siegwart, R.,
Deneubourg, J.L.: Social integration of robots into groups of cockroaches to control self-
organized choices. Science 318(5853), 1155–1158 (2007)

13. Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: analogy with
chemical kinetics. Artif. Life 1(4), 413–427 (2010)

14. Kasiviswanathan, S.P., Smith,A.: A note on differential privacy:Defining resistance to arbitrary
side information. CoRR abs. (2008)

15. Klavins, E., Burden, S., Napp, N.: Optimal rules for programmed stochastic self-assembly. In:
Robotics: Science and Systems (2006)

16. Martinoli, A., Ijspeert, A.J., Gambardella, L.M.: A probabilistic model for understanding and
comparing collective aggregation mechanisms. In: Advances in Artificial Life, pp. 575–584.
Springer, Berlin (1999)

17. Matthey, L., Berman, S., Kumar, V.: Stochastic strategies for a swarm robotic assembly system.
In: IEEE International Conference onRobotics andAutomation (ICRA), pp. 1953–1958. IEEE,
New York (2009)

18. Parrish, J.K., Edelstein-Keshet, L.: Complexity, pattern, and evolutionary trade-offs in animal
aggregation. Science 284(5411), 99–101 (1999)

19. Prorok, A., Hsieh, A.M., Kumar, V.: Formalizing the impact of diversity on performance in a
heterogeneous swarm of robots. In: IEEE International Conference on Robotics and Automa-
tion (ICRA) (2016)

20. Prorok, A., Kumar, V.: A macroscopic privacy model for heterogeneous robot swarms. In:
International Conference on Swarm Intelligence (2016)

21. Siegel, D., MacLean, D.: Global stability of complex balanced mechanisms. J. Math. Chem.
27, 89–110 (2000)

Part VII
Multi-Robot Systems in Applications

Construction Planning for a Modularized
Rail Structure: Type Selection of Rail
Structure Modules and Dispatch Planning
of Constructor Robots

Rui Fukui, Yuta Kato, Gen Kanayama, Ryo Takahashi
and Masayuki Nakao

Abstract Remote robot operation is highly anticipated for use in hazardous environ-
ments such as nuclear accident sites. We propose an automated construction system
of a modularized rail structure for working robots to have access to any operational
point. The modules are delivered and constructed through the cooperation of transfer
robots and a connector robot. To realize time-efficient and economical construction
of the structure, it is necessary to integrate three planning procedures: path planning
from a start point to the operational point, type selection planning of rail structure
modules, and dispatch planning of constructor robots. This paper describes newly
developed algorithms that plan the type selection of all rail structure modules using
rules of thumb, and which plan the dispatch of robots to deliver or construct modules
avoiding deadlock. A simulation experiment demonstrates that the geometrical con-
straint conditions of the structure can reduce the search space of selecting module
types.

R. Fukui (B) · Y. Kato · G. Kanayama · R. Takahashi · M. Nakao
Department of Mechanical Engineering, Graduate School of Engineering,
The University of Tokyo, Tokyo, Japan
e-mail: fukui@ra-laboratory.com

Y. Kato
e-mail: kato@hnl.t.u-tokyo.ac.jp

G. Kanayama
e-mail: kanayama@hnl.t.u-tokyo.ac.jp

R. Takahashi
e-mail: r.takahashi@hnl.t.u-tokyo.ac.jp

M. Nakao
e-mail: nakao@hnl.t.u-tokyo.ac.jp

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_42

605

606 R. Fukui et al.

1 Introduction

Robot operations are highly anticipated at the accident site of Tokyo Electric Power
Company’s Fukushima No.1 Nuclear Power Plant (1F) because the high intensity of
radiation makes human operations difficult and dangerous. Moreover, a secondary
disaster such as collapsing rubblemight occur [9]. To date, various remote-controlled
robots have been developed to do specific tasks at a working destination point. Some
robots are actually sent inside the reactor buildings in 1F and conducted missions
with great success, such as observations of interior spaces, monitoring of radiation
levels, and acquisition of samples [3, 5, 8]. However, for the completion of decom-
mission, it is especially necessary to bringmelted debris outside 1F. To do so,multiple
operational robots must locomote back and forth repeatedly to deliver the necessary
resources. The robots have payload limitations for transfer. Therefore, they must
locomote repeatedly. Some existing rescue robots have legs or crawlers as a loco-
motive mechanism. Mechanisms of these types have limited mobility, particularly in
an upward direction or on terrain with rubble. Moving these robots inside 1F forces
the operational workers of these robots to undergo great stress because of the small
field of vision. To use operational robots effectively, it is necessary to construct an
environment for ease of locomotion and operations.

As presented in Fig. 1, Fukui et al. propose an “Automated Construction System
of a Modularized Rail Structure” [1]. Robots locomote on surfaces of modularized
rail structures like a gscaffold,h which means that this structure is a locomotion and
operation environment for robots. Robots have a driving unit and hangingmechanism
in the bottom part to prevent falling from the structure. The structure is constructed
automatically and successively by specialized constructor robot groups. Therefore,
robots can move upward and avoid obstacles easily if the rail structure is properly
located. Up to the present, various kinds of modular robots have been developed.
Terada et al. proposed an automated construction system called Automatic Modu-

Fig. 1 Conceptual sketch of
“Automated Construction
System of Modularized Rail
Structure”

Construction Planning for a Modularized Rail Structure … 607

lar Assembly System (AMAS), and discussed the hardware system and distributed
control method [16]. Their concept is similar to ours in the sense that the system is
composed of separate structure modules and an assembler robot. However, objec-
tive of our system is to construct paths for robot locomotion and operation in haz-
ardous environment. Therefore, the complex robot action comprising multiple DOFs
(Degrees of Freedom) is not suitable for secure operation. We apply the concept
of “Self-Reconfigurable Robotics” [14] to our system. Consequently, a function of
changing the robot attitude is implemented in some modules. This implementation
decreases the total number of actuators; then less malfunction of robot operation
occurs because of high radiation and rubble.

The rail structure is modularized to be transferred easily. It has modules of four
types. Each module has different functions as described below. Static modules have
no actuators inside. Dynamic modules include actuators inside, so that a robot on it
can be rotated. Connecting mechanisms among modules are standardized. Straight
modules have a connectingmechanismofmodules. The legmodulemounts extensive
adaptive leg mechanisms, which enable support of the whole weight of the rail
structure. An axial rotation module builds in a rolling rotation mechanism. The
intersection module has a function for the branch structure. Two built-in turntables
can rotate in the yaw direction, independently of each other.

The following two types of constructor robots conduct construction motion of
the structure. A transfer robot carries one module and moves on the rail structure to
the leading end. The connector robot receives a module from a transfer robot and
connects it to the leading end of the structure.

As in previous studies of this system, we verified the module delivery from a
transfer robot to a connector robot in three robot attitudes. In addition, straight mod-
ules and leg modules are developed [2]. However, to apply this system to the real
world, e.g. at 1F, it is necessary to develop a construction planner of rail structures
that comprises three subtasks. (1) Path planning of a modularized rail structure that
calculates a rail structure path from a start point to a destinationwhile avoiding obsta-
cles. (2) Type selection of modules that decides the attitude and type of all consisting
modules. (3) The dispatch planner of robots that calculates robot behavior, as well
as the total construction time from the module-assigned structure and robot numbers
and specifications.

In this paper, we develop a construction planner of a modularized rail structure
with a combination of the type selection of modules, which is a unique problem in
this system, and the dispatch planning of constructor robots. The objective of this
research is to clarify the influence on total construction time by some means to select
module types and the specification of constructor robots using a developed planner.

The remainder of paper is organized as follows. In Sect. 2, we present the basic
concept of the proposed planner and discuss the salient technical problems. The
detailed design and implementation are described in Sect. 3.We applied the proposed
planner to test the environment which imitates 1F and conducted an experiment to
generate construction planning in Sect. 4. Section5 is the conclusion.

608 R. Fukui et al.

2 Construction Planning for a Modularized Rail Structure

2.1 Path Planning of a Modularized Rail Structure

Figure2 presents the process flow of the proposed construction planning for the
modularized rail structure. In this step, the inputs are the positions and attitudes
of the starting and goal points of rail structures, and distribution of environmental
obstacles. The output is a trajectory. This is the list of coordinates of sequential
modules connecting the start point and goal point avoiding obstacles. To evaluate the
whole system, construction planning is necessary to ascertain the total construction
time and the total number of actuators in the whole structure. These two parameters
are calculated using the following two steps: module type selection and dispatch
planning of robots. Therefore, the suitable trajectory is obtained using the repetition
of construction planning, evaluation of trajectory, and readjustment of the trajectory.

This step can be regarded as a path planning problem in a three-dimensional dis-
crete space. Related studies have developed an algorithm to solve this problem in
robotics. Many tactics have been proposed such as the roadmap method and poten-
tial method [11]. In addition, a method to recalculate and reshape the trajectory is
proposed if the distribution of obstacles has changed while a robot is moving [17].
We realize our trajectory planner while applying these developed methods.

2.2 Type Selection of Modules in Trajectory

In this phase, the input is the coordinate list of all module center points from the start
point to the goal point. We regard the following two conditions as constraints: (1)
supporting mechanisms in leg modules can endure the force and moment of the rail
structure during and after construction, and (2) robots can reach at least one surface
of a module located in a goal point after locomoting on structures using dynamic
modules.

Fig. 2 Process flow of construction planning

Construction Planning for a Modularized Rail Structure … 609

Fig. 3 Adding an axial module to the rail structure

Then the attitudes of modules and types of modules to assign (straight, leg, axial
rotation and intersection) are determined. These are the output of this part. Especially,
if one axial rotation module is installed to the structure, as depicted in Fig. 3, then
robots can move to another surface using the additional axial rotation module. This
movement changes the rail structure into a double-track pathway. It enables robots to
locomote effectively and decrease the total construction time. However, the increase
of axial rotation modules raises the risk of the probability of malfunction. It also
raises the total cost of the module. Consequently, the number of additional axial
rotation modules should be determined properly after consideration of this tradeoff.

2.3 Dispatch Planning of Construction Robots

In this step, the following are given as inputs: (a) position, attitude and type of all
modules to be constructed, and (b) specifications of constructor robots such as num-
bers to be dispatched, maximal velocity, and payload. The outputs are the entire
construction processes until the final module has been constructed, avoiding dead-
locks and interference. The total construction time of the rail structure is calculated
sequentially from these processes. Constructor robots locomote freely on the rail
structure, but they cannot pass each other in the same surface. It is necessary to use
another surface of the structure as a by-path.

For underground mining [4] and railways [7], studies have been conducted to
optimize behaviors of vehicles according to the distribution of ore or passengers in a
static locomotion environment. Otani et al. simulated and numerically calculated the
construction time of a solar power plant unit in outer space, applying a multi-agent
system [12]. This research is similar to that for our system because robots locomote
on what is carried and constructed by themselves, which means that the locomotion
environment for robots extends along with the construction. Nevertheless, because
of the lower gravity, robots can easily move in any direction on hexagon-shaped solar
panels. This setup poses smaller restrictions to robot locomotion.

Peasgood et al. created an algorithm and succeeded in avoiding deadlock while
moving robots [13]. First, a locomotion environment for robots is interpreted as a
graph structure. Then the propermotion order for robots is assigned from calculation.
For this study, the authors adapt this concept to convert the modularized rail structure
into a graph structure. They create decision rules based on the structure.

610 R. Fukui et al.

2.4 Technical Issues and Assumed Constraint Conditions
for the Proposed System

From the three steps described above, we address type selection of the modules and
dispatch planning of modules because in the path-planning research field includes
many proposals that were produced from previous research. In addition, many avail-
able libraries can be used, such as OMPL [15]. In terms of type selection, we attempt
to ascertain the influence on the total construction time of adding an axial rotation
module to the rail structure. Especially for dispatch planning, we aim to clarify the
effect on total construction time of an increase of the module supply ability because
of the addition of transfer robots.

In this paper, we set the following as constraint conditions of proposed system to
reflect the effects of technical issues on the total construction time. (a) In advance,
some inspection robots can obtain available environment information. The distri-
bution of obstacles does not change during construction. (b) The modularized rail
structure has only one start and goal point. Certainly it can have branches and mul-
tiple goal points, but we suppose a longest path in possible multiple paths from the
same start point. (c) There is no loop structure of modules. (d) There is no disper-
sion in the mobility of robots. (e) Malfunctions of robots do not occur in structure
construction, but they surely have to be considered in future. (f) Module connecting
motions by connector robots have a priority to the module transferringmotion. (g) To
avoid interference or deadlocks of constructor robots, they can wait on the structure,
but not detour. (h) The robot length is less than the size of one module.

3 Design and Implementation of Construction Planning

3.1 Type Selection of Rail Structure Modules

Details of the process flow of module type selection are depicted in Fig. 4. The atti-
tude of each module is calculated from the relative position of the two immediately
adjacent modules. Type selection of modules consists of the five steps below.

L A I

A

L
A

I A

I

I

L A I

A

A
L
A

I A

L S A I

A
S
A
L
A

I A

L I

L

I

Fig. 4 Flow of function module assignment

Construction Planning for a Modularized Rail Structure … 611

(1) Intersectionmodules are assigned at the corner points of structures,which changes
the extension direction of modules, to alter robots’ movement direction.
(2) Leg modules are assigned after consideration of the following conditions: (a)
supporting mechanisms in leg modules can support the whole weight of a structure
during and after construction; also, (b) in module connection processes, mechanical
position and attitude errors between amodule being constructed by a connector robot
and a placed module being attached to this module are smaller than the permissive
tolerances. According to the load balance calculation, it is sufficiently sustainable
to allocate one leg module in five modules. However, it is prohibited to assign leg
modules to a position next to intersection modules. Robot access to turntables on
both sides of the intersection modules is necessary to realize effective robot transfers
to the goal point using a double track structure without congestion. Although this
selection step does not guarantee that the total number of leg modules is minimized,
it outputs candidates of type selection results satisfying the constraint conditions in
a reasonable elapsed time.
(3) Mandatory axial rotation modules are assigned. Axial rotation modules are allo-
cated in places adjacent to intersectionmodules to allow robots to reach and use upper
and bottom turntables of intersection modules. At least one axial rotation module
is put between intersection modules. This ensures that robots can locomote on any
surfaces of structures using axial rotation function.
(4) Additional axial rotation modules are assigned. They are placed to limit the max-
imal distances between axial rotation modules in descending order. This shortens the
distance from a connection place of an axial rotation module to another connection
place of the next axial rotation module. After this step, the area in which robots
must move on a single-track structure is decreased, which engenders the reduction
of construction time.
(5) Straight modules are finally assigned to the remaining unassigned modules.

3.2 Dispatch Planning of Constructor Robots

The following are the process flows of the dispatch planning. The flows generate
robot behavior of module transferring and connecting and total construction time of
the structure.

(1) An undirected graph structure is generated from the assigned rail structure. This
structure presents the connection relation of each surface of modules.
(2) Using the graph, the shortest path for robots from the start point to a goal point is
calculated. A connector robot locomotes and connects all modules along the shortest
path. Paths of transfer robots are determined to convey each module to the standby
position of the connector robot on the locomotion path described above.
(3) Deadlock-avoiding rules are implemented in all path-determined robots. Then
the state of all robots is updated sequentially. They move according to the rules. The
updating ends if all modules are connected and constructed.

612 R. Fukui et al.

(a) (b)

(c)

Fig. 5 a Converting process from a rail structure to a graph: b outward trajectory and c homeward
trajectory of robots

Figure5a presents the concept of the process, interpreting a rail structure in an
undirected graph. Respective surfaces of the modules correspond to nodes of the
graph. Nodes where robots can move directly are connected by edges. Axial rotation
modules and intersection modules connect nodes that have different normal vectors.
The weight of edges corresponds to the necessary time for robot locomotion and
dynamic module operations.

From the generated graph structure, an outward and homeward trajectory to the
goal point module is calculated as shown in Fig. 5b and c. The outward trajectory is
used for constructor robot locomotion andmodule transfer to the end of the structure.
After module delivery, vacant transfer robots go back to the start point along the
homeward trajectory. The interference derived from crossing transfer robots in same
surfaces of rail structure will be minimized by decreasing the common nodes to
outward and homeward trajectory as little as possible. In the graph structure, an
outward trajectory equals the shortest path from a node of start point module to a
node of goal point, which is calculated using the Dijkstra algorithm. The homeward
trajectory is the shortest path which includes the fewest number of nodes in the
outward trajectory.

After a connector robot completes construction of a module, it moves forward to
the next construction position and waits there until the arrival of another module. A
transfer robot carries and transports modules to the waiting position of the connector
robot. All transfer robots’ moving paths are determined to go through as many nodes
as possible in the homeward and outward trajectory. A state transition diagram of
constructor robot updating is presented in Fig. 6. Each node can place only one robot
because of the lengthy relation between the robot and module. Both module delivery
motions (DELIVERY) and module connection motions (CONSTRUCTION) are
conducted only when the robot exists at node. After these motions, the robot state
becomes at node (ATNODE). It might block other robots’ locomotion trajectories
and deadlock might happen if a robot state is ATNODE and it attempts to move to
next node (MOVE). In this situation, a checking algorithm must be designed and
administered.

Construction Planning for a Modularized Rail Structure … 613

Fig. 6 Robot state transition
diagram

WORK_
DELIVERY

INITIAL DONEATNODE

WAITWORK_
CONSTRUCTION

WAIT_FOR_
DELIVER

REFILL MOVE
: on node
: on edge

3.3 Re-Use of the Previous Calculation Results

Rnow is the configurations of the modularized rail structure to be simulated in its
current condition of construction with total module number N . If rail structure Rold

exists, it matches the position, attitude, and types of modules from start point to
the n th module. Moreover, the input of dispatch planning is identical between Rnow

and Rold . Under these circumstances, the behaviors of all constructor robots are
completely the same from the beginning of construction to the moment immediately
before a transfer robot carrying the n + 1 th module is installed to the rail structure.
Consequently, this part of results of updating the robots state can be reusable by
copying from Rold to Rnow. S(k), the required updating steps to complete construction
of the k th module, is proportional to the square of module total numbers if a small
number of transfer robots are in operation. Reducible steps δs is up to 25% compared
to the situation without re-use of n = N/2D

δs = S(N) − (S(N) − S(n)) = S(n) = 0.25S(N) (1)

4 Experiment for Generating Construction Planning
for a Rail Structure

Using the construction planning designed and implemented in the previous section,
we conducted a generation of construction plans using an experiment imitating the
situation inside 1F. The aim is to reveal the influence of the number of transfer robots
and additional axial rotation modules on the construction time.

4.1 Test Trajectory

Figure7a portrays the test trajectory. It passes a gate from the starting point, which
is the surface of the 1F reactor building. Then, it moves through the inside Reactor
Pressure Vessel (RPV), and an open area of Pressure Containment Vessel (PCV). It
finally reaches the goal point: the pedestal which is the understructure of RPV.

614 R. Fukui et al.

(a) (b)

Fig. 7 a Test trajectory and specifications and b experimental conditions

It is assumed that fuel debris, melting from a reactor core, exists in the pedestal.
An opening of RPV in the pedestal is used for replacing control rods. The opening
is accessible from PCV. Regarding approaches to remove fuel debris, a submerged
approach is considered, but it presupposes that the submerged condition of PCV
will have been preserved. Therefore, alternative approaches must be used to access
through some penetrations or hatches on the side of PCV for taking humans or
supplies in or out. Shape changing robot that Okada et al. [10] developed made an
investigation inside 1F Unit 1, and verified the possibility of access from PCV to
the pedestal. Additionally, it was revealed that numerous obstacles such as pipes and
pumps exist inside PCV. Robot moving path and the information of 1F [6] are taken
into consideration to design test trajectories.

4.2 Experiment of Generating Construction Planning

Using the test trajectory described before, an experiment was conducted to reveal
influences that the number of additional axial rotation modules and the number
of transfer robots have on the construction time. Figure7b presents experimental
conditions chosen based on the performance of transfer robots, construction robots,
and straightmodules developed in earlier studies. A personal computer (Core i7-4702
HQ (3.2 GHz), memory 16 GB) was used for analyses.

Figure8a shows a simulation outcome; the relation between transfer robots, addi-
tional axial rotation modules and construction time. When the number of transfer
robots is greater than 32, or when the number of additional axial rotation module is
greater than 32, the decrease of construction time is saturated because, in that area,
the time for connector robot to construct one module exceeds the time for a transfer
robot to supply one module. We examine this point quantitatively below.

One module construction is completed by the following steps: a transfer robot
transfers one module; a connector robot connects it; and the connector robot moves

Construction Planning for a Modularized Rail Structure … 615

0 1 2 4 8 16 32 64 128643216
Transfer robots [-]

8 4 2 1

× 105

0

4

12

10

8

6

2

C
o

n
st

ru
ct

io
n

 t
im

e
[s

]
(a)

 Additional
axial rotation modules [-] Maximal gaps of axial rotation module[-]

0 20 40 60 80 100

C
o

n
st

ru
ct

io
n

 t
im

e
[s

]

× 105

0

0.5

1

1.5

2

2.5

3

3.5

4

Transfer robots: 4
Transfer robots: 8
Transfer robots: 16
Transfer robots: 32

#1

(b)

Fig. 8 a Relation between transfer robots, additional axial rotationmodules, and construction time.
b Relation between maximal gaps of axial rotation modules and construction time

to the next connecting point. Equation (2) shows this required time as Tconnector. Also,
Tdel is the time to deliver a module between robots. Tconstruct stands for the time for a
connector robot to connect a module. Tmove signifies the time for any robot to move
by the distance of one node. However, it is necessary to consider the following two
points about the supplying module time: (a) transferring module to the end of rail
structure, and (b) replacing of transfer robots by passing each other near the end
of rail structure. Regarding (a), the rail structure path complexity, such as a path
involving a corner, is defined as α. Equation (3) shows the required time Ttransfer,
considering transfers of all Mtotal modules to the tip of the rail structure by Ntransfer

transfer robots. In terms of (b), a transfer robot recedes to the nearest axial rotation
module after it completes delivery of the carried module to the connector robot. After
the axial rotation module operates, a new transfer robot moves into the next delivery
point. Locomoting distances of the respective transfer robots are equal to the lengths
of modules until the nearest axial rotation module. This fact can be expressed as
Mtotal/Maxial, using the number of axial rotation module Maxial. Therefore, Treplace,
the necessary time with consideration of (b), is expressed as Eq. (4).

Tconnector = Tdel + Tconstruct + Tmove (2)

Ttransfer = (αMtotalTmove)/Ntransfer = αMtotalTmove/Ntransfer (3)

Treplace = 2TmoveMtotal/Maxial (4)

A situation in which the construction performance is inferior to the module supply
capability is expressed as Eq. (5). After substituting experimental conditions, Eq. (6)
is made. It corresponds to experimentally obtained results. Equation (6) shows that
simulations are necessary to clarify the effect of connector robots because it includes
α. As Eq. (6), it is possible to the reductive effect of construction time by additional
axial rotation module.

616 R. Fukui et al.

Tconnector ≥ Ttransfer, Tconnector ≥ Treplace (5)

Ntransfer ≥ 16α, Maxial ≥ 32 (6)

Figure8b portrays the relation between maximal gaps of axial rotation modules
in rail structure and the construction time. The decrease of total construction time
by the decrease of maximal gaps of axial rotation modules becomes smaller as the
maximal gaps become smaller. When the maximal gaps of axial rotation modules
are about 40 (Fig. 8b #1), an axial rotation module is added near the root of the rail
structure. Therefore, it is assumed that the double track of the robot moving path
is maintained from module construction of near initial position, and that the double
track has an extreme effect on the decrease of construction time.

5 Conclusion

To apply “Automated Construction System of a Modularized Rail Structure” to an
actual 1F situation, it is necessary to develop the modularized structure construction
planner that consists of three subtasks: path planning of a modularized rail structure,
type selection of modules, and dispatch planning of robots. For this study, we devel-
oped and implemented the construction planner in combinationwith type selection of
modules and dispatch planning of robots. Using the developed planner, we simulated
the construction of a test trajectory imitating 1F Unit 3. We evaluated the influence
of methods for selecting module types and the parameters of constructor robots on
construction time.

We achieved the following in this research. (a) The searching space for module
type selection can be reduced greatly by assigning the necessary types of modules
preferentially, based on geographical constraints. (b) The single-track part of the
rail structure produces a waiting queue of transfer robots, which increases the con-
struction time. We showed quantitatively that the increase of transfer robots and
axial rotation modules decreases the construction time. (c) The construction time
is determined from the connecting ability of connector robots and the module sup-
plying ability by transfer robots. (d) Adding axial rotational modules shortens the
module supply interval at the end of the structure. This reduces the construction
time. Installing too many axial rotation modules saturates the effect of the decreased
construction time. This saturation can be calculated from the total module number
and the robot moving time. (e) An increase of transfer robots enhances the module
supply capability to the end of structure. Numerical simulation is necessary because
the threshold of the influence depends on the structure shape.

As a subject of future work, expansion of our proposed method is necessary
because of the existance of a fork in the structure to construct multiple trajectories to
a goal point. Integration to path planning of rail struct-ures is also necessary. Finally,
to apply this system to an actual situation, measures must be prepared to cope with
high radiation and communication delays.

Construction Planning for a Modularized Rail Structure … 617

Acknowledgements A part of this study is the result of “HRD for Fukushima Daiichi Decommis-
sioning based on Robotics and Nuclide Analysis” carried out under the Center ofWorld Intelligence
Project for Nuclear S&T and Human Resource Development by theMinistry of Education, Culture,
Sports, Science and Technology of Japan.

References

1. Fukui, R., Kato, Y., et al.: Automated construction system of robot locomotion and operation
platform for hazardous environments - basic system design and feasibility study of module
transferring and connecting motions. J. Field Robot. (2015)

2. Fukui, R., Kawae, K., et al.: Rail structure supporting mechanism using foamable resin for
pillar expansion, anchoring, and fixation. J. Robot. Mech. 28(2), 129–137 (2016)

3. Furuta, T., et al.: Development of the exploring robot toward future indoor surveillancemissions
in the Fukushima Daiichi nuclear power plant. J. Robot. Soc. Jpn. 32(2), 92–97 (2014). (in
Japanese)

4. Haviland, D., et al.: Fundamental behaviours of production traffic in undergroundmine haulage
ramps. Int. J. Min. Sci. Technol. 25(1), 7–14 (2015)

5. Hirose, S.: Development of robotic systems for the decommissioning operation of Fukushima
Daiichi nuclear reactor. J. Jpn. Soc. Mech. Eng. 116, 732–735 (2013). (in Japanese)

6. IRID: Basic data of Fukushima Daiichi nuclear power plant (Summary). http://irid.or.jp/fd/?
page_id=237&lang=en. Accessed 19 Feb 2016

7. Kanai, S., et al.: An optimal delay management algorithm from passengers’ viewpoints con-
sidering the whole railway network. J. Rail Trans. Plan. Manag. 1(1), 25–37 (2011). https://
doi.org/10.1016/j.jrtpm.2011.09.003

8. Kawashima, M.: Unmanned anti-disaster system R & D project (NEDO). J. Robot. Soc. Jpn.
32(2), 117–121 (2014). (in Japanese)

9. Kawatsuma, S.: Overview and issues to be solved on emergency response of robots to
Fukushima NPP accidents. J. RANDEC 46, 14–26 (2012)

10. Okada, S., et al.: Result of site test for investigation robot for inside primary containment vessel
of 1F-1 -Shape changing robot-. http://irid.or.jp/_pdf/20150714_4.pdf. Accessed 31 Oct 2015

11. Ota, J., et al.: An introduction of Intelligent Robots. Corona Publishing, Tokyo (2001)
12. Otani, M., et al.: Improving recovery capability of multiple robots in different scale structure

assembly. J. Adv. Comput. Intell. Intell. Inf. 15(8), 1186–1196 (2011)
13. Peasgood, M., et al.: A complete and scalable strategy for coordinating multiple robots within

roadmaps. IEEE Trans. Robot. 24(2), 283–292 (2008). https://doi.org/10.1109/TRO.2008.
918056

14. Stoy, K., et al.: Self-reconfigurable Robots: An Introduction. TheMIT Press, Cambridge (2010)
15. Şucan, I., et al.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82

(2012). https://doi.org/10.1109/MRA.2012.2205651
16. Terada, Y., Murata, S.: Automatic modular assembly system and its distributed control. Int. J.

Robot. Res. 27(3–4), 445–462 (2008)
17. van den Berg, J.P., Overmars, M.H.: Roadmap-based motion planning in dynamic environ-

ments. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (2004)

http://irid.or.jp/fd/?page_id=237&lang=en
http://irid.or.jp/fd/?page_id=237&lang=en
https://doi.org/10.1016/j.jrtpm.2011.09.003
https://doi.org/10.1016/j.jrtpm.2011.09.003
http://irid.or.jp/_pdf/20150714_4.pdf
https://doi.org/10.1109/TRO.2008.918056
https://doi.org/10.1109/TRO.2008.918056
https://doi.org/10.1109/MRA.2012.2205651

Distributed Convolutional Neural Networks
for Human Activity Recognition in Wearable
Robotics

Dana Hughes and Nikolaus Correll

Abstract We investigate distributing convolutional neural networks (CNNs) for
human activity recognition across computing nodes collocated with sensors at spe-
cific regions (body, arms and legs) on the wearer. We compare four CNN archi-
tectures. A distributed CNN is implemented on a network of Intel Edison nodes,
demonstrating the capability of performing real-time classification. Two use a cen-
tralized, monolithic approach, and two are distributed across a number of computing
nodes.While the accuracy of the distributed approaches are slightly worse than those
of the monolithic CNNs, exploiting the hierarchy of the problem turns out to require
much less memory — and therefore computation — than the monolithic CNNs, and
only modest communication rates between nodes in the model, making the approach
viable for a wide range of distributed systems ranging fromwearable robots to multi-
robot swarms.

1 Introduction

Human-activity recognition (HAR) from wearable sensor nodes that measure accel-
eration is an important problem in wearable robotics. Sensors are usually mounted
at strategic body locations (Fig. 1), monitoring the dynamics of individual limbs and
body parts. Interestingly, this kind of data is highly hierarchical, that is data from
the feet and knees make up the group “leg”, whereas data from the hand, elbows and
shoulder, make up the group “arm”, which then combine to upper and lower body and
so on. We wish to exploit this hierarchy to distribute a classifier across the different
sensing nodes and show how this approach reduces the memory and computational
requirementswhen comparedwith amonolithic approach.With direct applications in
the field of distributed, wearable robotics, and tracking of robots with non-traditional

D. Hughes (B) · N. Correll
Department of Computer Science, University of Colorado, Boulder, CO, USA
e-mail: dana.hughes@colorado.edu

N. Correll
e-mail: nikolaus.correll@colorado.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_43

619

620 D. Hughes and N. Correll

Fig. 1 Approaches to human activity recognition. Left: Data from a number of sensors are aggre-
gated and processed at a central location. Right: Data are processed hierarchically, leading to more
and more abstract representations. Note that network granularity is arbitrary

kinematics, such as soft links, or modular robots, these results also pave the way for
distributing large-scale convolutional neural networks on multi-robot systems, robot
swarms and“robotic materials”, composites that tightly integrate sensing, actuation,
computation and communication. [14, 15].

In the last few years, advances in deep learning have been applied to HAR using a
very large number of sensors. These advances have resulted in the ability to automat-
ically extract meaningful features from training data, rather than relying on hand-
engineering features for specific tasks, which are robust to variations in position and
scale. This paper investigates adapting deep learning approaches,which are described
inmore detail in [14], as a potential machine learning approach for distributed robotic
systems. In this approach, each node maintains a neural network locally, and updates
the state of a high-level hidden layer using local measurements and communicating
state with neighboring nodes.

2 Related Work

Deep learning approaches, such as convolutional neural networks (CNNs), restricted
Boltzmann machines (RBMs) and long-short term memory (LSTM), have been
shown to provide a high levels of classification accuracy for HAR tasks and other

Distributed Convolutional Neural Networks … 621

classification problems. In [3], automatic feature extraction was performed on four
datasets using RBMs and principle components analysis, and was suggested as a
systematic way of learning meaningful features in HAR applications. Deep belief
network (DBN) classifiers were built in [6] using stacked RBMs, which showed
significant improvement in results when compared with shallow networks, decision
trees and hiddenMarkovmodels (HMMs). CNNswere used in [4] and [5] to perform
HAR on publicly available datasets. In [4], the CNNs consisted of a single convo-
lutional and max-pooling layer, followed by a fully connected and softmax layer,
while in [5], three convolutional / max-pooling layers were used. In both instances,
the CNN classifier accuracy is significantly higher than classifiers based on statis-
tical features or features automatically generated using RBMs. LSTM models were
incorporated in conjunction with CNNs in [7], which provided a means of utiliz-
ing the temporal dynamics of activities to improve results. This approach showed
improvement of accuracy over a baseline CNN, and resulted in predicted classes
being more consistent across time. The neural network architectures used in these
investigations were compared in [8] across several datasets. While neither CNNs
nor LSTM models performed consistently better across all datasets, each of these
architectures did show improvement over deep feed-forward neural networks.

The neural network models used in the investigations above can be very large
and require powerful computing devices to processes, especially when using a large
number of on-body sensors (as in [2]). Incorporating large computing elements into
wearable devices or multi-robot systems is especially challenging, due to power
requirements, size, and the inability to seamlessly integrate these into garments. We
have begun investigating networks of inexpensive, low profile computing nodes for
sound-source localization in a wearable context [16] and for classification in robotic
skin [9].

Population-based learning approaches, such as particle swarmoptimization (PSO),
have found application for learning in swarm robotic tasks. PSO can be easily adapted
for distributed settings by performing updates locally and sharing a summary of
results in a local neighborhood, providing similar benefits described in this investi-
gation. For example, a distributed PSO algorithm which employs a sampling tech-
nique known as Optimal Computing Budget Allocation is described in [11], and is
used to train a recurrent neural network controller in multi-robot systems to per-
form tasks such as obstacle avoidance. When compared to a centralized version of
the PSO algorithm, the distributed approach demonstrates similar behavior, while
significantly reducing memory and communication requirements.

Machine learning has also been explored in the context of modular robots for
example in the context of gait generation [13] resulting in a distributed policy, which
we believe to be the inverse problem to the HAR problem. Similarly, [12] has been
investigating distributing a control strategy for robot locomotion across a modular
neural network. Yet, using distributing CNNs to take advantage of the computing
potential of a distributed system has been so far unexplored in several contexts,
including wearable robotics or HAR (see also a survey on this domain in [14]).

622 D. Hughes and N. Correll

3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are neural networks which consist of one or
more convolutional layers, each of which is optionally followed by a pooling layer.
For temporal data, the output of a convolutional layer, z(l+1)

i (τ) is the output of the
previous layer zlj (τ) convolved with a set of Fl feature kernels, Kl

i j (τ),

z(l+1)
i (τ) = σ

⎛
⎝bli +

Fl∑
j=1

Kl
i j (τ) ∗ zlj (τ)

⎞
⎠ (1)

where bli is the bias of the convolutional layer, and σ is a non-linear activation
function, such as a rectified linear unit (ReLU; σ(x) = max(0, x)). Convolutional
layers are optionally followed by a max-pooling layer. Given a pool size and stride,
the output of a max-pooling layer is simply the maximum value within the pool size,
and the stride represents the number of samples between the start of each pool in a
sequence.

CNNs may consist of one or more convolutional / max-pooling layers. For clas-
sification, the final layer is flattened, and used as input to a softmax layer. A softmax
layer generates the probability of the input belonging to each of N classes,

z(l+1)
i = ez

l
i

∑
N ez

l
i

(2)

These operations are summarized in Fig. 2, which demonstrates a CNN operating
on a three-channel signal with two feature kernels, a ReLU activation function and
max-pooling layer.

CNNs provide several advantages over fully connected, feed forward neural net-
works. Primarily, they allow for automatic feature extraction from training data,
which are invariant to translational and scale in the signal. Additionally, feature

Fig. 2 Convolutional neural network consisting of two feature kernels, ReLU activation function
and max-pooling layer, with three channel input

Distributed Convolutional Neural Networks … 623

kernels provide a large amount of weight sharing in the network, reducing the total
number of parameters in the network. This second point is a specific advantage for
distributing neural networks across low-power nodes, as it greatly reduces the mem-
ory requirements of the overall network. Training is performed by minimizing the
cross-entropy cost between the predicted class (i.e., output of the softmax layer) and
the target class using any standard backpropagation algorithm (e.g., RMSProp).

4 Approach

The overall goal of this investigation is determine the potential of applying deep
neural networks using a distributed set of computing nodes, rather than centrally
collecting and processing all sensor measurements with amonolithic neural network.
The task of classifying mid-level human activities is used to validate this approach,
data that we believe to be representative for a wide range of spatio-temporal sensor
data that might arise in wearable and swarm robotics. Figure1 shows the difference
between these two approaches. The network granularity for the distributed approach
is arbitrary, and selected as five nodes for this paper. At an extreme, the entire body
could be covered with sensors and computers, resulting in a robotic material.

4.1 Opportunity Dataset

The Opportunity Activity Recognition Dataset [2] is a publicly available benchmark
dataset for classifying human activities at several levels, from low-level locomotion
(e.g., walking) to complex, high-level activities (e.g., making a sandwich). Data was
collected from four users performing six runs of daily living activities, and consisted
of body-worn sensors as well as object and ambient sensors. For this investigation,
the body-worn sensors were used for classification purposes, and the object and
ambient sensors discarded, resulting in a total of 133 sensor measurements. These
sensors were used to perform classification of 18 mid-level activities, using a 1s
(30 sample) sliding window with a 100ms (3 sample) hop size (number of samples
between the start of two subsequent windows). Tables1 and 2 list the sensors and
activities, respectively. TheNull activity indicates when the subject is not performing
any specific task.

To adapt this dataset for this exploration, sensors were grouped into five regions–
body, left arm, right arm, left leg and right leg–as shown in Table1. Body worn
sensors either consisted of tri-axial accelerometers or IMUs (consisting of a tri-
axial accelerometer, tri-axial gyroscope, tri-axial magnetometer and an estimate of
orientation in quarternions), while each shoe contains both tri-axial accelerometer
(near the ankle) and IMU (near the toe). By dividing the sensors into body regions,
computing nodes can be associated with each region, with each node collecting and
processing data from the sensors in its region.

624 D. Hughes and N. Correll

Table 1 Location of sensors used in the opportunity dataset

Body (19a) Left Arm (38) Right Arm (38) Left Leg (16) Right Leg (22)

Hip Acc Upper Arm Acc Upper Arm Acc Shoe Acc Upper Knee Acc

Back Acc Lower Arm Acc Lower Arm Acc Shoe IMU Lower Knee Acc

Back IMU Hand Acc Hand Acc Shoe Acc

Wrist Acc Wrist Acc Shoe IMU

Upper Arm IMU Upper Arm IMU

Lower Arm IMU Lower Arm IMU
aNumbers in parentheses indicate the total number of attributes (sensor values) per region

Table 2 Mid-level activities to be classified in the opportunity dataset

Open Door 1 Open Door 2 Open Drawer 1 Open Drawer 2 Open Drawer 3

Close Door 1 Close Door 2 Close Drawer 1 Close Drawer 2 Close Drawer 3

Open Fridge Close Fridge Open Dishwasher Close Dishwasher Clean Table

Drink from Cup Toggle Switch Null

Sensor measurements were normalized to have zero mean and unit standard devi-
ation. Using a frame size of 30 time steps (1 s) and a hop size of 3 time steps resulted
in 869,387 training examples from all four subjects. The activity label for each sam-
ple was determined by selecting the most common activity in the frame. These were
split into a training, validation and test set using an 80-10-10% split. Training was
performed and reported separately for each subject. The resulting datasets did not
have an equal number of samples for each class. Specifically, a majority of the sam-
ples belonged to the Null class (72.28%). This imbalance results in poorly trained
networks, which typically classify all inputs as the dominant class (here, Null). To
account for this bias, the cross-entropy cost of each sample was normalized by divid-
ing the cost by the probability of selecting the target class from the dataset.

4.2 Architectures

The neural network architectures used in this investigation follow the CNN in [5].
This architecture consists of three convolutional / ReLU / max-pooling layers, fol-
lowed by a softmax classification layer, and performs classification using one mea-
surement frame. For this investigation, each of the five computing nodes implements
three convolutional / ReLU / max-pooling layers. The output of each final layer is
then communicated to the body node, which then predicts the activity class using a
softmax layer. A comparison of these two architectures is shown in Fig. 3. The CNNs
implemented on the five computing nodes in a distributed manner are referred to as
“distributed CNNs” (D-CNNs) for the remainder of this paper.

Distributed Convolutional Neural Networks … 625

Fig. 3 Centralized architecture vs distributed architecture for human activity recognition

For this investigation, four separate architectureswere considered, two centralized
monolithic CNNs and two D-CNNs. All of the CNNs are based on the CNN used in
[5], and consist of three convolutional / max-pooling layers, followed by a softmax
layer. The filter kernels of the first two convolutional layers are five samples in
width, and the width of the third layer is three samples. The max-pooling layers have
a pool size of two, and a stride of two, effectively halving the size of the previous
convolutional layer. The number of filter kernels were varied for each architecture,
in order to explore the tradeoff between memory requirements and model accuracy.
The four architectures are summarized as follows:

1. Baseline CNN (CNN-1). The baseline CNN uses the same number of kernels as
in [5]: 50 kernels in the first layer, 40 kernels in the second layer, and 20 kernels
in the third layer.

2. Reduced CNN (CNN-2). The overall number of kernels in the baseline CNN
was reduced by 10% increments, and the validation accuracy calculated for each
model after training. Figure4 (solid line) provides the accuracy as a function
of reduction percentage, demonstrating roughly the same level of accuracy until
a reduction of 50%. The reduced CNN used the reduced kernel count at this
percentage: 25 kernels in the first layer, 20 kernels in the second layer and 10 in
the third layer.

3. Baseline D-CNN (D-CNN-1). Using a similar approach for the reduced baseline
CNN, the number of kernels used for each computing node in the D-CNN was
set to match that of the baseline CNN, and reduced by 10% increments. Figure4
(dashed line) provides the accuracy as a function of reduction percentage. The
reduced D-CNN used 25 kernels in the first layer, 20 kernels in the second layer
and 10 in the third layer.

4. Region Optimized D-CNN (D-CNN-2). The final architecture attempts to opti-
mize the number of kernels for the computing nodes in each region. To determine
the number of kernels, a CNN with a single convolutional layer was constructed,
and the validation cost plotted against the number of kernels in the layer, using
5 kernel increments to a maximum of 100 kernels. As the validation cost tends
to decrease as the number of kernels increase, the number of kernels for the first
layer was selected such that the validation cost was no more than 10% more than
the minimum validation cost. This process was repeated for a two-layer CNN to
determine the number of kernels for the second layer, setting the maximum num-
ber of kernels in the second layer to the number of kernels in the first layer. The

626 D. Hughes and N. Correll

Fig. 4 Validation cost vs
percentage of kernels for
monolithic and distributed
CNN models

Table 3 Number of kernels in each layer for the Region Specific RM-CNN

Layer Body Left Arm Right Arm Left Leg Right Leg

First 40 40 40 25 25

Second 25 25 20 10 10

Third 10 12 10 4 4

number of kernels for the third layer was determined in a similar manner, with
the exception that a 2 kernel increment was used. Table3 provides the number of
kernels used for each region’s CNN.

Each model was built and trained using TensorFlow [17]. Training was performed
using RMSProp with a learning rate of 0.0001 and a weight decay of 0.001, with
training batch sizes of 100 samples.

5 Results

To compare the four architectures, the classification accuracy and F1 score of the test
set was calculated for each subject, and is summarized in Table4. While the mono-
lithic CNNs provide the highest level of accuracy, the classification accuracy of the
D-CNNs is comparable to the monolithic CNNs (∼5 and ∼2% less than CNN-1
and CNN-2, respectively). This minimal reduction in accuracy is very encourag-
ing, especially when comparing with CNN-2, as the number of kernels used in this
architecture is the same as D-CNN-1 and similar to D-CNN-2.

The communication andmemory requirements are also of interest for eachmodel,
as they are indicative of a feasible implementation in a distributed, embedded system.

Distributed Convolutional Neural Networks … 627

Table 4 Accuracy and F1 score for each architecture

Subject 1 Subject 2 Subject 3 Subject 4

Accuracy
(%)

F1 Accuracy
(%)

F1 Accuracy
(%)

F1 Accuracy
(%)

F1

CNN-1 96.38 0.9647 96.39 0.9647 95.92 0.9601 97.15 0.9721

CNN-2 94.15 0.9435 93.62 0.9382 93.60 0.9381 92.79 0.9309

D-
CNN-1

92.71 0.9298 92.09 0.9241 91.86 0.9222 89.59 0.9020

D-
CNN-2

92.77 0.9305 91.69 0.9204 90.94 0.9136 90.74 0.9120

Table 5 Memory and communication requirements for models considered

Model Number of
Sensors

Number
Parameters

Communication
Size

Baseline CNN 133 46,138 0

Reduced CNN 133 19,978 0

Baseline
RM-CNN

Body 19 6,448 40a

Left Arm 38 8,103 10

Right Arm 38 8,103 10

Left Leg 16 5,353 10

Right Leg 22 6,103 10

Total 133 34,110 40

Average 26.6 6,822 –

Region RM-CNN Body 19 10,363 30a

Left Arm 38 13,811 12

Right Arm 38 12,468 10

Left Leg 16 3,499 4

Right Leg 22 4,249 4

Total 133 44,390 30

Average 26.6 8,878 –
aReceived from arm and leg nodes

The memory requirements are based on the total number of parameters (i.e., weights
and biases) needed for each model; the absolute memory requirements depend on
the number of bits used to represent each value (e.g., 32-bit floats). Communication
requirements are based on the size of the output layer of each region’sCNN–this is the
number of values which need to be communicated each second to perform classifica-
tion in real time. Table5 summarizes the memory and communication requirements
for each model.

Comparing the accuracy, memory and communication requirements of the four
approaches demonstrates that there is a definite advantage to the D-CNN approach
over a monolithic CNN for the HAR dataset. While there is minor decrease in accu-

628 D. Hughes and N. Correll

racy of the D-CNNs (∼2% compared to CNN-2), the amount of memory needed
for each computing node in the D-CNNs is greatly reduced (∼2.25–3.0x reduction).
Additionally, the number of sensor measurements required per second is much less
for the D-CNN nodes. Assuming fast-mode I2C (400kbit/s) is used to communi-
cate with each sensor, single-byte instructions and 16-bit sensor measurements, the
133 sensors in the monolithic model can be queried at 125Hz maximum, while the
distributed approach allows for sensors to be queried at ∼400Hz–∼1kHz, depend-
ing on body region. Finally, the necessary RAM is less for the D-CNNs than the
monolithic CNNs. Considering 30 samples of sensor measurements and activation
layers, CNN-1 and CNN-2 have 981 and 566 units in the network (1,926 bytes and
1,132 bytes RAM for 16-bit values), respectively, while the D-CNN modules have
403–678 units (806–1,356 bytes), depending on the region and architecture.

5.1 Hardware Implementation

To analyze timing requirements and ensure the resulting distributed models can be
implemented on a set of wearable sensor nodes, the D-CNN-1 model was imple-
mented on five Intel Edison modules, which utilize a 400MHz dual-core Intel Quark
processor, using Python and Numpy to perform neural network calculations. Sensor
measurements were simulated by reading the data from Run 1 of Subject 1 locally,
with no frame overlap, for a total of 1,703 frames. Each module incorporates on-
board WiFi, which we use for communication experiments, as it allows for simple,
external monitoring of communication between nodes.

The calculation time required for the three convolutional / max-pooling layers of
each region were measured for each frame–the mean computing time ranged from
177.48–181.44ms, with a standard deviation of 0.119–1.28ms. Calculation of the
softmax classifier required a mean computing time of 0.550ms, with a standard devi-
ation of 15.92μs. Communication between nodes was performed over WiFi using
TCP; at each frame, the body node queries each arm and leg node for the node’s
current state. Each communication packet contains 80 bytes (20 32-bit floats). The
mean time to communicate with the four arm and leg nodes is 62.17ms, with a stan-
dard deviation of 36.15ms. This time could be reduced using UDP, at the expense of
possible packet loss, or through wired communication. In practice, wired communi-
cation is ideal, as microcontrollers typically implements multiple USART channels
and two-wire interfaces (e.g., I 2C). For example, the hardware nodes used in [9] and
[16] implement six USART channels (at up to 115,200bps) and I 2C operating at
100kHz or 400kHz. Using these communication methods, the communication time
required for an 80 byte packet reduces to ∼5.6ms for a USART channel, and ∼1.6–
6.5ms for I 2C channels, an order of magnitude faster than WiFi communication. In
addition, wired communication would require less energy thanWiFi. One drawbach,
however, is the potential for failure in individual wire connections.

Distributed Convolutional Neural Networks … 629

From the above values, the total time to classify a one second frame is less than
250ms, allowing for a classification rate of 4Hz, which is sufficiently fast to perform
real-time, on-line classification of activity.

6 Discussion

Distributing a CNN across multiple nodes (D-CNN) has lead to comparable results
than using a monolithic CNN. This is encouraging, as it shows the potential for
wielding the power of deep learning on distributed embedded systems ranging from
wearable and modular robots to robot swarms. Although exploiting the hierarchy of
the activity recognition problem does not lead to better recognition than a monolithic
approach—which simply learns this hierarchy—wedemonstrate significant savings
in overall computation, memory and communication requirements.

The major reduction in computation, memory and communication requirements
stems directly from the number of sensors each computing node needs to monitor,
which has several effects. Primarily, the size of the feature kernels in the first convolu-
tional layer are directly proportional to the dimensionality of themeasurement signal.
For example, the 25 feature kernels in the monolithic approach require 3,325 param-
eters (133 sensors x 25 kernels), whereas the left arm only requires 950 parameters
(38 sensors x 25 kernels). Additionally, clustering the sensors into region-specific
groups may reduce the overall number of kernels required. There is likely a high
level of correlation between sensors in the same region (e.g., accelerometers in the
hand and wrist), and as the number of sensor channels increases, a larger number
of kernels is required to model the interactions between each pair of sensors (i.e.,
the “curse of dimensionality”). Ultimately, the D-CNNs allow for a high level of
compression in the sensors in each region–from up to 1,140 values per second (38
sensors x 30 samples / second) to as little as 4–20 values per second.

While the individual CNNs in the D-CNN architectures could be implemented
into a single hardware node with sufficient memory, implementing each CNN on a
separate hardware node provides several benefits. Each node can sample its region’s
sensors and calculate the CNN output in parallel with other nodes, allowing for an
approximate increase in sampling andprocessing rate by the total number of hardware
nodes. Additionally, a single hardware node running multiple CNNs allows for a
single point of failure; with multiple hardware nodes, activity classification could
continue despite failure of one of the nodes, albeit with a likely reduction in accuracy.

As the proposed network is able to classify motion, it might also be applicable
to be used to evaluate sample policies during control, for example of an exoskeleton
on a human wearer, a soft robot with non-conventional kinematics and dynamics, a
modular robot with previously unknown kinematics, or the trajectory of a moving
source tracked by a robot swarm. While the networks used here were trained for
classification of activity, adapting these to learn control policies involves shifting the
learning paradigm from a supervised learning approach to a reinforcement learning
approach. Reinforcement learningmay be amore suitable paradigm for a hierarchical

630 D. Hughes and N. Correll

architecture such as that presented here. The error signal in a supervised learning
approachmust backpropagate through bothmultiple layers andmultiple regions (e.g.,
from body to leg), whereas the reward signal in a reinforcement learning approach
can be applied directly to each region.

7 Conclusion and Future Work

A distributed, hierarchical approach to human activity recognition using wearable
sensors is presented. The approach involves training a set of five CNNmodules, each
associated with a major region of the body, and communicating state information
to the body module for final classification. For evaluation, the distributed approach
was trained to identify mid-level activities in the Opportunity dataset, and the results
compared to two monolithic CNNs with structure similar to individual modules.

The resulting performance of the distributed CNNs is comparable to the mono-
lithic CNNs, and have significantly lower requirements on memory and sensor com-
munication. Specifically, the architectures shown here can be feasibly implemented
on small, inexpensive microcontrollers that communicate via low-bandwidth chan-
nels such as serial lines, radio or infrared. The ability for the distributed architecture
to perform in real-time with commercially available hardware modules and wireless
communication was demonstrated.

While the results presented here show the feasibility for distributing deep neural
networks in wearable devices and similar applications, there are several potential
areas for future investigation. With regard to neural network architecture, the CNNs
used here classified activity based on a quasi-static window of measurements. Recur-
rent neural networks, such as used in [7] and [8], may improve classification results,
both in terms of overall accuracy, as well as consistency between measurement win-
dows. Additionally, as shown in [7], recurrent models can be implemented with
significantly fewer parameters.

The network topology explored in this investigation is a relatively simple star
topology, which assigns all sensors in a particular region to a single computing node.
In a robotic materials paradigm, a computing node would be collocated with each
sensor [15], which, for this dataset, would result in several nodes per region and
the potential for more complex networks. Exploring the effects of more complex
network topologies, including deeper hierarchies and denser neighborhoods, should
be explored to determine how a robotic materials paradigm may affect accuracy and
convergence during training.

Froma robotics perspective, activity recognition (specifically gait recognition) can
be viewed as the inverse problem of gait generation for robot or exoskeleton con-
trol. As the results presented here are promising for activity identification, a similar
approach to gait generation may be possible by shifting from a supervised learn-
ing paradigm to a reinforcement learning paradigm. This would allow for learning
robust, low-level gait patterns independent of high-level control or planning. Finally,

Distributed Convolutional Neural Networks … 631

the architectures used here can be utilized for a variety of swarm robotic tasks, such
as object tracking.

Acknowledgements This work has been supported by AFOSR grant #FA9550-15-1-0238. We are
grateful for this support.

References

1. Turaga, P., Chellappa, R., Sabrahmanian, V.S., Udrea, O.: Machine recognition of human
activities: a survey. IEEE Trans. Circuits Syst. Video Technol. 18, 1473–1488 (2008)

2. Roggen, D., et al.: Collecting complex activity datasets in highly rich networked sensor envi-
ronments. In: 7th International Conference on Networked Sensing Systems, 233–240 (2010)

3. Plötz, T., Hammerla, N.Y., Olivier, P.: Feature learning for activity recognition in ubiquitous
computing. Int. Jt. Conf. Artif. Intell. 22, 1729–1734 (2011)

4. Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional
Neural Networks for Human Activity Recognition using Mobile Sensors. In: 6th International
Conference on Mobile Computing, Applications and Services, 197–205 (2014)

5. Yang, J.B., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural
networks on multichannel time series for human activity recognition. Int. Jt. Conf. Artif. Intell.
25–31 (2015)

6. Alsheikh, M.A., Selim, A., Niyato, D., Doyle, L., Lin, S., Tan, H.-P.: Deep activity recognition
models with triaxial accelerometers. http://arxiv.org/abs/1511.04664. Accessed 05 Jul 2016

7. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for mul-
timodal wearable activity recognition. Sensors 16, 115 (2016)

8. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human
activity recognition using wearables. http://arxiv.org/abs/1604.08880. Accessed 05 Jul 2016

9. Hughes, D., Correll, N.: Texture recognition and localization in amorphous robotic skin. Bioin-
spiration Biomim. 10, 055002 (2015)

10. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recogntion from accelerometer
data. In: 17th Conference on Innovative Applications of Artificial Intelligence, 1541–1546
(2005)

11. Di Mario, E., Navarro, I., Alcherio, M.: A distributed noise-resistant particle swarm opti-
mization algorithm for high-dimensional multi-robot learning. IEEE Int. Conf. Robot. Autom.
5970–5976 (2015)

12. Jacobs, R.A., Jordan, M.I.: Learning piecewise control strategies in a modular neural network
architecture. IEEE Trans. Syst. Man Cybern. 23, 337–345 (1993)

13. Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in modular robots using
central pattern generators and online optimization. Int. J. Robot. Res. 27, 423–443 (2008)

14. Hughes, D., Correll, N.: Distributed machine learning in materials that couple sensing, actua-
tion, computation and communication. http://arxiv.org/abs/1606.03508. Accessed 05 Jul 2016

15. McEvoy, M.A., Correll, N.: Materials that couple sensing, actuation. Comput. Commun. Sci.
347, 1261689 (2015)

16. Profita, H., Farrow, N., Correll, N.: Flutter: an exploration of an assistive garment using dis-
tributed sensing, computation and actuation. In: 9th International Conference on Tangible,
Embedded, and Embodied Interaction, 359–362 (2015)

17. Abadi, M., et al.: TensorFlow: Large-scale Machine Learning on Heterogeneous Systems
(2015) Software www.tensorflow.org

http://arxiv.org/abs/1511.04664
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1606.03508
www.tensorflow.org

Formation Control of a Drifting Group
of Marine Robotic Vehicles

Nicholas R. Rypkema and Henrik Schmidt

Abstract This paper presents a comparative study into three strategies for planar
(2D) formation control of autonomous underwater/surface vehicles (AUVs/ASVs)
in the presence of ocean or river currents. Deploying multiple AUVs in formation
would provide large-scale spatial and temporal data for oceanographic research.
However,multi-AUVformation control is difficult because of the communication and
navigation constraints of the underwater environment. The strategieswe developed to
address these challenges are distributed, use relative positions of neighboring vehicles
to coordinate, and leverage current to increase endurance. We present simulation
results for a group of 20 AUVs operating in 4D ocean currents, and compare control
strategies in terms of energy expenditure and formation quality. We validated the
most promising strategywith real robot experiments using threeASVs on the Charles
River, and provide an initial analysis of the data.

1 Introduction

Advances in autonomous underwater vehicle (AUV) technology have led to their
wide-spread acceptance and adoption in scientific, commercial, and defense appli-
cations. At the same time, research progress in coordination and control of multi-
robot systems has led to their effective deployment in the field. Applying multi-robot
control concepts on AUVs would improve efficacy in missions such as tracking
oceanographic processes and localizing acoustic sources, and could open up addi-
tional applications such as seismic surveying using multiple AUVs as an acoustic
receiver array. Some existing missions that would be well served by multi-AUV
sampling include monitoring ocean temperature, tracking algal blooms, and map-
ping hazardous chemical spills. However, existing multi-robot control strategies

N. R. Rypkema (B) · H. Schmidt
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: rypkema@mit.edu

H. Schmidt
e-mail: henrik@mit.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_44

633

634 N. R. Rypkema and H. Schmidt

do not take into account the unique constraints posed by AUV operations in the
undersea environment; algorithms must be distributed, robust to localization error,
and operable with minimal inter-vehicle communication.

We are interested in a particular multi-robot control task, known as formation
control, in which a group of vehicles coordinate to establish and maintain a desired
geometric pattern. Various approaches for distributed formation control have been
described in previous literature, including physics-based approaches [10, 14, 15,
18], leader-follower methods [6, 13], potential-field approaches [1, 5], and virtual
structure methods [2, 8, 12]. Early experimental work in underwater vehicle forma-
tion control includes the use of artificial attraction/repulsion potentials to maintain a
triangular shape for three Slocum gliders [9], as well as a leader-follower method in
which a simple proportional controller is used to maintain distance/velocity relative
to a leading AUV [7]. More recent work [16] describes a similar leader-follower
approach, in which acoustic modems mounted on three autonomous surface vehi-
cles (ASVs) are used to determine range from a single follower to two leaders; a
proportional-integral controller operating on the follower uses these ranges to main-
tain velocity and heading relative to the leaders to maintain a triangular formation.

The primary goal of this work is the development of planar (2D) formation control
strategies allowing a group of AUVs to form and maintain a hexagonal lattice in the
presence of ocean currents. Unlike previous work, we wish to leverage the prevail-
ing current to propel the formation as a whole, with the vehicles only using their
motors to maintain the desired geometry. This approach would allow the formation
to drift freely with the current without breaking apart. In addition, the significant
constraints of underwater communications, with data rates on the order of 100–5000
bits per second, motivate our desire to minimize communication between vehicles.
We describe three behavior-based algorithms for AUVs, each of which is distributed
and leaderless. Each vehicle performs formation control using relative range and
bearing measurements to its neighbors within a specified radius, and does so by
using these measurements to continuously calculate a vehicle target position. This is
in contrast to previous approaches, in which control policies for vehicle speed and
heading are explicitly derived so as to minimize error in formation position relative
to leader vehicles. By specifying target positions that we wish our vehicles to track,
our approach allows us to abstract away the lower-level control layers. This approach
is extremely flexible and can effortlessly combine range/bearing information from
an arbitrary number of neighbors, building formations that are large and leaderless.
Multiple behaviors can also be combined into more complex behaviors. The cost of
this flexibility is the inability to provide formal guarantees on formation convergence.
In this paper, we compare the performance of three newly developed algorithms in
simulation, and provide results from validating the most promising strategy in field
experiments with three ASVs.

The remainder of this paper is organized as follows: Sect. 2 describes the three
formation control algorithms, Sect. 3 provides a description of the experimentalmeth-
ods, Sect. 4 provides results of AUV simulations, and Sect. 5 provides preliminary
results from ASV field experiments.

Formation Control of a Drifting Group … 635

2 Formation Control Algorithms

In our approach, vehicles operate under a frontseat/backseat paradigm, in which the
backseat is responsible for performing calculations for formation control, commu-
nications and autonomy using MOOS-IvP [3], a software architecture for vehicle
autonomy. The backseat sends desired heading, depth and speed commands to the
frontseat, which executes basic control and navigation. This behavior-based archi-
tecture allows us to separate vehicle control into two behaviors: the first to maintain
constant depth, which does not use information from neighboring vehicles; and the
second to maintain the desired formation using the relative positions of neighbors.
In this paper we concentrate solely on the latter.

Our formation control algorithms operate by outputting a target position which
represents the optimal vehicle location to maintain formation. Each control strategy
is built upon a common target behavior which sends desired heading and speed
commands to the frontseat, illustrated in Fig. 1. This behavior operates as follows: It
begins by directing the vehicle at a heading towards the target with maximum speed.
Speed is linearly decreased within a specified drifting radius, and set to zero upon
location arrival (either by entering the capture radius, or if there is lack of progress
within the slip radius). The vehicle is then left to drift freely until it exits the drifting
radius.

The target behavior is used by vehicles to exploit the prevailing current for propul-
sion during times in which they are free to drift. We can trade-off formation accuracy
against energy consumption by changing the drifting radius.

Fig. 1 Illustration of the target behaviour, which directs the vehicle to a target point and then leaves
it to drift within a drifting radius

636 N. R. Rypkema and H. Schmidt

2.1 Attraction/Repulsion Formation Control

Inspired by the simplicity of physics-based approaches, our first algorithm performs
formation control through the use of artificial attraction/repulsion potentials. We
define our potential as:

f (r) =
(

s3

2 · r2
)

+ (r − 3 · s) (1)

This potential is placed at the positions of two neighboring vehicles, with s being
the desired distance from, and r the range to, each neighbor. The first neighbor is the
nearest neighbor, and the second is chosen such that the sum of edge lengths of the
triangle created by the three vehicles is minimal. Equation2 shows the minimization
of Eq.1 over two dimensions (where Ns contains the positions of the two neighbors).
Solving this equation yields a minimum (x∗, y∗) representing the target position for
the vehicle, which occurs at a distance s from both neighbors. Note that two minima
occur, both equidistant from the two neighbors and reflected along the line joining
them; the minimum closest to the vehicle is always selected as the target position by
initializing our solver at the vehicle position.

(x∗, y∗) = argmin
(x,y)

∑
(xi ,yi)∈Ns

(
s3

2 · (
√

(x − xi)2 + (y − yi)2)2

)

+((
√

(x − xi)2 + (y − yi)2) − 3 · s) (2)

Because each vehicle attempts to position itself equidistant from two of its neigh-
bors, this algorithm is limited to producing only hexagonal lattice formations of
equilateral triangles. Even so, it has a couple of advantages: it only needs the relative
positions of neighbors to operate, minimizing communication; and it is fast, with a
time complexity of O(n) with respect to a vehicle’s number of neighbors (assuming
the minimization can be done in constant time). Unfortunately, these formations are
prone to breaking apart in ocean currents.

2.2 Pairwise Trigonometric Formation Control:

In our second formation control algorithm, each vehicle is given a unique ID and a
user-defined plan specifying its desired positionwithin the formation. Given this plan
and the IDs of neighbors within the vehicle’s communication radius, the algorithm
calculates the relative distance Dd and angle φd from the midpoint between any pair
of neighbors i, j to the desired position of the vehicle (where (xip , yip) and (x jp , y jp)
are the plan-specified positions of the neighbors relative to the vehicle):

Formation Control of a Drifting Group … 637

(a) Use plan to calculate
distances and angles from
midpoint between pairs of
neighbors to desired vehicle
position

(b) Apply plan-calculated
distances and angles to
corresponding midpoints
of actual neighbor pairs

(c) Calculate vehicle target
position (x∗,y∗) as centroid
of votes (x∗

ij ,y
∗
ij) from all

neighbor pair combinations

Fig. 2 Illustration of the pairwise trigonometric formation control strategy

Dd =
√

((xip + x jp)/2)2 + ((yip + y jp)/2)2 (3)

φd = atan2((yip + y jp)/2, (xip + x jp)/2) − atan2(y jp − yip , x jp − xip) (4)

This plan-calculated distance and angle are then used to determine a position
using the actual relative positions of these two neighbors (xi , yi) and (x j , y j):

(x∗
i j , y

∗
i j) = ((xi + x j)/2, (yi + y j)/2) + (Dd sin φd , Dd cosφd) (5)

The position (x∗
i j , y

∗
i j) is essentially a ‘vote’ by this neighbor pair of where the

target for the vehicle should be. The combined target position (x∗, y∗) is calculated
as the centroid of all votes from every possible unique neighbor pair combination
seen by the vehicle. This control strategy is visualized in Fig. 2.

Since the user can specify any formation shape in the plan, this strategy is able
to form arbitrary formations; this is true as long as planned positions are within
communications radius of at least two other positions (in order to calculate at least
one (x∗

i j , y
∗
i j)). This ability, as well as its simplicity, are the main advantages of this

algorithm. However, it has a few drawbacks: firstly, it has an approximate time com-
plexity of O(n2), since for n neighbors, a vehicle must calculate distances and angles
using n(n−1)

2 neighbor pairs; secondly, it has an additional overhead of communicating
vehicle IDs.

2.3 Point Set Registration Formation Control:

Our third formation control algorithm follows from the previous in that it also requires
each vehicle to have a unique ID and a corresponding position in a user-defined plan.
Since a vehicle is able to detect the IDsof neighborswithin its communications radius,

638 N. R. Rypkema and H. Schmidt

it can look up their corresponding positions in the plan. All that remains to be done is
to calculate the rigid transformation that optimally aligns desired neighbor positions
to actual neighbor positions, a process broadly termed as point set registration. Unlike
the previous algorithm, in which votes from neighbor pairs are used to calculate the
target position, this strategy essentially treats the entire plan as a rigid structure, and
transforms it to best align with neighbor positions.

Given the set of relative positions of neighbors within the vehicle’s communica-
tions radius {(x0, y0) = (0, 0), (x1, y1), ..., (xn, yn)}, and their corresponding rela-
tive positions defined in the plan {(x0p , y0p) = (0, 0), (x1p , y1p), ..., (xnp , ynp)} (we
include the vehicle’s own position as (0, 0) in both sets), the optimal rigid transfor-
mation between the two point-sets is given by:

(R, t) = argmin
R,t

n∑
i=0

||(R
[
xip
yi p

]
+ t) −

[
xi
yi

]
||2 (6)

A closed form solution of this minimization is performed as in [17], resulting in
an optimal rotation matrix, R, and translation vector, t, which is applied to the vector
of plan positions. As a result, a target position (x∗, y∗) for the vehicle is generated
as the first point of this transformed vector. Figure3 illustrates this algorithm.

As with the pairwise trigonometric algorithm, this strategy can create formations
of arbitrary shape (since the user can define any shape in the plan), but has the
disadvantage of having to communicate vehicle IDs. However, unlike the previous
algorithm this strategy has a time complexity of O(n) with respect to the number of
neighbors; the most complex step of the closed form solution for the optimal rigid
transformation requires a multiplication between an 2 × n and n × 2 matrix, which
is O(n).

(a) AUV 6 receives pings
containing IDs and relative
positions of neighbors within
its communication radius

(b) AUV 6 uses its plan (c) AUV 6 applies a rigid
to obtain planned relative
positions of neighbors it
has sensed

transformation to planned
positions, and as a result the
plan is optimally aligned to
actual neighbor positions

Fig. 3 Illustration of the point set registration formation control strategy

Formation Control of a Drifting Group … 639

3 Experimental Setup

Experiments were performed both in simulation and in the field, to investigate the
qualities of our three formation control algorithms. Performance of each algorithm
was quantified using two measures. The first is a metric reflecting the formation
quality, in which the distance between each pair of neighboring vehicles is aver-
aged over the number of pairs, and compared to the desired inter-vehicle distance.
Past literature has typically used this measure to quantify control strategy effective-
ness. The second is a simplified measure of average energy expenditure, in which
power consumption is calculated as the sum of three factors: integrated power con-
sumption due to motor propulsion (which only occurs when vehicles are thrusting),
integrated power consumption due to hotel load (consumption due to systems other
than propulsion and acoustics), and power consumption due to acoustic pings.

Simulations were performed in the Laboratory for Autonomous Marine Sensing
Systems (LAMSS) MOOS-IvP Ocean Simulation environment. This environment
includes vehicle dynamics and acoustic communications, as well as physics-driven
simulation of 3D time-varying oceanographic environments viaMSEAS oceanmod-
els [11]. Vehicle dynamics were based on a simplified model of the Folaga AUV [4],
a vehicle that has active depth and turn-in place control, and with a maximum speed
of 1 m/s. We assumed that each vehicle was able to measure relative range, bearing
and ID to neighbors within a radius of 550 m, with Gaussian noise with standard
deviation 5◦ in bearing and 1.5m in range, through the use of acoustic pings transmit-
ted by each vehicle every 30 s. These acoustic pings were received by neighboring
vehicles with a delay in reception proportional to the distance to the transmitting
vehicle and assuming a 1500 m/s sound speed. The target drifting radius was set
to 20 m. We performed simulation experiments using 20 AUVs, whose positions
were randomly initialized within a 200 × 200 m box. The group was instructed to
construct a hexagonal lattice with a desired separation distance of 300 m, and was
left to drift freely in ocean currents for approximately 5h in simulation time. Due to
the fact that the attraction/repulsion algorithm can only construct hexagonal lattice
formations, this formation was chosen to provide a fair comparison between each
strategy.

To investigate the validity of our approach, field experiments were run with three
Clearpath Kingfisher ASVs (Fig. 4). Each vehicle has a thruster in each pontoon, an
IMU, compass andGPS, and has aMOOS-IvP interface to receive heading and speed
commands. These ASVs are capable of a maximum speed of approximately 1.5 m/s.
Commands were sent from a Raspberry Pi 2 payload computer, with our MOOS-IvP
architecture running the point set registration formation control strategy. Since we
did not have the hardware to detect range and bearing between vehicles, vehicle state
was transmitted via 802.11 WiFi to a shoreside computer which simulated acoustic
communications. Range/bearing/ID information was then transmitted back to the
vehicles. Due to the limited size of the operations area (approximately 500 × 350
m), we selected a desired separation distance of 60 m, a drifting radius of 6 m, and
a ping period of 20 s; we also halved the Gaussian standard deviations for simulated

640 N. R. Rypkema and H. Schmidt

Fig. 4 Left: Clearpath Kingfisher ASVs used for field experiments. Right: Map of Charles River
operating area with overlaid ASV trajectories (c/o Google Maps)

bearing and range measurements to 2.5◦ and 0.75 m respectively. The three vehicles
were directed upstream, instructed to form an equilateral triangle, and left to drift
downstream in formation.

4 Simulation Results

Simulation trials were performed for each formation control algorithm. Vehicle posi-
tionswere initialized randomly in a 200 × 200marea. They then constructed a hexag-
onal formation (and in the case of pairwise trigonometric and point set registration
algorithms, each vehicle was given a formation plan for a 4 × 5 hexagonal lattice),
and freely drifted in ocean currents modeled using anMSEASmodel of the Red Sea.
The maximum current velocity according to this model was approximately 0.12 m/s,
about an order of magnitude lower than the maximum vehicle speed. Typical vehicle
trajectories for these simulations are shown in Fig. 5.

Qualitative examination of the three algorithms indicate that although our attrac-
tion/repulsion strategy was able to construct the desired hexagonal lattice, the group
eventually broke apart into three smaller groupswhile drifting, a consequence of con-
tinuous disturbances caused by ocean currents. Past literature concerning physics-
based formation control typically demonstrated formation control in environments
free of disturbances, or with few vehicles; we show here that such approaches may
not be robust in disturbance-rich domains. In addition, we see that the trajectories
are quite chaotic because the artificial potentials push and pull on different vehicles.
These issues are partly a consequence of the fact that this algorithm only makes use
of two neighbors for control. Vehicles tend to repeatedly switch their selection of
which two neighbors to use for control as they travel during formation construction
(neighbors are chosen to minimize the sum of edge lengths of the three vehicles);
this in turn causes switching of the target position and oscillatory behavior. Two-
neighbor control was used to achieve the desired inter-vehicle distance; summation
of potentials from additional neighbors causes the minimum (and thus the target)

Formation Control of a Drifting Group … 641

X Position (m)

Y
 P

os
iti

on
 (

m
)

Attraction/Repulsion

-2000 -1500 -1000 -500 0 500

-500

0

500

1000

1500

X Position (m)

Y
 P

os
iti

on
 (

m
)

Pairwise Trigonometric

-2000 -1500 -1000 -500 0 500 1000

-500

0

500

1000

1500

2000

X Position (m)

Y
 P

os
iti

on
 (

m
)

Point Set Registration

-2000 -1500 -1000 -500 0 500 1000
-500

0

500

1000

1500

2000

Fig. 5 Simulated trajectories of 20 AUVs for attraction/repulsion (top left), pairwise trigonometric
(top right), and point set registration (bottom) formation control strategies. AUVs are randomly
deployed in a 200 × 200m area, construct a hexagonal formation, and drift in formation for 16000 s,
exploiting ocean currents for propulsion. Black x’s indicate vehicle starting positions, red dots
indicate final positions

to shift. The formation tends to break apart when a subgroup of vehicles all select
neighbors amongst themselves and the currents pull in different directions.

In contrast, both the pairwise trigonometric and point set registration strategies
were able to efficiently construct and maintain the desired 4 × 5 hexagonal lattice
formation, with the group using ocean currents to propel itself almost 1.8km in 5h.
Global knowledge in the form of the user-defined formation plan has enabled each
vehicle to maintain its relative position in the group, even as the group freely rotated
while drifting. Vehicle trajectories possess a characteristic sawtooth movement, as
vehicles alternated between drifting while in the drifting radius, and thrusting back
to target.

Figure6 illustrates themean distance between neighboring pairs of vehicles, along
with envelopes of standard deviation. This provides a measure of formation quality.
Our qualitative observations of the attraction/repulsion algorithm are clearly reflected
by the standard deviation envelopes of this measure. Formation break-up first occurs

642 N. R. Rypkema and H. Schmidt

Time (s)

M
ea

n
D

is
ta

nc
e

(m
)

0 2000 4000 6000 8000 10000 12000 14000 16000
250

260

270

280

290

300

310

320

330

340

350

Attraction/Repulsion
Pairwise Trigonometric
Point Set Registration

Fig. 6 Results of simulation - mean distance between vehicles in the formation; dashed lines
indicate standard deviation. Experiments were conducted with 20 AUVs. AUVs regulate distance
using user-specified distance and have access to relative neighbor positions and IDs within comms.
radius once every 30 s

at about 7000 s, causing oscillatory movement that culminates in two distinct vehicle
subgroups. A second break-up episode slowly unfolds starting at around 11000 s,
causing themetric to diverge from the desired separation distance and three subgroups
to emerge by the end of the mission.

Examining the formation quality metric for the pairwise trigonometric and point
set registration algorithms, we see that both perform similarly. Both strategies are
able to construct the formation to the desired separation distance within 1000 s.
Their standard deviation envelopes are well within the set 20m target drifting radius
throughout the mission, reflecting the fact that the hexagonal lattice formation is
consistently maintained to the desired accuracy.

Figure7 illustrates vehicle mean energy expenditure with envelopes of standard
deviation. Unsurprisingly, the attraction/repulsion strategy consumes the greatest
amount of energy, as the artificial potentials cause vehicles to continuously jostle
with their neighbors. The standard deviation envelopes demonstrate that the point
set registration strategy makes use of energy more consistently across all vehicles
than the pairwise trigonometric algorithm, though both have similar mean energy
expenditures. The rate of energy expenditure is significantly lower once the formation
has been constructed and is free to drift. These results suggest that if the prevailing
current is known and along the desired trajectory, ocean current could be leveraged
for formation propulsion for long-term sampling using groups of vehicles.

Formation Control of a Drifting Group … 643

Time (s)

M
ea

n
E

ne
rg

y
E

xp
en

di
tu

re
 (

W
h)

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

140

Attraction/Repulsion

Pairwise Trigonometric

Point Set Registration

Fig. 7 Results of simulation -mean vehicle energy expenditure; dashed lines indicate standard devi-
ation. Experiments were conducted with 20 AUVs. Expenditure is sum of integrated motor power
consumption, hotel power consumption (consumption by systems excluding motor and acoustics)
and acoustic transmission power consumption

5 Experimental Results

Field experiments were performed using three Kingfisher ASVs on a portion of
the Charles River by the MIT Sailing Pavilion. Vehicle state was monitored on a
shoreside computer, which also performed simulation of acoustic communications.
The ASVs were manually directed upriver, instructed to form an equilateral triangle
and left to drift downriver. Note that the ASVs could easily overcome river currents
at maximum speed. Leader-following was then performed by manually directing a
single vehicle upstream, causing the remaining two ASVs to naturally follow in an
attempt to maintain formation. Finally, three simulated ASVs were added, easily
allowing us to construct a larger equilateral triangle using three simulated and three
realASVs.All vehicles ran the point set registration algorithm in adistributed fashion.
Trajectories of the ASVs during different phases are illustrated in Fig. 8.

The point set registration formation control strategy was successfully able to con-
struct the desired triangle and maintain that formation as the group drifted downriver
(Fig. 8a–c). Unlike the simulated vehicles the Kingfisher ASVs are not able to rotate
in-place, but our target-based formation control strategywas still able to construct the
desired formation. This highlights an advantage of our approach: formation control
is achieved without needing to know exact vehicle dynamics. However, the success
of the formation control algorithm in this case is partly due to the fact that the turning
radius of the ASVs is much smaller than the formation inter-vehicle distance, mean-
ing thatASVdynamics have aminimal effect on formation control performance. This
would likely not be the case with smaller inter-vehicle distances or with vehicles that
have a larger turning radius.

The ability to perform leader-following was a natural consequence of our forma-
tion control algorithm using only three vehicles. Figure8d–f shows this behavior:

644 N. R. Rypkema and H. Schmidt

t=50s

-100 0 100 200 300
-300

-250

-200

-150

-100

-50

0

50

t=180s

-100 0 100 200 300

-300

-250

-200

-150

-100

-50

0

t=2310s

-100 0 100 200 300
-350

-300

-250

-200

-150

-100

-50

0

t=2580s

-100 0 100 200 300

-300

-250

-200

-150

-100

-50

0

t=2950s

-300

-250

-200

-150

-100

-50

0

50

t=3300s

-100 0 100 200 300

-300

-250

-200

-150

-100

-50

0

50

t=3420s

-300

-250

-200

-150

-100

-50

0

50

t=4510s

-300

-250

-200

-150

-100

-50

0

50

t=5850s

-100 0 100 200 300

-100 0 100 200 300 -100 0 100 200 300 -100 0 100 200 300
-300

-250

-200

-150

-100

-50

0

50

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Results of field experiments. Black x’s indicate vehicle positions at time of preceding figure,
and reddots indicate positions at current time.a–cTrajectories of threeKingfisherASVsestablishing
formation and drifting East on the Charles River. d–f Trajectories of the three Kingfisher ASVs
leader-following in formation, with operator-driven ASV at forward corner of triangle (red line
trajectory). g–i Trajectories of actual Kingfisher ASVs (red) and simulated ASVs (blue) when three
simulated ASVs are added and a larger formation is constructed and left to drift freely

the rightmost ASV is manually directed upstream, and the remaining two vehicles
follow in an effort to maintain formation. However, due to the 20 s interval between
simulated acoustic pings, the followers lag the leader and are unable to continuously
maintain a perfect triangle formation.

Figure8g–i illustrate group reformation when three simulated ASVs (blue) were
added to the group. Both real and simulated vehicles can interact using the MOOS-
IvP architecture. Like in the original three-vehicle case, the algorithm was able to
construct the desired triangular formation. Since river currents were not simulated for
the virtual vehicles, the real vehicles (red) tended to frequently reposition themselves.
This caused the group to rotate, as is visible in Fig. 8h–i.

Figure9 depicts the average distance between neighboring pairs of vehicles. The
three phases of the experiment are clearly visible in this measurement, reflecting the
quality of the formation. The first phase (Fig. 8a–c) occurred between 0 and 2310 s,
and is reflected by a mean distance metric centered around 60 m with a standard

Formation Control of a Drifting Group … 645

Time(s)

M
ea

n
D

is
ta

nc
e

(m
)

0 1000 2000 3000 4000 5000 6000
30

40

50

60

70

80

90

Fig. 9 Results of field experiments - mean distance between vehicles in the formation; dashed lines
indicate standard deviation. Experiments were conducted with three real and three virtual ASVs.
ASVs have access to neighboring vehicle information every 20 s using simulated acoustic comms.
Red vertical lines separate the three experiment phases seen in Fig. 8a–c, d–f, g–i

deviation of about 4m. The effect of the target drifting radius is clearly seen in
the behavior of the metric, as it repeatedly diverges from and returns to the 60 m
separation distance. The leader-following second phase (Fig. 8d–f) occurred between
2310 s and 3300 s, and is characterized by oscillations in the mean distance. This was
caused by the 20 s delays between simulated acoustic pings, which resulted in lag
between leader and follower movement. The leader vehicle was directed in steps to
give the following vehicles time to reform, resulting in these oscillations. The third
stage (Fig. 8g–i) occurred between 3300 and 5850 s when three virtual ASVs were
introduced to the formation. This resulted in the mean distance metric dropping to
0m upon vehicle introduction, and then settling again to center around 60m once the
larger formation was constructed. Interestingly, the addition of these vehicles caused
the formation to more closely track the desired separation distance. This occurred
because the simulated vehicles were not subject to external disturbances and because
averaging over more vehicles stabilizes the metric.

6 Conclusions

We developed three algorithms for the control of a planar (2D) formation of
autonomous underwater/surface vehicles in the presence of ocean and river currents.
These algorithms are distributed, use low communication (where only range, bear-
ing, and vehicle ID are needed once every 20−30 s), and exploit prevailing current
for group propulsion. They were compared in simulation using formation quality
and energy expenditure metrics, and it was demonstrated that two of these strate-

646 N. R. Rypkema and H. Schmidt

gies performed well in maintaining a user-defined hexagonal formation. Simulation
results suggest that exploiting ocean currents could be an advantageous strategy for
sampling using multiple vehicles over large areas for extended periods of time.

Field experiments using three Kingfisher ASVs demonstrated the validity of one
of the formation control algorithms tested in simulation in the presence of actual
river currents and simulated acoustic communications.We also demonstrated leader-
follower behavior using formation control by manually directing one of the ASVs,
and dynamically added virtual vehicles to show behavior utility with more vehicles
and a mixture of real and simulated ASVs.

Future work will focus on replacing the simulated acoustic communications com-
ponentwith actual hardware.Hydrophone arrays can be used to detect range and bear-
ing from acoustic pingers, and unique waveforms can be used to transmit IDs. Other
avenues include theoretical analysis of our Pairwise Trigonometric and Point Set
Registration algorithms, including bounds on convergence, scalability, and sensitiv-
ity to parameters. Further simulation and experimental work investigating robustness
of these algorithms in the event of vehicle or communications failure, and against
measurement outliers would also prove useful. A final interesting possibility for
future work is integrating our algorithms with optimal planning given an estimated
model of ocean currents and vehicle dynamics. This could allow a group of vehicles
to maintain a desired formation while following a preferred trajectory, or to avoid
areas of large turbulence.

Acknowledgements The authors thank Erin Fischell for feedback andMichael Novitzky for assis-
tance during field experiments. This material is based on work supported by APS under contract
number N66001-11-C-4115 and award numbers N66001-13-C-4006 and N66001-14-C-4031.

References

1. Bachmayer,R., Leonard,N.E.:Vehicle networks for gradient descent in a sampled environment.
In: 41st IEEE Conference on Decision and Control, pp. 112–117 (2002)

2. Belta, C., Kumar, V.: Motion generation for formations of robots: a geometric approach. In:
IEEE International Conference on Robotics and Automation, pp. 1245–1250 (2001)

3. Benjamin, M., Schmidt, H., Newman, P., Leonard, J.: Nested autonomy for unmanned marine
vehicles with MOOS-IvP. J. Field Robot. 27(6), 834–875 (2010)

4. Caffaz, A., et al.: The hybrid glider/AUV Folaga. Robot. Autom. Mag. 17(1), 31–44 (2010)
5. Chaimowicz, L., Michael, N., Kumar, V.: Controlling swarms of robots using interpolated

implicit functions. In: IEEE International Conference on Robotics and Automation, pp. 2487–
2492 (2005)

6. Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic
mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

7. Edwards, D.B., et al.: A leader-follower algorithm for multiple auv formations. IEEE/OES
Autonomous Underwater Vehicles pp. 40–46 (2004)

8. Egerstedt, M.B., Hu, X.: Formation constrained multi-agent control. IEEE Trans. Robot.
Autom. 17(6), 947–951 (2001)

9. Fiorelli, E., et al.: Multi-auv control and adaptive sampling in monterey bay. IEEE/OES
Autonomous Underwater Vehicles pp. 134–147 (2004)

Formation Control of a Drifting Group … 647

10. Fujibayashi, K., et al.: Self-organizing formation algorithm for active elements. In: 21st IEEE
Symposium on Reliable Distributed Systems (2002)

11. Haley, P.J., Lermusiaux, P.F.J.: Multiscale two-way embedding schemes for free-surface prim-
itive equations in the multidisciplinary simulation, estimation and assimilation system. Ocean
Dyn. 60(6), 1497–1537 (2010)

12. Lewis, M.A., Tan, K.H.: High precision formation control of mobile robots using virtual struc-
tures. J. Auton. Robots 4(4), 387–403 (1997)

13. Mariottini, G.J., et al.: Leader-follower formations: uncalibrated vision-based localization and
control. In: IEEE International Conference onRobotics andAutomation, pp. 2403–2408 (2007)

14. Prabhu, S., Li, W., McLurkin, J.: Hexagonal lattice formation in multi-robot systems. In: 11th
International Conference on Autonomous Agents and Multiagent Systems (2012)

15. Shucker, B., Bennett, J.K.: Scalable control of distributed roboticmacrosensors. Distrib. Auton.
Robot. Syst. 6, 379–388 (2007)

16. Soares, J.M., et al.: Joint asv/auv range-based formation control: Theory and experimental
results. In: IEEE International Conference on Robotics and Automation, pp. 5579–5585 (2013)

17. Sorkine, O.: Least-squares rigid motion using svd (2007). https://igl.ethz.ch/projects/ARAP/
svd_rot.pdf. Accessed 13 June 2015

18. Spears, W., et al.: Distributed, physics-based control of swarms of vehicles. Auton. Robots
17(2–3), 137–162 (2004)

https://igl.ethz.ch/projects/ARAP/svd_rot.pdf
https://igl.ethz.ch/projects/ARAP/svd_rot.pdf

Multi-swarm Infrastructure for Swarm
Versus Swarm Experimentation

Duane T. Davis, Timothy H. Chung, Michael R. Clement
and Michael A. Day

Abstract This paper builds on previous Naval Postgraduate School success with
large, autonomous swarms of fixed-wing unmanned aerial vehicles (UAV) to pro-
vide infrastructure for the simultaneous operation of multiple swarms. Developed
in support of an event fostering swarm capability development through competi-
tion, the online referee, or Arbiter, monitors and evaluates multiple independent but
interacting swarms. This Arbiter provides sensor modeling for both swarms, evalu-
ation of inter-swarm interaction, scoring and enforcement of competition rules, and
graphical display of game status. Arbiter capability is demonstrated through live-fly
experiments and software-in-the-loop simulation. The Arbiter is also used to evalu-
ate swarm behaviors that are developed for air-to-air pursuit of an opposing swarm
with results provided in this paper.

1 Introduction

Improved autonomous unmanned aerial vehicle (UAV) capability has led to increased
interest in multi-UAV systems, or swarms, and opened research avenues such as

T. H. Chung, M. R. Clement and M. A. Day are Contributor to this work were performed while
affiliated with the Naval Postgraduate School.

D. T. Davis (B) · M. R. Clement
Naval Postgraduate School, Monterey, CA, USA
e-mail: dtdavi1@nps.edu

M. R. Clement
e-mail: michael.clement@gmail.com

T. H. Chung
Defense Advanced Research Projects Agency, Arlington, VA, USA
e-mail: timothy.chung@darpa.mil

M. A. Day
Georgia Tech Research Institute, Atlanta, GA, USA
e-mail: michael.day@gtri.gatech.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_45

649

650 D. T. Davis et al.

platforms [9, 12], communication and control [4, 11, 17], and cooperation and
coordination [3, 16, 19] among others. The Naval Postgraduate School (NPS)
Advanced Robotic Systems Engineering Laboratory (ARSENL) has leveraged these
and other research efforts in exploring large-scale swarms of autonomous, fixed-wing
UAVs [8]. As part of these efforts, the NPSARSENL has proposed anAerial Combat
Swarms (ACS) Challenge to foster capability development [7]. This challenge mod-
els a capture a flag scenario in which both swarms attempt to capture an opponent’s
flag while defending their own by preemptively tagging opponent UAVs.

Competitive events have proven useful in fostering robotics innovation. Perhaps
the most well-known example is RoboCup and its use of soccer competition to
promote broad-based research [14]. RoboCup success spawned simulation leagues
that further accelerated research on multi-agent teamwork, planning, recognition,
and learning [1]. Additional examples include the DARPA Grand and Urban Chal-
lenges [5, 6] and annual live-fly, competitive UAV events such as the International
Micro Air Vehicle Conference and Competition [21], UAV Outback Challenge [24],
and AUVSI events [2]. These events typically focus on a task or mission and assess
competitors based on effectiveness rather than head-to-head performance.

Live-fly experimentation with aerial swarms (which includes the proposed ACS
Challenge), typically requires simultaneous monitoring of many robots. The Swarm-
ing Micro Air Vehicle Network (SMAVNET) project has utilized a UDP/IP network
to monitor and control a swarm of up to 10 fixed-wing UAVs with a single worksta-
tion [13], and Vásárhelyi et al. used the same approach in outdoor experiments with
10-vehicle quadrotor swarms [25]. In both cases, decision-making is distributed to
the individual vehicles, so reliance on the base station for control is minimized while
operator situational awareness is maintained through periodic broadcast of vehicle
state information. The NPS ARSENL has also used this approach successfully in
field experiments with up to 50-UAV swarms [8]; however, the operation of multiple
swarms in a competitive scenario imposes requirements beyond monitoring.

Competitive autonomous robot events require metrics or objectives by which
relative success is measured by unbiased evaluators. For many competitions, this
requirement is met in a fairly straight forward manner. Task-based competitions
such as the Outback Challenge, for instance, do not require competing robots to
interact with one another during the event. Thus, evaluators can simply determine
how successful each participant is at each task [22]. Compliance with competition
rules can be similarly assessed by observation of individual participants.

Of the cited examples, RoboCupmost closely aligns with the proposedACSChal-
lenge since both call for head-to-head team competition in a common environment.
RoboCup events with actual robots are not that difficult to evaluate, however, since
they are typically conducted by small teams in confined arenas with easily observed
objectives. In the RoboCup Standard Platform League, for instance, teams of five
robots compete on a 9-meter by 6-meter field with the objective of scoring the most
goals [23]. Direct observation provides a reasonable evaluation approach for these
events. In addition, RoboCup intentionally requires teams to be self sufficient in
order to foster the broadest-possible research [14], so no mechanism for augmenting
teams’ onboard perceptive capabilities is required.

Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation 651

Evaluation of RoboCup simulation leagues, on the other hand, imposes additional
requirements that overlap with those of the ACS Challenge. These leagues require
a simulation framework implementing models of the physical environment, players,
and sensors and providing feedback to the individual robot agents. RoboCup simu-
lation leagues typically utilize a client-server system such as the RoboCup Soccer
Server [15, 18] to implement a virtual game environment. More recent RoboCup
simulation leagues have largely maintained this client-server, simulator-dependent
approach [23]. RoboCup simulation league events share many characteristics with
the ACS Challenge including distributed agent decision processes and dependence
on the server for agent situational awareness. However agent-to-agent communi-
cation is implemented on the server itself and a synchronous discrete event model
is utilized (i.e., one action per agent per cycle) [18] making it unsuitable for field
experimentation or agents that communicate directly.

In addition to requiring support for live-robot events, the proposed ACS Chal-
lenge imposes a number of constraints that are not addressed by the Soccer Server’s
architecture. Most obviously, the communication environment of the ACS Chal-
lenge makes the client-server model unrealistic [7]. Further, unlike RoboCup events
involving actual robots, the airspace volume, coupled with the number and size of the
participating UAVs, makes direct observation and evaluation of the ACS Challenge
impossible.

Given the inherent challenges to judging the proposed ACS Challenge, successful
execution requires a software Arbiter to serve as an autonomous referee. The Arbiter
is responsible for ensuring rule compliance, assessing engagements, and providing
real-time visualization [7]. This work summarizes Arbiter infrastructure and imple-
mentation in support of the ACS Challenge and also provides results and analysis of
initial air-to-air swarm behaviors.

Contributions include the development of an infrastructure for evaluating air-to-
air and air-to-ground capabilities of competing swarms and for assessing interac-
tions between swarms that may not be cooperating despite operating in the same
geographic area. In addition, analysis of air-to-air behaviors provides a preliminary
assessment of the relative importance of swarm size and behavior robustness.

The remainder of this paper first provides a brief overview of the multi-UAV sys-
tem with which this work was conducted. Section3 then describes ACS Challenge
requirements and Arbiter design. Sections4 and 5 respectively describe and analyze
currently implemented air-to-air swarm behaviors. An evaluation of Arbiter perfor-
mance in experiments is also provided in Sect. 5. Finally, Sect. 6 provides a summary
and proposed areas for future research.

2 The ARSENL Multi-UAV System

ARSENL experiments are conducted with the NPS-designed Zephyr II UAV. The
Zephyr II leverages open-source hardware and software, hobby and commodity com-
ponents, and 3D-printed parts to provide a low-cost, yet capable, UAV platform. It

652 D. T. Davis et al.

weighs 2.5kg, has a nominal cruising speed of 18 meters per second and approxi-
mately 50min of endurance [8]. Swarming behaviors are implemented on a compan-
ion computer running the open-source Robot Operating System [20]. In addition, a
robust simulation environment facilitates rapid development [10].

TheZephyr II UAV is equippedwith awireless radio that allows participation in an
ad hoc Wi-Fi network that is also utilized by ground stations. UDP broadcast is used
for all swarm communications tominimize latency [8]. An application-layer protocol
was developed to address ACS Challenge requirements. All messages contain a
fixed-format header with typical fields such as source and destination identifiers and
timestamp, while payload varies with message-type-specific fields. This protocol
is used to transmit state (telemetry) at 10Hz, navigation status at 2Hz, and other
information as required [8].

Most messages are intentionally broadcast to all participants; however, some are
directed to specific recipients. Because UDP broadcast is unreliably delivered to
all participants, messages must support idempotency, and participants must identify
and process relevant messages and ignore irrelevant ones. Each network node is
assigned a unique identifier for this purpose [8]. In addition, a number of messages
exchanged between air and ground stations require reliable delivery not provided by
UDP broadcast [10]. A limited reliability mechanism for point-to-point communi-
cations has been incorporated to address this requirement.

In the context of the proposedACSChallenge, the use ofUDPbroadcast implicitly
imposes a requirement for separate networks for participating swarms. One of the
most important Arbiter capabilities, then, is to bridge these networks and exchange
required information between swarms in accordance with game rules [7].

3 Multi-swarm Operations

3.1 ACS Challenge Overview

The ACS Challenge involves two competing swarms (designated blue and red) in a
battle arena. Each swarm is assigned a flag location on the runway to represent the
defended asset and a standby waypoint for post-launch staging as depicted in Fig. 1.
All UAVs are required to remain within the geographic boundaries of the battle arena
and must observe minimum and maximum altitude restrictions [7].

Successful air-to-ground engagements require landing sufficiently close to the
opponent’s flag, while air-to-air engagements are evaluated by the Arbiter based on
notional tagging characteristics and a firing report transmitted by the firingUAV indi-
cating the tagging and the targeted UAVs and the GPS time. Tagged UAVs are imme-
diately ineligible to conduct further engagements but are not specifically required to
depart the battle arena.

Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation 653

Fig. 1 Notional ACS
challenge battle arena layout
for McMillan airfield at
Camp Roberts, CA

Fig. 2 Arbiter configuration
for bridging red and blue
networks and refereeing the
ACS challenge

Each swarm is scored by the Arbiter using Eq.1 where Cair and Cground are con-
stants, hitair and hitground are sets of successful engagements, and fe assesses logisti-
cal and operational effectiveness. Coefficients are adjusted to emphasize the relative
importance air-to-air or air-to-ground engagements. Similarly, fe is manipulated to
incentivize factors of importance and to assess rule violation penalties. A more com-
prehensive description of the ACS Challenge scenario, objectives, assumptions, and
rules is provided in [7].

Score = Cair |hitair| + Cground

∣
∣hitground

∣
∣ + fe (1)

3.2 Arbiter Implementation for Inter-swarm Interaction

The Arbiter runs on a ground station and serves as a bridge between participating
swarm networks. Since the protocol uses UDP broadcast, the Arbiter can access
swarmmessages by joining a swarm network, and joining both networks as depicted
in Fig. 2 enables message traffic monitoring of both swarms. Arbiter situational
awareness is ensured by requiring all UAVs to regularly broadcast GPS-timestamped
state messages. Swarm UAVs are also required to broadcast messages to announce
discrete events requiring Arbiter assessment (e.g., firing reports).

654 D. T. Davis et al.

Using this pattern, the Arbiter—and more generally, the ARSENL system—is
suitable for arbitrary UAV configurations so long as all simulated and live vehicles
utilize the communications protocol described in Sect. 2. This flexibility allows the
Arbiter to support swarms of live UAVs, simulated UAVs, and even mixed swarms
of live and simulated UAVs [10]. Further, there is no requirement that UAVs be
comparable to the Zephyr II, as both the Arbiter and the communications protocol
are appropriate for fixed-wing, rotary-wing, powered, and unpowered UAVs [10].

In addition to monitoring both swarm networks, the Arbiter enforces game rules,
maintains score, supplies simulated sensor data to both swarms, and simulates
engagement tagging performance. Enforcement ofmost game rules is simply amatter
of monitoring and processing UAV state information to identify violations. A breach
of the battle arena boundary, for instance, is identified by comparing reported state to
the battle arena geography. Maneuvering violations and many safety-of-flight issues
can be similarly identified.1 Game rule violation typically results in the removal the
offending UAV from the competition [7].

Scorekeeping requires evaluation of both discrete events and continuous data that
accumulates over time. In addition to engagements, discrete events such as launches,
recoveries, and penalties can be incorporated into the logistical and operational effec-
tiveness function, fe. Continuous data, also incorporated into fe, is useful for assessing
swarm operations and might include the number of active swarm UAVs, UAV time
on station, or defended area coverage among others. Given n discrete events and
m accumulated continuous values, fe is calculated using Eq.2 where Ei is the point
value of a discrete event, and Tj is a continuous value computed at time t.

fe =
n

∑

i=1

Ei +
m

∑

j=1

∫ t

0
Tjdt (2)

Evaluation of discrete events involving multiple UAVs such as firing reports
requires synchronization since alignment between affected UAV state-message and
event timestamps is unlikely. This requirement is not unique to the ACS Challenge
and has been addressed by the Massive Multiplayer Online Game community [26],
though it isworth noting that latencies can be significantly higher in a live-fly environ-
ment using radio communications vice wired networks. Fortunately, the availability
of a common time baseline from GPS time or Network Time Protocol and a level
of trust afforded to challenge participants—cheating would defeat the purpose—
mitigates the requirement for complicated synchronization solutions [7].

To facilitate accurate evaluation, the Arbiter maintains a scroll-like data structure
(implemented as a double-ended queue) of timestamped events for each UAV. Event
evaluation takes place after a predetermined delay is applied so that similarly-timed
events that are received later can be properly sequenced to ensure in-order processing.
When an event is evaluated, the preceding and following states are retrieved, and

1The Arbiter does not provide safety-of-flight services. Collision and terrain avoidance, maneuver-
ing limits, and other hazards must be implemented on the individual UAVs.

Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation 655

linear interpolation is used to estimate the event-time state. For example in the case
of a firing report, estimated aggressor and target states for the firing report time are
used to evaluate the engagement. If an event timestamp is more recent than the last
received state of an affected UAV, evaluation is deferred until a new state report
is received. Run-time memory requirements are managed by periodic logging and
removal of old events from UAV-specific data structures.

As described in [7], the ACS Challenge does not presume onboard sensing of
opponent UAVs (organic detection can be rewarded through fe). The Arbiter, there-
fore, must provide virtual sensor information to both swarms. Virtual sensor informa-
tion is provided in the form of opponent-pose messages transmitted to the opposing
swarm network and is based on state data maintained by the Arbiter. The Arbiter
currently provides three sensor models selected independently for each swarm: an
infinite range sensor (i.e., universal awareness), a finite range sensor with a swarm-
wide data link (i.e., limited but swarm-wide awareness), and a finite range sensor
with no data link (i.e., on-board sensing only). Noise is not currently added to virtual
sensor data and sensor models are omnidirectional (more realistic and directional
sensor models are a possibility for future development).

For virtual tagging the Arbiter assumes that UAVs are equipped with finite range,
forward firing taggers. Requirements for successful employment (the tagging enve-
lope) are described by minimum range rmin, maximum range rmax, maximum hori-
zontal angle-off-the-nose αmax, and maximum vertical angle-off-the-nose βmax. An
engagement is evaluated by determining the target’s actual range, horizontal angle-
off-the-nose, and vertical angle-off-the-nose (r, α, and β) relative to the aggressor
at the time of the firing report and applying Eq.3. A hit report is broadcast to both
swarm networks for successful engagements. As with the virtual sensor, the virtual
tagging model does not include noise and assumes perfect performance (i.e., if the
target is in the tagging envelope then the engagement is successful).

hit(r, α, β) =
{

True, if rmin ≤ r ≤ rmax ∧ |α| ≤ αmax ∧ |β| ≤ βmax

False, otherwise
(3)

The Arbiter supports operator situational awareness with map and dashboard
displays. The map display provides real time position for all UAVs while the dash-
board display provides the status of both swarms, echoes selected discrete events and
Arbiter assessments, and displays current swarm scores.

4 Air-to-Air Algorithms

An air-to-air engagement sequence is characterized by an aggressor UAV intention-
ally maneuvering into a firing position against a target UAV. Once in firing position,
the aggressor issues a firing report for assessment by the Arbiter. Suitable firing posi-
tion can be determined using Eq.3 based on calculated r, α, and β. Per Sect. 3.2, the

656 D. T. Davis et al.

Arbiter broadcasts firing report evaluations over both swarm networks. Individual
UAVs can utilize all received evaluations or only those associated with their own
firing reports as implemented by their onboard behaviors.

Two air-to-air engagement behaviors were developed to test the Arbiter’s useful-
ness in assessing swarm-versus-swarm performance. Both algorithms make target
selection decisions based on Euclidean distance—the nearest target-UAV candidate
is selected—and use a proportional navigation function to maneuver into firing posi-
tion against the target. The selection process is obviously suboptimal in that multiple
aggressors can select the same target while other candidates unengaged.

The Naive Shooter algorithm (Algorithm 1) follows a three step process: select
target, maneuver into firing position, issue firing report; and continues until all oppos-
ing UAVs have been successfully engaged. This behavior is completely independent
and will ignore engagement results from other UAVs. Thus, if multiple UAVs select
the same target, each will continue the engagement until firing (i.e., a UAV will not
disengage if another UAV issues a firing report that is assessed as a “hit”). Further,
in selecting subsequent targets, UAVs that have been successfully engaged by other
friendly UAVswill still be considered. The targeted UAVwill be exclusively pursued
until engaged even if amore attractive target emerges, and there is no break condition,
so the pursuer will continue the pursuit even if the target is successfully engaged by
another UAV. The behavior is intentionally rudimentary to provide a baseline against
which more robust behaviors can be compared.

The Greedy Shooter algorithm (Algorithm 2) implements a simple but significant
improvement. Whereas the Naive Shooter behavior ignores results of other UAVs’
engagements, the Greedy Shooter algorithm incorporates these results into its own
target selection and pursuit. Although the Greedy Shooter algorithm implements
the same three step process as the Naive Shooter algorithm, a break condition is
provided to terminate the pursuit (initiating a new target selection) if another UAV
successfully engages the target. Further, successful engagements by other friendly
UAVs will be factored into target selection. As with the Naive Shooter, the Greedy
Shooter algorithm will continue its pursuit of the selected target until that target has
been successfully engaged even if a more attractive target becomes available.

Both algorithms use the same target selection criteria and have the same communi-
cations requirements, so they differ only in one-on-one engagement termination and
follow-on target selection. Over the course of an engagement, the Greedy Shooter’s
more efficient follow-on target selection can improve performance.

5 Experimentation

5.1 Arbiter Evaluation of Swarm Versus Swarm Interaction

ARSENL conducts regular live-fly exercises with swarms of up to 50 UAVs at Camp
Roberts, California [8]. Multi-swarm experiments with the Arbiter and air-to-air
behaviors described in this paper were conducted in December 2015 and May 2016

Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation 657

Algorithm 1 Naive Shooter
1: target_swarm ← opponent_swarm_uav_ids
2: hit_targets ← ∅
3: repeat
4: target ← choose_best_target(target_swarm)
5: hit ← False
6: repeat
7: pursue(target)
8: r, α, β ← get_target_parameters(target)
9: if hit(r, α, β) then
10: report ← make_firing_report(time, target)
11: hit ← arbiter_evaluation(report)
12: if hit = True then
13: target_swarm ← target_swarm \ {target}
14: hit_targets ← hit_targets ∪ {target}
15: end if
16: end if
17: until target ∈ hit_targets
18: until target_swarm = ∅

Algorithm 2 Greedy Shooter
1: target_swarm ← opponent_swarm_uav_ids
2: hit_targets ← ∅
3: repeat
4: target ← choose_best_target(target_swarm)
5: hit ← False
6: repeat
7: pursue(target)
8: r, α, β ← get_target_parameters(target)
9: if hit(r, α, β) then
10: make_firing_report(time, target)
11: end if
12: hit_targets ← hit_targets∪ arbiter_evaluation(all)
13: target_swarm ← target_swarm \ hit_targets
14: until target ∈ hit_targets
15: until target_swarm = ∅

for swarm sizes of up to 15 UAVs per swarm. A visualization of a typical live-fly
event involving two swarms of 10 UAVs each is provided in Fig. 3.

Field experimentation involves significant logistical investment. ARSENL field
experiment success relies on an aggressive systems-engineering approach [10], a key
component of which is Software-in-the-Loop (SITL) simulation. The SITL environ-
ment incorporates ground systems, accounts for environmental and communication
conditions, and can include an arbitrary number of UAVs in multiple swarms [10].
Experimental results described in this paper were conducted in the SITL environment
with swarms of between 10 and 25 UAVs. These studies allow for more systematic
investigation of behaviors demonstrated in live-fly field tests.

658 D. T. Davis et al.

Fig. 3 Visualization in
Google Earth of live-fly field
experiments of 10v10 flights
in December 2015. a Red
swarm (left) and Blue swarm
(right) in swarm-ready
state; b Red and Blue
swarms engaging using
Naive Shooter algorithms; c
Swarms disengaging for
reset; d Blue swarm
egressing at conclusion of
experiment

Fig. 4 Comparison of SITL
experiment Naive vs. Greedy
Shooter results. Blue tag
ratio (left axis) describes the
number of successful
blue-on-red engagements per
successful red-on-blue
engagement. Probability of
blue victory (right axis)
provides the probability that
the blue swarm successfully
engaged all red-swarm UAVs

SITL experiments utilized the following virtual sensor and tagging parameters:
infinite sensor range model, with rmin = 0 meters, rmax = 150 meters, αmax = 10◦,
andβmax = 90◦ (noting that this reduces engagement to a two-dimensional intercept).

Experimentswere run until one swarm successfully engaged all opposingUAVs to
ensure awinning swarm in every engagement. Ten iterations of each experimentwere
conducted with results consolidated for presentation in Fig. 4. Results are presented
from the perspective of the blue swarm for consistency. Captured metrics include
tag ratio (Eq.4), and blue victory probability (i.e., the probability that all red-swarm
UAVs were successfully engaged).

tag_ratio =
∣
∣hitblueair

∣
∣

∣
∣hitredair

∣
∣

(4)

Identical-swarm experiments were conducted with swarms of 20 UAVs to verify
correct implementation and assess performance. Not surprisingly, blue:red tag ratio
was close to 1:1 and blue victory probability was approximately 0.5 as the Fig. 4 “20
versus 20 (Naive vs Naive)” and “20 versus 20 (Greedy vs Greedy)” entries indicate.

Interestingly, experiments frequently stabilized with opposing UAV pairs circling
one another in an unsuccessful attempt to maneuver into firing positions. When sta-

Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation 659

Fig. 5 Comparison of SITL
experiment virtual sensor
configuration results

bilization was noted, behaviors were suspended and reinitialized once the swarms
separated to reset the engagement (to allow continuation until one swarm won).
This phenomenon—which was also observed in live-fly experiments—results from
the focused pursuit of a single opponent following target selection. That is, evenly
matched UAVs will relentlessly pursue one another even if maneuvering limits pre-
vent either from obtaining a valid firing solution.

Dissimilar-swarm experiments were conducted with the blue and red swarms
utilizing the Greedy Shooter andNaive Shooter algorithms respectively. Swarm sizes
were varied from evenly matched to a 2:1 advantage for the red swarm.

The blue swarm had a marked advantage in 20 versus 20 and 15 versus 20
experiments with tag ratios exceeding 2:1 and a probability of victory of nearly 1.0.
Of note, the one red swarm victory resulted from a high initial volley red:blue tag
ratio (i.e., red UAVs successfully engaged many blue UAVs in the initial stage). This
gave the red swarm an insurmountable numerical advantage for the remainder of the
experiment. In all other experiments, superior blue swarm follow-on target selection
was evident.

The blue swarmmaintained a tag ratio advantage in the 15 versus 25 experiments,
but this did not ensure a blue swarm victory. In approximately 40% of the experi-
ments, the red swarm successfully engaged all blue UAVs despite heavy losses (even
in red swarm victories, more red UAVs were successfully engaged than blue UAVs).
Once red swarm advantage was increased in the 10 versus 20 experiments, numer-
ical superiority became decisive. Blue:red tag ratios in these experiments dropped
dramatically to less than 0.5:1 and the red swarm won all engagements.

The effect of currently modeled configurations on behavior performance was also
evaluated in SITL experiments with results depicted in Fig. 5. These experiments
were conducted with identical 20-UAV swarms using the Greedy Shooter algorithm
and a 250m sensor range (for finite-range models). As indicated, swarms using the
infinite-range sensor and finite-range sensor with a swarm-wide data link performed
similarly. In head-to-head experiments these swarms were fairly evenly matched,
with tag ratios near 1:1 and neither sensor model providing a noticeable advan-
tage. Swarms using these sensor models did significantly outperform those using the

660 D. T. Davis et al.

finite-range model with no data link. Although preliminary, these experiments do
demonstrate Arbiter usefulness in assessing sensor models.

These results demonstrate that the Greedy Shooter algorithm outperforms the
Naive Shooter algorithm, but that the advantage can be overcome by numerical
superiority. These results are not surprising, however, and they merely confirm fairly
well-knownphenomena.More importantly, these experiments demonstrate the utility
of the Arbiter in supporting rigorous analysis of behavior performance in a competi-
tive environment. Thus, outcomes of these sorts of experiments can be used not only
to identify superior behaviors, but also to formally characterize the nature and limits
of their superiority. In addition, the analysis itself provides an example of the sorts
of comparisons that can be supported.

5.2 Evaluation of Arbiter Performance

The experiments described in Sect. 5.1 demonstrate the Arbiter’s ability to support
evaluation of interactive multiple swarm behavior. They also provided a mechanism
for evaluating the performance of the arbiter itself and led to a number of relevant
observations.

Scalability is an important consideration in any multi-agent system. Since the
UDP-based ACS communications protocol does not require retransmission, network
bandwidth requirements scale linearly with swarm size. Incorporation of opponent-
pose messages from the Arbiter effectively doubles the bandwidth requirement
(assuming same-sized swarms) on both swarm networks. Arbiter performance was
successfully demonstrated with swarm sizes of up to 25 UAVs in recent field exper-
iments, however anecdotal network performance for a single 50-UAV swarm does
reveal some degradation [8]. It is reasonable to infer that communications require-
ments for larger multiple swarms will incur additional network performance degra-
dation, however the actual limits in the ability of an 802.11n network to support
increasing swarm sizes with this architecture need to be more formally assessed.

Synchronization was also an important factor in Arbiter performance. As noted
previously, event times are based on UAV time, so out-of-order evaluation is unlikely
with proper synchronization through GPS or a Network Time Server. Further, event
times are explicitly encoded into the payload portion of the associated message, so
transmission delays and latency are not factors. Without a Network Time Server
in use, however, occasional out-of-order evaluation was noted in SITL experiments
when on-UAV time differed by as little as two seconds. Evaluation of firing reports in
the wrong order in these cases could lead to a UAV being evaluated as “hit”, when the
firing UAV should have been out of action already. No out-of-order event evaluation
was noted in any of the field experiments.

Communications reliability can also factor into Arbiter performance. Use of the
ACS protocol’s reliability mechanism for event messages provides some assurance
that these messages will be processed by the Arbiter, but the protocol does not
provide for an unlimited number of retransmissions. Therefore, the possibility that

Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation 661

a particular message will never be delivered cannot be dismissed and may require
post-mission reconciliation between Arbiter and UAV logs that has not yet been
implemented. Missed firing reports were not observed during field exercises with
up to 25 UAVs per swarm, but were noted on occasion in SITL experiments with
simulated communications loss rates of 90 percent.

Finally, UAVs that have been evaluated as “hit” can still affect game play. For
safety-of-flight reasons, the Arbiter continues to transmit opponent-pose messages
even after a UAV has been successfully engaged, and out-of-action UAVs are not
required to immediately exit the battle arena. This means that if the aggressor’s
behavior does not account for out-of-action UAVs or the aggressor does not receive
the hit report, it will continue to pursue the out-of-action UAV. Thus, with this Arbiter
implementation, the onus for rule compliance and efficient behavior performance
rests entirely upon the participant.

6 Conclusions and Future Work

This paper presented a software Arbiter for live-fly and simulation-based experimen-
tation with multiple UAV swarms. This work extends previous ARSENL work to
provide support for a proposed ACS Challenge through a multi-swarm Arbiter that
was used to test and evaluate behaviors for air-to-air engagements between swarms.
This analysis demonstrates the Arbiter’s utility in comparative assessment of com-
peting swarm behaviors and provides a baseline for comparing the relative values
of swarm size and swarm behavior robustness. Lessons learned from this work will
help to informdevelopment and analysis of bothUAVsingle-swarm andmulti-swarm
capabilities.

The efforts in this paper elucidate numerous areas for future work. Obvious
Arbiter improvements include enhanced sensor and tagger models and the devel-
opment of metrics for competing swarm evaluation. Future development will also
benefit from more comprehensive analysis of current swarm behaviors to include
experimentation with larger swarms and various sensor configurations. Further, the
swarm behaviors implemented for this paper are rudimentary but provide a baseline
for comparison to more robust behaviors. Future behaviors might use consensus or
market-based approaches to improve target selection or more deliberative heuris-
tics to avoid stalemate and improve survivability. Also, behavior development—for
swarm-versus-swarm competition, for non-competitive interaction between swarms,
and also for individual swarm implementation—is a priority. Finally, increasing the
scale of experiments will facilitate more formal evaluation of the Arbiter commu-
nications architecture to include identification of practical limits in the size of the
swarms that can be supported.

662 D. T. Davis et al.

References

1. Asada, M., Veloso, M., Kraetzschmar, G.K., Kitano, H.: Robocup: today and tomorrow. Exp.
Robot. VI 250, 369 (1999)

2. Association for Unmanned Vehicle Systems International: 2016 Rules for AUVSI Seafarer
Chapter’s 14th Annual Student UAS Competition (2016)

3. Bayraktar, S., Fainekos, G.E., Pappas, G.J.: Experimental cooperative control of fixed-wing
unmanned aerial vehicles. In: 43rd IEEE Conference on Decision and Control, 2004. CDC,
vol. 4, pp. 4292–4298. IEEE (2004)

4. Bekmezci, I., Sahingoz, O.K., Temel, Ş.: Flying ad-hoc networks (fanets): a survey. Ad Hoc
Netw. 11(3), 1254–1270 (2013)

5. Buehler, M., Iagnemma, K., Singh, S.: The 2005 DARPA Grand Challenge: The Great Robot
Race, vol. 36. Springer Science & Business Media (2007)

6. Buehler, M., Iagnemma, K., Singh, S.: The DARPA Urban Challenge: Autonomous Vehicles
in City Traffic, vol. 56. Springer, Berlin (2009)

7. Chung, T.H., Jones, K.D., Day, M.A., Jones, M., Clement, M.: 50 vs. 50 by 2015: Swarm Vs.
Swarm UAV Live-Fly Competition at the Naval Postgraduate School, pp. 1792–1811. AUVSI
North America, Washington, DC (2013)

8. Chung, T.H., Clement, M., Day, M.A., Jones, K.D., Davis, D.T., Jones, M.: Live-fly, large-
scale field experimentation for large numbers of fixed-wing UAVs. In: 2016 IEEE International
Conference on Robotics and Automation. Stockholm, Sweden (2016)

9. Cole, D.T., Sukkarieh, S., Göktogan, A.H., Stone, H., Hardwick-Jones, R.: The development
of a real-time modular architecture for the control of uav teams. In: Field and Service Robotics,
pp. 465–476. Springer, Berlin (2006)

10. Day, M.A., Clement, M.R., Russo, J.D., Davis, D., Chung, T.H.: Multi-UAV software systems
and simulation architecture. In: 2015 International Conference on Unmanned Aerial Systems,
pp. 426–435. IEEE, Denver, CO (2015)

11. Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks.
IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2015)

12. Han, J., Xu, Y., Di, L., Chen, Y.: Low-cost multi-UAV technologies for contour mapping of
nuclear radiation field. J. Intell. Robot. Syst. 70(1–4), 401–410 (2013)

13. Hauert, S., Leven, S., Zufferey, J.C., Floreano, D.: The swarming micro air vehicle network
(SMAVNET) project (2015)

14. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world cup
initiative. In: Proceedings of the first international conference on Autonomous agents, pp.
340–347. ACM (1997)

15. Kitano, H., Asada,M., Kuniyoshi, Y., Noda, I., Osawa, E.,Matsubara, H.: Robocup: a challenge
problem for AI. AI Mag. 18(1), 73 (1997)

16. Kownacki, C., Odziej, D.: Flocking algorithm for fixed-wing unmanned aerial vehicles. In:
Bordeneuve-Guibé, J., Drouin, A., Roos, C. (eds.) Advances in Aerospace Guidance, Naviga-
tion and Control SE - 24. Flocking A, pp. 415–431. Springer International Publishing (2015).
http://dx.doi.org/10.1007/978-3-319-17518-8_24

17. Madey, A.G., Madey, G.R.: Design and evaluation of UAV swarm command and control strate-
gies. In: Proceedings of the Agent-Directed Simulation Symposium, p. 7. Society for Computer
Simulation International (2013)

18. Noda, I., Stone, P.: The RoboCup soccer server and CMUnited clients: implemented
infrastructure for MAS research. Auton. Agents Multi-Agent Syst. 7(1–2), 101–120 (2003)

19. Nowak, D.J., Price, I., Lamont, G.B.: Self organized UAV swarm planning optimization for
search and destroy using swarmfare simulation. In: 2007 Winter Simulation Conference, pp.
1315–1323. IEEE (2007)

20. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,
Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source
Software (2009)

http://dx.doi.org/10.1007/978-3-319-17518-8_24

Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation 663

21. Reeder, M.: Special issue on the international micro air vehicle conference and flight compe-
tition 2014 (IMAV 2014). Int. Jo. Micro Air Veh. 6(4), i–ii (2014)

22. Roberts, J., Frousheger, D.,Williams, B., Campbell, D.,Walker, R.: How the outback challenge
was won: the motivation for the UAV challenge outback rescue, the competition mission, and
a summary of the six events (2016)

23. Stone, P.:Whats hot at robocup. In: ThirtiethAAAIConference onArtificial Intelligence (2016)
24. UAV Challenge. https://uavchallenge.org/ (2016). Accessed: 25 June 2016
25. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T., Vicsek, T.:

Outdoor flocking and formation flight with autonomous aerial robots. In: 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3866–3873. IEEE (2014)

26. Yahyavi, A., Kemme, B.: Peer-to-peer architectures for massively multiplayer online games: a
survey. ACM Comput. Surv. (CSUR) 46(1), 9 (2013)

https://uavchallenge.org/

Robust Coordinated Aerial Deployments for
Theatrical Applications Given Online User
Interaction via Behavior Composition

Ellen A. Cappo, Arjav Desai and Nathan Michael

Abstract We propose and evaluate a multirobot system designed to enable live
theatric presentation of episodic stories through online interaction between a per-
former and a robot system. The proposed system translates theatric performer intent
into dynamically feasible robot trajectories without requiring prior knowledge of
the ordering or timing of the desired robot motions. The system enables a user to
issue instructions composed of desired motion descriptors at arbitrary times to spec-
ify the motion of the robot ensemble. The system refines user motion specifications
into safe and dynamically feasible trajectories thereby reducing the cognitive burden
placed on the performer. We evaluate the system on a team of aerial robots (quadro-
tors), and show through offline simulation and online performance that the proposed
system formulation translates online input into non-colliding dynamically feasible
trajectories enabling the performance of an epic poem over the course of a three act
performance spanning fifteen minutes of coordinated flight by a six robot team.

1 Introduction and Related Work

We wish to enable a performer to direct an ensemble of robots to act as characters
during the retelling of an epic story that requires the robots to perform choreographed
motions while deployed in groupings or formations. Although the choreographed
motion types are known before the performance, the choice and ordering of the
behaviors, their duration, and the timing between them is directed by a storyteller in
an improvisational manner that may vary in tempo and tenor between performances.

E. A. Cappo (B) · A. Desai · N. Michael
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: eacappo@cmu.edu

A. Desai
e-mail: arjavd@cmu.edu

N. Michael
e-mail: nmichael@cmu.edu

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_46

665

666 E. A. Cappo et al.

To enable the theatric performer to provide online choreography direction to the
multi-robot system, the performer’s intent, including instructions specifying lighting,
sound, or movement and timing directions, must be translated into individual robot
trajectories online. This requirement of real-time intent translation is particularly
challenging as the performer can issue a direction at any time and without consider-
ation of the robots’ extents and performance limits leading to violation of collision
and actuator constraints. Additionally, the performer may err in the direction, leading
to a motion specification that is logically invalid.

Coordinated vehicle deployments within the context of choreographed and impro-
visational performances are generally characterized as scripted or unscripted, respec-
tively. Currently, most robot theatric works are scripted, fully specifying all robot
trajectories before the performance, including efforts focused on choreographed
aerial dance and acrobatic maneuvers [1, 9]; light shows such as the one performed at
the Cannes International Festival of Creativity, Saatchi and Saatchi New Directors’
Showcase 2012 Festival [6]; or the Guinness Book ofWorld Record-holding flight of
100 Drones [7]. If present, human actors in scripted performances [8] or Cirque Du
Soleil’s “Sparked” [2, 3] respond to the robots’ motions to invoke a sense or impres-
sion of interaction. Alternative strategies seek to blend online operator interaction
with scripted robot motions that are predefined by enabling the user to dynamically
trigger the start of the motions [5] as recently demonstrated by MagicLab and Rhi-
zomatiks Research [10, 11]. Fully scripted works do not allow for any change to the
choreography during the performance, and thus interaction is conveyed through the
performer’s reaction to the robot system. Dynamically triggered motion sequences
enable the user to change elements of the performance online but do not allow the
system to respond or adapt to the user intent.

We pursue a methodology that will enable a performer to direct robot motions
in an improvisational (or unscripted) manner. This objective is challenging as we
require a strategy to translate theatric intent into a form that can be readily speci-
fied online by the performer and yields viable motion specifications for the robots
given actuator and collision constraints. We propose a framework that leverages a
centralized planner that encodes user intent through predefined descriptors that cap-
ture theatric elements such as the light, sound, or spatial-temporal motion of one or
multiple robots. These descriptors are combined to form behaviors including aes-
thetic behaviors such as light and sound (e.g. on or off) and motion behaviors that are
composed through the combination of formation, motion, and time descriptors and
manifest as individual robot trajectories as detailed in Sect. 2.1. The system ensures
that the commanded behaviors are both logically valid (Sect. 2.2) and dynamically
feasible through validation checks and motion plan refinement (Sect. 2.3). If the
original trajectories specified by a behavior are unsafe or dynamically infeasible,
the plans are refined to yield non-colliding trajectories that transition robots from
their current state to the desired behavior trajectories with the requisite time-scaling
to meet actuator limits. Figure1 provides a conceptual overview of the proposed
system formulation.

To evaluate coverage over the space of behavior inputs, we perform a large number
of offline simulations and randomly select motion descriptor combinations given the

Robust Coordinated Aerial Deployments … 667

Fig. 1 The system translates user-issued input into feasible and safe behaviors. These behaviors
undergo validation and verification checks and, if necessary, are modified to meet collision and
actuator constraints. The resulting trajectories are distributed to the robot team. While not detailed
in this work, user input is enabled via physical gesture and tablet user interfaces

set of possible start and goal locations. We confirm that when responding online to
unscripted commands, resulting plans do not violate the required inter-robot clear-
ance distance or imposed dynamic limits (Sect. 3). We validate the simulation results
via experiments with six quadrotors and a performance that mirrors a subset of the
coverage trials examined in simulation and confirm that the hardware performance
aligns with the simulation results. We qualitatively review the outcomes of a per-
formance with a narrative story of three acts performed by six quadrotors, where a
performer directs the system online over a fifteen minute period using 100 behav-
ior commands. Additionally, we discuss observations arising from the evaluation of
the proposed system based on user interaction with the system, and conclude with
directions for future system refinement (Sects. 4 and 5).

2 System Design

The proposed system design is formulated to meet the aesthetic requirements of an
improvisational theatric application that leverages an aerial robot team to visually
convey stories in which groups of individuals (ensembles) engage and interact as
coordinated formations. Therefore,we propose a formation-based approach to enable
specification of robot teammotion in amanner that seeks to reduce the user interaction
burden by avoiding individual robot motion specifications.

668 E. A. Cappo et al.

2.1 Behaviors

Performer intent is presented to the system via gesture or graphical user interfaces,
as shown in Fig. 2, in the form of tokens. Tokens are composed into a behavior,
b̄, consisting of m behavior descriptors, bi . Each behavior descriptor, bi , may take
a discrete number of values. Figure3 highlights several behavior descriptors and
potential value assignments. Denoting Bi as the set of values associated with the
behavior descriptor bi , the total number of potential behaviors achievable by the
system is:

perm(b̄) =
m∏

i=1

(|Bi |∑

k=1

|Bi |!
k!(|Bi | − k)!

)
. (1)

A motion behavior is a collection of user specified motion behavior descriptors, of
which representative descriptors are shown in Fig. 3. These descriptors specify for-
mation type, behavior timing, andmotion characteristics. Amotion behavior requires
the specification of the desired trajectory endpoint constraint, duration, and motion
characteristics. We explain each descriptor category below as well as highlight how
different descriptors contribute information to the trajectory formulation.

Behavior Duration: The starting time of the behavior, ts , is the time at which the
system receives the command from the user,1 and concludes at t f , the time as specified
by the timing behavior descriptor.

Formation Specification: We describe a formation of robots by specifying each
robot’s state in a local reference frame [4], which we call the shape frame. The
positions and headings of each robot in a local reference frame as a function of
time t are s(t) = [x(t), y(t), z(t), ψ(t)]T, s ∈ R

3 × SO(2), with a vector S(t)

(a) A user inputs descriptors to the system via
gesture.

(b) A screen shot of the graphical user interface
(GUI) employed on a touch screen tablet.

Fig. 2 A user may interact with the system via gesture (a) or graphical user interface (b). The
system leverages motion capture observations to identify changes in user form to recognize gesture
input, while the GUI adapts selection options based on user descriptor selection

1In practice, ts is set to a value slightly ahead of the instruction receipt time to account for planning
computation time, allowing robots to transition between trajectories without discontinuities.

Robust Coordinated Aerial Deployments … 669

Fig. 3 Representative behavior descriptors, bi , and descriptor sets, Bi , with associated potential
values

containing all of the positions in the local reference frame of the n robots in the
formation: S(t) = [s1(t), . . . , sn(t)]. The shape descriptor specifies desired starting
positions, sxyz(ts), in the shape frame [4] and the heading descriptor specifies sψ(t)
for each vehicle. A vehicle’s heading can be defined relative to its current frame
(“as-is”) or oriented toward a target in the inertial frame (a theatrical maneuver
called “spotting”).

Motion Specification: Vehicle motions are defined by both the manner and action
descriptors.

• The manner descriptor is similar to an adjective in language, giving more infor-
mation about the flight characteristics that each robot should display during the
behavior. Two characteristics of interest to the story are “drunk” and “nervous”
mannerisms, which a robot performs by moving along a wobbly course of motion,
with slower, larger motions for “drunk” and faster, smaller motions for “ner-
vous”. We represent these motions as bounded polynomial trajectories generated
through randomly chosen keypoints obeying timing and distance constraints. Tra-
jectory sxyzn (t) for robot n is a spline fit through k keypoints in x , y, and z [14]
so that dti j , the time between each pair of consecutive waypoints i and j , is
bounded (dtmin ≤ dti j ≤ dtmax) and the sum of all dt’s equals the full time span:∑i=k−1

i=0, j=i+1 dti j = t f − ts . The position of each keypoint for the j th robot lies
within a ball of radius δ centered around the robot’s starting position, s j (ts),
sxyzj (ts) ∈ Bδ(s

xyz
j (ts)). The bounding values dtmin , dtmax , and δ are defined on

a per-mannerism basis. The “fixed” mannerism denotes regular flight such that the
vehicles hold their positions in the local frame throughout the behavior.
All mannerisms, s(t), must remain within specified limits and ensured through
appropriate choice of bounding values dtmin , dtmax , and δ,

670 E. A. Cappo et al.

sxyzj (t) ∈ Bδ(s
xyz
j (ts)), |ṡxyzj (t)| ≤ vlim, |s̈xyzj (t)| ≤ alim (2)

Further, the inter-robot clearance distance, d, must be respected at all times, so
that for all combinations of robots in b̄:

|sxyzi (t) − sxyzj (t)| ≥ d, ∀i, j ∈ b̄. (3)

In general, we choose to only allow a user to specify a single mannerism descrip-
tor. However, for appropriate choice of bounding values dtmin , dtmax , and δ, the
combinations of mannerisms s(t) = s1(t) + ... + s j (t) will obey the constraints
stated in Eqs. (2) and (3). The vehicles are therefore “nervous drunks” if required,
as the length of the mannerism descriptor set is permitted to be greater than one.

• The action descriptor specifies the motion of the entire formation. Combined with
the goal descriptor, we can design a trajectory that moves the local reference
frame through the inertial frame. We define the state of each robot at time t by
the vector x(t), containing position coordinates and heading of the vehicle: x(t) =
[x(t), y(t), z(t), ψ(t)]T, x ∈ R

3 × SO(2). The state of an n vehicle system is
given by x̄(t) = [x1(t), . . . , xn(t)]. We design smooth trajectories for each state-
space dimension via time parameterized polynomials up to an appropriate order
to ensure smoothness in the trajectories and their derivatives and satisfy dynamic
properties of the vehicle control model.
The position of the origin of the local framewith respect to the inertial frame at time
t is C(t) = [x(t), y(t), z(t)]T, C(t) ∈ R

3 and denote R(t) ∈ SO(3) as the time
varying rotation computed from the Euler rotations around the inertial x , y, and
z axes, R(t) = Rz(t)Ry(t)Rx (t). To describe a smoothly varying, differentiable
rotation, Euler angles are defined as polynomial trajectories [12].
Actions such as “circle-target” or “turn-in-place” specify formation rotations,
while periodic actions (“forward-rev”, “side-side”, and “up-down”) define trajec-
tories along the specified axis through waypoints centered on the target location.
All actions are composable with all goals and timing specifications to yield valid
polynomial trajectories for C(t) and R(t).

Trajectory initial location: The starting state of a trajectory governing the motion
of a formation of robots is established based on the current states of the robots at
the time the instruction is specified. Upon instruction receipt, the local coordinate
frame in which the formation shape is defined is established with an identity
rotation and located at the mean of the specified robots’ current positions and with
higher order terms equal to the mean of the robots’ higher order states, leading to
the definition of states, C(ts) and R(ts).

Trajectory ending location: The ending states, C(t f) and R(t f), are specified by
the “goal” and “action” parameters. Goals are defined as (x, y, z) locations in the
inertial frame and actions specify motion primitives in relation to those locations.
The initial and final states combined with the start and end times allows us to
specify a polynomial trajectory for C(t) and R(t). Combining these trajectories
with the motion description for a formation’s local frame results in the trajectory

Robust Coordinated Aerial Deployments … 671

specification for each robot in the inertial frame,

γγγ n(t) =
[
C(t) + R(t)sxyzn (t)

sψn (t)

]
. (4)

where sn(t) is one of the n local robot trajectories as specified in S(t), and the
superscripts xyz and ψ denote those respective elements of the local state vector.
Similar to x̄(t), the bar notation denotes a vector of robot trajectories, γ̄γγ (t).

2.2 Validation

There are primarily two reasons why a behavior may be invalid in an online set-
ting. First, the current vehicle states may lead to a specified behavior colliding with
flight volume boundaries. Second, a user may impose state-transition rules that limit
descriptor combinations.

Therefore, we validate a behavior by first confirming that the descriptors, given
the system state, do not result in rule-set violations. An allowable specification is
defined as {C0(t),R0(t),S0(t)} given the current system state and the descriptor
specifications and represents the proposed desired behavior. For example, as shown
in Fig. 4b, the convex hull of the behavior is confirmed to remain within the flight
volume and is marked as valid.

Fig. 4 Illustration of: a composition of a proposed behavior; b validation of the proposed behavior,
depicted with respect to the current robot states; c verification given the current robot states; and d
refined behaviors with dynamically feasible transitions

672 E. A. Cappo et al.

2.3 Verification and Mitigation

Given a valid desired behavior, we verify that the behavior is realizable by checking
the following conditions (in order).

1. The current states of the robots specified by the behavior are sufficiently close to
the starting states defined by the desired behavior, i.e., x̄(ts) � x̄0(ts).

2. The proposed trajectory accelerations arewithin the specified limit, | ¨̄γγγ (t)| ≤ alim .
3. The n robots in the behavior maintain an inter-robot spacing greater than or equal

to the minimum clearance distance, |γγγ i (t) − γγγ j (t)| ≥ d, i, j ∈ [1 . . . n].
If any condition fails, we immediately proceed to design refined trajectories [4] to
mitigate the failure, leading to a dynamically feasible, inter-robot collision-free group
behavior that remains within the arena volume. We now perform a final collision
check across robot groups. If the desired behavior intersects with other robots, we
further modify the trajectories to find collision free trajectories. However, at this time
we are investigating group-based collision avoidance strategies, and so, in practice,
avoid (or invalidate) behaviors that result in group collisions.

2.3.1 Offline Transition Validation and Verification

While formal methods, such as LTL [15, 16], are able to explicitly verify every
behavior (at the cost of high compute time), we choose to leverage offline simulation
across a large number of trials to verify all descriptor combinations, Eq. (1), assuming
a discretization of the state-space of the system that approximately covers all possible
starting and ending states within the flight volume. We depict the results of these
offline trials in Fig. 5 and detail both the number of times a descriptor combination
is tested and the number of successful behavior transitions. A behavior transition is
considered successful if:

1. The descriptor combination forms a valid {C, R, S} tuple, meaning the code
implementation is error-free;

2. The descriptor combination does not violate a user specified rule; and
3. A dynamically feasible, inter-robot collision-free trajectory is generated from the

specified behavior input.

The resulting transition table is employed online to assist in performing fast online
validation.Behaviorswith intermediate success rates frequently fail due to instruction
timing. Therefore, we may choose to use this validation table as a conservative
heuristic, and rather than check every online instruction, reject behavior transitions
with success rates below a cutoff value.

Robust Coordinated Aerial Deployments … 673

Fig. 5 Plots showing coverage over representative behavior descriptor combinations. Behaviors
are validated across varying numbers of robots, with instructions issued at randomly chosen time
intervals. Success indicates that the descriptor combination produces a valid behavior and the system
is able to interpret, refine, and transform the behavior into a dynamically feasible, collision-free
trajectory. Top plot: Arcs describe transition success rates between behaviors, where blue and red
correspond to success and failure respectively. Bottom plot: Behavior validation count

3 Evaluation

We evaluate the proposed system through extensive offline simulation and online
through experiments using six quadrotors, and validate that: (1) plans obey specified
clearance and acceleration limits; (2) planning time does not interrupt online flight;
and (3) experimental performance aligns with the simulation results to confirm that
simulation may be employed as a validation mechanism.

674 E. A. Cappo et al.

Fig. 6 Simulation evaluation. aDynamic feasibility of all plans shown as continuous bounded plan
accelerations; the top plot shows accelerations over four simulation hours, and the lower plot shows
a close up over a smaller time period. b Collision avoidance, shown as minimum distance between
all robots over all time. The top plot shows clearance over four simulation hours, and the lower plot
shows a close up over a smaller time period. c Timing of system planner stage, for varying numbers
of robots

As described in Sect. 2.3, we evaluate behavior descriptor combinations across
varying numbers of robots through simulation, where instructions are issued at ran-
dom timing intervals to simulate online user input arrival. Figure6 confirms that a
safe inter-robot clearance distance is always maintained and that all generated plans
obey dynamic feasibility constraints, depicted as trajectory accelerations. Further,
we display the timing across planner stages as the percentage of the total planning
time per instruction, to confirm that the planning method exhibits acceptable compu-
tational complexity scaling for the number of robots considered for the application.
Over 3000 descriptor combinations are tested via the representative simulation. Visu-
alizations of transitions between representative behaviors such as single-group shape
changes, group merging, and drunk behavior from simulation are shown in Fig. 7.

Robust Coordinated Aerial Deployments … 675

Fig. 7 Transitions between representative behaviors performed in a high fidelity dynamic simula-
tion environment

Fig. 8 Photos from a theatric performance. Clockwise, from top left: User practicing gesture-based
input; two groups forming lines; one quadrotor performing a solo; red team transitions across from
the blue team; bottom row: two groups of three quadrotors in triangle formations circle each other
by performing a rotation maneuver as a formation of six

We also qualitatively show the performance of the system as used in a narrative
storytelling. In this effort, a user directs six quadrotors through a three act perfor-
mance spanning fifteen minutes of flight time, requiring 100 online-issued behavior
instructions. Hardware results support the simulated evaluation, and images of the
performance flight are shown in Fig. 8. A time lapsed video of the performance is
available for review.2

4 Discussion

While we have not yet performed formal user studies, we offer observations on the
design choices presented in this work and give direction for system evolution based
on user interactions with the system over a time period of several months.

We find that the choice of designing behaviors in a local frame rather than attempt-
ing to design inertial motions directly aids in communicating theatrical intent with

2http://www.andrew.cmu.edu/user/ecappo/DARS16.mp4.

http://www.andrew.cmu.edu/user/ecappo/DARS16.mp4

676 E. A. Cappo et al.

collaborators. This structure mimics the breakdown of the theatric commands, as
specifications such as “Move drunkenly to Target A while spotting Target B” trans-
late readily into “Do x in a local framewhile the local frame performs y”. Common to
all parameterizations, the choice of polynomial trajectories and local frame represen-
tation reduces the potential design space, but by bounding position and its derivatives
in a local shape frame,we are able to readily design richmotion specificationswith the
assurance that these trajectories will compose to form dynamically feasible motions
online. Further, while we are still pursuing group collision avoidance implemen-
tations, optimization of polynomial trajectories for collision avoidance [13] show
promise for use in this area.

Not unexpectedly, we find that a key factor to effective system use is the comfort
and ease with which a user can specify behavior descriptor combinations. While the
full lexicon of descriptors is necessary to define the many behaviors users require
during a theatric performance, detailed motion specifications must be both simple
and fast to execute. At times, we find that the user requires additional inputs, such
as prioritizing descriptors within an instruction. For example, the system currently
extends the duration of overly aggressive trajectories to render them dynamically
feasible, prioritizing destination overmotion. In instanceswheremotions aremeant to
anthropomorphize vehicles for the sake of the narrative, however, itmay be preferable
to pursue fast motions to an arbitrary location, rather than slowmotions to a specified
target.

In contrast to specifying additional detail, we also encounter use cases where
users articulate a need for input behaviors with less detail. To generate instructions
quickly, we initialize all descriptors to default values to allow a user to only change
a few descriptors to specify simple behaviors. While satisfactory for simple com-
mands, more detailed behaviors still require enumerating all descriptors. Therefore,
we believe exploring more advanced strategies to make the system easily accessible
to the user, including using context-specific semantics or predictive behavior com-
position over time are important directions for tackling the problem of simplified
online interaction.

5 Conclusion and Future Work

In this effort, we pursued the formulation of multi-robot trajectory generation in an
online context specifically for an improvisational theatric application, using motion
descriptors to allow the performer to specify theatric intent and direct robot chore-
ographies online and using time-aware trajectory formulation methods for valida-
tion, verification, and trajectory refinement to systematically generate dynamically
feasible and collision free motions. We show through evaluation that the proposed
system design yields a robust approach capable of enabling online theatrical perfor-
mances. In the future, we will extend the system to incorporate learning techniques
to improve system performance and user interaction over many training and perfor-
mance sessions. These extensions include the generation of new behaviors building

Robust Coordinated Aerial Deployments … 677

on past examples and creating “macros” of recurrent behavior combinations in order
to reduce performer command repetition. Further, we are investigating modeling
users over repeated interactions in order to anticipate user instructions (i.e., behavior
input auto-completion) with the goal of reducing latency by preemptively validating
and refining potential motions.

Acknowledgements We thank James Laney and Eric Adlam for their user interface implementa-
tions and Nima Dehghani and Ali Momeni for their theatric contributions. We gratefully acknowl-
edge support from ONR grants N00014-13-1-0821 and N00014-15-1-2929.

References

1. Augugliaro, F., Schoellig, A.P., D’Andrea, R.: Dance of the flying machines: methods for
designing and executing an aerial dance choreography. IEEE Robot. Autom. Mag. 20(4), 96–
104 (2013)

2. Cirque du Soleil, ETH Zurich, Verity Studios.: Sparked: a live interaction between humans and
quadcopters (2014). http://flyingmachinearena.org/sparked/. Accessed 14 July 2016

3. Coxworth, B.: Cirque du Soleil and ETH Zurich collaborate on human/drone per-
formance. Gizmag (2014). http://www.gizmag.com/cirque-du-soleil-sparked-drone-video/
33921/. Accessed 14 July 2016

4. Desai, A., Cappo, E.A., Michael, N.: Dynamically feasible and safe shape transitions for teams
of aerial robots. In: Proceedings of the IEEE/RSJ InternationalConference on IntelligentRobots
and Systems (2016)

5. Hoffman, G., Kubat, R., Breazeal, C.: A hybrid control system for puppeteering a live robotic
stage actor. In: RO-MAN17th IEEE International Symposium onRobot andHuman Interactive
Communication, pp. 354–359. IEEE (2008)

6. Holmes, K.: Watch this: flying quadrotor light show spectacular artist [Q&A]. The
Creators Project (2012). http://thecreatorsproject.vice.com/blog/watch-this-flying-quadrotor-
light-show-spectacular-artist-qa. Accessed 14 June 2016

7. Kaplan, K.: 100 dancing drones set world record. Tech Innovation (2016). http://iq.intel.com/
=100-dancing-drones-set-world-record/. Accessed 14 June 2016

8. Knight, H., Gray, M.: Acting lesson with robot: Emotional gestures. In: Proceedings of the
ACM/IEEE International Conference on Human-Robot Interaction, pp. 407–407. IEEE (2012)

9. Lupashin, S., Hehn, M., Mueller, M.W., Schoellig, A.P., Sherback, M., D’Andrea, R.: A plat-
form for aerial robotics research and demonstration: the flying machine arena. Mechatronics
24(1), 41–54 (2014)

10. MagicLab, Rhizomatiks Research: DroneMagic - Behind the Scenes (2016). https://www.
youtube.com/watch?v=JEWXBEDAq60. Accessed 14 June 2016

11. MagicLab, Rhizomatiks Research: MagicLab 24 Drone Flight (2016). http://www.magiclab.
nyc/research/drone_magic/. Accessed 14 June 2016

12. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control
of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

13. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-integer quadratic program trajectory genera-
tion for heterogeneous quadrotor teams. In: Proceedings of the IEEE Interantional Conference
on Robotics and Automation, pp. 477–483 (2012)

14. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for quadrotor flight. In: Proceed-
ings of Robotics: Science and Systems (2013)

15. Saha, I., Ramaithitima, R., Kumar, V., Pappas, G.J., Seshia, S.A.: Automated composition of
motion primitives for multi-robot systems from safe LTL specifications. In: Proceedings of the

http://flyingmachinearena.org/sparked/
http://www.gizmag.com/cirque-du-soleil-sparked-drone-video/33921/
http://www.gizmag.com/cirque-du-soleil-sparked-drone-video/33921/
http://thecreatorsproject.vice.com/blog/watch-this-flying-quadrotor-light-show-spectacular-artist-qa
http://thecreatorsproject.vice.com/blog/watch-this-flying-quadrotor-light-show-spectacular-artist-qa
http://iq.intel.com/=100-dancing-drones-set-world-record/
http://iq.intel.com/=100-dancing-drones-set-world-record/
https://www.youtube.com/watch?v=JEWXBEDAq60
https://www.youtube.com/watch?v=JEWXBEDAq60
http://www.magiclab.nyc/research/drone_magic/
http://www.magiclab.nyc/research/drone_magic/

678 E. A. Cappo et al.

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1525–1532. IEEE
(2014)

16. Saha, I., Ramaithitima, R., Kumar, V., Pappas, G.J., Seshia, S.A.: Implan: scalable incremental
motion planning for multi-robot systems. In: ACM/IEEE 7th International Conference on
Cyber-Physical Systems, pp. 1–10. IEEE (2016)

Vertex: A New Distributed Underwater
Robotic Platform for Environmental
Monitoring

Felix Schill, Alexander Bahr and Alcherio Martinoli

Abstract We present a new Autonomous Underwater Vehicle (AUV) system for
cooperative environmental sensing. The AUV was specifically developed as a plat-
form for distributed, cooperative sensing in lakes and coastal areas. In this paper
we describe the prerequisite subsystems for a submersible multi-robot system and
their interactions. In particular, we incorporate a distributed acoustic localisation
system and distributed time-sliced communication systems into an agile, 5-DOF
submersible robot that is small, easy to deploy and retrieve, with a modular envi-
ronmental sensor payload for relevant scientific measurements. We also developed
a distributed Hardware-In-the-Loop (HIL) simulation framework to facilitate early
testing of algorithms in simulationwhile running final binary code on the actual robot
hardware. To avoid communication overhead and real-time issues, the simulation of
the vehicle dynamics and all proprioceptive sensors is performed on-board. Extero-
ceptive sensors are simulated by vehicle-to-vehicle communication where possible,
supported by a central simulation supervisor where required. Finally, we present
some preliminary experimental results of the system.

F. Schill (B) · A. Bahr · A. Martinoli
Distributed Intelligent Systems and Algorithms Laboratory (DISAL),
School of Architecture, Civil and Environmental Engineering,
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
e-mail: felix.schill@epfl.ch

A. Martinoli
e-mail: alcherio.martinoli@epfl.ch

F. Schill · A. Bahr
Hydromea SA, Lausanne, Switzerland
e-mail: alexander.bahr@hydromea.com

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0_47

679

680 F. Schill et al.

1 Introduction

Obtaining underwater measurements of biological, chemical and physical parame-
ters is currently an expensive and time consuming activity. In environmental science
such measurements are generally obtained manually by lowering a probe from a
ship, or automatically with fixed moorings. This limits the amount of spatial data
that is available to very few spots (often only the deepest point of a lake). Remote
sensing techniques that are commonly used on land such as hyperspectral imaging
and radar measurements do not work under water except for the surface layer, as
water absorbs most of the electromagnetic spectrum with a very high attenuation.
Sonar measurements can only resolve some physical features but are unsuitable for
biological and chemical measurements. However, through continuous development
and miniaturisation efforts there is a large range of small, precise in-situ sensors
available for physical (e.g., conductivity, temperature, turbidity), chemical (e.g.,
pH, nitrate, chlorine, hydrocarbons) and biological parameters (e.g., fluorometers
for algae, chlorophyll, dissolved organic matter). Autonomous Underwater Vehicles
(AUVs) have been used for many years to carry such sensors and extend the reach
of these instruments. Due to their size and very high cost, AUVs are mostly used
in oceanography, but very rarely in limnology and environmental monitoring appli-
cations. Additionally, most operators can afford at most one AUV, which limits the
volume of water that can be explored within a given time frame. Particularly when
studying spatio-temporal phenomena such aswastewater plumes,mixing, convection
and biologically active layers, it is insufficient to measure only in one spot, or with
only one AUV, as the phenomenon can change drastically over time and space. A
much better picture can be obtained by measuring with many sensors at many places
simultaneously. Our goal is to develop a fleet of 5–10 small AUVs that can cooper-
atively obtain high resolution water quality measurements of natural water bodies.
For practical reasons, the AUVs should be small and portable for easy deployment
and retrieval, and should be designed so that they can be produced cost-effectively
in large quantities. For spatially coordinated underwater operations, they have to be
able to sense the relative location of nearby vehicles, and be able to communicate
to their peers. Lastly, a high number of degrees of freedom is helpful as it simplifies
the control of the robots. In this chapter we present the design of the Vertex AUV
(Fig. 1).

Fig. 1 Left to right: The Vertex AUV with carry case, in the water at Lake Geneva, and on the ice
at Lake Onego, Russia during a field campaign prior to deployment

Vertex: A New Distributed Underwater Robotic Platform … 681

1.1 Related Work in Distributed AUV Systems

There have been multiple efforts in the past to create an underwater swarm. In 2003
two of the authors were involved in the Serafina project by Uwe R. Zimmer at the
AustralianNational University. An initial prototypewas designed byAlexander Bahr
and further built and developed by Felix Schill. The main focus of the project was to
develop the prerequisites for underwater swarms, in particular scalable communica-
tion [13], and cooperative relative positioning [1, 8]. The solutions to these prereq-
uisites were individually evaluated, but the project concluded before a large-scale
swarm could be built. The CoCoRo project succeeded in building a large underwater
swarm [17], but was clearly focused on indoor in-vitro experimentation [11]. The
AUVs in that project have a very limited endurance and depth capability, are not
suitable for outdoor use and were not designed to carry a useful payload. The opti-
cal communication system is scalable to large numbers, but has very limited range
which can not easily be extended as it is dependent onwater turbidity. There have been
experiments with multiple underwater vehicles where communication was limited to
a surface uplink [6], and an experiment with one AUV communicating underwater
with a multiple stationary sensor nodes [5]. Successful formation control with three
AUVs has been demonstrated recently using acoustic modems by [18], where two
vehicles were at the surface using GNSS, and one vehicle followed based on acoustic
range measurements. A number of AUV designs appeared in recent years with sig-
nificantly reduced cost and outdoor-capable performance, such as the OceanServer
Iver3, LAUV [2], Starbug [4] and COTSbot [3]; however to our knowledge they were
not designed to operate in large cooperative teams, and are significantly heavier and
bigger than our design presented in this paper.

1.2 Related Work in Localisation and Communication

In any cooperativemulti-robot system, robots need to have some awareness of nearby
other robots. In most practical systems, this means an ability to measure the relative
position of other robots in proximity.Additionally,manydistributed control strategies
assume some means of communication with other robots. As both localisation and
communication are part of control loops, they should be real-time and scalable. Local
coverage of nearby robots is more important than global coverage, and often suffi-
cient, but some distributed control strategies do require global information exchange
to reach consensus. The underwater environment poses unique challenges in both
domains, mainly due to the very high attenuation of electromagnetic waves. With the
exception of very low radio frequencies, and the green/blue part of the visible spec-
trum of light, the attenuation is prohibitive even for short distances. This excludes
most technologies commonly used in air, such as Global Navigation Satellite Sys-
tems (GNSS), ZigBee, WiFi or other common radio systems. Poor visibility also
often precludes the use of optical channels or cameras. The most common solution is

682 F. Schill et al.

acoustic transmission for communication, localisation and remote sensing (sonar).
Unfortunately, acoustic communication does not scale very well to large networks
due to the high distortion and interference, as sound travels long distances but gets
distorted beyond decodability [7]. Common solutions for underwater localisation are
either based on external reference beacons or trackers that require fixed infrastructure
(e.g., LBL, USBL), or inertial systems supported by Doppler velocity measurements
taken against the sea floor (DVL) which can drift over time. For relative position
sensing, such systems would still require communication and a common coordinate
frame. To address these issues, we propose a combination of acoustic relative posi-
tioning [1], VLF radio communication [13] and short-range optical communication
[15], GNSS (surface only) and inertial navigation (see below in Sects. 3 and 4).

2 AUV System Design

Our design goals were to develop an AUV that is small (portable in one hand),
rated for outdoor operation in most inland and coastal waters, capable of carrying a
useful water quality sensing payload, and designed for multi-robot operation in large
groups. The final design is 70cm long,weighs 7kg, and is equippedwith aYSI EXO2
sensor system which can be configured with up to 7 different physical, chemical and
biological sensors. The maximum design depth is 300m, which covers the majority
of inland waters and coastal areas. For heavier payloads a lighter pressure hull with
reduced depth rating can be used. Two battery packs provide a total of 170 Wh of
energy, resulting in an estimated endurance of 6–8h at a cruise speed of up to 1m/s.
The AUV can also operate on a single battery pack to increase payload capacity if
required. The sensor payload and batteries together make up approximately 60% of
the overall length of the vehicle. With the given payload we believe that the current
design is close to the minimum size for such a vehicle; a further reduction in size
would lead to significant performance losses (Fig. 2).

Fig. 2 CAD rendering of the Vertex AUV

Vertex: A New Distributed Underwater Robotic Platform … 683

2.1 Propulsion

The thrusters are a newly developed brushless rim-drive design without a central hub
in the propeller. The absence of a central shaft greatly reduces the risk of entangle-
ment with floating debris. Each thruster has an integrated motor controller, which
implements 3-phase commutation and closed-loop speed control. The motor control
system was optimised for fast reversal and quick response, which is important to
achieve good attitude control. Five low-profile thrusters provide propulsion and atti-
tude control to the AUV. The two lateral horizontal thrusters provide forward thrust
and yaw control. Two lateral vertical thrusters mounted in the winglets in front of
the center of gravity provide roll control, and contribute to pitch control and depth
control together with a vertical thruster mounted centrally in the tail. The thrusters
have a thickness of only 15 mm, which makes it possible to integrate them into
hydrodynamically efficient winglets to reduce drag.

2.2 Hardware Architecture

The onboard embedded system consists of multiple modules built around 32-bit
microcontrollers: a systemmanagementmodule for powermanagement, data logging
and supervision, a navigation module for inertial sensing and closed-loop control,
a longwave radio module for underwater communication, and a payload module
to interface to the payload sensors (Fig. 3). An external GNSS and communication

VERTEX AUV

VERTEX AUV

VLF radio

System manager

Payload module

Navigation module

Thruster
Thruster

Thruster
Thruster

Thruster

Acoustic
modem

GPS &
surface radio

CANbus

UART
Sync / PPS

VERTEX AUV

VERTEX AUV

VERTEX AUV

Range & Bearing

surface comm.

UW comm

Operator

Environmental
Sensors

Fig. 3 System diagram of the AUV subsystems

684 F. Schill et al.

module provides connectivity via a 868MHz modem and GNSS positioning while
at the surface. The modules are connected via a CAN bus, and dedicated UART
connections. Each module can be switched on or off as needed to reduce power
consumption, and all internal voltages and currents are continuously monitored. The
hotel load of the complete systemwhen fully operational without the motors running
is 1.6W without payload, and 3W with the EXO2 payload active and sampling
5 sensors at 1 Hz.

2.3 Synchronised Clocks

A common time base is very useful in a distributed system for ordering events,
measuring propagation delay, coordinated control, and analysing log files. TheVertex
AUV has a precise reference clock that is synchronised at the surface using the
GNSS time pulse. The reference clock is temperature compensated and an order
of magnitude more precise than regular clock crystals used for microcontrollers
(below 1 ppm). Internally, the reference clock system synthesises an electrical time
pulse once per second that is distributed to all microcontroller modules, which run on
regular crystals to reduce cost. Eachmodule continuously synchronises its own clock
to the time signal to within one microsecond. While submerged, without the GNSS
reference, the internal clock system keeps synchrony within at most one millisecond
per hour - measured drift rates are 0.3µs/s. In most missions the AUVs can be
expected to surface at least once per hour, therefore all clocks are synchronised to
within one millisecond or less. We are working on a further improvement using long
term drift observations against GNSS to auto-calibrate the reference clock.

2.4 Software Framework

A modular software framework has been developed in C which runs bare-bone on
the microcontrollers. The overall software architecture was derived from the initial
version of theMAV’RIC autopilot framework originally developed by Schill et al. for
a swarm of quadrotors, which is now openly available in a similar, updated version
[9]. For execution of subtasks at different rates, a simple fixed-priority scheduler
calls the various subroutines at the specified frequency. We decided to implement
subroutines with short, bounded execution times that operate on the system state, as
opposed to full tasks or threads. The benefit is reduced memory usage, and lower
complexity regarding task synchronisation and mutual exclusion as there are no con-
text switches within a subroutine. Time-critical tasks are handled through interrupts
and hardware events where appropriate, and concurrency is achieved by using a
distributed architecture with dedicated microcontrollers. Communication between
different modules (processors), as well as the telemetry link to the base station com-
puter, is handled using the MAVlink protocol [10]. A second scheduler instance has

Vertex: A New Distributed Underwater Robotic Platform … 685

been added formanaging dynamically adjustable telemetrymessage update rates that
can be adjusted during runtime through the operator interface. MAVlink also pro-
vides parameters that can be edited at runtime. A flexible message callback system
was implemented in MAV’RIC for responding to incoming messages as they arrive.
The communication channel is abstracted by a bytestream interface, which can be
mapped to various interfaces such as a CAN-bus, UART, Radio or UDP. Above the
hardware driver level the interface is fully transparent and hardware-independent.
All internal and external message traffic is logged to an internal microSD card for
post-mission analysis. A simulation layer, described later in Sect. 5, was added to
simulate all relevant sensors on a low level for HIL simulation. The software frame-
work was also ported to Linux by replacing the microcontroller hardware abstraction
with a thin emulation layer. This makes it possible to compile and test almost iden-
tical code (only with a different hardware abstraction layer) on Linux, with minimal
differences to onboard HIL simulation and real experiments. The internal commu-
nication streams as well as the telemetry link are transparently mapped to UDP to
emulate the internal data bus as well as the telemetry uplink to the basestation soft-
ware. This enables fast prototyping, debugging and testing of code on a PC of directly
compatible code.

3 Inter-Vehicle Acoustic Localisation

For localisation purposes we developed a miniature acoustic modem to fit within the
small scale of the Vertex AUV. Instead of relying on external, fixed infrastructure,
we propose to use the AUV swarm as the reference for each vehicle, based on Bahr’s
previous work [1]. Each robot regularly sends a short acoustic pulse at a precisely
defined time based on the synchronised reference clock. When nearby robots receive
the pulse, they can immediately calculate the time of flight based on the arrival time,
and derive the distance to the other robot. Additionally, together with the acoustic
pulse, the sending robot also communicates its own position estimate and uncertainty.
These distance measurements are then incorporated in the position state estimator,
that updates the robot’s own position as well as the estimated position of surrounding
robots. If any of the robots is at the surface, it will use theGNSS to correct its absolute
position, which will in turn improve the position estimates of the other AUVs due to
the lower uncertainty of the surfaced robot. The VLF radio system will be used for
communication of the position estimates and uncertainty matrices. We are currently
also working on using the acoustic system also for transmission of just the position
estimate in a compressed form. While acoustics have known scalability issues, it
may be possible to encode a very small amount of data in short pulses that remain
separated even with many nodes present. The advantage is that partial functionality
of the system can be maintained over much longer ranges, and increased reliability
(Fig. 4).

686 F. Schill et al.

Fig. 4 Left: Acoustic range measurements (red) versus GNSS (blue). Right: Recording of acoustic
pulse at maximum distance of 110 m

4 Inter-Vehicle Communication

The two challenges for an underwater communication network that is scalable to
many nodes are how to transmit data through thewater, and how to distribute access to
the extremely limited communication channel to all nodes fairly while fully utilising
the available bandwidth. The acoustic channel is not very well suited for continuous
use by many nodes, due to high latency, reverberation and acoustic interference over
long distances. Acoustics is therefore only suitable for sparse long-range signaling
of only very small amounts of data. In previous work we developed a Very-Low-
Frequency (VLF) radio system [12] that can transmit at up to 8192 bps over short to
medium distances. An early prototype with 5V transmitter drive voltage was tested
in fresh water and seawater, achieving a range of approximately 4 m, and 5m in air.
We redesigned the radio for the AUV with increased power, boosting the transmitter
voltage to a software-programmable value up to 35 V. Range in air improved to
above 20 m (Fig. 5); range in water still has to be tested. The results shown do not
use error-correction - we are planning to implement a suitable error-correcting code
to reduce packet loss. Additionally, we integrated an optical communication system
for short ranges up to approximately 5m, based on [15]. Although optical links are
strongly affected by water turbidity and have a very short range, they have a much
higher bandwidth, in our case up to 115200 bps. While at the surface, a 868MHz
radio provides a long-range link to the operator and other vehicles that are at the
surface.

Although theVLF radio offers bitrates that are higher thanmost acousticmodems,
the available bandwidth is still very limited. To control fair access to the limited chan-
nel, we previously developed a very efficient, distributed Time Division Multiple
Access (TDMA) algorithm that assigns time-slots to each node such that the channel
can be fully utilisedwhile avoidingmessage collisions. The algorithm is fully distrib-
uted without central coordinators; all nodes have the same behaviour. Two variants

Vertex: A New Distributed Underwater Robotic Platform … 687

Fig. 5 Bit error rate and
packet loss of VLF radio
transmission over 20m in air,
for increasing transmitter
drive voltage

of this algorithm where previously published: DAOS (Distributed Ad-hoc Omnicast
Scheduler) generates fully collision-free schedules, but is less efficient for dense net-
works with high connectivity. The Pruned Distributed Ad-hoc Omnicast Scheduler
(PDAOS) dynamically prunes schedules based on signal strength or distance, to give
priority to nearby nodes. In simulations, PDAOS has shown excellent performance
in networks with different density, and fast dynamic changes in network topology.
We tested on a benchmark called “omnicast” for global information exchange, which
is the time required until all nodes have received information from all other nodes,
assuming bounded message size (e.g., how long it would take to reach consensus
on a global maximum/minimum). A conservative theoretical upper bound of 2n − 2
time slots for n nodes has been shown previously [16], which is clearly outperformed
by the distributed algorithm, as shown in Fig. 6. In fact, global information exchange

Fig. 6 Real-time simulation of the distributed PDAOS scheduling algorithm (from [14]): Com-
munication time slots required for global information exchange (omnicast roundtrip) for varying
network sizes, with nodes arranged in a 2D grid with 2, 4, 6 or 8m distance (assuming 10m
communication range)

688 F. Schill et al.

can be achieved in significantly less than n time slots for larger networks above 40
nodes. This is possible because nodes that are far apart can communicate in paral-
lel; additionally, even though PDAOS deliberately allows message collisions, some
nodes may still receive valid messages and further spread information despite colli-
sions. A detailed analysis of the static and dynamic performance of PDAOS can be
found in [14].

5 Simulation Framework

An important feature for testing embedded control software is HIL simulation. Gen-
erally this is done by connecting the external interfaces of a control system to a
simulation computer, which reads the system outputs, simulates the system dynam-
ics and sends emulated sensor data back to the system under test. On small, integrated
embedded systems, however, it is often difficult to gain access to the sensor inter-
faces, as many sensors are soldered directly onto the circuit board. Also, some of
these sensors are sampled at a high rate - in our case, the inertial sensors are sampled
at 200Hz. It would therefore be challenging to send actuator commands to an exter-
nal computer, and send back the full set of simulated sensor data through a serial link
with acceptable latency for a faithful real-time simulation.

In our system, we therefore decided to simulate the vehicle dynamics and pro-
prioceptive sensors directly on the microcontroller itself. The cut is done at the
lowest-possible level: the simulator inputs are the actuator control commands as
they are sent to the motor controllers. The simulator then calculates estimated rotor
speeds, propeller lift and drag, as well as thruster inertia for each thruster. The calcu-
lated forces are combined to calculate 3D torque and linear forces on the AUV body,
which are then integrated to obtain angular rates, attitude, velocity and position.
From these results, sensor values are simulated for the accelerometers gyroscopes,
compass, GNSS and depth sensor, using the real, inverse scale factors and offsets.
The remaining state estimation and control code is unchanged between simulation
and operational mode - the normal attitude estimation filter, attitude/velocity control
and navigation code is applied in simulation mode as it is during normal operation.
The simulation update takes less than 2ms, and runs at 200Hz which is the same rate
as the inertial sensor sampling rate during normal operation. The result is a simplified
but reasonably faithful simulation of the AUV dynamics once the simulator parame-
ters are calibrated. This allows testing of all high-level code as well as the majority
of low-level code on the embedded system itself. As the project can also be compiled
and run on Linux, the virtually identical code can also be tested on a PC which is
often more convenient for initial development. Once the code has been successfully
tested in the Linux emulation, the project is re-compiled and tested on the real hard-
ware in the onboard simulation, which occasionally may reveal hardware-specific
issues. It is then possible to switch off simulation mode, even at runtime, which acti-
vates the real actuators and sensors, and tests can continue in reality. Monitoring of
the simulation occurs through the same telemetry link, using the same MAVlink

Vertex: A New Distributed Underwater Robotic Platform … 689

message protocol, as during live experiments. This facilitates comparing results
between simulation and reality, creating consistent log files and data processing
pipelines.

Exteroceptive sensors can not be simulated entirely on the vehicle or vehicle
processes without external inputs. We chose a distributed approach, using direct
robot-to-robot communication to transmit the minimal required information, and
carry out the simulation of exteroceptive sensors within the target vehicle software.
This approach scales well with the number of robots in the simulation, and in many
cases is very close to the real scenario. A simple example is a formation control
task of multiple robots. Each robot requires range and bearing information from the
other robots. This information would normally be acquired by the acoustic system
of the AUV, but for tests of the higher-level formation control algorithms it can also
be computed from vehicle positions. In this case, we chose to send global position
messages between the simulated vehicles, as a detailed simulation of acoustics was
not required. We recently showed the effectiveness of this simulation protocol in
the framework of a student project with four Autonomous Surface Vehicles (ASVs)
based on the same hardware and software architecture as the Vertex AUV, using a
combination of radio communication and GNSS-based localisation for their inter-
vehicle positioning. Experiments were carried out in PC-based and HIL simulation,
as well as on Lake Geneva. This example illustrates that the flexible simulation
framework can be tuned to desired abstraction levels, while carrying out meaningful
simulation tests on final binary code on real hardware with multiple robots. Further-
more, to test the acoustic range and bearing measurement algorithms, the simulation
was extended to synthesize acoustic samples that emulate real recorded data. In this
case, the information sent between robots in simulation is their position as well as
the sampled signal they transmit. Instead of sending samples through the DAC, the
transmitting side sends them through the MAVlink channel to all other robots at the
DAC sampling rate of 1 MHz. As other robots receive the sample messages, they
look up the transmitting robot’s position based on the last received position message.
Based on the samples, message timestamp and position, the robots can calculate
the time of flight and attenuation of the signal. The samples are then mixed into a
mixing buffer which adds all received signals together. Some IIR bandpass filtering
and noise is applied to emulate the frequency response and resonance of the real
piezo transducers. When the receiving robot requests samples from the simulated
ADC, the mixing buffer is downsampled to the ADC frequency (in this case usually
100 kHz). All remaining code beyond this mechanism is now exactly identical to the
code running in reality with the real DAC, transducers and ADC. There are of course
deviations between simulation and real data, but the main goal of this framework
is to test code in the target language in a scenario that is realistic enough to detect
bugs early, and to test algorithms under idealised conditions before subjecting them
to the real world. Being able to test code early and often, initially on a PC, then on
the target hardware, significantly reduces the overhead of experimental campaigns.

690 F. Schill et al.

6 AUV Field Tests

The first AUV prototype was completed in October 2014, and tested in an indoor
tank. Shortly after we were given the opportunity to participate in the field campaign
“Ladoga - Life under ice” inmid-March 2015, as well as inMarch 2016, organised by
the Limnology Center at EPFL. This campaign is a Russian-Swiss multidisciplinary
collaboration, to study under-ice dynamics, aquaphysics and biology at Lake Ladoga,
the largest lake in Europe, and how it is affected by climate change. Due to the
unusually warm winter in 2015, the ice cover at the planned location was already
disappearing. The location was therefore changed to the nearby Lake Onego, close
to the city of Petrozavodsk. Ice cover at the location was 40cm, the air temperature
varied between−15◦ and 10◦. Despite a few days of unusually high temperatures the
ice cover remained safe for the duration of the campaign, but started breaking up the
week after. The AUVwas deployed through a hole in the ice to collect measurements
horizontally in a 25–30 m radius around the hole to assist in a study of convection
patterns. The payload consisted of sensors for conductivity, temperature, oxygen,
pH, chlorophyll, blue-green algae, turbidity and fluorescent dissolved organicmatter.
During the field campaigns, the acoustic localisation systemwas not fully operational
yet, and due to the ice cover it was impossible to surface for a GNSS fix or retrieval.
A safety line was therefore attached to avoid loss of the vehicle and to aid with
recovery to the ice hole. The deployment provided an opportunity for thorough
system testing in harsh real-world conditions. The dry air and cold temperatures
caused a significant amount of static electricity that our system was not previously
exposed to, and prompted a design improvement of the electronics which has now
been incorporated into the AUV. The collected sensor data (Fig. 7) was provided to
the limnologists on the campaign to augment their own measurements.

More recently theVertexAUVwas also deployed at Lago Cadagno in Switzerland
to investigate the spatial properties of a bacterial layer. During this campaign the
AUV carried out multiple autonomous transects following a vertical zig-zag pattern
in depth. An excerpt of the collected data is shown in Fig. 8. The sensor payload was
similar to that of the Onego campaign, but with an additional 250Hz fast temperature
sensor for microstructure turbulence measurements. The data shown here represent
an example of the possible applications of the vehicle; an in-depth discussion of the
data will be published separately in collaboration with our limnology collaborators.

Vertex: A New Distributed Underwater Robotic Platform … 691

Fig. 7 Data collected during an autonomous dive at Lake Onego, 25.03.2015. The vertical axis is
the depth below the surface. The color coding indicates time, starting at dark blue, through green,
yellow, orange to red

Fig. 8 Autonomous transect (east–west), excerpt from data collected at Lago Cadagno, Sept. 2016.
Sensor payload:YSIEXO2: Turbidity, Chlorophyll (shown), CTD, oxygen, BGA-PE,BGA-PC (not
shown); additionally a fast temperature sensor (FP07) from Hydromea measuring at 250 Hz. The
AUV repeatedly traversed a distinct bacterial layer of interest at 13m depth, detectable by a drop
in Chlorophyll and sharp increase in turbidity, as well as a distinct temperature signature

692 F. Schill et al.

7 Conclusions

We presented a new underwater robot system natively designed for distributed,
cooperative aquatic sensing and environmental research. The Vertex AUV is a major
effort to integrate a number of important technologies, including scalable underwater
localisation and communication into one coherent system. A powerful and flexible
simulation framework facilitates experimentation and research with new distributed
algorithms, which can be evaluated and tested in the lab first before actual real-world
experiments. We also presented preliminary experimental results of the acoustic
ranging system and the VLF communication system. As a demonstration of the
AUV’s capabilities we also presented some results from the first field campaigns in
a challenging under-ice environment as well as a mountain lake with a scientifically
relevant payload. Current and future work will focus on validation of the multi-robot
capabilities of the system, underwater formation control, and further field campaigns
with multiple AUVs in collaboration with our partners in limnology.

Acknowledgements Thiswork has been financially supported overmultiple years by the following
sponsors (in chronological order): National Competence Center in Research onMobile Information
and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science
Foundation under grant number 51NF40-111400, through the Spin Fund project “Serafina - Large
ScaleUnderwater Exploration usingGroups ofAutonomousUnderwaterVehicles”; SwissCommis-
sion for Technology and Innovation under Grant No. 16348.1 PFES-ES; the Technology Transfer
Office of EPFL, through the Enabling Grant No. TTO 6.1419; FEEL Foundation supported by Fer-
ring Pharmaceuticals, under the project “Ladoga - Life under ice”; and the Swiss National Science
Foundation under the Sinergia Grant No. CRSII2_160726/1.

References

1. Bahr, A., Leonard, J.J., Fallon, M.F.: Cooperative localization for autonomous underwater
vehicles. Int. J. Robot. Res. 28(6), 714–728 (2009)

2. da Silva, J.E., Terra, B., Martins, R., de Sousa, J.B.: Modeling and simulation of the LAUV
autonomous underwater vehicle. In: 13th IEEE IFAC International Conference on Methods
and Models in Automation and Robotics (2007)

3. Dayoub, F.,Dunbabin,M.,Corke, P.:Robotic detection and trackingof crown-of-thorns starfish.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1921–1928
(2015)

4. Dunbabin, M., Roberts, J., Usher, K., Winstanley, G., Corke, P.: A hybrid AUV design for shal-
low water reef navigation. In: Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 2105–2110 (2005)

5. Dunbabin, M., Corke, P., Vasilescu, I., Rus, D.: Experiments with cooperative control of under-
water robots. Int. J. Robot. Res. 28(6), 815–833 (2009)

6. Fiorelli, E., Leonard, N., Bhatta, P., Paley, D., Bachmayer, R., Fratantoni, D.: Multi-AUV
control and adaptive sampling in Monterey Bay. IEEE J. Ocean. Eng. 31(4), 935–948 (2006)

7. Frater, M.R., Ryan, M.J., Dunbar, R.M.: Electromagnetic communications within swarms of
autonomous underwater vehicles. In: Proceedings of the 1st ACM International Workshop on
Underwater Networks, pp. 64–70. ACM Press, New York, NY, USA (2006)

8. Kottege, N., Zimmer, U.R.: Underwater acoustic localization for small submersibles. J. Field
Robot. 28(1), 40–69 (2011)

Vertex: A New Distributed Underwater Robotic Platform … 693

9. MAVRIC autopilot project. https://github.com/lis-epfl/MAVRIC_Library
10. Meier, L., Tridgell, A., Goppert, J.: Mavlink micro air vehicle communication protocol. http://

qgroundcontrol.org/mavlink/start
11. Mintchev, S., Donati, E., Marrazza, S., Stefanini, C.: Mechatronic design of a miniature under-

water robot for swarm operations. In: Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 2938–2943 (2014)

12. Schill, F., Zimmer, U.R.: Effective communication in schools of submersibles. Proc. IEEE
OCEANS 06, 1–5 (2006)

13. Schill, F., Zimmer, U.R.: Pruning local schedules for efficient swarm communication. In:
Proceedings of the International Symposium on Underwater Technology, Tokyo, Japan,
pp. 594–600 (2007)

14. Schill, F., Zimmer, U.R.: A scalable electro-magnetic communication system for underwater
swarms. In: 9th IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 97–102
(2012)

15. Schill, F., Zimmer, U.R., Trumpf, J.: Visible spectrum optical communication and distance
sensing for underwater applications. In: Proceedings of theAustralasian Conference onRotoics
and Automation, pp. 1–6 (2004)

16. Schill, F., Trumpf, J., Zimmer, U.R.: Towards optimal TDMA scheduling for robotic swarm
communication. In: Proceedings Towards Autonomous Robotic Systems, pp. 197–203 (2005)

17. Schmickl, T., Thenius, R., Moslinger, C., Timmis, J., Tyrrell, A., Read, M., Hilder, J., Halloy,
J., Campo, A., Stefanini, C., Manfredi, L., Orofino, S., Kernbach, S., Dipper, T., Sutantyo, D.:
CoCoRo – the self-aware underwater swarm. In: Proceedings of Fifth IEEE Conference on
Self-Adaptive and Self-Organizing Systems Workshops, pp. 120–126 (2011)

18. Soares, J., Aguiar, A., Pascoal, A., Martinoli, A.: Joint ASV/AUV range-based formation
control: theory and experimental results. In: IEEE International Conference on Robotics and
Automation, pp. 5579–5585 (2013)

https://github.com/lis-epfl/MAVRIC_Library
http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start

Author Index

A
Agmon, Noa, 163
Alkilabi, Muhanad H. Mohammed, 503
Amigoni, Francesco, 59
Arye, Idan, 31
Atkinson, Katie, 559

B
Bahr, Alexander, 679
Banfi, Jacopo, 59
Basilico, Nicola, 59
Beltrame, Giovanni, 433
Berman, Spring, 3
Bloembergen, Daan, 559
Bose, Thomas, 461
Bourgeois, Julien, 387, 415
Brown, Daniel S., 447
Bruckstein, Alfred M., 103
Bürger, Mathias, 253
Burns, Alyxander, 133

C
Campos, Mario F. M., 147
Cappo, Ellen A., 665
Cavalcanti, Ana, 517
Chaimowicz, Luiz, 313
Cho, Doo-Hyun, 269
Choi, Han-Lim, 269
Chung, Timothy H., 649
Clement, Michael R., 649
Colas, Francis, 545
Collenette, Joe, 559
Correll, Nikolaus, 359, 619
Cowley, Anthony, 45

Cruz, Patricio, 219

D
Dasgupta, Prithviraj, 345
Davis, Duane T., 649
Day, Michael A., 649
Desai, Arjav, 665
Dimarogonas, Dimos V., 253
Dodd, Tony J., 401
Dorigo, Marco., 531
Douchan, Yinon, 299
Doyle, Matthew J., 373
Dutta, Ayan, 345

E
Escalera, Juan A., 373

F
Fantini-Hauwel, Carole, 531
Fekete, Sándor P., 205
Fierro, Rafael, 219
Fukui, Rui, 605

G
Garone, Emanuele, 433
Gasparri, Andrea, 433
Gauci, Melvin, 573
Ghedini, Cinara, 89
Gillet, Denis, 75
Gini, Maria, 17
Giuggioli, Luca, 31
Goldstein, Seth Copen, 415
Groß, Roderich, 373, 401, 475

© Springer International Publishing AG 2018
R. Groß et al. (eds.), Distributed Autonomous Robotic Systems,
Springer Proceedings in Advanced Robotics 6,
https://doi.org/10.1007/978-3-319-73008-0

695

696 Author Index

H
Ha, Jung-Su, 269
Habibi, Golnaz, 205
Haghighat, Bahar, 329
Hauert, Sabine, 487
Heiblum Robles, Alexandro, 31
Hennigh, Oliver, 447
Hintz, Christoph, 219
Hsieh, M. Ani, 45
Hughes, Dana, 619

I
Inácio, Fabrício R., 313

J
Jensen, Elizabeth A., 17
Jones, Simon, 487

K
Kaminka, Gal A., 31, 163, 299
Kanayama, Gen, 605
Kato, Yuta, 605
Kingston, Zachary, 205
Klinger, John, 359
Kumar, Vijay, 147, 587

L
Lee, Sujin, 269
Li, Wei, 517
Li, Yang, 359
Liu, Lantao, 285
Liu, Ming, 545
Loscalzo, Steven, 447
Lowmanstone, London, 17
Lu, Chuan, 503
Lupu, Ilan, 163

M
Ma, Kai-Chieh, 285
Ma, Zhibei, 285
Macharet, Douglas G., 313
Magnenat, Stéphane, 545
Manor, Rotem, 103
Marshall, James A. R., 461
Martinoli, Alcherio, 75, 329
McLurkin, James, 205
Michael, Nathan, 665
Miyazawa, Alvaro, 517
Mondada, Francesco, 373, 545

Moon, Sunghyun, 269
Mox, Daniel, 45

N
Nagpal, Radhika, 573
Nakao, Masayuki, 605
Nam, Changjoo, 237
Narayan, Aparajit, 503
Naz, André, 415
Nelson, Carl, 345

O
O’Grady, Rehan, 531

P
Pahlajani, Chetan D., 177
Parrott, Christopher, 401
Perez-Diaz, Fernando, 475
Pinciroli, Carlo, 433
Piranda, Benoît, 387, 415
Podevijn, Gaëtan, 531
Poulakakis, Ioannis, 177
Prorok, Amanda, 147, 587

R
Ramachandran, Ragesh K., 3
Reina, Andreagiovanni, 461
Ribeiro, Carlos H. C., 89
Ribeiro, Pedro, 517
Roelofsen, Steven, 75
Romeo, Marta, 59
Rubenstein,Michael , 573
Rypkema, Nicholas R., 633

S
Sabattini, Lorenzo, 89, 191
Saldaña, David, 147
Schill, Felix, 679
Schillinger, Philipp, 253
Schmidt, Henrik, 633
Schulze, Bernd, 133
Schwager, Mac, 117
Secchi, Cristian, 191
Shell, Dylan A., 237
St. John, Audrey, 133
Studley, Matthew, 487
Su, Xuanshuo, 117, 133
Sukhatme, Gaurav S., 285

Author Index 697

T
Takahashi, Ryo, 605
Tanner, Herbert G., 177
Taylor, C. J., 45
Timmis, Jon, 517
Trenkwalder, Stefan M., 475
Trianni, Vito, 461
Tucci, Thadeu, 415
Tuci, Elio, 503
Turner, Ryan, 447
Tuyls, Karl, 559

W
Wang, Shiling, 545

Wang, Zijian, 117
West, Jonathan, 219
Wilson, Sean, 3
Winfield, Alan, 487
Woodcock, Jim, 517

Y
Yadav, Indrajeet, 177
Yang, Guang, 117

Z
Zareh, Mehran, 191
Zillmer, Rüdiger, 475

	Foreword
	Preface
	Organization
	Sec5

	Contents
	Abstracts of Invited Keynote Presentations
	Material-Integrated Intelligence for Robot Autonomy
	Coordination, Cooperation, and Collaboration in Multi-Robot Systems
	Go to the Bee and Be Wise: Swarm Engineering Inspired by House-Hunting Honeybees
	Robust Human Control of Multi-Robot Swarms

	Distributed Coverage and Exploration
	A Probabilistic Topological Approach to Feature Identification Using a Stochastic Robotic Swarm
	1 Introduction
	2 Background
	3 Problem Statement
	4 Feature Extraction Methodology
	5 Simulations
	6 Experimental Results
	7 Conclusion
	References

	Communication-Restricted Exploration for Search Teams
	1 Introduction
	2 Related Work
	3 Communication-Restricted Exploration
	3.1 Algorithm Details
	3.2 Algorithm Correctness
	3.3 Algorithm Properties

	4 Simulation Results
	5 Experimental Results
	6 Conclusion
	References

	From Ants to Birds: A Novel Bio-Inspired Approach to Online Area Coverage
	1 Introduction and Background
	2 The Memory-Based Territorial Exclusion Model
	2.1 Selecting a Motion Vector
	2.2 Repelling Away from a Collision or a Remembered Mark

	3 Simulating the Behavior of Robotic Birds
	3.1 Measured Outputs

	4 Results
	5 Discussions
	References

	Information Based Exploration with Panoramas and Angle Occupancy Grids
	1 Introduction
	2 Methodology
	2.1 Angle Enhanced Occupancy Grid
	2.2 Exploration Planning
	2.3 Multi-robot Strategy

	3 Results
	3.1 Simulations
	3.2 Experiments

	4 Conclusion and Future Work
	References

	Multirobot Persistent Patrolling in Communication-Restricted Environments
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Communication-Aware Patrolling Strategies
	4.1 Globally Optimal Strategy
	4.2 Individually Optimal Strategy
	4.3 A Simple Reactive Strategy

	5 Experimental Evaluation
	6 Conclusions
	References

	Multi-Robot Control
	A Comparative Study of Collision Avoidance Algorithms for Unmanned Aerial Vehicles: Performance and Robustness to Noise
	1 Introduction
	1.1 Collision Avoidance Algorithms

	2 Technical Approach
	2.1 Experimental Setup: Reality and Simulation
	2.2 Implementation
	2.3 Simulation Calibration
	2.4 Scenarios
	2.5 Metrics

	3 Results
	3.1 Real Experiment Results
	3.2 Simulation Results

	4 Conclusion
	References

	A Decentralized Control Strategy for Resilient Connectivity Maintenance in Multi-robot Systems Subject to Failures
	1 Introduction
	2 Background on Network Properties
	3 Problem Statement
	4 Combined Control Law
	5 Simulations
	6 Conclusions
	References

	Chase Your Farthest Neighbour
	1 Introduction
	2 Preliminaries
	3 Continuous Time Gathering
	3.1 Unlimited Visibility
	3.2 Limited Visibility

	4 Discrete Time ``Chase the Farthest'' Gathering
	4.1 Unlimited Visibility
	4.2 Limited Visibility

	5 Discussion
	References

	OuijaBots: Omnidirectional Robots for Cooperative Object Transport with Rotation Control Using No Communication
	1 Introduction
	1.1 Related Work

	2 Problem Formulation
	3 Distributed Force and Torque Controller Design
	3.1 Robot Sensing
	3.2 Robot Kinematics
	3.3 Force and Torque Controller

	4 OuijaBot Hardware and Control System
	4.1 Motion Control
	4.2 Velocity Measurement and Traction Control
	4.3 Force and Torque Measurements

	5 Simulation
	6 Experiments
	7 Conclusion and Future Work
	References

	Persistent Multi-robot Formations with Redundancy
	1 Introduction
	2 Preliminaries
	3 Redundancy for Persistence Theory
	4 Special Geometric Conditions
	5 Simulation
	6 Conclusions and Future Work
	References

	Triangular Networks for Resilient Formations
	1 Introduction
	1.1 Related work
	1.2 Contribution

	2 Preliminaries
	2.1 Consensus
	2.2 Resilient Consensus
	2.3 Biconnected Graphs

	3 Triangular Robust Graphs
	3.1 Determining Triangular Robustness
	3.2 Inductive Construction

	4 Consensus in Triangular Robust Networks
	5 Conclusions and Future Work
	References

	Multi-Robot Estimation
	Construction of Optimal Control Graphs in Multi-robot Systems
	1 Introduction
	2 Related Work
	3 Optimal Construction of Control Graphs
	3.1 Monitoring Multi-graphs
	3.2 Inducing Control Graphs with Optimal Global Anchor

	4 Evaluation
	5 Conclusions and Future Work
	References

	Decision-Making Accuracy for Sensor Networks with Inhomogeneous Poisson Observations
	1 Introduction
	2 Background
	3 Deciding Without a Fusion Center
	4 Examples
	4.1 Example 1: Identical Measurement Characteristics
	4.2 Example 2: Non-identical Measurement Characteristics

	5 Conclusions
	References

	Distributed Laplacian Eigenvalue and Eigenvector Estimation in Multi-robot Systems
	1 Introduction
	2 Preliminaries and Notations
	3 Problem Statement
	4 Proposed Algorithm
	5 Simulations
	6 Conclusions
	References

	Distributed Object Characterization with Local Sensing by a Multi-robot System
	1 Introduction
	2 Model and Assumptions
	3 Pipelined Consensus
	4 Object Characterization
	4.1 Distributed Principal Component Analysis (DPCA)
	4.2 Distributed Rotating Calipers

	5 Results
	5.1 Simulation Results
	5.2 Experimental Results

	6 Conclusion
	References

	Optical Wireless Communications for Heterogeneous DARS
	1 Introduction
	2 OW Communications
	2.1 Connectivity Cone

	3 Target Tracking to Maintain OW Communications
	3.1 Results

	4 Experimental System
	4.1 OW Communication System
	4.2 Ground Mobile Robot
	4.3 Quadrotor Unmanned Aerial Vehicle
	4.4 Experimental Evaluation

	5 ROS/Gazebo Simulation Environment
	6 Conclusions
	References

	Multi-Robot Planning
	Bundling Policies for Sequential Stochastic Tasks in Multi-robot Systems
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 Problem Formulation
	3.2 An Example: Warehouse Automation

	4 An Analysis of Bundle Size
	4.1 The Basic Case: Independent Robots and Regular Task Arrivals
	4.2 Adding Realism: Robot Interactions and Stochastic Task Arrivals

	5 Bundling Policies
	5.1 An Analysis of the Bundling Policies

	6 Quantitative Study: Comparisons of the Policies
	6.1 Experimental Settings and Results
	6.2 Analysis of Results

	7 Conclusion and Future Work
	References

	Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning
	1 Introduction
	2 Preliminaries
	2.1 LTL Semantics
	2.2 Closure Labeling
	2.3 System Model

	3 LTL Decomposition
	3.1 Decomposition Set

	4 Team Model Construction
	5 Evaluation
	5.1 Scenarios

	6 Conclusion
	References

	Informative Path Planning and Mapping with Multiple UAVs in Wind Fields
	1 Introduction
	2 Problem Formulation
	3 Procedure
	3.1 Task Location Optimization Based on Entropy and Mutual Information with Gaussian Random Variables
	3.2 Calculation of Moving Cost with FMT* Algorithm
	3.3 Mathematical Formulation of the Min-Max Multiple Depots Multiple Traveling Salesmen Problem (MMMDMTSP)
	3.4 Gaussian Process Regression

	4 Numerical Example
	4.1 Simulation Parameters and Conditions
	4.2 Simulation Result

	5 Conclusion
	References

	Multi-robot Informative and Adaptive Planning for Persistent Environmental Monitoring
	1 Introduction
	2 Related Works
	3 Informative and Adaptive Planning Framework
	3.1 Gaussian Process Regression and Information Gain
	3.2 Generating Informative Observation Points
	3.3 Planning Multi-robot Paths Among Observation Points

	4 Experimental Results
	5 Conclusions
	References

	The Effectiveness Index Intrinsic Reward for Coordinating Service Robots
	1 Introduction
	2 Related Work
	3 Reinforcement Learning Using Effectiveness Index
	4 Experiments in Learning Order Picking
	4.1 Experiment Setup: Robotic Order Picking
	4.2 Stateless EI Q-Learning with Parameters
	4.3 Stateful (Multi-state) EI
	4.4 Comparison to Ideal Conditions

	5 Summary and Future Work
	References

	United We Move: Decentralized Segregated Robotic Swarm Navigation
	1 Introduction
	2 Related Work
	2.1 Navigation and Collision Avoidance
	2.2 Group Segregation in Robotic Swarms

	3 Methodology
	3.1 Robot and Group Modeling
	3.2 Flocking
	3.3 Setting Robot Velocities
	3.4 ORCA

	4 Experiments
	5 Conclusion
	References

	Modular Robots and Smart Materials
	A Rule Synthesis Algorithm for Programmable Stochastic Self-assembly of Robotic Modules
	1 Introduction
	2 Fluidic Self-assembly of Lily Robots
	3 Graph Grammars for Self-assembly of Robotic Modules
	4 Proposed Synthesis Algorithm
	4.1 Stage I: Grow Subtrees (GS)
	4.2 Stage II: ReGroup Subtrees (RGS)
	4.3 Synthesized Rulesets for Lily Robots

	5 Modeling Levels and Simulation Frameworks
	5.1 Microscopic Model and Simulation Framework
	5.2 Sub-Microscopic Model and Simulation Framework

	6 Experiments and Results
	7 Conclusion
	References

	Distributed Adaptive Locomotion Learning in ModRED Modular Self-reconfigurable Robot
	1 Introduction
	2 Related Work
	3 Problem Setup
	4 Q-Learning Based Approach for Distributed Locomotion Learning
	5 Experimental Evaluation
	5.1 Settings
	5.2 Results

	6 Conclusion and Future Work
	References

	Distributed Camouflage for Swarm Robotics and Smart Materials
	1 Introduction
	2 Distributed Camouflage Algorithm
	2.1 Pattern Descriptor
	2.2 Distributed Average Consensus Scheme
	2.3 Pattern Generator

	3 Simulation Results
	4 Hardware Implementation
	5 Hardware Results
	6 Conclusion
	References

	Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms
	1 Introduction
	2 Evo-Bots: Toward Artificial Life Systems
	3 Evo-Bot Hardware
	3.1 Power Management System
	3.2 Energy Harvesting System
	3.3 Fabrication and Software Loading

	4 Experiments
	4.1 Light Detection and Motion Control
	4.2 Energy Harvesting and Sharing
	4.3 Polymer Formation
	4.4 Summary

	5 Conclusion
	References

	Geometrical Study of a Quasi-spherical Module for Building Programmable Matter
	1 Introduction
	2 Objectives and Constraints
	3 Study of Candidate Shapes and Organizations
	4 Solving the Constraints for the Quasi-sphere
	4.1 Designing Connectors for Latching
	4.2 Designing Actuators for Allowing Movements

	5 Defining Ensemble of Catoms
	6 Conclusion
	References

	HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot and its Extensions
	1 Introduction
	2 The HyMod Unit
	2.1 Geometry Analysis
	2.2 Hardware Details

	3 Experiments
	4 HyMod Extensions
	5 Conclusions
	References

	Network Characterization of Lattice-Based Modular Robots with Neighbor-to-Neighbor Communications
	1 Introduction
	2 Related Work
	3 System Model and Definitions
	4 Network Density
	5 Network Radius and Diameter
	5.1 Preliminary Materials
	5.2 Radius and Diameter Bounds

	6 Discussion
	7 Conclusions
	8 Future Work
	References

	Swarm Robotics
	Decentralized Progressive Shape Formation with Robot Swarms
	1 Introduction
	2 Related Work
	3 Mathematical Model
	3.1 Problem Statement
	3.2 Proposed Solution

	4 From Point Cloud to Acyclic Directed Graph
	5 Robot Behavior
	6 Experimental Evaluation
	7 Conclusions
	References

	Discovery and Exploration of Novel Swarm Behaviors Given Limited Robot Capabilities
	1 Introduction
	2 Problem Statement
	3 Behavior Discovery Architecture
	4 Implementation
	4.1 Simple Capability Model
	4.2 Simulation Environment
	4.3 Behavior Vector
	4.4 Dimensionality Reduction and Clustering

	5 Results and Analysis
	5.1 K-Medoids
	5.2 Hierarchical Single-Link Clustering

	6 Discussion
	7 Conclusions and Future Work
	References

	Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms
	1 Introduction
	2 Case Study: Value-Sensitive Decision-Making by a Robot Swarm
	3 Top-Down Implementation Through the Design Pattern
	4 Results
	5 Discussions
	References

	Emergence and Inhibition of Synchronization in Robot Swarms
	1 Introduction
	2 Methods
	2.1 Robotic and Simulation Platforms
	2.2 Oscillator Dynamics
	2.3 Motion Controller

	3 Simulation
	3.1 Setup
	3.2 Results

	4 Physical Implementation and Experiments
	4.1 Setup
	4.2 Results

	5 Discussion
	References

	Evolving Behaviour Trees for Swarm Robotics
	1 Introduction
	2 Background and Previous Work
	3 Materials and Methods
	4 Results and Discussion
	5 Conclusions and Further Work
	References

	Evolving Group Transport Strategies for e-Puck Robots: Moving Objects Towards a Target Area
	1 Introduction
	2 The Task and the Simulation Model
	2.1 The Controller and the Evolutionary Algorithm
	2.2 The Fitness Function

	3 Results
	3.1 Analysis of Best Evolved Group

	4 Conclusions
	References

	From Formalised State Machines to Implementations of Robotic Controllers
	1 Introduction
	2 RoboChart
	2.1 Elements of RoboChart
	2.2 Simulation and Deployment

	3 Modelling Robotic Controllers Using RoboChart
	3.1 Case Study One: Aggregation
	3.2 Case Study Two: Swarm Taxis

	4 Conclusion
	References

	Human Responses to Stimuli Produced by Robot Swarms - the Effect of the Reality-Gap on Psychological State
	1 Introduction
	2 Related Literature
	3 Methodology
	3.1 Hypotheses
	3.2 Experimental Scenario
	3.3 Measures
	3.4 Physiological Data Acquisition and Robot Platform
	3.5 Environment and Robot Behaviour
	3.6 Participants
	3.7 Experimental Procedure

	4 Data Analysis and Results
	5 Discussion and Conclusions
	References

	Localization of Inexpensive Robots with Low-Bandwidth Sensors
	1 Introduction
	2 Related Work
	3 Model
	4 Theoretical Analysis of Convergence
	5 Empirical Analysis of Performance
	6 Real-Time Localization
	7 Conclusion
	References

	Modelling Mood in Co-operative Emotional Agents
	1 Introduction
	2 Background
	2.1 Emotional Characteristics
	2.2 Prisoner's Dilemma

	3 Mood Model
	4 Method
	5 Experiment Outline
	5.1 Mood Experiments
	5.2 Resilience Experiments

	6 Results
	6.1 Mood Results
	6.2 Resilience Results

	7 Conclusions
	References

	Programmable Self-disassembly for Shape Formation in Large-Scale Robot Collectives
	1 Introduction and Related Work
	2 Self-disassembly Algorithm
	2.1 Robot Model
	2.2 Algorithm and Implementation
	2.3 Achievable Shape Classes

	3 Experimental Validation
	3.1 Setup and Protocol
	3.2 Results and Discussion

	4 Comparison of Self-disassembly to Additive Self-assembly
	5 Conclusion and Future Work
	References

	Towards Differentially Private Aggregation of Heterogeneous Robots
	1 Introduction
	2 Model of Robot System
	3 Definition of Differentially Private Swarm
	4 Complex-Balanced Swarms
	4.1 Preliminaries
	4.2 Privacy

	5 Aggregation
	5.1 Example
	5.2 Evaluating the Impact of Topology and Parameters

	6 Conclusion
	References

	Multi-Robot Systems in Applications
	Construction Planning for a Modularized Rail Structure: Type Selection of Rail Structure Modules and Dispatch Planning of Constructor Robots
	1 Introduction
	2 Construction Planning for a Modularized Rail Structure
	2.1 Path Planning of a Modularized Rail Structure
	2.2 Type Selection of Modules in Trajectory
	2.3 Dispatch Planning of Construction Robots
	2.4 Technical Issues and Assumed Constraint Conditions for the Proposed System

	3 Design and Implementation of Construction Planning
	3.1 Type Selection of Rail Structure Modules
	3.2 Dispatch Planning of Constructor Robots
	3.3 Re-Use of the Previous Calculation Results

	4 Experiment for Generating Construction Planning for a Rail Structure
	4.1 Test Trajectory
	4.2 Experiment of Generating Construction Planning

	5 Conclusion
	References

	Distributed Convolutional Neural Networks for Human Activity Recognition in Wearable Robotics
	1 Introduction
	2 Related Work
	3 Convolutional Neural Networks
	4 Approach
	4.1 Opportunity Dataset
	4.2 Architectures

	5 Results
	5.1 Hardware Implementation

	6 Discussion
	7 Conclusion and Future Work
	References

	Formation Control of a Drifting Group of Marine Robotic Vehicles
	1 Introduction
	2 Formation Control Algorithms
	2.1 Attraction/Repulsion Formation Control
	2.2 Pairwise Trigonometric Formation Control:
	2.3 Point Set Registration Formation Control:

	3 Experimental Setup
	4 Simulation Results
	5 Experimental Results
	6 Conclusions
	References

	Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation
	1 Introduction
	2 The ARSENL Multi-UAV System
	3 Multi-swarm Operations
	3.1 ACS Challenge Overview
	3.2 Arbiter Implementation for Inter-swarm Interaction

	4 Air-to-Air Algorithms
	5 Experimentation
	5.1 Arbiter Evaluation of Swarm Versus Swarm Interaction
	5.2 Evaluation of Arbiter Performance

	6 Conclusions and Future Work
	References

	Robust Coordinated Aerial Deployments for Theatrical Applications Given Online User Interaction via Behavior Composition
	1 Introduction and Related Work
	2 System Design
	2.1 Behaviors
	2.2 Validation
	2.3 Verification and Mitigation

	3 Evaluation
	4 Discussion
	5 Conclusion and Future Work
	References

	Vertex: A New Distributed Underwater Robotic Platform for Environmental Monitoring
	1 Introduction
	1.1 Related Work in Distributed AUV Systems
	1.2 Related Work in Localisation and Communication

	2 AUV System Design
	2.1 Propulsion
	2.2 Hardware Architecture
	2.3 Synchronised Clocks
	2.4 Software Framework

	3 Inter-Vehicle Acoustic Localisation
	4 Inter-Vehicle Communication
	5 Simulation Framework
	6 AUV Field Tests
	7 Conclusions
	References

	Appendix Author Index
	Author Index

