DIGITAL DESIGN

OF SIGNAL PROCESSING SYSTEMS
A Practical Approach

‘‘‘
NRLNTRRRE=. e

\SHOAB AHMED KHAN

FWILEY

DIGITAL DESIGN OF
SIGNAL PROCESSING
SYSTEMS

DIGITAL DESIGN OF
SIGNAL PROCESSING

SYSTEMS
A PRACTICAL APPROACH

Shoab Ahmed Khan
National University of Sciences and Technology (NUST), Pakistan

F)WILEY

AJohn Wiley and Sons, Ltd, Publication

This edition first published 2011
© 2011 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission
to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted
by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is
designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the
understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

Library of Congress Cataloguing-in-Publication Data

Khan, Shoab Ahmed.
Digital design of signal processing systems : a practical approach / Shoab Ahmed Khan.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-74183-2 (cloth)
1. Signal processing—Digital techniques. I. Title.
TK5102.9.K484 2010
621.382'2-dc22
2010026285

A catalogue record for this book is available from the British Library.

Print ISBN: 9780470741832 [HB]
ePDF ISBN: 9780470974698
oBook ISBN: 9780470974681
ePub ISBN: 9780470975251

Set in 9.5/11.5pt Times by Thomson Digital, Noida, India

Contents

Preface

Acknowledgments

1 Overview

1.1
1.2
1.3

1.4

1.5

1.6
1.7
1.8

Introduction

Fueling the Innovation: Moore’s Law
Digital Systems

1.3.1 Principles

1.3.2 Multi-core Systems

1.3.3 NoC-based MPSoC

Examples of Digital Systems

1.4.1 Digital Receiver for a Voice Communication System
1.4.2 The Backplane of a Router
Components of the Digital Design Process
1.5.1 Design

1.5.2 Implementation

1.5.3 Verification

Competing Objectives in Digital Design
Synchronous Digital Hardware Systems
Design Strategies

1.8.1 Example of Design Partitioning

1.8.2 NoC-based SoC for Carrier-class VolP Media Gateway

1.8.3 Design Flow Migration

References

2.1
22

Using a Hardware Description Language

Overview

About Verilog

2.2.1 History

2.2.2 What is Verilog?

XV

Xix

00 ~J O\ W WL —

— e = = e e e e e = e e
OO0 PR = === O0OO0 O

21
21
22
22
22

vi

Contents

2.3 System Design Flow
2.4 Logic Synthesis
2.5 Using the Verilog HDL
2.5.1 Modules
2.5.2 Design Partitioning
2.5.3 Hierarchical Design
2.5.4 Logic Values
2.5.5 Data Types
2.5.6 Variable Declaration
2.5.7 Constants
2.6 Four Levels of Abstraction
2.6.1 Switch Level
2.6.2 Gate Level or Structural Modeling
2.6.3 Dataflow Level
2.6.4 Behavioral Level
2.6.5 Verilog Tasks
2.6.6 Verilog Functions
2.6.7 Signed Arithmetic
2.7 Verification in Hardware Design
2.7.1 Introduction to Verification
2.7.2 Approaches to Testing a Digital Design
2.7.3 Levels of Testing in the
Development Cycle
2.7.4 Methods for Generating Test Cases
2.7.5 Transaction-level Modeling
2.8 Example of a Verification Setup
2.9 SystemVerilog
2.9.1 Data Types
2.9.2 Module Instantiation and Port Listing
2.9.3 Constructs of the C/C++ Type
2.94 for and do-while Loops
2.9.5 The always Procedural Block
2.9.6 The final Procedural Block
2.9.7 The unique and priority Case Statements
2.9.8 Nested Modules
2.9.9 Functions and Tasks
2.9.10 The Interface
2.9.11 Classes
2.9.12 Direct Programming Interface (DPI)
2.9.13 Assertion
2.9.14 Packages
2.9.15 Randomization
2.9.16 Coverage
Exercises
References

23
23
24
24
25
26
29
30
30
31
31
32
32
33
39
55
56
56
57
57
58

59
59
60
61
61
61
63
64
65
65
66
66
67
67
68
70
72
73
74
74
75
75
80

Contents

vii

3 System Design Flow and Fixed-point Arithmetic
3.1 Overview
3.2 System Design Flow
3.2.1 Principles

3.2.2

3.2.3
3.2.4

Example: Requirements and Specifications of a UHF Software-

defined Radio
Coding Guidelines for High-level Behavioral Description
Fixed-point versus Floating-point Hardware

3.3 Representation of Numbers

3.3.1
3.3.2
3.3.3
3.3.4

Types of Representation

Two’s Complement Representation

Computing Two’s Complement of a Signed Number
Scaling

3.4 Floating-point Format

34.1
342
34.3

Normalized and Denormalized Values
Floating-point Arithmetic Addition
Floating-point Multiplication

3.5 On.m Format for Fixed-point Arithmetic

3.5.1
3.5.2
3.5.3
3.54
3.5.5
356
3.5.7
3.5.8
3.59

Introducing Qn.m

Floating-point to Fixed-point Conversion of Numbers
Addition in Q Format

Multiplication in Q Format

Bit Growth in Fixed-point Arithmetic

Overflow and Saturation

Two’s Complement Intermediate Overflow Property
Corner Cases

Code Conversion and Checking the Corner Case

3.5.10 Rounding the Product in Fixed-point Multiplication
3.5.11 MATLAB® Support for Fixed-point Arithmetic
3.5.12 SystemC Support for Fixed-point Arithmetic

3.6 Floating-point to Fixed-point Conversion

3.7 Block Floating-point Format

3.8 Forms of Digital Filter

3.8.1
3.8.2
3.8.3
3.84
3.8.5
Exercises
References

Infinite Impulse Response Filter

Quantization of IIR Filter Coefficients

Coefficient Quantization Analysis of a Second-order Section
Folded FIR Filters

Coefficient Quantization of an FIR Filter

Mapping on Fully Dedicated Architecture

4.1 Introduction

4.2 Discrete Real-time Systems

4.3 Synchronous Digital Hardware Systems
4.4 Kahn Process Networks

81
81
83
83

85
86
88
89
89
&9
90
91
92
93
95
96
96
96
97
98
98
101
102
103
105
106
107
110
111
112
113
115
115
117
123
126
127
128
132

133
133
134
136
137

viii

Contents

4.4.1 Introduction to KPN

4.4.2 KPN for Modeling Streaming Applications
4.4.3 Limitations of KPN

4.4.4 Modified KPN and MPSoC

4.4.5 Case Study: GMSK Communication Transmitter

4.5 Methods of Representing DSP Systems
4.5.1 Introduction
4.5.2 Block Diagram
4.5.3 Signal Flow Graph
4.5.4 Dataflow Graph or Data Dependency Graph
4.5.5 Self-timed Firing
4.5.6 Single-rate and Multi-rate SDFGs
4.5.7 Homogeneous SDFG
4.5.8 Cyclo-static DFG
4.5.9 Multi-dimensional Arrayed Dataflow Graphs
4.5.10 Control Flow Graphs
4.5.11 Finite State Machine
4.5.12 Transformations on a Dataflow Graph
4.5.13 Dataflow Interchange Format (DIF) Language
4.6 Performance Measures
4.6.1 Iteration Period
4.6.2 Sampling Period and Throughput
4.6.3 Latency
4.6.4 Power Dissipation
4.7 Fully Dedicated Architecture
4.7.1 The Design Space
4.7.2 Pipelining
4.7.3 Selecting Basic Building Blocks
4.7.4 Extending the Concept of One-to-One Mapping
4.8 DFG to HW Synthesis
4.8.1 Mapping a Multi-rate DFG in Hardware
4.8.2 Centralized Controller for DFG Realization
Exercises
References
5 Design Options for Basic Building Blocks
5.1 Introduction
5.2 Embedded Processors and Arithmetic Units in FPGAs
5.3 Instantiation of Embedded Blocks
5.3.1 Example of Optimized Mapping
5.3.2 Design Optimization for the Target Technology
5.4 Basic Building Blocks: Introduction
5.5 Adders

5.5.1 Overview
5.5.2 Half Adders and Full Adders
5.5.3 Ripple Carry Adder

137
139
144
144
145
148
148
149
151
151
156
156
158
158
160
160
161
162
162
162
162
163
163
164
164
164
165
167
168
168
169
171
173
181

183
183
183
186
190
192
194
194
194
195
196

Contents

ix

5.6
5.7

5.8

59

5.54 Fast Adders

5.5.5 Carry Look-ahead Adder

5.5.6 Hybrid Ripple Carry and Carry Look-ahead Adder
5.5.7 Binary Carry Look-ahead Adder
5.5.8 Carry Skip Adder

5.5.9 Conditional Sum Adder

5.5.10 Carry Select Adder

5.5.11 Using Hybrid Adders

Barrel Shifter

Carry Save Adders and Compressors

5.7.1 Carry Save Adders

5.7.2 Compression Trees

5.7.3 Dot Notation

Parallel Multipliers

5.8.1 Introduction

5.8.2 Partial Product Generation

5.8.3 Partial Product Reduction

5.8.4 A Decomposed Multiplier

5.8.5 Optimized Compressors

5.8.6 Single- and Multiple-column Counters
Two’s Complement Signed Multiplier

5.9.1 Basics

5.9.2 Sign Extension Elimination

5.9.3 String Property

5.9.4 Modified Booth Recoding Multiplier
5.9.5 Modified Booth Recoded Multiplier in RTL Verilog

5.10 Compression Trees for Multi-operand Addition

5.11

Algorithm Transformations for CSA

Exercises
References

6.1
6.2
6.3
6.4
6.5
6.6

6.7

Multiplier-less Multiplication by Constants

Introduction

Canonic Signed Digit Representation

Minimum Signed Digit Representation

Multiplication by a Constant in a Signal Processing Algorithm
Optimized DFG Transformation

Fully Dedicated Architecture for Direct-form FIR Filter
6.6.1 Introduction

6.6.2 Example: Five-coefficient Filter

6.6.3 Transposed Direct-form FIR Filter

6.6.4 Example: TDF Architecture

6.6.5 Hybrid FIR Filter Structure

Complexity Reduction

6.7.1 Sub-graph Sharing

198
198
203
203
209
209
215
217
217
221
221
221
221
222
222
223
224
230
231
232
234
234
235
237
238
240
243
243
247
251

253
253
254
255
255
256
261
261
262
269
272
276
277
277

Contents

6.7.2 Common Sub-expression Elimination
6.7.3 Common Sub-expressions with Multiple Operands
6.8 Distributed Arithmetic
6.8.1 Basics
6.8.2 Example: FIR Filter Design
6.8.3 M-Parallel Sub-filter-based Design
6.8.4 DA Implementation without Look-up Tables
6.9 FFT Architecture using FIR Filter Structure
Exercises
References

7 Pipelining, Retiming, Look-ahead Transformation and
Polyphase Decomposition
7.1 Introduction
7.2 Pipelining and Retiming
7.2.1 Basics
7.2.2 Cut-set Retiming
7.2.3 Retiming using the Delay Transfer Theorem
7.2.4 Pipelining and Retiming in a Feedforward System

7.2.5 Re-pipelining: Pipelining using Feedforward Cut-set

7.2.6 Cut-set Retiming of a Direct-form FIR Filter
7.2.7 Pipelining using the Delay Transfer Theorem
7.2.8 Pipelining Optimized DFG

7.2.9 Pipelining Carry Propagate Adder

7.2.10 Retiming Support in Synthesis Tools

7.2.11 Mathematical Formulation of Retiming

7.2.12 Minimizing the Number of Registers and Critical Path Delay

7.2.13 Retiming with Shannon Decomposition
7.2.14 Peripheral Retiming
7.3 Digital Design of Feedback Systems
7.3.1 Definitions
7.3.2 Cut-set Retiming for a Feedback System
7.3.3 Shannon Decomposition to Reduce the IPB
7.4 C-slow Retiming
7.4.1 Basics
7.4.2 C-Slow for Block Processing
7.4.3 C-Slow for FPGAs and Time-multiplexed
Reconfigurable Design
7.4.4 C-Slow for an Instruction Set Processor
7.5 Look-ahead Transformation for IIR filters
7.6 Look-ahead Transformation for Generalized IIR Filters

7.7 Polyphase Structure for Decimation and Interpolation Applications

7.8 1IR Filter for Decimation and Interpolation
Exercises
References

279
283
283
283
287
291
292
292
297
299

301
301
302
302
303
304
304
304
306
309
311
312
312
312
314
315
316
316
316
319
320
320
320
323

323
324
324
326
327
329
336
340

Contents

xi

8 Unfolding and Folding of Architectures

8.1
8.2
8.3

8.4

8.5

8.6
8.7

Introduction

Unfolding

Sampling Rate Considerations

8.3.1 Nyquist Sampling Theorem and Design Options

8.3.2 Software-defined Radio Architecture and Band-pass Sampling

8.3.3 A/D Converter Bandwidth and Band-pass Sampling
Unfolding Techniques

8.4.1 Loop Unrolling

8.4.2 Unfolding Transformation

8.4.3 Loop Unrolling for Mapping SW to HW

8.4.4 Unfolding to Maximize Use of a Compression Tree
8.4.5 Unfolding for Effective Use of FPGA Resources
8.4.6 Unfolding and Retiming in Feedback Designs
Folding Techniques

8.5.1 Definitions and the Folding Transformation

8.5.2 Folding Regular Structured DFGs

8.5.3 Folded Architectures for FFT Computation

8.5.4 Memory-based Folded FFT Processor

8.5.5 Systolic Folded Architecture

Mathematical Transformation for Folding

Algorithmic Transformation

Exercises
References

9 Designs based on Finite State Machines

9.1
9.2

9.3

9.4

9.5
9.6

9.7

Introduction

Examples of Time-shared Architecture Design

9.2.1 Bit-serial and Digit-serial Architectures

9.2.2 Sequential Architecture

Sequencing and Control

9.3.1 Finite State Machines

9.3.2 State Encoding: One-hot versus Binary Assignment
9.3.3 Mealy and Moore State Machine Designs
9.3.4 Mathematical Formulations

9.3.5 Coding Guidelines for Finite State Machines
9.3.6 SystemVerilog Support for FSM Coding
Algorithmic State Machine Representation

9.4.1 Basics

9.4.2 Example: Design of a Four-entry FIFO

9.4.3 Example: Design of an Instruction Dispatcher
FSM Optimization for Low Power and Area
Designing for Testability

9.6.1 Methodology

9.6.2 Coverage Metrics for Design Validation
Methods for Reducing Power Dissipation

343
343
344
344
344
345
347
348
348
349
350
352
353
356
362
363
363
366
367
370
372
376
377
378

381
381
382
382
383
388
388
390
391
392
392
397
398
398
399
401
408
409
409
410
411

xii

Contents

10

11

9.7.1 Switching Power
9.7.2 Clock Gating Technique
9.7.3 FSM Decomposition

Exercises
References

Micro-programmed State Machines

10.1
10.2

10.3

10.4
10.5
10.6
10.7

Introduction

Micro-programmed Controller

10.2.1 Basics

10.2.2 Moore Micro-programmed State Machines
10.2.3 Example: LIFO and FIFO

Counter-based State Machines

10.3.1 Basics

10.3.2 Loadable Counter-based State Machine
10.3.3 Counter-based FSM with Conditional Branching
10.3.4 Register-based Controllers

10.3.5 Register-based Machine with Parity Field
10.3.6 Example to Illustrate Complete Functionality
Subroutine Support

Nested Subroutine Support

Nested Loop Support

Examples

10.7.1 Design for Motion Estimation

10.7.2 Design of a Wavelet Processor

Exercises
References

Micro-programmed Adaptive Filtering Applications

11.1
11.2

11.3

11.4

11.5

Introduction

Adaptive Filter Configurations

11.2.1 System Identification

11.2.2 Inverse System Modeling

11.2.3 Acoustic Noise Cancellation

11.2.4 Linear Prediction

Adaptive Algorithms

11.3.1 Basics

11.3.2 Least Mean Square (LMS) Algorithm
11.3.3 Normalized LMS Algorithm

11.3.4 Block LMS

Channel Equalizer using NLMS

11.4.1 Theory

11.4.2 Example: NLMS Algorithm to Update Coefficients
Echo Canceller

11.5.1 Acoustic Echo Canceller

11.5.2 Line Echo Cancellation (LEC)

411
412
413
415
419

421
421
422
422
425
426
427
427
429
430
431
432
432
434
435
436
439
439
443
446
451

453
453
453
453
454
454
455
455
455
456
457
457
457
457
458
463
463
464

Contents

xiii

12

13

11.6 Adaptive Algorithms with Micro-programmed State Machines

11.6.1 Basics

11.6.2 Example: LEC Micro-coded Accelerator

11.6.3 Address Registers Arithmetic

11.6.4 Pipelining Options

11.6.5 Optional Support for Coefficient Update

11.6.6 Multi MAC Block Design Option

11.6.7 Compression Tree and Single CPA-based Design
Exercises
References

CORDIC-based DDFS Architectures
12.1 Introduction
12.2 Direct Digital Frequency Synthesizer
12.3 Design of a Basic DDFS
12.4 The CORDIC Algorithm
12.4.1 Introduction
12.4.2 CORDIC Algorithm for Hardware Implementation
12.4.3 Hardware Mapping
12.4.4 Time-shared Architecture
12.4.5 C-slowed Time-shared Architecture
12.4.6 Modified CORDIC Algorithm
12.4.7 Recoding of Binary Representation as +1
12.5 Hardware Mapping of Modified CORDIC Algorithm
12.5.1 Introduction
12.5.2 Hardware Optimization
12.5.3 Novel Optimal Hardware Design
Exercises
References

Digital Design of Communication Systems
13.1 Introduction
13.2 Top-level Design Options
13.2.1 Bus-based Design
13.2.2 Point-to-Point Design
13.2.3 Network-based Design
13.2.4 Hybrid Connectivity
13.2.5 Point-to-Point KPN-based Top-level Design
13.2.6 KPN with Shared Bus and DMA Controller
13.2.7 Network-on-Chip Top-level Design
13.2.8 Design of a Router for NoC
13.2.9 Run-time Reconfiguration
13.2.10 NoC for Software-defined Radio
13.3 Typical Digital Communication System
13.3.1 Source Encoding
13.3.2 Data Compression

464
464
465
474
478
479
480
480
481
482

483
483
484
485
486
486
489
492
498
501
502
502
506
506
510
514
519
520

521
521
522
522
523
523
524
524
524
527
532
534
535
536
536
536

xiv

Contents

13.3.3
13.3.4
13.3.5
13.3.6
13.3.7
13.3.8

Exercises
References

Index

Encryption

Channel Coding

Framing

Modulation

Digital Up-conversion and Mixing
Front End of the Receiver

541
559
561
562
572
573
574
577

579

Preface

Practising digital signal processing and digital system design for many years, and introducing and
then developing the contents of courses at undergraduate and graduate levels, tempted me to write a
book that would cover the entire spectrum of digital design from the signal processing perspective.
The objective was to develop the contents such that a student, after taking the course, would be
productive in an industrial setting in different roles. He or she could be a good algorithm developer,
adigital designer and a verification engineer. An associated website (www.drshoabkhan.com) hosts
RTL Verilog code of the examples in the book. Readers can also download PDF files of Microsoft
PowerPoint presentations of lectures covering the material in the book. The lab exercises are
provided for teachers’ support.

The contents of this book show how to code algorithms in high-level languages in a way that
facilitates their subsequent mapping on hardware-specific platforms. The book covers issues in
implementing algorithms using fixed-point format. The ultimate conversion of algorithms devel-
oped in double-precision floating-point format to fixed-point is a critical design stage in system
implementation. The conversion not only requires simple translation but in many cases also
requires the designer to explore other structural options for mitigating quantization effects of fixed-
point implementation. A number of commercially available system design and simulation tools
provide support for fixed-point conversion and simulation. The MATLAB® fixed-point toolbox
and utilities are important, and so is the support extended for fixed-point arithmetic in other high-
level description languages such as SystemC. The issues of overflow, saturation, truncation and
rounding are critical. The normalization and block floating-point option to optimize implemen-
tation should also be learnt. Chapter 3 covers all these issues and demonstrates the methodology
with examples.

The next step in system design is to perform HW-SW partitioning. Usually this decision is made
by an experienced designer. Chapters 1 and 3 give broad rules that help the designer to make this
decision. The portion that is set aside for mapping in hardware is then explored for several
architectural design options. Different ways of representing algorithms and their coding in
MATLAB® are covered in Chapter 4. The chapter also covers mapping of the graphical
representation of an algorithm on fully dedicated hardware.

Following the discussion on fully dedicated architectures, Chapter 5 lists designs of basic
computational blocks. The chapter also highlights the architecture of embedded computational
units in FPGAs and their effective use in the design. This discussion logically extends to algorithms
that require multiplications with constants.

Chapter 6 gives an account of architectural optimization for designs that involve multiplications
with constants. Depending on the throughput requirement and the target technology that constrains
the clock rate, the architectural design decisions are made. Mapping an application written in a

xvi Preface

high-level language to hardware requires insight into the algorithm. Usually signal processing
applications use nested loops. Unfolding and folding techniques are presented in Chapter 7. These
techniques are discussed for code written in high-level languages and for algorithms that are
described graphically as a dataflow graph (DFG). Chapter 4 covers the representation of algorithms
as dataflow graphs. Different classes of DFGs are discussed. Many top-level design options are also
discussed in Chapter 4 and Chapter 13. These options include a peer-to-peer KPN-connected
network, shared bus-based design, and network-on-chip (NoC) based architectures. The top-level
design is critical in overall performance, easy programmability and verification.

In Chapter 13 a complex application is considered as a network of connected processing elements
(PEs). The PEs implement the functionality in an algorithm whereas the interconnection framework
provides inter-PE communication. Issues of different scheduling techniques are discussed. These
techniques affect the requirements of buffers between two connected nodes.

While discussing the hardware mapping of functionality in a PE, several design options are
considered. These options include fully dedicated architecture (Chapter 4 and Chapter 6), parallel
and unfolded architectures (Chapter 8), folded and time-shared architectures (Chapter 8 and
Chapter 9) and programmable instruction set architectures (Chapter 10). Each architectural design
option is discussed in detail with examples. Tradeoffs are also specified for the designer to gauge
preferences of one over the other. Special consideration is given to the target platform. Examples of
FGPAs with embedded blocks of multipliers with a fixed set of registers are discussed in Chapter 5.

Mapping of an algorithm in hardware must take into account the target technology. Novel
methodologies for designing optimal architectures that meet stringent design constraints while
keeping in perspective the target technology are elaborated. For a time-shared design, systolic and
simple folded architectures are covered. Intricacies in folding a design usually require a dedicated
controller to schedule operands on a shared HW resource. The controller is implemented as a finite
state machine (FSM). FSM representations and designs are covered in Chapter 9. The chapter gives
design examples. The testing of complex FSMs requires a lot of thought. Different coverage metrics
are listed. Techniques are described that ensure maximum path coverage for effective testing of
FSMs. For many complex applications, the designer has an option to define an instruction set that
can effectively implement the application. A micro-programmed state machine design is covered in
Chapter 10. Design examples are given to demonstrate the effectiveness of this design option. The
designs are coded in RTL Verilog. The designer must know the coding rules and RTL guidelines
from a synthesis perspective. Verilog HDL is covered, with mention of the guidelines for effective
coding, in Chapter 2. This chapter also gives a brief description of SystemVerilog that primarily
facilities testing and verification of the design. It also helps in modeling and simulating a system at
higher levels of abstraction especially at transaction levels. Features of SystemVerilog that help in
writing an effective stimulus are also given. For many examples, the RTL Verilog code is also listed
with synthesis results. The book also provides an example of a communication receiver.

Two case studies of designs are discussed in detail. Chapter 11 presents an instruction set for
implementing an adaptive algorithm for computationally intensive applications. Several architec-
tural options are explored that trade off area with performance. Chapter 12 explores design options
for a CORDIC-based DDFS algorithm. The chapter provides MATLAB® implementation of the
basic CORDIC algorithm, and then explores fully parallel and folding architecture for implement-
ing the CORDIC algorithm.

The book presents novel architectures for signal processing applications. Chapter 7 presents
novel IR filter-based decimation and interpolation designs. IIR filters are traditionally not used in
these applications because for computing the current output sample they require previous output
samples, so all samples need to be computed. This requires running the design at a faster clock for

Preface xvii

decimation and interpolation applications. The transformations are defined that only require an IIR
filter to compute samples at a slower rate in decimation and interpolation applications.

In Chapter 10, the design of a DDFS based on the CORDIC algorithm is given. The chapter also
presents a complete working of a novel design that requires only one stage of a CORDIC element
and computes sine and cosine values. Then in Chapter 13 a novel design of time-shared and systolic
AES architecture is presented. These architectures transform the AES algorithm to fit in an 8-bit
datapath. Several innovative techniques are used to reduce the hardware complexity and memory
requirements while enhancing the throughput performance of the design. Similarly novel archi-
tectures for massively parallel data compression applications are also covered.

The book can be adopted for a number of courses at senior undergraduate and graduate levels. It
can be used for a senior undergraduate course on Advanced Digital Design and VLSI Signal
Processing. Similarly the contents can be selected in a way to form a graduate level course in these
two subjects.

Acknowledgments

I started my graduate studies at the Georgia Institute of Technology, Atlanta, USA, in January 1991.
My area of specialization was digital signal processing. At the institute most of the core courses
in signal processing were taught by teachers who had authored textbooks on the subjects.
Dr Ronald W. Schafer taught “digital signal processing” using Discrete Time Signal Processing
by Oppenheim, Schafer and Buck. Dr Monson H. Hayes taught “advanced signal processing”
using his book, Statistical Digital Signal Processing and Modeling. Dr Vijay K. Madisetti taught
from his book, VLSI Digital Signal Processing, and Dr Russell M. Mersereau taught from Multi
Dimensional Signal Processing by Dudgeon and Mersereau. During the semester when I took a
course with Dr Hayes, he was in the process of finalizing his book and would give different chapters
of the draft to students as text material. I would always find my advisor, Dr Madisetti, burning the
midnight oil while working on his new book.

The seed of desire to write a book in my area of interest was sowed in my heart in those days. After
my graduation I had several opportunities to work on real projects in some of the finest engineering
organizations in the USA. I worked for Ingersoll Rand, Scientific Atlanta, Picture Tel and Cisco
Systems. I returned to Pakistan in January 1997 and started teaching in the Department of Computer
Engineering at the College of Electrical and Mechanical Engineering (E&ME), National University
of Sciences and Technology (NUST), while I was still working for Cisco Systems.

In September 1999, along with two friends in the USA, Raheel Ahmed Khan and Sherjil Ahmed,
founded a startup company called Communications Enabling Technologies (or CET, later named
Avaz Networks Inc. USA). Raheel Khan is a genuine designer of digital systems. Back in 1999 and
2000, we designed a few systems and technical discussions with him further increased my liking and
affection, along with strengthening my comprehension of the subject. I was serving as CTO of the
company and also heading the R&D team in Pakistan.

In 2001 we secured US$17 million in venture funding and embarked on developing what was
at that time the highest density media processor system-on-chip (MPSoC) solution for VoIP
carrier-class equipment. The single chip could process 2014 channels of VoIP, performing DTMF
generation and detection, line echo cancellation (LEC), and voice compression and decompression
on all these channels. I designed the top-level architecture of the chip and all instruction set
processors, and headed a team of 160 engineers and scientists to implement the system. Designing,
implementing and testing such a complex VLSI system helped me to understand the intricacies of
the field of digital design. We were able to complete the design cycle in the short period of 10 months.

At the time we were busy in chip designing, I, with my friends at Avaz also founded the Center
for Advanced Studies in Engineering (CASE), a postgraduate engineering program in computer
engineering. I introduced the subject of “advanced digital design” at CASE and NUST. I would
always teach this subject, and to compose the course contents I would collect material from research

XX Acknowledgments

papers, reference books and the projects we were undertaking at Avaz. However, I could not find a
book that did justice to this emerging field.

So it was in 2002 that I found myself compelled to write a textbook on this subject. In CASE all
lectures are recorded on videos for its distance-learning program. I asked Sandeela Sameem, my
student and an intern at Avaz, to make a Microsoft PowerPoint presentation from the design I drew
and text I wrote on the whiteboard. These presentations served as the initial material for me to start
writing the book. The course was offered once every year and in that semester I would write a little on
a few topics, and would give the material to my students as reference.

In 2004, I with my core team of CET founded a research organization called the Center for
Advanced Research in Engineering (CARE) and since its inception I have been managing the
organization as CEO. At CARE, I have had several opportunities to participate in the design of
machine vision, network analysis and digital communication systems. The techniques and examples
discussed in this book are used in the award winning products from CARE. Software Defined Radio,
10 Gigabit VoIP monitoring system and Digital Surveillance equipment received APICTA (Asia
Pacific Information and Communication Alliance) awards in September 2010 for their unique and
effective designs.

My commitments as a professor at NUST and CASE, and as CEO of CARE did not allow me
enough time to complete my dream of writing a book on the subject but my determination did not
falter. Finally in March of 2008 I forwarded my proposal to John Wiley and Sons. In July 2008,
I formally started work on the book.

T have been fortunate to have motivated students to help me in formatting the text and drawing the
figures. Initially it was my PhD student, Fozia Noor Khan, who took pains to put the material in a
good format and convert my hand-drawn figures into Visio images. Later this task was taken over by
Hussnain Ali. He also read the text and highlighted areas that might need my attention. Finally it was
my assistant, Shaista Zainab, who took over helping me in putting the manuscript in order. Also,
many of my students helped in exploring areas. Among them were Zaheer Ahmed, Mohammad
Mohsin Rahmatullah, Sheikh M. Farhan, Ummar Farooq and Rizwana Mehboob, who completed
their PhDs under my co-supervision or supervision. There are almost 70 students who worked on
their MS theses under my direct supervision working on areas related to digital system design. I am
also deeply indebted to Dr Faisal Durbai for spending time reading a few chapters and suggesting
improvements. My research associates, Usman Akram and Sajid, also extended their help in giving a
careful reading of the text.

I should like to acknowledge a number of young and enthusiastic engineers who opted to work
for us in Avaz and CARE, contributing to the development of several first-time-right ASICs and
FPGA-based complex systems. Their hard work and dedication helped to enlighten my approach to
the subject. A few names I should like to mention are Imran Qasir (IQ), Rahan Hameed, Nuaman,
Mobeen, Hassan, Aeman Bukhari, Mahreen, Sadia, Hamza, Fahad Ali Mujahaid, Usman, Asim
Munawar, Aysha Khalid, Alina Mufti, Hammood, Wajahat, Arsalan, Durdana, Shahbaz, Masood,
Adnan, Khalid, Rabia Anwar and Javaria.

Thanks go to my collegues for keeping me motivated to complete the manuscript: Dr Habibullah
Jamal, Dr Shamim Baig, Dr Abdul Khalig, Hammad Khan, Dr Saad Rahman, Dr Muhammad
Younis Javed, Asrar Ashraf, Dr Akhtar Nawaz Malik, Gen Muhammad Shahid, Dr Farrukh Kamran,
Dr Saeed Ur Rahman, Dr Ismail Shah and Dr Sohail Naqvi.

Last but not least, my parents, brother, sisters and my wife Nuzhat who has given me support all
through the years with love and compassion. My sons Hamza, Zaid and Talha grew from toddlers to
teenagers seeing me taking on and then working on this book. My daughter Amina has consistently
asked when I would finish the book!

1

Overview

No exponential is forever ... but we can delay “forever”
Gordon Moore

1.1 Introduction

This chapter begins from the assertion that the advent of VLSI (very large scale integration) has
enabled solutions to intractable engineering problems. Gordon Moore predicted in 1965 the rate of
development of VLSI technology, and the industry has indeed been developing newer technologies
riding on his predicted curve. This rapid advancement has led to new dimensions in the core subject
of VLSI. The capability to place billions of transistors in a small silicon area has tested the creativity
of engineers and scientists around the world. The subject of digital design for signal processing
systems embraces these new challenges. VLSI has revolutionized the commercial market, with
products regularly appearing with increasing computational power, improved battery life and
reduced physical size.

This chapter discusses several applications. The focus of the book is on applications primarily in
areas of signal processing, multimedia, digital communication, computer networks and data
security. Some of the applications are shown in Figure 1.1.

Multimedia applications have had a dramatic impact on our lives. Multimedia access on handheld
devices such as mobile phones and digital cameras is a direct consequence of this technology.

Another area of application is high-data-rate communication systems. These systems have
enormous real-time computational requirements. A modern mobile phone, for example, executes
several complex algorithms, including speech compression and decompression, forward error-
correction encoding and decoding, highly complex modulation and demodulation schemes, up-
conversion and down-conversion of modulated and received signals, and so on. If these are
implemented in software, the amount of real-time computation may require the power of a
supercomputer. Advancement in VLSI technology has made it possible to conveniently accomplish
the required computations in a hand-held device. We are also witnessing the dawn of new trends like
wearable computing, owing much to this technology.

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

2 Digital Design of Signal Processing Systems

Wire-line speed Encryption, Data Mobile Wireless applications
Compression and Routing

¥

Medical Imaging

VLSI § n
Technology in ! _

DSP Systems Digital Radiographic
Image

Multimedia

Cognitive &
Space Imaging Software Defined
applications Radios

Speech Processing

Radars, Communication and Wearable Computers
Electronics Intelligence (COMINT
& ELINT) Systems

Figure 1.1 VLSI technology plays a critical role in realizing real-time signal processing systems

Broadband wireless access technology, processing many megabits of information per second, is
another impressive display of the technology, enabling mobility to almost all the services currently
running on desktop computers. The technology is also at work in spacecraft and satellites in space
imaging applications.

The technology is finding uses in biomedical equipment, examples being digital production of
radiographic and ultrasound images, and implantable devices such as the cardioverter defibrillator
that acquires and digitizes heartbeats, detects any rhythmic abnormalities and symptoms of sudden
cardiac arrest and applies an electric shock to help a failing heart.

This chapter selects a mobile communication system as an example to explain the design
partitioning issues. It highlights that digital design is effective for mapping structured algorithms in
silicon. The chapter also considers the design of a backplane of a high-end router to reveal the
versatility of the techniques covered in this book to solve problems in related areas where
performance is of prime importance.

The design process has to explore competing design objectives: speed, area, power, timing and so
on. There are several mathematical transformations to help with this. Keeping in perspective the
defined requirement specifications, transformations are applied that trade off less relevant design
objectives against the other more important objectives. That said, for complex design problems these
mathematical transformations are of less help, so an effective approach requires learning several

Overview 3

‘tricks of the trade’. This book aims to introduce the transformations as well as giving tips for
effective design.

The chapter highlights the impact of the initial ideas on the entire design process. It explains that
the effect of design decisions diminishes as the design proceeds from concept to implementation. It
establishes the rational for the system architect to positively impact the design process in the right
direction by selecting the best option in the multidimensional design space. The chapter explores
the spectrum of design options and technologies available to the designer. The design options range
from the most flexible general-purpose computing machine like Pentium, to commercially
available off-the-shelf digital signal processors (DSPs), to more application-specific instruc-
tion-set processors, to hard-wired application-specific designs yielding best performance without
any consideration of flexibility in the solution. The chapter describes the target technologies on
which the solution can be mapped, like general-purpose processors (GPPs), DSPs, application-
specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs). It is established
that, for complex applications, an optimal solution usually consists of a mix of these target
technologies.

This chapter presents some design examples. The rationale for design decisions for a satellite
burst modem receiver is described. There is a brief overview of the design of the backplane of a
router. There is an explanation of the design of a network-on-chip (NoC) carrier-class VoIP media
gateway. These examples follow a description of the trend from digital-only design to mixed-signal
system-on-chips (SoCs). The chapter considers synchronous digital circuits where digital clocks are
employed to make all components operate synchronously in implementing the design.

1.2 Fueling the Innovation: Moore’s Law

Advancements in VLSI over a few decades have played a critical role in realizing the amazing
electronic gadgets we live with today. Gordon Moore, founder of Intel, earlier predicted the rapid
rate of these advancements. In 1965 he noted that the number of transistors on a chip was doubling
every 18 to 24 months. Figure 1.2(a) shows the predicted curve known as Moore’s Law from his
original paper [1]. This ‘law’ has fueled innovation for five decades. Figure 1.2(b) shows Intel’s
response to his prediction.

Moore acknowledges that the trend cannot last forever, and he gave a presentation at an
international conference, entitled “No exponential is forever, but we can delay ‘forever’” [2]. Intel
has plans to continue riding on the Moore’s Law curve for another ten years and has announced a 2.9
billion-transistor chip for the second quarter of 2011. The chip will fit into an area the size of a
fingernail and use 22-nanometer technology [3]. For comparison, the Intel 4004 microprocessor
introduced in 1971 was based on a 10 000-nanometer process.

Integration at this scale promises enormous scope for designers and developers, and the
development of design tools has matched the pace. These tools provide a level of abstraction so
that the designer can focus more on higher level design concepts rather than low-level details.

1.3 Digital Systems
1.3.1 Principles

To examine the scope of the subject of digital design, let us consider an embedded signal processing
system of medium complexity. Usually such a system consists of heterogeneous physical devices
such as a GPP or micro-controller, multiple DSPs, a few ASICs, and FPGAs. An application
implemented on such a system usually consists of numerous tasks of varying computational

uonouny paresbaul
10} sjuauodwo9 Jo Jaqunu ayl Jo ¢6oT

16
15
14
13
12
11

OFRLNWRAUIUIIONO®

2,000,000,000

'
4
7
.
/ Core i5e i

Intel York field 8-Core (45 nm) ® 7
/ 1,000,000,000

22 nm ch/le,

Quad-Core Itanium Tukwila o ,/
GT200°e -

RV 770%”
>
rd

s

Dual-Core Itanium 2 o
POWER 6 <
e

G80 & °
ltanium 2 with 8 MB cache s+ _vitqo
e

Figure 1.2 (a) The original prediction of Moore’s Law. (b) Intel’s response to Moore’s prediction

_‘

2 Care 2 Quad _7 e Core 2 Duo

® Itanium 2¢ 27 eCell

@ 100,000,000 ke

3 .

= P4 -Barton.

S ///:7 Atom

V)
8 g ® K6-l1I
=] 10,000,000 .7 eK6ePlIll
1,000,000 486.//’ *PIl
386s -7 K5
rd .
100,000 2860,’/ * Pentium
DO ANMTNONODO — NM < L -7
NOOOOOOOOOORNNNNN #5088
DDNDDODDDDNOIDID DO DD .
T A A A A A A A AA A A A A A A //
rd
— //
100001 | aom0
2,300 *~'8008
[I I I
1971 1980 1990 2000
(@) (b)

swa)sAS Surssaoold [BUSIS Jo uSiso([BISIQ

Overview 5

complexity. These tasks are mapped on to the physical devices. The decision to implement a
particular task on a particular device is based on the computational complexity of the task, its code
density, and the communication it requires with other tasks.

The computationally intensive (‘number-crunching’) tasks of the application can be further
divided into categories. The tasks for which commercial off-the-shelf ASICs are available are
best mapped on these devices. ASICs are designed to perform specific functions of a particular
application and are not programmable, as are GPPs. Based on the target technology, ASICs are
of different types, examples of which are full-custom, standard-cell-based, gate-array-based,
channeled gate array, channel-less gate array, and structured gate array. As these devices are
application-specific they are optimized using integrated-circuit manufacturing process tech-
nology. These devices offer low cost and low power consumption. There are many benefits to
using ASICs, but because of their fixed implementation a design cannot be made easily
upgradable.

Itis important to point out that several applications implement computationally intensive but non-
standard algorithms. The designer, for these applications, may find that mapping the entire
application on FPGAs is the only option for effective implementation. For applications that consist
of standard as well as non-standard algorithms, the computationally intensive tasks are further
divided into two groups: structured and non-structured. The tasks in the structured group usually
consist of code that has loops or nested loops with a few instructions being repeated a number of
times, whereas the tasks in the non-structured group implement more code-intensive components.
The structured tasks are effectively mapped on FPGAs, while the non-structured parts of the
algorithm are implemented on a DSP or multiple DSPs.

A field-programmable gate array comprises a matrix of configurable logic blocks (CLBs)
embedded in an interconnected net. The FPGA synthesis tools provide a method of programming
the configurable logic and the interconnects. The FPGAs are bought off the shelf: Xilinx [4],
Altera [5], Atmel [6], Lattice Semiconductor [7], Actel [8] and QuickLogic [9] are some of the
prominent vendors. Xilinx shares more than 50% of the programmable logic device (PLD) segment
of the semiconductor industry.

FPGAs offer design reuse, and better performance than a software solution mapped on a DSP or
GPP. They are, however, more expensive and give reduced performance and more power consump-
tion compared with an equivalent ASIC solution if it exists. The DSP, on the other hand, is a
microprocessor whose architecture is specially designed to support number-crunching signal
processing applications. Usually a DSP can perform many multiplication and addition operations
and supports special addressing modes that help in effective implementation of fast Fourier
transform (FFT) and convolution algorithms.

The GPPs or microcontrollers are general-purpose computing machines. Types are ‘complex
instruction set computer’ (CISC) and ‘reduced instruction set computer’ (RISC).

The tasks specific to user interfaces, control processes and other code-intensive protocols are
usually mapped on GPPs or microcontrollers. For handling multiple concurrent tasks, events and
interrupts, the microcontroller runs a real-time operating system. The GPP is also good at
performing general tasks like configuring various devices in the system and interfacing with
external devices. The microcontroller or GPP performs the job of a system controller. For systems
of medium complexity, it is connected to a shared bus. The processor configures the ASICs and
FGPAs, and also bootstraps the DSPs in the system. A high-speed bus like Amba High-speed Bus
(AHB) is used in these systems [10]. The shared-bus protocol allows only one master to transfer
the data. For designs that require parallel transfer of data, a multi-layer shared bus like Multi-
Layer AHB (ML-AHB) is used [11]. The microcontroller also interfaces with the external displays
and control panels.

6 Digital Design of Signal Processing Systems

Control Panel

<—>| Controller Sequence

User interface
application

<>

ASIC

Shared Bus

Shared Memory

RF Interface

Figure 1.3 An embedded signal processing system with DSPs, FPGAs, ASICs and GPP

The digital design of a digital communication system interfaces with the RF front end. For voice-
based applications the system also contains CODEC (more in Chapter 12) with associated analog
interfaces. The FPAGs in the system also provide glue logic and interfaces with other devices in the
system. There may also be dual-port RAM to provide shared memory to multiple DSPs in the
system. A representative system is shown in Figure 1.3.

1.3.2 Multi-core Systems

Many applications are best mapped on general-purpose processors. As high-end computing applica-
tions demand more and more computational power in programmable devices, the vendors of GPPs are
incorporating multiple cores of GPPs in a single SoC configuration. Almost all the vendors of GPPs,
such as Intel, IBM, Sun Microsystems and AMD, are now placing multiple cores on a single chip for
improved performance and high reliability. Examples are Intel’s Yorkfield 8-core chip in 45-nm
technology, Intel’s 80-core teraflop processor, Sun’s Rock 8-core CPU, Sun’s UltraSPARC T1 8-core
CPU, and IBM’s 8-core POWER?7. These multi-core solutions also offer the necessary abstraction,
whereby the programmer need not be concerned with the underlying complex architecture, and
software development tools have been produced that partition and map applications on these
multiple cores. This trend is continuously adding complexity to digital design and software tool
development. From the digital design perspective, multi processors based systems are required to

Overview 7

communicate with each other, and inter-processors connections need to be scalable and expendable.
The network-on-chip (NoC) design paradigm addresses issues of scalability of on-chip connectivity
and inter-processor communication.

1.3.3 NoC-based MPSoC

Besides GPP-based multi-core SoCs for mapping general computing applications, there also exist
other application-specific SoC solutions. An SoC integrates all components of a system in a single
chipset. That includes microprocessor, application-specific accelerators, all interfaces to memory
and peripheral devices, and so on.

Most high-end signal processing applications offer an inherent parallelism. To exploit this
parallelism, these systems are mapped on multiple heterogeneous processors. Traditionally these
processors are connected with shared memories on shared buses. As complex designs are integrating
an increasing number of multi-processors on a single SoC (MPSoC) [12], designs based on a shared
bus are not effective owing to complex arbitration, clock skews and latency issues. These designs
require scalable and effective communication infrastructure. An NoC offers a good solution to these
problems [13]. The NOC provides higher bandwidth, low latency, modularity, scalability, and a high
level of abstraction to the system. The complex bus protocols route wires to connect various
components, whereas an NOC uses packet-based protocols to provide connectivity among compo-
nents. The NoC enables parallel transactions of data.

The basic architecture of an NOC is shown in Figure 1.4. Each processing element (PE) is
connected to an on-chip router via a network interface (NI) controller.

L
JDEN
L)

IO

Figure 1.4 An NoC-based heterogeneous multi-core SoC design

8 Digital Design of Signal Processing Systems

Many vendors are now using NoC to integrate multiple PEs on a single chip. A good example is
the use of NoC technology in the Play Station 3 (PS3) system by Sony Entertainment. A detailed
design of an NoC-based system is given in Chapter 13.

1.4 Examples of Digital Systems
1.4.1 Digital Receiver for a Voice Communication System

A typical digital communication system for voice, such as a GSM mobile phone, executes a
combination of algorithms of various types. A system-level block representation of these algorithms
is shown in Figure 1.5. These algorithms fall into the following categories.

1. Code-intensive algorithms. These do not have repeated code. This category consists of code for
phone book management, keyboard interface, GSM (Global System for Mobile) protocol stack,
and the code for configuring different devices in the system.

2. Structured and computationally intensive algorithms. These mostly take loops in software and
are excellent candidates for hardware mapping. These algorithms consist of digital up- and down-
conversion, demodulation and synchronization loops, and forward error correction (FEC).

3. Code-intensive and computationally intensive algorithms. These lack any regular structure.
Although their implementations do have loops, they are code-intensive. Speech compression is
an example.

The GSM is an interesting example of a modern electronic device as most of these devices
implement applications that comprise these three types of algorithm. Some examples are DVD
players, digital cameras and medical diagnostic systems.

The mapping decisions on target technologies are taken at a system level. The code-intensive
part is mapped on a microcontroller; the structured parts of computationally intensive components
of the application, if consisting of standard algorithms, are mapped on ASICs or otherwise they

Y RF Channel Speech E[]
— — . H -
RX ADE— [1BBCT x| Bemodi>| Sacader| | Decoder | | LL2a)))
RF
Synthecizer
Power l
Ampliier RF Channel Speech
L < — <« « | 1| || AD |
TX R iz Encoder €] Encoder €7 4 j)
5 I 28
S 8 8] o RS
@ 3 7] 2 ! 2g
L < < 3 IS
@ 2 g
Power u & User Display
4
Management Controller | Keyboard
T Sim Card

Micro-Controller

Figure 1.5 Algorithms in a GSM transmitter and receiver and their mapping on to conventional target
technologies consisting of ASIC, FPGA and DSP

Overview 9

are implemented on FPGAs; and the computational and code-intensive parts are mapped
on DSPs.

It is also important to note that only signals that can be acquired using an analog-to-digital (A/D)
converter are implemented in digital hardware (HW) or software (SW), whereas the signal that does
not meet the Nyquist sampling criterion can be processed only using analog circuitry. This sampling
criterion requires the sampling rate of an A/D converter to be double the maximum frequency or
bandwidth of the signal. A consumer electronic device like a mobile phone can only afford to have an
A/D converter in the range 20 to 140 million samples per second (Msps). This constraint requires
analog circuitry to process the RF signal at 900 MHz and bring it down to the 10-70 MHz range.
After conversion of this to a digital signal by an A/D converter, it can be easily processed.
A conventional mapping of different building blocks of a voice communication system is shown in
Figure 1.5.

It is pertinent to mention that, if the volume production of the designed system are quite high,
a mixed-signal SoC is the option of choice. In a mixed-signal SoC, the analog and digital
components are all mapped on a single silicon device. Then, instead of placing physical components,
the designer acquires soft cores or hard cores of the constituent components and integrates them on a
single chip.

An SoC solution for the voice communication system is shown in Figure 1.6. The RF
microcontroller, DSP and ASIC logic with on-chip RAM and requisite interfaces are all integrated
on the same chip. A system controller controls all the interfaces and provides glue logic for all the
components to communicate with each other on the device.

RF Interface

System p-controller
Controller Core

Figure 1.6 A system-on-chip solution

10 Digital Design of Signal Processing Systems

Control Plane

Routing protocols

Sw

- 5 Data Plane —_—
—_— : _—

. Forwarding o

Multiple tables Multiple
Input . . Output

L] HW L]

— e

Figure 1.7 HW-SW partitioning of control and data plane in a router

1.4.2 The Backplane of a Router

A router consists mainly of two parts or planes, a control/management plane and a data plane.
A code-intensive control or management plane implements the routing algorithms. These algo-
rithms are executed only periodically, so they are not time-critical.

In contrast, the data plane of the router implements forwarding. A routing algorithm updates the
routing table, after which a forwarding logic uses this table to transfer data from input ports to output
ports. This forwarding logic is very critical as it executes all the time, and is implemented as the data
plane. This plane checks the packet header of the inbound packets and, from a lookup table, finds its
destination port. This operation is performed on all the data packets received by the router and is very
well structured and computationally intensive. For routers supporting gigabit or multi-gigabit rates,
this part is usually implemented in hardware [14], whereas the routing algorithms are mapped in
software as they are code-intensive.

These planes and their effective mappings are shown in Figure 1.7.

1.5 Components of the Digital Design Process

A thorough understanding of the main components of the digital design process is important.
The subsequent chapters of this book elaborate on these components, so they are discussed only
briefly here.

1.5.1 Design

The ‘design’ is the most critical component of the digital design process. The top-level design
highlights the partitioning of the system into its various components. Each component is further
defined at the register transfer level (RTL). This is a level of abstraction where the digital designer
specifies all the registers and elaborates how data will flow through these registers. The combina-
tional logic between two sets of registers is usually described using high-level mathematical
operations, and is drawn as a cloud.

Overview 11

1.5.2 Implementation

When the design has been described at RTL level, its implementation is usually a straightforward
translation in a hardware description language (HDL) program. The program is then synthesized for
mapping on an FPGA or ASIC implementation.

1.5.3 Verification

As the number of gates on a single silicon device increases, so do the challenges of verification.
Verification is also critical in VLSI design as there is hardly any tolerance for bugs in the hardware.
With application-specific integrated circuits, a bug may require a re-spin of fabrication, which is
expensive, so it is important for an ASIC to be ‘right first time’. Even bugs found in FPGA-based
designs result in extended design cycles.

1.6 Competing Objectives in Digital Design

To achieve an effective design, a designer needs to explore the design space for tradeoffs of
competing design objectives. The following are some of the most critical design objectives the
designer needs to consider:

e area
e critical path delays
e testability

e power dissipation.

The art of digital design is to find the optimal tradeoff among these. These objectives are
competing because, for example, if the designer tries to minimize area then the design may result
in longer critical paths and may also affect the testability of the design. Similarly, if the design as
synthesized for better timing means shorter critical paths, the design may result in a larger area.
Better timing also means more power dissipation, which depends directly on the clock frequency.
It is these competing objectives that make learning the techniques covered in this book very
pertinent for designers.

1.7 Synchronous Digital Hardware Systems

The subject of digital design has many aspects. For example, the circuit may be synchronous or
asynchronous, and it may be analog or digital. A digital synchronous circuit is always an option of
choice for the designer. In synchronous digital hardware, all changes in the system are controlled by
one or multiple clocks. In digital systems, all inputs/outputs and internal values can take only
discrete values.

Figure 1.8 depicts an all-digital synchronous circuit in which all changes in the system are
controlled by a global clock c1k. A synchronous circuit has a number of registers, and values in
these registers are updated at the occurrence of positive or negative edges of the clock signal. The
figure shows positive-edge triggered registers. The output signal from the registers Ro and R are fed
to the combinational logic. The signal goes through the combinational logic which consists of gates.
Each gate causes some delay to the input signal. The accumulated delay on each path must be smaller
than the time period of the clock, because the signal at the input of R, register must be stable before

12 Digital Design of Signal Processing Systems

clk f | Ti

Ro Ry

clk —] >———
J-D—
:D——I;D ok

critical path

clk’

Figure 1.8 Example of a digital synchronous hardware system

the arrival of the next active edge of the clock. As there are a number of paths in any digital
design, the longest path — the path that takes the maximum time for the signal to settle at the output —
is called the critical path, as noted in Figure 1.8. The critical path of the design should be smaller than
the permissible delay determined by the clock cycle.

1.8 Design Strategies

At the system level, the designer has a spectrum of design options as shown in Figure 1.9. It is very
critical for the system designer to make good design choices at the conceptual level because they will
have a deep impact on the rest of the design cycle.At the system design stage the designer needs only
to draw a few boxes and take major design decisions like algorithm partitioning and target
technology selection.

General purpose
Microprocessor
o

Digital Signal
Processor

Field
Programmable
Gate Array 'l

‘ DSP
Application

Specific EPGA
Integrated

Circuit

Structured
ASIC

Power Consumption.

ASIC

Figure 1.9 Target technologies plotted against flexibility and power consumption

Overview 13

If flexibility in programming is required, and the computational complexity of the application is
low, and cost is not a serious consideration, then a general-purpose processor such as Intel’s Pentium
is a good option. In contrast, while implementing computationally intensive non-structured
algorithms, flexibility in terms of programming is usually a serious consideration, and then a DSP
should be the technology of choice.

In many applications the algorithms are computationally intensive but are also structured. This is
usually the case in image and video processing applications, or a high-data-rate digital communi-
cation receiver. In these types of application the algorithms can be mapped on FPGAs or ASICs.
While implementing algorithms on FPGAs there are usually two choices. One option is to design an
application-specific instruction-set processor (ASIP). This type of processor is programmable but
has little flexibility and can port only the class of applications using its application-specific
instruction set. In the extreme case where performance is the only consideration and flexibility
is not required, the designer should choose a second option, whereby the design is dedicated to that
particular application and logic is hardwired without giving any consideration to flexibility. This
book discusses these two design options in detail.

The performance versus flexibility tradeoff is shown in Figure 1.10. It is interesting to note that, in
many high-end systems, usually all the design options are exercised. The code-intensive part of the
application is mapped on GPPs, non-structured signal processing algorithms are mapped on DSPs,
and structured algorithms are mapped on FPGAs, whereas for standard algorithms ASICs are used.
This point is further elaborated in the design examples later.

These apparently simple decisions are very critical once the system proceeds along the design
cycle. The decisions are especially significant for the blocks that are partitioned for hardware
mapping. The algorithms are analyzed and architectures are designed. The designer either selects
ASIP or dedicated hard-wired. The designer takes the high-level design and starts implementing the
hardware. The digital design is implemented at RTL level and then it is synthesized and tools
translate the code to gate level. The synthesized design is physically placed and routed. As the design

Flexibility
Programmable CPU

Programmable DSP

Efficiency

Figure 1.10 Efficiency verses flexibility tradeoff while selecting a design option

14 Digital Design of Signal Processing Systems

(High Level)
(Gate Level)

Figure 1.11 Design decision impact and complexity relationship diagram

goes along the design cycle, the details are very complex to comprehend and change. The designer at
every stage has to make decisions, but as the design moves further along the cycle these decisions
have less impact on the overall function and performance of the design. The relationship between the
impact of the design decision and its associated complexity is shown in Figure 1.11.

1.8.1 Example of Design Partitioning

Let us consider an example that elaborates on the rationale of mapping a communication system on a
hybrid platform. The system implements an upto 512Kbps BPSK/QPSK (phase-shift keying)
satellite burst modem.

The design process starts with the development of an algorithm in MATLAB®. The code is then
profiled. The algorithm consists of various components. The computation and storage requirements
of each component along with inter-component communication are analyzed. The following is a list
of operations that the digital receiver performs.

¢ Analog to digital conversion (ADC) of an IF signal at 70 MHz at the receiver (Rx) using band-pass
sampling.

¢ Digital to analog conversion (DAC) of an IF signal at 24.5 MHz at the transmitter (Tx).

¢ Digital down-conversion of the band-pass digitized IF signal to baseband at the Rx. The baseband
signal consists of four samples per symbol on each I and Q channel. For 512 Kbps this makes
2014 Ksps (kilo samples per second) on both the channels.

¢ Digital up-conversion of the baseband signal from 2014 ksps at both I and Q to 80 Msps at the Tx.

¢ Digital demodulator processing 1024 K complex samples per second. The algorithm at the Rx
consists of: start of burst detection, header removal, frequency and timing loops and slicer.

In a burst modem, the receiver starts in burst detection state. In this state the system executes the start
of the burst detection algorithm. A buffer of data is input to the function that computes some measure
of presence of the burst. If the measure is greater than a threshold, ‘start of burst’ (SoB) is declared. In

Overview 15

this state the system also detects the unique word (UW) in the transmitted burst and identifies the start
of data. If the UW in the received burst is not detected, the algorithm transits back into the burst
detection mode. When both the burst and the UW are detected, then the algorithm transits to the
estimation state. In this state the algorithm estimates amplitude, timing, frequency and phase errors
using the known header placed in the transmitted burst. The algorithm then transits to the
demodulation state. In this state the system executes all the timing, phase and frequency error-
correction loops. The output of the corrected signal is passed to the slicer. The slicer makes the soft
and hard decisions. For forward error correction (FEC), the system implements a Viterbi algorithm
to correct the bit errors in the slicer soft decision output, and generates the final bits [15]. The frame
and end of frame are identified. In a burst, the transmitter can transmit several frames. To identify the
end of the burst, the transmitter appends a particular sequence in the end of the last frame. If this
sequence is detected, the receiver transits back to the SoB state. The state diagram of the sequence of
operation in a satellite burst modem receiver is shown in Figure 1.12.

The algorithm is partitioned to be mapped on different components based on the nature of
computations required in implementing the sub-components in the algorithm. The following
mapping effectively implements the system.

e A DSPis used for mapping computationally intensive and non-regular algorithms in the receiver.
These algorithms primarily consist of the demodulator and carrier and timing recovery loops.

¢ ASICsareused for ADC, DAC, digital down-conversion (DDC) and digital up-conversion (DUC).
A direct digital frequency synthesis (DDFS) chip is used for cosine generation that mixes with the
baseband signal.

SOB
Detection

FEC &

Deframing

IEOB

Demodulation

Figure 1.12 Sequence of operations in a satellite burst modem receiver

16 Digital Design of Signal Processing Systems

From RF Board el
Burst Detection
FPGA Param Estimation
Correction Loops
Glue Logic

To RF Board Viterbi Algorithm

ucC
1/0O control
configuration

Shared
bus

v DBitstream
/0 Output

Figure 1.13 System-level design of a satellite burst receiver

¢ An FPGA implements the glue logic and maps the Viterbi algorithm for FEC. The algorithm is
very regular and is effectively mapped in hardware.

A microcontroller is used to interface with the control panel and to configure different components in
the system.

A block diagram of the system highlighting the target technologies and their interconnection is
shown in Figure 1.13.

1.8.2 NoC-based SoC for Carrier-class VoIP Media Gateway

VoIP systems connect the legacy voice network with the packet network such that voice, data and
associated signaling information are transported on the IP network. In the call setup stage, the
signaling protocol (e.g. session initiation protocol, SIP) negotiates parameters for the media session.
After the call is successfully initiated, the media session is established. This session takes the
uncompressed digitized voice from the PSTN (public switched telephone network) interface and
compresses and packages it before it is transported on a packet network. Similarly it takes the
incoming packeted data from the IP network and decompresses it before it is sent on the PSTN
network. A carrier-class VoIP media gateway processes hundreds of these channels.

The design of an SoC for a carrier-class VoIP media gateway is given in Figure 1.14. A matrix of
application-specific processing elements are embedded in an NOC configuration on an SoC. In
carrier-class application the SoC processes many channels of VoIP [16]. Each channel of VoIP
requires the system to implement a series of algorithms. Once a VoIP call is in progress, the SoC
needs to first process ‘line echo cancellation’ (LEC) and ‘dual-tone multi-frequency’ (DTMF)

Overview 17

NIC NIC
“—IRI — >
—
. S
Ak(
N NIC
Ta— \
R
R
°
° °
° °
A A A
', v |
b R «——R]

Figure 1.14 NoC-based SoC for carrier-class VoIP applications. Multiple layers of application-specific
PEs are attached with an NoC for inter-processor communication

detection on each channel, and then it decompresses the packeted voice and compresses the time-
division multiplex (TDM) voice. The SoC has two interfaces, one with the PSTN network and the
other with the IP network. The interface with the PSTN may be an H.110 TDM interface. Similarly
the interfaces on the IP side may be a combination of POS, UTOPIA or Ethernet. Besides these
interfaces, the SoC may also have interfaces for external memory and PCI Express (PCle). All these
components on a chip are connected to a NOC for inter-component communication.

The design assumes that the media gateway controller and packet processor are attached with the
media gateway SoC for complete functionality of a VoIP system. The packets received on the IP
interface are saved in external memory. The data received on the H.110 interface is buffered in an on-
chip memory before being transferred to the external memory. An on-chip RISC microcontroller is
intimated to process an initiated call on a specified TDM slot by the host processor on a PCle
interface.

The microcontroller keeps a record of all the live calls, with associated information like the
specification on agreed encoder and decoder between caller and callee. The microcontroller then
schedules these calls on the array of multiprocessors by periodically assigning all the tasks
associated with processing a channel that includes LEC, in-voice DTMF detection, encoding of
TDM voice, and decoding of packeted voice. The PEs program external DMA for fetching TDM
voice data for compression and packeted voice for decompression. The processor also needs to bring
the context from external memory before it starts processing a particular channel. The context has
the states of different variables and arrays saved while processing the last frame of data on a
particular channel.

The echo is produced at the interface of 4-line to 2-line hybrid at the CO office. Owing to
impedance mismatch in the hybrid, the echo of far-end speech is mixed in the near-end voice. This

18 Digital Design of Signal Processing Systems

echo needs to be cancelled before the near-end speech is compressed and packetized for transmis-
sion on an IP network. An LEC processing element is designed to implement line echo cancellation.
The LEC processing also detects double talk and updates the coefficients of the adaptive filter only
when line echo is present in the signal and the near end is silent. There is an extended discussion of
LEC and its implementation in Chapter 11.

Each processing element in the SoC is scheduled to perform a series of tasks for each channel.
These tasks for a particular channel are periodically assigned to a set of PEs. Each PE keeps checking
the task list, while it is performing the currently assigned task. Finding a new task in the task list, the
PE programs a channel of the DMA to bring data and context for this task into on-chip memory of the
processor. Similarly, if the processor finds that it is tasked to perform an algorithm where it also
needs to bring the program into its program memory (PM), the PE also requests the DMA to fetch the
code for the next task in the PM of the PE. This code fetching is kept to a minimum by carefully
scheduling the tasks on the PEs that already have programs of the assigned task in its PM.

1.8.3 Design Flow Migration

As explained earlier, usually the communication system requires component-level integration of
different devices to implement digital baseband, RF transmitter and receiver, RF oscillator and
power management functionality. The advancement in VLSI technology is now enabling the
designer to integrate all these technologies on the same chip.

Although the scope of this book is limited to studying digital systems, it is very pertinent to point
out that, owing to cost, performance and power dissipation considerations, the entire system
including the analog part is now being integrated on a single chip. This design flow migration is show
in Figure 1.15. The ASICs and microcontroller are incorporated as intellectual property (IP) cores
and reconfigurable logic (RL) of the FPGAs is also placed on the same chip. Along with digital
components, RF and analog components are also integrated on the same chip. For example, a mixed-
signal integrated circuit for a mobile communication system usually supports ADC and DAC for on-
chip analog-to-digital and digital-to-analog conversion of baseband signals, phase-locked loops
(PLLs) for generating clocks for various blocks, and codec components supporting PCM and other

] -

Design-flow
Migration
Mixed
—
Analog ADC - -
ICs DAC
Multi-Chip PCB Mixed Signal SoC

Figure 1.15 Mixed-signal SoC integrating all components on a multi-chip board on a single chip

Overview 19

standard formats [17]. There are even integrated circuits that incorporate RF and power management
blocks on the same chip using deep sub-micron CMOS technology [18].

References
1. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, April 1965.
2. G. E. Moore, in Plenary Address at ISSCC, 2003.
3. S.Borkar, “Design perspectives on 22-nm CMOS and beyond,” in Proceedings of Design Automation Conference,
2009, ACM/IEEE, pp. 93-94.
4. www.xilinx.com
5. www.altera.com
6. www.atmel.com
7. www.latticesemi.com
8. www.actel.com
9. www.quicklogic.com
10. www.arm.com/products/system-ip/amba/amba-open-specifications.php
11. A.Landry, M. Nekili and Y. Savaria, “A novel 2-GHz multi-layer AMBA high-speed bus interconnect matrix for
SoC platforms,” in Proceedings of IEEE International Symposium on Circuits and Systems, 2005, vol. 4, pp.
3343-3346.
12. W. Wolf, A. A. Jerraya and G. Martin, “Multiprocessor system-on-chip (MPSoC) technology,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2008, vol. 27, pp. 1701-1713.
13. S. V. Tota, M. R. Casu, M. R. Roch, L. Macchiarulo and M. Zamboni, “A case study for NoC-based homogeneous
MPSoC architectures,” IEEE Transactions on Very Large Scale Integration Systems, 2009, vol. 17, pp. 384-388.
14. R.C. Changand B.-H. Lim, “Efficient IP routing Table VLSI design for multi-gigabit routers,” IEEE Transactions
on Circuits and Systems 1, 2004, vol. 51, pp. 700-708.
15. S. A. Khan, M. M. Saqib and S. Ahmed, “Parallel Viterbi algorithm for a VLIW DSP,” in Proceedings of ICASSP,
2000, vol. 6, pp. 3390-3393.
16. M. M. Rahmatullah, S. A. Khan and H. Jamal, “Carrier-class high-density VoIP media gateway using hardware/
software distributed architecture,” IEEE Transactions on Consumer Electronics, 2007, vol. 53, pp. 1513-1520.
17. B.Baggini, “Baseband and audio mixed-signal front-end IC for GSM/EDGE applications,” IEEE Journal of Solid-
State Circuits, 2006, vol. 41, 1364-1379.
18. M. Hammes, C. Kranz and D. Seippel, “Deep submicron CMOS technology enables system-on-chip for wireless

communications ICs,” IEEE Communications Magazine, 2008, vol. 46, pp. 151-161.

2

Using a Hardware Description
Language

2.1 Overview

This chapter gives a comprehensive coverage of Verilog and SystemVerilog. The focus is mostly on
Verilog, which is a hardware description language (HDL).

The chapter starts with a discussion of a typical design cycle in implementing a signal processing
application. The cycle starts with the requirements specification, followed by the design of an
algorithm using tools like MATLAB®. To facilitate partitioning of the algorithm into hardware
(HW) and software (SW), and its subsequent mapping on different platforms, algorithm design and
coding techniques in MATLAB® are described. The MATLAB® code has to be structured so that the
algorithm developers, SW designers and HW engineers can correlate various components and can
seamlessly integrate, test and verify the design and can return to the original MATLAB®
implementation if there are any discrepencies in the results.

The chapter then has a brief account of Verilog. As there are several textbooks available on
Verilog [1-3], this chapter focuses primarily on design and coding guidelines and relevant rules.
There is a particular emphasis on coding rules for keeping synthesis in perspective. A description of
‘register transfer level’ (RTL) Verilog is presented. RTL signifies the placement of registers in
hardware while keeping an account of the movement of data among these registers.

SystemVerilog adds more features for modeling and verification. Although Verilog itself provides
constructs to write test benches for verification, it lacks features that are required to verify a complex
design. Traditionally verification engineers have resorted to other languages, such as Vera or e, or
have used a ‘program language interface’ (PLI) to interface Verilog code with verification code
written in C/C ++ . The use of PLI requires complex interface coding. SystemVerilog enhances
some of the features of Verilog for hardware design, but more importantly adds powerful features
that facilitate verification of more complex designs. Assertion, interface, package, coverage and
randomization are examples of some of these features.

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

22 Digital Design of Signal Processing Systems

2.2 About Verilog
2.2.1 History

Philip Moorby invented Verilog in1983/84. At that time he was with Gateway Design Automation.
VHDL is another language used for designing hardware. It was with the advent of synthesis tools by
Synopsys in1987 when Verilog and VHDL started to change the whole paradigm and spectrum of
hardware design methodology. Within a few years, HDLs became the languages of choice for
hardware design. In 1995, Open Verilog International (OVI) IEEE-1364 placed Verilog in the public
domain to compete with VHDL [4].

It was critical for Verilog to keep pace with the high densities predicted by Moore’s Law. Now the
average process geometries are shrinking and billion-transistor chips are designed using 45-nm and
smaller nanometer technologies.

The Verilog standard is still evolving. More and more features and syntax are being added that, on
one hand, are providing higher level of abstraction, and on the other hand are helping the test
designer to effectively verify an RTL design. Most of this advancement has been steered by the
IEEE. Following the release of IEEE standard 1364-1995, in 1997 the IEEE formed another working
group to add enhancements to the existing Verilog standard. The new standard was completed in
2001, and this variant of the language is called Verilog-2001 [5]. It provides additional support,
flexibility and ease of programming to developers.

In 2001, a consortium (Accellara) of digital design companies and electronic design automation
(EDA) tool vendors set up a committee to work on the next generation of extensions to Verilog. In
2003, the consortium released SystemVerilog 3.0, without ratification. In 2004, it released System-
Verilog 3.1 [6] which augmented in Verilog-2001 many features that facilitated design and
verification. In 2005, while still maintaining two sets of standards, the IEEE released Verilog-
2005 [7] and System Verilog-2005 [8], the latter adding more features for modeling and verification.

2.2.2 What is Verilog?

Verilog is a hardware description language. Although it looks much like C, it is not a software
programming language. It is very important for the Verilog programmer to understand hardware
concepts. Each line of Verilog code in the design means one or more components in hardware.

Verilog is rich in constructs and functionality. Some of the constructs are specific to supporting
verification and modeling and do not synthesize to infer hardware. The synthesis is performed using
a synthesis tool, which is a compiler that translates Verilog into a gate-level design. The synthesis
tool understands only a subset of Verilog, the part of Verilog called ‘RTL Verilog’. All the other
constructs are ‘non-RTL Verilog’. These constructs are very helpful in testing, verification and
simulation.

Itis imperative for the designer to know at the register transfer level what is being coded in the design.
The RTL signifies the placement of registers in the design and the flow of data among the registers. The
complete Verilog is a combination of RTL and non-RTL constructs. A good hardware designer must
have sound understanding of these differences and comprehensive command of RTL Verilog
constructs. The programmer must also have a comprehension of the design to be coded in RTL Verilog.

Advancements in technology are allowing designers to realize ever more complex designs, posing
real challenges for testing and verification engineers. The testing of a complex design requires
creativity and ingenuity. Many features specific to verification are being added in System Verilog,
which is a companion standard supported by most of the Verilog tool vendors. Verilog also provides a
socket-level interface, known as ‘programming language interface’ (PLI), to be used with other

Using a Hardware Description Language 23

programming environments such as C/C 4++, .NET, JavE and MATLAB®. This has extended the
scope of hardware design verification from HW designers to SW engineers. Verification has become
a challenging and exciting discipline. The author’s personal experience in designing application-
specific ICs with many million gates to complex systems on FPGAs has convinced him that the
verification of many designs is even more challenging then designing the system itself. While
designing, the designer needs to use genuine creativity and special abilities to make interesting
explorations in the design space. The author believes that hardware design is an art, though
techniques presented in this book provide excellent help; but coding a design in RTL is a well-
defined and disciplined science. This chapter discusses Verilog coding with special focus on RTL
and verification.

2.3 System Design Flow

Figure 2.1 shows a typical design flow of a design implementing a signal processing application. An
explanation of this flow is given in Chapter 3. This section only highlights that a signal processing
application is usually divided into software and hardware components. The hardware design is
implemented in Verilog. The design is then mapped either on custom ASICs or FPGAs. This design
needs to work with the rest of the software application. There are usually standard interfaces that
enable the SW and HW components to transfer data and messages.

Architecture is designed to implement the hardware part of the application. The design contains
all the requisite interfaces for communicating with the part implemented in software. The SW is
mapped on a general-purpose processor (GPP) or digital signal processor (DSP). The HW design and
the interfaces are coded in Verilog. This chapter focuses on RTL coding of the design and its
verification for correct functionality. The verified design is synthesized on a target technology. The
designer, while synthesizing the design, also constrains the synthesis tool either for timing or area.
The tool generates a gate-level netlist of the design. The tool also reports if there are paths that are not
meeting the timing constraints defined by the designer for running the HW at the desired clock speed.
If that happens, the designer either makes the tool meet the timing by trying different synthesis
options, or transforms the design by techniques described in this book. The modified design is
re-coded in RTL and the process of synthesis is repeated until the design meets the defined timings.
The gate-level netlist is then sent for a physical layout, and for custom ASICs the design is then
‘taped-out’ for fabrication. The field-programmable gate array tools provide an integrated environ-
ment for synthesis, layout and implementation of a bit stream to FPGA.

2.4 Logic Synthesis

The code written in RTL Verilog is synthesized for gate-level implementation. The synthesis process
takes the RTL Verilog and translates it into an optimized gate-level netlist. For logic synthesis the
user specifies design constraints and the target technology in the form of a standard cell library. The
library has standard basic logic gates such as AND and OR, or macro cells like adders, multipliers,
flip-flops, multiplexers and so on. The tool completely converts the design described in RTL
hardware description language into a design that contains standard cells.

To optimally map the high-level description into real HW, the tool performs several steps. A
typical flow of synthesis first converts the RTL description into non-optimized Boolean logic. It then
performs several transformations to optimize the logic subject to user constraints. This optimization
is independent of the target technology. Finally, the tool maps the optimized logic to technology-
specific standard cells.

24 Digital Design of Signal Processing Systems

Floating Point
Behavioral
Description

Design
Specification

Fixed Point
Conversion

RTL Verilog
Implementation

Functional
Verification

Synthesis

Gate Level Net
List

Timing &
Functional
Verification

Builsal pue uolealylIaA ‘ubisap |9A9] WaISAS

Bunsal pue juswdol|anap alemyos

Figure 2.1 System-level design components

2.5 Using the Verilog HDL
2.5.1 Modules

AVerilog code has a top-level module, which may instantiate many other modules. The module is the
basic building block in Verilog. Each module contains statements and instantiation of lower level
modules. In RTL design this module, once synthesized, infers digital logic. The designer conceives a
hardware design as hierarchically interconnecting lower level modules forming higher level
modules. In the next level of hierarchy, the modules so constructed are further connected to design
even high level modules. Thus the design has multiple layers of modules. At the top level the

Using a Hardware Description Language 25

module FA (<port declaration>); module FA(

input a,

input b,

input c_in,

output sum,

output c_out);
- assign {c_out, sum}
endmodule = atb+c_in;

endmodulle

(@) (b)
Figure 2.2 Module definition (a) template (b) example

designer may also conceive the functionality of an application in terms of interconnected modules.
Individual modules may also be incrementally synthesized to facilitate synthesis of large designs.

Modules are declared and instantiated like classes in C++ , but module declarations cannot be
nested. Instances of low-level modules are interconnected, and modules have ports for these
interconnections.

Figure 2.2(a) shows a template of a module definition. A module starts with keyword module
and ends with keyword endmodule. The ports of a module can be input, outputorin_out.
Figure 2.2(b) shows a simple example to illustrate the concept: the module FA has three input ports,
a, b and c_1in, and two output ports, sum and c_out.

2.5.2 Design Partitioning

2.5.2.1 Guidelines for RTL Design

A guide for effective RTL coding from the synthesis perspective is given in Figure 2.3 [9]. The
partitioning of a digital design into a number of modules is important. A module should be neither
too small nor too large. Where possible, the design should be partitioned in a way that module

Module 1 Module 2

Ly

Module 3

Figure 2.3 Design partitioning in number of modules with module boundaries on register outputs

26 Digital Design of Signal Processing Systems

boundaries reside at register outputs, as shown in the figure. This will make it easier to synthesize the
top-level module or hierarchical synthesis at any level with timing constraints. The designer should
also ensure that no combination cloud crosses module boundaries. This gives the synthesis tool more
leverage to generate optimized logic.

2.5.2.2 Guidelines for System Level Design Flow

The design flow of a digital design process has been shown in Figure 2.1. A system designer first
captures requirements and specifications (R&S) of the real-time system under design. Implemen-
tation of the algorithm in SW or HW needs to perform computations on the input data and produce
output data at the specified rates. For example, for a multimedia processing system, the requirement
can be in terms of processing P color or grayscale frames of N x M pixels per second. The processing
may be compression, rendering, object recognition and so on. Similarly for digital communication
applications, the requirement can be described in terms of data rates and the communication
standard that modulates this data for transmission. An example is a design that supports up to a
54-Mbps OFDM-based communication system that uses a 64-QAM modulation scheme.

Algorithm development is one of the most critical steps in system design. Algorithms are developed
using tools such as MATLAB®, Simulink or C/C 4+ /C#, or in any high-level language. Functionally
meeting R&S is a major consideration when the designer selects an algorithm out of several options.
For example, in pattern matching the designer makes an intelligent choice out of many techniques
including ‘chamfer distance transform’, ‘artificial neural network’ and ‘correlation-based matching’.

Although meeting functional requirements is the major consideration, the developer must keep in
mind the ultimate implementation of the algorithm on an embedded platform consisting of ASICs,
FPGAs and DSPs. To ease design partitioning on a hybrid embedded platform, it is important for a
system designer to define all the components of the design, clearly specifying the data flow among
them. A component should implement a complete entity with defined functionality in the design. Itis
quite pertinent for the system designer to clearly define inputs and outputs and internal variables.

The program flow should be defined as it will happen in the actual system. For example, with hard
real-time signal processing systems, the data is processed on a block by block basis. In this form, a
buffer of input data is acquired and is passed to the first component in the system. The component
processes this buffer of data and passes the output to the component next in execution order.
Alternatively, in many applications, especially in communication receiver design, the processing is
done on a sample by sample basis. In these types of application the algorithmic implementation
should process data sample by sample. Adhering to these guidelines will ease the task of HW/SW
partitioning, co-design and co-verification.

The design is sequentially mapped from high-level behavioral design to embedded system parti-
tioning in HW mapped on ASICs or FPGAs and SW running on embedded DSPs or microcontrollers. It
is important for the designers in the subsequent phases in the design cycle to stick to the same
components and variable names as far as possible. This greatly facilitates going back and forth in the
design cycle while the designer is making refinements and verifying its functionality and performance.

2.5.3 Hierarchical Design

Verilog works well with a hierarchical modeling concept. Verilog code contains a top-level module
and zero or more instantiated modules. The top-level module is not instantiated anywhere. Several
instantiations of a lower-level module may exist. Verilog is an HDL and, unlike with other
programming languages, once synthesized each instantiation infers a physical copy of the HW
with its own logic gates, registers and wires. Ports are used to interconnect instantiated modules.

Using a Hardware Description Language 27

module FA(a, b, c_in, sum, module FA(
c_out); input a, b, c_in,
input a, b, c; output sum, c_out);

ouput sum, c_out;

assign {c_out, sun} = atb+c_in;

assign {c_out, sun} = atb+c_in;

gn {e_ ¥ — endmodule
endmodule

@) (b)

Figure2.4 Verilog FA module with input and output ports. (a) Port declaration in module definition and
port listing follows the definition (b) Verilog-2001 support of ANSI style port listing in module definition

Figure 2.4 shows two ways of listing ports in a Verilog module. In Verilog-95, ports are defined in
the module definition and then they are listed in any order. Verilog-2001 also supports ANSI-style
port listing, whereby the listing is incorporated in the module definition.

Using the FA module of Figure 2.4(a), a 3-bit ripple carry adder (RCA) can be designed. Figure 2.5 shows
the composition of the adder as three serially connected FAs. To realize this simple design in Verilog, the
module RCA instantiates FA three times. The Verilog code of the design is given in Figure 2.6(a).

If ports are declared in Verilog-95 style, then the order of port declaration in the module definition
is important but the order in which these ports are listed as input, output, c_inand c_out on
the following lines has no significance. As Verilog-2001 lists the ports in the module boundary, their
order should be maintained while instantiating this module in another module.

For modules having a large number of ports, this method of instantiation is error-prone and should
be avoided. The ports of the instantiated module then should be connected by specifying names. In
this style of Verilog, the ports can be connected in any order, as demonstrated in Figure 2.6(b).

a 3 1 |1

1r t1 1 1
b[0] a[l] v bl a2 b[2]

\ 4

1
= cout

carry[0] y carry[1]

sum(0] sum[1] sum(2]

sumq3
A

Figure 2.5 Design of a 3-bit RCA using instantiation of three FAs

28

Digital Design of Signal Processing Systems

module RCA(
input [2:0] a, b,
input c_in,
output [2:0] sum,
output c_out);

wire carry[1:0];
// module instantiation

FA fa0(a[0], b[0], c_in,
sum[0], carry[0]);

module RCA(
input [2:0] a, b,
input c_in,
output [2:0] sum,
output c_out);

wire carry[1:0];

// module instantiation

FA fao(.a(a[0l),-b(b[0]),
.c_in(c_in),

-sum(sum[0]),
.c_out(carry[0]));

FA fal(.a(a[1])., -b(b[1D),
.c_in(carry[0]),
-sum(sum[1]),
.c_out(carry[1]));

FA fa2(.aa[2]), -b(®[2]),

FA fal(a[1], b[1], carry[O],
sum[1], carry[1l]);

FA fa2(a[2], b[2], carry[1],
sum[2], c_out);

endmodule .c_in(carry[1]),
-sum(sum[2]),
.c_out(c_out));
endmodule

(@ ®

Figure 2.6 Verilog module for a 3-bit RCA. (a) Port connections following the order of ports definition
in the FA module. (b) Port connections using names

2.5.3.1 Synthesis Guideline: Avoid Glue Logic

While the designer is hierarchically partitioning the design in a number of modules, the designer
should avoid glue logic that connects two modules [9]. This may happen after correcting an interface
mismatch or adding some missing functionality while debugging the design. Glue logic is
demonstrated in Figure 2.7. Any such logic should be made part of the combinational logic of
one of the constituent modules. Glue logic may cause issues in synthesis as the individual modules
may satisfy timing constraints whereas the top-level module may not. It also prevents the synthesis
tool from generating a fully optimized logic.

2.5.3.2 Synthesis Guideline: Design Modules with Common Design Objectives

The designer must avoid placing time-critical and non-time-critical logic in the same module [9], asin
Figure 2.8(a). The module with time-critical logic should be synthesized for best timing, whereas the
module with non-time-critical logic is optimized for best area. Putting them in the same module will

Using a Hardware Description Language 29

clk rst_n

Figure 2.7 Glue logic at the top level should be avoided

Module Module 1 Module 2

Non-time

Time Time

Critical

Non-time

Critical
Logic

Critical
Logic

Critical
Logic

Logic

area critical area critical

(a) (b)

Figure 2.8 Synthesis guidelines. (a) A bad design in which time-critical and non-critical logics are
placed in the same module. (b) Critical logic and non-critical logic placed in separate modules

produce a sub-optimal design. The logic should be divided and placed into two separate modules, as
depicted in Figure 2.8(b).

2.5.4 Logic Values

Unlike with other programming languages, a bit in Verilog may contain one of four values, as
given in Table 2.1. It is important to remember that there is no unknown value in a real circuit,
and an ‘x’ in simulation signifies only that the Verilog simulator cannot determine a definite value
of 0 or 1.

Table 2.1 Possible values a bit may take in Verilog

0 Zero, logic low, false, or ground

1 One, logic high, or power

X Unknown

z High impedance, unconnected, or tri-state port

30 Digital Design of Signal Processing Systems

While running a simulation in Verilog the designer may encounter a variable taking a combination
of the above values at different bit locations. In binary representation, the following is an example of
a number containing all four possible values:

20" b 0011_1010_101x_x0z0_011z

The underscore character (_) is ignored by Verilog simulators and synthesis tools and is used
simply to give better visualization to a long string of binary numbers.

2.5.5 Data Types

Primarily there are two data types in Verilog, nets and registers.

2.5.5.1 Nets

Nets are physical connections between components. The net data types are wire, tri, wor,
trior,wand, triand, tri0, tril, supplyO, supplyl and trireg. AnRTL Verilog code
mostly uses the wire data type. A variable of type wire represents one or multiple bit values.
Although this variable can be used multiple times on the right-hand side in different assignment
statements, it can be assigned a value in an expression only once. This variable is usually an output of
a combinational logic whereas it always shows the logic value of the driving components. Once
synthesized, a variable of type wire infers a physical wire.

2.5.5.2 Registers

A register type variable is denoted by reg. Register variables are used for implicit storage as values
should be written on these variables, and unless a variable is modified it retains its previously
assigned value. It is important to note that a variable of type reg does not necessarily imply a
hardware register; it may infer a physical wire once synthesized. Other register data types are
integer, time and real.

A Verilog simulator assigns ‘x’ as the default value to all uninitialized variables of type reg. If
one observes a variable taking a value of ‘x’ in simulation, it usually traces back to an uninitialized
variable of type reg.

2.5.6 Variable Declaration

In almost all software programming languages, only variables with fixed sizes can be declared. For
example, in C/C + + a variable can be of type char, short or int. Unlike these languages, a
Verilog variable can take any width. The variable can be signed or unsigned. The following syntax is
used for declaring a signed wire:

wire signed [<range>] <net_name> <net_name>*;
Here * implies optional and the range is specified as [Most Significantbit (MSb) : Least
Significantbit (LSb)].Itisread as MSb down to LSb. If not specified, the default value of the

range is taken as one bit width. A similar syntax is used for declaring a signed variable of type reg:

reg signed [<range>] <reg_name> <reg_name>*;

Using a Hardware Description Language 31

A memory is declared as a two-dimensional variable of type reg, the range specifies the width of
the memory, and start and end addresses define its depth. The following is the syntax for memory
declaration in Verilog:

reg [<range>] <memory_name> [<start_addr> : <end_addr>];

The Verilog code in the following example declares two 1-bit wide signed variables of type reg
(x1 and x2), two 1-bit unsigned variables of type wire (y1 and y2), an 8-bit variable of type reg
(temp), and an 8-bit wide and 1-Kbyte deep memory ram-local. Note that a double forward
slanted bar is used in Verilog for comments:

reg signed x1, x2; // 1-bit signed variables of type reg x1 and x2
wire yl, y2; // 1-bit variables of type wire, yl and y2

reg [7:0] temp; // 8-bit reg temp

reg [7:0] ram_local [0:1023]; //8-bit wide and 1-Kbyte deep memory

A variable of type reg can also be initialized at declaration as shown here:

regxl =1'b0; // 1-bit reg variable x1 initialize to 0 at declaration

2.5.7 Constants

Like variables, a constant in Verilog can be of any size and it can be written in decimal, binary, octal
or hexadecimal format. Decimal is the default format. As the constant can be of any size, its size is
usually written with ‘d’, ‘b’, ‘0’ or ‘h’ to specify decimal, binary, octal or hexadecimal, respectively.
For example, the number 13 can be written in different formats as shown in Table 2.2.

2.6 Four Levels of Abstraction

As noted earlier, Verilog is a hardware description language. The HW can be described at several
levels of detail. To capture this detail, Verilog provides the designer with the following four levels of
abstraction:

¢ switch level

e gate level

o dataflow level

¢ behavioral or algorithmic level.

A design in Verilog can be coded in a mix of levels, moving from the lowest abstraction of switch
level to the highly abstract model of behavioral level. The practice is to use higher levels of

Table 2.2 Formats to represent constants

Decimal 13 or 4d13
Binary 4'b1101
Octal 4015

Hexadecimal 4'hd

32 Digital Design of Signal Processing Systems

abstraction like dataflow and behavioral while designing logic in Verilog. A synthesis tool then
translates the design coded using higher levels of abstraction to gate-level details.

2.6.1 Switch Level

The lowest level of abstraction is switch- or transistor-level modeling. This level is used to construct
gates, though its use is becoming rare as CAD tools provide a better way of designing and modeling
gates at the transistor level. A digital design in Verilog is coded at RTL and switch-level modeling is
not used in RTL, so this level is not covered in this chapter. Interested readers can get relevant
information on this topic from the IEEE standard document on Verilog [7].

2.6.2 Gate Level or Structural Modeling

Gate-level modeling is at a low level of abstraction and not used for coding design at RTL. Our
interest in this level arises from the fact that the synthesis tools compile high-level code and generate
code at gate level. This code can then be simulated using the stimulus earlier developed for the RTL-
level code. The simulation at gate level is very slow compared with the original RTL-level code. A
selective run of the code for a few test cases may be performed to derive confidence in the
synthesized code. The synthesis tools have matured over the years and so are the coding guidelines.
Gate-level simulation is also becoming rare.

Gate-level simulation can be performed with timing information in a standard delay file (SDF).
The SDF is generated for pre-layout or post-layout simulation by, respectively, synthesis or place
and route tools. The designer can run simulation using the gate-level netlist and the SDF. There is a
separate timing calculator in all synthesis tools. The calculator provides timing violations if there are
any. For synchronous designs the use of gate-level simulation for post-synthesis or layout timing
verification is usually not required.

The code at gate level is built from Verilog primitives. These primitives are built-in gate-level
models of basic functions, including nand, nor, and, or, xor, buf and not. Modeling at this
level requires describing the circuit using logic gates. This description looks much like an
implementation of a circuit in a basic logic design course. Delays can also be modeled at this
level. A typical gate instantiation is

and #delay instance-name (out, inl, in2, in3)

The first port in the primitive, out, is always a 1-bit output followed by several 1-bit inputs (here
inl, in2 and in3); the and is a Verilog primitive that models functionality of an AND gate, while
#delay specifies the delay from input to output of this gate.

Example 2.1

This example designs a 2:1 multiplexer at gate level using Verilog primitives. The design is
given in Figure 2.9(a). The sel wire selects one of the two inputs inl and in2.If sel =0,
inl is selected, otherwise in2 is selected. The implementation requires and, not and or
gates, which are available as Verilog primitives. Figure 2.9(b) lists the Verilog code for the gate-
level implementation of the design. Note #5, which models delay from input to output of the
AND gate. This delay in Verilog is a unit-less constant. It gives good visualization once the

Using a Hardware Description Language 33

module mux (out, inl, in2, sel);

inl outl output out;

input inl, in2, sel;

wire outl, out2, sel n;

out and #5 al(outl, inl, sel_n);

sel

and #5 a2(out2, in2, sel);
) or #5 ol(out, outl, out2);
in2 out2 not ni(sel n, sel);

endmodule

(@ (b)

Figure 2.9 (a) A gate-level design for a 2:1 multiplexer. (b) Gate-level implementation of a 2: 1
multiplexer using Verilog primitives

waveforms of input and output are plotted in a Verilog simulator. These delays are ignored by
synthesis tools.

2.6.3 Dataflow Level

This level of abstraction is higher than the gate level. Expressions, operands and operators
characterize this level. Most of the operators used in dataflow modeling are common to software
programmers, but there are a few others that are specific to HW design. Operators that are used in
expressions for dataflow modeling are given in Table 2.3. At this level every expression starts with
the keyword as sign. Here is a simple example where two variables a and b are added to produce c:

assignc=a + b;
The value on wire c is continuously driven by the result of the arithmetic operation. This
assignment statement is also called ‘continuous assignment’. In this statement the right-hand side

must be a variable of type wire, whereas the operands on the left-hand side may be of type wire or
reg.

Table 2.3 Operators for dataflow modeling

Type Operators

Arithmetic + - = * / % ok

Binary bitwise ~ & ~& | ~l " N A

Unary reduction & ~& | ~ A AN + -

Logical ! && Il = —— 1= = = ——
Relational < > <= >=

Logical shift > <

Arithmetic shift >> <«

Conditional I8

Concatenation {}

Replication {{}}

34 Digital Design of Signal Processing Systems

Table 2.4 Arithmetic operators

Operator type Operator symbol Operation performed
Arithmetic * Multiply

/ Divide

+ Add

— Subtract

% Modulus

HE Power

2.6.3.1 Arithmetic Operators

The arithmetic operators are given in Table 2.4. Itis important to understand the significance of using
these operators in RTL Verilog code as each results in a hardware block that performs the operation
specified by the operator. The designer should also understand the type of HW the synthesis tool
generates once the code containing these operators is synthesized. In many circumstances, the
programmer can specify the HW block from an already developed library to synthesis tools. Many
FPGAs have build-in arithmetic units. For example, the Xilinx family of devices have embedded
blocks for multipliers and adders. While writing RTL Verilog for targeting a particular device, these
blocks can be instantiated in the design. The following code shows instantiation of two built-in
18 x 18 multipliers in the Virtex-1II family of FPGAs:

// Xilinx 18x18 built-inmultipliers are instantiated
MULT18X18 ml (outl, inl, in2);
MULT18X18 m2 (out2, in3, in4);

The library from Xilinx also provides a model for MULT18x18 for simulation. Adders and
multipliers are extensively used in signal processing, and use of a divider is preferably avoided.
Verilog supports both signed and unsigned operations. For signed operation the respective operands
are declared as signed wire or reg.

The size of the output depends on the size of the input operands and the type of operation.
The multiplication operator results in an output equal to the sum of sizes of both the operands.
For addition and subtraction the size of the output is the size of the wider operand and a carry or
borrow bit.

2.6.3.2 Conditional Operators

The conditional operator of Table 2.5 infers a multiplexer. A statement with the conditional operator
is:

out =sel ?a: b;

Table 2.5 Conditional operator

Operator type Operator symbol Operation performed

Conditional ?: Conditional

Using a Hardware Description Language 35

This statement is equivalent to the following decision logic:

if (sel)
out = a;
else
out =Db;

The conditional operator can also be used to infer higher order multiplexers. The code here infers a
4:1 multiplexer:

out =sel[l] ? (sel[0] ?2in3 : in2) : (sel[0] ?inl : in0) ;

2.6.3.3 Concatenation and Replication Operators

Most of the operators in Verilog are the same as in other programming languages, but Verilog
provides a few that are specific to HW designs. Examples are concatenation and replication
operators, which are shown in Table 2.6.

Example 2.2

Using a concatenation operator, signals or parts of signals can be concatenated to make a new
signal. This is a very convenient and useful operator for the hardware designer, who can bring
wires from different parts of the design and tag them with a more appropriate name.

In the example in Figure 2.10, signals a[3:0], b[2:0], 3’b111 and c[2:0] are
concatenated together in the specified order to make a 13-bit signal, p.

Table 2.6 Concatenation and replication operators

Operator type Operator symbol Operation performed
Concatenation {} Concatenation
Replication U Replication

p={a[3:0], b[2:0], 3'b111, c[2:0]};

MSB / | | \ LSB
A1 1]

P & 13 bits

i

Figure 2.10 Example of a concatenation operator

36 Digital Design of Signal Processing Systems

Table 2.7 Logical operators

Operator type Operator symbol Operation performed
Logical ! Logical negation

Il Logical OR

&& Logical AND

Example 2.3

A replication operator simply replicates a signal multiple times. To illustrate the use of this, let

A=2'b01;
B={4{A}} // the replication operator

The operator replicates A four times and assigns the replicated value to B.
Thus B=8'b 01010101.

2.6.3.4 Logical Operators

These operators are common to all programming languages (Table 2.7). They operate on logical
operands and result in a logical TRUE or FALSE. The logical negation operator (!) checks whether
the operand is FALSE, then it results in logical TRUE; and vice versa. Similarly, if one or both of the
operands is TRUE, the logical OR operator (ll) results in TRUE; and FALSE otherwise. The logical
AND operator is TRUE if both the logical operands are TRUE, and it is FALSE otherwise. When one
of the operands is an x, then the result of the logical operator is also x.

The bitwise negation operator (~) is sometimes mistakenly used as a logical negation operator. In
the case of a multi-bit operand, this may result in an incorrect answer.

2.6.3.5 Logic and Arithmetic Shift Operators

Shift operators are listed in Table 2.8. Verilog can perform logical and arithmetic shift operations.
The logical shift is performed on reg and wire.

Example 2.4

Right shifting of a signal by a constant n drops n least significant bits of the number and appends
the n most significant bits with zeros. For example, shift an unsigned regA=6'b101111 by 2:

B=A>>2;

Table 2.8 Shift operators

Operator type Operator symbol Operation performed

Logic shift > Unsigned right shift
< Unsigned left shift

Arithmetic shift >> Signed right shift

K Signed left shift

Using a Hardware Description Language 37

This drops two LSBs and appends two zeros at the MSB position, thus:
B=6b001011

Example 2.5

Arithmetic shift right of an operand by n drops the n LSBs of the operand and fills the n MSBs
with the sign bit of the operand. For example, shift right a wire A= 6101111 by 2:

B=A>>>2;

This operation will drop two LSBs and appends the sign bit to two MSB locations. Thus B =
6'0111011.

Arithmetic and logic shift /eft by n performs the same operation, as both drop n MSBs of the
operand without any consideration of the sign bit.

2.6.3.6 Relational Operators

Relational operators are also very common to software programmers and are used to compare two
numbers (Table 2.9). These operators operate on two operands as shown below:

result = operandl OP operand?2;

This statement results in a logical value of TRUE or FALSE. If one of the bits of any of the
operands is an x, then the operation results in x.

2.6.3.7 Reduction Operators

Reduction operators are also specific to HW design (Table 2.10). The operator performs the
prescribed operation on all the bits of the operand and generates a 1-bit output.

Table 2.9 Relational operator

Relational operator Operator symbol Operation performed

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Table 2.10 Reduction operators

Operator type Operator symbol Operation performed
Reduction & Reduction AND

~& Reduction NAND

| Reduction OR

~l Reduction NOR

A

Reduction XOR
A~ or AN Reduction XNOR

38 Digital Design of Signal Processing Systems

Example 2.6

Apply the & reduction operator to a 4-bit number A=4'b1011:

assign out = &A;

This operation is equivalent to performing a bitwise & operation on all the bits of A:
out =A[0] &A[1l] & A[2] & A[3];

2.6.3.8 Bitwise Arithmetic Operators

Bitwise arithmetic operators are also common to software programmers. These operators perform
bitwise operations on all the corresponding bits of the two operands. Table 2.11 gives all the bitwise
operators in Verilog.

Example 2.7

This example performs bitwise | operation on two 4-bit numbers A = 4’b1011 and
B=4'b0011. The Verilog expression computes a 4-bit C:

assignC=A | B;

performs the OR operation on corresponding bits of A and B and the operation is equivalent to:

2.6.3.9 Equality Operators

Equality operators are common to software programmers, but Verilog offers two flavors that are
specific to HW design: case equality (===) and case inequality (!==). A simple equality operator
(==) checks whether all the bits of the two operands are the same. If any operand has an x or z as one
of its bits, the answer to the equality will be x. The === operator is different from == as it also
matches x with x and z with z. The result of this operator is always a 0 or a 1. There is a similar
difference between != and !==. The following example differentiates the two operators.

Table 2.11 Bitwise arithmetic operators

Operator type Operator symbol Operation performed
Bitwise ~ Bitwise negation

& Bitwise AND

~& Bitwise NAND

| Bitwise OR

~I Bitwise NOR

AN

Bitwise XOR
A~ or AN Bitwise XNOR

Using a Hardware Description Language 39

Table 2.12 Equality operators

Operator type Operator symbol Operation performed
Equality == Equality
1= Inequality

=== Case equality
== Case Inequality

Example 2.8

While comparing A=4'b101x and B=4'b101x using == and ===, out = (A ==B) will
be x and out = (A===B) will be 1 (Table 2.12).

2.6.4 Behavioral Level

The behavioral level is the highest level of abstraction in Verilog. This level provides high-level
language constructs like for, while, repeat, if-else and case. Designers with a software
programming background already know these constructs.

Although the constructs are handy and very powerful, the programmer must know that each
construct in RTL Verilog infers hardware. High-level constructs are very tempting to use, but the HW
consequence of their inclusion must be well understood. For example, for 1oop to a software
programmer suggests a construct that simply repeats a block of code a number of times, but if used in
RTL Verilog the code infers multiple copies of the logic in the loop. There are behavioral-level
synthesis tools that take a complete behavioral model and synthesize it, but the logic generated using
these tools is usually not optimal. The tools are not used in those designs where area, power and
speed are important considerations.

Verilog restricts all the behavioral statements to be enclosed in a procedural block. In a procedural
block all variables on the left-hand side of the statements must be declared as of type reg, whereas
operands on the right-hand side in expressions may be of type reg or wire.

There are two types of procedural block, always and initial.

2.6.4.1 Always and Initial Procedural Blocks

A procedural block contains one or multiple statements per block. An assignment statement used in a
procedural block is called a procedural assignment. The initial block executes only once,
starting at =0 simulation time, whereas an always block executes continuously at =0 and
repeatedly thereafter.

The characteristics of an initial block are as follows.

¢ Thisblock starts with the ini tial keyword. If multiple statements are used in the block, they are
enclosed within begin and end constructs, as shown in Figure 2.11.

¢ This block is non-synthesizable and non-RTL. This block is used only in a stimulus.

¢ There are usually more than one initial blocks in the stimulus. All initial blocks execute
concurrently in arbitrary order, starting at simulation time 0.

e The simulator kernel executes the initial block until the execution comes to a #delay
operator. Then the execution is suspended and the simulator kernel places the execution of this
block in the event list for delay-time units in the future.

o After completing delay-time units, the execution is resumed where it was left off.

40 Digital Design of Signal Processing Systems

—>
initial al ways
begi n begi n
procedural assignnment 1 procedural assignment 1
procedural assignnent 2 procedural assignnment 2
procedural assignnment 3 procedural assignnment 3
L] L[]
L] L[]
L] L[]
L] L[]
L] °
L] °
L/ end end

Figure 2.11 TInitial and always blocks

An always block is synthesizable provided it adheres to coding guidelines for synthesis. From the
perspective of its execution in a simulator, an always block behaves like an initial block
except that, once it ends, it starts repeating itself.

2.6.4.2 Blocking and Non-blocking Procedural Assignments

All assignments in a procedural block are called procedural assignments. These assignments are of
two types, blocking and non-blocking. A blocking assignment is a regular assignment inside a
procedural block. These assignments are called blocking because each assignment blocks the
execution of the subsequent assignments in the sequence. In RTL Verilog code, these assignments
are used to model combinational logic. For the RTL code to infer combinational logic, the blocking
procedural assignments are placed in an always procedural block.

There are several ways of writing what is called the sensitivity list in an always block. The
sensitivity list helps the simulator in effective management of simulation. It executes an always
block only if one of the variables in the sensitivity list changes. The classical method of sensitivity
listing is to write all the inputs in the block in a bracket, where each input is separated by an ‘or’ tag.
Verilog-2001 supports comma-separated sensitivity lists. It also supports just writing a ** for the
sensitivity list. The simulator computes the list by analyzing the block by itself.

The code in Figure 2.12 illustrates the use of a procedural block to infer combinational logic in
RTL Verilog code. The always block contains two blocking procedural assignments. The
sensitivity list includes the two inputs x and y, which are used in the procedural block. A list
of inputs x and y to these assignments are placed with the always statement. This list is the
sensitivity list. This procedural block once synthesized will infer combinational logic. The three
methods of writing a sensitivity list are shown in Figure 2.12.

It should also be noted that, as the left-hand side of a procedural assignment must be of type reg,
so sum and carry are defined as variables of type reg.

In contrast to blocking procedural assignments, non-blocking procedural assignments do not
block other statements in the block and these statements execute in parallel. The simulator executes
this functionality by assigning the output of these statements to temporary variables, and at the end of
execution of the block these temporary variables are assigned to actual variables.

Using a Hardware Description Language

41

reg sum, carry;
always @ (x or y)
begin
sum = xXy;
carry = X&y;

end

reg sum, carry;

always @ (X, y)

begin

sum = xXNy;

carry = Xx&y;

end

reg sum, carry;
always @ (*)
begin
sum = xXy;
carry = x&y;

end

@

(b)

©

Figure 2.12 Blocking procedural assignment with three methods of writing the sensitivity list.
(a) Verilog-95 style. (b) Verilog-2001 support of comma-separated sensitivity list. (¢) Verilog-2001
style that only writes * in the list

The left-hand side of the non-blocking assignment must be of type reg. The non-blocking
procedural assignments are primarily used to infer synchronous logic. Shown below is the use of a
non-blocking procedural assignment that infers two registers, sum_reg and carry_reg:

reg sum_reg, carry_reg;
always @ (posedge clk)
begin
sumreg <= x"y;
carry_reg <= xX&y;
end

Both of the non-blocking assignments are simultaneously executed by the simulator. The use of a
blocking assignment in generating synchronous logic is further explained in the next section.

2.6.4.3 Multiple Procedural Assignments

From the simulation perspective, all procedural blocks simultaneously start execution at = 0. The
simulator, however, schedules their execution in an arbitrary order. Now a variable of data type reg
can be assigned values at multiple locations in a module. Any such multiple assignments to a variable
of type reg must always be placed in the same procedural block. If a variable is assigned values in
different procedural blocks and the values are assigned on it at the same time, the value assigned to
the variable depends on the order in which the simulator executes these blocks. This may cause
errors in simulation and pre- and post-synthesis results may not match.

2.6.4.4 Time Control # and @

Verilog provides different timing constructs for modeling timing and delays in the design. The
Verilog simulator works on unit-less timing for simulating logic. The simulated time at any instance

42 Digital Design of Signal Processing Systems

in the design can be accessed using built-in variable $ t ime. It is a unit-less integer. The timing at any
instance in simulation can be displayed by using the $display as shown here:

“«

Sdisplay (Stime, “a=%d”, a);

The programmer can insert delays in the code by placing # <number>. On encountering this
statement, the simulation halts the execution of the statement until <number> of time units have
passed. The control is released from that statement or block so that other processes can execute.
Synthesis tools ignore this statement in RTL Verilog code, and the statements are mostly used in test
code or to model propagation delay in combinational logic.

Another important timing control directive in Verilog is @. This directive models event-based
control. It halts the execution of the statement until the event happens. This timing control construct
is used to model combinational logic as shown here:

always @ (a or b)
c=a’b;
Here the execution of the assignment statement always @ (a or b) will happen only if a or b
changes value. These signals are listed in the sensitivity list of the block.

The time control @ is used also to model synchronous logic. The code here models a positive-
edge trigger flip-flop:

always @ (posedge clk)
dout <=din;

It is important to note that, while coding at RTL, the non-blocking procedural assignment should be used
only to model synchronous logic and the blocking procedural assignment to model combinational logic.

2.6.4.5 RTL Coding Guideline: Avoid Combinational Feedback

The designer must avoid any combinational feedback in RTL coding. Figure 2.13(a) demonstrates
combinational feedback, as does the following code:

reg [15:0] acc;
always@ (acc)
acc=acc+1;

Combinational
cloud

Combinational
cloud

Combinational
cloud

5[Combinational
cloud

Combinational
cloud

Combinational
cloud

@) (b)

Figure 2.13 Combinational feedback must be voided in RTL Verilog code. (a) A logic with combina-
tional feedback. (b) The register is placed in the feedback path of a combinational logic

Using a Hardware Description Language 43

Any such code does not make sense in design and simulation. The simulator will never come out
of this block as the change in acc will bring it back into the procedural block. If logic demands any
such functionality, a register should be used to break the combinational logic, as shown in Figure 2.13
(b) where a register is placed in the combinational feedback paths.

2.6.4.6 The Feedback Register

In many digital designs, a number of registers reside in feedback paths of combinational logic.
Figure 2.14 shows digital logic of an accumulator with a feedback register. In designs with feedback
registers there must be a reset, because a pre-stored value in a feedback register will corrupt all future
computations. From the simulation perspective, Verilog assumes a logic value x in all register variables.
If this value is not cleared, this x feeds back to a combinational cloud in the first cycle and may produce a
logic value x at the output. Then, in all subsequent clock cycles the simulator — irrespective of the input
data to the combinational cloud — may compute x and keep showing x at the output of the simulation.

A register can be initialized using a synchronous or an asynchronous reset. In both cases, an
active-low or active-high reset signal can be used. An asynchronous active-low reset is usually used
in designs because it is available in most technology libraries. Below are examples of Verilog code to
infer registers with asynchronous active-low and active-high resets for the accumulator example;

// Register with asynchronous active-low reset
always @ (posedge clk or negedge rst_n)
begin
if (!rst_n)
acc_reg <=16'Db0;
else
acc_reg <= datatacc_reg;
end
// Register with asynchronous active-high reset
always @ (posedge clk or posedge rst)

begin
if (rst)
acc_reg <=16'Db0;
else
acc_reg <= data+tacc_reg;
end
1
data —
4 16 acc_reg)
Logic —
—>
rst_n
(@) (b)

Figure 2.14 Accumulator logic with a feedback register

44 Digital Design of Signal Processing Systems

The negedge rst_n and posedge rst directives in the always statement and
subsequently if (!rst_n) and if (rst) statements in each block, respectively, are used
to infer these resets. To infer registers with synchronous reset, either active-low or active-high,
the always statement in each block contains only the posedge c1lk directive. Given below
are examples of Verilog code to infer registers with synchronous active-low and active-high
resets:

// Register with asynchronous active-low reset
always @ (posedge clk)

begin
if (!rst_n)
acc_reg <=16'b0;
else
acc_reg <= data+tacc_reg;
end

// Register with asynchronous active-high reset
always @ (posedge clk)

begin
if(rst)
acc_reg <=16'b0;
else
acc_reg <= datatacc_reg;
end

2.6.4.7 Generating Clock and Reset

The clock and reset that go to every flip-flop in the design are not generated inside the design. The
clock usually comes from a crystal oscillator outside the chip or FPGA. In the place and route phase
of the design cycle, clocks are specially treated and are routed using clock trees. These are specially
designed routes that take the clocks to registers and flip-flops while causing minimum skews to these
special signals. In FPGAs, the external clocks must be tied to one of the dedicated pins that can drive
large nets. This is achieved by locking the clock signal with one of these pins. For Xilinx itis done in
a ‘user constraint file’ (UCF). This file lists user constraints for placement, mapping, timing and bit
generation [11].

Similarly, the reset usually comes from outside the design and is tied to a pin that is physically
connected with a push button used to reset all the registers in the design.

To test and verify RTL Verilog code, clock and reset signals are generated in a stimulus. The
following is Verilog code to generate the clock signal c1k and an active-low reset signal rst_n:

initial // All the initializations should be in the initial block
begin
clk=0; // clock signal must be initialized to 0
#5rst_n=0; //pull active low reset signal to low
2 rst_n=1; // pull the signal back to high
end
always // generate clock in an always block
#10 clk=(~clk) ;

Using a Hardware Description Language 45

These blocks are incorporated in the stimulus module. From the stimulus these signals are input to
the top-level module.

2.6.4.8 Case Statement

Like C and other high-level programming languages, Verilog supports switch and case statements
for multi-way decision support. This statement compares a value with number of possible outcomes
and then branches to its match.

The syntax in Verilog is different from the format used in C/C 4 + . The following code shows the
use of the case statement to infer a 4:1 multiplexer:

module mux4_1 (inl, in2, in3, in4, sel, out);
input [1:0] sel;
input [15:0] inl, in2, in3, in3;
output [15:0] out;
reg [15:0] out;
always @ (*)
begin
case (sel)
2'b00: out = inl;
2'b01: out =in2;
2'bl0: out = in3;
2'bll: out =1in4;
default: out = 16"bx;
endcase
end
endmodule

The select signal sel is evaluated, and the control branches to the statement that matches with
this value. When the sel value does not match with any listed value, the default statement is
executed. Two variants of case statements, casez and casex, are used to make comparison
with the ‘don’t care’ situation. The statement casez takes z as don’t care, whereas casex takes
z and x as don’t care. These don’t care bits can be used to match with any value. This provision is
very handy while implementing logic where only a few of the bits are used to take a branch
decision:

always @ (op_code)
begin
casez (op_code)
4’b1???: alu_inst (op_code) ;
4’b01?7?: mem_rd (op_code) ;
4’b001?: mem_wr (op_code) ;
endcase
end

This block compares only the bits that are specified and switches to one of the appropriate tasks.
For example, if the MSB of the op_code is 1, the casez statement selects the first statement and
the alu_inst task is called.

46 Digital Design of Signal Processing Systems

2.6.4.9 Conditional Statements

Verilog supports the use of conditional statements in behavioral modeling. The i f-e1se statement
evaluates the expression. If the expression is TRUE it branches to execute the statements in the i f
block, otherwise the expression may be FALSE, 0, x or z, so the statements in else block are
executed. The example below gives a simple use. If the brach_flag is non-zero, the PC is equated
to brach_addr; otherwise if the brach_flag is 0, x or z, the PC is assigned the value of
next_addr.

if (brach_flag)

PC = brach_addr
else

PC = next_addr;

The if-(else if)-else conditional statement provides multi-way decision support.
The expressions in 1f- (else if)-else statements are successively evaluated and, if any of
the expressions is TRUE, the statements in that block are executed and the control exits from
the conditional block. The code below demonstrates the working of multi-way branching using the
if-(else if)-else statement:

always @ (op_code)
begin
if (op_code == 2’b00)
cntr_sgn =4’b1011;
else if (op_code == 2’b01;
cntr_sgn = 4’b1110;
else
cntr_sgn = 4’b0000;
end

The code successively evaluates the op_code in the order specifiedin 1f,else if and else
statements and, depending on the value of op_ code, it appropriately assigns value to cntr_sgn.

2.6.4.10 RTL Coding Guideline: Avoid Latches in the Design

A designer must avoid any RTL syntax that infers latches in the synthesized netlist. A latch is a
storage device that stores a value without the use of a clock. Latches are usually technology-specific
and must be avoided in synchronous designs. To avoid latches the programmer must adhere to
coding guidelines.

For decision statements, the programmer should either fully specify assignments or must use a
default assignment. A variable in an if statement in a procedural block for combinational logic
infers a latch if it is not assigned a value under all conditions. This is depicted in the following code:

input [1:0] sel;
reg [1:0] out_a, out_b;
always @ (*)
begin
if (sel == 2’b00)
begin
out_a =2"b01;

Using a Hardware Description Language 47

out_b =2’b10;
end
else
out_a =2’b01;
end

As out_Db is not assigned any value under e 1 se, the synthesis tool will infer a latch for storing
the previous value of out_Db in cases where an e1se condition is TRUE. To avoid this latch the
programmer should either assign some value to out_b in the e 1 se block, or assign default values
to all variables outside a conditional block. This is shown in the following code:

input [1:0] sel;
reg [1:0] out_a, out_b;

always @ (*)
begin
out_a = 2’b00;
out_b =2"b00;
if (sel=2’b00)
begin
out_a =2"b01;
out_b =2’b10;
end
else
out_a =2’b01;
end

The syntheses tool will also infer a latch when conditional code in the combinational block misses
any one or more conditions. This scenario is depicted in the following code:.

input [1:0] sel;
reg [1:0] out_a, out_b;

always @*
begin
out_a = 2’b00;
out_b = 2’b00;
if (sel==2’b00)
begin
out_a = 2"b01;
out_b =2’b10;
end
else if (sel == 2’b01)
out_a = 2’b01;
end

This code misses some possible values of sel and checks for only two listed values, 2’b01 and
2°b00. The synthesis tool will infer a latch for out_a and out_b to retain previous values in case
any one of the conditions not covered occurs. This stype of coding must be avoided. Inanif, else
if, else block, the block must come with an el se statement; and in scenarios where the case
statement is used, either all conditions must be specified, and for each condition values should be

48 Digital Design of Signal Processing Systems

assigned to all variables, or a default condition must be used and all variables must be assigned
default values outside the conditional block. The correct way of coding is depicted here:

always @*
begin
out_a = 2"b00;
out_b =2’b00;
if (sel==2’b00)
begin
out_a =2’b01;
out_b =2"b10;
end
else if (sel == 2’b01)
out_a =2"b01;
else
out_a =2’b00;
end

Here is the code showing the correct use of case statements:

always @*
begin

out_a = 2"b00;

out_b =2’b00;

case (sel)

2’b00:

begin
out_a =2'b01;
out_b =2’b10;

end
2’b01:
out_a =2"b01;
default:
out_a = 2’b00;
endcase

end

2.6.4.11 Loop Statements

Loop statements are used to execute a block of statements multiple times. Four types of loop
statement are supported in Verilog: forever, repeat, while and for. The statement
forever continuously executes its block of statements. The remaining three statements are
commonly used to execute a block of statements a fixed number of times. Their equivalence is shown
below. For repeat:

i=0;

repeat (5)

begin
Sdisplay ("i=%d\n", 1) ;
i=i+1;

end

Using a Hardware Description Language 49

For while:
i=0;
while (1<5)
begin
Sdisplay ("i=%d\n", i) ;
i=i+1;
end
For for:

for (1i=0; i<5; i=i+1)
begin

Sdisplay ("i=%d\n", 1) ;
end

2.6.4.12 Ports and Data Types

In Verilog, input ports of a module are always of type wire. An output, if assigned in a procedural
block, is declared as reg, and in cases where the assignment to the output is made using a continuous
assignment statement, then the outputis definedasawire. The inout isalwaysdefinedasawire.
The data types are shown in Figure 2.15.

The input to a module is usually the output of another module, so the figure shows that the output
of module, is the input to module,. The port declaration rules can be easily followed using the arrow
analogy, whereby the head of the arrow drawn across the module must be defined as wire and the
tail declared as reg or wire depending on whether the assignment is made inside a procedural
block or in a continuous assignment.

2.6.4.13 Simulation Control

Verilog provides several system tasks that do not infer any hardware and are used for simulation
control. All system tasks start with the sign $. Some of the most frequently used tasks and the actions
they perform are listed here.

module; module, module,

register/wire | wire register/wire, wire

input output

wireT
wirel

inout

Figure 2.15 Port listing rules in Verilog. Head is always a wire. Tail may be a wire or reg based on
whether it is, respectively, an assignment statement or a statement in a procedure block

50 Digital Design of Signal Processing Systems

o $finish makes the simulator exit simulation.

* $stop suspends the simulation and the simulator enters an interactive mode, but the simulation
can be resume from the point of suspension.

e $display prints an output using a format similar to C and creates a new line for further printing.

e $monitor is similar to $display but it is active all the time. Only one monitor task can be
active at any time in the entire simulation. This task prints at the end of the current simulation time
the entire list when one of the listed values changes.

The following example gives the format of $moni tor and $di splay which closely resemble the
printf () function in C:

$monitor ($time, “A=%d, B=%d, CIN=%b, SUM=%d, COUT=%d”, A, B, CIN, SUM, COUT) ;
$display ($time, “A=%d, B=%d, CIN=%b, SUM=%d, COUT=%d”, A, B, CIN, SUM, COUT) ;

$time in these statements prints the simulation time at the time of execution of the statement.
These statements display the values of A, B, CIN and COUT in decimal, binary, decimal and decimal
number representations, respectively. The directives $d, $o, $h and $b are used to print values in
decimal, octal, hexadecimal and binary formats, respectively.

$fmonitorand $£display write valuesin afile. The file first needs to be open using $fopen.
The code below shows the use of these tasks for printing values in a file:

modulator_vl = $fopen ("modulator.dat") ;
if (modulator_vl == 0) S$finish;
Sfmonitor (modulator_vl, "data=%h bits=%h", data_values, decision_bits);

2.6.4.14 Loading Memory Data from a File

System tasks $readmemb and $readmemh are used to load data from a text file written in binary or
hexadecimal, respectively, into specified memory. The example here illustrates the use of these
tasks. First memory needs to be defined as:

reg [7:0] mem[0:63];
The following statement loads data in a memory.dat file into mem:

Sreadmemb (“memory.dat”, mem) ;

2.6.4.15 Macros

Verilog supports several compiler directives. These directives are similar to C programming pre-
compiler directives. Like #define in C, Verilog provides ‘define to assign a constant value to a tag:

‘define DIFFERENCE 6’0011001

The tag can then be used instead of a constant in the code. This gives better readability to the code.
The use of the ‘define tag is shown here:

if (ctrl == ‘DIFFERENCE)

Using a Hardware Description Language 51

2.6.4.16 Preprocessing Commands

These are conditional pre-compiler directives used to selectively execute a piece of code:

‘ifdef G723
Sdisplay (“G723 execution”) ;

‘else

Sdisplay (“other codec execution”) ;
‘endif

The ‘include directive works like #include in C and copies the contents in the file at the
location of the statement. The statement

‘include “filename.v”

copies the contents of filename.v at the location of the statement.

2.6.4.17 Comments

Verilog supports C-type comments. Their use is shown below:

reg a; // One-line comment

Verilog also supports block comments (as in C):

/* Multi-line comment that
reg acc;
results in the reg acc declaration being commented out */

Example 2.9

This example implements a simple single-tap infinite impulse response (IIR) filter in RTL
Verilog and writes its stimulus to demonstrate coding of a design with feedback registers. The
design implements the following equation:

y[n] = 0.5y[n—1] + x[n]

The multiplication by 0.5 is implemented by an arithmetic shift right by 1 operation. A register
y_reg realizes y[n — 1] in the feedback path of the design, thus needing reset logic. The reset
logic is implemented as an active-low asynchronous reset. The module has 16-bit data x, clock
clk,reset rst_n as inputs and the value of y as output. The module I IR has two procedural
blocks. One block models combinational logic and the other sequential. The block that models
combinational logic consists of an adder and hard-wired shifter. The adder adds the inputdata x in
shifted value of y_ reg. The output of the combinational cloud is assigned to y. The sequential
block latches the value of yin y_ reg. The RTL Verilog code for the module I TR is given below:

module iir (

input signed [15:0] x,
input clk, rst_n,

output reg signed [31:0] y) ;

52 Digital Design of Signal Processing Systems

reg signed [31:0] y_reg;
always @ (*) \\ combinational logic block
y =(y_reg>>>1) + x;
always @ (posedge clk or negedge rst_n) \\ sequential logic block
begin
if (!rst_n)
y_reg <=0;
else
y_reg <=y;
end
endmodule

The stimulus generates a clock and a reset signal. This reset is applied to the feedback register
before the first positive edge of the clock. Initialization on clock and generation of reset is
done in an initial block. Another initial block is used to give a set of input values to
the module. These values are generated in a loop. The monitor statement prints the input and
output with simulation time on the screen. The $stop halts the simulation after 60 time units
and $finish ends the simulation. It is important to note that a simulation with clock input
must be terminated using $fin i sh, otherwise it never ends. The code for the stimulus is listed
below:

module stimulus_irr;

reg [15:0] X;

reg CLK, RST_N;

wire [31:0] Y;

integer i;

iir IRRO (X, CLK, RST_N, Y); \\ instantiation of the module

initial
begin
CLK=0;
#5 RST_N = 0; \\ resetting register before first posedge clk
#2 RST_N = 1;
end
initial
begin
X=0;
for (i=0; i<10; i=i+1) \\ generating input values every clk cycle
#20X=X+1;
Sfinish;
end
always \\ clk generation
#10 CLK = CLK;
initial
Smonitor ($time, " X=%d, sum=%d, Y=%d", X, IRRO.y, Y);
initial
begin
#60 $Sstop;
end
endmodule

Using a Hardware Description Language 53

10 time | 10 time

units units
cke—e———s

rst_n
X I

D6 S S S

Figure 2.16 Timing diagram for the IIR filter design of example 2.9

2.6.4.18 Timing Diagram

In many instances before writing Verilog code and stimuli, it is quite useful to sketch a timing
diagram. This is usually a great help in understanding the interrelationships of different logic blocks
in the design. Figure 2.16 illustrates the timing diagram for the IIR filter design of the pervious
subsection.

A clock is generated with time period of 20 units. The active-low reset is pulled low after 5 time
units and then pulled high after 2 time units. As soon as the reset is pulled low, the y_ reg is cleared
and set to 0. The first posedge of the clock after 10 time units latches the output of the
combinational logic y into y_ reg. The timing diagram should be drawn first and then accordingly
coded in stimulus and checked in simulation for validity of results.

All Verilog simulators also provide waveform viewers that can show the timing diagram of
selected variables in the simulation run. Figure 2.17 shows the screen output of the waveform viewer
of ModelSim simulator for the IIR filter example above.

2.6.4.19 Parameters

Parameters are constants that are local to a module. A parameter is assigned a default value in the
module and for every instance of this module it can be assigned a different value.

x 0 1 2 3 Z 5 6 77

ok | | | | | [
rst.n —]

y =0 @ DD (D CED D (D (D CHlD (VID (VI (VD (K
y_reg =0 X1 2 Xa Y6 Y8 Yo X X12

Figure 2.17 Timing diagram from the ModelSim simulator

54 Digital Design of Signal Processing Systems

Parameters are very handy in enhancing the reusability of the developed modules. A module is
called parametered if it is written in a way that the same module can be instantiated for different
widths of input and output ports. It is always desirable to write parameterized code, though in many
instances it may unnecessarily complicate the coding.

The following example illustrates the usefulness of a parameterized module:

module adder (a, b, ¢c_in, sum, c_out);
parameter SIZE = 4;

input [SIZE-1: 0] a, b;

output [SIZE-1: 0] sum;

input c_in;

output c_out;

assign {c_out, sum} =a+b+ c_in;

endmodule
The same module declaration using ANSI-style port listing is given here:

module adder

(parameter SIZE = 4)
(input [SIZE-1: 0] a, b,
output [SIZE-1: 0] sum,
input c_in,
output c_out) ;

This module now can be instantiated for different values of ST ZE by merely specifying the value
while instantiating the module. Shown below is a section of the code related to the instantiation of the
module for adding 8-bit inputs, inl and in2:

module stimulus;
reg [7:0] inl, in2;
wire [7:0] sum_byte;
reg c_in;

wire c_out;

adder #8 add_byte (inl, in2, c_in, sum_byte, c_out);

endmodule

In Verilog, the parameter value can also be specified by name, as shown here:

adder #(.SIZE(8)) add_byte (inl, in2, c_in, sum_byte, c_out);

Multiple parameters can also be defined in a similar fashion. For example, for the module that adds
two unequal width numbers, the parameterized code is written as:

module adder

(parameter SIZE1 = 4, SIZE2=6)
(input [SIZE1-1: 0] a,
input [SIZE2-1: 0] b,
output [SIZE2-1: 0] sum,

Using a Hardware Description Language 55

input c_in,
output c_out) ;

The parameter values can then be specified using one of the following two options:

adder # (.SIZE1(8), .SIZE2(10)) add_byte
(inl, in2, c_in, sum_byte, c_out);

or, keeping the parameters in the same order as defined:

adder #(8,10) add_byte (inl, in2, c_in, sum_byte, c_out) ;

2.6.5 Verilog Tasks

Verilog task can be used to code functionality that is repeated multiple times in a module. A task
has input, output and inout and can have its local variables. All the variables defined in the
module are also accessible in the task. The task must be defined in the same module using task and
endtask keywords.

Touse a taskinother modules, the task should be written in a separate file and the file then should
be included using an ‘include directive in these modules. The tasks are called from initial or
always blocks or from other tasks in a module. The task can contain any behavioral statements
including timing control statements. Like module instantiation, the order of input, output and
inout declarations in a task determines the order in which they must be mentioned for calling. As
tasks are called in a procedural block, the output must be of type reg, whereas the inputs may be of
type regorwire. Verilog-2001 adds a keyword automa t i c to the task to define a re-entrant task.

The following example designs a task FA and calls it in a loop four times to generate a 4-bit ripple
carry adder:

module RCA (
input [3:0] a, b,
input c_in,
output reg c_out,
output reg [3:0] sum
);
reg carry[4:0];
integer i;

task FA (
input inl, in2, carry_in,
output reg out, carry_out);
{carry_out, out} = inl + in2 + carry_in;
endtask

always@*
begin
carry[0]=c_in;
for (i=0; i<4; i=1i+1)

begin

FA(alil, bli]l, carryl[i]l, sum[i], carry[i+1l]);
end
c_out =carryl[4];

end
endmodule

56 Digital Design of Signal Processing Systems

2.6.6 Verilog Functions

Verilog function is in many respects like task as it also implements code that can be called
several times inside a module. A function is defined in the module using function and
endfunction keywords. The function can compute only one output. To compute this output,
the function must have at least one input. The output must be assigned to an implicit variable bearing
the name and range of the function. The range of the output is also specified with the function
declaration. A function in Verilog cannot use timing constructs like # or @. A function can be called
from a procedural block or continuous assignment statement. It may also be called from other
functions and tasks, whereas a function cannot call a task. A re-entrant function can be designed by
adding the automatic keyword.

A simple example here writes a function to implement a 2 : 1 multiplexer and then uses it three
times to design a 4 : 1 multiplexer:

module MUX4tol (
input [3:0] in,
input [1:0] sel,
output out) ;
wire outl, out2;
function MUX2tol;
input inl, in2;
input select;
assign MUX2tol = select ? in2:inl;
endfunction
assign outl = MUX2tol (in[0], in[1], sel[0])
assign out2 = MUX2tol (in[2], in[3], sel[0])
assign out = MUX2tol (outl, out2, sel[1l]);
endmodule
/* stimulus for testing the module MUX4tol */
module testFunction;
reg [3:0] IN;
reg [1:0] SEL;
wire OUT;
MUX4tol mux (IN, SEL, OUT) ;
initial
begin
IN=1;
SEL =0;
#5 IN=17;
SEL =0;
#5 IN = 2; SEL=1;
#5IN=4; SEL=2;
#5 IN = 8; SEL = 3;
end
initial
Smonitor ($time, " %b %b $b\n", IN, SEL, OUT) ;
endmodule

’
’

2.6.7 Signed Arithmetic

Verilog supports signed reg and wire, thus enabling the programmer to implement signed
arithmetic using simple arithmetic operators. In addition to this, function can also return a signed

Using a Hardware Description Language 57

value, and inputs and outputs can be defined as signed reg or wire. The following lines define
signed reg and wire with keyword signed:

reg signed [63:0] data;

wire signed [7:0] vector;
input signed [31:0] a;
function signed [128:0] alu;

Verilog also supports type-casting using system functions $signed and $unsigned as shown
here:

reg [63:0] data; // Unsigned data type
always @ (a)
begin
out = ($signed(data))>>>2;// Type-cast to perform signed arithmetic
end

where >>> is used for the arithmetic shift right operation.

2.7 Verification in Hardware Design
2.7.1 Introduction to Verification

Verilog is especially designed for hardware modeling and lacks features that facilitate verification of
complex digital designs. In these circumstances, designers resort to using other tools like Vera ore
for verification [12]. To resolve this limited scope for verification in Verilog and to add more
advanced features for HW design, the EDA vendors constituted a consortium. In 2005, the IEEE
standardized Verilog and System Verilog languages [6, 8]. Many advanced features have been added
in SystemVerilog. These relate to enhanced constructs for design and test-bench generation,
assertion and direct programming interfaces (DPIs).

The EDA industry is trying to respond to increasing demands to elegantly handle chip design
migration from the IC scale to the multi-core SoC scale. Verification is the greatest challenge, and for
complex designs it is critical to plan for it right from the start. A verification plan (Vplan) should be
developed by studying the function specification document.

As SoC involves several standard interfaces, it is possible that verification test-benches already
exist for many components of the design in the form of verification intellectual property (VIP). Good
examples are the test-benches developed for ARM, AMBA and PCI buses. Such VIPs usually consist
of a test-bench, a set of assertions, and coverage matrices. An aggregated coverage matrix should
always be computed to ensure maximum coverage. Guidelines have been published by Accellera
that ensure interoperability and reuse of test-benches across design domains [13].

Simulators are very common in verifying an RTL design, but they are very slow in testing a design
with many million gates. In many design instances, after the design is verified for a subset of test
cases that includes the corner cases, more elaborate verification is performed using FPGA-based
accelerators [14]. Finally, the verification engineers also plan verification of the first batches of ICs.

Many languages and tools have evolved for effective verification. Verilog, SystemVerilog, e and
SystemC are some of the most used for test-bench implementation; usually a mix of these tools is
used. Open verification methodology (OVM) enables these tools to coexist in an integrated
verification environment [15]. The OVM & Verification Methodology Manual (VMM) has class
libraries that verification engineers can use to enhance productivity [16].

58 Digital Design of Signal Processing Systems

Mixed-signal ICs add another level of complexity to verification. The design requires
an integrated testing methodology to verify a mixed-signal design. Many vendors support
mixed-signal verification in their offered solutions. The analog design is modeled in Verilog-
AMS.

It is important to note that verification should be performed in a way that the code developed
for verification is reusable and becomes a VIP. System Verilog is mostly the language of choice for
developing VIPs, and vendors are adding complete functionality of the IEEE standard of System
Verilog for verification in development tools. SystemVerilog supports constraint value generation
that can be configured dynamically. It can generate constraint random stimulus sequences. It can also
randomly select the control paths out of many possibilities. It also provides functional converge
modeling: the model dynamically reactivates constrained random stimulus generation. System-
Verilog also supports coverage monitoring.

2.7.2 Approaches to Testing a Digital Design
2.7.2.1 Black-box Testing

This is testing against specifications when the internal structure of the system is unknown. A set of
inputs is applied and the outputs are checked against the specification or expected output, without
considering the inner details of the system (Figure 2.18). The design to be tested is usually called the
‘device under test’ (DUT).

2.7.2.2 White-box Testing

This tests against specifications while making use of the known internal structure of the system. It
enables the developer to locate a bug for quick fixing. Usually this type of testing is done by the
developer of the module.

stimulus stimulus >

Test Cases DUT Test Cases r r
generation - generation c.

r r
expected {—+—— lu l —-L - actual
internal internal

state state

expected . . actual
Output Comparisons Output expected : Comparisons : actual
Output . . Output
l diff l diff
Log the Log the
values in values in
case of case of
mismatch mismatch
@ (b)

Figure 2.18 Digital system design testing using (a) the black-box technique and (b) the white-box
technique

Using a Hardware Description Language 59

2.7.3 Levels of Testing in the Development Cycle

A digital design goes through several levels of testing during development. Each level is critical as an
early bug going undetected is very costly and may lead to changes in other parts of the system. The
testing phase can be broken down into four parts, described briefly below.

2.7.3.1 Module- and Component-level Testing

A component is a combination of modules. White-box testing techniques are employed. The testing
is usually done by the developer of the modules, who has a clear understanding of the functionality
and can use knowledge of the internal structure of the module to ease bug fixing.

2.7.3.2 Integration Testing

In integration testing, modules implemented as components are put together and their interaction is
verified using test cases. Both black-box and white-box testing are used.

2.7.3.3 System-level Testing

This is conducted after integrating all the components of the system, to check whether the system
conforms to specifications. Black-box testing is used and is performed by a test engineer. The testing
must be done in an unbiased manner without any preconceptions or design bias. As the codings of
different developers are usually integrated at the system level, an unbiased tester is important to
identify faults and bugs and then assign responsibilities.

The first step is functional verification. When that is completed, the system should undergo
performance testing in which the throughput of the system is evaluated. For example, an AES
(advanced encryption standard) processor, after functional verification, should be tested to check
whether it gives the required performance of encrypting data with a defined throughput.

After the system has been tested for specified functionality and performance, next comes stress
testing. This stretches the system beyond the requirements imposed earlier on the design. For
example, an AES processor designed to process a 2 Mbps link may be able to process 4 Mbps.

2.7.3.4 Regression Testing

Regression testing is performed after any change to the design is made as a consequence of bug fixing
or any modification in the design. Regression tests are a sub-set of test vectors that the designer needs
to run after any bug fixing or significant modification in an already tested design. Both black-box and
white-box methodologies are used. Fixing a bug may resolve the problem under consideration but
can disturb other parts of the system, so regression testing is important.

2.7.4 Methods for Generating Test Cases

There are several methods for generating test cases. The particular choice depends on the size of the
design and the level at which the design is to be tested.

2.7.4.1 Exhaustive Test-vector Generation

For a small design or for module-level testing, the designer may want to exhaustively generate all
possible scenarios. However, the time taken by testing increases exponentially with the size of the

60 Digital Design of Signal Processing Systems

inputs. For example, testing a simple 16 x 16-bit multiplier requires 216 % 2'6 test vectors. The
simulators can spend hours or even days in exhaustive testing of designs of even moderate size. The
designer therefore needs to test intelligently, choosing sample points and focusing especially on
corner cases. For mathematical computations, the overflow and saturation logic cases are corner
cases. Similarly for other designs, the inputs that test the maximum strength of the system should be
applied.

2.7.4.2 Random Testing

For large designs, the designer may resort to random testing. The values of inputs are randomly
generated out of a large pool of possible values. In many instances this random testing should be
biased to cover stress points and corner cases, while avoiding redundancy and invalid inputs.

2.7.4.3 Constraint-based Testing

Constraint-based testing works with random testing, whereby the randomness is constrained to work
in a defined range. In many instances, constraint testing makes use of symbolic execution of the
model to generate an input sequence.

2.7.4.4 Tests to Locate a Fault

In many design instances, the first set of input sequences and test strategies are used only to identify
faults. Based on the occurrence and type of faults, automatic test patterns are generated that localize
the fault for easy debugging.

2.7.4.5 Model Checkers

The designer can make use of models for checking designs that implement standard protocols (e.g.
interfaces). Appropriate checkers are placed in the design. The input is fed to the model as well as to
the design. When there is non-conformity the checkers fire to identify the location of the bug.

2.7.5 Transaction-level Modeling

Many levels of modeling are used in hardware design. RTL and functional-level modeling have
already been mentioned. For functional-level modeling, algorithms are implemented in tools like
MATLAB®, and in many design instances a design that is functionally verified is directly converted
into RTL. However, designs are becoming more and more complex. This is especially the case for
SoC and MPSoC, where more and more components are being added on a single piece of silicon. The
interworking of the processors or other components on the chip is also becoming ever more critical.
This interworking at register transfer level is very complex as it deals with bus protocols or NoC
protocols. While analyzing the interworking of these components, usually this level of detail is not
required and interworking can only be studied by observing the physical links to make complex
packet or data transactions.

Transaction-level modeling (TLM) deals with designs that have multiple components. These
components communicate with each other on some medium. At TLM, the detailed RTL
functionality of the components and RTL protocol are not important. TLM separately deals with

Using a Hardware Description Language 61

communications as transactions and the behavior of each component at the functional level.
Transaction-level modeling is easy to develop and fast to simulate, so enabling the designer to
verify the functionality of the design at transaction level early in the development life cycle. RTL
models, though, are developed in parallel but are very slow to simulate for verification and analysis
of the design. For a complex SoC design the architects need to develop these three models: the
functional model in the early stages, while the transaction-level and RTL are developed in parallel.
Building three models of a system requires them to be consistent at different stages of the design
cycle.

2.8 Example of a Verification Setup

A complete setup for testing a signal-processing based design in hardware is shown in Figure 2.19. A
C+-+ environment generates constrained random test vectors to be input to the algorithm running in
C++ and also to the translated design that is implemented in TLM. A transactor block converts the
test vector into transactions, and these are input to the transaction-level model. The output of the
model is also in terms of transactions. A transactor converts the transactions into results that can be
compared with the output of the simulation result. A checker compares the two results to find
functional equivalence. The input to the simulator is also fed to a coverage block. This block checks
the level of coverage and can direct the dynamic constrained random generator to generate the input
sample to maximize the coverage.

When the transaction model of Figure 2.19(a) is verified, the same setup can be used to test the
RTL design as in Figure 2.19(b). A driver block is added that converts a transaction into an RTL
detailed signal to be input to the device under test (DUT). The output of the RTL implementation of
the DUT is also converted back to transactions. A monitor checks the cycle-by-cycle behavior of the
DUT using assertions.

2.9 SystemVerilog

Asdesigns become more complex in functionality, test-vector generation for appropriate coverage is
also becoming critical. Verification engineers have been using tools specific to verification, such as
Vera and e. Nevertheless there has been a need to have a unified language that supports both design
and verification of complex designs. SystemVerilog (SV) is such an initiative that offers a unified
language that is very powerful to model complex systems and provides advanced level constructs.
These constructs facilitate concise writing of test-benches and the analysis of coverage. Most of the
EDA tool vendors are continuously adding support for SV. The added features make SV a very
powerful language for hardware modeling and verification.

2.9.1 Data Types

System Verilog supports additional data types 1ogic, int,bit, byte, longint and short-
int. The data type reg of Verilog is ambiguous because reg also means a physical register but
once inferred may result in a physical wire or a register. A 1ogic type is similar to a reg where
all the bits in the variable of this type can take any one of four values: 0, 1, x and z. In the other
data types each bit can be 0 or 1. The variables of these types are automatically initialized to O at
time zero. Table 2.13 shows all the additional data types in SystemVerilog and their related
information.

C++ test vector

Coverage

generator

C++ Implementation

C++ test vector

C++ Implementation

A 4

Transactor

Checker

< Transactor

@)

generator
|
v
Transactor—s;| Checker <«—{Transactory
h A
Coverage
Driver Monitor

=

(b)

TRANSLATOR

Figure2.19 Test setups for verification of a complex design that is implemented in C ++ , TLM and RTL. (a) Setup with TLM. (b) Same verification setup
with TLM replaced by RTL DUT, a driver and a monitor block

9

suraIsAS Surssaooiq [eusSts jo uSrsa(q [eusiq

Using a Hardware Description Language 63

Table 2.13 Additional datatypes in System Verilog

Data type Description States Example

logic User-defined Four states 0,1, x,z logic [15:0] a,b;
int 32-bit signed Two states 0,1 int num;

bit User-defined Two states 0,1 bit [5:0] in;
byte 8-bit signed Two states 0,1 byte t;

longint 64-bit signed Two states 0,1 longint p;
shortint 16-bit signed Two states 0,1 shortint q;

There are two ways to define an array in SV: packed and unpacked. SystemVerilog can operate on
an entire two-dimensional (2-D) array of packed data, whereas the unpacked arrays can be operated
only on an indexed value. The unpacked 1-D and 2-D arrays are declared as:

bit up_data [15:01];
bit [31:0] up_mem [0:511];

For packed cases the same arrays are declared as:

bit [15:0] p_data;
bit [31:0][0:511] p_meml, p_mem2;

There are some constraints while operating on packed and unpacked arrays. The unpacked arrays
can be sliced as:

slice_data =up_mem[2][31:15];
// most significant byte at mem location 2

An operator can be applied on an entire packed array of data. An example is:

add_mem = p_meml + p_mem2;
Dynamic arrays can also be declared as:
bit [15:0] arrayl[];

array =new([1023];

2.9.2 Module Instantiation and Port Listing

If the same names of ports are used in the instantiated module, the port names can be directly
mentioned using . <name> or can be simply skipped while only ports having different names are
mentioned. Consider a module defined as:

module FA (inl, in2, sum, clk, rest_n);

Assuming the instance has the first three ports with the same name, the instance can be written as:

FA ff (.inl, .sum, .in2, .clk(clk_global), .rest_n (rst_n));

64 Digital Design of Signal Processing Systems

or more concisely as:

FAff (.*, .clk(clk_global), .rest_n (rst_n));

2.9.3 Constructs of the C/C ++ Type

SV supports many C/C ++ constructs for effective modeling.

2.9.3.1 typedef, struct and enum

The constructs typedef, struct and enumof C/C ++ add descriptive power to SV. Their use is
the same as in C. Examples of their use are:

typedef bit [15:0] addr;
typedef struct {
addr src;
addr dst;
bit [31:0] data;
}packet_tcp;
module packet (input packet_tcp packet_in,
input clk,
output packet_tcp packet_out);
always_ff @ (posedge clk)
begin
packet_out.dst <= packet_in.src;
packet_out.src~ packet_in.data;
end
endmodule

The enum construct can be used to define states of an FSM. It can be used in place of the Verilog
parameter or define. The first constant gets a value of 0. When a value is assigned to some
constant, the following constants in the list are sequentially incremented. For example:

typedef enum logic [2:0]
{idle =0,

read = 3,

dec, // =4

exe // =5} states;
states pipes;

The enum can also be directly defined as:
enum {idle, read=3, dec, exe} pipes;
case (pipes)

idle: pc = pc;
read: pc = pc+t+l;

endcase

Using a Hardware Description Language 65

2.9.3.2 Operators

The advanced features in SV enable it to model complex HW features in very few lines of code. For
this, SV supports C-language like constructs such as:

operand; OP = operand,

where OP couldbe +, —,%,/, %, >>, <<, >>>, <<<, &, | or ~. For example, x =x + 3 can be
written as:

x +=3;

SystemVerilog also supports post- and pre- increment and decrement operations + + x, ——x,
x4+ + and x——.

294 for and do-while Loops

SystemVerilog adds C/C ++ type for and do-while loops. An example of the for loop is:
for (i=0, j=0, k=0; i+j+k<10; i++, j++, k++)
An example of the do-while loop is:

do

begin

if (sel_1 ==0)
continue;

if (sel_2==3) break;

end

while (sel_2==0);

In this code, if se1_1 is zero, continue makes the program jump to the start of the loop at do.
When sel_2 is 3, break makes the program exit the do-while loop, otherwise the loop is
executed until the time sel_2 is zero.

2.9.5 The always Procedural Block

SV helps in solving the issue of the sensitivity list. There are several variants of the always block
that give distinct functionality for inferring combinational or sequential logic. For a combinational
block, SV provides always_comb. Similarly always_latch infers a latch. and always_ff
realizes synchronous logic:

module adder (input signed [3:0] inl, in2,
input clk, rst_n,
output logic signed [15:0] acc) ;
logic signed [15:0] sum;

// Combinational block
always_comb
begin: adder
sum = inl + in2 + acc;
end: adder

66 Digital Design of Signal Processing Systems

// Sequential block
always_ff @ (posedge clk or negedge rst_n)
if (!rst_n)
acc <=0;
else
acc <= sum;
endmodule

2.9.6 The final Procedural Block

The final procedural block is like the initial block in that it too executes only once, but at the
end of the simulation. It is good for displaying a summary of results:

final
begin

Sdisplay ($time, “simulation time, the simulation ends\n”) ;
end

2.9.7 The unique and priority Case Statements

In Verilog, while synthesizing the code, the user may need to specify the type of logic intended to infer
from a case statement. The synthesis directives full-case and full-case parallel-case
are used to indicate, respectively, whether the user intends the logic to consider the first match it finds
in a case statement if there is a possibility of finding more than one match, or that the user guarantees
that all cases are handled in the coding and each case will only uniquely match with one of the
selections. This behavior is very specific to synthesis and has no implication on simulation.
SV provides equivalent directives, which are unique and priori ty, to guarantees the simulation
behavior matches with the intended synthesis results. The examples below explain the two directives:

always @*
unique case (sel) //Equivalent to full-case parallel-case synthesis directive
2’pb00: out = in0;
2’b01: out = inl;
2’p10: out = in2;
2'bll: out = in3;
default: out = x;
endcase

The priority caseisusedininstances where the programmer intends to prioritize the selection
and more than one possible match is possible:

always @*
priority case (1’bl) //equivalent to full-case synthesis directive

irgl: out = in0;
irg3: out = inl;
irg2: out = in2;

Using a Hardware Description Language 67

irg4: out = in3;
default: out = ‘x;
endcase

2.9.8 Nested Modules

SV supports nested modules, so that a module can be declared inside another module. For
example:

module top_level;
module accumulator (input clk, rst_n, input [7:0] data, output bit [15:0] acc) ;

always_ff @ (posedge clk)

begin
if (!rst_n)
acc <=0;
else
acc <= acc + data;
end
endmodule

logic clk=0;

always #1 clk = ~clk;
logic rst_n;

logic [7:0] data;
logic [15:0] acc_reg;

accumulator acc_inst (clk, rst_n, data, acc_req);
initial
begin
rst_n=0;
#10 rst_n=1;
data=2;
#200 $finish;
end

initial
Smonitor ($time, "%d, $d\n", data, acc_reqg) ;
endmodule

2.9.9 Functions and Tasks

SV enhances Verilog functions and tasks with more features and flexibility. No begin and end is
required to place multiple statements in functions and tasks. Unlike with a function in Verilog that
always returns one value, SV functions can return a void. Use of the return statement is also
added, whereby a function or a task returns a value before reaching the end. In SV, the input and
output can also be passed by name; and, in a similar manner to module port listing, default arguments
are also allowed.

68 Digital Design of Signal Processing Systems

The following example shows a function that returns a void:

function void expression (input integer a, b, c, output integer d) ;
d=a+tb-c;
endfunction: expression

Below is another example that illustrates a function returning before it ends:

function integer divide (input integer a, b);
if (b)
divide = a/b;
else
begin
Sdisplay(‘‘divide by 0\n’") ;
return ('hx) ;
end
// Rest of the function

endfunction: divide

2.9.10 The Interface

The interface is a major addition in SV. The interface encapsulates connectivity and replaces a group
of ports and their interworking with a single identity that can be used in module definition. The
interface can contain parameters, constants, variables, functions and tasks. The interface provides a
higher level of abstraction to users for modeling and test-bench generation.

Consider two modules that are connected through an interface, as shown in Figure 2.20. The roles
of the ports input and output change from one interconnection to the other. The modport
configures the direction on ports in an interface to be an input or output.

interface local_bus (input logic clk) ;
bit rgst;

bit grant;

bit rw;

bit [4:0] addr;

wire [7:0] data;

modport tx (input grant,
output rgst, addr, rw,
inout data,
input clk) ;

modport rx (output grant,
input rgst, addr, rw,
inout data,
input clk) ;

endinterface
module src (input bit clk,

local_bus.tx busTx) ;
integer i;

Using a Hardware Description Language

69

logic [7:0] value =0;
assign busTx.data = value;
initial
begin
busTx.rw=1;
for (1=0; i<32; i++)
begin
#2 busTx.addr = i;
value +=1;
end
busTx.rw = 0;
end
// Rest of the module details here

module dst (input bit clk,
local_bus.rx busRx) ;

logic [7:0] local_mem [0:31];
always @ (posedge clk)

if (busRx.rw)
local_mem[busRx.addr] = busRx.data;
endmodule

// In the top-level module these modules are instantiated with interface
declaration.
module local_bus_top;

logic clk =0;
local_bus bus (clk); // the interface declaration

always #1 clk = ~clk;

src SRC (clk, bus.tx);
dst DST (clk, bus.rx);

initial
Smonitor ($time, "\t%d %$d %d %$d\n", bus.rx.rw, bus.rx.addr,
bus.rx.data, DST.local_mem[bus.rx.addr]) ;

endmodule

TX RX

A
L_clk

Local Bus

Figure 2.20 Local bus interface between two modules

70 Digital Design of Signal Processing Systems

2.9.11 Classes

In SV, as in C+-+, a class consists of data and methods. The methods are functions and tasks that
operate on the data in the class. SV supports key aspects of object-oriented programming (OOP),
including inheritance, encapsulation and polymorphism.

A class is declared with internal or external declared functions that operate on the data defined in
the class. The example below defines a class with an internal and external declared method:

class frame{
byte dst_addr;
bit [3:0] set_frame_type;
data_struct payload;
function byte get_src_addr ()
return src_addr;
endfunction
extern task assign_dst_addr_type (input byte addr, input bit[3:0] type) ;

endclass

task frame: :assign_dst_addr (input byte addr, input bit [3:0] type) ;
dst_addr = addr;
frame_type = type;

endtask

The syntax only declares an object class of type £ rame. One or multiple instances of this class can
be created as follows:

frame first_frame = new;

A class constructor can also be used to initialize data as:
class frame

function new (input byte addr, input [3:0] type)
dst_addr = addr;
frame_type = type;

endfunction

endclass
// Set the dst and type of the frame
frame msg_frame = new (8’h00, MSG) ;

Another class can inherit data and methods of this class and adds new methods and can change the
existing methods.

class warning_frame extends frame;
bit [2:0] warning_type;

function MSG_TYPE send_warning () ;
return warning_type;

endfuction;

endclass

Using a Hardware Description Language 71

Using object-oriented programming (OOP), the classes defined in OVM and VMM can be
extended for effective verification. For example, vmm_data class has many member functions,
including set_log (), display (), copy () and compare () [15]. These methods can be
used and new methods can be added by extending this base class:

class burst_frame extends vmm_data;

SV restricts inheritance to single inheritance only. The derived class can override the methods of
the parent class. The derived class can also use members of the parent class with a keyword super:

class abs_energy;
integer amp;
function integer energy () ;
energy = amp*amp;
endfunction
endclass

A derived class can be declared that overrides the function energy:

class mod_energy extends abs_energy;
integer amp;
function integer energy () ;
energy = 0.5*super.energy () + amp * super.amp;
endfunction
endclass

SV also supports data hiding and encapsulation. To restrict the scope of a member to the parent
class only, the member is declared as local or protected. The local members are accessible only to
methods defined inside the class, and these members cannot be inherited by derived classes as they
are not visible to them. A protected method can be inherited by a derived class.

Virtual classes or methods in SV provide polymorphism. These classes are used to create a
template. Using this template, real classes are derived. The virtual methods defined in a virtual class
are overridden by the derived classes:

virtual class frame;

ip frame,

atm frame,

stm frame

virtual class frame;

virtual function integer send (bit [255:0] frame_data) ;
endfunction

endclass

The derived classes are:
class ethernet extends frame;

function integer send (bit [255:0] frame_data) ;
// The contents of the function

endfuntion
endclass

72 Digital Design of Signal Processing Systems

class atm extends frame;

frame gateway_frame [10];

Frames of various types can be declared and assigned to the array:

ethernet frame_e = new;
atm frame_a = new;

gateway_frame [0] = frame_e;
gateway_frame [1] = frame_a;

The statement

gateway_frame [1].send();

makes the compiler finds out which frame will be sent.

2.9.12 Direct Programming Interface (DPI)

SV can directly access a function written in C using a DPI. Similarly a function or task written in SV
can be exported to a C program. SV makes interworking of C and SV code very trivial and there is no
need to use PLI. The C functions in SV are then called using import directive, while functions and
tasks of SV to be used in a C function are accessible by using export DPI declaration. The illustration
here shows DPI use:

// top-level module that instantiates a module that calls a C function
module top_level () ;

moduleCall_C Call_C (rst, clk, inl, in2, outl, ...;

endmodule

The instantiated module Call_C of type moduleCall_C uses an import directive for
interfacing with a C program:

module moduleCall_C(rst, clk, inl, in2, outl,...);

import "DPI-C" context task fuctionC (....);

always@ (posedge clk)
functionC (rst,inl, in2, outl,....);

export "DPI-C" task CallVeril;
export "DPI-C" task CallVeri2;

task CallVeril (input int addrl, output int datal) ;

endtask

Using a Hardware Description Language 73

task CallVeri2 (input int addr2, output int data?2) ;

endtask
endmodule

The Cfunction functionCiscalled fromthe SV module, and this function further calls functl
() and funct?2 (). These two functions use tasks CallVeril and CallVeri?2 defined in SV:

// required header files
void fuctionC (int rst,)
{

rest = sty

functl(...);
funct2(...);

void functl (void)

{

Callveril (....):

void funct2 (void)

{

Callveri2 (....);

2.9.13 Assertion

Assertion is used to validate the behavior of a design. It is used in the verification module or in an
independent checker module. SV supports two types of assertion, immediate and concurrent. The
immediate assertion is like an 1 f-e1se statement. The expression in assert is checked for the
desired behavior. If this expression fails, SV provides that one of the three severity system tasks can
be called. These tasks are $warning, $error and $fatal. The user may also use $info where
no severity on assertion is required. Below is an example:

assert (value>=5b)
else Swarning (“Value above range”) ;

74 Digital Design of Signal Processing Systems

Concurrent assertion checks the validity of a property. There are several ways to build properties;
these may be compound expressions using logical operators or sequences:

assert property (request && !ready)

An example of a sequence is:
assert property (@posedge clk) reql-> ##[2:5] grant) ;

Here, the implication operator (I->) checks on every posedge of c1k the assertion of req, and
when it is asserted then the grant must be asserted in 2 to 5 following clock cycles.

2.9.14 Packages

SV has borrowed the concept of a package from VHDL. By using package, SV can share user-
defined type definitions across multiple modules, interfaces, other programs and packages. The
package can contain, for example, parameters, constants, type definitions, tasks, functions, import
statements from other packages and global variables. Below is an example:

package FSM_types
// global typedef
typedef enum FSM{INVALID, READ, DECODE, EXECUTE, WRITE} pipelines;
bit idle; // global variable initialize to 0
task invalid_cycle (input [2:0] curret_state) //global task
if (current_state == INVALID)
Sdisplay(“invalid state”) ;
$finish;
endtask: invalid_cycle
endpackege

2.9.15 Randomization

SV supports unconstrained and constrained random value generation. The function randomize
returns 1 if it successfully generates the constrained random value, otherwise it returns 0.

bit [15:0] valuel, value2;
bit valid;

initial
begin
for (i=0; i<1024; i++)
valid = randomize (valuel, value?2) ;
end
end

The randomization can also be constrained by adding a wi th clause. The example given above
can be constrained as:

valid = randomize (valuel, value2); with (valuel>32; valuel

Using a Hardware Description Language 75

2.9.16 Coverage

The coverage in SV gives a quantitative measure of the extent that the functioning of a DUT is
verified is the simulation environment. The statistics are gathered using coverage groups. With a
coverage group, the user lists variables as converpoints. The simulator collects statistics of the
values these variables take in simulation. The simulator stores the values of these variables in a
coverage database.

module stimulus;
logic [15:0] operandl, operand?2;

covergroup cg_operands @ (posedge clk)
ol: coverpoint = operandl;
02: coverpoint = operand2;
endgroup : cg_operands

cg_operands cover_ops =new() ;

endmodule

Each coverage point contains a set of bins. These bins further refine the values the variable takes
for each range.

covergroup cg_operands @ (posedge clk)

ol: coverpoint = operandl {
bins low = {0,63};
bins med = {64,127};
bins high= {128,255};
}

02: cove