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Digital Design of Signal Processing Systems discusses a spectrum of 
architectures and methods for effective implementation of algorithms in 
hardware (HW). Encompassing all facets of the subject this book includes 
conversion of algorithms from floating-point to fixed-point format, parallel 
architectures for basic computational blocks, Verilog Hardware Description 
Language (HDL), SystemVerilog and coding guidelines for synthesis.

The book also covers system level design of Multi Processor System on Chip 
(MPSoC); a consideration of different design methodologies including Network 
on Chip (NoC) and Kahn Process Network (KPN) based connectivity among 
processing elements. A special emphasis is placed on implementing streaming 
applications such as a digital communication system in HW. Several novel 
architectures for implementing commonly used algorithms in signal processing 
are also revealed. With a comprehensive coverage of topics the book provides 
an appropriate mix of examples to illustrate the design methodology.

Key Features:
�  A practical guide to designing efficient digital systems, covering the   
 complete spectrum of digital design from a digital signal processing   
 perspective.
�  Provides a full account of HW building blocks and their architectures, while  
 also illustrating the effective use of embedded computational resources such  
 as multipliers, adders and memories in FPGAs. 
�  Covers a system level architecture using NoC and KPN for streaming   
 applications, giving examples of structuring MATLAB® code and its easy  
 mapping in HW for these applications. 
�  Explains state machine based and Micro-Program architectures with   
 comprehensive case studies for mapping complex applications.
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Preface

Practising digital signal processing and digital system design for many years, and introducing and

then developing the contents of courses at undergraduate and graduate levels, tempted me towrite a

book that would cover the entire spectrum of digital design from the signal processing perspective.

The objective was to develop the contents such that a student, after taking the course, would be

productive in an industrial setting in different roles. He or she could be a good algorithm developer,

a digital designer and a verification engineer. An associated website (www.drshoabkhan.com) hosts

RTLVerilog code of the examples in the book. Readers can also download PDF files of Microsoft

PowerPoint presentations of lectures covering the material in the book. The lab exercises are

provided for teachers’ support.

The contents of this book show how to code algorithms in high-level languages in a way that

facilitates their subsequent mapping on hardware-specific platforms. The book covers issues in

implementing algorithms using fixed-point format. The ultimate conversion of algorithms devel-

oped in double-precision floating-point format to fixed-point is a critical design stage in system

implementation. The conversion not only requires simple translation but in many cases also

requires the designer to explore other structural options for mitigating quantization effects of fixed-

point implementation. A number of commercially available system design and simulation tools

provide support for fixed-point conversion and simulation. The MATLAB� fixed-point toolbox

and utilities are important, and so is the support extended for fixed-point arithmetic in other high-

level description languages such as SystemC. The issues of overflow, saturation, truncation and

rounding are critical. The normalization and block floating-point option to optimize implemen-

tation should also be learnt. Chapter 3 covers all these issues and demonstrates the methodology

with examples.

The next step in system design is to perform HW–SW partitioning. Usually this decision is made

by an experienced designer. Chapters 1 and 3 give broad rules that help the designer to make this

decision. The portion that is set aside for mapping in hardware is then explored for several

architectural design options. Different ways of representing algorithms and their coding in

MATLAB� are covered in Chapter 4. The chapter also covers mapping of the graphical

representation of an algorithm on fully dedicated hardware.

Following the discussion on fully dedicated architectures, Chapter 5 lists designs of basic

computational blocks. The chapter also highlights the architecture of embedded computational

units in FPGAs and their effective use in the design. This discussion logically extends to algorithms

that require multiplications with constants.

Chapter 6 gives an account of architectural optimization for designs that involve multiplications

with constants. Depending on the throughput requirement and the target technology that constrains

the clock rate, the architectural design decisions are made. Mapping an application written in a



high-level language to hardware requires insight into the algorithm. Usually signal processing

applications use nested loops. Unfolding and folding techniques are presented in Chapter 7. These

techniques are discussed for code written in high-level languages and for algorithms that are

described graphically as a dataflow graph (DFG). Chapter 4 covers the representation of algorithms

as dataflow graphs. Different classes of DFGs are discussed. Many top-level design options are also

discussed in Chapter 4 and Chapter 13. These options include a peer-to-peer KPN-connected

network, shared bus-based design, and network-on-chip (NoC) based architectures. The top-level

design is critical in overall performance, easy programmability and verification.

In Chapter 13 a complex application is considered as a network of connected processing elements

(PEs). The PEs implement the functionality in an algorithmwhereas the interconnection framework

provides inter-PE communication. Issues of different scheduling techniques are discussed. These

techniques affect the requirements of buffers between two connected nodes.

While discussing the hardware mapping of functionality in a PE, several design options are

considered. These options include fully dedicated architecture (Chapter 4 and Chapter 6), parallel

and unfolded architectures (Chapter 8), folded and time-shared architectures (Chapter 8 and

Chapter 9) and programmable instruction set architectures (Chapter 10). Each architectural design

option is discussed in detail with examples. Tradeoffs are also specified for the designer to gauge

preferences of one over the other. Special consideration is given to the target platform. Examples of

FGPAs with embedded blocks of multipliers with a fixed set of registers are discussed in Chapter 5.

Mapping of an algorithm in hardware must take into account the target technology. Novel

methodologies for designing optimal architectures that meet stringent design constraints while

keeping in perspective the target technology are elaborated. For a time-shared design, systolic and

simple folded architectures are covered. Intricacies in folding a design usually require a dedicated

controller to schedule operands on a shared HW resource. The controller is implemented as a finite

state machine (FSM). FSM representations and designs are covered in Chapter 9. The chapter gives

design examples. The testing of complex FSMs requires a lot of thought. Different coveragemetrics

are listed. Techniques are described that ensure maximum path coverage for effective testing of

FSMs. For many complex applications, the designer has an option to define an instruction set that

can effectively implement the application. Amicro-programmed state machine design is covered in

Chapter 10. Design examples are given to demonstrate the effectiveness of this design option. The

designs are coded in RTL Verilog. The designer must know the coding rules and RTL guidelines

from a synthesis perspective. Verilog HDL is covered, with mention of the guidelines for effective

coding, in Chapter 2. This chapter also gives a brief description of SystemVerilog that primarily

facilities testing and verification of the design. It also helps in modeling and simulating a system at

higher levels of abstraction especially at transaction levels. Features of SystemVerilog that help in

writing an effective stimulus are also given. For many examples, the RTLVerilog code is also listed

with synthesis results. The book also provides an example of a communication receiver.

Two case studies of designs are discussed in detail. Chapter 11 presents an instruction set for

implementing an adaptive algorithm for computationally intensive applications. Several architec-

tural options are explored that trade off area with performance. Chapter 12 explores design options

for a CORDIC-based DDFS algorithm. The chapter provides MATLAB� implementation of the

basic CORDIC algorithm, and then explores fully parallel and folding architecture for implement-

ing the CORDIC algorithm.

The book presents novel architectures for signal processing applications. Chapter 7 presents

novel IIR filter-based decimation and interpolation designs. IIR filters are traditionally not used in

these applications because for computing the current output sample they require previous output

samples, so all samples need to be computed. This requires running the design at a faster clock for

xvi Preface



decimation and interpolation applications. The transformations are defined that only require an IIR

filter to compute samples at a slower rate in decimation and interpolation applications.

In Chapter 10, the design of a DDFS based on the CORDIC algorithm is given. The chapter also

presents a complete working of a novel design that requires only one stage of a CORDIC element

and computes sine and cosine values. Then in Chapter 13 a novel design of time-shared and systolic

AES architecture is presented. These architectures transform the AES algorithm to fit in an 8-bit

datapath. Several innovative techniques are used to reduce the hardware complexity and memory

requirements while enhancing the throughput performance of the design. Similarly novel archi-

tectures for massively parallel data compression applications are also covered.

The book can be adopted for a number of courses at senior undergraduate and graduate levels. It

can be used for a senior undergraduate course on Advanced Digital Design and VLSI Signal

Processing. Similarly the contents can be selected in a way to form a graduate level course in these

two subjects.
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Overview

No exponential is forever . . . but we can delay “forever”

Gordon Moore

1.1 Introduction

This chapter begins from the assertion that the advent of VLSI (very large scale integration) has

enabled solutions to intractable engineering problems. Gordon Moore predicted in 1965 the rate of

development of VLSI technology, and the industry has indeed been developing newer technologies

riding on his predicted curve. This rapid advancement has led to new dimensions in the core subject

of VLSI. The capability to place billions of transistors in a small silicon area has tested the creativity

of engineers and scientists around the world. The subject of digital design for signal processing

systems embraces these new challenges. VLSI has revolutionized the commercial market, with

products regularly appearing with increasing computational power, improved battery life and

reduced physical size.

This chapter discusses several applications. The focus of the book is on applications primarily in

areas of signal processing, multimedia, digital communication, computer networks and data

security. Some of the applications are shown in Figure 1.1.

Multimedia applications have had a dramatic impact on our lives.Multimedia access on handheld

devices such as mobile phones and digital cameras is a direct consequence of this technology.

Another area of application is high-data-rate communication systems. These systems have

enormous real-time computational requirements. A modern mobile phone, for example, executes

several complex algorithms, including speech compression and decompression, forward error-

correction encoding and decoding, highly complex modulation and demodulation schemes, up-

conversion and down-conversion of modulated and received signals, and so on. If these are

implemented in software, the amount of real-time computation may require the power of a

supercomputer. Advancement in VLSI technology has made it possible to conveniently accomplish

the required computations in a hand-held device.We are alsowitnessing the dawn of new trends like

wearable computing, owing much to this technology.

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
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Broadband wireless access technology, processing many megabits of information per second, is

another impressive display of the technology, enabling mobility to almost all the services currently

running on desktop computers. The technology is also at work in spacecraft and satellites in space

imaging applications.

The technology is finding uses in biomedical equipment, examples being digital production of

radiographic and ultrasound images, and implantable devices such as the cardioverter defibrillator

that acquires and digitizes heartbeats, detects any rhythmic abnormalities and symptoms of sudden

cardiac arrest and applies an electric shock to help a failing heart.

This chapter selects a mobile communication system as an example to explain the design

partitioning issues. It highlights that digital design is effective for mapping structured algorithms in

silicon. The chapter also considers the design of a backplane of a high-end router to reveal the

versatility of the techniques covered in this book to solve problems in related areas where

performance is of prime importance.

The design process has to explore competing design objectives: speed, area, power, timing and so

on. There are several mathematical transformations to help with this. Keeping in perspective the

defined requirement specifications, transformations are applied that trade off less relevant design

objectives against the othermore important objectives. That said, for complexdesign problems these

mathematical transformations are of less help, so an effective approach requires learning several

Figure 1.1 VLSI technology plays a critical role in realizing real-time signal processing systems
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‘tricks of the trade’. This book aims to introduce the transformations as well as giving tips for

effective design.

The chapter highlights the impact of the initial ideas on the entire design process. It explains that

the effect of design decisions diminishes as the design proceeds from concept to implementation. It

establishes the rational for the system architect to positively impact the design process in the right

direction by selecting the best option in the multidimensional design space. The chapter explores

the spectrum of design options and technologies available to the designer. The design options range

from the most flexible general-purpose computing machine like Pentium, to commercially

available off-the-shelf digital signal processors (DSPs), to more application-specific instruc-

tion-set processors, to hard-wired application-specific designs yielding best performance without

any consideration of flexibility in the solution. The chapter describes the target technologies on

which the solution can be mapped, like general-purpose processors (GPPs), DSPs, application-

specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs). It is established

that, for complex applications, an optimal solution usually consists of a mix of these target

technologies.

This chapter presents some design examples. The rationale for design decisions for a satellite

burst modem receiver is described. There is a brief overview of the design of the backplane of a

router. There is an explanation of the design of a network-on-chip (NoC) carrier-class VoIP media

gateway. These examples follow a description of the trend from digital-only design to mixed-signal

system-on-chips (SoCs). The chapter considers synchronous digital circuits where digital clocks are

employed to make all components operate synchronously in implementing the design.

1.2 Fueling the Innovation: Moore’s Law

Advancements in VLSI over a few decades have played a critical role in realizing the amazing

electronic gadgets we live with today. Gordon Moore, founder of Intel, earlier predicted the rapid

rate of these advancements. In 1965 he noted that the number of transistors on a chip was doubling

every 18 to 24 months. Figure 1.2(a) shows the predicted curve known as Moore’s Law from his

original paper [1]. This ‘law’ has fueled innovation for five decades. Figure 1.2(b) shows Intel’s

response to his prediction.

Moore acknowledges that the trend cannot last forever, and he gave a presentation at an

international conference, entitled “No exponential is forever, but we can delay ‘forever’” [2]. Intel

has plans to continue riding on theMoore’s Law curve for another ten years and has announced a 2.9

billion-transistor chip for the second quarter of 2011. The chip will fit into an area the size of a

fingernail and use 22-nanometer technology [3]. For comparison, the Intel 4004 microprocessor

introduced in 1971 was based on a 10 000-nanometer process.

Integration at this scale promises enormous scope for designers and developers, and the

development of design tools has matched the pace. These tools provide a level of abstraction so

that the designer can focus more on higher level design concepts rather than low-level details.

1.3 Digital Systems

1.3.1 Principles

To examine the scope of the subject of digital design, let us consider an embedded signal processing

system of medium complexity. Usually such a system consists of heterogeneous physical devices

such as a GPP or micro-controller, multiple DSPs, a few ASICs, and FPGAs. An application

implemented on such a system usually consists of numerous tasks of varying computational
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complexity. These tasks are mapped on to the physical devices. The decision to implement a

particular task on a particular device is based on the computational complexity of the task, its code

density, and the communication it requires with other tasks.

The computationally intensive (‘number-crunching’) tasks of the application can be further

divided into categories. The tasks for which commercial off-the-shelf ASICs are available are

best mapped on these devices. ASICs are designed to perform specific functions of a particular

application and are not programmable, as are GPPs. Based on the target technology, ASICs are

of different types, examples of which are full-custom, standard-cell-based, gate-array-based,

channeled gate array, channel-less gate array, and structured gate array. As these devices are

application-specific they are optimized using integrated-circuit manufacturing process tech-

nology. These devices offer low cost and low power consumption. There are many benefits to

using ASICs, but because of their fixed implementation a design cannot be made easily

upgradable.

It is important to point out that several applications implement computationally intensive but non-

standard algorithms. The designer, for these applications, may find that mapping the entire

application on FPGAs is the only option for effective implementation. For applications that consist

of standard as well as non-standard algorithms, the computationally intensive tasks are further

divided into two groups: structured and non-structured. The tasks in the structured group usually

consist of code that has loops or nested loops with a few instructions being repeated a number of

times, whereas the tasks in the non-structured group implement more code-intensive components.

The structured tasks are effectively mapped on FPGAs, while the non-structured parts of the

algorithm are implemented on a DSP or multiple DSPs.

A field-programmable gate array comprises a matrix of configurable logic blocks (CLBs)

embedded in an interconnected net. The FPGA synthesis tools provide a method of programming

the configurable logic and the interconnects. The FPGAs are bought off the shelf: Xilinx [4],

Altera [5], Atmel [6], Lattice Semiconductor [7], Actel [8] and QuickLogic [9] are some of the

prominent vendors. Xilinx shares more than 50% of the programmable logic device (PLD) segment

of the semiconductor industry.

FPGAs offer design reuse, and better performance than a software solution mapped on a DSP or

GPP. They are, however, more expensive and give reduced performance and more power consump-

tion compared with an equivalent ASIC solution if it exists. The DSP, on the other hand, is a

microprocessor whose architecture is specially designed to support number-crunching signal

processing applications. Usually a DSP can perform many multiplication and addition operations

and supports special addressing modes that help in effective implementation of fast Fourier

transform (FFT) and convolution algorithms.

The GPPs or microcontrollers are general-purpose computing machines. Types are ‘complex

instruction set computer’ (CISC) and ‘reduced instruction set computer’ (RISC).

The tasks specific to user interfaces, control processes and other code-intensive protocols are

usually mapped on GPPs or microcontrollers. For handling multiple concurrent tasks, events and

interrupts, the microcontroller runs a real-time operating system. The GPP is also good at

performing general tasks like configuring various devices in the system and interfacing with

external devices. The microcontroller or GPP performs the job of a system controller. For systems

of medium complexity, it is connected to a shared bus. The processor configures the ASICs and

FGPAs, and also bootstraps the DSPs in the system. A high-speed bus like Amba High-speed Bus

(AHB) is used in these systems [10]. The shared-bus protocol allows only one master to transfer

the data. For designs that require parallel transfer of data, a multi-layer shared bus like Multi-

Layer AHB (ML-AHB) is used [11]. The microcontroller also interfaces with the external displays

and control panels.
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The digital design of a digital communication system interfaces with the RF front end. For voice-

based applications the system also contains CODEC (more in Chapter 12) with associated analog

interfaces. The FPAGs in the system also provide glue logic and interfaces with other devices in the

system. There may also be dual-port RAM to provide shared memory to multiple DSPs in the

system. A representative system is shown in Figure 1.3.

1.3.2 Multi-core Systems

Many applications are best mapped on general-purpose processors. As high-end computing applica-

tions demandmore andmore computational power in programmable devices, thevendors ofGPPs are

incorporating multiple cores of GPPs in a single SoC configuration. Almost all the vendors of GPPs,

such as Intel, IBM, SunMicrosystems and AMD, are now placingmultiple cores on a single chip for

improved performance and high reliability. Examples are Intel’s Yorkfield 8-core chip in 45-nm

technology, Intel’s 80-core teraflop processor, Sun’s Rock 8-coreCPU, Sun’s UltraSPARCT1 8-core

CPU, and IBM’s 8-core POWER7. These multi-core solutions also offer the necessary abstraction,

whereby the programmer need not be concerned with the underlying complex architecture, and

software development tools have been produced that partition and map applications on these

multiple cores. This trend is continuously adding complexity to digital design and software tool

development. From the digital design perspective, multi processors based systems are required to

Control Panel

DSP
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FPGA

GPP

CODEC

Shared Bus

Controller Sequence

User interface
application 

ASIC

FPGA

DSP

RF Interface

Shared Memory

Figure 1.3 An embedded signal processing system with DSPs, FPGAs, ASICs and GPP
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communicate with each other, and inter-processors connections need to be scalable and expendable.

The network-on-chip (NoC) design paradigm addresses issues of scalability of on-chip connectivity

and inter-processor communication.

1.3.3 NoC-based MPSoC

Besides GPP-based multi-core SoCs for mapping general computing applications, there also exist

other application-specific SoC solutions. An SoC integrates all components of a system in a single

chipset. That includes microprocessor, application-specific accelerators, all interfaces to memory

and peripheral devices, and so on.

Most high-end signal processing applications offer an inherent parallelism. To exploit this

parallelism, these systems are mapped on multiple heterogeneous processors. Traditionally these

processors are connectedwith sharedmemories on shared buses. As complex designs are integrating

an increasing number of multi-processors on a single SoC (MPSoC) [12], designs based on a shared

bus are not effective owing to complex arbitration, clock skews and latency issues. These designs

require scalable and effective communication infrastructure. AnNoC offers a good solution to these

problems [13]. TheNOCprovides higher bandwidth, low latency,modularity, scalability, and a high

level of abstraction to the system. The complex bus protocols route wires to connect various

components, whereas an NOC uses packet-based protocols to provide connectivity among compo-

nents. The NoC enables parallel transactions of data.

The basic architecture of an NOC is shown in Figure 1.4. Each processing element (PE) is

connected to an on-chip router via a network interface (NI) controller.

Figure 1.4 An NoC-based heterogeneous multi-core SoC design
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Many vendors are now using NoC to integrate multiple PEs on a single chip. A good example is

the use of NoC technology in the Play Station 3 (PS3) system by Sony Entertainment. A detailed

design of an NoC-based system is given in Chapter 13.

1.4 Examples of Digital Systems

1.4.1 Digital Receiver for a Voice Communication System

A typical digital communication system for voice, such as a GSM mobile phone, executes a

combination of algorithms of various types. A system-level block representation of these algorithms

is shown in Figure 1.5. These algorithms fall into the following categories.

1. Code-intensive algorithms. These do not have repeated code. This category consists of code for

phone book management, keyboard interface, GSM (Global System for Mobile) protocol stack,

and the code for configuring different devices in the system.

2. Structured and computationally intensive algorithms. These mostly take loops in software and

are excellent candidates for hardwaremapping. These algorithms consist of digital up- and down-

conversion, demodulation and synchronization loops, and forward error correction (FEC).

3. Code-intensive and computationally intensive algorithms. These lack any regular structure.

Although their implementations do have loops, they are code-intensive. Speech compression is

an example.

The GSM is an interesting example of a modern electronic device as most of these devices

implement applications that comprise these three types of algorithm. Some examples are DVD

players, digital cameras and medical diagnostic systems.

The mapping decisions on target technologies are taken at a system level. The code-intensive

part is mapped on a microcontroller; the structured parts of computationally intensive components

of the application, if consisting of standard algorithms, are mapped on ASICs or otherwise they
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Figure 1.5 Algorithms in a GSM transmitter and receiver and their mapping on to conventional target
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are implemented on FPGAs; and the computational and code-intensive parts are mapped

on DSPs.

It is also important to note that only signals that can be acquired using an analog-to-digital (A/D)

converter are implemented in digital hardware (HW) or software (SW), whereas the signal that does

not meet the Nyquist sampling criterion can be processed only using analog circuitry. This sampling

criterion requires the sampling rate of an A/D converter to be double the maximum frequency or

bandwidth of the signal.A consumer electronic device like amobile phone can only afford to have an

A/D converter in the range 20 to 140 million samples per second (Msps). This constraint requires

analog circuitry to process the RF signal at 900MHz and bring it down to the 10–70MHz range.

After conversion of this to a digital signal by an A/D converter, it can be easily processed.

A conventional mapping of different building blocks of a voice communication system is shown in

Figure 1.5.

It is pertinent to mention that, if the volume production of the designed system are quite high,

a mixed-signal SoC is the option of choice. In a mixed-signal SoC, the analog and digital

components are allmapped on a single silicon device. Then, instead of placing physical components,

the designer acquires soft cores or hard cores of the constituent components and integrates them on a

single chip.

An SoC solution for the voice communication system is shown in Figure 1.6. The RF

microcontroller, DSP and ASIC logic with on-chip RAM and requisite interfaces are all integrated

on the same chip. A system controller controls all the interfaces and provides glue logic for all the

components to communicate with each other on the device.

ASIC
Core

DSP
Core

System
Controller 

µ-controller
Core

I/O

RF Interface

Mem

Figure 1.6 A system-on-chip solution
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1.4.2 The Backplane of a Router

A router consists mainly of two parts or planes, a control/management plane and a data plane.

A code-intensive control or management plane implements the routing algorithms. These algo-

rithms are executed only periodically, so they are not time-critical.

In contrast, the data plane of the router implements forwarding. A routing algorithm updates the

routing table, after which a forwarding logic uses this table to transfer data from input ports to output

ports. This forwarding logic is very critical as it executes all the time, and is implemented as the data

plane. This plane checks the packet header of the inbound packets and, from a lookup table, finds its

destination port. This operation is performed on all the data packets received by the router and is very

well structured and computationally intensive. For routers supporting gigabit or multi-gigabit rates,

this part is usually implemented in hardware [14], whereas the routing algorithms are mapped in

software as they are code-intensive.

These planes and their effective mappings are shown in Figure 1.7.

1.5 Components of the Digital Design Process

A thorough understanding of the main components of the digital design process is important.

The subsequent chapters of this book elaborate on these components, so they are discussed only

briefly here.

1.5.1 Design

The ‘design’ is the most critical component of the digital design process. The top-level design

highlights the partitioning of the system into its various components. Each component is further

defined at the register transfer level (RTL). This is a level of abstraction where the digital designer

specifies all the registers and elaborates how data will flow through these registers. The combina-

tional logic between two sets of registers is usually described using high-level mathematical

operations, and is drawn as a cloud.

Figure 1.7 HW-SW partitioning of control and data plane in a router
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1.5.2 Implementation

When the design has been described at RTL level, its implementation is usually a straightforward

translation in a hardware description language (HDL) program. The program is then synthesized for

mapping on an FPGA or ASIC implementation.

1.5.3 Verification

As the number of gates on a single silicon device increases, so do the challenges of verification.

Verification is also critical in VLSI design as there is hardly any tolerance for bugs in the hardware.

With application-specific integrated circuits, a bug may require a re-spin of fabrication, which is

expensive, so it is important for an ASIC to be ‘right first time’. Even bugs found in FPGA-based

designs result in extended design cycles.

1.6 Competing Objectives in Digital Design

To achieve an effective design, a designer needs to explore the design space for tradeoffs of

competing design objectives. The following are some of the most critical design objectives the

designer needs to consider:

. area

. critical path delays

. testability

. power dissipation.

The art of digital design is to find the optimal tradeoff among these. These objectives are

competing because, for example, if the designer tries to minimize area then the design may result

in longer critical paths and may also affect the testability of the design. Similarly, if the design as

synthesized for better timing means shorter critical paths, the design may result in a larger area.

Better timing also means more power dissipation, which depends directly on the clock frequency.

It is these competing objectives that make learning the techniques covered in this book very

pertinent for designers.

1.7 Synchronous Digital Hardware Systems

The subject of digital design has many aspects. For example, the circuit may be synchronous or

asynchronous, and it may be analog or digital. A digital synchronous circuit is always an option of

choice for the designer. In synchronous digital hardware, all changes in the system are controlled by

one or multiple clocks. In digital systems, all inputs/outputs and internal values can take only

discrete values.

Figure 1.8 depicts an all-digital synchronous circuit in which all changes in the system are

controlled by a global clock clk. A synchronous circuit has a number of registers, and values in

these registers are updated at the occurrence of positive or negative edges of the clock signal. The

figure shows positive-edge triggered registers. The output signal from the registers R0 and R1 are fed

to the combinational logic. The signal goes through the combinational logic which consists of gates.

Each gate causes somedelay to the input signal. The accumulated delay on each pathmust be smaller

than the time period of the clock, because the signal at the input of R2 register must be stable before
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the arrival of the next active edge of the clock. As there are a number of paths in any digital

design, the longest path – the path that takes the maximum time for the signal to settle at the output –

is called the critical path, as noted in Figure 1.8. The critical path of the design should be smaller than

the permissible delay determined by the clock cycle.

1.8 Design Strategies

At the system level, the designer has a spectrum of design options as shown in Figure 1.9. It is very

critical for the systemdesigner tomake good design choices at the conceptual level because theywill

have a deep impact on the rest of the design cycle.At the system design stage the designer needs only

to draw a few boxes and take major design decisions like algorithm partitioning and target

technology selection.

clk

critical path

R0

R1

R2

clk

clk clk

Figure 1.8 Example of a digital synchronous hardware system
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If flexibility in programming is required, and the computational complexity of the application is

low, and cost is not a serious consideration, then a general-purpose processor such as Intel’s Pentium

is a good option. In contrast, while implementing computationally intensive non-structured

algorithms, flexibility in terms of programming is usually a serious consideration, and then a DSP

should be the technology of choice.

In many applications the algorithms are computationally intensive but are also structured. This is

usually the case in image and video processing applications, or a high-data-rate digital communi-

cation receiver. In these types of application the algorithms can be mapped on FPGAs or ASICs.

While implementing algorithms on FPGAs there are usually two choices. One option is to design an

application-specific instruction-set processor (ASIP). This type of processor is programmable but

has little flexibility and can port only the class of applications using its application-specific

instruction set. In the extreme case where performance is the only consideration and flexibility

is not required, the designer should choose a second option, whereby the design is dedicated to that

particular application and logic is hardwired without giving any consideration to flexibility. This

book discusses these two design options in detail.

The performance versus flexibility tradeoff is shown in Figure 1.10. It is interesting to note that, in

many high-end systems, usually all the design options are exercised. The code-intensive part of the

application is mapped on GPPs, non-structured signal processing algorithms are mapped on DSPs,

and structured algorithms are mapped on FPGAs, whereas for standard algorithms ASICs are used.

This point is further elaborated in the design examples later.

These apparently simple decisions are very critical once the system proceeds along the design

cycle. The decisions are especially significant for the blocks that are partitioned for hardware

mapping. The algorithms are analyzed and architectures are designed. The designer either selects

ASIP or dedicated hard-wired. The designer takes the high-level design and starts implementing the

hardware. The digital design is implemented at RTL level and then it is synthesized and tools

translate the code to gate level. The synthesized design is physically placed and routed.As the design

Figure 1.10 Efficiency verses flexibility tradeoff while selecting a design option
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goes along the design cycle, the details are very complex to comprehend and change. The designer at

every stage has to make decisions, but as the design moves further along the cycle these decisions

have less impact on the overall function and performance of the design. The relationship between the

impact of the design decision and its associated complexity is shown in Figure 1.11.

1.8.1 Example of Design Partitioning

Let us consider an example that elaborates on the rationale ofmapping a communication systemon a

hybrid platform. The system implements an upto 512Kbps BPSK/QPSK (phase-shift keying)

satellite burst modem.

The design process starts with the development of an algorithm in MATLAB�. The code is then

profiled. The algorithm consists of various components. The computation and storage requirements

of each component along with inter-component communication are analyzed. The following is a list

of operations that the digital receiver performs.

. Analog to digital conversion (ADC) of an IF signal at 70MHz at the receiver (Rx) using band-pass

sampling.
. Digital to analog conversion (DAC) of an IF signal at 24.5MHz at the transmitter (Tx).
. Digital down-conversion of the band-pass digitized IF signal to baseband at the Rx. The baseband

signal consists of four samples per symbol on each I and Q channel. For 512Kbps this makes

2014Ksps (kilo samples per second) on both the channels.
. Digital up-conversion of the baseband signal from 2014 ksps at both I and Q to 80Msps at the Tx.
. Digital demodulator processing 1024K complex samples per second. The algorithm at the Rx

consists of: start of burst detection, header removal, frequency and timing loops and slicer.

In a burstmodem, the receiver starts in burst detection state. In this state the system executes the start

of the burst detection algorithm.A buffer of data is input to the function that computes somemeasure

of presence of the burst. If themeasure is greater than a threshold, ‘start of burst’ (SoB) is declared. In

Figure 1.11 Design decision impact and complexity relationship diagram
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this state the systemalso detects the uniqueword (UW) in the transmitted burst and identifies the start

of data. If the UW in the received burst is not detected, the algorithm transits back into the burst

detection mode. When both the burst and the UW are detected, then the algorithm transits to the

estimation state. In this state the algorithm estimates amplitude, timing, frequency and phase errors

using the known header placed in the transmitted burst. The algorithm then transits to the

demodulation state. In this state the system executes all the timing, phase and frequency error-

correction loops. The output of the corrected signal is passed to the slicer. The slicer makes the soft

and hard decisions. For forward error correction (FEC), the system implements a Viterbi algorithm

to correct the bit errors in the slicer soft decision output, and generates the final bits [15]. The frame

and end of frame are identified. In a burst, the transmitter can transmit several frames. To identify the

end of the burst, the transmitter appends a particular sequence in the end of the last frame. If this

sequence is detected, the receiver transits back to the SoB state. The state diagram of the sequence of

operation in a satellite burst modem receiver is shown in Figure 1.12.

The algorithm is partitioned to be mapped on different components based on the nature of

computations required in implementing the sub-components in the algorithm. The following

mapping effectively implements the system.

. ADSP is used for mapping computationally intensive and non-regular algorithms in the receiver.

These algorithms primarily consist of the demodulator and carrier and timing recovery loops.
. ASICs are used forADC,DAC, digital down-conversion (DDC) and digital up-conversion (DUC).

A direct digital frequency synthesis (DDFS) chip is used for cosine generation that mixes with the

baseband signal.

Figure 1.12 Sequence of operations in a satellite burst modem receiver
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. An FPGA implements the glue logic and maps the Viterbi algorithm for FEC. The algorithm is

very regular and is effectively mapped in hardware.

Amicrocontroller is used to interfacewith the control panel and to configure different components in

the system.

A block diagram of the system highlighting the target technologies and their interconnection is

shown in Figure 1.13.

1.8.2 NoC-based SoC for Carrier-class VoIP Media Gateway

VoIP systems connect the legacy voice network with the packet network such that voice, data and

associated signaling information are transported on the IP network. In the call setup stage, the

signaling protocol (e.g. session initiation protocol, SIP) negotiates parameters for themedia session.

After the call is successfully initiated, the media session is established. This session takes the

uncompressed digitized voice from the PSTN (public switched telephone network) interface and

compresses and packages it before it is transported on a packet network. Similarly it takes the

incoming packeted data from the IP network and decompresses it before it is sent on the PSTN

network. A carrier-class VoIP media gateway processes hundreds of these channels.

The design of an SoC for a carrier-class VoIP media gateway is given in Figure 1.14. A matrix of

application-specific processing elements are embedded in an NOC configuration on an SoC. In

carrier-class application the SoC processes many channels of VoIP [16]. Each channel of VoIP

requires the system to implement a series of algorithms. Once a VoIP call is in progress, the SoC

needs to first process ‘line echo cancellation’ (LEC) and ‘dual-tone multi-frequency’ (DTMF)
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Figure 1.13 System-level design of a satellite burst receiver
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detection on each channel, and then it decompresses the packeted voice and compresses the time-

division multiplex (TDM) voice. The SoC has two interfaces, one with the PSTN network and the

other with the IP network. The interface with the PSTNmay be an H.110 TDM interface. Similarly

the interfaces on the IP side may be a combination of POS, UTOPIA or Ethernet. Besides these

interfaces, the SoCmay also have interfaces for external memory and PCI Express (PCIe). All these

components on a chip are connected to a NOC for inter-component communication.

The design assumes that the media gateway controller and packet processor are attached with the

media gateway SoC for complete functionality of a VoIP system. The packets received on the IP

interface are saved in externalmemory. The data received on theH.110 interface is buffered in an on-

chip memory before being transferred to the external memory. An on-chip RISC microcontroller is

intimated to process an initiated call on a specified TDM slot by the host processor on a PCIe

interface.

The microcontroller keeps a record of all the live calls, with associated information like the

specification on agreed encoder and decoder between caller and callee. The microcontroller then

schedules these calls on the array of multiprocessors by periodically assigning all the tasks

associated with processing a channel that includes LEC, in-voice DTMF detection, encoding of

TDM voice, and decoding of packeted voice. The PEs program external DMA for fetching TDM

voice data for compression and packeted voice for decompression. The processor also needs to bring

the context from external memory before it starts processing a particular channel. The context has

the states of different variables and arrays saved while processing the last frame of data on a

particular channel.

The echo is produced at the interface of 4-line to 2-line hybrid at the CO office. Owing to

impedance mismatch in the hybrid, the echo of far-end speech is mixed in the near-end voice. This
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Figure 1.14 NoC-based SoC for carrier-class VoIP applications. Multiple layers of application-specific

PEs are attached with an NoC for inter-processor communication
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echo needs to be cancelled before the near-end speech is compressed and packetized for transmis-

sion on an IP network. An LEC processing element is designed to implement line echo cancellation.

The LEC processing also detects double talk and updates the coefficients of the adaptive filter only

when line echo is present in the signal and the near end is silent. There is an extended discussion of

LEC and its implementation in Chapter 11.

Each processing element in the SoC is scheduled to perform a series of tasks for each channel.

These tasks for a particular channel are periodically assigned to a set of PEs. EachPEkeeps checking

the task list, while it is performing the currently assigned task. Finding a new task in the task list, the

PE programs a channel of theDMA to bring data and context for this task into on-chipmemory of the

processor. Similarly, if the processor finds that it is tasked to perform an algorithm where it also

needs to bring the program into its programmemory (PM), the PE also requests theDMA to fetch the

code for the next task in the PM of the PE. This code fetching is kept to a minimum by carefully

scheduling the tasks on the PEs that already have programs of the assigned task in its PM.

1.8.3 Design Flow Migration

As explained earlier, usually the communication system requires component-level integration of

different devices to implement digital baseband, RF transmitter and receiver, RF oscillator and

power management functionality. The advancement in VLSI technology is now enabling the

designer to integrate all these technologies on the same chip.

Although the scope of this book is limited to studying digital systems, it is very pertinent to point

out that, owing to cost, performance and power dissipation considerations, the entire system

including the analog part is nowbeing integrated on a single chip. This design flowmigration is show

in Figure 1.15. The ASICs and microcontroller are incorporated as intellectual property (IP) cores

and reconfigurable logic (RL) of the FPGAs is also placed on the same chip. Along with digital

components, RF and analog components are also integrated on the same chip. For example, amixed-

signal integrated circuit for amobile communication system usually supports ADC andDAC for on-

chip analog-to-digital and digital-to-analog conversion of baseband signals, phase-locked loops

(PLLs) for generating clocks for various blocks, and codec components supporting PCM and other

Figure 1.15 Mixed-signal SoC integrating all components on a multi-chip board on a single chip
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standard formats [17]. There are even integrated circuits that incorporateRFand powermanagement

blocks on the same chip using deep sub-micron CMOS technology [18].
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2

Using a Hardware Description
Language

2.1 Overview

This chapter gives a comprehensive coverage of Verilog and SystemVerilog. The focus is mostly on

Verilog, which is a hardware description language (HDL).

The chapter starts with a discussion of a typical design cycle in implementing a signal processing

application. The cycle starts with the requirements specification, followed by the design of an

algorithm using tools like MATLAB�. To facilitate partitioning of the algorithm into hardware

(HW) and software (SW), and its subsequent mapping on different platforms, algorithm design and

coding techniques inMATLAB� are described. TheMATLAB� code has to be structured so that the

algorithm developers, SW designers and HWengineers can correlate various components and can

seamlessly integrate, test and verify the design and can return to the original MATLAB�

implementation if there are any discrepencies in the results.

The chapter then has a brief account of Verilog. As there are several textbooks available on

Verilog [1–3], this chapter focuses primarily on design and coding guidelines and relevant rules.

There is a particular emphasis on coding rules for keeping synthesis in perspective. A description of

‘register transfer level’ (RTL) Verilog is presented. RTL signifies the placement of registers in

hardware while keeping an account of the movement of data among these registers.

SystemVerilog addsmore features formodeling and verification. AlthoughVerilog itself provides

constructs towrite test benches for verification, it lacks features that are required to verify a complex

design. Traditionally verification engineers have resorted to other languages, such as Vera or e, or

have used a ‘program language interface’ (PLI) to interface Verilog code with verification code

written in C/Cþþ . The use of PLI requires complex interface coding. SystemVerilog enhances

some of the features of Verilog for hardware design, but more importantly adds powerful features

that facilitate verification of more complex designs. Assertion, interface, package, coverage and

randomization are examples of some of these features.
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2.2 About Verilog

2.2.1 History

Philip Moorby invented Verilog in1983/84. At that time he was with Gateway Design Automation.

VHDL is another language used for designing hardware. It was with the advent of synthesis tools by

Synopsys in1987 when Verilog and VHDL started to change the whole paradigm and spectrum of

hardware design methodology. Within a few years, HDLs became the languages of choice for

hardware design. In 1995, OpenVerilog International (OVI) IEEE-1364 placedVerilog in the public

domain to compete with VHDL [4].

It was critical for Verilog to keep pacewith the high densities predicted byMoore’s Law. Now the

average process geometries are shrinking and billion-transistor chips are designed using 45-nm and

smaller nanometer technologies.

TheVerilog standard is still evolving.More andmore features and syntax are being added that, on

one hand, are providing higher level of abstraction, and on the other hand are helping the test

designer to effectively verify an RTL design. Most of this advancement has been steered by the

IEEE. Following the release of IEEE standard 1364-1995, in 1997 the IEEE formed anotherworking

group to add enhancements to the existing Verilog standard. The new standard was completed in

2001, and this variant of the language is called Verilog-2001 [5]. It provides additional support,

flexibility and ease of programming to developers.

In 2001, a consortium (Accellara) of digital design companies and electronic design automation

(EDA) tool vendors set up a committee to work on the next generation of extensions to Verilog. In

2003, the consortium released SystemVerilog 3.0, without ratification. In 2004, it released System-

Verilog 3.1 [6] which augmented in Verilog-2001 many features that facilitated design and

verification. In 2005, while still maintaining two sets of standards, the IEEE released Verilog-

2005 [7] and SystemVerilog-2005 [8], the latter adding more features for modeling and verification.

2.2.2 What is Verilog?

Verilog is a hardware description language. Although it looks much like C, it is not a software

programming language. It is very important for the Verilog programmer to understand hardware

concepts. Each line of Verilog code in the design means one or more components in hardware.

Verilog is rich in constructs and functionality. Some of the constructs are specific to supporting

verification andmodeling and do not synthesize to infer hardware. The synthesis is performed using

a synthesis tool, which is a compiler that translates Verilog into a gate-level design. The synthesis

tool understands only a subset of Verilog, the part of Verilog called ‘RTL Verilog’. All the other

constructs are ‘non-RTL Verilog’. These constructs are very helpful in testing, verification and

simulation.

It is imperative for thedesigner toknowat the register transfer levelwhat is beingcoded in thedesign.

TheRTL signifies the placement of registers in the design and the flowof data among the registers. The

complete Verilog is a combination of RTL and non-RTL constructs. A good hardware designer must

have sound understanding of these differences and comprehensive command of RTL Verilog

constructs. The programmermust also have a comprehension of the design to be coded inRTLVerilog.

Advancements in technology are allowing designers to realize evermore complex designs, posing

real challenges for testing and verification engineers. The testing of a complex design requires

creativity and ingenuity. Many features specific to verification are being added in SystemVerilog,

which is a companion standard supported bymost of theVerilog tool vendors.Verilog also provides a

socket-level interface, known as ‘programming language interface’ (PLI), to be used with other
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programming environments such as C/Cþþ , .NET, JavE and MATLAB�. This has extended the

scope of hardware design verification fromHWdesigners to SWengineers. Verification has become

a challenging and exciting discipline. The author’s personal experience in designing application-

specific ICs with many million gates to complex systems on FPGAs has convinced him that the

verification of many designs is even more challenging then designing the system itself. While

designing, the designer needs to use genuine creativity and special abilities to make interesting

explorations in the design space. The author believes that hardware design is an art, though

techniques presented in this book provide excellent help; but coding a design in RTL is a well-

defined and disciplined science. This chapter discusses Verilog coding with special focus on RTL

and verification.

2.3 System Design Flow

Figure 2.1 shows a typical design flow of a design implementing a signal processing application. An

explanation of this flow is given in Chapter 3. This section only highlights that a signal processing

application is usually divided into software and hardware components. The hardware design is

implemented in Verilog. The design is then mapped either on customASICs or FPGAs. This design

needs to work with the rest of the software application. There are usually standard interfaces that

enable the SW and HW components to transfer data and messages.

Architecture is designed to implement the hardware part of the application. The design contains

all the requisite interfaces for communicating with the part implemented in software. The SW is

mapped on a general-purpose processor (GPP) or digital signal processor (DSP). TheHWdesign and

the interfaces are coded in Verilog. This chapter focuses on RTL coding of the design and its

verification for correct functionality. The verified design is synthesized on a target technology. The

designer, while synthesizing the design, also constrains the synthesis tool either for timing or area.

The tool generates a gate-level netlist of the design. The tool also reports if there are paths that are not

meeting the timing constraints defined by the designer for running theHWat the desired clock speed.

If that happens, the designer either makes the tool meet the timing by trying different synthesis

options, or transforms the design by techniques described in this book. The modified design is

re-coded in RTL and the process of synthesis is repeated until the design meets the defined timings.

The gate-level netlist is then sent for a physical layout, and for custom ASICs the design is then

‘taped-out’ for fabrication. The field-programmable gate array tools provide an integrated environ-

ment for synthesis, layout and implementation of a bit stream to FPGA.

2.4 Logic Synthesis

The codewritten in RTLVerilog is synthesized for gate-level implementation. The synthesis process

takes the RTLVerilog and translates it into an optimized gate-level netlist. For logic synthesis the

user specifies design constraints and the target technology in the form of a standard cell library. The

library has standard basic logic gates such as AND and OR, or macro cells like adders, multipliers,

flip-flops, multiplexers and so on. The tool completely converts the design described in RTL

hardware description language into a design that contains standard cells.

To optimally map the high-level description into real HW, the tool performs several steps. A

typical flow of synthesis first converts the RTL description into non-optimizedBoolean logic. It then

performs several transformations to optimize the logic subject to user constraints. This optimization

is independent of the target technology. Finally, the tool maps the optimized logic to technology-

specific standard cells.
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2.5 Using the Verilog HDL

2.5.1 Modules

AVerilog code has a top-levelmodule,whichmay instantiatemanyothermodules. Themodule is the

basic building block in Verilog. Each module contains statements and instantiation of lower level

modules. InRTLdesign thismodule, once synthesized, infers digital logic. The designer conceives a

hardware design as hierarchically interconnecting lower level modules forming higher level

modules. In the next level of hierarchy, the modules so constructed are further connected to design

even high level modules. Thus the design has multiple layers of modules. At the top level the
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designer may also conceive the functionality of an application in terms of interconnected modules.

Individual modules may also be incrementally synthesized to facilitate synthesis of large designs.

Modules are declared and instantiated like classes in Cþþ , but module declarations cannot be

nested. Instances of low-level modules are interconnected, and modules have ports for these

interconnections.

Figure 2.2(a) shows a template of a module definition. A module starts with keyword module

and ends with keyword endmodule. The ports of a module can be input, output or in_out.

Figure 2.2(b) shows a simple example to illustrate the concept: the module FA has three input ports,

a, b and c_in, and two output ports, sum and c_out.

2.5.2 Design Partitioning

2.5.2.1 Guidelines for RTL Design

A guide for effective RTL coding from the synthesis perspective is given in Figure 2.3 [9]. The

partitioning of a digital design into a number of modules is important. A module should be neither

too small nor too large. Where possible, the design should be partitioned in a way that module

module FA (<port declaration>); 

.

.

.

.

endmodule 

module FA( 

   input a, 

   input b, 

   input c_in, 

   output sum, 

   output c_out); 

   assign {c_out, sum} 

= a+b+c_in; 

endmodule 

(a) (b) 

Figure 2.2 Module definition (a) template (b) example

Module 2Module 1

Module 3

Cloud 2

Cloud 3

Cloud 1

Module 3

Figure 2.3 Design partitioning in number of modules with module boundaries on register outputs
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boundaries reside at register outputs, as shown in the figure. This will make it easier to synthesize the

top-level module or hierarchical synthesis at any level with timing constraints. The designer should

also ensure that no combination cloud crossesmodule boundaries. This gives the synthesis toolmore

leverage to generate optimized logic.

2.5.2.2 Guidelines for System Level Design Flow

The design flow of a digital design process has been shown in Figure 2.1. A system designer first

captures requirements and specifications (R&S) of the real-time system under design. Implemen-

tation of the algorithm in SWor HW needs to perform computations on the input data and produce

output data at the specified rates. For example, for a multimedia processing system, the requirement

can be in terms of processingP color or grayscale frames ofN�M pixels per second. The processing

may be compression, rendering, object recognition and so on. Similarly for digital communication

applications, the requirement can be described in terms of data rates and the communication

standard that modulates this data for transmission. An example is a design that supports up to a

54-Mbps OFDM-based communication system that uses a 64-QAM modulation scheme.

Algorithmdevelopment is oneof themost critical steps in systemdesign.Algorithmsare developed

using tools such asMATLAB�, Simulink orC/Cþþ /C#, or in any high-level language. Functionally

meeting R&S is a major consideration when the designer selects an algorithm out of several options.

For example, in pattern matching the designer makes an intelligent choice out of many techniques

including ‘chamfer distance transform’, ‘artificial neural network’ and ‘correlation-basedmatching’.

Althoughmeeting functional requirements is themajor consideration, the developermust keep in

mind the ultimate implementation of the algorithm on an embedded platform consisting of ASICs,

FPGAs and DSPs. To ease design partitioning on a hybrid embedded platform, it is important for a

system designer to define all the components of the design, clearly specifying the data flow among

them.A component should implement a complete entitywith defined functionality in the design. It is

quite pertinent for the system designer to clearly define inputs and outputs and internal variables.

The program flow should be defined as it will happen in the actual system. For example, with hard

real-time signal processing systems, the data is processed on a block by block basis. In this form, a

buffer of input data is acquired and is passed to the first component in the system. The component

processes this buffer of data and passes the output to the component next in execution order.

Alternatively, in many applications, especially in communication receiver design, the processing is

done on a sample by sample basis. In these types of application the algorithmic implementation

should process data sample by sample. Adhering to these guidelines will ease the task of HW/SW

partitioning, co-design and co-verification.

The design is sequentially mapped from high-level behavioral design to embedded system parti-

tioning inHWmapped onASICs or FPGAs andSWrunning on embeddedDSPs ormicrocontrollers. It

is important for the designers in the subsequent phases in the design cycle to stick to the same

components and variable names as far as possible. This greatly facilitates going back and forth in the

design cycle while the designer is making refinements and verifying its functionality and performance.

2.5.3 Hierarchical Design

Verilog works well with a hierarchical modeling concept. Verilog code contains a top-level module

and zero or more instantiated modules. The top-level module is not instantiated anywhere. Several

instantiations of a lower-level module may exist. Verilog is an HDL and, unlike with other

programming languages, once synthesized each instantiation infers a physical copy of the HW

with its own logic gates, registers and wires. Ports are used to interconnect instantiated modules.
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Figure 2.4 shows twoways of listing ports in a Verilog module. In Verilog-95, ports are defined in

the module definition and then they are listed in any order. Verilog-2001 also supports ANSI-style

port listing, whereby the listing is incorporated in the module definition.

Using theFAmoduleofFigure2.4(a), a3-bit ripplecarryadder (RCA)canbedesigned.Figure2.5 shows

the composition of the adder as three serially connected FAs. To realize this simple design in Verilog, the

module RCA instantiates FA three times. The Verilog code of the design is given in Figure 2.6(a).

If ports are declared inVerilog-95 style, then the order of port declaration in themodule definition

is important but the order in which these ports are listed as input, output, c_in and c_out on

the following lines has no significance. As Verilog-2001 lists the ports in the module boundary, their

order should be maintained while instantiating this module in another module.

Formodules having a large number of ports, thismethod of instantiation is error-prone and should

be avoided. The ports of the instantiated module then should be connected by specifying names. In

this style of Verilog, the ports can be connected in any order, as demonstrated in Figure 2.6(b).

module FA(a, b, c_in, sum, 
c_out); 

input a, b, c; 

ouput sum, c_out; 

assign {c_out, sum} = a+b+c_in; 

endmodule 

module FA( 

input a, b, c_in, 

output sum, c_out); 

assign {c_out, sum} = a+b+c_in; 

endmodule 

(b) (a) 

Figure 2.4 Verilog FAmodulewith input and output ports. (a) Port declaration inmodule definition and

port listing follows the definition (b) Verilog-2001 support of ANSI style port listing in module definition

a[0]
1 1

a[1]b[0]
11

b[1] a[2]
1 1

b[2]

a

b 3

1

carry[0] carry[1]

sum[2]sum[1]sum[0]

sum 3

cout1cin

3

fa0

FA

fa1

FA

fa2

FA

Figure 2.5 Design of a 3-bit RCA using instantiation of three FAs
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2.5.3.1 Synthesis Guideline: Avoid Glue Logic

While the designer is hierarchically partitioning the design in a number of modules, the designer

should avoid glue logic that connects twomodules [9]. Thismay happen after correcting an interface

mismatch or adding some missing functionality while debugging the design. Glue logic is

demonstrated in Figure 2.7. Any such logic should be made part of the combinational logic of

one of the constituent modules. Glue logic may cause issues in synthesis as the individual modules

may satisfy timing constraints whereas the top-level module may not. It also prevents the synthesis

tool from generating a fully optimized logic.

2.5.3.2 Synthesis Guideline: Design Modules with Common Design Objectives

The designermust avoid placing time-critical and non-time-critical logic in the samemodule [9], as in

Figure 2.8(a). The module with time-critical logic should be synthesized for best timing, whereas the

module with non-time-critical logic is optimized for best area. Putting them in the same module will

module RCA( 

   input [2:0] a, b, 

   input c_in, 

   output [2:0] sum, 

   output c_out); 

wire carry[1:0]; 

// module instantiation 

FA fa0(a[0], b[0], c_in, 

   sum[0], carry[0]);

FA fa1(a[1], b[1], carry[0], 

   sum[1], carry[1]);

FA fa2(a[2], b[2], carry[1], 

   sum[2], c_out); 

endmodule 

 module RCA( 

   input [2:0] a, b, 

   input c_in, 

   output [2:0] sum, 

   output c_out); 

wire carry[1:0]; 

// module instantiation 

FA fa0(.a(a[0]),.b( b[0]), 
.c_in(c_in), 

.sum(sum[0]), 

.c_out(carry[0])); 

FA fa1(.a(a[1]), .b(b[1]), 
.c_in(carry[0]), 

.sum(sum[1]), 

.c_out(carry[1])); 

FA fa2(.a(a[2]), .b(b[2]), 
.c_in(carry[1]), 

.sum(sum[2]), 

.c_out(c_out)); 

endmodule 

(b) (a) 

Figure 2.6 Verilog module for a 3-bit RCA. (a) Port connections following the order of ports definition

in the FA module. (b) Port connections using names
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produce a sub-optimal design. The logic should be divided and placed into two separate modules, as

depicted in Figure 2.8(b).

2.5.4 Logic Values

Unlike with other programming languages, a bit in Verilog may contain one of four values, as

given in Table 2.1. It is important to remember that there is no unknown value in a real circuit,

and an ‘x’ in simulation signifies only that the Verilog simulator cannot determine a definite value

of 0 or 1.

Module 2Module 1

Top Level Module 

rst_n

glue
logic 

clk

Figure 2.7 Glue logic at the top level should be avoided

Module 

Time
Critical
Logic  

Non-time
Critical
Logic  

area critical area critical

Module 1 Module 2

Time
Critical
Logic  

Non-time
Critical
Logic  

(b) (a) 

Figure 2.8 Synthesis guidelines. (a) A bad design in which time-critical and non-critical logics are

placed in the same module. (b) Critical logic and non-critical logic placed in separate modules

Table 2.1 Possible values a bit may take in Verilog

0 Zero, logic low, false, or ground

1 One, logic high, or power

x Unknown

z High impedance, unconnected, or tri-state port
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While running a simulation inVerilog the designermay encounter a variable taking a combination

of the above values at different bit locations. In binary representation, the following is an example of

a number containing all four possible values:

200 b 0011_1010_101x_x0z0_011z

The underscore character (_) is ignored by Verilog simulators and synthesis tools and is used

simply to give better visualization to a long string of binary numbers.

2.5.5 Data Types

Primarily there are two data types in Verilog, nets and registers.

2.5.5.1 Nets

Nets are physical connections between components. The net data types are wire, tri, wor,

trior,wand,triand,tri0,tri1,supply0,supply1 and trireg. An RTLVerilog code

mostly uses the wire data type. A variable of type wire represents one or multiple bit values.

Although this variable can be used multiple times on the right-hand side in different assignment

statements, it can be assigned a value in an expression only once. This variable is usually an output of

a combinational logic whereas it always shows the logic value of the driving components. Once

synthesized, a variable of type wire infers a physical wire.

2.5.5.2 Registers

A register type variable is denoted by reg. Register variables are used for implicit storage as values

should be written on these variables, and unless a variable is modified it retains its previously

assigned value. It is important to note that a variable of type reg does not necessarily imply a

hardware register; it may infer a physical wire once synthesized. Other register data types are

integer, time and real.

AVerilog simulator assigns ‘x’ as the default value to all uninitialized variables of type reg. If

one observes a variable taking a value of‘x’ in simulation, it usually traces back to an uninitialized

variable of type reg.

2.5.6 Variable Declaration

In almost all software programming languages, only variables with fixed sizes can be declared. For

example, in C/Cþ þ a variable can be of type char, short or int. Unlike these languages, a

Verilog variable can take anywidth. The variable can be signed or unsigned. The following syntax is

used for declaring a signed wire:

wire signed [<range>] <net_name> <net_name>*;

Here* implies optional and the range is specified as[MostSignificantbit(MSb):Least

Significant bit (LSb)]. It is read asMSb down to LSb. If not specified, the default value of the

range is taken as one bit width. A similar syntax is used for declaring a signed variable of type reg:

reg signed [<range>] <reg_name> <reg_name>*;
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Amemory is declared as a two-dimensional variable of type reg, the range specifies thewidth of

the memory, and start and end addresses define its depth. The following is the syntax for memory

declaration in Verilog:

reg [<range>] <memory_name> [<start_addr> : <end_addr>];

The Verilog code in the following example declares two 1-bit wide signed variables of type reg

(x1 and x2), two 1-bit unsigned variables of type wire (y1 and y2), an 8-bit variable of type reg

(temp), and an 8-bit wide and 1-Kbyte deep memory ram-local. Note that a double forward

slanted bar is used in Verilog for comments:

reg signed x1, x2; // 1-bit signed variables of type reg x1 and x2

wire y1, y2; // 1-bit variables of type wire, y1 and y2

reg [7:0] temp; // 8-bit reg temp

reg [7:0] ram_local [0:1023]; //8-bit wide and 1-Kbyte deep memory

A variable of type reg can also be initialized at declaration as shown here:

reg x1 = 1’b0; // 1-bit reg variable x1 initialize to 0 at declaration

2.5.7 Constants

Like variables, a constant in Verilog can be of any size and it can be written in decimal, binary, octal

or hexadecimal format. Decimal is the default format. As the constant can be of any size, its size is

usually written with ‘d’, ‘b’, ‘o’ or ‘h’ to specify decimal, binary, octal or hexadecimal, respectively.

For example, the number 13 can be written in different formats as shown in Table 2.2.

2.6 Four Levels of Abstraction

As noted earlier, Verilog is a hardware description language. The HW can be described at several

levels of detail. To capture this detail, Verilog provides the designer with the following four levels of

abstraction:

. switch level

. gate level

. dataflow level

. behavioral or algorithmic level.

A design in Verilog can be coded in a mix of levels, moving from the lowest abstraction of switch

level to the highly abstract model of behavioral level. The practice is to use higher levels of

Table 2.2 Formats to represent constants

Decimal 13 or 40d13
Binary 40b1101
Octal 40o15
Hexadecimal 40hd
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abstraction like dataflow and behavioral while designing logic in Verilog. A synthesis tool then

translates the design coded using higher levels of abstraction to gate-level details.

2.6.1 Switch Level

The lowest level of abstraction is switch- or transistor-level modeling. This level is used to construct

gates, though its use is becoming rare as CAD tools provide a better way of designing and modeling

gates at the transistor level. A digital design in Verilog is coded at RTL and switch-level modeling is

not used in RTL, so this level is not covered in this chapter. Interested readers can get relevant

information on this topic from the IEEE standard document on Verilog [7].

2.6.2 Gate Level or Structural Modeling

Gate-level modeling is at a low level of abstraction and not used for coding design at RTL. Our

interest in this level arises from the fact that the synthesis tools compile high-level code and generate

code at gate level. This code can then be simulated using the stimulus earlier developed for the RTL-

level code. The simulation at gate level is very slow compared with the original RTL-level code. A

selective run of the code for a few test cases may be performed to derive confidence in the

synthesized code. The synthesis tools have matured over the years and so are the coding guidelines.

Gate-level simulation is also becoming rare.

Gate-level simulation can be performed with timing information in a standard delay file (SDF).

The SDF is generated for pre-layout or post-layout simulation by, respectively, synthesis or place

and route tools. The designer can run simulation using the gate-level netlist and the SDF. There is a

separate timing calculator in all synthesis tools. The calculator provides timing violations if there are

any. For synchronous designs the use of gate-level simulation for post-synthesis or layout timing

verification is usually not required.

The code at gate level is built from Verilog primitives. These primitives are built-in gate-level

models of basic functions, including nand, nor, and, or, xor, buf and not. Modeling at this

level requires describing the circuit using logic gates. This description looks much like an

implementation of a circuit in a basic logic design course. Delays can also be modeled at this

level. A typical gate instantiation is

and #delay instance-name (out, in1, in2, in3)

The first port in the primitive, out, is always a 1-bit output followed by several 1-bit inputs (here

in1,in2 andin3); theand is a Verilog primitive that models functionality of anAND gate, while

#delay specifies the delay from input to output of this gate.

Example 2.1

This example designs a 2:1 multiplexer at gate level using Verilog primitives. The design is

given in Figure 2.9(a). The sel wire selects one of the two inputs in1 and in2. If sel ¼ 0,

in1 is selected, otherwise in2 is selected. The implementation requires and, not and or

gates, which are available asVerilog primitives. Figure 2.9(b) lists theVerilog code for the gate-

level implementation of the design. Note #5, which models delay from input to output of the

AND gate. This delay in Verilog is a unit-less constant. It gives good visualization once the
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waveforms of input and output are plotted in a Verilog simulator. These delays are ignored by

synthesis tools.

2.6.3 Dataflow Level

This level of abstraction is higher than the gate level. Expressions, operands and operators

characterize this level. Most of the operators used in dataflow modeling are common to software

programmers, but there are a few others that are specific to HW design. Operators that are used in

expressions for dataflow modeling are given in Table 2.3. At this level every expression starts with

the keywordassign. Here is a simple examplewhere twovariablesa andb are added to producec:

assign c = a + b;

The value on wire c is continuously driven by the result of the arithmetic operation. This

assignment statement is also called ‘continuous assignment’. In this statement the right-hand side

must be a variable of typewire, whereas the operands on the left-hand sidemay be of typewire or

reg.

out
sel

in1

in2

out1

out2

module mux (out, in1, in2, sel);

output out;
input in1, in2, sel;
wire out1, out2, sel_n;
and #5 a1(out1, in1, sel_n);
and #5 a2(out2, in2, sel);
or #5 o1(out, out1, out2);
not n1(sel_n, sel);   

endmodule 

(a) (b)

Figure 2.9 (a) A gate-level design for a 2 : 1 multiplexer. (b) Gate-level implementation of a 2 : 1

multiplexer using Verilog primitives

Table 2.3 Operators for dataflow modeling

Type Operators

Arithmetic þ � ¼ * / % **

Binary bitwise � & �& | �| ^ �̂ �̂
Unary reduction & �& | �| ^ �^ þ -

Logical ! && || ¼¼ ¼¼¼ !¼ !¼¼ ¼¼ ¼¼¼
Relational < > <¼ >¼
Logical shift � �
Arithmetic shift �> �<
Conditional ?:

Concatenation { }

Replication {{}}
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2.6.3.1 Arithmetic Operators

The arithmetic operators are given in Table 2.4. It is important to understand the significance of using

these operators in RTLVerilog code as each results in a hardware block that performs the operation

specified by the operator. The designer should also understand the type of HW the synthesis tool

generates once the code containing these operators is synthesized. In many circumstances, the

programmer can specify the HW block from an already developed library to synthesis tools. Many

FPGAs have build-in arithmetic units. For example, the Xilinx family of devices have embedded

blocks for multipliers and adders. While writing RTLVerilog for targeting a particular device, these

blocks can be instantiated in the design. The following code shows instantiation of two built-in

18� 18 multipliers in the Virtex-II family of FPGAs:

// Xilinx 18x18 built-in multipliers are instantiated

MULT18X18 m1( out1, in1, in2);

MULT18X18 m2( out2, in3, in4);

The library from Xilinx also provides a model for MULT18x18 for simulation. Adders and

multipliers are extensively used in signal processing, and use of a divider is preferably avoided.

Verilog supports both signed and unsigned operations. For signed operation the respective operands

are declared as signed wire or reg.

The size of the output depends on the size of the input operands and the type of operation.

The multiplication operator results in an output equal to the sum of sizes of both the operands.

For addition and subtraction the size of the output is the size of the wider operand and a carry or

borrow bit.

2.6.3.2 Conditional Operators

The conditional operator of Table 2.5 infers amultiplexer. A statement with the conditional operator

is:

out = sel ? a : b;

Table 2.4 Arithmetic operators

Operator type Operator symbol Operation performed

Arithmetic � Multiply

/ Divide

þ Add

� Subtract

% Modulus

** Power

Table 2.5 Conditional operator

Operator type Operator symbol Operation performed

Conditional ?: Conditional
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This statement is equivalent to the following decision logic:

if(sel)

out = a;

else

out = b;

The conditional operator can also be used to infer higher ordermultiplexers. The code here infers a

4:1 multiplexer:

out = sel[1] ? ( sel[0] ? in3 : in2 ) : ( sel[0] ? in1 : in0 );

2.6.3.3 Concatenation and Replication Operators

Most of the operators in Verilog are the same as in other programming languages, but Verilog

provides a few that are specific to HW designs. Examples are concatenation and replication

operators, which are shown in Table 2.6.

Example 2.2

Using a concatenation operator, signals or parts of signals can be concatenated to make a new

signal. This is a very convenient and useful operator for the hardware designer, who can bring

wires from different parts of the design and tag them with a more appropriate name.

In the example in Figure 2.10, signals a[3:0], b[2:0], 3’b111 and c[2:0] are

concatenated together in the specified order to make a 13-bit signal, p.

p={a[3:0], b[2:0], 3'b111, c[2:0]};

MSB LSB

p 13 bits 

1

Figure 2.10 Example of a concatenation operator

Table 2.6 Concatenation and replication operators

Operator type Operator symbol Operation performed

Concatenation { } Concatenation

Replication {{ }} Replication
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Example 2.3

A replication operator simply replicates a signal multiple times. To illustrate the use of this, let

A = 2’b01;

B = {4{A}} // the replication operator

The operator replicates A four times and assigns the replicated value to B.

Thus B ¼ 80 b 01010101.

2.6.3.4 Logical Operators

These operators are common to all programming languages (Table 2.7). They operate on logical

operands and result in a logical TRUE or FALSE. The logical negation operator (!) checks whether

the operand is FALSE, then it results in logical TRUE; and vice versa. Similarly, if one or both of the

operands is TRUE, the logical OR operator (||) results in TRUE; and FALSE otherwise. The logical

ANDoperator is TRUE if both the logical operands are TRUE, and it is FALSEotherwise.When one

of the operands is an x, then the result of the logical operator is also x.

The bitwise negation operator (�) is sometimesmistakenly used as a logical negation operator. In

the case of a multi-bit operand, this may result in an incorrect answer.

2.6.3.5 Logic and Arithmetic Shift Operators

Shift operators are listed in Table 2.8. Verilog can perform logical and arithmetic shift operations.

The logical shift is performed on reg and wire.

Example 2.4

Right shifting of a signal by a constant n drops n least significant bits of the number and appends

thenmost significant bitswith zeros. For example, shift anunsignedregA¼60b101111by2:

B = A >> 2;

Table 2.7 Logical operators

Operator type Operator symbol Operation performed

Logical ! Logical negation

|| Logical OR

&& Logical AND

Table 2.8 Shift operators

Operator type Operator symbol Operation performed

Logic shift � Unsigned right shift

� Unsigned left shift

Arithmetic shift �> Signed right shift

�< Signed left shift
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This drops two LSBs and appends two zeros at the MSB position, thus:

B = 60b001011

Example 2.5

Arithmetic shift right of an operand by n drops the n LSBs of the operand and fills the nMSBs

with the sign bit of the operand. For example, shift right a wire A¼ 60b101111 by 2:

B = A >>> 2;

This operation will drop two LSBs and appends the sign bit to two MSB locations. Thus B ¼
60b111011.
Arithmetic and logic shift left by n performs the same operation, as both drop n MSBs of the

operand without any consideration of the sign bit.

2.6.3.6 Relational Operators

Relational operators are also very common to software programmers and are used to compare two

numbers (Table 2.9). These operators operate on two operands as shown below:

result = operand1 OP operand2;

This statement results in a logical value of TRUE or FALSE. If one of the bits of any of the

operands is an x, then the operation results in x.

2.6.3.7 Reduction Operators

Reduction operators are also specific to HW design (Table 2.10). The operator performs the

prescribed operation on all the bits of the operand and generates a 1-bit output.

Table 2.9 Relational operator

Relational operator Operator symbol Operation performed

> Greater than

< Less than

>¼ Greater than or equal to

<¼ Less than or equal to

Table 2.10 Reduction operators

Operator type Operator symbol Operation performed

Reduction & Reduction AND

�& Reduction NAND

| Reduction OR

�| Reduction NOR

^ Reduction XOR

^� or �^ Reduction XNOR
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Example 2.6

Apply the & reduction operator to a 4-bit number A¼40b1011:

assign out = &A;

This operation is equivalent to performing a bitwise & operation on all the bits of A:

out = A[0] & A[1] & A[2] & A[3];

2.6.3.8 Bitwise Arithmetic Operators

Bitwise arithmetic operators are also common to software programmers. These operators perform

bitwise operations on all the corresponding bits of the two operands. Table 2.11 gives all the bitwise

operators in Verilog.

Example 2.7

This example performs bitwise | operation on two 4-bit numbers A ¼ 40b1011 and

B¼40b0011. The Verilog expression computes a 4-bit C:

assign C = A | B;

performs the OR operation on corresponding bits of A and B and the operation is equivalent to:

C[0] = A[0] | B[0]

C[1] = A[1] | B[1]

C[2] = A[2] | B[2]

C[3] = A[3] | B[3]

2.6.3.9 Equality Operators

Equality operators are common to software programmers, but Verilog offers two flavors that are

specific to HW design: case equality (¼¼¼) and case inequality (!¼¼). A simple equality operator

(¼¼) checkswhether all the bits of the two operands are the same. If any operand has anx orz as one

of its bits, the answer to the equality will be x. The ¼¼¼ operator is different from ¼¼ as it also

matches x with x and z with z. The result of this operator is always a 0 or a 1. There is a similar

difference between !¼ and !¼¼. The following example differentiates the two operators.

Table 2.11 Bitwise arithmetic operators

Operator type Operator symbol Operation performed

Bitwise � Bitwise negation

& Bitwise AND

�& Bitwise NAND

| Bitwise OR

�| Bitwise NOR

^ Bitwise XOR

^� or �^ Bitwise XNOR
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Example 2.8

While comparing A¼40b101x and B¼40b101x using¼¼ and¼¼¼, out¼ (A¼¼ B)will

be x and out ¼ (A¼¼¼B) will be 1 (Table 2.12).

2.6.4 Behavioral Level

The behavioral level is the highest level of abstraction in Verilog. This level provides high-level

language constructs like for, while, repeat, if-else and case. Designers with a software

programming background already know these constructs.

Although the constructs are handy and very powerful, the programmer must know that each

construct inRTLVerilog infers hardware.High-level constructs arevery tempting to use, but theHW

consequence of their inclusion must be well understood. For example, for loop to a software

programmer suggests a construct that simply repeats a block of code a number of times, but if used in

RTL Verilog the code infers multiple copies of the logic in the loop. There are behavioral-level

synthesis tools that take a complete behavioralmodel and synthesize it, but the logic generated using

these tools is usually not optimal. The tools are not used in those designs where area, power and

speed are important considerations.

Verilog restricts all the behavioral statements to be enclosed in a procedural block. In a procedural

block all variables on the left-hand side of the statements must be declared as of type reg, whereas

operands on the right-hand side in expressions may be of type reg or wire.

There are two types of procedural block, always and initial.

2.6.4.1 Always and Initial Procedural Blocks

Aprocedural block contains one ormultiple statements per block.An assignment statement used in a

procedural block is called a procedural assignment. The initial block executes only once,

starting at t¼ 0 simulation time, whereas an always block executes continuously at t¼ 0 and

repeatedly thereafter.

The characteristics of an initial block are as follows.

. This block startswith theinitial keyword. Ifmultiple statements are used in the block, they are

enclosed within begin and end constructs, as shown in Figure 2.11.
. This block is non-synthesizable and non-RTL. This block is used only in a stimulus.
. There are usually more than one initial blocks in the stimulus. All initial blocks execute

concurrently in arbitrary order, starting at simulation time 0.
. The simulator kernel executes the initial block until the execution comes to a #delay

operator. Then the execution is suspended and the simulator kernel places the execution of this

block in the event list for delay-time units in the future.
. After completing delay-time units, the execution is resumed where it was left off.

Table 2.12 Equality operators

Operator type Operator symbol Operation performed

Equality ¼¼ Equality

!¼ Inequality

¼¼¼ Case equality

!¼¼ Case Inequality
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An always block is synthesizable provided it adheres to coding guidelines for synthesis. From the

perspective of its execution in a simulator, an always block behaves like an initial block

except that, once it ends, it starts repeating itself.

2.6.4.2 Blocking and Non-blocking Procedural Assignments

All assignments in a procedural block are called procedural assignments. These assignments are of

two types, blocking and non-blocking. A blocking assignment is a regular assignment inside a

procedural block. These assignments are called blocking because each assignment blocks the

execution of the subsequent assignments in the sequence. In RTLVerilog code, these assignments

are used to model combinational logic. For the RTL code to infer combinational logic, the blocking

procedural assignments are placed in an always procedural block.

There are several ways of writing what is called the sensitivity list in an always block. The

sensitivity list helps the simulator in effective management of simulation. It executes an always

block only if one of the variables in the sensitivity list changes. The classical method of sensitivity

listing is to write all the inputs in the block in a bracket, where each input is separated by an ‘or’ tag.

Verilog-2001 supports comma-separated sensitivity lists. It also supports just writing a ‘�’ for the
sensitivity list. The simulator computes the list by analyzing the block by itself.

The code in Figure 2.12 illustrates the use of a procedural block to infer combinational logic in

RTL Verilog code. The always block contains two blocking procedural assignments. The

sensitivity list includes the two inputs x and y, which are used in the procedural block. A list

of inputs x and y to these assignments are placed with the always statement. This list is the

sensitivity list. This procedural block once synthesized will infer combinational logic. The three

methods of writing a sensitivity list are shown in Figure 2.12.

It should also be noted that, as the left-hand side of a procedural assignment must be of type reg,

so sum and carry are defined as variables of type reg.

In contrast to blocking procedural assignments, non-blocking procedural assignments do not

block other statements in the block and these statements execute in parallel. The simulator executes

this functionality by assigning the output of these statements to temporary variables, and at the end of

execution of the block these temporary variables are assigned to actual variables.

initial
begin

end

procedural assignment 1
procedural assignment 2
procedural assignment 3

always
begin

end

procedural assignment 1
procedural assignment 2
procedural assignment 3

Figure 2.11 Initial and always blocks
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The left-hand side of the non-blocking assignment must be of type reg. The non-blocking

procedural assignments are primarily used to infer synchronous logic. Shown below is the use of a

non-blocking procedural assignment that infers two registers, sum_reg and carry_reg:

reg sum_reg, carry_reg;

always @ (posedge clk)

begin

sumreg <= x^y;

carry_reg <= x&y;

end

Both of the non-blocking assignments are simultaneously executed by the simulator. The use of a

blocking assignment in generating synchronous logic is further explained in the next section.

2.6.4.3 Multiple Procedural Assignments

From the simulation perspective, all procedural blocks simultaneously start execution at t¼ 0. The

simulator, however, schedules their execution in an arbitrary order. Now a variable of data type reg

can be assigned values atmultiple locations in amodule.Any suchmultiple assignments to a variable

of type regmust always be placed in the same procedural block. If a variable is assigned values in

different procedural blocks and the values are assigned on it at the same time, the value assigned to

the variable depends on the order in which the simulator executes these blocks. This may cause

errors in simulation and pre- and post-synthesis results may not match.

2.6.4.4 Time Control # and @

Verilog provides different timing constructs for modeling timing and delays in the design. The

Verilog simulator works on unit-less timing for simulating logic. The simulated time at any instance

reg sum, carry; 

always @ (x or y) 

begin 

   sum = x^y; 

   carry = x&y; 

end

reg sum, carry; 

always @ (x, y) 

begin

   sum = x^y; 

   carry = x&y; 

end

reg sum, carry; 

always @ (*) 

begin

   sum = x^y; 

   carry = x&y; 

end

(c) (b) (a) 

Figure 2.12 Blocking procedural assignment with three methods of writing the sensitivity list.

(a) Verilog-95 style. (b) Verilog-2001 support of comma-separated sensitivity list. (c) Verilog-2001

style that only writes � in the list
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in the design can be accessed using built-invariable $time. It is a unit-less integer. The timing at any

instance in simulation can be displayed by using the $display as shown here:

$display ($time, “a=%d”, a);

The programmer can insert delays in the code by placing #<number>. On encountering this

statement, the simulation halts the execution of the statement until <number> of time units have

passed. The control is released from that statement or block so that other processes can execute.

Synthesis tools ignore this statement in RTLVerilog code, and the statements are mostly used in test

code or to model propagation delay in combinational logic.

Another important timing control directive in Verilog is @. This directive models event-based

control. It halts the execution of the statement until the event happens. This timing control construct

is used to model combinational logic as shown here:

always @ (a or b)

c = a^b;

Here the execution of the assignment statement always @(a or b) will happen only if a or b

changes value. These signals are listed in the sensitivity list of the block.

The time control @ is used also to model synchronous logic. The code here models a positive-

edge trigger flip-flop:

always @(posedge clk)

dout <= din;

It is important to note that,while coding atRTL, the non-blocking procedural assignment should be used

only to model synchronous logic and the blocking procedural assignment to model combinational logic.

2.6.4.5 RTL Coding Guideline: Avoid Combinational Feedback

The designer must avoid any combinational feedback in RTL coding. Figure 2.13(a) demonstrates

combinational feedback, as does the following code:

reg [15:0] acc;

always@(acc)

acc = acc + 1;

(b) (a) 

Combinational
cloud

Combinational
cloud

Combinational
cloud

Combinational
cloud

Combinational
cloud

Register

Combinational
cloud

Figure 2.13 Combinational feedback must be voided in RTLVerilog code. (a) A logic with combina-

tional feedback. (b) The register is placed in the feedback path of a combinational logic
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Any such code does not make sense in design and simulation. The simulator will never come out

of this block as the change in accwill bring it back into the procedural block. If logic demands any

such functionality, a register shouldbeused to break the combinational logic, as shown inFigure 2.13

(b) where a register is placed in the combinational feedback paths.

2.6.4.6 The Feedback Register

In many digital designs, a number of registers reside in feedback paths of combinational logic.

Figure 2.14 shows digital logic of an accumulator with a feedback register. In designs with feedback

registers there must be a reset, because a pre-stored value in a feedback register will corrupt all future

computations. From the simulation perspective, Verilog assumes a logic value x in all register variables.

If this value is not cleared, thisx feeds back to a combinational cloud in the first cycle andmay produce a

logic value x at the output. Then, in all subsequent clock cycles the simulator – irrespective of the input

data to the combinational cloud – may compute x and keep showing x at the output of the simulation.

A register can be initialized using a synchronous or an asynchronous reset. In both cases, an

active-low or active-high reset signal can be used. An asynchronous active-low reset is usually used

in designs because it is available inmost technology libraries. Below are examples ofVerilog code to

infer registers with asynchronous active-low and active-high resets for the accumulator example;

// Register with asynchronous active-low reset

always @ (posedge clk or negedge rst_n)

begin

if(!rst_n)

acc_reg <= 16’b0;

else

acc_reg <= data+acc_reg;

end

// Register with asynchronous active-high reset

always @ (posedge clk or posedge rst)

begin

if(rst)

acc_reg <= 16’b0;

else

acc_reg <= data+acc_reg;

end

+
16

clk

acc_reg

rst_n

4

data

(b) (a) 

1

Logic

rst_n

Figure 2.14 Accumulator logic with a feedback register
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The negedge rst_n and posedge rst directives in the always statement and

subsequently if(!rst_n) and if(rst) statements in each block, respectively, are used

to infer these resets. To infer registers with synchronous reset, either active-low or active-high,

the always statement in each block contains only the posedge clk directive. Given below

are examples of Verilog code to infer registers with synchronous active-low and active-high

resets:

// Register with asynchronous active-low reset

always @ (posedge clk)

begin

if(!rst_n)

acc_reg <= 16’b0;

else

acc_reg <= data+acc_reg;

end

// Register with asynchronous active-high reset

always @ (posedge clk)

begin

if(rst)

acc_reg <= 16’b0;

else

acc_reg <= data+acc_reg;

end

2.6.4.7 Generating Clock and Reset

The clock and reset that go to every flip-flop in the design are not generated inside the design. The

clock usually comes from a crystal oscillator outside the chip or FPGA. In the place and route phase

of the design cycle, clocks are specially treated and are routed using clock trees. These are specially

designed routes that take the clocks to registers and flip-flopswhile causingminimum skews to these

special signals. In FPGAs, the external clocksmust be tied to one of the dedicated pins that can drive

large nets. This is achieved by locking the clock signal with one of these pins. For Xilinx it is done in

a ‘user constraint file’ (UCF). This file lists user constraints for placement, mapping, timing and bit

generation [11].

Similarly, the reset usually comes from outside the design and is tied to a pin that is physically

connected with a push button used to reset all the registers in the design.

To test and verify RTL Verilog code, clock and reset signals are generated in a stimulus. The

following is Verilog code to generate the clock signal clk and an active-low reset signal rst_n:

initial // All the initializations should be in the initial block

begin

clk = 0; // clock signal must be initialized to 0

# 5 rst_n = 0; // pull active low reset signal to low

# 2 rst_n=1; // pull the signal back to high

end

always // generate clock in an always block

#10 clk=(�clk);
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These blocks are incorporated in the stimulusmodule. From the stimulus these signals are input to

the top-level module.

2.6.4.8 Case Statement

LikeCandother high-level programming languages,Verilog supportsswitch andcase statements

for multi-way decision support. This statement compares a value with number of possible outcomes

and then branches to its match.

The syntax inVerilog is different from the format used inC/Cþ þ . The following code shows the

use of the case statement to infer a 4:1 multiplexer:

module mux4_1(in1, in2, in3, in4, sel, out);

input [1:0] sel;

input [15:0] in1, in2, in3, in3;

output [15:0] out;

reg [15:0] out;

always @(*)

begin

case (sel)

2’b00: out = in1;

2’b01: out = in2;

2’b10: out = in3;

2’b11: out = in4;

default: out = 16’bx;

endcase

end

endmodule

The select signal sel is evaluated, and the control branches to the statement that matches with

this value. When the sel value does not match with any listed value, the default statement is

executed. Two variants of case statements, casez and casex, are used to make comparison

with the ‘don’t care’ situation. The statement casez takes z as don’t care, whereas casex takes

z and x as don’t care. These don’t care bits can be used to match with any value. This provision is

very handy while implementing logic where only a few of the bits are used to take a branch

decision:

always @(op_code)

begin

casez (op_code)

4’b1???: alu_inst(op_code);

4’b01??: mem_rd(op_code);

4’b001?: mem_wr(op_code);

endcase

end

This block compares only the bits that are specified and switches to one of the appropriate tasks.

For example, if the MSB of the op_code is 1, the casez statement selects the first statement and

the alu_inst task is called.
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2.6.4.9 Conditional Statements

Verilog supports the use of conditional statements in behavioral modeling. The if-else statement

evaluates the expression. If the expression is TRUE it branches to execute the statements in the if

block, otherwise the expression may be FALSE, 0, x or z, so the statements in else block are

executed. The example below gives a simple use. If the brach_flag is non-zero, the PC is equated

to brach_addr; otherwise if the brach_flag is 0, x or z, the PC is assigned the value of

next_addr.

if (brach_flag)

PC = brach_addr

else

PC = next_addr;

The if-(else if)-else conditional statement provides multi-way decision support.

The expressions in if-(else if)-else statements are successively evaluated and, if any of

the expressions is TRUE, the statements in that block are executed and the control exits from

the conditional block. The code below demonstrates the working of multi-way branching using the

if-(else if)-else statement:

always @(op_code)

begin

if (op_code == 2’b00)

cntr_sgn = 4’b1011;

else if (op_code == 2’b01;

cntr_sgn = 4’b1110;

else

cntr_sgn = 4’b0000;

end

The code successively evaluates the op_code in the order specified in if, else if and else

statements and, depending on the value of op_code, it appropriately assigns value to cntr_sgn.

2.6.4.10 RTL Coding Guideline: Avoid Latches in the Design

A designer must avoid any RTL syntax that infers latches in the synthesized netlist. A latch is a

storage device that stores a valuewithout the use of a clock. Latches are usually technology-specific

and must be avoided in synchronous designs. To avoid latches the programmer must adhere to

coding guidelines.

For decision statements, the programmer should either fully specify assignments or must use a

default assignment. A variable in an if statement in a procedural block for combinational logic

infers a latch if it is not assigned a value under all conditions. This is depicted in the following code:

input [1:0] sel;

reg [1:0] out_a, out_b;

always @ (*)

begin

if (sel == 2’b00)

begin

out_a = 2’b01;

46 Digital Design of Signal Processing Systems



out_b = 2’b10;

end

else

out_a = 2’b01;

end

As out_b is not assigned any value under else, the synthesis tool will infer a latch for storing

the previous value of out_b in cases where an else condition is TRUE. To avoid this latch the

programmer should either assign some value to out_b in the else block, or assign default values

to all variables outside a conditional block. This is shown in the following code:

input [1:0] sel;

reg [1:0] out_a, out_b;

always @(*)

begin

out_a = 2’b00;

out_b = 2’b00;

if (sel=2’b00)

begin

out_a = 2’b01;

out_b = 2’b10;

end

else

out_a = 2’b01;

end

The syntheses toolwill also infer a latchwhen conditional code in the combinational blockmisses

any one or more conditions. This scenario is depicted in the following code:.

input [1:0] sel;

reg [1:0] out_a, out_b;

always @*

begin

out_a = 2’b00;

out_b = 2’b00;

if (sel==2’b00)

begin

out_a = 2’b01;

out_b = 2’b10;

end

else if (sel == 2’b01)

out_a = 2’b01;

end

This code misses some possible values of sel and checks for only two listed values, 2’b01 and

2’b00. The synthesis tool will infer a latch for out_a and out_b to retain previous values in case

any one of the conditions not covered occurs. This stype of codingmust be avoided. In anif,else

if, else block, the block must come with an else statement; and in scenarios where the case

statement is used, either all conditions must be specified, and for each condition values should be
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assigned to all variables, or a default condition must be used and all variables must be assigned

default values outside the conditional block. The correct way of coding is depicted here:

always @*

begin

out_a = 2’b00;

out_b = 2’b00;

if (sel==2’b00)

begin

out_a = 2’b01;

out_b = 2’b10;

end

else if (sel == 2’b01)

out_a = 2’b01;

else

out_a = 2’b00;

end

Here is the code showing the correct use of case statements:

always @*

begin

out_a = 2’b00;

out_b = 2’b00;

case (sel)

2’b00:

begin

out_a = 2’b01;

out_b = 2’b10;

end

2’b01:

out_a = 2’b01;

default:

out_a = 2’b00;

endcase

end

2.6.4.11 Loop Statements

Loop statements are used to execute a block of statements multiple times. Four types of loop

statement are supported in Verilog: forever, repeat, while and for. The statement

forever continuously executes its block of statements. The remaining three statements are

commonly used to execute a block of statements a fixed numberof times. Their equivalence is shown

below. For repeat:

i=0;

repeat (5)

begin

$display("i=%d\n", i);

i=i+1;

end
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For while:

i=0;

while (i<5)

begin

$display("i=%d\n", i);

i=i+1;

end

For for:

for (i=0; i<5; i=i+1)

begin

$display("i=%d\n", i);

end

2.6.4.12 Ports and Data Types

In Verilog, input ports of a module are always of type wire. An output, if assigned in a procedural

block, is declared asreg, and in caseswhere the assignment to the output ismade using a continuous

assignment statement, then the output is defined as awire. Theinout is always defined as awire.

The data types are shown in Figure 2.15.

The input to a module is usually the output of another module, so the figure shows that the output

of module1 is the input to module0. The port declaration rules can be easily followed using the arrow

analogy, whereby the head of the arrow drawn across the module must be defined as wire and the

tail declared as reg or wire depending on whether the assignment is made inside a procedural

block or in a continuous assignment.

2.6.4.13 Simulation Control

Verilog provides several system tasks that do not infer any hardware and are used for simulation

control. All system tasks start with the sign $. Some of themost frequently used tasks and the actions

they perform are listed here.

module1 module0

register/wire register/wirewire wire

wire

wire
inout

input output

module2

Figure 2.15 Port listing rules in Verilog. Head is always a wire. Tail may be a wire or reg based on

whether it is, respectively, an assignment statement or a statement in a procedure block
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. $finish makes the simulator exit simulation.

. $stop suspends the simulation and the simulator enters an interactive mode, but the simulation

can be resume from the point of suspension.
. $display prints an output using a format similar to C and creates a new line for further printing.
. $monitor is similar to $display but it is active all the time. Only one monitor task can be

active at any time in the entire simulation. This task prints at the end of the current simulation time

the entire list when one of the listed values changes.

The following example gives the format of $monitor and $displaywhich closely resemble the

printf() function in C:

$monitor($time, “A=%d, B=%d, CIN=%b, SUM=%d, COUT=%d”, A, B, CIN, SUM, COUT);

$display($time, “A=%d, B=%d, CIN=%b, SUM=%d, COUT=%d”, A, B, CIN, SUM, COUT);

$time in these statements prints the simulation time at the time of execution of the statement.

These statements display the values ofA,B,CIN and COUT in decimal, binary, decimal and decimal

number representations, respectively. The directives %d, %o, %h and %b are used to print values in

decimal, octal, hexadecimal and binary formats, respectively.

$fmonitor and $fdisplaywritevalues in a file. Thefile first needs to be open using $fopen.

The code below shows the use of these tasks for printing values in a file:

modulator_vl = $fopen("modulator.dat");

if (modulator_vl == 0) $finish;

$fmonitor(modulator_vl,"data=%h bits=%h", data_values, decision_bits);

2.6.4.14 Loading Memory Data from a File

System tasks $readmemb and $readmemh are used to load data froma text filewritten in binary or

hexadecimal, respectively, into specified memory. The example here illustrates the use of these

tasks. First memory needs to be defined as:

reg [7:0] mem[0:63];

The following statement loads data in a memory.dat file into mem:

$readmemb (“memory.dat”, mem);

2.6.4.15 Macros

Verilog supports several compiler directives. These directives are similar to C programming pre-

compiler directives. Like#define in C,Verilog provides‘define to assign a constant value to a tag:

‘define DIFFERENCE 6’b011001

The tag can then be used instead of a constant in the code. This gives better readability to the code.

The use of the ‘define tag is shown here:

if (ctrl == ‘DIFFERENCE)
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2.6.4.16 Preprocessing Commands

These are conditional pre-compiler directives used to selectively execute a piece of code:

‘ifdef G723

$display (“G723 execution”);

‘else

$display (“other codec execution”);

‘endif

The ‘include directive works like #include in C and copies the contents in the file at the

location of the statement. The statement

‘include “filename.v”

copies the contents of filename.v at the location of the statement.

2.6.4.17 Comments

Verilog supports C-type comments. Their use is shown below:

reg a; // One-line comment

Verilog also supports block comments (as in C):

/* Multi-line comment that

reg acc;

results in the reg acc declaration being commented out */

Example 2.9

This example implements a simple single-tap infinite impulse response (IIR) filter in RTL

Verilog and writes its stimulus to demonstrate coding of a design with feedback registers. The

design implements the following equation:

y½n� ¼ 0:5y½n�1� þx½n�

Themultiplication by 0.5 is implemented by an arithmetic shift right by 1 operation. A register

y_reg realizes y[n� 1] in the feedback path of the design, thus needing reset logic. The reset

logic is implemented as an active-low asynchronous reset. The module has 16-bit data x, clock

clk, reset rst_n as inputs and the value of y as output. The module IIR has two procedural

blocks. One block models combinational logic and the other sequential. The block that models

combinational logicconsistsofanadderandhard-wiredshifter.Theadderadds theinputdatax in

shifted value ofy_reg. The output of the combinational cloud is assigned toy. The sequential

block latches thevalueofy iny_reg. TheRTLVerilogcode for themoduleIIR is givenbelow:

module iir(

input signed [15:0] x,

input clk, rst_n,

output reg signed [31:0] y);
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reg signed [31:0] y_reg;

always @(*) \\ combinational logic block

y =(y_reg>>>1) + x;

always @(posedge clk or negedge rst_n) \\ sequential logic block

begin

if (!rst_n)

y_reg <= 0;

else

y_reg <= y;

end

endmodule

The stimulus generates a clock and a reset signal. This reset is applied to the feedback register

before the first positive edge of the clock. Initialization on clock and generation of reset is

done in an initial block. Another initial block is used to give a set of input values to

the module. These values are generated in a loop. The monitor statement prints the input and

output with simulation time on the screen. The $stop halts the simulation after 60 time units

and $finish ends the simulation. It is important to note that a simulation with clock input

must be terminated using $finish, otherwise it never ends. The code for the stimulus is listed

below:

module stimulus_irr;

reg [15:0] X;

reg CLK, RST_N;

wire [31:0] Y;

integer i;

iir IRR0(X, CLK, RST_N, Y); \\ instantiation of the module

initial

begin

CLK = 0;

#5 RST_N = 0; \\ resetting register before first posedge clk

#2 RST_N = 1;

end

initial

begin

X = 0;

for(i=0; i<10; i=i+1) \\ generating input values every clk cycle

#20 X = X + 1;

$finish;

end

always \\ clk generation

#10 CLK = CLK;

initial

$monitor($time, " X=%d, sum=%d, Y=%d", X, IRR0.y, Y);

initial

begin

#60 $stop;

end

endmodule
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2.6.4.18 Timing Diagram

In many instances before writing Verilog code and stimuli, it is quite useful to sketch a timing

diagram. This is usually a great help in understanding the interrelationships of different logic blocks

in the design. Figure 2.16 illustrates the timing diagram for the IIR filter design of the pervious

subsection.

A clock is generated with time period of 20 units. The active-low reset is pulled low after 5 time

units and then pulled high after 2 time units. As soon as the reset is pulled low, the y_reg is cleared

and set to 0. The first posedge of the clock after 10 time units latches the output of the

combinational logic y into y_reg. The timing diagram should be drawn first and then accordingly

coded in stimulus and checked in simulation for validity of results.

All Verilog simulators also provide waveform viewers that can show the timing diagram of

selected variables in the simulation run. Figure 2.17 shows the screen output of thewaveform viewer

of ModelSim simulator for the IIR filter example above.

2.6.4.19 Parameters

Parameters are constants that are local to a module. A parameter is assigned a default value in the

module and for every instance of this module it can be assigned a different value.

x

x

x

y_reg

rst_n

y

0

y0

y0

y1

y1

y2

y2

y3

y3

10 time
units 

10 time
units 

clk

Figure 2.16 Timing diagram for the IIR filter design of example 2.9
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rst_n

y

y_reg

Figure 2.17 Timing diagram from the ModelSim simulator
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Parameters are very handy in enhancing the reusability of the developed modules. A module is

called parametered if it is written in a way that the same module can be instantiated for different

widths of input and output ports. It is always desirable to write parameterized code, though in many

instances it may unnecessarily complicate the coding.

The following example illustrates the usefulness of a parameterized module:

module adder (a, b, c_in, sum, c_out);

parameter SIZE = 4;

input [SIZE-1: 0] a, b;

output [SIZE-1: 0] sum;

input c_in;

output c_out;

assign {c_out, sum} = a + b + c_in;

endmodule

The same module declaration using ANSI-style port listing is given here:

module adder

#(parameter SIZE = 4)

(input [SIZE-1: 0] a, b,

output [SIZE-1: 0] sum,

input c_in,

output c_out);

This module now can be instantiated for different values of SIZE by merely specifying the value

while instantiating themodule. Shownbelow is a section of the code related to the instantiation of the

module for adding 8-bit inputs, in1 and in2:

module stimulus;

reg [7:0] in1, in2;

wire [7:0] sum_byte;

reg c_in;

wire c_out;

adder #8 add_byte (in1, in2, c_in, sum_byte, c_out);

.

.

endmodule

In Verilog, the parameter value can also be specified by name, as shown here:

adder #(.SIZE(8)) add_byte (in1, in2, c_in, sum_byte, c_out);

Multiple parameters can also be defined in a similar fashion. For example, for themodule that adds

two unequal width numbers, the parameterized code is written as:

module adder

#(parameter SIZE1 = 4, SIZE2=6)

(input [SIZE1-1: 0] a,

input [SIZE2-1: 0] b,

output [SIZE2-1: 0] sum,
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input c_in,

output c_out);

The parameter values can then be specified using one of the following two options:

adder #(.SIZE1(8), .SIZE2(10)) add_byte

(in1, in2, c_in, sum_byte, c_out);

or, keeping the parameters in the same order as defined:

adder #(8,10) add_byte (in1, in2, c_in, sum_byte, c_out);

2.6.5 Verilog Tasks

Verilog task can be used to code functionality that is repeated multiple times in a module. A task

has input, output and inout and can have its local variables. All the variables defined in the

module are also accessible in the task. The taskmust be defined in the samemodule usingtask and

endtask keywords.

To use atask in othermodules, the task should bewritten in a separate file and the file then should

be included using an ‘include directive in these modules. The tasks are called from initial or

always blocks or from other tasks in a module. The task can contain any behavioral statements

including timing control statements. Like module instantiation, the order of input, output and

inout declarations in a task determines the order in which they must be mentioned for calling. As

tasks are called in a procedural block, the output must be of type reg, whereas the inputs may be of

typereg orwire. Verilog-2001 adds a keywordautomatic to the task to define a re-entrant task.

The following example designs a task FA and calls it in a loop four times to generate a 4-bit ripple

carry adder:

module RCA(

input [3:0] a, b,

input c_in,

output reg c_out,

output reg [3:0] sum

);

reg carry[4:0];

integer i;

task FA(

input in1, in2, carry_in,

output reg out, carry_out);

{carry_out, out} = in1 + in2 + carry_in;

endtask

always@*

begin

carry[0]=c_in;

for(i=0; i<4; i=i+1)

begin

FA(a[i], b[i], carry[i], sum[i], carry[i+1]);

end

c_out = carry[4];

end

endmodule
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2.6.6 Verilog Functions

Verilog function is in many respects like task as it also implements code that can be called

several times inside a module. A function is defined in the module using function and

endfunction keywords. The function can compute only one output. To compute this output,

the functionmust have at least one input. The outputmust be assigned to an implicit variable bearing

the name and range of the function. The range of the output is also specified with the function

declaration. A function in Verilog cannot use timing constructs like # or @. A function can be called

from a procedural block or continuous assignment statement. It may also be called from other

functions and tasks, whereas a function cannot call a task. A re-entrant function can be designed by

adding the automatic keyword.

A simple example here writes a function to implement a 2:1 multiplexer and then uses it three

times to design a 4:1 multiplexer:

module MUX4to1(

input [3:0] in,

input [1:0] sel,

output out);

wire out1, out2;

function MUX2to1;

input in1, in2;

input select;

assign MUX2to1 = select ? in2:in1;

endfunction

assign out1 = MUX2to1(in[0], in[1], sel[0]);

assign out2 = MUX2to1(in[2], in[3], sel[0]);

assign out = MUX2to1(out1, out2, sel[1]);

endmodule

/* stimulus for testing the module MUX4to1 */

module testFunction;

reg [3:0] IN;

reg [1:0] SEL;

wire OUT;

MUX4to1 mux(IN, SEL, OUT);

initial

begin

IN = 1;

SEL = 0;

#5 IN = 7;

SEL = 0;

#5 IN = 2; SEL=1;

#5 IN = 4; SEL = 2;

#5 IN = 8; SEL = 3;

end

initial

$monitor($time, " %b %b %b\n", IN, SEL, OUT);

endmodule

2.6.7 Signed Arithmetic

Verilog supports signed reg and wire, thus enabling the programmer to implement signed

arithmetic using simple arithmetic operators. In addition to this,function can also return a signed
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value, and inputs and outputs can be defined as signed reg or wire. The following lines define

signed reg and wire with keyword signed:

reg signed [63:0] data;

wire signed [7:0] vector;

input signed [31:0] a;

function signed [128:0] alu;

Verilog also supports type-casting using system functions $signed and $unsigned as shown

here:

reg [63:0] data; // Unsigned data type

always @(a)

begin

out = ($signed(data) )>>> 2;// Type-cast to perform signed arithmetic

end

where >>> is used for the arithmetic shift right operation.

2.7 Verification in Hardware Design

2.7.1 Introduction to Verification

Verilog is especially designed for hardwaremodeling and lacks features that facilitate verification of

complex digital designs. In these circumstances, designers resort to using other tools like Vera ore

for verification [12]. To resolve this limited scope for verification in Verilog and to add more

advanced features for HW design, the EDA vendors constituted a consortium. In 2005, the IEEE

standardized Verilog and SystemVerilog languages [6, 8]. Many advanced features have been added

in SystemVerilog. These relate to enhanced constructs for design and test-bench generation,

assertion and direct programming interfaces (DPIs).

The EDA industry is trying to respond to increasing demands to elegantly handle chip design

migration from the IC scale to themulti-core SoC scale.Verification is the greatest challenge, and for

complex designs it is critical to plan for it right from the start. A verification plan (Vplan) should be

developed by studying the function specification document.

As SoC involves several standard interfaces, it is possible that verification test-benches already

exist formany components of the design in the formof verification intellectual property (VIP). Good

examples are the test-benches developed forARM,AMBAandPCI buses. SuchVIPs usually consist

of a test-bench, a set of assertions, and coverage matrices. An aggregated coverage matrix should

always be computed to ensure maximum coverage. Guidelines have been published by Accellera

that ensure interoperability and reuse of test-benches across design domains [13].

Simulators are very common inverifying an RTL design, but they are very slow in testing a design

with many million gates. In many design instances, after the design is verified for a subset of test

cases that includes the corner cases, more elaborate verification is performed using FPGA-based

accelerators [14]. Finally, the verification engineers also plan verification of the first batches of ICs.

Many languages and tools have evolved for effective verification. Verilog, SystemVerilog, e and

SystemC are some of the most used for test-bench implementation; usually a mix of these tools is

used. Open verification methodology (OVM) enables these tools to coexist in an integrated

verification environment [15]. The OVM & Verification Methodology Manual (VMM) has class

libraries that verification engineers can use to enhance productivity [16].
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Mixed-signal ICs add another level of complexity to verification. The design requires

an integrated testing methodology to verify a mixed-signal design. Many vendors support

mixed-signal verification in their offered solutions. The analog design is modeled in Verilog-

AMS.

It is important to note that verification should be performed in a way that the code developed

for verification is reusable and becomes a VIP. SystemVerilog is mostly the language of choice for

developing VIPs, and vendors are adding complete functionality of the IEEE standard of System

Verilog for verification in development tools. SystemVerilog supports constraint value generation

that can be configured dynamically. It can generate constraint random stimulus sequences. It can also

randomly select the control paths out of many possibilities. It also provides functional converge

modeling: the model dynamically reactivates constrained random stimulus generation. System-

Verilog also supports coverage monitoring.

2.7.2 Approaches to Testing a Digital Design

2.7.2.1 Black-box Testing

This is testing against specifications when the internal structure of the system is unknown. A set of

inputs is applied and the outputs are checked against the specification or expected output, without

considering the inner details of the system (Figure 2.18). The design to be tested is usually called the

‘device under test’ (DUT).

2.7.2.2 White-box Testing

This tests against specifications while making use of the known internal structure of the system. It

enables the developer to locate a bug for quick fixing. Usually this type of testing is done by the

developer of the module.
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Figure 2.18 Digital system design testing using (a) the black-box technique and (b) the white-box

technique

58 Digital Design of Signal Processing Systems



2.7.3 Levels of Testing in the Development Cycle

Adigital design goes through several levels of testing during development. Each level is critical as an

early bug going undetected is very costly and may lead to changes in other parts of the system. The

testing phase can be broken down into four parts, described briefly below.

2.7.3.1 Module- and Component-level Testing

A component is a combination of modules.White-box testing techniques are employed. The testing

is usually done by the developer of the modules, who has a clear understanding of the functionality

and can use knowledge of the internal structure of the module to ease bug fixing.

2.7.3.2 Integration Testing

In integration testing, modules implemented as components are put together and their interaction is

verified using test cases. Both black-box and white-box testing are used.

2.7.3.3 System-level Testing

This is conducted after integrating all the components of the system, to check whether the system

conforms to specifications. Black-box testing is used and is performed by a test engineer. The testing

must be done in an unbiased manner without any preconceptions or design bias. As the codings of

different developers are usually integrated at the system level, an unbiased tester is important to

identify faults and bugs and then assign responsibilities.

The first step is functional verification. When that is completed, the system should undergo

performance testing in which the throughput of the system is evaluated. For example, an AES

(advanced encryption standard) processor, after functional verification, should be tested to check

whether it gives the required performance of encrypting data with a defined throughput.

After the system has been tested for specified functionality and performance, next comes stress

testing. This stretches the system beyond the requirements imposed earlier on the design. For

example, an AES processor designed to process a 2Mbps link may be able to process 4Mbps.

2.7.3.4 Regression Testing

Regression testing is performed after any change to the design ismade as a consequence of bugfixing

or anymodification in the design. Regression tests are a sub-set of test vectors that the designer needs

to run after any bugfixing or significantmodification in an already tested design. Both black-box and

white-box methodologies are used. Fixing a bug may resolve the problem under consideration but

can disturb other parts of the system, so regression testing is important.

2.7.4 Methods for Generating Test Cases

There are several methods for generating test cases. The particular choice depends on the size of the

design and the level at which the design is to be tested.

2.7.4.1 Exhaustive Test-vector Generation

For a small design or for module-level testing, the designer may want to exhaustively generate all

possible scenarios. However, the time taken by testing increases exponentially with the size of the
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inputs. For example, testing a simple 16� 16-bit multiplier requires 216� 216 test vectors. The

simulators can spend hours or even days in exhaustive testing of designs of even moderate size. The

designer therefore needs to test intelligently, choosing sample points and focusing especially on

corner cases. For mathematical computations, the overflow and saturation logic cases are corner

cases. Similarly for other designs, the inputs that test the maximum strength of the system should be

applied.

2.7.4.2 Random Testing

For large designs, the designer may resort to random testing. The values of inputs are randomly

generated out of a large pool of possible values. In many instances this random testing should be

biased to cover stress points and corner cases, while avoiding redundancy and invalid inputs.

2.7.4.3 Constraint-based Testing

Constraint-based testingworkswith random testing,whereby the randomness is constrained towork

in a defined range. In many instances, constraint testing makes use of symbolic execution of the

model to generate an input sequence.

2.7.4.4 Tests to Locate a Fault

In many design instances, the first set of input sequences and test strategies are used only to identify

faults. Based on the occurrence and type of faults, automatic test patterns are generated that localize

the fault for easy debugging.

2.7.4.5 Model Checkers

The designer can make use of models for checking designs that implement standard protocols (e.g.

interfaces). Appropriate checkers are placed in the design. The input is fed to the model as well as to

the design. When there is non-conformity the checkers fire to identify the location of the bug.

2.7.5 Transaction-level Modeling

Many levels of modeling are used in hardware design. RTL and functional-level modeling have

already been mentioned. For functional-level modeling, algorithms are implemented in tools like

MATLAB�, and in many design instances a design that is functionally verified is directly converted

into RTL. However, designs are becoming more and more complex. This is especially the case for

SoCandMPSoC,wheremore andmore components are being added on a single piece of silicon. The

interworking of the processors or other components on the chip is also becoming ever more critical.

This interworking at register transfer level is very complex as it deals with bus protocols or NoC

protocols. While analyzing the interworking of these components, usually this level of detail is not

required and interworking can only be studied by observing the physical links to make complex

packet or data transactions.

Transaction-level modeling (TLM) deals with designs that have multiple components. These

components communicate with each other on some medium. At TLM, the detailed RTL

functionality of the components and RTL protocol are not important. TLM separately deals with
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communications as transactions and the behavior of each component at the functional level.

Transaction-level modeling is easy to develop and fast to simulate, so enabling the designer to

verify the functionality of the design at transaction level early in the development life cycle. RTL

models, though, are developed in parallel but are very slow to simulate for verification and analysis

of the design. For a complex SoC design the architects need to develop these three models: the

functional model in the early stages, while the transaction-level and RTL are developed in parallel.

Building three models of a system requires them to be consistent at different stages of the design

cycle.

2.8 Example of a Verification Setup

Acomplete setup for testing a signal-processing based design in hardware is shown in Figure 2.19.A

Cþþ environment generates constrained random test vectors to be input to the algorithm running in

Cþþ and also to the translated design that is implemented in TLM. A transactor block converts the

test vector into transactions, and these are input to the transaction-level model. The output of the

model is also in terms of transactions. A transactor converts the transactions into results that can be

compared with the output of the simulation result. A checker compares the two results to find

functional equivalence. The input to the simulator is also fed to a coverage block. This block checks

the level of coverage and can direct the dynamic constrained random generator to generate the input

sample to maximize the coverage.

When the transaction model of Figure 2.19(a) is verified, the same setup can be used to test the

RTL design as in Figure 2.19(b). A driver block is added that converts a transaction into an RTL

detailed signal to be input to the device under test (DUT). The output of the RTL implementation of

the DUT is also converted back to transactions. Amonitor checks the cycle-by-cycle behavior of the

DUT using assertions.

2.9 SystemVerilog

Asdesigns becomemore complex in functionality, test-vector generation for appropriate coverage is

also becoming critical. Verification engineers have been using tools specific to verification, such as

Vera ande. Nevertheless there has been a need to have a unified language that supports both design

and verification of complex designs. SystemVerilog (SV) is such an initiative that offers a unified

language that is very powerful to model complex systems and provides advanced level constructs.

These constructs facilitate concise writing of test-benches and the analysis of coverage. Most of the

EDA tool vendors are continuously adding support for SV. The added features make SV a very

powerful language for hardware modeling and verification.

2.9.1 Data Types

SystemVerilog supports additional data types logic, int, bit, byte, longint and short-

int. The data type reg of Verilog is ambiguous because reg also means a physical register but

once inferred may result in a physical wire or a register. A logic type is similar to a reg where

all the bits in the variable of this type can take any one of four values: 0, 1, x and z. In the other

data types each bit can be 0 or 1. The variables of these types are automatically initialized to 0 at

time zero. Table 2.13 shows all the additional data types in SystemVerilog and their related

information.
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There are twoways to define an array in SV: packed and unpacked. SystemVerilog can operate on

an entire two-dimensional (2-D) array of packed data, whereas the unpacked arrays can be operated

only on an indexed value. The unpacked 1-D and 2-D arrays are declared as:

bit up_data [15:0];

bit [31:0] up_mem [0:511];

For packed cases the same arrays are declared as:

bit [15:0] p_data;

bit [31:0][0:511] p_mem1, p_mem2;

There are some constraints while operating on packed and unpacked arrays. The unpacked arrays

can be sliced as:

slice_data = up_mem[2][31:15];

// most significant byte at mem location 2

An operator can be applied on an entire packed array of data. An example is:

add_mem = p_mem1 + p_mem2;

Dynamic arrays can also be declared as:

bit [15:0] array[];

array = new[1023];

2.9.2 Module Instantiation and Port Listing

If the same names of ports are used in the instantiated module, the port names can be directly

mentioned using .<name> or can be simply skipped while only ports having different names are

mentioned. Consider a module defined as:

module FA(in1, in2, sum, clk, rest_n);

Assuming the instance has the first three ports with the same name, the instance can bewritten as:

FA ff (.in1, .sum, .in2, .clk(clk_global), .rest_n (rst_n));

Table 2.13 Additional datatypes in SystemVerilog

Data type Description States Example

logic User-defined Four states 0,1, x,z logic [15:0] a,b;

int 32-bit signed Two states 0,1 int num;

bit User-defined Two states 0,1 bit [5:0] in;

byte 8-bit signed Two states 0,1 byte t;

longint 64-bit signed Two states 0,1 longint p;

shortint 16-bit signed Two states 0,1 shortint q;
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or more concisely as:

FA ff (.*, .clk(clk_global), .rest_n (rst_n));

2.9.3 Constructs of the C/Cþþ Type

SV supports many C/Cþþ constructs for effective modeling.

2.9.3.1 typedef, struct and enum

The constructs typedef,struct andenum of C/Cþþ add descriptive power to SV. Their use is

the same as in C. Examples of their use are:

typedef bit [15:0] addr;

typedef struct {

addr src;

addr dst;

bit [31:0] data;

}packet_tcp;

module packet (input packet_tcp packet_in,

input clk,

output packet_tcp packet_out);

always_ff @(posedge clk)

begin

packet_out.dst <= packet_in.src;

packet_out.src� packet_in.data;

end

endmodule

The enum construct can be used to define states of an FSM. It can be used in place of the Verilog

parameter or define. The first constant gets a value of 0. When a value is assigned to some

constant, the following constants in the list are sequentially incremented. For example:

typedef enum logic [2:0]

{idle = 0,

read = 3,

dec, // = 4

exe // = 5} states;

states pipes;

The enum can also be directly defined as:

enum {idle, read=3, dec, exe} pipes;

case (pipes)

idle: pc = pc;

read: pc = pc+1;

.

.

endcase
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2.9.3.2 Operators

The advanced features in SVenable it to model complex HW features in very few lines of code. For

this, SV supports C-language like constructs such as:

operand1 OP ¼ operand2

where OP could be þ ,�, �,/, %,>>,<<,>>>,<<<, &, | or ^. For example, x¼ x þ 3 can be

written as:

x +=3;

SystemVerilog also supports post- and pre- increment and decrement operations þ þx, ��x,

xþ þ and x��.

2.9.4 for and do-while Loops

SystemVerilog adds C/Cþþ type for and do-while loops. An example of the for loop is:

for(i=0, j=0, k=0; i+j+k<10; i++, j++, k++)

An example of the do-while loop is:

do

begin

if (sel_1 == 0)

continue;

if (sel_2==3) break;

end

while (sel_2==0);

In this code, if sel_1 is zero, continuemakes the program jump to the start of the loop at do.

When sel_2 is 3, break makes the program exit the do-while loop, otherwise the loop is

executed until the time sel_2 is zero.

2.9.5 The always Procedural Block

SV helps in solving the issue of the sensitivity list. There are several variants of the always block

that give distinct functionality for inferring combinational or sequential logic. For a combinational

block, SV provides always_comb. Similarly always_latch infers a latch. and always_ff

realizes synchronous logic:

module adder(input signed [3:0] in1, in2,

input clk, rst_n,

output logic signed [15:0] acc);

logic signed [15:0] sum;

// Combinational block

always_comb

begin: adder

sum = in1 + in2 + acc;

end: adder
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// Sequential block

always_ff @(posedge clk or negedge rst_n)

if (!rst_n)

acc <= 0;

else

acc <= sum;

endmodule

2.9.6 The final Procedural Block

The final procedural block is like the initial block in that it too executes only once, but at the

end of the simulation. It is good for displaying a summary of results:

final

begin

$display($time, “simulation time, the simulation ends\n”);

end

2.9.7 The unique and priority Case Statements

InVerilog,while synthesizing the code, the usermay need to specify the type of logic intended to infer

from a case statement. The synthesis directives full-case and full-case parallel-case

are used to indicate, respectively, whether the user intends the logic to consider the first match it finds

in acase statement if there is a possibility offindingmore than onematch, or that the user guarantees

that all cases are handled in the coding and each case will only uniquely match with one of the

selections. This behavior is very specific to synthesis and has no implication on simulation.

SV provides equivalent directives, which areunique and priority, to guarantees the simulation

behaviormatcheswith the intended synthesis results. The examples below explain the two directives:

always @*

unique case (sel) //Equivalent to full-case parallel-case synthesis directive

2’b00: out = in0;

2’b01: out = in1;

2’b10: out = in2;

2’b11: out = in3;

default: out = x;

endcase

Thepriority case is used in instanceswhere the programmer intends to prioritize the selection

and more than one possible match is possible:

always @*

priority case (1’b1) //equivalent to full-case synthesis directive

irq1: out = in0;

irq3: out = in1;

irq2: out = in2;
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irq4: out = in3;

default: out = ‘x;

endcase

2.9.8 Nested Modules

SV supports nested modules, so that a module can be declared inside another module. For

example:

module top_level;

module accumulator(input clk, rst_n, input [7:0] data, output bit [15:0] acc);

always_ff @ (posedge clk)

begin

if (!rst_n)

acc <= 0;

else

acc <= acc + data;

end

endmodule

logic clk=0;

always #1 clk = �clk;

logic rst_n;

logic [7:0] data;

logic [15:0] acc_reg;

accumulator acc_inst(clk, rst_n, data, acc_reg);

initial

begin

rst_n = 0;

#10 rst_n = 1;

data = 2;

#200 $finish;

end

initial

$monitor($time, "%d, %d\n", data, acc_reg);

endmodule

2.9.9 Functions and Tasks

SVenhances Verilog functions and tasks with more features and flexibility. No begin and end is

required to place multiple statements in functions and tasks. Unlike with a function in Verilog that

always returns one value, SV functions can return a void. Use of the return statement is also

added, whereby a function or a task returns a value before reaching the end. In SV, the input and

output can also be passed by name; and, in a similarmanner tomodule port listing, default arguments

are also allowed.
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The following example shows a function that returns a void:

function void expression (input integer a, b, c, output integer d);

d = a+b-c;

endfunction: expression

Below is another example that illustrates a function returning before it ends:

function integer divide (input integer a, b);

if (b)

divide = a/b;

else

begin

$display(‘‘divide by 0\n’’);

return (’hx);

end

// Rest of the function

.

.

endfunction: divide

2.9.10 The Interface

The interface is amajor addition in SV. The interface encapsulates connectivity and replaces a group

of ports and their interworking with a single identity that can be used in module definition. The

interface can contain parameters, constants, variables, functions and tasks. The interface provides a

higher level of abstraction to users for modeling and test-bench generation.

Consider twomodules that are connected through an interface, as shown in Figure 2.20. The roles

of the ports input and output change from one interconnection to the other. The modport

configures the direction on ports in an interface to be an input or output.

interface local_bus(input logic clk);

bit rqst;

bit grant;

bit rw;

bit [4:0] addr;

wire [7:0] data;

modport tx (input grant,

output rqst, addr,rw,

inout data,

input clk);

modport rx (output grant,

input rqst, addr, rw,

inout data,

input clk);

endinterface

module src (input bit clk,

local_bus.tx busTx);

integer i;
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logic [7:0] value = 0;

assign busTx.data = value;

initial

begin

busTx.rw = 1;

for (i=0; i<32; i++)

begin

#2 busTx.addr = i;

value += 1;

end

busTx.rw = 0;

end

// Rest of the module details here

module dst ( input bit clk,

local_bus.rx busRx);

logic [7:0] local_mem [0:31];

always @(posedge clk)

if (busRx.rw)

local_mem[busRx.addr] = busRx.data;

endmodule

// In the top-level module these modules are instantiated with interface

declaration.

module local_bus_top;

logic clk = 0;

local_bus bus(clk); // the interface declaration

always #1 clk = �clk;

src SRC (clk, bus.tx);

dst DST (clk, bus.rx);

initial

$monitor ($time, "\t%d %d %d %d\n", bus.rx.rw, bus.rx.addr,

bus.rx.data, DST.local_mem[bus.rx.addr]);

endmodule

RXTX
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1

data

Local Bus
clk clk
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rw

Figure 2.20 Local bus interface between two modules
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2.9.11 Classes

In SV, as in Cþþ , a class consists of data and methods. The methods are functions and tasks that

operate on the data in the class. SV supports key aspects of object-oriented programming (OOP),

including inheritance, encapsulation and polymorphism.

A class is declared with internal or external declared functions that operate on the data defined in

the class. The example below defines a class with an internal and external declared method:

class frame{

byte dst_addr;

bit [3:0] set_frame_type;

data_struct payload;

function byte get_src_addr ()

return src_addr;

endfunction

extern task assign_dst_addr_type (input byte addr, input bit[3:0] type);

endclass

task frame::assign_dst_addr(input byte addr, input bit [3:0] type);

dst_addr = addr;

frame_type = type;

endtask

The syntax only declares an object class of typeframe. One ormultiple instances of this class can

be created as follows:

frame first_frame = new;

A class constructor can also be used to initialize data as:

class frame

function new (input byte addr, input [3:0] type)

dst_addr = addr;

frame_type = type;

endfunction

.

.

endclass

// Set the dst and type of the frame

frame msg_frame = new(8’h00, MSG);

Another class can inherit data andmethods of this class and adds newmethods and can change the

existing methods.

class warning_frame extends frame;

bit [2:0] warning_type;

function MSG_TYPE send_warning ();

return warning_type;

endfuction;

endclass
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Using object-oriented programming (OOP), the classes defined in OVM and VMM can be

extended for effective verification. For example, vmm_data class has many member functions,

including set_log (), display(), copy() and compare() [15]. These methods can be

used and new methods can be added by extending this base class:

class burst_frame extends vmm_data;

SV restricts inheritance to single inheritance only. The derived class can override the methods of

the parent class. The derived class can also use members of the parent class with a keyword super:

class abs_energy;

integer amp;

function integer energy ();

energy = amp*amp;

endfunction

endclass

A derived class can be declared that overrides the function energy:

class mod_energy extends abs_energy;

integer amp;

function integer energy();

energy = 0.5*super.energy() + amp * super.amp;

endfunction

endclass

SValso supports data hiding and encapsulation. To restrict the scope of a member to the parent

class only, the member is declared as local or protected. The local members are accessible only to

methods defined inside the class, and these members cannot be inherited by derived classes as they

are not visible to them. A protected method can be inherited by a derived class.

Virtual classes or methods in SV provide polymorphism. These classes are used to create a

template. Using this template, real classes are derived. The virtual methods defined in a virtual class

are overridden by the derived classes:

virtual class frame;

ip frame,

atm frame,

stm frame

virtual class frame;

virtual function integer send (bit [255:0] frame_data);

endfunction

endclass

The derived classes are:

class ethernet extends frame;

function integer send ( bit [255:0] frame_data);

// The contents of the function

.

.

endfuntion

endclass
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class atm extends frame;

frame gateway_frame [10];

Frames of various types can be declared and assigned to the array:

ethernet frame_e = new;

atm frame_a = new;

gateway_frame [0] = frame_e;

gateway_frame [1] = frame_a;

The statement

gateway_frame [1].send();

makes the compiler finds out which frame will be sent.

2.9.12 Direct Programming Interface (DPI)

SV can directly access a function written in C using a DPI. Similarly a function or task written in SV

can be exported to a C program. SVmakes interworking of C and SV code very trivial and there is no

need to use PLI. The C functions in SVare then called using import directive, while functions and

tasks of SV to be used in a C function are accessible by using exportDPI declaration. The illustration

here shows DPI use:

// top-level module that instantiates a module that calls a C function

module top_level();

moduleCall_C Call_C (rst, clk, in1, in2, out1, . . .;
.

.

.

endmodule

The instantiated module Call_C of type moduleCall_C uses an import directive for

interfacing with a C program:

module moduleCall_C(rst, clk, in1, in2, out1,...);

.

.

import "DPI-C" context task fuctionC (....);

always@(posedge clk)

functionC (rst,in1, in2, out1,....);

export "DPI-C" task CallVeri1;

export "DPI-C" task CallVeri2;

task CallVeri1 (input int addr1, output int data1);

.

.

endtask
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.

.

task CallVeri2 (input int addr2, output int data2);

.

.

endtask

endmodule

TheCfunctionfunctionC is called fromtheSVmodule, and this function further callsfunct1

() and funct2(). These two functions use tasks CallVeri1 and CallVeri2 defined in SV:

// required header files

void fuctionC (int rst, ....)

{

.

.

rest = rst;

.

funct1(...);

funct2(...);

.

.

}

void funct1 (void)

{

.

.

CallVeri1(....);

.

}

void funct2 (void)

{

.

.

CallVeri2(....);

.

}

2.9.13 Assertion

Assertion is used to validate the behavior of a design. It is used in the verification module or in an

independent checker module. SV supports two types of assertion, immediate and concurrent. The

immediate assertion is like an if-else statement. The expression in assert is checked for the

desired behavior. If this expression fails, SV provides that one of the three severity system tasks can

be called. These tasks are $warning, $error and $fatal. The user may also use $infowhere

no severity on assertion is required. Below is an example:

assert(value>=5)

else $warning(“Value above range”);
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Concurrent assertion checks the validity of a property. There are several ways to build properties;

these may be compound expressions using logical operators or sequences:

assert property (request && !ready)

An example of a sequence is:

assert property (@posedge clk) req |–> ##[2:5] grant);

Here, the implication operator (|–>) checks on everyposedge ofclk the assertion of req, and

when it is asserted then the grant must be asserted in 2 to 5 following clock cycles.

2.9.14 Packages

SV has borrowed the concept of a package from VHDL. By using package, SV can share user-

defined type definitions across multiple modules, interfaces, other programs and packages. The

package can contain, for example, parameters, constants, type definitions, tasks, functions, import

statements from other packages and global variables. Below is an example:

package FSM_types

// global typedef

typedef enum FSM{INVALID, READ, DECODE, EXECUTE, WRITE} pipelines;

bit idle; // global variable initialize to 0

task invalid_cycle (input [2:0] curret_state) //global task

if (current_state == INVALID)

$display(“invalid state”);

$finish;

endtask: invalid_cycle

endpackege

2.9.15 Randomization

SV supports unconstrained and constrained random value generation. The function randomize

returns 1 if it successfully generates the constrained random value, otherwise it returns 0.

bit [15:0] value1, value2;

bit valid;

initial

begin

for(i=0; i<1024; i++)

valid = randomize (value1, value2);

end

end

The randomization can also be constrained by adding a with clause. The example given above

can be constrained as:

valid = randomize (value1, value2); with (value1>32; value1
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2.9.16 Coverage

The coverage in SV gives a quantitative measure of the extent that the functioning of a DUT is

verified is the simulation environment. The statistics are gathered using coverage groups. With a

coverage group, the user lists variables as converpoints. The simulator collects statistics of the

values these variables take in simulation. The simulator stores the values of these variables in a

coverage database.

module stimulus;

logic [15:0] operand1, operand2;

.

.

covergroup cg_operands @ (posedge clk)

o1: coverpoint = operand1;

o2: coverpoint = operand2;

endgroup : cg_operands

.

.

.

cg_operands cover_ops = new( );

.

endmodule

Each coverage point contains a set of bins. These bins further refine the values the variable takes

for each range.

covergroup cg_operands @ (posedge clk)

o1: coverpoint = operand1 {

bins low = {0,63};

bins med = {64,127};

bins high = {128,255};

}

o2: coverpoint = operand2 {

bins low = {0,63};

bins med = {64,127};

bins high = {128,255};

}

endgroup : cg_operands.

The coverage group can be used inside a module, class or interface.

Exercises

Exercise 2.1

WriteRTLVerilog code to implement the design given in Figure 2.21. Generate the appropriate reset

signal for the feedback register used in the design. Develop a test plan andwrite a stimulus to test the

design for functional correctness. Alsowrite a test case to count the number of cycles it takes for the

register out_reg to overflow for in1 and in2 and sel set to 1. Also, code the design and

stimulus in SystemVerilog.
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Exercise 2.2

Design an ALU datapath that performs the following operations in parallel on two 16-bit signed

inputs A and B and assigns the value of one of the outputs to 16-bit C. The selection of operation is

based on a 2-bit selection line. Code the design in bothVerilog and SystemVerilog.Write test vectors

to verify the implementation.

C=A+B

C=A-B

C=A&B

C=A|B

Exercise 2.3

Code the logic of the following equations in RTL Verilog:

acc0 = acc1 + in1;

acc1= acc0 + in2;

out = acc0 + acc1;

where in1 and in2 are two 32-bit inputs, out is a 40-bit output, and acco and acc1 are two

40-bit internal registers. At every positive edge of a clock the inputs are fed to the design and out is

produced.

33

+

in1

2 10

+

out_regrst-n

clk

overflow
sum [6]

sum 7

6

sel
2

4
4 4

in2

{ l′b0, in1} { l′b0, in2}

Figure 2.21 Digital design at register transfer level with a feedback register
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Exercise 2.4

Write RTLVerilog code of the module device_under_test given in Figure 2.22. Four 8-bit

inputs,in1,in2,in3 andin4, are input to four 8-bit registers,R0,R1,R2 andR3, respectively, at

every positive edge of the clock. Four values in these registers are added, and bitwiseANDoperation

is performed on the values stored in these registers to produce out_1 and out_2.

Exercise 2.5

Write an RTL Verilog code and its stimulus to implement and test the module device_

under_test given in Figure 2.23. The inputs and outputs of the module are shown. Generate a

20-time unit clockclk from the stimulus, as werll as arst_n signal to reset the device before the first

positive edge of the clock. Thewidths of each input and output signals are shown.Write test vectors by

varying all the input signals in each test. Make sure each test vector is valid only for one clock period.

Use the monitor statement to print the values of the inputs and outputs on the screen. Finally, rewrite

the stimulus in SystemVerilog and use coverage to test the design for selective ranges of input values.

Use datapaths of exercise 2.2 for the ALU.

Exercise 2.6

Design a datapath with three 8-bit accumulators. The first accumulator, acc1, adds a 4-bit input

data in acc1 in every clock cycle. The second accumulator, acc2, adds the first accumulator in

itself, and the third accumulator, acc3, adds the first and second accumulators in itself in every

clock cycle. Each accumulator has an asynchronous reset. Draw theRTL-level diagram and code the

design in RTL Verilog.

register file

module: device_under_test

out_1

out_2

8

8

8
8

8

in1

in2
in3

in4
8

R0

R1

R2

R3

clk

+

&

Figure 2.22 Digital design at register transfer level showing the combinational and synchronous

components
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Exercise 2.7

Write RTL Verilog code to implement the design given in Figure 2.24. The feedback register

needs to be reset using a negative-level asynchronous reset. Write a stimulus for the design. The

out is the output of the module, and in is the input. Identify other signals that need to be defined

as ports of the module.
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16
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write_sel
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s
e

l_
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a
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_
s
e

l
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module: device_under_test
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Figure 2.23 Digital design with multiple inputs and outputs
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Figure 2.24 RTL design of a digital circuit
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Exercise 2.8

DrawanRTLdiagram for the followingVerilog code.Clearly specify the datawidths of all thewires,

and show multiplexers, registers, reset and clock signals.

Exercise 2.9

Partition the RTL-level design given in Figure 2.25 into two or three modules for better synthesis

result. Write RTLVerilog code for the design. For the combinational cloud, write an empty function

or a task to implement the interfaces.

Exercise 2.10

Design architecture, and implement it in RTLVerilog to realize the following difference equation:

y½n� ¼ x½n��x½n�1� þ x½n�2� þ x½n�3� þ 0:5y½n�1� þ 0:25y½n�2�:

Implement multiplication with 0.5 and 0.25 by shift operations.

module test_module (input [31:0] x0,

input [1:0] sel, input clk,

rst_n, output reg [31:0] y0);

reg [31:0] x1, x2, x3;

reg [31:0] y1;

wire [31:0] out;

assign out = (x0 + x1 + x2 + x3 + y1)>>>2;

always @(posedge clk or negedge rst_n)

begin

if(!rst_n) begin

x1 <= 0;

x2 <= 0;

x3 <= 0;

end

else if (sel==0) begin

x3 <= x2;

x2 <= x1;

x1 <= x0;

end

else if (sel == 01) begin

x3 <= x1;

x2 <= x0;

x1 <= x2;

end

else begin

x3 <= x3;

x2 <= x2;

x1 <= x0;

end

end

always @ (posedge clk or negedge

rst_n) begin

if(!rst_n) begin

y1 <= 0;

y0 <= 0;

end

else begin

y1 <= y0;

y0 <= out;

end

end

endmodule
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3

System Design Flow and
Fixed-point Arithmetic

Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein

3.1 Overview

This chapter describes a typical design cycle in the implementation of a signal processing

application. The first step in the cycle is to capture the requirements and specifications (R&S)

of the system. The R&S usually specify the sampling rate, a quantitative measure of the system’s

performance, and other application-specific parameters. The R&S constrain the designer to explore

different design options and algorithms tomeet them in themost economical manner. The algorithm

exploration is usually facilitated by MATLAB�, which is rich in toolsets, libraries and functions.

After implementation and analysis of the algorithm inMATLAB�, usually the code is translated into

higher level programming languages, for example, C/Cþþ or C#.

This requires the chapter to focus on numbering systems. Representing signed numbers in two’s

complement format is explained. In this representation, the most significant bit (MSB) has negative

weight and the remainder of the bits carry positive weights. Although the two’s complement

arithmetic greatly helps addition and subtraction, as subtraction can be achieved by addition, the

negative weight of the sign bit influences multiplication and shifting operations. As the MSB of

a signed number carries negative weight, the multiplication operation requires different handling for

different types of operand. There are four possible combinations for multiplication of two numbers:

unsigned–unsigned, signed–unsigned, unsigned–signed and signed–signed. The chapter describes

two’s complement multiplication to highlight these differences. Scaling of signed number is

described as it is often needed while implementing algorithms in fixed-point format.

Characteristics of two’s complement arithmetic from the hardware (HW) perspective are listed

with special emphasis on corner cases. The designer needs to add additional logic to check the corner

cases and dealwith them if they occur. The chapter then explains floating-point format and builds the

rationale of using an alternate fixed-point format for DSP system implementation. The chapter also
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justifies this preference in spite of apparent complexities and precision penalties. Cost, performance

and power dissipation are the main reasons for preferring fixed-point processors and HW for signal

processing systems. The fixed-point implementations arewidely used for signal processing systems

whereas floating-point processors are mainly used in feedback control systemswhere precision is of

paramount importance. The chapter also highlights that currently integrated high gate counts on

FPGAs encourages designers to use floating-point blocks as well for complex DSP designs in

hardware.

The chapter then describes the equivalent format used in implementing floating-point algorithms

in fixed-point form. This equivalent format is termed the Qn.m format. All the floating-point

variables and constants in the algorithm are converted to Qn.m format. In this format, the designer

fixes the place of an implied decimal point in anN-bit number such that there are n bits to the left and

m bits to the right. All the computations in the algorithm are then performed on fixed-point numbers.

The chapter gives a systematic approach to converting a floating-point algorithm inMATLAB� to

its equivalent fixed-point format. The approach involves the steps of levelization, scalarization, and

then computation of ranges for specifying the Qn.m format for different variables in the algorithm.

The fixed-point MATLAB� code then can easily be implemented. The chapter gives all the rules to

be followed while performing Qn.m format arithmetic. It is emphasized that it is the developer’s

responsibility to track and manage the decimal point while performing different arithmetic

operations. For example, while adding two different Q-format numbers, the alignment of the

decimal point is the responsibility of the developer. Similarly, while multiplying two Q-format

signed numbers the developer needs to throw away the redundant sign bit. This discussion leads to

some critical issues such as overflow, rounding and scaling in implementing fixed-point arithmetic.

Bit growth is another consequence of fixed-point arithmetic, which occurs if two different Q-format

numbers are added or two Q-format numbers are multiplied. To bring the result back to pre-defined

precision, it is rounded and truncated or simply truncated. Scaling or normalization before

truncation helps to reduce the quantization noise. The chapter presents a comprehensive account

of all these issues with examples.

For communication systems, the noise performance of an algorithm is critical, and the finite

precision of numbers also contributes to noise. The performance of fixed-point implementation

needs to be tested for different ratios of signal to quantization noise (SQNR). To facilitate

partitioning of the algorithm in HWand SWand its subsequent mapping on different components,

the chapter describes algorithm design and coding guidelines for behavioral implementation of the

system. The code should be structured such that the algorithm developers, SW designers and HW

engineers can correlate different implementations and can seamlessly integrate, test and verify the

design and can also fall back to the original algorithm implementation if there is any disagreement in

results and performance. FPGAvendors like Xilinx and Altera in collaboration withMathworks are

also providing Verilog code generation support in several Simulink blocks. DSPbuilder from

Altera [1] and System Generator from Xilinx [2] are excellent utilities. In a Simulink environment

these blocksets are used for model building and simulation. These blocks can then be translated

for HWsynthesis. Amodel incorporating these blocks also enables SW/HWco-simulation. This co-

simulation environment guarantees bit and cycle exactness between simulation and

HW implementation. MATLAB� also provides connectivity with ModelSim though a Link to

ModelSim utility.

Logic and arithmetic shifts of numbers are discussed. It is explained that a full analysis should be

performed while converting a recursive digital system to fixed-point format. Different computa-

tional structures exist for implementing a recursive system. The designer should select a structure

that is least susceptible to quantization noise. TheMATLAB� filter design toolbox is handy to do the

requisite analysis and design space exploration. The chapter explains this issue with the help of an
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example. The chapter ends by giving examples offloating-pointC code and its equivalent fixed-point

C conversion to clarify the differences between the two implementations.

To explain different topics in the chapter several numerical examples are given. These examples

use numbers in binary, decimal and hexadecimal formats. To remove any confusion among these

representations, we use differentways of distinguishing the formats. A binary number iswrittenwith

a base 2 or b, such as 1001b and 1002. The binary numbers are also represented in Verilog format, for

example 30b1001. Decimal numbers are written without any base or with a base 10, like�0.678 and
�0.67810. The hexadecimal representation is 0�23df.

3.2 System Design Flow

3.2.1 Principles

This section looks at the design flow for an embedded system implementing a digital signal

processing application. Such a system in general consists of hybrid target technologies. In Chapter 1

the composition of a representative system is discussed in detail.While designing such an embedded

system, the application is partitioned into hardware and software components.

Figure 3.1 depicts the design flow for an embedded signal processing application. CapturingR&S

is the first step in the design cycle. The specifications are usually in terms of requirements on the

sampling rate, a quantitativemeasure of performance in the presence of noise, and other application-

specific parameters. For example, for a communication system a few critical requirements are:
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Figure 3.1 System-level design components
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maximum supported data rate in bits per second (bps) at the transmitter, the permissible bit error rate

(BER), the channel bandwidth, the carrier and intermediate frequencies, the physical form factor,

power rating, user interfaces, and so on. The R&S summary helps the designer to explore different

design options and flavors of algorithms.

The requirements related to digital design are forwarded to algorithm developers. The algorithm

developers take these requirements and explore digital communication techniques that can meet the

listed specifications. These algorithms are usually coded in behavioral modeling tools with rich pre-

designed libraries of functions and graphical aids. MATLAB� has become the tool of choice for

algorithm development and exploration. It is up to an experienced designer to finalize an algorithm

based on its ease of implementation and its compliance to the R&S of the design. After the

implementation of the algorithm in MATLAB�, usually the code is translated into high level

language, for example, C/Cþþ or C#. AlthoughMATLAB� has been augmented with fixed-point

tools and a compiler that can directly convertMATLAB� code toCorCþþ , but inmany instances a

hand-coded implementation in C/Cþþ is preferred for better performance. In many circumstances

it is also important for the designer to comprehend the hidden complexities ofMATLAB� functions:

first tomakewise HW/SWpartitioning decisions, and then to implement the design on an embedded

platform consisting of GPP, DSPs, ASICs and FPGSs.

Partitioning of the application into HW/SW is a critical step. The partitioning is driven by factors

like performance, cost, form factor, power dissipation, time to market, and so on. Although an all-

software implementation is easiest to code and implement, in many design instances it may not be

feasible. Then the designer needs to partition the algorithm written in C/Cþþ into HW and SW

parts. Awell-structured, computationally intensive and easily separable code is preferably mapped

on hardware, whereas the rest of the application is mapped in software. Both the parts are converted

to fixed-point format.

For the SW part a target fixed-point DSP is selected and the designer takes the floating-point code

that ismeant for SWimplementation and converts it to fixed-point format. This requires the designer

to convert all the variables and constants earlier designed using double- or single-precision floating-

point format to standard fixed-point variables of type char, short and int, requiring 8-bit, 16-bit or

32-bit precisions, respectively. Compared with fixed-point conversion for mapping on a DSP, the

conversion to fixed-point for HW mapping requires more deliberation because any number of bits

can be used for different variables and constants in the code. Each extra bit in HW costs additional

resources, and finding the optimal width of all variables requires several iterations with different

precisions of variables settings.

After converting the code to the requisite fixed-point format, it is always recommended to

simulate both the HWand SWparts and characterize the algorithm for different simulated signal-to-

noise ratios. After final partitioning and fixed-point conversion, the HW designer explores different

architectures for the implementation. This book presents several effective techniques to be used for

design space exploration. The designed architecture is then coded in a hardware description

language (HDL), maybe Verilog or VHDL. The designer needs to write test vectors to thoroughly

verify the implementation. In instances where part of the application is running in SWon aDSP, it is

critical to verify the HW design in a co-verification environment. The designer can use System-

Verilog for this purpose. Several commercially available tools like MATLAB� also help the

designer to co-simulate and co-verify the design. The verified RTL code is then synthesized on a

target technology using a synthesis tool. If the technology is an FPGA, the synthesis tool also

generates the final layout. In the case of an ASIC, a gate-level netlist is generated. The designer can

perform timing verification and then use tools to lay out the design.

In parallel, a printed circuit board (PCB) is designed. The board, along with all the necessary

interfaces like PCI, USB and Ethernet, houses the hybrid technologies such as DSP, GPPs, ASICs
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and FPGAs. Once the board is ready the first task is to check all the devices on the board and their

interconnections. The application is then mapped where the HW part of it runs on ASICs or FPGAs

and the SW executes on DSPs and GPPs.

3.2.2 Example: Requirements and Specifications of a UHF
Software-defined Radio

GatheringR&S is the first part of the system design. This requires a comprehensive understanding of

different stakeholders. The design cycle starts with visualizing different components of the system

and then breaking up the system into itsmain components. In the case of aUHF radio, this amounts to

breaking the system down into an analog front end (AFE) and the digital software-defined radio

(SDR). The AFE consists of an antenna unit, a power amplifier and one or multiple stages of RF

mixer, whereas the digital part of the receiver takes the received signal at intermediate frequency (IF)

and its corresponding transmitter part up-converts the baseband signal to IF and passes it to AFE.

Table 3.1 lists general requirements on the design. These requirements primarily list the power

output, spurious emissions and harmonic suppression outside the band of operation, and the

frequency stability of the crystal oscillator in parts per million (ppm). A frequency deviation of

2 ppm amounts to 0.0002% over the specified temperature range with respect to the frequency at

ambient temperature 25 �C. This part also listsmean time between failure (MTBF) andmean time to

recover (MTTR). Table 3.2, lists transmitter and receiver specifications. These are important

Table 3.2 Transmitter and receiver characteristics

Characteristic Specification

Frequency range BW 420MHz to 512MHz

Data rate Up to 512 kbps multi-channel non-line of sight

Channel Multi-path with 15ms delay spread and 220 km/h relative

speed between transmitter and receiver

Modulation OFDM supporting BPSK, QPSK and QAM

FEC Turbo codes, convolution, Reed–Solomon

Frequency hopping > 600 hops/s, frequency hopping on full hopping band

Waveforms Radio works as SDR and should be capable of accepting

additional waveforms

Table 3.1 General requirement specification of a UHF radio

Characteristics Specification

Output power 2W

Spurious emission < 60 dB

Harmonic suppression > 55 dB

Frequency stability 2 ppm or better

Reliability > 10,000 hours MTBF minimum

< 30 minutes MTTR

Handheld 12V DC nickel metal hydride, nickel cadmium

or lithium-ion (rechargeable) battery pack
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because the algorithm designer has to explore digital communication techniques to meet them. The

specification listsOFDM to be used supportingBPSK,QPSKandQAMmodulations. The technique

caters for multipath effects and fast fading due to Doppler shifts as the transmitter and receiver are

expected to move very fast relative to each other. The communication system also supports different

FEC techniques at 512 kbps. Further to this the system needs to fulfill some special requirements.

Primarily these are to support frequency hopping and provide flexibility and programmability in the

computing platform for mapping additional waveforms. All these specifications pose stringent

computational requirements on the digital computing platform and at the same time require them to

be programmable; that is, to consist of GPP, DSP and FPGA technologies.

The purpose of including this example is not to entangle the reader’s mind in the complexities of

a digital communication system. Rather, it highlights that a complete list of specifications is critical

upfront before initiating the design cycle of developing a signal processing system.

3.2.3 Coding Guidelines for High-level Behavioral Description

The algorithm designer should always write MATLAB� code for easy translation into C/Cþþ and

its subsequent HW/SW partitioning, where HW is implementation is in RTL Verilog and SW

components are mapped on DSP. Behavioral tools like MATLAB� provide a good environment for

the algorithm designer to experiment with different algorithms without paying much attention to

implementation details. Sometimes this flexibility leads to a design that does not easily go down in

the design cycle. It is therefore critical to adhere to the guidelines while developing algorithms in

MATLAB�. The code should be written in such a way that eases HW/SW partitioning and fixed-

point translation. The HW designer, SW developer and verification engineer should be able to

conveniently fall back to the original implementation in case of any disagreement. The following are

handy guidelines.

1. The code should be structured in distinct components defined as MATLAB� functions with

defined interfaces in terms of input and output arguments and internal data storages. This helps in

making meaningful HW/SW partitioning decisions.

2. All variables and constants should be defined and packaged in data structures. All user-defined

configurations should preferably be packaged in one structure while system design constants are

placed in another structure. The internal states must be clearly defined as structure elements for

each block and initialized at the start of simulation.

3. The code must be designed for the processing of data in chunks. The code takes a predefined

block of data from an input FIFO (first-in/first-out) and produces a block of data at the output,

storing it in an output FIFO, mimicking the actual system where usually data from an analog-to-

digital converter is acquired in a FIFO or in a ping-pong buffer and then forwarded to HWunits

for processing. This is contrary to the normal tendency followed while coding applications in

MATLAB�, where the entire data is read from a file for processing in one go. Each MATLAB�

function in the application should process data in blocks. Thisway of processing data requires the

storing of intermediate states of the system, and these are used by the function to process the next

block of data.

An exampleMATLAB� code thatworks on chunks of data for simple basebandmodulation is shown

below. The top-level module sets the user parameters and calls the initialization functions and main

modulation function. The processing is done on a chunk-by-chunk basis.

86 Digital Design of Signal Processing Systems



% BPSK = 1, QPSK = 2, 8PSK = 3, 16QAM = 4

% All-user defined parameters are set in structure USER_PARAMS

USER_PARAMS.MOD_SCH = 2; %select QPSK for current simulation

USER_PARAMS.CHUNK_SZ = 256; %set buffer size for chunk by chunk processing

USER_PARAMS.NO_CHUNKS = 100;% set no of chunks for simulation

% generate raw data for simulation

raw_data = randint(1, USER_PARAMS.NO_CHUNKS*USER_PARAMS.CHUNK_SZ)

% Initialize user defined, system defined parameters and states in respective

% Structures

PARAMS = MOD_Params_Init(USER_PARAMS);

STATES = MOD_States_Init(PARAMS);

mod_out = [];

% Code should be structured to process data on chunk-by-chunk basis

for iter = 0:USER_PARAMS.NO_CHUNKS-1

in_data = raw_data

(iter*USER_PARAMS.CHUNK_SZ+1:USER_PARAMS.CHUNK_SZ*(iter+1));

[out_sig,STATES]= Modulator(in_data,PARAMS,STATES);

mod_out = [mod_out out_sig];

end

The parameter initialization function sets all the parameters for the modulator.

% Initializing the user defined parameters and system design parameters

% In PARAMS

function PARAMS = MOD_Params_Init(USER_PARAMS)

% Structure for transmitter parameters

PARAMS.MOD_SCH = USER_PARAMS.MOD_SCH;

PARAMS.SPS = 4; % Sample per symbol

% Create a root raised cosine pulse-shaping filter

PARAMS.Nyquist_filter = rcosfir(.5 , 5, PARAMS.SPS, 1);

% Bits per symbol, in this case bits per symbols is same as mod scheme

PARAMS.BPS = USER_PARAMS.MOD_SCH;

% Lookup tables for BPSK, QPSK, 8-PSK and 16-QAM using gray coding

BPSK_Table = [(-1 + 0*j) (1 + 0*j)];

QPSK_Table = [(-.707 - .707*j) (-.707 + .707*j)...

(.707 - .707*j) (.707 + .707*j)];

PSK8_Table = [(1 + 0j) (.7071 + .7071i) (-.7071 + .7071i) (0 + i)...

(-1 + 0i) (-.7071 - .7071i) (.7071 - .7071i) (0 - 1i)];

QAM_Table = [(-3 + -3*j) (-3 + -1*j) (-3 + 3*j) (-3 + 1*j) (-1 + -3*j)...

(-1 + -1*j) (-1 + 3*j) (-1 + 1*j) (3 + -3*j) (3 + -1*j)...

(3 + 3*j) (3 + 1*j) (1 + -3*j) (1 + -1*j) (1 + 3*j) (1 + 1*j)];

% Constellation selection according to bits per symbol

if(PARAMS.BPS == 1)

PARAMS.const_Table = BPSK_Table;

elseif(PARAMS.BPS == 2)

PARAMS.const_Table = QPSK_Table;

elseif(PARAMS.BPS == 3)

PARAMS.const_Table = PSK8_Table;

elseif(PARAMS.BPS == 4)

PARAMS.const_Table = QAM_Table;
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else

error(ERROR!!! This constellation size not supported)

end

Similarly the state initialization function sets all the states for the modulator for chunk-by-chunk

processing of data. For this simple example, the symbols are first zero-padded and then they are

passed through a Nyquist filter. The delay line for the filter is initialized in this function. For more

complex applications this function may have many more arrays.

function STATES = MOD_States_Init(PARAMS)

% Pulse shaping filter delayline

STATES.filter_delayline = zeros(1,length(PARAMS.Nyquist_filter)-1);

And finally the actual modulation function performs the modulation on a block of data.

function [out_data, STATES] = Modulator(in_data, PARAMS, STATES);

% Bits to symbols conversion

sym = reshape(in_data,PARAMS.BPS,length(in_data)/PARAMS.BPS)’;

% Binary to decimal conversion

sym_decimal = bi2de(sym);

% Bit to symbol mapping

const_sym = PARAMS.const_Table(sym_decimal+1);

% Zero padding for up-sampling

up_sym = upsample(const_sym,PARAMS.SPS);

% Zero padded signal passed through Nyquist filter

[out_data, STATES.filter_delayline] =

filter(PARAMS.Nyquist_filter,1,up_sym,

STATES.filter_delayline);

This MATLAB� example defines a good layout for implementing a real-time signal processing

application for subsequent mapping in software and hardware. In complex applications some of the

MATLAB� functionsmay bemapped in SWwhile others are mapped in HW. It is important to keep

this aspect of system design from inception and divide the implementation into several components,

and for each component group its data of parameters and states in different structures.

3.2.4 Fixed-point versus Floating-point Hardware

From a signal processing perspective, an algorithm can be implemented using fixed- or floating-

point format. The floating-point format stores a number in terms of mantissa and exponent.

Hardware that supports the floating point-format, after executing each computation, automatically

scales the mantissa and updates the exponent to make the result fit in the required number of bits in

a defined way. All these operations make floating-point HW more expensive in terms of area and

power than fixed-point HW.
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A fixed-point HW, after executing a computation, does not track the position of the decimal point

and leaves this responsibility to the developer. The decimal point is fixed for each variable and is

predefined. By fixing the point a variable can take only a fixed range of values. As the variable

is bounded, if the result of a calculation falls outside of this range the data is lost or corrupted. This

is known as overflow.

There are various solutions for handling overflows in fixed-point arithmetic. Handling overflows

requires saturating the result to itsmaximumpositiveorminimumnegativevalue that canbe assigned

to a variable defined in fixed-point format. This results in reduced performance or accuracy. The

programmer can fix the places of decimal points for all variables such that the arrangement prevents

any overflows. This requires the designer to perform testingwith all the possible data and observe the

ranges of values all variables take in the simulation. Knowing the ranges of all the variables in the

algorithm makes determination of the decimal point that avoids overflow very trivial.

The implementation of a signal processing and communication algorithm on a fixed-point

processor is a straigtforward task. Owing to their low power consumption and relative cheapness,

fixed-point DSPs are very common in many embedded applications. Whereas floating-point

processors normally use 32-bit floating-point format, 16-bit format is normally used for fixed-

point implementation. This results in fixed-point designs using lessmemory. On-chipmemory tends

to occupy the most silicon area, so this directly results in reduction in the cost of the system. Fixed-

point designs are widely used in multimedia and telecommunication solutions.

Although the floating-point option is more expensive, it gives more accuracy. The radix point

floats around and is recalculated with each computation, so the HWautomatically detects whether

overflow has occurred and adjusts the decimal place by changing the exponent. This eliminates

overflow errors and reduces inaccuracies caused by unnecessary rounding.

3.3 Representation of Numbers

3.3.1 Types of Representation

All signal processing applications deal with numbers. Usually in these applications an analog signal

is first digitized and then processed. The discrete number is represented and stored inN bits. Let this

N-bit number be a¼ aN � 1. . .a2a1a0. This may be treated as signed or unsigned.

There are several ways of representing a value in these N bits. When the number is unsigned then

all the N bits are used to express its magnitude. For signed numbers, the representation must have

a way to store the sign along with the magnitude.

There are several representations for signed numbers [3–7]. Some of them are one’s complement,

sign magnitude [8], canonic sign digit (CSD), and two’s complement. In digital system design the

last two representations are normally used. This section gives an account of two’s complement

representation, while the CSD representation is discussed in Chapter 6.

3.3.2 Two’s Complement Representation

In two’s complement representation of a signed number a¼ aN � 1. . .a2a1a0, themost significant bit

(MSB) aN � 1 represents the sign of the number. If a is positive, the sign bit aN � 1 is zero, and the

remaining bits represent the magnitude of the number:

a ¼
XN�2
i¼0

ai 2
i for a � 0 ð3:1Þ
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Therefore the two’s complement implementation of an N-bit positive number is equivalent to the

(N� 1)-bit unsigned value of the number. In this representation, 0 is considered as a positive number.

The range of positive numbers that can be represented in N bits is from 0 to (2N�1� 1).

For negative numbers, theMSB aN� 1¼ 1 has a negativeweight and all the other bits havepositive

weight. A closed-form expression of a two’s complement negative number is:

a ¼ �2N�1þ
XN�2
i¼0

ai2
i for a < 0 ð3:2Þ

Combining (3.1) and (3.2) into (3.3) gives a unified representation to two’s complement numbers:

a ¼ �2N�1aN�1þ
XN�2
i¼0

ai2
i ð3:3Þ

It is also interesting to observe an unsigned equivalent of negative two’s complement numbers.

Many SW and HW simulation tools display all numbers as unsigned numbers. While displaying

numbers these tools assign positive weights to all the bits of the number. The equivalent unsigned

representation of negative numbers is given by:

2N� aj j ð3:4Þ

where aj j is equal to the absolute value of the negative number a.

Example: �9 in a 5-bit two’s complement representation is 10111. The equivalent unsigned

representation of �9 is 25� 9¼ 23.

3.3.3 Computing Two’s Complement of a Signed Number

The two’s complement of a signed number refers to the negative of the number. This can be

computed by inverting all the bits and adding 1 to the least significant bit (LSB) position of the

number. This is equivalent to inverting all the bits while moving from LSB to MSB and leaving the

least significant 1 as it is. From the hardware perspective, adding 1 requires an adder in the HW,

which is an expensive preposition. Chapter 5 covers interesting ways of avoiding the adder while

computing the two’s complement of a number in HW designs.

Example: The 4-bit two’s complement representation of �2 is 40b1110, its 20s complement is

obtained by inverting all the bits, into 40b0001, and adding 1 to that inverted number giving 40b0010.
Table 3.3 lists the two’s complement representations of 4 bit numbers and their unsigned

equivalent numbers. In two’s complement, the representation of a negative number does look odd

because after 7 comes �8, but it facilitates the hardware implementation of many basic arithmetic

operations. For this reason, this representation is used widely for executing arithmetic operations in

special algorithms and general-purpose architectures.

It is apparent from (3.3) above that theMSBposition plays an important role in two’s complement

representation of a negative number and directly affects many arithmetic operations. While

implementing algorithms using two’s complement arithmetic, a designer needs to deal with the

issue of overflow. An overflow occurs if a calculation generates a number that cannot be represented

using the assignednumberof bits in thenumber.For example, 7 þ 1¼ 8, and8cannot be represented

as a 4-bit signed number. The same is the case with �9, which may be produced as (�8)� 1.
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3.3.4 Scaling

While implementing algorithms using finite precision arithmetic it is sometimes important to avoid

overflow as it adds an error that is equal to the complete dynamic range of the number. For example, the

case 7 þ 1¼ 8¼ 40b1000 as a 4-bit signednumber is�8. To avoid overflow, numbers are scaled down.

In digital designs it is sometimes also required to sign extend an N-bit number to anM-bit number for

M>N.

3.3.4.1 Sign Extension

In the case of a signed number, without affecting the value of the number, M�N bits are sign

extended. Thus a number can be extended by any number of bits by copying the sign bit to extended

bit locations. Although this extension does not change the value of the number, its unsigned

equivalent representation will change. The new equivalent number will be:

2M� aj j ð3:5Þ

Example: The number �2 as a 4-bit binary number is 40b1110. As an 8-bit number it is

80b11111110.

3.3.4.2 Scaling-down

When a number has redundant sign bits, it can be scaled down by dropping the redundant bits. This

dropping of bits will not affect the value of the number.

Example:The number – 2 as an 8-bit two’s complement signed number is 80b11111110. There are
six redundant sign bits. The number can be easily represented as a 2-bit signed number after throwing

away six significant bits. The truncated number in binary is 20b10.

Table 3.3 Four-bit representation of two’s complement number and its equivalent unsigned number

Decimal number Two’s complement representation Equivalent unsigned

number

�23 22 21 20

0 0 0 0 0 0

þ 1 0 0 0 1 1

þ 2 0 0 1 0 2

þ 3 0 0 1 1 3

þ 4 0 1 0 0 4

þ 5 0 1 0 1 5

þ 6 0 1 1 0 6

þ 7 0 1 1 1 7

�8 1 0 0 0 8

�7 1 0 0 1 9

�6 1 0 1 0 10

�5 1 0 1 1 11

�4 1 1 0 0 12

�3 1 1 0 1 13

�2 1 1 1 0 14

�1 1 1 1 1 15
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3.4 Floating-point Format

Floating-point representation works well for numbers with large dynamic range. Based on the

number of bits, there are two representations in IEEE 754 standard [9]: 32-bit single-precision and

64-bit double-precision. This standard is almost exclusively used across computing platforms

and hardware designs that support floating-point arithmetic. In this standard a normalized floating-

point number x is stored in three parts: the sign s, the excess exponent e, and the significand or

mantissa m, and the value of the number in terms of these parts is:

x ¼ ð�1Þs � 1�m� 2e�b ð3:6Þ

This indeed is a signmagnitude representation, s represents the sign of the number andm gives the

normalizedmagnitudewith a 1 at theMSBposition, and this implied 1 is not storedwith the number.

For normalized values, m represents a fraction value greater than 1.0 and less than 2.0. This IEEE

format stores the exponent e as a biased number that is a positive number fromwhich a constant bias

b is subtracted to get the actual positive or negative exponent.

Figure 3.2 shows this representation for a single-precision floating point number. Such a number is

represented in 32 bits, where 1 bit is kept for the sign s, 8 bits for the exponent e and 23 bits for the

mantissam. For a 64-bit double-precision floating-point number, 1 bit is kept for the sign,11 bits for

the exponent and 52 bits for the mantissa. The values of bias b are 127 and 1023, respectively, for

single-and double-precision floating-point formats.

Example:Find thevalue of the following 32-bit binary string representing a single-precision IEEE

floating-point format: 0_10000010_11010000_00000000_0000000. The value is calculated by

parsing the number into different fields, namely sign bit, exponent andmantissa, and then computing

the value of each field to get the final value, as shown in Table 3.4.

Example: This example represents �12.25 in single-precision IEEE floating-point format. The

number �12.25 in sign magnitude binary is �00001100.01. Now moving the decimal point to

bring it into the right format: �1100.01� 20¼�1.10001� 23. Thus the normalized number is

�1.10001� 23.

Sign bit ðsÞ ¼ 1

Mantissa fieldðmÞ ¼ 10001000 00000000 0000000

Exponent fieldðeÞ ¼ 3þ 127 ¼ 130 ¼ 82 h ¼ 1000 0010

So the complete 32-bit floating-point number in binary representation is:

1 10000010 10001000 00000000 0000000

s e m

sign
0 denotes +
1 denotes -

8 bit
true exponent = e -127

23 bit
mantissa

Figure 3.2 IEEE format for single-precision 32-bit floating point number
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A floating-point number can also overflow if its exponent is greater or smaller than the maximum

or minimum value the e-field can represent. For IEEE single-precision floating point format, the

minimum to maximum exponent ranges from 2�126 to 2127. On the same account, allocating 11 bits

in the e-field as opposed to 8 bits for single-precision numbers, minimum and maximum values of

a double-precision floating-point number ranges from 2�1022 to 21023.

Although the fields in the format can represent almost all numbers, there are still some special

numbers that require unique handling. These are:

value

0_11111111_00000000000000000000000+ ¥

− ¥ 1_11111111_00000000000000000000000

NAN 1_11111111_10000000000000000000000

s e m
2381

A�1 may be produced if any floating-point number is divided by zero, so 1.0/0.0¼ þ1.

Similarly,�1.0/0.0¼�1. Not A Number (NAN) is produced for an invalid operations like 0/0 or

1 � 1.

3.4.1 Normalized and Denormalized Values

The floating-point representation covers awide dynamic range of numbers. There is an extent where

the number of bits in themantissa is enough to represent the exact value of the floating-point number

and zero placed in the exponent. This range of values is termed denormalized. Beyond this range, the

representation keeps normalizing the number by assigning an appropriate value in the exponent

field. A stagewill be reached where the number of bits in the exponent is not enough to represent the

normalized number and results in þ1 or�1. In instanceswhere awrong calculation is conducted,

the number is represented as NAN. This dynamic range of floating-point representation is shown in

Figure 3.3.

In the IEEE format of floating-point representation, with an implied 1 in the mantissa and a

nonzero value in the exponent, where all bits are neither 0 nor 1, are called normalized values.

Denormalized values are values where all exponent bits are zeros and the mantissa is non-zero.

Table 3.4 Value calculated by parsing and then computing the value of each field to get the final value,

þ 14.510 (see text)

Sign bit Exponent Mantissa

0 10000010 11010000_00000000_0000000

(�1)0 � 2(130�127) � (1 . 1 1 0 1)2
1 � 2(3) � (1 þ 0.5 þ .25 þ 0 þ 0.0625)10
(þ 1) � 2(3) � (1.8125)10

+ Normalized+ Denormalized- Normalized - Denormalized
+∞-∞ +0-0

Figure 3.3 Dynamic range of a floating-point number
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These values represent numbers in the range of zero and smallest normalized number on the

number line:

value ¼
�1ð Þs � 2e�127

� � � 1:mð Þ normalized; 0 < e < 255

�1ð Þs � 2e�126
� � � 0:mð Þ denormalized; e ¼ 0;m > 0:

(

The example below illustrates normalized and denormalized numbers.

Example: Assume a floating-point number is represented as an 8-bit number. There is one sign bit

and 4 and 3 bits, respectively, are allocated to store exponent and mantissa. By traversing through

the entire range of the number, limits for denormalized and normalized values can be easily marked.

Thevaluewhere the e-field is all zeros and them-field is non-zero representsdenormalizedvalues. This

valuedoes not assumean implied1 in themantissa. For a normalizedvalue an implied 1 is assumedand

a bias of þ 7 is added in the trueexponent toget the e-field.Therefore for a normalizedvalue this bias is

subtracted from the e-field to get the actual exponent. These numbers can be represented as:

value ¼
�1ð Þs � 2e�7

� � � 1:mð Þ normalized; 0 < e < 7

�1ð Þs � 2�6
� � � 0:mð Þ denormalized; e ¼ 0;m > 0:

(

The ranges of positive denormalized and normalized numbers for 8-bit floating-point format are

given in Table 3.5.

Floating-point representationworkswellwherevariables and results of computationmay vary over

a large dynamic range. In signal processing, this usually is not the case. In the initial phase of

algorithm development, though, before the ranges are conceived, floating-point format gives comfort

to the developer as one can concentrate more on the algorithmic correctness and less on implementa-

tion details. If there are no strict requirements on numerical accuracy of the computation, performing

Table 3.5 Various 8-bit floating-point numbers

s E m Exp Value

Denormalized

numbers

0 0000 000 - 0

0 0000 001 �6 0:125� 2�6  Closest to zero

0 0000 010 �6 0:5� 2�6

. . .
0 0000 110 �6 0:75� 2�6

0 0000 111 �6 0:875� 2�6  Largest denormalized value

0 0001 000 �6 1:0� 2�6  Smallest normalized value

Normalized

numbers

0 0001 001 �6 1:125� 2�6

. . .
0 0110 110 �1 1:75� 2�1

0 0110 111 �1 1:875� 2�1

0 0111 000 0 1

0 0111 001 0 1:125� 20

. . .
0 1110 111 7 1:875� 27  Largest normalized value

0 1111 000 1
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floating-point arithmetic in HWis an expensive preposition in terms of power, area and performance,

so is normally avoided. The large gate densities of current generation FPGAs and ASICs allow

designers tomapfloating-point algorithms inHWif required. This is especially true formore complex

signal processing applicationswherekeeping thenumerical accuracy intact is consideredcritical [10].

Floating-point arithmetic requires three operations: exponent adjustment, mathematical opera-

tion, and normalization. Although no dedicated floating-point units are provided on FPGAs,

embedded fast fixed-point adder/subtractors, multipliers and multiplexers are used in effective

floating-point arithmetic units [11].

3.4.2 Floating-point Arithmetic Addition

The following steps are used to perform floating-point addition of two numbers:

S0 Append the implied bit of the mantissa. This bit is 1 or 0 for normalized and denormalized

numbers, respectively.

S1 Shift themantissas fromS0with smaller exponent es to the right by el – es, where el is the larger of

the two exponents. This shift may be accomplished by providing a few guard bits to the right for

better precision.

S2 If any of the operands is negative, take two’s complement of the mantissa from S1 and then add

the two mantissas. If the result is negative, again takes two’s complement of the result.

S3 Normalize the sum back to IEEE format by adjusting the mantissa and appropriately changing

the value of the exponent el. Also check for underflow and overflow of the result.

S4 Round or truncate the resultant mantissa to the number of bits prescribed in the standard.

Example:Add the two floating-point numbers below in 10-bit precision, where 4 bits are kept for

the exponent, 5 bits for the mantissa and 1 bit for the sig. Assume the bias value is 7:

0 1010 00101

0 1001 00101

Taking the bias þ 7 off from the exponents and appending the implied 1, the numbers are:

1:00101b � 23 and 1:00101b � 22

S0 As both the numbers are positive, there is no need to take two’s complements. Add one extra bit

as guard bit to the right, and align the two exponents by shifting the mantissa of the number with

the smaller exponent accordingly:

1:00101b � 23! 1:001010b � 23

1:00101b � 22! 0:100101b � 23

S1 Add the mantissas:

1:001010bþ 0:100101b ¼ 1:101111b

S2 Drop the guard bit:

1:10111b � 23

S3 The final answer is 1.10111b� 23, which in 10-bit format of the operands is 0_1010_10111.
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3.4.3 Floating-point Multiplication

The following steps are used to perform floating-point multiplication of two numbers.

S0 Add the two exponents e1 and e2. As inherent bias in the two exponents is added twice, subtract

the bias once from the sum to get the resultant exponent e in correct format.

S1 Place the implied 1 if the operands are saved as normalized numbers. Multiply the mantissas as

unsigned numbers to get the product, and XOR the two sign bits to get the sign of the product.

S2 Normalize the product if required. This puts the result back to IEEE format. Check whether the

result underflows or overflows.

S3 Round or truncate the mantissa to the width prescribed by the standard.

Example:Multiply the two numbers below stored as 10-bit floating-point numbers, where 4 bits

and 5 bits, respectively, are allocated for the exponent andmantissa, 1 bit is kept for the sign and 7 is

used as bias:

3:5! 0 1000 11000

5:0! 0 1001 01000

S0 Add the two exponents and subtract the bias 7 (¼0111) from the sum:

1000þ 1001�0111 ¼ 1010

S1 Append the implied 1 and multiply the mantissa using unsigned� unsigned multiplication:

1:11

1:01

111

00x

111xx

10:0011

S2 Normalize the result:

ð10:0011Þb � 23!ð1:00011Þb � 24

ð1:00011Þb � 24!ð17:5Þ10
S3 Put the result back into the format of the operands. This may require dropping of bits but in this

case no truncation is required and the result is (1.00011)b� 24 stored as 0_1011_00011.

3.5 Qn.m Format for Fixed-point Arithmetic

3.5.1 Introducing Qn.m

Most signal processing and communication systems are first implemented in double-precision

floating-point arithmetic using tools like MATLAB�. While implementing these algorithms the

main focus of the developer is to correctly assimilate the functionality of the algorithm. This

MATLAB� code is then converted into floating-point C/Cþþ code. Cþþ code usually runsmuch

faster than MATLAB� routines. This code conversion also gives more understanding of the

algorithm as the designer might have used several functions from MATLAB� toolboxes. Their
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understanding is critical for porting these algorithms in SW or HW for embedded devices. After

getting the desired performance from the floating-point algorithm, this implementation is converted

to fixed-point format. For this the floating-point variables and constants in the simulation are

converted to Qn.m fixed-point format. This is a fixed positional number system for representing

floating-point numbers.

TheQn.m format of anN-bit number sets n bits to the left andm bits to the right of the binary point.

In cases of signed numbers, the MSB is used for the sign and has negative weight. A two’s

complement fixed-point number inQn.m format is equivalent to b¼ bn � 1bn � 2...b1b0b�1b�2...b�m,
with equivalent floating point value:

�bn�12n�1þ bn�22n�2þ . . . þ b12
1þ b0þ b�12�1þ b�22�2þ . . . b�m2�m ð3:7Þ

Example: Compute the floating-point equivalent of 01_1101_0000 in signed Q2.8 format. The

fields of the bits and their equivalent weights are shown in Figure 3.4.

Assigning values to bit locations gives the equivalent floating-point value of the Q-format fixed-

point number:

01 1101 0000 ¼ 0þ 1þ 1

2
þ 1

4
þ 1

16
¼ 01:8125

This example keeps 2 bits to store the integer part and the remaining 8 bits are for the decimal part.

In these 10 bits the number covers �2 to þ 1.9961.

3.5.2 Floating-point to Fixed-point Conversion of Numbers

Conversion requires serious deliberation as it results in a tradeoff between performance and cost. To

reduce cost, shorter word lengths are used for all variables in the code, but this adversely affects the

numerical performance of the algorithm and adds quantization noise.

A floating-point number is simply converted to Qn.m fixed-point format by brining m fractional

bits of the number to the integer part and then dropping the rest of the bits with or without rounding.

This conversion translates a floating-point number to an integer number with an implied decimal.

This implied decimal needs to be remembered by the designer for referral in further processing of the

number in different calculations:

num----fixed ¼ roundðnum----float� 2mÞ
or num----fixed ¼ fix ðnum----float� 2mÞ

The result is saturated if the integer part of the floating-point number is greater than n. This is

simply checked if the convertedfixed-point number is greater than themaximumpositive or less than

the minimum negative N-bit two’s complement number. The maximum and minimum values of an

N-bit two’s complement number are 2N�1 � 1 and �2N�1, respectively.

-21 20 . 2-1 2-2 2-3 2-4 2-5 2-6 2-7

Sign Bit

Integer Bit
Fraction Bits

Figure 3.4 Fields of the bits and their equivalent weights for the text example
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num_fixed = round(num_float �2m)

if (num_fixed > 2
N-1

–1)

num_fixed = 2
N-1

–1

elseif (num_fixed < -2
N-1

)

num_fixed = -2
N-1

Example:Most commercially available off-the-shelf DSPs have 16-bit processors. Two examples

of these processors are the Texas Instruments TMS320C5514 and the Analog Devices ADSP-2192.

To implement signal processing and communication algorithms on these DSPs, Q1.15 format

(commonly known as Q15 format) is used. The following pseudo-code describes the conversion

logic to translate a floating-point number num_float to fixed-point number num_fixed_Q15 in

Q1.15 format:

num_fixed_long = (long)(num_float � 2
15
)

if (num_fixed_long > 0x7fff)

num_fixed_long = 0x7fff

elseif (num_fixed_long < 0xffff8000)

num_fixed_long =0xffff8000

num_fixed_Q15 = (short)(num_fixed_long & 0xffff))

Using this logic, the following lists a few floating-point numbers (num_float) and their

representation in Q1.15 fixed-point format (num_fixed_Q15):

0.5 ! 0x4000

–0.5 ! 0xC000

0.9997 ! 0x7FF6

0.213 ! 0x1B44

–1.0 ! 0x8000

3.5.3 Addition in Q Format

Addition of two fixed-point numbers a and b of Qn1.m1 and Qn2.m2 formats, respectively,

results in a Qn.m format number, where n is the larger of n1 and n2 and m is the larger of m1

and m2. Although the decimal is implied and does not exist in HW, the designer needs to align

the location of the implied decimal of both numbers and then appropriately sign extend the

number that has the least number of integer bits. As the fractional bits are stored in least

significant bits, no extension of the fractional part is required. The example below illustrates

Q-format addition.

Example: Add two signed numbers a and b in Q2.2 and Q4.4 formats. In Q2.2 format a is 1110,

and in Q4.4 format b is 0111_0110. As n1 is less than n2, the sign bit of a is extended to change its

format from Q2.2 to Q4.2 (Figure 3.5). The extended sign bits are shown with bold letters. The

numbers are also placed in such away that aligns their implied decimal point. The addition results in

a Q4.4 format number.

3.5.4 Multiplication in Q Format

If two numbers a and b in, respectively, Qn1.m1 and Qn2.m2 formats are multiplied, the multiplica-

tion results in a product in Q(n1 þ n2)�(m1 þ m2) format. If both numbers are signed two’s

complement numbers, we get a redundant sign bit at the MSB position. Left shifting the product
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by 1 removes the redundant sign bit, and the format of the product is changed to Q(n1 þ n2� 1)�
(m1 þ m2 þ 1). Below are listed multiplications for all possible operand types.

3.5.4.1 Unsigned by Unsigned

Multiplication of two unsigned numbers in Q2.2 and Q2.2 formats results in a Q4.4 format number,

as shown in Figure 3.6. As both numbers are unsigned, no sign extension of partial products is

required. The partial products are simply added. Each partial product is sequentially generated and

successively shifted by one place to the left.

3.5.4.2 Signed by Unsigned

Multiplication of a signedmultiplicand inQ2.2with an unsignedmultiplier in Q2.2 format results in

a Q4.4 format signed number, as shown in Figure 3.7. As the multiplicand is a signed number, this

implied decimal

1Qn1.m1 1 1 1 1 0 = Q4.2 = -2+1+0.5 = -0.5

0 1 1 1 0 1 = Q4.4 = 1+2+4+025+0.125 = 7.375Qn2.m2

0 1 1 0 1 1 = Q4.4 = 2+4+0.5+0.25+0.125 = 6.875 Qn.m

1 0

1 0

Figure 3.5 Example of addition in Q format

1 1 0 1 = 11.01 in Q2.2 = 3.25
1 0 1 1 = 10.11 in Q2.2 = 2.75

1 1 0 1
1 1 0 1 X

0 0 0 0 X X
1 1 0 1 X X X

1 0 0 0 1 1 1 1= 1000.1111 in Q4.4 i.e.8.9375  

Figure 3.6 Multiplication, unsigned by unsigned

1 1 1 1 1 1 0 1 extended sign bits shown in bold

0 1 0 1 = 01.01 in Q2.2 = 1.25
1 1 0 1 = 11.01 in Q2.2 = -0.75

0 0 0 0 0 0 0 X
1 1 1 1 0 1 X X
0 0 0 0 0 X X X
1 1 1 1 0 0 0 1 = 1111.0001 in Q4.4 i.e.-0.9375  

Figure 3.7 Multiplication, signed by unsigned

System Design Flow and Fixed-point Arithmetic 99



requires sign extension of each partial product before addition. In this example the partial products

are first sign-extended and then added. The sign extension bits are shown in bold.

3.5.4.3 Unsigned by Signed

Multiplication of an unsignedmultiplicand inQ2.2with a signedmultiplier in Q2.2 format results in

a Q4.4 format signed number, as shown in Figure 3.8. In this case the multiplier is signed and the

multiplicand is unsigned. As all the partial products except the final one are unsigned, no sign

extension is required except for the last one. For the last partial product the two’s complement of the

multiplicand is computed as it is produced by multiplication with the MSB of the multiplier, which

has negative weight. The multiplicand is taken as a positive 5-bit number, 01001, and its two’s

complement is 10111.

3.5.4.4 Signed by Signed

Multiplication of a signed number in Q1.2 with a signed number in Q1.2 format results in a Q1.5

format signed number, as shown in Figure 3.9. Sign extension of partial products is again necessary.

This multiplication also produces a redundant sign bit, which can be removed by left shifting the

result. Multiplying a Qn1.m1 format number with a Qn2.m2 number results in a Q(n1 þ n2)�
(m1 þ m2) number, which after dropping the redundant sign bit becomes a Q(n1 þ n2� 1)�
(m1 þ m2 þ 1) number.

Themultiplication in the example results in a redundant sign bit shown in bold. The bit is dropped

by a left shift and the final product is 111000 in Q1.5 format and is equivalent to �0.25.
When the multiplier is a negative number, while calculating the last partial product (i.e.

multiplying the multiplicand with the sign bit with negative weight), the two’s complement of

the multiplicand is taken for the last partial product, as shown in Figure 3.10.

1 0 0 1
0 0 0 0 X

1 0 0 1 X X
1 0 1 1 1 X X X 2’s compliment of the positive multiplicand 01001

1 0 0 1 = 10.01 in Q2.2 = 2.25 (unsigned)
1 1 0 1 = 11.01 in Q2.2 = -0.75 (signed)

1 1 1 0 0 1 0 1 = 1110.0101 in Q4.4 i.e.-1.6875  

Figure 3.8 Multiplication, unsigned by signed

1 1 0 = Q1.2 = -0.5 (signed)
0 1 0 = Q1.2 = 0.5 (signed)

0 0 0 0 0 0
1 1 1 1 0 X
0 0 0 0 X X

1 1 1 1 0 0 = Q1.5 format 1_11000=-0.25

Figure 3.9 Multiplication, signed by signed
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3.5.5 Bit Growth in Fixed-point Arithmetic

Bit growth is one of the most critical issues in implementing algorithms using fixed-point

arithmetic. Multiplication of an N-bit number with an M-bit number results in an (N þ M)-bit

number, a problem that grows in recursive computations. For example, implementing the recursive

equation:

y n½ � ¼ ay n�1½ � þ x½n� ð3:8Þ

requires multiplication of a constant awith a previous value of the output y[n� 1]. If the first output

is an N-bit number in Qn1.m1 format and the constant a is anM-bit number in Qn2�m2 format, in the

first iteration the product ay[n� 1] is an (N þ M)-bit number in Q(n1 þ n2� 1)�(m1 þ m2 þ 1)

format. In the second iteration the previous value of the output is now an N þ M bits, and once

multiplied by a it becomesN þ 2M bits. The sizewill keep growing in each iteration. It is therefore

important to curtail the size of the output. This requires truncating the output after every

mathematical operation. Truncation is achieved by first rounding and then dropping a defined

number of least significant bits or without rounding dropping these bits.

The bit growth problem is also observed while adding two different Q-format numbers. In this

case the output format of the number will be:

Qn:m ¼ Qmaxðn1; n2Þ:maxðm1; m2Þ:

Assigning an appropriate format to the output is very critical and one can use Schwarz’s

inequality of (3.9) to find an upper bound on the output values of a linear time-invariant (LTI)

system:

y½n�j j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼�1

h2½n�
X1
n¼�1

x2½n�
s

ð3:9Þ

Here h[n] and x[n] are impulse response and input to an LTI system, respectively. This helps the

designer to appropriately assign bits to the integer part of the format defined to store output values.

Assigning bits to the fraction part requires deliberation as it depends on the tolerance of the system to

quantization noise.

Example:Adding an 8-bit Q7.1 format number in an 8-bit Q1.7 format number will yield a 14-bit

Q7.7 format number.

1 1 1 1 1 1 0 1
0 0 0 0 0 0 0 X
1 1 1 1 0 1 X X
0 0 0 1 1 X X X

0 0 0 0 1 0 0 1 = shifting left by one 00.010010 in Q2.6 format is 0.28125

1 1. 0 1 = –0.75 in Q2.2 format

1. 1 0 1 = –0.375 in Q1.3 format

Figure 3.10 Multiplication, signed by signed
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3.5.5.1 Simple Truncation

In multiplication of two Q-format numbers, the number of bits in the product increases. The

precision is sacrificed by dropping some low-precision bits of the product: Qn1.m1 is truncated to

Qn1.m2, where m2<m1.

Example:
0111 0111 in Q4:4 is 7:4375
Truncated to Q4:2 gives 0111 01 ¼ 7:25

3.5.5.2 Rounding Followed by Truncation

Direct truncation of numbers biases the results, so inmany applications it is preferred to round before

trimming the number to the desired size. For this, 1 is added to the bit that is at the right of the position

of the point of truncation. The resultant number is then truncated to the desired number of bits. This is

shown in the example in Figure 3.11. First rounding and then truncation gives a better approxima-

tion; in the example, simple truncation toQ4.2 results in a numberwith value 7.25,whereas rounding

before truncation gives 7.5 – which is closer to the actual value 7.4375.

3.5.6 Overflow and Saturation

Overflow is a serious consequence of fixed-point arithmetic. Overflow occurs if two positive or

negative numbers are added and the sum requires more than the available number of bits. For

example, in a 3-bit two’s complement representation, if 1 is added to 3 (¼ 30b011), the sum is 4 (¼
40b0100). The number 4 thus requires four bits and cannot be represented as a

3-bit two’s complement signed number as 30b100 (¼ �4). This causes an error equal to the full

dynamic range of the number and so adversely affects subsequent computation that uses this number.

Figure 3.12 shows the case of an overflow for a 3-bit number, adding an error equal to the dynamic

range of the number. It is therefore imperative to check the overflow condition after performing

arithmetic operations that can cause a possible overflow. If an overflow results, the designer should

set an overflow flag. In many circumstances, it is better to curtail the result to the maximum positive

or minimum negative value that the defined word length can represent. In the above example the

value should be limited to 30b011.
Thus, the following computation is in 3-bit precision with an overflow flag set to indicate this

abnormal result:

3þ 1 ¼ 3 and overflow flag ¼ 1

Similarly, performing subtraction with an overflow flag set to ! is:

�4�1 ¼ �4 overflow flag ¼ 1

0 1 1 1_0 1 1 1 in Q4.4 is 7.4375

rounding

0 1 1 1_1 0 0 1

1

truncation

0 1 1 1_1 0 0 = 7.5

Figure 3.11 Rounding followed by truncation
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Figure 3.12 shows the overflow and saturation mode for 3-bit two’s complement numbers,

respectively. The saturation mode clamps the value of the number to the maximum positive or

minimum negative.

The designer may do nothing and let the overflow happen, as shown in Figure 3.13(a). For the

same calculation, the designer can clamp the answer to a maximum positive value in case of an

overflow, as shown in Figure 3.13(b).

3.5.7 Two’s Complement Intermediate Overflow Property

In an iterative calculation using two’s complement arithmetic, if it is guaranteed that the final result

will be within the precision bound of the assigned fixed-point format, then any amount of

intermediate overflows will not affect the final answer.

This property is illustrated in Figure 3.14(a) with operands representing 4-bit precision. The first

column shows the correct calculation but, owing to 4-bit precision, the result overflows and the

000

100

101

110

111

001

010

011

100

101

110

111

1234-1

3

2

1

Q(x)

567

x

-3-4

-1

-2

-3

-2

overflow 

overflow 

000

100

101

110

111

001

010

011

123-1

3

2

1

Q(x)

x

-3-4

-1

-2

-3

-2

saturation

saturation

(b)(a)

Figure 3.12 Overflow and saturation. (a) Overflow introduces an error equal to the dynamic range of the

number. (b) Saturation clamps the value to a maximum positive or minimum negative level

2.50

+3.50

Q3.2   01010    2.50

Q3.2   01110    3.50

6.00 Q3.2   10000   -4.00 overflow resultcorrect result

10

10

00

(a) 

2.50

+3.50

Q3.2   01010    2.50

Q3.2   01110    3.50

6.00 Q3.2   01111    3.75 saturated resultcorrect result

10

10

11

(b)

Figure 3.13 Handling overflow: (a) doing nothing; (b) clamping
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calculation yields an incorrect answer as shown in the third column. If the further calculation uses

this incorrect answer and adds a value that guarantees to bring the final answer within the legal limits

of the format, then this calculation will yield the correct answer even though one of the operands in

the calculation is incorrect. The calculation in Figure 3.14(b) shows that even using the incorrect

value from the earlier calculation the further addition will yield the right value.

This property of two’s complement arithmetic is very useful in designing architectures. The

algorithms in many design instances can guarantee the final output to fit in a defined format with

possible intermediate overflows.

3.5.7.1 CIC Filter Example

The above property can be used effectively if the bounds on output can be determined. Such is the

case with a CIC (cascaded integrator-comb) filter which is an integral part of all digital down-

converters. A CIC filter has M stages of integrator executing at sampling rate fs, followed by a

decimator by a factor of L, followed by a cascade ofM stages of Comb filter running at decimated

sampling rate fs/L. The transfer function of such a CIC filter is:

H zð Þ ¼ 2�D
1�z�L
1�z�1

� �M
ð3:10Þ

It is proven for aCICfilter that, for signed input ofQn.m format, the output also fits inQn.m format

provided each input sample is scaled by a factor of D, where:

2�D � 1

L

� �M

M is the order of the filter. ACIC filter is shown in Figure 3.15. In this design, provided the input is

scaled by a factor of D, then intermediate values may overflow any amount of times and the output

remains within the bounds of the Qn.m format.

3.5.7.2 FIR Filter Example

If all the coefficients of an FIR (finite impulse response) filter are scaled to fit inQ1.15 format, and the

filter design package ensures that the sum of the coefficients is 1, then fixed-point implementation of

1.75 Q2.2   0111 1.75 

+1.25 Q2.2   0101 1.25 

3.00 Q2.2   1100 -1.00 

(a) 

3.00 Q2.2   1100 -1.00 

-1.25 Q2.2   1011 -1.25 

1.75 Q2.2   0111  1.75 

(b) 

Figure 3.14 Two’s complement intermediate overflow property: (a) incorrect intermediate result; (b)

correct final result
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the filter does not overflow and uses the complete dynamic range of the defined format. The output

can be represented inQ1.15 format.MATLAB� filter design utilities guarantee that the sumof all the

coefficients of an FIR filter is 1; that is:

XL�1
n¼0

h n½ � ¼ 1

where L is the length of the filter. This can be readily checked in MATLAB� for any amount of

coefficients and cutoff frequency, as is done below for a 21-coefficient FIR filter with cutoff

frequency p/L:

>> sum(fir1(20,.1))

ans =

1.0000

3.5.8 Corner Cases

Two’s complement arithmetic has one serious shortcoming, in that in N-bit representation of

numbers it does not have an equivalent opposite of�2N � 1. For example, for a 4-bit signed number

there is no equivalent opposite of �16, the maximum 4-bit positive number being þ 15. This is

normally referred to as a corner case, and the digital designer needs to be concerned with the

occurrence of this in computations. Multiplying two signed numbers and dropping the redundant

sign bit may also result in this corner case.

For example, consider multiplying �1 by �1 in Q1.2 format, as shown in Figure 3.16. After

throwing away the redundant sign bit the answer is 100000 (¼ �1) in Q1.5 format, which is

incorrect. The designer needs to add an exclusive logic to check this corner case, and if it happens

saturate the result with a maximum positive number in the resultant format.

+ +++++ L

z-1z-1z-1z-1z-1z-1

- - -

fs fs/L

2-D

2-D ↓

Figure 3.15 AnMth-order CIC filter for decimating a signal by a factor of L (here,M¼ 3). The input is

scaled by a factor ofD to avoid overflow of the output. Intermediate values may still overflow a number of

times but the output is always correct

1 0 0 = Q1.2 = -1
1 0 0 = Q1.2 = -1

0 0 0 0 0 0
0 0 0 0 0 X
0 1 0 0 X X 2's complement

1 0 0 0 0 0 = After dropping redundant sign bit

0 1 0 0 0 0

Figure 3.16 Multiplying �1 by �1 in Q1.2 format
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The following C code shows fixed-point multiplication of two 16-bit numbers, where the result is

saturated if multiplication results in this corner case.

Word32 L_mult(Word16 var1,Word16 var2)

{

Word32 L_var_out;

L_var_out = (Word32)var1 * (Word32)var2;

// Sign*sing multiplication

/*

Check corner case. If before throwing away redundant sign bit the answer

is 0x40000000, it is the corner case, so set the overflow flag and clamp the

value to maximum 32-bit positive number in fixed-point format.

*/

if (L_var_out != (Word32)0x40000000L) // 8000H*8000H=40000000Hex

{

L_var_out *= 2; //Shift the redundant sign bit out

}

else

{

Overflow = 1;

L_var_out = 0x7fffffff;

//If overflow then clamp the value to MAX_32

}

return(L_var_out);

}

3.5.9 Code Conversion and Checking the Corner Case

The C code below implements the dot-product of two arrays h_float and x_float:

float dp_float (float x[], float h[], int size)

{

float acc;

int i;

acc = 0;

for( i = 0; i < size; i++)

{

acc += x[i] * h[i];

}

return acc;

}

Let the constants in the two arrays be:

float h_float[SIZE] = {0.258, -0.309, -0.704, 0.12};

float x_float[SIZE]= {-0.19813, -0.76291,0.57407,0.131769);

As all the values in the two arrays h_float and x_float are bounded within þ 1 and �1, an
appropriate format for both the arrays is Q1.15. The arrays are converted into this format by

multiplying by 215 and rounding the result to change these numbers to integers:
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short h16[SIZE] = {8454, -10125, -23069, 3932};

short x16[SIZE] = {-6492, -24999, 18811, 4318};

The following C code implements the same functionality in fixed-point format assuming short

and int are 16-bit and 32-bit wide, respectively:

int dp_32(short x16[], short h16[], int size)

{

int prod32;

int acc32;

int tmp32;

int i;

acc32 = 0;

for( i = 0; i < size; i++ )

{

prod32 = x16[i] * h16[i]; // Q2.30 = Q1.15 * Q1.15

if (prod32 == 0x40000000)// saturation check

prod32 = MAX_32;

else

prod32	= 1; // Q1.31 = Q2.31	 1;

tmp32 = acc32 + prod32; // accumulator

// +ve saturation logic check

if( ( (acc32>0)0 ) )

acc32 = MAX_32;

// Negative saturation logic check

else if( ( (acc32<0)&&(prod32<0) )&&( tmp32>0 ) )

acc32 = MIN_32;

// The case of no overflow

else

acc32 = tmp32;

}

}

As is apparent from the C code, fixed-point implementation results in several checks and format

changes and thus is very slow. In almost all fixed-point DSPs the provision of shifting out redundant

sign bits in cases of sign multiplication and checking of overflow and saturating the results are

provided in hardware.

3.5.10 Rounding the Product in Fixed-point Multiplication

The following C code demonstrates complex fixed-point multiplication for Q1.15-format numbers.

The result is rounded and truncated to Q1.15 format:

typedef struct COMPLEX_F

{

short real;

short imag;

}

COMPLEX_F;

COMPLEX_F ComplexMultFixed (COMPLEX_F a, COMPLEX_F b)

System Design Flow and Fixed-point Arithmetic 107



{

COMPLEX_F out;

int L1, L2, tmp1, tmp2;

L1 = a.real * b.real;

L2 = a.imag * b.imag;

// Rounding and truncation

out.real=(short)(((L1 - L2)+0x00004000)>>15);

L1 = a.real * b.imag;

L2 = a.imag * b.real;

// Rounding and truncation

out.imag=(short)(((L1 + L2)+0x00004000)>>15

return (out);

}

3.5.10.1 Unified Multiplier

From the hardware design perspective, placing four separate multipliers to cover general multipli-

cation is an expensive proposition. A unified multiplier can handle all the four types of multiplica-

tion. ForN1�N2 multiplication, this is achieved by appending one extra bit to the left of theMSB of

both of the operands.When an operand is unsigned, the extended bit is zero, otherwise the extended

bit is the sign bit of the operand. This selection is made using a multiplexer (MUX). The case for

a 16� 16 unified multiplier is shown in Figure 3.17.

After extending the bits, (N1 þ 1)� (N2 þ 1) signed by signed multiplication is performed and

only N1�N2 bits of the product are kept for the result. Below are shown four options and their

respective modified operands for multiplying two 16-bit numbers, a and b:

Mux

0
a[15]

a

16

17

Mux

0
b[15]

b

161

17

Signed/
Unsigned Op1

Signed/
Unsigned Op2

1

1 1 1 1

Figure 3.17 One-bit extension to cater for all four types of multiplications using a single signed by

signed multiplier
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unsigned by unsigned: {10b0, a}, {10b0, b}

unsigned by signed: {10b0, a}, {b[15], b}

signed by unsigned: {a[15], a}, {10b0, b}

signed by signed: {a[15], a}, {b[15], b}.

Further to this, there are twomain options formultiplications.One optionmultiplies integer numbers

and the second multiplies Q-format numbers. The Q-format multiplication is also called fractional

multiplication. In fractional signed by signed multiplication, the redundant sign bit is dropped,

whereas for integer sign by sign multiplication this bit is kept in the product.

A unified multiplier that takes care of all types of signed and unsigned operands and both integer

and fractional multiplication is given in Figure 3.18. Themultiplier appropriately extends the bits of

0 a[15]
a

1

16

17

0 b[15]
b

1

16

17

Signed/
Op1Unsigned 

Signed/Unsigned 
Op2

17 x 17 
Signed x Signed

Multiplier
32

P[30:0],1'b0P[31:0]

32

Fractional/Integer

Op2Signed/Unsigned 
Op1Signed/Unsigned 

P

 0Unsigned 
1Signed 
0Integer  

Fractional 1

1 11 1

10 10 

10 

10 

32h7FFFFFFF

P

corner Check 
case

Figure 3.18 Unified multiplier for signed by signed, signed by unsigned, unsigned by unsigned and

unsigned by signed multiplication for both fraction and integer modes, it also cater for the corner case
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the operands to handle signed and unsigned operands, and in the case of fractional sign by sign

multiplication it also drops the redundant sign bit.

In many designs the result of multiplication of two N-bit numbers is rounded to an N-bit

number. This truncation of the result requires separate treatment for integer and fractional

multipliers.

. For integer multiplication, the least significant N bits are selected for the final product provided

the most significantN bits are redundant sign bits. If they are not, then the result is saturated to the

appropriate maximum or minimum level.
. For fractional multiplication, after dropping the redundant sign bit and adding a 1 to the

seventeenth bit location for rounding, the most significant N bits are selected as the final

product.

The difference between integer and fractional multiplication is illustrated in Figure 3.19. The

truncated product in integer multiplication overflows and is 11112¼�110. The product for factional
multiplication, after dropping the sign bit out by shifting the product by 1 to the left and then

dropping the four LSBs, is �0.875.

3.5.11 MATLAB� Support for Fixed-point Arithmetic

MATLAB� provides the fi tool that is a fixed-point numeric object with a complete list of attributes

that greatly help in seamless conversion of a floating-point algorithm to fixed-point format. For

example, using fi(), p is converted to a signed fixed-point Q3.5 format number:

>> PI = fi(pi, 1, 3+5, 5);% Specifying N bits and the fraction part

>> bin(PI)

01100101

>> double(PI)

3.1563

All the available attributes that a programmer can set for each fixed-point object are given in

Figure 3.20.

1 0 0 1 = -710
0 1 1 1 = +710

1 1 1 1 1 0 0 1
1 1 1 1 0 0 1 X
1 1 1 0 0 1 X X

1 1 0 0 1 1 1 1 = -4910

4-bit integer arithmetic

0. 1 1 1 = 0.87510

1 1. 1 1 1 0 0 1
1 1. 1 1 0 0 1 X

1 1. 0 0 1 1 1 1 = 1.0011110

= - 0.765610

Q1.3 fractional arithmetic

1. 0 0 1 = -0.87510

1 1. 1 0 0 1 X X

1 1 0 0 1 1 1 1  1111

overflow

1. 0 0 1 1 1 1 0 1. 0 0 1 = -0.87510

Figure 3.19 Demonstration of the difference between integer and fractional multiplication
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3.5.12 SystemC Support for Fixed-point Arithmetic

As with MATLAB�, once a simulation is working in SystemC using double-precision floating-point

numbers, bymerely substituting or redefining the samevariablewith fixed-point attributes the same code

canbeused forfixed-point implementation.This simpleconversiongreatlyhelps thedeveloper toexplore

a set ofword lengths and rounding or truncation options for different variables by changing the attributes.

Here we look at an example showing the power of SystemC for floating-point and fixed-point

simulation. This program reads a file with floating-point numbers. It defines a fixed-point variable

fx_value in Q6.10with simple truncation and saturation attributes. The program reads a floating-

point value in afp_value variable originally defined as of type double, and a simple assignment of

this variable to fx_value changes the floating-point value to Q6.10 format by rounding the

number to 16 bits; and when the integer part is greater than what the format can support the value is

saturated. SystemC supports several options for rounding and saturation.

int sc_main (int argc , char *argv[])

{

sc_fixed <16,6, SC_TRN, SC_SAT> fx_value;

double fp_value;

int i, size;

ofstream fout("fx_file.txt");

ifstream fin("fp_file.txt");

if (fin.is_open())

fin >> size;

else

cout << "Error opening input file!\n";

cout << "size = " << size << endl;

PI = 3.1563

              DataType: fixed 

               Scaling: binary point 

                Signed: true 

            WordLength: 8 

        FractionLength: 5 

             RoundMode: round 

          OverflowMode: saturate 

           ProductMode: full precision 

  MaxProductWordLength: 128 

               SumMode: full precision 

      MaxSumWordLength: 128 

         CastBeforeSum: true 

Data  

Numeric  type 

Fixed - point  math 

Figure 3.20 MATLAB� support for fixed-point arithmetic
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for (i=0; i<size; i++)

{

if (!fin.eof())

{

fin >> fp_value;

fx_value = fp_value;

cout << "double = " << fp_value"\t fixpt = " << fx_value<< endl;

fout << fx_value<< endl;

}

}

}

Table 3.6 shows the output of the program.

3.6 Floating-point to Fixed-point Conversion

Declaring all variables as single- or double-precision floating-point numbers is the most convenient

way of implementing any DSP algorithm, but from a digital design perspective the implementation

takes much more area and dissipates a lot more power than its equivalent fixed-point implementa-

tion. Although floating-point to fixed-point conversion is a difficult aspect of algorithmmapping on

architecture, to preserve area and power this option is widely chosen by designers.

For fixed-point implementation on a programmable digital signal processor, the code is converted

to a mix of standard data types consisting of 8-bit char, 16-bit short and 32-bit long. Hence, defining

the word lengths of different variables and intermediate values of all computations in the results,

which are not assigned to defined variables, is very simple. This is because inmost cases the option is

only to define them as char, short or long. In contrast, if designer’s intention is to map the algorithm

on an application-specific processor then a run of optimization on these data types can further

improve the implementation. This optimization step tailors all variables to any arbitrary length

variables that just meet the specification and yields a design that is best from area, power and speed.

It is important to understand that a search for an optimal world length for all variables is an NP-

hard problem. An exhaustive exploration of world lengths for all variables may take hours for

a moderately complex design. Here, user experience with an insight into the design along with

industrial practices can be very handy. The system-level design tools are slowly incorporating

optimization to seamlessly evaluate a near-optimal solution for word lengths [12].

Conversion of a floating-point algorithm to fixed-point format requires the following steps [6].

S0 Serialize the floating-point code to separate each floating-point computation into an independent

statement assigned to a distinct variable vari.

S1 Insert range directives after each serial floating-point computation in the serialized code of S0 to

measure the range of values each distinct variable takes in a set of simulations.

Table 3.6 Output of the program in the text

double ¼ 0.324612 fixpt ¼ 0.3242

double ¼ 0.243331 fixpt ¼ 0.2432

double ¼ 0.0892605 fixpt ¼ 0.0889

double ¼ 0.8 fixpt ¼ 0.7998

double ¼�0.9 fixpt ¼ �0.9004
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S2 Design a top layer that in a loop runs the design for all possible sets of inputs. Each iteration

executes the serialized code with range directives for one possible set of inputs. Make these

directives keep a track of maximum max_vari and minimum min_vari values of each

variablevari. After running the code for all iterations, the range directives return the range that

each variable vari takes in the implementation.

S3 To convert each floating-point variable vari to fixed-point variable fx_vari in its equivalent

Qni.mi fixed-point format, extract the integer length ni using the followingmathematical relation:

ni ¼ log2 max max vali; min valið Þj jð Þþ 1 ð3:11Þ

S4 Setting the fractional partmi of each fixed-point variablefx_vari requires detailed technical

deliberation and optimization. The integer part is critical as it must be correctly set to avoid

any overflow in fixed-point computation. The fractional part, on the other hand, determines the

computational accuracy of the algorithm as any truncation and rounding of the input data and

intermediate results of computation appear as quantization noise. This noise, generated as a

consequence of throwing away of valid part of the result after each computation, propagates in

subsequent computations in the implementation. Although a smaller fractional part results in

smaller area, less power dissipation and improved clock speeds, it adds quantization noise in

the results.

Finding an optimal word length for each variable is a complex problem. An analytical study of the

algorithmcan help in determining an optimal fractional part for each variable to give acceptable ratio

of signal to quantization noise (SQNR) [7]. In many design instances an analytical study of the

algorithm may be too complex and involved.

An alternative to analytical study is an exhaustive search of the design space considering a pre-

specifiedminimum tomaximum fraction length of each variable. This search, even in simple design

problems,may requiremillions of iterations of the algorithm and thus is not feasible or desirable. An

intelligent trial and error method can easily replace analytical evaluation or an infeasible exhaustive

search of optimal word length. Exploiting the designer’s experience, known design practices and

published literature can help in coming up with just the right tailoring of the fractional part. Several

researchers have also used optimization techniques like ‘mixed integer programming’ [8], ‘genetic

algorithms’ [9], and ‘simulating annealing’ [10]. These techniques are slowly finding their way into

automatic floating-point to fixed-point conversion utilities. The techniques are involved and require

intensive study, so interested readers are advised to read relevant publications [7–12]. Here we

suggest only that designer should intelligently try different word lengths and observe the trend of the

SQNR, and then settle for word lengths that just give the desirable performance.

Figure 3.21 lists a sequence of steps while designing a system starting fromR&S, development of

an algorithm in floating point, determination of the integer part by range estimation, and then

iteratively analyzing SQNR on fixed-point code to find the fractional part of Qn.m format for all

numbers, and finally mapping the fixed-point algorithm on HW and SW components.

3.7 Block Floating-point Format

Block floating-point format improves the dynamic range of numbers for cases where a block of

data goes though different stages of computation. In this format, a block of data is representedwith

a common exponent. All the values in the block are in fixed-point format. This format, before

truncating the intermediate results, intelligently observes the number of redundant sign bits of all

the values in the block, to track the value with the minimum number of redundant sign bits in the

System Design Flow and Fixed-point Arithmetic 113



block. This can be easily extracted by computing the valuewithmaximummagnitude in the block.

The number of redundant sign bits in the value is the block exponent for the current block under

consideration. All the values in the block are shifted left by the block exponent. This shifting

replaces redundant sign bits with meaningful bits, so improving effective utilization of more

bits of the representation. Figure 3.22 shows a stream of input divided into blockswith block

exponent value.

Block floating-point format is effectively used in computing the fast Fourier transform (FFT),

where each butterfly stage processes a block offixed-point numbers. Before these numbers are fed to

the next stage, a block exponent is computed and then the intermediate result is truncated to be fed to

R&S

Floating-Point Algorithm

Range Estimation
Integer part determination

SQNR Analysis for Optimal fractional part 
determination

HW-SW Implementation

Target System

Fixed-Point Algorithm

Figure 3.21 Steps in system design starting from gathering R&S, implementing algorithms in floating-

point format and the algorithm conversion in fixed-point while observing SQNRand final implementation

in HW and SW on target platforms
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x[n]

n

……..

e = 1e = 2e = 3e = 0

Figure 3.22 Applying block floating-point format on data input in blocks to an algorithm

the next block. Every stage of the FFT causes bit growth, but the block floating-point implementation

can also cater for this growth.

The first two stages of theRadix-2 FFTalgorithm incur a growth by a factor of two. Before feeding

the data to these stages, two redundant sign bits are left in the representation to accommodate this

growth. The block floating-point computation, while scaling the data, keeps this factor in mind.

For the remainder of the stages in the FFTalgorithm, a bit growth by a factor of four is expected. For

this, three redundant sign bits are left in the block floating-point implementation. The number of

shifts these blocks of data go through from the first stage to the last is accumulated by adding the

block exponent of each stage. The output values are then readjusted by a right shift by this amount to

get the correct values, if required. The block floating point format improves precision as more valid

bits take part in computation.

Figures 3.23(a) and (b) illustrate the first stage of a block floating-point implementation of an 8-

point radix-2 FFT algorithm that caters for the potential of bit growth across the stages. While

observing the minimum redundant sign bits (four in the figure) and keeping in consideration the bit

growth in the first stage, the block of data is moved to the left by a factor of two and then converted to

the requisite 8-bit precision. This makes the block exponent of the input stage to be 2. The output of

the first stage in 8-bit precision is shown. Keeping in consideration the potential bit growth in the

second stage, the block is shifted to the right by a factor of two. This shift makes the block exponent

equal to zero. Not shown in the figure are the rest of the stages where the algorithm caters for bit

growth and also observes the redundant sign bits to keep adjusting the block floating-point exponent.

3.8 Forms of Digital Filter

This section briefly describes different forms of FIR and IIR digital filters.

3.8.1 Infinite Impulse Response Filter

The transfer function and its corresponding difference equation for an IIR filter are given in (3.12)

and (3.13), respectively:

H zð Þ ¼ Y zð Þ
XðzÞ ¼

XN

k¼0bkz
�k

1þ
XM

k¼1akz
�k

ð3:12Þ

y n½ � ¼
XN
k¼0

bk x½n� k��
XM
k¼1

ak y½n� k� ð3:13Þ
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There are several mathematical ways of implementing the difference equation. The differences

between these implementations can be observed if they are drawn as dataflow graphs

(DFGs). Figure 3.24 draws these analytically equivalent DFGs for implementing Nth-order IIR

filter.

Although all these implementations are analytically equivalent, they do vary in terms of

hardware resource requirements and their sensitivity to coefficient quantization. While implement-

ing a signal processing algorithm in double- precision floating-point format, these varying forms

have little practical significance; but for fixed-point implementation, it is important to understand

their relative susceptibilities to quantization noise. It is important for a digital designer to

understand that just converting a floating-point implementation to fixed-point using any optimiza-

tion technique of choice may not yield desirable results and the system may even become unstable.

It is therefore essential always to select a form that has minimum sensitivity to coefficient

quantization before the format conversion is performed. Thus the first design objective for a fixed-

point implementation of an algorithm is to choose a form that is least sensitive to quantization

noise; and then, subsequent to this, the designer should try to minimize HW resources for the

selected implementation.

3.8.2 Quantization of IIR Filter Coefficients

Fixed-point conversion of double-precision floating-point coefficients of an IIR filter moves the

pole–zero location and thus affects the stability and frequency response of the system. To illustrate

this effect, consider the design of an eighth-order system in MATLAB�, with pass-band ripple of

0.5 dB, stop-band attenuation of 50 dB and normalized cutoff frequencyoc¼ 0.15. The coefficients

of the numerator b and denominator a obtained using MATLAB� function ellip with these

specifications are given below:

b ¼ 0:0046�0:0249 0:0655�0:1096 0:1289�0:1096 0:0655�0:0249 0:0046
a ¼ 1:0000�6:9350 21:5565�39:1515 45:3884�34:3665 16:5896�4:6673 0:5860

The maximum values of the magnitude of the coefficients in b and a are 0.1289 and 45.3884,

respectively. When converting the coefficients to fixed-point format, these values require an

integer part of 1 and 7 bits, respectively. The word length of the fractional part is application-

dependent.

Before any attempt is made to choose appropriate Q-formats for filter implementation, let us

observe the effect of quantization on stability and frequency response of the system. The

pole–zero plot of the filter transfer function with coefficients in double-precision floating-point

numbers is shown in the top left part of Figure 3.25. Now the filter coefficients in arrays b and a

are quantized to 24-bit, 16-bit and 12-bit precisions, and the Q-formats of these precisions are

Q1.23 and Q7.17, Q1.15 and Q7.9, and Q1.11 and Q7.6, respectively. The pole–zero and the

frequency response of the system for all these four cases are plotted in Figures 3.26 and 3.27,

respectively.

It is evident from the pole–zero plots that the filter is unstable for 16-bit and 12-bit quantization

cases as some of its poles move outside the unit circle. If an IIR filter is meant for fixed-point

implementation, it is important to first select an appropriate form for the implementation before

coding the design in high-level languages for its subsequent conversion to fixed-point format. The

same filter has been implemented using second-order-sections (SoS), and pole–zero plots show that
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Figure 3.24 Equivalent implementation for realizing an Nth-order IIR system. (a) Direct Form-I.

(b) Direct Form-II. (c) Transposed Direct Form II. (d) Cascade form using DF-II second-order sections.

(e) Parallel form using DF-II second-order sections
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the filter is stable for all the above cases as all its poles remain inside the unit circle. The matrix of

coefficients for all the four sections from MATLAB� is:

0.0046 �0.0015 0.0046 1 �1.6853 0.7290

1 �1.5730 1 1 �1.7250 0.8573

1 �1.7199 1 1 �1.7542 0.9488

1 �1.7509 1 1 �1.7705 0.9882

Each row lists three coefficients of b and three coefficients of a for its respective section. Based on

themaximumof absolute values of the coefficients for each section, 2 bits are required for the integer

part of respective Q-format. The filter is analyzed for 12-bit and 8-bit precision, and all the

coefficients are converted into Q2.10 and Q2.6 format for the two formats. The pole–zero plots for

these four sections for both the cases are shown in Figure 3.27. In both cases the designs using

cascaded SoS are stable, so the overall system remains stable even for 8-bit quantization. It is

therefore important to first analyze the stability of the system while selecting the word lengths for

fixed-point implementation of IIR filters.
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Figure 3.24 Continued
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Figure 3.25 Effect of coefficient quantization on stability of the system. The system is unstable for

16-bit and 12-bit quantization as some of its poles are outside the unit circle
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Figure 3.27 (a) Filter using cascaded SoSs with coefficients quantized in Q2.10 format. (b) Filter using

cascaded SoSs with coefficients quantized in Q2.6 format
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The filter in cascaded form can be designed with MATLAB�, first creating a filter design

object:

>> d = fdesign.lowpass(’n,fp,ap,ast’,8,.15,.5,50)

d =

ResponseType: ’Lowpass with passband-edge specifications and

stopband attenuation’

SpecificationType: ’N,Fp,Ap,Ast’

Description: {4x1 cell}

NormalizedFrequency: true

Fs: ’Normalized’

FilterOrder: 8

Fpass: 0.1500

Apass: 0.5000

Astop: 50

Then design an elliptical filter on these specifications and automatically invoking MATLAB�

filter visualization toolbox fvtool:

>> ellip(d); % Automatically starts fvtool to display the filter in second order

sections.

By using a handle, all attributes of the filter can be displayed and changed according to

requirements:

>> hd=ellip(d)

hd =

FilterStructure: ’Direct-Form II, Second-Order Sections’

Arithmetic: ’double’

sosMatrix: [4x6 double]

ScaleValues: [5x1 double]

ResetBeforeFiltering: ’on’

States: [2x4 double]

NumSamplesProcessed: 0

Now the arithmetic precision of the coefficients can be changed to fixed-point by:

>> set(hd,’arithmetic’,’fixed’)

>> hd

hd =

FilterStructure: ’Direct-Form II, Second-Order Sections’

Arithmetic: ’fixed’
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sosMatrix: [4x6 double]

ScaleValues: [5x1 double]

ResetBeforeFiltering: ’on’

States: [2x4 embedded.fi]

NumSamplesProcessed: 0

CoeffWordLength: 16

CoeffAutoScale: true

Signed: true

InputWordLength: 16

InputFracLength: 15

StageInputWordLength: 16

StageInputAutoScale: true

StageOutputWordLength: 16

StageOutputAutoScale: true

OutputWordLength: 16

OutputMode: ’AvoidOverflow’

StateWordLength: 16

StateFracLength: 15

ProductMode: ’FullPrecision’

AccumMode: ’KeepMSB’

AccumWordLength: 40

CastBeforeSum: true

RoundMode: ’convergent’

OverflowMode: ’wrap’

While exploring different design options for optimal word length, any of the attributes of hd can

be changed using set directive.

Filter Design and Analysis Tool (FDATOOL) is a collection of tools for design, analysis,

conversion and code generation. The tool designs FIR and IIR digital filters in both floating-point

and fixed-point formats. The tool provides a great degree of control with a user-friendly interface.

Figure 3.28 shows two snapshots of theGUI depicting all the design options available to the designer

for designing, analyzing, fixed-point conversion and code generation. The elliptical filter can also be

conveniently designed by setting different options in FDATOOL.

3.8.3 Coefficient Quantization Analysis of a Second-order Section

Even in second-order section the quantization effects can be further mitigated. The conversion

in fixed-point format of the denominator coefficient as given in (3.14) creates a non-uniform

grid:

H zð Þ ¼ 1

1þ a1z�1þ a2z�2
ð3:14Þ

The grid is shown in Figure 3.29 for a1 and a2 converted to Q3.3 and Q2.4 formats,

respectively. A filter design package, depending on the specifications, may place a double-

precision pole at any point inside the unit circle. The conversion of the coefficients to fixed-point
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format moves the respective poles to quantized locations and makes the system experience more

quantization noise at places with wider gaps. The structure given in Figure 3.30 creates a uniform

rectangular grid and helps the designer to exactly model the quantization noise independent of

location of its double-precision poles and zeros (r and y are the radius and angle of the complex

conjugate poles).

Figure 3.28 The MATLAB� filter design and analysis toolbox offers varying options to design,

quantize, analyze and generate Verilog or C code of a designed filter according to the given

specifications
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3.8.4 Folded FIR Filters

From the hardware perspective, a multiplier takes more area than an adder. FIR filter design using

the MATLAB� filter design tool are symmetric or anti-symmetric and mathematically can be

represented as:

h M� n½ � ¼ �h n½ � for n ¼ 0; 1; 2; . . . ; M

This characteristic of the FIR filter can be effectively used to reduce the number of multipliers in

mapping these designs in HW. The design can be folded to use this symmetry. For example, if the

filter has four symmetric coefficients then convolution summation is written as:

y n½ � ¼ h0xnþ h1xn�1þ h1xn�2þ h0xn�3

The terms in this summation can be regrouped to reduce the number of multiplications from four

to two. The new summation is:

y n½ � ¼ h0 xnþxn�3ð Þþ h1 xn�1þxn�2ð Þ

The generalized folded flow graph that uses symmetry of the coefficients in an FIR is shown in

Figure 3.31 for even and odd number of coefficients.
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Figure 3.31 Symmetry of coefficients reduces the number of multipliers to almost half. (a) Folded

design with odd number of coefficients. (b) Folded design with even number of coefficients
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3.8.5 Coefficient Quantization of an FIR Filter

As FIR systems are always stable, stability is not a concern when quantizing double-precision

floating-point coefficients of an FIR system to any fixed-point format. The coefficient quantization

primarily adds an undesirable additional frequency response into the frequency response of the

original system with double-precision floating-point coefficients. The mathematical reasoning of

this addition is given in these expressions:

hQ n½ � ¼ h n½ � þDh½n� ð3:15Þ

HQ e jo
� � ¼XM

n¼0
ðh n½ � þDh n½ �Þe jon ð3:16Þ

HQ e jo
� � ¼ H ejo

� �þXM
n¼0

Dh½n�e jon ð3:17Þ

Thus quantization of coefficients of an FIR filter adds a frequency response equal to the frequency

response of Dh[n] caused due to dropping of bits of h[n]. Consider a filter designed in MATLAB�

using:

>> h=fir1(10,.1);

The coefficients are converted to Q1.7 format using the fi utility as:

>> hQ = fi(h, 1, 8,7);

Dh[n] is computed as:

>> hQ-h

and the respective values of these variables are:

h¼ 0.0100 0.0249 0.0668 0.1249 0.1756 0.1957 0.1756 0.1249 0.0668 0.0249 0.0100

hQ¼ 0.0078 0.0234 0.0703 0.1250 0.1719 0.1953 0.1719 0.1250 0.0703 0.0234 0.0078

Dh[n]¼�0.0022 �0.0014
0.0035 0.0001 �0.0037 �0.0004 �0.0037 0.0001 0.0035 �0.0014 �0.0022

The quantization of coefficients obviously changes the frequency response of the filter. There is

a possibility that the quantized filter may no longer satisfy the original design specifications.

Figure 3.32 shows the original filter and modified filter, clearly demonstrating degradation in the

pass-band ripples. The designer may need to over-design a filter to let the quantization effects use

this leverage for meeting the specifications.

A more optimal solution to this problem is to design a filter in the fixed-point domain.

Researchers have tended to focus more on conversion of signal processing applications

originally designed using floating-point format to fixed-point implementation, but very few

have investigated designing in the fixed-point format. A direct design in fixed-point gives more

control to the designer and takes his or her worry away from meeting a specification while

finding an optimal word length for the coefficients. These techniques take the system
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specification and then directly design the system in fixed-point format. Optimization techniques

are exploited, but these techniques have yet not found a place in commercial toolboxes primarily

because of their computational complexity. Finding computationally feasible techniques requires

more deliberation and effort from researchers working in areas of signal processing and digital

design.

Exercises

Exercise 3.1

Design a 13-bit floating-point multiplier. The floating-point number has 1, 4 and 8 bits for,

respectively, its sign s, exponential e and mantissa m. Assume a bias value of 7 for the

representation. Use an 8� 8-bit unsigned multiplier to multiply two mantissas, and a 4-bit

adder and a subtractor to add the two exponents and then subtract the bias to take the effect of

twice added bias from the addition. Normalize the multiplication and add its effect in the

computed exponential. Draw an RTL diagram and code the design in Verilog. Write a stimulus to

check your design for normalized and denormalized values. Finally, check the design for

multiplication by �1.

Exercise 3.2

Add the following two floating-point numbers using 32-bit IEEE floating-point format. Show all the

steps in the addition that should help in designing a floating-point adder. The numbers are:

x ¼ �23:175
y ¼ 109:5661
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Exercise 3.3

Design a floating-point multiply accumulator (MAC) that first multiplies two 32-bit numbers and

then adds the accumulator into the product. The MAC unit should only normalize the result once

after multiplication and addition. Code the design in RTL and write a stimulus to test the design.

Exercise 3.4

Convert the floating-point implementation of Section 3.2.3 to 16-bit fixed-point format. Simulate the

floating point and fixed-point implementation. Design a receiver that demodulates the signal. Count

bit errors. Add AWGN (additive white Gaussian noise) and count bit errors for different signal-to-

noise ratios.

Exercise 3.5

Multiply the following 8-bit numbers A and B by considering them as U�U, U�S, S�U and

S�S, where U and S stands for unsigned and signed fraction numbers:

A ¼ 80b1011 0011

B ¼ 80b1100 0101

Also multiply the numbers considering both of these numbers as signed integers and then signed

fractional numbers in Q1.7 format. Also multiply them by considering A as a signed integer and B as a

signed Q1.7 format number. Design the HW and implement it in RTLVerilog.

Exercise 3.6

Add rounding and truncation logic in the 17� 17-bit unified multiplier of Figure 3.18. The design

should generate a 16-bit product and also generate a flag if truncation of the integer multiplication

results in overflow.

Exercise 3.7

Design HW logic to implement a block floating-point module that computes a block exponential of

an 8-element 16-bit array of numbers before truncating them to 8-bit numbers. Test your design for

multiple blocks of datawith a block exponent varying from 0 to 7. Realize the design inRTLVerilog.

Exercise 3.8

Floating-point implementation of a component of a communication algorithm is given below:

double Mixer_Out[3];

double Buff_Delayline[3];

// Filter coefficients in double precision

double HF_DEN [] = {1.0000, -1.0275, 0.7265};

double HF_NUM [] = {0.1367, 0.5, -0.1367};

// Input values for testing the code

#define LEN_INPUT 10

double input[LEN_INPUT] = {

0.2251, 0.4273, 0.6430, 0.8349, 1.0089, 0.6788, 0.3610,

-0.3400, -0.6385, -0.8867};
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// Section of the code for floating to fixed-point conversion, the code to be

written in a function for simulation

for(int i=0; i<LEN_INPUT; i++)

{

Mixer_Out[2] = Mixer_Out[1];

Mixer_Out[1] = Mixer_Out[0];

Mixer_Out[0] = input[i];

Buff_Delayline[2] = Buff_Delayline[1];

Buff_Delayline[1] = Buff_Delayline[0];

Buff_Delayline[0]=-Buff_Delayline[1]*HF_DEN[1]

-Buff_Delayline[2]*HF_DEN[2]

+Mixer_Out[0]*HF_NUM[0]

+Mixer_Out[1]*HF_NUM[1]

+Mixer_Out[2] * HF_NUM[2];

}

1. Simulate the communication algorithm using input samples from the floating-point array

input[].

2. Convert the algorithm into fixed-point format using 16-bit precision by appropriately converting

all the variables into Qn.m format, where n þ m ¼ 16.

3. Compare your fixed-point result with the floating-point implementation for the same set of inputs

in fixed-point format.

4. Draw RTL design of computations that are performed in the loop.

Exercise 3.9

To implement the difference equation below in fixed-point hardware, assume the input and output

are in Q1.7 format:

y½n� ¼ �0:9821y½n�1� þx½n�

First convert the coefficients to appropriate 8-bit fixed-point format, use rounding followed by

truncation and saturation logic. Simulate the floating-point and fixed-point implementation in

MATLAB�. Code the design in RTL Verilog. Write stimulus and compare the results with the

MATLAB� simulation result.

Exercise 3.10

Implement the following equation, where x[n] and y[n] are in Q1.7 and Q2.6 formats, respectively,

and z[n] is an unsigned number in Q0.8 format. Design architecture for computing:

w n½ � ¼ x n½ �y n½ � þ y n½ �z n½ � þx n½ � þ y n½ � þ z½n�

Give the Q format of w[n].

Exercise 3.11

The C code below implements this difference equation for 12 input values y[n]¼�2.375x[n]
þ 1.24y[n� 1]:
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float y[12], x[12];

y[0] = 0.0

for (n =1; n< 12; n++ )

{

y[n] = -2.375 x[n] + 1.24 y[n-1];

}

The code defines floating-point arrays x[.] and y[.]. Convert the code to appropriate fixed-point

format. Specify the format and simulate the implementation for given values of input. Assume |x

[n]|< 1. Compare your result with the floating-point implementation result. Calculate the mean

squared error by computing the mean of squares of differences of the two output values for the test

vector given below:

x½n� ¼ f0:5; 0:5;�0:23; 0:34; 0:89; 0:11; �0:22; 0:13; 0:15; 0:67; �0:15; �0:99g

Exercise 3.12

Write RTLVerilog code to implement a four-coefficient FIR filter given in Figure 3.33. Assume all

the coefficients h0 . . . h3 and input data x[n] are in Q1.15 format. Appropriately truncate the result

from multiplication units to use 18-bit adders, and define the appropriate format for y[n]. Optimize

the design assuming the coefficients of the FIR filter are symmetric.

Exercise 3.13

Using the MATLAB� filter toolbox, design an IIR filter with the following specifications:

d1¼ 0.001; d2¼ 0.0001; wp¼ 0.2p; ws¼ 0.25p. Convert the filter into multiple cascaded sec-

ond-order sections, and then quantize the coefficients as 16-bit signed numbers using an appropriate

Qn.m format. Draw the dataflow of the design and write RTLVerilog code to implement the design

using signed arithmetic.

x[n]

h0 h1 h2 h3

y[n]

Truncate result of
multiplication  

Truncate result of
multiplication  

clk clkclk

xx x

+++

x

Figure 3.33 Four-coefficient FIR filter
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4

Mapping on Fully
Dedicated Architecture

4.1 Introduction

Although there aremany applications that are commonlymapped onfield-programmable gate arrays

(FPGAs) and application-specific integrated circuits (ASICs), the primary focus of this book is to

explore architectures and design techniques that implement real-time signal processing systems in

hardware. A high data rate, secure wireless communication gateway is a good example of a signal

processing system that is mapped in hardware. Such a device multiplexes several individual voice,

data and video channels, performs encryption and digital modulation on the discrete signal,

up-converts the signal, and digitally mixes it with an intermediate frequency (IF) carrier.

These typesofdigitaldesign implementcomplexalgorithmsthatoperateon largeamountsofdata in

real time.Forexample, adigital receiver for aG703compliantE3microwave linkneeds todemodulate

34.368Mbps of information that were modulated using binary phase-shift keying (BPSK) or

quadrature phase shift keying (QPSK). The system further requires forward error-correction (FEC)

decoding and decompression along with several other auxiliary operations in real time.

These applications can be conveniently conceived as a network of interconnected components. For

effective HW mapping, these components should be placed to work independently of other

components in the system. The Kahn Process Network (KPN) is the simplest way of synchronizing

their interworking. Although the implementation of a system as a KPN theoretically uses an

unbounded FIFO (first-in/first-out) between two components, several techniques exist to optimally

size these FIFOs. The execution of each component is blocked on a read operation on FIFOs on

incoming links. AKPN alsoworks well to implement event-driven andmulti-rate systems. For signal

processing applications, each component in theKPN implements onedistinct block of the system. For

example, the FEC in a communication receiver is perceived as a distinct block. This chapter gives a

detailed account of the KPN and demonstrates its effectiveness and viability for digital system design

with a case study.

In addition to this, for implementing logic in each block, the algorithm for the block can first be

described graphically. There are different graphical ways of representing signal processing

algorithms. The dataflow graph (DFG), signal flow graph, block diagram and data dependency

graph (DDG) are a few choices for the designer. These representations are quite similar but have

subtle differences. This chapter gives an extensive account of DFG and its variants. Graphical

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
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representation of the algorithm in any of these formats gives convenient visualization of algorithms

for architecture mapping.

For blocks that need to process data at a very high data rate, the fastest achievable clock frequency

is almost the same as the number of samples the block needs to process every second. For example,

a typical BPSK receiver needs four samples per symbol to decode bits; for processing 36.5Mbps of

data, the receivermust process 146million samples every second. The block implementing the front

end of such a digital receiver is tasked to process even higher numbers of samples per symbol. In

these applications the designer aims to achieve a clock frequency that matches the sampling

frequency. This matching eases the digital design of the system, because the entire algorithm then

requires one-to-one mapping of algorithmic operations to HWoperators. This class of architecture

is called ‘fully dedicated architecture’ (FDA). The designer, after mapping each operation to a HW

operator, may need to appropriately place pipeline registers to bring the clock frequency equal to the

sampling frequency.

The chapter describes this one-to-onemapping and techniques and transformations for adding one

or multiple stages of pipelining for better timing. The scope of the design is limited to synchronous

systems where all changes to the design are mastered by either a global clock or multiple clocks.

The focus is to design digital logic at register transfer level (RTL). The chapter highlights that the

design at RTL should bevisualized as amix of combinational clouds and registers, and the developer

then optimizes the combinational clouds by using faster computational units to make the HW run at

the desired clock while constraining it to fit within a budgeted silicon area. With feedforward

algorithms the designer has the option to add pipeline registers in slower paths, whereas in feedback

designs the registers can be added only after applying certain mathematical transformations.

Although this chapter mentions pipelining, a detail treatment of pipelining and retiming are given

exclusive coverage in Chapter 7.

4.2 Discrete Real-time Systems

A discrete real-time system is constrained by the sampling rate of the input signal acquired from the

realworld and the amount of processing the systemneeds to performon the acquired data in real time

to produce output samples at a specified rate. In a digital communication receiver, the real-time input

signal may be modulated voice, data or video and the output is the respective demodulated signal.

The analog signal is converted to a discrete time signal using an analog-to-digital (A/D) converter.

Inmanydesigns this real-time discrete signal is processed infixed-size chunks. The time it takes to

acquire a chunk of data and the time required to process this chunk pose a hard constraint on the

design. The design must be fast enough to complete its processing before the next block of data is

ready for its turn for processing. The size of the block is also important in many applications as it

causes an inherent delay. A large block size increases the delay and memory requirements, whereas

a smaller block increases the block-related processing overhead. Inmany applications theminimum

block size is constrained by the selected algorithm.

In a communication transmitter, a real-time signal – usually voice or video – is digitized and then

processed by general-purpose processors (GPPs), ASICs or FPGAs, or any combination of these.

This processed discrete signal is converted back to an analog signal and transmitted on a wired or

wireless medium.

A signal processing system may be designed as single-rate or multiple-rate. In a single-rate

system, the numbers of samples per second at the input and output of the system are the same, and the

number of samples per second does not changewhen the samplesmove fromone block to another for

processing. Communication systems are multi-rate systems: data is processed at different rates in

different blocks. For each block the number of samples per second is specified. Depending on
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whether the system is a transmitter or a receiver, the number of samples per secondmay respectively

increase or decrease for subsequent processing. For example, in a digital front end of a receiver the

samples go through multiple stages of decimation, and in each stage the number of samples per

second decreases. On the transmitter side, the number of samples per second increases once the data

moves from one block to another. In a digital up-converter, this increase in number of samples is

achieved by passing the signal through a series of interpolation stages. The number of samples each

block needs to process every second imposes a throughput constraint on the block. For speech the

data acquisition rate varies from 8 kHz to 16 kHz, and samples are quantized from 12-bit to 16-bit

precision. For voice signals, like CD-quality music, the sampling rate goes to 44.1 kHz and each

sample is quantized using 16-bit to 24-bit precision. For video signals the sampling rate further

increases to 13.4MHzwith 8-bit to 12-bit of precision. Figure 4.1 illustrates the periodic sampling of
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a one-dimensional electrocardiogram signal (ECG), a 2-D signal of a binary image, and 3-D signal

of a video.

Another signal of interest is the intermediate frequency signal that is output from the analog

front end (AFE) of a communication system. A communication receiver is shown in Figure 4.2.

This IF signal is at a frequency of 70MHz. It is discretized using anA/D converter. Adhering to the

Nyquist sampling criterion, the signal is acquired at greater than twice the highest frequency of the

signal at IF. In many applications, band-pass sampling is employed to reduce the requirement for

high-speed A/D converters [1, 2]. Band-pass sampling is based on the bandwidth of an IF signal

and requires the A/D converter to work at a much lower rate than the sampling at twice the highest

frequency content of the signal. The sampling rate is important from the digital design perspective

as the hardware needs to process data acquired at the sampling rate. This signal acquired at the

intermediate frequency goes through multiple stages of decimation in a digital down-converter.

The down-converted signal is then passed to the demodulator block, which demodulates the

signal and extracts bits. These bits then go through an FEC block. The error-corrected data is then

passed to a source decoder that decompresses the voice and passes it to a D/A converter for playing

on a speaker.

4.3 Synchronous Digital Hardware Systems

In many instances, signal processing applications are mapped on synchronous digital logic. The

word ‘synchronous’ signifies that all changes in the logic are controlled by a circuit clock, and

‘digital’ means that the design deals only with digital signals. Synchronous digital logic is usually

designed at the register transfer level (RTL) of abstraction. At this level the design consists of

combinational clouds executing computation in the algorithm and synchronous registers storing

intermediate values and realizing algorithmic delays of the application.

Figure 4.3 shows a hypothetical example depicting mapping of a DSP algorithm as a

synchronous digital design at RTL. Input values x1[n] . . . x4[n] are synchronously fed to the

logic. Combinational blocks 1 to 5 depict computational units, and registers a to g are algorithmic

delays.

Figure 4.4 shows a closer look into a combinational cloud and registers where all inputs are

updated at the positive edge of the clock. The combinational cloud consists of logic gates. The

input to the cloud are discrete signals, stored in registers. While passing through the combina-

tional logic these signals experience different delays on their respective paths. It is important for

all the signals at the output wires to be stable before the next edge of the clock occurs and the

output is latched in the output register. The clock period imposes a strict constraint on the

longest or the slowest (critical) path. The critical path thus constrains the fastest achievable

clock frequency of a design.

512MHz

70MHz

Filter

FECDemodulator
Digital 
Down 

Converter

Source
Decoder D/AA/DX

Figure 4.2 Real-time communication system
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4.4 Kahn Process Networks

4.4.1 Introduction to KPN

A system implementing a streaming application is best represented by autonomously running

components taking inputs from FIFOs on input edges and generating output in FIFOs on the output

Critical 
Path

clk

clk

clk

Figure 4.4 Closer look at a combinational cloud and registers depicting the critical path
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Figure 4.3 Register transfer level design consisting of combinational blocks and registers
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edges. The Kahn Process Network (KPN) provides a formal method to study this representation and

its subsequent mapping in digital design.

The KPN is a set of concurrently running autonomous processes that communicate among

themselves in a point-to-point manner over unbounded FIFO buffers, where the synchronization

in the network is achieved by a blocking read operation and all writes to the FIFOs are non-blocking.

This provides a very simple mechanism for mapping of an application in hardware or software.

The reads and writes confined to the KPN also elevates the design from the use of a complicated

scheduler. A process waits in a blocking read mode for the FIFOs on each of its incoming links to

get a predefined number of samples, as shown in Figure 4.5. All the nodes in the network execute

after their associated input FIFOs have acquired enough data. This execution of a node is called

firing, and samples are called tokens. Thus, firing produces tokens and they are placed in respective

output FIFOs.

Figure 4.6 shows a KPN implementing a hypothetical algorithm consisting of four processes.

Process P1 gets the input data stream in FIFO1 and, after processing a defined number of tokens,

writes the result in output FIFO2 and FIFO3 on its links to processes P2 and P3, respectively. Process

P2 waits for a predefined number of tokens in FIFO2 and then fires and writes the output tokens in

FIFO4. Process P3 performs blocking read on FIFO3 and FIFO4, and then fires and writes data in

FIFO5 for process P4 to execute its operation.

P1 P3
P4

FIFO 1 
FIFO 2 

FIFO 3 

FIFO 4 

FIFO 5

P2

Figure 4.6 Example of a KPN with four processes and five connected FIFOs

in1

in2

out

x1[n]

x2[n] y[n]

Figure 4.5 A node fires when sufficient tokens are available at all its input FIFOs

138 Digital Design of Signal Processing Systems



Confining the buffers of the FIFOs to minimum size without affecting the performance of the

network is a critical problem attracting the interest of researchers. A few solutions have been

proposed [4, 5].

The KPN can also be implemented in software, where each process executes in a separate thread.

The process, in a sequence of operations, waits on a read from a FIFO and, when the FIFO has

enough samples, the thread performs a read operation and executes. The results are written into

output FIFO. The KPN also works well in the context of mapping of a signal processing algorithm

on reconfigurable platforms.

4.4.2 KPN for Modeling Streaming Applications

To map a streaming application as a KPN, it is preferable to first implement the application in a

high-level language. The code should be broken down into distinguishable blocks with clearly

identified streams of input and output data. This formatting of the code helps a designer to map

the design as a KPN in hardware. The MATLAB� code below implements a hypothetical

application:

N = 4*16;

K = 4*32;

% source node

for i=1:N

for j=1:K

x(i,j)= src_x ();

end

end

% processing block 1

for i=i:N

for j=1:K

y1(i,j)=func1(x(i,j));

end

end

% processing block 2

for i=1:N

for j=1:K

y2(i,j)=func2(y1(i,j));

end

end

% sink block

m=1;

for i=1:N

for j=1:K

y(m)=sink (x(i,j), y1(i,j), y2(i,j));

m=m+1;

end

end
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4.4.2.1 Example: JPEG Compression Using KPN

Although KPN best describes distributed systems, it is also suited well to model streaming

applications. In these, different processes in the system, in parallel or in a sequence, incrementally

transform a stream of input data. Here we look at an implementation of the Joint Photographic

Experts Group (JPEG) algorithm to demonstrate the effectiveness of a KPN for modeling streaming

applications.

A raw image acquired from a source is saved in FIFO1, as shown in Figure 4.7. The algorithm is

implemented on a block-by-block basis. This block is read by node 1 that transforms each pixel of

the image from RGB to YCbCr and stores the transformed block in FIFO2. Now node 2 fires and

computes the discrete cosine transform (DCT) of the block and writes the result in FIFO3.

Subsequently node 3 and then node 4 fire and compute quantization and entropy coding and fill

FIFO4 and FIFO5, respectively.

To implement JPEG,MATLAB� code is firstwritten as distinguishable processes. Each process is

coded as a function with clearly defined data input and output. The designer can then easily

implement FIFOs for concurrent operation of different processes. This coding style helps the user to

see the application as distinguishable and independently running processes for KPN implementa-

tion. Tools such as Compaan can exploit the code written in this subset of MATLAB� to perform

profiling, HW/SW partitioning and the SW code generation. Tools such as Laura can be used

subsequently for HW code generation for FPGAs [6, 7].

A representative top-level code in MATLAB� is given below (the code listing for functions

zigzag_runlength and VLC_huffman are not given and can be easily coded inMATLAB�:

Q=[8 36 36 36 39 45 52 65;

36 36 36 37 41 47 56 68;

36 36 38 42 47 54 64 78;

36 37 42 50 59 69 81 98;

39 41 47 54 73 89 108 130;

45 47 54 69 89 115 144 178;

53 56 64 81 108 144 190 243;

65 68 78 98 130 178 243 255];

BLK_SZ = 8; % block size

imageRGB = imread(‘peppers.png’); % default image

figure, imshow(imageRGB);

title(‘Original Color Image’);

ImageFIFO = rgb2gray(RGB);

figure, imshow(ImageFIFO);

title(‘Original Gray Scale Image’);

DCTRGB-YCbCr

Sink
Entropy 
Coding

Quantization

Source
FIFO 1

FIFO 4

FIFO 2

FIFO 5

FIFO 3

Figure 4.7 KPN implementing JPEG compression
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fun = @dct2;

DCT_ImageFIFO = blkproc(ImageFIFO,[BLK_SZ BLK_SZ],fun);

figure, imshow(DCT_ImageFIFO);

title(‘DCT Image’);

QuanFIFO = blkproc(DCT_FIFO, [BLK_SZ BLK_SZ], ‘round(x./P1)’, Q);

figure, imshow(QuanFIFO);

fun = @zigzag_runlength;

zigzagRLFIFO = blkproc(QuanFIFO, [BLK_SZ BLK_SZ], fun);

% Variable length coding using Huffman tables

JPEGoutFIFO = VLC_huffman(zigzagRLFIFO, Huffman_dict);

This MATLAB� code can be easily mapped as a KPN. A graphical illustration of this KPN

mapping is shown in Figure 4.8. To conserve FIFO sizes for hardware implementation, the

processing is performed on a block-by-block basis.

4.4.2.2 Example: MPEG Encoding

This section gives a top-level design of a hardware implementation of theMPEGvideo compression

algorithm. Steps in the algorithm are given in Figure 4.9.

Successive video frames are coded as I and P frames. The coding of an I frame closely follows

JPEG implementation, but instead of using a quantization table the DCT coefficients are quantized

by a single value. This coded I frame is also decoded following the inverse processes of quantization

and DCT. The decoded frame is stored in motion video (MV) memory.

For coding a P frame, first the frame is divided into macro blocks. Each block (called a target

block) is searched in the previously decoded and saved frame in MV memory. The block that

matches best with the target block is taken as a reference block and a difference of target and

DCT

Quantize
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Length 
Coding

011010001011101...

ImageFIFO DCT_ImageFIFO

Quat_ImageFIFO
Zig_zagRLFIFO

JPEG_outFIFO

Zi-zag
& Run Length

Coding

Figure 4.8 Graphical illustration of a KPN implementing the JPEG algorithm on block by block basis
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reference block is computed. This difference block is then quantized and Huffman-coded for

transmission. The motion vector refereeing the block in the reference frame is also transmitted.

At the receiver the difference macro-block is decoded and then added in the reference block for

recreation of the target block.

II PP PPPP

(a)

01101…..

Y C r

C b

QuantDCT

zag-Zig

RLEHuffman

For each

8x8 block

(b)

Figure 4.9 Steps in video compression. (a) Video is coded as a mixture of Intra-Frames (I-Frames) and

Inter- or Predicted Frames (P-Frames). (b) I-Frame is coded as JPEG frame. (c) The I-Frame and all other

frames are also decoded for coding of P-Frame, KPN implementation with FIFO’s is given. (d) For P-

Frame coding, the frame is divided into sub-blocks and each block is searched in the previously self-

decoded frame. The target block is searched in the previous block for best match. This block in called the

reference block. (e) The difference of target and reference block is coded as a JPEG block and the motion

vector is also coded and transmitted with the coded block
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While encoding a P frame, the coder node in theKPN implementation fires onlywhen it has tokens

in the motion vector FIFO and the QuantFIFO. Similarly the difference node executes only while

coding a P frame and fires after the target block is written in the macroBlockFIFO, and the MV

search block finds the bestmatch andwrites the bestmatch block in best_match_BlockFIFO. For the

I frame, a macro block in marcoBlockFIFO is directly fed to the DCT block and the coder fires once

it has data in DCTFIFO. The rest of the blocks in the architecture also fire when they have data in

their corresponding input FIFOs.

In a streaming application, MPEG coded information is usually transferred on a communication

link. The status of the transmit buffer implemented as FIFO is also passed to a controller. If the buffer

still has more than a specified number of bits to transfer, the controller node fires and changes the

quantization level of the algorithm to a higher value. This helps in reducing the bit rate of the encoded

data. Similarly, if the buffer has fewer than the specified number of bits, the controller node fires and

reduces the quantization level to improve the quality of streaming video. The node also controls the

processing of P or I frames by the architecture.

This behavior of the controller node sets it for event-driven triggering, where the rest of the nodes

synchronouslyfire to encode a frame.AKPN implementationvery effectivelymixes these nodes and

without any elaborate scheduler implements the algorithm for HW/SW partitioning and synthesis.

4.4.3 Limitations of KPN

The classical KPN model presents three serious limitations [8]:

. First, reading data requires strict adherence to FIFO, which constrains the reads to follow a

sequential order from the first value written in the buffer to the last. Several signal processing

algorithms do not follow this strict sequencing, an example being a decimation-in-time FFT

algorithm that reads data in bit-reverse addressing order [9].
. Second, aKPNnetwork also assumes that once a value is read from the FIFO, it is deleted. Inmany

signal processing algorithms data is used multiple times. For example, a simple convolution

algorithm requires multiple iterations of the algorithm to read the same data over and over again.
. Third, a KPN assumes that all values will be read, whereas in many algorithms there may be some

values that do not require any read and data is read sparsely.

4.4.4 Modified KPN and MPSoC

Many researchers have proposed simple workarounds to deal with the limitations of the KPN noted

above. The simplest of all is to use local memoryM in the processor node D for keeping a copy of its

input FIFO’s data. The processor node (or an independent controller) makes a copy of the data in

local memory of the processor, in case the data has a chance of experiencing any of the

above limitations.

Multi-processor system-on-chip (MPSoC) is another design of choice for many modern high-

throughput signal processing and multimedia applications [10, 11]. These appliations employ some

form of KPN to model the problem, and then the KPN, in many design methodologies, is

automatically translated into MPSoC. A representative design is shown in Figure 4.10. Each

processor has its local memoryM, amemory controller (MC) and requisite FIFOs. It is connected to

the FIFOs of other processors through a cross bar switch, a P2P network, a shared bus or a more

elaborate network-on-chip (NOC) fabric. Each processor has a communciation controller (CC) that

implements arbitration logic for sending data to FIFOs of other processors. The implementation is

structured as tiles of these basic units. A detailed discussion on NoC design is given in Chapter 13.
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4.4.5 Case Study: GMSK Communication Transmitter

The KPN configuration is used here in the design of a communication system comprising a

transmitter and a receiver. As there is similarity in the top-level design of transmitter and receiver is

the same, this section describes only the top-level design of the transmitter.

At the top level the KPN very conveniently models the design by mapping different blocks in

the transmitter as autonomously executing hardware building blocks. FIFOs are used between two

adjacent blocks and local memory in each block is used to store intermediate results. A producer

block, after completing its execution, writes output data in its respective FIFO and notifies its

respective consumer block to fire.

The transmitter system implements baseband digital signal processing of a Gaussian minimum

shift-keying (GMSK) transmitter. The system takes the input data and modulates it on to an

intermediate frequency of 21.4MHz. The input to the system is an uninterrupted stream of digitized

data. The input data rate is variable from 16 kbps up to 8Mbps. In the system the data incrementally

undergoes a series of transformations, such as encryption, forward error correction, framing,

modulation and quadrature mixing.

The encryption module performs 256-bit encryption on a 128-bit input data block. A 256-bit key

is input to the block. The encryption module expands the key for multiple rounds of encryption

operation. TheFECperforms ‘block turbo code’ (BTC) for a block size ofm� nwith values ofm and

n to be 11, 26 and 57. For different options ofm and n the block size ranges from121 to 3249 bits. The

encoder adds redundant bits for error correction and changes the size of the data to k� l, where k and

l can takevalues 16, 32 or 64. For example, the usermay configure the block encoder to input 11� 57

data and encode it to 16� 64. The user can also enable the interleaver that takes the data arranged

row-wise and then reads it column-wise.

As AES (advanced encryption standard) block does not fall in the integer multiple of FEC

boundaries, so two levels ofmarker are inserted.One headermarks the start of theAES block and the

other indicates the start of the FEC block. For example, each 128-bit AES block is appended with

an 8-bit marker. Similarly, each FEC block is independently appended with a 7-bit marker.
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Figure 4.10 Modified KPN eliminating key limitations of the classical KPN configuration
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The last module in the transmitter is the framer. This appends a 16-bit of frame header that marks

the start of a frame.

The objective of presenting this detail is to show that each node works on a different size of data

buffer. TheKPN implementation performs a distributed synchronization where a node fires when its

input FIFO has enough tokens. The same FIFO keeps collecting tokens from the preceding node for

the next firing.

In realizing the concept, the design is broken down into autonomously running HW building

blocks of AES, FEC encoder, framer, modulator and mixer. Each block is implemented as an

application-Specific processor (ASP).ASPs forAES andFEChave their localmemories. The design

is mapped on an FPGA. A dual-port RAM (random-access memory) block is instantiated between

two ASPs and configure to work as a FIFO. A 1-bit signal is used between producer and consumer

ASPs for notification of completion of the FIFO write operation.

A detailed top-level design of the transmitter revealing a KPN structure is shown in Figure 4.11.

The input data is received on a serial interface. The ASPAES interface collects these bits, forms

them in a one-byte word and writes the word in FIFOAES. After the FIFO collects 128 bits (i.e.

16 bytes of data) the ASPAES fires and starts its execution. As writes to the FIFO are non-blocking,

thus the interface keeps collecting bits, forms them in one-byte words and writes the words in the

FIFO. The encryption key is expended at the initialization and is stored in a localmemory ofASPAES
labeled as MEMAES. The internal working of the ASPAES is not highlighted in this chapter as the

basic aim of the section is to demonstrate the top-level modeling of the design as KPN. A

representative design of ASPAES is given in Chapter 13.

The next processor in the sequence is ASPFEC. The processor fires after its FIFO stores sufficient

number of samples based on the mode selected for BTE. For example, the 11� 11 mode requires

121 bits. Each firing of ASPAES produces 128 bits and an 8-bit marker is attached to indicate the start

of the AES block. ASPFEC fires once and uses 121 bits. The remaining 15 bits are left in the FIFO. In

the next firing these 15 bits alongwith 106 bits fromcurrentAES frame are used and 30 bits are left in

the FIFO. The number of remaining bits keeps increasing, and after a number of iterations theymake

a complete FEC block that requires an additional firing of theASPFEC. The FEC block is amulti-rate

block as it adds additional bits for error correction at the receiver. For the case in consideration, 121

bits generate 256 bits at the output.

At the completion of encoding, the ASPFEC notifies the ASPFramer. The ASPFramer also waits to

collect the defined number of bits before it fires. It also appends a 16-bit header to the frame of data

from ASPFEC for synchronization at the receiver. The framer writes a complete frame of data in a

buffer. From here onward the processing is done on a bit-by-bit basis. The GMSK modulator first

filters the non-return-to-zero (NRZ) data using a Gaussian low-pass filter and the resultant signal is

then frequency modulated (FM). The bandwidth of the filter is chosen in such a way that it yields

a narrowband GMSK signal given by:

x tð Þ ¼
ffiffiffiffiffiffiffiffi
2Pc

p
cos 2p fctþjsðtÞð Þ

where fc is the carrier frequency, Pc is the carrier power and js(t) is the phase modulation given by:

js tð Þ ¼ 2p fd

ðt
�1

X1
k¼�1

akg v�kTð Þdv

where fd is the modulation index and is equal to 0.5 for GMSK, ak is the binary data symbol and is

equal to �1, and g(.) is the Gaussian pulse. A block diagram of the GMSK baseband modulator is

shown in Figure 4.12.
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The complex baseband modulated signal is passed to a digital quadrature mixer. The mixer

multiplies the signal by exp ( joon). The mixed signal is passed to a two-channel D/A converter. The

quadrature analog output from the D/A is mixed again with an analog quadrature mixer for onward

processing by the analog front end (AFE).

The processors are carefully designed towork in lock stepwithout losing any data. The processing

is faster than the data acquisition rate at the respective FIFOs. This makes the processors wait a little

after completing execution on a set of data. The activation signals from the input FIFOs after storing

the required number of bits make the connected processors fire to process the data in the FIFO.

4.5 Methods of Representing DSP Systems

4.5.1 Introduction

There are primarily two common methods to represent and specify DSP algorithms: language-

driven executable description and graphics or flow-graph-driven specification.

The language-driven methods are used for software development, high-level languages being

used to code algorithms. The languages are either interpretive or executable. MATLAB� is an

example of an interpretive language. Signal processing algorithms are usually coded inMATLAB�.

As the code is interpreted line by line, execution of the code has considerable overheads. To reduce

these it is always best to write compact MATLAB� code. This requires the developer to avoid loops

and element-by-element processing of arrays, and instead where possible to use vectorized code

that employs matrices and arrays in all computations. Besides using arrays and matrices, the user

can predefine arrays and use compiled MEX (MATLAB� executable) files to optimize the code.

For a computationally intensive part of the algorithm, where vectorization of the code is not

possible, the usermaywant to optimize by creatingMEXfiles fromC/Cþþ code or alreadywritten

MATLAB� code. If the user prefers to manually write the code in C/Cþþ , a MEX application

programming interface (API) is used for interfacing it with the rest of the code written in

MATLAB�. In many design instances it is more convenient to automatically generate the MEX

file from already written MATLAB� code. For computationally intensive algorithms, the designer

usually prefers to write the code in C/Cþþ . As in these languages the code is compiled for

execution, the executable runs much faster than its equivalent MATLAB� simulation.

In many designs the algorithm developer prefers to use a mix of MATLAB� and C/Cþþ using

the MATLAB� Complier. In these instances visualization and other peripheral calculations are

performed inMATLAB� and number-crunching routines are coded in C/Cþþ , compiled and then

called from theMATLAB� code. The exact semantics of MATLAB� and C/Cþþ are not of much
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Figure 4.12 GMSK modulator block comprising of up-converter, Gaussian filter and phase modulator
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interest in hardware mapping. The main focus of this chapter is graphical representation of DSP

algorithms, so the description of exact semantics of procedural languages is left for the readers to

learn from other resources. It is important to point out that there are tools such as Compaan that

convert a code written in a subset of MATLAB� or C constructs to HW description [12].

Although language-driven executable specifications have wider acceptability, graphical methods

are gaining ground. The graphical methods are especially convenient for HW mapping and

understanding the working and flow of the algorithm. A graphical representation is the method

of choice for developing optimized hardware, code generation and synthesis.

Another motivation to learn about the graphical representation comes from its use in many

commercially available signal processing tools, including Simulink from Mathworks [13], Ad-

vanced Design Systems (ADS) from Agilent [14], Signal Processing Worksystem (SPW) from

Cadence [15], Cocentric SystemStudio fromSynopsys [16], Compaan fromLeidenUniversity [12],

LabVIEW from National Instruments [17], Grape from K. U. Leuven, PeaCE from Seoul National

University [18], SteamIT fromMIT [19],DSPStation fromMentorGraphics [20],Hypersignal from

Hyperception [21], and open-source software like Ptolemy-II [22] from the University of California

at Berkeley and Khoros [23] from the University of New Mexico. All these tools at a coarser level

use some form of KPN and each process in the representation uses an executable flow graph. It is

important to point out that alternatively in many of these tools, the nodes of a graphical

representation may also run a programwritten in one of more conventional programming language.

Although the node behavior is still captured in procedural programming languages, overall system

interpretation as a graph allows parallel mapping of the nodes on multiple processors or HW.

The graphical methods also support structural and hierarchical design flow. Each node in the

graph is hierarchically built and may encompass a graph in itself. The specifications are simulatable

and can also be synthesized. These methods also emphasize component-based architecture design.

The components may be parameterized to be reused in a number of design instances. Each

component can further be described at different levels of abstraction. This helps in HW/SW

co-simulation and exploration of the design space for better HW/SW partitioning.

The concept is illustrated in Figure 4.13. Process P3 is implemented inRTLVerilog and optimized

assembly language targeting a particular DSP processor. The idea is to explore both options of HW

and SW implementation and then, based on design objectives, seamlessly map P3 either on the DSP

processor or on the FPGA.

4.5.2 Block Diagram

Ablock diagram is a very simple graphical method that consists of functional blocks connected with

directed edges. A connected edge represents flow of data from source block to destination block.

Figure 4.14 shows a block diagram representation of a 3-coefficients FIR filter implementing this

equation:

y n½ � ¼ h0x n½ � þ h1x n� 1½ � þ h2x½n� 2� ð4:1Þ

In the figure, the functional blocks are drawn to represent multiplication, addition and delay

operations. These blocks are connected by directed edges showing the precedence of operations and

data flow in the architecture. It is important to note that the DSP algorithms are iterative. Each

iteration of the algorithm implements a series of tasks in a specific order. A delay element stores the

intermediate result produced by its source node. This result is used by the destination node on the

same edge in the next iteration of the algorithm. Figure 4.15 shows source node U performing
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Figure 4.14 Dataflow graph representation of a 3-coefficient FIR filter
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Figure 4.13 Graphical representation of a signal processing algorithm where node P3 is described in

RTL and optimized assembly targeting an FPGA or a particular DSP respectively
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Figure 4.15 Source and destination nodes with a delay element on the joining edge
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the addition operation and storing the value in the register on the edge, whereas the node Vuses the

stored value of the last iteration in the register for its multiplication by a constant a.

4.5.3 Signal Flow Graph

Asignal flowgraph (SFG) is a simplified version of a block diagram. The operation ofmultiplication

with a constant and delays are represented by edges, whereas nodes represent addition, subtraction

and input and output (I/O) operations.

Figure 4.16 shows an SFG implementation of equation (4.1) above. The edges with h0, h1 and

h2 represent multiplication of the signal at the input of the edges by respective constants, z�1 on the

arrow represents a delay element, the nodewhere two arrowsmeet shows the addition operation, and

a nodewith one incoming and two outgoing edges means that the data on the input edge is broadcast

to output edges.

SFGs are primarily used in describing DSP algorithms. Their use in representing architectures is

not very attractive.

4.5.4 Dataflow Graph or Data Dependency Graph

In a DFG representation, a signal processing algorithm is described by a directed graphG¼hV, Ei,
where a node v 2 V represents a computational unit or, in a hierarchical design, a sub-graph already

described subscribing to the rules of DFG. A directed edge e 2 E from a source node to a destination

node represents either a FIFO buffer or just precedence of execution. It is also used to represent

algorithmic delays introduced to data while it moves from source node to destination node.

A destination node can fire only if it has on all its input edges the predefined number of tokens.

Once a node executes, it consumes the defined number of tokens from its input edges and generates

a defined number of tokens on all its output edges.

A DFG representation is of special interest to hardware designers as it captures the data-driven

property of a DSP algorithm. A DFG representation of a DSP algorithm exposes the hidden

concurrency among different parts of the algorithm. This concurrency then can be exploited for

parallel mapping of the algorithm in HW. A DFG can be used to represent synchronous,

asynchronous andmulti-rateDSPalgorithms. For an asynchronous algorithm, an edge ‘e’ represents

a FIFO buffer.

DFG representation is very effective in designing and synthesizing DSP systems. It motivates the

designer to think in terms of components. A component-based design, if defined carefully, helps

in reuse of the components in other design instances. It also helps in module-level optimization,

testing and verification. The system can be easily profiled and the profiling results along with the

structure of the DFG facilitate HW/SW partitioning and subsequent co-design, co-simulation and

co-verification.

x[n] z-1

h0 h1 h2

z-1

y[n]

Figure 4.16 Signal flow graph representation of a 3-coefficient FIR filter
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Each node in the graph may represent an atomic operation like multiplication, addition or

subtraction. Alternatively, each node may coarsely define a computational block such as FIR filter,

IIR filter or FFT. In these design instances, a predesigned library for each node may already exist.

The designer needs to exactly compute the throughput for each node and the storage requirement

on each edge. While mapping a cascade of these nodes to HW, a controller can be easily designed

or automatically generated that synchronizes the operation of parallel implementation of these

nodes.

A hypothetical DFG is shown in Figure 4.17, where each node represents a computational block

defined at coarse granularity and edges represent connectivity and precedence of operation. For

HW mapping, appropriate HW blocks from a predesigned library are selected or specifically

designed with a controller synchronizing the nodes to work in lock step for parallel or sequential

implementation.

Figure 4.18 shows the scope of different sub-classes of graphical representations. These

representations are described in below sections. The designer needs to select, out of all these

representations, an appropriate representation to describe the signal processing algorithm under

consideration. The KPN is the most generalized representation and can be used for implementing

a wide range of signal processing systems. In many design instances, the algorithm can be defined

more precisely at a finer level with details of number of cycles each node takes to execute its

computation and the number of tokens it consumes at firing, and as a result the number of tokens it

produces at its output edges. These designs can be represented using cyclo-static DFG (CSDFG),

synchronous DFG (SDFG) and homogenous SDFG (HSDFG) – in reducing order of generality.

HSDF
SDFG

DDFG

CSDFG

Kahn Process Network

Figure 4.18 Scope of different subclasses of graphical representation, moving inward from the most

generalized KPN to dynamic DFG (DDFG), to CSDFG, to SDFG, and ending at the most constrained

HSDFG

A B C
e1

e2

e3

Figure 4.17 Hypothetical DFG with three nodes and three edges
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When the number of cycles each node takes to execute and the number of tokens produced and

consumed by the node are not known a priori, these design cases can be modeled as dynamic DFG

(DDFG).

4.5.4.1 Synchronous Dataflow Graph

A typical streaming application continuously processes sampled data from anA/D converter and the

processed data is sent to a D/A converter. An example of a streaming application is a multimedia

processing system consisting of processes or tasks where each task operates on a predefined number

of samples and then produces a fixed number of output values. These tasks are periodically executed

in a defined order.

A synchronous dataflow graph (SDFG) best describes these applications. Here the number of

tokens consumed by a node on each of its edges, and as a result of its firing the number of tokens it

produces on its output edges, are known a priori. This leads to efficient HW mapping and

implementation.

Nodes are labeled with their names and number of cycles or time units they take in execution, as

demonstrated in Figure 4.19. An edge is labeled at tail and head with production and consumption

rates, respectively. The black dots on the edges are the algorithm delays between two nodes.

Figure 4.19 shows source and destination nodes S and D taking execution time TS and TD units,

respectively. The data or token production rate of S is PS and the data consumption rate of node D is

CD. The edge shows two algorithmic delays between the nodes specifying that node D uses two

iterations-old data for its firing.

An example of an SDFG is shown in Figure 4.20(a). The graph consists of three nodes A, B and C

with execution times of 2, 1 and 1 time units, respectively. The production and consumption rates of

each node are also shown, with the number of required initial delays represented by filled circles on

the edges.

An SDFG can also be represented by a topology matrix, as shown in Figure 4.20(b). Each

column of the matrix represents a node and each row corresponds to an edge. The three columns

represent nodes A, B and C in the same order. The first row depicts edge e1 connecting nodes A

and B. Similarly the second and third rows show the connections on edges e2 and e3, respectively.

1
22

1

1

1
22

A, 2 B,1 C,1
e1

e2

e3

(b) (a) 

1
0
0

–1
2

–2

0
–2

2

Figure 4.20 (a) Example of an SDFG with three nodes A, B and C. (b) Topology matrix for the SDFG

PS
D,TDS,TS

CD

Figure 4.19 SDFG with nodes S and D
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The production and consumption rates are represented by positive and negative numbers,

respectively.

4.5.4.2 Example: IIR Filter as an SDFG

Draw an SDFG to implement the difference equation below:

y n½ � ¼ x n½ � þ a1y n� 1½ � þ a2y½n� 2� ð4:2Þ

The SDFG modeling the equation is given in Figure 4.21. The graph consists of two nodes for

multiplications and one node for addition, each taking one token as input and producing one token

at the output. The feedback paths from the output to the two multipliers each requires a delay.

These delays are shown with black dots on the respective edges.

4.5.4.3 Consistent and Inconsistent SDFG

An SDFG is described as consistent if it is correctly constructed. A consistent SDFG, once it

executes, neither starves for data nor requires any unbounded FIFOs on its edges. These graphs

represent both single- and multiple-rate systems. The consistency of an SDFG can be easily

confirmed by computing the rank of its topology matrix and checking whether that is one less than

the number of nodes in the graph [24].

An SDFG is described as inconsistent and experiences a deadlock in a streaming application if

some of its nodes starve for data at its input to fire, or on some of its edges it may need unbounded

FIFOs to store an unbounded production of tokens.

4.5.4.4 Balanced Firing Equations

A node in an SDFG fires a number of times, and in every firing produces a number of tokens on its

outgoing edges. All the nodes connected to this node on these direct edges must consume all the

tokens in their respective firing. Let nodes S and D be directly connected as shown in Figure 4.19,

where node S produces PS tokens and node D consumes CD tokens in their respective firings.

A balanced firing relationship can be expressed as:

fsPS ¼ fDCD ð4:3Þ

x

1

x

+

1

1

1

1

1
1

1

1
x[n] y[n]

Figure 4.21 SDFG implementing the difference equation (4.2)
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where fS and fD are non-zero finite minimum positive values. This definition can be hierarchically

extended for an SDFG with N nodes, where node 1 is the input and node N is the output:

f1P1 ¼ f2C2

f2P2 ¼ f3C3 ð4:4Þ
..
.

fN�1PN�1 ¼ fNCN

The values f1 . . . fN form a vector called the repetition vector. It can be observed that this vector

is obtained by computing a non-trivial solution to the set of equations given in (4.4). The repetition

vector requires each node to fire fi times. This makes all the nodes in an SDFG fire synchronously,

producing enough tokens for the destination nodes and consuming all the data values being produced

by its source nodes.

A set of balanced equations for an SDFG greatly helps a digital designer to design logic in each

node such that each node takes an equal number of cycles for its respective firing. The concept of

balanced equations and their effective utilization in digital design is illustrated later in this chapter.

It is pertinent to note that there are design instances where a cyclo-static schedule is required where

a node may take different time units and generate a different number of tokens in each of its firings

and then periodically repeat the pattern of firing.

Example: Find a solution of balanced equations for the SDFG given in Figure 4.22(a). The

respective balanced equations for the links A ! B, B ! C and C ! A are:

fA1 ¼ fB1

fB1 ¼ fC1

fC3 ¼ fA1

No non-trivial solution exists for these set of equations as the DFG is inconsistent.

4.5.4.5 Consistent and Inconsistent SDFGs

If no non-trivial solutionwith non-zero positive values exists for the set of balanced firing equations,

then it is inferred that the DFG is an inconsistent SDFG. This is equivalent to the check on the rank

of the topology matrix T, as any set of balanced equations for an SDFG can be written as:

Tf ¼ 0 ð4:5Þ

A B C
1

3

111

1

A B C
1

1

111

3

(b) (a) 

Figure 4.22 Examples of inconsistent DFGs resulting in only the trivial solution of a set of balanced-

firing equationswhere no node fires. (a)DFG requires unbounded FIFOs. (b)NodeAwill starve for data as

it requires three tokens to fire and only gets one from node B
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where f¼ [ f1, f2, . . . fN] is the repetition vector for a graph with N nodes.

Solving a set of three equations given by (4.5) for example in figure 4.22(a) only yields a non-

trivial solution. It is also obvious from theDFG that nodeC produces three tokens, and nodeA, in the

second iteration, consumes them in three subsequent firings. As a result, node B and C also fire three

times andCproduces nine tokens. In each iteration, C fires three times its previous number of firings.

Thus this DFG requires unbounded FIFOs and shows an algorithmic inconsistence in the design.

Using the balanced firing relationship of (4.3), produce/consume equations for links A ! B,

B ! C and C ! A are written as:

fA1 ¼ fB1

fB1 ¼ fC1 ð4:6Þ

fC3 ¼ fA1

The only solution for the set of equations is the trivial fA¼ fB¼ fC¼ 0. Another equally relevant

case is shown in Figure 4.22(b) where, following the sequential firing of different nodes, node Awill

starve for data in the second iteration as it requires three tokens for its firing and will only get one

from node B.

4.5.5 Self-timed Firing

In a self-timed firing, a node fires as soon as it gets the requisite number of tokens on its incoming

edges. For implementing SDFG on dedicated hardware, either self-timed execution of nodes can be

used or a repetition vector can be first calculated using a balanced set of equations. This vector

calculates multiple firings of each node to make the SDFG consistent. This obviously requires a

larger buffer size at the output of each edge to accumulate tokens resulting from multiple firing of

a node. A self-timed SDFG implementation usually results in a transient phase, and after that the

firing sequence repeats itself in a periodic phase. Self-timed SDFG implementation requires

minimum buffer sizes as a node fires as soon as the buffers on its inputs have the requisite number

of samples.

Example:Figure 4.23(a) shows an SDFGwith three nodes, A, B and C, having execution time of

1, 2 and 2 time units, respectively. The consumption and production rates for each link are also

shown. In a self-timed configuration, an implementation goes through a transient phasewhere nodes

A and B fire three times to accumulate three token at the input of C. Node B takes two time units to

complete its execution. In Figure 4.23(b) the first time unit is shown with capital letter ‘B’ and the

second time unit is shown with small letter ‘b’. This initial firing brings the self-timed implementa-

tion in periodic phase where C fires and generates three tokens at its output. This makes A fire three

times, and so does B, generating three tokens at input of C – and the process is repeated in a

periodic fashion.

4.5.6 Single-rate and Multi-rate SDFGs

In a Single-Rate SDFG, the consumption rate rc (the number of tokens consumed on each incoming

edge) is same as the production rate rp (the number of tokens produced at the outgoing edges). In a

Multi-RateSDFG, these rates are not equal and one is a rationalmultiple of the other. For a decimation

multi-rate system, rc> rp. An interpolation system observes a reverse relationship, rp< rc.
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An algorithm described as a synchronous DFG makes it very convenient for a designer or an

automation tool to synthesize the graph and generate SW or HW code for the design. This

representation also helps the designer or the tools to apply different transformations on the graph

to make it optimized for a set of design constraints and objective functions. The representation can

also be directly mapped on dedicated HW, or time-multiplexed HW. For time-multiplexed HW,

several techniques have been evolved to generate an optimal schedule and HWarchitecture for the

design. Time-multiplexed architectures are covered in Chapters 8 and 9.

Example: A good example of a multi-rate DFG is a format converter to store a CD-quality audio

sampled at 44.1 kHz to a digital audio tape (DAT) that records a signal sampled at 48 kHz. The

following is the detailed workout of the format conversion stages [25]:

fDAT

fCD
¼ 480

441
¼ 160

147
¼ 2

1
� 4

3
� 5

7
� 4

7

The first stage of rate change is implemented as an interpolator by 2, and each subsequent stage

is implemented as a sampling rate change node by a rational factor P/Q, where P and Q are

interpolation and decimation factors. This sampling rate change is implemented by an interpolation

by a factor of P, and then passing the interpolated signal through a low-pass FIR filter with cutoff

frequency p/max (P,Q). The signal from the filter is decimated by a factor of Q [9].

Figure 4.24 shows the SDFG that implements the format converter. The SDFG consists of

processing nodes A, B, C and D implementing sampling rate conversion by factors of 2/1, 4/3, 5/7

and 4/7, respectively. In the figure CD and DAT represent source and destination nodes.

C,2
1 31

2
B,2A,1

2

3

(a) 

BA BA,b BA,b b cC

A

A,B
A,bBb

B
b

(b) 

Figure 4.23 Example of self-timed firing where a node fires as soon as it has enough tokens on its input.

(a) An SDFG. (b) Firing pattern using self-timed firing

1 321
ACD B

4 7
C

5 7
D

4 1
DAT

Figure 4.24 SDFG implementing CD to DAT format converter
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There are two simple techniques to implement the SDFG for the format conversion.Onemethod is

to first compute the repetition vector by first generating the set of produce/consume equations for all

edges and then solving it for a non-trivial solution with minimum positive values. The solution turns

out to be [147 98 56 40] for firing of nodes A, B, C and D, respectively. Although this firing is very

easy to schedule, it results in an inefficient requirement on buffer sizes. For this example the

implementation requires multiple buffers of sizes 147, 147� 2, 98� 4, 56� 5 and 40� 4 on edges

moving from source to destination, accumulating a total storage requirement of 1273 samples.

The second design option is for each node to fire as soon as it gets enough samples at its input port.

This implementationwill requiremultiple buffers of sizes 1, 4, 10, 11 and 4 on respective edges from

source to destination, amounting to a total buffer size of 30 words.

4.5.7 Homogeneous SDFG

Homogeneous SDFG is a special case of a single-rate graph where each node produces one token

or data value on all its outgoing edges. Extending this account to incoming edges, each node also

consumes one data value from all its incoming edges. Any consistent SDFG can be converted into

HSDFG. The conversion gives an exact measure of throughput, athough the conversion may result

in an exponential increase in the number of nodes and thus may be very complex for interpretation

and implementation.

The simplest way to convert a consistent SDFG to HSDFG is to first find the repetition vector and

then tomake copies of each node as given in the repetitionvector and appropriately draw edges from

source nodes to the destination nodes according to the original SDFG.

Example: Convert the SDFG given in Figure 4.25(a) to its equivalent HSDFG. This requires first

finding the repetition vector from a set of produce/consume equations for the DFG. The repetition

vector turns out to be [2 4 3] for set [A B C]. The equivalent HSDFG is drawn by following the

repetitionvector where nodes A, B andC are drawn 2, 4 and 3 times, respectively. The parallel nodes

are then connected according to the original DFG.The equivalent HSDFG is given in Figure 4.25(b).

Example: Section 4.4.2.1 considered a JPEG realization as a KPN network. It is interesting to

observe that each process in theKPN can be described as a dataflow graph. Implementation of a two-

dimensional DCT block is given here. There are several area-efficient algorithms for realizing a 2-D

DCT in hardware [26–29], but let us consider the simplest algorithm that computes 2-D DCT by

successively computing two 1-D DCTs while performing transpose before the first DCT computa-

tion. This obviously is a multi-rate DFG, as shown in Figure 4.26.

The first node in the DFG takes 64 samples as an 8� 8 block B, and after performing

transpose of the input block it produces 64 samples at the output. The next node computes a

1-D DCT Ci of each of the rows of the block, MATLAB� notation B
T
(i,:) is used to represent

each row i (¼ 0, . . ., 7) of blockBT. This node, in each of its firings, takes a row comprising 8 samples

and computes 8 samples at the output. The next FIFO at the output keeps collecting these rows,

and the next node fires only when all 8 rows consisting of 64 elements of C are computed and saved

in the FIFO. This node computes the transpose of C. In the same manner the next node computes

8 samples of the one-dimensional DCT Fj of each column j of CT.

ThisDFGcan be easily converted intoHSDFGby replicating the 1-DDCTcomputation 8 times in

both the DCT computation nodes.

4.5.8 Cyclo-static DFG

In a cyclo-staticDFG, the number of tokens consumed by each node, although varying from iteration

to iteration, exhibits periodicity and repeats the pattern after a fixed number of iterations. ACS-DFG

158 Digital Design of Signal Processing Systems



is more generic and is suited to modeling several signal processing applications because it provides

flexibility of varying production and consumption rates of each node provided the pattern is repeated

after some finite number of iterations. This representation also works well for designs where a

periodic sequence of functions is mapped on same HW block. Modeling it as CS-DFG, a node, in a

periodic pattern, fires and executes a different function in a sequence and then repeats the sequence

of calls after a fixed number of function calls. Each function observes different production and

consumption rates, so the number of tokens in each firing of a node is different.

Figure 4.27 shows aCS-DFGwhere nodesA, B andC each executes two functionswith execution

times of [1, 3], [2, 4] and [3, 7] time units, respectively. In each of their firings the nodes produce and

consume different numbers of tokens. This is shown in the figure on respective edges.

To generalize the execution in a CS-DFG node, in a periodic sequence of calls with period N,

an iteration executes a function out of a sequence of functions f0(.), . . . f(N – 1). Other nodes also call

functions in a sequence. Each call consumes and produces a different number of tokens.

64

38

Ci =
1D-DCT(BT(i,:))

BT

8x8

64 CT

8x8

8 8 64

38

Fj=
1D-DCT(CT(:,j))

8 864

Figure 4.26 Computing a two-dimensional DCT in a JPEG algorithm presents a good example to

demonstrate a multi-rate DFG
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Figure 4.25 SDFG to HSDF conversion. (a) SDFG consisting of three nodes A, B and C. (b) An

equivalent HSDG
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4.5.9 Multi-dimensional Arrayed Dataflow Graphs

This graph consists of an array of nodes and edges. The graph works well for multi-dimensional

signal processing or parallel processing algorithms.

4.5.10 Control Flow Graphs

Although a synchronous dataflow graph (SDFG) is statically schedulable owing to it predictable

communications, it can also express recursion with a fixed number of iterations. However, the

representation has an expressive limitation because it cannot capture a data-dependent flow of

tokens unless it makes use of transition refinements. This limitation prevents a concise representa-

tion of conditional flows incorporating if–else–then and do–while loops and data-depen-

dent recursions.

As opposed to a DFG which is specific to a dataflow algorithm, a CFG is suitable to process a

control algorithm. These algorithms are usually encountered in implementing communication

protocols or controller designs for datapaths.

A control dataflow graph (CDFG) combines data-driven and control-specific functionality of

an algorithm. Each node of the DFG represents a mathematical operation, and each edge represents

either precedence or a data dependency between the operations. ACDFGmay change the number of

tokens produced and consumed by the nodes in different input settings. ADFGwith varying rates of

production and consumption is called a dynamic dataflow graph (DDFG).

Example: The example here converts a code consisting of decision statements to CDFG.

Figure 4.28 shows a CDFG that implements the following code:

if (a==0)

c=a+b�e;

else

c=a-b;

The figure shows two conditional edges and two hierarchically built nodes for conditional firing.

This type of DFG is transformed for optimal HWmapping by exploiting the fact that only one of the

many conditional nodes will fire. The transformed DFG shares a maximum of HW resources and

moves the conditional execution on selection of operands for the shared resource.

A dataflow graph is a good representation for reconfigurable computing. Each block in the

DFG can be sequentially mapped on reconfigurable hardware. Figure 4.29 illustrates the fact that,

in a JPEG implementation, sequential firing of nodes can be mapped on the same HW. This

sharing of HW resources at run time reduces the area required, at the cost of longer execution

times.

[2,4] [1,3] [4,7]
A,[1,3] B,[2,4] C,[3,7]

[3,8]

Figure 4.27 Example of a CSDFG, where node A first fires and takes 1 time unit and produces 2 tokens,

and then in its second firing it takes 3 time units and generates 4 tokens. Node B in its first firing consumes

1 token in 2 time unit, and the in its second firing takes 4 time units and consumes 3 tokens; it respectively

produces 4 and 7 tokens. A similar behavior of node C can be inferred from the figure
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4.5.11 Finite State Machine

A finite state machine (FSM) is used to provide control signals to a signal processing datapath for

executing a computation with a selection of operands from a set of operands. An FSM is useful once

aDFG is folded andmapped on a reducedHW, thus requiring a scheduler to schedulemultiple nodes

of the graph on a HW unit in time-multiplexed fashion. An FSM implements a scheduler in these

designs.

A generic FSM assumes a system to be in one of a finite number of states. An FSM has a current

state and, based on an internal or external event, it then computes the next state. The FSM then

transitions into the next state. In each state, usually the datapath of the system executes a part of

the algorithm. In this way, once the FSM transits from one state to another, the datapath keeps

implementing different portions of the algorithm. After finishing the current iteration of the

algorithm, the FSM sets its state to an initial value, and the datapath starts executing the algorithm

again on a new set of data.

VLERLEQuantizeTransform

Figure 4.29 A dataflow graph is a good representation for mapping on a run-time reconfigurable

platform

x

+
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Figure 4.28 CDFG implementing conditional firing
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Besides implementing a scheduler, the FSM also works well to implement protocols where a set

of procedures and synchronization is followed among various components of the system, as with

shared-bus arbitration. Further treatment to the subject of FSM is given in Chapter 9.

4.5.12 Transformations on a Dataflow Graph

Mathematical transformations convert a DFG to a more appropriate DFG for hardware implemen-

tation. These transformations change the implementation of the algorithm such that the transformed

algorithmbettermeets specific goals of the design.Out of a set of design goals the designermaywant

to minimize critical path delay or the number of registers. To achieve this, several transformations

can be applied to a DFG. Retiming, folding, unfolding and look-ahead are some of the transforma-

tions commonly used. These are covered in Chapter 7.

A transformation as shown in Figure 4.30 takes the current representation of DFGi¼hVi, Eii
and translates it to another DFGt¼hVt, Eti with the same functionality and analytical behavior

but different implementation.

4.5.13 Dataflow Interchange Format (DIF) Language

Dataflow interchange format is a standard language for specifying DSP systems in terms of

executable graphs. Representation of an algorithm in DIF textually captures the execution model.

An algorithm defined in DIF format is extensible and can be ported across platforms for simulation

and for high-level synthesis and code generation. More information on DIF is given in [25].

4.6 Performance Measures

A DSP implementation is subject to various performance measures. These are important for

comparing design tradeoffs.

4.6.1 Iteration Period

For a single-rate signal processing system, an iteration of the algorithm acquires a sample from an

A/D converter and performs a set of operations to produce a corresponding output sample. The

computation of this output sample may depend on current and previous input samples, and in a

recursive system the earlier output samples are also used in this calculation. The time it takes the

system to compute all the operations in one iteration of an algorithm is called the iteration period.

It is measured in time units or in number of cycles.

For a generic digital system, the relationship between the sampling frequency fs and the circuit

clock frequency fc is important. When these are equal, the iteration period is determined by the

A B C
Transformation

<Vi,Ei> → <Vt,Et>
A B C

Figure 4.30 Mathematical transformation changing a DFG to meet design goals
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critical path. In designswhere fc> fs, the iteration period ismeasured in terms of the number of clock

cycles required to compute one output sample. This definition can be trivially extended formulti-rate

systems.

4.6.2 Sampling Period and Throughput

The sampling period Ts is defined as the average time between two successive data samples. The

period specifies the number of samples per second of any signal. The sampling rate or frequency

(fs¼ 1/Ts) requirement is specific to an application and subsequently constrains the designer to

produce hardware that can process the data that is input to the system at this rate.Often this constraint

requires the designer tominimize critical path delays. They can be reduced by usingmore optimized

computational units or by adding pipelining delays in the logic (see later). The pipelining delays

add latency in the design. In designs where fs< fc, the digital designer explores avenues of resource

sharing for optimal reuse of computational blocks.

4.6.3 Latency

Latency is defined as the time delay for the algorithm to produce an output y[n] in response to an input

x[n]. In many applications the data is processed in batches. First the data is acquired in a buffer

and then it is input for processing. This acquisition of data adds further latency in producing

corresponding outputs for a given set of inputs.

Beside algorithmic delays, pipelining registers (see later) are the main source of latency in an

FDA. In DSP applications, minimization of the critical path is usually considered to be more

important than reducing latency. There is usually an inverse relationship between critical path

and latency. In order to reduce the critical path, pipelining registers are added that result in an

increase in latency of the design. Reducing a critical path helps inmeeting the sampling requirement

of a design.

Figure 4.31 shows the sampling period as the time difference between the arrivals of two

successive samples, and latency as the time for the HW to produce a result y[n] in response to

input x[n].
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Figure 4.31 Latency and sampling period
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4.6.4 Power Dissipation

4.6.4.1 Power

Power is another critical performance parameter in digital design. The subject of designing for low

power use is gainingmore importancewith the trend towardsmore handheld computing platforms as

consumer devices.

There are two classes of power dissipation in a digital circuit, static and dynamic. Static power

dissipation is due to the leakage current in digital logic, while dynamic power dissipation is due to all

the switching activity. It is the dynamic power that constitutes themajor portion of power dissipation

in a design. Dynamic power dissipation is design-specific whereas static power dissipation depends

on technology.

In an FPGA, the static power dissipation is due to the leakage current through reversed-biased

diodes. On the same FPGA, the use of dynamic power depends on the clock frequency, the supply

voltage, switching activity, and resource utilization. For example, the dynamic power consumption

Pd in a CMOS circuit is:

Pd ¼ aCV2
DD f

where a andC are, respectively, switching activity and physical capacitance of the design,VDD is the

supply voltage and f is the clock frequency. Power is a major design consideration especially for

battery-operated devices.

At register transfer level (RTL), the designer can determine the portions of the design that are not

performing useful computations and can be shut down for power saving. A technique called ‘gated

clock’ [30–32] is used to selectively stop the clock in areas that are not performing computations

in the current cycle. A detailed description is given in Chapter 9.

4.7 Fully Dedicated Architecture

4.7.1 The Design Space

To design an optimal logic for a given problem, the designer explores the design spacewhere several

options are available formapping real-time algorithms in hardware. Themaximumachievable clock

frequency of the circuit, fc, and the required sampling rate of data input to the system, fs, play crucial

roles in determining and selecting the best option.

Digital devices like FPGAs and custom ASICs can execute the logic at clock rates in the range of

30MHz to at least 600MHz. Digital front end of a software defined radio (SDR) requires sampling

and processing of an IF signal centered at 70MHz. The signal is sampled at between 150 and

200MHz. For this type of application it is more convenient to clock the logic at the sampling

frequency of the A/D converter or the data input rate to the system. For these designs not many

options are available to the designer, because to process the input data in real time each operation of

the algorithm requires a physical HW operator. Each operation in the algorithm – addition,

multiplication and algorithmic delay – requires an associated HW unit of adder, multiplier and

register, respectively. Although the designer is constrained to apply one-to-one mapping, there is

flexibility in the selection of an appropriate architecture for basic HWoperators. For example, for

simple addition, an adder can be designed using various techniques: ripple carry, carry save,

conditional sum, carry skip, carry propagate, and so on. The same applies tomultipliers and shifters,

where different architectures are being designed to perform these basic operations. The design

options for these basic mathematical operations are discussed in Chapter 5. These options usually

trade off area against timing.
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After one-to-one mapping of the DFG to architecture, the design is evaluated to meet the input

data rate of the system. There will be cases where, even after selecting the optimal architectures for

basic operations, the synthesized design does notmeet timing requirements. The designer then needs

to employ appropriate mathematical transformations or may add pipeline registers to get better

timing (see later).

Example: Convert the following statements to DFG and then map it to fully dedicated

architecture.

d n½ � ¼ a n½ � þ b½n� ð4:7Þ
out n½ � ¼ d n�1½ ��c½n�ð Þe½n� ð4:8Þ

This is a very simple set of equations requiring addition, a delay element, a subtraction and a

multiplication. The index n represents the current iteration, and n – 1 represents the result from the

previous iteration. The conversion of these equations to a synchronousDFG is shown in Figure 4.32.

After conversion of an algorithm to DFG, the designer may apply mathematical transformations

like retiming and unfolding to get a DFG that better suits HWmapping.Mapping of the transformed

DFG to architecture is the next task. For an FDA the conversion to an initial architecture is very

trivial, involving only replacement of nodes with appropriate basic HW building blocks.

Figure 4.33 shows the initial architecture mapping of the DFG of (4.7) and (4.8). The operations

of the nodes are mapped to HW building blocks of an adder, subtractor, multiplier and a register.

4.7.2 Pipelining

Mapping of a transformed dataflow graph to fully dedicated architecture is trivial, because each

operation is mapped to its matching hardware operator. In many cases this mapping may consist of

paths with combinational logic that violates timing constraints. It is, therefore, imperative to

break these combinational clouds with registers. Retiming transformation, which is discussed in

Chapter 7, can also be used for effectively moving algorithmic registers in the combinational logic

that violates timing constraints.
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Figure 4.33 DFG to FDA mapping
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Figure 4.32 Mapping to a dataflow graph of the set of equations given in the text example
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For feedforward paths, the designer also has the option to add additional pipeline registers in the

path. As the first step, a DFG is drawn from the code and, for each node in the graph, an appropriate

HW building block is selected. Where there is more than one option of a basic building block,

selecting an appropriate HW block becomes an optimization problem. After choosing appropriate

basic building blocks,these are then connected in the order specified by the DFG. After this initial

mapping, timing of the combinational clouds is computed. Based on the desired clock rate, the

combinational logic may require retiming of algorithmic registers; or, in case of feedforward paths,

the designer may need to insert additional pipeline registers.

Figure 4.34 shows the steps inmapping aDFG to fully dedicated architecturewhile exercising the

pipelining option for better timing.

Maintaining coherency of the data in the graph is a critical issue in pipelining. The designer needs

to make sure that the datapath traced from any primary input to any primary output passes through

the same number of pipeline registers. Figure 4.35 shows that to partition the combinational cloud of
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Step 1: DFG representation

Step 2: One-to-one mapping of mathematical 
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Step 3: Pipelining and retiming 
for meeting timing constraint

Figure 4.34 Steps in mapping DFG on to FDA with pipeline registers
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Figure 4.33, a pipeline register needs to be inserted between the multiplier and the subtractor; but,

tomaintain coherency of input e[n] to themultiplier, one register is also added in the path of the input

e[n] to the multiplier.

When some of the feedforward paths of themappedHWdonotmeet timings, the designer can add

pipeline registers to these paths. In contrast, there is no simple way of adding pipeline registers in

feedback paths. The designer should mark any feedback paths in the design because these require

special treatment for addition of any pipeline registers. These special transformations are discussed

in Chapter 7.

4.7.3 Selecting Basic Building Blocks

As an example, a dataflow graph representing a signal processing algorithm is given in Figure 4.36(a).

Let there be three different types of multiplier and adder in the library of predesigned basic building

blocks. The relative timing and area of each building block is given in Table 4.1. This example

designs an optimal architecturewithminimum area and best timingwhile mapping the DFG to fully

dedicated architecture.
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Figure 4.36 One-to-one mathematical operations. (a) Dataflow graph. (b) Fully dedicated architecture

with optimal selection of HW blocks
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TheDFGof Figure 4.36(a) is optimallymapped to architecture in (b). The objective is to clock the

design with the best possible sampling rate without addition of any pipeline register. The optimal

design selects appropriate basic building blocks from the library tominimize timing issues and area.

There are two distinct sections in theDFG. The critical section requires the fastest building blocks

formultiplications and additions. For the second sections, first the blockswithminimum area should

be allocated. If any path results in a timing violation, an appropriate building blockwith better timing

while still smaller area should be used to improve the timing. For complex designs the mapping

problem can be modeled as an optimization problem and can be solved for an optimal solution.

4.7.4 Extending the Concept of One-to-one Mapping

The concept can be extended to graphs that are hierarchically built where each node implements an

algorithm such as FIR or FFT. Then there are also several design options to realize these algorithms.

These options are characterized with parameters of power, area, delay, throughput and so on. Now

what is needed is a design tool that can iteratively evaluates the design by mapping different design

options and then settling for the one that best suits the design objectives. A system design tool to

work in this paradigm needs to develop different design options for each component offline and to

place them in the design library.

Figure 4.37 demonstrates what is involved. The dots in the figure show different design instances

and the solid line shows the tradeoff boundary limiting the design space exploration. The user defines

a delay value and then chooses an architecture in the design space that best suits the objectives while

minimizing the power.

4.8 DFG to HW Synthesis

A dataflow graph provides a comprehensive visual representation to signal processing algorithms.

Each node is characterized by production and consumption rates of tokens at each port. In many

instances, several options for a component represented as a node in the DFG exists in the design

library. These components trade off area with the execution time or number of cycles it takes to

process the input tokens.

In this section we assume that a design option for implementing a node has already been made.

The section presents a technique for automatic mapping and interworking of nodes of a DFG in

hardware. This mapping requires convertion of the specifications for each edge of the DFG to

appropriate HW, and generation of a scheduler that synchronizes the firings of different nodes in the

DFG [33].

Table 4.1 Relative timings and areas for basic building blocks used in the text example

Basic building blocks Relative timing Relative area

Adder 1 (A1) T 2.0A

Adder 2 (A2) 1.3T 1.7A

Adder 3 (A3) 1.8T 1.3A

Multiplier 1 (M1) 1.5T 2.5A

Multiplier 2 (M2) 2.0T 2.0A

Multiplier 3 (M3) 2.4T 1.7A
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4.8.1 Mapping a Multi-rate DFG in Hardware

Each edge is considered with its rates of production and consumption of tokens. For an edge

requiring multi-rate production to single-rate consumption, either a parallel or a sequential

implementation is possible. A parallel implementation invokes each destination node multiple

times, whereas a sequential setting stores the data in registers and sequentially inputs it to a single

destination node.

For example, Figure 4.38(a) shows an edge connecting nodes A and B with production and

consumption rates of 3 and 1, respectively. The edge is mapped to fully parallel and sequential

designs where nodes are realized as HW components. The designs are shown in Figures 4.38(b)

and (c).

4.8.1.1 Sequential Mapping

The input to component A is fed at the positive edge of clkG, whereas component B is fed with the

data at three times faster clock speed. Based on the HW implementation, A and B can execute at

independently running clocks clkA and clkB. In design instances where a node implements a

complete functionality of an algorithm, these clocks are much faster than clkG. There may be

design instances where, in a hierarchical fashion, each node also represents a DFG and the graph

is mapped on fully dedicated architecture. Then clkA and clkB are set to be clkG and 3� clkG,

respectively.
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Figure 4.37 Power–delay tradeoff for a typical digital design
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4.8.1.2 Parallel Mapping

A parallel realization uses the same clock for both the inputs to components A and B as shown in

Figure 4.38(c). Further to this, if the design is also mapped as FDA then the entire design would run

on global clkG.

In a multi-rate system where the consumption and production rates are different, the buffering

design becomes more complex. This requires either a self-timed implementation or balanced-

equation based multiple firing realizations. In a self-timed implementation, the firing of the

destination node may happen a variable number of times in a period.

Example: Figure 4.39(a) shows a multi-rate edge with rate of production and consumption 3 and

4, respectively. Every time a source node fires it produces three tokens of N bits each, and writes

them in a ping-pong pattern in two sets of three registers, {R1, R2, R3} and {R4, R5, R6}. The

destination node B consumes the produced tokens in a firing sequence in relation to the firing of

node A as [0 1 1 1]. Node A fires in the first cycle and stores the output values in registers {R1, R2,

R3}. In the second cycle node B does not fire as it requires four tokens, but node A fires again and

three new tokens are produced in registers {R4, R5, R6}. As the total number of tokens produced

becomes six, so B fires and consumes four tokens in {R1, R2, R3, R4}. Node A also fires in this

cycle and again saves the three tokens in registers {R1, R2, R3}, and total number of unconsumed

tokens becomes five. In sequential firing, the node B fires again and consumes tokens in registers

{R5, R6, R1, R2}, and A also fires and stores tokens in {R4, R5, R6}. The unconsumed tokens are

four now, so B fires again and consumes four tokens in registers {R3, R4, R5, R6}. This pattern is

repeated thereafter. Figure 4.39(b) shows the HW design that supports this production and

consumption of tokens.
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Figure 4.38 (a) Multi-rate to single-rate edge. (b) Sequential synthesis. (c) Parallel synthesis

170 Digital Design of Signal Processing Systems



4.8.2 Centralized Controller for DFG Realization

Chapter 9 is dedicated to state-machine based controller design, but in this section a brief

introduction to a centralized controller for a DFG realization in HW is given. Several automation

tools use a similarmethodology to add a controllerwhile generating aHWdesign for aDFG [33, 34].

The first step in implementing a central controller for a DFG is to classify all the nodes in the DFG

as one of the following: a combination node, or a sequential node that executes and generates an

output in every sample clock cycle, or a node that executes and generates output tokens in predefined

number of circuit clock cycles, or a node that takes a variable number of circuit clock cycles to

complete its execution. A sample clock cycle is the clock that latches a new sample into the logic,

whereas a circuit clock is usually much faster than a sample clock and executes sequential logic in

each node.

An automation tool either picks an appropriate implementation of a node from a design library

or produces HDL code using a code-generation utility. A node containing combinational logic or

sequential logic executing on the sample clock does not require any control signal except a reset

signal that must be used to reset any feedback register in the design. A nodewith predefined number

of circuit clock cycles requires a start signal from a controller, whereas a dynamic node gets a start

signal from a controller and then, after completing its execution, it generates a done signal to notify

the controller for further asserting control signals to subsequent nodes in the DFG.
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Figure 4.39 (a) A multi-rate DFG. (b) Hardware realization
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Figure 4.40(a) shows a DFG with nodes A, B, C, D and E. Node A is a combinational logic and

nodes B, C and E take 7, 8 and 9 predefined number of circuit clock cycles, respectively. Node D

dynamically executes and takes a variable number of cycles. Each black dot shows an algorithmic

delay where data from previous iteration is used in subsequent nodes. This dot in actual HW is

realized as a register that is clocked by the sampling clock. Now, having the graph and the

information about each node, a centralized controller can be easily designed or automatically

generated. Such a controller is shown in Figure 4.40(b). Each nodewith predefined number of cycles

needs a start signal from the controller, and then the controller counts the number of cycles for the

node to complete its execution. The controller then asserts an output enable signal to the register at

the output of each such node. In the figure, the output from each node is latched in a register after

assertion of an enable signal, whereas the register is clocked by the circuit clock. In the case of the

dynamic node D, the controller not only notifies the node to start its execution; the node also after

completing its execution asserts a done signal.

For the design in question, a done_D is asserted and the controller then asserts en_out_D to

latch the output from node D in a register. The input and output to the DFG and the dots on the edges

are replaced by registers clocked by sample clock clkG, whereas the rest of the logic in the nodes and

the registers at the output of each node are clocked by a circuit clock clkg. All the feedback register
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Figure 4.40 (a) Hypothetical DFG with different types of node. (b) Hardware realization
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are resetable using a global rst_n signal. It is important to ensure that for a synchronous DFG that

implements a streaming application, a new sample to theDFG is fed in every sample clock cycle. The

design must be constructed in a manner that all the nodes in the DFG complete their respective

executions before the arrival of the next sample clock. Even for the dynamic node, the worst-case

conditionmust be considered and the designmust guarantee completion before the arrival of the next

sample clock. All the nodes that can do so start and execute in parallel. NodesA,B andC execute in a

sequence, and D and E work in parallel and use the output of C from the previous iteration. If x, the

execution of time of dynamic node D, is bounded by 10, then the execution of D and E takes a

maximum of 19 circuit clocks, whereas nodes A, B and C take 16 clocks. Thus the circuit clock

should be at least 19 times faster than the sampling clock.

Exercises

Exercise 4.1

The code below lists one iteration of an algorithm implementing a block in a digital communications

receiver. The algorithm processes a complex input InputSample and gives it a phase correction.

The phase correction is computed in this code. Draw DFG, and map it on to an FDA. Write RTL

Verilog code of the designusing 16-bit fixed point arithmetic.Write a stimulus to verify theRTLcode.

Mixer_out = InputSample*(-j*Phase);

// a number of algorithmic registers

Mixer_Out[2] = Mixer_Out[1];

Mixer_Out[1] = Mixer_Out[0];

Mixer_Out[0] = Mixer_out;

Delayline[2] = Delayline[1];

Delayline[1] = Delayline[0];

// feedback loop, where a and b are arrays of 16-bit constants

// Kp and Ki are also 16-bit constant numbers

Delayline[0]= - Delayline[1]*a[1]

- Delayline[2]*a[2]

+ Mixer_Out[0]*b[0]

+ Mixer_Out[1]*b[1]

+ Mixer_Out[2]*b[2];

offset = real(Delayline[2]*Delayline[0]);

offset_Delayline[0] = offset_Delayline[1];

offset_Delayline[1] = offset;

phase_corr = Kp*offset_Delayline[0]

+ Ki*offset_Delayline[1]

+ phase_corr

- Kp*offset_Delayline[1];

Phase = Phase + phase_corr;

Exercise 4.2

Convert the C code shown below to its equivalent fixed-point listing in C. Consider acc to be in

Q8.32 format and all the other variables to be Q1.15. Check corner cases and saturate the result if

overflow occurs. Draw a DFG of the design and map the DFG as FDA. Write RTLVerilog code of

the design. Simulate the design for a stream of input values in Q1.15 format.
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float recursion (float input, float x[], float y[])

{

float acc, out;

int i;

acc = 0;

x[2]=x[1];

x[1]=x[0];

x[0]=input;

for( i = 0; i < 2; i++)

{

acc += b[i] * x[i] + a[i] * y[i];

}

y[2]=y[1];

y[1]=y[0];

y[0]=acc;

}

The constants are:

float b[] = {0.258, -0.309, -0.704};

float a[] = {-0.123, -0.51, 0.223};

Exercise 4.3

Draw an HSDFG to implement a 4-tap FIR filter in transposed direct-form configuration.

Exercise 4.4

Design a sampling-rate converter to translate a signal sampled at 66MHz to 245MHz. Compute the

buffer requirement if the system is designed to use fixed pattern computation using a repetition

vector. Also compute the minimum buffer requirement if the system is implemented to execute on

self-timed firing.

Exercise 4.5

Determine balanced equations for the graph shown in Figure 4.41. If the graph is inconsistent,

mention the edge and the type of inconsistency and convert the graph to a consistent graph by

suggesting modifications of consumption and production rates of any one of the nodes?

Exercise 4.6

Determine balanced equations and compute a non-trivial solution with minimum positive non-zero

values for each firing for the SDFG shown in Figure 4.42. Design hardware consisting of registers

and multiplexers to implement the graph.

Exercise 4.7

Production and consumption rates in the form of a 2-D array of data are given in Figure 4.43.
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1. Write a balanced equation for both the dimensions. Solve the equation to find a solution to

establish the number of firings of B that is required to consume all the tokens produced

by A.

2. Draw a 2-D array of data produced by A, and suggest a buffering arrangement with multiplexers

to feed the required data to B for its respective firings.

Exercise 4.8

Compute the repetition vector for the SDFG shown in Figure 4.44. Translate the SDFG to

HSDFG.
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Figure 4.43 Nodes processing a 2-D array of data (exercise 4.7)
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Figure 4.42 SDFG for computing a non-trivial solution (exercise 4.6)
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Figure 4.41 SDFG for computing balanced equations (exercise 4.5)
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Exercise 4.9

Map the following MATLAB� code to a KPN. Clearly specify the sources, sink and the processing

nodes. State the minimum sizes of FIFOs required for implementing the design in hardware.

N = 16;

K = 32;

for i=1:N

x(i)= src_x ();

end

for j=1:K

y(j) = src_y ();

end

for i=1:N

for j=1:K

x1(i,j)=func1(x(i),y(j));

y1(i,j)=func2(x(i),y(j));

end

end

for i=1:N

for j=1:K

z(i,j)=func3(x1(i,j),y1(i,j));

end

end

m=1;

for i=1:N

for j=1:K

y(m)=sink(x1(i,j), y1(i,j), z(i,j));

m=m+1;

end

end

Exercise 4.10

Map the followingMATLAB� code to a KPN. The functions F and G should bemapped to different

processing nodes. Clearly identify the data dependencies.

N = 8*16;

K = 8*32;

for i=1:N

for j=1:K

x(i,j)= src_x ();

end
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32
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Figure 4.44 SDFG consisting of three nodes (exercise 4.8)
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end

for i=1:8:N

for j=1:8:N;

for k=i:(i+8-1)

for l=j:(j+8-1)

y1(k,l)=func1(x(k,l));

end

end

for k=i:(i+8-1)

for l=j:(j+8-1)

y2(k,l)=func2(y1(k,l));

end

end

for k=i:(i+8-1)

for l=j:(j+8-1)

y3(k,l)=func3(y2(k,l), y1(k,l), x(k,l));

end

end

for k=i:(i+8-1)

y4(k,j)=0; for l=j+1:(j+8-1)

y4(k,l)=func4(y4(k,l-1), y1(k,l), x(k,l));

end

end

end

end

for i=1:N

for j=1:K

out(i,j)=sink (y4(i,j), x(i,j));

end

end

Exercise 4.11

Map the KPN shown in Figure 4.45 to a hardware architecture showing each processor tile with the

processor, local memory, memory controller, communication controller, and network on chip block

along with associated FIFOs.
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Figure 4.45 KPN with multiple nodes and channels (exercise 4.11)
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Exercise 4.12

Check whether the DFG given in Figure 4.46 is consistent. If it is not, what minimum changes in the

production or consumption rates can convert it into a consistent DFG. Give a self-timed firing

sequence of a consistent DFG.

Exercise 4.13

Convert the SDFG shown in Figure 4.47 intoHSDFG. Compute the throughput of the graph and also

give a hardware realization of the DFG.

Exercise 4.14

Convert the SDFG given in Figure 4.48 into HSDFG. Give a synthesis realization of the DFG.

Exercise 4.15

The DFG given in Figure 4.49 implements an M-JPEG algorithm. Draw a KPN showing FIFOs.

A,1 B,112

12

Figure 4.48 SDFG consisting of two nodes (exercise 4.14)

A,8 B,6
2 3

32

Figure 4.46 DFG consisting of two nodes (exercise 4.12)

A B32 C21

11

Figure 4.47 SDFG consisting of three nodes (exercise 4.13)
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Exercise 4.16

Adigital up/down converter can be realized as a cyclo-static DFG. The production and consumption

rate as vectors in the DFG given in Figure 4.50 implement a 3/2 digital up/down converter. Design

the registers and multiplexer to realize the design in HW.

Exercise 4.17

Draw a multi-dimensional DFG implementing a level-3 discrete wavelet transform based on

sub-band decomposition of a 256� 256 gray image. State the consumption and production rates

on each edge. Also specify the buffer size requirements on the edges.

Exercise 4.18

For the HSDF given in Figure 4.51, compute the following:

1. a self-timed schedule for the graph;

2. a repetition vector based on the solution of balanced equations;

3. a hardware synthesis of the graph.

Exercise 4.19

For the SDFG given in Figure 4.52:

1. Write its topology matrix.

2. By computing the rank of the matrix computed in (1), determine whether the graph represents

a consistent or an inconsistent SDFG.

IN OUT↓2FIR↑3
1 [1,1,1][1,0,0] 11 [1,1] 1[1,0]

Figure 4.50 Cyclo-static DFG for 3/2 sampling rate change (exercise 4.16)
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Figure 4.49 DFG implementing M-JPEG compression algorithm (exercise 4.15)
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3. Compute the repetition vector of the graph.

4. Map the DFG to hardware, assuming node A gets one sample of the input data at every sample

clock. Clearly draw registers realizing delays and registers at cross-node boundaries clockedwith

the circuit clock.

5. Convert the graph to an HSDFG.

Exercise 4.20

The flow graph of Figure 4.53 shows a multi-rate DFG.

1. Design a sequential HW realization of the graph showing all the multiplexers, demultiplexers,

registers and clocks in the design.

2. Write RTL Verilog code to implement the design in hardware.

3. Write balanced equations for the graph and solve the equations to find a parallel HW realization

of the design. Draw the realization.

A,4 B,2 C,2
21

1 1

11

21

Figure 4.52 SDFG with three nodes (exercise 4.19)

A,4 B,4 C,2 D,4 E,4

G,2

F,2

Figure 4.51 Graph implementing an HSDFG (exercise 4.18)

13
A B

1 1
C

2 1

Figure 4.53 A multi-rate DFG (exercise 4.20)
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5

Design Options for Basic
Building Blocks

5.1 Introduction

A detailed description of system-level design of signal processing algorithms and their representa-

tion as dataflowgraphs (DFGs) is given inChapter 4. A natural sequel is to discuss design options for

the fundamental operations that are the building blocks for hardware mapping of an algorithm.

These blocks constitute the datapath of the design that primarily implements the number-crunching.

They perform addition, subtraction, multiplication and arithmetic and logic shifts.

This chapter covers design options for parallel adders, multipliers and barrel shifters. Almost all

vendors of field-programmable gate arrays (FPGAs) are now also embedding hundreds of basic

building blocks. The incorporation of fast adders and multipliers along with hard and soft micros of

microcontrollers has given a new dimension to the subject of digital design. The hardware can run in

close proximity to the software running on embedded processors. The hardware can be designed

either as an extension to the instruction set or as an accelerator to execute computationally intensive

parts of the application while the code-intensive part executes on the embedded processor.

This trend of embedding basic computational units on an FPGA has also encouraged designers to

think at a higher level of abstraction while mapping signal processing algorithms in HW. There are

still instances where a designer may find it more optimal to explore all the design options to further

optimize the design by exercising the architecture alternatives of the basic building blocks. This

chapter gives a detailed account of using these already embedded building blocks in the design. The

chapter then describes architectural design options for basic computational blocks.

5.2 Embedded Processors and Arithmetic Units in FPGAs

FPGAs have emerged as exciting devices for mapping high-throughput signal processing applica-

tions. For these applications the FPGAs outperform their traditional competing technology of digital

signal processors (DSPs). No matter how many MACs the DSP vendor can place on a chip, still it

cannot compete with the availability of hundreds of these units on a high-end FPGA device.

The modern day FPGAs comewith embedded processors, standard interfaces and signal processing

building blocks consisting of multipliers, adders, registers and multiplexers. Different devices in a

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



family come with varying numbers of these embedded units, and it is expected that the number and

type of these building blocks on FPGAs will see an upward trend.

For example, theXilinxVirtex�-4 andVirtex�-5 devices comewithDSP48 andDSP48e blocks,

respectively [1, 2]. The DSP48 block has one 18� 18-bit two’s complement multiplier followed by

three 48-bitmultiplexers, one 3-input 48-bit adder/subtractor and a number of registers. This block is

shown in Figure 5.1(a). The registers in the block can be effectively used to add pipeline stages to the

multiplier and adder. EachDSP48 block is independently configurable and has 40 differentmodes of

operation. These modes are dynamically reconfigurable and can be changed in every clock cycle.

Similarly the Virtex�-II, Virtex�-II Pro, Spartan� 3 and Spartan� 3E devices are embedded

with a number of two’s complement 18� 18-bitmultipliers as shown inFigure 5.1(d). Figures 5.1(b)

and (c) show arithmetic blocks in Altera and QuickLogic FPGAs.
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Figure 5.1 Dedicated computational blocks. (a) DSP48 in Virtex�-4 FPGA (derived from Xilinx

documentation). (b) 18� 18multiplier and adder in Altera FPGA. (c) 8� 8multiplier and 16-bit adder in

Quick Logic FPGA. (d) 18� 18 multiplier in Virtex-II, Virtex-II pro and Spartan�-3 FPGA
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The FPGAvendors are also incorporating cores of programmable processors and numerous high-

speed interfaces. High-end devices inXilinx FPGAs are embeddedwithHard IP core of PowerPC or

Soft IP core ofMicroblaze, along with standard interfaces like PCI Express and Gigabit Ethernet. A

representative configuration of a Xilinx FPGA is shown in Figure 5.2. Similarly the Altera FPGA

offers ARM Soft IP cores.

As this chapter deals with basic building blocks, it focuses primarily on embedded blocks and

their use in hardware design. Most of the available synthesis tools automatically instantiate the

relevant embedded blocks while synthesizing HDL (hardware description language) code that

contains related mathematical operators.

The user may need to set synthesis options for directing the tool to automatically use these

components in the design. For example, in the Xilinx integrated software environment (ISE) there is

an option in the synthesis menu to select auto or manual use of the basic building blocks. In cases

where higher order operations are used in the register transfer level (RTL) code, the tool puts

multiple copies of these blocks together to get the desired functionality. For example, if the design

requires a 32� 32-bit multiplier, the synthesis tool puts four 18� 18 multipliers to infer the desired

functionality.

The user can also make an explicit instantiation to one of these blocks if required. For the target

devices, the templates for such instantiation are provided by the vendors. Once the tool finds out that

the device has run out of embedded HW resources of multipliers and adders, it then generates these

building blocks using generic logic components on these devices. These generated blocks obviously

perform less efficiently than the embedded blocks. The embedded resources indeed improve

performance of an implementation by a quantum.

5.3 Instantiation of Embedded Blocks

To demonstrate the effectiveness of embedded blocks in HW design, an example codes a second-

order infinite impulse response (IIR) filter in Direct Form (DF)-II realization. The block diagram of
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Power PC External 
Memory 

Controller
OPB
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PLB
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data
control For FPGA 

bit-stream

Flash Memory

For program 
of CPU

Figure 5.2 FPGA with PowerPC, MicroBlaze, Ethernet MAC and other embedded interfaces
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Figure 5.3 Hardware implementation of a second-order IIR filter on FPGA. (a) Block diagram of a

second-order IIR filter in Direct Form-II realization. (b) RTL schematic generated by Xilinx’s Integrated

Software Environment (ISE). Each multiplication operation is mapped on an embedded 18� 18

multiplier block of Xiliinx Spartan� 3 FPGA. (c) Synthesis summary report of the design on

Spartan�-3 FPGA. (d) RTL schematic generated by Xilinx ISE for Virtex� 4 target device. The

multiplication and addition operations are mapped on DSP48 multiply accumulate (MAC) embedded

blocks. (e) Synthesis summary report for the RTL schematic of (d)
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the filter is shown in Figure 5.3, to implement the difference equations:

w½n� ¼ a1w½n�1� þ a2w½n�2� þx½n� ð5:1aÞ
y½n� ¼ b0w½n� þ b1w½n�1� þ b2w½n�2�: ð5:1bÞ

RTL Verilog code of a fixed-point implementation of the design is listed here:

Selected device: 3s400pq208-5

Minimum period: 10.917 ns (maximum frequency: 91.597MHz)

Number of slices: 58 out of 3584 1%

Number of slice flip-flops: 32 out of 7168 0%

Number of 4-input LUTs: 109 out of 7168 1%

Number of IOs: 50

Number of bonded IOBs: 50 out of 141 35%

Number of multi 18� 18s: 5 out of 16 31%

Number of GCLKs: 1 out of 8 12%

(c)

Selected device: 4vlx15sf363-12

Minimum period: 7.664 ns (maximum frequency: 130.484 MHz)

Number of slices: 17 out of 6144 0%

Number of slice flip-flops: 32 out of 12288 0%

Number of 4-input LUTs: 16 out of 12288 0%

Number of IOs: 50

Number of bonded IOBs: 50 out of 240 20%

Number of GCLKs: 1 out of 32 3%

Number of DSP48s: 5 out of 32 15%

(e)

Figure 5.3 (Continued)
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module iir(xn, clk, rst, yn);

// x[n] is in Q1.15 format

input signed [15:0] xn;

input clk, rst;

output reg signed [31:0] yn; // y[n] is in Q2.30 format

wire signed [31:0] wfn; // Full precision w[n] in Q2.30 format

wire signed [15:0] wn; // Quantized w[n] in Q1.15 format

reg signed [15:0] wn_1, wn_2; // w[n-1]and w[n-2] in Q1.15 format

// all the coefficients are in Q1.15 format

wire signed [15:0] b0 = 16’h0008;

wire signed [15:0] b1 = 16’h0010;

wire signed [15:0] b2 = 16’h0008;

wire signed [15:0] a1 = 16’h8000;

wire signed [15:0] a2 = 16’h7a70;

assign wfn = wn_1*a1+wn_2*a2; // w[n] in Q2.30 format with one redundant

sign bit

/* through away redundant sign bit and keeping

16 MSB and adding x[n] to get w[n] in Q1.15 format */

assign wn = wfn[30:16]+xn;

//assign yn = b0*wn + b1*wn_1 + b2*wn_2; // computing y[n] in Q2.30 format

with one redundant sign bit

always @(posedge clk or posedge rst)

begin

if(rst)

begin

wn_1 <= #1 0;

wn_2 <= #1 0;

yn <= #1 0;

end

else

begin

wn_1 <= #1 wn;

wn_2 <= #1 wn_1;

yn <= #1 b0*wn + b1*wn_1 + b2*wn_2; // computing y[n] in Q2.30

format with one redundant

sign bit

end

end

endmodule

The design assumes that x[n] and all the coefficients of the filter are in Q1.15 format. To demonstrate

the usability of embedded blocks on FPGA, the code is synthesized for one of the Spartan�-3 family

of devices. These devices come with embedded 18� 18 multiplier blocks. In the synthesis option,

the Xilinx ISE tool is directed to use the embedded multiplier blocks. The post-synthesis report

shows the design is realized using fiveMULT 18� 18 blocks. As there is no embedded adder in the

Spartan�-3 family of devices, the tool creates a 32-bit adder using the fast carry chain logic
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Figure 5.4 An 8-tap direct form (DF-I) FIR filter

provided in the LUT. A summary of the synthesis report listed in Figure 5.3(c) and schematic

diagram given in (b) provide details of the Spartan�-3 resources being used by the design.

To observe the effectiveness of DSP48 blocks in Virtex�-4 FPGAs, the design is synthesized

again after changing the device selection. As the tool is still directed to use DSP48 blocks, the

synthesis result shows the use of five DSP48 blocks in the design, as is obvious from Figures 5.3(d)

and (e) showing the schematic and a summary of the synthesis report of the design. Both the

schematic diagrams are labeled with the actual variables and operators to demonstrate their

relevance with the original block diagram. Virtex�-4 is clearly a superior technology and gives

better timing for the same design. It is pertinent to point out that the synthesis timings given in this

chapter are post-synthesis; although theygive a good estimate, the true timings come after placement

and routing of the design.

5.3.1 Example of Optimized Mapping

The Spartan�-3 family of FPGAs embeds dedicated 18� 18-bit two’s complement multipliers to

speed up computation. The family offers different numbers of multipliers ranging from 4 to 104 in a

single device. These dedicated multipliers help in fast and power-efficient implementation of DSP

algorithms.Hereasimpleexample illustrates thesimplicityofembeddingdedicatedblocks inadesign.

The 8-tap FIR filter of Figure 5.4 is implemented in Verilog. The RTL code is listed below:

// Module: fir_filter

// Discrete-Time FIR Filter

// Filter Structure : Direct-Form FIR

// Filter Order : 7

// Input Format: Q1.15

// Output Format: Q1.15

module fir_filter (

input clk,

input signed [15:0] data_in, //Q1.15

output reg signed [15:0] data_out //Q1.15

);

// Constants, filter is designed using Matlab FDATool, all coefficients are in

// Q1.15 format

parameter signed [15:0] b0 = 16’b1101110110111011;

parameter signed [15:0] b1 = 16’b1110101010001110;

parameter signed [15:0] b2 = 16’b0011001111011011;
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parameter signed [15:0] b3 = 16’b0110100000001000;

parameter signed [15:0] b4 = 16’b0110100000001000;

parameter signed [15:0] b5 = 16’b0011001111011011;

parameter signed [15:0] b6 = 16’b1110101010001110;

parameter signed [15:0] b7 = 16’b1101110110111011;

reg signed [15:0] xn [0:7]; // input sample delay line

wire signed [39:0] yn; // Q8.32

// Block Statements

always @(posedge clk)

begin

xn[0] <= data_in;

xn[1] <= xn[0];

xn[2] <= xn[1];

xn[3] <= xn[2];

xn[4] <= xn[3];

xn[5] <= xn[4];

xn[6] <= xn[5];

xn[7] <= xn[6];

data_out <= yn[30:15]; // bring the output back in Q1.15

//format

end

assign yn = xn[0] * b0 + xn[1] * b1 + xn[2] * b2 + xn[3] * b3 + xn[4] * b4 + xn[5]

* b5 +xn[6] * b6 + xn[7] * b7;

endmodule

The tool automatically infers eight of the embedded 18� 18-bit multipliers. The synthesis report of

Table 5.1(a) and schematic of Figure 5.5 clearly show the use of embeddedmultipliers in the design.

The developer can also use an explicit instantiation of the multiplier by appropriately selecting the

correct instance in the Device Primitive Instantiation option of the Language Template icon

Table 5.1 Synthesis reports: (a) Eight 18� 18-bit embedded multipliers and seven adders from generic

logic blocks are used on a Spartan�-3 family of FPGA. (b) Eight DSP48 embedded blocks are used once

mapped on a Vertix�-4 family of FPGA

(a) (b)

Selected device: 3s200pq208-5 Selected device: 4vlx15sf363-12

Minimum period: 23.290 ns Minimum period: 16.958 ns

(Maximum frequency:42.936MHz) (Maximum frequency: 58.969MHz)

Number of slices: 185 out of 1920 9% Number of Slices: 9 out of 6144 0%

Number of Slice

Flip Flops:

144 out of 3840 3% Number of Slice

Flip Flops:

16 out of 12288 0%

Number of 4 input

LUTs:

217 out of 3840 5% Number of

IOs:

33

Number of

IOs:

33 Number of bonded

IOBs:

33 out of 240 13%

Number of bonded

IOBs:

33 out of 141 23% Number of GCLKs: 1 out of 32 3%

Number of

MULT18�18s:
8 out of 12 66% Number of DSP48s: 8 out of 32 25%

Number of GCLKs: 1 out of 8 12%
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provided in the ISE toolbar. The code for the instance from the ISE-provided template is given here:

// MULT18X18: 18 x 18 signed asynchronous multiplier

// Virtex�-II/II-Pro, Spartan�-3

// Xilinx HDL Language Template, version 9.1i

MULT18X18 MULT18X18_inst (

.P(P), // 36-bit multiplier output

.A(A), // 18-bit multiplier input

.B(B) // 18-bit multiplier input

);

// End of MULT18X18_inst instantiation

As there is no embedded adder in the Spartan�-3 family of FPGAs, the tool crafts an adder using

general-purpose logic. If in the device optionswe select a device in theVierter�-4 family of FPGAs,

whichhasseveralDSP48blocks, thenthetoolusesMACsinthedesignandthatobviouslyoutperforms

the Spartan� design. The synthesis report of this design option is given in Table 5.1(b).

5.3.2 Design Optimization for the Target Technology

Although a digital design and its subsequent RTLVerilog implementation should be independent of

technology, in many cases it is imperative to understand the target technology – especially when the

device embeds dedicated arithmetic blocks. A design can effectively use the dedicated resources to

their full potential and can improve performance many-fold without any additional HW cost.

To substantiate this statement, the FIR filter implementation of Figure 5.4 is redesigned for

optimizedmapping on deviceswith embeddedDSP48 blocks. The objective is to use the potential of

the DSP48 blocks. Each can add two stages of pipelining in theMAC operation. If the code does not

require any pipelining in the MAC operation, these registers are bypassed. The design in Figure 5.4

works without pipelining the MAC and registers in the DSP48 blocks are not used. A pipeline

implementation for FIRfilter is shown in Figure 5.6. This effectively uses the pipeline registers in the

embedded blocks. The RTL Verilog code is listed below:

x[n]

0

b0 b3b2b1 b5b4 b6 b7

y[n]

x[n-2] x[n-4] x[n-6] x[n-14]x[n-12]x[n-8] x[n-10]

x x x x x x x x

+ + + + + + + +

Figure 5.6 Pipeline implementation of 8-tap FIR filter optimized for mapping on FPGAs with DSP48

embedded blocks

Figure 5.5 Schematic displaying the use of eight 18� 18 embedded multiplier of Spartan�-3 FPGA
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module fir_filter_pipeline (

input clk;

input signed [15:0] data_in; //Q1.15

output signed [15:0] data_out; //Q1.15

// Constants, filter is designed using Matlab FDATool, all coefficients are in

//Q1.15 format

parameter signed [15:0] b0 = 16’b1101110110111011;

parameter signed [15:0] b1 = 16’b1110101010001110;

parameter signed [15:0] b2 = 16b0011001111011011;

parameter signed [15:0] b3 = 16b0110100000001000;

parameter signed [15:0] b4 = 16b0110100000001000;

parameter signed [15:0] b5 = 16b0011001111011011;

parameter signed [15:0] b6 = 16b1110101010001110;

parameter signed [15:0] b7 = 16b1101110110111011;

reg signed [15:0] xn [0:14] ; // one stage pipelined input sample delay line

reg signed [32:0] prod [0:7]; // pipeline product registers in Q2.30 format

wire signed [39:0] yn; // Q10.30

reg signed [39:0] mac [0:7]; // pipelined MAC registers in Q10.30 format

integer i;

always @( posedge clk)

begin

xn[0] <= data_in;

for (i=0; i<14; i=i+1)

xn[i+1] = xn[i];

data_out <= yn[30:15]; // bring the output back in Q1.15 format

end

always @( posedge clk)

begin

prod[0] <= xn[0] * b0;

prod[1] <= xn[2] * b1;

prod[2] <= xn[4] * b2;

prod[3] <= xn[6] * b3;

prod[4] <= xn[8] * b4;

prod[5] <= xn[10] * b5;

prod[6] <= xn[12] * b6;

prod[7] <= xn[14] * b7;

end

always @(posedge clk)

begin

mac[0] <= prod[0];

for (i=0; i<7; i=i+1)

mac[i+1] <= mac[i]+prod[i+1];

end

assign yn = mac[7];

endmodule

The design is synthesized and the synthesis report in Table 5.2 reveals that, athough the design

uses exactly the same amount of resources, it results in a �9-fold improvement in timing. This

design can run at 528.82MHz, compared to its DF-I counterpart that compiles for 58.96MHz of best

timing.
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It is important to point out that the timing for theDF-I realization increases linearlywith the length

of the filter, whereas the timing for the pipeline implementation is independent of the length of the

filter.

Several other effective techniques and structures for implementing FIR filters are covered in

Chapter 6.

5.4 Basic Building Blocks: Introduction

After the foregoing discussion of the use of dedicated multipliers andMAC blocks, it is pertinent to

look at the architectures for the basic building blocks. This should help the designer to appreciate the

different options for some of the very basic mathematical operations, and elucidate the tradeoffs in

the design space exploration. This should encourage the reader to always explore design alter-

natives, no matter how simple the design. It is also important to understand that a designer should

always prefer to use the dedicated blocks.

Several architectural options are available for selecting an appropriate HW block for operations

like addition, multiplication and shifting. The following sections discuss some of these design

options.

5.5 Adders

5.5.1 Overview

Adders are used in addition, subtraction, multiplication and division. The speed of any digital design

of a signal processing or communication system depends heavily on these functional units. The

ripple carry adder (RCA) is the slowest in adder family. It implements the traditional way of adding

numbers, where two bits and a carry of addition from the previous bit position are added and a sum

and a carry-out is computed. This carry is propagated to the next bit position for sequential addition

of the rest of the significant bits in the numbers. Although the carry propagationmakes it the slowest

adder, its simplicity gives it the minimum gate count.

To cater for the slow carry propagation, fast adders are designed. These make the process of carry

generation and its propagation faster. For example, in a carry look-ahead adder the carry-in for

all the bit positions are generated simultaneously by a carry look-ahead generator logic [3, 4].

Table 5.2 Synthesis report of mapping pipelined 8-tap FIR filter on Virtex�-4 family of FPGA

Selected device: 4vlx15sf363-12

Minimum period: 1.891 ns

(Maximum frequency: 528.821MHz)

Number of slices: 9 out of 6144 0%

Number of slice flip-flops: 16 out of 12288 0%

Number of I/Os: 33

Number of bonded IOBs: 33 out of 240 13%

Number of GCLKs: 1 out of 32 3%

Number of DSP48s: 8 out of 32 25%
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This helps in the computation of a sum in parallel with the generation of carries without waiting for

their propagation. This results in a constant addition time independent of the length of the adder. As

theword length increases, the hardware organization of the carry generation logic gets complicated.

Hence adders with a large number of elements are implemented in two or three levels of carry look-

ahead stages.

Another fast devive is the carry select adder (CSA) [5]. This partitions the addition in K

groups; to gain speed the logic is replicated and for each group addition is performed assuming

carry-in 0 and 1. The correct sum and carry-out from each group is selected by carry-out from the

previous group. The selected carry-out is used to select sum and carry-out of the next adjacent

group. For adding large numbers a hierarchical CSA is used; this divides the addition into

multiple levels.

A conditional sum adder can be regarded as a CSA with maximum possible levels. The carry

select operation in the first level is performed on 1-bit groups. In the next level two adjacent groups

are merged to give the result of a 2-bit carry select operation. Merging of two adjacent groups is

repeated until the last two groups aremerged to generate the final sum and carry-out. The conditional

sum adder is the fastest in adder family [6]. It is a log-time adder and the size of the adder can be

doubled by the addition of one 2:1 multiplexer delay.

This chapter presents architectural details and lists RTL Verilog code for a few designs. It is

important tohighlight thatmappinganadderonanFPGAmaynotyieldexpectedperformanceresults.

This is due primarily to the fact that FPGAs are embeddedwith blocks that favor certain designs over

others. Forexample, a fast carry chain inmanyFPGAfamiliesof devices greatlyhelps anRCA; so, on

these FPGAs, an RCA to a certain bit width is the best design option for area and time.

5.5.2 Half Adders and Full Adders

A half adder (HA) is a combinational circuit used for adding two bits, ai and bi, without a carry-in.

The sum si and carry output ci are given by:

si ¼ ai � bi ð5:2aÞ
ci ¼ aibi ð5:2bÞ

The critical path delay is one gate delay, and it corresponds to the length of any one of the two

paths.

A full adder (FA) adds three bits. A 3-bit adder is also called a 3:2 compressor. One way to

implement a full adder is to use the following equations:

si ¼ ai � bi � ci ð5:3aÞ
ciþ 1 ¼ ðai � biÞciþ aibi ð5:3bÞ

There are several gate-level designs to implement a full adder, some of which are shown in

Figure 5.7. These options to implement a simple mathematical operation of adding three bits also

emphasize our initial assertion that the designer must avoid gate-level modeling and dataflow

modeling using bitwise operators. It is not possible for an RTL designer to know the optimal design

without knowing the target libraries. In many instances it is preferred that the design should be at

RTL and is technology-independent. In design instances where the target technology is known a

priori, then the designer can craft an optimal design by effectively using the optimized components

from the technology library. The earlier example of Section 5.3.2 provides a better comprehension of
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this design rulewhereDSP48 blocks in theVirtex�-4 family of devices are effectively used to gain a

nine times better performance without adding any additional resources compared to a technology-

independent RTL implementation.

5.5.3 Ripple Carry Adder

The emphasis of this text is on high-speed architecture, and an RCA is perceived to be the slowest

adder. This perception can be proven wrong if the design is mapped on an FPGAwith embedded

carry chain logic. AnRCA takesminimumarea and exhibits a regular structure. The structure is very

desirable especially in the case of an FPGA mapping as the adders fit easily into a 2-dimensional

layout. An RCA can also be pipelined for improved speed.

A ripple adder that adds twoN-bit operands requiresN full adders. The speed varies linearly with

the word length. The RCA implements the conventional way of adding two numbers. In this

architecture the operands are added bitwise from the least significant bits (LSBs) to the most

significant (MSBs), adding at each stage the carry from the previous stage. Thus the carry-out from

the FA at stage i goes into the FA at stage (i þ 1), and in this manner carry ripples fromLSB toMSB

(hence the name of ripple carry adder):

c i+1

si

ai

bi

c i

Half Adder  (HA)
HA

si

ci +1

ci

pi

gi

ai

bi

(a) (b)

(c) (d)

Ci+1

0

1

ai
bi

0

1
2
3

0
1

2
3

ci

si

si

ci+1

ai

bi

c i

pi

gi

Figure 5.7 Gate-level design options for a full adder
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ciþ 1; si aiþ bi þ ci ð5:4Þ
A 6-bit RCA is shown in Figure 5.8. The overflow condition is easily computed by simply

performing an XOR operation on the carry-out from the last two full adders. This overflow

computation is also depicted in the figure.

The critical path delay of a ripple carry adder is:

TRCA ¼ ðN�1ÞTFAþ Tm ð5:5Þ
where TRCA is the delay of an N-bit ripple carry adder, while TFA and Tm are delays of an FA and the

carry generation logic of the FA, respectively.

It is evident from (5.5) that the performance of an RCA is constrained by the rippling of carries

from the first FA to the last. To speed the propagation of the carry, most FPGAs are supported with

fast carry propagation and sum generation logic. The carry propagation logic provides fast paths for

the carry to go from one block to another. This helps the designer to implement fast RCA on the

FPGA. The user can still implement parallel adders discussed in this chapter, but their mapping on

FGPA logic may not generate adequate speed-ups as expected by the user when compared with the

simplest RCA performance. In many design instances the designer may find an RCA as the fastest

adder compared to other parallel adders discussed here.

Verilog implementation of a 16-bit RCA through dataflow modeling is given below. This

implementation, besides using registers for input and output signals, simply uses addition operators,

and most synthesis tools will (if not directed otherwise) infer an RCA from this statement:

module ripple_carry_adder #(parameter W=16)

(input clk,

input [W-1:0] a, b,

input cin,

output reg [W-1:0] s_r,

output reg cout_r);

wire [W-1:0] s;

wire cout;

reg [W-1:0] a_r, b_r;

reg cin_r;

assign {cout,s} = a_r + b_r + cin_r;

always@(posedge clk)

F AF AF AF AF AF A

a[3]b[3]a[4]b[4]a[5]b[5] a[2]b[2] a[0]b[0]a[1]b[1]

s[4]s[5] s[0]s[1]s[2]s[3]
cin

cout

c[1]c[2]c[3]c[4]c[5]c[6]

overflow

Figure 5.8 A 6-bit ripple carry adder
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begin

a_r<=a;

b_r<=b;

cin_r<=cin;

s_r<=s;

cout_r<= cout;

end

endmodule

If the code is synthesized for an FPGA that supports fast carry chain logic, like Vertix�-II pro,

then the synthesis tool will infer this logic for fast propagation of the carry signal across the adder.

AVertix�-II pro FPGA consists of a number of configurable logic blocks (CLBs), and each CLB

has four ‘slices’. Each slice further has two look-up tables (LUTs) and dedicated logic to compute

generate (g) and propagate (p) functions. These functions are used by the synthesis tool to infer carry

logic for implementing a fast RCA. The equations of gi and pi and logic it uses for generating fast

carry-out ciþ 1 in a chain across an RCA are:

ciþ 1 ¼ giþ pici

pi ¼ ai � bi

gi ¼ aibi

This is shown in Figures 5.9(a) and (b).When theVerilog code of this section is synthesized on the

device, the synthesized design uses fast carry logic in cascade to tie four CLBs in a column to

implement a 16-bit RCA. The logic of 16-bit and 64-bit adders is shown in Figures 5.10(c) and (d),

respectively.

5.5.4 Fast Adders

If not mapped on an FPGAwith fast carry chain logic, an RCA usually is the slowest adder as each

full adder requires carry-out from the previous onefor its sum and carry-out computation. Several

alternative architectures have been proposed in the literature. All these architectures somehow

accelerate the generation of carries for each stage. This acceleration results in additional logic. For

FGPA implementation the designer needs to carefully select a fast adder because some have carry

acceleration techniques well suited for FPGA architectures while others do not. As already

discussed, an RCA makes the most optimal use of carry chains, although all the full adders need

to fit in a column for effective use of this logic. This usually is easily achieved. ACSA also replicates

RCA blocks, so each block still makes an effective use of fast carry chain logic with some additional

logic for the selection of one sum out of two sums computed in parallel.

5.5.5 Carry Look-ahead Adder

A closer inspection of the carry generation process reveals that a carry does not have to depend

explicitly on the preceding carries. In a carry look-ahead adder the carries entering all the bit

positions of the adder are generated simultaneously by a carry look-ahead (CLA) generator; that is,

computation of carries takes place in parallelwith sumcalculation. This results in a constant addition

time independent of the length of the adder. As theword length increases, the hardware organization
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of the addition technique gets complicated. Hence adders with a large number of elements may

require two or three levels of carry look-ahead stages.

A simple consideration of full adder logic identifies that a carry ciþ 1 is generated if ai¼ bi¼ 1,

and a carry is propagated if either ai or bi is 1. This can be written as:

gi ¼ aibi ð5:6aÞ
pi ¼ ai � bi ð5:6bÞ

ciþ 1 ¼ gi þ pici ð5:6cÞ
si ¼ ci � pi ð5:6dÞ

Thus a given stage generates a carry if gi is TRUE and propagates a carry-in to the next stage if pi is

TRUE. Using these relationships, the carries can be generated in parallel as:

c1 ¼ g0þ p0c0 ð5:7aÞ

A[63:60]

B[63:60]
CLB 15

A[11:8]

B[11:8]
CLB 2

A[3:0]

B[3:0]
CLB 0

A[7:4]

B[7:4]
CLB 1

Y[63:60]

Y[64]

Y[11:8]

Y[7:4]

Y[3:0]

A[63:60]

B[63:60]

Y[63:60]+

1 CLB = 4 Slices = 2,4bit adders

CLBs must be in same column

(d)

Figure 5.9 (Continued)
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c2 ¼ g1þ p1c1 ð5:7bÞ
c2 ¼ g1þ p1ðg0þ p0c0Þ ð5:7cÞ

c2 ¼ g1þ p1g0þ p0p1c0 ð5:7dÞ

c3 ¼ g2þ p2g1þ p2p1g0þ p2p1p0c0 ð5:7eÞ

Figure 5.10 shows that all carries can be computed in a time of two gate delays. The block in carry

look-ahead architecture can be of any size, but the number of inputs to the logic gates increases with

the size. In closed form, we can write the carry at position i as:

ci ¼ gi�1þ
Xi�2
j¼0

Yi�1
k¼jþ 1

pj

 !
gj þ

Yi�1
k¼0

pjc0 ð5:8Þ

This requires i þ 1 gates with a fan-in of i þ 1. Thus each additional position will increase the

fan-in of the logic gates.
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Figure 5.10 CLA logic for computing carries in two-gate delay time
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Industrial practice is to use 4-bit wide blocks. This limits the computation of carries until c3, and

c4 is not computed. The first four terms in c4 are grouped as G0 and the product p3p2p1p0 in the last

term is tagged as P0 as given here:

c4 ¼ g3þ p3g2þ p3p2g1þ p3p2p1g0þ p3p2p1p0c0

Let:

G0 ¼ g3þ p3g2þ p3p2g1þ p3p2p1g0

P0 ¼ p3p2p1p0

Now the group G0 and P0 are used in the second level of the CLA to produce c4 as:

c4 ¼ G0þP0c0

Similarly, bits 4 to 7 are also grouped together and c5, c6 and c7 are computed in the first level of the

CLAblock using c4 from the second level of CLA logic. The first-level CLA block for these bits also

generates G1 and P1.

Figure 5.11 shows a 16-bit adder using four carry look-ahead 4-bit wide blocks in the first level. Each

block also computes its G and P using the same CLA as used in the first level. Thus the second level

generatesall thecarriesc4,c8andc12 requiredby thefirst-levelCLAs. In thisway thedesign ishierarchically

broken down for efficient implementation. The same strategy is further extended to build higher order

adders. Figure 5.12 shows a 64-bit carry look-ahead adder using three levels of CLA logic hierarchy.

5.5.6 Hybrid Ripple Carry and Carry Look-ahead Adder

Instead of hierarchically building a larger carry look-ahead adder usingmultiple levels ofCLA logic,

the carry can simply be rippled between blocks. This hybrid adder is a good compromise as it yields

an adder that is faster than RCA and takes less area than a hierarchical carry look-ahead adder. A

12-bit hybrid ripple carry and carry look-ahead adder is shown in Figure 5.13.

5.5.7 Binary Carry Look-ahead Adder

The BCLAworks in a group of two adjacent bits, and then fromLSB toMSB successively combines

two groups to formulate a new group and its corresponding carry. The logic for the carry generation

of an N-bit adder is:

gi ¼ aibi ð5:9aÞ
pi ¼ ai � bi ð5:9bÞ

ðGi;PiÞ ¼ ðgi; piÞ � ðgi�1; pi�1Þ � . . . ðg1; p1Þ � ðg0; p0Þ ð5:9cÞ
The problem can be solved recursively as:

ðG0;P0Þ ¼ ðg0; p0Þ
for i ¼ 1 to N�1

ðGi;PiÞ ¼ ðgi; piÞ � ðGi�1;Pi�1Þ
ci ¼ Gi þPic0

end
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Figure 5.11 A 16-bit carry look-ahead adder using two levels of CLA logic
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Figure 5.12 A 64-bit carry look-ahead adder using three levels of CLA logic

where the dot operator � is given as:

ðGi;PiÞ ¼ ðgi; piÞ � ðGi�1;Pi�1Þ ¼ ðgi þ piGi�1; piPi�1Þ ð5:10Þ

There are several ways to logarithmically break the recursion into stages. The objective is to

implement (5.9) for each bit position.Moving fromLSB toMSB, this requires successive application

of the � operator on two adjacent bit positions. For anN-bit adder, a serial implementationwill require

N� 1 stages of operator implementation, as shown in Figure 5.14(a). Several optimized implementa-

tions are reported in the literature that improve on the serial realization [7, 8]. These are shown in

Figures 5.14(b)-(e). That in (b) is referred to as a Brent–Kung Adder and results in a regular layout,

shown in (f) where the tree depicted in black color is forward tree and calculates carry-out to the adder

in minimum time. The RTLVerilog code and stimulus of a 16-bit linear BCLA is given here:

module BinaryCarryLookaheadAdder

# (parameter N = 16)

(input [N-1:0] a,b,

input c_in,

output reg [N-1:0] sum,

output reg c_out);

reg [N-1:0] p, g, P, G;

reg [N:0] c;

integer i;

always@(*)

begin

for (i=0;i<N;i=i+1)

begin

// Generate all ps and gs

p[i]= a[i] ^ b[i];

g[i]= a[i] & b[i];

end

end
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always@(*)

begin

// Linearly apply dot operators

P[0] = p[0];

G[0] = g[0];

for (i=1; i<N; i=i+1)

begin

(a) (b)

(c) (d)

(e) (f)

0123456789101112131415

………………………………………………………………………

Level
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STAGE 2
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( g ,p )

( g ,p )

( g ,p )

( g ,p )

( g ,p )

( g ,p )

( g ,p )

( g ,p )

c3

c2
c1 c4

c5

c6

c7

Figure 5.14 Binary carry look-ahead adder logic for generating all the carries in a tree of logic moving

from LSB to MSB. (a) Serial implementation. (b) Brent–Kung adder. (c) Ladner–Fischer parallel prefix

adder. (d) Kogge–Stone parallel prefix adder. (e) Han–Carlson parallel prefix adder. (f) Regular layout of

an 8-bit Brent–Kung adder
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P[i]= p[i] & P[i-1];

G[i]= g[i] | (p[i] & G[i-1]) ;

end

end

always@(*)

begin

//Generate all carries and sum

c[0]=c_in;

for(i=0;i<N;i=i+1)

begin

c[i+1] = G[i] | (P[i] & c[0]);

sum[i] = p[i] ^ c[i];

end

c_out = c[N];

end

endmodule

module stimulus;

reg [15:0] A, B;

reg CIN;

wire COUT;

wire [15:0] SUM;

integer i, j, k;

BinaryCarryLookaheadAdder #16 BCLA(A, B, CIN, SUM, COUT);

initial

begin

A = 0;

B = 0;

CIN = 0;

#5 A= 1;

for (k=0; k<2; k=k+1)

begin

for (i=0; i<5; i=i+1)

begin

#5 A = A + 1;

for (j=0; j<6; j=j+1)

begin

#5 B = B+1;

end

end

CIN=CIN+1;

end

#10 A = 16’hFFFF; B=0; CIN = 1;

end

initial

$monitor ($time, " A=%d, B=%d, CIN=%b, SUM=%h, Error=%h,

COUT=%b\n", A, B, CIN, SUM, SUM-(A+B+CIN), COUT);

endmodule
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5.5.8 Carry Skip Adder

In an N-bit carry skip adder, N bits are divided into groups of k bits. The adder propagates all the

carries simultaneously through the groups [9]. Each group i computes group Pi using the following

relationship:

Pi ¼ pipiþ 1piþ 2 . . . piþ k�1

where pi is computed for each bit location i as:

pi ¼ ai � bi

The strategy is that, if any group generates a carry, it passes it to the next group; but if the group

does not generate its own carry owing to the arrangements of individual bits in the block, then it

simply bypasses the carry from the previous block to its next block. This bypassing of a carry is

handled by Pi. The carry skip adder can also be designed to work on unequal groups. A carry skip

adder is shown in Figure 5.15.

For a 16-bit adder divided into groups of 4-bits each, the worst case is when the first group

generates its carry-out and the next two subsequent groups due to the arrangements of bits do not

generate their own carries but simply skip the carry from the first group to the last group. The last

groupmakes use of this carry and then generates its own carry. Theworst-case carry delay of a carry

skip adder is less than the corresponding carry delay of an equal-width RCA.

5.5.9 Conditional Sum Adder

A conditional sum adder is implemented in multiple levels. At level 1, sum and carry bits for the

input carry bits 0 and 1 are computed for each bit position:

s0i ¼ ai � bi ð5:11aÞ

s1i ¼ ai � �bi ð5:11bÞ

c0i ¼ aibi ð5:11cÞ

c1i ¼ ai þ bi ð5:11dÞ
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Figure 5.15 A 16-bit equal-group carry skip adder
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Here, ai and bi are the ith bits of operands a and b, s0i and c0i are the sum and carry-out bits at

location i calculated by assuming 0 as carry-in, and similarly s1i and c1i are the sum and carry-out

bits at location i that are computed by taking carry-in as 1. These equations are implemented by a

logic cell called a condition cell (CC). A representative implementation of a CC is shown in

Figure 5.16.

At level 2, the results from level 1 are merged together. This merging is done by pairing up

consecutive columns at level 1. For an N-bit adder, the columns are paired as (i, i þ 1) for i¼ 0,

1, . . .,N� 2. The least significant carry (LSC) bits at bit location i (i.e c0i and c1i) in each pair selects

the sumand carry bits at bit location i þ 1 for the next level of processing. If the LSCbit is 0, then the

bits computed for carry 0 are selected, otherwise the bits computed for carry 1 are selected for the

next level. This level generates results as if a group of twobits are added assuming carry-in 0 and 1, as

done in a carry select adder.

The example of Figure 5.17 illustrates the CSA by adding 3-bit numbers. In the first level each

group consists of one bit each. The level adds bits at location i assuming carry-in of 0 and 1. In the

next level, the three columns are divided into two groups. The column at bit location 0 forms the first

group with the carry-in to the adder, and the rest of the two columns at bit location 1 and 2 form the

second group. These two groups are separated with a dotted line in the figure. The selection of the

biai

s0i c0i s1i c1i

Figure 5.16 Conditional cell (CC)
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Figure 5.17 Addition of three bit numbers using a conditional sum adder
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appropriate bits in each group by the LSC is shown with a diagonal line. The LSC from each group

determines which one of the two bits in the next column will be brought down to the next level of

processing. If the LSC is 0, the upper two bits of the next column are selected, otherwise the lower

two bits are selected for the next level. For the second group, the sum bit of the first column is also

dropped down to the next level. The LSCs in the first level are shown with bold fonts. Finally in the

next level the two groups formed in the previous level are merged and the LSC selects one of the two

3-bit group to the next level. In this example, as the LSC is one, it selects the lower group.

Example: The conditional sum adder technique will be further illustrated using a 16-bit addition.

Figure 5.18 shows all the steps in computing the sum of two 16-bit numbers. Figure 5.19 lays out the

architecture of the adder. At level 0, 16 CCs compute sum and carry bits assuming carry-in 0 and 1.

1
1

1
1

1
0

0
1

1
1

1
0

0
1

0
0

1
0

0
1

0
1

1
0

1
1

0
1

0
0

1
0

0
1

0
1

1
0

1
0

0
1

1
0

1
0

0
0

1
0

1
0

1
0

1
0

0
1

1
0

0
0

1
0

1
1

1
1

0
1

1
1

0
1

0
1

1
0

0
1

0
1

0
1

0
1

1
1

0
1

1
0

0
1

01
1

11
0

00
1

10
0

11
0

11
0

00
1

01
0

11
1

10
1

01
0

00
1

00
1

10
1

11
0

01
1

1100
1

101111
0

0011
0

01
1

010000
1

1011
0

01
1

11000111110011
0

00001011
0

0 11 1000100001011
0

6 07 1234589101112131415
Group sum and block carry out

ai

bi

s0i

c0i

s1i

c1i

ai

bi

i

0

1

1

0

1

2

0

1

4

0

1

8

0

1

16

Group 
carry-in

Group
width

Figure 5.18 Example of a 16-bit conditional sum adder

Design Options for Basic Building Blocks 211



CC0

S00

CC1
Mux 
2

CC2

CC3
Mux 

2

Mux 
2

CC4

CC5
Mux 

2

Mux 
2

CC6

CC7
Mux 

2

Mux 
2

CC10

CC11
Mux 

2

Mux 
2

CC12

CC13
Mux 

2

Mux 
2

CC14

CC15
Mux 

2

Mux 
2

CC8

CC9
Mux 

2

Mux 
2

Mux 
3

Mux 
3

Mux 
3

Mux 
3

Mux 
3

Mux 
3

Mux 
3

Mux 
5

Mux 
5

Mux 
5

Mux 
9

C1

S1

C02 C11

C05

C7

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15

C00

S01
C01
S11
C11

S02
C02
S12
C12

S03
C03
S13
C13

S04
C04
S14
C14

S05
C05
S15
C15

S06
C06
S16
C16

S07
C07
S17
C17

S08
C08
S18
C18

S09
C09
S19
C19

S010
C010
S110
C110

S011
C011
S111
C111

S012
C012
S112
C112

S013
C013
S113
C113

S014
C014
S114
C114

S015
C015
S115
C115

S02
S03
C03

S12
S13
C13

S2
S3
C3

C04

S05
C05

C14

S15
C15

S06
S07
C07

C06 C16

S04
S05
S06
S07
C07

S4
S5
S6
S7
C7

S16
S17
C17

C17

C08

S09
C09

C18

S19
C19

C010

C09

S010
S011
C011

C011

S010
S011
C011

S110
S111
C111

S110

S111

C111
C110

C19

C012

S013
C013

S113
C113

C112

C014 S014
S015
C015

S114
S115
C115

C114

C114

S012
S013
S014
S015
C015

S112
S113
S114
S115
C115

C111C013

S112
S113
S114
S115
C115

S18
S19
S110
S111

S8
S9
S10
S11
S12
S13
S14
S15
C15

S012
S013
S014
S015
C015

S08
S09
S010
S011

C13

C12

S14
S15
S16
S17
C17

Figure 5.19 A 16-bit conditional sum adder
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For this example the design assumes carry-in to the adder is 0, so CC0 is just a half adder that takes

LSBs of the inputs,a0 and b0 and only computes sumand carry bits s00 and c00 for carry-in 0. The rest

of the bits require addition for both carry-in 0 and 1. CC1 takes a1 and b1 as inputs and computes sum

and carry bits for both carry-in 0 (s01, c01) and 1 (s11, c11). Similarly, for each bit location i (¼ 1, . . .,
15), CCi computes sum and carry for both carry-in 0 (s0i, c0i) and 1 (s1i, c1i). For the next level, two

adjacent groups of bit locations i and i þ 1 are merged to form a new group. The LSC in each group

is used to select one of the pairs of its significant bits for the next level. The process of merging the

groups and selecting bits in each group based on LSC is repeated log2(16)¼ 4 times to get the final

answer.

Verilog code for an 8-bit conditional sum adder is given here:

// Module for 8-bit conditional sum adder

module conditional_sum_adder

#(parameter W = 8)

// Inputs declarations

(input [W-1:0] a, b, // Two inputs a and b with a carry in cin

input cin,

// Outputs declarations

output reg [W-1:0] sum, // Sum and carry cout

output reg cout);

// Intermediate wires

wire s1_0, c2_0, s2_0, c3_0, s3_0, c4_0, s4_0, c5_0, s5_0, c6_0, s6_0,

c7_0, s7_0, c8_0;

wire s1_1, c2_1, s2_1, c3_1, s3_1, c4_1, s4_1, c5_1, s5_1, c6_1, s6_1, c7_1,

s7_1, c8_1;

// Intermediate registers

reg fcout;

reg s3_level_1_0, s3_level_1_1, s5_level_1_0, s5_level_1_1, s7_level_1_0,

s7_level_1_1;

reg c4_level_1_0, c4_level_1_1, c6_level_1_0, c6_level_1_1, c8_level_1_0,

c8_level_1_1;

reg c2_level_1;

reg c4_level_2;

reg s6_level_2_0, s6_level_2_1, s7_level_2_0, s7_level_2_1, c8_level_2_0,

c8_level_2_1;

// Level 0

always @*

{fcout,sum[0]} = a[0] + b[0] + cin;

// Conditional cells instantiation

conditional_cell c1( a[1], b[1], s1_0, s1_1, c2_0, c2_1);

conditional_cell c2( a[2], b[2], s2_0, s2_1, c3_0, c3_1);

conditional_cell c3( a[3], b[3], s3_0, s3_1, c4_0, c4_1);

conditional_cell c4( a[4], b[4], s4_0, s4_1, c5_0, c5_1);

conditional_cell c5( a[5], b[5], s5_0, s5_1, c6_0, c6_1);

conditional_cell c6( a[6], b[6], s6_0, s6_1, c7_0, c7_1);

conditional_cell c7( a[7], b[7], s7_0, s7_1, c8_0, c8_1);

// Level 1 muxes

always @*

case(fcout) // For first mux

1’b0: {c2_level_1, sum[1]} = {c2_0, s1_0};
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1’b1: {c2_level_1, sum[1]} = {c2_1, s1_1};

endcase

always @* // For 2nd mux

case(c3_0)

1’b0: {c4_level_1_0, s3_level_1_0} = {c4_0, s3_0};

1’b1: {c4_level_1_0, s3_level_1_0} = {c4_1, s3_1};

endcase

always @* // For 3rd mux

case(c3_1)

1’b0: {c4_level_1_1, s3_level_1_1} = {c4_0, s3_0};

1’b1: {c4_level_1_1, s3_level_1_1} = {c4_1, s3_1};

endcase

always @* // For 4th mux

case(c5_0)

1’b0: {c6_level_1_0, s5_level_1_0} = {c6_0, s5_0};

1’b1: {c6_level_1_0, s5_level_1_0} = {c6_1, s5_1};

endcase

always @* // For 5th mux

case(c5_1)

1’b0: {c6_level_1_1, s5_level_1_1} = {c6_0, s5_0};

1’b1: {c6_level_1_1, s5_level_1_1} = {c6_1, s5_1};

endcase

always @* // For 6th mux

case(c7_0)

1’b0: {c8_level_1_0, s7_level_1_0} = {c8_0, s7_0};

1’b1: {c8_level_1_0, s7_level_1_0} = {c8_1, s7_1};

endcase

always @* // For 7th mux

case(c7_1)

1’b0: {c8_level_1_1, s7_level_1_1} = {c8_0, s7_0};

1’b1: {c8_level_1_1, s7_level_1_1} = {c8_1, s7_1};

endcase

// Level 2 muxes

always @* // First mux of level2

case(c2_level_1)

1’b0: {c4_level_2, sum[3], sum[2]} = {c4_level_1_0,

s3_level_1_0, s2_0};

1’b1: {c4_level_2, sum[3], sum[2]} = {c4_level_1_1,

s3_level_1_1, s2_1};

endcase

always @* // 2nd mux of level2

case(c6_level_1_0)

1’b0: {c8_level_2_0, s7_level_2_0, s6_level_2_0}

= {c8_level_1_0, s7_level_1_0, s6_0};

1’b1: {c8_level_2_0, s7_level_2_0, s6_level_2_0}

={c8_level_1_1, s7_level_1_1, s6_1};

endcase

always @* // 3rd mux of level2

case(c6_level_1_1)

1’b0: {c8_level_2_1, s7_level_2_1, s6_level_2_1}

={c8_level_1_0, s7_level_1_0, s6_0};

1’b1: {c8_level_2_1, s7_level_2_1, s6_level_2_1}

={c8_level_1_1, s7_level_1_1, s6_1};
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endcase

// Level 3 mux

always @*

case(c4_level_2)

1’b0: {cout,sum[7:4]} = {c8_level_2_0, s7_level_2_0,

s6_level_2_0, s5_level_1_0, s4_0};

1’b1: {cout,sum[7:4]} = {c8_level_2_1, s7_level_2_1,

s6_level_2_1, s5_level_1_1, s4_1};

endcase

endmodule

// Module for conditional cell

module conditional_cell(a, b, s_0, s_1, c_0, c_1);

input a,b;

output s_0, c_0, s_1, c_1;

assign s_0 = a^b; // sum with carry in 0

assign c_0 = a&b; // carry with carry in 0

assign s_1 = �s_0; // sum with carry in 1

assign c_1 = a | b; // carry with carry in 1

endmodule

5.5.10 Carry Select Adder

The carry select adder (CSA) is not as fast as the carry look-ahead adder and requires considerably

more hardware if mapped on custom ASICs, but it has a favorable design for mapping on an FPGA

with fast carry chain logic. Te CSA partitions an N-bit adder into K groups, where:

k ¼ 0; 1; 2; . . . ;K�1 ð5:12aÞ
n0þ n1þ . . . þ nk�1 ¼ N ð5:12bÞ
n0 � n1 � . . . � nK�1 ð5:12cÞ

wherenk represents the number of bits in group k. The basic idea is to place twonk-bit adders at each stage

k.One set of adders computes the sumbyassuming a carry-in 1, and theother a carry-in 0.The actual sum

and carry are selected using a 2-to-1 MUX (multiplexer) based on the carry from the previous group.

Figure 5.20 shows a 16-bit carry select adder. The adder is divided into four groups of 4-bits each.

As each block is of equalwidth, their outputswill be ready simultaneously. In an unequal-widthCSA

the block size at any stage in the adder is set larger than the block size at its less significant stage. This

helps in reducing delay further as the carry-outs in less significant stages are ready to select the sum

and carry of their respective next stages.

The CSA can be broken down into more than one stage. Figure 5.21 shows a two-stage CSA. The

N-bit adder is divided into two groups of size N/2 bits. Each stage is further divided into two

subgroups ofN/4 bits. In the first stage each subgroup computes sums and carries for carry-in 0 and 1

and two subgroups are merged inside a group. Then, in the second stage, two groups are merged and

final sums and carry-out are generated. Interestingly if we keep breaking the groups intomore levels

until each group contains one bit each, the adder architecture will be the same as for a conditional

sum adder. This reveals that a conditional sum adder is a special case of a hierarchical CSA.TheRTL

Verilog code for a 16-bit hierarchical CSA is given here:

module HierarchicalCSA(a, b, cin, sum, c_out);

input [15:0] a,b;
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input cin;

output c_out;

output [15:0] sum;

wire c4, c8, c8_0, c8_1, c12_0, c12_1, c16_0, c16_1, c16L2_0, c16L2_1;

wire [15:4] sumL1_0, sumL1_1;

wire [15:12] sumL2_0, sumL2_1;

// Level one of hierarchical CSA

assign {c4,sum[3:0]} = a[3:0] + b[3:0] + cin;

assign {c8_0, sumL1_0[7:4]}= a[7:4] + b[7:4] + 1’b0;

assign {c8_1, sumL1_1[7:4]}= a[7:4] + b[7:4] + 1’b1;

assign {c12_0,sumL1_0[11:8]}= a[11:8] + b[11:8] + 1’b0;

assign {c12_1,sumL1_1[11:8]}= a[11:8] + b[11:8] + 1’b1;

assign {c16_0, sumL1_0[15:12]}= a[15:12] + b[15:12] + 1’b0;

assign {c16_1, sumL1_1[15:12]}= a[15:12] + b[15:12] + 1’b1;

// Level two of hierarchical CSA

assign c8 = c4 ? c8_1 : c8_0;

assign sum[7:4] = c4 ? sumL1_1[7:4]: sumL1_0[7:4];

// Selecting sum and carry within a group

assign c16L2_0 = c12_0 ? c16_1 : c16_0;

assign sumL2_0 [15:12] = c12_0? sumL1_1[15:12] : sumL1_0[15:12];

assign c16L2_1 = c12_1 ? c16_1 : c16_0;

assign sumL2_1 [15:12] = c12_1? sumL1_1[15:12]: sumL1_0[15:12];

// Level three selecting the final outputs

assign c_out = c8 ? c16L2_1 : c16L2_0;

assign sum[15:8] = c8 ? {sumL2_1[15:12], sumL1_1[11:8]} :

{sumL2_0[15:12], sumL1_0[11:8]};

endmodule

4 bit Ripple 
Carry Adder

a[7:4] b[7:4] a[11:8] b[11:8] a[3:0] b[3:0] b[15:12] a[15:12] 

0

1

4 bit 2-to-1 Mux 4 bit 2-to-1 Mux4 bit 2-to-1 Mux4 bit 2-to-1 Mux
C[4]C[8]

S[3:0]S[7:4]S[11:8]S[15:12]

Cout
Cin

C[12]

C0

C1 4 bit Ripple 
Carry Adder

4 bit Ripple 
Carry Adder

0

1

C0

C1 4 bit Ripple 
Carry Adder

4 bit Ripple 
Carry Adder

0

1

C0

C1 4 bit Ripple 
Carry Adder

4 bit Ripple 
Carry Adder

0

1

C0

C1 4 bit Ripple 
Carry Adder

Figure 5.20 A 16-bit uniform-groups carry select adder
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5.5.11 Using Hybrid Adders

A digital designer is always confronted with finding the best design option in area–power–time

tradeoffs. A good account of these tradeoffs is given in [10]. The designer may find it appropriate to

divide the adder into multiple groups and use different adder architecture for each group. This may

help the designer to devise an optimal adder architecture for the design. This design methodology is

discussed in [10] and [11].

5.6 Barrel Shifter

A single-cycle N-bit logic shifter implementing x� s, where s is a signed integer number, can be

implemented by hardwiring all the possible shift results as input to a multiplexer and then using s to

select the appropriate option at the output. The shifter performs a shift left operation for negative

values of s. For example, x� �2 implies a shift left by 2.

The design of the shifter is shown in Figure 5.22(a), where x is the input operand and all possible

shifts are pre-performed as input to the MUX and s is used as a select line to the MUX. The figure

clearly shows that, for negative values of s, its equivalent positive number will be used by the MUX

for selecting appropriate output to perform a shift left operation.

The design can be trivially extended to take care of arithmetic along with the logic shifts. This

requires first selecting either the sign bit or 0 for appropriately appending to the left of the operand for

shift right operation. For shift left operation, the design for both arithmetic and logic shift is same.

When there are not enough redundant sign bits, the shift left operation results in overflow. The design

of an arithmetic and logic shifter is given in Figure 5.22(b).

Instead of using one MUX with multiple inputs, a barrel shifter can also be hierarchically

constructed. This design can also be easily pipelined. The technique can work for right as well as for

left shift operations. For x� s, the techniqueworks by considering s as a two’s complement signed

number where the sign bit has negativeweight and the rest of the bits carry positiveweights.Moving
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fromMSB to LSB, each stage of the barrel shifter only caters for one bit and performs the requisite

shift equal to the weight of the bit.

Figure 5.23 shows a barrel shifter for shifting a 16-bit number x by a 5-bit signed number s. Thus

the barrel shifter can perform shifts from 0 to 15 to the right and 1 to 16 to the left in five stages or

levels. First the shifter checks whether the logic or arithmetic shift is required and appropriately

selects 0 or the sign bit of the operand for further appending for shift right operation. The barrel

shifter then checks the MSB of s, as this bit has negative weight. Therefore, if s[4]¼ 1, the shifter

performs a shift left by 16 and keeps the result as a 31-bit number; otherwise, for s[4]¼ 0, the number

is appropriately extended to a 31-bit number for the next levels to perform appropriate shifts. For the

rest of the bits the logic performs a shift right operation equal to the weight of the bit under

consideration, and the design keeps reducing the number of bits to thewidth required at the output of

each stage. The design of this hierarchical barrel shifter is shown in Figure 5.23(a) and its RTL

Verilog code is given here:

module BarrelShifter(

input [15:0] x,

input signed [4:0] s,

input A_L,

output reg [15:0]y);

reg [30:0] y0;
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Figure 5.22 Design of Barrel Shifters (a) An arithmetic shifter for an 8-bit signed operand. (b) A logic

and arithmetic shifter for an 8-bit operand
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reg [22:0] y1;

reg [18:0] y2;

reg [16:0] y3;

reg [14:0] sgn;

always @(*)

begin

// A_L =1 for Arithmetic and 0 for Logical shift

sgn = (A_L) ? {15{x[15]}} : 15’b0;

y0 = (s[4]) ? {x[14:0],16’b0} : {sgn[14:0], x[15:0]};

y1 = (s[3]) ? y0[30:8] : y0[22:0];

y2 = (s[2]) ? y1[22:4] : y1[18:0];

y3 = (s[1]) ? y2[18:2] : y2[16:0];

y = (s[0]) ? y3[16:1] : y3[15:0];

end

endmodule

This design can be easily pipelined by placing registers after any number of multiplexers and

appropriately delaying the respective selection bit for coherent operation.A fully pipelined design of
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Figure 5.23 Design of a barrel shifter performing shifts in multiple stages. (a) Single-cycle design. (b)

Pipelined design
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a barrel shifter is given in Figure 5.23(b), and the code for RTLVerilog implementation of the design

is listed here:

module BarrelShifterPipelined(

input clk,

input [15:0] x,

input signed [4:0] s,

input A_L,

output reg [15:0]y);

reg [30:0] y0, y0_reg;

reg [22:0] y1, y1_reg;

reg [18:0] y2, y2_reg;

reg [16:0] y3, y3_reg;

reg [14:0] sgn;

reg [3:0] s_reg;

reg [2:0] sp_reg;

reg [1:0] spp_reg;

reg sppp_reg;

always @(*)

begin

// A_L =1 for arithmetic and 0 for logical shift

sgn = (A_L) ? {15{x[15]}} : 15’b0;

y0 = (s[4]) ? {x[14:0],16’b0} : {sgn[14:0], x[15:0]};

y1 = (s_reg[3]) ? y0_reg[30:8] : y0_reg[22:0];

y2 = (sp_reg[2]) ? y1_reg[22:4] : y1_reg[18:0];

y3 = (spp_reg[1]) ? y2_reg[18:2] : y2_reg[16:0];

y = (sppp_reg) ? y3_reg[16:1] : y3_reg[15:0];

end

always @ (posedge clk)

begin

y0_reg <= y0;

y1_reg <= y1;

y2_reg <= y2;

y3_reg <= y3;

s_reg <= s[3:0];

sp_reg <= s_reg [2:0];

spp_reg <= sp_reg [1:0];

sppp_reg <= spp_reg [0];

end

endmodule

Abarrel shifter can also be implemented using a dedicatedmultiplier in FPGAs. A shift by s to the

left is multiplication by 2s, and similarly a shift to the right by s is multiplication by 2�s. To
accomplish the shift operation, the number can be multiplied by an appropriate power of 2 to get the

desired shift.

Example: Assume x is a signed operand in Q1.7 format. Let:

x ¼ 801001 0101

x� 3 can be performed by multiplying x by y¼ 2�3, which in Q1.7 format is equivalent to

y¼ 80b0001_0000. The fractional multiplication of x by y results in a Q2.14 format number:
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140b1111_1001_0101_0000.On dropping the redundant sign bit and 7LSBs, as is done in fractional
signed multiplication, the shift results in an 8-bit number:

z ¼ 80b1111_0010

Following the same rationale, both arithmetic and logic shifts can be performed by appropriately

assigning the operands to a dedicated multiplier embedded in FPGAs.

5.7 Carry Save Adders and Compressors

5.7.1 Carry Save Adders

This chapter has discussed various architectures for adding numbers. These adders, while adding

two operands, propagate carries from one bit position to the next in computing the final sum and are

collectively known as carry propagate adders (CPAs). Although three numbers can be added in a

single cycle by using two CPAs, a better option is to use a carry save adder (CSA) that first reduces

the three numbers to two and then anyCPA adds the two numbers to compute the final sum. From the

timing and area perspective, the CSA is one of the most efficiently and widely used techniques for

speeding up digital designs of signal processing systems dealingwithmultiple operands for addition

and multiplication. Several dataflow transformations are reported that extract and transform

algorithms to use CSAs in their architectures for optimal performance [13].

ACSA,while reducing three operands to two, does not propagate carries; rather, a carry is saved to

the next significant bit position. Thus this addition reduces three operands to two without carry

propagation delay. Figure 5.24 illustrates addition of three numbers. As this addition reduces three

numbers to two numbers, the CSA is also called a 3:2 compressor.

5.7.2 Compression Trees

There are a host of techniques that effectively use CSAs to add more than three operands. These

techniques are especially attractive for reducing the partial products inmultiplier design. Section 5.8

covers the use of these techniques in multiplier architectures, and then mentions their use in

optimizing many signal processing architectures and applications.

5.7.3 Dot Notation

Dot notation is used to explain different reduction techniques. In this notation each bit in a multi-bit

operands addition is represented by a dot. Figure 5.25 shows four dots to represent four bits of PP[0]

in a 4� 4-bit multiplier. The dots appearing in a column are to be added for computing the final

a0 = 0 0 1 0 1 1

a1 = 0 1 0 1 0 1

a2 = 1 1 1 1  0 1
s = 1 0 0 0 1 1
c = 0 1 1 1 0 1

N+1 N

N

3:2

N N

a0 a1 a2

c   s

Figure 5.24 Carry save addition saves the carry at the next bit location
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product. A reduction technique based on a 3:2 compressor reduces three layers of PPs to two. The

technique considers the number of dots in each column. If an isolated dot appears in a column, it is

simply dropped down to the next level of logic. When there are two dots in a column, then they are

added using a half adder, where the dot for the sum is simply dropped down in the same column and

the dot for the carry is placed in the next significant column. Use of a half adder in this reduction is

also known as a 2:2 compressor. The three dots in a column are reduced to two using a full adder. The

dot for the sum is placed at the same bit location and the dot for the carry is moved to the next

significant bit location. Figure 5.26 shows these three cases of dot processing.

5.8 Parallel Multipliers

5.8.1 Introduction

Most of the fundamental signal processing algorithms use multipliers extensively. Keeping in

perspective their importance, the FPGAvendors are embeddingmany dedicatedmultipliers. It is still

very important to understand the techniques that are practised for optimizing the implementation of

these multipliers. Although a sequential multiplier can be designed that takes multiple cycles to

compute its product, multiplier architectures that compute the product in one clock cycle are of

interest to designers for high-throughput systems. This section discusses parallel multipliers.

A CSA is one of the fundamental building blocks of most parallel multiplier architectures. The

partialproductsarefirst reducedtotwonumbersusingaCSAtree.Thesetwonumbersarethenaddedto

get the final product. Many FPGAs have many dedicated summers. The summer can add three

operands.The reduction trees can reduce thenumberofpartialproducts to three insteadof two tomake

full use of this block.

Any parallel multiplier architecture consists of three basic operations: partial product generation,

partial product reduction, and computation of the final sum using a CPA, as depicted in Figure 5.27.

For each of these operations, several techniques are used to optimize the HW of a multiplier.

Multiplicand

Multipliera[0]

b[0]

Partial Product pp[0]

b[1]b[2]b[3]

Figure 5.25 Dots are used to represent each bit of the partial product

Level ( n+1)

Level n

sum

carry

sum

carry

(FA) No operation(HA)

Figure 5.26 Reducing the number of dots in a column
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5.8.2 Partial Product Generation

While multiplying two N-bit unsigned numbers a and b, the partial products (PPs) are generated

either by using an ANDing method or by implementing a modified Booth recoding algorithm. The

first method generates partial product PP[i] by ANDing each bit ai of the multiplier with all the bits

of the multiplicand b. Figure 5.28 shows the generation of partial products for a 6� 6 multiplier.

EachPP[i] is shifted to the left by i bit positions before the partial products are added column-wise to

produce the final product.

multiplicand

multiplier

PP Generation

NN

PP Reduction

CPA

2N

Product

…

Figure 5.27 Three components of a multiplier

a5b0b5 a0
Multiplicand Multiplier

=

ppij

Figure 5.28 Partial-product generation for a 6� 6 multiplier
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Verilog code for a 6� 6 unsigned multiplier is given below. The implementation only highlights

the partial product generation and does not use any PP reduction techniques. These PPs are

appropriately shifted by using a concatenation operator in Verilog and then added to complete the

functionality of the multiplier module. The second technique of partial product generation, called

modified Booth recoding, is discussed in Section 5.9.4.

module multiplier

(

input [5:0] a,b,

output [11:0] prod);

integer i;

reg [5:0] pp [0:5];//6 partial products

always@*

begin

for(i=0; i<6; i=i+1)

begin

pp[i] = b & {6{a[i]}};

end

end

assign prod = pp[0]+{pp[1],1’b0}+{pp[2],2’b0} +

{pp[3],3’b0}+{pp[4],4’b0}+{pp[5],5’b0};

endmodule

5.8.3 Partial Product Reduction

WhilemultiplyinganN1-bitmultiplierawithanN2-bitmultiplicandb,N1PPsareproducedbyANDing

eachbita[i]of themultiplierwithall thebitsof themultiplicandandshifting thepartialproductPP[i] to

the left by i bit positions. Using dot notations to represent bits, all the partial products form a

parallelogram array of dots. These dots in each column are to be added to compute the final product.

For a general N1�N2 multiplier, the following four techniques are generally used to reduce N1

layers of the partial products to two layers for their final addition using any CPA:

. carry save reduction

. dual carry save reduction

. Wallace tree reduction

. Dadda tree reduction.

Although the techniques are described here for 3:2 compressors, the same can be easily extended for

other compressors and counters.

5.8.3.1 Carry Save Reduction

The first three layers of the PPs are reduced to two layers using carry save addition (CSA). In this

reduction process, while generating the next level of logic, isolated bits in a column, in the selected

three layers, are simply dropped down to the same column, columnswith two bits are reduced to two

bits using half adders and the columnswith three bits are reduced to two bits using full adders.While

adding bits using HAs or FAs, the dot representing the sum bit is dropped down in the same column

whereas the dot representing the carry bit is placed in the next significant bit column. Once the first

three partial products are reduced to two layers, the fourth partial product in the original composition
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is groupedwith them tomake a newgroup of three layers. These three layers are again reduced to two

layers using theCSA technique. The process is repeated until the entire array is reduced to two layers

of numbers. This scheme results in a few least significant product bits (called free product bits), and

the rest of the bits appear in two layers, which are then added using any CPA to get the rest of the

product bits.

Figure 5.29 shows carry save reduction scheme for reducing twelve PPs resulting from

multiplication of two 12-bit numbers to two layers. At level 0, the first three PPs are selected.

The first and the last columns in this group contain only 1 bit each. These bits are simply dropped

down to level 1 without performing any operation. The two bits of the second and the second last

columns are reduced using HAs. As the rest of the columns contain three bits each, FAs are used to

reduce these bits to 2 bits each, where sum bits are placed in the same columns and carry bits are

placed in the next columns of level 1. This placement of carries in the next columns is shown by

diagonal lines. The use of anHA is shownby a cross line. In level 1, two least significant final product

bits are produced (free product bits). In level 1 the two layers produced by reduction of level 0 are

further grouped with the fourth PP and the process of reduction is repeated. For 12 layers of PPs, it

requires 10 levels to reduce the PPs to two layers.

First 3 
Partial 
Products

Level 0

Level 1

Free product bitsFinal partial product
rows that need carry

propagate adder

Figure 5.29 PP reduction for a 12� 12 multiplier using a carry save reduction scheme

Design Options for Basic Building Blocks 225



Figure 5.30 shows a layout of carry save reduction for reducing PPs of a 6� 6 multiplier. The

layout clearly shows use of HAs and FAs and production of free bits. There are four levels of logic

and each level reduces three layers to two.

5.8.3.2 Dual Carry Save Reduction

The partial products are divided into two equal-size sub-groups. The carry save reduction scheme is

applied on both the sub-groups simultaneously. This results in two sets of partial product layers in

each sub-group. The technique finally results in four layers of PPs. These layers are then reduced as

one group into three, and then into two layers.

5.8.3.3 Wallace Tree Reduction

Partial products are divided into groups of three PPs each. Unlike the linear time array reduction of

the carry save and dual carry save schemes, these groups of partial products are reduced

simultaneously using CSAs. Each layer of CSAs compresses three layers to two layers. These

two layers from each group are re-grouped into a set of three layers. The next level of logic again

reduces three-layer groups into two layers. This process continues until only two rows are left. At this

stage any CPA can be used to compute the final product.

Figure 5.31 shows the implementation of Wallace tree reduction of 12 partial products. The PPs

are divided into four groups of three PPs each. In level 0, carry save reduction is applied on each

group simultaneously. Each group reduces its three layers to two layers, and as a result eight layers

are produced. These eight layers are further grouped into three PPs each; this forms two groups of

three layers each, and two layers are left as they are. In level 1, these two groups of three layers are

FA FA FA FA

FA FA FA HA

FA FA FA HA

FA FA FA HA

PP P 123P4

Free product bits

Level 3

Level 2

Level 1

Level 0

FA

FA

FA

FA

FA

HA

FA

HA

CPA

P0

Figure 5.30 Carry save reduction scheme layout for a 6� 6 multiplier
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further reduced using carry save addition, and this produces four layers. These four layers are

combinedwith the two layers that are not processed in the previous level. Now in level 2 there are six

layers; they form two groups of three layers and are reduced to four layers. Only one group is formed

at this stage. Repeating the reduction process twicewill reduce the number of layers to three and then

two. The final two layers can then be added using any CPA to produce the final product.

Wallace reduction is one of the most commonly used schemes in multiplier architecture. It falls

into the category of log time array multiplier as the reduction is performed in parallel in groups of

threes and this results only in a logarithmic increase in the number of adder levels as the number of

PPs increases (i.e. the size of the multiplier increases). The number of adder levels accounts for the

critical path delay of the combinational cloud. Each adder level incurs one FA delay in the path.

Table 5.3 shows the logarithmic increase in the adder levels as the number of partial products

increases. As theWallace reduction works on groups of three PPs, the adder levels are the same for a

range of number of PPs. For example, if the number of PPs is five or six, it will require three adder

levels to reduce the PPs to two layers for final addition.

Example: Figure 5.32 shows the layout of the Wallace reduction scheme on PP layers for a 6� 6

multiplier of the reduction logic. In level 0, the six PPs are divided into two groups of three PPs each.

1510152023

5
Level 0

Level 1

Free Product 
Bits

Final Partial Product row that need carry 
propagate adder

Level 2

Level 3

Level 4

Level 5

10

Figure 5.31 Wallace reduction tree applied on 12 PPs
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The Wallace reduction reduces these two groups into two layers of PPs each. These four layers are

reduced to two layers in two levels of CSA by further grouping and processing them through carry

save addition twice.

5.8.3.4 Dadda Tree Reduction

The Dadda tree requires the same number of adder levels as the Wallace tree, so the critical path

delay of the logic is the same. The technique is useful as it minimizes the number of HAs and FAs at

each level of the logic.

Table 5.3 Logarithmic increase in adder levels with increasing number of

partial products

Number of PPs Number of full-adder delays

3 1

4 2

5� n� 6 3

7� n� 9 4

10� n� 13 5

14� n� 19 6

20� n� 28 7

29� n� 42 8

43� n� 63 9

FAFAFAFA HAHA

FAFA HAFA

HAHAFAFAFAHAHA

P2 P0P1P3PC4PS4PC5PS6PS6PC7PS7PC8PS8PC9PS9PC10PS10PS11 PC6

HA

FAFA

HA

Level 1

Level 2

Level 3

FAFAFAFA HAHA

Figure 5.32 Wallace reduction tree layout for a 6� 6 array of PPs
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Consider the following sequence from aWallace tree reduction scheme given as the upper limit of

column 1 in Table 5.3:

2; 3; 4; 6; 9; 13; 19; 28; . . . :

Each number represents the maximum number of partial products at each level that requires a

fixed number of adder levels. The sequence also depicts that two partial products can be obtained

from at most three partial products, three can be obtained from four, four from six, and so on.

TheDadda tree reduction considers each column separately and reduces the number of logic levels

in a column to the maximum number of layers in the next level. For example, reducing PPs in a

12� 12-bit multiplier, Wallace reduction reduces 12 partial products to eight whereas the Dadda

schemefirst reduces them to themaximum range in next the group, and this is nine as reducing twelve

layers to eight will require the same number of logic levels as eight but results in less hardware.

In theDadda tree each column is observed for the number of dots. If the number of dots in a column

is less than the maximum number of PPs required to be reduced in the current level, they are simply

dropped down to the next level of logic without any processing. Those columns that have more dots

than the required dots for the next level are reduced to take the maximum layers in the next level.

Example:Figure5.33 showsDadda reductiononan8� 8partial-product array.FromTable5.3 it is

evident that eight PPs should be reduced to six PPs. In level 0, this reduction scheme leaves the

columns thathaveless thanorequal tosixdotsandonlyapplyreductiononcolumnswithmore thansix

Figure 5.33 Dadda reduction levels for reducing eight PPs to two
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dots.The columnshavingmore than six dots are reduced to six.Thus thefirst six columns are dropped

down to the next level without any reduction. Column 7 has seven dots; they are reduced to six by

placing a HA. This operation generates a carry in column 8, which is shown in gray in the figure.

Column 8 will then have nine dots. An HA and an FA reduce these nine dots to six and generate two

carries in column 9. Column 9will have nine dots, which are again reduced to six using anHAand an

FA. (HAs and FAs are shown in the figure with diagonal crossed and uncrossed lines, respectively.)

Finally, column 10 will reduce eight dots to six using an FA. The maximum number of dots in any

columnin thenext level is six.For thenext level,Table5.3showsthat sixPPsshouldbereduced tofour.

Each column is again observed for potential reduction. The reduction is only applied if the total

number of dots, including dots coming from the previous column, is four or more, and these dots are

reduced to three. The process is repeated to reduce three dots to two. This process is shown in

Figure 5.33.

5.8.4 A Decomposed Multiplier

A multiplication can be decomposed into a number of smaller multiplication operations. For

example, 16� 16-bit multiplication can be performed by considering the two 16-bit operands a and

b as four 8-bit operands, where aH and aL are eight MSBs and LSBs of a, and bH and bL are eight

MSBs and LSBs of b. Mathematical decomposition of the operation is given here:

aL ¼ a7 a6 a5 a4 a3 a2 a1 a0
aH ¼ a15 a14 a13 a12 a11 a10 a9 a8
bL ¼ b7 b6 b5 b4 b3 b2 b1 b0
bH ¼ b15 b14 b13 b12 b11 b10 b9 b8

aLþ 28aH
� �� bLþ 28bH

� � ¼ aL � bLþ aL � bH2
8þ aH � bL2

8þ aH � bH2
16

A 16� 16-bit multiplier can be constructed to perform these four 8� 8-bit multiplications in

parallel. The results of these are then combined to compute the product of the multiplier.

Figure 5.34(a) shows the decomposition of a 16� 16-bit multiplier into four 8� 8-bitmultipliers.

The results of these four multipliers are appropriately added. Figure 5.34(b) shows the reduction of

the four products using a reduction technique for final addition. This decomposition technique is

very useful in designs where either four 8� 8 or one 16� 16 multiplication is performed.

32-Bits

(a) (b)

aL X bL 16-Bits

aL X bH 16-Bits

aH X bL 16-Bits

aH X bH 16-Bits

Stage 1

Stage 2

Stage 3

8x8 Multiplier

Figure 5.34 (a) A 16� 16-bit multiplier decomposed into four 8� 8multipliers. (b) The results of these

multipliers are appropriately added to get the final product
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5.8.5 Optimized Compressors

Based on the concept of CSA, several other compressor blocks can be developed. For example a 4:2

compressor takes four operands and 1 bit for the carry-in and reduces them to 2 bits in addition to a

carry-out bit. A candidate implementation of the compressor is shown in Figure 5.35(a). While

compressing multiple operands the compressor works in cascade and creates an extended tile, as

shown in Figure 5.35(b).

The use of this compressor in Wallace and Dadda reduction trees for an 8� 8-bit multiplier is

shown in Figures 5.35(c) and (d). This compressor, by using carry-chain logic, is reported to exhibit

better timing and area performance compared with a CSA-based compression on a Virtex

FGPA [14]. Similarly, a 5:3 bit counter reduces 5 bits to 3 bits with a carry-in and carry-out bit

and is used in designing multiplier architectures in [15].

( 3,2 )

( 3,2 )

c_in
c_out

( 3,2 )

( 3,2 )

( 3,2 )

( 3,2 )

( 3,2 )

( 3,2 )

(b) (a) 

(d) (c) 

Figure5.35 (a)Candidate implementation of a 4:2 compressor. (b)Concatenation of 4:2 compression to

createwider tiles. (c) Use of a 4:2 compressor inWallace tree reduction of an 8� 8multiplier. (d) Use of a

4:2 compressor in an 8� 8 multiplier in Dadda reduction
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5.8.6 Single- and Multiple-column Counters

Multi-operand additions on ASIC are traditionally implemented using CSA-based Wallace and

Dadda reduction trees. With LUTs and carry chain-based FPGA architecture in mind, the counter-

based implementation offers a better alternative to CSA-based multi-operand addition on

FPGAs [16]. These counters add all bits in single ormultiple columns to best utilize FGPA resources.

A single-column N:n counter adds all N bits in a column and returns an n-bit number, where

n¼ log2(N þ 1). Early FPGA architectures were 4-input LUT-based designs. Recently, 6-input

LUTs with fast carry-chain logic have appeared in the Vertix�-4 and Virtex�-5 families. A design

that effectively uses these features ismore efficient than the others. A 6:3 counter fully utilizing three

6-input LUTs and carry-chain logic has been shown to outperformother types of compressors for the

Virtex�-5 family of FPGAs [17]. A 6:3 counter compressing six layers of multi operands to three

layers is shown in Figure 5.36(a). The design uses three 6-input LUTs while compressing six layers

to three, as shown in Figure 5.36(b). Each LUT computes respective sum, carry0 and carry1 bits of

the compressor.

Counters of different dimensions can also be built, and a mixture of these can be used to reduce

multiple operands to two. Figure 5.37 shows 15:4, 4:3 and 3:2 counters working in cascade to

compress a 15� 15 matrix.

In amulti-operand addition operation, a generalized parallel counter (GPC) adds number of bits in

multiple adjacent columns. AK-columnGPCaddsN0,N1, . . .,NK�1 bits in least significant 0 tomost

significant column K� 1, respectively, and produces an n-bit number, where:

N ¼
XK�1
i¼0

Ni2
i

n ¼ log2ðNþ 1Þd e

The example of Figure 5.38 shows a (3,4,5:5) counter. The counter compresses 3,4 and 5 bits in

columns 0, 1and 2, respectively, and produces one bit each in bit locations 0, 1, 2, 3 and 4. Similarly,

Figure 5.39 shows a compression of two columns of 5 bits each into a 4-bits (5,5:4) counter.

6-bit partial 
product x6

6:3 -compressor x6

202122232425 P
5      P

4       P
3       P

2        P
1        P

0

6-LUT 6-LUT 6-LUT

P P P P P P

SumCarry0Carry1

SumCarry0Carry1

x 2i+2 x 2i+1 x 2i

(b) (a) 

Figure 5.36 Single column counter (a) A 6:3 counter reducing six layers of multiple operands to three.

(b) A 6:3 counter is mapped on three 6-input LUTs for generating sum, carry 0 and carry 1 output
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GPCoffers flexibility oncemapped on to a FPGA.The problemof configuring dimensions ofGPC

formapping onFPGAformulti-operand addition is anNP-complete problem.The problem is solved

using ‘integer programming’, and the method is reported to outperform adder tree-based imple-

mentation from the area and timing perspectives [18].

As stated earlier, FGPAs are best suited for counters and GPC-based compression trees. To fully

utilize 6-LUT-based FPGAs, it is better that each counter or GPC should have six input bits and three

(or preferably four) output bits, as shown in Figures 5.40 and 5.41. The four output bits are favored as

CPA
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Figure 5.37 Counters compressing a 15� 15 matrix

Figure 5.38 A (3,4,5:5) GPC compressing three columns with 3, 4 and 5 bits to 5 bits in different

columns
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the LUTs inmanyFPGAs come in groups of twowith shared 6-bit input, and a 6:3GPCwouldwaste

one LUT in every compressor, as shown in Figure 5.41(a).

5.9 Two’s Complement Signed Multiplier

5.9.1 Basics

This section covers architectures that implement signed number multiplications. Recollecting the

discussion in Chapter 3 on two’s complement numbers, an N-bit signed number x is expressed as:

Figure 5.39 Compressor tree synthesis using compression of two columns of 5 bits each into 4-bit

(5,5;4) GPCs

(b) (a) 

Figure 5.40 Compressor tree mapping by (a) 3:2 counters, and (b) a (3,3;4) GPC

LUT

LUT

LUT

6 1

1

1

LUT

LUT

LUT

LUT

6 1

1

1

1

(b) (a) 

Figure 5.41 (a) The Altera FPGA adaptive logic module (ALM) contains two 6-LUTs with shared

inputs; 6-input 3-output GPC has 3/4 logic utilization (b) A 6-input 4-output GPChas full logic utilization
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x ¼ �xn�12N�1þ
XN�2
i¼0

xi2
i

where xn� 1 is theMSB that carries negativeweight.Whenwemultiply anN1-bit signedmultiplier a

with an N2-bit signed multiplicand b, we get N1 partial products. For the first N1-1 partial products,

thePP[i] is obtained byANDing bit ai of awith b and shifting the result by i positions to the left, This

implements multiplication of b with ai2
i:

PP i½ � ¼ ai2
i

� � �bn�12N2�1þ
XN2�2

i¼0
bi2

i

 !
for i ¼ 0; 1; . . . ;N1�2

The PP[i] in the above expression is just the signed multiplicand that is shifted by i to the left, so

MSBs of all the partial products have negativeweights. Furthermore, owing to the shift by i, all these

PPs are unequal-width signed numbers. All these numbers are needed to be left-aligned by sign

extension logic before they are added to compute the final product.

Now we need to deal with the last PP. As the MSB of a has negative weight, the multiplication of

this bit results in a PP that is two’s complement of the multiplicand. PP[N1� i] is computed as

PP N1�1½ � ¼ �aN1�12
N1�1� � �bn�12N2�1þ

XN2�2

i¼0
bi2

i

 !

All these N1 partial products are appropriately sign extended and added to get the final product.

Example: Figure 5.42 shows 4� 4-bit signed by signed multiplication. The sign bits of the first

three PPs are extended and shown in bold. Also note that the two’s complement of the last PP is taken

to cater for the negative weight of the MSB of the multiplier. As can be seen, if the signed by signed

multiplier is implemented as in this example, the sign extension logic will take significant area of the

compression tree. It is desired to somehow remove this logic from the multiplier.

5.9.2 Sign Extension Elimination

A simple observation in a sign extended number leads us to an effective technique for elimination of

sign extension logic. An equivalent of the sign extended number is computed by flipping the sign bit

and adding a 1 at the location of the sign bit and extending the number with all 1s. Figure 5.43(a)

explains the computation on a positive number. The sign-bit 0 is flipped to 1 and a 1 is added at the

1 1 1 1 1

1

0

0

00

0

0
0

0

0

1 1

11 1
1 1

1

00

000

0 0 0
1 1 X

X
X

0 XXX

1011
1011

sign
extension

logic

Figure 5.42 Showing 4� 4-bit signed by signed multiplication
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sign-bit location and extended bits are replaced by all 1s. This technique equivalently working on

negative numbers is shown in Figure 5.43(b). The sign-bit 1 is flipped to 0 and a 1 is added to the sign-

bit location and the extended bits are all 1s. Thus, irrespective of the sign of the number, the

technique makes all the extended bits into 1s. Now to eliminate the sign extension logic, all these 1s

are added off-line to form a correction vector.

Figure 5.44 illustrates the steps involved in sign-extension elimination logic on a 11� 6-bit

signed by signed multiplier. First the MSB of all the PPs except the last one are flipped and a 1 is

added at the sign-bit location, and the number is extended by all 1s. For the last PP, the two’s

complement is computed by flipping all the bits and adding 1 to the LSB position. The MSB of the

last PP is flipped again and 1 is added to this bit location for sign extension. All these 1s are added to

find a correction vector (CV). Now all the 1s are removed and the CV is simply added and it takes

care of the sign extension logic.

Example: Find the correction vector for a 4� 4-bit signed multiplier and use the CV to multiply

two numbers 0011 and 1101. In Figure 5.45(a), all the 1s for sign extension and two’s complement

are added and CV¼ 0001_0000. Applying sign-extension elimination logic and adding CV to the

PPs, themultiplication is performed again and it gives the same result, as shown in Figure 5.45(b).As

the correction vector has just one non-zero bit, the bit is appended with the first PP (shown in gray).

(a) 

+

B=0 0 0 0 0 0 .1 1 0 1 0 1 1
B=1 1 1 1 1 0 .1 1 0 1 0 1 1

0 0 0 0 0 0 .1 1 0 1 0 1 1

1

flip the sign bitextend all 1s

add 1 at the location of sign bit

(b) 

+

B=1 1 1 1 1 1 .1 1 0 1 0 1 1

B=1 1 1 1 1 1 .1 1 0 1 0 1 1

1 1 1 1 1 1 .1 1 0 1 0 1 1

1

flip the sign bitextend all 1s

add 1 at the location of sign bit

Figure 5.43 Sign-extension elimination

111111
11111SXXXXXXXXXX
1111SXXXXXXXXXX
111SXXXXXXXXXX
11SXXXXXXXXXX
1SXXXXXXXXXX
SXXXXXXXXXX

1 1 1 1 1 1
1 1 1 1 1 
1 1 1 1
1 1 1
1 1
1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

1

1's complement 
and adding 1

at LSB1

Figure 5.44 Sign-extension elimination and CV formulation for signed by signed multiplication
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Hardware implementation of a signed by signed multiplication using the sign-extension

elimination technique saves area and thus is very effective.

5.9.3 String Property

So far we have represented numbers in two’s complement form, where each bit is either a 0 or 1.

There are, of course, other ways to represent numbers. A few of these are effective for hardware

design for signal processing systems. Canonic signed digit (CSD) is one such format [19–21]. In

CSD, a digit can be a 1, 0 or �1. The representation restricts the occurrence of two consecutive

non-zeros in the number, so it results in a unique representation with minimum number of non-

zero digits.

The CSD of a number can be computed using the string property of numbers. This property, while

moving from LSB to MSB, successively observes strings of 1s and replaces each string with an

equivalent value, using 1, 0 or �1. Consider the number 7. This can be written as 8� 1, or in CSD

representation:

0111 ¼ 1000�1 ¼ 100�1

The bit with a bar over has negativeweight and the others have positiveweights. Similarly, 31 can

be written as 32� 1, or in CSD representation:

(a) 0 0 1 0
1 1 0 1

1 1 1
1

1 0 0 1
1 1 0 0 0

01 1 0 1
01 0 1 0

0
0

0
 1  1  1   1

Negative Number

1

Correction
Vector

0  0  1  0 
1  1  0  1

01011
0  X0  01

XX1  01  0
XXX100  1
00 111 11

Correction Vector

(b) 

Figure 5.45 Multiplying two numbers, 0011 and 1101
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011111 ¼ 100000�1 ¼ 10000�1

Thus, equivalently, a string of 1s is replaced with �1 at the least significant 1 of the string,

and a 1 placed next to the the most significant 1 of the string, while all other bits are filled

with zeros.

We can trivially extend this transformation to any string of 1s in binary representation of a number.

The string property can be recursively applied on binary representations of a number. The

transformed number has minimum number of non-zero bits. The representation and its use in

digital design are further discussed in Chapter 6.

The example in Figure 5.46 shows how the string property can be recursively applied. The number

of non-zero digits in the example has reduced from 14 to 6.

5.9.4 Modified Booth Recoding Multiplier

The three basic building blocks of a multiplier are the generation of PPs, reduction of PPs to two

layers, and addition of these layers using a CSA. Section 5.8.3 has covered optimization techniques

for partial products reduction. Reducing the number of PPs is yet another optimization technique

that can be exploited in many design instances. ‘Modified Booth recoding’ (MBR) is one such

technique.

While multiplying two N-bit signed numbers a and b, the technique generates one PP each by

pairing all bits of b in 2-bit groups. The technique, while moving from LSB to MSB of b, pairs two

bits together to make a group for recoding using the MBR algorithm. The two bits in a group can

possibly be 002, 012, 102 and 112. Multiplication by 002, 012 and 102 simply results in 0, a and

2a¼ a	 1, respectively where each PP is appropriately computed as one number. The fourth

possibility of 112¼ 3 is 2 þ 1, and a simple shift would not generate the requisite PP; rather this

multiplication will results in two PPs and they are a and 2a. This means in the worst case the

multiplier ends up having N partial products.

This problem of 112 generating two PPs is resolved by using the Booth recoding algorithm. This

algorithm still works on groups of 2 bits each but recodes each group to use one of the five equivalent

values: 0, 1, 2, �1, �2. Multiplication by all these digits results in one PP each. These equivalent

values are coded by indexing into a look-up table. The look-up table is computed by exploiting the

string property of numbers (see Section 5.9.3). The string property is observed on each pair of two

bits while moving from LSB to MSB. To check the string property, the MSB of the previous pair is

also required along with the two bits of the pair under consideration. For the first pair a zero is

appended to the right. Table 5.4 shows the string property working on all possible 3-bit numbers for

generating a table that is then used for recoding.

10111011110111100 011

10100111110111100 011

10100100000111100 111

10100100001111100 100

10100100001000010 100

String

String

String

String

Figure 5.46 Application of the string property
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Example: This example multiplies two 8-bit signed numbers 10101101 and 10001101 using the

Booth recoding algorithm. The technique first pairs the bits in themultiplier in 2-bit groups. Then, on

checking theMSBof the previous group, it recodes each group using Table 5.4. A zero is assumed as

MSB of the previous group for the least significant group as there is no previous group. The eight

groups with the MSB of the previous group are:

100 001 110 010 :

From the table the groups are recoded as �2, 1, �1 and 1, and the corresponding four PPs are

generated as shown in Figure 5.47. For a 1 recoded digit in the multiplier, the multiplicand is simply

copied.As each PP is generated for a pair of 2 bits of themultiplier, the ith PP is shifted by 2iplaces to

the left. For the second recoded digit of the multiplier that is �1, the two’s complement of the

multiplicand is copied. The PPs are generated for all the recoded digits; for the last digit of �2 the
two’s complement of the PP is further shifted left by one bit position to cater for multiplication by 2.

All the four PPs are sign extended and then added to get the final product. Sign-extension elimination

logic can also be used to reduce the logic for HW implementation.

A representative HWdesign for implementing an 8� 8-bit multiplier is given in Figure 5.48. The

BR0, BR1, BR2 and BR3 recode by considering groups of 2 bits and theMSB of the previous group

into one of the five recoded options. Based on the recoded value, one of the five PPs 2a, a, 0,�a and
�2a are generated. All the four PPs are then input to a compressor. The compression generates two

layers of PPs that are then added using a CPA and a 16-bit product is computed.

Table 5.1 Modified Booth recoding using the string property of numbers

21 20 String property implemented Numeric computations Recoded value

0 0 0 No string 0 0

0 0 1 End of string at bit location 0 20 1

0 1 0 Isolated 1 1 1

0 1 1 End of string at bit location 0 21 2

1 0 0 Start of string at bit location 1 �21 �2
1 0 1 End and start of string at bit locations

0 and 1, respectively

�20–21 �1

1 1 0 Start of string at bit location 0 �20 �1
1 1 1 Middle of string 0 0

10  10  11   01
-2  +1  -1    1

11111111  10  10  11   01
00000001  01  00  11
11111010  11  01
00101001  1
00100101  01  00  10   01

Figure 5.47 Generation of four PPs
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5.9.5 Modified Booth Recoded Multiplier in RTL Verilog

The example here implements a 6� 6-bit MBR multiplier. The three components in the design are

Booth recoder, CV generation and PPs accumulation. The design is implemented in Verilog and

code is listed at the end of this chapter. AVerilog function RECODERfn implements the recoding

part. It divides the 6 bits of the multiplier into three groups of 2 bits each. RECODERfn takes three

bits as input, consisting of two bits of each group and theMSB of the previous group, and generates

one of the five values 0, 1,�1, 2 or�2 as output. AVerilog task,GENERATE_PPtk, generates three

PPswith sign-extension elimination and aCV for the design. In cases where the recoded value is 2 or

�2, the PP is generated by shifting the multiplicand or its compliment by 1 to the left, and this

requires the PP to be 7 bits wide. For all other cases the seventh bit is the sign bit of themultiplicand.

Sign-extension elimination logic is implemented. This requires flipping the MSB of the PP. For the

cases of multiplication by�1 or�2, two’s complement of the PP is computed by flipping all the bits

and adding 1 to the LSB location. The addition of 1 is included in the CV, and the vector is appended

by 20b01 for multiplication by �1 and 20b10 for multiplication by �2, as in this case the LSB is

shifted by one bit position to the left. The output of the task is three PPs and six LSBs of the CV. The

sign-extension elimination logic for the three PP is precalculated. By adding all the sign-extension

elimination bits we get the five MSBs of the CV as 50b01011 as shown in Figure 5.49.

The code below illustrates the implementation of Booth recoding and sign-extension elimination

logic in RTLVerilog. As the focus of the example is to illustrate the MBR technique, it simply adds

all the PPs and the CV to compute the product. As the PPs and CV form four layers, for optimized
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BR3
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Figure 5.48 An 8� 8-bit modified Booth recoder multiplier
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Figure 5.49 Pre-calculated part of the CV
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implementation a carry save reduction tree should be used to reduce these four layers to two, and then

two layers should be added using a fast CPA.

module BOOTH_MULTIPLIER(

input [5:0] multiplier,

input [5:0] multiplicand,

output [10:0] product);

parameter WIDTH = 6;

reg [6:0] pps [0:2];

reg [10:0] correctionVector;

reg [2:0] recoderOut[2:0];

wire [6:0] a, a_n;

wire [6:0] _2a, _2a_n;

//integer i;

/*

1 x multiplicand, sign extend the multiplicand, and flip the sign bit

2 x multiplicand, shift a by 1 and flip the sign bit

1 x multiplicand, sign extend multiplicand and then flip all bits except the

sign bit

2 x multiplicand, shift a by 1, flip all the bits except the sign bit

*/

assign a_n = { multiplicand[WIDTH-1], �multiplicand};
assign a = { �multiplicand[WIDTH-1], multiplicand};

assign _2a_n = {multiplicand[WIDTH-1], �multiplicand[WIDTH-2:0], 1’b0};

assign _2a = { �multiplicand[WIDTH-1], multiplicand[WIDTH-2:0], 1’b0};

// simply add all the PPs and CV, to complete the functionality

of the multiplier,

// for optimized implementation, a reduction tree should be used

for compression

assign product = pps[0] + {pps[1],2’b00} + {pps[2],4’b0000} +

correctionVector;

always@*

begin

// compute booth recoded bits

recoderOut[0] = RECODERfn ({multiplier[1:0],1’b0});

recoderOut[1] = RECODERfn (multiplier[3:1]);

recoderOut[2] = RECODERfn (multiplier[5:3]);

// generate pps and correction vector

GENERATE_PPtk (recoderOut[0], a, _2a, a_n, _2a_n, pps[0],

correctionVector[1:0]);

GENERATE_PPtk (recoderOut[1], a, _2a, a_n, _2a_n, pps[1],

correctionVector[3:2]);

GENERATE_PPtk (recoderOut[2], a, _2a, a_n, _2a_n, pps[2],

correctionVector[5:4]);

// pre-computed CV for sign extension elimination

correctionVector[10:6] = 5’b01011;
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//correctionVector[10:6] = 5’b00000;

end

/*

******************************************************

* task: GENERATE_PPtk

* input: multiplicand, multiplicand one’s complement

* recoderOut: output from bit-pair recoder

*output: correctionVector:addbitsfor2’scomplementcorrection

* output: ppi: ith partial product

******************************************************

*/

task GENERATE_PPtk;

input [2:0] recoderOut;

input [WIDTH:0] a;

input [WIDTH:0] _2a;

input [WIDTH:0] a_n;

input [WIDTH:0] _2a_n;

output [WIDTH:0] ppi;

output [1:0] correctionVector;

reg [WIDTH-1:0] zeros;

begin

zeros = 0;

case(recoderOut)

3’b000:

begin

ppi = {1’b1,zeros};

//ppi = {1’b0,zeros};

correctionVector = 2’b00;

end

3’b001:

begin

ppi = a;

correctionVector = 2’b00;

end

3’b010:

begin

ppi = _2a;

correctionVector = 2’b00;

end

3’b110:

begin

ppi = _2a_n;

correctionVector = 2’b10;

//correctionVector = 2’b00;

end

3’b111:

begin

ppi = a_n;

correctionVector = 2’b01;

//correctionVector = 2’b00;

end

default:

begin
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ppi = ’bx;

correctionVector = 2’bx;

end

endcase

end

endtask

/*

******************************************************

* Function: RECODERfn

* input:one bit pair of multiplier with high order bit of previous pair,for

*first pair a zero is appended as previous bit

* output:Booth recoded output in radix-4 format, according to the following

table

* ****************************************************** */

function [2:0] RECODERfn;

input [2:0] recoderIn;

begin

case(recoderIn)

3’b000: RECODERfn = 3’b000;

3’b001: RECODERfn = 3’b001;

3’b010: RECODERfn = 3’b001;

3’b011: RECODERfn = 3’b010;

3’b100: RECODERfn = 3’b110;

3’b101: RECODERfn = 3’b111;

3’b110: RECODERfn = 3’b111;

3’b111: RECODERfn = 3’b000;

default: RECODERfn = 3’bx;

endcase

end

endfunction

endmodule

5.10 Compression Trees for Multi-operand Addition

Although several devices in the FPGA families offer embedded multipliers, compression trees are

still critical in many applications. The compression tree is the first building block in reducing the

requirement on the number of CPAs for multi-operand addition. This is explained herewith the help

of an example.

The example adds five signed operands in Q1.5, Q5.3, Q4.7 and Q6.6 formats. Different bits in

each operand can be represented with dots and be aligned with respect to the place of the decimal in

their respective Q-format. The sign-extension logic is first constructed which is then eliminated by

computing a correctionvector and adding it as the sixth layer in dot representation. The placement of

dots on a grid as shown in Figure 5.50 requires a compression tree to reduce the number of dots in

each column to two. Any reduction technique can be used to demonstrate the effectiveness of the

methodology. Here the Dadda reduction is employed. The two operands are then input to a CPA for

final addition.

5.11 Algorithm Transformations for CSA

The CSA plays a key role in implementing high-throughput DSP applications in hardware. As a first

step, while mapping a dataflow graph to architecture, the graph is observed to exhibit any potential
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use of CSAs and the graph is modified accordingly. For example, consider implementing the

following equations:

d n½ � ¼ a n½ � þ b n½ � þ c½n� ð5:13Þ

y n½ � ¼ d n�1½ �e½n� ð5:14Þ

The equations are converted to the DFG of Figure 5.51(a). This is modified to use a CSA for

compressing a[n] þ b[n] þ c[n] into two numbers, which then are added using a CPA. The

transformed DFG is shown in Figure 5.51(b).

Q1.5

Q5.3

Q4.7

Q6.6

5:4 
layers

4:3 
layers

3:2 
layers

Implied place of decimal

1 1 1 1

1 1 1 111

1

1 1

1 1 1

0 0 0 1 1 1

1

CV 1

1 1 1

1

1

1

Inverted bit

added
as fifth 
layer

HA

FA

Figure 5.50 Example illustrating use of a compression tree in multi-operand addition

+
+
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d[n]
d[n-1]

y[n] +
x

a[n]

b[n]

c[n]

e[n]

d[n] d[n-1]

y[n]CSA

(b) (a) 

Figure 5.51 (a) FSFG with multi-operand addition. (b) Modified FSFG reducing three operands to two
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This technique of extracting multi-operand addition can be extended to dataflow graphs

where the graphs are observed to exhibit any potential use of CSA and compression trees.

The graphs are then first transformed to optimally use the compression trees and then are mapped

in HW. Such transformations are proven to significantly improve HW design of signal processing

applications [13].

Multiple addition operations are the easiest of all the transformations. The compression tree can

also be placed in the following add–compare–select operation:

sum1 ¼ op1þ op2;
sum2 ¼ op3þ op4;
if sim1 > sum2ð Þ

sel ¼ 0;
else

sel ¼ 1;

To transform the logic for optimal use of a compression tree, the algorithm is modified as:

sign op1þ op2� op3þ op4ð Þð Þ ¼ sign op1þ op2�op3�op4ð Þ
sign op1þ op2þ op30 þ 1þ op40 þ 1ð Þ ¼ sign op1þ op2þ op30 þ op40 þ 2ð Þ

This compression tree transformation on the equivalent DFG is shown in Figure 5.52. Similarly

the following add and multiply operation is represented with the equivalent DFG:

op1� op2þ op3ð Þ

The DFG can be transformed to effectively use a compression tree. A direct implementation

requires one CPA to perform op2 þ op3, and the result of this operation is thenmultiplied by op1. A

multiplier architecture comprises a compression tree and aCPA.Thus to implement the computation

two CPAs are required. A simple transformation uses the distributive property of the multiplication

operator:

op1� op2þ op1� op3 ð5:15Þ

+ +

<

Op1 Op2 Op3 Op4

S

Compression Tree
(CT)

Sign

Op1 Op2 Op3 Op4 2'b10

2

S

Figure 5.52 Compression tree replacement for an add compare and select operation
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This representation of the expression now requires one compression tree that is then followed by

one CPA to compute the final value. The associated DFG and the transformation are shown in

Figure 5.53.

Extending the technique of generating partial sums and carries can optimize hardware imple-

mentation of a cascade of multiplications as well:

prod ¼ op1� op2� op3� op4

The transformation first generates PPs for op1� op2 and reduces them to two PPs, s1 and c1:

s1; c1ð Þ ¼ op1� op2

These two PPs independently multiply with op3, which generates two sets of PPs that are again

reduced to two PPs, s2 and c2, using a compression tree:

s2; c2ð Þ ¼ s1� op3þ c1� op3

These two PPs further multiply with op4 to generate two sets of PPs that are again compressed to

compute the final two PPs, s3 and c3. These two PPs are then added using a CPA to compute the final

product:

s3; c3ð Þ ¼ s2� op4þ c2� op4

prod ¼ s3þ c3

The equivalent transformation on a DFG is illustrated in Figure 5.54.

Following these examples, several transformations using basic mathematical properties can be

used to accumulate several operators for effective use of compression trees for optimized hardware

mapping.

+

x

Op2 Op3

y

Compression Tree

CPA

Op1 Op2 Op1Op1

PP 
Generation

PP 
Generation

Op3

Figure 5.53 Transforming the add and multiply operation to use one CPA and a compression tree
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Exercises

Exercise 5.1

An eighth-order IIR filter is designed using the fdatool of MATLAB�. The four second-order

parallel sections of the filter are given below. The coefficients of the first-order numerators are:

1 0.6902

1 �0.1325
1 1.7434

1 0.0852

The coefficients of the corresponding second-order denominator of the four second-order filters are:

1 �1.0375 0.7062

1 �0.6083 0.9605

1 �1.3740 0.5431

1 �0.7400 0.8610

Convert the coefficients in appropriate 16-bit fixed-point format. Code the design using FDA in

RTL Verilog. Use mathematical operators for multiplication and addition in the code. Test your

design for functional correctness. Synthesize your design of two families of FPGAs that support

x

x

Op1 Op2

CT

PPG

Op1 Op2

Prod

PP Generation 
(PPG)

CPA

Op3

x

Op4

Op3

PPG

Op3

CT

PPG PPG

Op4 Op4

S1

S2

C1

C2

CT

C3S3

Figure 5.54 Transformation to use compression trees and a single CPA to implement a cascade of

multiplication operations
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18� 18-bit multipliers and DSP48 blocks. Select the option in the synthesis tool to use these blocks.

Compare your results for better timing and area.

Exercise 5.2

Design an 8-coefficient FIR filter and use a pipelined structure that optimally utilizes DSP48 blocks

of Xilinx families of FPGAs. Write RTLVerilog code of the design. Synthesize the design with and

without pipelining options to show the improvements.

Exercise 5.3

Perform appropriate mathematical transformation to effectively use compression trees to map the

following equation:

f ¼ aþ 2bð Þ cþ dð Þ�e:

Assume a, b, c, d and e are signed numbers inQ3.2, Q3.2, Q1.3, Q2.4 andQ1.3 formats, respectively.

Use aWallace reduction scheme for compression and draw the design logic in dot notation. Use the

following numbers to verify the design:

a ¼ 50b01110

b ¼ 50b11101

c ¼ 40b0101

d ¼ 60b011100

e ¼ 40b0011

Exercise 5.4

Design an optimal hardware to implement the following equation:

d ¼ a� b�c
where a, b and c are in Q4.4, Q3.5 and Q2.6 format unsigned complex numbers, respectively. Verify

your design for a¼ 11.5 þ j4.23, b¼ 2.876 þ j1.23 and c¼ 1.22 þ j3.32. First convert these

numbers in specified Q format and then design the logic, showing compression trees as blocks in the

design.

Exercise 5.5

Design a 32-bit hybrid adder that combines different adder blocks. Use 4-bit RCA, 8-bit CSA, 8-bit

conditional sumadder, 8-bit Brent–Kung and 4-bit of carry look-ahead adders in cascade.WriteRTL

Verilog code of the design and synthesize your design on any Spartan�-3 family of FPGAs. Now

design different 32-bit adders exclusively using the above techniques. Synthesize all the adders on

the same FPGA and compare your results for area and timing.
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Exercise 5.6

Add the following two numbers using conditional sum addition techniques:

1001_1101

1101_1011

Exercise 5.7

Design and code in RTLVerilog a 16-bit conditional sum adder with two stages of pipeline (add one

register to break the combinational cloud). Assume C_in is not known prior to addition.

Exercise 5.8

Multiply a 5-bit signed multiplicand a with a 5-bit unsigned multiplier b by applying a sign-

extension elimination technique, compute the correction vector for multiplication. Use the

computed correction vector to multiply the following:

a ¼ 11011

b ¼ 10111

Exercise 5.9

Reduce the bit array shown in Figure 5.55 using a Dadda reduction scheme. Specify the number of

FAs and HAs required to implement the scheme.

Exercise 5.10

Design and draw (using dot notation) an optimal logic to add twenty 1-bit numbers. Use a Dadda

reduction tree for the compression.

Figure 5.55 Bit array for Dadda reduction
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Exercise 5.11

Design a single-stage pipelined 8� 8 complexmultiplier using modified Booth recoding for partial

product generation and a (3,3:4) GPC reduction scheme for partial product reduction. Useminimum

CPA in the design. Write RTL Verilog of the design and synthesize the design for a Spartan�-3

family of FPGAs. Compare your results with 3:2 and 4:2 compressor-based designs.

Exercise 5.12

Compute the correction vector for sign extension elimination for the following mathematical

expression:

w ¼ xþ yzþ y

where x, y and z are Q1.3, Q2.3 and Q3.3 signed numbers, respectively. Use the correction vector to

evaluate the expression for x¼ 1011, y¼ 11011 and z¼ 101111. Give equivalent floating-point

values for x, y, z and w.

Exercise 5.13

Compute the correction vector for sign extension elimination for computing the following equation:

out ¼ in1þ in2þ in3�in4þ in5�in6
where in1, in2, in3, in4, in5 and in6 are in Q3.5, Q7.8, Q1.6, Q8.2, Q2.4 and Q3.9 formats,

respectively.

Exercise 5.14

Design and draw (using dot notation) an optimal logic to implement the following code:

if (a+b+c+d+e+f > 4)

x=4;

elseif (2a+2b+c+d+e+2f > 0)

x=6;

else

x=0;

a, b, c, d, e and f are 6-bit signed numbers, x is a 4-bit register. Use a Wallace compression tree and

minimum number of carry propagate adders (CPAs) to implement the design.

Exercise 5.15

Reduce the following equation using Wallace reduction tree, and count how many full adders and

half adders are required to compute the expression in two layers:

z ¼ x0þ x1þx2þ x3þx4þ x5
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with

x0 Q3.5

x1 Q1.7

x2 Q4.8

x3 Q2.7

x4 Q3.8

x5 Q2.7

Use dot notation to represent the bits of each number, and assume all numbers are signed. Also

compute the correction vector to eliminate sign-extension logic.

Exercise 5.16

Multiply the following two signed numbers using a modified Booth recoding technique:

a ¼ 10011101

b ¼ 10110011
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6

Multiplier-less Multiplication
by Constants

6.1 Introduction

In many digital system processing (DSP) and communication algorithms a large proportion of

multiplications are by constant numbers. For example, the finite impulse response (FIR) and infinite

impulse response (IIR) filters are realized by difference equations with constant coefficients. In

image compression, the discrete cosine transform (DCT) and inverse discrete cosine transform

(IDCT) are computed using data that ismultiplied by cosine values that have been pre-computed and

implemented as multiplication by constants. The same is the case for fast Fourier transform (FFT)

and inverse fast Fourier transform (IFFT) computation. For fully dedicated architecture (FDA),

wheremultiplication by a constant is mapped on a dedicatedmultiplier, the complexity of a general-

purpose multiplier is not required.

The binary representation of a constant clearly shows the non-zero bits that require the generation

of respectivepartial products (PPs)whereas the bits that are zero in the representation can be ignored

for the PP generation operation. Representing the constant in canonic sign digit (CSD) form can

further reduce the number of partial products as the CSD representation of a number has minimum

number of non-zero bits. All the constant multipliers in an algorithm are in double-precision

floating-point format. These numbers are first converted to appropriate fixed-point format. In the

case of hardware mapping of the algorithm as FDA, these numbers in fixed-point format are then

converted into CSD representation.

The chapter gives the example of an FIR filter. This filter is one of the most commonly used

algorithmic building blocks in DSP and digital communication applications. An FIR filter is

implemented by a convolution equation. To compute an output sample, the equation takes the dot

product of a tap delay line of the inputs with the array of filter coefficients. The coefficients are

predesigned and are double-precision floating-point numbers. These numbers are first converted to

fixed-point format and then to CSD representation by applying the string property on their binary

representation. A simple realization generates the PPs for all the multiplication operations in the dot

product and reduces them using any reduction tree discussed in Chapter 5. The reduction reduces

the PPs to two layers of sum and carry, which are then added using any carry propagate adder (CPA).

The combinational cloud of the reduction logic can be pipelined to reduce the critical path delay of

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
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the design. Retiming is applied on an FIR filter and the transformed filter becomes a transposed

direct form (TDF) FIR filter.

The chapter then describes techniques for complexity reduction. This further reduces the

complexity of design that involves multiplication by constants. These techniques exploit

the multiple appearances of common sub-expressions in the CSD representation of constants. The

techniques are also applicable for designs where a variable is multiplied by an array of constants, as

in a TDF implementation of an FIR filter.

The chapter discusses mapping a signal processing algorithm represented as a dataflow graph

(DFG) on optimal hardware. The optimization techniques extensively use compression trees and

avoid the use of CPAs, because from the area and timing perspectives a fast CPA is one of the most

expensive building blocks in FDA implementation. The DFG can be transformed to avoid or

reduce the use of CPAs. The technique is applied on IIR systems as well. These systems are

recursive in nature. All the multipliers are implemented as compression trees that reduce all PPs to

two layers of carry and sum. These two layers are not added inside the feedback loop, rather they

are fed back as a partial solution to the next block. This helps in improving the timing of the

implementation.

6.2 Canonic Signed Digit Representation

CSD is a radix-2 signed-digit coding. It codes a constant using signed digits 1, 0 and�1 [1, 2]. An

N-bit constant C is represented as:

C ¼
XN�1

i¼0

si2
i for si 2 f�1; 0; 1g ð6:1Þ

The expression implies that the constant is coded using signed digits 1, 0 or�1,where each digit si

contributes aweight of 2i to the constant value. TheCSD representation has the following properties:

. No two consecutive bits in CSD representation of a number are non-zero.

. The CSD representation of a number uses a minimum number of non-zero digits.

. The CSD representation of a number is unique.

CSD representation of a number can be recursively computed using the string property. The number

is observed to contain any string of 1s while moving from the least significant bit (LSB) to the most

significant (MSB). The LSB in a string of 1s is changed to �1 that represents�1, and all the other 1s in

the string are replaced with zeros, and the 0 that marks the end of the string is changed to 1. After

replacing a string by its equivalent CSD digits, the number is observed againmoving from the coded

digit to the MSB to contain any further string of 1s. The newly found string is again replaced by its

equivalent CSD representation. The process is repeated until no string of 1s is found in the number.

Example: Converting 160b0011_1110_1111_0111 to CSD representation involves the following

recursion. Find a string while moving from LSB to MSB and replace it with its equivalent CSD

representation:

0011111011110111

001111101111100�1

The newly formed number is observed again for any more string of 1s to be replaced by its

equivalent CSD representation:
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001111101111100�1
001111110000�100�1

The process is repeated until all strings of 1s are replaced by their equivalent CSD representations:

001111110000�100�1
0100000�10000�100�1

All these steps can be done simultaneously by observing isolated strings or a set of connected

strings with one 0 in between. All the isolated strings with more than one 0 in between are replaced

by their equivalent CSD representations, and for each connected string all the 0s connecting

individual strings are changed to �1, and all the 1s in the strings are all changed to 0. The equivalent
CSD representation computed in one step is:

0011111011110111

0100000�10000�100�1

6.3 Minimum Signed Digit Representation

MSD drops the condition of the CSD that does not permit two consecutive non-zero digits in the

representation. MSD adds flexibility in representing numbers and is very useful in HW implemen-

tation of signal processing algorithms dealing with multiplication with constants. In CSD repre-

sentation a number is unique, but a number can have more than one MSD representation with

minimumnumber of non-zero digits. This representation is used in later in the chapter for optimizing

the HW design of algorithms that require multiplication with constant numbers.

Example: The number 51 (¼70b0110011) has four non-zero digits, and the number is CSD

representation, 10�1010�1, also has four non-zero digits. The number can be further represented in

the following MSD format with four non-zero digits:

011010�1
10�10011

6.4 Multiplication by a Constant in a Signal Processing Algorithm

As stated earlier, in many DSP and digital communication algorithms a large proportion of

multiplications are by constants. For FDA the complexity of a general-purpose multiplier is

not required as PPs for only non-zero bits of the multiplier are generated. For example, when

implementing the difference equation given by:

y½n� ¼ 0:916y½n�1� þx½n� ð6:2Þ

y[n� 1] is multiplied by 0.916. In Q1.15 format the number is:

16’b0111 0101 0011 1111

As 11 bits in the constant are non-zero, PPs for these bits should be generated, whereas a general-

purpose multiplier requires the generation of 16 PPs. Representing the constant in CSD form further

reduces the number of PPs.
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Here the constant in the equation is transformed toCSD representation by recursively applying the

string property on the binary representation of the number:

16’b 0111 0101 0011 1111

¼
0111 0101 0100 000�1
¼
100�1 0101 0100 000�1
¼
20�2�3 þ 2�5 þ 2�7 þ 2�9�2�15

The CSD representation of the constant thus reduces the number of non-zero digits from 11 to 6.

For multiplication of 0.916 with y[n� 1] in FDA implementation thus requires generating only

6 PPs. These PPs are generated by appropriately shifting y[n� 1] by weight of the bits in Q1.15

format representation of the constant as CSD digits. The PPs are:

y½n�1��y½n�1�2�3 þ y½n�1�2�5 þ y½n�1�2�7 þ y½n�1�2�9�y½n�1�2�15

The PPs are generated by hardwired right shifting of y[n� 1] by 0,3,5,7,9 and 15 and adding or

subtracting these PPs according to the sign of CSD digits at these locations. The architecture can be

further optimized by incorporating x[n] as the seventh PP and adding CV for sign extension

elimination logic as the eighth PP in the compression tree. All these inputs to the compression tree

are mathematically shown here:

y½n� ¼ y½n�1��y½n�1�2�3 þ y½n�1�2�5 þ y½n�1�2�7 þ y½n�1�2�9�y½n�1�2�15 þx½n� þCV

The CV is calculated by adding the correction for multiplication by 1 and �1 in the CSD

representation of the number. The CV calculation follows the method given in Chapter 5. For

multiplication by 1 the CVis computed by flipping the sign bit of the PP and adding 1 at the location

of the sign bit and then extending the number by all 1s. Whereas for multiplication by �1 the PP is

generated by taking the one’s complement of the number. This sign extension and two’s complement

in this case require flipping of all the bits of the PP except the sign bit, adding 1 at the locations of the

sign bit and the LSB, and then extending the number by all 1s. Adding contribution of all the 1s from

all PPs gives us the CV:

1110 1010 1011 1111 0010 0000 0000 001

Figure 6.1 shows the CV calculation. The filled dots show the original bits and empty dots show

flipped bits of the PPs. Now these eight PPs can be reduced to two layers of partial sums and carries

using any compression method described in Chapter 5.

Figure 6.2 shows the use of Wallace tree in reducing the PPs to two. Finally these two layers are

added using any fast CPA. The compression is shown by all bits as filled dots.

6.5 Optimized DFG Transformation

Several architectural optimization techniques like carry save adder (CSA), compression trees and

CSD multipliers can be used to optimize DFG for FDA mapping. From the area and timing
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perspectives, a CPA is one of the most expensive building blocks in HW implementation. In FDA

implementation, simple transformations are applied to minimize the use of CPAs.

Figure 6.3(a) shows the DFG mapping of (6.1). If implemented as it is, the critical path of the

design consists of one multiplier and one adder. Section 6.4 showed the design for FDA by using

a compression tree that reduces all the PPs consisting of terms for CSDmultiplication, x[n] and CV

for sign extension elimination. The design then uses a CPA and reduces the two layers from the

111

11 11
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1 11

1111 111

1111 11111

1111111 11111111

1

1

1000000000001001111110101010111

Figure 6.1 CV calculation

1111101010101110 11

1111101010101110 11

1

Figure 6.2 Use of the Wallace tree for PP reduction to two layers
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reduction tree to compute y[n]. In instanceswhere further improvement in the timing is required, this

design needs modification.

It is important to note that there is no trivialway of adding pipeline registers in a feedback loop as it

changes theorderof thedifferenceequation.Therearecomplex transformations,whichcanbeused to

addpipelineregisters inthedesign[3–5].Thetimingcanalsobeimprovedwithoutaddinganypipeline

registers.This is achievedby taking theCPAoutof the feedback loop, and feeding in the loopys[n] and

yc[n] that represent the partial sumandpartial carry of y[n].Once theCPA is outside the loop, it can be

pipelined to any degree without affecting the order of the difference equation it implements.

The original DFG is transformed into an optimized DFG as shown in Figure 6.3(b). As the

partially computed results are fed back, this requires duplication of multiplication and storage logic

and modification in (6.1) as:

fys½n�; yc½n�g ¼ 0:916ys½n�1� þ 0:916yc½n�1� þx½n� ð6:3Þ

Although thismodification increases the area of the design, it improves the timing by reducing the

critical path to a compression tree as the CPA is moved outside the feedback loop.

Example: Figure 6.4(a) shows a Direct Form (DF)-II implementation of a second-order IIR

filter [6]. The difference equation of the filter is:

y½n� ¼ a1y½n�1� þ a2y½n�2� þ b0x½n� þ b1x½n�1� þ b2x½n�2� ð6:4Þ

For HW implementation of the design, all the coefficients are converted to fixed-point and then

translated to CSD representation. Without loss of generality, we may consider four non-zero bits in

CSD representation of each coefficient. For this, each multiplier is implemented using four PPs.

Moving the CPAs to outside the filter structure results in elimination of all CPAs from the filter. As

the sums and carries are not added to get the sum, the results flow in partial computed form in the

datapath. These partial results double the PP generation logic and registers in the design, as shown in

Figures6.4(b) and (c).EachpairofCSDmultipliersnowgeneratesPPs for thepartial sum, andaswell

as partial carries These PPs are compressed in two different settings of the compression trees. These

twosetofPPsandtheircompressionusingaWallacereductiontreeareshowninFigures6.4(b)and(c).

Another design option is to place CPAs in the feedforward paths and pipelining them if so desired.

This option is shown in Figure 6.4(d). For each pair of multipliers a CV is calculated, which takes

+

x
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rst_nclk

x[n]
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+
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CPA

partial product generation 

partial product generation 

(b) (a) 

Figure 6.3 First-order IIR filter. (a) DFG with one adder and one multiplier in the critical path.

(b) Transformed DFG with Wallace compression tree and CPA outside the feedback loop
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care of sign-extension elimination and two’s complement logic. A global CV (GCV) is computed by

adding all the CVs. TheGCV can be added in any one of the compression trees. The figure shows the

GCV added in the compression tree that computes final sum and carry, ys[n] and yc[n]. A CPA is

placed outside the loop. The adder adds the partial results to generate the final output. Once the CPA

is outside the loops, it can be pipelined to any degree without affecting the order of the difference

equation it implements.

If there are more stages of algorithm in the application, to get better timing performance the

designer may chose to pass the partial results without adding them to the next stages of the design.

6.6 Fully Dedicated Architecture for Direct-form FIR Filter

6.6.1 Introduction

The FIR filter is very common in signal processing applications. For example it is used in the digital

front end (DFE) of a communication receiver. It is also used in noise cancellation and unwanted

frequency removal from received signals in a noisy environment. In many applications, the signal

may be sampled at a very high rate and the samples are processed by an FIR filter. The application

requires an FDA implementation of a filter executing at the sampling clock.

The FIR filter is implemented using the convolution summation given by:

y½n� ¼
XL�1

k¼0

h½k�x½n�k� ð6:4Þ

where the h[k] represent coefficients of the FIRfilter, and x[n] represents the current input sample and

x[n� k] is the kth previous sample. For simplicity this chapter sometimeswrites indices as subscripts:

yn ¼
XL�1

k¼0

hkxn�k ð6:5Þ

Ablock diagram of an FIR filter for L¼ 5 is shown in Figure 6.5(a). This structure of the FIR filter

is known as direct-form (DF) [6]. There are several other ways of implementing FIR filters, as

discussed later.

InaDFimplementation, tocomputeoutput sampleyn, thecurrent input samplexn ismultipliedwith

h0, and for each k each previous xn � k sample is multiplied by its corresponding coefficient hk and

finally all the products are added to get the final output. An FDA implementation requires all these

multiplicationsandadditions toexecutesimultaneously, requiringLmultipliersandL� 1adders.The

multiplication with constant coefficients can exploit the simplicity of the CSD multiplier [7].

Eachof thesemultipliers, inmany design instances, is further simplifiedby restricting the number of

non-zeroCSDdigits in each coefficient to four. One non-zeroCSDdigit in a coefficient approximately

contributes 20 dBof stop-band attenuation [8], so the fourmost significant non-zeroCSDdigits in each

coefficient attains around 80dB of stop-band attenuation. The stop band attenuation is a measure of

effectiveness of a filter and it represents how successfully the filter can stop unwanted signals.

Figure 6.5(b) shows each CSD multiplier with four non-zero digits generating four PPs. One

approach is to compute the products by accumulating four PPs for each multiplication and then sum

these products to get the final answer. A better approach is to reduce all the PPs generated for all

multiplications and the GCV to two layers using a Wallace or Dadda reduction scheme. The two

layers then can be summed using any fast CPA. The GCV is computed by adding CVs for each

multiplication. Figure 6.5(b) shows the optimized architecture for a 5-coefficient FIR filter. More

optimized solutions for FIR architectures are proposed in the literature. These solutions work on

complexity reduction and are discussed in a later section.
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6.6.2 Example: Five-coefficient Filter

Consider the design of a 5-coefficient FIR filter with cutoff frequency p/4. The filter is designed
using the fir1() function in MATLAB�. Convert h[n] to Q1.15 format. Compute the CSD

representation of each fixed-point coefficient. Design an optimal DF FDA architecture by keeping a

maximumof fourmost significant non-zero digits in theCSD representation of the filter coefficients.

Generate all PPs and also incorporate CV in the reduction tree. Use theWallace reduction technique

to reduce the PPs to two layers for addition using any fast CPA.

+

x x x xx

x[n]

h0 h1 h2 h3 h4

y[n]

x[n-4]x[n-3]x[n-2]x[n-1]

(a) 
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h0 h1 h2 h3 h4

xn xn-1
xn-2 xn-3 xn-4

Compression Tree (Wallace or Dada)

CPAGCV

yn

(b) 

Figure 6.5 Five-coefficient FIR filter. (a) DF structure. (b) All multiplications are implemented as one

compression tree and a single CPA
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Solution: The five coefficients of the filter in double-precision floating-point using the

MATLAB� fir1 function are:

h[n]¼ [0.024553834015017

0.234389464237986

0.482113403493995

0.234389464237986

0.024553834015017]

Converting h[n] into Q1.15 format gives:

h½n� ¼ roundðh½n�*215Þ ¼ ½805 7680 15798 7680 805�

Binary representation of the coefficients is:

160b0000 0011 0010 0101

160b0001 1110 0000 0000

160b001 1110 1101 10110

160b0001 1110 0000 0000

160b0000 0011 0010 0101

Converting the coefficients into CSD representation gives:

0000010�10 0100 101

001000�100 0000 000

010000�10 0�100 �10�1
001000�100 0000 000

0000010�10 0100 101

Keeping a maximum of four non-zero CSDs in each coefficient results in:

0000010�1001001
001000�10000000000
010000�100�100�1
001000�1000000000
0000010�1001001

The sixteen PPs are as follows:

y½n� ¼
ðx½n�2�5�x½n�2�7 þx½n�2�10 þx½n�2�13Þ
þ ðx½n�1�2�2�x½n�2�6Þ
þ ðx½n�2�2�1�x½n�2�2�6�x½n�2�2�9�x½n�2�2�12Þ
þ ðx½n�3�2�2�x½n�3�2�6Þ
þ ðx½n�4�2�5�x½n�4�2�7 þx½n�4�2�10 þ x½n�4�2�13Þ

For sing-extension elimination, five CVs for each multiplier are computed and added to form the

GCV. The computed CV0 for the first coefficient is shown in Figure 6.6, and so:

CV0 ¼ 320b1111 1010 1101 1100 0000 0010 0000 0000
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The computed CV1 for the second coefficient is shown in Figure 6.7, and so:

CV1 ¼ 320b1101 1110 0000 0000 0000 0100 0000 0000

Following the same procedure, the CV2 computes to:

CV2 ¼ 320b1011 1101 1011 1000 0000 0100 1001 0000

Because of symmetry of the coefficients,CV3 andCV4 are the same asCV1 andCV0, respectively.

All these correction vectors are added to get the GCV:

GCV ¼ 320b01101111011100000001000010010000

This correction vector is added for sign-extension elimination.

The implementation of three designs in RTL Verilog is given in this section. The

module FIRfilter uses multipliers and adders to implement the FIR filter, whereas module

FIRfilterCSD converts the filter coefficients in CSD format while considering amaximumof four

non-zero CSD digits for each coefficient. There are a total of 16 PPs that are generated and added to

show the equivalence of the design with the original format. The code simply adds the PP whereas,

in actual designs, the PPs should be compressed usingWallace or Dadda reduction schemes. Finally,

the module FIRfilterCV implements sign-extension elimination logic by computing a GCV.

The vector is added in place of all the sign bits and 1s that are there to cater for two’s complement in

the PPs. The Verilog code of the three modules with stimulus is listed here.

// Module uses multipliers to implement an FIR filter

module FIRfilter(

input signed [15:0] x,

input clk,

output reg signed [31:0] yn);

reg signed [15:0] xn [0:4];

wire signed [31:0] yn_v;

// Coefficients of the filter

wire signed [15:0] h0 = 16’h0325;

wire signed [15:0] h1 = 16’h1e00;

wire signed [15:0] h2 = 16’h3DB6;

wire signed [15:0] h3 = 16’h1e00;

wire signed [15:0] h4 = 16’h0325;

// Implementing filters using multiplication and addition operators

assign yn_v = (h0*xn[0] + h1*xn[1] + h2*xn[2] + h3*xn[3] + h4*xn[4]);

always @(posedge clk)

begin

// Tap delay line of the filter

xn[0] <= x;

xn[1] <= xn[0];
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xn[2] <= xn[1];

xn[3] <= xn[2];

xn[4]<= xn[3];

// Registering the output

yn <= yn_v;

end

endmodule

// Module uses CSD coefficients for implementing the FIR filter

module FIRfilterCSD (

input signed [15:0] x,

input clk,

output reg signed [31:0] yncsd);

reg signed [31:0] yncsd_v;

reg signed [31:0] xn [0:4];

reg signed [31:0] pp[0:15];

always @(posedge clk)

begin

// Tap delay line of FIR filter

xn[0] <= {x, 16’h0};

xn[1] <= xn[0];

xn[2] <= xn[1];

xn[3] <= xn[2];

xn[4]<= xn[3];

yncsd <= yncsd_v; // registering the output

end

always @ (*)

begin

// Generating PPs using CSD representation of coefficients

// PP using 4 significant digits in CSD value of coefficient h0

pp[0] = xn[0]>>>5;

pp[1] = -xn[0]>>>7;

pp[2] = xn[0]>>>10;

pp[3] = xn[0]>>>13;

// PP using CSD value of coefficient h1

pp[4] = xn[1]>>>2;

pp[5] = - xn[1]>>>6;

// PP using 4 significant digits in CSD value of coefficient h2

pp[6] = xn[2]>>>1;

pp[7] = -xn[2]>>>6;

pp[8] = -xn[2]>>>9;

pp[9] = -xn[2]>>>12;

// PP using CSD value of coefficient h3

pp[10] = xn[3]>>>2;

pp[11] = -xn[3]>>>6;

// PP using 4 significant digits in CSD value of coefficient h4

pp[12] = xn[4]>>>5;

pp[13] = -xn[4]>>>7;

pp[14] = xn[4]>>>10;

pp[15] = xn[4]>>> 13;

// Adding all the PPs, the design to be implemented in a

16:2 compressor
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yncsd_v = pp[0]+pp[1]+pp[2]+pp[3]+pp[4]+pp[5]+

pp[6]+pp[7]+pp[8]+pp[9]+pp[10]+pp[11]+

pp[12]+pp[13]+pp[14]+pp[15];

end

endmodule

// Module uses a global correction vector by eliminating sign extension logic

module FIRfilterCV (

input signed [15:0] x,

input clk,

output reg signed [31:0] yn

);

reg signed [31:0] yn_v;

reg signed [15:0] xn_0, xn_1, xn_2, xn_3, xn_4;

reg signed [31:0] pp[0:15];

// The GCV is computed for sign extension elimination

reg signed [31:0] gcv = 32’b0110_1111_0111_0000_0001_0000_1001_0000;

always @(posedge clk)

begin

// Tap delay line of FIR filter

xn_0 <= x;

xn_1 <= xn_0;

xn_2 <= xn_1;

xn_3 <= xn_2;

xn_4 <= xn_3;

yn <= yn_v; // registering the output

end

always @ (*)

begin

// Generating PPs for 5 coefficients

// PPs for coefficient h0 with sign extension elimination

pp[0]= {5’b0, �xn_0[15], xn_0[14:0], 11’b0};

pp[1] = {7’b0, xn_0[15], �xn_0[14:0], 9’b0};

pp[2] = {10’b0, �xn_0[15], xn_0[14:0],6’b0};

pp[3] = {13’b0, �xn_0[15], xn_0[14:0],3’b0};

// PPs for coefficient h1 with sign extension elimination

pp[4] = {2’b0, �xn_1[15], xn_1[14:0], 14’b0};

pp[5] = {6’b0, xn_1[15], �xn_1[14:0], 10’b0};

// PPs for coefficient h2 with sign extension elimination

pp[6] = {1’b0, �xn_2[15], xn_2[14:0], 15’b0};

pp[7] = {6’b0, xn_2[15], �xn_2[14:0], 10’b0};

pp[8] = {9’b0, xn_2[15], �xn_2[14:0], 7’b0};

pp[9] = {12’b0, xn_2[15], �xn_2[14:0], 4’b0};

// PPs for coefficient h3 with sign extension elimination

pp[10] = {2’b0, �xn_3[15], xn_3[14:0], 14’b0};

pp[11] = {6’b0, xn_3[15], �xn_3[14:0], 10’b0};

// PPs for coefficient h4 with sign extension elimination

pp[12]= {5’b0, �xn_4[15], xn_4[14:0], 11’b0};

pp[13] = {7’b0, xn_4[15], �xn_4[14:0], 9’b0};

pp[14] = {10’b0, �xn_4[15], xn_4[14:0],6’b0};

pp[15] = {13’b0, �xn_4[15], xn_4[14:0],3’b0};
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// Adding all the PPs with GCV

// The design to be implemented as Wallace or Dadda

reduction scheme

yn_v = pp[0]+pp[1]+pp[2]+pp[3]+

pp[4]+pp[5]+

pp[6]+pp[7]+pp[8]+pp[9]+

pp[10]+pp[11]+

pp[12]+pp[13]+pp[14]+pp[15]+gcv;

end

endmodule

module stimulusFIRfilter;

reg signed [15:0] X;

reg CLK;

wire signed [31:0] YN, YNCV, YNCSD;

integer i;

// Instantiating all the three modules for equivalency checking

FIRfilterCV FIR_CV(X, CLK, YNCV);

FIRfilterCSD FIR_CSD(X, CLK, YNCSD);

FIRfilter FIR(X, CLK, YN);

initial

begin

CLK = 0;

X = 1;

#1000 $finish;

end

// Generating clock signal

always

#5 CLK = �CLK;

// Generating a number of input samples

initial

begin

for (i=0; i<256; i=i+1)

#10 X = X+113;

end

initial

$monitor ($time, " X=%h, YN=%h, YNCSD=%h, YNCV=%h\n",

X, YN<<1, YNCSD, YNCV);

endmodule

6.6.3 Transposed Direct-form FIR Filter

The direct-form FIR filter structure of Figure 5.5 results in a large combinational cloud of reduction

tree and CPA. The cloud can be pipelined to reduce the critical path delay of the design.

Figure 6.8(a) shows a 5-coefficient FIR filter, pipelined to reduce the critical path delay of the

design. Now the critical path consists of a multiplier and an adder. Pipelining causes latency and

a large area overhead in implementing registers. This pipeline FIR filter can be best mapped on the

Vertix�-4 and Vertix�-5 families of FPGAs with embedded DSP48 blocks. The effectiveness of

this mapping is demonstrated in Chapter 5.

In many design instances, using general-purpose multipliers of DSP48 blocks may not be

appropriate as they are a finite resource and should be used for parts of the algorithm that require
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Figure6.8 (a) Pipeline direct-formFIRfilter best suited for implementation on FPGAswithDSP48-like

building blocks. (b) TDF structure for optimal mapping of multipliers as CSD shift and add operation

multiplication by non-constant values. For many applications requiringmultiplication by constants,

CSD multiplication usually is the most optimal option.

Retiming is an effective technique to systematically move algorithmic delays in a design to reduce

the critical path of the logic circuit. In Chapter 7, retiming is applied to transform the filter given in

Figure 6.8(a) to get an equivalent filter shown in Figure 6.8(b). This new filter is the transposed direct

form [6]. It is interesting toobserve that in this form,without addingpipelining registers, the algorithm

delays are systematicallymoved using retiming transformation from the upper edge of theDFG to the

lower edge. This has resulted in reducing the critical path of an L-coefficient FIR filter from one

multiplier and L� 1 adders of direct form to one multiplier and an adder as shown in Figure 6.8(b).

In FDAdesigns of a TDFFIR filter, each constant in themultiplier is converted to CSD representation

and then appropriate PPs are generated for non-zero digits in CSD representation of the coefficients.

These PPs are reduced by carry save reduction to two layers. The outputs of these two layers are

respectively stored in two registers. Although this doubles the number of registers in the design, it

removes CPAs which otherwise are required to add the final two layers into one for each coefficient

multiplication. Figure 6.9 shows the TDF FIR filter implemented as CSDmultiplication and carry save

addition.Eachmultiplier represents thegenerationofPPs fornon-zerodigits inCSDrepresentationof the

coefficients and their reduction to two layers using the carry save reduction scheme.

The critical path can be further reduced by adding pipeline layers in the design, as shown

in Figure 6.10(a). Inserting appropriate levels of pipelining can reduce the critical path to just

270 Digital Design of Signal Processing Systems



+ + ++++

x(n)

y(n)0
0

+ +

+

+

+

Layer for adding 
pipeline registers

3:2
Compression 

Tree

hN-1 hN-2 h0

(a) 

x(n)

y(n)0
0

+ + + +

+

+ +

+ + +

+

hN-1 hN-2 h0

(b) 
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Figure 6.9 Transposed direct-form FIR filter with CSD multiplication and carry save addition

Multiplier-less Multiplication by Constants 271



a fuller-adder delay. This critical path is independent of filter length. A deeply pipelined filter

with one FA in the critical path is shown in Figure 6.10(b). A pipeline register is added after

every carry save adder. To maintain the data coherency in the pipeline architecture, registers are

added in all parallel paths of the architecture. Although a designer can easily place these registers

by ensuring that the coherent data is fed to each computational node in the design, a cut-set

transformation provides convenience in finding the location of all pipeline registers. This is covered

in Chapter 7.

6.6.4 Example: TDF Architecture

Consider the design of a TDF architecture for the filter in Section 6.6.2.

Solution:Amaximum of four non-zero digits in CSD representation of each coefficient are given

here:

0000010�1001001
001000�10000000000
010000�100�100�1
001000�1000000000
0000010�1001001

For TDF we need to produce the following PPs for each multiplier Mk:

M4 ¼ x½n�2�5�x½n�2�7 þx½n�2�10 þx½n�2�13

M3 ¼ x½n�2�2�x½n�2�6

M2 ¼ x½n�2�1�x½n�2�6�x½n�2�9�x½n�2�12

M1 ¼ x½n�2�2�x½n�2�6

M0 ¼ x½n�2�5�x½n�2�7 þx½n�2�10 þx½n�2�13

Each PP is generating by hardwired shifting of x[n] by the respective non-zero CSD digit. These

PPs for each coefficient multiplication are reduced to two layers using a carry save adder. The result

from this reduction {ck, sk} is saved in registers {ckd, skd}:

fc4; s4g ¼ x½n�2�5�x½n�2�7 þx½n�2�10 þx½n�2�13 þ 0þ 0

fc3; s3g ¼ x½n�2�2�x½n�2�6 þ c4d þ s4d

fc2; s2g ¼ x½n�2�1�x½n�2�6�x½n�2�9�x½n�2�12 þ c3d þ s3d

fc1; s1g ¼ x½n�2�2�x½n�2�6 þ c2d þ s2d

fc0; s0g ¼ x½n�2�5�x½n�2�7 þx½n�2�10 þx½n�2�13 þ c1d þ s1d

The values in c0 and s0 are either finally added using any CPA to compute the final result, or they

are forwarded in the partial form to the next stage of the algorithm. TheCPA is not in the critical path

and can be deeply pipelined as desired.

An RTL design of the filter is shown in Figure 6.11 and the corresponding Verilog code is given

here.
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// Module using TDF structure and 3:2 compressors

module FIRfilterTDFComp (

input signed [15:0] x,

input clk,

output signed [31:0] yn);

integer i;

reg signed [15:0] xn;

//Registersforpartialsums,asfilterissymmetric,thecoefficientsarenumbered

// for 0, 1, 2, ... , 4 rather 4, 3, ... , 0

reg signed [31:0] sn_0, sn_1, sn_2, sn_3, sn_4;

// Registers for partial carries

reg signed [32:0] cn_0, cn_1, cn_2, cn_3, cn_4;

reg signed [31:0] pp_0, pp_1, pp_2, pp_3, pp_4, pp_5,

pp_6, pp_7, pp_8, pp_9, pp_10, pp_11,

pp_12, pp_13, pp_14, pp_15;

// Wires for compression tree for intermediate sums and carries

reg signed [31:0] s00, s01, s10, s11, s20, s200, s21, s30,

s31, s40, s400, s41, s02, s22, s42;

reg signed [32:0] c00, c01, c10, c11, c20, c200, c21, c30,

c31, c40, c400, c41, c02, c22, c42;

// The GCV computed for sign extension elimination

reg signed [31:0] gcv = 32’b0110_1111_0111_0000_0001_0000_1001_0000;

// Add final partial sum and carry using CPA

assign yn = cn_4+sn_4;

always @(posedge clk)

begin

xn <= x; // register the input sample

// Register partial sums and carries in two sets of

registers for every coeff multiplication

cn_0 <= c02;

sn_0 <= s02;

cn_1 <= c11;

sn_1 <= s11;

cn_2 <= c22;

sn_2 <= s22;

cn_3 <= c31;

sn_3 <= s31;

cn_4 <= c42;

sn_4 <= s42;

end

always @ (*)

begin

// First level of 3:2 compressors, initialize 0 bit of

all carries that are not used

c00[0]=0; c10[0]=0; c20[0]=0; c200[0]=0; c30[0]=0; c40[0]=0;

400[0]=0;

for (i=0; i<32; i=i+1)

begin

// 3:2 compressor at level 0 for coefficient 0

{c00[i+1],s00[i]} = pp_0[i]+pp_1[i]+pp_2[i];

// 3:2 compressor at level 0 for coefficient 1

{c10[i+1],s10[i]} = pp_4[i]+pp_5[i]+sn_0[i];
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// 3:2 compressor at level 0 for coefficient 2

{c20[i+1],s20[i]} = pp_6[i]+pp_7[i]+pp_8[i];

{c200[i+1],s200[i]} = pp_9[i]+sn_1[i]+cn_1[i];

// 3:2 compressor at level 0 for coefficient 3

{c30[i+1],s30[i]} = pp_10[i]+pp_11[i]+sn_2[i];

// 3:2 compressor at level 0 for coefficient 4

c40[i+1],s40[i]} = pp_12[i]+pp_13[i]+pp_14[i];

{c400[i+1],s400[i]} = pp_15[i]+sn_3[i]+cn_3[i];

end

c01[0]=0; c11[0]=0; c21[0]=0; c31[0]=0; c41[0]=0;

// Second level of 3:2 compressors

for (i=0; i<32; i=i+1)

begin

// For coefficient 0

{c01[i+1],s01[i]} = c00[i]+s00[i]+pp_3[i];

// For coefficient 1: complete

{c11[i+1],s11[i]} = c10[i]+s10[i]+cn_0[i];

// For coefficient 2

{c21[i+1],s21[i]} = c20[i]+s20[i]+c200[i];

// For coefficient 3: complete

{c31[i+1],s31[i]} = c30[i]+s30[i]+cn_2[i];

// For coefficient 4

{c41[i+1],s41[i]} = c40[i]+s40[i]+c400[i];

end

// Third level of 3:2 compressors

c02[0]=0; c22[0]=0; c42[0]=0;

for (i=0; i<32; i=i+1)

begin

// Add global correction vector

{c02[i+1],s02[i]} = c01[i]+s01[i]+gcv[i];

// For coefficient 2: complete

{c22[i+1],s22[i]} = c21[i]+s21[i]+s200[i];

// For coefficient 4: complete

{c42[i+1],s42[i]}= c41[i]+s41[i]+s400[i];

end

end

always @(*)

begin

// Generating PPs for 5 coefficients

// PPs for coefficient h0 with sign extension elimination

pp_0 = {5b0, �xn[15], xn[14:0], 11b0};

pp_1 = {7b0, xn[15], �xn[14:0], 9b0};

pp_2 = {10b0, � xn[15], xn[14:0],6b0};

pp_3 = {13b0, �xn[15], xn[14:0],3b0};

// PPs for coefficient h1 with sign extension elimination

pp_4 = {2b0, �xn[15], xn[14:0], 14b0};

pp_5 = {6b0, xn[15], �xn[14:0], 10b0};

// PPs for coefficient h2 with sign extension elimination

pp_6 = {1b0, xn[15], xn[14:0], 15b0};

pp_7 = {6b0, xn[15], �xn[14:0], 10b0};

pp_8 = {9b0, xn[15], �xn[14:0], 7b0};

pp_9 = {12b0, xn[15], � xn[14:0], 4b0};
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Figure 6.12 FIR filter structures. (a) Direct-form structure. (b) Transposed-form structure. (c) Hybrid.

(d) Direct–transposed hybrid

// PPs for coefficient h3 with sign extension elimination

pp_10 = {2b0, �xn[15], xn[14:0], 14b0};

pp_11 = {6b0, xn[15], �xn[14:0], 10b0};

// PPs for coefficient h4 with sign extension elimination

pp_12 = {5b0, �xn[15], xn[14:0], 11b0};

pp_13 = {7b0, xn[15], �xn[14:0], 9b0};

pp_14 = {10b0, �xn[15], xn[14:0],6b0};

pp_15 = {13b0, �xn[15], xn[14:0],3b0};

end

endmodule

6.6.5 Hybrid FIR Filter Structure

Earlier sections have elaborated on architecture for a direct and transposed form FIR filter. These

architectures are shown in Figures 6.12(a) and (b). Both the architectures have their respective
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benefits and tradeoffs in HW mapping. The direct form requires only one set of registers and a

unified compression tree to optimize the implementation and provide area-efficient designs,

whereas the transposed form works on individual multiplications and keeps the results of these

multiplications in sum and carry forms that require two sets of registers for holding the

intermediate results. This form offers time-efficient designs. A mix of the two forms can

also be used for achieving the best time–area tradeoffs. These forms are shown in Figures 6.12

(c) and (d).

6.7 Complexity Reduction

The TDF structure of an FIR filter implements multiplication of all coefficients with x[n], as shown

in Figure 6.12(b). These multiplications can be implemented as one unit in a block. This

consideration of one unit helps in devising techniques to further simplify the hardware of the

block. All the multiplications in the block are searched to share common sub-expressions. This

simplification targets reducing either the number of adders or the number of adder levels. The two

approaches used for the HW reduction are sub-graph sharing and common sub-expression

elimination [9].

6.7.1 Sub-graph Sharing

The algorithms that can be represented as a dependency graph can be optimized by searching

constituent sub-graphs that are shared in the original graph. An algorithm that involves

multiplication by constants of the same variable has great potential of sub-graph sharing. The

sub-graphs, in these algorithms, are formed by generating all possible MSD (minimum signed

digit) factors of each multiplication. An optimization algorithm minimizes the number of adders

by selecting those options of the sub-graphs that are maximally shared among multiplications.

The problem of generating all possible graphs and finding the ones that minimize the number of

adders is a non-deterministic polynomial-time (NP)-complete problem. Many researchers have

presented heuristic solutions for finding near optimal solutions of this optimization problem. A

detailed description of these solutions is outside the scope of this book, so interested readers

will find the references listed in this section very relevant. An n-dimension reduced adder graph

(n-RAG) can be sub-optimally computed using efficient heuristics. Such a heuristic is listed

in [10].

Example: This example is derived from [11]. An optimal algorithm in the graphical technique

first generates multiple options of adder graphs for each multiplication. The algorithm then selects

the graph out of all options for eachmultiplication that shares maximum nodes among all the graphs

implementing multiplications by coefficients.

Consider a 3-coefficient FIR filter with the following 12-bit fixed-point values:

h0 ¼ 120b0000 0000 0011 ¼ 3

h1 ¼ 120b0000 0011 0101 ¼ 53

h2 ¼ 120b0010 0010 1001 ¼ 583

These coefficients are decomposed in multiple options. The decomposition is not unique and

generates a search space. For the design in the example, some of theMSDdecomposition options for

each coefficient are:
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h0 ¼ 3 ¼ 1þ 21

h0 ¼ 3 ¼ 22�1

h1 ¼ 53 ¼ 1þ 13� 22

13 ¼ 24�3

h1 ¼ 53 ¼ 65�3� 22

65 ¼ 26 þ 1

h1 ¼ 53 ¼ 56�3

56 ¼ 26�23

h2 ¼ 585 ¼ 293� 21�1

293 ¼ 28 þ 37

37 ¼ 3� 23 þ 13

h2 ¼ 585 ¼ 65� 23 þ 65

The graphical representations of these options are shown in Figure 6.13. Although there are

several other options for each coefficient, only a few are shown to demonstrate that generating all

these options and then finding the ones that maximize sharing of intermediate and final results is

complex. For this example, the best solution picks the first sub-graph for h0 and second sub-graphs

for h1 and h2. An optimized architecture that uses these options is shown in Figure 6.14.
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Figure 6.13 Decomposition of {3,53,585} in sub-graphs for maximum sharing
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6.7.2 Common Sub-expression Elimination

In contrast to graphicalmethods that decompose each coefficient into possibleMSD factors and then

find the factors for eachmultiplication thatmaixmizes sharing, common sub-expression elimination

(CSE) exploites the repetition of bits or digit patterns in binary, CSD or MSD representations of

coefficents.

CSE works equally well for binary representation of coefficients, but to reduce the hardware cost

the coefficients are first converted to CSD or MSD and are then searched for the common

expressions. The technique is explained with the help of a simple example.

Example: Consider a two-tap FIR filter with h0¼ 50b01110 and h1¼ 50b01011 in Q1.4 format.

Implementing this filter using TDF structure requires calculation of two products, h0xn and h1xn.

These multiplications independently require the following shift and add operations:

h0xn ¼ ðxn � 1Þþ ðxn � 2Þþ ðxn � 3Þ
h1xn ¼ ðxn � 1Þþ ðxn � 3Þþ ðxn � 4Þ

It is trivial to observe that two of the expressions in both the multiplications are common, and

so needs to be computed once for computation of both the products. This reuse of common

sub-expressions is shown here:

c0 ¼ ðxn � 1Þþ ðxn � 3Þ

This value is then reused in both the expressions:

h0xn ¼ c0 þðxn � 2Þ
h1xn ¼ c0 þðxn � 4Þ

Several algorithms have been proposed in the literature to remove common sub-expressions

[12, 13]. All these algorithms search for direct or indirect commonality that helps in reducing the

HWcomplexity. Some of thesemethods are elucidated below for CSD and binary representations of

coefficients.

+ +

+ +

+ +

xn <<6 = 641

x 65

>>3

<<2 = 12

<<1 = 2

x 3

h0xnh1xnh2xn

yn

-

1

Figure 6.14 Selecting the optimal out ofmultiple decomposition options for optimized implementation

of the FIR filter
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6.7.2.1 Horizontal Sub-expressions Elimination

This method first represents each coefficient as a binary, CSD or MSD number and searches for

common bits or digits patterns that may appear in these representations [12]. The expression is

computed only once and then it is appropriately shifted to be used in other products that contain the

pattern.

Example: Formultiplication by constant 01_00111_00111, when converted to CSD format, gives

01 0100�1 0100�1. The pattern 100�1 appears twice in the representation. To optimizeHW the pattern

can be implemented only once and then the value is shifted to cater for the second appearance of the

pattern, as shown in Figure 6.15.

Example: This example considers four coefficients. In Figure 6.16, the CSD representation of

these constants reveals the digit patterns that can be shared. The common sub-expressions are shown

as connected boxes. For the coefficient h3, there are two choices to select from.One option shares the
�10�1 pattern, which has already been computed for h0, and the second option computes 100�1 once

and reuses it in the same expression to compute �1001.

6.7.2.2 Vertical Sub-expressions Elimination

This technique searches for bit or digit patterns in columns and those expression are computed

once and reused across different multiplications [14]. The following example illustrates the

methodology:

h3 ¼ 1 0 0 0 0

h2 ¼ �1 0 �1 0 0

h1 ¼ 1 0 1 0 �1

h0 ¼ �1 0 0 0 1

Here, ½1�1� apears four times. This expression can be computed once and then shared in the rest of the

computation. To illustrate invertical bit locations methodology, the convolution summation is first

written as:

yn ¼ xnz
�3h3 þxnz

�2h2 þxnz
�1h1 þ xnh0 ð6:6Þ

+
>>3

+

+

+>>3

-

-
>>5 >>2

>>1

(a)

+
>>3

+

+

-

>>2

>>1

>>5

(b)

Figure 6.15 To simplify hardware, sub-expression 01001 which is repeated twice in (a) is only

computed once in (b)
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where xnz
�k represents x[n� k] for k¼ 0 . . . 3. If the multiplications for the given coefficients are

implemented as shift and add operations, then convolution summation of (6.6) can be written as:

yn ¼ xnz
�3

�xnz
�2�xnz

�22�2

þ xnz
�1 þxnz

�12�2�xnz
�12�4

�xn þ xnz
�12�4

ð6:7Þ

as z�1 represents a delay that makes xnz
�1 ¼ xn�1, using it to extract common sub-expressions:

yn ¼ xn�1z
�2

�xnz
�2�xn�1z

�12�2

þxn�1 þxnz
�12�2�xn�12

�4

�xn þXn�12
�4

ð6:8Þ

Let xn�1� xn¼wn. Then the convolution summation of (6.8) can be rewritten by using the

common sub-expression of wn as:

yn ¼ wnz
�2�wnz

�12�2 þwn�wn2
�4 ¼ wn�2�wn�12

�2 þwn�wn2
�4

The number of additions/subtractions is now reduced from eight to four. Figure 6.17 shows the

optimized implementation.

h0= 001010100100

h1=101001001001

h2=100100101001

h3=010010100100

_

_

_

_

_

_

_

_

Figure 6.16 Common Sub-expressions for the example in the text
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Figure 6.17 Optimized implementation exploiting vertical common sub-expressions
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6.7.2.3 Horizontal and Vertical Sub-expressions Elimination with Exhaustive

Enumeration

This method searches for all possible enumerations of the bit or digit patterns with at least two non-

zero bits in the horizontal and vertical expressions for possible HW reduction [13, 15].

For a coefficient with binary representation 010111, all possible enumerations with aminimumof

two non-zero bits are as follows:

010100; 010010; 010001; 000110; 000101; 000011; 010110; 010101; 000111

Similarly, after writing all coefficients in binary representation, each of the columns is also

enumerated with all patterns with more than one non-zero entries. Any of these expressions

appearing in other columns can be computed once and usedmultiple times. Exhaustive enumeration,

though, gives minimum hardware for the CSE problem but grows exponentially and becomes

intractable for large filter lengths.

Example:

h2 = 1 0 0 1 0 0 0 0
h1 = 1 0 0 0 1 0 0 0
h0 = 0 0 0 0 1 0 0 0

Horizontal and vertical Common 
sub-expressions 

Combining the horizontal and vertical sharing of expressions, the convolution summation can be

written as: yn ¼ xn�1z
�1�xn�1z

�12�3

�xnz
�1�xn�12

�4 þxn�12
�7

þxn2
�4

A common expression that shares vertical and horizontal sub-expressions can result in optimized

logic. Let the expression be:

wn ¼ xn�1�xn�12
�3�xn

Then the convolution summation becomes:

yn ¼ wn�1�wn2
�4

The optimized architecture is shown in Figure 6.18.

xn

>>4

+ +

+

wn

>>3

wn-1

yn

- -

-

Figure 6.18 Example of horizontal and vertical sub-expressions elimination
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6.7.3 Common Sub-expressions with Multiple Operands

Inmany signal processing applications, themultiplication iswithmultiple operands, as inDCT,DFT

or peak-to-average power ratio (PAPR) reduction using a precoding matrix in an orthogonal

frequency-division multiplexed (OFDM) transmitter [16]. In these algorithms an extension of the

method for common sub-expression elimination can also be used while computing more than one

output sample as a linear combination of input samples [17]. Such a system requires computing

matrix multiplication of the form:

y0½n�
y1½n�
y2½n�

2
64

3
75 ¼

c00 c01 c02

c10 c11 c12

c20 c21 c22

2
64

3
75

x0½n�
x1½n�
x2½n�

2
64

3
75

This multiplication results in computing a linear combination of input sample for each output

sample. The first equation is:

y0½n� ¼ c00x0½n� þ c01x1½n� þ c02x2½n�

All the multiplications in the equation are implemented as multiply shift operations where the

techniques discussed in this section for complexity reduction can be used for sub-graph sharing and

common expression elimination. The example below highlights use of the common sub-expression

elimination method on a set of equations for given constants.

Example:

In the following set of equations all the constants are represented in CSD format:

y0½n�
y1½n�
y2½n�

2
64

3
75 ¼

010�10 �10010 0100�1

0010�1 0�1010 0010�1

01000 00100 000�10

2
64

3
75

x0½n�
x1½n�
x2½n�

2
64

3
75

The required matrix multiplication using shift and add operations can be optimized by using the

following sub-expressions:

p0½n� ¼ ðx0½n� � 1Þ�ðx0½n� � 3Þ�x1½n� þ ðx2½n� � 1Þ
p1½n� ¼ x2½n� � 2�x2½n� � 3

These sub-expressions simplify the computation of matrix multiplication as shown here:

y0½n� ¼ p0½n� þ p1½n� � 1

y1½n� ¼ ðp0½n� � 1Þþ ðp1½n� � 1Þ
y2½n� ¼ ðx0½n� � 1Þþ p1½n�

6.8 Distributed Arithmetic

6.8.1 Basics

Distributed arithmetic (DA) is another way of implementing a dot product where one of the arrays

has constant elements. The DA can be effectively used to implement FIR, IIR and FFT type
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algorithms [18–24]. For example, in the case of an FIR filter, the coefficients constitute an array of

constants in some signed Q-format where the tapped delay line forms the array of variables which

changes every sample clock. The DA logic replaces the MAC operation of convolution summation

of (6.5) into a bit-serial look-up table read and addition operation [18]. Keeping in perspective the

architecture of FPGAs, time/area effective designs can be implemented using DA techniques [19].

TheDA logic works by first expanding the array of variable numbers in the dot product as a binary

number and then rearranging MAC terms with respect to weights of the bits. A mathematical

explanation of this rearrangement and grouping is given here.

Let the different elements of arrays of constants and variables be Ak and xk, respectively. The

length of both the arrays is K. Then their dot product can be written as:

y ¼
XK�1

k¼0

Akxk ð6:9Þ

Without lost of generality, let us assume xk is an N-bit Q1. (N� 1)-format number:

xk ¼ �xk02
0 þ

XN�1

b¼1

xkb2
�b ¼ �xk02

0 þxk12
�1 þ � � � xkðN�1Þ2N�1

The dot product of (6.9) can be written as:

y ¼
XK�1

k¼0

�xk02
0 þ
XN�1

b¼1

xkb2
�b

 !
Ak

y ¼
XK�1

k¼0

ð�xk02
0 þxk12

�1 þ � � � xkðN�1Þ2N�1ÞAk

Rearranging the terms yields:

y ¼ �
XK�1

k¼0

xk0Ak2
0 þ

XN�1

b¼1

2�b
XK�1

k¼0

xkbAk

For K¼ 3 and N¼ 4, the rearrangement forms the following entries in the ROM:

�ðx00A0 þx10A1 þx20A2Þ20
þðx01A0 þx11A1 þ x21A2Þ2�1

þðx02A0 þx12A1 þ x22A2Þ2�2

þðx03A0 þx13A1 þ x23A2Þ2�3

The DA technique pre-computes all possible values of

XK�1

k¼0

xkbAk

For the example under consideration, the summations for all eight possible values of xkb for

a particular b and k¼ 0, 1 and 2 are computed and stored in ROM. The ROM is P bits wide and 2K

deep and implements a look-up table. The value of P is:

P ¼ log2

XK�1

k¼0

Akj j
#
þ 1

$
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where b.c is the floor operator that rounds a fraction value to its lower integer. The contents of the

look-up table are given in Table 6.1.

All the elements of the vector x ¼[x0 x1. . . . xK-1] are stored in shift registers. The architecture

considers in each cycle the bth bit of all the elements and concatenates them to form the address to the

ROM. For the most significant bits (MSBs) the value in the ROM is subtracted from a running

accumulator, and for the rest of the bit locations values from ROM are added in the accumulator. To

cater for weights of different bit locations, in each cycle the accumulator is shifted to the right. To

keep the space for the shift, the size of the accumulator is set toP þ N, where a (P-bit adder adds the

current output of the ROM in the accumulator andN bits of the accumulator are kept to the right side

to cater for the shift operation. The data is input to the shift registers fromLSB. The dot product takes

N cycles to compute the summation. The architecture implementing the dot product forK¼ 3,P¼ 5

andN¼ 4 is shown in Figure 6.19. FPGAs with look-up tables suit well DA-based filter design [20].

Example: Consider a ROM to compute the dot product of a 3-element vector with a vector of

constants with the following elements:A0¼ 3,A1¼�1 andA2¼ 5. Test the design for the following

values in vector x:

Table 6.1 ROM for distributed arithmetic

x2b x1b x0b Contents of ROM

0 0 0 0

0 0 1 A0

0 1 0 A1

0 1 1 A1 þA0

1 0 0 A2

1 0 1 A2 þA0

1 1 0 A2 þA1

1 1 1 A2 þA1 þA0

+/-

x0

x1

x2

SR0

SR1

SR2

x0b

x1b

x2b

lookup table

0
A0

A1

A1+A0

A2

A2+A0

A2+A1

A2+A1+A0

rst_n

>>1

>>1

>>1 >>1

N

P

Padd/sub

P

Figure 6.19 DA for computing the dot product of integer numbers for N¼ 4 and K¼ 3
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x0 ¼ �6 ¼ 40b1010

x1 ¼ 6 ¼ 40b0110

x2 ¼ �5 ¼ 40b1011

The contents of a 5-bit wide and 8-bit deep ROM are given in Table 6.2. The shift registers are

assumed to contain elements of vector x with LSB in the right-most bit location.

The cycle-by-cycle working of the DA architecture of Figure 6.20 for the case in consideration is

given in Table 6.3. After four cycles the accumulator contains the value of the dot product:

90b111001_111¼�4910.

….

xn

….

xn-1

xn-2

….

0
h0

h1

h1+h0

hL-1..+h1+h0

….

…
.…

.

xn-(L-1)

clkG

rst_n

>>1

P P

clkg

>>1

>>1

>>1

>>1

.

.

.

.

.

.

lookup table

P+N

N

yn

P

+/-

clkg

add/sub

Figure 6.20 DA-based architecture for implementing an FIR filter of length L and N-bit data samples

Table 6.2 Look-up table (LUT) for the text example

x2b x1b x0b Contents of ROM

0 0 0 0 0

0 0 1 A0 3

0 1 0 A1 �1

0 1 1 A1 þA0 2

1 0 0 A2 5

1 0 1 A2 þA0 8

1 1 0 A2 þA1 4

1 1 1 A2 þA1 þA0 7
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6.8.2 Example: FIR Filter Design

The DA architecture can be effectively used for implementing an FIR filter. The technique is of

special interest in applicationswhere the data is input to the system in bit-serial fashion.A DA-based

design eliminates the use of a hardware multiplier and uses only a look-up table to provide high

throughput execution at bit-rate irrespective of the filter length and width of the coefficients [21].

Figure 6.21 shows the architecture of an L-coefficient FIR filter. The data is input to the design in

bit-serial fashion into shift register SR0, and all the shift registers are connected in a daisy-chain to

form a tap delay line. The design works at bit clock clkg, and the design computes an output at every

sample clkG, where sample clkG is N times slower than clkg.

RTLVerilog code of a DA-based 4-coefficient FIR filter is given below. The code also implements

an FIR filter using convolution summation for equivalence checking:

/* Distributed arithmetic FIR filter

module FIRDistributedArithmetics

(

input xn_b, clk_g, rst_n,

input [3:0] contr,

output reg signed [31:0] yn,

output valid);

reg signed [31:0] acc; // accumulator

reg [15:0] xn_0, xn_1, xn_2, xn_3; // tap delay line

reg [16:0] rom_out;

reg [3:0] address;

wire signed [31:0] sum;

wire msb;

// DA ROM storing all the pre-computed values

always @(*)

begin

//lsb of all registers

address={xn_3[0],xn_2[0],xn_1[0],xn_0[0]};

case(address)

4’d0: rom_out=17’b00000000000000000;

4’d1: rom_out=17’b00000001000100100; // h0

4’d2: rom_out=17’b00011110111011100; // h1

4’d3: rom_out=17’b00100000000000000; // h0+h1

4’d4: rom_out=17’b00011110111011100; // h2

4’d5: rom_out=17’b00100000000000000; // h2+h0

Table 6.3 Cycle by cycle working of DA for the text example

Cycle Address ROM Accumulator

0 30b100 5 00010_1000

1 30b111 7 00100_1100

2 30b010 �1 00001_1110

3 30b101 8 11100_1111
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4’d6: rom_out=17’b00111101110111000; // h2+h1

4’d7: rom_out=17’b00111110111011100; // h2+h1+h0

4’d8: rom_out=17’b00000001000100100; // h3

4’d9: rom_out=17’b00000010001001000; // h3+h0

4’d10: rom_out=17’b00100000000000000; // h3+h1

4’d11: rom_out=17’b00100001000100100; // h3+h1+h0

4’d12: rom_out=17’b00100000000000000; // h3+h2

4’d13: rom_out=17’b00100001000100100; // h3+h2+h0

4’d14: rom_out=17’b00111110111011100; // h3+h2+h1

4’d15: rom_out=17’b01000000000000000; // h3+h2+h1+h0

default: rom_out= 17’bx;

endcase

end

assign valid = � (|contr); // output data valid signal

assign msb = contr // msb = 1 for contr = ff

assign sum = (acc +

{rom_out^{17{msb}}, 16’b0} + // takes 1’s complement for msb
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Figure 6.21 DA-based parallel implementation of an 18-coefficient FIR filter setting L¼ 3 andM¼ 6
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{15’b0, msb, 16’b0})> > >1; // add 1 at 16th bit location for 2’s

complement logic

always @ (posedge clk_g or negedge rst_n)

begin

if(!rst_n)

begin

// Initializing all the registers

xn_0 <= 0;

xn_1 <= 0;

xn_2 <= 0;

xn_3 <= 0;

acc <= 0;

end

else

begin

// Implementing daisy-chain for DA computation

xn_0 <= {xn_b, xn_0[15:1]};

xn_1 <= {xn_0[0], xn_1[15:1]};

xn_2 <= {xn_1[0], xn_2[15:1]};

xn_3 <= {xn_2[0], xn_3[15:1]};

// A single adder should be used instead, shift right to multiply by 2-i

if(&contr)

begin

yn <= sum;

acc <= 0;

end

else

acc <= sum;

end

end

endmodule

// Module uses multipliers to implement an FIR filter for verification of DA arch

module FIRfilter

(

input signed [15:0] x,

input clk_s, rst_n,

output reg signed [31:0] yn);

reg signed [15:0] xn_0, xn_1, xn_2, xn_3;

wire signed [31:0] yn_v, y1, y2, y3, y4;

// Coefficients of the filter

wire signed [15:0] h0 = 16’h0224;

wire signed [15:0] h1 = 16’h3DDC;

wire signed [15:0] h2 = 16’h3DDC;

wire signed [15:0] h3 = 16’h0224;

// Implementing filters using multiplication and addition operators

assign y1=h0*xn_0;

assign y2=h1*xn_1;

assign y3=h2*xn_2;

assign y4=h3*xn_3;
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assign yn_v = y1+y2+y3+y4;

always @(posedge clk_s or negedge rst_n)

begin

if (!rst_n)

begin

xn_0<=0;

xn_1<=0;

xn_2<=0;

xn_3<=0;

end

else

begin

// Tap delay line of the filter

xn_0 <= x;

xn_1 <= xn_0;

xn_2 <= xn_1;

xn_3 <= xn_2;

end

// Registering the output

yn <= yn_v;

end

endmodule

module testFIRfilter;

reg signed [15:0] X_reg, new_val;

reg CLKg, CLKs, RST_N;

reg [3:0] counter;

wire signed [31:0] YND;

wire signed [31:0] YN;

wire VALID, inbit;

integer i;

// Instantiating the two modules, FIRfilter is coded for equivalence checking

FIRDistributedArithmetics FIR_DA(X_reg[counter],

CLKg, RST_N, counter, YND, VALID);

FIRfilter FIR(new_val, CLKs, RST_N, YN);

initial

begin

CLKg = 0; // bit clock

CLKs = 0; // sample clock

counter = 0;

RST_N = 0;

#1 RST_N = 1;

new_val = 1;

X_reg = 1;

#10000 $finish;

end

// Generating clock signal

always

#2 CLKg = � CLKg; // fast clock

always

#32 CLKs = � CLKs; // 16 times slower clock
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// Generating a number of input samples

always @ (counter)

begin

// A new sample at every sample clock

if (counter == 15)

new_val = X_reg-1;

end

// Increment counter that controls the DA architecture to be placed in a con-

troller

always @ (posedge CLKg)

begin

counter <= counter+1;

X_reg <= new_val;

end

initial

$monitor ($time, " X_reg=%d, YN=%d, YND=%d\n", X_reg, YN, YND);

endmodule

It is obvious from the configuration of a DA-based design that the size of ROM increases with an

increase in the number of coefficients of the filter. For example, a 128-coefficients FIR filter requires

a ROM of size 2128. This size is prohibitively large and several techniques are used to reduce the

ROM requirement [22–25].

6.8.3 M-parallel Sub-filter-based Design

This technique divides the filter intoM sub-filters of length L, and each sub-filter is implemented as

an independent DA-based module. For computing the output of the filter, the results of all M sub-

filters are first compressed using any reduction tree, and the final sum and carry are added using

a CPA. For a filter of length K, the length of each sub-filter is L¼K/M. The filter is preferably

designed to be of length LM, or one of the sub-filters may be of a little shorter length than the rest.

For the parallel case, the convolution summation can be rewritten as:

y½n� ¼
XM�1

i¼0

XL�1

k¼0

h½i*Lþ k�x½n�ði*Lþ kÞ�

The inner summation implements each individual sub-filter. These filters are designed using

a DA-based MAC calculator. The outer summation then sums the outputs of all sub-filters. The

summation is implemented as a compression tree and a CPA. The following example illustrates

the design.

Example: The architecture designs an 18-coefficient FIR filter using six sub-filters. For the

design L¼ 3 andM¼ 6, and the architecture is shown in Figure 6.21. Each sub-filter implements

a 23¼ 8 deep ROM. The width of each ROM, Pi for i¼ 0 . . . 5, depends on the maximum absolute

value of its contents. The output of each ROM is input to a compression tree. For the MSBs in the
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respective daisy-chain tap delay-line, the result needs to be subtracted. To implement this

subtraction the architecture selects the one’s complement of the output from the ROM and a

cumulative correction term for all the six sub-filters is added as 40b0110 in the compression tree.

The CPA is moved outside the accumulation module and the partial sum and partial carry from

the compression tree is latched in the two sets of accumulator registers. The contents in the

registers are also input to the compression tree. This makes the compression tree 9:2. If necessary

the CPA adder needs to work on slower output sample-clock clkG, whereas the compression tree

operates on fast bit-clock clkg. The final results from the compression trees are latched into two

sets of registers clocked with clkG for final addition using a CPA and the two accumulator

registers are reset to perform next set of computation.

6.8.4 DA Implementation without Look-up Tables

LUT-less DA implementation uses multiplexers. If the parallel implementation is extended to use

M¼K, then each shift register is connected to a two-entry LUT that either selects a 0 or the

corresponding coefficient. The LUT can be implemented as a 2:1 MUX.

Designs for a 4-coefficient FIR filters are shown in Figure 6.22, using compression- and adder

tree-based implementation. For the adder tree design the architecture can be pipelined at each adder

stage if required.

The architectures of LUTand LUT-less implementation can be mixed to get a hybrid design. The

resultant design has a mix of MUX- and LUT-based implementation. The design requires reduced

sized LUTs.

Example: This example implements a DA-based biquadrature IIR filter. The transfer function of

the filter is:

HðzÞ ¼ b0 þ b1z
�1 þ b2z

�2

1�a1 z�1�a2z�2

This transfer function translates into a difference equation given by:

y½n� ¼ b0x½n� þ b1x½n�1� þ b2x½n�2� þ a1y½n�1� þ a2y½n�2�

The difference equation can be easilymapped onDA-based architecture. Either twoROMs can be

designed for feed forward and feed back coefficients, or a unifiedROM-based design can be realized.

The two designs are shown in Figure 6.23. The value of the output, once computed, is loaded in

parallel to a shift register for y[n� 1].

6.9 FFT Architecture using FIR Filter Structure

To fully exploit the potential optimization inmapping aDFTalgorithm in hardware using techniques

listed in this chapter, the DFTalgorithm can be implemented as an FIR filter. This requires rewriting

of the DFT expression as convolution summation. The Bluestein Chirp-z Transform (CZT)

algorithm transforms the DFT computation problem into FIR filtering [25]. The CZT translates

the nk term in the DFT summation in terms of (k� n) for it to bewritten as a convolution summation.
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The DFT summation is given as:

X½k� ¼
XN�1

n¼0

x½n�Wnk
N for k ¼ 0; 1; 2; . . . ;N�1; whereWN ¼ e�2p=N ð6:10Þ

The nk term in (6.10) can be expressed as:

nk ¼ �ðk�nÞ2 þ n2 þ k2

2
ð6:11Þ

Substituting (6.10) in (6.11) produces the DFT summation as:

X½k� ¼ W
k2=2
N

XN�1

n¼0

x½n�Wn2=2
N

� �
W

�ðk�nÞ2=2
N for k ¼ 0; 1; 2; . . . ;N�1 ð6:12Þ

Using the circular convolution notation �, the expression in (6.12) can be written as:

X k½ � ¼ W
k2

2

N x n½ �Wn2

2

N �W
�k2

2

N

� �

To compute an N-point DFT, the signal is first multiplied by an array of constantsW
n2=2
N . Then an

N-point circular convolution is performed with an impulse responseW�n2

N . Finally the output of the

convolution operation is again multiplied with an array of constantsW
k2=2
N . A representative serial

architecture for the algorithm for an 8-point FFT computation is given in Figure 6.24.

The array of constants is stored in a ROM. The input data x[n] is serially input to the design. The

input data ismultiplied by the corresponding value from theROM to getx½n�Wn2=2
N . The output of the

multiplication is fed to an FIR filter with constant coefficientsW
�n2=2
N . The output of the FIR filter is

passed through a tapped delay line to compute the circular convolution. The final output is again

seriallymultipliedwith the array of constants in theROM.By exploiting the symmetry in the array of

constants the size of ROM can be reduced. The multiplication by coefficients for the convolution

implementation can also be reduced using a CSE elimination and sub-graph optimization techni-

ques. The DFT implemented using this technique has been demonstrated to use less hardware and

have better fixed-point performance [25].

The following MATLAB� code implements an 8-point FFT using this technique:

clear all

xn =[1+j 1 1 -1-2j 0 0 0 1]; % Generate test data

N=8;

n=0:N-1;

Wsqr = exp((-j*2*pi*n.^2)/(2*N));

xnW = Wsqr .* xn;

WsqrT = Wsqr’;

yn = conv(xnW,WsqrT.’);

yn_cir = yn(1:N) + [yn(N+1:end) 0];

Xk=Wsqr.*yn_cir;

% To compare with FFT

Xk_fft=fft(xn);

diff = sum(abs(Xk-Xk_fft))
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The following example optimizes the implementation of DFT architecture.

Example:Redesign the architecture of Figure 6.24 using a TDF FIR filter structure. Optimize the

multiplications using the CSE technique.

The filter coefficients forN¼ 8 are computed by evaluating the expressionW
�n2=2
N for n¼ 0 . . . 7.

The values of the coefficients are:

h½n� ¼ ½1; 0:92þ 0:38j; j�0:92�0:38j; 1�0:92�0:38j; j 0:92þ 0:38j�

These values of coefficients require just one multiplier and swapping of real and imaginary

components of x[n] for realizingmultiplication by j. The FIRfilter structure of Figure 6.24 is given in

Figure 6.25.
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Figure 6.24 DFT implementation using circular convolution
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Figure 6.25 Optimized TDF implementation of the DF implementation in Figure 6.24
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Exercises

Exercise 6.1

Convert the following expression into its equivalent 8-bit fixed-point representation:

y½n� ¼ �0:231x½n� þ 0:396x½n�1� þ 0:1111x½n�5�

Further convert the fixed-point constants into their respective CSD representations. Consider x[n] is

an 8-bit input in Q1.7 format. Draw an RTL diagram to represent your design. Each multiplication

should be implemented as a CSDmultiplier. Consider only the four most significant non-zero bits in

your CSD representation.

Exercise 6.2

Implement the following difference equation in hardware:

y½n� ¼ �0:9821y½n�1� þx½n�

First convert the constant to appropriate 8-bit fixed-point format, and then convert fixed-point

number in CSD representation. Implement CSD multipliers and code the design in RTL Verilog.

Exercise 6.3

Draw an optimal architecture that uses a CSD representation of each constant with four non-zero

bits. The architecture should only use one CPA outside the filter structure of Figure 6.26.

Exercise 6.4

Optimize the hardware design of a TDF FIR filter with the following coefficients in fixed-point

format:

h½n� ¼ ½3 13 219 221�

Minimize the number of adder levels using sub-graph sharing and CSE techniques.

+
]n[y]n[x

x

c

x

a

+ x

b

+

Figure 6.26 Design for exercise 6.3
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Exercise 6.5

In the following matrix of constant multiplication by a vector, design optimized HW using a CSE

technique:

y0

y1

y2

y3

2
66664

3
77775 ¼

7 �3 2 7

14 �6 4 3

�1 �12 2 15

2 �7 8 7

2
66664

3
77775

x0

x1

x2

x3

2
66664

3
77775

Exercise 6.6

Compute the dot product of two vectorsA and x, whereA is a vector of constants and x is a vector of

variable data with 4-bit elements. The coefficients of A are:

A0 ¼ 13; A1 ¼ �11; A2 ¼ �11; A3 ¼ 13

Use symmetry of the coefficients to optimize the DA-based architecture. Test the design for the

following:
x ¼ ½3 13�11 3�

Exercise 6.7

Consider the following nine coefficients of an FIR filter:

h½n� ¼ ½�0:0456 �0:1703 0:0696 0:3094 0:4521 0:3094 0:0696 �0:1703 �0:0456�

Convert the coefficients into Q1.15 format. Consider x[n] to be an 8-bit number. Design the

following DA-based architecture:

1. a unified ROM-based design;

2. reduced size of ROM by the use of symmetry of the coefficients;

3. a DA architecture based on three parallel sub-filters;

4. a ROM-less DA-based architecture

Exercise 6.8

A second-order IIR filter has the following coefficients:

b ¼ ½0:2483 0:4967 0:2483�
a ¼ ½1 �0:1842 �0:1776�

1. Convert the coefficients into 16-bit fixed-point numbers.

2. Design a DA-based architecture that uses a unified ROM as LUT. Consider x[n] to be an 8-bit

number. Use two LUTs, one for feedback and the other for feedforward coefficients.
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Exercise 6.9

The architecture of Figure 6.24 computes the DFT of an 8-point sequence using convolution

summation. Replace the DF FIR structure in the architecture with a TDF filter structure. Exploit the

symmetry in the coefficients and design architecture byminimizingmultipliers andROMsize. Draw

an RTL diagram and write Verilog code to implement the design. Test the design using a 16-bit

complex input vector of eight elements. Select an appropriate Q-format for the architecture, and

display your result as 16-bit fixed-point numbers.
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7

Pipelining, Retiming, Look-ahead
Transformation and Polyphase
Decomposition

7.1 Introduction

The chapter discusses pipelining, retiming and look-ahead techniques for transforming digital

designs to meet the desired objectives. Broadly, signal processing systems can be classified as

feedforward or feedback systems. In feedforward systems the data flows from input to output and

no value in the system is fed back in a recursive loop. Finite impulse response (FIR) filters are

feedforward systems and are fundamental to signal processing. Most of the signal processing

algorithms such as fast Fourier transform (FFT) and discrete cosine transform (DCT) are

feedforward. The timing can be improved by simply adding multiple stages of pipelining in the

hardware design.

Recursive systems such as infinite impulse response (IIR) filters are also widely used in DSP.

The feedback recursive algorithms are used for timing, symbol and frequency recovery in digital

communication receivers. In speech processing and signal modeling, autoregressive moving

average (ARMA) and autoregressive (AR) processes involve IIR systems. These systems are

characterized by a difference equation. To compute an output sample, the equation directly or

indirectly involves previous values of the output samples along with the current and previous values

of input samples. As the previous output samples are required in the computation, adding pipeline

registers to improve timing is not directly available to the designer. The chapter discusses cut-set

retiming and node transfer theorem techniques for systematically adding pipelining registers in

feedforward systems. These techniques are explained with examples. This chapter also discusses

techniques that help in meeting timings in implementing fully dedicated architectures (FDAs) for

feedback systems.

The chapter also defines someof the terms relating to digital design of feedback systems. Iteration,

the iteration period, loop, loop bound and iteration period bound are explainedwith examples.While

designing a feedback system, the designer appliesmathematical transformations to bring the critical

path of the design equal to the iteration period bound (IPB), which is defined as the loop bound of the
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critical loop of the system. The chapter then discusses the node transfer theorem and cut-set retiming

techniques in reference to feedback systems. The techniques help the designer to systematically

move the registers to retime the design in such away that the transformed design has reduced critical

path and ideally it is equal to the IPB.

Feedback loops pose a great challenge. It is not trivial to add pipelining and extract parallelism in

these systems. The IPB limits any potential improvement in the design. The chapter highlights that if

the IPB does not satisfy the sampling rate requirement even after using the fastest computational

units in the design, the designer should then resort to look-ahead transformation. This transformation

actually reduces the IPB at the cost of additional logic. Look-ahead transformation, by replacing the

previous value of the output by its equivalent expression, adds additional registers in the loop. These

additional delays reduce the IPBof the design. These delays then can be retimed to reduce the critical

path delay. The chapter illustrates the effectiveness of the methodology by examples. The chapter

also introduces the concept of ‘C-slow retiming’, where each register in the design is first replaced

by C number of registers and these registers are then retimed for improved throughput. The design

can then handle C independent streams of inputs.

The chapter also describes an application of the methodology in designing effective

decimation and interpolation filters for the front end of a digital communication receiver, where

the required sampling rate is much higher and any transformation that can help in reducing the IPB

is very valuable.

IIR filters are traditionally not used in multi-rate decimation and interpolation applications.

The recursive nature of IIR filters requires computing all intermediate values, so it cannot directly

use polyphase decomposition. The chapter presents a novelmethodology thatmakes an IIR filter use

Nobel identities and effectively run at a slower clock rate in multi-rate decimation and interpolation

applications.

7.2 Pipelining and Retiming

7.2.1 Basics

The advent of very large scale integration (VLSI) has reduced the cost of hardware devices. This

has given more flexibility to system designers to implement computationally intensive applica-

tions in small form factors. Designers are now focusing more on performance and less on

densities, as the technology is allowing more and more gates on a single piece of silicon. Higher

throughout and data rates of applications are becoming the driving objectives. From the HW

perspective, pipelining and parallel processing are two methods that help in achieving high

throughput.

A critical path running through a combinational cloud in a feedforward system can be broken

by the addition of pipeline registers. A feedforward system is one in which the current output

depends only on current and previous input samples and no previous output is fed back in the

system for computation of the current output. Pipeline registers only add latency. If L pipeline

registers are added, the transfer function of the system is multiplied by z�L. In a feedback

combinational cloud, pipeline registers cannot be simply added because insertion of delays

modifies the transfer function of the system and results in change of the order of the

difference equation.

Figure 7.1(a) shows a combinational cloud that is broken into three clouds by placement of two

pipeline registers. This results in one-third potential reduction in the path delay of the combinational

cloud. In general, in a system with L levels of pipeline stages, the number of delay elements in any
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path from input to output is L� 1 greater than that in the same path in the original logic. Pipelining

reduces the critical path, but it increases the system latency and the output y½n� corresponds to the

previous input sample x[n� 2]. Pipelining also adds registers in all the paths, including the paths

running parallel to the critical path. These extra registers add area as well as load the clock

distribution. Therefore pipelining should only be added when required.

Pipelining and retiming are two different aspects of digital design. In pipelining, additional

registers are added that change the transfer function of the system, whereas in retiming, registers are

relocated in a design to maximize the desired objective. Usually the retiming has several objectives:

to reduce the critical path, reduce the number of registers, minimize power use [1, 2], increase

testability [3, 4], and so on. Retiming can either move the existing registers in the design or can be

followed by pipelining, where the designer places a number of registers on a cut-set line and then

applies a retiming transformation to place these registers at appropriate edges to minimize the

critical path while keeping all other objectives in mind.

Retiming, then, is employed to optimize a set of design objectives. These usually involve

conflicting design solutions, such as maximizing performance may result in an increase in area, for

example. The objectives must therefore be weighted to get the best tradeoff.

Retiming also helps inmaximizing the testability of the design [4, 5].With designs based on field-

programmable gate arrays (FPGAs), where registers are in abundance, retiming and pipelining

transformation can optimally use this available pool of resources to maximize performance [6].

A given dataflow graph (DFG) can be retimed using cut-set or delay transfer approaches. This

chapter interchangeably represents delays in the DFG with dots or registers.

7.2.2 Cut-set Retiming

Cut-set retiming is a technique to retime a dataflowgraph by applying a valid cut-set line.Avalid cut-

set is a set of forward and backward edges in a DFG intersected by a cut-set line such that if these

edges are removed from the graph, the graph becomes disjoint. The cut-set retiming involves

transferring a number of delays from edges of the same direction across a cut-set line of a DFG to all

edges of opposing direction across the same line. These transfers of delays do not alter the transfer

function of the DFG.

Figure 7.2(a) shows a DFG with a valid cut-set line. The line breaks the DFG into two disjoint

graphs, one consisting of nodes N0 and N1 and the other having node N2. The edge N1 !N2 is a

forward cut-set edge, while N2 !N0 and N2 !N1 are backward cut-set edges. There are two

delays on N2 !N1 and one delay on N2 !N0; one delay each is moved from these backward

edges to the forward edge. The retimed DFG minimizing the number of registers is shown in

Figure 7.2(b).

x[n] y[n]

clkclk

(b)

x[n] y[n]

(a) 

Figure 7.1 Pipeline registers are added to reduce the critical path delay of a combinational cloud.

(a) Original combinational logic. (b)Designwith three levels of pipelining stageswith two sets of pipeline

registers
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7.2.3 Retiming using the Delay Transfer Theorem

The delay transfer theorem helps in systematic shifting of registers across computational nodes.

This shifting does not change the transfer function of the original DFG.

The theorem states that, without affecting the transfer function of the system, N registers can be

transferred from each incoming edge of a node of a DFG to all outgoing edges of the same node,

or vice versa. Figure 7.3 shows this theorem applied across a node N0, where one register is moved

from each of the outgoing edges of the DFG to all incoming edges.

Delay transfer is a special case of cut-set retiming where the cut line is placed to separate a node

in a DFG. The cut-set retiming on the DFG then implements the delay transfer theorem.

7.2.4 Pipelining and Retiming in a Feedforward System

Pipelining of a feedforward system adds the appropriate number of registers in such a way that it

transforms a given dataflow graph G to a pipelined one Gr, such that the corresponding transfer

functionsH(z) ofG andHr(z) ofGr differ only by a pure delay z
�L, where L is the number of pipeline

stages added in the DFG. Adding registers followed by retiming facilitates the moving of pipeline

registers in a feedforward DFG from a set of edges to others to reduce the critical path of the design.

7.2.5 Re-pipelining: Pipelining using Feedforward Cut-set

Feedforward cut-set is a technique used to add pipeline registers in a feedforward DFG. The longest

(critical) path can be reduced by suitably placing pipelining registers in the architecture.

1 register
N0 N0

Figure 7.3 Delay transfer theorem moves one register across the node N0

+ + x
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x[n] y[n]
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u

t-se t line

N0

N1 N2

+ + x

a

x[n] y[n]

C
ut-se tline

N0

N1 N2

(b) (a) 

Figure 7.2 Cut-set retiming (a) DFG with cut-set line. (b) DFG after cut-set retiming
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Maintaining data coherency is a critical issue, but a cut-set eases the task of the designer in figuring

out the coherency issues in a complex design.

Figure 7.4 shows an example of a feedforward cut-set. If the two feedforward edges 1 ! 2

and 1 ! 3 are removed, the graph becomes disjoint consisting of node 1 in one graph and

nodes 2 and 3 in the other graph, and two parallel paths from input to output, in ! 1 ! 2 ! out1
and in ! 1 ! 3 ! out2, intersect this cut-set line once.

Adding N registers to each edge of a feedforward cut-set of a DFG maintains data coherency,

but the respective output is delayed by N cycles. Figure 7.4(b) shows three pipeline registers that

are added on each edge of the cut-set of Figure 7.4(a). The respective outputs are delayed by three

cycles.

Example: The difference equation and corresponding transfer function H(z) of a 5-coefficient

FIR filter are:

yn ¼ h0xn þ h1xn�1 þ h2xn�2 þ h3xn�3 þ h4xn�4 ð7:1aÞ

H zð Þ ¼ h0 þ h1z
�1 þ h2z

�2 þ h3z
�3 þ h4z

�4 ð7:1bÞ

Assuming that general-purpose multipliers and adders are used, the critical path delay of the

DFG consists of accumulated delay of the combinational cloud of one multiplier Tmult, and four

adders 4� Tadder. Assuming Tmult is 2 time units (tu) and Tadder¼ 1 tu, then the critical path of the

design is 6 tu. It is desired to reduce this critical path by partitioning the design into two levels of

pipeline stages. One feedforward cut-set can be used for appropriately adding one pipeline register

in the design. Two possible cut-set lines that reduce the critical path of the design to 4 tu are shown in

Figure 7.5(a). Cut-set line 2 is selected for adding pipelining as it requires the addition of only two

registers. The registers are added and the pipeline design is shown in Figure 7.5(b). This reflects that

the pipeline improvement is limited by the slowest pipeline stage. In this example the slowest

pipeline stage consists of a multiplier and two adders.

Although the potential speed-up of two-level pipelining is two times the original design, the

potential speed-up is not achieved owing to the unbalanced length of pipeline stages. The optimal

speed-up requires breaking the critical path into two exact lengths of 3 tu. This requires

pipelining inside the adder, which may not be very convenient to implement or may require

in
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Figure 7.4 (a) Feedforward cut-set. (b) Pipeline registers added on each edge of the cut-set
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more registers. It is also worth mentioning that in many designs convenience is preferred over

absolute optimality.

The pipeline design implements the following transfer function:

Hr zð Þ ¼ z�1HðzÞ ð7:2Þ

7.2.6 Cut-set Retiming of a Direct-form FIR Filter

Cut-set retiming can be applied to a direct-form FIR filter to get a transposed direct-form (TDF)

version. The TDF is formed by first reversing the direction of addition, successively placing cut-set

lines on every delay edge. Each cut-set line cuts two edges of the DFG, one in the forward and the

other in the backward direction. Then retiming moves the registers from the forward edge to the

backward edge. This transforms the filter from DF to TDF. This form breaks the critical path by

placing a register before every addition operation. Figure 7.6 shows the process.

Example: Consider an example of fine-grain pipelining where the registers are added inside a

computational unit. Figure 7.7(a) shows a 4-bit ripple carry adder (RCA). We need to reduce the

critical path of the logic by half. This requires exactly dividing the combinational cloud into two

stages. Figure 7.7(a) shows a cut-set line that divides the critical path into equal-delay logic, where

x x x x

+ + +

xn

h0 h1 h2 h3

yn

x x x x

+ ++

xn

h0 h1 h2 h3

yn

x x x x

+ ++

xn

h0 h1 h2 h3

yn

(b)(a) (c)

Figure 7.6 FIR filter in direct-form transformation to a TDF structure using cut-set retiming.

(a) A 4-coefficient FIR filter in DF. (b) Reversing the direction of additions in the DF and applying

cut-set retiming. (c) The retimed filter in TDF

x x x x x

+ + + +

xn
xn-1 xn-2

Cut set 1

Cut set 2

x x x x x

+ + + +

Critial Path 4th
CP

(b)(a) 

xn-3 xn-4 xn

h3 h0
h4h2h1h0 h2

h1 h4h3

yn-1

yn

Figure 7.5 Pipelining using cut-set (a) Two candidate cut-sets in a DFG implementing a 5-coefficient

FIR filter. (b) One level of pipelining registers added using cut-set 2
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Figure 7.7 Pipelining using cut-set (a) A cut-set to pipeline a 4-bit RCA. (b) Placing pipeline registers along the cut-set line
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all paths from input to output intersect the line once. Figure 7.7(b) places pipeline registers along the

cut-set line. The following code implements this design:

// Module to implement a 4-bit 2-stage pipeline RCA

module pipeline_adder

(

input clk,

input [3:0] a, b,

input cin,

output reg [3:0] sum_p,

output reg cout_p);

// Pipeline registers

reg [3:2] a_preg, b_preg;

reg [1:0] s_preg;

reg c2_preg;

// Internal wires

reg [3:0] s;

reg c2;

// Combinational cloud

always @*

begin

// Combinatinal cloud 1

{c2, s[1:0]} = a[1:0] + b[1:0] + cin;

// Combinational cloud 2

{cout_p, s[3:2]} = a_preg + b_preg + c2_preg;

// Put the output together

sum_p = {s[3:2], s_preg};

end

// Sequential circuit: pipeline registers

always @(posedge clk)

begin

s_preg <= s[1:0];

a_preg <= a[3:2];

b_preg <= b[3:2];

c2_preg <= c2;

end

endmodule

The implementation adds two 4-bit operands a and b. The design has one set of pipeline registers

that divides the combinational cloud into two equal stages. In the first stage, two LSBs of a and b are

added with cin. The sum is stored in a 2-bit pipeline register s_preg. The carry out from the

addition is saved in pipeline register c2_preg. In the same cycle, the combinational cloud

simultaneously adds the already registered two MSBs of previous inputs a and b in 2-bit pipeline

registers a_preg and b_prag with carry out from the previous cycle stored in pipeline register

c2_preg. This 2-stage pipelineRCAhas two full adders in the critical path, and for a set of inputs the

corresponding sumand carry out is available after one clock cycle; that is, after a latency of one cycle.

Example: Let us extend the previous example. Consider that we need to reduce the critical path to

one full adder delay. This requires adding a register after the first, second and third FAs. We need to
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apply three cut-sets in the DFG, as shown in Figure 7.8(a). To maintain data coherency, the cut-sets

ensure that all the paths from input to output have three registers. The resultant pipeline digital

design is given in Figure 7.8(b). It is good practice to line up the pipeline stages or to straighten out

the cut-sets lines for better visualization, as depicted in Figure 7.9.

7.2.7 Pipelining using the Delay Transfer Theorem

Aconvenientway to implement pipelining is to add the desired number of registers to all input edges

and then, by repeated application of the node transfer theorem, systematically move the registers to

break the delay of the critical path.

FA0

FA1

FA2

FA3
cout

cin

a3 a0a1a2 b0b1b2b3

S0S1S2S3

Figure 7.9 Following good design practice by lining up of different pipeline stages

FA FA FA FA

a [3]  b [3]t t a [2]  b [2]t t a [1]  b [1]t t a [0]  b [0]t t

s [1] ts [2] ts [3] t

FA FA FA FA

st-1 s[1] t [0]st-2 [2]

a [3]  b [3]t t a [2]  b [2]t t a [1]  b [1]t t a [0]  b [0]t t

at-3[3] bt-3 a[3] t-2[2] bt-2[2] at-1[1] bt-1[1]

st-3 s[3] t-3 s[2] t-3 s   [0][1] t-3

(b) (a) 

st[0] 

Figure 7.8 (a) Three cut-sets for adding four pipeline stages in a 4-bit RCA. (b) Four-stage pipelined

4-bit RCA
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Example: Figure 7.10 shows this strategy of pipelining applied to the earlier example of adding

one stage of pipeline registers in a 4-bit RCA. The objective is to break the critical path that is the

carry out path from node FA1 to FA2 of the DFG. To start with, one register is added to all the input

edges of the DFG, as shown in Figure 7.10(a). The node transfer theorem is applied on the FA0 node.

One register each is transferred from all incoming edges of node FA0 to all outgoing edges.

Figure 7.10(b) shows the resultant DFG.Now the node transfer theorem is applied on node FA1.One

delay each is again transferred from all incoming edges of node FA1 to all outgoing edges. This has

moved the pipeline register in the critical path of the DFG while keeping the data coherency intact.

The final pipelined DFG is shown in Figure 7.10(c).

Example: This example adds three pipeline registers by applying the delay transfer theorem to a

4-bit RCA. Figure 7.11 shows the node transfer theorem applied repeatedly to place three pipeline

cinFA3 FA2 FA1 FA0

cin

FA3 FA2 FA1 FA0

(b) (a) 

cin

FA3 FA2 FA1 FA0

cin

FA3 FA2 FA1 FA0

(d)(c) 

Figure 7.11 Adding three stages of pipeline registers by applying the node delay transfer theorem on

(a) the original DFG, around (b) FA0, (c) FA1, and (d) FA2

FA0FA1FA2FA3
cin

FA0FA1FA2FA3
cin

FA0FA1FA2FA3

cin

(c) (b) (a) 

Figure 7.10 Node transfer theorem to add one level of pipeline registers in a 4-bit RCA. (a) the

original DFG. (b) Node transfer theorem applied around node FA0. (c) Node transfer theorem applied

around FA1
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registers at different edges. To start with, three pipeline registers are added to all input edges of the

DFG, as shown in Figure 7.11(a). In the first step, three registers of first node FA0 are moved across

the node to output edges, and registers at other input edges are intact. The resultant DFG is shown in

Figure 7.11(b). Two registers from all input edges of node FA1 are moved to the output, as depicted

in Figure 7.11(c). And finally one register from each input edge of node FA2 is moved to all output

edges. This leaves three registers at input node FA3 and systematically places one register each

between two consecutiveFAnodes, thus breaking the critical path to oneFAdelaywhilemaintaining

data coherency. The final DFG is shown in Figure 7.11(d).

7.2.8 Pipelining Optimized DFG

Chapter 6 explained that a general-purpose multiplier is not used for multiplication by a constant

and a carry propagate adder (CPA) is avoided in the datapath. An example of a direct-form FIR filter

is elaborated in that chapter, where each coefficient is changed to its corresponding CSD

representation. For 60–80 dB stop-band attenuation, up to four significant non-zero digits in the

CSD representation of the coefficients are considered. Multiplication by a constant is then

implemented by four hardwired shift operations. Each multiplier generates a maximum of four

partial products (PPs). A global CVis computedwhich takes care of sign extension elimination logic

and two’s complement logic of adding 1 to theLSBposition of negative PPs. ThisCVis also added in

the PPs reduction tree. AWallace reduction tree then reduces the PPs and CV into two layers, which

are added using any CPA to compute the final output.

A direct-form FIR filter with three coefficients is shown in Figure 7.12. An optimized design with

CSDmultiplications, PPs andCV reduction into two layers and final addition of the two layers using

CPA is shown in Figure 7.13(a).

The carry propagate adder is a basic building block to finally add the last two terms that are at the

output of a compression tree. The trees are extensively used in fully dedicated architecture. Adding

pipeline registers in compression trees using cut-set retiming is straightforward as all the logic levels

are aligned and all the paths run in parallel. A cut-set can be placed after any number of logic levels

and pipeline registers can be placed at the location of the cut-set line.

The pipelined optimized design of the DF FIR filter of Figure 7.13(a) with five sets of pipeline

registers in the compression tree is shown in Figure 7.13(b).

x x x

+ +

xn x[n-1]

h0 h1 h2

x[n-2]

y[n]

Figure 7.12 Direct-form FIR filter with three coefficients
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7.2.9 Pipelining Carry Propagate Adder

Some of the CPAs are very simple to pipeline as the logic levels in their architectures are aligned and

all paths from input to output run in parallel. The conditional sum adder (CSA) is a good example

where cut-set lines can be easily placed for adding pipeline registers, as shown in Figure 7.14. For

other CPAs, it is not trivial to augment pipelining. An RCA, as discussed in earlier examples,

requires careful handling to add pipeline registers, as does a carry generate adder.

7.2.10 Retiming Support in Synthesis Tools

Most of the synthesis tools do support automatic or semi-automatic retiming. To get assistance in

pipelining, the user can also add the desired number of registers at the input or output of a

feedforward design and then use automatic retiming to move these pipeline registers to optimal

places. In synthesis tools, while setting timing constraints, the user can specify a synthesis option

for the tool to automatically retime the registers and place them evenly in the combinational logic.

The Synopsys design compiler has a balance_registers option to achieve automatic retiming [7].

This option cannot move registers in a feedback loop and some other restrictions are also applicable.

7.2.11 Mathematical Formulation of Retiming

One way of performing automatic retiming is to first translate the logic into a mathematical

model [2] and then apply optimization algorithms and heuristics to optimize the objectives set in the

model [4, 5]. These techniques aremainly used by synthesis tools and usually a digital designer does

3:2 3:2 3:2 3:2

3:2 3:2 3:2

3:2 3:2

3:2

3:2

CPA

Global
CV

x[n-1]x[n] x[n-2]

h0x[n] h1x[n-1] h2x[n-2]

y[n]
(b)

3:2 3:2 3:2 3:2

3:2 3:2 3:2

3:2 3:2

3:2

3:2

CPA

x[n-1]x[n] x[n-2]

h0x[n] h1 hx[n-1] 2x[n-2]

(a)

Figure 7.13 (a) Optimized implementation of 3-coefficient direct-form FIR filter. (b) Possible locations

to apply cut-set pipelining to a compression tree
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Figure 7.14 Pipelining a 5-bit conditional sum adder (CSA)
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not get into the complications while designing the logic for large circuits. For smaller designs, the

problem can be solved intuitively for effective implementation [6]. This section, therefore, only

gives a description of the model and mentions some of the references that solve the models.

In retiming, registers are systematically moved across a node from one edge to another. Let

us consider an edge between nodes i and j, and model the retiming of the edge eij. The retiming

equation is:

wrðeijÞ ¼ wðeijÞþ rðjÞ�rðiÞ

wherew(eij) andwr(eij) are the number of registers on edge eij before and after the retiming, respectively,

and r(i) and r( j) are the number of registersmoved across nodes i and j using node transfer theorem. The

valueof r( j) is positive if registers aremoved fromoutgoingedges ofnode j to its incomingedge eij, and it

is negative otherwise. A simple example of one edge is illustrated in Figure 7.15.

The retiming should optimize the design objective of either reducing the number of delays or

minimizing the critical path. In any case, after retiming the number of registers on any edge must

not be negative. This is written as a set of constraints for all edges in a mathematical modeling

problem as:

wðeijÞþ rð jÞ�rðiÞ � 0 for all edges eij

Secondly, retiming should try to break the critical path between twonodes bymoving the appropriate

number of extra registers on the corresponding edge. The constraint is written as:

wðeijÞþ rð jÞ�rðiÞ � C

for all edges eij in theDFG that requiresC additional registers tomake the nodes i and jmeet timings.

The solution of the mathematical modeling problem for a DFG computes the values of all r(v)

for all the nodes v in the DFG such that the retimed DFG does not violate any constraints and still

optimizes the objective function.

7.2.12 Minimizing the Number of Registers and Critical Path Delay

Retiming is also used tominimize the number of registers in the design. Figure 7.16(a) shows a graph

with five registers, and (b) shows a retimed graph where registers are retimed to minimize the total

number to three.

To solve the problem for large graphs, register minimization is modeled as an optimization

problem. The problem is also solved using incremental algorithms where registers are recursively

i j

r(i) = +2

eijw(eij) = 1

r(j) = -1

(a)

i j

wr(eij) = 2

(b)

Figure 7.15 Node retiming mathematical formulation. (a) An edge eij before retiming with w(eij)¼ 1.

(b) Two registers are moved-in across node i and one register is moved out across node j, for the retimed

edge wr(eij)¼ 2
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moved tovertices,where the number of registers isminimized and the retimed graph still satisfies the

minimum clock constraint [7].

As the technology is shrinking, wire delays are becoming significant, so it is important for the

retiming formulation to consider these too [8].

7.2.13 Retiming with Shannon Decomposition

Shannon decomposition is one transformation that can extend the scope of retiming [8, 14]. It breaks

down a multivariable Boolean function into a combination of two equivalent Boolean functions:

f ðx0; x1; . . . ; xN�1Þ ¼ �x0 : f ð0; x1; . . . ; xN�1Þþx0 : f ð1; x1; . . . ; xN�1Þ

The technique identifies a late-arriving signal to a block and duplicates the logic in the block with x0
assigning values of 0 and 1. A 2:1 multiplexer then selects the correct output from the duplicated

logic. A carry select adder is a good example of Shannon decomposition. The carry path is the

slowest path in a ripple carry adder. The logic in each block is duplicatedwith fixed carry 0 and 1 and

finally the correct value of the output is selected using a 2:1 multiplexer. A generalized Shannon

decomposition can also hierarchically work on a multiple-input logic, as in a hierarchical carry

select adder or a conditional sum adder.

Figure 7.17(a) shows a design with a slowest input x0 to node f0. The dependency of f0 on x0 is

removed by Shannon decomposition that duplicates the logic in f0 and computes it for both possible

y1

y2 y1

y2

x

x

Figure 7.16 Retiming to minimize the number of registers
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Figure 7.17 (a) Shannon decomposition removing the slowest input x0 to f0 and duplicating the logic

in f0 with 0 and 1 fixed input values for x0. (b) The design is then retimed for effective timing
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input values of x0. A 2:1 multiplexer then selects the correct output. The registers in this Shannon

decomposed design can be effectively retimed, as shown in Figure 7.17(b).

7.2.14 Peripheral Retiming

In peripheral retiming all the registers are moved to the periphery of the design either at the input or

output of the logic. The combinational logic is then globally optimized and the registers are retimed

into the optimized logic for best timing. This movement of registers on the periphery requires

successive application of the node transfer theorem. In cases where some of the edges connected to

the node do not have requisite registers, negative registers are added to make the movement of

registers on the other edges possible. These negative registers are then removed by moving them to

edges with positive retimed registers.

Figure 7.18 shows a simple case of peripheral retiming where the registers in the logic are moved

to the input or output of the design. The gray circles represent combinational logic. The

combinational logic is then optimized, as shown in Figure 7.18(c) where the registers are retimed

for optimal placement.

7.3 Digital Design of Feedback Systems

Meeting timings in FDA-based designs for feedback systems requires creative techniques. Before

elaborating on these, some basic terminology will be explained.

7.3.1 Definitions

7.3.1.1 Iteration and Iteration Period

A feedback system computes an output sample based on previous output samples and current and

previous input samples. For such a system, iteration is defined as the execution of all operations in an

algorithm that are required to compute one output sample. The iteration period is the time required

for execution of one iteration of the algorithm.

In synchronous hard–real time systems, the system must complete execution of the current

iteration before the next input sample is acquired. This imposes an upper bound on the iteration

period to be less than or equal to the sampling rate of the input data.

(a) (b) (c)

Figure 7.18 Peripheral retiming. (a) The original design. (b) Moving registers to the periphery.

(c) Retiming and optimization
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Example: Figure 7.19 shows an IIR system implementing the difference equation:

y n½ � ¼ ay n�1½ � þ x½n� ð7:3Þ

The algorithm needs to perform onemultiplication and one addition to compute an output sample in

one iteration. Assume the execution times of multiplier and adder are Tm and Ta, respectively. Then

the iteration period for this example is Tm þ Ta. With respect to the sample period Ts of input data,

these timings must satisfy the constraint:

Tm þ Ta � Ts ð7:4Þ

7.3.1.2 Loop and Loop Bound

A loop is defined as a directed path that begins and ends at the same node. In Figure 7.19 the directed

path consisting of nodes 1 ! 2 ! 3 ! 1 is a loop. The loop bound of the ith loop is defined as

Ti/Di, where Ti is the loop computation time andDi is the number of delays in the loop. For the loop

in Figure 7.19 the loop bound is (Tm þ Ta)/1.

7.3.1.3 Critical Loop and Iteration Bound

A critical loop of a DFG is defined as the loop with maximum loop bound. The iteration period of

a critical loop is called the iteration period bound (IPB). Mathematically it is written as:

IPB ¼ max
all Li

Ti

Di

� �

where Ti andDi are the cumulative computational time of all the nodes and the number of registers in

the loop Li, respectively.

7.3.1.4 Critical Path and Critical Path Delay

The critical path of a DFG is defined as the path with the longest computation time delay among all

the paths that contain zero registers. The computation time delay in the path is called the critical path

delay of the DFG.

+
x[n]

y[n]

a y[n-1]

ay[n-1]

ay[n-1] + x[n] = y[n]
1

2

3
x

Figure 7.19 Iteration period of first-order IIR system is equal to Tm þ Ta
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The critical path has great significance in digital design as the clock period is lower bounded by the

delay of the critical path. Reduction in the critical path delay is usually the main objective in many

designs. Techniques such as selection of high-performance computational building blocks of adders,

multipliers and barrel shifters and application of retiming transformations help in reducing the

critical path delay.

As mentioned earlier, for feedforward designs additional pipeline registers can further reduce the

critical path. Although in feedback designs pipelining cannot be directly used, retiming can still help

in reducing the critical path delay. In feedback designs, the IPB is the best time the designer can

achieve using retiming without using more complex pipelining transformations. The transforma-

tions discussed in this chapter are very handy to get to the target delay specified by the IPB.

Example: The DFG shown in Figure 7.20 has three loops, L1, L2 and L3. Assume that

multiplication and addition respectively take 2 and 1 time units. Then the loop bounds (LBs) of

these loops are:

LB1 ¼ T1

D1
¼ ð1þ 1þ 2þ 1Þ

2
¼ 2:5

LB2 ¼ T2

D2
¼ ð1þ 2þ 1þ 2þ 1Þ

2
¼ 3:5

LB3 ¼ T3

D3
¼ ð1þ 2þ 1Þ

2
¼ 2

L2 is the critical loop as it has the maximum loop bound; that is, IPB¼max{2.5, 3.5, 2}¼ 3.5 time

units The critical path or the longest path of theDFG isN4 ! N5 ! N6 ! N3 ! N1, and the delay

on the path is 7 time units. The IPB of 3.5 time units indicates that there is still significant potential

+
x[n]

+

c

ba

+x x

x

N1

N3

N2

N6 N5

N4

y[n]

L1 L2

L3

Figure 7.20 Dataflow graph with three loops. The critical loop L2 has maximum loop bound of 3.5

timing units
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to reduce the critical path using retiming, although this requires fine-grain insertion of algorithmic

registers inside the computational units.

The designer may choose not to get to this complexity and may settle for a sub-optimal solution

where the critical path is reduced but not brought down to the IPB. In the dataflow graph, recursively

applying the delay transfer theorem around nodeN4 and then aroundN5modifies the critical paths to

N6 ! N3 ! N1 or N2 ! N3 ! N1 with critical path delay of both the paths equal to 4 time units.

The DFG is shown in Figure 7.21(a).

Further reducing the critical path delay to the IPB requires a fine-grain pipelined multiplier. Each

multiplier node N6 and N2 are further partitioned into two sub-nodes, N61,N62 and N21,N22,

respectively, such that the computational delay of the multiplier is split as 1.5 tu and 0.5 tu,

respectively, and the critical path is reduced to 3.5 tu, which is equal to the IPB. The final design

is shown in Figure 7.21(b).

7.3.2 Cut-set Retiming for a Feedback System

In a feedback system, retiming described in section 7.2.2 can be employed for systematic shifting of

algorithmic delays of a dataflow graphG from one set of edges to others to maximize defined design

objectives such that the retimedDFG,Gr, has same transfer function. The defined objectivesmay be

to reduce the critical path delay, the number of registers, or the power dissipation. The designer may

desire to reduce a combination of these.

Example: A second-order IIR filter is shown in Figure 7.22(a). The DFG implements the

difference equation:

y n½ � ¼ ay n�2½ � þ x½n� ð7:5Þ

The critical path of the system is Tm þ Ta, where Tm and Ta are the computational delays of a

multiplier and adder.

Figure 7.22(a) also shows the cut-set line tomove a delay for breaking the critical path of theDFG.

The retimed DFG is shown in (b) with a reduced critical path equal to max{Tm, Ta}. The same

retiming can also be achieved by applying the delay transfer theorem around the multiplier node.

+
x[n]
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Figure 7.21 (a) Retimed DFG with critical path of 4 timing units and IPB of 3.5 timing units. (b) Fine-

grain retimed DFG with critical path delay¼ IPB¼ 3.5 timing units
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Example: A third-order DF-II IIR filter is shown in Figure 7.23(a). The critical path of the DFG

consists of one multiplier and three adders. The path is shown in the figure as a shaded region.

Two cut-sets are applied on the DFG to implement feedback cut-set retiming. On each cut-set, one

register from the cut-set line up-to-down ismoved to two cut-set lines fromdown-to-up. The retimed

DFG is shown in Figure 7.23(b) with reduced critical path of one multiplier and two adders.

7.3.3 Shannon Decomposition to Reduce the IPB

For recursive systems, the IPB defines the best timing that can be achieved by retiming. Shannon

decomposition can reduce the IPB by replicating some of the critical nodes in the loop and

computing them for both possible input bits and then selecting the correct answer when the output

of the preceding node of the selected path is available [14].

Figure 7.24(a) shows a critical loop with one register and four combinational nodes N0, N1, N2

and N3. Assuming each node takes 2 time units for execution, the IPB of the loop is 10 tu. By taking

the nodesN2 and N3 outside the loop and computing values for both the input 0 and 1, the IPB of the

loop is now reduced to around 4 tu because only two nodes and aMUX are left in the loop, as shown

in Figure 7.24(b).

7.4 C-slow Retiming

7.4.1 Basics

The C-slow retiming technique replaces every register in a dataflow graph with C registers. These

can then be retimed to reduce the critical path delay. The resultant design now can operate on C

distinct streams of data. An optimal use of C-slow design requires multiplexing ofC streams of data

at the input and demultiplexing of respective streams at the output.

The critical path of a DFG implementing a first-order difference equation is shown in

Figure 7.25(a). It is evident from Figure 7.25(b) that the critical path delay of the DFG cannot

be further reduced using retiming.

C-slow is very effective in further reducing the critical path of a feedback DFG for multiple

streams of inputs. This techniqueworks by replicating each register in the DFGwithC registers and

then retiming it for critical path reduction. The C-slow technique requiresC streams of input data or

periodically feedingC� 1 nulls after every valid input to the DFG. Thus effective throughput of the

design for one streamwill be unaffected by the C-slow technique, but it provides an effectiveway to

implement coarse-grain parallelism without adding any redundant combinational logic as only
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Figure 7.22 Cut-set retiming (a) Dataflow graph for a second-order IIR filter. (b) Retimed DFG using

cut-set retiming
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registers need to be replicated. The modified design of the IIR filter is shown in Figure 7.26,

implementing 2-slow. The new design is fed two independent streams of input. The system runs in

complete lock step processing these two streams of input x½n� and x0½n� and producing two

corresponding streams of output y½n� and y0½n�.
Although theoretically a circuit can be C-slowed by any value ofC, register setup time and clock-

to-Q delay bound the number of resisters that can be added and retimed. A second limitation is in

designs that may have odd places requiring many registers in retiming and thus results in a huge

increase in area of the design.
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Figure 7.26 C-slow retiming (a) Dataflow graph implementing a first-order difference equation. (b) A

2-slow DFG with two delays to be used in retiming

N1N0

N2N3

1

1

(a) 

N1N0

N2N3

N2N3
0

1

(b)

Figure 7.24 Shannon decomposition for reducing the IPB (a) Feedback loopwith IPB of 8 timing units.

(b) Using Shannon decomposition the IPB is reduced to around 4 timing units
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Figure 7.25 (a) Critical path delay of a first-order IIR filter. (b) Retiming with one register in a loop will

result in the same critical path
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7.4.2 C-slow for Block Processing

The C-slow technique works well for block processing algorithms. C blocks from a single stream

of data can be simultaneously processed by the C-slow architecture. A good example is AES

encryption where a block of 128 bits is encrypted. By replicating every register in an AES

architecture, with C registers the design can simultaneously encrypt C blocks of data.

7.4.3 C-slow for FPGAs and Time-multiplexed Reconfigurable Design

As FPGAs are rich in registers, the C-slow technique can effectively use these registers to process

multiple streams of data. In many designs the clock frequency is fixed to a predefined value, and the

C-slow technique is then very useful to meet the fixed frequency of the clock.

C-slow and retiming can also be used to convert a fully parallel architecture to a time-multiplexed

design where C partitions can be mapped on run-time reconfigurable FPGAs. In a C-slow design,

as the input is only valid at everyCth clock, retiming canmove the registers to divide the design into

C partitions where the partitions can be optimally created to equally divide the logic into C parts.

The time-multiplexed design requires less area and is also ideal for run-time reconfigurable logic.

Figure 7.27 shows the basic concept. TheDFGof (a) is 2-slowed as shown in (b). Assuming all the

three nodes implement some combinational logic, that is repeated twice in the design. The design

is retimed to optimally place the registers while creating two equal parts. The C-slowed and retimed

design is given in Figure 7.27(c). This DFG can now be mapped on time-multiplexed logic, where

the data is fed into the design at one clock cycle and the results are saved in the registers. Thesevalues

are input to the design that reuses the same computational nodes so C-slow reduces the area.
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2-slow
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Figure 7.27 C-slow technique for time-multiplexed designs. (a) Original DFG with multiple nodes

and few registers and large critical path. (b) Retimed DFG. (c) The DFG partitioned into two equal sets of

logic where all the three nodes can be reused in a time-multiplexed design
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7.4.4 C-slow for an Instruction Set Processor

C-slow can be applied to microprocessor architecture. The architecture can then run a multi-

threaded application where C threads are run in parallel. This arrangement does require a careful

design of memories, register files, caches and other associated units of the processor.

7.5 Look-ahead Transformation for IIR filters

Look-ahead transformation (LAT) can be used to add pipeline registers in an IIR filter. In a simple

configuration, the technique looks ahead and substitutes the expressions for previous output values

in the IIR difference equation. The technique will be explained using a simple example of a

difference equation implementing a first-order IIR filter:

y n½ � ¼ ay n�1½ � þ x n½ � ð7:6Þ

Using this expression, y[n� 1] can be written as:

y n�1½ � ¼ ay n�2½ � þ x n�1½ � ð7:7Þ

On substituting (7.7) in (7.6) we obtain:

y n½ � ¼ a2y n�2½ � þ ax n�1½ � þx n½ �

This difference equation is implemented with two registers in the feedback loop as compared to one

in the original DFG. Thus the transformation improves the IPB. These registers can be retimed for

better timing in the implementation. The original filter, transformed filter and retiming of the

registers are shown in Figure 7.28.

The value of y[n� 2] can be substituted again to add three registers in the feedback loop:

y n½ � ¼ a3y n�3½ � þ a2x n�2½ � þ ax n�1½ � þx n½ �

In general, M registers can be added by repetitive substitution of the previous value, and the

generalized expression is given here:

y n½ � ¼ aMy n�M½ � þ
XM�1

i¼0

aix½n�i� ð7:8Þ

y[n]x[n]
+

X

a a2

y[n]x[n]

X

+ +

X

x[n] y[n]

a

+ +

X X

a2

(b)(a) (c)

Figure 7.28 Look-ahead transformation. (a) Original first-order IIR filter. (b) Adding one register in the

feedback path using look-ahead transformation. (c) Retiming the register to get better timing
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The generalized IIR filter implementing this difference equation withM registers in the feedback

loop is given in Figure 7.29. This reduces the IPB of the orginal DFGby a factor ofM. The difference

equation implements the same transfer function H(z):

H zð Þ ¼ 1

1�az�1
¼
XM�1

i¼0
aiz�i

1� az�1ð ÞM ð7:9Þ

The expression in (7.8) adds an extraM�1 coefficients in the numerator of the transfer function of

the systemgiven in (7.9), requiringM� 1multiplications andM� 1 additions in its implementation.

These extra computations can be reduced by constraining M to be a power of 2, so that M¼ 2m.

This makes the transfer function of (7.9) as:

H zð Þ ¼ 1

1�az�1
¼
Ym

i¼1
1þ az�1ð Þ2i
� �
1� az�1ð ÞM ð7:10Þ

The numerator of the transfer function now can be implemented as a cascade of m FIR filters each

requiring only one multiplier, where m¼ log2M.

Example: This example increases the IPB of a first-order IIR filter by M ¼ 8. Applying the

look-ahead transformation of (7.9), the transfer function of a first-order system with a pole at 0.9 is

given as:

H zð Þ ¼ 1

1�0:9z�1
¼

1þ 0:9z�1 þ 0:81z�2 þ 0:729z�3 þ 0:6561z�4 þ 0:5905z�5 þ 0:5314z�6þ
0:4783z�7

1�0:4305z�8

Using (7.9), this transfer function can be equivalently written as:

H zð Þ ¼ 1

1�0:9z�1
¼ 1þ 0:9z�1ð Þ 1þ 0:81z�2ð Þð1þ 0:6561z�4Þ

1�0:4305z�8

y[n]x[n]

Feed forward part

aM-1

a2

a

y[n-m]

aM

+

X

+

+

+

X

X

X

+

Figure 7.29 Look-ahead transformation to addM registers in the feedback path of a first-order IIR filter
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Both these expressions achieve the objective of augmenting eight registers in the feedback loop,

but the transfer function using (7.9) requires three multipliers whereas the transfer function

using (7.10) requires eight multipliers.

7.6 Look-ahead Transformation for Generalized IIR Filters

The look-ahead transformation techniques can be extended for pipelining anyNth-order generalized

IIR filter. All these general techniques multiply and divide the transfer function of the IIR filter by

a polynomial that adds more registers in the critical loop or all loops of an IIR filter. These registers

are then moved to reduce the IPB of the graph representing the IIR filter.

An effective technique is cluster look-ahead (CLA) transformation [9–11]. This technique adds

additional registers bymultiplying and dividing the transfer functionby a polynomial 1þ PM
i¼1 ciz

�i
� �

and then solving the product in the denominator 1þ PN
i¼1 aiz

�i
� �

1þ PM
i¼1 ciz

�i
� �

to force the first

M coefficients to zero:

H zð Þ ¼
1þ

XM

i¼1
ciz

�i

1þ
XN

i¼1
aiz�i

� �
1þ

XM

i¼1
ciz�i

� �

¼
1þ

XM

i¼1
ciz

�i

1þ
XNþM

i¼M
diz�i

ð7:11Þ

This technique does not guarantee stability of the resultant IIR filter. To solve this, scatter-

edcluster look-ahead (SCA) is proposed. This adds, for every pole, an additional M – 1 poles and

zeros such that the resultant transfer function is stable. The transfer function H(z) is written as a

function of zM that addsM registers for every register in the design. These registers are thenmoved to

reduce the IPB of the dataflow graph representing the IIR filter. For conjugate poles at re�jy, that

represents a second-order section ð1�2r cos yz�1 þ r2z�2Þ. ConstrainingM to be a power of 2, and

applying SCA using expression (7.10), the transfer function corresponding to this pole pair changes

to:

H zð Þ ¼
Ylog2M

i¼1
1þ re jyz�1

� �2i� �
1þ re�jyz�1

� �2i� �
1� re jyz�1ð ÞM
� �

1� re�jyz�1ð ÞM
� �

¼
Ylog2M

i¼1
1þ 2r2

i

cos 2i yz�2i þ r2iþ 1z�2iþ 1
� �
1�2rM cos Myð Þz�M þ r2Mz2Mð Þ

ð7:12Þ

which is always stable.

There are other transformations. For example, a generalized cluster look-ahead (GCLA) does not

force the first M coefficients in the expression to zero; rather it makes them equal to �1 or some

signed power of 2 [11]. This helps in achieving a stable pipelined digital IIR filter.
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7.7 Polyphase Structure for Decimation and
Interpolation Applications

The sampling rate change is very critical in many signal processing applications. The front end of a

digital communication receiver is a good example. At the receiver the samples are acquired at a very

high rate, and after digitalmixing they go through a series of decimation filters. At the transmitter the

samples are brought to a higher rate using interpolation filters and then are digitally mixed before

passing the samples to a D/A converter. A polyphase decomposition of an FIR filter conveniently

architects the decimation and interpolation filters to operate at slower clock rate [12].

For example, a decimation by D filters computes only the Dth sample at an output clock that is

slower by a factor of D than the input data rate. Similarly, for interpolation by a factor of D,

theoretically the firstD� 1 zeros are inserted after every sample and then the signal is filtered using

an interpolation FIR filter. The polyphase decomposition skips multiplication by zeros while

implementing the interpolation filter.

The polyphase decomposition achieves this saving by first splitting a filter with L coefficients into

D sub-filters denoted by ek[n] for k¼ 0 . . . D� 1, where:

h n½ � ¼
XD�1

k¼0

ek n½ � where ek n½ � ¼ h½nDþ k� ð7:13Þ

By simple substitution the desired decomposition is formulated as [13]:

H zð Þ ¼ h0 þ hDz
�D þ hDz

�2D þ . . .

þ h1z
�1 þ hDþ 1z

� Dþ 1ð Þ þ h2Dþ 1z
� 2Dþ 1ð Þ þ . . .

þ h2z
�2 þ hDþ 2z

�ðDþ 2Þ þ h2Dþ 2z
�ð2Dþ 2Þ þ . . .

..

. ..
. ..
. ..
.

þ hD�1z
�ðD�1Þ þ h2D�1z

�ð2D�1Þ þ h3D�1z
�ð3D�1Þ þ . . .

Regrouping of the expressions results in:

H zð Þ ¼ h0 þ hDz
�D þ h2Dz

�2D þ . . .

þ z�1 h1 þ hDþ 1z
�D þ h2Dþ 1z

�2D þ . . .ð Þ
þ z�2 h2 þ hDþ 2z

�D þ h2Dþ 2z
�2D þ . . .ð Þ

..

. ..
. ..
. ..
.

þ z�ðD�1Þ hD�1 þ h2D�1z
�D þ h3D�1z

�2D þ . . .ð Þ
¼ E0 zDð Þþ z�1E1 zDð Þþ z�2E2 zDð Þþ . . . þ z� D�1ð ÞED�1 zDð Þ

In closed form H(z) is written as:

H zð Þ ¼
XD�1

k¼0

z�kEkðzDÞ ð7:14Þ

This expression is the polyphase decomposition. For decimation and interpolation applications,

H(z) is implemented as D parallel sub-systems z�kEk(z
D) realizing (7.14), as shown in Figure 7.30.
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The Noble identities can be used for optimizing multi-rate structures to execute the filtering logic at

a slower clock. The Noble identities for decimation and interpolation are shown in Figure 7.31.

The polyphase decomposition of a filter followed by application of the corresponding Noble

identity for decimation and interpolation are shown in Figures 7.30(c) and (d).

E0(z
D) ↓D

E1(z
D)

E2(z
D)

ED-1(z
D)

z-1

z-1

z-1

x[n]

z-1

z-1

z-1

Filter operates at slower output data rate

Implement as switch 
operating at input data  rate

↓D E0(z)

E1(z)

E2(z)

ED-1(z)

↓D

↓D

↓D

y[n]

(b)(a) 

E0(z
D)

E1(z
D)

ED-1(z
D)

y[n]

z-1

z-1

z-1

↑D
x[n]

E0(z) ↑D

E1(z)

E2(z)

ED-1(z)

↑D

↑D

↑D

z-1

z-1

z-1

y[n]x[n]

Realize as filter at 
slower input data rate

Implement as switch 
executing at output clock

(c) (d)

Figure 7.30 (a) Polyphase decomposition for decimation byD. (b) Application of theNoble identity for

effective realization of a polyphase decomposed decimation filter. (c) Polyphase decomposition for

interpolation by D. (d) Application of the Noble identity for effective realization of a polyphase

decomposition interpolation filter
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7.8 IIR Filter for Decimation and Interpolation

IIR filters are traditionally not used in multi-rate signal processing because they do not exploit the

polyphase structure that helps in performing only needed computations at a slower clock rate. For

example, while decimating a discrete signal by a factor ofD, the filter only needs to compute every

Dth sample while skipping the intermediate computations. For a recursive filter, H(z) cannot be

simply written as a function of zD.

This section presents a novel technique for using an IIR filter in decimation and interpolation

applications [15]. The technique first represents the denominator ofH(z) as a function of zD. For this

the denominator is first written in product form as:

H zð Þ ¼ BðzÞ
AðzÞ ¼

XM�1

k¼0
bkz

�kQN1�1
k¼0 1�pkz�1ð ÞQN2�1

k¼0 1�rke jyk z�1ð Þð1�rke�jyk z�1Þ

For each term in the product, the transformation converts the expression of A(z) with N1 real and

N2 complex conjugate pairs into a function of zD by multiplying and dividing it with requisite

polynomials. For a real pole p0, the requisite polynomial and the resultant polynomial for different

values of D are given here:

D ¼ 2: ð1�p0z
�1Þ ð1þ p0z

�1Þ ¼ ð1�p20z
�2Þ

D ¼ 3: ð1�p0z
�1Þ ð1þ p0z

�1 þ p20z
�2Þ ¼ ð1�p30z

�3Þ
..
. ..

. ..
.

ð1�p0z
�1Þ ð1þ

XD
k¼1

pK0 Z
�KÞ

Requisite polynomial

¼ ð1�pD0 z
�DÞ

Similarly for a complex conjugate pole pair rejy and re–jy, the use of requisite polynomial P(z) to

transform the denominator A(z) as a function of z–D is given here:

D ¼ 2 : 1�re jyz�1
� �

1�re�jyz�1
� �

1þ re jyz�1
� �

1þ re�jyz�1
� �

¼ 1�r2e2jyz�2
� �

1�r2e�2jyz�2
� �

¼ 1�2r2 cos2y z�2 þ r4z�4

D ¼ 3 : 1�re jyz�1
� �

1�re�jyz�1
� �

1þ re jyz�1 þ r2e2jyz�2
� �

1þ re�jyz�1 þ r2e�2jyz�2
� �

¼ 1�2r3 cos3y z�3 þ r6z�6

H(zD) ↓D ↓D H(z)

(a)

H(zD)↑ D H(z) ↑ D

(b)

Figure 7.31 Noble identities for (a) decimation and (b) interpolation
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The generalized expression is:

1�re jyz�1
� �

1þ
XD
k¼1

rke jkyz�k

 !
1�re�jyz�1
� �

1þ
XD
k¼1

rke�jkyz�k

 !

¼ 1�2rDcosDyz�D þ r2Dz�2D

This manipulation amounts to adding D� 1 complex conjugate poles and their corresponding

zeros. A complex conjugate zero pair contributes a 2(D� 1)th-order polynomial P(z) with real

coefficients in the numerator. A generalized close form expression of Pi(z) for a pole pair i can be

computed as:

Pi zð Þ ¼
XD�1

k¼0

rkejkyz�k

 ! XD�1

l¼0

rle�jlyz�l

 !
¼
XD�1

k¼0

XD�1

l¼0

rkþlejðk�lÞyz�ðkþlÞ

The complex exponentials in the expression can be paired for substitution as cosines using Euler’s

identity. The resultant polynomial will have real coefficients.

All these expressions ofPi(z) aremultipliedwithB(z) to formulate a single polynomialB0(z) in the
numerator. This polynomial is decomposed in FIR polyphase filters for decimation and interpolation

applications. The modified expression A0(z) which is now a function of z–D is implemented as

an all-pole IIR system. This system can be broken down into parallel form for effective realization.

All the factors of the denominator can also be multiplied to write the denominator as a single

polynomial where all powers of z are integer multiples of D.

The respective Noble identities can be applied for decimation and interpolation applications.

The IIR filter decomposition for decimation by a factor of D is shown in Figure 7.32. An example

below illustrates the decomposition for a fifth-order IIR filter.

The decomposition can also be used for interpolation applications. For interpolation, the all-pole

IIR component is implemented first and then its output is passed through a polyphase decomposed

numerator. Both the components execute at input sample rate and output is generated at a fast

running switch at output sampling rate. The design is shown in Figure 7.33.

Example: Use the given fifth-order IIR filter with cut-off frequency p/3 in decimation and

interpolation by three structures. TheMATLAB� code for designing the filter with 60 dB stop-band

attenuation is given here:

Fpass = 1/3; % Passband Frequency

Apass = 1; % Passband Ripple (dB)

Astop = 60; % Stopband Attenuation (dB)

% Construct an FDESIGN object and call its ELLIP method.

h = fdesign.lowpass(’N,Fp,Ap,Ast’, N, Fpass, Apass,Astop);

Hd = design(h, ’ellip’);

% Get the transfer function values.

[b, a] = tf(Hd);
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The transfer function is:

H zð Þ ¼ B zð Þ
A zð Þ ¼

0:0121þ 0:0220z�1 þ 0:0342z�2 þ 0:0342z�3 þ 0:0220z�4 þ 0:0121z�5

1�2:7961z�1 þ 4:0582z�2�3:4107z�3 þ 1:6642z�4�0:3789z�5

The denominator A(z) is written in product form having first- and second-order polynomials with

real coefficients:

H zð Þ ¼ 0:0121þ 0:0220z�1 þ 0:0342z�2 þ 0:0342z�3 þ 0:0220z�4 þ 0:0121z�5

1�0:6836z�1ð Þ 1�0:9460z�1 þ 0:8828z�2ð Þð1�1:1665z�1 þ 0:6278z�2Þ

↓D
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Figure 7.32 (a) and (b) Implementation of an IIR filter for decimation applications
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By multiplying and dividing the expression with requisite factors of polynomial P(z), the factors

in the denominator are converted into a function of z�3. This computation for the denominator is

given below:

real pole 0 : 1�0:6836z�1ð Þ 1þ 0:5088z�1 þ 0:2589z�2ð Þ ¼ 1�0:1318z�3

pole pair 1; 2 : 1�0:9460z�1 þ 0:8828z�2ð Þ 1þ 0:0060z�1�0:8657z�2 þ 0:0052z�3 þ 0:7495z�4ð Þ
¼ 1þ 0:0156z�3 þ 0:6489z�6

pole pair 3; 4 : 1�1:1665z�1 þ 0:6278z�2ð Þ 1þ 0:5160z�1�0:2621z�2 þ 0:2726z�3 þ 0:2791z�4ð Þ
¼ 1þ 0:6804z�3 þ 0:1475z�6

Bymultiplying all the above terms we get the coefficients of A0(z)¼A(z)P(z) as a function of z�3:

A0 zð Þ ¼ 1þ 0:5643z�3 þ 0:7153z�6 þ 0:3375z�9 þ 0:0372z�12�0:0126z�15

The coefficients of B0(z)¼B(z)P(z) are:

B0 zð Þ ¼ 0:0121þ 0:0345z�1 þ 0:0496z�2 þ 0:0489z�3 þ 0:0341z�4 þ 0:0220z�5

þ 0:0247z�6 þ 0:0347z�7 þ 0:0394z�8 þ 0:0331z�9 þ 0:0202z�10 þ 0:0136z�11

þ 0:0120z�12 þ 0:0078z�13 þ 0:0031z�14 þ 0:0007z�15

The coefficients are computed using the following MATLAB� code:

p=roots(a);

% For real coefficient, generate the requisite polynomial

rP0 = [1 p(5) p(5)^2];

p0 = [1 -p(5)]; % the real coefficient

E0(z) ↑D

E1(z)

E2(z)

ED-1(z)

↑D

↑D

↑D

z-1

z-1

z-1

y[n]

Realize as poly-phase 
filter at slower input data 

rate

Implement as switch 
executing at output clock

x[n]

Implementing IIR part at 
slower rate

F0(z)

Figure 7.33 Design of an IIR-based interpolation filter executing at input sample rate
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% Compute the new polynomial as power of z^-3

Adash0=conv(p0, rP0);% conv performs poly multiplication

% Combine pole pair to form poly with real coefficients

p1 = conv([1 -p(1)], [1 -p(2)]);

% Generate requisite poly for first conjugate pole pair

rP1 = conv([1 p(1) p(1)^2], [1 p(2) p(2)^2]);

% Generate polynomial in z^-3 for first conjugate pole pair

Adash1 = conv(p1, rP1);

% Repeat for second pole pair

p2 = conv([1 -p(3)], [1 -p(4)]); %

rP2 = conv([1 p(3) p(3)^2], [1 p(4) p(4)^2]);

Adash2 = conv(p2, rP2);

% The modified denominator in power of 3

Adash = conv(conv(Adash0, Adash1), Adash2);

% Divide numerator with the composite requisite polynomial

Bdash = conv(conv(conv(b, rP0), rP1), rP2);

% Frequency and Phase plots

figure (1)

freqz(Bdash, Adash, 1024)

figure (2)

freqz (b,a,1024);

hold off

The B0(z) is implemented as a polyphase decimation filter, whereas 1/A0(z) is either implemented

as single-order all-pole IIR filter or converted into serial form for effective realization in fixed-

point arithmetic.

Figure 7.34 shows the optimized realization of decimation by 3 using the decomposition andNoble

identity where the denominator is implemented as a cascade of three serial filters. The multiplexer

runs at the input data rate, whereas the FIR and IIR part of the design works at a slower clock.

The MATLAB� code below implements the decimation using the structure given in Figure 7.34

and the result of decimation on a randomly generated data sample is shown in Figure 7.35(a). The

figure shows the equivalence of this technique with the standard procedure of filtering

then decimation.
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Figure 7.34 Optimized implementation of a polyphase fifth-order IIR filter in decimation by a

factor of 3
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L=99;

x=rand(1,L); % generating input samples

% Filter then decimate

y=filter(b,a,x);

yd = y(3:3:end);

% Performing decimation using decomposition technique

% Polyphase decomposition of numerator

b0=Bdash(3:3:end);

b1=Bdash(2:3:end);

b2=Bdash(1:3:end);

% Dividing input in three steams

x0=x(1:3:end);

x1=x(2:3:end);

x2=x(3:3:end);

% Filtering the streams using polyphase filters

yp0=filter(b0,1,x0);

yp1=filter(b1,1,x1);

yp2=filter(b2,1,x2);

% Adding all the samples

yp=yp0+yp1+yp2;

% Applying Nobel identity on denominator

a0=Adash0(1:3:end);

a1=Adash1(1:3:end);

a2=Adash2(1:3:end);

% Filtering output of polyphase filters through IIR

% Cascaded sections

yc0=filter(1,a0,yp); % first 1st order section

yc1=filter(1,a1,yc0);% Second 2nd order section

yc = filter(1,a2,yc1); % Third 2nd order section

% Plotting the two outputs
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Figure 7.35 Results of equivalence for decimation and interpolation. (a) Decimation performing

filtering then decimation and using the decomposed structure of Figure 7.34. (b) Interpolation by first

inserting zeros then filtering and using efficient decomposition of Figure 7.34
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plot(yd);

hold on

plot(yc, ’or’);

xlabel(’n’)

ylabel(’yd[n]’)

title(’Decimation by 3 using IIR filter’);

legend(’Filtering then Decimation’,’ Decimation using Decomposition’);

hold off

The novelty of the implementation is that it uses an IIR filter for decimation and only computes

every third sample and runs at one-third of the sampling clock.

Example: The same technique can be used for interpolation applications. Using an IIR filter for

interpolation by 3 requires a low-pass IIRfilterwith cut-off frequencyp/3. The interpolation requires
first inserting two zeros after every other sample and then passing the signal through the filter. Using

a decomposition technique, the input data is first passed through the all-pole cascaded IIR filters

and then the output is passed to three polyphase numerator filters. The three outputs are picked at the

output of a fast running switch.

The design of an interpolator running at slower input sampling rate is given in Figure 7.36.

The MATLAB� code that implements the design of this is given here. Figure 7.35(b) shows the

equivalence of the efficient technique that filters a slower input sample rate with standard

interpolation procedure that inserts zeros first and then filters the signal at fast output data rate.

L = 33;

x=rand(1,L); % generating input samples

% Standard technique of inserting zeros and then filtering

% Requires filter to execute at output sample rate

xi=zeros(1,3*L);

xi(1:3:end)=x;

y=filter(b,a,xi);

% Performing interpolation using decomposition technique

% Applying Nobel identity on interpolator

a0=Adash0(1:3:end);

a1=Adash1(1:3:end);
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Figure 7.36 IIR filter decomposition interpolating a signal by a factor of 3
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a2=Adash2(1:3:end);

% Filtering input data using three cascaded IIR sections

yc0=filter(1,a0,x); % first 1st order section

yc1=filter(1,a1,yc0);% Second 2nd order section

yc = filter(1,a2,yc1); % Third 2nd order section

% Polyphase decomposition of numerator

b0=Bdash(1:3:end);

b1=Bdash(2:3:end);

b2=Bdash(3:3:end);

% Filtering the output using polyphase filters

yp0=filter(b0,1,yc);

yp1=filter(b1,1,yc);

yp2=filter(b2,1,yc);

% Switch/multiplexer working at output sampling frequency

% Generates interpolated signal at output sampling rate

y_int=zeros(1,3*L);

y_int(1:3:end)=yp0;

y_int(2:3:end)=yp1;

y_int(3:3:end)=yp2;

% Plotting the two outputs

plot(y);

hold on

plot(y_int, ’or’);

xlabel(’n’)

ylabel(’yi[n]’)

title(’Interpolation by 3 using IIR filter’);

legend(’Interpolation then filtering’,’interpolation using Decomposition’);

hold off

Exercises

Exercise 7.1

For the DFG of Figure 7.37, assume multipliers and adders take 1 time unit, perform the following:

1. Identify all loops of the DFG and compute the critical loop bound.

2. Use a mathematical formulation to compute Wr(e2_5), Wr(e4_5) and Wr(e5_6) for r(5)¼�1,

r(2)¼�2, r(4)¼ 0 and r(6)¼ 0.

3. Draw the retimedDFG for the values computed in (2), and compute the loop bound of the retimed

DFG.

Exercise 7.2

Optimally place two sets of pipeline registers in the digital design of Figure 7.38.Write RTLVerilog

code of the original and pipelined design. Instantiate both designs in a stimulus for checking the

correctness of the design, also observing latency due to pipelining.

Exercise 7.3

Retime theDFGof Figure 7.39.Move the two set of registers at the input to break the critical path of the

digital logic.Eachcomputational nodealsodepicts thecombinational timedelayof thenode in the logic.
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Exercise 7.4

Identify all the loops in the DFG of Figure 7.40, and compute the critical path delay assuming the

combinational delays of the adder and themultiplier are 4 and 8 tu, respectively. Compute the IPB of

the graph.Apply the node transfer theorem tomove the algorithmic registers for reducing the critical

path and achieving the IPB.
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Figure 7.38 Digital logic design for exercise 7.2
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Figure 7.37 Dataflow graph implementing an IIR filter for exercise 7.1
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Exercise 7.5

Compute the loop bound of the DFG of Figure 7.41, assuming adder and multiplier delays are 4 and

6 tu, respectively. Using look-ahead transformation adds two additional delays in the feedback loop

of the design. Compute the new IPB, and optimally retime the delays to minimize the critical path of

the system.

x[n] y[n]
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a b

+

x+ x+

x

Figure 7.40 An IIR filter for exercise 7.4
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Figure 7.39 Dataflow graph for exercise 7.3
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Figure 7.41 Dataflow graph for exercise 7.5
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Exercise 7.6

Design an optimal implementation of Figure 7.42. The DFG multiplies an 8-bit signed input x½n�
with a constant and adds the product in the previous product. Convert the constant to its equivalent

CSD number. Generate PPs and append the adder and the CVas additional layers in the compression

tree, where x[n] is an 8-bit signed number. Appropriately retime the algorithmic registers to reduce

the critical path of the compression tree. Write RTL Verilog code of the design.

Exercise 7.7

Design DF-II architecture to implement a second-order IIR filter given by the following difference

equation:

y½n� ¼ 0:3513y½n�1� þ 0:3297y½n�1� þ 0:2180x½n��0:0766x½n�1� þ 0:0719x½n�2�

Now apply C-slow retiming for C¼ 3, and retime the registers for reducing the critical path of the

design.

1. Write RTL Verilog code of the original and 3-slow design. Convert the constants into Q1.15

format.

2. In the top-level module, make three instantiations of the module for the original filter and one

instantiation of the module for the 3-slow filter. Generate two synchronous clocks, clk1 and

clk3, where the latter is three times faster than the former. Useclk1 for the original design and

clk3 for the 3-slow design. Generate three input steams of data. Input the individual streams to

three instances of the original filter on clk1 and time multiplex the stream and input to C-slow

design using clk3. Compare the results from all the modules for correctness of the 3-slow

design.This description is shown in Figure 7.43.

Exercise 7.8

Design a timemultiplex-based architecture for the C-slowed and retimed design of Figure 7.27. The

design should reuse the three computational nodes by appropriately selecting inputs from

multiplexers.

Exercise 7.9

Draw a block diagram of a three-stage pipeline 12-bit carry skip adder with 4-bit skip blocks.

x[n]

y1[n]

8

16

16 y2[n]

8'hc7

x
+

Figure 7.42 Digital design for exercise 7.6
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Exercise 7.10

Apply a look-ahead transformation to represent y[n] as y[n� 4]. Give the IPBs for the original and

transformed DFG for the following equation:

y½n� ¼ 0:13y½n�1� þ 0:2y½n�2��x½n�

Assume both multiplier and adder take 1 time unit for execution. Also design a scattered-cluster

look-ahead design for M ¼ 4.

Exercise 7.11

Design a seventh-order IIR filter with cutoff frequency p/7 using the filter design and analysis

toolbox of MATLAB�. Decompose the filter for decimation and interpolation application using

the technique of Section 7.8. Code the design of interpolator and decimator in Verilog using 16-bit

fixed-point signed arithmetic.
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8

Unfolding and Folding
of Architectures

8.1 Introduction

Major decisions in digital design are based on the ratio of sampling clock to circuit clock. The

sampling clock is specific to an application and is derived from the Nyquist sampling criteria or

band-pass sampling constraint. The circuit clock, on the other hand, primarily depends on the design

and the technology used for implementation. In many high-end applications, the main focus of

design is to run the circuit at the highest possible clock rate to get the desired throughput. If a simple

mapping of the dataflow graph (DFG) on hardware cannot be synthesized at the required clock rate,

the designer opts to use several techniques.

In feedforward designs, an unfolding transformation makes parallel processing possible. This

results in an increase in throughput. Pipelining is another option in feedforward design for better

timing. Pipelining is usually the option of choice as it results in a smaller area than with an unfolded

design. In feedbackDFGs, the unfolding transformation does not result in true parallel processing as

the circuit clock rate needs to be reduced and hence does not give any potential iteration period

bound (IPB) improvement. The only benefit of the unfolding transformation is that the circuit can be

run at slower clock as each register is slower by the unfolding factor. In FPGA-based design, with a

fixed number of registers and embedded computational units, unfolding helps in optimizing designs

that require too many algorithmic registers. The design is first unfolded and then the excessive

registers are retimed to give better timing. The chapter presents designs of FIR and IIR filters where

unfolding and then retiming achieves better performance.

In contrast to dedicated or parallel architectures, time-shared architectures are designed in

instances where the circuit clock is at least twice as fast as the sampling clock. The design running at

circuit clock speed can reuse its hardware resources, as the input data remains valid for multiple

circuit clocks. For many applications the designer can easily come up with a time-shared

architecture. The chapter describes several examples to highlight these design issues.

For many applications, designing an optimal time-shared architecture may not be simple. This

chapter covers mathematical transformation techniques for folding in time-multiplexed architec-

tures. These transformations take the DFG representation of a synchronous digital signal processing

(DSP) algorithm, a folding factor along with schedule of folding and then they systematically
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generate a folded architecture thatmaps theDFGon fewer hardware computational units. The folded

architecture with the schedule can then be easily implemented using, respectivly, a datapath

consisting of computational nodes and a controller based on a finite state machine. The chapter

gives examples to illustrate the methodology. These examples are linked with their implementation

as state machine-based architecture.

8.2 Unfolding

Design decisions are based on the ratio of sampling and circuit clock speeds. The sampling clock is

specific to an application and is based on Nyquist sampling criteria or band-pass sampling

techniques [1–3]. These sampling rates lower-bound the sampling clock. The sampling clock also

imposes a throughput constraint on the design. Inmany applications the samples are also passed to a

digital-to-analog (D/A) converter. On the other hand, the circuit clock depends on several factors,

such as the target technology and power considerations. In many high-throughput applications, the

main focus of the design is to run the circuit at the highest achievable clock rate. If fully dedicated

architecture (FDA) mapping of a dataflow graph on to hardware cannot be synthesized at the

required clock rate, the designer must look for other options.

Unfolding increases the area of the design without affecting the throughput. A slower clock does

effect the power dissipation but increases the area of the design. The area–power tradeoff must be

carefully studied if the unfolding is performed with the objective of power reduction. The unfolding

transformation is very effective if there are more registers in the original DFG that can be effectively

retimed for reducing the critical path delay of the design. This is especially true if the design is

mapped on an FPGAwith embedded computational units. These units have fixed number of registers

that can be effectively mapped in an unfolded design. Similarly for feedback designs, the timing

performance of the design can be improved by first adding and retiming pipeline registers and then

applying the unfolding transformation to evenly distribute the registers with replicated functional

units. It is important to point out that in many design instances pipelining and retiming is usually the

option of choice because it results in less area than an unfolded design [4].

8.3 Sampling Rate Considerations

As the sampling and circuit clocks dictate the use of unfolding and folding transformations, it is

important to understand the requirements placed on the sampling clock. This section explains

Nyquist and band-pass sampling criteria.

8.3.1 Nyquist Sampling Theorem and Design Options

For digitization of an analog signal, the Nyquist sampling theorem defines the minimum constraint

on the sampling frequency of the analog signal. The sampling frequency defines the number of

samples the system needs to process every second. For perfect reconstruction, the Nyquist sampling

criterion constrains the minimum sampling rate to be greater than or equal to twice the maximum

frequency content in the signal:

fs � 2fN

where fs and fN represent sampling frequency and maximum frequency content in the analog signal,

respectively.
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The sampling frequency is the most critical constraint on a digital design. Usually the samples

fromanA/D converter are placed in a FIFO (first-in first-out) for processing. In a synchronous design

a ping-pong buffer may also be used. The required number of samples in the buffer generates an

activation signal for the digital component to start processing the buffer. For a design that processes

the discrete signal on a sample-by-sample basis, the sampling clock is also used as circuit clock for

the hardware design. Each newly acquired sample is stored in a register to be then processed by the

digital system.

The sampling frequency imposes strict constraints even if the sampled data is first stored in a

buffer. The designer, knowing the algorithmic constraint of processing a buffer of data of predefined

size, allocates required memory to FIFO or ping-pong buffers. The designer also architects the HW

to process this buffer of data before the next buffer is ready for processing. If the sampling rate is high

enough and is approximately equal to the best achievable circuit clock, mapping the algorithm as

FDA and synthesizing the design to achieve sampling clock timing is the most viable design option.

If the sampling clock is faster than an achievable circuit clock, then the designer needs to explore

parallel processing or pipelining options.

A software-defined radio (SDR) is an interesting application to explain different aspects of digital

design. The following section presents SDR architecture to illustrate how band-pass sampling

effectively reduces the requirement of sampling rate in digital communication applications. If the

designer decides to sample the signal following Nyquist sampling criteria, the design requires the

processing of more samples.

8.3.2 Software-defined Radio Architecture and Band-pass Sampling

In many designs, although strict compliance to the Nyquist sampling criterion requires the

processing of a large number of samples, the sampling frequency of the A/D converter can be

set to lower values without effecting algorithmic performance. This technique is called band-pass

sampling.

An ideal SDR receiver requires direct digital processing of the analog signal after the signal passes

through low-pass filtering and amplification. However, this implies a very high-speedA/D converter

and processing requirement as per the Nyquist sampling criterion. For many applications this

requires sampling and then processing of the signal at a few gigahertz range. In many designs the

received analog signal is first brought down to an intermediate frequency (IF) by a radio frequency

(RF) section and the signal is then digitized for processing by a mix of computing platforms such as

FPGAs, DSPs and GPPs. The design of a typical SDR is given in Figure 8.1.

In a digital receiver a baseband signal primarily consists of digitized compressed voice, video,

images or data that is modulated to take a limited bandwidth B¼ 2fN, where fN is the highest

frequency content of the baseband signal. According to the frequency allocation assignment to a

particular band in the spectrum, this baseband signal at the transmitter is multiplied with a carrier of

high frequency f0. This process is shown in Figure 8.2. This carrier-ridden signal occupies the same

bandwidthB¼ fH� fL around f0, where fH and fL are the highest and lowest frequency content of this

signal. The transmitted signal spectrum is usually populated with adjacent channels from other

transmitters in the area. These channels have to be filtered out before the signal is digitized and

demodulated in the baseband.

At the receiver, the signal from the antenna is first passed through a band-pass filter and then to a

low-noise amplifier. This signal usually has some of the adjacent channels still left to be removed in

the digital domain with better and sharper filters. Usually the RF signal of interest has a very narrow

bandwidth and is centered at a very high frequency.Designing a narrowRFband-pass filter operating
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at very high frequency is a difficult engineering problem, and a relaxation in the band results in cost-

effective designs. Although this relaxation results in adjacent channels in the filtered signals and a

wider bandwidth of the signal to be digitized, the adjacent channels are then easily filtered out in the

digital domain as shown in Figure 8.3(a).

In many designs the analog signal is first translated to a common intermediate frequency fIF. The

signal is also filtered to remove images and harmonics. The highest frequency content of this signal is

fIF þ B0/2, whereB0 is the bandwidth of the filtered signal with components of the adjacent channels

still part of the signal. Applying Nyquist, the signal can be digitized at twice this frequency. The

sampling frequency in this case needs to be greater than 2( fIF þ B0/2). The digital signal is then
digitally mixed using a quadrature mixer, and low-pass filters then remove adjacent channels from

the quadrature I and Q signals. The signal is then decimated to only keep the required number of

samples at base band. A typical receiver that digitizes a signal centered at fIF for further processing is

shown in Figure 8.3(b).

As the sampling frequency is so critical, further reduction in this frequency should be explored. In

this context, for cases where the rest of the spectrum of the band-pass received signal or the IF signal

is cleaned of noise, the signal can be directly sampled at a lower sampling frequency. This technique

sub-samples an analog signal for intentional aliasing and down-conversion to an unused lower

spectrum. The minimum sampling rate for band-pass sampling that avoides any possible aliasing of

a band-pass signal is [1]:

2fL
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where, for minimum sampling frequency that avoids any aliasing, themaximum value ofK is lower-

bounded by:

KMAX � fH

B
ð8:2Þ

This relationship usually makes the system operate ‘on the edge’, so care must be exercised to

relax the condition of sampling frequency such that the copies of the aliased spectrummust fall with

some guard bands between two copies. The sampling frequency options for different values ofK are

given in [1].

8.3.3 A/D Converter Bandwidth and Band-pass Sampling

It is important to point out that, athough the sampling rate is the fastest frequency at which an A/D

converter can sample an analog signal, the converter’s bandwidth (BW) is also an important

consideration. This corresponds to the highest frequency at which the internal electronics of the

converter can pass the signal without any attenuation. The Nyquist filter at the front of the A/D

/
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Figure 8.3 Digital communication receiver. (a) Direct conversion receiver. (b) IF conversion receiver
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converter should also be a band-pass filtered andmust clean the unused part of the original spectrum

for intentional aliasing for band-pass sampling.

Example: Consider a signal at the front end of a digital communication receiver occupying

a bandwidth of 20MHz and centered at 80MHz IF. To sample the signal at Nyquist rate requires an

A/D to sample the signal at a frequency greater than 180MHz and the front end to process these

samples every second. The band-pass sampling technique can relax this stringent constraint by

sampling the signal at a much lower rate. Using expressions (8.1) and (8.2), many options can be

evaluated for feasible band-pass sampling. The signal is sampled at 65MHz for intentional aliasing

in a non-overlapping band of the spectrum.A spectrumof the hypothetical original signal centered at

80MHz and spectrum of its sampled version are given in Figure 8.4.

8.4 Unfolding Techniques

8.4.1 Loop Unrolling

In the software context, unfolding transformation is the process of ‘unrolling’ a loop so that several

iterations of the loop are executed in one unrolled iteration. For this reason, unfolding is also called

‘loop unrolling’. It is a technique widely used by compilers for reducing the loop overhead in code

written in high-level languages. For hardware design, unfolding corresponds to applying a

mathematical transformation on a dataflow graph to replicate its functionality for computing

multiple output samples for given relevantmultiple input samples. The concept can also be exploited

while performing SW to HW mapping of an application written in a high-level language. Loop

unrolling gives more flexibility to the HW designer to optimize the mapping. Often the loop is not

completely unrolled, but unfolding is performed to best use the HW resources, retiming and

pipelining.

Loop unrolling can be explained using a dot-product example. The following code depicts a dot-

product computation of two linear arrays of size N:

sum=0;

for (i=0; i<N; i++)

sum += a[i]*b[i];

For computing each MAC (multiplication and accumulation) operation, the program executes a

number of cycles to maintain the loop; this is known as the loop overhead. This overhead includes

incrementing the counter variable i and comparing the incremented value with N, and then taking a

branch decision to execute or not to execute the loop iteration.

0

f(MHz)

10 5030 9070-10-30-70-90 -50 0 5 2515 40 90807050 60

(b)(a) 

Figure 8.4 Example of bandpass sampling. (a) Spectrum of a 20MHz signal centered at an IF of

80MHz. (b) Spectrumof bandpass sampled signal for fs of 65MHz (only spectrumonpositive frequencies

are shown)
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In addition to this, many DSPs havemore than oneMAC unit. To reduce the loop overhead and to

utilize the multiple MAC units in the DSP architecture, the loop can be unrolled by a factor of J. For

example, while mapping this code on a DSP with four MAC units, the loop should first be unrolled

for J¼ 4. The unrolled loop is given here:

J=4

sum1=0;

sum2=0;

sum3=0;

sum4=0;

for(i=0; i<N; i=i+J)

{

sum1 += a[i]*b[i];

sum2 += a[i+1]*b[i+1];

sum3 += a[i+2]*b[i+2];

sum4 += a[i+3]*b[i+3];

}

sum = sum0+sum1+sum2+sum3;

Similarly, the same loop can be unrolled by any factor J depending on the value of loop counterN

and the number ofMACunits on aDSP. In software loop unrolling, a designer is trading off code size

with performance.

8.4.2 Unfolding Transformation

Algorithms for unfolding a DFG are available [5–8]. Any DFG can be unfolded by an unfolding

factor J using the following two steps:

S0 To unfold the graph, each nodeU of the original DFG is replicated J times asU0, . . .,UJ�1 in the

unfolded DFG.

S1 For two connected nodesU andV in the original DFGwithw delays, draw J edges such that each

edge j (¼ 0 . . . J� 1) connects nodeUj to node V( j þ w)%Jwith bð jþwÞ=Jc delays, where %
and b:c are, respectively, remainder and floor operators.

Making J copies of each node increases the area of the designmany-fold. but the number of delays in

the unfolded transformation remains the same as in the original DFG. This obviously increases the

critical path delay and the IPB for a recursive DFG by a factor of J.

Example: This example applies the unfolding transformation for an unfolding factor of 2 to a

second-order IIR filter in TDF structure, shown in Figure 8.5(a). Each node of the DFG is

replicated twice and the edges without delays are simply connected as they are. For edges with

delays, the step S1 of unfolding transformation is applied. The nodes (U, V) on an edge with one

delay in the original DFG are first replicated twice as (U0, U1) and (V0, V1). Now for j¼ 0 and

w¼ 1, node U0 is connected to node V(0þ 1)%2¼1 with delays bð0þ 1Þ=2c¼ 0; and for j¼ 1 and

w¼ 1, node U1 is connected to node V(1þ 1)%2¼0 with delays bð1þ 1Þ=2c¼ 1. This is drawn by the

joining of node U0 to corresponding node V1 with 0 delay and node U1 to corresponding node V0

with 1 delay. Similarly, unfolding is performed on the second edge with a delay and the resultant

unfolded DFG is shown in Figure 8.5(b).
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8.4.3 Loop Unrolling for Mapping SW to HW

In many applications, algorithms are developed in high-level languages. Their implementation

usually involves nested loops. The algorithm processes a defined number of input samples every

second. The designer needs to map the algorithm in HW to meet the computational requirements.

Usually these requirements are such that the entire algorithm need not to be unrolled, but a few

iterations are unrolled for effective mapping. The unfolding should be carefully designed as it may

lead to more memory accesses.

Loop unrolling for SW to HWmapping is usually more involved than application of an unfolding

transformation on DFGs. The code should be carefully analyzed because, in instances with several

nested loops, unrolling the innermost loop may not generate an optimal architecture. The architect

should explore the design space by unrolling different loops in the nesting and also trymerging a few

nested loops together to find an effective design.

For example, in the case of a code that filters a block of data using an FIR filter, unrolling the

outer loop that computes multiple output samples, rather than the inner loop that computes one

output sample, offers a better design option. In this example the same data values are used for

computing multiple output samples, thus minimizing the memory accesses. This type of

unrolling is difficult to achieve using automatic loop unrolling techniques. The following

example shows an FIR filter implementation that is then unrolled to compute four output

samples in parallel:
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a2 b2

U
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x2n y2n
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b1a1

a2 b2
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Figure 8.5 Unfolding transformations (a) Second-order TDF structure. (b) Unfolding with a factor

of 2
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#include <stdio.h>

#define N 12

#define L 8

// Test data and filter coefficients

short xbf[N+L-1]={1, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 4, 5, -1, 2, 0, 1, -2, 3};

short hbf[L]={5, 9, -22, 11, 8, 21, 64, 18};

short ybf[N];

// The function performs block filtering operation

void BlkFilter(short *xptr, short *hptr, int len_x, int len_h, short *ybf)

{

int n, k, m;

for (n=0; n<len_x; n++)

{

sum = 0;

for(k=0, m=n; k<len_h; k++, m–)

sum += xptr[m]*hptr[k]; // MAC operation

ybf[n] = sum;

}

}

// Program to test BlkFilter and BlkFilterUnroll functions

void main(void)

{

short *xptr, *hptr;

xptr = &[L-1]; // xbf has L-1 old samples

hptr = hbf;

BlkFilterUnroll (xptr, hptr, N, L, ybf);

BlkFilter (xptr, hptr, N, L, ybf);

}

The unrolled loop for effective HW mapping is given here:

// Function unrolls the inner loop to perform 4 MAC operations

// while performing block filtering function

void BlkFilterUnroll(short *xptr, short *hptr,

int len_x, int len_h, short *ybf)

{

short sum_n_0, sum_n_1, sum_n_2, sum_n_3;

int n, k, m;

// Unrolling outer loop by a factor of 4

for (n=4-1; n<len_x; n+=4)

{

sum_n_0 = 0;

sum_n_1 = 0;

sum_n_2 = 0;

sum_n_3 = 0;

for (k=0, m=n; k<len_h; k++, m–)

{

sum_n_0 += hptr[k] * xptr[m];

sum_n_1 += hptr[k] * xptr[m-1];

sum_n_2 += hptr[k] * xptr[m-2];

sum_n_3 += hptr[k] * xptr[m-3];

}
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ybf[n] = sum_n_0;

ybf[n-1] = sum_n_1;

ybf[n-2] = sum_n_2;

ybf[n-3] = sum_n_3;

}

}

The code processesN input samples in every iteration to computeN output samples in L iterations

of the innermost loop. The processing of the innermost loop requires the previous L� 1 input

samples for computation of convolution summation. All the required input samples are stored in a

buffer xbf of size N þ L� 1. The management of the buffer is conveniently performed using

circular addressing, where every time N new input data values are written in the buffer replacing the

oldest N values. This arrangement always keeps the L� 1 most recent previous values in the buffer.

Figure 8.6 shows mapping of the code listed above in hardware with four MAC and three delay

registers. This architecture only requires reading just one operand each from xbf and hbf

memories. These values are designated as x[m] and y[k]. At the start of every iteration the address

registers for xbf and hbf are initialized to m¼L þ 4� 1 and k¼ 0, respectively. In every cycle

address, registerm is decremented and k is incremented by 1. In L cycles the architecture computes

four output samples. The address m is then incremented for the next iteration of the algorithm.

Three cycles are initially required to fill the tap delay line. The architecture can be unfolded to

compute asmanyoutput samples as required and still needs to read only onevalue fromeachbuffer.

There is no trivial transformation or loop unrolling technique that automatically generates such an

optimized architecture. The designer’s intellect and skills are usually required to develop an optimal

architecture.

8.4.4 Unfolding to Maximize Use of a Compression Tree

For hardware design of feedforward DFGs, effective architectural options can be explored using

unfolding transformation. An unrolled design processes multiple input samples by using

xm xm-1 xm-2 h0
h1

hL-1

xm-3

hk

0
1
2

L-1

N+L-1

m--

hbf

k++

xbf

Figure 8.6 Hardware mapping of the code listed in the text
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additional resources. The unfolded architecture can now be explored for further optimization.

Figure 8.7 shows a 4-coefficient FIR filter and a design after unfolding by a factor of 2. The

designer can nowdesign a computational unit consisting of twoCSDmultipliers and two adders as

one computational unit. This unit can be implemented as a compression tree producing a sum and a

carry. The architecture can also further exploit common sub-expression elimination (CSE)

techniques (see Chapter 6).

It is important to point out that the design can also be pipelined for effective throughput increase.

Inmanydesigns, simple pipeliningwithout any foldingmay cost less in terms ofHW than unfolding,

because unfolding creates a number of copies of the entire design.

8.4.5 Unfolding for Effective Use of FPGA Resources

Consider a design instancewhere the throughput is required to be increased by a factor of 2. Assume

the designer is using an FPGAwith embeddedDSP48 blocks. The designer can easily add additional

pipeline registers and retime them between a multiplier and an adder, as shown in Figure 8.8. The
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Figure 8.7 Unrolling an FIR filter. (a) Four-coefficient FIR filter. (b) The filter is unrolled by a factor

of 2
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Figure 8.8 Pipelined FIR filter for effective mapping on FPGAs with DSP48 blocks
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Verilog code of the pipelined and non-pipelined 4-coefficient TDF FIR implementation is given

here:

/* Simple TDF FIR implementation without pipelining /

module FIRFilter

(

input clk,

input signed [15:0] xn, // Input data in Q1.15

output signed [15:0] yn); // Output data in Q1.15

// All coefficients of the FIR filter are in Q1.15 format

parameter signed [15:0] h0 = 16b1001100110111011;

parameter signed [15:0] h1 = 16b1010111010101110;

parameter signed [15:0] h2 = 16b0101001111011011;

parameter signed [15:0] h3 = 16b0100100100101000;

reg signed [31:0] add_reg[0:2] ; // Transpose Direct Form delay line

wire signed [31:0] mul_out[0:4]; // Wires for intermediate results

always @(posedge clk)

begin

// TDF delay line

add_reg[0] <= mul_out[0];

add_reg[1] <= mul_out[1]+add_reg[0];

add_reg[2] <= mul_out[2]+add_reg[1];

end

assign mul_out[0]= xn * h3;

assign mul_out[1]= xn * h2;

assign mul_out[2]= xn * h1;

assign mul_out[3]= xn * h0;

assign mul_out[4] = mul_out[3]+add_reg[2];

// Quantizing it back to Q1.15 format

assign yn = mul_out[4][31:16];

endmodule

/* Pipelined TDF implementation of a 4-coefficient

FIR filter for effective mapping

on embedded DSP48 based FPGAs /

module FIRFilterPipeline

(

input clk,input signed [15:0] xn, // Input data in Q1.15

output signed [15:0] yn); // Output data in Q1.15

// All coefficients of the FIR filter are in Q1.15 format

parameter signed [15:0] h0 = 16b1001100110111011;

parameter signed [15:0] h1 = 16b1010111010101110;

parameter signed [15:0] h2 = 16b0101001111011011;

parameter signed [15:0] h3 = 16b0100100100101000;

reg signed [31:0] add_reg[0:2] ; // Transposed direct-form delay line

reg signed [31:0] mul_reg[0:3]; // Pipeline registers

wire signed [31:0] yn_f; // Full-precision output

always @( posedge clk)

begin

// TDF delay line and pipeline registers

add_reg[0] <= mul_reg[0];
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add_reg[1] <= mul_reg[1]+add_reg[0];

add_reg[2] <= mul_reg[2]+add_reg[1];

add_reg[3] <= mul_reg[3]+add_reg[2];

mul_reg[0] <= xn*h3;

mul_reg[1] <= xn*h2;

mul_reg[2] <= xn*h1;

mul_reg[3] <= xn*h0;

end

// Full-precision output

assign yn_f = mul_reg[3];

// Quantizing to Q1.15

assign yn = yn_f[31:16];

endmodule

When the requirement on throughput is almost twice what is achieved through one stage of

pipelining and mapping on DSP48, will obviously not improve the throughput any further. In these

cases unfolding can become very handy. The designer can add pipeline registers as shown in

Figure 8.9(a). The number of pipeline registers should be such that each computational unit must

have two sets of registers. The DFG is unfolded and the registers are then retimed and appropriately

placed formapping onDSP48 blocks. In the example shown the pipelineDFG is unfolded by a factor

of 2. Each pipelined MAC unit of the unfolded design can then be mapped on a DSP48 where the

architecture processes two input samples at a time. The pipeline DFG and its unfolded design are

shown in Figure 8.9(b). The mapping on DSP48 units is also shownwith boxes with one box shaded

in gray for easy identification. The RTL Verilog code of the design is given here:

/* Pipelining then unfolding for effective mapping on

DSP48-based FPGAs with twice speedup /

module FIRFilterUnfold

(

input clk,

input signed [15:0] xn1, xn2, // Two inputs in Q1.15

output signed [15:0] yn1, yn2); // Two outputs in Q1.15

// All coefficients of the FIR filter are in Q1.15 format

parameter signed [15:0] h0 = 16’b1001100110111011;

parameter signed [15:0] h1 = 16’b1010111010101110;

parameter signed [15:0] h2 = 16’b0101001111011011;

parameter signed [15:0] h3 = 16’b0100100100101000;

// Input sample tap delay line for unfolding design

reg signed [15:0] xn_reg[0:4];

// Pipeline registers for first layer of multipliers

reg signed [31:0] mul_reg1[0:3];

// Pipeline registers for first layer of adders

reg signed [31:0] add_reg1[0:3];

// Pipeline registers for second layer of multipliers

reg signed [31:0] mul_reg2[0:3];

// Pipeline registers for second layer of adders

reg signed [31:0] add_reg2[0:3];

// Temporary wires for first layer of multiplier results

wire signed [31:0] mul_out1[0:3];

// Temporary wires for second layer of multiplication results

wire signed [31:0] mul_out2[0:3];
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always @( posedge clk)

begin

// Delay line for the input samples

xn_reg[0] <= xn1;

xn_reg[4] <= xn2;

xn_reg[1] <= xn_reg[4];

xn_reg[2] <= xn_reg[0];

xn_reg[3] <= xn_reg[1];

end

always @( posedge clk)

begin

// Registering the results of multipliers

mul_reg1[0] <= mul_out1[0];

mul_reg1[1] <= mul_out1[1];

mul_reg1[2] <= mul_out1[2];

mul_reg1[3] <= mul_out1[3];

mul_reg2[0] <= mul_out2[0];

mul_reg2[1] <= mul_out2[1];

mul_reg2[2] <= mul_out2[2];

mul_reg2[3] <= mul_out2[3];

end

always @( posedge clk)

begin

// Additions and registering the results

add_reg1[0] <= mul_reg1[0];

add_reg1[1] <= add_reg1[0]+mul_reg1[1];

add_reg1[2] <= add_reg1[1]+mul_reg1[2];

add_reg1[3] <= add_reg1[2]+mul_reg1[3];

add_reg2[0] <= mul_reg2[0];

add_reg2[1] <= add_reg2[0]+mul_reg2[1];

add_reg2[2] <= add_reg2[1]+mul_reg2[2];

add_reg2[3] <= add_reg2[2]+mul_reg2[3];

end

// Multiplications

assign mul_out1[0]= xn_reg[0] * h3;

assign mul_out1[1]= xn_reg[1] * h2;

assign mul_out1[2]= xn_reg[2] * h1;

assign mul_out1[3]= xn_reg[3] * h0;

assign mul_out2[0]= xn_reg[4] * h3;

assign mul_out2[1]= xn_reg[0] * h2;

assign mul_out2[2]= xn_reg[1] * h1;

assign mul_out2[3]= xn_reg[2] * h0;

// Assigning output in Q1.15 format

assign yn1 = add_reg1[3][31:16];

assign yn2 = add_reg2[3][31:16];

endmodule

8.4.6 Unfolding and Retiming in Feedback Designs

It has already been established that an unfolding transformation does not improve timing; rather, it

results in an increase in critical path delay and, for feedback designs, an increase in IPB by the

356 Digital Design of Signal Processing Systems



xn

h3

0

h1h2 h0

yn

x2n

x2n+1

y2n

y2n+1

0

0

(b) (a) 
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unfolding factor J. This increase is because, although all the computational nodes are replicated J

times, still the number of registers in the unfolded DFG remains the same. For feedback designs,

unfolding may be effective for design instances where there are abundant algorithmic registers for

pipelining the combinational nodes in the design. In these designs, unfolding followed by retiming

provides flexibility of placing these algorithmic registers in the unfolded design while optimizing

timing. Similarly for feedforward designs, first pipeline registers are added and the design is then

unfolded and retimed for effective placement of registers, as explained in Section 8.4.5.

The registers in DFGs can be retimed for effective pipelining of the combinational cloud. In

cases where the designer is using embedded computational units or computational units with

limited pipeline support, there may exist extra registers that are not used for reducing the critical

path of the design. In these designs the critical path is greater than IPB. For example, the designer

might intend to use already embedded building blocks on an FPGA like DSP48. These blocks

have a fixed pipeline option and extra registers do not help in achieving the IPB. By unfolding and

retiming, the unfolded design can be appropriately mapped on the embedded blocks to effectively

use all the registers.

Figure 8.10(a) shows a design with seven algorithmic registers. The registers can be retimed such

that each computational unit has two registers to be used as pipeline registers, as shown in

Figure 8.10(b). The design is unfolded and registers are retimed for optimal HW mapping, as

shown in Figure 8.10(c). The RTL Verilog code of the three designs is listed here:

/* IIR filter of Fig. 8.10(a), having excessive

algorithmic registers /

module IIRFilter

(

input clk, rst_n,

input signed [15:0] xn, //Q1.15

x[n]

a0

a1

y[n]
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Figure 8.10 Unfolding and retiming of a feedback DFG. (a) Recursive DFG with seven algorithmic

registers. (b) Retiming of resisters for associating algorithmic registers with computational nodes for

effective unfolding. (c) Unfolded design for optimal utilization of algorithmic registers
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output signed [15:0] yn); //Q1.15

parameter signed [15:0] a0=16’b0001_1101_0111_0000; //0.23 in Q1.15

parameter signed [15:0] a1=16’b1100_1000_1111_0110; //=0.43 in Q1.15

reg signed [15:0] add_reg[0:1] ;

reg signed [15:0] y_reg[0:3] ; // Input sample delay line

reg signed [15:0] delay;

wire signed [15:0] add_out[0:1];

wire signed [31:0] mul_out[0:1];

always @( posedge clk or negedge rst_n)

begin

if(!rst_n) // Reset all the registers in the feedback loop

begin

add_reg[0] <= 0;

add_reg[1] <= 0;

y_reg[0] <= 0;

y_reg[1] <= 0;

y_reg[2] <= 0;

y_reg[3] <= 0;

delay <= 0;

end

else

begin

// Assign values to registers

add_reg[0] <= add_out[0];

add_reg[1] <= add_reg[0];

y_reg[0] <= yn;

y_reg[1] <= y_reg[0];

y_reg[2] <= y_reg[1];

y_reg[3] <= y_reg[2];

delay <= y_reg[3];

end

end

// Implement combinational logic of two additions and

two multiplications

assign add_out[0] = xn + add_out[1];

assign mul_out[0]= y_reg[3] * a0;

assign mul_out[1]= delay * a1;

assign add_out[1] = mul_out[1][31:16]+mul_out[0][31:16];

assign yn = add_reg[1];

endmodule

/* Retime the algorithmic registers to reduce the critical

path while mapping the design on FPGAs

with DSP48-like blocks /

module IIRFilterRetime

(

input clk, rst_n,

input signed [15:0] xn, //Q1.15

output signed [15:0] yn); //Q1.15

parameter signed [15:0] a0 = 16’b0001_1101_0111_0000;

//0.23 in Q1.15
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parameter signed [15:0] a1 = 16’b1100_1000_1111_0110;

//=0.43 in Q1.15

reg signed [15:0] mul0_reg[0:1];

reg signed [15:0] mul1_reg[0:1]; // Input sample delay line

reg signed [15:0] add1_reg[0:1];

reg signed [15:0] add0_reg[0:1];

reg signed [15:0] delay;

wire signed [15:0] add_out[0:1];

wire signed [31:0] mul_out[0:1];

// Block Statements

always @(posedge clk or negedge rst_n)

if(!rst_n) // Reset registers in the feedback loop

begin

add0_reg[0] <= 0;

add0_reg[1] <= 0;

mul0_reg[0] <= 0;

mul0_reg[1] <= 0;

mul1_reg[0] <= 0;

mul1_reg[1] <= 0;

add1_reg[0] <= 0;

add1_reg[1] <= 0;

delay <= 0;

end

else

begin

// Registers are retimed to reduce the critical path

add0_reg[0] <= add_out[0];

add0_reg[1] <= add0_reg[0];

mul0_reg[0] <= mul_out[0][31:16];

mul0_reg[1] <= mul0_reg[0];

mul1_reg[0] <= mul_out[1][31:16];

mul1_reg[1] <= mul1_reg[0];

add1_reg[0] <= add_out[1];

add1_reg[1] <= add1_reg[0];

delay <= yn;

end

// Combinational logic implementing additions

and multiplications

assign add_out[0]= xn + add1_reg[1];

assign mul_out[0]= yn * a0;

assign mul_out[1]= delay * a1;

assign add_out[1]= mul0_reg[1]+mul1_reg[1];

assign yn = add0_reg[1];

endmodule

/* Unfolding and retiming to fully utilize the algorithmic

registers for reducing the critical path

of the design for effective mapping on

DSP48-based FPGAs /

module IIRFilterUnfold

(

input clk, rst_n,

input signed [15:0] xn0, xn1, // Two inputs in Q1.15
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output signed [15:0] yn0, yn1); //Two outputs in Q1.15

parameter signed [15:0] a0=16’b0001_1101_0111_0000;

//0.23 in Q1.15

parameter signed [15:0] a1=16’b1100_1000_1111_0110;

//=0.43 in Q1.15

reg signed [15:0] mul0_reg[0:1];

reg signed [15:0] mul1_reg[0:1]; // Input sample delay line

reg signed [15:0] add1_reg[0:1];

reg signed [15:0] add0_reg[0:1];

reg signed [15:0] delay;

wire signed [15:0] add0_out[0:1], add1_out[0:1];

wire signed [31:0] mul0_out[0:1], mul1_out[0:1];

// Block Statements

always @( posedge clk or negedge rst_n)

if(!rst_n)

begin

add0_reg[0] <= 0;

add0_reg[1] <= 0;

mul0_reg[0] <= 0;

mul0_reg[1] <= 0;

mul1_reg[0] <= 0;

mul1_reg[1] <= 0;

add1_reg[0] <= 0;

add1_reg[1] <= 0;

delay <= 0;

end

else

begin

// Same number of algorithmic registers, retimed differently

add0_reg[0] <= add0_out[0];

add1_reg[0] <= add0_out[1];

mul0_reg[0] <= mul0_out[0][31:16];

mul1_reg[0] <= mul0_out[1][31:16];

add0_reg[1] <= add1_out[0];

add1_reg[1] <= add1_out[1];

mul0_reg[1] <= mul1_out[0][31:16];

mul1_reg[1] <= mul1_out[1][31:16];

delay <= yn1;

end

/* Unfolding by a factor of 2 makes two copies of the

combinational nodes /

assign add0_out[0]= xn0 + add1_reg[0];

assign mul0_out[0]= yn0 * a0;

assign mul0_out[1]= delay * a1;

assign add0_out[1]= mul0_reg[0]+mul1_reg[0];

assign yn0 = add0_reg[0];

assign add1_out[0]= xn1 + add1_reg[1];

assign mul1_out[0]= yn1 * a0;

assign mul1_out[1]= yn0 * a1;

assign add1_out[1]= mul0_reg[1]+mul1_reg[1];

assign yn1 = add0_reg[1];

endmodule
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module testIIRfilter;

reg signed [15:0] Xn, Xn0, Xn1;

reg RST_N, CLK, CLK2;

wire signed [15:0] Yn, Yn0, Yn1;

wire signed [15:0] Yn_p;

integer i;

// Instantiating the two modules for equivalence checking

IIRFilter IIR(CLK, RST_N, Xn, Yn);

IIRFilterRetime IIRRetime(CLK, RST_N, Xn, Yn_p);

IIRFilterUnfold IIRUnfold(CLK2, RST_N, Xn0, Xn1, Yn0, Yn1);

initial

begin

CLK = 0; // Sample clock

CLK2 = 0;

Xn = 215;

Xn0 = 215;

Xn1 = 430;

#1 RST_N = 1; // Generate reset

#1 RST_N = 0;

#3 RST_N = 1;

end

// Generating clock signal

always

#4 CLK = �CLK; // Sample clock

// Generating clock signal for unfolded module

always

#8 CLK2 = �CLK2; // Twice slower clock

always @(posedge CLK)

begin

Xn <= Xn+215;

end

always @(posedge CLK2)

begin

Xn0 <= Xn0+430;

Xn1 <= Xn1+430;

end

initial

$monitor ($time, " Yn=%d, Yn_p=%d, Yn0=%d, Yn1=%d\n",

Yn, Yn_p, Yn0, Yn1);

endmodule

8.5 Folding Techniques

Chapter 9 covers time-shared architectures. These are employed when the circuit clock is at least

twice as fast as the sampling clock. The design running at circuit clock speed can reuse its hardware

resources because the input data remains valid for multiple circuit clocks. In many design problems

the designer can easily come up with time-shared architecture. Examples in Chapter 9 highlight a

few of the design problems. For complex applications, designing an optimal time-shared architec-

ture is a complex task. This section also covers a mathematical technique for designing time-shared

architectures.
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8.5.1 Definitions and the Folding Transformation

. Folding is a mathematical technique for finding a time-multiplexed architecture and a schedule of

mapping multiple operations of a dataflow graph on fewer hardware computational units.
. The folding factor is defined as the maximum number of operations in a DFGmapped on a shared

computational unit.
. A folding set or folding scheduler is the sequence of operations of a DFG mapped on a single

computational unit.

The folding transformation has two parts. The first part deals with finding a folding factor and the

schedule for mapping different operations of the DFG on computational units in the folded DFG.

The optimal folding factor is computed as:

N ¼ fc

fs
c�

where fc and fs are circuit and sampling clock frquencies. Based on N and a schedule of mapping

multiple operations in the DFG on shared resources, a folded architecture automatically saves

intermediate results in registers and inputs them to appropriate units in the scheduled cycle for

correct computation.

Folding transformation by a factor of N introduces latency into the system. The corresponding

output for an input appears at the output afterN clock cycles. The sharing of a computational unit by

different operations also requires a controller that schedules these operations in time slots. The

controller may simply be a counter, or it can be based on a finite state machine (FSM) that

periodically generates a sequence of control signals for the datapath to select correct operands for the

computational units.

Example: The DFG shown in Figure 8.11(a) is to be folded. The DFG has two nodes (A1 and A2)

performing addition and two (M1 ndM2) performing multiplication. Assuming the data is valid for

two circuit clock cycles, the DFG is folded by a factor of 2 using one multiplier and one adder. The

folded architecture is shown in Figure 8.11(b). The mapping of the algorithm on the folded

architecture requires a schedule, which for this example is very simple to work out. For the two

cycles of the circuit clock, the adder andmultiplier performoperations in the order {A1,A2} and {M1,

M2}. The folded architecture requires two additional registers to hold the values of intermediate

results to be used in the next clock cycle.All themultiplexers select port 0 in the first cycles and port 1

in the second cycle for feeding correct inputs to the shared computational units.

8.5.2 Folding Regular Structured DFGs

Algorithms that exhibit a regular structure can be easily folded. Implementation of an FIR filter is a

good example of this. The designer can fold the structure by any order that is computed as the ratio of

the circuit and sampling clocks.

For any regularly structured algorithm the folding factor is simply computed as:

N ¼ fc

fs
ð8:3Þ

TheDFG of the regular algorithm is partitioned intoN equal parts. The regularity of the algorithm

means implementing the datapath of a single partition as a shared resource. The delay line or

temporary results are stored in registers and appropriately input to the shared data path.
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Example: An L-coefficient FIR filter implements the convolution equation:

y n½ � ¼
XL�1

k¼0

h k½ �x½n�k� ð8:4Þ

This equation translates into a regularly structured dataflow graph as DF or TDF realizations. The

index of summation can be implemented as N summation for k¼mM þ l, whereM¼L/N, and the

equation can be written as:

y n½ � ¼
XN�1

m¼0

XM�1

l¼0

h mMþ l½ �x½n�ðmMþ lÞ� ð8:5Þ

This double summation can be realized as folded architecture. For DF, the inner equation

implements the shared resource and the outer equation executes the shared resource N times to

compute each output sample y[n]. The realizations of the folded architecture for L¼ 9 and N¼ 3 as

DF and TDF are given in Figures 8.12. In the DF case the tap delay line is implemented ‘as is’,

whereas the folded architecture implements the inner summation computing 3-coefficient filtering

in each cycle. This configuration implements three multipliers and adders as shared resources. The

multiplexer appropriately sends the correct inputs to, respectively,multiplier and adder. The adder at

the output adds the partial sums and implements the output summation of (8.5).

Figure 8.12(b) shows theTDF realization.Here again all the registers are realized as they are in the

FDA implementation whereas the hardware resources are shared. The cntr signal is used to control

the multiplexers and demultiplexers to input the correct data to the shared resources and to store the

computational results in appropriate registers in each clock cycle.
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Figure 8.11 Folding a DFG (a) An example dataflow graph. (b) Folded architecture for the DFG
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Figure 8.12 Folded-by-3 architecture for a 9-coefficient FIR filter. (a) Folded DF architecture. (b) Folded TDF architecture
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8.5.3 Folded Architectures for FFT Computation

Most signal processing algorithms have a regular structure. The fast Fourier transform (FFT) is

another example to demonstrate the folding technique. An FFT algorithm efficiently implements

DFT summation:

X k½ � ¼
XN�1

n¼0

x n½ �Wnk
N k ¼ 0; 1; 2; . . . ;N�1 ð8:6Þ

where

Wnk
N ¼ e

�j
2pnk
N

are called twiddle factors. N is the length of the signal x[n], and n and k are the indices in time and

frequency, respectively.

The number of real multiplications required to perform a complex multiplication can be first

reduced from four to three by the following simple mathematical manipulation:

aþ jbð Þ cþ jdð Þ
¼ ac�bdð Þþ j ad þ bcð Þ
¼ d a�bð Þþ a c�dð Þþ c aþ bð Þ�aðc�dÞð Þj

There are a variety of algorithmic design options cited in the literature that reduce the number of

complex multiplications while implementing (8.6). These options can be broadly divided into two

categories: butterfly-based computation and mathematical transformation.

For butterfly-based computation a variety of algorithms based on radix-2, radix-4, radix-8,

hybrid radix, radix-22, radix-23, and radix-2/22/23 [9, 10] and a mix of these are proposed. The

radix-4 and radix-8 algorithms use fewer complex multiplications than radix-2 but require N to be

a power of 4 and 8, respectively. To counter the complexity and still gain the benefits, radix-22 and

radix-23 algorithms are proposed in [11] that still use radix-2 type butterflies and reduce the

number of complex multiplications. Most of these radix-based algorithms reduce the number of

complex multiplications. In general, a radix-r algorithm requires logrN stages of N/r butterflies,

and preferably N needs to be a power of r or the data is zero-padded to make the signal of requisite

length.

A radix-2 N-point FFT divides the computation into log2N stages where each stage executes N/2

two-point butterflies. A flow graph for 8-point FFT implementation using a radix-2 butterfly is

shown in Figure 8.13(a). An 8-point FFT can also be computed by using two stages of radix-4

butterflies,shown in Figure 8.13(b); each stage would contain two of these butterflies.

A pipelined FDA requires the data to be placed at the input of every butterfly in every cycle, and

then the design works in lock step to generateN output in every clock cyclewith an initial latency of

the number of pipeline stages in the design. This design requires placing ofN samples at the input of

the architecture in every clock cycle. This for large values of N is usually not possible, so then the

designer needs to resort to folded architecture.

When there aremore clock cycles available for the design, the architecture is appropriately folded.

In general, a folded architecture can realizeM butterflies in parallel to implement an N-point FFT,
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where N¼ JM and J is the folding factor. The design executes the algorithm in J clock cycles.

Feeding the input data to the butterflies and storing the output for subsequent stages of the design is

themost critical design consideration. The datamovement and storage should bemade such that data

is always available to the butterflies without any contention. Usually the data is either stored in

memory or input to the design using registers. The intermediate results are either stored back in

memory or are systematically placed in registers such that they are conveniently available for the

next stages of computation. Similarly the output can be stored either in memory or in temporary

registers. For register-based architectures the two options are MDC (multi-delay commuta-

tor) [12–14] or SDF (single-path delay feedback) [15, 16]. In MDC, feedforward registers and

multiplexers are used on r stream of input data to a folded radix-r butterfly.

Figure 8.14 shows a design for 8-point decimation in a frequency FFT algorithm that folds three

stages of eight radix-2 butterflies on to three butterflies. The pipeline registers are appropriately

placed to fully utilize all the butterflies in all clock cycles.

8.5.4 Memory-based Folded FFT Processor

The designer can also produce a generic FFT processor that uses a number of butterflies in the

datapath and multiple dual-ported memories and respective address generation units for computing

an N-point FFT [17–19]. Here a memory-based designed is discussed.

For memory-based HW implementation of an N-point radix-2 FFT algorithm, one or multiple

butterfly units can be placed in the datapath. Each butterfly is connected to two dual-ported

memories and a coefficient ROM for providing input data to the butterfly. The outputs of the

butterflies are appropriately saved inmemories to be used for the next stages of execution. The main

objective of the design is to place input and output data in a way that two corresponding inputs to

execute a particular butterfly are always stored in two different dual-port memories. The memory

management should be done in a way that avoids access conflicts.

A design using a radix-2 butterfly processing element (PE) with two dual-ported RAMs and a

coefficient ROM in the datapath is shown in Figure 8.15(a). While implementing decimation in

frequency FFT computation, the design initially stores N/2 points of input data, x0, x1, . . ., xN/2�1 in
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Figure 8.13 (a) Flow graph realizing an 8-point FFT algorithm using radix-2 butterflies, and (b) A

radix-4 butterfly
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RAM0, and then with the arrival of every new sample, xN/2, xN/2þ 1, . . ., xN� 1, executes the

following butterfly computations:

yk ¼ xn þxnþ N
2

ð8:7Þ

ykþ 1 ¼ xn�xnþ N
2

� �
Wnk

N ð8:8Þ

The output of the computations from (8.7) and (8.8) are stored in RAM0 and RAM1, respectively,

for the first N/2 samples,and then reversing the storage arrangements whereby the outputs of (8.7)

and (8.8) are stored in RAM1 and RAM0, respectively. This arrangement enables the next stage of

computationwithout anymemory conflicts. In every stage of FFT computation, the design swaps the

storage pattern for everyN/2s output samples, where s is the stage of butterfly computation for s¼ 1,

2, . . ., log2N.
Example: Figure 8.13(a) shows a flow graph realizing an 8-point decimation in frequency FFT

algorithm.Thefirst four samples of input, x0 . . . x3, are stored inRAM0.For the next input samples the

architecture starts executing (8.7) and (8.8) and stores the first four results in RAM0 and RAM1,

respectively,andtheresultsof thenextfourcomputationsarestoredinRAM1andRAM0,respectively.

This arrangement makes the computation of the next stage of butterfly possible without memory
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Figure 8.15 (a) FFT processor with two dual-port memories, with one radix-2 butterfly in the datapath.

(b) Memory storage pattern for effective FFT implementation
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access conflicts. The next stage swaps the storage of results for evry two sets of outputs in memories

RAM0 and RAM1. The cycle-by-cycle storage of results is shown in Figure 8.13(b).

8.5.5 Systolic Folded Architecture

TheFFTalgorithmcan also be realized as systolic folded architecture, using anMDForSDFbasis. In

this architecture all the butterflies in one stage of the FFT flow graph are folded and mapped on a

single butterfly processing element. To ensure systolic operation, intermediate registers and multi-

plexers are placed such that the design keeps processing data for computation of FFT and correct

inputs are always available to every PE in every clock cycle for full utilization of the hardware.

Implementing the decimation in a frequency FFTalgorithm, the architecture requires log2N PEs.

To enable fully systolic operationwith 100%utilization in theMDFconfiguration, the two input data

streams are provided toPE1. The upper stream serially feeds the firstN/2 samples of input data, x0, x1,

. . ., xN/2–1, and the lower stream serially inputs the otherN/2 samples, xN/2, xN/2þ 1, . . ., xN� 1. Then

PE1 sequentially computes one radix-2 butterfly of decimation in the frequency FFT algorithm in

every clock cycle and passes the output to the next stage of folded architecture. To synchronize the

input to PE2, the design places a set of N/4 registers each in upper and lower branches. The

multiplexers ensure the correct set of data are fed to PE1 and PE2 in every clock cycle. Similarly each

stage requires placement of N/2s registers at each input for s¼ 2, 3, . . ., log2N.
Example: Figure 8.14 shows the details of the design for a systolic FFT implementation. The data

is serially fed to PE1 and the output is stored in registers for first two computations of butterfly

operations. These outputs are then used for the next two set of computation.

The cycle-by-cycle detailed working of the architecture is shown in Figure 8.16. The first column

shows the cycleswhere the design repeats computation after every fourth cycle and starts computing

the 8-point FFTof a new sequence of 8 data points. The second column shows the data being serially

fed to the design. The first cycle takes x0 and x4, and then in each subsequent cycle two data values are

fed as shown in this column. The columns labeled as PE1, PE2 and PE3 show the butterfly

computations. The intermediate values stored in registers R0, R1, R2 and R3 are also shown in the

table as yij, where i is the level and j is the index..

The multiplexer selects signals given in Table 8.1. The controller is a simple 2-bit counter, where

the most significant bit (MSB) of the counter is used for sel1 and the least significant bit (LSB) is

used for sel2. The counter is used to read the values of twiddle factors from four-deep ROM. The

RTL Verilog code is given here:

// Systolic FFT architecture for 8-point FFT computation

module FFTSystolic

(

input signed [15:0] xi_re, xi_im, xj_re, xj_im,

input clk, rst_n,

output signed [15:0] yi_re, yi_im, yj_re, yj_im);

reg signed [15:0] R_re[0:5], R_im[0:5];

reg [1:0] counter;

wire signed [15:0] W_re[0:3], W_im[0:3];

// Twiddle factors of three butterflies

reg signed [15:0] W0_re, W0_im, W1_re, W1_im, W2_re, W2_im;

wire sel1, sel2;

wire signed [15:0] xj_re1, xj_im1, xj_re2, xj_im2;

wire signed [15:0] yi_re1, yi_im1, yj_re1, yj_im1,

yi_re2, yi_im2, yj_re2, yj_im2;
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wire signed [15:0] yi_out_re1, yi_out_im1, yi_out_re2,

yi_out_im2;

// The control signals

assign sel1 = �counter[1];

assign sel2 = �counter[0];

// Calling butterfly tasks

ButterFly B0(xi_re, xi_im, xj_re, xj_im, W0_re, W0_im,

yi_re1, yi_im1, yj_re1, yj_im1);

ButterFly B1(R_re[3], R_im[3], xj_re1, xj_im1, W1_re,

W1_im, yi_re2, yi_im2, yj_re2, yj_im2);

ButterFly B2(R_re[5], R_im[5], xj_re2, xj_im2, W2_re,

W2_im, yi_re, yi_im, yj_re, yj_im);

Mux2To2 MUX1(yi_re1, yi_im1, R_re[1], R_im[1], sel1,

i_out_re1, yi_out_im1, xj_re1, xj_im1);

Mux2To2 MUX2(yi_re2, yi_im2, R_re[4], R_im[4], sel2,

yi_out_re2, yi_out_im2, xj_re2, xj_im2);

always @(*)

begin

// Reading values of twiddle factors for three butterflies

W0_re = W_re[counter]; W0_im = W_im[counter];

W1_re = W_re[{counter[0],1’b0}];W1_im = W_im[{counter[0],1’b0}];

W2_re = W_re[0]; W2_im = W_im[0];

end

always @(posedge clk or negedge rst_n)

begin

if(!rst_n)

begin

R_re[0] <= 0; R_im[0] <= 0;

R_re[1] <= 0; R_im[1] <= 0;

R_re[2] <= 0; R_im[2] <= 0;

R_re[3] <= 0; R_im[3] <= 0;

R_re[4] <= 0; R_im[4] <= 0;

R_re[5] <= 0; R_im[5] <= 0;

end

else

begin

R_re[0] <= yj_re1; R_im[0] <= yj_im1;

R_re[1] <= R_re[0]; R_im[1] <= R_im[0];

R_re[2] <= yi_out_re1; R_im[2] <= yi_out_im1;

R_re[3] <= R_re[2]; R_im[3] <= R_im[2];

R_re[4] <= yj_re2; R_im[4] <= yj_im2;

R_re[5] <= yi_out_re2; R_im[5] <= yi_out_im2;

end

end

always @(posedge clk or negedge rst_n)

if(!rst_n)

counter <= 0;

else

counter <= counter+1;

// 1, 0

assign W_re[0] = 16’h4000; assign W_im[0] = 16’h0000;

// 0.707, -0.707

Unfolding and Folding of Architectures 371



assign W_re[1] = 16’h2D41; assign W_im[1] = 16’hD2BF;

// 0, -1

assign W_re[2] = 16’h0000; assign W_im[2] = 16’hC000;

// -0.707, -0.707

assign W_re[3] = 16’hD2BF; assign W_im[3] = 16’hD2BF;

endmodule

module ButterFly

(

input signed [15:0] xi_re, xi_im, xj_re, xj_im, // Input data

input signed [15:0] W_re, W_im, // Twiddle factors

output reg signed [15:0] yi_re, yi_im, yj_re, yj_im);

// Extra bit to cater for overflow

reg signed [16:0] tempi_re, tempi_im;

reg signed [16:0] tempj_re, tempj_im;

reg signed [31:0] mpy_re, mpy_im;

always @(*)

begin

// Q2.14

tempi_re = xi_re + xj_re; tempi_im = xi_im + xj_im;

// Q2.14

tempj_re = xi_re - xj_re; tempj_im = xi_im - xj_im;

mpy_re = tempj_re*W_re - tempj_im*W_im;

mpy_im = tempj_re*W_im + tempj_im*W_re;

// Bring the output format to Q3.13 for first stage

// and to Q4.12 and Q5.11 for the second and third stages

yi_re = tempi_re>>>1; yi_im = tempi_im>>>1;

// The output for Q2.14 x Q 2.14 is Q4.12

yj_re = mpy_re[30:15]; yj_im = mpy_im[30:15];

end

endmodule

module Mux2To2

(

input [15:0] xi_re, xi_im, xj_re, xj_im,

input sel1,

output reg [15:0] yi_out_re, yi_out_im, yj_out_re, yj_out_im);

always @ (*)

begin

if (sel1)

begin yi_out_re = xj_re; yi_out_im = xj_im;

yj_out_re = xi_re; yj_out_im = xi_im; end

else

begin yi_out_re = xi_re; yi_out_im = xi_im;

yj_out_re = xj_re; yj_out_im = xj_im; end

end

endmodule

8.6 Mathematical Transformation for Folding

Many feedforward algorithms can be formulated to recursively compute output samples. DCT [20]

and FFTare good examples that can be easily converted to use recursions. Many digital designs for
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Clock cycle PE1 R0 R2 PE3 R4 PE3

R1 R3 R5

0

x3x2x1x0 y10¼ x0 þ x4

x7x6x5x4 y14¼ (x0� x4) W
0
8

1

x0x3x2x1 y11¼ x1 þ x5 y10

x4x7x6x5 y15¼ (x1 – x5) W
1
8 y14

2

x1x0x3x2 y12¼ x2 þ x6 y11 y10 y20¼ y10 þ y12

x5x4x7x6 y16¼ (x2 – x6) W
2
8 y15 y14 y22¼ (y10� y12) W

0
8

3

x2x1x0x3 y13¼ x3 þ x7 y14 y11 y21¼ y11 þ y13 y20 x(0)¼ y20 þ y21

x7x6x5x7 y17¼ (x3� x7) W
3
8 y16 y15 y23¼ (y11� y13) W

2
8 y22 x(4)¼ (y20� y21) W

0
8

4

y15 y14 y24¼ y14 þ y16 y22 x(2)¼ y22 þ y23

y17 y16 y26¼ (y14� y16) W
0
8 y23 x(6)¼ (y22� y23) W

0
8

5

y15 y25¼ y15 þ y17 y24 x(1)¼ y24 þ y25

y17 y27¼ (y15� y17) W
2
8 y26 x(5)¼ (y24� y25) W

0
8

6

y26 x(3)¼ y26 þ y27

y27 x(7)¼ (y26� y27) W
0
8

Figure 8.16 Cycle-by-cycle description of the architecture, depicting values in registers and the computation in different PEs
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signal processing applications may require folding of algorithms for effective hardware mapping

that minimizes area. The folding can be accomplished by using a folding transformation. The

mathematical formulation of folding transformations is introduced in [21, 22]. A brief description is

given in this section.

For a given folding order and a folding set for a DFG, the folding transformation computes the

number of delays on each edge in the folded graph. The folded architecture periodically executes

operations of theDFGaccording to the folding set. Figure 8.17 shows an edge that connects nodesUi

and VjwithWij delays. TheWij delays on the edgeUi ! Vj signify that the output of nodeUi is used

by nodeVj afterWij cycles or iterations in the originalDFG. If theDFG is folded by a folding factorN,

then the folded architecture executes each iteration of the DFG in N cycles. All the nodes of typeU

andV in theDFGare scheduled on computational unitsHu andHv, respectively, in clock cycles ui and

vj such that 0 � ui; vi � N�1. If nodes U and Vare of the same type, they may be scheduled on the

same computational unit in different clock cycles.

For the folded architecture, nodeUi is scheduled in clock cycle ui in the current iteration and node

Vj is scheduled in vj clock cycle in theWij iteration. In the original DFG the output of nodeUi is used

afterWij clock cycles, and now in the folded architecture, as the nodeUi is scheduled in the ui clock

cycle of the current iteration and it is used in theWij iteration in the original DFG, as each iteration

takesN clock cycle thus the folded architecture starts executing theWij iteration in theN�Wij clock

cycle, where nodeVj is scheduled in the vj clock cycle in this iteration. This implies that, with respect

to the current iteration, node Vj is scheduled in the N�Wij þ vj clock cycle, so in the folded

architecture the result from nodeUi needs to be stored forFij number of register clock cycles, where:

Fij ¼ N �Wij þ vj � ui

If the node of type U is mapped on a computational unit Hu with Pu pipeline stages, these delays

will also be incorporated in the above equation, and the new equation becomes:

Fij ¼ N �Wij þ vj � ui �Pu

ui z-W vj
ij

Figure 8.17 An edge in a DFG connecting nodes Ui and Vj with Wij delays

Table 8.1 Select signals for multiplexers of the text example

Clock cycle sel1 sel2

0 0 0

1 0 1

2 1 0

3 1 1
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Example:ADFG of second order IIR filter is given in Figure 8.18(a) with three addition nodes 1, 4

and 5, and two multiplication nodes 2 and 3. Fold the architecture by a folding factor of 3 with the

folding set for the adder Sa¼ {4, 5, 1} and the folding set for the multiplier as Sm¼ {3,_,2}. The

number of registers for each edge in the folded architecture using the equation for the folding

transformation assuming no pipeline stage in multiplier and adder, is as follows:

Fij ¼ N �Wij þ vj�ui
F12 ¼ 3þ 2�2 ¼ 3

F13 ¼ 3� 2þ 0�2 ¼ 4

F24 ¼ 3þ 0�2 ¼ 1

F14 ¼ 3þ 0�2 ¼ 1

F45 ¼ 0þ 1�0 ¼ 1

F35 ¼ 0þ 1�0 ¼ 1

F51 ¼ 0þ 2�1 ¼ 1

After figuring out the number of registers required for storing the intermediate results, the

architecture can be easily drawn. One adder and one multiplier are placed with two sets of 3:1

multiplexers with each functional unit. Now observing the folding set, connections are made from

the registers to themultiplier. For example, the adder first executes node 4. This node requires inputs

from node 2 and node 1. The values of F24 and F14 are 1 and 1, where node 2 is the multiplier node.

The connections to port 0 of the twomultiplexers at the input of the adder aremade by connecting the

output of one register after multiplier and one register after adder. Similarly, connections for all the

operations are made based on folding set and values of Fij.
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Figure 8.18 Second-order IIR system. (a) Dataflow graph of the system. (b) Folded design with folding

factor 3
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The folded design is shown in Figure 8.18(b). The input data is feed to the system every three

cycles. Themultiplexer selects the input to the functional units, the selected line simply counts from

00 to 10 and starts again from 00.

8.7 Algorithmic Transformation

In many applications a more convenient hardware mapping can be achieved by performing an

algorithmic transformation of the design. For FFT computations the Goertzel algorithm is a good

example, where the computations are implemented as an IIR filter [23]. This formulation is effective

if only a few coefficients of the frequency spectrum are to be computed.

DTMF (dual-tone multi-frequency) is an example where the Goertzel algorithm is widely

used. This application requires computation of the frequency content of eight frequencies for

detection of dialed digits in telephony. The algorithm takes the formulation of (8.6) and converts

it to a convolution summation of an IIR linear time-invariant (LTI) system with the transfer

function:

H zð Þ ¼ 1�Wk
Nz

�1

1�2 cos
2p
N

k

� �
z�1 þ z�2

The Nth output sample of the system gives a DFT of N data samples at the kth frequency index.

Figure 8.19(a) shows the IIR filter realization of the transfer function. The feedforward path involves

a multiplication by�Wk
N that only needs to be computed at everyNth sample, and themultiplication

by �1 and two additions in the feedback loop can be implemented by a compression tree and an

adder. The design can be effectively implemented by using just one adder and a multiplier and is

shown in Figure 8.19(b). The multiplier is reused for complex multiplication after the Nth cycle.
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Figure 8.19 Iterative computation of DFT for frequency index k. (a) FDA design of Goertzel algorithm.

(b) Design mapped on a multiplier and an adder
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Assuming real data, 0, 1, . . ., N� 1 cycles compute the feedback loop. In the Nth cycle, the en of

register R1 is de-asserted and register R2 is reset. The multiplexer selects multiplier for the

multiplication by:

�Wk
N ¼ �cos

2p
N

k

� �
�j sin

2p
N

k

� �

in two consecutive cycles. In these cycles, a zero is fed in the compressor for x[n].

Exercises

Exercise 8.1

A 4MHz bandwidth signal is centered at an intermediate frequency of 70MHz. Select the sampling

frequency of an ADC that can bandpass sample the signal without any aliasing.

Exercise 8.2

The mathematical expression for computing correlation of a mask m[n1, n2] of dimensions L1�L2
with an image I[n1, n2] of size N1�N2 is:

c n1;n2½ �¼
XL2�1

k2¼0

XL1�1

k1¼0

m k1;k2½ �� I½n1þk1;n2þk2�j j for n1¼ 0;1; . . . ;N1�L1 and n2 ¼ 0;1; . . . ;N2�L2

Write C code to implement the nested loop that implements the correlation summation. Assuming

L1¼ L2¼ 3 andN1¼N2¼ 256, unroll the loops to speed up the computation by a factor of 9 such that

the architecture needs to load the minimum number of new image samples andmaximize data reuse

across iterations.

Exercise 8.3

A 48th-order IIR filter is given by the following mathematical expression:

y n½ � ¼
X47
k¼0

bkx n� k½ � þ
X47
k¼1

aky½n� k�

Write C code to implement the equation. Design a folded architecture by appropriately unrolling

loops in C implementation of the code. The design should perform four MAC operations of the

feedforward and four MAC operations of the feedback summations. The design should require the

minimum number of memory accesses.

Exercise 8.4

Unfold the second-order IIR filter in the TDF structure of Figure 8.5, first by a factor of 3 and then by

a factor of 4. Identify loops in the unfolded structures and compute their IPBs assuming

multiplication and addition take 3 and 2 time units, respectively.
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Exercise 8.5

Figure 8.7(b) gives an unfolded architecture of Figure 8.7(a) for maximizing the use of compression

trees for optimal HW design. Unfold the FIR filter in Figure 8.7(a) by a factor of 4, assuming each

coefficient is represented by four non-zero digits in CSD format. Design an architecture with

compression trees, keeping the internal datapath in partial sum and partial carry form.

Exercise 8.6

The objective is to design a high-performance 8-coefficient FIR filter for mapping on an FPGAwith

excessiveDSP48 embedded blocks.Appropriately pipeline theDF structure of the filter to unfold the

structure by a factor of 4 for effective mapping on the FPGA.

Exercise 8.7

Fold the architecture of Figure 8.20 by a factor of 4. Find an appropriate folding set. Draw the folded

architecture and write RTL Verilog code of the original and unfolded designs.
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9

Designs based on Finite
State Machines

9.1 Introduction

This chapter looks at digital designs in which hardware computational units are shared or time-

multiplexed to execute different operations of the algorithm. To highlight the difference between

time-shared and fully dedicated architecture (FDA), the chapter first examines examples while

assuming that the circuit clock is at least twice as fast as the sampling clock. It is explained that, if

instances of these applications are mapped on a dedicated fully parallel architecture, they will not

utilize the HW in every clock cycle. Time sharing is the logical design decision for mapping these

applications in HW. These designs use the minimum required HW computational resources and

then share them for multiple computations of the algorithm in different clock cycles. The examples

pave the way to generalize the discussion to time-shared architecture.

A synchronous digital design that shares HWbuilding blocks for computations in different cycles

requires a controller. The controller implements a scheduler that directs the use of resources in a

time-multiplexed way. There are several options for the controller, but this chapter covers a hard-

wired state machine-based controller that cannot be reprogrammed.

The chapter describes bothMealy andMoore state machines.With theMealy machine the output

and next state are functions of the input and current state, whereas with theMooremachine the input

and current state only compute the next state and the output only depends on the current state.Moore

machines provide stable control input to the datapath for one complete clock cycle. In designs using

the Mealy machine, the output can change with the change of input and may not remain stable for

one complete cycle. For digital design of signal processing systems, these output signals are used

to select the logic in the datapath. Therefore these signals are time-critical and they should be stable

for one complete cycle. Stable output signals can also be achieved by registering output from a

Mealy machine.

The current state is latched in a state register in every clock cycle. There are different state

encoding methods that affect the size of the state register. A one-hot state machine uses one flip-flop

per state. This option is attractive because it results in simple timing analysis, and addition and

deletion of newer states is also trivial. This machine is also of special interest to field-programmable

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
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gate arrays (FPGAs) that are rich in flip-flops. If the objective is to conserve the number of flip-flops

of a state register, a binary-coded state machine should be used.

The chapter gives special emphasis to RTL coding guidelines for state machine design and lists

RTL Verilog code for examples. The chapter then focuses on digital design for complex signal

processing applications that need a finite state machine to generate control signals for the datapath

and have algorithm-like functionality. The conventional bubble representation of a state machine is

described, but it is argued that this is not flexible enough for describing complex behavior in many

designs. Complex algorithms require gradual refinement and the bubble diagram representation is

not appropriate. The bubble diagram is also not algorithm-like,whereas inmany instances the digital

design methodology requires a representation that is better suited for an algorithm-like structure.

The algorithmic state machine (ASM) notation is explained. This is a flowchart-like graphical

notation to describe the cycle-by-cycle behavior of an algorithm. To demonstrate the differences, the

chapter represents in ASM notation the same examples that are described using a bubble diagram.

The methodology is illustrated by an example of a first-in first-out (FIFO).

9.2 Examples of Time-shared Architecture Design

To demonstrate the need for a scheduler or a controller in time-shared architectures, this section

first describes some simple applications that require mapping on time-shared HW resources. These

applications are represented by simple dataflow graphs (DFGs) and their mappings on time-shared

HW require simple schedulers. For complex applications, finding an optimal hardware and its

associated scheduler is an ‘NP complete’ problem, meaning that the computation of an optimal

solution cannot be guaranteed in measurable time. Smaller problems can be optimally solved using

integer programming (IP) techniques [1], but for larger problems near-optimal solutions are

generated using heuristics [2].

9.2.1 Bit-serial and Digit-serial Architectures

Bit-serial architecture works on a bit-by-bit basis [3, 4]. This is of special interest where the data is

input to the system on bit-by-bit basis on a serial interface. The interface gives the designer

motivation to design a bit-serial architecture. Bit-by-bit processing of data, serially received on

a serial interface, minimizes area and in many cases also reduces the complexity of the design [5],

as in this case the arrangement of bits in the form of words is not required for processing.

An extension to bit-serial is a digit-serial architecture where the architecture divides an N-bit

operand to P¼N/M-bit digits that are serially fed, and the entire datapath is P-bit wide, where

P should be an integer [6–8]. The choice of P depends on the throughput requirement on the

architecture, and it could be 1 to N bits wide.

It is pertinent to point out that, as a consequence of the increase in device densities, the area usually

is not a very stringent constraint, so the designer should not unnecessarily get into the complications

of bit-serial designs. Only designs that naturally suit bit-serial processing should bemapped on these

architectures. A good example of a bit-serial design is given in [5].

Example: Figure 9.1 shows the design of FDA, where we assume the sampling clock equals the

circuit clock. The design is pipelined to increase the throughput performance of the architecture.

A node-merging optimization technique is discussed in Chapter 5. The technique suggests the use of

CSA and compression trees to minimize the use of CPA.

Now assume that for the DFG in Figure 9.1(a) the sampling clock frequency fs is eight times

slower than the circuit clock frequency fc. This ratio implies the HW can be designed such that it
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can be shared eight times. While mapping the DFG for fc¼ 8fs, the design is optimized and

transformed to a bit-serial architecture where operations are performed on bit-by-bit basis, thus

effectively using eight clocks for every input sample. A pipelined bit-serial HW implementation of

the algorithm is given in Figure 9.2, where for bit-serial designP¼ 1. The design consists of one full

adder (FA) and a full subtractor (FS) replacing the adder and subtractor of the FDA design.

Associated with the FA and FS for 1-bit addition and subtraction are two flip-flops (FFs) that feed

the previous carry and borrow back to the FA and FS for bit-serial addition and subtraction

operations, respectively. The FFs are cleared at every eighth clock cycle when the new 8-bit data is

input to the architecture. The sum from the FA is passed to the FS through the pipeline FF. The 1-bit

wide datapath does not require packing of intermediate bits for any subsequent calculations. Many

algorithms can be transformed and implemented on bit-serial architectures.

It is interesting to note that the architecture of Figure 9.2 can be easily extended to a digit-serial

architecture by feeding digits instead of bits to the design. The flip-flop for carry and borrow will

remain the same,while the adder, subtractor and other pipeline registers will change to digit size. For

example, if the digit size is taken as 4-bit (i.e. P¼ 4), the architecturewill take two cycles to process

two sets of 4-bit inputs, producing out [3:0] in the first cycle and then [7:4] in the second cycle.

9.2.2 Sequential Architecture

In many design instances the algorithm is so regular that hardware can be easily designed to

sequentially perform each iteration on shared HW. The HWexecutes the algorithm like a software
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Figure 9.1 (a) Algorithm requiring equal sampling and clock frequencies. (b) Mapping on FDA
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program, sequentially implementing one iteration of the algorithm in one clock cycle. This

architecture results in HW optimization and usually requires a very simple controller. Those

algorithms that easily map to sequential architecture can also be effectively parallelized. Systolic

architecture can also be designed for optimized HW mapping [9].

Example: This example considers the design of a sequential multiplier. The multiplier multiplies

twoN-bit signed numbers a and b inN cycles. In the firstN� 1 clock cycles the multiplier generates

the ith partial product (PPi) for a� b(i) and adds its ith shifted version to a running sum. For sign

by sign multiplication, the most significant bit (MSB) of the multiplier b has negative weight;

therefore the (N� 1)th shifted value of the final PPN�1 for a� b(N� 1) is subtracted from the

running sum. After N clock cycles the running sum stores the final product of a� b operation. The

pseudo-code of this algorithm is:

sum ¼ 0

forði ¼ 0; i < N�1; i þþÞ
sumþ ¼ a� b½i� � 2i

sum� ¼ a� b½N�1� � 2N�1

prod ¼ sum

Figure 9.3 shows a hardware implementation of the (N�N)-bit sequential multiplier. The 2N-bit

shift register prod_reg is viewed as two concatenated registers: the register with N least

significant bits (LBSs) is tagged as prod_reg_L, and the register with N MSBs is tagged as

prod_reg_H, and for convenience of explanation this register is also named reg_b. Register

reg_a in the design stores the multiplicand a. An N-bit adder/subtractor adds the intermediate

PPs and subtracts the final PP from a running sum that is stored in prod_reg_L. The ith left shift

of the PPi is successively performed by shifting the running sum in the prod_reg to the right in

every clock cycle. Before starting the execution of sequential multiplication, reg_a is loaded with
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Figure 9.3 An N�N-bit sequential multiplier
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multiplicand a, prod_reg_H (reg_b) is loaded with multiplier b, and prod_reg_H is set to

zero. Step-by-step working of the design is described below.

S1 Load the registers with appropriate values for multiplication:

prod_reg_H ! 0,

reg_a ! multiplicand a,

prod_reg_L (reg_b) ! multiplier b

S2 Each cycle adds the multiplicand to the accumulator if the ith bit of themultiplier is 1 and adds 0

when this bit is a 0:

if reg_b[i]==1 then

prod_reg_H += reg_a

else

prod_reg_H+=0

In every clock cycle, prod_reg is also shifted right by 1. For sign by sign multiplication, right

shift is performed by writing back the MSB of prod_reg to its position while all the bits

are moved to the right. For unsigned multiplication, a logical right shift by 1 is performed in

each step.

S3 For signed multiplication, in the Nth clock cycle, the adder/subtractor is set to perform

subtraction, whereas for unsigned multiplication addition is performed in this cycle as well.

S4 After N cycles, prod_reg stores the final product.

Amultiplexer is used for the selection of contents ofreg_a or 0. The LSB ofreg_b is used for this

selection. This is a good example of time-shared architecture that uses an adder and associated logic

to perform multiplication in N clock cycles.

The architecture canbeoptimizedbymoving theCPAout from the feedback loop, as inFigure 9.4(a).

The results of accumulation are saved in a partial sum and carry form in prod_reg_Hs and

prod_reg_Hc, respectively. The compression tree takes the values saved in these two registers

and the newPPi and compresses them to two layers. This operation always produces one free product

bit, as shown in Figure 9.4(b). The compressed partial sum and carry are saved one bit position to the

right. In N clock cycles the design produces N product LSBs, whereas N product MSBs in sum and

carry form are moved to a set of registers clocking at slower clock fs and are then added using a CPA

working at slower clock speed. The compression tree has only one full adder delay and works at

faster clock speed, allowing the design to work in high-performance applications.

Example: A sequential implementation of a 5-coefficient FIR filter is explained in this example.

The filter implements the difference equation:

yn ¼ h0xn þ h1xn�1 þ h2xn�2 þ h3xn�3 þ h4xn�4 ð9:1Þ

For the sequential implementation, let us assume that fc is five times faster than fs. This implies that

after sampling an input value at fs the design running at clock frequency fc has five clock cycles to

compute one output sample. An FDA implementation will require five multipliers and four adders.

Using this architecture, the design running at fc would compute the output in one clock cycle and

would then wait four clock cycles for the next input sample. This obviously is a waste of resources,

so a time-shared architecture is preferred.
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A time-shared sequential architecture implements the same design using one MAC (multiplier

and accumulator) block. The pseudo-code for the sequential design implementing (9.1) is:

acc ¼ 0

for i ¼ 0; i < 4; i þþð Þ
accþ ¼ hixn�i

yn ¼ acc

The design is further optimized by moving the CPA out of the running multiplication and

accumulation operation. The results from the compression tree are kept in partial sumand carry form

in two sets of accumulator registers, accs and accc, and the same are fed back to the compression

tree for MAC operation. The partial results are moved to two registers clocked at slower clock fs.

The CPA adds the two values at slower clock fs. The pseudo-code for the optimized design is:

accs ¼ 0

accc ¼ 0

for i ¼ 0; i < 4; i þþð Þ
accc; accsf gþ ¼ hixn�i

yn ¼ accs þ accc

A generalized hardware design for an N-coefficient FIR filter is shown in Figure 9.5. The design

assumes fc/fs¼N. The design has a tap delay line that samples new input data at every clock fs at the

top of the line and shifts all the values down by one register. The coefficients are either saved in
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Figure 9.4 Optimized sequential multiplier. (a) Architecture using a 3:2 compression tree and CPA

operating at fc and fs. (b) Compression tree producing one free product bit
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ROM, or registers may also be used if the design is required to work for adaptive or changed

coefficients. A new input is sampled in registerx_n of the tap delay line of the design, andaccs and

accc are reset. The design computes one output sample in N clock cycles. After N clock cycles, a

new input is sampled in the tap delay line and partial accumulator registers are saved in intermediate

registers clocked at fs. The registers are initialized in the same cycle for execution of the next

iteration. A CPA working at slower clock fs adds the sum of partial results in the intermediate

registers and produces yn.

The HW design assumes that the sampling clock is synchronously derived from the circuit clock.

The shift registers storing the current and previous input samples are clocked using the sampling

clock clks, and so is the final output register. At every positive edge of the sampling clock, each

register stores a new value previously stored in the register located above it, with the register at the

top storing the new input sample. The datapath executes computation on the circuit clock clkc,

which is N times faster than the sampling clock. The top-level design consisting of datapath and

controller is depicted in Figure 9.6. The controller clears the partial sum and carry registers and starts

generating the select signals sel_h and sel_x for the two multiplexers, starting from 0 and then

incrementing by 1 at every positive edge ofclkc. At theNth clock cycle the final output is generated,

and the controller restarts again to process a new input sample.
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Figure 9.5 Time-shared N-coefficient FIR filter
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9.3 Sequencing and Control

In general, a time-shared architecture consists of a datapath and a control unit. The datapath is the

computational engine and consists of registers, multiplexers, de-multiplexers, ALUs, multipliers,

shifters, combinational circuits and buses. These HW resources are shared across different

computations of the algorithm. This sharing requires a controller to schedule operations on sets

of operands. The controller generates control signals for the selection of these operands in a

predefined sequence. The sequence is determined by the dataflow graph or flow of the algorithm.

Some of the operations in the sequence may depend on results from earlier computations, so status

signals are fed back to the control unit. The sequence of operationsmay also depend on input signals

from other modules in the system.

Figure 9.7 shows these two basic building blocks. The control unit implements the schedule of

operations using a finite state mMachine.

9.3.1 Finite State Machines

A synchronous digital design usually performs a sequence of operations on the data stored in

registers andmemory of its datapath under the direction of a finite state machine (FSM). The FSM is

a sequential digital circuit with an N-bit state register for storing the current state of the sequence of

operations. AnN-bit state register can have 2N possible values, so the number of possible states in the
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Figure 9.7 Time-shared architecture has two components, the datapath and a control unit

ADC

Data path

DAC

Controller

Clk divider

clks

xn

yn

sel_x

sel_h
rst_n

clkc

Figure 9.6 Datapath and controller of FIR filter design

388 Digital Design of Signal Processing Systems



sequence is finite. The FSM can be described using a bubble (state) diagram or an algorithmic state

machine (ASM) chart.

FSM implementation in hardware has two components, a combinational cloud and a sequential

logic. The combination cloud computes the output and the next state based on the current state and

input, whereas the sequential part has the resetable state register. A FSM with combinational and

sequential components is shown in Figure 9.8.

Example: This example designs an FSM that counts four 1s on a serial interface and generates a 1

at the output. One bit is received on the serial interface at every clock cycle. Figure 9.9 shows a

bubble diagram in which each circle represents a state, and lines and curves with arrowheads

represent state transitions. There are a total of four states, S0 . . . S3.
S0 represents the initial state where number of 1s received on the interface is zero. A 0/0 on the

transition curve indicates that, in state S0, if the input on the serial interface is 0 then the state

machine maintains its state and generates a 0 at the output. In the same state S0, if 1 is received at

the input, the FSM changes its state to S1 and generates a 0 at the output. This transition and

input-output relationship is represented by 1/0 on the line or curve with an arrowhead showing state

S1

S2

S3

S0

0/0

0/0

0/0

1/11/00/0

1/01/0

Figure 9.9 State diagram implementing counting of four 1s on a serial interface
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Figure 9.8 Combinational and sequential components of an FSM design
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transition from state S0 to S1. There is no change in state if the FSM keeps receiving 0s in the S1

state. This is represented by 0/0 on the state transition curve on S1. If it receives a 1 in state S1 it

transitions to S2. The state remains S2 if the FSM in S2 state keeps receiving zeros, whereas another

1 at the input causes it to transition to state S3. In state S3, if the FSM receives a 1 (i.e. the fourth 1),

the FSM generates a 1 at the output and transitions back to initial state S0 to start the counting again.

Usually a state machine may be reset at any time and the FSM transitions to state S0.

9.3.2 State Encoding: One-hot versus Binary Assignment

There are various ways of coding the state of an FSM. The coding defines a unique sequence of

numbers to represent each state. For example, in a ‘one-hot’ state machine with N states there are N

bits to represent these states. An isolated 1 at a unique bit location represents a particular state of the

machine. This obviously requires anN-bit state register. Although a one-hot state machine results in

simple logic for state transitions, it requires N flip-flops as compared to log2N in a binary-coded

design. The latter requires fewer flip-flops to encode states, but the logic that decodes the states and

generates the next states is more complex in this style of coding.

The arrangement with a one-hot state machine, where each bit of the state register represents a

state, works well for FPGA-based designs that are rich in flip-flops. This technique also avoids large

fan-outs of binary-coded state registers, which does not synthesize well on FPGAs.

A variant, called ‘almost one-hot’, can be used for state encoding. This is similar, with the

exception of the initial state that is coded as all zeros. This helps in easy resetting of the state register.

In another variant, two bits instead of one are used for state coding.

For low-power designs the objective is to reduce the hamming distance among state transitions.

This requires the designer to know the statisticallymost probable state transition pattern. The pattern

is coded using the gray codes. These four types of encoding are given in Table 9.1.

If the states in the last example are coded as a one-hot state machine, for four states in the FSM,

a state register of size 4 will be used where each flip-flop of the register will be assigned to one state

of the FSM.

As a consequence of one-hot coding, only one bit of the state register can be 1 at any time. The

designer needs to handle illegal states by checkingwhethermore than one bit of the state register is 1.

Inmany critical designs this requires exclusive logic that, independently of the statemachine, checks

whether the statemachine is in an illegal state and then transitions the statemachine to the reset state.

UsingN flip-flops to encode a statemachinewithN states, therewill be a total of 2N –N illegal states.

These need to be detected when, for example, some external electrical phenomenon takes the state

register to an illegal state. Figure 9.10 shows an FSMwith one-hot coding and an exclusive logic for

detecting illegal states. If the state register stores an illegal state, the FSM is transitioned to initial

state INIT.

Table 9.1 State encoding techniques

Binary One-hot Almost one-hot Gray

Parameter [1:0] Parameter [3:0] Parameter [2:0] Parameter [1:0]

S0¼ 20d00 S0¼ 40b0001 S0¼ 30b000 S0¼ 20b00
S1¼ 20d01 S1¼ 40b0010 S1¼ 30b001 S1¼ 20b01
S2¼ 20d10 S2¼ 40b0100 S2¼ 30b010 S2¼ 20b11
S3¼ 20d11 S3¼ 40b1000 S3¼ 30b100 S3¼ 20b10
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FPGAsynthesis tools facilitate the coding of states to one-hot or binary encoding. This is achieved

by selecting the appropriate encoding option in the FPGA synthesis tool.

9.3.3 Mealy and Moore State Machine Designs

In a Mealy machine implementation, the output of the FSM is a function of both the current state

and the input. This is preferred in applications where all the inputs to the FSM are registered outputs

from some other blocks and the generation of the next state and FSM output are not very complex.

It results in simple combinational logic with a short critical path.

In cases where the input to the FSM is asynchronous (it may change within one clock cycle), the

FSM output will also be asynchronous. This is not desirable especially in designs where outputs

from the FSM are the control signals to the datapath. The datapath computational units are also

combinational circuits, so an asynchronous control signal means that the control may not be stable

for one complete clock cycle. This is undesirable as the datapath expects all control signals to be

valid for one complete clock cycle.

In designs where the stability of the output signal is not a concern, theMealymachine is preferred

as it results in fewer states. A Mealy machine implementation is shown in Figure 9.11. The
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Figure 9.10 One-hot state machine with logic that detects illegal states
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Figure 9.11 Composition of a Mealy machine implementation of an FSM
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combinational cloud computes the next state and the output is based on the current state and the

input. The state register has an asynchronous reset to initialize the FSM at any time if desired.

In a Moore machine implementation, outputs are only a function of the current state. As the

current sate is registered, output signals are stable for one complete clock cyclewithout any glitches.

In contrast to the Mealy machine implementation, the output will be delayed by one clock cycle.

The Moore machine may also result in more states as compared to the Mealy machine.

The choice between Mealy and Moore machine implementations is the designer’s and is

independent of the design problem. In many design instances it is a fairly simple decision to

select one of the two options. In instances where some of the inputs are expected to glitch and

outputs are required to be stable for one complete cycle, the designer should always use the Moore

machine.

AMooremachine implementation is shown in Figure 9.12. The combinational logic-I of the FSM

computes the next state based on inputs and the current state, and the combinational logic-II of the

FSM computes the outputs based on the current state.

9.3.4 Mathematical Formulations

Mathematically an FSM can be formulated as a sextuple, (X, Y, S, s0, d, l), where X and Yare sets of

inputs and outputs, S is set of states, s0 is the initial state, and d and l are the functions for computing

the next state and output, respectively. The expression for next state computation can be written as:

skþ 1 ¼ d xk; skð Þ;where xk 2 X and sk 2 S

Subscript k is the time index for specifying the current input and current state, so using this

notation skþ 1 identifies the next state. For Mealy and Moore machines the expressions for

computing output can be written as:

Mealy machine : yk ¼ l sk; xkð Þ
Moore machine : yk ¼ l skð Þ

9.3.5 Coding Guidelines for Finite State Machines

Efficient hardware implementation of a finite state machine necessitates adhering to some coding

guidelines [10, 11].
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Figure 9.12 Composition of a Moore machine implementation of an FSM
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9.3.5.1 Design Partitioning in Datapath and Controller

The complete HW design usually consists of a datapath and a controller. The controller is

implemented as an FSM. From the synthesis perspective, the datapath and control parts have

different design objects. The datapath is usually synthesized for better timingwhereas the controller

is synthesized to take minimum area. The designer should keep the FSM logic and datapath logic

in separate modules and then synthesize respective parts selecting appropriate design objectives.

9.3.5.2 FSM Coding in Procedural Blocks

The logic in an FSM module is coded using one or two always blocks. Two always blocks are

preferred,where one implements the sequential part that assign the next state to the state register, and

the second block implements the combinational logic that computes the next state skþ 1¼ d(xk, sk).
The designer can include the output computations yk¼ l(sk, xk) or yk¼ l(sk) for Mealy or Moore

machines, respectively, in the same combinational block. Alternatively, if the output is easy to

compute, they can be computed separately in a continuous assignment outside the combinational

procedural block.

9.3.5.3 State Encoding

Each state in an FSM is assigned a code. From the readability perspective the designer should

use meaningful tags using ‘define or parameter statements for all possible states. Use of

parameter is preferred because the scope of parameter is limited to the module in which it is

definedwhereas ‘define is global in scope. The use of parameter enables the designer to use the

same state names with different encoding in other modules.

Based on the design under consideration, the designer should select the best encoding options out

of one-hot, almost one-hot, gray or binary. The developer may also let the synthesis tool encode the

states by selecting appropriate directives. The Synopsis tool lets the user select binary, one-hot or

almost one-hot by specifying it with the parameter declaration. Below, binary coding is invoked

using the enum synopsis directive:

parameter [3:0] // Synopsys enum code

9.3.5.4 Synthesis Directives

In many designs where only a few of the possible states of the state register are used, the designer

can direct the synthesis tool to ignore unused states while optimizing the logic. This directive for

Synopsys is written as:

case(state) // Synopsys full_case

Adding//Synopsisfull_case to thecase statement indicates to the synthesis tool to treat

all the cases that are explicitly not defined as ‘don’t care’ for optimization. The designer knows that

undefined cases will never occur in the design. Consider this example:

always @* begin

case (cntr) // Synopsys full_case

2’b00: out = in1;
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2’b01: out = in2;

2’b10: out = in3;

endcase

The user controls the synthesis tool by using the directive that the cntr signal will never take the

unused value 20b11. The synthesis tool optimizes the logic by considering this case as ‘don’t care’.

Similarly, //Synopsis parallel_case is used where all the cases in a case, casex or

casez statement aremutually exclusive and the designerwould like them to be evaluated in parallel

or the order in which they are evaluated does not matter. The directive also indicates that all cases

must be individually evaluated in parallel:

always @* begin

// Code for setting the output to default comes here

casez (intr_req) // Synopsys parallel_case

3’b??1:

begin // Check bit 0 while ignoring rest

// Code for interrupt 0 comes here

end

3’b?1?:

begin // Check bit 1 while ignoring rest

// Code for interrupt 1 comes here

end

3’b??1:

begin // Check bit 2 while ignoring rest

// Code for interrupt 2 comes here

end

endcase

The onus is on the designer to make sure that no two interrupts can happen at the same time.

On this directive, the synthesis tool optimizes the logic assuming non-overlapping cases.

While using one-hot or almost one-hot encoding, the use of //Synopsys full_case_

parallel_case signifies that all the cases are non-overlapping and only one bit of the state

register will be set and the tool should consider all other bit patterns of the state register as ‘don’t

care’. This directive generates the most optimal logic for the FSM.

Instead of using the default statement, it is preferred to use parallel_case and full_

case directives for efficient synthesis. The default statement should be used only in simulation

and then should be turned off for synthesis using the compiler directive. It is also important to

know that these directives have their own consequences and should be cautiously use in the

implementation.

Example: Using the guidelines, RTLVerilog code to implement the FSM of Figure 9.9 is given

below. Listed first is the design using binary encoding, where the output is computed inside the

combinational block:

// This module implements FSM for the detection of

// four ones in a serial input stream of data

module fsm_mealy(

input clk, //system clock

input reset, //system reset

input data_in, //1-bit input stream

outputregfour_ones_det //1-bitoutputtoindicate 4onesaredetectedornot

);
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// Internal Variables

reg [1:0] current_state, //4-bit current state register

next_state; //4-bit next state register

// State tags assigned using binary encoding

parameter STATE_0 = 2’b00,

STATE_1 = 2’b01,

STATE_2 = 2’b10,

STATE_3 = 2’b11;

// Next State Assignment Block

// This block implements the combination cloud of next state assignment logic

always @(*)

begin : next_state_bl

case(current_state)

STATE_0 :

begin

if(data_in)

begin

//transition to next state

next_state = STATE_1;

four_ones_det = 1’b0;

end

else

begin

//retain same state

next_state = STATE_0;

four_ones_det = 1’b0;

end

end

STATE_1:

begin

if(data_in)

begin

//transition to next state

next_state = STATE_2;

four_ones_det = 1’b0;

end

else

begin

//retain same state

next_state = STATE_1;

four_ones_det = 1’b0;

end

end

STATE_2 :

begin

if(data_in)

begin

//transition to next state
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next_state = STATE_3;

four_ones_det = 1’b0;

end

else

begin

//retain same state

next_state = STATE_2;

four_ones_det = 1’b0;

end

end

STATE_3 :

begin

if(data_in)

begin

//transition to next state

next_state = STATE_0;

four_ones_det = 1’b1;

end

else

begin

//retain same state

next_state = STATE_3;

four_ones_det = 1’b0;

end

end

endcase

end

// Current Register Block

always @(posedge clk)

begin : current_state_bl

if(reset)

current_state <= #1 STATE_0;

else

current_state <= #1 next_state;

end

endmodule

The following codes the same design using one-hot coding and computes the output in a separate

continuous assignment statement. Only few states are coded for demonstration. For effective HW

mapping, an inversecase statement is usedwhere each case is only evaluated to beTRUEorFALSE:

always@(*)

begin

next_state = 4’b0 ;

case (1’b1) // Synopsys parallel_case full_case

current_state[S0]:

if (in)

next_state[S1] = 1’b1 ;
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else

next_state[S0] = 1’b1 ;

current_state[S1]:

if (in)

next_state[S2] = 1’b1 ;

else

next_state[S1] = 1’b1 ;

endcase

end

// Separately coded output function

assign output = state[S3];

9.3.6 SystemVerilog Support for FSM Coding

Chapter 3 gives an account of SystemVerilog. The language supports multiple procedural blocks

such as always_comb, always_ff and always_latch, along with unique and

priority keywords. The directives of full_case, parallel_case and full_case_

parallel_case are synthesis directives and are ignored by simulation and verification tools.

There may be instances when the wrong designer perception can go unchecked. To cover these

short comings, SystemVerilog supports these statements and keywords to provide unified behavior

in simulation and synthesis. The statements cover all the synthesis directives and the user can

appropriately select the statements that are meaningful for the design. These statements ensure

coherent behavior of the simulation and post-synthesis code [27].

Example: The compiler directives are ignored by simulation tools. Use of the directives may

create mismatches between pre- and post-synthesis results. The following example of a Verilog

implementation explains how SystemVerilog covers these short comings:

always@(cntr, in1, in2, in3, in4)

casex (cntr) /* Synopsys full_case parallel_case */

4’b1xxx: out = in1;

4’bx1xx: out = in2;

4’bxx1x: out = in3;

4’bxxx1: out = in4;

endcase

As the simulator ignores the compiler directives, a mismatch is possible when more than two bits

of cntr are 1 at any time. The code can be rewritten using SystemVerilog for better interpretation:

always_comb

unique casex (cntr)

4’b1xxx: out = in1;

4’bx1xx: out = in2;

4’bxx1x: out = in3;

4’bxxx1: out = in4;

endcase

In this case the simulator will generate a warning if the cntr signal takes values that are not one-

hot. This enables the designer to identify problems in the simulation and functional verification

stages of the design cycle.

Designs based on Finite State Machines 397



9.4 Algorithmic State Machine Representation

9.4.1 Basics

Hardware mapping of signal processing and communication algorithms is the main focus of

this book. These algorithms are mostly mapped on time-shared architectures. The architectures

require the design of FSMs to generate control signals for the datapath. In many designs the

controllers have algorithm-like functionality. The functionality also encompasses decision support

logic. Bubble diagrams are not flexible enough to describe the complex behavior of these finite state

machines. Furthermore, many design problems require gradual refinement and the bubble diagram

representation is not appropriate for this incremental methodology. The bubble diagram is also not

algorithm-like. The algorithmic state machine (ASM) notation is the representation of choice for

these design problems.

ASM is a flowchart-like graphical notation that describes the cycle-by-cycle behavior of an

algorithm. Each step transitioning from one state to another or to the same state takes one clock

cycle. TheASM is composed of three basic building blocks: rectangles, diamonds and ovals. Arrows

are used to interconnect these building blocks. Each rectangle represents a state and the state output

is written inside the rectangle. The state output is always an unconditional output, which is asserted

when the FSM transitions to a state represented by the respective rectangle. A diamond is used for

specifying a condition. Based on whether the condition is TRUE or FALSE, the next state or

conditional output is decided. An oval is used to represent a conditional output. AsMoore machines

only have state outputs, Moore FSM implementations do not have ovals, but Mealy machines may

contain ovals in their ASM representations.

Figure 9.13 shows the relationship of three basic components in an ASM representation. For

TRUE or FALSE, T and F are written on respective branches. The condition may terminate in an

oval, which lists conditional output.

State Output List
--------------------------
--------------------------
--------------------------

* ***

Conditional Output List
----------------

STATE CODEState 
Name

State Entry 
Path

Condition

State Box

Condition Box

FT

ASM Block

Output Box

Exit to other 
ASM Block

Figure 9.13 Rectangle, diamond and oval blocks in an ASM representation
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TheASM is very descriptive and provides amechanism for a systematic and step-by-step design

of synchronous circuits. Once defined it can be easily translated into RTL Verilog code. Many

off-the-shelf tools are available that directly convert an ASM representation into RTL Verilog

code [11].

Example:Consider the design of Figure 9.9. The FSM implements counting of four 1s on a serial

interface using Mealy or Moore machines. This example describes the FSM using ASM represen-

tation. Figure 9.14 shows the representations. The Moore machine requires an additional state.

9.4.2 Example: Design of a Four-entry FIFO

Figure 9.15 shows the datapath and control unit for a 4-entry FIFOqueue. The inputs to the controller

are two operations, Write and Del. The former moves data from the fifo_in to the tail of the

FIFO queue, and the latter deletes the head of the queue. The head of the queue is always available at

fifo_out. A write into a full queue or deletion from an empty queue causes an error condition.

Assertion of Write and Del at the same time also causes an error condition.

The datapath consists of four registers, R0, R1, R2 and R3, and a multiplexer to select the head of

the queue. The input to the FIFO is stored in R0 when the write_en is asserted. The write_en

also moves the other entries in the queue down by one position. With every new write and delete in

the queue, the controller needs to select the head of the queue from its new location using an

out_sel signal to themultiplexer. The FSM controller for the datapath is described using anASM

chart in Figure 9.16.

The initial state of FSM is S0 and it identifies the status of the queue as empty. AnyDel request to

an empty queue will cause an error condition, as shown in the ASM chart. On a Write request the

controller asserts a write_en signal and the value at fifo_in is latched in register R0. The

controller also selects R0 at the output by assigning value 3
0b00 to out_sel. On a Write request

the controller also transitions to state S1.When the FSM is in S1 aDel takes the FSMback to S0 and a

Write takes it to S2. Similarly, another Write in state S2 transitions the FSM to S3. In this state,

another Write generates an error as the FIFO is now completely filled. In every state, Write and

Del at the same time generates an error.

Partial RTLVerilog code of the datapath and the FSM is given below. The code only implements

state S0. All the other states can be easily coded by following the ASM chart of Figure 9.16.

// Combinational part only for S0 and default state is given

always @(*)

begin

next_state=0;

case(current_state)

S̀0:

begin

if(!Del&& Write)

begin

next_state = S̀1;

write_en = 1’b1;

Error= 1’b0;

out_sel = 0;

end

else if(Del)

begin
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Figure 9.14 ASM representations of four 1s detected problem of Figure 9.9: (a) Mealy machine;

(b) Moore machine
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next_state= S̀0;

write_en =1’b0;

Error = 1’b1;

out_sel=0;

end

else

begin

next_state= S̀0;

write_en=1’b0;

out_sel = 1’b0;

end

// Similarly, rest of the states are coded //

default:

begin

next_state= S̀0;

write_en = 1’b0;

Error = 1’b0;

out_sel =0;

end

endcase

end

// Sequential part

always @(posedge clk or negedge rst_n)

if(!rst_n)

current_state <= #1 ’S0;

else

current_state <= #1 next_state;

9.4.3 Example: Design of an Instruction Dispatcher

This section elaborates the design of an FSM-based instruction dispatcher for a programmable

processor that can read 32-bit words from programmemory (PM). The instruction words arewritten

into two 32-bit instruction registers, IR0 and IR1. The processor supports short and long instructions

of lengths 16 and 32-bit, respectively. The LSB of the instruction is coded to specify the instruction

type. A 0 in the LSB indicates a 16-bit instruction and a 1 depicts the instruction is 32-bit wide. The

dispatcher identifies the instruction type and dispatches the instruction to the respective Instruction

Decoder (ID).

Figure 9.17(a) shows the bubble diagram that implements the instruction dispatcher. Following

is the description of the working of the design.

1. The dispatcher’s reset state is S0.

2. The FSM reads the first 32-bit word from PM, transitions into state S1 and stores it in instruction

register IR0.

3. The FSM then reads another 32-bit word, which is latched in IR0 while it shifts the contents of IR0

to IR1 in the same cycle andmakes transitions from S1 to S2. In state S2 the FSM reads the LSB of

IR1 to check the instruction type. If the instruction is of type long (IL) i.e. 32-bit instruction it is

dispatched to the ID for long instruction decoding and another 32-bitword is read in IR0where the
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contents of IR0 are shifted to IR1. The FSM remains in state S2. On the other hand, if the FSM is in

state S2 and the current instruction is of type short (IS), then the instruction is dispatched to the

Instruction Decoder Short (IDS) and the FSM transition into S3 without performing any read

operation.

4. In state S3, the FSM readjusts data. IR1H representing 16 MSBs of register IR1 is moved to IR1L

that depicts 16 LSBs of the instruction register IR1. In the same sequence of operations, IR0H and

IR0L are moved to IR0L and IR1L, respectively. In state S3, the FSM checks the instruction type.

If the instruction is of type long the FSM transitions to state S4; otherwise if the instruction is of

type short the FSM transitions to S5.In both cases FSM initiates a new read from PM.

5. The behavior of the FSM in states S4 and S5 is given in Figure 9.17(a). To summarize, the FSM

adjusts the data in the instruction registers such that the LSBof the current instruction is in the LSB

of IR1 and the dispatcher brings the new 32-bit data from PM in IR0 if required. Figure 9.17(b)

shows the associated architecture for readjusting the contents of instruction registers. The control

signals to multiplexers are generated to bring the right inputs to the four registers IR0H, IR0L, IR1H

and IR1L for latching in the next clock edge.

The RTL Verilog code of the dispatcher is given here:

// Variable length instruction dispatcher

moduleVariableInstructionLengthDispatcher(inputclk,rst_n,output [31:0]IR1);

reg [31:0] program_mem [0:255];

reg [7:0] PC; // program counter for memory (physical reg)

wire [15:0] data_H; // contains 16 MSBs of data from program memory

wire [15:0] data_L; // contains 16 LSBs of data from program_mem

reg [5:0] next_state, current_state;

reg read;

reg IR0_L_en, IR0_H_en; // write enable for IR0 regsiter

reg [1:0] mux_sel_IRO_L;

reg IR1_L_en, IR1_H_en; // write enable for IR1 register

Controller

out_sel

write_en

Write

Delete

fifo_in

fifo_out

R0

R1

R2

R3

Error

0

1

2

3

clk

Datapath

Figure 9.15 Four-entry FIFO queue with four registers and a multiplexer in the datapath
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reg [1:0] mux_sel_IR1_H;

reg mux_sel_IR1_L;

reg [15:0] mux_out_IR0_L, mux_out_IR1_H, mux_out_IR1_L;

reg [15:0] IR0_H, IR0_L, IR1_H, IR1_L;

// state assignments

parameter [5:0] S0 = 1;

parameter [5:0] S1 = 2;

parameter [5:0] S2 = 4;

parameter [5:0] S3 = 8;

parameter [5:0] S4 = 16;

parameter [5:0] S5 = 32;

// loading memory "program_memory.txt"

initial

begin

$readmemh("program_memory.txt",program_mem);

end

assign {data_H, data_L} = program_mem[PC];

assign IR1 = {IR1_H, IR1_L}; //instructions in IR1 get dispatched

always @ (*)

begin

// default settings

next_state = 6’d0;

read = 0;

IR0_L_en = 1’b0; IR0_H_en = 1’b0; // disable registers

mux_sel_IRO_L = 2’b0;

IR1_L_en = 1’b0; IR1_H_en = 1’b0;

mux_sel_IR1_H = 2’b0;

mux_sel_IR1_L = 1’b0;

case (current_state)

S0:

begin

read=1’b1;

next_state = S1;

IR0_L_en = 1’b1; IR0_H_en = 1’b1; // load 32 bit data from PM into

the IR0 register

mux_sel_IRO_L = 2’d2;

end

S1:

begin

read = 1’b1;

next_state = S2;

IR0_L_en = 1’b1; IR0_H_en = 1’b1; // load 32 bit data from PM into

the IR0 register

mux_sel_IRO_L = 2’d2;

IR1_L_en = 1’b1; IR1_H_en = 1’b1; // load the contents of IR0 in

IR1 (full 32bits)

mux_sel_IR1_H = 2’d0;

Designs based on Finite State Machines 403



mux_sel_IR1_L = 1’b1;

end

S2:

begin

if (IR1_L[0]) // instruction type: long

begin

read=1’b1;

next_state = S2;

IR0_L_en = 1’b1; IR0_H_en = 1’b1; // load 32 bit data from PM into

the IR0 register

mux_sel_IRO_L = 2’d2;

IR1_L_en = 1’b1; IR1_H_en = 1’b1; // load the contents of IR0 in

IR1 (full 32bits)

mux_sel_IR1_H = 2’d0;

mux_sel_IR1_L = 1’b1;

end

else

begin

read=1’b0;

next_state = S3;

IR0_L_en = 1’b1; IR0_H_en = 1’b0; // move IR0_H –> IR0_L ;

mux_sel_IRO_L = 2’d0;

IR1_L_en = 1’b1; IR1_H_en = 1’b1; // move IR0_L –> IR1_H and

IR1_H –> IR1_L

mux_sel_IR1_H = 2’d2;

mux_sel_IR1_L = 1’b0;

end

end

S3:

begin

if (IR1_L[0]) // instruction type: long

begin

read=1’b1;

next_state = S4;

IR0_L_en = 1’b1; IR0_H_en = 1’b0;

mux_sel_IRO_L = 2’d1; // move dataH –> IR0_L

IR1_L_en = 1’b1; IR1_H_en = 1’b1;

mux_sel_IR1_H = 2’d1; // move dataL –> IR1_H

mux_sel_IR1_L = 1’b1; // move IR0_L –> IR1_L

end

else // instruction type: short

begin

read = 1’b1; // no read

next_state = S5;

IR0_L_en = 1’b1; IR0_H_en = 1’b1; // load 32 bit data from PM into

the IR0 register

mux_sel_IRO_L = 2’d2;

IR1_L_en = 1’b1; IR1_H_en = 1’b1; // move IR0_L –> IR1_H and

IR1_H –> IR1_L

mux_sel_IR1_H = 2’d2;

mux_sel_IR1_L = 1’b0;
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end

end

S4:

begin

if (IR1_L[0]) // instruction type: long

begin

read=1’b1;

next_state = S4;

IR0_L_en = 1’b1; IR0_H_en = 1’b0;

mux_sel_IRO_L = 2’d1; // move dataH –> IR0_L

IR1_L_en = 1’b1; IR1_H_en = 1’b1;

mux_sel_IR1_H = 2’d1; // move dataL –> IR1_H

mux_sel_IR1_L = 1’b1; // move IR0_L –> IR1_L

end

else // instruction type: short

begin

read = 1’b1; // no read

next_state = S5;

IR0_L_en = 1’b1; IR0_H_en = 1’b1; // load 32 bit data from PM into

the IR0 register

mux_sel_IRO_L = 2’d2;

IR1_L_en = 1’b1; IR1_H_en = 1’b1; // move IR0_L –> IR1_H and

IR1_H –> IR1_L

mux_sel_IR1_H = 2’d2;

mux_sel_IR1_L = 1’b0;

end

end

S5:

begin

if (IR1_L[0]) // instruction type: long

begin

read=1’b1;

next_state = S2;

IR0_L_en = 1’b1; IR0_H_en = 1’b1; // load 32 bit data from PM into

the IR0 register

mux_sel_IRO_L = 2’d2;

IR1_L_en = 1’b1; IR1_H_en = 1’b1; // load the contents of IR0

in IR1 (full 32bits)

mux_sel_IR1_H = 2’d0;

mux_sel_IR1_L = 1’b1;

end

else // instruction type: short

begin

read=1’b0;

next_state = S3;

IR0_L_en = 1’b1; IR0_H_en = 1’b0; // move IR0_H –> IR0_L ;

mux_sel_IRO_L = 2’d0;

IR1_L_en = 1’b1; IR1_H_en = 1’b1; // move IR0_L –> IR1_H and

Designs based on Finite State Machines 405



IR1_H –> IR1_L

mux_sel_IR1_H = 2’d2;

mux_sel_IR1_L = 1’b0;

end

end

endcase

end

always @ (*)

begin

mux_out_IR0_L = 16’bx;

case (mux_sel_IRO_L)

2’b00: mux_out_IR0_L = IR0_H;

2’b01: mux_out_IR0_L = data_H;

2’b10: mux_out_IR0_L = data_L;

endcase

end

always @ (*)

begin

mux_out_IR1_H = 16’bx;

case (mux_sel_IR1_H)

2’b00: mux_out_IR1_H = IR0_H;

2’b01: mux_out_IR1_H = data_L;

2’b10: mux_out_IR1_H = IR0_L;

endcase

end

always @ (*)

if(mux_sel_IR1_L)

mux_out_IR1_L = IR0_L;

else

mux_out_IR1_L = IR1_H;

always @ (posedge clk or negedge rst_n)

begin

if (!rst_n)

begin

PC <= 8’b0;

current_state <= 6’b000_001;

end

else

begin

current_state <= next_state;

if (read)

PC <= PC+1;

end

// if enable load Instruction registers with valid values

if (IR0_H_en)

IR0_H <= data_H;

if (IR0_L_en)

IR0_L <= mux_out_IR0_L;
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if (IR1_H_en)

IR1_H <= mux_out_IR1_H;

if (IR1_L_en)

IR1_L <= mux_out_IR1_L;

end

endmodule
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Figure 9.16 FSM design of 4-entry FIFO queue using ASM chart
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9.5 FSM Optimization for Low Power and Area

There are a number of ways to implement an FSM. The designer, based on some set design objectives,

selects one out of many options and then the synthesis tool further optimizes an FSM implementation

[12, 13]. The tool, based on a selected optimization criterion, transforms a given FSM to functionally

equivalent but topologically different FSMs. Usually FSMs are optimized for power and area.

The dynamic power dissipation in digital logic depends on switching activity. The tools, while

performing stateminimization for area reduction, also aim tominimize total switching activity.Out of
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Figure 9.17 FSM implementing a variable-length instruction dispatcher. (a) Bubble-diagram repre-

sentation of the FSM. (b) Architecture consisting of PM, PC, datapath and controller. (c) Datapath of the

instruction dispatcher
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the many available optimization algorithms, one is to find a critical state that is connected to many

states where the transitions into the critical state cause large hamming distances, thus generating

significant switching activity. The algorithm, after identifying the critical state, splits it into two to

reduce the hamming distance among the connected states and then analyzes the FSM to evaluate

whether the splitting results in a power reduction without adding too much area in the design.

This is illustrated in Figure 9.18. Part (a) shows the original FSM, and (b) shows the transformed

FSM with reduced switching activity as a result of any transition into the states formed by splitting

the critical state. In an FSM with a large number of states, modeling the problem for an optimal

solution is an ‘NP complete’ problem. Several heuristics are proposed in the literature, and an

effective heuristic for the solution is given in [16].

9.6 Designing for Testability

From the testability perspective it is recommended to add reset and status reporting capabilities in an FSM.

Toprovide anFSMwith a reset capability, there should be an input thatmakes the FSM transition fromany

state to somedefined initial state.AnFSMwith statusmessagecapabilityalso increases the testabilityof the

design. An FSM with this capability always returns its current state for a defined query input.

9.6.1 Methodology

The general methodology of testing digital designs discussed in Chapter 2 should be observed.

Additionally, the methodology requires a specification or design document of the FSM that

completely defines theFSMbehavior for all possible sequences of inputs. This requires the developer

to generate minimum length sequences of operations that must test all transitions of the FSM.

For initial white-boxmodule-level testing, the stimulus should keep a record of all the transitions,

corresponding internal states of the FSM, and inputs and output before a fault appears. This helps the

designer to trace back and localize a bug.
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Figure 9.18 FSM optimization by splitting a critical state to reduce the hamming distance of state

transitions. (a) Portion of original FSM with critical state. (b) Splitting of critical state into two
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For a sequence of inputs, using the design specification, the designer needs to find the

corresponding sequence of outputs for writing test cases. A test case then checks whether the

FSM implementation conforms to the given set. The designer should find a minimum number of

shortest possible length sequences that check every possible transition. Various coverage measures

are used for evaluating the completeness of testing. Various coverage tools are also available that the

designer can easily adopt and integrate with the RTL flow. The tools help the designer to identify

unverified areas of the FSM implementation. The designer then needs to generate new test cases to

verify those areas. A brief discussion of these measures is given here.

9.6.2 Coverage Metrics for Design Validation

9.6.2.1 Code Coverage

The simplest of all the metrics is code coverage that validates that every line of code is executed at

least once. This is very easy to verify as most of the simulators come with inbuilt profilers. Though

100% line coverage is a good initial measure, this type of coverage is not a good enough indicator

of quality of testing and so must be augmented with other more meaningful measures.

9.6.2.2 Toggle Coverage

This measure checks whether every bit in all the registers has at least toggled once from 0 to 1 and 1 to 0.

This is difficult to cover, as the content of registers are the outcome of some complex functions. The tester

usually does not have deep enoughunderstandingof the function tomake its outcomegenerate the required

bit patterns. Therefore the designer relies on random testing toverify this testmetric. The togglingof all bits

does not cover all sequences of state transitions so it does not completely test the design.

9.6.2.3 State Coverage

This measure keeps a record of the frequency of transitions into different states. Its objective is to

ensure that the testingmustmake the FSM transit in all the states at least once. Inmany FSMdesigns

a state can be reached from different states, so state coverage still does not guarantee complete

testing of the FSM.

9.6.2.4 Transition or Arc Coverage

This measure requires the FSM to use all the transitions in the design at least once. Although it is a

good measure, it is still not enough to ensure the correctness of the implementation.

9.6.2.5 Path Coverage

Path coverage is the most intensive measure of the correctness of a design. Starting from the initial

state, traversing all paths in the design gives completeness to testing and verification. Inmany design

instances with moderately large number of states, exhaustive generation of test vectors to transverse

all pathsmay not be possible, so smart techniques to generate non-trivial paths for testing are critical.

Commercially available and freeware tools [17–19] provide code coverage measurements and give

a good indication of the thoroughness of testing.

One of these techniques is ‘state space reduction’. This reduces the FSM to a smaller FSM by

merging different nodes into one. The reduced FSM is then tested for path coverage.

There are various techniques for generating test vectors. Specification-based testing works on

building a model from the specifications. The test cases are then derived from the model based on a
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maximum coverage criterion. The test cases give a complete description of input and expected

output of the test vectors. An extended FSMmodel for exhaustive testingworks well for small FSMs

but for large models it is computationally intractable. The ASM representation can be written as an

‘adjacency matrix’, where rows and columns represent source and destination nodes, respectively,

and an entry in the matrix represents the number of paths from source node to destination node.

An automatic test generation algorithm generates input that traverses the adjacency matrix by

enumerating all the possible paths in the design.

Example: Write an adjacency matrix for the ASM of the 4-entry FIFO of Section 9.4.2 that

traverses all possible paths from the matrix for automatic test vector generation.

Solution: All the paths start from the first node S0 and terminate on other nodes in the FSM; the

nodes are as shown in Figure 9.19. There are two paths that start and end at S0. Corresponding to each

path, a sequence of inputs is generated. For example, for a direct path originating from S0 and ending

at S3, the following sequence of inputs generates the path:

Write!Write!Write!Write

Similarly, the same path ending at S3 with error output is:

Write!Write!Write!Write!Write

9.7 Methods for Reducing Power Dissipation

9.7.1 Switching Power

The distribution network of the clock and clock switching are the two major sources of power

consumption. The switching power is given by the expression:

Pavg ¼ naavg f
1

2
cavgV

2
dd

S0 S1 S2 S3

S0

S1

S2

S3

W

D W

D W

D

src
dst

D
!W-!D

!W-!D
W-D

!W-!D
W

!W-!D
W-D

(b)(a) 

43210

0

1

2

3

4

00012

00121

01210

12100

21000

dst

src

Figure 9.19 Adjacency matrix for automatic test vector generation. (a) Matrix showing possible entry

paths from source to destination state. (b) Inputs for transitioning into different states
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where n is the total number of nodes in the circuit, aavg is the average switching activity on a node, f is the
clock frequency, and Vdd is the power supply voltage. Obviously, killing the clock on the distribution

network and reducing the average switching activity can reduce the average power dissipation.

In a design with complex state machines, the state machine part is the major user of power. This

power consumption can be reduced by clock gating techniques.

9.7.2 Clock Gating Technique

FSM-based designs in general wait for an external event to change states. These designs, even if

there is no event, still continuously check the input and keep transitioning into the same state at every

clock cycle. This dissipates power unnecessarily. By careful analysis of the state machine

specification, the designer can turn the power off if the FSM is in a self-loop. This requires stopping

the clock by gating it with output from self-loop detection logic. This is shown in Figure 9.20. The

latch L in the design is used to block glitches in the output generated by gated logic fG [20]. The

function fG implements logic to detect whether the machine is in self-loop. The logic can be tailored

to cater for only highly probable self-loop cases. This does require an a priori knowledge of the

transition statistics of the implemented FSM.

Clock gating techniques are well known to ASIC designers [17–19], and now even for FPGAs

effective clock gating techniques have been developed. FPGAs have dedicated clock networks to

take the clock to all logic blocks with low skew and low jitter.

To illustrate the technique on a modern FPGA, the example of the Xilinx Virtex-5 FPGA is

considered in [24]. An FPGA in this family has several embedded blocks such as block RAM,

DSP48 and IOs, but for hardware configuration the basic building blocks of the FPGA are the

configurable logic blocks (CLBs). Each CLB consists of two slices, and each slice contains four 6-

input look-up tables (LUTs) and four flip-flops. The FPGA has 32 global clock buffers (BUFGCEs)

to support these many internal or externally generated clocks. The FPGA is divided into multiple

clock regions. Out of these 32 global clock signals, any 10 signals can be selected to be

simultaneously fed to a clock region. Figure 9.21 shows a Virtex-5 device with 12 clock regions

and associated logic of selecting 10 clocks out of 32 for these regions.

All the flip-flops in a slice also come with a clock enabling signal, as shown in Figure 9.22(a).

Although disabling this signal will save some power, the dynamic power dissipated in the clock
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Figure 9.20 Low-power FSM design with gated clock logic
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distribution network will remain. To save this power, each clock buffer BUFGCE also comes with

an enabling signal, as shown in Figure 9.22(b). This signal can also be disabled internally to kill the

clock being fed to the clock distribution network. The methodology for using the clock enabling

signal of flip-flops in a slice for clock gating is given in [24].

9.7.3 FSM Decomposition

FSMdecomposition is a techniquewhereby anFSM is optimally partitioned intomultiple sub-FSMs

in such a way that the state machine remains OFF in most of the sub-FSMs for a considerable time.
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In the best-case scenario this leads to only clocking one of the sub-FSMs in any given cycle.

Disabling of the clock trees for all other sub-FSMs by gating the clock signal can greatly reduce

power consumption [25].

The example here illustrates the grouping of an FSM into sub-FSMs using a graph partitioning

method. The technique uses the probability of transition of states to pack a set of nodes that are

related with each other into individual sub-FSMs. Consider an FSM be divided into M partitions

of sub-FSMswith each having number of states S0, S1, . . ., SM� 1. Then, for easy coding, the number

of bits allocated for a state register for each of the sub-FSMs is:

max log2S0; log2S1; . . . ; log2SM�1f g

and log2M bits is required for switching across sub-FSMs.

Many algorithms translating into complex FSMs are hierarchical in nature. This property can be

utilized in optimally partitioning the FSM into sub-FSMs for power reduction. The algorithm is

broken into different levels,with each level leading to a different sub-FSM.The hierarchical approach

ensures that, when the transition ismade from higher level to lower level, the other sub-FSMswill not

be triggered for the current frame or buffer of data. This greatly helps in reducing power consumption.

A video decoder is a good application to be mapped on hierarchical FSMs. The design for an

H.264 decoder otherwise needs 186 states in a flattened FSM.Thewhole FSM is active and generates

huge switching activity. By adopting hierarchical parsing of decoder frames and then traversing the

FSM, the design can be decomposed into six levels with 13 sub-FSMs [25]. The designer, knowing

the state transition patterns, can also assign state code that has minimum hamming distance among

closely transitioned states to reduce switching activities.

Many algorithms in signal processing can be hierarchically decomposed. A representative

decomposition is given in Figure 9.23. Each sub-FSM should preferably have a single point of

entry to make it convenient to design and test. Each sub-FSM should also be self-contained to

maximize transitions within the sub-FSM and to minimize transitions across sub-FSMs. The design

is also best for power gating for power optimization.
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Figure 9.23 An FSM hierarchically partitioned into sub-FSMs for effective design, implementation,

testing and power optimization
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Exercises

Exercise 9.1

Design a 4� 4-bit-serial unsigned multiplier that assumes bit-serial inputs and output [26]. Modify

the multiplier to performQ1.3 fractional signed� signed multiplication. Truncate the result to 4-bit

Q1.3 format by ignoring least significant bits of the product.

Exercise 9.2

Using the fractional bit-serial multiplier of exercise 9.1, design a bit-serial 3-coefficient FIR filter.

Assume both the coefficients and data are in Q1.3 format. Ignore least significant bits to keep the

output in Q1.3 format.

Exercise 9.3

Design a sequential architecture for an IIR filter implementing the following difference equation:

y n½ � ¼
X10

k¼0

bkx n�k½ ��
X10

k¼1

aky n�k½ �

First write the sequential pseudo-code for the implementation, then design a single MAC-based

architecture with associated logic. Assume the circuit clock is 21 times the sampling clock. All the

coefficients are in Q1.15 format. Also truncate the output to fit in Q1.15 format.

Exercise 9.4

Design the sequential architectures of 4-coefficient FIR filters that use: (a) one sequential multiplier;

and (b) four sequential multipliers.

Exercise 9.5

Design an FSM that detects an input sequence of 1101. Implement the FSMusingMealy andMoore

techniques, and indentify whether Moore machine implementation takes more states. For encoding

the states use a one-hot technique.Write RTLVerilog code of the design.Write test vectors to test all

the possible transitions in the state machine.

Exercise 9.6

Design a smart traffic controller for the roads layout given in Figure 9.24. The signals onMain Road

should cater for all the following:

1. The traffic on the minor roads, VIP and ambulance movements on the main roads (assume a

sensing system is in place that informs aboutVIP, ambulancemovements, and traffic on theminor

roads). The system, when it turns theMain Road light to red, automatically switches lights on the

minor roads to green.

2. The system keeps all traffic lights on Main Road green if it detects the movement of a VIP or

an ambulance on themain road, while keeping theminor road lights red. The lights remain in this

state for an additional twominutes after the departure of the designated vehicles fromMainRoad.
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3. If sensors on minor roads 1, 2 or 3 sense traffic, the lights for the traffic on Main Road are turned

red for 80 seconds.

4. If the sensor on any one of the minor roads senses traffic, the light for Main Road traffic on that

crossing is turned red for 40 seconds, and on the rest of the crossing for 20 seconds.

5. If the sensors on any two of the minor roads senses traffic, the lights on those crossings are turned

red for 50 seconds while light on the left over third crossing is turned red for 30 seconds.

6. Once switched from red to green, the lights on Main Road remains green at least for the next

200 seconds.

Draw a bubble diagram of the state machine, clearly marking input and outputs, and write RTL

Verilog code of the design. Design a comprehensive test-bench that covers all transitions of

the FSM.

Exercise 9.7

Design a state machine that outputs 1 at every fifth 1 input as a Mealy and Moore machine. Check

your design for the following bit stream of input:

111111001111111111110011010111111011100011111111

Exercise 9.8

Design aMooremachine system to detect three transitions from0 to 1 or 1 to 0.Describe your design

using an ASM chart. Assume a serial interface where bits are serially received at every positive

edge of the clock. Implement the design in RTLVerilog. Write a stimulus to check all transitions in

the FSM.

Minor Road 1

                                      Minor Road 2

Minor Road 3
         M

ain R
oad

Figure 9.24 Road layout for exercise 9.6
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Exercise 9.9

The state machine of Figure 9.25 is represented using a bubble diagram. The FSM is taken from

a database that is used for bench-marking different testing and performance issues relating

to FSMs.

1. Describe the statemachine using amathematicalmodel. List the complete set of inputsX, states S

and output Y.

2. Write the adjacency matrix for the state machine.

3. Write RTLVerilog code of the design that adheres to RTL coding guidelines for FSM design.

4. Write test vectors that traverse all the arcs at least once.

Exercise 9.10

Design an FSM-based 4-deep LIFO to implement the following:

1. A write into the LIFO writes data on INBUS at the end of the queue.

2. A delete from LIFO deletes the last entry in the queue.

3. A write and delete at the same time generates an error.

ERROR

S1

S3

S2

IDLE

i1

i1

i1

nrst

i1*i2

i2*i3

i3*i4

i1*i2

i1*i2

i3*i4

i1

i2*i3*i4

i1*i2*i3

i1*i2*i3

i2*i3*i4

i2

i3

n_o1 = 1
o2=0
o3=0
o4=0
err=0

n_o1 = 1
o2=0
o3=0
o4=0
err=1

n_o1 = 1
o2=0
o3=0
o4=1
err=0

n_o1 = 1
o2=1
o3=1
o4=0
err=0

n_o1 = 0
o2=1
o3=0
o4=0
err=0

Figure 9.25 FSM from bench-marking database of exercise 9.9
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4. A write in a full queue and a delete from an empty queue also generates an error.

5. The last entry to the queue is always available at the OUTBUS.

Draw the datapath andASMdiagram andwrite RTLVerilog code of the design.Write the adjacency

matrix and develop a stimulus that generates a complete set of test vectors that traverse all paths of

the FSM.

Exercise 9.11

Design the datapath and an ASM chart for implementing the controller of a queue that consists of

four registers, R0, R1, R2 and R3.

1. The operations on the queue are INSERT_Ri to register Ri and DELETE_Ri from register Ri,

for i¼ 0 . . . 3.
2. INSERT_Rimoves data from the INBUS to the Ri register, readjusting the rest of the registers.

For example, if the head of the queue is R2, INSERT_R1 will move data from the INBUS in R1

and move R1 to R2., and R2 to R3, keeping R0 as it is and the head of the queue to R3.

3. DELETE_Ri deletes the value in the Ri register, and readjusts the rest of the registers. For

example, DELETE_R1will move R2 to R1 and R3 to R2, keeping R0 as it is and move the head of

the queue to R2 from R3.

4. The head of the queue is always available on the OUTBUS.

5. Insertion into a full queue or deletion from an empty queue causes an error condition.

6. Assertion of INSERT and DELETE at the same time causes an error condition

Exercise 9.12

Design a 3-entry FIFO,which supportsWRITE,DEL0,DEL1 andDEL2, whereWRITEwrites to the

tail of the queue, and DEL0,DEL1 and DEL2 delete last, last two or all three entries from the queue,

respectively. When insufficient entries are in the queue for a DELi operation, the FIFO controller

generates an error, ERRORd. Similarly, WRITE in a completely filled FIFO also generates an error,

ERRORw.

1. Design the datapath.

2. Design the state machine-based controller of the FIFO. Design the FSM implementing the

controller and describe the design using an ASM diagram.

3. Write RTL Verilog code of the design.

4. Develop a stimulus that traverses all the states.

Exercise 9.13

Design a time-shared FIR filter that implements a 12-coefficient FIR filter using two MAC units.

Clearly show all the registers and associated clocks. Use one CPA in the design.Write RTL code for

the design and test the design for correctness.

Exercise 9.14

Develop a state machine-based instruction dispatcher that reads 64-bit words from the instruction

memory into two 64-bit registers IR0 and IR1. The least significant two bits of the instruction depicts
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whether the instruction is 16-bit, 32-bit, 48-bit or 64-bit wide. Use the two instruction registers such

that IR1 always keep a complete valid instruction.

Exercise 9.15

Write RTLVerilog code for the design given in Figure 9.26. Node A is a combinational logic, and

nodes B, C and E take 7, 8 and 9 predefined number of circuit clocks, clkg. Node D dynamically

executes and takes a variable number of cycles between 3 and 8.7.Assume simple counters inside the

nodes.Write a top-level modulewith two input clocks, clkg and clkG. All control signals are 1-bit

and the data width is 8 bits. For each block A, B, C, D and E, only write module instances. Design a

controller for generating all the control signals in the design.
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10

Micro-programmed State
Machines

10.1 Introduction

In time-shared architecture, computational units are shared to execute different operations of

the algorithm in different cycles. As described in Chapter 9, time-shared architecture consists of

a datapath and a control unit. In each clock cycle the control unit generates appropriate control

signals for the datapath. In hardwired state machine-based designs, the controller is implemented as

a Mealy or Moore finite state machine (FSM). However, in many applications the algorithms are so

complex that a hardwired FSM design is not feasible. In other applications, either several

algorithms need to be implemented on the same datapath or the designer wants to keep the

flexibility of modifying the controller without repeating the entire design cycle, so a flexible

controller is implemented to use the same datapath for different algorithms. The controller is made

programmable [1].

This chapter describes the design of micro-programmed state machines with various capabilities

and options. A methodology for converting a hardwired state machine to a micro-programmed

implementation is introduced. The chapter gives an equivalentmicro-programmed implementations

of the examples already covered in previous chapters. The chapter then extends the implementation

by describing a design of FIFO and LIFO queues on the same datapath running micro-programs.

The chapter then switches to implementation of DSP algorithms on time-shared architecture.

Analysis of a few algorithms shows that in many cases a simple counter-based micro-programmed

state machine can be used to implement a controller. The memory contains all the control signals to

be generated in a sequence, whereas the counter keeps computing the address of the nextmicro-code

stored in memory. In applications where decision-based execution of operations is required, this

elementary counter-based state machine is augmented with decision support capability. The

execution is based on a few condition lines coming either from the datapath or externally from

some other blocks. These conditions are used in conditional jump instructions. Further to this, the

counter in the state machine can be replaced by a program counter (PC) register, which in normal

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
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execution adds a fixed offset to its content to get the address of the next instruction. The chapter then

describes cases where a program, instead of executing the next micro-code, needs to take a jump to

execute a sequence of instructions stored at a different location in the programmemory. This requires

subroutine support in the state machine.

This chapter also covers the design of nested subroutine support whereby a subroutine can be

called inside another subroutine. This is of special interest in image and signal processing

applications, giving the capability to repeatedly execute a block of instructions a number of times

without any loop maintenance overhead.

The chapter finishes with a complete example of a design that uses all the features of a micro-

programmed state machine.

10.2 Micro-programmed Controller

10.2.1 Basics

The first step in designing a programmable architecture is to define an instruction set. This is

defined such that a micro-program based on the instructions implements the target application

effectively. The datapath and a controller are then designed to execute the instruction set. The

controller in this case ismicro-programmemory-based. This design is required to haveflexibility not

only to implement the application but also to support any likely modifications or upgrading of the

algorithm [2].

An FSM has two components, combinational and sequential. The sequential component consists

of a state register that stores the current state of the FSM. In the Mealy machine implementation,

combinational logic computes outputs and the next state from inputs and the current state. In a

hardwired FSM this combinational logic cannot be programmed to change its functionality. In a

micro-programmable state machine the combinational logic is replaced by a sequence of control

signals that are stored in program memory (PM), as shown in Figure 10.1. The PM may be a read-

only (ROM) or random-access (RAM).

A micro-programmed state machine stores the entire output sequence of control signals along

with the associated next state in program memory. The address of the contents in the memory is

determined by the current state and input to the FSM.

Assume a hypothetical example of a hardwired FSM design that has two 1-bit inputs, six 1-bit

outputs and a 6-bit state register. Now, to add flexibility in the controller, the designer wishes to

Program 
Memory

(PM)

outputs

next state

current state

st
at

e 
re

gi
st

er

input

Figure 10.1 Micro-programmed state machine design showing program memory and state register

422 Digital Design of Signal Processing Systems



replace the hardwired FSM. The designer evaluates all possible state transitions based on

inputs and the current state and tabulates the outputs and next states as micro-coding for PM.

These values are placed in the PM such that the inputs and the current state provide the index or

address to the PM. Figure 10.2 shows the design of this micro-programmed state machine.

Mapping this configuration on the example under consideration makes the micro-program PM

address bus 6 bits wide and its data bus 9 bits wide. The 2-bit input constitutes the two least

significant bits (LSBs) of the address bus, addr[1:0], whereas the current state forms the rest of

the four most significant bits (MSBs) of the address bus,addr[5:2]. The contents of the memory

are worked out from the ASM chart to produce desired output control signals and the next state for

the state machine. The ASM chart for this example is not given here as the focus is more on

discussing the main components of the design.

The five LSBs of the data bus, data[4:0], are allocated for the outputs cntr[4:0], and the

four MSBs of the data bus, data[8:5], are used for the next state. At every positive edge of

the clock the state register latches the value of the next state to the state register. This value becomes

the current state in the next clock cycle.

Example: This example designs a state machine that implements the four 1s detection

problem of Chapter 9, where the samewas realized as hardwired Mealy and Moore state machines.

TheASM chart for theMealymachine implementation is given in Figure 10.3(a). This design has

1-bit input and 1-bit output and its state register is 2 bits wide. The PM-based micro-coded design

requires a 3-bit address bus and a 3-bit data bus. The address bus requires the PM to be 23¼ 8 bits

deep. The contents of thememory can be easily filled following theASMchart of Figure 10.3(a). The

address 30b000 defines the current state of S0 and the input 10b0. The next state and output for this
current state and input can be read from theASMchart. The chart shows that in state S0, if the input is

0 then the output is also 0 and the next state remains S0. Therefore the content of memory at address

30b000 is filled with 30b000. The LSB of the data bus is output and the rest of the 2 bits defines the

next state. Similarly the next address of 30b001 defines the current state to be S0 and the input as 1.
TheASMchart shows that in state S0, if input is 1 the next state is S1 and output is 0. The contents of

the PM at address 30b001 is filled with 30b010. Similarly for each address, the current state and the

input is parsed and the values of next state and output are read from the ASM chart. The contents of

PMare accordingly filled. The PM for the four 1s detected problem is given in Figure 10.3(b) and the

RTL Verilog of the design is listed here:

PM

current state

2

addr

6

9 5

cntrdata

4

next state4

rst_n

input

Figure 10.2 Hypothetical micro-programmed state machine design
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// Module to implement micro-coded Mealy machine

module fsm_mic_mealy

(

input clk, // System clock

input rst_n, // System reset

input data_in, // 1-bit input stream

output four_ones_det // To indicate four 1s are detected

);

// Internal variables

reg [1:0] current_state; // 2-bit current state register

wire [1:0] next_state; // Next state output of the ROM

wire [2:0] addr_in; // 3-bit address for the ROM

// This micro-programmed ROM contains information of state transitions

mic_prog_rom mic_prog_rom_inst

(

.addr_in(addr_in),

.next_state(next_state),

.four_ones_det(four_ones_det)

);

in

out=0

out=0

in

out=0

out=0
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out=0

out=0
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out=0 out=1
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Figure 10.3 Moving fromhardwired tomicro-coded design. (a)ASMchart for four 1s detected problem

of Figure 9.9 in Chapter 9. (b) Equivalent micro-programmed state machine design
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// ROM address

assign addr_in = {current_state , data_in};

// Current state register

always @(posedge clk or negedge rst_n)

begin : current_state_bl

if(!rst_n)

current_state <= #1 2b0; // One-hot encoded

else

current_state <= #1 next_state; // Next state from the ROM

end

endmodule

// Module to implement PM for state transition information

module mic_prog_rom

(

input [2:0] addr_in, // Address of the ROM

output reg [1:0] next_state, // Next state output

output reg four_ones_det // Detection of signal output

);

always @(addr_in)

begin : ROM_bl

case(addr_in)

3b00_0 :

{next_state, four_ones_det} = {4b00, 1b0};

3b00_1 :

{next_state, four_ones_det} = {4b01, 1b0};

3b01_0 :

{next_state, four_ones_det} = {4b01, 1b0};

3b01_1 :

{next_state, four_ones_det} = {4b10, 1b0};

3b10_0 :

{next_state, four_ones_det} = {4b10, 1b0};

3b10_1 :

{next_state, four_ones_det} = {4b11, 1b0};

3b11_0 :

{next_state, four_ones_det} = {4b11, 1b0};

3b11_1 :

{next_state, four_ones_det} = {4b00, 1b1};

endcase

end

endmodule

Micro-programmed state machine implementation provides flexibility as changes in the behavior of

the statemachine can be simply implemented by loading a newmicro-code in thememory.Assume the

designer intends to generate a 1 and transition to state S3when the current state is S2 and the input is 1.

This can be easily accomplished by changing thememory contents of PMat location 30b101 to 30b111.

10.2.2 Moore Micro-programmed State Machines

For Moore machine implementation the micro-program memory is split into two parts, so the

combinational logic-I and logic-II are replaced by PM-I and PM-II. The input and the current state
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constitute the address for PM-I. Thememory contents of PM-I are filled to appropriately generate the

next state according to the ASM chart. The width of PM-I is equal to the size of the current state

register, whereas its depth is 23¼ 8 (3 is the size of input plus current state). Only the current state

acts as the address for PM-II. The contents of PM-II generate output signals for the datapath.

A micro-programmed state machine design for the four 1s detected problem is shown in

Figure 10.4. One bit of the input and three bits of the current state constitute the 4-bit address

bus for PM-I. The contents of the memory are micro-programmed to generate the next state

following the ASM chart. Only three bits of the current state form the address bus of PM-II. The

contents of PM-II are filled to generate a control signal in accordance with the ASM chart.

10.2.3 Example: LIFO and FIFO

This example illustrates a datapath that consists of four registers and associated logic to be used as

LIFO (last-in first-out) or FIFO (first-in first-out). In both cases the user invokes different micro-

codes consisting of a sequence of control signals to get the desired functionality. The top-level

design consisting of datapath and controller is shown in Figure 10.5(a).

Out of a number of design options, a representative datapath is shown in Figure 10.5(b). Thewrite

address register wr_addr_reg is used for selecting the register for the write operation. A wr_en

increments this register and the value on the INBUS is latched into the register selected by the

wr_addr value. Similarly the value pointed by read address register rd_addr_reg is always
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available on the OUTBUS. This value is the last or the first value input to a LIFO or a FIFO mode,

respectively.ADELoperation increments the registerrd_add_reg. The control signalrd_inc is

asserted to increment thevalue onavalidDEL request. Themicro-codes for the controller are listed in

Table 10.1. The current states are S0, S1 and S2, and next states are depicted by NS0, NS1 and NS2.

10.3 Counter-based State Machines

10.3.1 Basics

Many controller designs do not depend on the external inputs. The FSMs of these designs generate a

sequence of control signalswithout any consideration of inputs. The sequence is stored serially in the

program memory. To read a value, the design only needs to generate addresses to the PM in a

Data PathMicro-codes

control 
signals

IN_BUS

OUT_BUS
WRITE

DEL

L / F
ERROR

clk clk

(a)

+/- +/-

IN_BUS OUT_BUS

D
E
M
U
X

M
U
X

wr_en

rd_addr

w
r_addr

{ rd_dec,rd_inc }{ wr_dec,wr_inc }

R0

R1

R2

R3

rst_n rst_n

(b)

Figure 10.5 (a) Block diagram for datapath design to support both LIFO and FIFO functionality.

(b) Representative datapath to implement both LIFO and FIFO functionality for micro-coded design
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Table 10.1 Micro-codes implementing FIFO and LIFO

L/F S2 S1 S0 DEL WRITE NS2 NS1 NS0 rd_dec rd_inc wr_dec wr_inc ERROR

FIFO

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 1 1 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 1 0 0 0 0 1 0

0 0 0 1 1 0 0 0 0 0 1 0 0 0

0 0 0 1 1 1 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 1 1 0 0 0 1 0

0 0 1 0 1 0 0 0 1 0 1 0 0 0

0 0 1 0 1 1 0 1 0 0 0 0 0 1

0 0 1 1 0 0 0 1 1 0 0 0 0 0

0 0 1 1 0 1 1 0 0 0 0 0 1 0

0 0 1 1 1 0 0 1 0 0 1 0 0 0

0 0 1 1 1 1 0 1 1 0 0 0 0 1

0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0 0 0 0 1

0 1 0 0 1 0 0 1 1 0 1 0 0 0

0 1 0 0 1 1 1 0 0 0 0 0 0 1

LIFO

1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 1 0 1 0 1 0

1 0 0 0 1 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0 0 0 0 0

1 0 0 1 0 1 0 1 0 0 1 0 1 0

1 0 0 1 1 0 0 0 0 1 0 1 0 0

1 0 0 1 1 1 0 0 1 0 0 0 0 1

1 0 1 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 1 0 1 1 0 1 0 1 0

1 0 1 0 1 0 0 0 1 1 0 1 0 0

1 0 1 0 1 1 0 1 0 0 0 0 0 1

1 0 1 1 0 0 0 1 1 0 0 0 0 0

1 0 1 1 0 1 1 0 0 0 1 0 1 0

1 0 1 1 1 0 0 1 1 1 0 1 0 0

1 0 1 1 1 1 0 1 1 0 0 0 0 1

1 1 0 0 0 0 1 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0 0 1

1 1 0 0 1 0 0 1 1 1 0 1 0 0

1 1 0 0 1 1 1 0 0 0 0 0 0 1

sequence starting from 0 and ending at the address in the PM that stores the last set of control signals.

The addresses can be easily generatedwith a counter. The counter thus acts as the state registerwhere

the next state is automatically generated with an increment. The architecture results in a reduction in

PM size as thememory does not store the next state and only stores the control signals. Themachine
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is reset to start from address 0 and then in every clock cycle it reads a micro-code from the memory.

The counter is incremented in every cycle, generating the next state that is the address of the next

micro-code in PM.

Figure 10.6 shows an example. An N-bit resetable counter is used to generate addresses for the

programmemory in a sequence from0 to 2N�1. ThePM isMbitswide and 2N�1 deep, and stores the

sequence of signals for controlling the datapath. The counter increments the address to memory in

every clock cycle, and the control signals in the sequence are output on the data bus. For executing

desired operations, the output signals are appropriately connected to different blocks in the datapath.

10.3.2 Loadable Counter-based State Machine

As described above, a simple counter-based micro-programmed state machine can only generate

control signals in a sequence. However, many algorithms once mapped on time-shared architecture

may also require out-of-sequence execution, whereby the controller is capable of jumping to start

generating control signals fromanewaddress in the PM.This flexibility is achieved by incorporating

the address to be branched as part of the micro-code and a loadable counter latches this value when

the load signal is asserted. This is called ‘unconditional branching’. Figure 10.7 shows the design of a

micro-programmed state machine with a loadable counter.

Microprogram Memory

co
un

te
r

rst_n

clk control signal

micro-code

addr

N

M

Figure 10.6 Counter-based micro-program state machine implementation
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10.3.3 Counter-based FSM with Conditional Branching

The control inputs usually come from the datapath status-and-control register (SCR). On the

basis of execution of some micro-code, the ALU (arithmetic logic unit) in the datapath

sets corresponding bits of the SCR. Examples of control bits are zero and positive status bits in

the SCR. These bits are set if the result of a previous ALU instruction is zero or positive. These

two status bits allow selection of conditional branching. In this case the state machine will check

whether the input control signal from the datapath is TRUE or FALSE. The controller will load

the branch address in the counter if the conditional input is TRUE; otherwise the controller will keep

generating sequential control signals from program memory. The micro-code may look like this:

if(zero_flag) jump to label0

or

if(positive_flag) jump to label1

where zero_flag and postivie_flag are the zero and positive status bits of the SCR, and

label0 andlabel1 are branch addresses. The controller jumps to this new location and reads the

micro-code starting from this address if the conditional input is TRUE.

The datapath usually has one or more register files. The data from memory is loaded in the

register files. The ALU operates on the data from the register file and stores the result in memory or

in the register file. A representative block diagram of a datapath and controller is shown in

Figure 10.8.

The conditional bits can also directly come from the datapath and be used in the same cycle by the

controller. In this case the conditional micro-code may look like this:

if(r1==r2) jump to label1

mem 
cntr

IR

Register 
file

Register 
file

ALU

SCR

data 
mem

PMController

Figure 10.8 Representative design of controller, datapath with register file, data memory and SCR
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The datapath subtracts the value in registerr1 fromr2, and if the result of this subtraction is 0 the

state machine executes the micro-code starting from label1.

To provision the branching capabilities, a conditional multiplexer is added in the controller as

shown in Figure 10.9. Two load_sel bits in the micro-code select one of the four inputs to the

conditional MUX. If load_sel is set to 20b00, the conditional MUX selects 0 as the output to the

load signal to the counter.With the load signal set to FALSE, the counter retains its normal execution

and sequentially generates the next address for the PM. If, however, the programmer sets

load_sel to 20b11, the conditional MUX selects 1 as the output to the load signal to the counter.

The counter then loads the branch address and starts reading micro-code from this address. This is

equivalent to unconditional branch support earlier. Similarly, if load_sel is set to 20b01 or 20b10,
the MUX selects, respectively, one of the condition bits cond_0 or cond_1 for the load signal of

the counter. If the selected condition bit is set to TRUE, the counter loads the branch_addr;

otherwise it keeps its sequential execution.

Table 10.2 summarizes the options added to the counter-based state machine by incorporating a

conditional multiplexer in the design.

10.3.4 Register-based Controllers

In many micro-programmed FSM designs an adder and a register replace the counter in the

architecture. This register is called a micro-program counter (PC) register. The adder adds 1 to the

content of the PC register to generate the address of the next micro-code in the micro-program

memory.
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Figure 10.9 Micro-programmed state machine with conditional branch support

Table 10.2 Summary of operations a micro-coded state machine performs based on load_sel

and conditional inputs

load_sel Load

20b00 FALSE (normal execution: never load branch address)

20b01 cond_0 (load branch address if cond_0 is TRUE)

20b10 cond_1 (load branch address if cond_1 is TRUE)

20b11 TRUE (unconditional jump: always load branch address)
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Figure 10.10 shows an example. Thenext_addr_mux selects the address to themicro-program

memory. For normal execution, cond_mux selects 0. The output from cond_mux is used as the

selected line to next_addr_mux. Then, mirco_PC and branch_addr are two inputs to

next_addr_mux. A zero at the selected line to this multiplexer selects the value of micro_PC

and a 1 selects the branch_addr to addr_bus. The addr_bus is also input to the adder that

adds 1 to the content of addr_bus. This value is latched in micro_PC in the next clock cycle.

10.3.5 Register-based Machine with Parity Field

A parity bit can be added in the micro-code to expand the conditional branching capability of the

state machine of Figure 10.10. The parity bit enables the controller to branch on both TRUE and

FALSE states of conditional inputs. If the parity bit is set, the EXOR gate inverts the selected

condition of cond_mux, whereas if the parity bit is not set the selected condition then selects the

next_addr to the micro-program memory.

A controller with a parity field in themicro-code is depicted in Figure 10.11. The parity bit is set to

0 with the following micro-code:

if (cond_0) jump to label

The parity bit is set to 1 with the following micro-code:

if(!cond_0) jump to label

10.3.6 Example to Illustrate Complete Functionality

This example (see Figure 10.12) illustrates the complete functionality of a design based on a micro-

programmed statemachine. The datapath executes operations based on the control signals generated
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by the controller. These control signals are stored in the PM of the controller. The datapath has one

register file. The register file stores operands. (In most designs these operands are loaded from

memory. For simplicity this functionality is not included in the example.)

The register file has two read ports and onewrite port. For eight registers in the register file, 3 bits

of the control signal are used to select a register to be read from each read port, and 3 bits of the

control signal are used to select a register to bewritten by anALUmicro-code. The datapath based on

the result of the executedmicro-code updates theZ and N bits of the ALU status register. The Z bit is

set if the result of an ALUmicro-code is 0, while a negative value of the ALU result sets the N bit of
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Figure 10.11 Register-based controller with a parity field in the micro-code
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Figure 10.12 Different fields in the micro-code of the programmable state machine design of the text

example. (a) Non-overlapping fields. (b) Overlapping fields to reduce the width of the PM
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the status register. These two bits are used ascond_0 andcond_1 bits of the controller. The design

supports a program that uses the following set of micro-codes:

Ri = Rj op Rk, for i,j,k = 0, 1, 2, . . ., 7 and op is any one of the four supported ALU

operations of +, -, AND, OR, an example micro code is R2 = R3 + R5

if(N) jump label

if(!N) jump label

if(Z) jump label

if(!Z) jump label

jump label

Thesemicro-codes control the datapath and also support the conditional and unconditional branch

instruction. For accessing three of eight registers Ri, Rj and Rk, three sets of 3 bits are required.

Similarly, to select one of the outputs from four ALU operations, 2 bits are needed. This makes the

total number of bits to the datapath 11. The label depends on the size of the PM: to address 256words,

8 bits are required. To support conditional instructions, 2 bits are required for conditional

multiplexer selection and 1 bit for the parity. These bits can be linearly placed or can share fields

for branch and normal instructions. The sharing of fields saves on instruction width at the cost of

adding a little complexity in decoding the instruction. In cases of sharing, 1 bit is required to

distinguish between branching and normal ALU instructions.

The datapath and the micro-programmed state machine are shown in Figure 10.12. The two

options for fields of themicro-code are shown in Figure 10.13. Themachine uses the linear option for

coding the micro-codes.

10.4 Subroutine Support

In many applications it is desired to repeat a set of micro-code instructions from different places in

the micro-program. This can be effectively achieved by adding subroutine capability. Those micro-

code instructions that are to be repeated can be placed in a subroutine that is called from any location

in the program memory.
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The state machine, after executing the sequence of operations in the subroutine, needs to return to

the next micro-code instruction. This requires storing of a return address in a register. This is easily

accomplished in the cycle in which the call to the subroutine is made;micro_PC has the address of

the next instruction, so this address is the subroutine return address. The state machine saves the

contents of micro_PC in a special register called the subroutine return address (SRA) register.

Figure 10.14 shows an example.

While executing the micro-code for the subroutine call, the next-address select logic generates a

write enable signal to the SRA register. For returning from the subroutine, a return micro-code is

added in the instruction-set of the state machine. While executing the return micro-code, the next-

address select logic directs the next address multiplexer to select the address stored in the SRA

register. Themicro-code at the return address is read for execution. In the next clock cycle themicro-

PC stores an incremented value of the next address, and a sequence of micro-codes is executed from

there on.

10.5 Nested Subroutine Support

There are design instances where a call to a subroutine is made from an already called subroutine, as

shown in Figure 10.15. This necessitates saving more than one return address in a last-in first-out

(LIFO) stack. The depth of the stack depends on the level of nesting to be supported. A stack

management controller maintains the top and bottom of the stack. To support J levels of nesting the

LIFO stack needs J registers.

There are several options for designing the subroutine return address stack. A simple design of a

LIFO is shown in Figure 10.16. Four registers are placed in the LIFO to support four nested

subroutine calls. This LIFO is designed for a micro-program memory with a 10-bit address bus.
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A stack pointer register points to the last address in the LIFO with read_lifo_addr control

signal. The signal is input to a 4:1MUXand selects the last address stored in the LIFO and feeds it as

one of the inputs to next_address_mux. To store the next return address for a nested subroutine

call, write_lifo_addr control signal points to the next location in the LIFO. On a subroutine

call, the push signal is asserted which enables the decoder, and the value in the PC is stored in the

register pointed by write_lifo_addr and the value stored in the stack pointer is incremented

by 1. On a return to subroutine call, the value stored in the stack pointer register is decremented by 1.

The design can be modified to check error conditions and to assert an error flag if a return from a

subroutine without any call, or more than four nested subroutine calls, are made.

10.6 Nested Loop Support

Signal processing applications in general, and image and video processing applications in particular,

require nested loop support. It is critical for the designer tominimize the loopmaintenance overhead.

This is associated with decrementing the loop counter, and checking where the loop does not expire

and the program flow needs to be branched back to the loop start address. Amicro-programmed state

machine can be equipped to support the loop overhead in hardware. This zero-overhead loop support

is especially of interest to multimedia controller designs that requires execution of regular repetitive

loops [3].
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A representative instruction for a loop can bewritten as in Figure 10.17. The instruction provides

the loop end-address and the count for the number of times the loop needs to be repeated. As counter

runs down to zero therefore while specifying the loop count one must be subtracted from the actual

count the loop needs to run. In the cycle in which the state machine executes the loop instruction, the

PC stores the address of the next instruction that also is the start-address of the loop. In the example,

the loop instruction is at address 80, PC contains the next address 81, and the loop instruction

specifies the loop end-address and the loop counter as 100 and 20, respectively. The loop machine

stores these three values in loop_start_addr_reg, loop_end_addr_reg and loop_

count_reg, respectively. The value in the PC is continuously compared with the loop end-

address. If the PC is equal to the loop end-address, the value in loop_count_reg is decremented

by 1 and is checkedwhether the down count is equal to zero. If it is not, the next-address logic selects
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the loop start-address on the PM address bus and the state machine starts executing the next iteration

of the loop.When the PC gets to the last micro-code in the loop and the down count is zero, the next-

address select logic starts executing the next instruction in the program. Figure 10.18 shows the loop

machine for supporting a single loop instruction.

To provide nested loop support, each register in the loop machine is replaced with a LIFO stack

with unified stack pointer logic. The stacks store the loops’ start-addresses, end-addresses and

counters for the nested loops and output thevalues for the currently executing loop to the loop control

logic. When the current loop finishes, the logic selects the outer loop and in this way it iteratively

executes nested loops.

An example of nested loops that correspondingly fill the LIFO registers is given in Figure 10.19.

The loop machine supports four nested loops with three sets of LIFOs for managing loops start-
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addresses, loops end-addresses and loops counters. The design of the machine is given in

Figure 10.20.

All the three LIFOs in the loopmachinework in lock step. The counter, when loadedwith the loop

count of the current loop instruction, decrements its value after executing the end instruction of the

loop. The comparator sets the flag when the end of the loop is reached. Now based on the current

value of the counter the two flags are assigned values. The loop-end-flag is set if the value of the

counter is 0 and the machine is executing the last instruction of the loop. Similarly the loop-end-

instr-flag is set if the processor is executing the end instruction but the counter value is still not 0.

This signals the next-address logic to load the loop start-address as the next address to be executed.

The state machine branches back to execute the loop again.

10.7 Examples

10.7.1 Design for Motion Estimation

Motion estimation is the most computationally intensive component of video compression algo-

rithms and so is a good candidate for hardware mapping [4–6]. Although there are techniques for

searching the target block in a pre-stored reference frame, a full-search algorithm gives the best

result. This performs an exhaustive search for a target macro block in the entire reference frame to

find the best match. The architecture designed for motion estimation using a full motion search

algorithm can also be used for template matching in a machine vision application.

The algorithm works by dividing a video frame of size Nh�Nv into macro blocks of size N�M.

Themotion estimation (ME) algorithm takes a targetmacro block in the current frame and searchers

for its closestmatch in the previous reference frame. A full-searchME algorithm searches themacro

block in the current framewith themacro block taking all candidate pixels of the previous frame. The

algorithm computes the sum of absolute differences (SAD) as the matching criterion by implement-

ing the expression:

SADði; jÞ ¼
XN�1

k¼0

XN�1

l¼0

Sðkþ i; lþ jÞ�Rðk; lÞj j

In this expression, R is the reference block in the current frame and S is the search area, which for

the full-search algorithm is the entire previous frame while ignoring the boarder pixels. The ME

algorithm computes theminimumvalue of SADand stores the (i, j) as the pointwhere the bestmatch

is found. The algorithm requires four summations over i, j, k and l.

Figure 10.21 shows an example. This design consists of a data movement block, two 2-D register

files for storing the reference and the target blocks, and a controller that embeds a loopmachine. The

controller synchronizes the working of all blocks. The 2-D register file for the target block is

extended in rows and columnsmaking its size equal to (N þ 1)� (N þ 1)� 1 registers, whereas the

size of the register file for the reference block is N�N.

A full-search algorithm executes by rows and, after completing calculation for the current macro

block, the new target block is moved one pixel in a row.Whileworking in a row, for each iteration of

the algorithm,N� 1 previous columns are reused. The data movement block brings the new column

to the extended-register-column in the ref-blk-reg-file. The search algorithm works

in a daisy-chain and, after completing one row of operation, the data movement block starts in the

opposite direction and fetches a new row in the extended-register-row in the register file.

The daisy-chainworking of the algorithm formaximum reuse of data in a target block is illustrated in

Figure 10.22.
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The toggle micro-code maintains the daisy-chain operation. This enables maximum reuse of

data. The SAD calculator computes the summation, where the embedded loop machine in the

controller automatically generates addressing for the two register files. The micro-code

repeat8x8 maintains the addressing in the two register files and generates appropriate control

signals to two multiplexers for feeding the corresponding values of pixels to the SAD calculator

block. Themicro-codeabs_diff computes the difference and takes its absolute value for addition

into a running accumulator. In each cycle, two of thesevalues are read and their absolute difference is

added in a running accumulator. After computing the SAD for the current block, its value is

compared with the best match. If this value is less than the current best match, the value with the

corresponding values in Tx and Ty registers in the controller are saved in Bx and By registers,

respectively. The update_minmicro-code performs this updating operation. The micro-program

for ME application for a 256� 256 size frame is given here:

Tx = 0;

Ty = 0;

repeat 256-8, LABELy

repeat 256-8, LABELx

acc = 0;

repeat_8x8 //embedded repeat 8x8 times

acc+=abs_diff;

(Bx, By, minSAD)=updata_min(acc, best_match, Tx, Ty)

LABELx toggle(Tx++/–);

LABELy Ty++;

This program assumes that the controller keeps directing the data movement block to bring the

new row or column to the corresponding extended-register-row or extended-regis-

ter-column files in parallel for each iteration of the SAD calculation and the repeat8x8

appropriately performs modulo addressing in the register file for reading the pixels of the current

target block from the register file for the target frame.

next columncurrent block

next row

Last target block in first row

daisy
chain 
search 

target

Figure 10.22 Full-search algorithm working in daisy-chain for maximum reuse of pixels for the target

block
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The architecture is designed in a way such that SAD calculation can be easily parallelized and the

absolute difference for more than one value can be computed in one cycle.

10.7.2 Design of a Wavelet Processor

Another good example is the architecture of a wavelet processor. The processor performs wavelet

transformations for image and video processing applications. There are various types of wavelet

used [7–11], so efficient micro-program architectures to accelerate these applications are of special

interest [12, 13]. A representative design is presented here for illustration.

A 2-D wavelet transform is implemented by two passes of a 1-D wavelet transform. The generic

form of the 1-Dwavelet transform passes a signal through a low-pass and a high-pass filter, h[n] and

g[n], and then their respective outputs are down-sampled by a factor of 2. Figure 10.23(a) gives the

1-D decomposition of a 1-D signal x[n] into low- and high-frequency components. For the 2-D

wavelet transform, the first each column of the image is passed through a set of filters and the output

is down-sampled; then in the second pass the rows of the resultant image are passed though the same

set of filters. The pixel values of the output image are called the ‘wavelet coefficients’. In a pyramid

algorithm for computing wavelet coefficients for an image analysis application, an image is passed

through multiple levels of 2-D wavelet transforms. Each level, after passing the image through two

1-Dwavelet transforms, decimates the image by 2 in each dimension. Figure 10.23(b) shows 2-level

2-D wavelet decomposition in a pyramid algorithm. Similarly, Figures 2 10.23(c) and (d) shows the

results of performing one-level and three-level 2-D wavelet transforms on an image.

There are a host of FIR filters designed for wavelet applications. The lifting scheme is an efficient

tool for designing wavelets [14]. As a matter of fact, every wavelet transformwith FIR filters can be
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Figure 10.23 (a) One-dimensional wavelet decomposition. (b) Two-level 2-D pyramid decomposition.

(c) One-level 2-D wavelet decomposition. (d) Three-level 2-D wavelet decomposition
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decomposed under the lifting scheme. Figure 10.24 shows an example of a 5/3 filter transformed as a

lifting wavelet; this wavelet is good for image compression applications. Similarly, there is a

family of lifting wavelets [12] that are more suitable for other applications, such as the 9/7

wavelet transform which is effective for image fusion applications (images of the same scene are

taken from multiple cameras and then fused to one image for more accurate and reliable

description) [14].

It is desired to design a programmable processor that can implement any such wavelet along with

processing other signal processing functions. This requires the programmable processor to imple-

ment filters with different coefficients. For multimedia applications, multiple frames of images need

to be processed every second. This requires several programmable processing elements (PEs) in

architecture with shared and local memories placed in a configuration that enables scalability in

inter-PE communications. This is especially so in video where multi-level pyramid-based wavelet

transformations are performed on each frame. The coefficients of each lifting filter can be easily

represented in 11 bits and an image pixel is represented in 8 bits. Themultiplication results in a 19-bit

number that can be scaled to either 8 or 16 bits. The register file of the PE is 16 bits wide for storing

the temporary results. The final results are stored in memory as 8-bit numbers.

The instruction set of the PE is designed to implement any type of wavelet filtering as lifting

transforms and similar signal processing algorithms. A representative architecture of the PE is given

in Figure 10.25. The PE supports the following arithmetic instruction on a register filewith 32-bit 16

registers:

Ri ¼ Rj

RiL ¼ RjL OP RkL
RiH ¼ RjH OP RkH
Ri ¼ Rj OP Rk

RiL ¼ RiH
RiH ¼ RiL
Ri ¼ RjL � RkL
Ri ¼ RjL � RkH
Ri ¼ RjH � RkH

OP 2 f�; þ ;�;�;&; j;^g
for i; j; k 2 f01; 2; . . . ; 15g

Based on the arithmetic instruction, the PE sets the following overflow, zero and negative flags for

use in the conditional instructions:

Flags: OV, Z,N

+

split
x[n]

odd

even

z

-1/2 -1/2

z-1

1/4

+

1/4

+

merge
x[n]

odd

even

z

1/21/2

z-1

+

-1/4 -1/4

λ λ

γ γ

Figure 10.24 5/3 wavelet transform based on the lifting scheme
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The PE supports the following conditional and unconditional branch instructions:

if(Condi) jump Label,

else if(Condi) jump Label,

if(!Condi) jump Label,

else if (!Condi) jump Label,

else jump Label,

jump Label.

where Condi is one of the conditions 0V, Z and N, and Label is the address of the branch

instruction.

16

+
addr

N

ar_wr_sel1

N

N

AR0

AR1

AR2

AR3

N
mem

const

ar_rd_sel

R0L R0H

R1L

R2L

R3L

R15L

.

.

.

R1H

R2H

R3H

R15H

swap

swap_en

ar_wr_sel2

R_wr_sel1

R_rd_sel0

R_rd_sel1

16

16

3   2   1    0
R_wr_sel0

1

addr_offset_sel

CONST0

88 88

x + shifter logical

zov Nto controller

Figure 10.25 Datapath design for processing elements to compute a wavelet transform
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The PE has four address registers and supports the following instructions:

Ari=addr

Ri=mem(Ari++)

mem(Ari++)=Rj

Ri=mem(Ari)

mem(Ari)=Rj

Ari=Ari+Const

For i = 0, 1, 2, 3

The PE supports four nested loops instructions of type repeat LABEL (COUNT). The

instruction repeats the instruction block starting from the next instruction to the instruction specified

by address LABEL, COUNT number of times. The PE also supports four nested subroutine calls and

return instructions.

Exercises

Exercise 10.1

WriteRTLVerilog code to implement the following folded design of a biquad filter (Figure 10.26).A

simple 2-bit counter is used to generate control signals. Assume a1, b1, a2 and b2 are 16-bit signed

constants in Q1.15 format. The datapath is 16 bits wide. The multiplier is a fractional signed by

signed multiplier, which multiplies two 16-bit signed numbers, and generates a 16-bit number in

Q1.15 format. Use Verilog addition andmultiplication operators to implement adder andmultiplier.

After multiplication, bring the result into the correct format by truncating the 32-bit product to a 16-

bit number. Testing your code for correctness, generate test vectors and associated results in Matlab

and port them to your stimulus of Verilog or SystemVerilog.

Exercise 10.2

Design a micro-coded state machine based on a 4-deep LIFO queue to implement the following:

. A write into the LIFO writes data on the INBUS at the end of the queue.

. A delete from the LIFO deletes the last entry in the queue.

. A write and delete at the same time generates an error.

. A write in a full queue and delete from an empty queue generates an error.

. The last entry to the queue is always available at the OUTBUS.

Draw the algorithmic state machine (ASM) diagram. Draw the datapath, and give the micro-

coded memory contents implementing the state machine design.

Exercise 10.3

Design amicro-coded state machine-based FIFO queuewith six 16-bit registers,R0 toR5. The FIFO

has provision towrite one or two values to the tail of the queue, and similarly it can delete one or two

values from the head of the queue.

All the input and output signals of the FIFO are shown in Figure 10.27. A WRITE_1 writes the

values on INBUS_1 at the tail of the queue in the R0 register, and a WRITE_2 writes values on
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IN_BUS_1 and IN_BUS_2 to the tail of the queue in registers R0 and R1, respectively, and

appropriately adjusts already stored values in these registers tomaintain the FIFO order. Similarly, a

DEL_1 deletes one value and DEL_2 deletes two values from the head of the queue, and brings the

next first-in values to OUT_BUS_1 and OUT_BUS_2. Only one of the input signals signal should

be asserted at any point. List all erroneous/invalid requests and generate an error signal for

these requests.

1. Design an ASM chart to list functionality of the FSM.

2. Design the datapath and the micro-program-based controller for the design problem. Write the

micro-codes for the design problem. Draw the RTL diagram of the datapath showing all the

signals.

3. Code the design in RTLVerilog. Hierarchically break the top-level design into two main parts,

datapath and controller.

4. Write a stimulus and test the design for the following sequence of inputs:

IN_BUS_1 IN_BUS_2 WRITE_1 WRITE_2 DEL_1 DEL_2

0 0 0 0 1 0

10 20 0 1 0 0

30 29 1 0 0 0

- - 0 0 1 0

10 - 1 00 0

- - 0 0 0 1

- - 0 1 1 0

Exercise 10.4

Design a micro-coded state machine for an instruction dispatcher that reads a 32-bit word from

the instruction memory. The instructions are arranged in two 32-bit registers, IR0 and IR1. The first

bit of the instruction depicts whether the instruction is 8-bit, 16-bit or 32-bit. The two instruction

registers always keep the current instruction in IR1, while the LSB of the instruction is moved to the

LSB of IR1.
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Figure 10.27 FIFO top-level design for exercise 10.3
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Exercise 10.5

Design a micro-coded state machine to implement a bit-serial processor with the following micro-

codes:
fCout;R3½k�g ¼ R1 i½ � þR2 j½ � þCin

R3½k� ¼ R1 i½ �^R2 j½ �
R3½k� ¼ R1 i½ �j R2 j½ �
R3½k� ¼ R1 i½ �&R2 j½ �

Repeat (count) END_ADDRESS

Call Subroutine at ADDERSS

Return

where R1, R2 and R3 are 8-bit registers, and indexes i, j, k¼ 0, . . ., 7 specify a particular bit of these
registers.

Exercise 10.6

Design a micro-coded state machine that operates on a register file with eight 8-bit registers.

The machine executes the following instructions:

Rm ¼ Ri � Rj � Rk

Rm ¼ Ri � Rj

Rm ¼ �Ri

Rm ¼ Ri � Rj � Rk

Rm ¼ Ri � Rj

Call Subroutine ADDRESS

Return

All multiplications are fractional multiplications that multiply two Q-format 8-bit signed

numbers and produce an 8-bit signed number. In the register file, i, j, k¼ 0, . . ., 7, and correspond-
ingly Ri, Rj, Rk and Rm are any one of the eight registers.

Exercise 10.7

Design a micro-program state machine that supports the following instruction set:

R4 ¼ R1 þR2 þR3 þR4

R4 ¼ R1 þR2 þR3

R4 ¼ R1 þR2

R4 ¼ R1 & R2 & R3 & R4

R4 ¼ R1 & R2 & R3

R4 ¼ R1 & R2

R4 ¼ R1jR2

R4 ¼ R1 � R2

Load R5=ADDRESS

Jump R5
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If (R4 == 0 ) jump R5

If (R4 > 0 ) jump R5

Call subroutine R5 and return support

R1 to R5 are 8-bit registers. A branch address or subroutine address can be written in R5 using a load

instruction. As given in the instruction set, jump and subroutine instructions are developed to use the

contents ofR5 as address of the next instruction. The conditions are based on the content ofR4. Draw

theRTLdiagramof the datapath andmicro-programmed statemachine. Showall the control signals.

Specify the instruction format and size. The datapath should be optimal using only one carry

propagate adder (CPA) by appropriately using a compression block to compress the number of

operands to two.

Exercise 10.8

Design a micro-coded state-machine based design, with the following features.

1. There are three register files, P, Q and R. Each register file has four 8-bit registers.

2. There is an adder and logic unit to perform addition, subtraction, AND, OR andXOR operations.

3. There is 264 deep micro-code memory.

4. The state machine supports the following instructions:

(a) Load constant into ith register of P or Q:

Pi¼ const

Qi¼ const

(b) Perform any arithmetic or logic operation given in (2) on operands in register files P and Q,

and store the result in register file R:

Ri¼Pj op Qk

(c) Unconditional branch to any address LABEL in microcode memory:

goto LABEL

(d) Subroutine call support, where subroutine is stored at address LABEL:

call subroutine LABEL

return

(e) Support repeat instruction, for repeating a block of code COUNT times:

repeat (COUNT) LABEL

LABEL is the address of the last instruction in the loop.

Exercise 10.9

Design a micro-programmed state machine to support 4-deep nested loops and conditional jump

instructions with the requirements given in (1) and (2), respectively. Draw an RTL diagram clearly

specifying sizes of instruction register, multiplexers, comparators, micro-PC register, and all other

registers in your design.

1. The loop machine should support conditional loop instructions of the format:

if (CONDi) repeat END_LABEL COUNT

The micro-code checks COND i¼ 0,1,2,3 and, if it is TRUE, the state machine repeats

COUNT times a block of instructions starting from the next instruction to the instruction labeled

with END_LABEL. Assume the size of PM is 256 words and a 6-bit counter that stores the
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COUNT.Also assume that, in the instruction, 10 bits are kept for the datapath-related instruction.

If CONDi is FALSE, the code skips the loop and executes the instruction after the instruction

addressed by END_LABEL.

2. Add the following conditional support instruction in the instruction set:

if (CONDi ) Jump LABEL

if (!CONDi) Jump LABEL

jump LABEL

Exercise 10.10

Design amicro-programarchitecturewith two 8-bit input registersR1 andR2, an 8-bit output register

R3, and a 256-word deep 8-bit memory MEM. Design the datapath and controller to support the

following micro instructions. Give op-code of each instruction, draw the datapath, and draw the

micro-coded state machine clearly specifying all control signals and their widths.

. Load R1 Addr loads the content of memory at address Addr into register R1.

. Load R2 Addr loads the content of memory at address Addr into register R2.

. Store R3 Addr stores the content of register R3 into memory at address Addr.

. Arithmetic and logic instructions Add, Mult, Sub, OR and AND take operands from registers R1

and R2 and store the result in register R3.
. The following conditional and unconditional branch instructions: Jump Label, Jump Label

if (R1¼¼0), Jump Label if (R2¼¼0), Jump Label if (R3¼¼0).
. The following conditional and unconditional subroutine and return instructions: Call Label,

CallLabelif(R1>0),CallLabelif(R2>0),CallLabelif(R3>0),Return,

Return if (R3<0), Return if (R3¼¼0).

Exercise 10.11

Using an instruction set of the wavelet transform processor, write a subroutine to implement 5/3

wavelet transform of Figure 10.24. Use this subroutine to implement a pyramid coding algorithm to

decompose an image in three levels.
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11

Micro-programmed Adaptive
Filtering Applications

11.1 Introduction

Deterministic filters are implemented in linear and time-invariant systems to remove out-of-band

noise or unwanted signals. When the unwanted signals are known in terms of their frequency band,

a system can be designed that does not require any adaptation in real time. In contrast, there aremany

scenarios where the system cannot be deterministically determined and is also time-variant. Then

the system is designed as a linear time-invariant (LTI) filter in real time and, to cater for time

variance, the filter has to update the coefficients periodically using an adaptive algorithm. Such an

algorithm uses some error-minimization criterion whereby the output is compared with the desired

result to compute an error signal. The algorithm adapts or modifies the coefficients of the filter such

that the adapted system generates an output signal that converges to the desired signal [1, 2].

There are many techniques for adaptation. The selection of an algorithm for a particular

application is based on many factors, such as complexity, convergence time, robustness to noise,

ability to track rapid variations, and so on. The algorithm structure for effective implementation in

hardware is another major design consideration.

11.2 Adaptive Filter Configurations

Adaptive filters are used in many settings, some of which are outlined in this section.

11.2.1 System Identification

The same input is applied to an unknown system U(z) and to an adaptive filter H(z). If perfectly

identified, the output y[n] of the adaptive filter should be the same as the output d[n] of the unknown

system. The adaptive algorithm first computes the error in the identification as e[n]¼ d[n]� y[n].

The algorithm then updates the filter coefficients such that the error is minimized and is zero in the

ideal situation. Figure 11.1 shows an adaptive filter in system identification configuration.

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



11.2.2 Inverse System Modeling

The adaptive filterH(z) is placed in cascade with the unknown system U(z). A known signal d[n] is

periodically input toU(z) and the output of the unknown system is fed as input to the adaptive filter.

The adaptive filter generates y[n] as output. The filter, in the ideal situation, should cancel the effect

ofU(z) such thatH(z)U(z)¼ 1. In this case the output perfectlymatcheswith a delayed version of the

input signal. Any mismatch between the two signals is considered as error e[n]. An adaptive

algorithm computes the coefficients such that this error is minimized. This configuration of an

adaptive filter is shown in Figure 11.2.

This configuration is also used to provide equalization in a digital communication receiver.

For example, inmobile communication the signal transmitted froman antenna undergoes fading and

multi-path effects on its way to a receiver. This is compensated by placing an equalizer at the

receiver. A know input is periodically sent by the transmitter. The receiver implements an adaptive

algorithm that updates the coefficients of the adaptive filter to cancel the channel effects.

11.2.3 Acoustic Noise Cancellation

An acoustic noise canceller removes noise from a speech signal. A reference microphone also picks

up the same noisewhich is correlatedwith the noise that gets added in the speech signal. An adaptive

filter cancels the effects of the noise from noisy speech. The signal v0[n] captures the noise from the

noise source. The noise in the signal v1[n] is correlated with v0[n], and the filter H(z) is adapted to

U(z)

H(z)

Adaptive Algorithm

x[n] d[n]

e[n]

y[n]

-

Figure 11.1 Adaptive filter in system identification configuration
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Figure 11.2 Adaptive filter in inverse system modeling
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produce an estimate of v1[n], which is then cancelled from the signal x[n], where x[n]¼ s[n] þ v1[n]

and s[n] is the signal of interest [3, 4]. This arrangement is shown in Figure 11.3.

11.2.4 Linear Prediction

Here an adaptive filter is used to predict the next input sample. The adaptive algorithmminimizes the

error between the predicted and the next sample values by adapting the filter to the process that

produces the input samples.

An adaptive filter in linear prediction configuration is shown in Figure 11.4. Based onN previous

values of the input samples, x[n� 1], x[n� 2], . . ., x[n�N], the filter predicts the value of the next

sample x[n] as x̂½n�. The error in prediction e[n]¼ x[n]� x̂½n� is fed to an adaptive algorithm to

modify the coefficients such that this error is minimized.

11.3 Adaptive Algorithms

11.3.1 Basics

An ideal adaptive algorithm computes coefficients of the filter byminimizing an error criterion x(h).
The criterion used in many applications is the expectation of the square of the error or mean squared

error:

xðhÞ ¼ E½e½n�2�

-

Adaptive Algorithm

H(z)Noise
v [n]0

Signal + Noise

s[n] + v [n]1

Figure 11.3 Acoustic noise canceller

Linear Predictor

Adaptive Algorithm

x[n]

e[n]

x[n]^

Figure 11.4 Adaptive filter as linear predictor
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e½n� ¼ d½n��y½n�

y½n� ¼ hTnxn

where hn¼ hn[0], hn[1], hn[2], . . ., hn½N�1� and xn¼ x[n], x[n� 1], x[n� 2], . . ., x[n� (N� 1) ].

Using these expressions, the mean squared error is written as:

xðhÞ ¼ E ðd½n��hTnxnÞ2
h i

Expanding this expression results in:

xðhÞ ¼ E½d½n�2� þ hTnE½xnxTn �hn�2hTnE½d½n�xn�

The error is a quadratic function of the values of the coefficients of the adaptive filter and results in

a hyperboloid [1]. The minimum of the hyperboloid can be found by taking the derivative ofı̨ x(h)
with respect to the values of the coefficients. This results in:

hopt ¼ arg min
h

xðhÞ
� �

¼ R�1
x p

where Rx ¼ E½xnxTn � and p¼E[d[n]xn].

Computing the inverse of a matrix is computationally very expensive and is usually avoided.

There are a host of adaptive algorithms that recursively minimize the error signal. Some of these

algorithms are LMS, NLMS, RLS and the Kalman filter [1, 2].

The next sections present Least Mean Square (LMS) algorithms and a micro-programmed

processor designed around algorithms.

11.3.2 Least Mean Square (LMS) Algorithm

This is one of the most widely used algorithms for adaptive filtering. The algorithm first computes

the output from the adaptive filter using the current coefficients from convolution summation of:

y½n� ¼
XL�1

k¼0

hn½k�x½n�k� ð11:1Þ

The algorithm then computes the error using:

e½n� ¼ d½n��y½n� ð11:2Þ

The coefficients are then updated by computing a new set of coefficients that are used to process

the next input sample. The LMS algorithm uses a steepest-decent error minimization criterion that

results in the following expression for updating the coefficients [1]:

hnþ 1½k� ¼ hn½k��me½n�x½n�k� ð11:3Þ

The factor m determines the convergence of the algorithm. Large values of m result in fast

convergence but may result in instability, whereas small values slow down the convergence. There

are algorithms that use variable step size for m and compute its value based on some criterion for fast

conversion [5, 6].
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The algorithm for every input sample first computes the output y[n] using the current set of

coefficients hn[k], and then updates all the coefficients using (11.3).

11.3.3 Normalized LMS Algorithm

Themain issuewith theLMSalgorithm is its dependency on scaling of x[n] by a constant factorm. An
NLMS algorithm solves this problem by normalizing this factor with the power of signal to noise

ratio (SNR) of the input signal. The equation for NLMS is written as:

hnþ 1 k½ � ¼ hn k½ ��me½n�x½n�k�
xnxTn

ð11:4Þ

The step size is controlled by the power factor xnx
T
n . If this factor is small, the step size is set large

for fast convergence; if it is large, the step size is set to a small value [5, 6].

11.3.4 Block LMS

Here, the coefficients of the adaptive filter are changed only once for every block of input data,

comparedwith the simpleLMS that updates on a sample-by-sample basis.Ablock or frameof data is

used for the adaptation of coefficients [7]. Let N be the block size, and hn�N is the array of

coefficients computed for the previous block of input data. The mathematical representation of the

block LMS is presented here.

First the output samples y[n] and the error signal e[n] are computed using hn�N for the current

block i of data for l¼ 0, . . ., N� 1:

y½n� ¼
XL�1

m¼0

hn�N ½m�x½n�m�; for n ¼ iNþ l

e½n� ¼ d½n��y½n�

Using the error signal and the block of data, the array of coefficients for the current block of input

data is updated as:

hn ¼ hn�N þm
XiNþN�1

m¼iN

e½m�x½m�

In the presence of noise, a leaky LMS algorithm is sometimes preferred for updating the

coefficients. For 0 < a< 1, the expression for the algorithm is:

hn ¼ ð1�aÞhn�N þ m
XiNþN�1

m¼iN

e½m�x½m�

11.4 Channel Equalizer using NLMS

11.4.1 Theory

Adigital communication receiver needs to cater for the impairments introduced by the channel. The

channel acts as U(z) and to neutralize the effect of the channel an adaptive filter H(z) is placed that

works in cascadewith the unknown channel and the coefficients of the filter are adapted to cancel the
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channel effects. One of the most challenging problems in wireless communication is to device

algorithms and techniques that mitigate the impairments caused by multi-path fading effects of

a wireless channel. These paths result in multiple and time-delayed echoes of the transmitted signal

at the receiver. These delay spreads are up to tens of microseconds and result in inter-symbol

interference spreading over many data symbols. To cater for the multi-path effects, either multi-

carrier techniques like OFDM are used, or single sarrier (SC) techniques with more sophisticated

time and frequency equalizations are performed.

A transmitted signal in a typical wireless communication system can be represented as:

sðtÞ ¼ RefsbðtÞe j2pfct

where sb(t) and s(t) are baseband and passband signals, respectively, and fc is the carrier frequency.

This transmitted signal goes through multiple propagation paths and experiences different delays

tn(t) and attenuation an(t) while propagating to a receiver antenna. The received signal at the antenna
is modeled as:

rðtÞ ¼
X
n

anðtÞsðt�tnðtÞÞ

There are different channel models that statistically study the variability of the multi-path effects

in a mobile environment. Rayleigh and Ricean fading distributions [10–13] are generally used for

channel modeling. A time-varying tap delay-line system can model most of the propagation

environment. The model assumes L multiple paths and expresses the channel as:

hi½n� ¼
XL�1

l¼0

hld½n�tl �

where hl and tl are the complex-valued path gain and the path delay of the lth path, respectively.

There are a total of L paths that are modeled for a particular channel environment.

The time-domain equalizer implements a transversal filter. The length of the filter should be

greater than themaximumdelay that spreads overmany symbols. Inmany applications this amounts

to hundreds of coefficients.

11.4.2 Example: NLMS Algorithm to Update Coefficients

This example demonstrates the use of an NLMS algorithm to update the coefficients of an equalizer.

Each frame of communication appends a training sequence. The sequence is designed such that it

helps in determining the start of a burst at the receiver. The sequence can also help in computing

frequency offset and an initial channel estimation. This channel estimation can also be used as the

initial guess for the equalizer. The receiver updates the equalizer coefficients and the rest of the data

is passed through the updated equalizer filter. In many applications a blind equalizer is also used for

generating the error signal from the transmitted data. This equalizer type compares the received

symbolwith closest ideal symbol in the transmitted constellation. This error is then used for updating

the coefficients of the equalizer.

In this example, a transmitter periodically sends a training sequence t[n], with n¼ 0 . . . Nt�1, for

the receiver to adapt the equalizer coefficients using the NLMS algorithm. The transmitter then

appends the data d[n] to form a frame. The frame consisting of data and the training is modulated

using QAM modulation technique. The modulated signal is transmitted. The signal goes through
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a channel and is received at the receiver. The algorithm first computes the start of the frame. A

training sequence is selected that helps in establishing the start of the burst [12]. After marking the

start of the frame, the received training sequence helps in adapting the filter coefficients. The

adaption is continued in blind mode on transmitted data. In this mode, the algorithm keeps

updating the equalizer coefficients using knowledge of the transmitted signal. For example, in

QAM the received symbol is mapped to the closest point of the constellation and the Euclidian

distance of the received point from the closest point in the constellation is used to derive the adaptive

algorithm.

The error for the training part of the signal is computed as:

e½n� ¼ jjt½n��tr½n�jj2

where t[n] and tr[n] are the transmitted and received training symbol, respectively. For the rest of the

data the equalizer works in blindmode and the error in this case is the distance between the received

and the closest symbols d[n] and dr[n], resepectively:

e½n� ¼ jjd½n��dr½n�jj2

The MATLAB� code implementing an equalizer using an NLMS algorithm is given here:

clc

close all

clear all

% Setting the simulation pParameters

NO_OF_FRAMES = 20; %Blocks of data sequence to be sent

CONST = 3; % Modulation type

SNR = 30; % Signal to noise ratio

L = 2; % Selection of a training sequence

DATA_SIZE = 256; % Size of data to be sent in every frame

% Setting the channel parameters

MAX_SPREAD = 10; % Maximum intersymbol interference channel can cause

tau_l = [1 2 5 7 ]; % Multipath delay locations

gain_l =[1 0.1 0.2 0.02]; % Corresponding gain

% Equalizer parameters

mue = 0.4;

% Channel %

% Creating channel impulse response

hl = zeros(1, MAX_SPREAD-1);

for ch = 1:length(tau_l)

hl(tau_l(ch)) = gain_l(ch);

end

% Constellation table %

if CONST == 1

Const_Table = [(-1 + 0*j) (1 + 0*j)];

elseif CONST == 2
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Const_Table = [(-.7071 - .7071*j) (-.7071 + .7071*j)

(.7071 - .7071*j) (.7071 + .7071*j)];

elseif ( CONST == 3)

Const_Table = [(1 + 0j) (.7071 + .7071i) (-.7071 + .7071i)

(0 + i) (-1 + 0i) (-.7071 - .7071i) ...

(.7071 - .7071i) (0 - 1i)];

elseif(CONST == 4)

% 16 QAM constellation table

Const_Table = [(1 + j) (3 + j) (1 + 3j) (3 + 3j) (1 - j)

(1 - 3j) (3 - j) (3 - 3j) ...

(-1 + j) (-1 + 3j) (-3 + j) (-3 + 3j)

(-1 -j) (-3 - j) (-1 - 3j) (-3 - 3j)];

end

% Generating training from [12] %

% Training data is modulated using BPSK

if L==2

C = [1 1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 1];

elseif L == 4

C = [1 1 -1 1 1 1 1 -1];

elseif L == 8

C = [1 1 -1 1];

elseif L == 16

C = [1 1];

end

if L==2

Sign_Pattern = [1 1];

elseif L == 4

Sign_Pattern = [-1 1 -1 -1];

elseif L == 8

Sign_Pattern = [1 1 -1 -1 1 -1 -1 -1];

elseif L == 16

Sign_Pattern = [1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1];

end

Training = [];

for i=1:L

Training = [Training Sign_Pattern(i)*C];

end

Length_Training = length(Training);

Length_Frame = Length_Training + DATA_SIZE;

% Modulated frame generation %

Frame_Blocks = [];

Data_Blocks = [];

for n = 1:NO_OF_FRAMES

Data = (randn(1,DATA_SIZE*CONST)>0);

% Bits to symbols

DataSymbols = reshape(Data,CONST,length(Data)/CONST);

% Symbols to constellation table indices

Table_Indices = 2.^(CONST-1:-1:0) * DataSymbols + 1;

460 Digital Design of Signal Processing Systems



% Indices to constellation pPoint

Block = Const_Table(1,Table_Indices);

Data_Blocks = [Data_Blocks Block];

% Frame = training + modulated data

Frame_Blocks = [Frame_Blocks Training Block];

end

% Passing the signal through the channel %

Received_Signal = filter(hl,1, Frame_Blocks);

% Adding AWGN noise %

Received_Signal = awgn(Received_Signal, SNR, ‘measured’);

% Equalizer design at the reciver %

Length_Rx_Signal = length(Received_Signal);

No_Frame = fix(Length_Rx_Signal/Length_Frame);

hn=zeros(MAX_SPREAD,1);

Detected_Blocks = [];

for frame=0:No_Frame-1

% Using training to update filter coefficients using NLMS algorithm %

start_training_index = frame*Length_Frame+1;

end_training_index = start_training_index+Length_Training-1;

Training_Data =

Received_Signal(start_training_index:end_training_index);

for i=MAX_SPREAD:Length_Training

xn=Training_Data(i:-1:i-MAX_SPREAD+1);

y(i)=xn*hn;

d(i)=Training(i);

e(i)=d(i)-y(i);

hn = hn + mue*e(i)*xn’/(norm(xn)^2);

end

start_data_index = end_training_index+1;

end_data_index = start_data_index+DATA_SIZE-1;

Received_Data_Frame =

Received_Signal(start_data_index:end_data_index);

% Using the updated coefficients to equalize the received signal %

Equalized_Signal = filter(hn,1,Received_Data_Frame);

for i=1:DATA_SIZE

% Slicer for decision making

% Finding const point with min euclidean distance

[Dist Decimal] = min(abs(Const_Table - Equalized_Signal(i)));

Detected_Symbols(i) = Const_Table(Decimal);

end

scatterplot(Received_Data_Frame), title(‘Unqualized Received Signal’);

scatterplot(Equalized_Signal), title(‘Equalized Signal’);

Detected_Blocks = [Detected_Blocks Detected_Symbols];

end

[Detected_Blocks’ Data_Blocks’];
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(b) (a) 

Equalized SignalUnequalized Received Signal

Figure 11.5 Equalizer example. (a) Unequalized received signal. (b) Equalized QAM signal at the

receiver

Figure 11.5 shows a comparison between an unequalized QAM signal and an equalized signal

using the NLMS algorithm.

Usually divisions in the algorithm are avoided while selecting algorithms for implementation in

hardware. For the case of NLMS, The Newton Repson method can be used for computing 1=xnx
T
n .

Modified MATLAB� code of the NLMS loop of the implementation is given here:

for i=MAX_SPREAD:Length_Training

xn=Training_Data(i:-1:i-MAX_SPREAD+1);

y(i)=xn*hn;

d(i)=Training(i);

e(i)=d(i)-y(i);

Energy=(norm(xn)^2);

% Find a good initial estimate

if Energy > 10

invEnergy = 0.01;

elseif Energy > 1

invEnergy = 0.1;

else

invEnergy = 1;

end

% Compute inverse of energy using Newton Raphson method

for iteration = 1:5

invEnergy = invEnergy*(2-Energy*invEnergy);

end

hn = hn + mue*e(i)*xn’*invEnergy;

end

To avoid division a simple LMS algorithm can be used. For the LMS algorithm, the equation for

updating the coefficients need not perform any normalization and the MATLAB� code for

adaptation is given here:
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for i=MAX_SPREAD:Length_Training

xn=Training_Data(i:-1:i-MAX_SPREAD+1);

y(i)=xn*hn;

d(i)=Training(i);

e(i)=d(i)-y(i);

hn = hn + mue*e(i)*xn’;

end

11.5 Echo Canceller

An echo canceller is an application where an echo of a signal that mixes with another signal is

removed from that signal. There are two types of canceller, acoustic and line echo.

11.5.1 Acoustic Echo Canceller

In a speaker phone or hands-free mobile operation, the far-end speaker voice is played on a speaker.

Multiple and delayed echoes of this voice are reflected from the physical surroundings and are

picked up by the microphone along with the voice of the near-end speaker. Usually these echo paths

are long enough to cause an unpleasant perception to the far-end speaker. An acoustic echo canceller

is used to cancel the effects. A model of the echo cancellation problem is shown in Figure 11.6.

Considering all digital signals, let u[n] be the far-end voice signal. The echo signal is r[n] and it

gets added in to the near-end voice signal x[n]. An echo canceller is an adaptive filter h[n] that ideally

takes u[n] and generates a replica of the echo signal, r̂½n�. This signal is cancelled from the received

signal to get an echo-free signal, x̂½n�, where:
x̂½n� ¼ x½n� þ r½n��u½n�*h½n�
x̂½n� ¼ x½n� þ r½n��r̂½n�:

h(n)

u(n)

r(t)

+ x(t)

x(n) + r(n)

e(n) near-end

-

Adaptive 
Algorithms

r[n]^

Figure 11.6 Model of an acoustic echo canceller
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To cancel a worst echo path of 500milliseconds for a voice sampled at 8 kHz requires an adaptive

filterwith 4000 coefficients. There are several techniques tominimize the computational complexity

of an echo canceller [13–15].

11.5.2 Line Echo Cancellation (LEC)

Historically, most of the local loops in telephony use twowires to connect a subscriber to the central

office (CO). A hybrid is used at the CO to decouple the headphone and microphone signals to four

wires. A hybrid is a balanced transformer and cannot be perfectlymatched owing to several physical

characteristics of the two wires from the subscriber’s home to the CO. Any mismatch in the

transformer results in echo of the far-end signal going back with the near-end voice. The

phenomenon is shown in Figure 11.7. The perception of echo depends on the amount of round-

trip delay in the network.

The echo ismore apparent in VoIP as there are some inherent delays in processing the compressed

voice signal that are accumulatedover buffering andqueuingdelays at everyhopof the IPnetwork. In

aVoIPnetwork thedelayscanbuildup to120–150ms.Thismakes the round tripdelayaround300ms.

It is therefore very critical for VoIP applications to cancel out any echo coming from the far end [16].

A line echo cancellation algorithm detects the state in which only far-end voice is present and the

near-end is silent. The algorithm implements a voice-activity detection technique to check voice

activity at both ends. This requires calculating energies on the voice received from the network and

the voice acquired in a buffer from the microphone of the near end speaker. If there is significantly

more energy in the buffer storing the voice from the network compared with the buffer of voice from

the near-end microphone, this infers the near-end speech buffer is just stori the echo of the far-end

speech and the algorithm switches to a state that updates the coefficients. The algorithm keeps

updating the coefficients in this state. The update of coefficients is not performed once the near-end

voice is detected by the algorithm or double-talk is detected (meaning that the voice activity is

present at both near and far end). In all cases the filtering is performed for echo cancellation.

The LEC requirements for carrier-class VoIP equipment are governed by ITU standards such as

G.168 [17]. The standard includes a rigorous set of tests to ensure echo-free call if the LEC is

compliant to the standard. The standard also hasmany echo pathmodels that help in the development

of standard compliant algorithms.

11.6 Adaptive Algorithms with Micro-programmed State Machines

11.6.1 Basics

It is evident from the discussion so far in this chapter that, although coefficient adaptation is themain

component of any adaptive filtering algorithm, several auxiliary computations are required for

Hybrid

e[n]

Echo free voice to 
far end

near end subscriber
+

h[n] VOIP 
terminalIP Network

Line Echo Canellor

-

Far end speaker

Figure 11.7 Line echo due to impedance mismatch in the 4:2 hybrids at the central office and its

cancellation in Media Gateway
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complete implementation of the associated application. For example, for echo cancelling the

algorithm needs first to detect double-talk to find out whether coefficients should be updated or not.

The algorithms for double-talk detection are of a very different nature [18–20] than filtering or

coefficient adaptation. In addition the application also requires decision logic to implement one

or the other part of the algorithm. All these requirements favor a micro-programmed accelerator to

implement. This also augments the requisite flexibility of modifying the algorithm at the imple-

mentation stage of the design. The algorithm can also be modified and recoded at an any time in the

life cycle of the product.

For LEC-type applications, the computationally intensive part is still the filtering and coefficient

adaption as the filter length is quite large. The accelerator design is optimized to perform these

operations and the programmability helps in incorporating the auxiliary algorithms like voice

activity detection and state machine coding without adding any additional hardware. To illustrate

this methodology, the remainder of this section gives a detailed design of one such application.

11.6.2 Example: LEC Micro-coded Accelerator

A micro-coded accelerator is designed to implement adaptive filter applications and specifically to

perform LEC on multiple channels in a carrier-class VoIP gateway. The processor is primarily

optimized to execute a time-domainLMS-based adaptive LEC algorithmon a number of channels of

speech signals. Thefilter length for each of the channels is programmable and can be extended to 512

taps ormore.As the sampling rate of speech is 8 kHz, these taps correspond to (512/8)ms of echo tail

length.

11.6.2.1 Top-level Design

The accelerator consists of a datapath and a controller. The datapath has twoMACblocks capable of

performing four MAC operations every cycle, a logic unit, a barrel shifter, two address generation

units (AGUs) and two blocks of dual-ported datamemories (DMs). TheMACblock can also be used

as two independent multipliers and two adders. The datapath has two sets of register files and a few

application-specific registers for maximizing reuse of data samples for convolution operation.

The controller has a program memory (PM), instruction decoder (ID), a subroutine module that

supports four nested subroutine calls, and a loop machine that provides zero overhead support for

four nested loops. The accelerator also has access to an on-chip DMA module that fills in the data

from external memory to DMs. All these features of the controller are standard capabilities that can

be designed and coded once and then reused in any design based on a micro-coded state machine.

11.6.2.2 Datapath/Registers

Themost intensive part of the algorithm is to perform convolutionwith a 512-coefficient FIR filter.

The coefficients are also updated when voice activity is detected on the far-end speech signal. To

perform these operations effectively, the datapath has two MAC blocks with two multipliers and

one adder in each block. These blocks support application-specific instructions of filtering and

adaptation of coefficients. The two adders of the MAC blocks can also be independently used as

general-purpose adders or subtractors. The accelerator also supports logic instruction such as

AND, OR and EXOR of two operands. The engine has two register files to store the coefficients

and input data. Figure 11.8 shows the complete datapath of the accelerator.
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Register Files
The datapath has two 16-bit register files, A and B, with 8 registers each. Each register file has one

read port to read 32-bit aligned data from two adjacent registers Ri and Riþ 1 (i¼ 0, 2, 4, 6), where

R2 {A, B}, or 16-bit data from memory in any of the registers in the file. The 32-bit aligned data

from memory mem_R[31:0] can be written in the register files at two consecutive registers. A

cross-path enables copying of the contents of two aligned registers from one register file to the

other. The accelerator also supports writing a 16-bit result from ALU operations to any register, or

ACC0 and ACC1 in two consecutive registers. A 16-bit immediate value can also be written in any

one of the registers. A register transfer level (RTL) design of one of the register files is given in

Figure 11.9.
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12 12
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B_ataDA_ataD

addr_A addr_B

regfileA regfileB

32 32

32 32
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Status
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Figure 11.8 Datapath of the multi-channel line echo canceller
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Special Registers
The datapath has two sets of special registers for application-specific instructions. Four 16-bit

registers are provided to support tap-delay line operation of convolution. The data is loaded from

mem_A to tap-delay line registers TDR0 and TDR1, while the contents of these registers are shifted to

TDR2 and TDR3 in the same cycle. Similarly to store the coefficients, two coefficient registers CR0

andCR1 are provided that are used to store thevalues of coefficients frommem_B. These registers are

shown in Figure 11.8.

Arithmetic and Logic Operations
The accelerator can perform logic operations of AND, OR and EXOR and arithmetic operations of

�, þ and � on two 16-bit operands stored in any register files:

16
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immediate
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Figure 11.9 RTL design of one of the register files
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Ri ¼ Ri OPRj ; where OP 2 f&; j;^;�; þ ;�g;R 2 fA;Bg and i; jf0; 1; 2; . . . ; 7g

The accelerator can perform two parallel ALU operations on two sets of 16-bit operands from

consecutive registers:

Ri ¼ RiOPRjjjRiþ 1 ¼ Riþ 1OPRjþ 1;

where OP 2 f&; j;^;�; þ ;�g;R 2 fA;Bg and i; j 2 f0; 2; 4; 6g:

The k symbol signifies that the operations are performed in parallel.

Status Register
Two of the status register bits are used to support conditional instructions. These bits are set after

the accelerator executes a single arithmetic or logic operation on two operands. These bits are Z and

N for zero and negative flags, respectively. Beside these bits, two bitsV0 andV1 for overflow are also

provided for the two respective MAC blocks. One bit for each block shows whether the result of

arithmetic operation in the block or its corresponding ACCi has resulted in an overflow condition.

11.6.2.3 Address Generation Unit

The accelerator has two AGUs. Each has four registers arXi (i¼ 0 . . . 3) and X2 {A, B}, and each

register is 12 bits wide. Each AGU is also equipped with an adder/subtractor for incrementing and

decrementing addresses and adding an offset to an address. The AGU can be loaded with an

immediate value as address. The AGU supports indirect addressing with pre- and post- increment

and decrement. The value of the address register can also be stored back in respective memory

blocks. The RTL design of the AGU for addressing memory block A is shown in Figure 11.10.
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Figure 11.10 Address generation unit A
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Address registers arA0 and arB0 can also be used for circular addressing. For circular addressing

the AGU adds OFFSET to the content of the respective register, AND operation then performs

modulo-by-SIZE operation and stores the value in the same register. The size of the circular buffer

SIZE should always be a power of 2, and the cicular buffermust always be placed atmemory address

with log2SIZE least significant zeros. The logic to perform modulo operation is given here:

arX0 ¼ ðarX0þOFFSETÞ&ð� SIZEÞ; where X 2 fA;Bg

This simple example illustrates the working of the logic. Let a circular buffer of size 8 start at

address 0 with address bus width 6. Assume the values arA0¼ 7 and OFFSET¼ 3. Ten modulo

addressing logic computes the next address as:

arA0 ¼ ð7þ 3 ¼ 00 1010Þ&ð70b00 0111Þ ¼ 70b00 0010 ¼ 2

MAC Blocks
The datapath has two MAC blocks. Each MAC block has two multipliers and one adder/subtractor.

TheMACperforms twomultiplications on 16-bit signed numbers xn�k, hk and xn�k–1, hkþ 1 and adds

the products to a previously accumulated sum in the accumulator ACCi:

ACCii ¼ ACCi þxn�khk þxn�k�1hkþ 1

The accumulator register is 40 bits wide. The accumulator has 8 bits as guard bits for intermediate

overflows. The result in the accumulator can be rounded to 16 bits for writing it back to one of the

register files. The rounding requires adding 1 to the LSB of the 16-bit value. This is accomplished by

placing a 1 at the 16th bit location on accumulator reset instruction, taking the guard bits off, this bit

is the LSB of the 16 bits to be saved in memory. The adder and one of the multipliers in the MAC

block can also add ormultiply, respectively, two16-bit operands and store the result directly in one of

the registers in the register files.

Figure 11.11 shows the configuration of the MAC blocks for maximum data reuse while

performing the convolution operation. The application-specific registers are placed in a setting

that allowsmaximum reuse of data. The taped delay line of data and two registers for the coefficients

allow four parallel MAC operations for accumulating for two output samples yn and yn�1 as:

ACC0 ¼ ACC0 þxnh0 þxn�1h1

ACC1 ¼ ACC1 þxn�1h0 þ xn�2h1

This effective reuse of data is shown in Figure 11.12.
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Figure 11.11 Reuse of data for computing two consecutive output values of convolution summation
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11.6.2.4 Program Sequencer

The program sequencer handles four types of instruction: next instruction in the sequence, branch

instruction, repeat instruction, and subroutine instruction.

11.6.2.5 Repeat Instruction

A detailed design of a loop machine is given in Chapter 10. The machine supports four nested loop

instruction. The format of a loop instruction is given here.

repeat LABEL COUTN

The instructions following the loop instruction marks the start of the loop and the address of this

instruction is stored in Loop Start Address (LSA) register. Address of the LABELmarks the address

of the last instruction in the loop and the address is stored in Loop End Address (LEA) register. The

COUNT gives the number of times the zero overhead loop needs to be repeated and thevalue is stored

in Loop Counter (LC) register. The logic that loop machine implements is given here

if (PC == LEA && LC ! = 0)

next_address = LSA;

LC – –;

else

next_address = PC ++;

The accelerator also supports a special repeat with single instruction in the loop body. For this

repeat instruction, IR and PC are disabled for any update and the instruction in the IR register is

executed COUNT number of cycles before the registers are released for any updates. The format of

the repeat signal instruction is given here

repeat1 COUNT

Instruction

xn-2

X X

+

X X

+

32memA

16 16

32 memB

1616

h0h1

xn
xn-1

xn-3

TDR0

TDR1

TDR2

ACC1

TDR3 CR1 CR0

ACC0

Figure 11.12 Two MAC blocks and specialized registers for maximum data reuse
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11.6.2.6 Conditional Branch Instruction

LEC accelerator supports the following jump instructions:

if (Z) jump LABEL

if (N) jump LABEL

jump LABEL

The first two conditional branch instructions check the specified status flag and if the status flag is

set then themachine starts executingmicro-code stored in address specified asLABEL. The design of

the program sequencer for LEC accelerator is given in Figure 11.13.

11.6.2.7 Condition Multiplexer (C_MUX)

Conditional Multiplexer logic checks if the instruction is a conditional branch instruction and

accordingly set the conditional flag to the next address generation logic. The C_MUX implements

the logic in Table 11.1.

11.6.2.8 Next Address Logic

The Next Address Logic (NALogic) provides the address of the next instruction to be fetched from

Program Memory (PM). The block has the following inputs:

1. PC register: For normal program execution

2. Subroutine Return Address (SRA) register: This register keeps the return address of the last

subroutine called and this address is used once a return to subroutine is made.

3. LSA register: This register has the loop start address of the current loop and the address is used

once the loop count is not zero and the program executes the last instruction in the loop.

4. Branch Address Fields from IR: For branch instruction and subroutine calls the IR has

address of the next instruction. This address is used for instructions that execute a jump or

subroutine call.

The next address block implements the following logic

if (branch || call subroutine)

next_address = IR[branch address fields]

else if (instruction == return)

next_address = SRA

else if (PC == LEA && LC ! = 0)

next_address = LSA

else

next_address = PC;

11.6.2.9 Data Memories

The accelerator has two memories each consisting N kB. For defining rest of the memory related

fields in the current design, assume 8 kB of SRAM with 32-bit data bus. This makes 2048 memory

locations and 11-bit address is required to access any memory location. These fields accordingly
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change with different memory sizes. The memories are dual-ported to give access to the DMA for

simultaneous read and write in the memories.

11.6.2.10 Instruction Set Design

The instruction set has some application-specific instructions for implementing LMS adaptive

algorithm. These instructions perform 4 MAC operations utilizing the tap-delay line registers and

coefficients registers. Beside these instructions, the accelerator supports many general-purpose

instructions as well.

The accumulator supports load and store instructions in various configurations.

11.6.2.11 Single Load Long Instruction

Xi:l ¼ *arXj½ þ þ =���where X 2 fA;Bg; i 2 f0; 2; 4g and j 2 f0; 1; 2; 3g

The instruction loads a 32 bit word stored at address location pointed by arXj register and the

instruction also post increment or decrement the address as defined in the instruction. The terms in

the brackets show the additional options in any basic instruction.

Example:

arA0 ¼ 0x23c

A2.l ¼ *arA0 þ þ

This instruction stores the 32-bit content at memory location 0x23c in A2, A3 registers.

Similarly the same instructions for B register file are given here:

arB0 ¼ 0x23c // address in mem B

B2.l ¼*arB0 þ þ

11.6.2.12 Parallel Load Long Instructions

The two load instruction on respective register files A and B can be used in parallel as well. The

format of the instruction is given here:

Ai:l ¼ *arAj½ þ þ =���jjBm:l ¼ *arBn½ þ þ =���

where i, m2 {0,2,4} and j, n2 {0,1,2,3}

Table 11.1 Logic implemented by C_MUX (see text)

Select signals Output (cond_flag)()

N Z

0 0 FALSE

0 1 T/F depends on flag Z

1 0 T/F depends on flag N

1 1 TRUE unconditional
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11.6.2.13 Single and Parallel Load Short Instruction

Xi:s ¼ *arXj½ þ þ =���where X 2 fA;Bg; i 2 f0; 1; 2; . . . 7g and j 2 f0; 1; 2; 3g

This instruction loads a 16 bit value pointed by arXj in Xi register. The address register can

optionally be post incremented or decremented.

Two of these instructions on respective register files A and B can be used in parallel as well. The

instruction format is shown here

Ai:s ¼ *arAj½ þ þ =���jjBk:s ¼ *arBl½ þ þ =���

These instructions are orthogonal and can be used as mix of short and long load instructions in

parallel.

Ai:s=l ¼ *arAj½ þ þ =���jjBk:s=l ¼ *arBl½ þ þ =���

11.6.2.14 Single Long Store Instruction

*arXj½ þ þ =��� ¼ Xi:l where X 2 fA;Bg; i 2 f0; 2; 4g and j 2 f0; 1; 2; 3g

11.6.2.15 Parallel Long Store Instruction

*arAj½ þ þ =��� ¼ Ai:ljj*arBn½ þ þ =���Bm:l where i, m2 {0,2,4} and j, n2 {0,1,2,3}

11.6.2.16 Single and Parallel Load Short Instruction

*arXj½ þ þ =��� ¼ Xi:swhere X 2 fA;Bg; i 2 f0; 1; 2; . . . ; 7g and j 2 f0; 1; 2; 3g
*arAj½ þ þ =��� ¼ Ai:s=ljjBk:s=l ¼ *arBl½ þ þ =��� ¼ Bk:s=l

11.6.2.17 Pre-increment Decrement Instruction

All the load and store instruction support pre increment/decrement addressing as well. In this case

the address is first incremented or decremented as defined and then used for memory access. For

example the single load instruction with pre-increment addressing is coded as

Xi:l ¼ *½ þ þ �arXj where X 2 fA;Bg; i 2 f0; 2; 4g and j 2 f0; 1; 2; 3g

11.6.3 Address Registers Arithmetic

Load Immediate Address in an Address Register. . . .

This instruction loads an immediate value CONST as address into any one of the registers of an

address register file.
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arXj ¼ CONST where X 2 fA;Bg and j 2 f0; 1; 2; 3g

A12-bit constant offsetOFFSET can be added or subtracted in any register of the address register

files and the result can be stored in the same or any other register in the register files.

arXj ¼ arYkþOFFSET where X; Y 2 fA;Bg and j; k 2 f0; 1; 2; 3g

Example:

arA0 ¼ arB2þ 0x131

The instruction adds 0x131 in the content of arB2 and stores the value back in arA0 address

register.

11.6.3.1 Circular Addressing

The accelerator supports circular addressing where the size of the circular buffer N should be a

power of 2 and needs to be placed in memory address with log2N least significant zeroes in the

address.

arX ¼ Address%N

11.6.3.2 Arithmetic and Logic Instruction

The accelerator supports one logic and two arithmetic instructions on 16-bit signed or unsigned

ðS=UÞ operands. The instruction format is

Xi ¼ XjðS=UÞOPYkðS=UÞwhereOP 2 þ ;�; *;�; ;&;^f g;X; Y 2 A;Bf g and i; j; k
2 f0; 1; 2; . . . ; 7g

The shift is performed using the multiplier in the MAC block. Two of the arithmetic instructions

can be used in parallel, the destination registers of the two parallel instructions should be in different

register files.

Xi ¼ XjðS=UÞOP1YkðS=UÞjjXm ¼ XnðS=UÞOP2YoðS=UÞ

whereOP1;OP2

2 þ ;�; *;�f g;X; Y 2 A;Bf g and i; j; k;m; n; o 2 f0; 1; 2; . . . ; 7g

The conditional flags of N and Z are only set if the accelerator executes a single arithmetic and

logic instruction.

11.6.3.3 Accumulator Instructions

The value of accumulator is truncated and 16 bits (31:16) of the respective Acc are stored in any

register of the register files. In case of single instruction execution the condition flags are also set.
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Xi ¼ ACCjwhereX 2 A;Bf g; j 2 0; 1f g and i 2 f0; 1; 2; . . . :; 7g
ACCj ¼ 0;

This instruction resets the ACC regsiter.

ACCj ¼ 0x00008000

This instruction resets the register and places one at 15th bit location for rounding.

ACCjþ ¼ XiðS=U;F=IÞ*YjðS=U;F=IÞ

This instruction performs MAC operation, where F and I are used to specify fraction or integer

mode of operations.

ACCj ¼ XiðS=U;F=IÞ*YjðS=U;F=IÞ

This instruction multiplies two signed or unsigned operands in fraction or integer mode and store

them in the ACC.

Two of these instructions can be used in parallel for both the ACC registgers. For example the

instruction here implements two MAC operations on signed operands in parallel.

ACC0þ ¼ A0ðSÞ*B1ðSÞjjACC1þ ¼ A2 Sð Þ*B2ðSÞ

11.6.3.4 Branch Instruction

The accelerator supports conditional and unconditional branch instructions. Two flags that are set as

a result of single arithmetic instructions are used to make the decision. The instructions are

if (Z) jump LABEL

if (N) jump LABEL

The accelerator also supports unconditional instruction

jump LABEL

Where LABEL is the address of the next instruction the accelerator executes if the condition is

true, otherwise the accelerator keeps executing instructions in a sequence.

11.6.3.5 Application Specific Instructions

The accelerator supports application specific instructions for accelerating the performance of

convolution in adaptive filtering algorithms. In signal processing the memory accesses are the main

bottlenecks of processing data. Inherently in many signal processing algorithms especially while

implementing convolution summation the data is reused across multiple instructions. This reuse of

data is exploited by providing a tap delay line and registers for filter coefficients. The data can be

loaded in tap delay line registers TDR0 and TDR1 and coefficient registersCR0 andCR1 for optimal

filtering operation:
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TDL ¼ *arA0��jjCR ¼ *arB1þ þ jjCONV

The instruction saves the 32-bit of data from the address pointed by arA0 in Tap Delay Line by

storing the two 16-bit samples in TDR0 and TDR1 while respectively shifting the older values into

TDR2 and TDR3. The instruction also decrements the address stored in the address register for

accessing the new samples in the next iteration. Similarly, the coefficients stored at address pointed

by arB1 are also read in coefficient registersCR0 andCR1 while the address register is incremented

by 1. The datapath in the same cycle performs four MAC operations:

*arX þ þ =��½ � ¼ ACCs where X 2 fA;Bg

The 16-bit values in two accumulatorsACC0 andACC1 are stored inmemory location pointed by

arX register.

Example: The MAC units along with special registers are configured for adaptive filter specific

instructions. The MAC units can perform four MAC operations to simultaneously compute two

output samples.

yn ¼ xn h0 þ xn�1 h1 þ xn�2 h2 þ xn�3 h3 þ . . . þ xn�ðN�1Þ hN�1

yn�1¼ xn�1 h0 þ xn�2 h1 þ xn�3 h2 þ xn�4 h3 þ . . . þ xn�ðN�2Þ hN�1

The values of xn and xn�1 are loaded first in the TDL and subsequently xn�2 and xn�3 are loaded

in the TDL while h0 and h1 are loaded in CRs. The length of the filter is 40. The convolution

operation is performed in a loop N=2 number of times to compute the two samples, use circular

addressing.

arA0 ¼ xBf%128; ==point arA0 to the current samples; use circular addressing

arB0 ¼ hbf ;

arA1 ¼ yBf%128

accs ¼ 0x00008000; ==reset the two acculators for rounding

TDR ¼ �arA0��%==load x½n� and x½n�1� in TDR0 and TDR1

TDR ¼ �arA0��%==load x½n�2� and x½n�3� while shifting old values

repeatc20== repeat the next instruction 20 times

TDR ¼ �arA0��jjCR ¼ �arB0þþjjCONV
�arA1 ¼ ACCs

11.6.3.6 Instruction Encoding

Though the instruction can be encoded in a way that saves complex decoding but in this design

a simple coding technique is used to avoid complexity. The accelerator supports both regular and

special instructions (Figure 11.14). The regular instructions are a set of orthogonal instructions that

are identical for both the data paths andAGUs.A0 at bit location 0 identifies that the sub-instructions

in the current instruction packet are orthogonal and a 1 at the bit location specifies that this is a special

or non orthogonal instruction.
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11.6.4 Pipelining Options

The pipelining in the datapath is not shown but the accelerator can be easily pipelined. Handling

pipeline hazard is an involved area and good coverage of pipelining hazards can be found in [21]. An

up to six pipeline stages are suggested. In the first stage an instruction is fetched from PM into an

InstructionRegister. The second stage of pipeline decodes the instruction and in third stage operands

are fetched in the operand registers. A host of other operations related to memory reads and writes

and address-register arithmetic can also be performed in this cycle. The third stage of pipelining

performs the operation. This stage can be further divided to use pipelinedmultipliers and adders. The

last stage of pipelining writes the result back to the register files. Figure 11.15 proposes a pipelined

design of the accelerator. The pipeline stages are Instruction Read (IR), Instruction Decode (ID),

OperandRead (OR), and optional pipelining in execution unit as Execution 1 (EX1) andExecution 2

(EX2), and finally Write Back (WB) stage.

11.6.4.1 Delay Slot

Depending upon the number of pipeline stages, the delay slot can be effectively used to avoid

pipeline stalls. Once the program sequencer is decoding a branch instruction the next instruction in

the program is fetched. The program can fill the delay slot with a valid instruction that logically

0 10101515

0 Data Path A Data Path B AGU-BAGU-A

Orthogonal instructions0

Special and non-orthogonal instruction1

Figure 11.14 Instruction encoding

ORID

PM

IR

EX2EX1

WB
reg files

PC

Figure 11.15 Pipeline stages for the LEC accelerator
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precedes the branch instruction but is placed after the instruction. The delay slot instructionmust not

be a branch instruction. In case the programmer could not effectively use the delay slot, it should be

filled with NOP instruction.

11.6.5 Optional Support for Coefficient Update

In the design of micro-coded state machine, HW support can also be added to speedup coefficients

update operation of (11–3). This requires addition of a special error registerER that saves the scaled

error value me½n� and few provisions in the datapath for effective use of multipliers, adders and

memory for coefficient updates. This additional configuration is given in Figure 11.16. This

augmentation in the datapath and AGUs can be simply incorporated in the existing design of the

respective units given in Figures 11.8 and 11.10 with additional address register in the AGU,

interconnections and multiplexers. The setting assumes arB0 stores the address of the coefficient

buffer. The coefficient memory is a dual port memory that allows reading and writing of 32-bit word

simultaneously. The current value of the address in arB0 register is latched in the delay address

register arB0D for use in the subsequent write in memB. The updated coefficients are calculated in

ACCs and are stored in the coefficient buffer in the next cycle.

arB0 ¼ hBf

arA0 ¼ xBf %256

ER ¼ A0*B0; // assuming m in A0 and e[n] is in B0 registers

CR ¼ *arB0++ || TDR=*arA0--%

repeat1 20

CR=*arB0++||TDR=*arA0--||UPDATE

xn-1 xn

X X

+

X X

+
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Figure 11.16 Optional additional support for coefficient updating
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The UPDATE micro-code performs the following operations in HW in a single cycle:

ACC0 = CR0-TR0*ER

ACC1 = CR1 – TR1*ER

*arB0D = truncate{ACC1,ACC0}

This setting enables the datapath to update two coefficients in one cycle. The same cycle loads

values of two new input samples and two coefficients.

11.6.6 Multi MAC Block Design Option

The datapath can be easily extended to include more MAC blocks to accelerate the execution of

filtering operation. A configuration of the accelerator with four MAC blocks is depicted in

Figure 11.17.

It is important to highlight that the current design can easily be extended with more number of

MAC blocks for enhanced performance. The new design still works with just loading two samples

of data and two coefficients of the filter from the two memories respectively

.

11.6.7 Compression Tree and Single CPA-based Design

The design can be further optimized for area by using compression trees with a single CPA. The

design is shown in Figure 11.18. Each MAC block is implemented with a single compression tree

where the partial sumand partial carry are saved in a set of two accumulator registers. These registers

also form two partial products in the compression tree. At the end of the convolution calculation,

these partial sums and carries are added one by one using the CPA.

h1 h0

xn-5 xn-4 xn-3 xn-2 xn-1 xn

Figure 11.17 Optional additional MAC blocks for accelerating convolution calculation
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Exercises

Exercise 11.1

Add bit-reverse addressing support in the arA0 register of the AGU. The support increments and

decrements addresses in bit-reverse addressing mode. Draw RTL diagram of the design.

Exercise 11.2

Add additional TDL registers and MAC blocks in Figure 11.12 to support IIR filtering operation in

adaptive mode.

Exercise 11.3

Add additional hardware support with an associated MAC to compute xnx
T
n while performing a

filtering operation. Use this value to implement the NLMS algorithm of (11.4).

35:2

compression tree

35:2

compression tree

35:2

compression tree
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compression tree

40 40
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x x
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x

xn-2 xn-1 xn

cntr_CPA

Figure 11.18 Optional use of compression trees and one CPA for optimized hardware
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Exercise 11.4

Using the instruction set of the processor, write code to perform division using the Newton Repson

method.
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12

CORDIC-based DDFS
Architectures

12.1 Introduction

This chapter considers the hardware mapping of an algorithm to demonstrate application of the

techniques outlined in this book. Requirement specifications include requisite sampling rate and

circuit clock. A folding order is established from the sampling rate and circuit clock. To demonstrate

different solutions for HW mapping, these requirements are varied and a set of architectures is

designed for these different requirements.

The chapter explores architectures for the digital design of a direct digital frequency synthesizer

(DDFS). This generates sine and cosine waveforms. The DDFS is based on a CoORDinate DIgital

Computer (CORDIC) algorithm. The algorithm, through successive rotations of a unit vector,

computes sine and cosine of an input angle �. Each rotation is implemented by a CORDIC element

(CE). An accumulator in the DDFS keeps computing the next angle for the CORDIC to compute the

sine and cosine values. An offset to the accumulator in relation with the circuit clock controls the

frequency of the waveforms produced.

After describing the algorithm and its implementation in MATLAB�, the chapter covers design

techniques that can be applied to implement a DDFS in hardware. The selection is based on the

system requirements. First, a fully dedicated architecture (FDA) is given that puts all the CEs in

cascade. Pipelining is employed to get better performance. This architecture computes new sine and

cosine values in each cycle. If more circuit clock cycles are available for this computation then a

time-shared architecture is more attractive, so the chapter considers time-shared or folding

architectures. The folding factor defines the number of CEs in the design. The folded architecture

is also pipelined to give better timings.

Several novel architectures have been proposed in the literature. The chapter gives some alternate

architecture designs for the CORDIC. A distributed ROM-based CORDIC uses read-only memory

for initial iterations. Similarly, a collapsed CORDIC uses look-ahead transformation to merge

several iterations to optimize the CORDIC design.

The chapter also presents a novel design that uses a single iteration to compute the values of sine

and cosine, to demonstrate the extent to which a designer can creatively optimize a design.

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



12.2 Direct Digital Frequency Synthesizer

A DDFS is an integral component of high-performance communication systems [1]. In a linear

digital modulation system like QAM, the baseband signal is translated in frequency. This translation

is usually done in more than one stage. The first stage of mixing is performed in the digital domain

and a complex baseband signal sb[n] is translated to an intermediate frequency (IF) bymixing it with

an exponential of equivalent digital frequency oo:

sIF½n� ¼ sb½n�e joon ð12:1Þ

This IF signal is converted to analog using aD/Aconverter and thenmixedusing analogmixers for

translation to the desired frequency band.

At the receiver the similar complex mixing is performed. The mixer in the digital domain is best

implemented using a DDFS. Usually, due to differences in the crystals for clock and frequency

generation at the transmitter and receiver, the mixing leaves an offset:(12.2)

sb½n�e joone�jo0
on ð12:3Þ

The receiver needs to compute this frequency error, the offset being Do¼oo�o0
o. The

computation of correction is made in a frequency correction loop. The frequency adjustment again

requires generation of an exponential tomake this correction.ADDFS is used to generate the desired

exponential:

sb½n�e joone�jo0
on

� �
e�jDon ð12:3Þ

A DDFS generates a spectrally pure sine and cosine for quadrature mixing and frequency and

phase correction in a digital receiver, as shown in Figure 12.1. At the front end, a DDFS mixes with

the digitized IF signal. The decimation stage down-converts the signal to baseband. The phase

detector computes the phase error and the output of the loop filter generates phase correction for

DDFS that generates the correction for quadrature mixing.

IF 
signal Filter and 

decimation

CORDIC

x

DDFS

CORDIC

x

DDFS

Loop 
filter

atan(Q\I)

Phase detector
CORDIC

x *

Slicer

I

Q

I

Q

I

Q

Figure 12.1 Use of DDFS in a digital communication receiver
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For a high data-rate communication system, this value needs to be computed in a single cycle. In

designs where multiple cycles are available, a folded and time-shared architecture is designed to

effectively use area. Similarly, while demodulating an M-ary phase-modulated signal, the slicer

computes tan�1(Q/I), where Q is the quadrature and I is the in-phase component of a demodulated

signal. All these computations require an effective design of CORDIC architecture.

ADDFS is also critical in implementing high-speed frequency and phasemodulation systems as it

can perform fast switching of frequency at good frequency resolution. For example, a GMSK

baseband modulating signal computes the expression [2]:

sðtÞ ¼
ffiffiffiffiffiffiffiffi
2Eb

T

r
exp jp

Xk
n¼0

bn�ðt�ntÞ
" #

ð12:4Þ

for kT< t< (k þ 1)T, where T is the symbol period, Eb is the energy per bit, bn2 {1,�1} is the

modulating data, and �(t) is the phase pulse. A DDFS is very effective in generating a baseband

GMSK signal.

A DDFS is characterized by its spectral purity. A measure of spectral purity is the ‘spurious free

dynamic range’ (SFDR), defined as the ratio (in dB) of amplitude of the desired frequency to the

highest frequency component of undesired frequency.

12.3 Design of a Basic DDFS

AsimpledesignofaDDFSisgiven inFigure12.2.A frequencycontrolwordW in everyclockcycleof

frequency fclk is added in anN-bit phase accumulator. IfW¼ 1, it takes the clock2N cycles tomake the

accumulator overflowand starts again. The output of the accumulator is used as an address to aROM/

RAMwhere thememory stores a complete cycle of a sinusoid. Thedata from thememorygenerates a

sinusoid. The DDFS can generate any frequency fo by an appropriate selection of W using:

fo ¼ wfCLK

2N
ð12:5Þ

The digital signals cos(oon) and sin(oon) can be input to a D/A converter at sampling rate

T¼ 1/fCLK for generating analog sinusoids of frequency fo, where:

oo ¼ 2pfoT

The maximum frequency from the DDFS is constrained by the Nyquist sampling criterion and is

equal to fclk/2.

The basic design of Figure 12.2 is improved by exploiting the symmetry of sine and cosinewaves.

Themodified design is shown in Figure 12.3. The output of the accumulator is truncated fromN to L

NN
W

ROM
sin(ω on)

fclk
rst_n

cos(ω on)

M

M

ac
cu

m
u

la
to

r

address

Figure 12.2 Design of a basic DDFS
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bits to reduce the memory requirement. A complete period 0 to 2p of sine and cosine waves can be

generated fromvalues of the two signals from0 top/4 . The sizes of the twomemories are reduced by

one-eighth by only storing the values of sine and cosine from 0 to p/4. The L� 3 bits are used to

address the memories, and then three most signficant bits (MSBs) of the address are used to map the

values to generate complete periods of cosine and sine.

A ROM/RAM-based DDFS requries two 2L�3 deep memories of widthM. The design takes up a

large area and dissipates significant power. Several algorithms and techniques have been proposed

that reduce or completely eliminate look-up tables in memories. An efficient algorithm is CORDIC,

which uses rotation of vectors in Cartesian coordinates to generate values of sine and cosine.

The DDFS with a CORDIC block is shown in Figure 12.4. The CORDIC algorithm takes angle �
in radians, whereas the DDFS accumulator specifies the angle as an index value. To use a CORDIC

block in DDFS, a CSD multiplier is required that converts index n to angle � in radians, where:

� ¼ 2p
2N

� index

12.4 The CORDIC Algorithm

12.4.1 Introduction

This algorithmwas originally developed by Volder in 1959 to compute the rotation of a vector in the

Cartesian coordinate system [3]. The method has been extended for computation of hyperbolic

functions, multiplication, division, exponentials and logarithms [4].
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Figure 12.3 Design of a DDFS with reduced ROM size
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Multiplication by sine and cosine is an integral part of any communication system, so area- and

time-efficient techniques for iterative computation of CORDIC are critical. The best application of

the CORDIC algorithm is its use inDDFS. Several architectural designs aroundCORDIC have been

reported in the literature [5–8].

To bring a unit vector to desired angle �, the basic CORDIC algorithm gives known recursive

rotations to the vector. Once the vector is at the desired angle, then the x and y coordinates of the

vector are equal to cos � and sin �, respectively. This basic concept is shown in Figure 12.5.

Mathematically the angle � is approximated by addition and subtraction of angles ofN successive

rotations D�i. The expression for the approximation is:

� ¼
XN�1

i¼0

siD�i for si ¼ 1 for positive rotation

�1 for negative rotation

�

As depicted in Figure 12.6, the unit vector in iteration i is rotated by some angle �i and the next

rotation is made by an angle D�i that brings the vector to new angle �iþ 1, then:

cos �iþ 1 ¼ cosð�i þsiD�iÞ ¼ cos �i cos D�i�si sin �i sin D�i ð12:6aÞ
sin �iþ 1 ¼ sinð�i þ siD�iÞ ¼ sin �i cos D�i�si cos �i sin D�i ð12:6bÞ

From the figure it can be easily established that xi¼ cos �i, yi¼ sin �i and similarly xiþ 1¼
cos �iþ 1, yiþ 1¼ sin �iþ 1. Substituting these in (12.6) we get:

xiþ 1 ¼ xi cos D�i�si yi sin D�i ð12:7aÞ
yiþ 1 ¼ si xi sinD�i þ yi cosD�i ð12:7bÞ

In matrix forms, the set of equations in (12.7) can be written as:

xiþ 1

yiþ 1

" #
¼

cosD�i �si sin D�i

si sin D�i cos D�i

" #
xi

yi

" #

(x,y)

1

θ
y=sinθ

x=cosθ

Figure 12.5 The CORDIC algorithm successively rotates a unit vector to desired angle �
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Taking cosD�i common yields:

xiþ 1

yiþ 1

" #
¼ cos D�i

1 �si tan D�i

si tan D�i 1

" #
xi

yi

" #
ð12:8Þ

In this expression cosD�i can also be written in terms of tanD�i as:

cos D�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 D�i

p
To avoid multiplication in computing (12.8), the incremental rotation is set as:

tan D�i ¼ 2�i ð12:9Þ
which impliesD�i¼ tan�12�i, and the algorithm appliesN such successive micro-rotations of�D�i
to get to the desired angle �. This arrangement also poses a limit to the desired angle as:

XN�1

i¼0

D�i � � � �
XN�1

i¼0

D�i

Now substituting expression (12.9) in (12.8) gives:

xiþ 1

yiþ 1

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2�2i
p 1 �si2i

si2i 1

� �
xi
yi

� �

This can be written as a basic rotation of the CORDIC algorithm:

xiþ 1

yiþ 1

" #
¼ kiRi

xi

yi

" #
ð12:10Þ

θ i
θi+1

θd

∆θ ides
ire

d an
gle

1
xi=cosθi

yi=sinθi

yi+1=sinθi+1

xi+1=cosθi+1

Figure 12.6 CORDIC algorithm incremental rotation by D�i
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where

ki ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2i

p and Ri ¼ 1 �si2i

si2i 1

� �

Starting from index i¼ 0, the expression in (12.10) is written as:

x1

y1

" #
¼ k0R0

x0

y0

" #
ð12:11aÞ

and for index i¼ 1 the expression becomes:

x2

y2

" #
¼ k1R1

x1

y1

" #
ð12:11bÞ

Now substituting the value of
x1
y1

� �
from (12.11a) into this expression, we get:

x2

y2

" #
¼ k0k1R0R1

x0

y0

" #
ð12:11cÞ

Writing (12.10) for indices i¼ 3, 4, . . .,N� 1 and then substituting values for the previous indices,

we get:

xN

yN

" #
¼ k0k1k2 . . . kN�1R0R1R2 . . .RN�1

x0

y0

" #
ð12:12Þ

All the ki are constants and their product can be pre-computed as constant k, where:

k ¼ k0k1k2 . . . kN�1 ¼ P
N�1

i¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2i

p ð12:13Þ

For each stage or rotation, the algorithm computes si to determine the direction of the ith rotation

to be positive or negative. The factor k is incorporated in the first iteration and the expression

in (12.12) can then be written as:

xN ¼ cos �
yN ¼ sin �

� �
¼ R0R1R2 . . .RN�1

k

0

� �

12.4.2 CORDIC Algorithm for Hardware Implementation

For effective HW implementation the CORDIC algorithm is listed as follows:

S0 To simplify the hardware, �0 is set to the desired angle �d and �1 is computed as:

�1 ¼ �0�s0 tan�120

where s0 is the sign of �0. Also initialize x0¼ k and y0¼ 0.
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S1 The algorithm then performs N iterations for i¼ 1, . . ., N� 1, and performs the following set of

computations:
s1 ¼ 1 when �i > 0 else it is�1 ð12:14aÞ

xiþ 1 ¼ xi�si2�iyi ð12:14bÞ
yiþ 1 ¼ si2�1xi þ yi ð12:14cÞ

�iþ 1 ¼ �i�si tan�12�i ð12:14dÞ

All the values for tan�12�i are pre-computed and stored in an array.

S2 The final iteration generates the desired results as:

cos �d ¼ xN

sin �d ¼ yN

The following MATLAB� code implements the CORDIC algorithm:

% CORDIC implementation for generating sin and cos of desired angle

% theta_d

close all

clear all

clc

% theta resolution that determines number of rotations of CORDIC

% algorithm

N = 16;

% generating a tan table and value of constant k

tableArcTan = [];

k = 1;

for i=1:N

k = k * sqrt(1+(2^(-2*i)));

tableArcTan = [tableArcTan atan(2^(-i))];

end

k = 1/k;

x = zeros(1,N+1);

y = zeros(1,N+1);

theta = zeros(1,N+1);

sine = [];

cosine = [];

% Specify all the values of theta

% Theta value must be within -0.9579 and 0.9579 radians

theta_s = -0.9;

theta_e = 0.9;

for theta_d = theta_s:.1:theta_e

% CORDIC algorithm starts here

theta(1) = theta_d;

x(1) = k;
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y(1) = 0;

for i=1:N,

if (theta(i) > 0)

sigma = 1;

else

sigma = -1;

end

x(i+1) = x(i) - sigma*(y(i) * (2^(-i)));

y(i+1) = y(i) + sigma*(x(i) * (2^(-i)));

theta(i+1) = theta(i) - sigma*tableArcTan(i);

end

% CORDIC algorithm ends here and computes the values of

% cosine and sine of the desired angle in y(N+1) and

% x(N+1), respectively

cosine = [cosine x(N+1)];

sine = [sine y(N+1)];

end

Figure 12.7 shows output of the MATLAB� code that correctly computes values of sine and

cosine using the basic CORDIC algorithm. The range of angle � is from –0.9 radians (�54.88

degrees) to 0.9 radians (54.88 degrees).

One instance of the algorithm for �¼ 43 degrees is explained in Figure 12.8. The CORDIC starts

with �0¼ 43. As CORDIC tries to make the resultant angle equal to 0 it applies a negative rotation

D�0¼ tan�12�0 to bring the angle �1¼ 16.44. Two more negative rotations take the angle to the
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Figure 12.7 Computation of sine and cosine using basic CORDIC algorithm
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negative sidewith �3¼�4.73. The algorithm now gives positive rotationD�3¼ tan�12�3 and keeps

working tomake the final angle equal to 0, and in the final iteration the angle �16¼�0.0008 degrees.

12.4.3 Hardware Mapping

The CORDIC algorithm exhibits natural affinity for HW mapping. Each iteration of the algorithm

can be implemented as a CORDIC element (CE). A CE is shown in Figure 12.9(a). This CE

implements ith iteration of the algorithm given by (12.14) and is shown in Figure 12.9(b).

i ∆θi degreesin
43.00000
16.43491
2.39872

3 4.7263
4 1.1500

0.63995
6 0.2552

0.19247
8 0.0314

0.08059
0.024510

11 0.0035
0.010512
0.003513
0.000014

15 0.0017
16 0.0008

(a)
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Figure12.8 Example ofCORDICcomputing sine and cosine for �¼ 43 degrees. (a) Table of values of �i
for every iteration of the CORDIC algorithm. (b) Plot showing convergence
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Figure 12.11 Pipelined FDA architecture of CORDIC algorithm

These CEs are cascaded together for a fully parallel implementation. This mapping is shown in

Figure 12.10. This design can also be pipelined for better timing. A pipelined version of the fully

parallel design is shown in Figure 12.11.

This pipeline structure for CORDIC is very regular and its implementation in Verilog is given

below. The code is compact as it uses the for loop statement for generating multiple instances of

CEs and pipeline registers.

module CORDIC #(parameter M = 22, N = 16, K=22’h0DBD96)

// In Q2.20 format value of K = 0.8588

(

input signed [N - 1:0] theta_d,

input clk,

input rst_n,

output signed [M - 1:0] cos_theta,

output signed [M - 1:0] sine_theta);

reg signed [M-1:0] x_pipeline [0:N-1];

reg signed [M-1:0] y_pipeline [0:N-1];

reg signed [N-1:0] theta_pipeline [0:N-1];

reg signed [M-1:0] x[0:N];

reg signed [M-1:0] y[0:N];

reg signed [N-1:0] theta[0:N];

reg signed [N-1:0] arcTan[0:N-1];

integer i;

// Arctan table: radian values are represented in Q1.15 format

always @*

begin

arcTan[0] = 16’h3B59;

arcTan[1] = 16’h1F5B;

arcTan[2] = 16’h0FEB;

arcTan[3] = 16’h07FD;

arcTan[4] = 16’h0400;

arcTan[5] = 16’h0200;

arcTan[6] = 16’h0100;

arcTan[7] = 16’h0080;

arcTan[8] = 16’h0040;

arcTan[9] = 16’h0020;

arcTan[10] = 16’h0010;

arcTan[11] = 16’h0008;

arcTan[12] = 16’h0004;

arcTan[13] = 16’h0002;

arcTan[14] = 16’h0001;

494 Digital Design of Signal Processing Systems



arcTan[15] = 16’h0000;

end

always @*

begin

x[0] = K;

y[0] = 0;

theta[0] = theta_d;

CE_task(x[0], y[0], theta[0], arcTan[0], 4’d1, x[1],y[1], theta[1]);

for (i=0; i<N-1; i=i+1)

begin

CE_task(x_pipeline[i], y_pipeline[i], theta_pipeline[i],

arcTan[i+1], i+2, x[i+2], y[i+2], theta[i+2]);

end

end

always @(posedge clk)

begin

for(i=0; i<N-1; i=i+1)

begin

x_pipeline[i] <= x[i+1];

y_pipeline[i] <= y[i+1];

theta_pipeline[i] <= theta[i+1];

end

end

assign cos_theta = x_pipeline[N-2];

assign sine_theta =y_pipeline[N-2];

task CE_task(

input signed [M - 1:0] x_i,

input signed [M - 1:0] y_i,

input signed [N - 1:0] theta_i,

input signed [N - 1:0] Delta_theta,

input [3:0]i,

output reg signed [M - 1:0] x_iP1,

output reg signed [M - 1:0] y_iP1,

output reg signed [N - 1:0] theta_iP1);

reg sigma, sigma_bar;

reg signed [M - 1:0] x_input, y_input;

reg signed [M - 1:0] x_shifted, y_shifted, x_bar_shifted,

y_bar_shifted;

reg signed [N - 1:0] Delta_theta_input, Delta_theta_bar;

begin

sigma = theta_i[N-1]; // Sign bit of the angle

sigma_bar = _sigma;

x_shifted = x_i >>> i; // Shift by 2^-i

y_shifted = y_i >>> i; // Shift by 2^-i

x_bar_shifted = _x_shifted + 1;

y_bar_shifted = _y_shifted + 1;

Delta_theta_bar = _Delta_theta + 1;

if ((sigma)||(theta_i == 0))

begin

x_input = x_bar_shifted; // Subtract if sigma is negative

y_input = y_shifted; // Add if sigma is negative
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Delta_theta_input = Delta_theta; // Add if sigma is negative

end

else

begin

x_input = x_shifted;

y_input = y_bar_shifted;

Delta_theta_input = Delta_theta_bar;

end

x_iP1 = x_i + y_input;

y_iP1 = x_input + y_i;

theta_iP1 = theta_i + Delta_theta_input;

end

endtask

endmodule

TheVerilog implementation is tested formultiple values of desired angle �d. The output values are
stored in a file. The Verilog code for the stimulus is given here:

module stimulus;

parameter M = 22;

parameter N = 16;

reg signed [N - 1:0] theta_d;

reg clk,rst_n;

wire signed [M - 1:0] cos_theta;

wire signed [M - 1:0] sine_theta;

integer i;

reg valid;

integer outFile;

CORDIC cordicParallel

(

theta_d,

clk,

rst_n,

cos_theta,

sine_theta);

initial

begin

clk = 0;

valid = 0;

outFile = $fopen("monitor.txt","w");

# 300 valid = 1;

# 395 valid = 0;

end

initial

begin

#5

theta_d = -29491;

// For theta_d = -0.9:0.1:0.9

for (i=0; i<20 ; i=i+1)

#20 theta_d = theta_d + 3276;

#400 $fclose(outFile);

$finish;
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Table 12.1 Comparison of results of double-precision floating-point MATLAB� and fixed-point

Verilog implementations

� MATLAB� Verilog Difference MATLAB� Verilog Difference

cos �M cos �V cos �M� cos �V sin �M sin �V sin �M� sin �V

�0.9000 0.6216 0.6216 0 �0.7833 �0.7833 0

�0.8000 0.6967 0.6967 0 �0.7174 �0.7173 0

�0.7000 0.7648 0.7648 0 �0.6443 �0.6442 0

�0.6001 0.8253 0.8253 0 �0.5647 �0.5647 0

�0.5001 0.8775 0.8775 0 �0.4795 �0.4795 0

�0.4001 0.9210 0.9210 0 �0.3895 �0.3895 0

�0.3001 0.9553 0.9553 0 �0.2957 �0.2956 �0.0001

�0.2002 0.9800 0.9800 0 �0.1988 �0.1988 0

�0.1002 0.9950 0.9950 0 �0.1000 �0.1000 0

�0.0002 1.0000 1.0000 0 �0.0002 �0.0002 0

0.0998 0.9950 0.9950 0 0.0996 0.0996 0

0.1997 0.9801 0.9801 0 0.1984 0.1984 0

0.2997 0.9554 0.9554 0 0.2952 0.2952 0

0.3997 0.9212 0.9212 0 0.3891 0.3891 0

0.4997 0.8777 0.8777 0 0.4791 0.4792 0

0.5996 0.8255 0.8255 0 0.5643 0.5644 0

0.6996 0.7651 0.7651 0 0.6439 0.6439 0

0.7996 0.6970 0.6970 0 0.7171 0.7171 0

0.8996 0.6219 0.6219 0 0.7831 0.7831 0

end

always

#10 clk = �clk;

initial

$monitor($time, " theta = %d, cos_theta = %d, sine_theta = %d",

theta_d, cos_theta, sine_theta);

// $monitor(" \t%d \t%d \t%d", theta_d, cos_theta, sine_theta);

always@ (posedge clk)

if(valid)

$fwrite(outFile, " %d %d\n", cos_theta, sine_theta);

endmodule

The monitor.txt file is read in MATLAB� as a 19� 2 matrix, results. The first and second

columns list the values of cos � and sin �, respectively. The followingMATLAB� code compares the

results by placing them on adjacent columns and their difference in the next column:

a_v =results(1:19,1)/2^20; % Converting from Q2.20 to floating point

a=(cos(-0.9:0.1:0.9))’;

b_v=results(1:19,2)/2^20; % Converting from Q2.20 format to floating point

b=(sin(-0.9:0.1:0.9))’;

[a a_v a-a_v b b_v b-b_v]

The results for values of � from�0.9 to þ 0.9 with an increment of 0.1 radians are computed. The

output from double-precision MATLAB� code using functions cos � and sin � and from fixed-point

Verilog simulation are compared in Table 12.1. The first two columns are values of cos � from
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MATLAB� andVerilog, respectively, the third column shows the difference in the results. Similarly

the last three columns are the same set of values for sin �.

12.4.4 Time-shared Architecture

TheCORDIC algorithm is very regular and a folded architecture can be easily crafted. Depending on

the number of cycles available for computing the sine and cosine values, the CORDIC algorithm can

be folded by any folding factor. ForN¼ 16, the architecture in Figure 12.12(a) is folded by a folding

factor of 16. Similarly Figure 12.13(b) shows a folded architecture by folding factor of 8. The valid

signal is asserted after the design computes the N iterations. The RTLVerilog for a folding factor of

16 is given here:

module CORDIC_Shared #(parameter M = 22, N = 16, LOGN = 4, K=22’h0DBD96)

// In Q2.20 format, value of K = 0.8588 K=22’h0DBD96)

(

input signed [N - 1:0] theta_d,

input clk,

input rst_n,

output reg signed [M - 1:0] cos_theta,

output reg signed [M - 1:0] sin_theta);

reg signed [M-1:0] x_reg;

reg signed [M-1:0] y_reg;

reg signed [N-1:0] theta_reg;

CEi

M

M
K

xi

rst_n

M

M
0

yi

rst_n

Nθi

valid

M

M

N

xi+1
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Figure 12.12 Folded CORDIC architecture. (a) Folding factor of 16. (b) Folding factor of 8
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reg signed [M - 1:0] x_o;

reg signed [M - 1:0] y_o;

reg signed [M-1:0] x_i;

reg signed [M-1:0] y_i;

reg signed [N-1:0] theta_i, theta_o;

reg signed [N-1:0] arcTan;

reg [LOGN-1:0] counter;

reg sel, valid;

integer i;

// Arctan table: radian values are represented in Q1.15 format

always@*

begin

case (counter)

4’b0000: arcTan = 16’h3B59;

4’b0001: arcTan = 16’h1F5B;

4’b0010: arcTan = 16’h0FEB;

4’b0011: arcTan = 16’h07FD;

4’b0100: arcTan = 16’h0400;

4’b0101: arcTan = 16’h0200;

4’b0110: arcTan = 16’h0100;

4’b0111: arcTan = 16’h0080;

4’b1000: arcTan = 16’h0040;

4’b1001: arcTan = 16’h0020;

4’b1010: arcTan = 16’h0010;

4’b1011: arcTan = 16’h0008;

4’b1100: arcTan = 16’h0004;

N

CE3

R3

CE0

rst_n

0,0,0,0

θd3, θd2, θd1, θd0

N

CE1

R1

N

CE2

R2
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tan 2-4i

2

2

R0

k,k,k,k

counter [3:2]

cosθ
dj
 = x

Nj

sinθ
dj
 = y

Nj

θ
Nj

   0

Figure 12.13 Four-slow folded architecture by a folding factor of 4
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4’b1101: arcTan = 16’h0002;

4’b1110: arcTan = 16’h0001;

4’b1111: arcTan = 16’h0000;

endcase

end

always@*

begin

sel = |counter;

valid = &counter;

if(sel)

begin

x_i = x_reg;

y_i = y_reg;

theta_i = theta_reg;

end

else

begin

x_i = K;

y_i = 0;

theta_i = theta_d;

end

CE_task(x_i, y_i, theta_i, arcTan, counter

+ 1, x_o, y_o, theta_o );

end

always@(posedge clk)

begin

if(!rst_n)

begin

x_reg <= 0;

y_reg <= 0;

theta_reg <= 0;

counter <= 0;

end

else if (!valid)

begin

x_reg <= x_o;

y_reg <= y_o;

theta_reg <= theta_o;

counter <= counter + 1;

end

else

begin

cos_theta <= x_o;

sin_theta <= y_o;

end

endmodule

module stimulus;

parameter M = 22;

parameter N = 16;

reg signed [N - 1:0] theta_d;

reg clk;
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reg rst_n;

wire signed [M - 1:0] x_o;

wire signed [M - 1:0] y_o;

integer i;

CORDIC_Shared CordicShared(

theta_d,

clk,

rst_n,

x_o,

y_o);

initial

begin

clk = 1; rst_n = 0;theta_d = 0;

#10

rst_n = 1;

theta_d = -29491;

// For theta_d = -0.9:0.1:0.9

for (i=0; i<20 ; i=i+1)

begin

rst_n = 0;

#2 rst_n = 1;

#400

theta_d = theta_d + 3276;

end

#10000

$finish;

end

always

#10 clk = �clk;

initial

$monitor($time, " theta = %d, cos_theta = %d, sine_theta = %d,

reset = %d", theta_d, x_o, y_o, rst_n);

endmodule

The recursive nature of the time-shared architecture poses a major limitation in folding the

architecture at higher degrees as it increases the critical path of the design. The datapath needs to

be pipelined but the registers cannot be added straight away. The look-ahead transformation of

Chapter 7 can also not be directly applied as the decision logic of computing si in every stage of the
algorithm restricts application of this transform.

12.4.5 C-slowed Time-shared Architecture

The time-shared architecture in its present configuration cannot be pipelined and can only be C-

slowed. The technique to C-slow a design for running multiple threads or instances of input

sequences is discussed in detail in Chapter 7. The feedback register is replicated C times and then

these registers are retimed to reduce the critical path. This enables the user to initiate C

computations of the algorithm in parallel in the time-shared architecture. Each iteration takes

N cycles, but the design computesC values in these cycles. A design forN¼ 16 andC¼ 4 is shown

in Figure 12.13.
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Asimple counter-based controller is used to appropriately select the input to eachCEi. TwoMSBs

of the counter are used as select line to threemultiplexers. In the first four cycles, four desired angles

and associated values of x0 and y0 are input toCE0. All subsequent cycles feed the values fromCE3 to

R0 to CE0. The successive working of the algorithm for the initial few cycles is elaborated in the

timing diagram of Figure 12.14.

The architecture works in lock step calculating N iterations for every input angle, and produces

cos �di and sin �di for i¼ 0, . . ., 3 in four consecutive cycles after the 16th cycle.

12.4.6 Modified CORDIC Algorithm

An algorithm selected for functional simulation in software often poses serious a limitation in

achieving HW-specific design objectives. The basic CORDIC algorithm described in Section 12.4.1

is a good example of this limitation. The designer in these cases should explore other HW affine

algorithmic options for implementing the same functionality. For the CORDIC algorithm, a

modified version is an option of choice that eliminates limitations in exploring parallel and

time-shared architecture.

The CORDIC algorithm of Section 12.4.1 requires computation of si and only then it condition-
ally adds or subtracts one of the operands while implementing (12.14). This conditional logic

restricts the HW design to exploit inherent parallelism in the algorithm. A simple modification can

eliminate this restriction and efficient parallel architectures can be realized.

The standard CORDIC algorithm assumes � as a summation of N positive or negative micro-

rotations of anglesD�i as given by (12.14). A binary representation of a positive value of � as below
can also be considered for micro rotations:

� ¼
XN�1

i¼0

bi2
�i for bi 2 f0; 1g ð12:15Þ

where each term in the summation requires either a positive rotation equal to 2�i or no rotation,

depending on the value of the bit bi at location i. This representation cannot be directly used inHWas

the constant k of (12.13) becomes data dependent. A modification in the binary representation of �
of (12.15) is thus required that makes values of k data independent.

This independence can be accomplished by recoding the expression in (12.15) to only use þ 1 or

�1. This recoding of the binary representation is explained next.

12.4.7 Recoding of Binary Representation as �1

An N-bit unsigned number b in Q1.(N-1) format can be represented as:

b ¼
XN�1

i¼0

bi2
�i where bi 2 f0; 1g

The bits bi in the expression can be recoded to ri 2 þ1;�1f g as :

b ¼
XN�1

i¼0

bi2
�i ¼

XN�1

i¼0

ri2
� iþ1ð Þ þ 2�0�2�N ð12:16Þ

ri ¼ 2bi�1where ri 2 fþ1;�1g
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The MATLAB� code that implements the recoding logic is given here:

theta_d = 1.394; % An example value for demonstration of the equivalence

theta = theta_d;

N = 16;

theta = fix(theta * 2^(N-1)); % Convert theta to Q1.15 format

% Seperating bits of theta as b=b[1],b[2],....,b[N]

for i=1:N

b(N+1-i) = rem(theta, 2);

theta = fix(theta/2);

end

% Recoding 0, 1 bits of b as -1,+1 of r respectively

for i=1:N

r(i) = 2*b(i) - 1;

end

% Computing value of theta using b

Kb = 0;

for i = 1:N

Kb = Kb + b(i)*2^(-(i-1));

end

% Computing value of theta using r

Kr=0;

for i = 1:N

Kr = Kr + r(i)*2^(-(i));

end

% The constant part

Kr = Kr + (2^0) - 2^(-N);

% The three values are the same

[Kr Kb theta_d]

This recoding requires first giving an initial fixed rotation �init to cater for the constant factor

(20� 2�N) along with computing constant K as is done in the basic CORDIC algorithm. The

recoding of bis as �1 helps in formulating K as a constant and is equal to:

K ¼
YN�1

i¼1

cosð2�ðiþ 1ÞÞ

The rotation for �init can then be first applied, where:

�init ¼ 2�0�2�ðNþ1Þ

x0 ¼ K cosð�initÞ
y0 ¼ K sinð�initÞ
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Now to cater for the recoding part, the problem is reformulating to compute the following set of

iterations for i¼ 1, . . ., N�1:

xi ¼ xi�1�ri tan 2
�iyi�1 ð12:17aÞ

yi ¼ ri tan 2
�ixi�1 þ yi�1 ð12:17bÞ

where, unlike si, the values of ri are predetermined, and these iterations do not include any

computations of the D�i as are done in the basic CORDIC algorithm.

clear all

close all

N=16;

% Computing the constant value K, the recording part

K = 1;

for i = 0:N�1

K = K * cos(2^(-(iþ1)));

end

% The constant initial rotation

theta_init = (2)^0 - (2)^(-N);

x0 = K*cos(theta_init);

y0 = K*sin(theta_init);

cosine = [];

sine = [];

for theta = 0:.1:pi/2

angle =[0:.1:pi/2];

theta = round(theta * 2^(N-1)); % convert theta in Q1.15 format

% Separating bits of theta as b=b[1],b[2],....,b[N]

for k=1:N

b(N+1-k) = rem(theta, 2);

theta = fix(theta/2);

end

% Recoding shifted bits of b as r with +1,-1

for k=1:N

r(k) = 2*b(k) - 1;

end

% First modified CORDIC rotation

x(1) = x0 - r(1)*(tan(2^(-1)) * y0);

y(1) = y0 + r(1)*(tan(2^(-1)) * x0);

% Remainder of the modified CORDIC rotations

for k=2:N,

x(k) = x(k-1) - r(k)* tan(2^(-k)) * y(k-1);

y(k) = y(k-1) + r(k) * tan(2^(-k)) * x(k-1);

end

cosine = [cosine x(k)];

sine = [sine y(k)];

end
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Figure 12.15 shows the results of using CORDIC and modified CORDIC algorithms. A mean

squared error (MSE) comparison of the two algorithms for different numbers of rotations N is given

in Figure 12.16. The error is calculated for P sets of computation by computing the mean squared

difference between the value cos �i in double-precision arithmetic and the value using the CORDIC

algorithm for the quantizing value of �i as �Qi in Q1.(N� 1) format. The expression forMSE while

considering �i as an N-bit number in Q1.(N� 1) format is:

MSEN ¼ 1

P

XP�1

i¼0

cos�i �CORDIC �Qið Þð Þ2 where �Qi ¼ roundð�i � 2N�1Þ

It is clear from the two plots that, for N> 10, mean squared error for both the algorithm is very

small, so N¼ 16 is a good choice for the CORDIC algorithms.

12.5 Hardware Mapping of Modified CORDIC Algorithm

12.5.1 Introduction

One issue in a modified CORDIC algorithm is eliminating tan 2�i from (12.17) as it requires

multiplication in every stage. This multiplication can be avoided for stages for i> 4 as the values of

tan 2�i can be approximated as:

tan 2�i � 2�i for i > 4 ð12:18Þ
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Figure 12.15 Results using CORDIC and modified CORDIC algorithms
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This leaves us to pre-compute all possible values of the initial four iterations and store them in a

ROM. The MATLAB� code for generating this ROM input is given here:

tableX=[];

tableY=[];

N = 16;

K = 1;

for i = 1:N

K = K * cos(2^(-(i)));

end

% The constant initial rotation

theta_init = (2)^0 - (2)^(-N);

x0 = K*cos(theta_init);

y0 = K*sin(theta_init);

cosine = [];

sine = [];

M = 4;

for index = 0:2^M-1

for k=1:M

b(M+1-k) = rem(index, 2);

index = fix(index/2);

end
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Figure 12.16 Mean square error comparison of CORDIC and modified CORDIC algorithms
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% Recoding b as r with +1,-1

for k=1:M

r(k) = 2*b(k) - 1;

end

% First modified CORDIC rotation

x(1) = x0 - r(1)*(tan(2^(-1)) * y0);

y(1) = y0 + r(1)*(tan(2^(-1)) * x0);

% Remainder of the modified CORDIC rotations

for k=2:M,

x(k) = x(k-1) - r(k)* tan(2^(-k)) * y(k-1);

y(k) = y(k-1) + r(k) * tan(2^(-k)) * x(k-1);

end

tableX = [tableX x(M)];

tableY = [tableY y(M)];

end

In hardware implementation, the initialM iterations of the algorithm are skipped and the output

value from theMth iteration is directly indexed from the ROM. The address for indexing the ROM is

calculated using the M most significant bits of b as:

index ¼ b02
M�1 þ b12

M�2 þ . . . þ bM�12
0 ð12:19Þ

Reading from the ROMdirectly gives x[M� 1] and y[M� 1] values. The rest of the values of x[k]

and y[k] are then generated by using the approximation of (12.18). This substitution replaces

multiplication by tan 2�iwith a shift by 2�i operation. The equations implementing simplified

iterations for i¼M þ 1, M þ 2, . . ., N are:

xi ¼ xi�1�ri2
�iyi�1 ð12:20aÞ

yi ¼ ri2
�ixi�1 þ yi�1 ð12:20bÞ

Fixed-point implementation of the modified CORDIC algorithm that uses tables for directly

indexing the value for theMth iteration and implements (12.20) for the rest of the iterations is given

here:

P = 22;

N = 16;

M = 4;

% Tables are computed for P=22, M=4 and values are in Q2.20 format

tableX = [

1045848

1029530

997147

949203

886447
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809859

720633

620162

510013

391906

267683

139283

8710

-122000

-250805

-375697];

tableY = [

65435

195315

322148

443953

558831

664988

760769

844678

915406

971849

1013127

1038596

1047857

1040767

1017437

978229];

cosine = [];

sine = [];

for theta = 0:.01:pi/2

angle =[0:.01:pi/2];

theta = round(theta * 2^(N-1)); % convert theta in Q1.N�1 format

% Seperating bits of theta as b=b[1],b[2],....,b[N]

for k=1:N

b(N+1-k) = rem(theta, 2);

theta = fix(theta/2);

end

% Compute index for M = 4;

index = b(1)*2^3 + b(2)*2^2 + b(3)*2^1 + b(4)*2^0+1;

x(4)=tableX(index);

y(4)=tableY(index);

% Recoding b[M+1], b[M+2], ..., b[n] as r with +1,-1

for k=M+1:N

r(k) = 2*b(k) - 1;

end

% Simplified iterations for modified CORDIC rotations

for k=M+1:N,
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x(k) = x(k-1) - r(k)* 2^(-k) * y(k-1);

y(k) = y(k-1) + r(k) * 2^(-k) * x(k-1);

end

% For plotting, convert the values of x and y to

floating point format

cosine = [cosine x(k)/(2^(P-2))];

sine = [sine y(k)/(2^(P-2))];

end

This modification results in simple fully parallel and time-shared HW implementations. The

fully parallel architecture is shown in Figure 12.17. The architecture can also be easily

pipelined.

These iterations can also be merged together to be reduced using a compression tree for effective

HWmapping [9]. Amerged cell that takes partial-sum and partial-carry results from state (i� 1) and

thengeneratespartial results for iteration iwhileusinga5:2compressiontreeisshowninFigure12.18.

For the time-shared architecture, multiple CEs can be used to fold the architecture for any desired

folding factor.

12.5.2 Hardware Optimization

In many applications the designer may wish to explore optimization above what is apparently

perceived from the algorithm. There is no established technique that can be generally used, but

a deep analysis of the algorithm often reveals novel ways of optimization. This section

demonstrates this assertion by presenting a novel algorithm that computes the sine and

cosine values in a single stage, thus enabling zero latency with very low area and power

consumption [10].

Consider a fixed-point implementation of themodified CORDIC algorithm. As the iterations now

do not depend on values of D�i, the values of previous iterations can be directly substituted into the
current iteration. If we consider M¼ 4, then indexing into the tables gives the values of x4 and y4.

Now these values are used to compute the iteration for i¼ 5 as:

x5 ¼ x4�r52
�5y4 ð12:21aÞ

y5 ¼ r52
�5x4 þ y4 ð12:21bÞ

The iteration for i¼ 6 calculates:

x6 ¼ x5�r62
�6y5

y6 ¼ r62
�6x5 þ y5

Now substituting expressions for x5 and y5 from (12.21) in the above expressions, we get:

x6 ¼ 1�r5r62
�11

� �
x4� r52

�5 þ r62
�6

� �
y4

y6 ¼ r52
�5 þ r62

�6
� �

x4 þ 1�r5r62
�11

� �
y4
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Adopting the same procedure – that is, first writing expressions for x7 and y7 and then substituting

values of x6 and y6 – we get:

x7 ¼ 1�r5r62
�11 � r5r72

�12 þ r6r72
�13

� �
x4 � r52

�5 þ r62
�6 þ r72

�7 � r5r6r72
�18

� �
y4

y7 ¼ r52
�5 þ r62

�6 þ r72
�7 � r5r6r72

�18
� �

x4 þ 1�r5r62
�11 � r5r72

�12 þ r6r72
�13

� �
y4

It is evident from the above expressions that the terms with 2�x with x>P will shift the entire

value outside the range of the required precision and thus can simply be ignored. If all these terms are

ignored and we substitute previous expressions into the current iteration, we get the final iteration as

a function of x4 and y4. The final expressions for P¼ 16 are:

cos � ¼ 1�
XN�1

i¼5

XN�1

j ¼ iþ 1

iþ jð Þ � N

rirj2
�ðiþ jÞ

0
BBBB@

1
CCCCAx4�

XN�1

i¼5

ri2
�i

 !
y4

sin � ¼
XN�1

i¼5

ri2
�i

 !
x4 þ 1�

XN�1

i¼5

XN�1

j ¼ iþ 1

iþ jð Þ � N

rirj2
�ðiþ jÞ

0
BBBB@

1
CCCCAy4

Each term in a bracket is reduced to one term. ForP¼ 16, the first term in the bracket results in 12

terms and the second bracket also contains 12 terms. These expressions can be implemented as two

compression trees. All the iterations of the CORDIC algorithm are merged into one expression and

the expression can be effectively computed in a single cycle.

P+i

P+i

CEi

0

1

xi-1

>> i

yi-1

5:2

P+i

P+i

b [i]

>> i

c

5:2

>> i

>> i
d

0

1

for 2's component

c-

d
-

1

P

P

P

P

d +1
-

c = ri2-iy

d = ri2-ixi-1

c +1--c =

-d =

xi

yi

Figure 12.18 A CE with compression tree
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The MATLAB� code for the algorithm is given below. This uses the same table as generated in

MATLAB� code earlier for computing values of x4 and y4:

cosine = [];

sine = [];

N = 16;

P = 16;

M = 4;

for theta = .00:.05:pi/2

angle =[0.00:.05:pi/2];

theta = round(theta * 2^(N-1)); % convert theta in Q1.N format

% Separating bits of theta as b=b[1],b[2],....,b[N]

for k=1:N

b(N+1-k) = rem(theta, 2);

theta = fix(theta/2);

end

% Compute index for M = 4;

index = b(1)*2^3 + b(2)*2^2 + b(3)*2^1 + b(4)*2^0+1;

x4=tableX(index);

y4=tableY(index);

% Recoding b[M+1], b[M+2], ..., b[n] as r with +1,-1

for k=M+1:N

r(k) = 2*b(k) - 1;

end

xK = (1-r(5)*r(6)*2^(-11) -r(5)*r(7)*2^(-12) -r(5)*r(8)*2^(-13)

-r(5)*r(9)*2^(-14) -r(5)*r(10)*2^(-15)

-r(5)*r(11)*2^(-16) ... -r(6)*r(7)*2^(-13)

-r(6)*r(8)*2^(-14)-r(6)*r(9)*2^(-15)

-r(6)*r(10)*2^(-16) ... -r(7)*r(8)*2^(-15)

-r(7)*r(9)*2^(-16)*x4 - (r(5)*2^(-5)+r(6)*2^(-6)

+r(7)*2^(-7)+r(8)*2^(-8)+r(9)*2^(-9)+r(10)*2^(-10)

... +r(11)*2^(-11)+r(12)*2^(-12)+r(13)*2^(-13)

+r(14)*2^(-14)+r(15)*2^(-15)+r(16)*2^(-16))*y4;

yK = (r(5)*2^(-5)+r(6)*2^(-6)+r(7)*2^(-7)+r(8)*2^(-8)+r(9)*2^(-9)

+r(10)*2^(-10) ... +r(11)*2^(-11)+r(12)*2^(-12)

+r(13)*2^(-13)+r(14)*2^(-14)+r(15)*2^(-15)

+r(16)*2^(-16))*x4+ ... (1-r(5)*r(6)*2^(-11)

-r(5)*r(7)*2^(-12) -r(5)*r(8)*2^(-13)

-r(5)*r(9)*2^(-14) -r(5)*r(10)*2^(-15)

-r(5)*r(11)*2^(-16) ... -r(6)*r(7)*2^(-13)

-r(6)*r(8)*2^(-14)-r(6)*r(9)*2^(-15)

-r(6)*r(10)*2^(-16) ... -r(7)*r(8)*2^(-15)

-r(7)*r(9)*2^(-16))*y4;

% For plotting, convert the values of x and y to floating point format,

% using the original format used for table generation where P=22

cosine = [cosine xK/(2^(20))];

sine = [sine yK/(2^(20))];

end
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12.5.3 Novel Optimal Hardware Design

Yet another approach to designing optimal hardware of the CORDIC is to map the expressions in ri
into two binary constants using reverse encoding and then use four multipliers and two adders to

compute the desired results. This novel technique results in a single-stage CORDIC architecture.

The design is shown in Figure 12.19.

The inverse coding is accomplished using (12.16). The inverse coding forconst1 is simply derived

as:

XN�1

i¼Mþ 1

ri2
�ðiþ 1Þ ¼

XN�1

i¼Mþ 1

bi2
�i�2�M þ 2�N ð12:22Þ

In HW design, as the original bi are kept intact they are used for computing the two constants. To

cater for the 2�N term in (12.22), a 1 is appended to b as the LSB bN, and for the �2�M factor the

corresponding bMþ 1 bit is flipped and is assigned a negative weight. Then const1 is given as:

const1 ¼ �b0Mþ 12
�M þ

XN
i¼Mþ 2

bi2
�ði�1Þ ð12:23Þ

where b0Mþ 1 is the complement of bit bMþ 1. Similarly for const2, the first rk are computed for

i¼M þ 1, . . ., N� 1 as:

rrk ¼ rirj where k ¼ iþ j and k � P

These rrk are then inverse coded using (12.22) and an equivalent value is computed similar to the

const1 computation by expression in (12.23). For N¼ 16 and P¼ 16, this requires computing the

table x

M
table y
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x
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Figure 12.19 Optimal hardware design with single-stage implementation of the CORDIC algorithm
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values of rrk for three values of i. First for i¼ 5, rrk are computed and inverse coded as a constant

value: t5; j ¼ r5rj for j ¼ 6; 7; . . . :; 11

These t5; j are reverse-coded as b0ks as:

X11
j¼6

t5; j2
�ð5þjÞ ¼

X11
j¼6

b5 � b̂j

� �
�2�2M þ 2�N

¼
XN�1

k¼2Mþ1

ck2
�k�2�2M þ 2�N

where ck ¼ b5 � b̂j for j ¼ 6; 7; . . . :; 11 where k ¼ 5þ j

Using tk after catering for the two terms �2�2M and 2�N , the value of the constant beta is

computed as:

beta0 ¼ �c02Mþ12
�2M þ

XN
k¼2Mþ2

ck2
�ðk�1Þ

Following the same steps, values of beta1 and beta2 are computed for i¼ 6 and i¼ 7, respectively.

The details of the computation are given here in MATLAB� code:

clear all

close all

% Values for first four iterations in Q2.16 format

table=[65366 4090

64346 12207

62322 20134

59325 27747

55403 34927

50616 41562

45040 47548

38760 52792

31876 57213

24494 60741

16730 63320

8705 64912

544 65491

-7625 65048

-15675 63590

-23481 61139];

N = 16;

P = 18; % 18-bit width for catering for truncation effects

M = 4;

cosSSC = []; sinSSC = []; % arrays of single stage cordic

cosQ = []; sinQ = []; % arrays for 16-bit fixed point precision

cosD = []; sinD = []; % arrays for double precision floating point values

for theta_f = .0:.001:pi/2

% convert theta in Q1.5 format

theta = round(theta_f * 2^(N-1)); % 16-bit fixed-point value of theta
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thetaQ = theta/2^(N-1); % 16-bit quantized theta in floating point format

% separating bits of theta as

% b=b[1],b[2],....,b[N]

for k=1:N

b(N+1-k) = rem(theta, 2);

theta = fix(theta/2);

end

%compute index for M = 4;

index=b(1)*2^3 + b(2)*2^2 + b(3)*2^1 + b(4)+1;

x4 = table(index,1); y4 = table(index,2);

% recoding b[M+1],b[M+2],...,b[n] as r-> +1,-1

for k=5:N

r(k) = 2*b(k) - 1;

end

% computing const2 for all values of i and j

% i+j<=P

sum = 0;

for i=5:7;

for j=i+1:P-i

k = i+j;

sum = sum + r(i)*r(j)*2^(-k);

end

end

const2 = 1 - sum;

const1 = 0;

for k=M+1:N

const1= const1+r(k)*2^(-(k));

end

% single stage modified CORDIC butterfly

xK = const2 * x4 - const1 * y4;

yK = const1 * x4 + const2 * y4;

% arrays for recording single state, quantized and double precision

% results for final comparision

cosSSC = [cosSSC xK]; sinSSC = [sinSSC yK];

cosD = [cosD cos(thetaQ)]; sinD = [sinD sin(thetaQ)];

cosQ = [cosQ (round(cos(thetaQ)*2^14)/2^14)]; sinQ = [sinQ

(round(sin(thetaQ)*2^14)/2^14)];

end

% computing mean square errors, Single Stage CORDIC performs better

MSEcosQ = mean((cosQ-cosD).^2); % MSEcosQ = 3.0942e-010

MSEcosSSC = mean((cosSSC./2^16-cosD).^2) % MSEcosSSC = 1.3242e-010

MSEsinQ = mean((sinQ-sinD).^2); % MSEsinQ = 3.1869e-010

MSEsinSSC = mean((sinSSC./2^16-sinD).^2); % MSEsinSSC = 1.2393e-010

MSEcosQ MSEcosSSC]

MSEsinQ MSEsinSSC]

The code is mapped in hardware for optimal implementation of the CORDIC algorithm. Verilog

code of the design is given here (the code can be further optimized by using a compression tree for

computing const2):
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module CORDIC_Merged #(parameter M = 4, N = 16, P1 = 18) // Q2.16 format values of

x4 and y4 are stored in the ROM)

(

input [N-1:0] bin, // value of theta_d in Q1.N-1 format

// input clk,

output reg signed [P1 - 1:0] cos_theta,

output reg signed [P1 - 1:0] sin_theta);

reg [N-1:0] b;

reg signed [P1-1:0] x4;

reg signed [P1-1:0] y4;

reg signed [P1-1:0] beta0, beta1, beta2;

reg signed [P1-1:0] const1, const2;

reg signed [2*P1-1:0] mpy0, mpy1, mpy2, mpy3;

reg signed [P1-1:0] xK, yK;

wire [5:0] c0;

wire [3:0] c1;

wire [1:0] c2;

reg [M-1:0] index;

// table to store all possible values of x4 and y4 in Q2.16 format

always@*

begin

case (index)

4’b0000: begin x4 = 65366; y4 = 4090; end

4’b0001: begin x4 = 64346; y4 = 12207; end

4’b0010: begin x4 = 62322; y4 = 20134; end

4’b0011: begin x4 = 59325; y4 = 27747; end

4’b0100: begin x4 = 55403; y4 = 34927; end

4’b0101: begin x4 = 50616; y4 = 41562; end

4’b0110: begin x4 = 45040; y4 = 47548; end

4’b0111: begin x4 = 38760; y4 = 52792; end

4’b1000: begin x4 = 31876; y4 = 57213; end

4’b1001: begin x4 = 24494; y4 = 60741; end

4’b1010: begin x4 = 16730; y4 = 63320; end

4’b1011: begin x4 = 8705; y4 = 64912; end

4’b1100: begin x4 = 544; y4 = 65491; end

4’b1101: begin x4 = -7625; y4 = 65048; end

4’b1110: begin x4 = -15675; y4 = 63590; end

4’b1111: begin x4 = -23481; y4 = 61139; end

endcase

end

// the NOVALITY, computing the values of constants for single

// stage CORDIC

assign c0 = {6{b[5]}}~^b[11:6];

assign c1 = {4{b[6]}}~^b[10:7];

assign c2 = {2{b[7]}}~^b[9:8];

always@*

begin
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index = b[15:12];

beta0 = {{12{~c0[5]}},c0[4:0],1’b1};

beta1 = {{14{(~c1[3])}},c1[2:0],1’b1};

beta2 = {{16{~c2[1]}},c2[0], 1’b1};

const2 = {1’b0,16’h8000,1’b0} - (beta0 + beta1 + beta2);

const1 = {{6{~b[11]}},b[10:0],1’b1};

end

always@*

begin

mpy0 = const2 * x4;

mpy1 = const1 * y4;

xK = mpy0[34:16] - mpy1[34:16];

mpy2 = const1 * x4;

mpy3 = const2 * y4;

yK = mpy2[34:16] + mpy3[34:16];

end

always @* // replace by sequential block with clock for sythesis timing

begin

b = bin;

cos_theta = xK;

sin_theta = yK;

end

endmodule

//

module stimulus;

parameter P = 18;

parameter N = 16;

reg signed [N - 1:0] theta_d;

wire signed [P - 1:0] x_o;

wire signed [P - 1:0] y_o;

integer i;

integer outFile;

CORDIC_Merged merged (

theta_d,

x_o,

y_o);

initial

outFile = $fopen("monitor_merge.txt","w");

always@ (x_o, y_o)

$fwrite(outFile, " %d %d\n", x_o, y_o);

initial

begin

#5 theta_d = 0;
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for (i=0; i<16 ; i=i+1)

#20 theta_d = theta_d + 3276;

#400 $fclose(outFile);

$finish;

end

initial

$monitor($time, " theta = %d, cos_theta = %d, sine_theta = %d\n", theta_d, x_o,

y_o); endmodule

The code is synthesized usingXilinx ISE10.1 on aVertix-2 device. The design computes values of

sin � and cos � in a single stage and single cycle. The design can also be easily pipelined for high-

speed operation.

TheRTL schematic of the synthesized code is given in Figure 12.20. The schematic clearly shows

the logic for computing the constants, a ROM for table look-up, four multipliers and an adder and a

subtractor for computing the single-stage CORDIC.

Exercises

Exercise 12.1

Pipeline the modified CORDIC algorithm and implement the design in RTLVerilog. Assume y is a
16-bit precision number and keep the internal datapath of the CORDIC to be 22 bits wide. Pipeline

the design at every CE level.

Exercise 12.2

Design a folded architecture for a modified CORDIC algorithm with folding factors of 16, 8

and 4. Assume y is a 16-bit precision number and keep the internal datapath of the CORDIC to be

16 bits wide.

Figure 12.20 Schematic of single-stage CORDIC design
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Exercise 12.3

Design a 4-slow architecture for the folded modified CORDIC algorithm with folding factor of 4.

Implement the design in RTLVerilog. Assume y is a 12-bit precision number and keep the internal

datapath of the CORDIC to be 14 bits wide.

Exercise 12.4

The modified CORDIC algorithm can be easily mapped in bit-serial and digital-serial designs.

Design a bit-serial architecture for 16-bit precision of angle y. Keep the internal datapath to be 16 bits
wide. Modify the design to take 4-bit digits.

Exercise 12.5

Use a compression tree to compute const 2 of the novel CORDIC algorithm of Section 12.5.3.

Rewrite RTL code and synthesize the design. Compare the design with the one given in the section

for any improvement in area and timing.
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13

Digital Design of Communication
Systems

13.1 Introduction

This chapter covers the methodology for designing a complex digital system, and an example of a

communication transmitter is considered.

Major blocks of the transmitter are the source coding block for voice or data compression, forward

error correction (FEC) for enabling error correction at the receiver, encryption for data security,

multiplexing for adding multiple similar channels in the transmitted bit stream, scrambling to avoid

runs of zeros or ones, first stage of modulation that packs multiple bits in a symbol and performing

phase, frequency, amplitude or a hybrid of these modulations, and digital up-conversion (DUC) to

translate a baseband modulated signal to an intermediate frequency (IF). This digital signal at IF is

passed to a digital-to-analog (D/A) converter and then forwarded to an analog front end (AFE) for

processing and onward transmission in the air.

The receiver contains the same components, cascaded together in reverse order. The receiver first

digitizes the IF signal received from its AFE using an A/D converter. It then sequentially passes the

digital signal to a digital down-converter (DDC), demodulator, descrambler, demultiplexer,

decryption, FEC decoder and source decoder blocks. All these blocks re-do whatever transforma-

tions are performed on the signal at the transmitter.

Receiver design, in general, is themore challenging because it has to counter the noise introduced

on the signal on itsway from the transmitter. Also, the receiver employs components that are running

at its own clock, and frequency synthesizers that are independent of the transmitter clock, so this

causes frequency, timing and phase synchronization issues. Multi-path fading also affects the

received signal. All these factors create issues of carrier frequency and phase synchronization, and

frame and symbol timing synchronization. The multi-path also adds inter-symbol interference.

For high data-rate communication systems most of the blocks are implemented in hardware

(HW). The algorithms for synchronizations in the receiver require complex nested feedback loops.

The transmitter example in this chapter uses a component-based approach. This approach is also

suitable for software-defined radios (SDRs) using reconfigurable field-programmable gate arrays

(FPGAs) where precompiled components can be downloaded at runtime to configure the

functionality.

Digital Design of Signal Processing Systems: A Practical Approach, First Edition. Shoab Ahmed Khan.
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Using techniques explained in earlier chapters, this chapter develops time-shared, dedicated and

parallel architectures for different building blocks in a communication transmitter.MATLAB� code

is listed for the design. A critical analysis is usually required formakingmajor design decisions. The

communication system design gives an excellent example to illustrate how different design options

should be used for different parts of the algorithm for effective design.

A crucial step in designing a high-end digital system is the top-level architecture, so this chapter

first gives design options and then covers each of the building blocks in detail. For different

applications these blocks implement different algorithms. For example, the source encoding may

compress voice, video or data. The chapter selects one algorithm out of many options, and gives

architectural design options for that algorithm for illustration.

13.2 Top-Level Design Options

The advent of software-defined radios has increased the significance of top-level design. A high

data-rate communication system usually consists of hybrid components comprisingASICs, FPGAs,

DSPs and GPPs. Most of these elements are either programmable or reconfigurable at runtime. A

signal processing application in general, and a digital communication application in particular,

requires sequential processing of a stream of data where the data input to one block is processed and

sent to the next block for further processing. The algorithm that runs in each block has different

processing requirements.

There are various design paradigms used to interconnect components. These are shown in

Figure 13.1.

13.2.1 Bus-based Design

In this design paradigm, all the components are connected to a shared bus. When there are many

components and the design is complex, the system is mapped as a system-on-chip (SoC). These

components are designed as processing elements (PEs). A shared bus-based design then connects all

the PEs in an SoC to a single bus. The system usually performs poorly from the power consumption

perspective. In this arrangement, each data transfer is broadcast. The long bus has a very high load

mem0

GPP DSP0 DSP1 RF mem

GPP
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Mem0

RF

DSP1

DSP0

RFmem0GPP

DSPDSP0mem1
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Figure 13.1 Interconnection configurations. (a) Shared bus-based design. (b) Peer-to-peer connections.

(c) NoC-based design
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capacitance C, and this results in high power dissipation as power is directly proportional to C as

given by the formula:

P ¼ 1

2
CfV2

where f and V are clock frequency and supply voltage, respectively.

Segmenting the shared bus is commonly used to improve the performance. This segmentation also

enables the bus to make parallel transfers in multiple segments. As the length of each segment is

small, so is its power dissipation. A segmented bus design is shown in Figure 13.2.

Examples of on-chip shared-bus solutions are AMBA (advanced microcontroller bus architec-

ture) by ARM [1], SiliconBackplane mNetwork by Sonics [2], Core Connect by IBM [3], and

Wishbone [4].

A good example of a shared bus-based SoC is the IBMCell processor. In this, an element

interconnect bus (EIB) connects all the SPEs for internal communication. The bus provides four

rings of connections for providing shared bandwidth to the attached computing resources [5].

Although designs based on a shared bus are very effective, they have an inherent limitation.

Resources use the same bus, so bus accesses are granted using an arbitrationmechanism. In network-

on-chip (NoC) designs, parallel transfers of data among the PEs are possible. This flexibility comes

at the cost of additional area and power dissipation.

13.2.2 Point-to-Point Design

In this design paradigm, all the components that need to communicatewith each other are connected

togetherusingdedicatedandexclusive interconnects.Thisobviously, foracomplexdesignwithmany

components, requires a large area for interconnection logic. In design instances with deterministic

inter-PE communication, and especially for communication systems where data is sequentially

processed and only two PEs are connected with each other, this design option is very attractive.

13.2.3 Network-based Design

Shrinking geometries reduce gate delays and their dynamic power dissipation, but the decreasing

wire dimensions increase latency and long wires require repeaters. These repeaters consume more

power. Power consumption is one of the issues with a shared bus-based design in SoC configuration.

In a network-based architecture, all the components that need to communicate with other are

connected to a network of interconnections. These interconnections require short wires, so this
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Segment 1

PE1 PE2 PE3 PE4
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Figure 13.2 Split shared bus-based design for a complex digital system
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configuration helps in reducing the power dissipation along with other performance improvements

(e.g. throughput), as multiple parallel data transfers are now possible. The network is intelligent and

routes the data from any source to any destination in single or multiple hops of data transfers. This

design paradigm is called network-on-chip.

An NoC-based design also easily accommodates multiple asynchronous clocked components.

The solution is also scalable as the number of cores on the SoC can be added using the same

NoC design.

13.2.4 Hybrid Connectivity

In a hybrid design, a mix of three architectures can be used for interconnections. A shared bus-based

architecture is a good choice for applications that rely heavily on broadcast andmulticast. Similarly,

point-to-point architecture best suits streaming applications where the data passes through a

sequence of PEs. NoC-based interconnections best suit applications where any-to-any communi-

cation amongPEs is required.A good design instance for theNoC-based paradigm is a platformwith

multiple programmable homogenous PEs that can execute a host of applications. A multiple-

processor SoC is also called anMPSoC. InMPSoC, someof the building blocks are sharedmemories

and external interfaces. The Cisco Systems CRS-1 router is a good example; it uses 188 extensible

network processors per packet processing chip.

A hybrid of these three settings can be used in a single device. The connections aremade based on

the application mapped on the PEs on the platform.

13.2.5 Point-to-Point KPN-based Top-level Design

A KPN-based architecture for top-level design is a good choice for mapping a digital communica-

tion system. This is discussed in detail in Chapter 4.

Figure 13.3 lays out a design.Without any loss of generality, this assumes all PEs are eithermicro-

programmed state machine based architecture or time-shared architecture and run at asynchronous

independent clocks, or a global clock where input to the system may be at the A/D converter

sampling clock and the interface at the output of the system thenworks at theD/A converter clock. A

communication system is usually a multi-rate system. A KPN-based design synchronizes these

multi-rate blocks using FIFOs between every two blocks.

13.2.6 KPN with Shared Bus and DMA Controller

A direct memory access (DMA) is used to communicate with external memory and off-chip

peripheral devices. The design is augmented with components to support on chip transfers. A

representative top-level design is shown in Figure 13.4.
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All the PEs, program memories (PMs), data memories (DMs), general-purpose processor,

peripherals and external memory interfaces and DMA are connected to a shared bus. The GPP

acting as bus master configures the registers in the PEs and sets registers of DMA for bringing data

into data memories and programs into program memories from external memory. The PEs also set

DMA to bring data from the peripherals to their local DMs. Using the shared bus, the DMA also

transfers data from any local DM block to any other.

All PEs have configuration and control registers that are memory mapped on GPP address space.

By writing appropriate bits in the control registers, the GPP first resets and then halts all PEs. It then

sets the configuration registers for desired operations. The DMA has memory access to program

memory of each PE.When there are tables of constants, then they are alsoDMA to datamemories of

specific PEs before a micro-program executes.

PEi, after completing the task assigned to it, sets the PEi_done flag. When the next processing on

the data is to be done by an external DSP, ASIC, or any other PE on the same chip, the done signal is

also sent to the respective CCi of the PEi. This let the CCi to set a DMA channel for requisite data

transfer. The DMAwhen gets the access to the shared bus for this channel of DMA it makes the data

transfer between on-chip and off-chip resources. A PE can also set a DMA channel to make data

transfers from its local data memory to the DM of any other PE.

A representative design of a DMA is shown in Figure 13.5. The DMA has multiple channels to

serve all CCs. Each CCi is connected to DMA through the config_DMA field. This has several

configuration-related bits such as CCi_req. This signal is asserted to register a request to DMA by

specifying source, destination and block size to configure a DMA channel. The controller of the

DMA in a round-robin fashion processes these requests by copying the source, destination and block

size to an empty DMA channel. The controller also, in a round-robin arrangement, copies a filled

DMAchannel to execute aDMAchannel for actual data transfer. Tomake the transfer, theDMAgets
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access to the shared bus and thenmakes the requisite transfer.After theDMA is donewith processing

the channel, the DMA assert CCi_req_done flag and also set the DMA channel free and starts

processing the next request if there is any.

13.2.7 Network-on-Chip Top-level Design

The NoC paradigm provides an effective and scalable solution to inter-processor communication in

MPSoCdesigns [6, 7]. In these designs the cores of PEs are embedded in anNoC fabric. The network

topology and routing algorithms are the two main aspects of NoC designs. The cores of PEs may be

homogenous (arranged in a regular grid connected to a grid of routers). In many application-specific

designs, the PEs may not be homogenous, so theymay or may not be connected in a regular grid. To

connect the PEs a number of interconnection topologies are possible.

13.2.7.1 Topologies

Topology refers to the physical structure and connections of nodes in the network. This connectivity

dictates the routing ability of the design. Figure 13.6 gives some configurations. The final selection is

based on the traffic pattern, the requirements of quality of service (QoS), and budgeted area and

power for interconnection logic. For example, grid [8] and torus [6] arrangements of routers are

shown in Figures 13.6(a) and (b). In these, a router is connected to its nearest neighbors. Each router

is also connected with a PE core that implements a specified functionality. This arrangement is best

for homogenous PEs with almost uniform requirements on inter-processor communication, or a

generic design that can be used for different applications. It also suits run-time reconfigurable

(a)

(d)

(b) (c)

(e)

Figure 13.6 Network-on-chip configurations: (a) grid; (b) torus; (c) binary tree; (d) irregular connec-

tivity; (e) mixed topology
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architectures. The generic and flexible nets of routers enable any type of communication among

the PEs.

In many designs a physically homogenous network and regular tile shape of processing elements

are not always possible. The PEs, owing to their varied complexity, may be of different sizes.

Application-specific SoCs require different handling of configurations and routing algorithms [9].

To select optimal topologies for these SoCs, irregular structures are usually designed.

13.2.7.2 Switching Options

There are two switching options in NoC-based design: circuit switching and packet switching. The

switching primarily deals with transportation of data from a source node to a destination node in a

network setting. A virtual path in NoC traverses several intermediate switches while going from

source to destination node.

In circuit switching, a dedicated path from source to destination is first established [10]. This

requires configuration of intermediate switches to a setting that allows the connection. The switches

are shared among the connected nodes but are dedicated to make the circuit-switched transmission

possible. The data is then transmitted and, at the end, the shared resource is free to make another

transmission.

In contrast, packet switching breaks the data into multiple packets. These are transported from

source to destination. A routing scheme determines the route of each packet from one switch to

another. A packet-based network design provides several powerful features to the communication

infrastructure. It uses very well established protocols and methodologies in IP networks, to enable

the nodes to perform unicast,multicast andQoS-based routing. Each PE is connectedwith a network

interface (NI) to theNoC. This interface helps in seamless integration of any PEwith the others on an

SoC platform. The NI provides an abstraction to the IP cores for inter-processor communications.

Each PE sends a request to the NI for transferring data to the destination PE. The NI then takes

the data, divides it into packets, places appropriate headers, and passes each packet to the

attached routers.

Store and Forward Switching
In this setting, router A first requests its next-hop router B for transmission of a packet. After

receiving a grant,A sends the complete packet toB. After receiving the complete packet,B similarly

transmits the packet to the next hop, and so on.

Virtual Cut-Through Switching
In this setting, a node does notwait for reception of a complete packet. RouterA,while still receiving

a packet, sends a request to the next-hop router B. After receiving a grant from B, A starts

transmitting the part of the packet that it has already received, while still receiving the remainder

from its source. To cover for contention, each nodemust have enough buffer to hold an entire packet

of data.

Wormhole Switching
In wormhole switching, the packet is divided into small data units called ‘flits’. The first flit is the

head flit and it contains the header information for the packet and for the flits to follow. The data itself

is divided into several body flits. The last flit is the tail flit. Figure 13.7 shows division of a packet into

flits and a snapshot of their distribution in a number of switches in a path from source to destination.

All routers operate on these smaller data units. In this switching the buffers are allocated for flits

rather than for entire packets.
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13.2.7.3 Routing Protocols

A router implements options out of a number of routing protocols. All these protocols minimize

somemeasure of delays and packet drops. The delaymay be in terms of the number of hops or overall

latency. In a router on a typical NoC, a switch takes the packet from one of the inputs to the desired

output port.

The system may perform source routing, in which the entire route from source to destination is

already established and the information is placed in the packet header. Alternatively the systemmay

implement routing where only the destination and source IDs are appended in the packet header. A

router based on the destination ID routes the packets to the next hop. For a more involved design

where the PEs are processing voice, video and data simultaneously, a QoS based routing policy may

also be implemented that looks into the QoS bits in each received packet and then prioritizes

processing of packets at each router. For the simplest designs, pre-scheduled routing may also be

implemented. An optimal schedule for inter-processor communication can then be established.

Based on the schedule, the NoC can be optimized for minimum area and power implementation.

13.2.7.4 Routing Algorithms

For an NOC, a routing algorithm determines a path from a set of possible paths that can virtually

connect a source node to a destination node. There are three types of routing algorithm: determin-

istic, oblivious and adaptive.

. The deterministic algorithm implements a predefined logic without any consideration of present

network conditions [11–19]. This setting for a particular source and destination always selects the

same path. This may cause load imbalance and thus affects the performance of the NoC. The

routing algorithm is, however, very simple to implement in hardware.
. The oblivious algorithm adds a little flexibility to the routing options.A subset of all possible paths

from source to destination is selected. The hardware selects a path from this subset in a way that it

equally distributes the selection among all the paths. These algorithms do not take network

conditions into account.

Flit (routing info)

Flit

Flit

Flit

Flit

Flit

tail body body head

tail body body head
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switchswitchswitch switch
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Figure 13.7 Wormhole switching that divides a packet into multiple flits. (a) Packet divided into flits.

(b) Wormhole switching of flits
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. The adaptive algorithm, while making a routing decision, takes into account the current network

condition. The network condition includes the status of links and buffers and channel load

condition. A routing decision at every hop can be made using a look-up table. An algorithm

implanted as combinational logic may also makes the decision on the next hop.

XY Routing
This is a very simple to design logic for routing a packet to the next hop. The address of the

destination router is in terms of (x,y) coordinates. A packet first moves in the x direction and then in

the y direction to reach its destination, as depicted in Figure 13.8. For cases that result in no

congestion, the transfer latency of this scheme is very low, but its packet throughput decreases

sharply as the packet injection rate in theNoC increases. This routing is also deadlock free but results

in an unbalanced load on different links.

Toggled XY Routing
This is from the class of oblivious schemes. It splits packets uniformly between XY and YX. If a

packet is routed using YX, it first moves in the y direction and then in the x direction. It is also very

simple to implement and results in balanced loads for symmetric traffic. Figure 13.9 shows an NoC

Figure 13.8 XY routing
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Figure 13.9 Toggled XY routing
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performing toggledXY routing by switchingD/2 packets in XYand the others in YXwhile routing a

uniform load of D packets.

Weighted Toggled XY Routing
The weighted version of toggled XY routing works on a priori knowledge of traffic patterns among

nodes of theNoC. The ratios ofXYandYXare assigned to perform load balancing. Each router has a

field that is set to assign the ratios. To handle out-of-sequence packet delivery, the packets for one set

of source and destination are constrained to use the same path.

Source-Toggled XY Routing
In this routing arrangement, the nodes are alternately assigned XYand YX for load balancing. The

scheme results in balance loads for symmetric traffic. This is shown in Figure 13.10.

Deflection Routing
In this routing scheme, packets are normally delivered using predefined shortest-path logic. In cases

where there is contention, with two packets arriving at a router needing to use the same path, the

packet with the higher assigned priority gets the allocation and the other packet is deflected to a non-

optimal path. Deflection routing helps in removing buffer requirements on the routers [20].

13.2.7.5 Flow Control

Each router in an NoC is equipped with buffers. These buffers have finite capacity and the flow

control has to be defined in a way that minimizes the size of the buffers while achieving the required

performance. Each router has a defined throughput that specifies the number of bits of data per

second a link on the router transfers to its next hop. The throughput depends on the width of the link

and clock rate on each wire. To minimize buffer sizes, each packet to be transferred is divided into a

number of flits of fixed size.

The transfer can be implemented as circuit switching, as described in Section 13.2.7.2. This

arrangement does not require any buffers in the routers, but the technique results in an overhead for

allocation and de-allocation of links for each transfer.
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Packet switching is a more effective for flow control. This requires a buffer on each outgoing or

incoming link of each router. For routers supportingwormhole switching, the unit of transfer is a flit.

Flits that are competing for the same link are stored in a buffer and wait for their turn for transfer to

the next hop.

13.2.7.6 Virtual Channels

For buffer-based flow control, each link of a router is equipped with one buffer to hold a number of

flits of the current transfer. A linkwith one buffer is shown in Figure 13.11(a). If the packet is blocked

at some node, its associated flits remain in buffers at different nodes. This results in blockage of all

the links in the path for other transfers. To mitigate this blocking, each link can be equipped with

multiple parallel buffers, and these are called ‘virtual channels’ (VCs). A link with three virtual

channels is shown in Figure 13.11(b).

The addition of virtual channels in NoC architecture provides flexibility but also adds complexity

and additional area. Switching schemes have been proposed that use VCs for better throughput and

performance [21–23].

13.2.8 Design of a Router for NoC

A representative design of a router in an NoC infrastructure is given in Figure 13.12 [24]. The

router assumes connectivity with its four neighbors and with the PE through a network interface.

This connectivity consists of five physical channels (PCs) of each router. To provide more

flexibility and better performance, a PC is further equipped with four virtual channels (VCs). A

packet of data is written in the FIFO queue of the NI. The packet is broken into a number of flits.

The packet transmission undergoes VC allocation, flit scheduling and switch arbitration. A packet

is broken into a head flit followed by a number of data flits and ends with a tail flit. The header flit

has the source and destination information. The fliterizing and VC assignment is performed at the

source PE, and reassembly of all the flits into the original packet is done at the destination PE. An

association is also established with all the routers from source to destination to ensure the

availability of the same VC on them. This one-to-one association eases the routing of the body flits

through the route. Only when this VC to VC association is established is the packet assigned a VC

(a) (b)

Figure 13.11 Flow control. (a) One channel per link. (b) Multiple virtual channels per link
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identification (VCid). The process of breaking a packet into flits and assigning a VCid to each flit

is given in Figure 13.13.

At the arrival of a header flit, the router runs a routing algorithm to determine the output PC on

which the switch needs to route this packet for final destination. Then the VC allocator allocates the

assigned VC for the flit on the input PC of the router.
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Credit-based flow control is used for coordinating packet delivery between switches. The credits

are passed across switches to keep track of the status of VCs. There are two levels of arbitration.

First, out of many VCs on an input PC, only one is selected to use the physical link. At the second

level, out of multiple sets of VCs from multiple input VCs connected to the output PC, one is

selected to use the shared physical resource. A flit selected after these two arbitrations is switched

out on the VC to the next router. Each body flit passes through the same set of VCs in each router.

After the tail flit is switched out from a router, the VC allocated for the packet is released for

further use.

A simple handshaking mechanism can be used for transmitting a flit of data on the PC [25]. The

transmit-router places the flit on the data-out bus and a tx signal is asserted. The receive-router

latches the flit in a buffer and asserts the ack-tx signal to acknowledge the transfer. Several of these

interfaces are provided on each router to provide parallel bidirectional transfers on all the links.

Figure 13.14 shows interfacing details of the links between two adjacent routers.

13.2.9 Run-time Reconfiguration

Many modern digital communication applications need reconfigurability at protocol level. This

requires the same device to perform run-time reconfiguration of the logic to implement an altogether

different wireless communication standard. The device may need to support run-time reconfigur-

ability to implement standards for a universal mobile telecommunications system (UMTS) or a

wireless local area network (WLAN). The device switches to the most suitable technology if more

than one of thesewireless signals are present at one location. If amobilewireless terminalmoves to a

regionwhere the selected technology fades away, it seamlessly switches to the second best available

technology.

Although one design option is to support all technologies in one device, that makes the cost of the

system prohibitively high. The system may also dissipate more power. In these circumstances it is

better to design a low-power and flexible enough run-time reconfigurable hardware that can adapt to

implement different standards. The design needs to be a hybrid to support all types of computing

requirements. The design should have digital signal processors (DSPs), general-purpose processors
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(GPPs) and reconfigurable cores, accelerators and PEs. All the computing devices need to be

embedded in the NoC grid for flexible inter-processor communication.

13.2.10 NoC for Software-defined Radio

An SDR involves multiple waveforms. A waveform is an executable application that implements

one of the standards or proprietary wireless protocols. Each waveform consists of a number of

components. These components are connected through interfaces with other components. There

are standards to provide the requisite abstraction to SDR development. Software communication

architecture (SCA) is a standard that uses an ‘object request broker’ (ORB) feature of common

object request broker architecture (CORBA) to provide the abstraction for inter-component

communication [26]. The components in the design may be mapped on different types of

hardware resources running different operating systems. The development of ORB functionality

in HW is ongoing, the idea being to provide a level of abstraction in the middleware that relieves

the developer from low-evel issues of inter-component communication. This requires coding the

interfaces in an interface definition language (IDL). The interfaces are then compiled for the

specific platform.

Figure 13.15(a) shows a library of components developed for waveform creation. Most of them

have been developed for mapping in HWor SW platforms. The interfaces of these components are

written in an IDL. While crafting a waveform, the user needs to specify the hardware resource on

which a component is to be mapped. The HW resource may be a GPP, a DSP, an ASIC or an IP core.

This hardware mapping of components on target technologies is shown in Figure 13.15(b).

The component library lists several developed components for source encoding, FEC, encryption,

scrambling, framing and modulation. The designer is provided with a platform to select resources

from the library of components and connect themwith other components to create a waveform. The

designer also specifies the target technologies. In the example, the 16-QAM OFDM modulation is

mapped on the DSP, whereas encryption and FEC are mapped on FPGA. The framer is mapped on

a GPP.
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The FPGA for many streaming applications implements MPSoC-based architecture. The

components that are mapped on FPGA are already developed. An ideal SDR framework generates

all the interfaces and makes an executable waveform mapped on a hybrid platform.

In the case of an SCA (software communications architecture) there may be CORBA-compliant

and non-CORBA-compliant components in the design. ACORBA-compliant resource runs ORB as

a middleware and provides an abstraction for inter-component communication among CORBA-

compliant resources.

13.3 Typical Digital Communication System

A digital communication system is shown in Figure 13.16. A digital transmitter primarily consists

of a cascade of sub-systems. Each sub-system performs a different set of computations on an input

stream of data. Most of the blocks in the system are optional. Depending on the application, a

transmitter may not source encode or encrypt data. Similarly the system may not multiplex data

from different users in a single stream for onward transmission. The system at the receiver usually

has the same set of blocks but in reverse order. As the receiver needs to correct impairment

introduced by the environment and electronic components, its design is more complex. In mobile/

cellular applications a base station or an access point may be simultaneously communicating

with more than one end terminal, so it does a lot more processing than individual mobile

end terminals.

13.3.1 Source Encoding

The input stream consists of digital data or a real-time digitized voice, image or video. The raw data

is usually compressed to remove redundancy. The data, image and video processing algorithms are

regular in structure and can be implemented in hardware, whereas the voice compression algorithms

are irregular and are usually performed on a DSP.

For lossless data compression, LZWor LZ77 standard techniques are used for source encoding.

These algorithms for high data rates are ideallymapped inHW.The images are compressed using the

JPEG-2000 algorithm. This is also an ideal candidate for HWmapping for high-resolution and high-

speed applications. Similarly for video, a MPEG-4 type algorithm is used. Here, motion estimation

is computationally the most intensive part of the algorithm and can be accelerated using digital

techniques. Low bit rate voice compression, on the other hand, uses CELP-type algorithms. These

have to compute LPC coefficients followed by vector quantization. The quantization uses an

adaptive and fixed code book for encoding. These algorithms are computation- and code-intensive

and are better mapped in software on DSPs.

13.3.2 Data Compression

As a representative component for source encoding, lossless data compression algorithms and

representative architectures are discussed in this section.

LZ77 is a standard data compression algorithm that is widely used in many applications [27]. The

compression technique is used also to preserve bandwidth while transmitting data on wireless or

wired channels. An interesting application is in computer networks where, before data for each

session is ported to the network, it is compressed at the source and then decompressed at the

destination.

536 Digital Design of Signal Processing Systems



A/D

Voice

Video Source 
Encoder

Encryption Multiplexer FEC Framer Digital 
Modulation

AFE
TX

Sensor

IF

DAC

Speaker

Display
Source 

Decoder
Decryption

Demulti-
plexer

DFEC deframer
Digital 

Receiver
demodulater

AFE
RXScope

ch3

source

Timing & 
Freq 

Recovery 
Loops

Equalizer

Channel 
Frequency 

Time
Estimator

demodulator IF

RX

Data

Data
ch1ch2

ch0ch1

Figure 13.16 Representative communication system based on digital technologies

D
ig
ital

D
esig

n
o
f
C
o
m
m
u
n
icatio

n
S
y
stem

s
5
3
7



The algorithmworks by identifying the longest repeated string in a buffer of data in awindow. The

string is codedwith its earlier location in thewindow. The algorithmworks on a slidingwindow. The

window has two parts, a history buffer and a search buffer, with sizes N and M characters,

respectively (Figure 13.17).

The encoder finds the longestmatch of a string of character in a search buffer into the entire sliding

windowand codes the string by appending the last unmatched characterwith the backward pointer to

the matched string and its length. The decoder then can easily decode by looking at the pointer and

the last unmatched character. Figure 13.18 and the following code explain the working of the

algorithm.

while (search buffer not empty)

{

find_longest_match() ! (position, length);

code_match() ! (position, length, next unmatched character);

shift left the window by length +1 characters;

}

Sliding windows

history buffer search buffer

MN

Figure 13.17 Sliding window for data compression algorithm
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Figure 13.18 Looking for the longest match
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The compression algorithm is sequential, so an iteration depends on the result of the previous

iteration. It might appear that a single iteration of the algorithm can be parallelized, but multiple

iterations are difficult to parallelize. A technique can be used where the architecture computes all

possible results for the subsequent iterations and then finally makes the selection. This technique is

effective to design high-speed architectures for applications that have dependencies across itera-

tions. An implementation of the technique to design a massively parallel architecture to perform

LZ77 compression at a multi-gigabit rate is presented in [28–30]. A representative architecture is

given in this section.

Here the example assumes a history buffer h of size 8 and maximum match of 3 characters that

requires a search buffer s of size 3. The architecture performs all the matches in parallel. These

matches are shown in the grid of Figure 13.19. The first row shows the values of the history and

search buffers that are compared in parallel with the three characters in the search buffer.

The architecture computes the longest match of the search buffer [s0 s1 s2] to the string of

characters listed in the first row. When it finds a match it computes the length of the match and also

identifies its location. The size of history and the search buffers offer a tradeoff between area and

achievable compression ratio, because the larger the buffer the larger the area.

Figure 13.20(a) computes the best match for one iteration of the algorithm. Each row computes a

comparison listed in a row of the grid of Figure 13.19. Each comparator compares the two characters

and generates 1 if there is a match. A cascaded AND operation in each row carries forward the 1 for

successive matches. The output of the AND operation is also used in each column to select the row

that results in a successful match. The serial logic is a column is shown in Figure 13.21(a). The logic

ORs the results of all rows in each column, and the last row of multiplexers selects the length of the

maximum match and the multiplexer pointer_mux selects the pointer.

Beside serial realization of the column logic, the logic can be optimized for logarithmic time. The

optimized logic groups the serial logic to work in pairs and is depicted in Figure 13.21(b). This

results in that identifies the location of the match logarithmic rather than serial complexity.

Architecture can be designed that computes multiple iterations of the algorithm. The architecture

is optimized as computations are shared across multiple iterations. Figure 13.22 displays a table

showing all the possible comparisons required for performing multiple iterations of the algorithm,

highlighting the sharing of comparisons in the first three columns.

The first column of the table shows the first iteration. The second column computes the result if no

match is established in the first iteration, and s0 is moved from the search buffer to the history buffer

with coding (0 0 s0). Similarly the third, fourth and fifth columns show if the first iteration

results in match length of 1, 2 and 3, respectively. If the first iteration matches two characters, than

h0 h1 h2 h3 h4 h5 h6 h7 s0 s1 s2

s0 s1 s2

s0 s1 s2

s0 s1 s2

s0 s1 s2

s0 s1 s2

s0 s1 s2

s0 s1 s2

s0 s1 s2

Figure 13.19 Parallel comparisons of characters listed in the first row with the three characters in the

search buffer
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Figure 13.20 Digital design for computing iteration of the LZ77 algorithm in parallel. (a) Identifying

logic in each column. (b) A block representing the logic of three columns and pointer and length
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columns 4, 5 and 6 are considered for the next iteration. If all three characters are matched, then

columns 5 and 6 are considered for the next iteration. If no match is found, the architecture

implements six iterations of the algorithm in parallel. The table also highlights the sharing that is

performed across iterations.

Figure 13.23 shows the architecture that implements thesemultiple iterations. The selection block

finally selects the appropriate answer based on the results of the multiple iterations.

13.3.3 Encryption

The encryption block takes source encoded data as clear text and ciphers the text using a pre-stored

key. AES is the algorithm of choice for most digital communication applications. The algorithm is

very regular and designed for hardware mapping. A representative architecture for moderate data

rate applications is described below.

13.3.3.1 AES Algorithm

An AES algorithm encrypts a 128-bit block of plain text using one of three sizes of key, 128, 192 or

256 [31]. The encryption is performed in multiple rounds. For the three key sizes the number of

rounds for data encryption are n¼ 10, 12 and 14. In the key scheduling stage, the key is expanded to

h0

= =

s0 h1

= =

s1 h2
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iteration

row0
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lengthpointer

.

.

.

.
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Figure 13.20 (Continued)
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(4n þ 4) number of 32-bit words. This operation is done once for an established key and can be

performed offline to support multiple rounds of operation. The plain text is arranged into four 32-bit

words in a state matrix. Most of the operations in the algorithm are performed on 32-bit data. These

operations are ‘add round key’ (ARK), ‘byte substitution’ (BS), ‘shift rows’ (SR) and ‘mix column’

(MC). A block diagram is shown in Figure 13.24(a).

Theflowof the algorithm is given in Figure 13.24(b). Thefirst step is filling of the statematrixwith

128 bits of plain text. The arrangement is shown in Figure 13.25, where the data is stored column-

wise. The first byte takes the first element of the first column.

In the first operation of ARK, 128 bits of states are XORedwith 128 bits of the round key. The key

is derived from the cipher key in the key scheduling stage. In the next operation of ARK, the 8-bit

element of the state matrix is indexed in a pre-stored 256-entry table of S-box and the entry is

replaced by the entry in S-box. The substitution is followedby a shift rowoperationwhere the rows 0,

1, 2 and 3 are circularly rotated to the left by 0, 1, 2 and 3, respectively. The operation is shown in

Figure 13.26(a). After shifting rows, the statematrix is transformed in anMCoperation. In this, each

column of the state matrix in multiplied in GF(28) to the matrix given in Figure 13.26(b). The MC

operation is performed in all rounds except the final round of the algorithm. Pseudo-code of the AES

Implementation is given here:
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Figure 13.22 Multiple iteration of the algorithm with shared comparisons
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// Nb = 4

// Nr = 10, 12, 14 for 128, 192 and 256 bit AES

// Hard parameter, Nk=4,6,8 for 128, 192, 256 AES

// UWord8 and UWord32 are 8-bit and 32-bit unsigned numbers

UWord32 key[Nk];

UWord32 w[Nb*(Nr-1)]; /* Expended Key */

AES_encryption (

UWord8 plain_text[4*Nb],

UWord8 cipher_text[4*Nb],

UWord32 w[Nb*(Nr-1)]);

begin

UWord8 state [4*Nb];

state = Plain_text;

ARK(state, w[0, Nb-1]);

for(round=1, round<=Nr-1, round++)

begin

SB(state);

SR(state);

MC(state);

ARK(state, w[round*Nb, (round+1)*Nb-1)]);

end

SB(state);

SR(state);

ARK(state, w[Nr*Nb, (Nr+1)*Nb-1)]);

end

= =
s6 s7

= =
h7

= == == = = = = =
h0 s0 h1 s1 h2 s2 h3 s3

h+ s+

= == == =
h7 s0 s0 s1 s1 s1

= =
s2 s3

= =
s3 s4

Pointers lengths

. . . . . . . .  . . . . . . . . . . . . . 

. . . . . . . .  . . . . . . . . . . . . . 

Figure 13.23 Digital design implementing multiple iterations of the LZ77 algorithm
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13.3.3.2 AES Architectures

There are a number of architectures proposed in the literature. Selection of a particular implemen-

tation of the AES algorithm primarily depends on the input data rate. A pipelined fully parallel

architecture implements all the iterations in parallel [35]. The design supports very high throughput

rate and is shown in Figure 13.27(a). Similarly a design that uses time-shared architecture

implements one round at a time. A representative layout is given in Figure 13.27(b).

There are many applications where the architecture is needed to support moderately high data

rates in a small area, as is the case with most of the wireless communication standards. An optimal

design may require further folding the AES algorithm from the one given in Figure 13.27(b). The

design. though. is originally defined for 32-bit data units but can be broken into 8- or 16-bit data

units [32, 33]. TheHWmapping then reduces the requirement on buses, registers andmemories from

32-bit to 8- or 16-bit while supporting the specified throughput. For an 8-bit design this amounts to

almost four-fold reduction in hardware.

An example of an implementation ofAES in aKPN network framework is shown in Figure 13.28.

TheAESprocessor reads plain text data froman input FIFO. The processor has an internal RAM that

is used for local storage of temporary results. The cipher data is then stored into a FIFO and a done
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Figure 13.25 Filling of plain text in a state matrix
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flag is set for the next block to start using the cipher data. The key once expended is stored in an

internal RAM.

The block diagramof the top-level design of theAES engine is given in Figure 13.29. Serial data is

received to the engine at serial clock rate. TheAES interface unit of the block accumulates the bits to

make a 128-bit block andwrites it to the AES input FIFO and generates a signal to theAES engine to

start processing the data. The engine encrypts data and writes the result to the FIFO to the next block

for onward processing.

In a typical KPN configuration, an AES engine uses two instances of block RAM. One block also

acts as aFIFOanddatamemory, theAESengine uses portB to read the data andportA towrite the data

backafter each round into theRAM.Thisport is also sharedby theAES interface towrite a new128-bit

of plain text into theRAM.The secondRAMstores the cipher and the roundkeys.Although the design

ofAEScan also performkey expansionwith a littlemodification [32, 33], only the ciphering is covered

in this design. The engine writes the cipher text into the next block FIFO that is then read by the next

processing block in the architecture. This memory configuration is given in Figure 13.30.
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There are two types of memory in most of the FPGAs: distributed RAM and block RAM. The

LUTs can be configured as distributed RAMwhereas block RAM is a dedicated dual-port memory.

An FPGA contains several of these blocks. For example, XC3S5000 in the Spartan-3 family of

devices has 104 blocks of RAM totaling 1872 kilobits ofmemory. Similarly the LUTof a CLB in the

Spartan-3 family can be optionally used as 16-deep� 1-bit synchronous RAM. Thesememories can

be cascaded to form deeper and wider units. The distributed RAM should be used only for small

memories as it consumes LUTs that are primarily meant for implementing digital logic. The block

RAMshould be used for largememories. Each blockRAM iswrappedwith a synchronous interface.

The details on instantiating these two types of memory can be found from the user manual of a

specific device [36, 37]. The memories and FIFOs are generated using the Xilinx core generation

tool. The top-level design using generated modules are given here.

module aes_top(

input clk,

input reset,

// Input interface

input [7:0] wr_data_i,

input [3:0] wr_data_addr_i,

input wr_data_en_i,

input [7:0] wr_key_i,

input [4:0] wr_key_addr_i,

input wr_key_en_i,

input start_i,

input rd_ff_data_en_i,

// Output interface

output [7:0] rd_ff_data_empty,

// Use to indicate 128-bit in FIFO
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Figure 13.30 Memory configuration of AES engine in KPN settings

Digital Design of Communication Systems 549



output ff_data_avail_o // FIFO done

);

// Internal wires and regs

wire [7:0] wr_data_int;

wire [3:0] wr_data_addr_int;

wire wr_data_en_int;

wire [7:0] data_mux;

wire [3:0] data_addr_mux;

wire data_wr_en_mux;

wire [7:0] rd_data_int;

wire [3:0] rd_data_addr_int;

wire [7:0] rd_key_int;

wire [3:0] rd_key_addr_int;

wire [7:0] wr_ff_data_int;

wire wr_ff_data_en_int;

wire wr_ff_data_full_int;

// Module instantiations

// Bus assignment

/* Initially the data is written in the data_mem from the

external controller. When signal start_i is asserted

the in-place AES encryption starts processing /

assign data_mux = (start_i) ? wr_data_int : wr_data_i;

assign data_addr_mux = (start_i) ? wr_data_addr_int : wr_data_addr_i;

assign data_wr_en_mux = (start_i) ? wr_data_en_int : wr_data_en_i;

// Input data memory: for holding 16 bytes, memory width of 8-bit

input_data_mem input_data_mem_inst(

.clka (clk),

.clkb (clk),

.wea (data_wr_en_mux), // Write interface

.addra (data_addr_mux),

.dina (data_mux),

.addrb (rd_data_addr_int), // Read interface to AES

.doutb (rd_data_int)

);

// Key sets

key_mem key_mem_inst(

.clka (clk),

.clkb (clk),

.wea (wr_key_en_i), // Write interface

.addra (wr_key_addr_i),

.dina (wr_key_i),

.addrb (rd_key_addr_int), // Read interface to AES engine

.doutb (rd_key_int)

);

// AES engine

aes aes_inst(

.clk (clk),

.reset (reset),
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// Write interface to input data memory for in-place computation

.wr_data_o (wr_data_int),

.wr_data_addr_o (wr_data_addr_int),

.wr_data_en_o (wr_data_en_int),

// Read interface to input data memory

.rd_data_i (rd_data_int),

.rd_data_addr_o (rd_data_addr_int),

.rd_key_i (rd_key_int), // Read interface to keys

.rd_key_addr_o (rd_key_addr_int),

// Start signal from the external controller

.start_i ( start_i ),

// Write interface to data FIFO

.wr_ff_data_o (wr_ff_data_int),

.wr_ff_data_en_o (wr_ff_data_en_int),

.wr_ff_data_full (wr_ff_data_full_int),

// Done and output written in FIFO

.ff_data_avail_o (ff_data_avail_o)

);

// Output data FIFO

output_ff output_ff_inst(

.rst (reset),

.wr_clk (clk),

.rd_clk (clk),

.din (wr_ff_data_int ), // Write interface

.wr_en (wr_ff_data_en_int),

.full (wr_ff_data_full_int),

// Read interface for extranl controller

.dout (rd_ff_data_o),

.rd_en (rd_ff_data_en_i),

.empty (rd_ff_data_empty)

);

endmodule

13.3.3.3 Time-Shared 8-bit Folding Architecture

There is no straightforward method of further folding AES architecture as the algorithm is iterative

and nonlinearwhile it performs computation for a round. The standard folding techniques covered in

Chapter 8 cannot be directly applied. A trace scheduling technique is used in [32, 33, 38]. In this

technique all the flow of parallel computations in the algorithm are traced. The interdependencies

across these traces are established. All these traces are then folded while taking account of their

interdependencies and then are mapped in hardware.

The processor is designed to use 8-bit data. The architecture implements a 256 AES that requires

14 rounds. The processor uses an 8� 240-bit memory for storing cipher and round key. Thememory

is managed as i¼ 0, 1, 2, . . ., 14 sections for 15 ARK operations of the algorithm. Each section i
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stores 16 bytes (128-bit) of key for the ith iteration of the algorithm. The ARK block reads

corresponding bytes of the key and the state in each cycle and XORs them. The data is read from

memories in shift-row format, so logic for the SR operation is not required. The block BS is

performed as reading from SBOX ROM.

The technique maps the algorithm on to a byte-systolic architecture. Each iteration of the

implementation reads an 8-bit state directly in row-shifted order. The original indexing of the states

is shown in Figure 13.31(a) and the row-shifted indices are shown in Figure 13.31(b). To access the

values of the states shown column-wise, a simple circular addressing mode is used.

The incremented SR index is generated by implementing a modulo accumulator:

addrSR ¼ ðaddrSRþ 5Þ%16:

The %16 is implemented by a 4-bit free-running accumulator that ignores overflows. The same

address is used to index the round key from keymemory. A 4-bit counter roundCount is appended to

the address to identify the round:

addrKey ¼ froundCount; addrSMg
where addrKey is the address to the key memory. The design works on reading 8-bit data from the

memory and ciphering the plain text in multiple iterations. Each round of AES requires 16 cycles of

8-bit operations. The design of ARK, SR and BS for 8-bit architecture is shown in Figure 13.32.

The 8-bit result computed from BS is then passed to the mix-column block. The 8-bit design

works on a byte by byte input value from the BS block. The design multiplies each byte with four

constant values inGF(28) as defined in the standard. The values in the constant matrix are such that

each row has the same values just shifted by one to the right. This multiplication for the first

column is shown here:

C00

C01

C02

C03

2
664

3
775 ¼

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

2
664

3
775

C00

C01

C02

C03

2
664

3
775:

(0,0) (0,1) (0,2) (0,3) (0,0) (0,1) (0,2) (0,3)

0 4 8 12 0 4 8 12

(1,0) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,0)

1 5 9 13 5 9 13 1

(2,0) (2,1) (2,2) (2,3) (2,2) (2,3) (2,0) (2,1)

2 6 10 14 10 14 2 6

(3,0) (3,1) (3,2) (3,3) (3,3) (3,0) (3,1) (3,2)

3 7 11 15 15 3 7 11

(a) (b)

Figure 13.31 State indexing for shift-row operation: (a) original indexing, and (b) shift-row indexing
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This arrangement helps in implementing the mix-column operation in byte-systolic manner.

The architecture of the MC block is shown in Figure 13.33. The results of multiplication and

addition are saved in registers shifted to the right by one. In the first cycle, C00 is input to the MC

module and the output values of the computation are in the registers and the four registers have the
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Figure 13.32 Eight-bit time-shared AES architecture
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following values:

R0 ¼ C00

R1 ¼ C00

R2 ¼ 3C00

R3 ¼ 2C00

:

In the next cycle the second byte of statesC01 is used to compute the next term in the partial sums.

At the end of the second cycle the registers have the following values:

R0 ¼ R1 þC01 ¼ C00 þC01

R1 ¼ R2 þC01 ¼ 3C00 þC01

R2 ¼ R3 þ 3C01 ¼ 2C00 þ 3C01

R3 ¼ R0 þ 2C01 ¼ C00 þ 2C01

:

Similarly in third cycle the following values are computed and stored in the registers:

R0 ¼ R1 þC02 ¼ 3C00 þC01 þC02

R1 ¼ R2 þC02 ¼ 2C00 þ 3C01 þC02

R2 ¼ R3 þ 3C02 ¼ C00 þ 2C01 þ 3C02

R3 ¼ R0 þ 2C02 ¼ C00 þC01 þ 2C02

:

+ +

R2

+

R1

+

R0R3

en

sel

2113

clkclkclkclk

clkclkclkclk

3Cij Cij Cij 2Cij

Cij
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Figure 13.33 Mix-column design for byte systolic operation
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And finally the fourth cycle computes a complete column and the values are latched in shadow

registers:

SR0 ¼ R1 þC03 ¼ 2C00 þ 3C01 þC02 þC03

SR1 ¼ R2 þC03 ¼ C00 þ 2C01 þ 3C02 þC03

SR2 ¼ R3 þ 3C03 ¼ C00 þC01 þ 2C02 þ 3C03

SR3 ¼ R0 þ 2C03 ¼ 3C00 þC01 þC02 þ 2C03

:

For in-place computation, these values from the shadow registers are moved into the locations of

byte-addressable memory that are used to calculate these values. This requires generating index

values in a particular pattern. The logic that generates addressing patterns for in-place computation

is explained in the next section. The MC module multiplies all the columns and saves the values in

the data memory.

The first row of registers are also reset every fourth cycle for computing the multiplication of the

next column. An enable signal latches the values of the final result in the second row of shadow

registers. These values are then saved in the data memory by in-place addressing. As the same HW

block is time-shared for performing the next round of theAES algorithm, the SR requires reading the

fifteenth value in the fourth cycle for the MC computation in the next round. The value is still in the

register of MC in this clock cycle. The value is directly passed for ARK computation. The timing

diagram of Figure 13.34 illustrates the generation of different signals.

It is important to appreciate that in many applications no established technique can be applied to

design an effective architecture. The 8-bit AES architecture described in this section is a good

example that demonstrates this assertion. The algorithm is explored by expending all the computa-

tions in an iteration. Then, intelligently, all dependencies are resolved by tracing out single-byte

operations to make the algorithm work on a single byte of input.

13.3.3.4 Byte-Systolic Fully Parallel Architecture

This section presents a novel byte-systolic fully parallel AES architecture [38]. The architecture

works on byte in-place indexing. A byte of plain text is input to the architecture and a byte of cipher

text is output in every clock cycle after an initial latency of 16� 15 cycles. All the rounds of

encryption are implemented by cascading all the stages with pipeline logic. The data is input to the

first stage in byte-serial fashion.When the 16 bytes have beenwritten in the first dataRAMblock, the

stage starts executing the first round of the algorithm. At the same time the input data for the second

frame is written in the RAM block by employing byte in-place addressing. This scheme writes the

input data at locations that are already used in the current cycle of the design. For example, the first

stage reads the RAM in row-shifted order reading indices 0, 5, 10 and 15 in the first four cycles. The

four bytes of input data for the second frame are written at these locations in the first RAM block.

The four tables in first row of Figure 13.35 show the write addresses for the first four frames in the

firstRAMblock for data.These address patterns repeat after every four frames. Thememory locations

are given column-wise. Thememory location is numbered in the corner of each box,while the indices

of the values written in these locations are in the center. The four tables in the second row show the

sequential ordering of these indices for reading in row-shifted order. The column-wise numbers show

the memory locations that are read in a sequence to input the data in the specified format.

Figure 13.36 shows the systolic architecture. Each stage has its own RAM blocks for storing data

for a round and corresponding key. The addressing for reading from the RAM block and writing the

data in the same location is performed using the address generation unit shown with each memory

block. The addressing is done using an index. For four successive frames the value of the index is
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Figure 13.34 Timing diagram for the time-shared AES architecture
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addr = (addr+index)%16

Figure 13.35 Byte in-place indexing for byte systolic AES architecture. (a) Indices for writing data for first four frames. (b) Memory locations for reading

data in shift-row format
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generated by adding 4 into the previous index. For writing into all the RAM blocks, the index is

initialized to 1. So the first write in each RAM block is in sequential order. For reading the data

written in theRAMand at the same timewriting the second frame on a byte by byte basis, the address

is incremented as:

w addr ¼ w addrþ indexð Þ%16:

It is clear from Figure 13.36 that in-place storing of data into memory as given in (a) and then

reading in data in row-shifted form for the second frame requires. The index is updated after every 16

cycles as
index ¼ ðindexþ 4Þ%16

This pattern is repeated every four frames. The index value repeats as 1, 5, 9, and 13 and can be

directly selected from a 4:1 MUX as shown in Figure 13.36. The last value (i.e. the fifteenth)

computed for each round is directly sent to ARK of the next block for avoiding pipeline stall. The

architecture perfectly works in lock step. Once all the pipeline stages are filled, each clock cycle

inputs one byte of plain text data and generates one byte of ciphered output.

13.3.4 Channel Coding

Inmany communication systems, the next block in a transmitter is channel coding. This is performed

at the transmitter to automatically correct errors at the receiver. The transmitter performs coding of

the input data using convolution, Reed–Solomon or turbo codes. Inmany applicationsmore than one

type of error-correction coding is also performed. All these algorithms can be mapped in HW for

high-throughput applications. Description and architecture design of an encoder for block turbo

code (BTC) is given in this section.

The BTC serially combines two linear block codes, C1 and C2, to form the product code

P¼C1�C2 [39]. A block code is represented by (n,k), where n and k stand for codeword length and

number of information bits, respectively. For example, consider (7,4) extendedHamming code. This

code takes four information bits, computes three parity bits and appends them to the information bits

to create seven bits of code word. This can be represented by IIIIPPP, where I and P represent

information and parity bits. A two-dimensional turbo code is constructed by successively applying

coding to a 2-D information matrix first for all the rows and then for all the columns.

Figure 13.37 shows application of block turbo coding (7,4) by (7,4) to produce (49,16) block turbo

code. The information is arranged in a 4� 4matrix. Each row of the matrix is block coded and three

parity bits PH are attached. This operation results in a 4� 7 matrix. Now each column of this matrix

is again coded and the resultant matrix is shown in the figure.

A configurable design of a BTC encoder can be incorporated in a communication system that

supports a wide range of code rates. For example, by appropriately selecting from n1,n2¼ 11,26,57

the block size of information matrix can range from 121 bits to 4096 bits. For these values a number

of options are available to the user, as given in Table 13.1. The 11� 11 block of input data is coded as

a 16� 16 block where each row and column has 4 bits of c data and 1 bit of parity.

The standard Hamming encoder used for row and column operations is shown in Figure 13.38.

The registers ri for i¼ 0, . . ., 5 compute the redundant bits, whereas rp computes the parity bit.

The encoding polynomial is selected according to the code rate selected for encoding. Some of the

registers are not used for low code rates. The mode-sel selects one of the modes of operation.

The BTC is best suited to be implemented in hardware in a typical KPN setting of Figure 13.3.

This setting assumes three dual-port memories with an interface to the datapath. Figure 13.39 shows
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the interfaces and the memory blocks. The BTC starts encoding the data once enough bits are

available in AES out-memory which is filled by the AES engine of Section 13.3.3. The size is easily

calculated using the read and write pointers of the FIFO controller of AES out-memory. The BTC

reads the input data and keeps the intermediate results in its internalmemory, and finally the output is

written to BTC out-memory.

Figure 13.37 (49,16) block turbo code formulation by combining (7,4)� (7,4) codes

Table 13.1 Options for block turbo code for supporting different code rates

Mode number Input block

dimensions

Input

block size

Output block

dimensions

Output

block size

Code

rate

Rows Columns K Rows Columns n k/n

4 11 11 121 16 16 256 0.47

1 11 26 286 16 32 512 0.55

2 11 57 627 16 64 1024 0.61

9 26 11 286 32 16 512 0.55

5 26 26 676 32 32 1024 0.66

3 26 57 1482 32 64 2048 0.72

10 57 11 627 64 16 1024 0.61

11 57 26 1482 64 32 2048 0.72

6 57 57 3249 64 64 4096 0.79
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The FEC engine reads data written by the AES engine in AES out-memory to perform horizontal

encoding. The encoded data is written back into internal memory of the FEC engine. For the vertical

coding, the data is read from the internal FECmemory and the encoded data is written into FEC out-

memory.

13.3.5 Framing

For synchronization, different delimiters are inserted in data. For example, to indentify and synchro-

nize an AES frame, an 8-bit AES header can be inserted after every defined number of AES buffers.

Similarly, for synchronizing an FEC block, a header may also be inserted for synchronization. Beside

++data_in +
0

1

0

1

+
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g2g1g0 g4
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Figure 13.38 Standard Hamming encoder for BTC
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Figure 13.39 BTC system-level design. (a) BTC interfaces. (b) BTC memory block settings
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these headers, in mobile communications a framer serves several purposes. It is used for synchroni-

zation of data at the receiver. In burst communication, it is used for detection of the start of a burst. A

framer puts a pattern of bits as frame header that is also used for channel estimation, timing and

frequency error estimation. Figure 13.40 shows insertion of headers forAES and FEC synchronization

and a start of burst (SoB) header for burst detection and timing, frequency and channel estimation.

A training symbol can be designed to aid the estimation and synchronization process. The training

symbol also acts as SoB [40–42]. The technique presented in [42] is especially designed to give good

estimation of timing and frequency offsets and also provides ways of estimating channel impulse

response. The method presented is generic and can be used for any type of single or multi carrier

modulation scheme. A Golay complementary sequence C of length NG is selected and, for time-

domain training, set A¼C; for frequency-domain training assign A¼ fft(C). Now A is repeated L

timeswith some sign pattern to generate a training sequence. The time-domain training sequence for

L¼ 4 shown in Figure 13.41.

TheMATLAB� code below lists an implementation of the generation of these training sequences,

from [42], for different values of L. The sequence is directly modulated for computing estimates and

corrections at the receiver. For example, while performing OFDM modulation, the frequency-

domain training sequence for a specific value of L can be generated offline and modulated with a

carrier and appended with the OFDM modulated frames.

if L==2

Sign_Pattern = [1 1];

C = [1 1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 1];

elseif L == 4

Sign_Pattern = [-1 1 -1 -1];

C = [1 1 -1 1 1 1 1 -1];

elseif L == 8

Sign_Pattern = [1 1 -1 -1 1 -1 -1 -1];

C = [1 1 -1 1];

elseif L == 16

Sign_Pattern = [1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1];

C = [1 1];

end

A = fft(C);

SoB_training = [];

for i=1:L

SoB_training = [SoB_training Sign_Pattern(i)*A];

end

The sequence can be easily incorporated in the transmitted signal by storing it in a ROM and

appending it with the baseband modulated signal.

13.3.6 Modulation

13.3.6.1 Digital Baseband Modulation

Modulation is performed next in a digital communication system. A host of modulation techniques

are available, which may be linear or nonlinear. Theymay use single or multiple carriers. Theymay

also perform time-, frequency- or code-division multiplexing for multiple users. A description of

one of these techniques is given below.
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13.3.6.2 OFDM-based Digital Transmitter and Receiver

Owing to its robustness for multiple path fading, OFDM (orthogonal frequency-division multi-

plexing) is very effective for high-rate mobile wireless terminals. The scheme is used in many

modern communication system standards for wireless networks, such as IEEE 802.11(a) and

802.16(a), and digital broadcasting such as DAB, DVB-T and DRAM. OFDM uses multiple

orthogonal carriers for multi-carrier digital modulation. The technique uses complex exponentials.

This helps in formulating the modulation as computation of an inverse Fast Fourier Transform

(IFFT) of a set of parallel symbols, whereas FFT is performed at the receiver to extract the OFDM-

modulated symbols:

x tð Þ ¼
XN�1

m¼0

Xme
j2pm

T
t with 0 � t � T

whereXm is the symbol to be transmitted on the subcarrier with carrier frequency fm¼m/T. There are

N multi-carriers in an OFDM system, and the subcarriers

e
j
2pm
T

t

are orthogonal to each other over interval [0, T] as

1

T

ðT
0

e j
2pl
T
te�j 2pn

T
tdt ¼ dln

where l; n ¼ 01; 2; :::;N � 1: At the transmitter, the bits are first mapped to symbol Xm, and N of

these symbols (form¼ 0, . . .,N� 1) are placed in parallel for IFFT computation. The output of IFFT

is then seriallymodulated by a carrier frequency. To avoid intersymbol interference, and keeping the

periodicity of the IFFT block intact, a cyclic prefix from the end of the IFFT block is copied to the

start. The addition of a cyclic prefix is shown in Figure 13.42.
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Figure 13.41 Time-domain training sequence
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Figure 13.42 Adding cyclic prefix to an OFDM symbol

An OFDM system needs to address several issues that are standard to a communication system.

These issues are carrier and sampling clock frequency offsets, OFDM symbol or frame offset,

dealing with channel effects, and analog component noise and imperfections.

As the computation of timing and frequency offsets and the channel estimation are very critical for

OFDM-based systems, some of the IFFT carriers may also be used as pilot tones. Training-based

techniques are also popular that use a training sequence for these estimations. The MATLAB� code

below shows the use of a training sequence for estimation and a 32-point IFFT-based OFDM

transmitter. In the code the raw data is generated. The data is then block coded using a Reed–

Solomon encoder. This encoding is followed by convolution encoding using a 2/3 encoder. The coded

data is thenmapped toQPSK symbols. These symbols are then grouped in parallel for OFDMcoding:

clear all

close all

fec_en = 1;

% Each data set consists of 2 sets of 24 8-bit raw symbols,

% thus making the data length equal to 2*8*24=384

ofdm_burst_size = 24; % Number of OFDM frames in a burst of Tx

ofdm_train_per_burst = 1; % Number of trainings per burst

bps = 2;

DATA_SET_LEN = 384;

NO_OF_DATA_SET = 4; % For simulation

% RS code parameters adds 8 extra 8-bit symbols for error correction

RS_CODE_m = 8;

RS_CODE_k = 24;

RS_CODE_n = 32;

% After Reed–Solomn coding, the length of the burst becomes 2*8*32=512

% Convolution code parameters, the length becomes 512*3/2=768

% punct_code = [1 1 0 1];

code_rate = 1/2; %2/3;

trellis = poly2trellis(7, [133 171]);

tb_length = 3;

const_map = [-1-j -1+j 1-j 1+j];

N = 32; % dft_size

K = 4; % cyclic prefix

% OFDM symbol size with cyclic Prefix

sym_size = N + K;

L = 4; % for training

M = N/L;
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% TRANSMITTER

% Generate raw data

raw_data = randint(1, DATA_SET_LEN*NO_OF_DATA_SET);

frame_out = [];

out = [];

un_coded = [];

for burst_index=0:NO_OF_DATA_SET-1

% process data on frame by frame basis

frame = raw_data(DATA_SET_LEN*burst_index+1:

DATA_SET_LEN*(burst_index+1));

if (fec_en)

% Block encoding

% Put the raw data for RS encoder format

% The encoder generates n m-bit code symbols, that has k m-bit message

% symbols

% First put the bits in groups of m-bits to convert them

% to RS symbols

msg_in = reshape(frame,RS_CODE_m,DATA_SET_LEN/RS_CODE_m)’;

% Convert the m-bit symbols from binary to decimal while

% considering the left bit as MSB

msg_sm = bi2de(msg_in, ’left-msb’);

% Put the data in k m-bit message symbols

rs_msg_sm = reshape(msg_sm,length(msg_sm)/RS_CODE_k,RS_CODE_k);

% Convert the symbols into GF of 2^RS_CODE_m

msg_tx = gf(rs_msg_sm, RS_CODE_m);

% Encode using RS (n,k) encoder

code = rsenc(msg_tx, RS_CODE_n, RS_CODE_k);

% Convolution encoding

tx_rs = code.x.’;

tx_rs_st = tx_rs(:);

bin_str = de2bi(tx_rs_st,RS_CODE_m,’left-msb’)’;

bin_str_st = bin_str(:);

un_coded = [un_coded bin_str_st’];

% Perform convolution encoding

% conv_enc_out = convenc(bin_str_st, trellis, punct_code);

frame = convenc(bin_str_st, trellis)’;

end

frame_out = [frame_out frame];

end

% QPSK modulation

out_symb =reshape(frame_out, bps, length(frame_out)/bps)’;

out_symb_dec = bi2de(out_symb,’left-msb’);

mod_out = const_map(out_symb_dec+1);
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% OFDM modulation

ofdm_mod_out = [];

% Generate OFDM symbols for one burst of transmission

for index=0:ofdm_burst_size-1,

ifft_in = mod_out(index*N+1:(index+1)*N);

ifft_out = ifft(ifft_in, N);

ifft_out_cp = [ifft_out(end-K+1:end) ifft_out];

ofdm_mod_out=[ofdm_mod_out ifft_out_cp];

end

A burst is formed that appends a training sequence of Figure 13.41 to the OFDM data. A number of

OFDM symbols are sent in a burst. This number depends on the coherent bandwidth of the channel

that ensures the flatness of the channel on the entire bandwidth of transmission. The training is used

to estimate different parameters at the receiver:

% Generating training for start of burst, synchronization and estimation

% Generate the training offline and store in memory for

% appending it with input data

C = [1 1 -1 1 1 1 1 -1];

A = fft(C);

Sign_Pattern = [-1 1 -1 -1];

G = [];

for i=1:L

G = [G Sign_Pattern(i)*A];

end

% Add cyclic prefix to G

train_sym = [G(end-K+1:end) G]/4;

% Appending training to start of burst

ofdm_mod_out = [train_sym ofdm_mod_out];

The signal is transmitted after it is up-converted and mixed with a carrier. In a non-line-of-sight

mobile environment the transmitted signal gets to the receiver through multiple paths. If there is a

relative velocity between transmitter and receiver, the received signal frequency also experiences

Doppler shift. Themulti-path effects cause frequency fading. The signal also suffers from timing and

frequency offsets. The channel impurities are modeled using a Rayleigh fading channel where

timing and frequency offsets are also added to test the effectiveness of estimation and recovery

techniques in the receiver. An additive white Gaussian noise (AWGN) is also added in the signal to

test the design for varying signal to noise ratios (SNRs):

% Multi-path fading frequency selective channel model

ts = 1/(186.176e3); % sample time of the input signal

fd = 5; % maximum Doppler shift in Hz

tau = [0 8e-6 15e-6]; % path delays

pdb = [0 -10 -20]; % avg path gain

theta = 0.156; % frequency offset

SNR = 5; & signal to noise ratio in dbs

timing_offset = 18;

chan = rayleighchan(ts,fd,tau,pdb);
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chan.StoreHistory = 1; % To plot the time varying channel

% Frequency selective multi-path fading channel

% Passing the signal through a multipath Rayleigh fading channel

% and adding other channel impurities

Received_Signal = filter(chan, ofdm_mod_out);

% Plot(chan)

Received_Signal = Received_Signal .*

exp(j*2*pi*(theta/N)*(0:length(Received_Signal)-1));

Received_Signal = awgn(Received_Signal, SNR, ’measured’);

Received_Signal = [zeros(1,timing_offset) Received_Signal];

The coarse timing estimation is based on correlation of the training signal that consists of L parts

ofM size sequence. The algorithm computes the peak of the timingmatrix given by the following set

of equations:

ue dð Þ ¼ L

L�1

P dð Þj j
E dð Þ

0
@

1
A

2

P dð Þ ¼
XL�2

k¼0

b kð Þ
XM�1

m¼0

r* d þ kMþmð Þ � rðd þ kþ 1ð ÞMþmÞ

E dð Þ ¼
XM�1

i¼0

XL�1

k¼0

r d þ iþ kMð Þj2:��
The MATLAB� code here implements these equations.

% RECEIVER

% Timing and frequency estimation

for k = 1:L-1

b(k) = Sign_Pattern(k)*Sign_Pattern(k+1);

end

% Timing estimation

for d=1:N

E(d)= sum(abs(Received_Signal(d:d+L*M-1)).^2);

P(d) = 0;

for k=0:L-2

index = d+k*M;

indexP1 = d+(k+1)*M;

P(d) = P(d) + (b(k+1) * Received_Signal(indexP1:

indexP1+M-1)*Received_Signal(index:index+M-1)’);

end

Timing_Metric(d) = ((L/(L-1))*abs(P(d))/E(d))^2;

end

[x y] = max(Timing_Metric);

Coarse_Timing_Point = round(y);

d_max = Coarse_Timing_Point;
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For the frequency estimation, the training signal is first modified such that all the L parts have the

same sign. This modified training symbol is represented by {y(k): k ¼ 0, . . ., N� 1}.The coarse

estimate is given by:

Ry mð Þ ¼ 1

N�mM

XN�1

k¼mM

y* k�mMð Þy kð Þ; 0 � m � H

j mð Þ ¼ arg Ry mð Þ� ��arg Ry m�1ð Þ� �� �
2p; 1 � m � H

w mð Þ ¼ 3
L�mð Þ L�mþ 1ð Þ�HðL�HÞ
Hð4H2�6LHþ 3L2�1Þ

�u ¼ L

2P

XH
m¼1

w mð Þj mð Þ:

The following MATLAB� code implements these equations and computes frequency offset

estimation:

% Frequency estimation

H = L/2;

H = L/2;

w(1)=0; % not used

for m = 1:H

w(m+1)=3*L/(2*pi)*((L-m)*(L-m+1)-H*(L-H))/(H*(4*H^2-6*L*H+3*L^2-1));

end

y =[];

for i=1:L

y =[y Sign_Pattern(i)*Received_Signal(d_max+M*(i-1):d_max+i*M-1)];

end

for m = 0:H

index = m*M;

Ry(m+1) = 1/(N-index) * y(index+1:N)*y(1:N-index)’;

arg(m+1) = angle(Ry(m+1));

end

phi(1)=0; % not used

for m = 2:H+1

phi(m) = arg(m)-arg(m-1);

if phi(m) > pi

phi(m) = phi(m) - 2*pi;

elseif phi(m) < -pi

phi(m) = phi(m) + 2*pi;

end

end

Coarse_Frequency = phi*w’;

These coarse estimates are further refined in [42] and the block diagram of the system is shown in

Figure 13.43.

The training signal also aids in estimating the channel impulse response. The channel is assumed

to be static for a few OFDM symbols. If gains of K paths are:

h ¼ h0; h1; . . . ; hK�1
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then the received signal can be written as:

r ¼ ejW vð Þ � S � hþn
where

W vð Þ=diag 1; ej2pv=N ; ej2p2v=N ; . . . ; ej2pðN�1Þv=N� �
n= n 0ð Þn 1ð Þ . . . nðN�1Þ½ �

S

s 0ð Þ s �1ð Þ . . . s �kþ 1ð Þ
s 1ð Þ s 0ð Þ . . . s �kþ 2ð Þ

:

:

:

s N�1ð Þ s N�2ð Þ . . . s N�kð Þ

2
66666666664

3
77777777775

ð13:1Þ

Here, {s(k): k¼ –Ng, –Ng þ 1, . . ., N� 1} are the samples of the training sequence with cyclic

prefix, n is the noise vector, v is the frequency offset, and r is the received signal. The channel

estimation using coarse frequency offset can be written as:

ĥ ¼ SH � S� ��1
SH �WH v̂ð Þ � r
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Figure 13.43 Block diagram of complete OFDM receiver
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where v̂ is the coarse frequency offset estimate. The following MATLAB� code implements the

channel estimation:

ct = Coarse_Timing_Point;

cf = Coarse_Frequency;

r = Received_Signal(ct:ct+N-1);

for i = 1:N

w(i) = exp(j*2*pi*cf*(i+K-1)/N);

end

W = diag(w);

S = zeros(N, K);

for i = 1:N

S(i,:) = fliplr(train_sym(i+1:K+i));

end

h_cap = inv(S’*S)*S’*W’*r.’;

Channel_Estimate = h_cap;

The receiver first needs to estimate the frequency and timing offset. It also needs to estimate the

channel impulse response. When the timing and frequency errors have been estimated, the receiver

makes requisite corrections to the received signal using these estimations. The channel estimation is

also used to equalize the received signal. The OFDM, because of its multiple carriers, assumes the

channel for each carrier as flat. This flat fading factor is calculated for each carrier and the output is

adjusted accordingly. The symbols are extracted by converted output of FFT computation to serial

and applying slicer logic to the output. The symbols are then mapped to bits:

% Frequency and timing offsets compensation

Received_Signal = Received_Signal(Coarse_Timing_Point-K:end);

Received_Signal = Received_Signal.* exp(-j*2*pi *

((Coarse_Frequency)/N)*(0:length(Received_Signal)-1));

Initial_Point = K+N+K+1;

Received_Signal = Received_Signal(Initial_Point:Initial_Point+(N+K) *

(ofdm_burst_size-1)-1);

% Processing the synchronized data

Received_Signal = reshape(Received_Signal, N+K,ofdm_burst_size-1);

% Serial to parallel

Received_Signal_WOGI = Received_Signal(1:N,:); % remove cyclic prefix

Received_Signal_WOGI = fft(Received_Signal_WOGI,[],1);

Received_Signal_WOZP = zeros(N,ofdm_burst_size-1);

Received_Signal_WOZP(1:N/2,:) = Received_Signal_WOGI(1:N/2,:);

Received_Signal_WOZP((N/2)+1:end,:) = Received_Signal_WOGI(end-(N/2)+1:

end,:);

% Estimation

H = fft(Channel_Estimate,N);

CH = zeros(N,1);

CH(1:N/2) = H(1:N/2);

CH((N/2)+1:end) = H(end-(N/2)+1:end);

H_l_hat_square = abs(CH);

W = 1./CH;
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% Equalization

Estimated_Signal = [];

for Symbol_Number = 1:1:ofdm_burst_size-1

Present_Symbol = Received_Signal_WOZP(:,Symbol_Number);

Estimated_Symbol = Present_Symbol.*W;

Estimated_Signal = [Estimated_Signal Estimated_Symbol];

end

Received_Signal_WZP = reshape(Estimated_Signal, 1, N *

(ofdm_burst_size-1)); % Parallel to serial

% Scatterplot(Received_Signal_WZP)

% Title(‘Equalizer Output’)

Recovered_Signal = Received_Signal_WZP;

% Received_Signal_WZP = reshape(Estimated_Signal, 1,

N*(ofdm_burst_size-1)); % Parallel to serial

% Slicer

Bit_Counter = 1;

Bits = zeros(1,length(Recovered_Signal)*bps);

for Symbol_Counter = 1:length(Recovered_Signal)

% Slicer for decision making

[Dist Decimal] = min(abs(const_map -

Recovered_Signal(Symbol_Counter)));

% Checking for mimimum Euclidean distance

est = const_map(Decimal);

Bits(1,Bit_Counter:Bit_Counter+bps-1) = de2bi(Decimal-1,bps,

‘left-msb’);

% Constellation Point to Bits

Bit_Counter = Bit_Counter + bps;

end

scatterplot(Recovered_Signal)

title(‘Received Constellation’)

grid

Data = bit_stream(1:N*(ofdm_burst_size-1)*bps);

ErrorCount = sum((Data�=Bits))

scatterplot(Received_Signal_WZP); title(‘Received Constellation’);

grid

store = ErrorCount/length(Data)

Figure 13.44 shows the constellation of QPSK-based OFDM receiver of this section for different

channel conditions. For deep fades in the channel frequency resource, an OFDM-based system is

augmented with error-correction codes and interleaving. The interleaving helps in spreading the

consecutive bits in the input sequence to different locations in the transmitted signal.

It is quite evident from the MATLAB� code that simple FFT and IFFT cores can be used for

mapping the OFDM Tx/Rx in hardware. The channel estimation should preferably be mapped on a

programmable DSP. The timing error and frequency errors can also be calculated in hardware. The

system needs to be thought of as a cascade of PEs implementing different parts of the algorithm.

Depending on the data rates, the HW mapping may be fully parallel or time-shared.

13.3.7 Digital Up-conversion and Mixing

Themodulated signal is to be digitallymixedwith an intermediate frequency (IF) carrier. In a digital

receiver one of the two frequencies, 70 MHz or 21.4 MHz, is commonly used. The digital carrier is
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generated adhering to the Nyquist sampling criterion. To digitally mix the baseband signal with the

digitally generated carrier, the baseband signal is also up-converted to the same sampling rate as that

of the IF carrier. A digital up-converter performs the conversion in multiple stages using polyphase

decomposition. The designs of digital up- and down-converters using polyphase FIR and IIR filters

are given in Chapter 8.

In direct communication transmitter and receiver the inphase and quadrature components of a

modulated signal are converted to analog at baseband. The signal is then mixed using one or multiple

stagesof quadraturemixing andfinally the signal is transmitted after passing it throughapower amplifier.

13.3.8 Front End of the Receiver

The receiver front end usually performs processing in the analog domain. The received signal is

amplified and goes through one or multiple stages of mixing and is brought down to IF. The analog
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Figure 13.44 Constellation of QPSK-based OFDM received signal for different channel conditions and

frequency offsets. (a) 40 dB SNR. (b) 40 dB SNR with 30 Hz Doppler shift. (c) 20 dB SNR with 5 Hz

Doppler shift. (d) 10 dB SNR
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signal at IF is digitized using an A/D converter. The digitized signal goes through several stages of

down-conversion. A typical font end is given in Figure 13.45.

Exercises

Exercise 13.1

Figure 13.12 gives the design of a switch with multiple virtual channels for each physical channel.

Write RTLVerilog code of the design. Use the design to implement a network fabric for a 4� 4 array

MPSoC design.

Exercise 13.2

Design at RTL a flitization module that takes a packet with 80-bit of payload and divides it into six

flits. The header and tail flits consist of 8 bits of data and the rest of the flits contain 16 bits for data.

The composition of the original packet and flits are given in Figure 13.46.

Exercise 13.3

Use the COREGenerator utility of ISE Xilinx and generate memories and FIFOs for the design of

Figure 13.47. All data buses are 8 bits wide, the FIFOs are 16 deep and local memories are

512 deep. Select an FPGA from the Virtex-5 family. Write RTL Verilog code of the top-level

module.

Exercise 13.4

Design and code in RTLVerilog a block turbo encoder to perform encoding on a 2-D 11� 11-bit

block. The encoder first performs coding row-wise, adding four coded bits and one parity bit in each

row, and then encoding on each resultant column to add four coded bits and one parity bit. This

makes the size of the coded block 16� 16 as shown in Figure 13.48. The encoder is given in

Figure 13.38. For 11� 11-bit encoding, registers r4 and r5 are not used. After 11 cycles the registers

r0, r1, r2 and r3 have the coded bits and the parity bit comes from the parity-bit register rp. The parity

max uses data bits for the first 11 cycles and then it uses the coded bits to calculate the parity bit. The

same encoding is used to code rows and columns.
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Figure 13.45 Front end of a receiver bringing an RF signal to IF and then performing digital mixing
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Exercise 13.5

Design and code in RTL Verilog a dedicated and time-shared architecture of a digital quadrature

mixer that multiplies 16-bit I andQ samples at baseband to digitally generated 16-bit sin (x0n) and

cos (x0n). The time-shared design should only use one MAC unit. Truncate the output to 16-bit

numbers. Use one of the DDFS architecture covered in Chapter 12 for sine and cosine generation.

Exercise 13.6

Use systolic FFT architecture of Figure 8.14 to design 16-QAM-based 8 sub-carrier based OFDM

transmitter and receiver blocks. Write the code in RTL Verilog and test your design with Matlab

generated fixed-point implementation.

Exercise 13.7

Implement a 16-bit folded and parallel systolic AES architecture that uses the in-place indexing

technique of Sections 13.3.3.3 and 13.3.3.4, respectively.
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Exercise 13.8

Convert the code of the OFDM transmitter and receiver of Section 13.3.6.2 in fixed-point format.

Use the fi tool of MATLAB� and keep the datapath to 16-bit numbers.

Exercise 13.9

Design a fully parallel architecture to implement the LZ-77 algorithm using architecture presented

in Section 13.3.1. Keep the lengths of the search buffer and history buffer to 4 and 8 characters wide.
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