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Elements consisted at first of certain small
and primary Coalitions of minute Particles of
matter into Corpuscles very numerous and
very like each other. It will not be absurd to
conceive, that such primary Clusters may be
of far more sorts than three or five; and
consequenly, that we need not suppose, that
each of the compound Bodies we are treating
of, there should be found just three sorts of
such primitive Coalitions.

—Robert Boyle: The Sceptical Chymist,
Oxford, 1680.



Preface

Conducting polymers have permeated many fields of electrochemical research. Like
metals and alloys, inorganic semiconductors, molecular and electrolyte solutions,
and inorganic electroactive solids, they comprise a group of compounds and ma-
terials with very specific properties; indeed, there is now a research field focusing
on the electrochemistry of conducting polymers. Conducting polymers possess sim-
ilarities from an electrochemical point of view to all of the other compounds and
materials mentioned above, making them a highly fascinating research topic. Fur-
thermore, such research has led to numerous new applications, ranging from corro-
sion protection to analysis. There are a huge number of electrochemical papers on
conducting polymers, and a good number of books on this topic too. However, the
editor of the present series of Monographs in Electrochemistry noted that there was
no modern monograph on the market in which the electrochemistry of conducting
polymers is treated with the appropriate balance of completeness and selectivity.
Such a monograph should be written by an active electrochemist who is experi-
enced in the field of conducting polymers, and who possesses a solid knowledge
of the theoretical foundations of electrochemistry. Therefore, I am very happy that
György Inzelt from the Eötvös Loránd University in Budapest, Hungary, agreed to
write this monograph. I hope that graduate students in electrochemistry, the chem-
istry and physics of materials, industrial chemists, and researchers at universities
and industry alike will find this monograph enjoyable and stimulating, as well as
helpful for their work.

March 2008 Fritz Scholz
Editor of the series Monographs in Electrochemistry
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Chapter 1
Introduction

Polymers have long been thought of and applied as insulators. Indeed, not so long
ago, any electrical conduction in polymers—mostly due to loosely bound ions—
was generally regarded as an undesirable phenomenon. Although the ionic conduc-
tivity of polymer electrolytes (macromolecular solvents containing low-molar-mass
ions) and polyelectrolytes (macromolecules containing ionizable groups) have been
widely utilized in electrochemical systems over the last few decades (e.g., in power
sources, sensors, and the development of all-solid-state electrochemical devices),
the emergence of electronically conducting polymers has resulted in a paradigmatic
change in our thinking and has opened up new vistas in chemistry and physics [1].

This story began in the 1970s, when, somewhat surprisingly, a new class of poly-
mers possessing high electronic conductivity (electronically conducting polymers)
in the partially oxidized (or, less frequently, in the reduced) state was discovered.
Three collaborating scientists, Alan J. Heeger, Alan G. MacDiarmid and Hideki
Shirakawa, played a major role in this breakthrough, and they received the Nobel
Prize in Chemistry in 2000 “for the discovery and development of electronically
conductive polymers” [2, 4–8].

As in many other cases in the history of science, there were several precursors
to this discovery, including theoretical predictions made by physicists and quantum
chemists, and different conducting polymers that had already been prepared. For
instance, as early as 1862, Henry Letheby prepared polyaniline by the anodic oxi-
dation of aniline, which was conductive and showed electrochromic behavior [9].

Nevertheless, the preparation of this polyacetylene by Shirakawa and coworkers
and the discovery of the large increase in its conductivity after “doping” by the
group led by MacDiarmid and Heeger actually launched this new field of research.

Electrochemistry has played a significant role in the preparation and characteriza-
tion of these novel materials. Electrochemical techniques are especially well-suited
to the controlled synthesis of these compounds and for the tuning of a well-defined
oxidation state.

The preparation, characterization and application of electrochemically active,
electronically conducting polymeric systems are still at the foreground of research
activity in electrochemistry. There are at least two major reasons for this intense
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2 1 Introduction

interest. First is the intellectual curiosity of scientists, which focuses on under-
standing the behavior of these systems, in particular on the mechanism of charge
transfer and on charge transport processes that occur during redox reactions of con-
ducting polymeric materials. Second is the wide range of promising applications
of these compounds in the fields of energy storage, electrocatalysis, organic elec-
trochemistry, bioelectrochemistry, photoelectrochemistry, electroanalysis, sensors,
electrochromic displays, microsystem technologies, electronic devices, microwave
screening and corrosion protection, etc.

Many excellent monographs on and reviews of the knowledge accumulated re-
garding the development of conducting polymers, polymer film electrodes and
their applications have been published, e.g., [1, 10–53]. Beside these comprehen-
sive works, surveys of specific groups of polymers [40, 49], methods of charac-
terization [50–54] or areas of application [18, 21, 34, 36–38, 47, 48] have also ap-
peared. These novel materials with interesting and unanticipated properties have
attracted workers across the scientific community, including polymer and synthetic
chemists [13, 14, 22, 23], material scientists [14, 20, 31, 32], organic chemists [17],
analytical chemists [16, 21, 36, 45], as well as theoretical and experimental physi-
cists [8, 31, 32].

After 30 years of research in the field, the fundamental nature of charge propa-
gation is now in general understood; i.e., the transport of electrons can be assumed
to occur via an electron exchange reaction (electron hopping) between neighbor-
ing redox sites in redox polymers, and by the movement of delocalized electrons
through conjugated systems in the case of so-called intrinsically conducting poly-
mers (e.g., polyaniline, polypyrrole). (In fact, several conduction mechanisms, such
as variable-range electron hopping and fluctuation-induced tunneling, have been
considered.) In almost every case, the charge is also carried by the movement of
electroinactive ions during electrolysis; in other words, these materials constitute
mixed conductors. Owing to the diversity and complexity of these systems—just
consider the chemical changes (dimerization, cross-linking, ion-pair formation, etc.)
and polymeric properties (chain and segmental motions, changes in the morphology,
slow relaxation) associated with them, the discovery of each new system brings new
problems to solve, and much more research is still needed to achieve a detailed un-
derstanding of all of the processes related to the dynamic and static properties of
various interacting molecules confined in a polymer network.

Although the conductivity of these polymers is an interesting and an utilizable
property in itself, their most important feature is the variability of their conductivity,
i.e., the ease with which the materials can be reversibly switched between their
insulating and conducting forms.

In this work, the topics that are presently of greatest interest in this field, along
with those that may be of much interest in the future, are discussed. Some of the
most important experiences, existing models and theories are outlined, and the
monograph also draws attention to unsolved problems. Some chapters are also de-
voted to the most typical representatives of this group of materials and the most
important techniques used for the characterization of these systems. Last but not
least, abundant instances of the applications of conducting polymers are described.
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The examples presented and the references recommended herein have been selected
from more than ten thousand research papers, with emphasis placed on both classi-
cal and recent works. It is hoped that this monograph will be helpful to colleagues—
electrochemists and non-electrochemists alike—who are interested in this swiftly
developing field of science.

Considering the rapidly increasing number of applications of polymers in elec-
trochemical cells, it can be declared that electrochemistry is currently moving out
of the Bronze Age (i.e., typically using metals) and into the era of polymers.

Lecturi salutem!
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Chapter 2
Classification of Electrochemically Active
Polymers

Electrochemically active polymers can be classified into several categories based on
the mode of charge propagation (note that insulating polymers are not considered
here except for those with variable conductivity). The mode of charge propagation
is linked to the chemical structure of the polymer. The two main categories are
electron-conducting polymers and proton (ion)-conducting polymers. We will focus
on electron-conducting polymers here.

We can also distinguish between two main classes of electron-conducting poly-
mers based on the mode of electron transport: redox polymers and electronically
conducting polymers.

In this chapter we provide examples of each type of electron-conducting poly-
mers, listing some of the most typical and widely studied of these polymers, as well
as several new and interesting representatives of this class of materials. Some sec-
tions are also devoted to combinations, such as electronically conducting polymers
containing redox functionalities and copolymers. Composites are briefly discussed
too.

2.1 Redox Polymers

Redox polymers contain electrostatically and spatially localized redox sites which
can be oxidized or reduced, and the electrons are transported by an electron ex-
change reaction (electron hopping) between neighboring redox sites if the segmental
motions enable this. Redox polymers can be divided into several subclasses:

• Polymers that contain covalently attached redox sites, either built into the chain,
or as pendant groups; the redox centers are mostly organic or organometallic
molecules

• Ion-exchange polymeric systems (polyelectrolytes) where the redox active ions
(mostly complex compounds) are held by electrostatic binding.

Inzelt, Conducting Polymers 7
DOI: 10.1007/978-3-540-75930-0, c© Springer 2008



8 2 Classification of Electrochemically Active Polymers

2.1.1 Redox Polymers Where the Redox Group Is Incorporated
into the Chain (Condensation Redox Polymers,
Organic Redox Polymers)

2.1.1.1 Poly(Tetracyanoquinodimethane) (PTCNQ) [1–21]

Synthesis: 2,5-bis(2-hydroxyethoxy)-7,7′,8,8′-tetracyanoquinodimethane+ adipoyl
chloride [2, 11].

Redox reaction:

[TCNQ]polym + e−+[K+]sol � [TCNQ
−• K+]polym (2.1)

(orange) (blue)

[TCNQ
−• K+]polym + e−+[K+]sol � [TCNQ2−K+

2 ]polym (2.2)

(colorless)

The subscripts “polym” and “sol” denote the polymer and solution phases, respec-
tively.

These reaction formulae indicate that the electron transfer taking place at the
metal|polymer interface is accompanied by ionic charge transfer at the polymer|solu-
tion interface, in order to maintain the electroneutrality within the polymer phase.
Counterions usually enter the polymer phase, as shown above. However, less fre-
quently the electroneutrality is established by the movement of co-ions present in
the polymer phase, e.g., in so-called “self-doped” polymers. Oxidation reactions are
often accompanied by deprotonation reactions, and H+ ions leave the film, remov-
ing the excess positive charge from the surface layer. It should also be mentioned
that simultaneous electron and ion transfer is also typical of electrochemical in-
sertion reactions; however, this case is somewhat different since the ions do not
have lattice places in the conducting polymers, and both cations and anions may
be present in the polymer phase without any electrode reaction occurring. The es-
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tablishment of equilibria and the different reaction and transport mechanisms in-
volved will be discussed in Chaps. 5 and 6, respectively. For the sake of simplicity,
only the electron transfer (redox transformation) will be indicated in some cases
below.

In the case of the formation of TCNQ dimers, TCNQ−2 K+ and (TCNQ)2−
2 K+

2
(green) and the protonated species TCNQH−K+ and TCNQH2 may also occur in-
side the polymer film.

2.1.1.2 Poly(Viologens) [22–26]

[Poly(N,N′-alkylated bipyridines]

Poly(xylylviologen)

Synthesis: α ,α ′-dibromoxylene + 4,4′-bipyridine [25].
Redox reaction:

bipm2+ + e− � bipm
+• ; bipm

+• + e−� bipm (bipyridine) (2.3)

(colorless, (intense color: green) (weak color)

CT complex:

scarlet)

MV2+ + e− � MV+ ; MV+ + e−� MV (methylviologen) (2.4)

(colorless) (intense color: blue, (colorless)

dimer: red)
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2.1.2 Redox Polymers with Pendant Redox Groups

2.1.2.1 Poly(Tetrathiafulvalene) (PTTF) [27–31]

Synthesis: poly(vinylbenzylchloride)+ potassium salt of p-hydroxyphenyltetrathia-
fulvalene or other derivatives [30, 31].

Redox reaction:

[TTF]polym +[X−]sol � [TTF
+•X−]polym + e− (2.5)

[TTF
+•X−]polym +[X−]sol � [TTF2+X−2 ]polym + e− (2.6)

Also, formation of dimers: TTF+
2 , TTF2+

2 .

2.1.2.2 Quinone Polymers [32–38]

Poly(vinyl-p-benzoquinone) Poly(acryloyldopamine)

Synthesis: radical polymerization of vinylbis(1-ethoxyethyl) hydroquinone [34] or
by reaction of acryloyl chloride with dopamine [33].
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Redox reactions (in nonaqueous solutions) [32]:

(2.7)

(in aqueous solutions) [33]:

hydroquinone form→ quinone form +2e−+ 2H+ (2.8)

Poly(naphthoquinone) (PNQP)

Synthesis: electropolymerization of 5-hydroxy-1,4-naphthoquinone [38].
Redox reaction:

PNQP+ 2e−+ 2H+ � PNQPH2 (2.9)

Poly(anthraquinone) (PQ)

Synthesis: poly(ethyleneimine) + 2-anthraquinone carbonyl chloride [36, 37].
Redox reaction:

PQ+ 2e−+ 2H+ � PQH2 (2.10)
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2.1.2.3 Poly(Vinylferrocene) (PVF or PVFc)
(Organometallic Redox Polymer) [39–75]

Synthesis: polymerization of vinylferrocene [73].
Redox reaction:

[ferrocene]polym +[X−]sol � [ferrocenium+X−]polym + e− (2.11)

2.1.2.4 [Ru or Os (2,2′-Bipyridyl)2(4-Vinylpyridine)nCl]Cl [76–83]

[Ru(bpy)2(PVP)nCl]Cl, n = 5

Also copolymers with styrene or methylmethacrylate; PVP was also replaced by
poly-N-vinylimidazole [77–79, 83, 84].

Redox reaction [76–83]:

[Ru2+X−2 ]polym +[X−]sol � [Ru3+X−3 ]polym + e− (2.12)

[Os2+X−2 ]polym +[X−]sol � [Os3+X−3 ]polym + e− (2.13)
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2.1.3 Ion-Exchange Polymers Containing Electrostatically
Bound Redox Centers

Usually the electrode surface is coated with the ion-exchange polymer, and then the
redox-active ions enter the film as counterions. In the case of a cation-exchanger,
cations (in anion-exchangers, negatively charged species) can be incorporated,
which are held by electrostatic binding. The counterions are more or less mobile
within the layer. A portion of the low molar mass ions (albeit usually slowly)
leave the film and an equilibrium is established between the film and solution
phases. Polymeric (polyelectrolyte) counterions are practically fixed in the surface
layer.

2.1.3.1 Perfluorinated Sulfonic Acids (Nafion R©) [85–105]

Synthesis: copolymerization of perfluorinated ethylene monomer with SO2F con-
taining perfluorinated ether monomer [88, 91]; m = 6−12. Nafion R© 120 (DuPont)
means 1200 g polymer per mole of H+, there are Nafion R© 117, 115, 105, etc.

Dow ionomer membranes [89]:

Redox-active ions that have been extensively investigated by using Nafion-coated
electrodes:

Co(bpy)3+/2+/+
3 (bpy = 2,2′-bipyridine) [86, 87],

Co(NH3)
3+/2+
6 [86] Ru(NH3)

3+/2+
6 [86],

Ru(bpy)3+/2+
3 [86, 87, 92, 94, 96, 98,99, 102–105],

Os(bpy)3+/2+
3 [85, 92, 100, 101],

Eu3+ [87],

ferrocenes+/0 [98, 101], methylviologen (MV2+/+/0) [90, 93, 98],

methylene blue [97], phenosafranin and thionine [95].
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2.1.3.2 Poly(Styrene Sulfonate) (PSS) [106–113]

Redox ions investigated are as follows: Ru(bpy)3+/2+, Os(bpy)3+/2+ [106–114],
Eu3+/2+ [109].

2.1.3.3 Poly(4-Vinylpyridine) (PVP, QPVP) [115–127]

In this cationic, anion-exchanger polymer, the following redox anions have typically
been incorporated and investigated:

Fe(CN)3−/4−
3 [116–118,120–123,125–127], IrCl2−/3−

6 [116–119,122,126,127],
Mo(CN)3−/4−

8 [126], W(CN)3−/4−
8 [126], Ru(CN)3−/4−

6 , Co(CN)3−/4−
6 ,

Fe(edta)−/2−, Ru(edta)−/2− [124].

2.2 Electronically Conducting Polymers
(Intrinsically Conducting Polymers—ICPs)

In the case of conducting polymers, the motion of delocalized electrons occurs
through conjugated systems; however, the electron hopping mechanism is likely to
be operative, especially between chains (interchain conduction) and defects. Elec-
trochemical transformation usually leads to a reorganization of the bonds of the
polymers prepared by oxidative or less frequently reductive polymerization of ben-
zoid or nonbenzoid (mostly amines) and heterocyclic compounds.
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2.2.1 Polyaniline (PANI) and PANI Derivatives [128–348]

Idealized formulae of polyaniline at different oxidation and protonation states:
L = leucoemeraldine (closed valence; shell reduced form; benzenoid structure);
E = emeraldine (radical cation intermediate form; combination of quinoid and ben-
zenoid structures); P = pernigraniline form (quinoid structure); LH8x, EH1

8x, EH2
8x

are the respective protonated forms:

Illustration of delocalization (polaron lattice) of the emeraldine state:

Synthesis: oxidative electropolymerization of aniline in acidic media [128,133,141,
157,162,168,170,184,186,189,201,215,216,222,224,250,257,261,264,278,287,
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296, 318, 320–324] or chemical oxidation by Fe(ClO4)3, K2S2O8 [304, 305, 325,
326].

Redox reactions [142, 143, 147, 172, 220,227,243,244,274,321, 327]:

The color change during the redox transformations is as follows: yellow � green
� blue (violet).

It should be mentioned that polymers that behave in a similar way to PANI can
also be prepared from compounds other than aniline (e.g., from azobenzene [201]).
Substituted anilines—especially the formation and redox behavior of poly(o-tolu-
idine) (POT)—have been studied in detail [328–343].

Poly(o-toluidine)

Polymers such as poly(o-ethoxyaniline) [344], poly(1-pyreneamine) [345], and
poly(1-aminoanthracene) [346] have also been synthesized by electropolymeriza-
tion from the respective monomers.

Poly(1-aminoanthracene)

Interestingly, the oxidative electropolymerization of 1,8-diaminonaphthelene leads
to a polyaniline-like polymer; however, the second amine group of the monomer
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does not participate in the polymerization reaction [319]:

The redox transformations of poly(1,8-diaminonaphthalene) (PDAN) can be de-
scribed by the following scheme:

The oxidative polymerizations of other aryl amines yield polymers with ladder
structures. We will discuss these polymers later (Sects. 2.2.3, 2.2.4, 2.2.13).

In the case of the electropolymerization of 2-methoxyaniline [347, 348] at high
monomer concentrations, a PANI-like conducting polymer was obtained, while at
low concentrations a polymer with phenazine rings was formed [347]:
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Different “self-doped” polyanilines have been prepared using aniline derivatives
containing carboxylate or sulfonate groups, or the acid functionalities were incor-
porated during a post-modification step using the appropriate chemical or electro-
chemical reactions [158, 197, 254, 303].

Poly(aniline-co-N-propanesulfonic acid-aniline)

Copolymers from aniline and another monomer (e.g., o-phenylenediamine [253]) or
even from aniline and two other aniline derivatives [307] have also been electrosyn-
thesized and characterized (see later).

2.2.2 Poly(Diphenylamine) (PDPA) [349–362]

[Specifically, poly(diphenylbenzidine).]

Synthesis: oxidative electropolymerization of diphenylamine in acid media [349–
358].
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Redox reactions:
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where

Color change is colorless (reduced form) � bright blue (violet) (oxidized form) at
pH 0.

A polymer with a similar structure and properties can also be obtained by the
oxidative electropolymerization of 4-aminobiphenyl [356] or benzidine [353].
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2.2.3 Poly(o-Phenylenediamine) (PPD) [363–390]

(In fact, PPD is a ladder polymer that contains pyrazine and phenazine rings.)

Preparation: oxidative electropolymerization of o-phenylenediamine [363–385], less
frequently by chemical oxidation. A similar polymer can be prepared by the elec-
tropolymerization of 2,3-diaminophenazine [383].

Redox reaction:

(2.14)

(2.15)

Color change: colorless (reduced form) � red (oxidized form).

2.2.4 Poly(2-Aminodiphenylamine) (P2ADPA) [391]

P2ADPA contains phenazine and open-ring (PANI-like) units.
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Synthesis: oxidative electropolymerization of 2-aminodiphenylamine in acid media.
Redox reaction: similar to that of polyphenazine and neutral red (see later).

2.2.5 Polypyrrole (PP) and PP Derivatives [392–522]

PP (usual simple abbreviated formula)

(more realistic structure)

Synthesis: oxidative electropolymerization of pyrrole [394, 398–400, 402, 408, 411,
413, 420, 441, 454, 464, 474, 480, 483, 492, 514, 519] or chemical oxidation by
Fe(ClO4)3, K2S2O8, etc. [513].

Redox reaction [395–401,409,421,422,426,438,439,465,485,500,506,508,515,
516, 522]:

(2.16)
Polaron (radical cation associated with a lattice distortion) (PP+).

(2.17)
Bipolaron (dication associated with a strong localized lattice distortion).

The color change is yellow � black.
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2.2.6 Polythiophene (PT) and PT Derivatives [523–596]

PT

(see PP)

Synthesis: oxidative electropolymerization from thiophene or chemical reduction of
halogen-substituted thiophene [595].

Usually substituted thiophenes (e.g., 3-methylthiophene) or bithiophene are used
in electropolymerization since the oxidation process leading to the formation of
cation radicals and polymerization occurs at less positive potentials [521, 522, 525,
528, 531, 533, 535, 538, 541, 546, 563, 583, 586, 596].

Redox reactions [496, 524–526, 529, 534–539, 557, 566, 570,582,583]:

(2.18)

Cation radical (polaron), PT+.

PT+A−+ nA−� PT2+A−2 + ne− (2.19)

Dication (bipolaron) state (see PP).
During the redox reaction there is a color change; e.g., in the case of poly(3-

methylthiophene), red � blue.
Many thiophene derivatives have been polymerized in order to obtain new mate-

rials tailored for different purposes. Roncali [596] reviewed the enormous amount
of literature regarding the synthesis, functionalization and applications of polythio-
phenes in 1992. Beside the polymerizations of thiophene and bithiophene, poly-
mers from several thiophene oligomers, substituted thiophenes, thiophenes with
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fused rings—among others 3-substituted thiophenes with alkyl chains (e.g., methyl-,
ethyl-, butyl-, octyl), fluoralkyl chains, aryl groups, oxyalkyl groups, sulfonate
groups, thiophene–methanol, thiophene–acetic acid, thiophenes containing redox
functionalities, etc.—have been prepared and characterized. Some examples are
shown below:
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The polymer obtained by the polymerization of 3,4-ethylenedioxy-thiophene, PE-
DOT, will now be described separately.
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Fig. 2.1 Anodic peak potential of thiophene and thiophene derivatives as a function of their Ham-
mett substituent constants [586]. (Reproduced with the permission of The Electrochemical Society)

2.2.7 Poly(3,4-Ethylenedioxythiophene) (PEDOT)
and Its Derivatives [597–623]

PEDOT
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Fig. 2.2 Anodic peak potentials of thiophene monomers vs. their respective polymers in
TEABF4/acetonitrile [586]. (Reproduced with the permission of The Electrochemical Society)

Synthesis: electropolymerization of EDOT monomer.
Redox processes: similar to PT.

2.2.8 Polyphenazine (PPh) and Poly(1-Hydroxyphenazine)
(PPhOH)

Polyphenazine (PPh) [595, 624]
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Synthesis: oxidative electropolymerization of phenazine in acid media in the dark
[624]. (The photoreduction of phenazine produces 1-hydroxyphenazine, and then
poly(1-hydroxyphenazine) is formed.) Dehalogenation polymerization of 2,7-di-
bromophenazine [595].

Redox reactions: the polymer exhibits the redox transformations of phenazine
(Ph), which take place in two one-electron steps:

PhH+A−+ e−+ H+ � PhH
+•
2A−pH≤ 0 (2.20)

PhH
+•
2A−+ e− � PhH2 + A− (2.21)

Ph+ e−+ 2H+ + A− � PhH
+•
2A− pH≤ 1−2 (2.22)

Ph+ e−+ H+ � PhP• pH≤ 2−4 (2.23)

Ph+ e−+ K+ � Ph−• K+ pH > 5 (2.24)

PhH•+ e−+ K+ � PhH−K+ (2.25)

Ph−• K+ + e−+ H+ � PhH−K+ (2.26)

Ph
−• K+ + e−+ K+ � Ph2−(K+)2 (2.27)

where
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Poly(1-Hydroxyphenazine) (PPhOH) [625–628]

Synthesis: oxidative electropolymerization of 1-hydroxyphenazine in acid media [626,
627].

Redox reaction: see polyphenazine.

2.2.9 Poly(Acridine Red) (PAR) [629]

(The exact position of the linkage has not yet been determined.)

Synthesis: oxidative electropolymerization of acridine red in aqueous solution at
pH 7.4 [629].

The redox transformations of PAR have not been studied thus far. However, it
has been demonstrated that the carmine polymer film has catalytic activity, and can
be used in the determination of dopamine [629].
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2.2.10 Poly(Neutral Red) (PNR) [630–639]

Synthesis: oxidative electropolymerization of neutral red [635–638].
Redox reaction [630–639]:

(2.28)

This is a pH-dependent process.

2.2.11 Poly(Phenosafranin) (PPhS) [640–642]

PPhSA−
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Synthesis: oxidative electropolymerization of phenosafranin in acid media [640].
Redox reaction [640]:

(2.29)

2.2.12 Polycarbazoles (PCz) [643–660]

Polycarbazole

Poly(N-vinylcarbazole) (PVCz)

Synthesis: anodic polymerization of carbazole [643,651,653] or chemical polymer-
ization of N-vinylcarbazole [644, 646].
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Redox reaction [649, 651, 653]:

(2.30)
Protonation may also occur.

Color change: colorless (reduced) � dark green (oxidized) [660].

2.2.13 Poly(Methylene Blue) (PMB)
and Other Polythiazines [661–676]

(The exact position of the linkage has not yet been determined.)

Synthesis: oxidative electropolymerization of methylene blue at pH 8.2 [268, 269,
667, 670, 673].

Redox reaction: PMB shows similar electrochemistry to the parent compound
[667–671, 673].

At low pH values:

(2.31)
At higher pH values:

(2.32)



2.2 Electronically Conducting Polymers (Intrinsically Conducting Polymers—ICPs) 33

In a similar way, other phenothiazines such as methylene green [676] azure A [664,
674], toluidine blue [675] and thionine [662, 663, 666, 667, 673] have also been
electropolymerized and characterized.

2.2.14 Poly(o-Aminophenol) (POAP) [677–689]

POAP contains phenoxazine and oxazine rings.
Synthesis: oxidative electropolymerization of o-aminophenol in acid media [277–

279, 676, 680].
Redox reaction [282–285, 287, 288, 386, 677, 681, 689]:

(2.33)

(2.34)
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Both the reduced and oxidized forms can be protonated, and then H+ exchange can
also occur.

2.2.15 Polyfluorene (PF) and Poly(9-Fluorenone)
(PFO) [690–693]

Synthesis: oxidative electropolymerization in boron trifluoride diethyl etherate
(BFEE) or BFEE + CHCl3 solvents [693].

Redox reaction: the polymer films show good redox behavior. The mechanism
has not yet been clarified.

Color change is blue � deep brown (PF) and dark brown � red (doped state)
(PFO). The polymer, like the monomer, exhibits photoluminescence.

2.2.16 Polyluminol (PL) [694–696]
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Synthesis: oxidative electropolymerization of luminol (3-aminophthalhydrazide) in
acid media [695].

Redox reaction: PANI-like benzenoid → quinoid, pH-dependent transforma-
tions [694–696].

PL shows similar electrochemiluminescence to the parent compounds in alkaline
media.

2.2.17 Polyrhodanine (PRh) [697]

Synthesis: oxidative electropolymerization of rhodanine in ammonium oxalate so-
lution [697].

Redox reaction:

(2.35)
Color change: colorless � transparent yellow � dark purple.

2.2.18 Polyflavins (PFl) [698]

Q is different for the flavins indicated below.
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Synthesis: oxidative electropolymerization of riboflavin, flavin mononucleo-
tide (FMN) and flavin adenine dinucleotide (FAD) in acid media [698].

Redox reactions: monomer-type, pH-dependent redox activity. This indicates
that polymerization occurs without the destruction of the corresponding monomer.
The structure of the electronically conducting, redox-active polymer is similar to
that of polyazines, with the monomers bound to each other via ring-to-ring coup-
ling [698].

2.2.19 Poly(5-Carboxyindole), Poly(5-Fluorindole)
and Polymelatonin

Poly(5-Carboxyindole) (PCI) [699] and Poly(5-Fluorindole) (PFI) [700]

R =−COOH (PCI) and −F (PFI), respectively

Synthesis: oxidative electropolymerization of 5-carboxyindole at 1.4 V vs. SCE in
TEABF4| acetonitrile solution [699], and that of 5-fluorindole by potential cycling
between 0 and 1.2 V vs. SCE in diethyl etherate or between 0.6 and 1.4 V vs. SCE
in TBAF4| acetonitrile [700].

Redox reaction: two redox processes: indole→ cation radical→ quinoid struc-
ture or dication [699].

Color change: gray-green (reduced)→ dark green (oxidized) [700].

Polymelatonin (PM) [701]

PM

Synthesis: oxidative electropolymerization of melatonin (N-acetyl-5-methoxytryp-
tamine) in an aqueous solution of LiClO4 (pH 1.5) [701].
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Redox reaction:

(2.36)

Polyindole has also been prepared and characterized [386].

2.2.20 Poly(New Fuchsin) (PnF) [702, 703]

Synthesis: oxidative electropolymerization of new fuchsin [702, 703].
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Redox reaction:

(2.37)

2.2.21 Poly(p-Phenylene) (PPP) and Poly(Phenylenevinylene)
(PPPV)

Poly(p-Phenylene) (PPP) [704–708]

PPP

Synthesis: reductive coupling of dihalogenophenyl compounds in the presence of
Ni0 complexes [704–706] or oxidative coupling of cation radicals originating from
either benzene or biphenyl species in weakly nucleophilic media [708]. Highly
crystalline PPP films have been prepared by electrochemical oxidation from ben-
zene/96% H2SO4 solution [706, 707].

Redox reaction:

(2.38)

(2.39)

Poly(Phenylenevinylene) (PPPV) [709, 710]
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Synthesis: electrochemical reduction of α , α , α ′, α ′-tetrabromo-p-xylene
TEABF4/DMF+ 0.2%H2O at −2.3 V [709, 710].

2.2.22 Polytriphenylamine (PTPA)
and Poly(4-Vinyl-Triphenylamine) (PVTPA) [711, 712]

Synthesis: PVTPA was produced by free-radical polymerization of 4-vinyl-
triphenylamine; the electrode was then coated with this polymer using an evapo-
ration technique, and finally the electrooxidation results in the dimer form shown
above [711]. PTPA was synthesized by the electrooxidative polymerization of triph-
enylamine in acetonitrile/TBAPF6 [711].

Redox reaction:

(2.40)
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2.3 Electronically Conducting Polymers with Built-In
or Pendant Redox Functionalities

2.3.1 Poly(5-Amino-1,4-Naphthoquinone) (PANQ) [713]

(Polyaniline-type polymer involving one quinone group per ANQ moiety.)

Synthesis: electrooxidation of 5-amino-1,4-naphthoquinoneresulting in electropoly-
merization via head-to-tail coupling [713].

Redox reactions: the polymer shows both quinone and PANI electrochemis-
try [713]:

(2.41)

(2.42)
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2.3.2 Poly(5-Amino-1-Naphthol) [714, 715]

Synthesis: oxidative electropolymerization from 5-amino-1-naphthol in acid me-
dia. In basic media, the polymerization proceeds through the oxidation of the −OH
group and yields the poly(naphthalene oxide) structure [714].

Redox reaction: polyaniline-like behavior in acid media.

2.3.3 Poly(4-Ferrocenylmethylidene-4H-Cyclopenta-[2,1-b;3,4-b′]-
Dithiophene) [716]

Synthesis: oxidative electropolymerization of the respective cyclopentadithiophene
monomers via the coupling of the thiophene units [716].

Redox reactions: this polymer exhibits the redox transitions of both the ferrocene
unit and the polythiophene backbone.
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2.3.4 Fullerene-Functionalized Poly(Terthiophenes)
(PTTh–BB) [717]

Synthesis: electropolymerization of N-methyl-2-(2-[2,2′;5′,2′′-terthiophen-
3′-yl]ethenyl)fullero- [3, 4]-pyrrolidine [717].

Redox reaction: the polymer shows the redox reactions of fullerene and polythio-
phene.
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2.3.5 Poly[Iron(4-(2-Pyrrol-1-Ylethyl)-4′-Methyl-2,2′-
Bipyridine)2+

3 ] [718, 719]

Synthesis: electrochemical polymerization of the parent compound [718].
Redox reactions: it exhibits the redox behaviors of both the complex and the

polypyrrole [719].

2.3.6 Polypyrrole Functionalized by Ru(bpy)(CO)2 [720]

Synthesis: two-electron reduction of [Ru(bpy)(CO)2(CH3CN)]2+
2 , resulting in redox

polymeric Ru–Ru bonded films [Ru(bpy)(CO)2]n, and the anodic oxidation of the
complexes leads to the formation of functionalized polypyrrole films [720].



44 2 Classification of Electrochemically Active Polymers

2.3.7 Poly[Bis(3,4-Ethylene-Dioxythiophene)-(4,4′-Dinonyl-2,2′-
Bithiazole)] (PENBTE) [721]

Synthesis: oxidative electropolymerization of bis(3,4-ethylene-dioxythiophene)-
4,4′-dinonyl-2,2′-bithiazole) in dichloromethane/TBAPF6 or TEABF4 [721].

Redox reactions: two reversible redox processes in which the thiazole units par-
ticipate during oxidation (p-doping), and one reversible redox process involving
both the thiazole and EDOT units at high negative potentials (n-doping).

Color change: blue (reduced) � red (oxidized).

2.3.8 Poly(Tetraphenylporphyrins) [722]

Synthesis: oxidative electropolymerization of the respective free or metallated tetra-
phenyl—or fluorenyl or spirobifluorenyl—porphyrin [722].
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Redox reactions: four redox waves in the potential region between 0.1 and 2 V
vs. Fc/Fc+ in CH2Cl2/TBAPF6 (p-doping) and two pairs of waves between−1 and
−2 V (n-doping).

2.3.9 Poly[4,4′(5′)-Bis(3,4-Ethylenedioxy)Thien-2-Yl]
Tetrathiafulvalene (PEDOT–TTF)
and Poly{3-[7-Oxa-8-(4-Tetrathiafulvalenyl)Octyl]-
2,2′-Bithiophene} (PT–TTF) [723]

Synthesis: oxidative electropolymerization of the respective monomers [723].
Redox reaction:

(2.43)

Both polymers show the characteristic redox responses of tetrathiafulvalene; how-
ever, the behavior of PEDOT–TTF, where TTF is incorporated into the polymer
chain, differs from that of the other polymer, where TTF moieties are pendant
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groups. In the latter polymer the oxidation of polythiophene occurs more quickly
due to a mediated mechanism between TTF moieties and the polymer chains.

2.4 Copolymers

The polymers described in Sect. 2.3 can be considered to be copolymers, and in
many cases they are actually called copolymers. However, those polymers have been
synthesized from monomers with polymerizable groups (e.g., thiophene), and the
monomer already contains the redox functionality. The copolymers that will now be
discussed have been prepared from two or more different monomers, which can also
be electropolymerized separately, and the usual strategy is to mix the monomers and
execute the electropolymerization of this mixed system. It should be mentioned that
the structures of the copolymers have not been clarified unambiguously in many
cases. Usually the cyclic voltammetric responses detected show the characteristics
of both polymers, and so it is difficult to establish whether the surface layer consists
of a copolymer or whether it is a composite material of the two polymers. However,
several copolymers exhibit electrochemical behaviors that differ from the polymers
prepared from the respective monomers. The properties of the copolymer depends
on the molar ratio of the monomers (feed rate), and can be altered by other exper-
imental conditions such as scan rate, pH, etc., since generally the electrooxidation
of one of the comonomers is much faster than that of the other one (a typical ex-
ample is the comonomer aniline, whose rate of electropolymerization is high even
at relatively low positive potentials). In many cases the new materials have new and
advantageous properties, and it is the aim of these studies to discover and explore
these properties. We present a few examples below.

2.4.1 Poly(Aniline-co-Diaminodiphenyl Sulfone) [724, 725]

Synthesis: chemical oxidation of aniline and 4,4′-diaminodiphenyl sulfone mixture
by K2S2O8 in acid media [724] or by electropolymerization [725].

Redox reactions: two oxidation waves, formation of cation radical (polaronic
form) and bipolarons.

Color change: yellow (reduced) � green (half-oxidized) � blue (fully oxidized).
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2.4.2 Poly(Aniline-co-2/3-amino or 2,5-Diamino Benzenesulfonic
Acid) [726–728]

Synthesis: electropolymerization of a mixture of aniline and 2-amino- or 3-amino-
or 2,5-diamino benzenesulfonic acid [726–728].

Redox reaction: see polyaniline.
(Soluble in alkaline media and the copolymer is still electrochemically active at
pH 7.2.)

2.4.3 Poly(Aniline-co-o-Aminophenol) [729, 730]

Synthesis: co-electropolymerization of aniline and o-aminophenol [730].
Redox reaction: benzoid � quinoid, PANI-type transformations [729].

2.4.4 Poly(m-Toluidine-co-o-Phenylenediamine) [253, 388, 731]

The copolymer contains m-toluidine and o-phenylenediamine units in the polymer
backbone. The exact structure has not been clarified thus far.

Synthesis: co-electropolymerization of aniline and o-phenylenediamine [388] or
m-toluidine and o-phenylenediamine [731].

Redox reaction: superposition of the constituents.

2.4.5 Other Copolymers [732–740]

Finally, we mention some other attempts that have been directed toward the prepa-
ration of copolymers: poly(aniline-co-o/m-toluidine) [732, 733], poly(aniline-co-
thiophene) [734], poly(aniline-co-aniline with sulfonate, alkylsulfonate, carboxy-
late, chloro and fluoro groups) [735], poly(aniline-co-p-phenylene diamine) [737],
poly(aniline-co-m-phenylenediamine) [736, 738], poly(aniline-co-diphenyl-
amine) [164, 360, 739], poly(aniline-co-dithioaniline [740], as well as copolymers
of diphenylamine and anthranilic acid [361] or benzidine [349], N-vinylcarbazole
and thienylpyrrole and terthiophenes [618], and aniline with aminonaphthalenesul-
fonates [243]. Several other works that describe copolymers can be found among
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the references given for the parent compounds [164, 254, 406, 411, 510, 546, 561,
576, 584, 588].

2.5 Composite Materials [741–776]

Conducting polymers have also been used in composites. In the literature various,
rather different, systems are called composites. In some cases the word “composite”
or “hybrid” is used to describe systems where the monomer is polymerized in the
presence of polymeric counterions (e.g., polyanions), and the resulting material con-
tains practically equal amounts of the polymers (by mass) [461, 490]. Even in these
cases, it has been found that special interactions exist between the components, so
the composite film cannot be viewed as simple mixtures of the two components,
as has been demonstrated for the composite of PEDOT with partially polymer-
ized 4-(pyrrole-1-yl) benzoic acid [750]. The deposition of conducting polymers
by chemical or electrochemical polymerization onto high-surface-area inorganic
materials (e.g., carbon including carbon nanotubes [72, 87, 648, 776], silica [760],
and nanoscopic titanium dioxide [585]) also leads to composites. Nanocomposites
are also formed when a small polymerizable molecule can be incorporated into
the layered structure of an inorganic crystal, and the host material acts as an oxi-
dizer that induces the polymerization (e.g., the intercalation of aniline into RuCl3
crystals [221]). A polypyrrole–V2O5 composite was fabricated by a sol-gel tech-
nique [473].

The incorporation of different components (e.g., catalytically active metals [222,
239, 403, 626, 752, 773], enzymes [674], photochemically active compounds [585],
silicomolybdate [252,703], Keggin-type heteropolyanions [412], nickel hexacyano-
ferrate [417], CoFe2O4 [498], nucleotides [666], etc.) also results in composite ma-
terials with new and advantageous properties. In many cases the enhanced catalytic
activity, higher capacity, etc., are due to the increased surface area, while in other
cases the interaction between the conducting polymer and the other constituents
results in a novel material that can be used for specific applications. Several other
composites which are used in sensors, in supercapacitors, or for electrocatalytic pur-
poses will be mentioned in Chap. 7.
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Chapter 3
Methods of Investigation

Conducting polymers have been studied using the whole arsenal of methods avail-
able to chemists and physicists. Electrochemical techniques, mostly transient meth-
ods such as cyclic voltammetry (CV), chronoamperometry (CA) and chronocoulom-
etry (CC), are the primary tools used to follow the formation and deposition of
polymers, as well as the kinetics of their charge transport processes. Electrochemi-
cal impedance spectroscopy (EIS) has become the most powerful technique used to
obtain kinetic parameters such as the rate of charge transfer, diffusion coefficients
(and their dependence on potential), the double layer capacity, the pseudocapaci-
tance of the polymer film, and the resistance of the film.

The application of combinations of electrochemical methods with non-electro-
chemical techniques, especially spectroelectrochemistry (UV-VIS, FTIR, ESR), the
electrochemical quartz crystal microbalance (EQCM), radiotracer methods, probe
beam deflection (PBD), various microscopies (STM, AFM, SECM), ellipsometry,
and in situ conductivity measurements, has enhanced our understanding of the na-
ture of charge transport and charge transfer processes, structure–property relation-
ships, and the mechanisms of chemical transformations that occur during charg-
ing/discharging processes.

It is not necessary to deal with these techniques in detail here, since there are sev-
eral books and monographs on the subject. The fundamental theory and practice of
electrochemical and spectroelectrochemical methods can be found in [1,2] and also
in [3–5], where investigations of polymeric surface layers are emphasized. Excel-
lent monographs on EQCM [6–9] and PBD [10] are also recommended for further
studies. Infrared, Mössbauer spectroscopy, ellipsometry, etc., are described in [11],
while electron spin resonance is discussed in [12], radiotracer in [13], scanning tun-
neling microscopy in [14], and scanning electrochemical microscopy in [15]. The
fundamentals of electrochemical impedance spectroscopy are treated in [1, 2, 16];
however, the different models elaborated for electrochemically active films and
membranes can be found in various papers (see later), while the most important
methods for analyzing impedance spectra, as reported before 1994, are well sum-
marized in [3]. Nevertheless, the essential elements of these techniques are briefly
discussed here, in order to help the reader to understand the experimental material
presented in this book.

Inzelt, Conducting Polymers 67
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3.1 Electrochemical Methods

Transient electrochemical techniques are most commonly used in studies of elec-
trochemical transformations of electroactive polymers, since surface layers contain
rather small amounts of material (usually less than 10−7 mol cm−2). Galvanostatic
or potentiostatic methods are often applied during electropolymerization, and poten-
tiostatic techniques are also used in combination with other techniques, e.g., spec-
troelectrochemistry or EQCM, when the goal is to obtain results at equilibrium. EIS
measurements are usually carried out at a series of constant potentials.

3.1.1 Cyclic Voltammetry

Cyclic voltammetry [1, 2] provides basic information on the oxidation potential of
the monomers, on film growth, on the redox behavior of the polymer, and on the
surface concentration (charge consumed by the polymer). Conclusions can also be
drawn from the cyclic voltammograms regarding the rate of charge transfer, charge
transport processes, and the interactions that occur within the polymer segments, at
specific sites and between the polymer and the ions and solvent molecules.

For very thin films and/or at low scan rates, when the charge transfer at the inter-
faces and charge transport processes within the film are fast, i.e., electrochemically
reversible (equilibrium) behavior prevails, and if no specific interactions (attractive
or repulsive) occur between the redox species in the polymer film, a surface voltam-
mogram like that shown in Fig. 3.1 can be obtained.

Fig. 3.1 Representation of
an ideal reversible surface
voltammogram
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The most important features of surface (thin-layer) voltammograms are related
as follows:

I =
n2F2

RT
vAΓ (bOΓO/bRΓR)exp [(nF/RT )(E−E�′c )]

{
1 +(bOΓO/bRΓR)exp

[
(nF/RT )

(
E−E�′c

)]}2 (3.1)

where I is the current, v is the scan rate, while Γ , ΓO and ΓR are the total sur-
face concentration and the surface concentrations of the oxidized and reduced forms
(Γ = ΓO +ΓR), respectively. A is the electrode area, E is the electrode potential, E�′c
is the formal electrode potential, bO and bR are the adsorption coefficients related
to the adsorption Gibbs energy of the respective species, n is the charge number of
the electrode reaction, F is the Faraday constant, R is the gas constant, and T is the
temperature.

The peak current is

Ip =
n2F2

4RT
AΓ v (3.2)

and the peak potential

Ep = E�′c −
RT
nF

ln
bOΓO

bRΓR
(3.3)

as well as Ipa = Ipc, Epa = Epc, and ΔEIp/2 = 3.53RT/nF = 90.6/n mV at 25 ◦C.
(Note that Ip is proportional to v, and Ip decreases while ΔEIp/2 increases with tem-
perature.) The surface concentration, i.e., the quantity of electroactive material, can
be obtained from the area under the surface wave, which is the total charge con-
sumed (QT)

QT = nFAΓ (3.4)

noting that I = dQ/dt and v = dE/dt, where t is the time.
If there are interactions between the surface species, the shapes of the voltammo-

grams change, as shown in Fig. 3.2.
The broadening and narrowing of the surface redox waves are linked to repulsive

and attractive interactions. The numbers indicated for each curve are related to the
interaction parameter of the Frumkin adsorption isotherm (g); g = 0 for the absence
of interaction (Langmuir isotherm), g < 0 and g > 0 for the repulsive and attractive
interactions, respectively.

If the charge transport [electron exchange reaction (hopping), percolation, coun-
terion diffusion] within the film and/or the charge transfer at the interfaces are slow,
the equilibrium condition does not prevail, and the voltammograms become diffu-
sional [Ip ∼= v1/2, Epa−Epc = 57/n (mV), Ipa = Ipc] or quasi-reversible [1, 2].

The effect of slow charge transport for multilayer (thick) films is illustrated in
Fig. 3.3, while that of slow charge transfer for a monolayer film is shown in Fig. 3.4.

It should be noted that in all cases the relative ratio of the rate parameter (k) to the
scan rate determines the actual behavior; this can be expressed by the parameter m:

m = (RT/nF)(k/v) . (3.5)
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Fig. 3.2 Surface voltammo-
grams observed when interac-
tions exist in the surface layer
between the adsorbed entities.
(From [17], reproduced with
the permission of Elsevier
Ltd.)

Fig. 3.3 The effect of slow
charge transport on the cyclic
voltammogram. (From [17],
reproduced with the permis-
sion of Elsevier Ltd.)

Cyclic voltammograms obtained for various m values are displayed in Figs. 3.3
and 3.4. In Fig. 3.3 k = ks where ks is the rate coefficient of charge transfer, while
in Fig. 3.4 k = D/d2, where D is the charge transport diffusion coefficient and d is
the layer thickness.
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Fig. 3.4 The effect of slow
charge transfer on the cyclic
voltammogram for a mono-
layer film. (From [17], repro-
duced with the permission of
Elsevier Ltd.)

The characteristic feature of the voltammograms, when the diffusion becomes
rate-determining, is the diffusional tailing. Surface waves appear at both high and
low m values; however, at low m the redox reaction is restricted to the first layer (see
decreased QT in Fig. 3.3).

It should be mentioned that the ohmic drop may also cause an increase of
ΔE = Epa−Epc, and a decrease in Ip values. In many cases the reaction mechanism
is more complicated, e.g., follow-up chemical reactions, protonation/deprotonation,
dimerization, etc., may occur. We will show specific examples in the following sec-
tions.

3.1.2 Chronoamperometry and Chronocoulometry

Chronoamperometry [1, 2] is used to determine the charge transport diffusion coef-
ficient, and also to study phase formation, phase transitions, and relaxation. Chrono-
coulometry is applied to determine the total charge consumed as well as to determine
Q vs. E functions.

Due to the finite layer thickness, the chronoamperometric response function can
be given as follows:

I = nFAD1/2c(πt)−1/2

[

1 + 2
k=∞

∑
k=1

(−1)k exp
(−k2d2/Dt

)
]

. (3.6)

For “infinitely” thick films (Dt/d2 → 0), the Cottrell equation [1, 2] is obtained.
If the film thickness is small, i.e., the total amount of the electrochemically active
material on the surface is low (d = ΓT/c), no linear section can be obtained when
using the I vs. t−1/2 plot, as illustrated in Fig. 3.5.

For thick films at not too high D values from the linear section of the Cottrell
plot, D1/2c can be determined; however, in the case of thin films this section might
be too short to allow us to derive reliable D values. If the rate of charge transfer
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Fig. 3.5 The I vs. t−1/2

function at different Γ /D1/2c
ratios. At given D and c
values, d1 > d2 > d3

is low (and/or the resistance is high) a maximum curve is obtained, making the
determination of D even more problematic. It should be mentioned that only the
product D1/2c can be derived, and the value of c is often not known accurately. The
chronocoulometric equation is

Q
QT

= 1− 8
π2

∞

∑
k=1

(
1

2k−1

)2

exp
[
−(2k−1)2 π2 (t/τ)

]
(3.7)

where τ = d2/D and QT = 4FAΓT.
By using only the first member of the series (k = 1), Q/QT can be determined to

an accuracy of 2%.
In several cases during film formation, or even during oxidation and reduction

potential steps, chronoamperometric responses typical of nucleation and growth ki-
netics can be obtained. The results for a PANI film are shown in Fig. 3.6.

Peter et al. [18] emphasized the role of the effect of uncompensated ohmic drop,
and analyzed the current transients within the framework of the two-dimensional
electrocrystallization model, taking into account instantaneous and progressive nu-
cleations. Three-dimensional expansion of growth centers was also considered. It
was found that the reduction is only rapid as long as the film remains in its con-
ducting state. (A more detailed analysis of this problem is provided in Sect. 6.6.) It
was also suggested that the electroneutrality is maintained by fast proton transport
at short times.

3.1.3 Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy represents a powerful tool for investigat-
ing the rate of charge transfer and charge transport processes occurring in conduct-
ing polymer films and membranes [3, 16, 19–143]. Owing to the marginal perturba-
tion from equilibrium (steady-state) by low-amplitude (< 5 mV) sinusoidal voltage
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Fig. 3.6a,b Potentiostatic transients for the oxidation of a PANI film (thickness: 36 nm) on a Pt mi-
croelectrode. The potential was stepped from −0.2 V vs. SCE to the following values: (1) 0.375 V;
(2) 0.35 V; (3) 0.325 V; (4) 0.3 V (a); and (1) 0.7 V; (2) 0.65 V; (3) 0.6 V; (4) 0.55 V; (5) 0.5 V;
and (6) 0.45 V (b). (From [18], reproduced with the permission of Elsevier Ltd.)
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associated with this technique, it has an advantage over other techniques involving
large perturbations (e.g., chronoamperometry). For instance, even the potential de-
pendence of the charge transport diffusion coefficient can be determined, which can
indicate the nature of the charge carriers and interactions within the film.

Although there are several variations, usually an alternating voltage

U(t) = Um sin(ωt) (3.8)

is applied to an electrode and the resulting current response

I(t) = Im sin(ωt + ϑ) (3.9)

is measured, where ω (ω = 2π f , where f is the frequency) is the angular frequency
of the sinusoidal potential perturbation, ϑ is the phase difference (phase angle, phase
shift) between the potential and the current, and Um and Im are the amplitudes of the
sinusoidal voltage and the current, respectively. The impedance (Z) is defined as:

Z = U(t)/I(t) = |Z|exp(iϑ) = Z′+ iZ′′ (3.10)

where Z′ and Z′′ are the real and imaginary parts of Z, respectively, and i = (−1)1/2.
(The ZR and ZI symbols, respectively, are also used for the real and imaginary parts.)

The impedance and admittance (Y ) are related as follows:

Y = 1/Z = Y ′+ iY ′′ . (3.11)

For an RC circuit with components Rs, Cs (series) and Rp, Cp (parallel), the fol-
lowing relations are valid: Z′ = Rs, Z′′ =−1/ωCs, Y ′ = 1/Rp, and Y ′′ = ωCp.

Usually the impedance is measured as a function of the frequency, and its varia-
tion is characteristic of the electrical circuit (where the circuit consists of passive and
active circuit elements). An electrochemical cell can be described by an equivalent
circuit. Under appropriate conditions, i.e., at well-selected cell geometry, working
and auxiliary electrodes, etc., the impedance response will be related to the proper-
ties of the working electrode and the solution (ohmic) resistance.

The Randles equivalent circuit is used to describe a simple electrode reaction,
where the solution resistance (RΩ) is in series with the charge transfer resistance
(Rct) and the Warburg impedance (Zw) expressing the diffusion of the electroactive
species, and the double-layer capacitance (Cdl) is in parallel with Rct and Zw (ZF =
Rct + Zw is called the Faraday impedance).

Semi-infinite linear diffusion is considered in the Randles model, and the ca-
pacitive current is separated from the faradaic current, which is justified only when
different ions take part in the double-layer charging and the charge transfer pro-
cesses (i.e., a supporting electrolyte is present at high concentrations). Finite diffu-
sion conditions should be considered for well-stirred solutions when the diffusion
takes place only within the diffusion layer, and also in the case of surface films that
have a finite thickness. However, the two cases are different, since in the previous
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case one has a practically infinite source of electroactive species (the transmissive
boundary condition), while in the case of surface films both transmissive bound-
ary conditions and reflective boundary conditions may prevail. The latter means
that complete blocking of the diffusion occurs at the interfaces. This is the case
when a polymer-modified electrode is investigated and no electrochemically active
species are dissolved in the contacting electrolyte or no charge leakage, i.e., a re-
action between the conducting polymer and one of the components of the solution,
can take place. This means that redox sites remain in the surface layer, the charge
propagates through the layer by electron hopping or electric conduction as well as
by the diffusion and/or migration of freely moving ions (usually counterions), and
electrons can cross the metal|polymer, while ions can cross the polymer|electrolyte
solution interfaces, respectively.

The theory of the impedance method for an electrode with diffusion restricted to
a thin layer is well established [24,25,39,54,65,66,114–116,118,119,121,125,129,
130,133]; however, the “ideal” response—separate Randles circuit behavior at high
frequencies, a Warburg section at intermediate frequencies, and purely capacitive
behavior due to the redox capacitance at low frequencies (see Fig. 3.7)—seldom
appears in real systems.

Fig. 3.7 The complex-plane impedance plot representation (also called the Argand diagram or
Nyquist diagram) of the “ideal” impedance spectra in the case of reflective boundary conditions.
Effect of the ratio of the film thickness (L) and the diffusion coefficient (D). L/D1/2: (1) 0.005;
(2) 0.1; (3) 0.2; (4) 0.5 and (5) 1 s1/2. RΩ = 2 Ω, Rct = 5 Ω, σ = 50 cm2 Ωs−1/2, Cdl = 20 μFcm2.
The smaller numbers refer to frequency values in Hz
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The film thickness is very often nonuniform. The effect of the thickness distri-
bution is shown in Fig. 3.8. If the surface is very rough, i.e., the film consists of
very thin and thick regions, no Warburg section appears. It should be mentioned
that a similar problem arises when two parallel diffusion paths exist in the film, as
has been assumed, e.g., for the Ru(bpy)3+/2+

3 /Nafion system [28].
It is evident that the shape of the impedance spectra varies with the potential since

the values of the charge transfer resistance (Rct), the low frequency (redox) capac-
itance (CL) and the Warburg coefficient change with the potential; more exactly,
they depend on the redox state of the polymer. In many cases D is also potential-
dependent. The double-layer capacitance (Cdl) usually shows only slight changes
with potential. The ohmic resistance (RΩ) is the sum of the solution resistance and
the film resistance, and the latter may also be a function of potential due to the
potential-dependent electron conductivity, the sorption of ions, and the swelling of
the film. In Fig. 3.9 three spectra are displayed, which were constructed using the
data obtained for a PTCNQ electrode at three different potentials near its equilib-
rium potential [23].

Fig. 3.8 Impedance spectra demonstrating the effect of film thickness and thickness distribution
at constant ohmic resistance (RΩ = 2.35 Ω), charge transfer resistance (Rct = 0.9 Ω), double layer
capacitance (Cdl = 24 μF), and diffusion coefficient (D = 9.04×10−9 cm2 s−1). The thicknesses
are: (1) 0.006; (2) 0.06; (3) 0.6; (4) 1.6; (5) 2.6; (6) 3.6; (7) 4.6; (8) 5.6, and (9) 6.6×10−5 cm.
The resulting curve (R) was constructed using thicknesses (3–9) with the following frequency
factors: (3) and (9): 1; (4) and (8): 3; (5) and (7): 6; and (6): 10. The smaller numbers refer to
frequency values in Hz. The average thickness is L = 3.6×10−5 cm. (From [21], reproduced with
the permission of Elsevier Ltd.)
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Fig. 3.9 The effect of the potential on the impedance spectra. The data used for the simulation of
the spectra. (1) E = 0 V: RΩ = 2.35 Ω; Rct = 0.9 Ω; σ = 7.6 Ωcm2 s−1; Cdl = 24 μF; CL = 35 mF;
D = 9.04×10−9 cm2 s−1; (2) E = 0.1 V: RΩ = 2.6 Ω; Rct = 3.85 Ω; σ = 30.7 Ωcm2 s−1; Cdl =
25.8 μF; CL = 8.88 mF; D = 8.72×10−9 cm2 s−1; (3) E = − 0.1 V: RΩ = 2.3 Ω; Rct = 1.78 Ω;
σ = 50.35 Ωcm2 s−1; Cdl = 34 μF; CL = 9 mF; D = 3.2×10−9 cm2 s−1. The smaller numbers refer
to frequency values in Hz. (From [23], reproduced with the permission of Elsevier Ltd.)

In the case of “ideal” reflective spectra (surface response), the following relation-
ships are valid and can be used to derive the quantities that characterize the electrode
and electrode processes:

Z = Rct +(1− i)σω−1/2 coth(sL) (3.12)

where σ is the Warburg coefficient, L is the film thickness and

s =
(

iω
D

)1/2

=
(1 + i)ω1/2

(2D)1/2
. (3.13)

The Warburg coefficient depends on the diffusion coefficient (D), the concentration
(c) of redox sites and the temperature (T ):

σ =
RT√
2n2F2

(
1

cOD1/2
O

+
1

cRD1/2
R

)

(3.14)
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or when cO = cR and DO = DR (indices O and R for the oxidized and reduced forms,
respectively)

σ =
RT√

2n2F2D1/2c
(3.15)

Z = RΩ +
ω−1/2

(
Rctω1/2 + σF1

)

1 + σCdlω1/2F2 + ωC2
dl

(
Rctω1/2 + σF1

)2

− i
Cdl

(
Rctω1/2 + σF1

)2
+ σF2

(
ω−1/2 + F2Cdlσ

)

1 + σCdlω1/2F2 + ωC2
dl

(
Rctω1/2 + σF1

)2 (3.16)

where

F1 =
cothK

(
1 + cot2 K

)
+ cotK

(
1− coth2 K

)

coth2 K + cot2 K
(3.17)

F2 =
cothK

(
1 + cot2 K

)− cotK
(
1− coth2 K

)

coth2 K + cot2 K
(3.18)

K = 2−1/2L
(ω

D

)1/2
. (3.19)

From (3.16) it follows that

lim
ω→0

Z′ = RΩ +
Rct +

(
L2/3DCdl

)

(1 +Cdl/CL)2 (3.20)

where CL is the redox capacitance (low-frequency capacitance) that in principle can
be obtained from the Z′′ vs. ω−1 plot, since

lim
ω→0

Z′′ = (CL +Cdl)
−1 ω−1 . (3.21)

The diffusion coefficient can be derived either from the Z vs. ω−1/2 plots or from the
low-frequency impedance or resistance, RL = (L2/3DCL). However, if the Warburg
section is small or nonexistent, which is the case when the film is thin, this procedure
is not applicable.

The low-frequency capacity is equal to

CL =
n2F2L

RT
cOcR

cO + cR
(3.22)

or at E�′c

CL =
n2F2Lc

4RT
. (3.23)

It follows that while the CL(E) function has its maximum at E�′c , σ has its lowest
value at this potential; that is, when cO = cR. (CL can also be estimated from the
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cyclic voltammograms: CL = I/v.) While CL is independent of the film swelling
(because as L increases c decreases), σ and D usually vary with the swelling.

The temperature dependence of σ is determined by the exponential tempera-
ture dependence of D. RΩ decreases with increasing concentration of the supporting
electrolyte and with increasing temperature. Rct decreases with temperature, and has
a minimum value at E�′c . It follows that carrying out measurements for a range of
potentials, temperatures and electrolyte concentrations helps to achieve an adequate
analysis of the EIS results by resolving some ambiguities.

A theoretical approach which assumes the model structure a priori would be
preferable; however, due to the high complexity of the polymer film electrodes, none
of the current theories can be regarded as satisfactory in all respects. Consequently,
the selection or construction of an adequate equivalent circuit is rather problem-
atic. Therefore, the so-called structural approach is also employed. The structural
approach means that the model structure is derived from experimental data, and
procedures for parametrical identification are then applied. Complex nonlinear least
squares (CNLS) fitting of the data to a theoretical model and/or equivalent electrical
circuit is the best method of quantitative analysis. Such fitting provides estimates
of the parameters and their standard deviations. Unfortunately, in the majority of
papers no standard deviations of the parameters are given, and the goodness of fit
is merely illustrated in the figures. Usually, the Argand diagram is used for this
purpose; however, the deviation between the measured and calculated data is more
striking in the transformed plots, e.g., in the Bode diagrams (log |Z| vs. log f and ϑ
vs. log f plots) or in the changes in pseudocapacitance as a function of frequency
(logY ′′ω−1 vs. log f plots). It should also be checked whether the derived parame-
ters depend on the number of elements or not, or on the method of weighting. The
correlation matrix of the parameters should also be investigated. The validation of
the impedance spectra can be executed by using Kramers–Kronig (K–K) transfor-
mations, as described in [135].

The deviations of the impedance responses [23, 28, 30, 32, 59, 64, 66, 69, 71,
76, 120, 123, 132, 144–146] predicted by the theories have been explained by tak-
ing into account different effects, such as interactions between redox sites [30,
136], ionic relaxation processes [95], distributions of diffusion coefficients [28],
migration [65, 118, 125, 132], film swelling [64, 137], slow reactions with so-
lution species [22, 138], nonuniform film thickness [23], inhomogeneous oxida-
tion/reduction processes [123], etc.

The constant phase element (CPE) has been used to describe both the double-
layer capacitance and the low-frequency pseudocapacitance as well as the diffusion
impedance [22, 24, 30, 33, 59,71, 101, 139, 140]:

ZCPE = A(iω)−α (3.24)

where 0 < α < 1 is the CPE exponent, which is a dimensionless parameter, and A
is the CPE coefficient. It follows that the exponent is less than 1, which is expected
for an ideal capacitor (ϑ < 90◦), and it differs from 0.5, which is expected for the
ideal diffusion impedance.
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The dispersion of the high-frequency capacitance has been attributed to the mi-
croscopic roughness of the electrode surface [24, 96, 137, 140] and an adsorption
pseudocapacitance connected with the charging/discharging process within the first
layer of the film at the metal interface [22]. The frequency-dependent nature of the
low-frequency capacitance has been explained by considering the irregular geome-
try of the surface of the polymer network and the counterions’ binding to sites of dif-
ferent energies [22,33,147], by the roughness of the blocking metal electrode [139],
and by a distributed charge-transfer resistance in the internal polymer/solution in-
terface [71].

One of the crucial points is in connection with the structure and morphology
of the surface polymer layer. Essentially, two different approaches exist, which
are called “homogeneous” or “uniform” [24, 25, 39, 43, 65, 68, 115, 116, 118, 125,
130,132,133,141] and “porous medium” or “heterogeneous” or “distributed” mod-
els [45, 50, 54, 114, 119, 121, 128, 129, 142, 148, 149], respectively, based on two
different perceptions regarding the structure of the surface polymer layers or mem-
branes (Fig. 3.10).

The homogeneous models assume three phases, i.e., metal, polymer film and
an electrolyte solution. Electronic, mixed electronic (electron or polaron) and ionic
charge transport processes are considered in the metal, within the polymer film and
in the solution, respectively. The polymer phase itself consists of a polymer matrix
with incorporated ions and solvent molecules. A one-dimensional model is used,
i.e., the spatial changes of all quantities (concentrations, potential) within the film
are described as a function of a single coordinate x, which is a good approach when
an electrode of usual size is used. The metal|polymer and the polymer|solution in-
terfacial boundaries are taken as planes. Two interfacial potential differences are
considered at the two interfaces, and a potential drop inside the film when current
flows. The thicknesses of the electric double layers at the interfaces are small in

Fig. 3.10a,b Schematics of the two models for polymer-modified electrodes. a “Homogeneous
model”: Zif,s/f, Zif,f/s: interfacial impedances (s|f: solution|film; f|s: film|substrate), Zb: impedance
of the bulk phase, Ru: solution resistance; b “porous (heterogeneous) model”: Z1: the impedance
per unit length of the transport channel in the polymer phase, Z2: the impedance per unit length of
the transport channel in the pores, Z3: the specific impedance at the inner interface, which corre-
sponds to charge transfer and charging processes, Ru: solution resistance. (From [68], reproduced
with the permission of Elsevier Ltd.)
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comparison with the film thickness, and are therefore neglected. In the asymmetrical
(polymer film) arrangement, electron transfer at the metal|film interface is combined
with a charge transport process in the film and ion transfer at the film|solution in-
terface. The first theoretically well-established models of uniform films considered
a pure diffusional transport of a single charge carrier across the film under finite
diffusion conditions [25, 26, 115, 138]. It is also assumed that the electrolyte con-
centration is high enough, so the diffusion of ions in the bathing electrolyte is not
rate-determining and the contribution of migration to the flux can be neglected. It
follows that the branches of the double layer capacitance and the Faraday impedance
can also be separated.

The advanced homogeneous models [65, 116, 125, 131, 132, 141] consider dif-
fusion–migration transport of electrons and ions as mobile charge carriers in a uni-
form medium, coupled with a possible nonequilibrium charge transfer across the
corresponding interfaces at the boundaries of the film. The contributions of the ca-
pacitive charging of the metal|polymer and polymer|electrolyte interfaces have been
taken into account a posteriori by inserting one or two capacitive elements in parallel
with the charge transfer resistance in the equivalent circuit. The uniform film model
has also been elaborated by introducing an adsorption pseudocapacitance and a re-
sistance connected with the charging/discharging processes within the first layer of
the film at the metal interface, as well as a CPE in order to describe the capacitor at
the film|electrolyte interface, considering the irregular geometry of the surface of the
polymer network and the counterions’ binding sites at different energies [22, 145].

This may be considered an inhomogeneous homogeneous model inasmuch as
the properties of the first layer differ from those of the bulk film. The CPE elements
have been used to describe both the double-layer capacitance and the low-frequency
pseudocapacitance, their frequency-dependent nature being attributed to the nonuni-
formity of the electric field at rough electrode surfaces [24, 96, 137, 140].

Within the alternative approach, the film is considered a porous medium [54,
94, 114, 119, 121, 122, 127–129, 148]. Physically, it represents a porous membrane
that includes a matrix formed by the conducting polymer and pores filled with an
electrolyte. Mathematically, in this approach the film is modeled as a macroscop-
ically homogeneous two-phase system consisting of an electronically conducting
solid phase and an ionically conducting electrolyte phase. Considering a planar ge-
ometry, each layer perpendicular to the electrode surface contains these two phases,
and it can therefore be described at any point by two potentials that depend on the
time and the spatial coordinates.

Each of the phases has a specific electric resistivity, and the two phases, i.e.,
their resistivities, are interconnected continuously by the double-layer capacitance
(or a more complicated element) at the surface between the solid phase and the
pores. A further interconnection results from the charge transfer at the surface of
pores. There is also electron exchange between the regions in the polymer with
different degrees of oxidation [54,119,127,128]. Charge transfer within the material
is determined by a diffusion process. In the advanced porous membrane model,
inhomogeneous resistivities are considered. Using this model, the low-frequency
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constant phase element can be interpreted [127], and two sublayers with different
resistivities are assumed.

Much effort has been expended on elaborating the model of faradaic impedance,
and the task of obtaining an adequate description of double-layer charging effects
has mostly been neglected. The essential problem is that the Randles–Ershler ap-
proach, i.e., where the interfacial charging is described by a double-layer capaci-
tance in parallel with the faradaic branch, is justified in the presence of an excess of
supporting electrolyte, which strongly diminishes the electric field inside the system
so that the transport of each electroactive component corresponds to pure diffusion,
and the interfacial charging is realized mostly by the supporting electrolyte due to
its higher concentration. As a result, the movement of current across the transport
zone (which includes the diffusion and interphasial layers) takes place as the sum of
two noninteracting partial currents: those of the electroactive species and the back-
ground electrolyte. Therefore, the impedance of this region (which is equal to the
overall impedance without ohmic resistances) can be represented by a parallel com-
bination of the impedances of these two branches. Evidently, this reasoning does not
hold for more complicated systems without a background electrolyte, in particular
for those containing two mobile charge carriers.

If the same charged species take part in both the electrode reaction and the
double-layer charging, the interfacial processes are coupled to the same flux of the
electroactive component. Moreover, the distributions of the charged species inside
the film are interrelated due to the electroneutrality condition and the self-consistent
electric field, so that their transport cannot be considered to be pure diffusion. This
is the case where at least one of the ions of a binary electrolyte participates in
the charge transfer process or crosses the interface, and a similar situation also
arises when the charging of an electrochemically active polymer via electron trans-
port is accompanied by the movement of the charge-compensating ions (i.e., mixed
electronic–ionic conductivity prevails). A detailed analysis of the effects of the in-
terfacial charging of surface films with two mobile charge carriers on the impedance
spectra has been discussed by Vorotyntsev et al. in detail by using the homogeneous
model and taking into account the corresponding interfacial thermodynamics [130].
This problem has also been analyzed within the framework of the porous membrane
model [119].

It should be mentioned that a theoretical model involving diffusion and a mi-
gration charge transport mechanism with three charge carriers has also been devel-
oped by Láng et al. [65]. The essential feature of this model is the assumption of
a coupling of the oscillation amplitude of the concentration of the charge carriers.
The derivation of the impedance function was possible, a good fit was achieved
over a wide potential range by using the general functional form of the impedance
containing 12 parameters, and the data obtained for a poly(o-phenylenediamine)
electrode was used as a test system. However, it became clear that only the uncom-
pensated ohmic resistance and the L/D2 ratio could be determined unambiguously.
It was found that several parameters were strongly correlated. The simplification
of the general formula resulted in similar equations to those derived by Vorotynt-
sev et al. [132] and Mathias and Haas [125, 126] when two mobile charge carriers
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and diffusion–migration transport were considered. The case of three charge carriers
is rather general in conducting polymer systems because, aside from the transport
of the electrons and counterions, very often hydrogen ions also participate in the
charge transport and charge transfer processes during the redox transformation of
the polymers.

Based on the observation that in many cases electrochemically active constituents
of the electrolyte can react at the metal surface, e.g., oxide formation and reduction
at Au and Pt, and also hydrogen adsorption can take place at Pt, it was concluded that
the polymer chains are attached to the metal by only a few points or at small islands,
like on a brush. Experimental evidence is presented in Fig. 3.11 which shows the
cyclic voltammogram obtained for a thick (L = 2900 nm) poly(o-phenylenediamine)
film deposited on gold. Cyclic voltammetric waves typical of gold oxide formation
and reduction, respectively, appear at high positive potentials beside the PPD redox
transformations that occur between −0.2 and + 0.2 V. It should be mentioned that
no decomposition of the polymer film was observed [66]. It follows that the metal
surface is not fully covered by the polymer, as assumed in the majority of the mod-
els, and the solvent molecules filling the micropores and nanopores are in contact
with the substrate surface. (It is assumed that macropores do not reach the metal
surface in the case of such a thick film.)

According to the “brush model” developed by Láng et al. [66–68], the polymer
chains are linked to bundles containing nanopores and micropores. Between the
bundles there are macropores with considerably greater cross-sections than those
of the micropores. A distribution of short and long chains is also considered. The
ratio of short and long chains may depend on the surface roughness of the substrate.

Fig. 3.11 Cyclic voltammogram obtained for an Au|PPD electrode in contact with 1 moldm−3

HClO4. Film thickness: 2900 nm. Roughness factor: 1.71. Scan rate: 50 mVs−1. (From [66], re-
produced with the permission of Elsevier Ltd.)
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Fig. 3.12a–d Schematics of the structures of polymer films grown on smooth (a) and rough (b)
surfaces, the proposed equivalent circuit (c), and a boundless section with micropores (d). Ru is
the uncompensated ohmic resistance, Zl is the impedance which is attributed to the conductivity
path along the long chains and long micropores, Zs represents the impedance of the short chains
with short micropores connected to the long pores. (From [66], reproduced with the permission of
Elsevier Ltd.)

Schematics of the structures of polymer films grown on smooth and rough surfaces,
respectively, are shown in Fig. 3.12.

Based on these ideas, the following theoretical models were derived and applied
to the analysis of impedance spectra obtained for Au|PPD electrodes [66].

The Z impedance corresponding to the double-channel transmission line model
can be obtained using the expression

Z =
z1z2

z1 + z2

[
L+

2 f
sinh(L/ f )

]
+ f

z2
1 + z2

2

z1 + z2
coth(L/ f ) (3.25)

where the element z1 is the impedance per unit length of the transport channel in the
polymer phase, z2 is the impedance per unit length of the transport channel in the
pores, L is the thickness of the film, and f = [z3/(z1 + z2)]1/2, where z3 represents
the specific impedance at the inner interface, which corresponds to charge transfer
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and charging processes [142]. Equation (3.25) can be transformed into the following
form:

Z = L
z1z2

z1 + z2
+ f

(z1 + z2)
2

2(z1 + z2)
coth

(
L

2 f

)
+ f

(z1− z2)
2

2(z1 + z2)
tanh

(
L

2 f

)
. (3.26)

The impedance corresponding to the homogeneous model [65,132] can be obtained
from

Z = RA +
PB

s
coth

(
L
2s

)
+

PC

s
tanh

(
L
2s

)
(3.27)

where RA, PB and PC are frequency-independent elements in the model of Vorotynt-
sev et al. [132], while they may be frequency-dependent in the model of Láng and
Inzelt [65].

In the simplest cases, s can be expressed as

s =

√
iω
D∗

(3.28)

with a frequency-independent D∗, representing the effective diffusion coefficient of
the moving species.

It is apparent that (3.26) and (3.27) have similar mathematical structures if it is
assumed that z1 and z2 are resistances per unit length and z3 is a pure capacitance.
For this special case,

Z =
R1TR2T

R1T + R2T
+

(R1T + R2T)2

2(R1T + R2T)3/2

(iω)−1/2

C1/2
3T

coth

[
1
2

(R1T + R2T)C3T (iω)1/2
]

+
(R1T−R2T)2

2(R1T + R2T)3/2

(iω)−1/2

C1/2
3T

tanh

[
1
2

(R1T + R2T)C3T (iω)1/2
]

(3.29)

where R1T and R2T are the total resistances distributed in the polymer channel and
in the ionic channel, respectively, and C3T is the total capacitance of the pore walls.

In order to simplify the notation, (3.29) can be rewritten in the following form:

Z = R0 +
P∗1

(iω)1/2
coth

[
F∗ (iω)1/2

]
+

P∗2
(iω)1/2

tanh
[
F∗ (iω)1/2

]
(3.30)

Equation (3.30) can be modified heuristically by introducing an exponent β in order
to describe the anomalous behavior:

Z = R0 +
P1

(iω)β coth
[
F (iω)β

]
+

P2

(iω)β tanh
[
F (iω)β

]
(3.31)

where parameters R0, P1, P2, β and F are frequency-independent and real.
The introduction of the CPE element is justified since the distributed polymer|so-

lution interface does not respond as an ideal capacitor. The impedance of the elec-
trode can be represented by an equivalent circuit with parallel combinations of two
impedances. The two impedances belong to the individual branches of long chains
and long micropores, as well as short chains with short micropores connected to long
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pores, i.e., (3.31) can be used for both impedances, and the impedance expression is
completed with an ohmic resistance that corresponds to the solution resistance but
may also involve the ohmic resistance of the long pores. At a given potential the
total impedance can be described by the following function:

ZT (ω) = Ru + 1/ [1/Z� (ω)+ 1/Zs (ω)] . (3.32)

Fig. 3.13a–d Impedance spectra obtained for an Au|PPD electrode in contact with 1 moldm−3

HClO4 at different potentials: −0.075 V (asterisks and squares); 0.025 V (triangles); 0.05 V (cir-
cles) and 0.1 V diamonds). The roughness factor of Au is fr = 2.41. Simulated curves are indicated
by continuous lines and open symbols. a Complex plane; b log |Z| vs. log f . (From [65], reproduced
with the permission of Elsevier Ltd.)
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The complete expression of the impedance contains 11 parameters. Based on the
mathematical structure of (3.32), the parameters are expected to be strongly corre-
lated. It was therefore indeed found that the number of parameters was decreased
basis on reasonable assumptions. However, this was achieved in such a way that
the contributions of the individual branches to the total capacity of the film could
be determined. Figure 3.13 illustrates the goodness-of-fit. It was concluded that the
low-frequency distortion effect (CPE behavior) is most likely connected with the
film’s nonuniformity; however, the surface roughness of the underlying metal sub-
strate influences the ratio of the long to the short polymer chains. At low frequen-
cies the characteristics of the impedance spectra are mainly determined by the long
polymer chains. With the help of these models, reasonable values for the different
parameters that characterize the polymer film electrodes can be derived.

Fig. 3.13 c ϑ vs. log f ; d logY �ω−1 vs. log f plots. (From [65], reproduced with the permission
of Elsevier Ltd.)
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3.2 In Situ Combinations of Electrochemistry
with Other Techniques

The elucidation of the complex reaction mechanism usually requires more infor-
mation than can be obtained solely by electrochemical experiments. Consequently,
the use of combinations of electrochemical techniques with non-electrochemical
methods is necessary. In particular, in situ combinations are powerful tools that
can be used to gain a deeper understanding of the complex events that occur dur-
ing electrode processes. This means that the different techniques are applied in
such a way that the potential control still prevails (current may flow or not), i.e.,
the chemical changes and transport processes can be investigated under both elec-
trolysis and equilibrium conditions. The presence of the electrolyte solution may
complicate the application of different methods; however, in the last three decades
appropriate versions of the techniques have been elaborated. The different vac-
uum spectrometric, diffraction, etc., methods are still used and provide valuable
information; however, the utilization of in situ techniques is preferable for obvi-
ous reasons. We will give a short description of the most important in situ tech-
niques used, to aid the orientation of the reader, and to facilitate comprehension
of the experimental results presented in this book. The applied in situ techniques
involve quantitative methods such as piezoelectric microgravimetry using an elec-
trochemical quartz crystal microbalance (EQCM), radiotracer, spectroscopic tech-
niques [UV-VIS, electron spin resonance (ESR), Raman, Fourier-transformed in-
frared (FTIR), luminescence, Mössbauer], which provide mostly quantitative results
necessary for the identification of the species formed, as well as various micro-
scopies [scanning tunneling (STM), atomic force (AFM), scanning electrochemical
(SECM)] which provide information on the structure and morphology of the ma-
terial formed on the electrode surface. There are other optical techniques that do
not fall into these categories. Using the probe beam deflection (PBD) [also called
optical beam deflection (OPD) or mirage] technique the species formed or con-
sumed at the electrode can be followed, while ellipsometry provides information
on the thickness of the surface layer and its optical properties. Last but not least
we should mention in situ conductivity measurements, which have played an es-
sential role in enhancing our understanding of the behavior of conducting poly-
mers.

3.2.1 Electrochemical Quartz Crystal Microbalance (EQCM)

The “electrochemical quartz crystal microbalance” (EQCM) is the traditional name
of this technique; however, the term “electrochemical quartz crystal nanobalance”
(EQCN) is also used and is more accurate, since nanogram changes are usually
measured by it, and even 1 ng variations in the surface mass (Δm/A) can be de-
tected.
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The theory and basic principles of EQCM can be found in several monographs
that include descriptions of investigations of polymer film electrodes [6–8]. This
method is based on the converse piezoelectric effect which is experienced when al-
ternating voltage is applied to electron-conducting metal films (called “electrodes”,
although not electrodes in an electrochemical sense) that partly cover both sides
of a thin slab or rod of a piezoelectric material (usually quartz). Then, mechanical
oscillations occur within the crystal lattices, which are stable only at the natural res-
onant frequency of the quartz crystal. At that frequency, the impedance of the crystal
to the exciting voltage is low. If the crystal is incorporated into the feedback loop
of an oscillator circuit, it becomes the frequency-determining element of the cir-
cuit, as its quality factor is very high. The quality factor is inversely proportional to
the resonance bandwidth, which makes the precise determination of the resonance
frequency possible.

The crystal cut determines the mode of oscillations. AT-cut quartz crystals, vi-
brating in a thickness shear mode, are almost exclusively used in EQCM devices;
however, it should be mentioned that attempts have been made to exploit other
modes of oscillation.

The essential point is that the resonant frequency decreases when the crystal is
loaded with mass, and this change can be determined very accurately. Changes of
1 Hz, or even 0.1 Hz, can be measured when a crystal with a resonance frequency of
10 MHz is used. The relationship between mass change (Δm) and frequency change
(Δ f ) was derived by Sauerbrey [150], and is called the Sauerbrey equation:

Δ f =−CfΔm/A (3.33)

where Cf is the integral sensitivity and A is the piezoelectrically active area, which
is determined by the size of the smaller “electrode” applied to the opposite side of
the quartz crystal. In EQCM, the larger one is usually in contact with the electrolyte
solution, and also serves as the working electrode in the electrochemical cell. (The
task of separating the dc and ac signals is trivial.) The integral sensitivity depends
on the frequency of the quartz crystal before the mass change ( f0), the density (ρq =
2.648 gcm−3) and the shear modulus (μq = 2.947×1011 gcm−1 s−2) of the quartz:

Cf =
2 f 2

0
(
ρqμq

)1/2
. (3.34)

It follows that the measurement is more sensitive when f0 is higher (note the
quadratic relationship); however, the fundamental frequency of vibrations is in-
versely proportional to the quartz wafer thickness. Usually crystals with fundamen-
tal frequencies of 5 MHz and 10 MHz are used, although 20 MHz crystals have also
been applied on rare occasions, e.g., in [151]. The thickness of the quartz plate is
0.13 mm at 10 MHz, meaning that crystals working at substantially higher funda-
mental frequencies are too thin to be handled safely.

It is advisable to determine the Cf of the crystal by calibration, e.g., by the de-
position of Ag (or other metal), which can be executed with 100% current (charge)
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efficiency, and Cf can easily be calculated from the respective charge (Q) and fre-
quency changes using the Faraday law and the Sauerbrey equation:

Cf =
nFAΔ f

QM
(3.35)

where M is the molar mass of the deposited metal. For a 10 MHz crystal Cf =
2.264×108 Hzcm2 g−1, while for a 5 MHz crystal Cf = 5.66×107 Hzcm2 g−1.

If Cf is known, (3.35) can be used to calculate M, which is usually the most
important quantity to derive, since the nature of the adsorbed, sorbed, deposited
species can be assigned in this way. There are certain preconditions for using the
Sauerbrey equation, and determining accurate, reliable data:

1. The added mass should be evenly distributed over the electrode. The integral
sensitivity determined can only be used for the calculation if this is the case be-
cause the maximum sensitivity at the center of the crystal decreases to zero at
the edges of the electrode. The differential sensitivity (c f = δ f/δm) is propor-
tional to the square of the vibration amplitude, and the amplitude distribution
can be described by Gaussian-type or Bessel-type functions. The integral mass
sensitivity can be computed from the differential sensitivity function:

Cf = 2π
R∫

0

rc f (r)dr (3.36)

where R is the radius of the active area of vibration.
Expressions for nonuniform mass distributions have been derived for different
cases and can be found in [152]. It should also be mentioned that if the surface
film is uneven but the distribution of the mass is uniformly nonuniform, i.e., the
thinner and thicker regions of the film are distributed more or less regularly, the
application of the integral sensitivity does not usually cause substantial error.

2. The thickness of the deposited layer (deposited mass) should not be higher than
ca. 2% of the quartz plate (quartz crystal mass); at higher mass loadings the
simple linear Δm–Δ f relationship becomes invalid, and at very high loadings
the crystal stops functioning.

3. Care must be taken over the proper mounting of the crystal in the holder, the
electrical contacts, and the temperature control. One of the advantages of AT-
cut crystals is that they have a very small temperature coefficient at or near to
room temperature. It has also been proven that EQCM experiments can even be
carried out at low and high temperatures [153].

When electrochemical experiments are executed, the electrode is in contact with
a solution. When the QCM crystal is transferred from air into the solution a fre-
quency change occurs, which can be described by the following equation:

Δ f =− f 3/2
0

(
ηL/ρL/πμqρq

)1/2
(3.37)

where ηL and ρL are the viscosity and density of the contacting liquid, respectively.
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Interestingly, while the goodness factor decreases, this viscous coupling does not
affect the EQCM measurements, and the Sauerbrey equation remains applicable.
Furthermore, this equation can even be used to check the proper functioning of
the crystal before coating, because the expected frequency change can easily be
calculated. For electrodes coated with a polymer film, a Δ f value that is different
to that expected may be observed because, for example, solvent molecules may be
sorbed in the dry surface polymer film without any electrochemical treatment. Based
on (3.37), the viscosity or density change of a solution can also be determined.
The large change in the viscosity of a polyacid solution can be followed during its
titration with a base.

The case of a solid|liquid interface is more complicated than that of a solid|gas
system. Non-mass-related frequency changes should also be considered, such as
the changes in the density and viscosity near the electrode surface during electrol-
ysis, interfacial slippage (coupling between the oscillator surface and the adjacent
solution), and surface stress effects. Two effects may cause problems for polymer
films: the surface roughness and the viscoelastic effect. In the former case, the so-
lution trapped within the surface structure may influence the frequency response.
The viscoelastic effect arises mostly for highly swollen thick films. The deviation
from purely elastic behavior usually causes a nonlinear Δ f –Δm relationship. One
solution to this difficulty is to use an impedance analyzer to record the admittance
characteristics near the resonance rather than just a frequency shift. The change in
the film rigidity can be detected by measuring the resonant resistance, the dissipa-
tion factor or the peak near the resonant frequency. The intrinsic resonant frequency
is then identifiable as the frequency at which the real part of the admittance, i.e., the
conductance, is at maximum [6, 9, 154–166].

In Fig. 3.14 crystal impedance spectra recorded during the electropolymerization
of 1,8-diaminonaphthalene are shown [157]. The maxima of successive admittance
spectra shift towards lower frequencies during the deposition of the polymer, which
was prepared by oxidative electropolymerization. The spectra presented in Fig. 3.14
were taken at the cathodic end of each potentiodynamic cycle.

As seen in Fig. 3.14, in this case there is no significant decrease in peak ad-
mittance or increase in peak width. The film formed on the gold surface therefore
behaves as a rigid layer.

In accordance with the results of the admittance measurements, the dependence
of the change in the resonant frequency corresponding to the reduced state of the
polymer on the charge injected during the electropolymerization is linear, except
for very thick films (Fig. 3.15). Usually such a deviation indicates a transformation
from elastic to viscoelastic behavior; however, in this case it was assigned to the
poor adherence of the deposited polymer, since the energy loss measured was small
even for thick films [157].

The changes in the film elasticity over the course of the redox transformations of
a poly(o-aminophenol) film are illustrated in Fig. 3.16.

As seen in Fig. 3.16, all curves related to the oxidized form of the polymer ex-
hibit sharp bands centered at 9.9989 MHz (a), while curves belonging to the re-
duced form (b) show broader and less intense bands at 9.9911 MHz. The latter indi-
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Fig. 3.14 The changes in crystal admittance spectra recorded during the cyclic voltammetric elec-
tropolymerization of 1,8-diaminonaphthalene. For the sake of comparison, the spectrum obtained
for the bare gold electrode immersed in the electrolyte is also displayed. (From [157], reproduced
with the permission of The Royal Society of Chemistry)

Fig. 3.15 Frequency change (Δ f ) vs. charge consumed (Q) plot constructed from the data obtained
during the formation of a poly(1,8-diaminonaphthalene) film on gold. (From [157], reproduced
with the permission of The Royal Society of Chemistry)

cates that a swelling occurs during the reduction of POAP films as anions and water
molecules enter the surface layer; however, the film still shows rigid layer behavior.
It was assumed that the polymer is protonated at the nitrogen atoms, and between
−0.25 V and 0 V the polymer is in its half-reduced states, i.e., polarons are present
in the polymer [167]. It is also worth mentioning that a sharp peak can be observed
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Fig. 3.16a,b Admittance spectra of a poly(o-aminophenol) film in contact with NaClO4 solutions
of different concentrations at pH 0.9; a oxidized film at open-circuit, and b reduced film at −0.2 V
vs. SCE. Film thickness is 40 nm. (From [167], reproduced with the permission of Elsevier Ltd.)

for the admittance of the crystal in the dry state; loading with a polymer layer causes
a decrease in the resonance frequency ( f0). However, in the dry state there is only
a slight decrease in the maximum value of the admittance. When the uncoated or
the coated crystal is immersed in water or electrolyte solution, a further decrease in
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the value of f0 occurs according to (3.37), broad spectra appear, and the maximum
value of the admittance becomes a tenth of the original value [167].

It should also be mentioned that plastic deformation may also occur during the
break-in period of virgin polymer films.

The most important practical advice is as follows:

1. Check the linearity of the Δ f vs. Δm plot by systematically varying the film
thickness, and also that of the Δ f vs. Q plot.

2. Check the proper functioning of the apparatus by immersing the electrode in
liquid before coating.

3. If dip-coating or evaporation techniques are applied for film deposition, it is
useful to measure the frequency changes related to the dry film. It is also ad-
visable to determine the frequency change for the dry film when the surface
layer is prepared by electropolymerization after completing the experiment, re-
moving, washing and drying the electrode. A comparison with the mass change
observed during the electrochemical transformations and the mass change for
the total, dry material on the surface provides information on the electrochem-
ical activity of the polymer. Using this procedure, the effect of nonuniformity
can be (at least partially) eliminated.

Piezoelectric microgravimetry in conjunction with electrochemical measurements
is a very powerful but relatively simple and cheap technique, and so within the
last twenty years it has become one of the most popular hyphenated techniques for
studying the formation of conducting polymer films and ion and solvent exchange
processes that occur during their redox reactions, which provide valuable informa-
tion about the reaction mechanism [6–9, 43, 70, 89, 90, 98, 107, 151, 153, 154, 156–
166, 168–232].

EQCM has also been combined with other techniques, such as probe beam
deflection [193], scanning tunneling microscopy [233], scanning electrochemical
microscopy [234, 235], and UV-VIS spectroelectrochemistry [236, 237]. EQCM
was also used under an alternative regime, ac electrogravimetry, which allows the
fluxes of different ions taking part in the charge compensation process to be sepa-
rated [43, 98, 99, 107, 108, 184, 205, 238–242].

In fact, ac electrogravimetry is the combination of electrochemical impedance
spectroscopy with a fast quartz crystal microbalance. The fluxes of all mobile
species are considered, and the usual conditions and treatments of EIS are ap-
plied. Beside the electrochemical impedance, an electrogravimetric transfer func-
tion, Δm/ΔE(ω), can be derived which contains the dependences of the fluxes of
anions, cations and solvent molecules, respectively, on the small potential perturba-
tion. The complex plane plot representations of electrogravimetric transfer functions
for PANI are shown in Figs. 3.17 and 3.18.

The two loops that appear in both partial electrogravimetric transfer functions
indicate the simultaneous transport of anions, cations and solvent molecules. A con-
clusion has been drawn that when anions are inserted, cations and solvent molecules
are expelled; i.e., the positive charges created during the oxidation of the polymer
are compensated for in a rather complex way. (See also Sect. 6.2.)
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Fig. 3.17 Electrogravimetric transfer function for a PANI electrode at 0.2 V vs. SCE. Electrolyte:
1 moldm−3 HClO4. (From [243], reproduced with the permission of Elsevier Ltd.)

Fig. 3.18 Partial electrogravimetric transfer function for cations and solvent molecules for a PANI
electrode in 1 moldm−3 HClO4 at 0.2 V vs. SCE. (From [243], reproduced with the permission of
Elsevier Ltd.)
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3.2.2 Radiotracer Techniques

The radiation intensities measured furnish direct information on the amount of la-
beled species, and no special models are required to draw quantitative conclusions.
Despite its advantages—easy detection, independent of pressure and temperature,
chemical and physical states, nondestructive nature—the radiotracer technique is
certainly not used as often as it should be. Nevertheless, both the electropoly-
merization and the ion-exchange processes accompanying the redox transforma-
tions [13, 168, 244–258] have been followed using this method. A comparison of
the data obtained by radiotracer and piezoelectric nanogravimetric techniques is es-
pecially useful, because the latter supplies information on the total surface mass
change due to the deposition or sorption of different species, while the contributions
originating from the different species can be unambiguously separated by labeling
the respective molecules or ions.

The use of nuclides emitting soft β -radiation is advisable in order to increase the
signal-to-noise ratio; i.e., to decrease the background radiation. Luckily, the most
important ions used in electrochemistry as well as organic molecules can be labeled
with nuclides emitting β -radiation (3H, 14C, 32P, 35S, 36Cl, 45Ca).

When a surface film is present, one should consider the background radiation (Ib),
the radiation coming from species adsorbed at the metal|film [I(Γ1) = αAΓ1] and
film|solution (I(Γ2) = αAΓ2 exp[−μm

f ρfLf]) interfaces, respectively, and—usually
the most interesting characteristic when studying conducting polymer films—the
radiation originating from the labeled atoms of the polymer or the ion sorbed in
the film. However, the absorption of radiation in the solution layer characterized by
thickness L and in the film (Lf) should be taken into account.

The total equation is as follows:

I = αA

{
Γ1 +Γ2 exp [−μm

f ρfLf]+
c

μm
s ρs

(exp [−μm
s ρsLf]− exp [−μm

s ρsLf])

+
cf

μm
f ρf

(1− exp[μm
f ρfLf])

}
. (3.38)

The background radiation, Ib, is given by:

Ib = αA

L∫

0

cexp [−μm
s ρsx] dx = αA

c
μsρs

(1− exp[−μsρsL]) . (3.39)

If the thickness of the absorptive layer is high in the case of soft β -radiation, Ib

becomes a constant value at a given concentration of the applied isotope in the
solution (c), i.e.,

Ib =
αAc
μm

s ρs
. (3.40)

In (3.38) I is the radiation intensity, μm
s and μm

f are the mass absorption co-
efficients of the radiation of the solution and film, respectively, ρs and ρf are the
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densities of the solution and film, respectively, α is a proportionality factor depend-
ing on the specific activity of the labeled species as well as the geometry of the
apparatus, Γ1 and Γ2 are the respective surface concentrations (see above), and cf is
the concentration of the labeled species inside the film.

At Lf ≤ 10−5 cm, and taking into account the usual values of the mass absorp-
tion coefficients (10–1000 cm2 g−1) and densities (ρs ∼ ρf = 1 gcm−3), (3.38) can
be simplified by applying the approximation e−x = 1− x, i.e., exp[−μm

f ρfLf] ∼ 1,
exp[−μsρsL]∼ 0, such that

I = αA

[
c

μm
s ρs

+ cfLf +Γ1 +Γ2

]
. (3.41)

In the case of polymer film electrodes it holds that cfLf
Γ1 +Γ2, and consequently

I = αA

[
c

μm
s ρs

+ cfLf

]
. (3.42)

It follows that, provided the concentration of labeled isotopes in solution is not
too high (c ≤ 10−2 moldm−3), the amount of ions sorbed in the film can easily
be determined. Note that only cf is potential-dependent.

Figure 3.19 shows the periodical sorption/desorption of Cl− ions during four
consecutive potential cycles in the case of a polypyrrole electrode in contact with
solution of 2×10−4 moldm−3 36Cl-labeled HCl [244].

Using the radiotracer method, the strength of the ion–polymer interactions can
also be studied, which is certainly a special advantage of this technique. When unla-
beled species are added to the solution phase in great excess, the sorbed species are
exchanged provided that there are no strong interactions (chemical bonds) between
the ions or molecules and the polymer.

Such ionic exchanges are illustrated in Figs. 3.20 and 3.21.

Fig. 3.19 The change in the amount of Cl− ions in a polypyrrole electrode during four consecutive
oxidation–reduction cycles. Solution: 2×10−4 moldm−3 36Cl-labeled HCl. Scan rate: 0.4 mVs−1.
(From [258], reproduced with the permission of Elsevier Ltd.)
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Fig. 3.20 The exchange of
labeled SO2−

4 ions sorbed
in PP film with unlabeled
SO2−

4 ions added to a so-
lution phase containing
10−5 moldm−3 35S-labeled
H2SO4 and 10−2 moldm−3

HClO4 at the moment indi-
cated by the arrow. E = 0 V.
Final H2SO4 concentra-
tion: 2×10−2 moldm−3.
(From [258], reproduced with
the permission of Elsevier
Ltd.)

The results presented in Fig. 3.20 attest that SO2−
4 ions embedded in PP film

are mobile, despite the fact that the interactions between PP and SO2−
4 are much

stronger than those between PP and ClO−4 ions, since ClO−4 ions are present at
a concentration that is three orders of magnitude greater. The latter effect is also
clearly apparent in Fig. 3.21, albeit when ClO−4 ions are present in great excess in
the solution; some of the SO2−

4 ions are replaced by ClO−4 ions in the film, and that
effect is potential-dependent. A comparison of Γ vs. E plots reveals (curves 1 and 2
in Fig. 3.21) that the interaction is even stronger between PP and SO2−

4 when PP is
in its oxidized form (PP+).

Figure 3.21 also shows the sorption of Cl− ions. It can be seen that, when no
supporting electrolyte is used, only Cl− ions enter the PP film during oxidation
and leave it during reduction. The hysteresis is related to the slow completion of
the reduction process; lasting cathodic polarization is required to attain the initial

Fig. 3.21 Amount of sorbed
ions in polypyrrole film
as a function of poten-
tial, from steady state
measurements. Concentra-
tions: (1) 10−4 moldm−3

35S-labeled H2SO4;
(2) 10−4 moldm−3

labeled H2SO4 +
10−2 moldm−3HClO4; and
(3) 2×10−4 moldm−3 36Cl-
labeled HCl. (From [258],
reproduced with the permis-
sion of Elsevier Ltd.)
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value. The difference between the behavior of SO2−
4 and Cl− ions is the lack of any

significant embedding of the latter ions.
It should be mentioned that other nuclear techniques, such as Rutherford backscat-

tering spectrometry (RBS), have also been used. Using the RBS technique, film
thicknesses, roughnesses and compositions [259] as well as ion diffusions [260]
have been studied.

3.2.3 Probe Beam Deflection Technique (PBD)

The probe beam deflection (PBD) technique (optical beam deflection or the mirage
technique) is based on the measurement of refractive index gradients in front of the
electrode|electrolyte interface [10, 155, 193, 261–281].

The deflection of a laser beam aligned parallel to the electrode surface is mea-
sured. The beam deflection (Ψ ) for a single flux, considering the concentration de-
pendence of the refractive index, can be described by the following expression:

Ψ (x,t) =
L
n ∑

i

(
∂n
∂c

)

i

∂ci (x, t)
∂x

(3.43)

where L is the electrode length (interaction path length), n is the refractive index of

the electrolyte,
(

∂n
∂c

)

i
is the derivative of the refractive index – concentration func-

tion related to the species i, and
(

∂ci
∂x

)
is the concentration gradient perpendicular

to the electrode surface.
For a single flux

Ψ (x,t) =
L
n

∂n
∂c

∂c(x,t)
∂x

; (3.44)

that is, only the concentration of one component varies, and it determines Ψ . In this
case the solution of the equation is relatively simple.

The probe laser beam is deflected towards the higher refraction index region. The
direction of the deflection depends on the sign of the product ∂n

∂c
∂c
∂x . The sign of ∂n

∂c
is positive for most of the species (e.g., H+, M+), and negative only for gases (e.g.,
H2, O2, CO2). In the former case, the beam deflects towards the electrode (Ψ < 0),
for example if H+ is produced in the electrode reaction, and deflection occurs in the
opposite direction when H+ ions are consumed, i.e., their concentration decreases
in the vicinity of the electrode.

The mass transport equations can be solved by taking into account the bound-
ary conditions characteristic of the electrochemical technique applied. Furthermore,
the flux should be calculated at a distance x because the center of the beam is
at certain distance (typically 30–180 μm) from the electrode surface, so the PBD
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signal is delayed in time with respect to the current signal due to the diffusion
of ions.

The respective equations for combined techniques are as follows. For PBD–
chronoamperometry (potential step chronodeflectometry),

Ψ (x,t) =
(

L
n

∂n
∂c

)
c√
πDt

x
2Dt

exp
[−x2/4Dt

]
. (3.45)

The Ψ(x, t) function has a maximum as a function of time which depends on the
beam–electrode distance (x− x0), and the diffusion coefficient can easily be esti-
mated from the value of tmax:

√
tmax =

x− x0√
6D

(3.46)

No analytical closed form has been derived for combined PBD and cyclic voltam-
metry (cyclic voltadeflectometry). Either numerical simulation or convolution of the
experimental signal is applied [10, 280, 281].

PBD is a very useful tool for identifying the ions that participate in the ion ex-
change processes that occur during the redox reactions of polymer film electrodes.
For instance, the proton expulsion that occurs before anion insertion during the elec-
trooxidation of PANI is clearly seen in the cyclic voltadeflectogram, which is almost

Fig. 3.22a,b Cyclic voltam-
mogram (a) and voltadeflec-
togram (b) of PVF film in
0.1 moldm−3 HBF4|H2O.
Scan rate: 50 mVs−1. For-
ward scan (full arrow)
and backward (dotted ar-
row) [261]. (From [68], re-
produced with the permission
of the American Chemical
Society)
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silent in EQCM experiments due to the low molar mass of H+ ions. (See later in
Chap. 6, Fig. 6.15.)

As an illustration, the voltammogram and the simultaneously detected voltade-
flectogram are presented in Fig. 3.22. Although the ion exchange mechanism that
occurs during the redox reactions of poly(vinylferrocene) strongly depends upon the
nature of the supporting electrolyte (e.g., in HClO4 solution both the expulsion of
H+ ions and the insertion of ClO−4 ions occur), in HBF4 only negative deflection
(ion expulsion) is observed during oxidation, as seen in Fig. 3.22.

The combination of PBD and EQCM is an especially powerful approach for
clarifying this complex situation [193, 231, 277, 281].

3.2.4 Ellipsometry

Ellipsometry, which is the measurement of the change in the reflected light in-
tensity and the polarization state of the elliptically polarized light, provides use-
ful information on nucleation and growth processes, as well as the film thick-
ness [11, 190, 282–291]. Two parameters are determined: the relative amplitude pa-
rameter (Ψ ) and the relative phase parameter (Δ ):

Ψ = arctan
(∣∣rp

∣
∣/

∣
∣rs

∣
∣) (3.47)

Δ = δp− δs (3.48)

where rp and rs are relative amplitudes of the parallel and normal components of
the electric vector, respectively, while δp and δs are the phase angles of the two
components. The relative amplitude is the ratio of the amplitudes of the incident
and reflected waves. The basic equation of ellipsometry is as follows:

ρ = tanΨ exp(iΔ) (3.49)

where parameter ρ , characterizing the polarization state, connects Ψ and Δ .
The wavelength of the incident light is usually also varied (spectroscopic ellip-

sometry) in order to determine the three quantities characterizing the surface film
(refractive index, absorption coefficient and thickness), because only two parame-
ters can be obtained in a single measurement.

3.2.5 Spectroelectrochemistry

3.2.5.1 UV/VIS/NIR Spectrometry

Several spectroscopic techniques have been combined with electrochemical meth-
ods. UV/VIS/NIR spectrometries have become routine methods in investigations of
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conducting polymer films, where they are used to monitor the chemical changes oc-
curring in the surface film [11, 45, 145, 273, 283, 292–339]. Beside identifying the
chemical species formed, evidence of the electronic conductivity of the polymer can
also be deduced from the spectra, since a region of continuous absorbance appears
at longer wavelengths (see Fig. 4.7). In most experiments the transmission mode has
been applied. Optically transparent electrodes (OTEs) are usually employed, which
are either indium–tin oxide (ITO) or a very thin (less than 100 nm) layer of gold or
platinum on a glass or quartz substrate.

Another type of electrode used is a partially transparent metal grid or mesh. In
some cases the simple grid electrode is replaced by a LIGA structure (LIGA, or
lithographic galvanic up-forming, is a technique based on a synchrotron radiation
patterned template); however, these systems can be used for the detection of soluble
species. The reflection mode is seldom used in UV/VIS spectroelectrochemistry.

Spectroelectrochemistry is an excellent method to use to obtain both qualita-
tive and quantitative information. In the latter case, however, the nonuniform film
thickness may cause problems. This difficulty can be overcome by measuring the
thickness distribution with a surface profiler, because the thickness variations can
be taken into account by using the following form of the Beer–Lambert equation:

Abs =− log∑
i

fi10−εcli (3.50)

where c is the concentration of the absorbing species with molar absorptivity ε , and
li is the optical pathlength of a film thickness element that is found in the film at
a given oxidation state with frequency fi. (Note that ∑i fi = 1.)

(Experimental examples are provided in Sect. 7.2.2.)

3.2.5.2 Electron Spin Resonance (ESR) Spectroscopy

Unpaired electrons can be detected by microwave spectroscopy in the presence of
a magnetic field, i.e., by electron spin resonance spectroscopy. Radicals, radical
cations or anions are very frequently intermediates in electrochemical reactions; for
example, most transformations of organic compounds in the first, one-electron step
result in such species. Cation radicals are produced by electrooxidation during the
course of electropolymerization, and their coupling eventually leads to the formation
of the polymer. Furthermore, radicals are formed during the oxidation or reduction
of redox or electronically conducting polymers, and in many cases the partially oxi-
dized (or reduced) form of the polymer containing radical groups, or similar types of
charge carriers (e.g., a polaron, which is a radical cation that is usually delocalized
over a polymer chain fragment involving 4–6 monomer units and leads to deforma-
tion of the polymer structure and polarization of the environment), are stable. Since
it can provide information on these species in situ, ESR is a very important tool for
elucidating the reaction mechanism, and also for understanding other phenomena,
such as the conduction mechanism [12, 72, 293, 296, 313–315, 324, 340–348]. (See
Fig. 6.4, and there is also more information in Chap. 6.)
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3.2.5.3 Fourier Transform Infrared (FTIR) Spectrometry

FTIR gives important molecular information on the species formed on the electrode
surface [186, 233, 271, 274, 288, 290, 305, 328, 332, 334, 349–361]. IR radiation is
strongly absorbed by most organic solvents and particularly by water, which dis-
tinguishes it from the UV/VIS radiation used in these spectroscopies and also in
ellipsometry. This leads inevitably to the use of a thin-layer cell in transmittance
mode; however, the severe attenuation of the IR beam still remains a serious prob-
lem. Therefore, in the majority of cases internal or external reflection techniques
have been applied.

Electrochemically modulated infrared spectroscopy (EMIRS), polarization mod-
ulation infrared reflection–absorption spectroscopy (PM–IRRAS), and attenuated
total reflectance (ATR) have also been used. (FTIR–ATR spectra are shown in
Chap. 6, Fig. 6.11.)

3.2.5.4 Other Spectroscopies

UV/VIS and ESR spectroscopies are commonly applied in situ because it minimizes
technical difficulties. Beside these spectroscopies and FTIR, other techniques have
also been used in investigations of conducting polymer electrodes. Among these,
we should mention Raman spectroscopy [303, 332, 342, 343, 356, 360, 362, 363],
fluorescence spectroscopy [364–366], and photothermal spectroscopy [367].

Resonant Raman spectroscopy (with the excitation laser frequency coincident
with the absorption maximum of the material) is an efficient tool for characterizing
radical cations and dications or dianions in conductive polymers. Information about
the amount and nature of these chromophore groups makes it possible to determine
the structural disorder of the polymers. The vibrational frequency will depend on
the degree of conjugation of each group, leading to a broadening of the Raman band
that is connected to the degree of disorder.

This technique has been successfully used to study the electropolymerization of
5-amino-1-naphthol and changes occurring during the redox reaction of the poly-
mer formed (Fig. 3.23). It was concluded that two structures exist in this polymer,
a polyaniline-like structure coexisting with a ladder structure resulting from “ortho
coupling” [332].

3.2.5.5 Surface Plasmon Resonance (SPR)

The SPR technique is based on a trapped surface mode, a surface plasmon wave
(SPW) localized at the interface of two media. SPW is an electromagnetic charge
density wave that may exist along the interface between two media with dielectric
permittivities of opposite signs, such as a metal and a dielectric. In principle, SPW
can receive energy from incident light at the interface due to a resonant energy
transfer. The relation between the surface plasmon angle and the refractive index
has been applied to electrochemical research due to the effects of the potential on
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Fig. 3.23 In situ resonant Raman spectra (λ = 632.8 nm) of a poly(5-amino-1-naphthol) electrode
prepared and cycled in 1 moldm−3 HCl at different potentials. (From [332], reproduced with the
permission of Elsevier Ltd.)

the optical properties at the electrode|electrolyte interface [1]. Electrochemical SPR
(ESPR) has been applied to investigate the electrochemical growth and properties
of poly(methylene blue) films [368]. It was demonstrated that diffusion, adsorption,
polymerization, sorption/desorption of counterions can be monitored by the ESPR
technique and information can be obtained on changes in film thickness.

3.2.6 Scanning Probe Techniques

3.2.6.1 Scanning Tunneling Microscopy (STM)

Three-dimensional, atomic-scale images of conducting surfaces can be obtained us-
ing a scanning tunneling microscope [14,290,334,354,369–381]. It is based on the
quantum mechanical tunneling of electrons. The electron clouds of the outermost
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atoms form a structured surface which is a representation of the atomic structure at
the surface. When a very sharp electronically conducting tip is brought sufficiently
close to an electronically conducting surface, a strong interaction arises between the
electron clouds of the surface atoms of the substrate and the tip. A tunneling current
may flow, which increases with decreasing distance between the tip and the sub-
strate, and with the potential difference applied between the tip and the substrate.
The sample or the tip holder is driven by a piezoelectric crystal that enables it to
move these in the x-, y- and z-directions with submicrometer resolution. Either the
tunneling current is measured, and its changes are translated to distance data, or the
tunneling current is kept constant by applying a feedback loop, and the correspond-
ing tip distance is followed. Atoms, molecules, and defects on the surface can be
detected, and information on the surface roughness can be obtained.

STM can be applied even under electrochemical conditions, i.e., when both the
tip and the sample are immersed in the electrolyte of the cell, and the sample is the
working electrode, the surface of which is to be investigated.

3.2.6.2 Atomic Force Microscopy (AFM)

AFM is very similar to STM in terms of its directional translation system and its
arrangement, and it also has the ability to produce atomic-scale images of the sur-
face [328,361,369,372,382–385]. However, in this case, the electronic conductivity
of the sample is not important because interatomic forces between the tip and the
sample are measured.

Using AFM, van der Waals forces, electrostatic interactions between ions, fric-
tion, elasticity and plasticity can all be measured.

A nice example of the usefulness of AFM has recently been presented by
Abrantes et al. [386]. During the growth of polythionine films, a nonlinear relation
was found between the deposited mass and the electroactivity, suggesting that struc-
tural changes occur to the polymer layer as the electropolymerization proceeds. The
AFM images validated this interpretation. Figure 3.24 shows topographic images of
polythionine films.

Initially a compact polymeric matrix of small globular features with diameters
of ∼ 20 nm and nodules spread throughout the surface were observed, with typical
sizes ranging from ca. 30 to 70 nm, which may indicate the formation of a second
layer with a different structure (Fig. 3.24a). During further electropolymerization,
some of the globular deposits aggregate (Fig. 3.24b), and then domains with irregu-
lar sizes and shapes are formed (Fig. 3.24c). After 80 cycles the surface layer is still
compact but rougher, and plateaus isolated by pronounced cliffs can be observed.
A very detailed study of the formation of polybithiophene (PBT) films on a Pt sur-
face was carried out by Seeber et al. [384]. During potentiostatic growth AFM im-
ages were recorded. In LiClO4–acetonitrile electrolyte the polymerization proceeds
through the preferential growth of the initially formed nuclei, resulting in globu-
lar features (grains and nodules). The PBT clusters fuse into one another. When
TBAPF6 is used as supporting electrolyte the polymerization starts at more positive
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Fig. 3.24a–c 3D-processed topographic AFM-tapping mode images and profiles of polythionine
films on Pt surface. The film was prepared using potential cycling between 0 V and 1.15 V vs. SCE.
Solution: 50 μmoldm−3 thionine in 0.05 moldm−3 H2SO4. Scan rate: 20 mVs−1. a 20 cycles,
b 40 cycles, and c 80 cycles. (From [386], reproduced with the permission of Elsevier Ltd.)

potentials, and in this case many small nucleation centers on the substrate surface are
formed. As the polymer deposition proceeds, the sizes of these nucleation centers
increase in a nonhomogeneous way, and eventually nonuniform grains are grown.
Deposition using cyclic voltammetry results in bigger grains with a nonuniform dis-
tribution, which may be related to the periodical reduction of the polymer formed.

The polymer film thickness and the solvent swelling of the polymer can be es-
timated by AFM, as has been demonstrated by Wu and Chang [383] in the case of
poly(o-phenylenediamine).
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3.2.6.3 Scanning Electrochemical Microscopy (SECM)

SECM is based on the measurement of the current through an ultramicroelectrode
tip (an electrode with a radius on the order of 1–25 μm) held constant or moved
through an electrolyte usually containing a redox couple in the vicinity of the sample
surface under investigation [15,387,388]. The surface topography can be mapped by
scanning the tip in the x–y directions. Because the current depends not only on the
surface heterogeneity but other effects (conductivity, catalytic activity), information
can also be obtained on the latter properties of the surface. SECM is also useful for
imaging and studying the uptake and release of ions or molecules from the surface
layer [389–392]. An illustration of the basic principles of SECM is presented in
Fig. 3.25.

Beside classical microscopic applications, when the goal of the experiment is to
obtain a three-dimensional image of the surface with high spatial resolution, other
studies of importance can be carried out on polymer film electrodes. When the tip is

Fig. 3.25a–c Basic principles
of scanning electrochemical
microscopy: a the small tip
is far from the substrate, ul-
tramicroelectrode behavior,
steady state current, IT,∞;
b near a conductive substrate,
feedback diffusion leads to
IT > IT,∞; c near an insu-
lating substrate, hindered
diffusion leads to IT < IT,∞.
IT,∞ = 4nFDca, where n is
the charge number of the
electrode reaction, F is the
Faraday constant, D is the
diffusion coefficient, c is the
concentration and a is the
radius of the microdisk elec-
trode, which is usually less
than 20 μm [15]. (Reproduced
with the permission of the
American Chemical Society)
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Fig. 3.26a–e A scheme representing five stages of the SECM current–distance experiment. a The
tip is positioned in the solution close to the Nafion coating on ITO. b The tip has penetrated
partially into the film, and the oxidation of Os(bpy)3+

3 starts at the Pt tip, which was held at 0.8 V
vs. SCE, where the electrode reaction is diffusion-controlled. The effective electrode (tip) surface
grows with penetration. c The entire tip electrode is immersed in the film, but is still far from the
ITO substrate that is biased at 0.2 V vs. SCE, where the reduction of the generated Os(bpy)3+

3 can
take place. d The tip is sufficiently close to the substrate to observe positive SECM feedback. e The
tip reaches the surface of ITO (the tunneling region) [15, 387]. (Reproduced with the permission
of the American Association for the Advancement of Science)

moved in the direction normal to the film, the incorporation and ejection of ions dur-
ing redox transformations can be monitored [15, 387, 388, 391]. Figure 3.26 shows
the scheme of an experiment carried out by Bard et al., where the Pt microtip was
not just placed near the solution|Nafion containing Os(bpy)2+

3 interface, but it was
also immersed in the film [15, 387].

The variation of the tip current with distance during the experiment described in
Fig. 3.26 is shown in Fig. 3.27.

Initially (section a) the current is small, since the electrolyte contains no elec-
troactive species. When the tip starts to penetrate into the Nafion layer, the anodic
current increases due to the oxidation of Os(bpy)2+

3 to Os(bpy)3+
3 at the Pt tip,

which is biased at 0.8 V vs. SCE (section b). When the whole tip is immersed in the
polymer phase but it is still far from the ITO substrate, the tip current remains con-
stant (section c). When the tip gets close to the ITO substrate, which is held at 0.2 V
vs. SCE, the SECM positive feedback effect starts to dominate, i.e., the generated
Os(bpy)3+

3 species are reduced at the ITO and oxidized back at the Pt, as seen in
Fig. 3.26d, and so the current increases again (section d). Finally, the tip reaches the
tunneling distance, which causes a large increase in the current observed (section e).
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Fig. 3.27 The dependence of the tip current on distance. The letters (a) to (e) correspond to the five
stages (a–e) in Fig. 3.26. The displacement values are given with respect to an arbitrary zero point.
Curve 1: tunneling current (stage e), which is much larger than the current observed during stages
(a–d) (left-hand current scale). Curve 2: the current vs. distance curve corresponding to stages
(a–d) (the right-hand current scale). The conical tip (30 nm radius, 30 nm height) was moved at
a rate of 30 s−1. The thickness of the Nafion film was ∼ 220 nm; the concentration of Os(bpy)2+

3
in the Nafion film was 5.7×10−4 molcm−3 [15, 387]. (Reproduced with the permission of the
American Association for the Advancement of Science)

3.2.7 Conductivity Measurements

Among the various interesting and useful properties of the new class of polymers,
their switchable electrical conductivity has proven the most attractive to the com-
munity of chemists and physicists, and so it is understandable that these polymers
are called “conducting polymers.” Much effort has been spent on measurements
of their electrical conductivity and on determinations of the factors that affect its
value [44, 113, 119, 124, 151, 213, 314, 327, 328, 344, 345, 393–417]. The use of the
conventional ex situ dc four-point method [44, 393, 398, 399] or the ac impedance
technique in a metal|polymer|metal sandwich arrangement [119, 124, 410] for mea-
surements of the conductivity of dry polymer samples is straightforward. However,
the conductivities of dry polymers are affected by humidity and any gas present.
Indeed, this is the property that is utilized in gas sensors. Conductivity can also
be measured in situ, i.e., under controlled electrochemical and chemical condi-
tions [151, 394, 395, 397,400,402, 406, 408, 417].

Of course, the situation is somewhat more complicated due to the potential- and
time-dependent exchange of ions and solvent molecules. However, the kinetics of
the charging and chemical processes as well as the relaxation phenomena can be
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followed in this way. The conductivity of the polymer films is usually measured
by using a two-band or a multiband microelectrode arrangement in a typical elec-
trolytic cell. The polymer is usually deposited on two adjacent or on all bands by
electropolymerization in such a way that the polymer connects the two neighboring
metal (usually gold) stripes through a narrow gap (usually 1–5 μm). The potential
of the working electrodes (i.e., the metal stripes) can be controlled by a bipotentio-
stat or by a similar electrical circuit. Usually a relatively low potential difference
(5–30 mV) is maintained between the electrodes. The film resistance can be calcu-
lated from the ohmic potential drop between the two microelectrodes. (See experi-
mental examples in Chaps. 6 and 7.)

3.3 Other Techniques Used in the Field of Conducting Polymers

3.3.1 Scanning Electron Microscopy (SEM)

High-resolution images of an electrode surface can be produced in high vacuum
by a scanning electron microscope. A scanning electron beam with an energy of
up to 50 keV is focused to a spot with a diameter of a few nm. Electrons pene-
trate the sample and interact with the atoms up to a depth of a few μm. Secondary
electrons originating from a few nm from the surface are detected, and a two-
dimensional image of the surface with a lateral resolution of down to 1 nm can be
obtained [418]. Although this is an ex situ technique, it is mentioned here because
it is frequently used to present micrographs on the surface morphology of polymer
film electrodes [31, 265, 333, 334, 391, 419–421].

Fig. 3.28 SEM micrograph of poly(neutral red) on Pt deposited from 0.5 moldm−3 H2SO4 solu-
tion by using repeated cycling between −0.2 V and 1.2 V vs. SCE. (Reproduced from [421] with
the permission of Elsevier Ltd.)
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For example, an SEM micrograph (Fig. 3.28) of poly(neutral red) film deposited
on Pt foil shows that a microstructured network of mass-interwoven fibers with di-
ameters of 2–4 μm are formed. The longest fiber is more than 0.4 mm [421].

See also other SEM pictures presented later (Fig. 4.4).
A transmission scanning electron microscope (TEM) is used to study thin layers

(L < 200 nm); see Fig. 4.5.

3.3.2 X-Ray Photoelectron Spectroscopy (XPS)

Irradiating a sample with monochromatic X-rays causes it to eject electrons into
the surrounding vacuum. If the atoms are close to the surface, the electrons that
were removed from deep core levels of atoms can escape without scattering and
energy loss. The photoelectron spectrum is the distribution of unscattered elec-
trons vs. their kinetic energy in vacuo. From this spectrum it is possible to de-
termine the binding energy of the electrons, which is characteristic of the atoms
on the surface. The binding energy of an electron is slightly affected by its elec-
tronic environment, so information can also be obtained about the oxidation state
of the atom. The XPS investigation does not seriously damage the sample studied.
XPS is frequently also used when studying conducting polymers in order to obtain
atomic information on the composition of the surface layers formed on the elec-
trode [1, 2, 11, 421–423].

3.3.3 X-Ray Diffraction (XRD) and Absorption

XRD techniques are used to obtain information on the crystal structure [1,2,11,333,
421, 422, 424, 425]. The in situ study of an electrode is also possible, i.e., following
the changes as a function of potential. The X-ray absorption near edge structure
(XANES) and extended X-ray absorption fine structure (EXAFS) techniques are
also applied to study noncrystalline materials.

X-ray diffraction (XRD) studies provide information on the crystallinity of the
polymer. For example, it was found by Manisankar et al. [333] that the copolymer
of aniline and 4,4′-diaminodiphenyl sulfone contains nanosized crystalline regions,
especially in oxidized (doped) form. In Fig. 3.29 the relatively sharp peaks are re-
lated to the crystalline region (crystallite size 83 nm), while the amorphous regions
are represented by the broad low-intensity peaks.

3.3.4 Electrospray Ionization Mass Spectrometry (ES–MS)

Mass spectrometry (MS) has been used for the ex situ identification of volatile elec-
trolysis products. Another approach is to introduce the solution from the cell into the



112 3 Methods of Investigation

Fig. 3.29 XRD profiles of poly(aniline-co-4,4′-diaminodiphenyl sulfone) (DDS). The monomer
feed ratios (aniline/DDS) are 0.3/0.02 (A), 0.3/0.03 (B), 0.3/0.1 (C), 0.3/0.2 (D) and 0.3/0.3 (E).
(From [333], reproduced with the permission of Elsevier Ltd.)

mass spectrometer using thermospray or electrospray techniques [1, 323, 426–429].
Especially the latter method and its most recent version [430–434], desorption elec-
trospray ionization mass spectrometry (DESI–MS), have been applied successfully
to the study of surface layers, including conducting polymers.
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Chapter 4
Chemical and Electrochemical Syntheses
of Conducting Polymers

Polymers can be prepared using chemical and/or electrochemical methods of poly-
merization (see Chap. 2), although most redox polymers have been synthesized
by chemical polymerization. Electrochemically active groups are either incorpo-
rated into the polymer structure inside the chain or included as a pendant group
(prefunctionalized polymers), added to the polymer phase during polymerization,
or fixed into the polymer network in an additional step after the coating proce-
dure (post-coating functionalization) in the case of polymer film electrodes. The
latter approach is typical of ion-exchange polymers. Several other synthetic ap-
proaches exist; in fact, virtually the whole arsenal of synthetic polymer chemistry
methods has been exploited. Polyacetylene—now commonly known as the pro-
totype conducting polymer—was prepared from acetylene using a Ziegler–Natta
catalyst [1–7]. Despite its historical role and theoretical importance, polyacety-
lene has not been commercialized because it is easily oxidized by the oxygen in
air and is also sensitive to humidity. From the point of view of applications, the
electrochemical polymerization of cheap, simple aromatic (mostly amines) benzoid
(e.g., aniline, o-phenylenediamine) or nonbenzoid (e.g., 1,8-diaminonaphthalene, 1-
aminoanthracene, 1-pyreneamine) and heterocyclic compounds (e.g., pyrroles, thio-
phenes, indoles, azines) is of the utmost interest. The reaction is usually an oxidative
polymerization, although reductive polymerization is also possible [8, 9]. Chemical
oxidation can also be applied (e.g., the oxidation of pyrrole or aniline by Fe(ClO4)3

or peroxydisulfate in acid media leads to the respective conducting polymers), but
electrochemical polymerization is preferable, especially if the polymeric product is
intended for use as a polymer film electrode, thin-layer sensor, in microtechnology,
etc., because potential control is a prerequisite for the production of good-quality
material and the formation of the polymer film at the desired spot in order to serve
as an anode during synthesis. A chemical route is recommended if large amounts of
polymer are needed. The polymers are obtained in an oxidized, high conductivity
state containing counterions incorporated from the solution used in the preparation
procedure. However, it is easy to change the oxidation state of the polymer electro-
chemically, e.g., by potential cycling between the oxidized, conducting state and the

Inzelt, Conducting Polymers 123
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neutral, insulating state, or by using suitable redox compounds. The structure and
conductivity can be altered through further chemical reactions [10].

The mechanism and the kinetics of the electropolymerization—especially in the
cases of polyaniline [11–49] (see Fig. 4.1) and polypyrrole [11, 13, 50–88]—have
been investigated by many researchers since the first reports were published [89–
92]. Two points have been addressed: the chemical reaction mechanism and kinet-
ics of the growth on a conducting surface. Owing to the chemical diversity of the
compounds studied, a general scheme cannot be provided. However, it has been
shown that the first step is the formation of cation radicals. The subsequent fate of
this highly reactive species depends on the experimental conditions (composition
of the solution, temperature, potential or the rate of the potential change, galvano-
static current density, material of the electrode, state of the electrode surface, etc.).
In favorable cases, the next step is a dimerization reaction and then stepwise chain
growth proceeds via the association of radical ions (RR route) or the association of
a cation radical with a neutral monomer (RS route) [6, 93–95]. There may even be
parallel dimerization reactions leading to different products or to a polymer with
a disordered structure.

The inactive ions present in the solution may play a pivotal role in the stabiliza-
tion of the radical ions. Potential cycling is usually more efficient than the potentio-
static method, i.e., at least a partial reduction of the oligomer helps the polymeriza-
tion reaction. This might be the case if the RS route is preferred and the monomer
carries a charge, e.g., a protonated aniline molecule. (PANI can only be prepared in
acidic media; at higher pH values other compounds such as p-aminophenol, azoben-
zene, and 4-aminodiphenylamine are formed.) A relatively high concentration of
cation radicals should be maintained in the vicinity of the electrode. The radical
cation and the dimers can diffuse away from the electrode. Intensive stirring of the
solution usually decreases the yield of the polymer produced. The radical cations
can react with the electrode or take part in side reactions with the nucleophilic
reactants (e.g., solvent molecules) present in the solution. Usually the oxidation
of the monomer is an irreversible process and takes place at higher positive po-
tentials than that of the reversible redox reaction of the polymer. However, in the
case of azines (e.g., 1-hydroxy-phenazine [96–98], methylene blue [99, 100], neu-
tral red [101,102]), reversible redox reactions of the monomers occur at less positive
potentials and this redox activity can be retained in the polymer, i.e., the polymer-
ization reaction that takes place at higher potentials does not substantially alter the
redox behavior of the monomer. For instance, the catalytic activity of methylene
blue towards the oxidation of biological molecules (e.g., hemoglobin) is preserved
in the polymer [103].

A knowledge of the kinetics of the electrodeposition process is also of the ut-
most importance. It depends on the same factors mentioned above, although the
role of the material and the actual properties of the electrode surface are evidently
more pronounced. For example, the oxidation of aniline at Pt is an autocatalytic
process. The specific interactions and the wetting may determine the nucleation
and the dimensionality of the growth process. Two or more stages of the poly-
merization process can be distinguished. In the case of PANI it has been found
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Fig. 4.1 The reaction scheme for the electropolymerization of aniline. (Reproduced from [49] with
the permission of Elsevier Ltd.)

that initially a compact layer (L ∼ 200 nm) is formed on the electrode surface via
potential-independent nucleation and the two-dimensional (2-D, lateral) growth of
PANI islands. At the advanced stage, 1-D growth of the polymer chains takes place
with continuous branching, leading to an open structure [17, 21]. It is established
that—in accordance with theory [104]—the density of the polymer layer decreases
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with film thickness, i.e., from the metal surface to the polymer|solution interface.
The very first stages of the electropolymerization were investigated using in situ
FTIR, attenuated total reflection (ATR) and IR reflection absorption spectroscopy
(IRRAS), which revealed that the mechanism of PANI formation is influenced by
the deposition of oligomers, and the highest growth rate in cyclic electropolymeriza-
tion occurs during the cathodic potential scan [44]. The film morphology (compact-
ness, swelling) is strongly dependent on the composition of the solution, notably
on the type of counterions present in the solution, and the plasticizing ability of
the solvent molecules [31, 34, 38, 40, 45]. The effect of the counterions is illustrated
in Fig. 4.2. The order of the growth rate depends on the nature of the anions (at the
same positive potential limit and acidity) as follows: 4-toluenesulfonic acid (HTSA)
> 5-sulfosalicylic acid (HSSA) > HClO4. This may be assigned to the stabilizing
effect of the larger anions, i.e., lesser cationic oligomers formed at the surface dif-
fuse into the solutions due to the lower solubility of the salts (ion pairs). It has been
established that BF−4 , ClO−4 and CF3COO− ions promote the formation of a more
compact structure, while the use of Cl−, HSO−4 , NO−3 , TSA− and SSA− results in
a more open structure during electropolymerization [31, 38, 40, 45]. Another find-
ing is that certain anions (Cl−, HSO−4 , ClO−4 ) also affect the apparent dissociation
constant of PANI in its reduced form [105–107].

The formation of the polymer involves about 2 mol electrons, associated with
1 mol of aniline [27, 50–52, 108, 109]. The growth rate is proportional—except for
during the early induction period—to the square root of the film volume, and it
is first-order with respect to aniline concentration [41]. Due to the autocatalytic
nature of the electropolymerization, the positive potential limit of cycling can be
decreased after 2–10 cycles, which is a common practice used to avoid the degra-
dation of the polymer due to the hydrolysis of the oxidized PANI (pernigraniline
form) [28, 33, 110] (see Fig. 4.2). Although it is still debated, the appearance of the
“middle peak” most likely reflects the occurrence of oxidative hydrolysis and degra-
dation, and it can be assigned to the redox reaction of benzoquinone [49]. As well
as the head-to-tail coupling that results in the formation of p-aminodiphenylamine,
tail-to-tail dimerization (benzidine) also occurs; however, the latter is considered to
be a minor dimer intermediate because the rate constant of dimerization for RR
coupling that produces the former product (k is ca. 108 dm3 mol−1 s−1) is about
2.5 times higher than that for the tail-to-tail dimer [49]. The degradation process
should be considered for other polymer films, but it can also be controlled elec-
trochemically [84]. If the conditions are not carefully optimized, a mixed material
containing electrochemically active and conducting as well as inactive and insulat-
ing parts is generally deposited on the surface [84]. It has been demonstrated that the
current density is a crucial parameter in the synthesis of polypyrrole (PP) [72,85,87].
The structure of PP is dominated by one-dimensional chains at low current densi-
ties, while two-dimensional microscopic structures of the polymer are formed at
high current densities [72, 85]. The structure substantially affects the conductivity
of the polymer phase, the conductivity of the 2-D form is higher, and its temperature
dependence is lower, which is of importance when this polymer is used for practical
purposes. Detailed studies have shown that the more conductive 2-D islands are in-
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Fig. 4.2a–c The cyclic voltammograms and the simultaneously detected EQCM frequency changes
during the electropolymerization of aniline at a platinum electrode. Sweep rate: 100 mVs−1. Solu-
tion composition: 0.2 moldm−3 aniline in 1 moldm−3 (From [40], reproduced with the permission
of Elsevier Ltd.) a HClO4

terconnected by short 1-D chain segments which act as tunneling barriers [85]. As
described in Sect. 3.2.6.2, during the electropolymerization of polythionine films
structural changes occur during film thickening [111].

It has also been demonstrated by scanning microscopies that film growth at sub-
μm- or μm-structured substrates is not restricted to conductive substrate domains.
Instead, after the film thickness has risen to the level of the surrounding insulator,
lateral outward growth on the nonconductive part also occurs [98]. This is a phe-
nomenon that should be taken into account in microtechnical applications.

Although the region close to the electrode surface exhibits a more or less well-
defined structure, in general the polymer layer can be considered to be an amorphous
material [17,21,22,86]. However, there are rare reports of crystalline structures too.
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Fig. 4.2 (continued) b 4-toluenesulfonic acid

For instance, poly(p-phenylene) films obtained by the electrooxidation of benzene
in concentrated H2SO4 emulsion show a highly crystalline structure [112, 113].

The conditions for polymerization were also found to be crucial in relation to
polythiophene and polybithiophene films [58, 80, 84, 114–121]. The relatively high
potential required for the oxidation prevents the use of many metallic substrates. The
electrochemical oxidation of substituted thiophenes and thiophene oligomers yields
conducting polymers, and these compounds can be electropolymerized at less posi-
tive potentials, so it is a good strategy to use these derivatives instead of thiophene
(see Sect. 2.2.6). Another approach is the deposition of a thin polypyrrole layer that
ensures the deposition of polythiophene on these substrates (e.g., Ti, Au) [115]. In-
terestingly, other polymers as well as copolymers and composites (see Chap. 2) can
also be synthesized.

Although deaerated solutions are usually used during electropolymerization, it
has been proven that the presence of oxygen increases the amount of poly(neutral
red) deposited on the electrode [122].
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Fig. 4.2 (continued) c 5-sulfosalicylic acid

The choice of the supporting electrolyte is important not only in relation to the
morphology and properties of the polymer; in several cases the formation and depo-
sition of the polymer can only be achieved using special electrolytes.

For instance, poly(9-fluorenone) can be electropolymerized in boron tri-
fluoride diethyl etherate (BFEE) media, while the polymerization takes place in
CH2Cl2|Bu4NBF4, albeit with a much smaller rate, and polymer formation cannot
be observed in acetonitrile|Bu4NBF4, as seen in Fig. 4.3 [123].

This effect has been explained by the interactions between the BFEE, which is
a mid-strength Lewis acid, and the aromatic monomers. The interactions lower the
oxidation potential of the monomers, and the catalytic effect of BFEE facilitates the
formation of high-quality polymer films.

As well as the nature and concentration of the supporting electrolytes (monomer
concentration, temperature etc.), organic additives also influence the morphology of
the polymer film. Figure 4.4 shows SEM pictures of PANI prepared by the elec-
tropolymerization of aniline in the absence and presence of methanol, respectively.
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Fig. 4.3a–c Cyclic voltammograms of 3×10−2 moldm−3 9-fluorenone in a BFEE, b acetoni-
trile +0.1 moldm−3 Bu4NBF4, and c CH2Cl2 + 0.1 moldm−3 Bu4NBF4, respectively. Scan rate:
50 mVs−1. (Reproduced from [123] with the permission of Elsevier Ltd.)

When alcohols were added to the electrolyte used in the electropolymerization,
PANI nanofibers were formed with diameters of approximately 150 nm, which ag-
glomerate into interconnected networks. This effect has been explained in terms of
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Fig. 4.4a,b Scanning electron microscopic pictures showing the effect of alcohols on the mor-
phology of PANI films. The films were synthesized under potentiostatic conditions at 0.8 V
vs. SCE from solutions containing 1 moldm−3 HCl and 0.2 moldm−3 aniline without (a) and
with (b) 0.5 moldm−3 methanol. (Reproduced from [48] with the permission of Elsevier Ltd.)

interactions between the methanol molecules and the polyaniline chains; i.e., the
PANI chains are wrapped by alcohol molecules due to intermolecular H-bonding,
which is advantageous to the one-dimensional growth of the polymer [48].

Rotation of the electrode during electrochemical polymerization has been shown
to have a strong influence on the rate of formation of electrochemically polymerized
films, and it affects the morphology and conductivity of the polymer. For instance, it
has been demonstrated that Δ4,4′-di-cyclopenta [2.1-b; 3′,4′-b′]-dithiophene grows
faster at higher rotation rates, and the morphology changes from fibrillar to globular
structures. Both the electronic and ionic conductivities of the polymer increased
by two orders of magnitude [124]. It is thought that the main effect of electrode
rotation, when high monomer concentrations are used, is the removal of oligomers
from the vicinity of the electrode, minimizing their precipitation. Consequently only
the polymerization of the species grafted on the electrode surface takes place, which
results in a better-quality polymer film. It should be mentioned that in other cases
a drop in the deposition rate has been reported [125].

Ultrathin functional films can be prepared with finely adjusted film thickness and
properties by a layer-by-layer (LbL) method. Such multilayers are fabricated by the
alternated adsorption of anionic and cationic polyelectrolytes. These polyelectrolyte
multilayers are self-compensated in terms of the charge; however, the introduction
of redox ions such as Fe(CN)4−

6 or Os(bpy)3+
3 is also possible [126].

Higher electronic conductivity has been achieved by template synthesis using
polycarbonate membranes [127], and this method has also been exploited to obtain
nanostructures [83, 128].

Figure 4.5 shows a transmission electron micrograph of PANI nanotubes ob-
tained by chemical oxidative polymerization and separated from a polycarbonate
membrane. The polycarbonate template was removed by dissolving the samples in
chloroform, and then by filtering the green precipitate. The rest of the polycarbon-
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Fig. 4.5 Transmission elec-
tron micrograph of PANI
nanotubes. (Reproduced
from [128] with the per-
mission of Elsevier Ltd.)

ate was removed by extraction using H2SO4 when the PANI nanotubes precipitate
at the chloroform–acid interface [128].

Spectacular fractal patterns can be obtained by utilizing a needle-to-circle elec-
trode configuration [79].

It is also possible to modify the deposited conducting polymer in order to change
its electrical, optical and other properties. For instance, polyaniline film was modi-
fied by subsequent electrodeposition of diaminomethylbenzoate (Fig. 4.6) [10,129].
As a comparison of the spectrum of PANI—where the absorbance related to the
delocalized electrons at λ > 600 nm is clearly apparent—with the spectrum of the
modified PANI shown in Fig. 4.7 reveals, the electronically conductive parent poly-
mer can be transformed into a redox polymer. However, the electrochemical behav-
ior, the color [10] and the conductivity [129] of the polymer during the modifica-
tion procedure can easily be regulated, and so the required properties can be finely
turned [10, 129].

Electropolymerization can be executed using droplets and particles immobilized
on the surfaces of inert electrodes [130]. Water-insoluble monomers can be used for
this purpose, and the electropolymerization is carried out in aqueous electrolytes.
Microcrystals can be attached to platinum, gold or paraffin-impregnated graphite
(PIGE) by wiping the electrode with a cotton swab or filter paper containing the
material. Alternatively the electrodes can be covered with the monomer using an
evaporation technique; i.e., the microcrystals are dissolved in appropriate solvents
(e.g., tetrahydrofuran), and some drops of the solution are placed onto the electrode
surface. After the evaporation of the solvent, a stable monomer layer remains on
the surface. The attachment of microdroplets requires more skill. A 1–2 μl drop
of monomer is placed on the electrode surface using a micropipette or syringe.
If this electrode is carefully immersed into the aqueous solution, the droplet re-
mains on the electrode. The surface tension of water, which is much higher than
that of most organic liquids, plays an important role, but the difference in densi-
ties can also be controlled by varying the concentration of the electrolyte. A small
“spoon” made from Pt plate can also be fabricated, which can be used to place the
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Fig. 4.6a,b Cyclic voltammograms (a) and the simultaneously obtained EQCM frequency
changes (b) during the deposition of 3,5-diaminomethylbenzoate onto PANI film on Au. So-
lution composition: 0.13 moldm−3 diaminomethylbenzoate and 2 moldm−3 H2SO4. Scan rate:
100 mVs−1. (Reproduced from [10] with the permission of Elsevier Ltd.)

organic droplet in this small vessel. Figure 4.8 shows the electropolymerization of 3-
methylthiophene droplets attached to a PIGE in the presence of an aqueous solution
containing 0.5 moldm−3 LiClO4 [131].

The cyclic voltammograms and the changes that occur to them during repetitive
cycling are similar to those of 3-methylthiophene oxidation in acetonitrile. When
a platinum electrode is used, the color change (red–blue) due to the redox transfor-
mation of poly(3-methylthiophene) is easily visible. A visual inspection also reveals
that the electropolymerization reaction starts at the three-phase junction, as theoret-
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Fig. 4.7a,b The subtracted UV–Vis–NIR spectra of PANI (a) and modified PANI (b), respectively,
obtained in situ at different potentials: (1) −0.35 V; (2) −0.25; (3) −0.15; (4) −0.05; (5) 0.05;
(6) 0.15; (7) 0.25; (8) 0.35; (9) 0.45; (10) 0.55; and (11) 0.65 V. Solution: 1 moldm−3 H2SO4.
ΔA = Abs(E)−Abs(E =−0.35 V). (Reproduced from [10] with the permission of Elsevier Ltd.)

�

Fig. 4.8a–c Consecutive cyclic voltammetric curves obtained for 3-methylthiophene droplets at-
tached to a paraffin-impregnated graphite electrode in the presence of an aqueous solution contain-
ing 0.5 moldm−3 LiClO4. Cycles: a 1 to 4 (curves 2–5); b 5–14; c 15–24 and 25–34. Curve 1 shows
the background current of the uncoated PIGE. Scan rate: 100 mVs−1. (Reproduced from [131] with
the permission of Elsevier Ltd.)
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ically expected, since in this region the electron transfer between the metal and the
monomer, as well as the interfacial transfer of the charge-compensating counterions
between the droplet and the contacting electrolyte solution can proceed simultane-
ously.

Electropolymerization using carbazole [132] and diphenylamine [133, 134] mi-
crocrystals has also been described. Figure 4.9 shows the cyclic voltammograms
and the simultaneously detected EQCM frequency curves obtained during the elec-
tropolymerization of carbazole deposited by an evaporation method on gold. Due
to the small amount of carbazole the electropolymerization was completed during
a single cycle (curve 2, Fig. 4.9). The amount of counterions and solvent molecules
incorporated during the oxidation process can be calculated from the mass change,
since in this case the polymer deposition does not contribute to the mass change.
The next two cycles (Fig. 4.10) show the redox response of polycarbazole and the
accompanying mass change. The high anodic current peak, which is due to the for-
mation of cation radicals, dimers, the further oxidation of dimers, as well as the
formation of the oxidized polymer, did not appear.

Consecutive cyclic voltammetric curves obtained for diphenylamine microcrys-
tals attached to a platinum electrode in the presence of aqueous solution containing
1 moldm−3 H2SO4 are shown in Fig. 4.11 [134].

The high oxidation peak at ca. E = 0.73 V vs. SCE is caused by the formation
of diphenylamine cation radicals (DPAH�), the C–C para-coupled dimerization of
these cation radicals to diphenylbenzidine (DPBH2), and the further oxidation of
DPBH2. The progressively developing waves (Epa ≈ 0.52 V, Epc = 0.43 V) belong

Fig. 4.9 The cyclic voltammetry curves and the simultaneously detected frequency changes ob-
tained for the gold substrate (1) and the virgin carbazole layer deposited on a gold electrode (2),
respectively. Solution: 9 moldm−3 HClO4. Scan rate: 50 mVs−1. (Reproduced from [132] with the
permission of Elsevier Ltd.)
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Fig. 4.10 The continuation of the experiment shown in Fig. 4.9 (the second and third cycles).
(Reproduced from [132] with the permission of Elsevier Ltd.)

to the reversible redox process of the dimer or of the polymer. The redox transfor-
mation of the polymer is accompanied by a color change from colorless (reduced)
to a bright blue (oxidized) form. The reaction starts at the three-phase boundary,
since diphenylamine is an insulator; however, the formation of electronically con-
ducting polymer wires provides an opportunity to enhance electron transport within
the microcrystal bulk [134].

Copolymers are usually prepared by copolymerizing the two monomers. Differ-
ent concentration (feed) ratios of the monomers are used to vary the composition of
the resulting copolymer. (See also Sect. 2.4 and the citations therein.) These efforts
have mainly been directed at improving the mechanical properties and processability
as well as altering the conductivity and optical and other properties of the polymeric
material for special practical purposes.

As an illustrative example, the cyclic voltammograms obtained during the elec-
trochemical copolymerization of aniline (ANI) and o-aminophenol (OAP) are shown
in Fig. 4.12 [135].

The oxidation of the hydroxyl group of OAP occurs at 0.7 V, while the oxidations
of the amino groups of both monomers occur at ca. 1 V. The cyclic voltammograms
are different from those of PANI and POAP at all concentration ratios.

According to Holze [135], the redox pair (Epa = 0.32 V and Epc = 0.28 V) that
can be seen in Fig. 4.12a is related to the copolymer, as neither PANI nor POAP
show such voltammetric peaks. The brownish-blue color of the polymer film ob-
tained at a concentration ratio of 1:10 also differs from that of the monopolymers.
The color of the films formed at other concentration ratios was yellow. The synthe-
sized poly(aniline-co-o-aminophenol) was found to be electroactive, even at pH 10,
and its conductivity was decreased by three orders of magnitude compared to PANI.
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Fig. 4.11a–d Consecutive cyclic voltammetric curves obtained for diphenylamine microcrystals
attached to a platinum electrode (A = 1 cm2) in the presence of aqueous solution containing
1 moldm−3 H2SO4. (Reproduced from [134] with the permission of Elsevier Ltd.) Scan rate:
100 mVs−1. Cycles: a 1–5, b 11–30 (started after a 3 min delay at −0.2 V)

Composites have been prepared by rather different methods due to the great va-
riety of inorganic and organic materials used. (See also Sect. 2.5. and Chap. 7)

Lamellar nanocomposites consisting of layered inorganic compounds and con-
ducting polymers display novel properties which result from the molecular-level in-
teractions of two dissimilar chemical components. The intercalative polymerization
of aniline in an α-RuCl3 host has recently been reported. The insertion of aniline
into α-RuCl3 has been executed by soaking the α-RuCl3 crystals in aniline or ani-
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Fig. 4.11 (continued) Cycles: c 31–50 and d 71–90 (started after a 3 min delay at −0.2 V)

line/acetonitrile solution. It has been proven that polyaniline is formed between the
RuCl3 layers, which are composed of hexagonal sheets of Ru atoms sandwiched be-
tween two hexagonal sheets of Cl atoms with ABC stacking. The RuCl3 is a strongly
oxidizing host which can take up the electrons from the aniline, leading to the for-
mation of polyaniline (PANI). Simultaneously, a fraction of the Ru3+ atoms are
reduced to Ru2+, resulting in a mixed-valence compound. The host material will
have a negative charge, and RuCl−3 sites can act as counterions for anilinium cations
and charged PANI in the nanocomposite (PANI)z+

x (RuCl3)z−
y . The X-ray diffrac-

tion patterns of the samples revealed that the structure of the inorganic host was
preserved; however, the separation of the RuCl3 layers increases by Δd = 0.62 nm.
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Fig. 4.12a–d The cyclic voltammograms obtained during the copolymerization of aniline (ANI)
and o-aminophenol (OAP) at different concentration ratios: a 1 mM OAP + 20 mM ANI;
b 2 mM OAP+20 mM ANI; c 3 mM OAP+20 mM ANI; and d 4 mM OAP+20 mM ANI. Sup-
porting electrolyte: 0.5 moldm−3 H2SO4. Scan rate: 50 mVs−1 [135]. (Reproduced from [135]
with the permission of Springer-Verlag)

It has been established that the charge transport—which occurs by electron hopping
between the ruthenium ions in the mixed-valence compound—is substantially en-
hanced by the presence of the conductive polymer. The results of the thermopower
study indicate a bulk-metal-like conductivity which is controlled by the conductive
polymer. (PANI)x(RuCl3)y shows a room temperature conductivity of ca. 1 Scm−1.
It was suggested that the combination of the high conductivity of the polyaniline
with the wide-ranging catalytic properties of RuCl3 could provide new materials
with valuable electrocatalytic properties [136].

Figure 4.13 shows the cyclic voltammograms obtained for RuCl3 and
(PANI)x(RuCl3)y samples attached to a gold electrode and studied in the presence
of 0.5 mol dm−3 HCl.
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Fig. 4.13a,b Cyclic voltammograms obtained at different scan rates, (a) v = 50 mVs−1 and
(b) v = 5 mVs−1, for Au|RuCl3 (curve 1) and for Au|(PANI)x(RuCl3)y (curves 2, 3, 4). Elec-
trolyte: 0.5 moldm−3 HCl. (Reproduced from [136] with the permission of Springer-Verlag)

In these experiments, first pure α-RuCl3 and then (PANI)x(RuCl3)y, prepared
by one-week-long soaking of α-RuCl3 microcrystals in aniline, were immobilized
at the gold surface. The nanocomposite was washed with 0.5 moldm−3 HCl before
use. A comparison of the cyclic voltammograms displayed in Fig. 4.13a reveals that
the oxidation of Ru2+ to Ru3+ becomes easier since wave II moves in the direction
of smaller potentials while the reduction process remains unaltered. This is related
to the presence of polyaniline, which conducts in this potential region and probably
enhances the charge transfer processes. The waves belonging to the leucoemeral-
dine (LE) � emeraldine (E) transition are clearly seen in Fig. 4.13a (waves III
and IV). Figure 4.13b shows the cyclic voltammograms obtained at a slow scan rate
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over the whole potential region and where the redox transformations of RuCl3 plays
no role (i.e., the response of the PANI can be seen), separately.

The electrochemical activity of PANI decreases with increasing pH, and at
pH > 5 (except in the case of self-doped films) no redox response can be observed.
Figure 4.14 shows the voltammograms of the nanocomposite in the presence of
0.5 M HCl and 0.5 M NaCl, respectively.

Although both of the waves belonging to the Ru3+ → Ru2+ and LE→ E tran-
sitions, respectively, move in the direction of higher potential, it is clearly apparent
that the electrochemical activity (see waves III and IV) of PANI was preserved. (The
sharp pair of waves at low potentials is a typical response of α-RuCl3 in neutral salt
solutions).

Another strategy is the sol-gel preparation technique. Nanocomposites of V2O5

xerogel and polypyrrole were prepared from vanadyl tris(isopropyloxide)
(VC9H21O4) precursor and pyrrole monomer by in situ oxidative polymerization
of the pyrrole in the sol stage by gelation. Unlike other sol-gel nanocomposite syn-
thetic routes, in this case—due to the stability of the solution—a thin homogeneous
film could easily be deposited on various substrates. After casting on the given sub-
strate, the system was heated at 100 ◦C for 2 h. X-ray diffraction revealed that the
PP chains are intercalated within the interlayer region of the V2O5, leading to an
increase in the d-spacing from 1.185 nm for V2O5 to 1.38 nm for the nanocompos-
ite [137]. This nanocomposite shows higher specific capacity, faster Li+ ion diffu-
sion, and higher electronic conductivity than the parent oxide. A detailed literature
survey of V2O5 conducting polymer nanocomposites can also be found in [137].

A sandwich-type composite film consisting of PP and CoFe2O4 nanoparticles
has been prepared by a three-stage procedure; i.e., electropolymerization of pyrrole,

Fig. 4.14 Cyclic voltammetric curves obtained for a Au|(PANI)x(RuCl3)y electrode in the pres-
ence of (1) 0.5 moldm−3 HCl and (2) 0.5 moldm−3 NaCl, respectively. Scan rate: 5 mVs−1. (Re-
produced from [136] with the permission of Springer-Verlag)
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then a second layer was deposited on the graphite–PP electrode by electropolymer-
ization from a solution containing pyrrole and oxide nanoparticles, and finally a top
layer of PP was also created using electropolymerization [138]. This composite elec-
trode exhibits electrocatalytic activity (see Chap. 7) towards oxygen reduction.

The application of combined electrochemical and nonelectrochemical techniques,
such as piezoelectric microgravimetry at EQCM [10,40,73,74,132,134,139–144],
radiotracing [27,145], various spectroscopies [16,44,72,100,116,117,146] and mi-
croscopies [19, 29, 46, 79, 97, 114, 127, 147, 148], ellipsometry [15, 21, 26, 86], con-
ductivity [80], and probe beam deflection [149], has allowed us to gain very detailed
insights into the nature of electropolymerization and deposition processes, and so
the production of conducting polymers, polymeric films, and composites with de-
sired properties is now a well-established area of the electrochemical and material
sciences.
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Chapter 5
Thermodynamic Considerations

As already discussed, interest from electrochemists is currently largely focused on
polymer-modified (film) electrodes. Here, the conducting polymer is deposited on
the surface of a substrate (usually a metal), and investigated or used in contact with
an electrolyte solution that does not contain the polymer. Evidently, no equilibrium
(adsorption equilibrium) will exist between the surface phase and the solution with
respect to the polymer. The modified electrode can be used if the polymer is stably
attached to the surface of the substrate. In most cases no chemical bonds exist be-
tween the substrate and the polymer; the polymer layer remains at the surface due to
the van der Waals forces between the substrate and the polymer, as well as between
the polymer chains in multilayer films. The adsorption model of de Gennes [1] pro-
vides a description of this situation. It is based on the observation that the polymer
sticks to the substrate surface and cannot be desorbed by washing with the pure sol-
vent. This situation is expected when the surface tension of the pure polymer melt
is lower than that of the pure solvent. Although the individual energy contribution
of a segment of the polymer is small, the overall energy is large since the small en-
ergy contributions add up. An important consequence of this metastable adsorption
is that the density of the polymer layer is usually not uniform. In fact, the behaviors
of several polymer film electrodes [2–9] have been explained by the assumption of
diminishing layer density from the metal surface. There is another problem with
polymeric systems, especially with polyelectrolytes: a true equilibrium situation is
seldom established within the time-scale of the experiments since the relaxation
process of the polymer network (gel) can be extremely long. This is true not only
with respect to polymer morphology (conformation) but also membrane equilibria
(in which ions and solvent molecules participate). Nevertheless, it is worth survey-
ing the most important thermodynamic relationships for an idealized situation. The
surface polymer layer will be treated as an amorphous swollen gel with a uniform
structure and density in contact with a solution containing solvent molecules and
ions. In this case, both nonosmotic and osmotic membrane equilibria, as well as
the mechanical work done in swelling the polymer, must be taken into account. In
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most cases the situation is even more complicated than that usually treated using
a membrane equilibrium, since the charge in the polymer changes during the redox
reaction; in most cases a neutral polymer is transformed into a polyelectrolyte, and
vice versa.

5.1 Neutral Polymer in Contact with an Electrolyte Solution

We should consider the partitioning equilibria of the solvent molecules, the neutral
salt and the ions formed by dissociation. For all mobile species, the equilibrium
condition is

μ̃α
i = μ̃β

i , μα
i + ziFϕα = μβ

i + ziFϕβ , (5.1)

where μ̃α
i and μ̃β

i are the electrochemical potentials of the i-th species in phase α
(film) and phase β (solution), respectively, zi is the charge number of the species
and ϕ is the inner electric potential of the phase. For a neutral entity (solvent or salt
molecules), μ̃i = μi, where μi is the chemical potential.

The solvent (s) content in the polymer phase obviously depends on the difference
between the standard chemical potentials (μ�i ) of the solvent molecules in the two
contacting phases, since

μα
s = μβ

s = μ�α
s + RT lnaα

s = μ�β
s + RT lnaβ

s ; (5.2)

therefore

Δμ�s = μ�α
s − μ�β

s = RT ln
aβ

s

aα
s

= RT lnK (5.3)

where aβ
s and aα

s are the relative activities of the solvent in the respective phases,
and K is the partitioning equilibrium constant.

If μ�α
s > μ�β

s , aβ
s > aα

s , and taking the activity coefficients γα
s = γβ

s = 1 (di-

lute solutions, quasi-ideal system), cβ
s > cα

s . This is the case when the polymer is
hydrophobic and the solvent is hydrophilic. In other words, the interaction energies
between the polymer segments and between the solvent molecules are higher than
those between the polymer segments and the solvent molecules. In this case, the
polymer segments are not solvated by the solvent molecules, and hence there is no
solvent swelling of the polymer film. If the neutral polymer contains polar groups
(e.g.,−OH, −NH2), water molecules will enter the polymer and the polymer phase
will eventually contain substantial amounts of water. Other effects, however, may
also be operative; e.g., the amount of crosslinking within the polymer.

Ions enter the film if their van der Waals and ion-dipole interactions with the
polymer are large. Ions can be solvated (hydrated) by both the polymer and the
solvent. A rough estimation can be achieved using Born’s theory.
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According to the Born equation, the Gibbs free energy of solvation is

ΔGsolv =−NAz2e2

8πεor

(
1− 1

εr

)
(5.4)

and the Gibbs energy change when the ion is transferred from one solvent (phase α)
to another solvent (phase β ) is

ΔGsolv =−NAz2e2

8πεor

(
1

εα −
1

εβ

)
, (5.5)

where NA is the Avogadro constant, εo is the permittivity of the vacuum, εr (as well
as εα and εβ ) is the relative dielectric permittivity of the solvent (i.e., for phases α
and β , respectively), e is the elementary electric charge, and z and r are the charge
and the radius of the ion.

It follows that if εr is small, the Gibbs free energy of ion transfer is small, and if
εβ > εα , ΔGs becomes positive, and so the sorption of ions in phase α is less likely.
If we assume that this electrostatic interaction dominates, i.e., ΔGsolv

∼= Δμ�ion, and
taking into account that εβ (water) is 78 at 25 ◦C while εα (organic phase) is usually
less than 10, the activity (concentration) ratio should be very small. Of course, Δμ�ion
may also depend on the differences between other interactions (e.g., van der Waals
interactions) in the two phases.

By using (5.1) for a Kz+
ν+Az−

ν− electrolyte that dissociates into ν+K+ and ν−A−
ions (if the interface is permeable for both ions), we may write that

μ̃α
K+ = μ̃β

K+ and μ̃α
A− = μ̃β

A− , (5.6)

and therefore the following equations can be obtained for the activities of ions in the
polymer phase:

aα
K+ = aβ

K+ exp

(

−Δμ�K+

RT

)

exp

(
− z+FΔϕ

RT

)
(5.7)

aα
A− = aβ

A− exp

(

−Δμ�A−
RT

)

exp

(
− z−FΔϕ

RT

)
(5.8)

where Δϕ = ϕα − ϕβ , i.e., the interfacial potential drop, and Δμ�K+ = Δμ�α
K+ −

Δμ�β
K+ , Δμ�A− = μ�α

A− −μ�β
A− . The chemical potential of the electrolyte (μKA) should

also be the same in both phases since it is a neutral entity:

μα
KA = μβ

KA = ν+μ̃α
K+ + ν−μ̃α

A− = ν+μ̃β
K+ + ν−μ̃β

A− = νμα
± = νμβ

± (5.9)
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where μ± is the mean chemical potential of the electrolyte, and v = v+ + v−. Since

μKA = νμ± = νμ�± + RTν lna± , (5.10)

ln
aα±
aβ
±

=
μ�β
± − μ�α

±
RT

= lnKAB = ln
cα

KA

cβ
KA

+ ln
γα±
γβ
±

(5.11)

where cKA is the concentration of the electrolyte and γ± is the mean activity coeffi-
cient. Taking into account the electroneutrality condition, i.e.,

z+v+ = z−v− or z+cK+ = z−cA− , (5.12)
(

aα
K+/aβ

K+

)ν+
=

(
aβ

A−/aα
A−

)ν−
(5.13)

or (
aα

K+/aβ
K+

) 1
z+ =

(
aα

A−/aβ
A−

) 1
z− . (5.14)

For an 1–1 electrolyte, and in dilute solutions (γ± = 1),

cα
K+/cβ

K+ = cβ
A−/cα

A− . (5.15)

From (5.7) and (5.8), the interfacial electric potential drop can be expressed as fol-
lows:

Δϕ =
Δμ�A− −Δμ�K+

F (z+− z−)
. (5.16)

It follows that the sign of the potential difference depends on the sign of the differ-
ence, Δμ�A− −Δμ�K+ , which is determined by the different interactions between the
polymer and the ions of opposite sign. For instance, a hydrophobic, nonpolar poly-
mer will interact more strongly with a hydrophobic ion. If the latter is the cation
(e.g., TBA+), the surface charge of the polymer will be positive, which is com-
pensated for by the excess negative charge of the anions in the solution phase. An
illustration of this scenario is shown in Fig. 5.1.

A rough estimation of the formation of ion pairs (salt molecules) can be achieved
using Bjerrum’s theory. The probability of ions with charges of opposite signs
associating increases with increasing ionic charge and with decreasing permit-
tivity of the phase. For instance, the association of alkali halides is negligible
in water at 25 ◦C; however, it becomes significant upon the addition of dioxan
when ε < 30. The relationship between the logarithm of the association con-
stant (lgKassoc) and 1/ε is approximately linear. This means that the formation of
ion pairs within a polymer phase of low dielectric permittivity (ε = 2–10) is ex-
pected. However, due to many other possible interactions (e.g., complex formation)
a rather detailed investigation is needed to estimate this effect for each system sep-
arately.
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Fig. 5.1 The standard chemical potentials (μ�i ), the activities (ai), and the inner potentials (ϕ) in
the case of a neutral, hydrophobic polymer and an aqueous solution containing (KA � K+ +A−)
electrolyte

The situation is different when the interface is not permeable for one of the ions;
i.e., the polymer film behaves like an ion-exchange membrane. This is the case
when the polymer is charged, which is usually achieved by oxidation or reduction;
however, this can also be the result of protonation.
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5.2 Charged Polymer in Contact with an Electrolyte Solution

Two cases should be considered: (i) nonosmotic membrane equilibrium; (ii) osmotic
membrane equilibrium. In the latter case, where solvent molecules can enter the
surface layer or the membrane, the situation is more complicated since mechanical
equilibria are also involved. We will start by considering nonosmotic equilibrium.

5.2.1 Nonosmotic Membrane Equilibrium

For the sake of simplicity, we will consider a negatively charged polymer film (neg-
ative sites are formed as a result of a reduction process) in contact with a K+A−
electrolyte. The concentration of the negatively charged sites (X−) is cX− , the value
of which depends on the potential according to the Nernst equation. At fixed po-
tential and a concentration of cKX, the partitioning equilibrium (γ± is taken to be 1)
is

cα
K+cα

A− = cβ
K+cβ

A− =
(

cβ
KA

)2
. (5.17)

Because of the electroneutrality condition

cα
K+ = cα

A− + cα
X− (5.18)

cβ
K+ = cβ

A− = cβ
KA . (5.19)

From (5.17)–(5.19), it follows that

cα
K+ = 0.5cα

X−+
[
(
0.5cα

X−
)2 +

(
cβ

KA

)2
]1/2

(5.20)

cα
A− = −0.5cα

X−+
[
(
0.5cα

X−
)2 +

(
cβ

K+

)2
]1/2

(5.21)

when cβ
KA/cα

X− � 1, cα
K+ ≈ cα

X− and cα
A− = 0; i.e., the membrane behaves as a cation

exchanger. This condition is usually fulfilled, since the concentration of the neg-
atively charged sites in fully reduced polymer film is 1–5 moldm−3, while the
concentration of the contacting solution is usually 0.1–1 moldm−3. However, in
the beginning of the reduction (e.g., in a cyclic voltammetric experiment), cα

X−
might be smaller than cβ

KA, or when a concentrated electrolyte is applied (cβ
KA >

5−15 moldm−3), the sorption of co-ions (anions in this case) should also be con-
sidered (see Fig. 5.2). In the very beginning of the redox transformation, (5.3) may
also be operative if the neutral polymer has a low dielectric permittivity and both
Δμ�s and Δμ�ion also change during the redox transformation. The Donnan potential
between the polymer membrane and the solution is

ED =
RT
F

ln
aβ

K+

aα
K+

. (5.22)
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Fig. 5.2 The concentrations of the ions and the inner potentials in the different phases of a modified
electrode arrangement

The dependence of the Donnan potential on the electrolyte concentration can
be obtained by combining Eqs. 5.20 and 5.22 and taking the value of the activity
coefficient of K+ to be 1 or γα

K+ = γβ
K+ . In fact, the terms containing the activity

coefficients [RT ln(γα
K+/γβ

K+)] and Δμ�K+ are usually treated together, since they are
not accessible separately by any measurements. Additional hypotheses are needed
to assign the deviation from the ideal behavior either to the solvation effect, spe-
cific interactions between the ions and the polymer, or interactions between charged
entities.

In the true membrane arrangement, when the conducting ion-exchange polymer
is situated between two solutions (I and II) of different concentrations, a Donnan po-
tential also arises at the other membrane–solution interface, which can be expressed
similarly; however, no equilibrium exists in this case.

A diffusion potential (Δφdiff) arises within the membrane which depends on the
concentrations and mobilities of the ions within the membrane. For a perfectly se-
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lective membrane (e.g., cα
A− ≈ 0),

Δϕdiff =
RT
F

ln
cα

K+(I)
cα

K+(II)
(5.23)

and the Donnan potential

ED =
RT
F

ln
aK+(I)
aK+(II)

. (5.24)

If more than one cation is present, due to the specific interactions between the poly-
mer and ions, a selectivity can be observed. Only electrostatic interactions were
considered above, which, of course, involve the differences between the charges
of the ions, which were not treated in our derivations but can easily be included.
The specific interactions are due to other forces (dipole, van der Waals, hydrogen
bonding, etc.).

If we consider two electrolytes (KA, BA) and the polymer film electrode arrange-
ment we can write (5.1) for both K+ and B+, and the different specific interactions
can be expressed by different Δμ�i values according to (5.3). Introducing the ion-
exchange equilibrium constant (KKB),

RTKKB = μ�α
K+ + μ�β

B+ −
(

μ�β
K+ + μ�α

B+

)
(5.25)

KKB =
aβ

K+aα
B+

aα
K+aβ

B+

. (5.26)

It follows that the aα
K+/aα

B+ ratio (i.e., the distribution within the polymer phase)
will depend on the difference in Δμ�i values, and KKB is a selectivity constant.

When the membrane is in contact with solutions of different concentrations of
KA and BA on both sides, KKB = (uK+/uB+)K′KB, where uK+ and uB+ are the mo-
bilities of the respective ions.

For the potential difference
(

Δϕ = Δβ
I ϕ + Δβ

IIϕ + Δϕdiff

)
,

Δϕ =
RT
F

ln
aI

K+ + K′ABaI
B+

aII
K+ + K′ABaII

B+
(5.27)

is obtained.
The membrane properties of electrochemically active polymer films, including

several examples, have been compiled by Doblhofer and Vorotyntsev [10–12].

5.2.2 Osmotic Membrane Equilibrium and Electrochemical
and Mechanical Equilibria

During the redox transformations and the incorporation of ions and solvent mole-
cules into the polymer phase, a swelling of the polymer layer occurs; i.e., the state
of the polymer phase depends on the potential. A volume change may also take
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place when the molar volumes of the reduced and oxidized forms differ. To ob-
tain a thermodynamic description of the expansion or contraction of the polymer
network, a mechanical work term must be added to the equations used so far. We
may consider a polymer network where the chains are kept together by interchain
crosslinks based on chemical bonds or weaker (e.g., van der Waals) forces. When
the interchain forces are weak, the sorption of solvent molecules may lead to infinite
swelling (i.e., to dissolution).

The deformation of the polymer layer may be plastic or elastic. Plastic defor-
mation occurs during the break-in period when a freshly deposited film (e.g., the
polymer is deposited from an organic solvent solution using an evaporation tech-
nique) is placed in an aqueous electrolyte and the incorporation of ions and solvent
molecules is completed after many potential cycles. The elastic deformation is usu-
ally reversibly coupled to the redox reaction.

5.2.2.1 Osmotic Membrane Equilibrium and Incorporation
of Solvent Molecules

In this case, the osmotic equilibrium is reached when

μα
s = μβ

s , (5.28)

where μs is the chemical potential of the solvent (s).
The activity of the solvent in the polymer phase differs from that of the electrolyte

μs = μ�s + RT lnas + PVs , (5.29)

where P is the pressure relative to the standard pressure p� used to define the stan-
dard chemical potential, and Vs is the partial molar volume of the solvent.

If we assume that Pα is higher than Pβ (i.e., there is an osmotic pressure
drop across the film/solution interface but the partial molar volume of the solvent
molecules is the same in both phases), then:

μα
s − μβ

s = Δμs = μ�α
s − μ�β

s +
(

Pα −Pβ
)

Vs + RT ln
aα

s

aβ
s

. (5.30)

(Pα−Pβ )Vs is the work needed to expand the polymer network, which is still main-
tained by crosslinks.

This means that (5.3) or (5.11) must be extended with this term.

5.2.2.2 Mechanical–Electrochemical Equilibrium and Incorporation
of Counterions

Of course, if the pressure difference exists, this mechanical work term is opera-
tive for all species, including the freely moving ions and the redox sites. For each
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charged species, (5.29) can be written as follows:

μ̃α
i = μ�α

i + RT lnaα
i + ziFϕα + PαVi . (5.31)

The equilibrium situation between the surface film and the solution for ions that
enter the film from the solution can be expressed by taking into account the me-
chanical free energy associated with the incorporation of counterions. Considering
an anion-exchanger (i.e., when the redox sites are positively charged),

μ̃α
A− = μ̃β

A− , (5.32)

and so the expression for the potential drop at this interface will be

ϕα −ϕβ =
μ�α

A− − μ�β
A−

F
+

RT
F

ln
aα

A−

aβ
A−

+
VA

(
Pα −Pβ)

F
(5.33)

when the charges of both the anion and the redox sites are |zi|= 1, and assuming that
VA is independent of composition and pressure. At the substrate (metal, M) and film
interface, where only electron transfer occurs, the equilibrium can be represented by
the equality of the electrochemical potential of the electron:

μ̃M
e− = μ̃α

e . (5.34)

In the polymer phase (α), the following electron exchange reaction takes place:

Red � Ox+ + e− . (5.35)

Therefore,
μ̃α

e = μ̃α
Red− μ̃α

Ox , (5.36)

and consequently the potential drop at this interface

ϕM−ϕα =
μ�α

Ox − μ�α
Red + μ�M

e

F
+

RT
F

ln
aα

Ox

aα
Red

+
Pα (

V α
Ox−V α

Red

)

F
, (5.37)

assuming that the partial volumes of the oxidized and reduced forms are different,
and neglecting the activity and volume changes (as usual) in the metal phase.

The addition of (5.33) and (5.37) gives the total potential difference between the
metal and the electrolyte solution.

Using an appropriate reference electrode, the Galvani potential difference Δϕ =
ϕM−ϕα can be measured against this reference potential, and the electrode poten-
tial (E) can be given as follows:

E = E�+
RT
F

ln
γα

Oxcα
Ox

γα
Redcα

Red
+

RT
F

ln
γα

A−cα
A−

γβ
A−cβ

A−
+

μ�α
A− − μ�β

A−
F

+

(
Pα −Pβ)

VA

F
+ Pα (V α

Ox−V α
Red) (5.38)
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where the standard electrode potential (E�) belongs to reaction (5.35), the second
term is the Nernstian activity ratio term where the relative activities are expressed by
the product of the respective activity coefficients and concentrations, the third term
and the fourth term give the potential difference resulting from a Donnan-type ionic
equilibrium at the polymer film|solution interface, and the last two terms express
the mechanical equilibria. The fifth term is of importance when Pα differs from Pβ

and its value increases when the partial molar volume of the counterion increases.
The sixth term should be taken into account if the internal pressure of the polymer
film is significant and the partial molar volumes of the oxidized and reduced forms
of the electrochemically active species differ substantially from each other.

Equation (5.38) must be extended with (5.30) when solvent sorption plays a sig-
nificant role.

When the activity coefficients are unknown, the formal potential (E�′c ) is used
in electrochemistry [13]. This approach, in principle, could also be followed in the
case of polymer film electrodes. However, the activity coefficients should be inde-
pendent of the potential—a requirement which is not fulfilled for these systems. It
is evident that during charging, both the electrostatic interactions and the chemical
environment will change substantially, which will influence the values of the activ-
ity coefficients to a great extent. In many cases the concentration of charged sites is
as high as 1–5 moldm−3 after complete oxidation or reduction, and consequently it
is expected that the values of γα

Ox, γα
Red, and γα

A− (or γα
K+) will increase significantly.

Because we usually have no information on the function γα
i (E), in order to elucidate

the nonideal electrochemical behavior (e.g., the shape of the cyclic voltammogram),
an “interaction” parameter is introduced that relates to the variations in the activity
coefficients of the redox sites (second term in (5.38)).

Beside the excess internal pressure originating from osmotic phenomena due to
the transport of solvent molecules, the incorporation of counterions also contributes
to the development of a pressure difference, because the crosslinked polymer net-
work must expand to accommodate counterions. Evans et al. [14, 15] have dealt
with this problem, and proved that for poly(vinylferrocene) (PVF) films the latter
one is the more important pressure-generating mechanism. Furthermore, in the case
of PVF, the term Pα(V α

Ox−V α
Red) can be neglected since VOx ∼ 1.02VRed, and the

effect of the incorporation of counterions dominates.
They considered only the elastic deformation of the polymer network, which is

reversibly coupled to the redox reaction. Based on this simplified model, the follow-
ing relationship for the electrode potential as a function of the fraction of oxidized
sites, f , was derived:

E = E�′c +
RT
nF

ln
f

1− f
+

nV 2
AcK f
Fz2 , (5.39)

where the mechanical work term contains the modulus of elasticity, K, the molar
volume of the anion, VA, the redox site concentration, c, the charge of the coun-
terion, z, and the number of electrons transferred from the film to the electrode
substrate, n.
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Fig. 5.3 Comparison of experimental data obtained for plasma-polymerized vinylferrocene (solid
circles) and the theoretical calculation (open circles) according to (5.39). (Reproduced from [14]
with the permission of Elsevier)

Despite the rather simplified nature of the model, the deviation of the experimen-
tal data obtained for different PVF films from the ideal Nernstian response without
a mechanical contribution was nicely described (see Fig. 5.3).

The nonideality of the electrochemically active polymer film has also been ex-
plained by the interactions of the redox sites [16] and the heterogeneity [17] of the
polymer layer.

Brown and Anson [16] assumed that the degree of interaction between the redox
sites depends on the concentrations of the reduced (cA) and oxidized (cB) sites, and
so the activity coefficients can be expressed as follows:

γA = exp[−(rAAcA + rABcB)] (5.40)

γB = exp[−(rBBcB + rBAcA)] (5.41)

where rAA, rAB, rBB and rBA are the respective interaction parameters. Repulsive
interactions have r < 0, while attractive ones have r > 0. This approach has been
used in several papers [18, 19]. Albery et al. assumed a Gaussian distribution of the
standard potentials of the redox sites [17].

The concept of distributed formal redox potentials was introduced by Posadas
et al. [20] for the thermodynamic description of conducting polymers. The distri-
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bution of the formal redox potentials was derived from the experimental data ob-
tained for PANI, POT, POAP, PBD and polybenzidine polymers. In all cases a sig-
moidal distribution function was found. The shape of the distribution function was
explained by a mechanical stress effect generated by the contraction and expansion
of the polymer film during the redox transformations.

The most comprehensive thermodynamic model that describes the redox switch-
ing of electroactive polymers has appeared recently. Posadas and Florit [21] consid-
ered the following phenomena: conformational changes; swelling due to the sorp-
tion/desorption of solvent molecules; injection/ejection of ions that specifically bind
to the polymer; and ion ingress/egress in order to maintain electroneutrality inside
the polymer. Both the oxidized and reduced forms of the polymer are considered
to be polyelectrolytes; however, they have different chemical natures. The polymer
was treated as a separate phase in contact with an electrolyte solution on one side
(where the ionic exchange processes occur), and with a metallic conductor on the
other side (where the electron exchange takes place). The apparent formal potential
was calculated by taking into account the different contributions to the free energy.
The model was applied to the redox transformation of polyaniline (PANI).

The free energy of mixing the polymer with the solvent (ΔAm) was calculated
based on the theory of Flory [22].

Am = kT (N1 lnφ1 + N2 lnφ2)+ χMtφ1φ2 , (5.42)

where φ1 and φ2 are the volume fractions of the solvent and the polymer, respec-
tively; N1 is number of solvent molecules inside the polymer phase; N2 is the num-
ber of chains; Mt = N1 + N2M (M is the average number of monomer units); and χ
is the interaction parameter. The phase behavior of the polymer is governed by χ
(χ < 0 for a good solvent, i.e., when interactions between the polymer segments and
the solvent molecules are larger than the segment–segment interactions, and χ > 0.5
for bad solvents, i.e., when the interactions between the segments are stronger than
the solvent–segment interactions).

The swelling equilibrium is established when the deformation of the polymer
network equals the osmotic pressure of the solvent. The corresponding free energy
change (ΔAd) is purely entropic [23–25].

ΔAd =−TΔSd = υMkT
[
lnφ2 + 3

(
φ−2/9

2 −1
)]

(5.43)

where υM is the number of monomer units that are participating in the deformation
process.

The change in the binding free energy (Ab) was described by a Langmuir
isotherm:

ΔAb = kT B

{
ln(1− f )+ f ln

[
f

q(1− f )

]}
(5.44)

where B is the total number of binding sites (for PANI there are two types of binding
site: amine and imine groups), f is the fraction of the bound sites, and q is the
partition function of occupied sites.
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The free energy change due to the incorporation of counterions into the polymer
phase to maintain the electroneutrality (Ael) is:

Ael =
z2

adM f 2φ2

2υoI
. (5.45)

The total free energy change of the polymer is

ΔApol = ΔAm + ΔAd + ΔAb + ΔAel . (5.46)

The chemical potentials corresponding to the different free energy contributions of
the polymer are the corresponding derivatives with respect to M, which are depen-
dent only on φ2:

Mm = [(1−φ2)/φ2] ln(1−φ2)+ χ (1−φ2) (5.47)

(N2 = 1 for a polymer network)

Md = υkT
[
lnφ2 + 3

(
φ−2/9−1

)]
(5.48)

Mb = gkT {ln(1− f )+ f ln [( f/g) (1− f )]} (5.49)

(g is the fraction of monomer units that are capable of binding protons, B = gM)

Mel = kT

(
z2

adφ2
2 g2 f 2

2υoI

)
. (5.50)

The sum of all these contributions will be the chemical potential of each type of
polymer (i.e., Mpol,r and Mpol,o for the reduced and oxidized forms, respectively).
When both types of polymers are present a further conformational contribution
should be considered, except in the case of the complete independence of the two
types of polymers.

The description of the osmotic equilibrium is based on (5.2), and Δμ1 can be
determined from (∂ΔApol/∂N1)N,Nox,T = 0.

The electrode potential (E) can be derived from the potential of the cell reaction
using an appropriate reference electrode:

FE = (∂ΔA/∂Ne)N,Nox,T (5.51)

where F is the Faraday constant, Ne is the number of electrons, Nox and Nred are the
number of redox centers (N = Nox + Nred), and

dA = μ̃ox dNox + μ̃red dNred + μ̃e dNe + μpol,ox dMpol,ox

+ μpol,red dMpol,red (5.52)

where μ̃ox, μ̃red and μ̃e are the electrochemical potentials of the respective redox
centers and the electrons.
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The degree of advancement of the redox reaction (dξ )

dξ = dNox =−dNred = dNe , (5.53)

and the number of redox centers are related to the number of units (Mo = αNox and
Mr = αNred), thus

E = (1/F)
[
μox− μred + μe + α

(
μpol,ox− μpol,red

)]
(5.54)

where μox, μred, μe are the respective chemical potentials.
If ideal behavior is assumed,

μox = μ�ox + kT lnθ (5.55)

μred = μ�red + kT ln(1−θ ) (5.56)

where θ = Nox/Nt.
The interactions between the oxidized and reduced sites have also been treated.
Based on this model, and by using the values of the different quantities deter-

mined experimentally (the protonation constants of the oxidized and reduced forms
determined by titration, volume changes during the redox transformation, the num-
ber of redox centers calculated from the charge consumed), the calculations led to
reasonable results which are in accordance with earlier findings. Figures 5.4 and 5.5
show the results of the calculation for the solvent and ion populations.

Fig. 5.4 Calculated change in the number of solvent molecules (ΔN1) as a function of the poten-
tial [21]. (Reproduced with the permission of the American Chemical Society)
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Fig. 5.5 Calculated change in (open circles) the number of expelled protons (ΔnH) and (solid
circles) the number of injected anions (ΔnA) in the polymer as a function of the potential [21].
(Reproduced with the permission of the American Chemical Society.)

5.3 Dimerization, Disproportionation and Ion Association
Equilibria Within the Polymer Phase

Based on the results of simultaneous measurements of electron spin resonance and
ultraviolet–visible spectroscopy, it was suggested by Dunsch et al. [26] that the elec-
trochemical transformations of PANI take place via an EE mechanism that include
a disproportionation equilibrium:

A � P+ + e− E�1 (5.57)

P+ � B2+ + e− E�2 (5.58)

2P+ � A+ B2+ Kdisp (5.59)

where E�1 and E�2 are the respective standard potentials and E�1 > E�2 ; Kdisp is the
disproportionation equilibrium constant, which can be expressed as

Kdisp = exp
[−(F/RT )

(
E�2 −E�1

)]
, (5.60)

and A, P+ and B2+ are the symbols of the reduced state, the polaronic state, and
the bipolaronic state, respectively. The single voltammetric wave that appears in the
cyclic voltammograms may indicate that E�1 > E�2 ; however, the theoretical calcu-
lations do not support this assumption. This apparent contradiction can be resolved
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by considering a reversible dimerization reaction; i.e.,

A � P+ + e− E�1 (5.61)

2P+ � P2+
2 (dimer) Kdim (5.62)

The dimerization reaction yields doubly charged segments on the polymer chain
that are twice as big as a polaronic segment. For a bipolaronic state of this size, how-
ever, interchain bipolarons with a p or s bond between the polymer chains can also
be envisaged. This model can be extended by protonation equilibria [26]. There are
several other hypotheses relating to the formation and interactions of polarons and
bipolarons which also take into account the interactions between the charged sites in
the polymer chains and counterions (C−). Counterions may decrease the Coulomb
repulsion between two polarons during the formation of a bipolaron. Different com-
plexes such as P+C−, B2+C− and B2+C−2 have been assumed by Paasch [27]. It
was concluded that two processes are slow: the formation of bipolarons and the
formation of B2+C−2 complexes. The hysteresis effects were also explained by the
bipolaron mechanism; i.e., due to the high formation energy of bipolarons, their
decay into polarons is a slow process.

The effect of ion association has also been considered by Vorotyntsev et al. in
order to explain the splitting of the voltammetric waves [28]. It was assumed that
ions inside the polymer film exist in two different forms: “free” and “bound.” The
“bound” ions may be associated with neutral sites of the polymer matrix, resulting
from the formation of a bond or ion binding by microcavities; or they may be due to
the formation of P+C−, B2+C−2 -type complexes. However, the results from cyclic
voltammetric and EQCM experiments on PP and PANI cannot be explained by the
hypothesis based on complex formation, while the “bound” ion theory is appropriate
for interpreting the unusual behavior observed [28].
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Chapter 6
Redox Transformations and Transport Processes

The elucidation of the nature of charge transfer and charge transport processes in
electrochemically active polymer films may be the most interesting theoretical prob-
lem of this field. It is also a question of great practical importance, because in most
of their applications fast charge propagation through the film is needed. It has be-
come clear that the elucidation of their electrochemical behavior is a very difficult
task, due to the complex nature of these systems [1–8].

In the case of traditional electrodes, the electrode reaction involves mass trans-
port of the electroactive species from the bulk solution to the electrode surface and
an electron transfer step at the electrode surface. A polymer film electrode can be
defined as an electrochemical system in which at least three phases are contacted
successively in such a way that between a first-order conductor (usually a metal)
and a second-order conductor (usually an electrolyte solution) is an electrochemi-
cally active polymer layer. The polymer layer is more or less stably attached to the
metal, mainly by adsorption (adhesion).

The fundamental observation that should be explained is that even rather thick
polymer films, in which most of the redox sites are as far from the metal surface
as 100–10,000 nm (this corresponds to surface concentrations of the redox sites
Γ = 10−8−10−6 molcm−2), may be electrochemically oxidized or reduced.

According to the classical theory of simple electron-transfer reactions, the reac-
tants get very close to the electrode surface, and then electrons can tunnel over the
short distance (tenths of a nanometer) between the metal and the activated species
in the solution phase.

In the case of polymer-modified electrodes, the active parts of the polymer can-
not approach the metal surface because polymer chains are trapped in a tangled net-
work, and chain diffusion is usually much slower than the time-scale of the transient
electrochemical experiment (e.g., cyclic voltammetry). Although we should not ex-
clude the possibility that polymer diffusion may play a role in carrying charges,
even the redox sites may get close enough to the metal surface when the film is
held together by physical forces. It may also be assumed that in ion-exchange poly-
meric systems, where the redox-active ions are held by electrostatic binding [e.g.,
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Ru(bpy)3+/2+
3 in Nafion], some of these ions can reach the metal surface. However,

when the redox sites are covalently bound to the polymer chain (i.e., no free diffu-
sion of the sites occurs), and especially when the polymer chains are connected by
chemical cross-linkages (i.e., only segmental motions are possible), an explanation
of how the electrons traverse the film should be provided.

Therefore, the transport of electrons can be assumed to occur either via an elec-
tron exchange reaction (electron hopping) between neighboring redox sites, if the
segmental motions make it possible, or via the movement of delocalized electrons
through the conjugated systems (electronic conduction). The former mechanism is
characteristic of redox polymers that contain covalently attached redox sites, either
built into the chain or included as pendant groups, or redox-active ions held by elec-
trostatic binding.

Polymers that possess electronic conduction are called conducting polymers,
electronically conducting polymers, or intrinsically conducting polymers—ICPs
(see Chap. 2). Electrochemical transformation—usually oxidation—of the noncon-
ducting forms of these polymers usually leads to a reorganization of the bonds of
the macromolecule and the development of an extensively conjugated system. An
electron-hopping mechanism is likely to be operative between the chains (interchain
conduction) and defects, even in the case of conducting polymers.

However, it is important to pay attention to more than just the “electronic charg-
ing” of the polymer film (i.e., to electron exchange at the metal|polymer inter-
face and electron transport through the surface layer), since ions will cross the
film|solution interface in order to preserve electroneutrality within the film. The
movement of counterions (or less frequently that of co-ions) may also be the rate-
determining step.

At this point, it is worth noting that “electronic charging (or simply charging) the
polymer” is a frequently used expression in the literature of conducting polymers.
It means that either the polymer backbone and/or the localized redox sites attached
to the polymeric chains will have positive or negative charges as a consequence
of a redox reaction (electrochemical or chemical oxidation or reduction) or less
often protonation (e.g., “proton doping” in the case of polyaniline). This excess
charge is compensated for by the counterions; i.e., the polymer phase is always
electrically neutral. A small imbalance of the charge related to the electrochemical
double layers may exist only at the interfacial regions. “Discharging the polymer”
refers to the opposite process where the electrochemical or chemical reduction or
oxidation (or deprotonation) results in an uncharged (neutral) polymer, and, because
the counterions leave the polymer film, in a neutral polymer phase.

The thermodynamic equilibrium between the polymer phase and the contacting
solutions requires μ̃i (film) = μ̃i (solution) for all mobile species, as discussed in
Chap. 5. In fact, we may regard the film as a membrane or a swollen polyelectrolyte
gel (i.e., the charged film contains solvent molecules and, depending on the condi-
tions, co-ions in addition to the counterions).

A simple model of the charge transfer and transport processes in a polymer film
electrode is shown in Fig. 6.1.
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Fig. 6.1 A schematic picture of a polymer film electrode. In an electrochemical experiment
the electron transfer occurs at the metal|polymer interface that initiates the electron propagation
through the film via an electron exchange reaction between redox couples A and B or electronic
conduction through the polymer backbone. (When the polymer reacts with an oxidant or reductant
added to the solution, the electron transfer starts at the polymer|solution interface.) Ion-exchange
processes take place at the polymer|solution interface; in the simplest case counterions enter the
film and compensate for the excess charge of the polymer. Neutral (solvent) molecules (O) may
also be incorporated into the film (resulting in swelling) or may leave the polymer layer

As a consequence of the incorporation of ions and solvent molecules into the
film, swelling or shrinkage of the polymer matrix takes place. Depending on the
nature and the number of crosslinks, reversible elastic deformation or irreversible
changes (e.g., dissolution) may occur. Other effects, such as dimerization, ion-pair
formation, crosslinking, and so forth, should also be considered.

We have already mentioned several effects that are connected with the polymeric
nature of the layer. It is evident that all the charge transport processes listed are af-
fected by the physicochemical properties of the polymer. Therefore, we also must
deal with the properties of the polymer layer if we wish to understand the electro-
chemical behavior of these systems. The elucidation of the structure and proper-
ties of polymer (polyelectrolyte) layers as well as the changes in their morphology
caused by the potential and potential-induced processes and by other parameters
(e.g., temperature, electrolyte composition) set an entirely new task for electro-
chemists. Owing to the long relaxation times that are characteristic of polymeric
systems, the equilibrium or steady-state situation is often not reached within the
time allowed for the experiment.

However, the application of combined electrochemical and nonelectrochemical
techniques has allowed very detailed insights into the nature of ionic and electronic
charge transfer and charge transport processes.
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In this chapter we intend to outline some relevant experiences, to discuss existing
models and theories, as well as to summarize and systematize the knowledge accu-
mulated on charge transport processes occurring in redox and conducting polymer
films.

6.1 Electron Transport

As has already been mentioned, electron transport occurs in redox polymers—
which are localized state conductors—via a process of sequential electron self-
exchange between neighboring redox groups. In the case of electronically conduct-
ing polymers—where the polymer backbone is extensively conjugated, making con-
siderable charge delocalization possible—the transport of the charge carriers along
a conjugated strand can be described by the band model characteristic of metals
and semiconductors. Besides this intrachain conduction, which provides very high
intrinsic conductivity, various hopping and tunneling processes are considered for
nonintrinsic (interstrand and interfiber) conduction processes.

6.1.1 Electron Exchange Reaction

The elementary process is the transfer of an electron from an electron donor orbital
on the reductant (e.g., Fe2+) to the acceptor orbital of the oxidant (e.g., Fe3+). The
rate of electron transfer is very high, taking place within 10−16 s; however, bond re-
organization may require from 10−13 to 10−14 s, reorientation of the solvent dipoles
(e.g., water molecules in the hydration sphere) needs 10−11 to 10−12 s, and the dura-
tion of the rearrangement of the ionic atmosphere is ca. 10−8 s. The rate coefficients
are much higher for electron exchange reactions occurring practically without struc-
tural changes (outer sphere reactions) than for reactions that require high energies
of activation due to bond reorganization (inner sphere mechanism).

However, the probability of electron transfer (tunneling) depends critically on the
distance between the species participating in the electron exchange reaction. A re-
action can take place between two molecules when they meet each other. It follows
that the rate-determining step can be either the mass transport (mostly diffusion is
considered, but effect of migration cannot be excluded) or the reaction (the actual
rate of electron transfer in our case). For an electron exchange process coupled to
isothermal diffusion, the following kinetic scheme may be considered:

A+ B−
−→
k d

����������������←−
k d

{AB−}
ke

����������������A−+ B (6.1)
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Fig. 6.2 A microscopic-level schematic of the electron exchange process coupled to isothermal
diffusion. The upper part shows that species A and B− start to diffuse towards each other from
their average equilibrium distance (d) with diffusion rate coefficient, kd. The next stage is the
“forward” electron transfer step after the formation of a precursor complex, characterized by rate
coefficient ke, and the mean distance of the redox centers δ = rA + rB or for similar radii δ ∼= 2rA.
The lower part depicts the separation of the products, A− and B

where
−→
k d,
←−
k d and ke are the rate coefficients for diffusive approach, for separation,

and for the forward reaction, respectively. Note that
−→
k d is a second-order rate coef-

ficient, while
←−
k d and ke are first-order. The overall second-order rate coefficient can

be given by
k =
−→
k dke/

←−
k d + ke . (6.2)

Figure 6.2 schematically illustrates the microscopic events that occur during an elec-
tron exchange reaction.

If the reaction has a small energy of activation, so ke is high (ke
←−k d), the rate-
determining step is the approach of the reactants. Under these conditions it holds
that k =

−→
k d. The kinetics are activation-controlled for reactions with large activation

energies (ΔG
=|
> 20 kJmol−1 for reactions in aqueous solutions), and then

k = ke
−→
k d/
←−
k d . (6.3)

Since
−→
k d/
←−
k d is the equilibrium constant, K for the formation of the precursor com-

plex k can be expressed as
k = keK . (6.4)

The rate of the collision, kd, can be estimated using Smoluchowski’s equation:

kd = 1000×4πNAδDAB (6.5)
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where NA is the Avogadro constant, δ is the mean distance between the centers of
the species involved in the electron exchange (δ ≈ 2rA for identical species where
rA is the radius of the reactant molecule) and DAB is the relative diffusion coeffi-
cient of the reacting molecules. The diffusion coefficients of ions in aqueous solu-
tions at 298 K are typically 1–2×10−9 m2 s−1, except DH+ = 9.1×10−9 m2 s−1

and DOH− = 5.2×10−9 m2 s−1. For a small ion δ = 0.5 nm. By inserting these
values into (6.5), we obtain kd = 8×109 dm3 mol−1 s−1. Consequently, if ke >
109 dm3 mol−1 s−1 the reaction is diffusion-controlled. In aqueous solutions fast
electron transfer and acid–base reactions fall within this category. On the other
hand, if the viscosity (η) of the solvent is high, due to the inverse relationship be-
tween D and η , kd may be smaller by orders of magnitude. Similarly, the diffusion
of macromolecules is also slow, D = 10−10−10−16 m2 s−1. In the case of polymer
film electrodes where the polymer chains are trapped in a tangled network, rather
small values for the diffusion coefficient of the chain and segmental motions can be
expected. If the latter motions are frozen-in (e.g., at low temperatures or without the
solvent-swelling, which has a plasticizing effect on the polymer film), the electron
transport may be entirely restricted.

It follows that diffusion control is more frequently operative in polymeric sys-
tems than that in ordinary solution reactions, because kd and ke are more likely to
be comparable due to the low D values [9–16]. If the electron exchange reaction
occurs between ionic species (charged polymer sites), the coulombic forces may
reduce or enhance both the probability of the ions encountering each other and the
rate of electron transfer. For the activation-controlled case, ke can be obtained as
follows [17]:

lnke = lnko
e −

zAzBe2

2rAεkBT
(6.6)

where zA and zB are the charges of the ions and ε is the dielectric permittivity of
the medium. If zA and zB have the same sign ke decreases; in the opposite case ke

increases. The effect can be modified by using a solvent with high or low ε values
or by adding a large amount of inert electrolyte to the solution. In the latter case the
effect of ionic strength (I) is approximately given by

lnk = lnko + zAzBA
√

I (6.7)

where A is the constant of the Debye–Hückel equation, and ko is the rate coefficient
in the absence of electrostatic interactions.

The electron exchange reaction (electron hopping) continuously occurs between
the molecules of a redox couple in a random way. Macroscopic charge transport
takes place, however, only when a concentration or potential gradient exists in the
phase for at least one of the components of the redox couple. In this case the hy-
drodynamic displacement is shortened for the diffusive species by δ ∼ 2rA, because
the electron exchange (electron diffusion) contributes to the flux. The contribution
of the electron diffusion to the overall diffusion flux depends on the relative magni-
tude of ke and kd or De and DAB (i.e., the diffusion coefficients of the electron and
ions, respectively).
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According to the Dahms–Ruff theory of electron diffusion [9–12]

D = DAB + De = DAB + keδ 2c/6 (6.8)

for three-dimensional diffusion where D is the measured diffusion coefficient, c is
the concentration of redox centers, and ke is the bimolecular electron-transfer rate
coefficient. The factors 1/4 and 1/2 can be used instead of 1/6 for two- and one-
dimensional diffusion, respectively.

This approach has been used in order to describe the electron propagation
through surface polymer films [2, 6, 18–26]. In these models it was assumed that
transport occurs as a sequence of successive steps between adjacent redox centers of
different oxidation states. The electron hopping has been described as a bimolecular
process in the direction of the concentration gradient. The kinetics of the electron
transfer at the electrode-polymer film interface, which initiates electron transport
in the surface layer, is generally considered to be a fast process which is not rate-
limiting. It was also presumed that the direct electron transfer between the metal
substrate and the polymer involves only those redox sites situated in the layer imme-
diately adjacent to the metal surface. As follows from the theory (6.8), the measured
charge transport diffusion coefficient should increase linearly with c whenever the
contribution from the electron exchange reaction is important, and so the concentra-
tion dependence of D may be used to test theories based on the electron exchange
reaction mechanism. Despite the fact that considerable efforts have been made to
find the predicted linear concentration dependence of D, it has been observed in
only a few cases and for a limited concentration range.

There may be several reasons why this model has not fulfilled expectations al-
though the mechanism of electron transport as described might be correct.

6.1.1.1 Problems with the Verification of the Model

The uncertainty in the determination of D by potential-step, impedance, or other
techniques is substantial due to problems such as the extraction of D from the prod-
uct D1/2c (this combination appears in all of the methods), the difficulty arising from
the in situ thickness estimation, nonuniform thickness [27–29], film inhomogene-
ity [30–32], incomplete electroactivity [19,23,33], and the ohmic drop effect [34]. It
may be forecast, for example, that the film thickness increases, and thus c decreases,
due to the solvent swelling the film; however, DAB simultaneously increases, mak-
ing the physical diffusion of ions and segmental motions less hindered. In addition,
the solvent swelling changes with the potential, and it is sensitive to the composition
of the supporting electrolyte. Because of the interactions between the redox centers
or between the redox species and the film functional groups, the morphology of
the film will also change with the concentration of the redox groups. We will deal
with these problems in Sects. 6.4–6.7. It is reasonable to assume that in many cases
DAB
De (i.e., the electron hopping makes no contribution to the diffusion), or the
most hindered process is the counterion diffusion, coupled to electron transport.
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6.1.1.2 Advanced Theories Predicting a Nonlinear D(c) Function

According to the theory of extended electron transfer elaborated by Feldberg, δ
may be larger than 2rA, and this theory predicts an exponential dependence on the
average site–site distance (d) (i.e., on the site concentration) [26]:

ke = k0 exp
−(d− δ )

s
(6.9)

where s is a characteristic distance (ca. 10−10 m).
An alternative approach proposed by He and Chen to describe the relationship

between the diffusion coefficient and redox site concentration is based on the as-
sumption that at a sufficiently high concentration of redox centers several electron
hops may become possible because more than two sites are immediately adjacent.
This means that the charge donated to a given redox ion via a diffusional encounter
may propagate over more than one site in the direction of the concentration gradient.
This is the case in systems where the electron exchange rate is high, and therefore
the rate of the electron transport is determined by the physical diffusion of redox
species incorporated into the ion-exchange membrane or those of the chain and seg-
mental motions. This enhances the total electron flux. Formally, this is equivalent
to an increase in the electron hopping distance by a certain factor, f , so D can be
expressed as follows [35]:

D = D0 +
kec(δ f )2

6
. (6.10)

Assuming a Poisson distribution of the electroactive species, the enhancement fac-
tor can be expressed as a power series of a probability function which is related to
the concentration. At low concentrations the probability of finding more than one
molecule in a hemisphere with a radius of the molecular collision distance is nearly
zero and f = 1. The factor f , and therefore De, increases noticeably at higher con-
centrations.

Another model introduced by Fritsch-Faules and Faulkner suggests that ke or
De should first have an exponential rise with increasing c and then flatten at high
concentrations. The exponential rise occurs because d becomes smaller as the con-
centration increases, which promotes intersite electron transfer. As the minimum
center-to-center separation is approached, when each redox center has a nearest
neighbor that is practically in contact, ke or De asymptotically approaches its theo-
retical maximum value. A similar result has been obtained by a microscopic model
which describes electron (or hole) diffusion in a rigid three-dimensional network.
This concept is based on simple probability distribution arguments and on a random
walk [36].
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6.1.1.3 Transition Between Percolation and Diffusion Behaviors

Blauch and Savéant systematically investigated the interdependence between physi-
cal displacement and electron hopping in propagating charge through supramolecu-
lar redox systems [37]. It was concluded that when physical motion is either nonex-
istent or much slower than electron hopping, charge propagation is fundamentally
a percolation process, because the microscopic distribution of redox centers plays
a critical role in determining the rate of charge transport [37,38]. Any self-similarity
of the molecular clusters between successive electron hops imparts a memory ef-
fect, making the exact adjacent-site connectivity between the molecules important.
The redox species can move about their equilibrium positions at which they are irre-
versibly attached to the polymer (in the three-dimensional network the redox species
are either covalently or electrostatically bound); this is referred to as “bounded dif-
fusion.” In the opposite extreme (free diffusion), rapid molecular motion thoroughly
rearranges the molecular distribution between successive electron hops, thus lead-
ing a mean-field behavior. The mean-field approximation presupposes that kd > ke,
and leads to Dahms–Ruff-type behavior for freely diffusing redox centers, but the
following corrected equation should be applied [37]:

D = DAB (1− x) fc + Dex (6.11)

where x is the fractional loading, which is the ratio of the total number of molecules
to the total number of lattice sites. The factor (1− x) in the first term accounts for
the blocking of physical diffusion and fc is a correlation factor which depends on x.
When DAB becomes less than De, percolation effects appear. If De 
 DAB a char-
acteristic static percolation behavior (D = 0 below the percolation threshold and an
abrupt onset of conduction at the critical fractional loading) should be observed.
The mechanistic aspects of the charge transport can be understood from D versus x
plots. When DAB is low, that is in the case of bounded diffusion [26, 38],

D = Dex = keδ 2x2c/6 . (6.12)

Thus D varies with x2 when the rate of physical diffusion is slow.
In the case of free diffusion, the apparent diffusion coefficient becomes

D = DAB f (1− x) . (6.13)

Accordingly D will decrease with x. This situation originates in the decreased avail-
ability of vacant sites (free volume) within the polymer film. When both electron
hopping and physical diffusion processes occur at the same rate (DAB = De), D be-
comes invariant with x.
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6.1.1.4 Potential Dependence of the Diffusion Coefficient

In the simple models, De is independent of the potential because the effects of both
the counterion activity and interactions of charged sites (electron–electron interac-
tions) are neglected. However, in real systems the electrochemical potential of coun-
terions is changed as the redox state of the film is varied, the counterion population
is limited, and interactions between electrons arise. According to Chidsey and Mur-
ray, the potential dependence of the electron diffusion coefficient can be expressed
as follows [39]:

De = keδ 2
{

1 +
⌊
z−1

i (xe− zs)
−1 + g/kBT

⌋
xe (1− xe)

}
(6.14)

where xe is the fraction of sites occupied by electrons, zs and zi are the charges
of the sites and the counterions, respectively, and g is the occupied site interaction
energy. (The g parameter is similar to that of the Frumkin isotherm.) In the case
of noninteracting sites (g = 0), and in the presence of a large excess of supporting
electrolyte (zs = ∞), De = keδ 2 and this is a diffusion coefficient. In general, De does
not remain constant as the potential (that is, the film redox composition) is changed.
De does not vary substantially with potential within the reasonable ranges of g and
zs (e.g., if g = 4, De will only be double that of its value at g = 0), and a maximum
(if g > 0) or a minimum (if g < 0) will appear at the standard redox potential of the
system.

The details of other theoretical models, including electric field effects [13, 14,
40–46], can be found in [3, 7, 18].

6.1.2 Electronic Conductivity

Electronically conducting polymers consist of polyconjugated, polyaromatic, or
polyheterocyclic macromolecules, and these differ from redox polymers in that the
polymer backbone is itself electronically conducting in its “doped” state. The term
“doping,” as it is often applied to the charging process of the polymer, is somewhat
misleading. In semiconductor physics, doping describes a process where dopant
species present in small quantities occupy positions within the lattice of the host
material, resulting in a large-scale change in the conductivity of the doped mate-
rial compared to the undoped one. The “doping” process in conjugated polymers
is, however, essentially a charge transfer reaction, resulting in the partial oxida-
tion (or less frequently reduction) of the polymer. Although conjugated polymers
may be charged positively or negatively, studies of the charging mechanism have
mostly been devoted to the case of p-doping. The electronic conductivity shows
a drastic change (up to 10–12 orders of magnitude) from its low value for the ini-
tial (uncharged) state of the polymer, corresponding to a semiconductor or even an
insulator, to values of 1–1000 Scm−1 (even up to 105 Scm−1 comparable to met-
als) [47–66]. The range of conductivities of conducting polymers in charged and
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Fig. 6.3 Illustration of the range of electronic conductivities of conducting polymers in comparison
with those of other materials

uncharged states in comparison with different materials (insulators, semiconduc-
tors, and metallic conductors) is displayed in Fig. 6.3.

In general, the mobility of initial portions of the incorporated electronic charge is
rather low. At higher charging levels the conductivity increases much more rapidly
than the charge and then levels out, or even decreases. This onset of conductiv-
ity has been interpreted as an insulator–metal transition due to various electron–
electron interactions [67]. The temperature dependence of the conductivity in the
highly charged state does not correspond in most cases to the metallic type [68].
In agreement with quantum-chemical expectations, electron spin resonance (ESR)
measurements have demonstrated the presence of unpaired spins inside the poly-
mer film. However, the spin concentration passes through a maximum at a rela-
tively low charging level, usually before the high conductivity increase, and then
vanishes [52, 69–77]. The variation of the ESR signal intensity (in arbitrary units)
during a potential cycle and the corresponding cyclic voltammogram are shown in
Fig. 6.4.

As observed in ESR measurements, the generation of polarons (see below) at an
early stage of oxidation is widely accepted. However, at higher oxidation levels, the
decrease in spin density with increasing conductivity is found to be a challenging
feature. The following conclusions were drawn based on the correlation between the
mobilities and the ESR signal. The variation in mobility as a function of oxidation
level (Figs. 6.5 and 6.6) can be explained by the polaron lattice model [78].

The mobilities were calculated from the relation μ = σ/ρccF , where σ is the
conductivity and ρcc is the density of charge carriers. The charge-carrier density was
estimated from the charge measured by coulometry (Q), the density of the polymer
(ρ , which was assumed to be 1 gcm−3), the molar mass of the aniline monomer unit
(M), and the weight of the polymer film (W ): ρcc = ρQ/FW .

The sharp rise in the mobility suggests the evolution of metallic conduction, and
this is attributed to the formation of Pauli spins. The decrease in ESR intensity at
higher charging levels is due to the transformation between Curie spins (unpaired
electrons are localized or poorly delocalized) and Pauli spins (unpaired electrons are
delocalized in a conduction band). (As well as the number of spins, the linewidth
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Fig. 6.4 Simultaneous measurements of ESR absorption and current (I) for a 100-nm PANI film
on Pt in 0.5 moldm−3 H2SO4. The potential was scanned from −0.1 V to +0.8 V and back. Scan
rate: 10 mVs−1 [69]. (Reproduced with the permission of The Electrochemical Society)

Fig. 6.5 Oxidation levels of the PANI film on Pt as a function of electrode potential. Electrolyte:
0.1 M tetraethylammonium perchlorate (TEAP) in acetonitrile. (Reproduced from [78] with the
permission of Elsevier Ltd.)

and the g-factor as a function of the oxidation level have also been analyzed.) The
optical spectra indicate that the small mobility decrease during the early phase of
oxidation can be ascribed to a change in the polymer conformation from a simple
coil to an expanded coil [78].
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Fig. 6.6 Mobilities of positive charge carriers in the PANI film at different oxidation levels. Elec-
trolyte: 0.1 M tetraethylammonium perchlorate (TEAP) in acetonitrile. (Reproduced from [78]
with the permission of Elsevier Ltd.)

Various models have been developed to explain the mechanism of charge transport
in conducting polymer film electrodes. Two extreme approaches exist. According
to the delocalized band model, the charges and unpaired electrons are delocalized
over a large number of monomer units [57, 69, 79, 80], while in the chemical model
the charge is localized in the polymer chain [75], or at most only some monomer
units are involved. Because the approach assuming localized charges does not differ
essentially from that applied for redox polymers, and the semiconductor or one-
dimensional metal models [48, 51, 81] have generally been accepted, we will deal
with the latter theories. Although the precise nature of charge carriers in conjugated
systems varies from material to material, in general the following delocalized de-
fects are considered: solitons (neutral defect state), polarons (a neutral and a charged
soliton in the same chain, which are essentially singly charged cation radicals at the
polymer chain coupled with local deformations), and bipolarons (two charged de-
fects form a pair; these doubly oxidized, spinless dications usually exist at higher
charging levels) [48, 68, 82–88].

The macroscopic charge transport in a conducting polymer matrix represents
a superposition of the local transport mechanism. The intrinsic conductivity, which
refers to the conduction process along a conjugated chain, can be described in terms
of band theory, which is well-established for solid materials. Metallic conductors
are characterized by either a partially filled valence band or an overlap between
the valence and conduction bands. Semiconductors and insulators possess a band
gap between the top of the valence band and the bottom of the conduction band.
The band gap energy is relatively small for a semiconductor but rather large for
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an insulator. The neutral (reduced, undoped) polymer has a full valence and empty
conduction band separated by a band gap (insulator).

Chemical or electrochemical doping (oxidation and incorporation of counteri-
ons) results in the generation of a polaron level at midgap. Further oxidation leads
to the formation of bipolaron energy bands in the band gap. Electronic conductiv-
ity is rationalized in terms of bipolaron hopping. Because the overall size of the
polymer is limited, interchain electron transfer must also be considered. The intra-
chain conductivity of the polymer is usually very high if the polymer chain is long,
and contains no defects; therefore, the interchain conductivity is rate-determining
in a good-quality polymer [83]. (If the polymer morphology is fibrillar, the fiber-
to-fiber electron transport may also be the most hindered process.) The essential
aim is to synthesize conducting polymers where the mean free path is limited by
intrinsic scattering events from the thermal vibrations of the lattice (phonons). One
of the problems is that quasi-one-dimensional electronic systems are prone to lo-
calization of electronic states due to disorder. In the case of electronic localization,
the carrier transport is limited by phonon-assisted hopping, according to the Mott
model [89]. The Mott model of variable range hopping gives the following equation
for the conductivity (σ ):

σ = σ0 exp

[
−

(
T0

T

)γ]
(6.15)

where σ0 and T0 are constants and γ is a number related to the dimensionality (d) of
the hopping process (γ = (d + 1)−1).

The σ0 value depends on the electron–phonon coupling constant, while T0 is
connected to the localized density of states near the Fermi level and the decay length
of the wavefunction, respectively. It can be seen that conductivity increases with
temperature, in contrast to the situation for metals. This type of conductive behavior
has been verified for many conjugated polymer systems. The problem of localization
is less important if the molar mass of the polymer is high and only a few defects are
present, and a relatively intense interchain coupling prevails. In this case, the mean
free path becomes quite large and is determined by phonon-scattering, as in true
metals. Under such conditions the conductivity is high, and its value increases with
the molar mass of the polymer and decreases with the temperature.

The mechanism of fluctuation-induced tunneling is expected for the electrical
conductivity if large regions of a highly conductive (“metallic”) phase in an inho-
mogeneous material are separated from each other by an insulating phase. The latter
acts as a potential barrier. Due to the exponential dependence of the tunneling prob-
ability, tunneling will effectively occur only in the regions of closest approach of
the metallic segments.

The parabolic barrier approximation for the fluctuation-induced tunneling gives
the following relationship in terms of the temperature dependence of conductiv-
ity [85, 90]:

σ = σ0

[
− T1

T −T0

]
(6.16)
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where the parameters T1 and T0 are associated with the parameters of the tunnel junc-
tion (its effective area, width, the height of the potential barrier, its effective mass
and dielectric permittivity). For instance, the temperature dependence of the conduc-
tivity of polypyrrole has been analyzed using this theory. Based on this analysis, an
interesting conclusion has been drawn about the structure of the polymer, namely
that the polymer consists of islands with two-dimensional (macrocyclic) structure
which are connected (crosslinked) by one-dimensional polypyrrole chains [91].

The conductivity may depend on other factors; for instance on the pH of the
contacting solution (proton doping in the case of polyaniline) (Fig. 6.7) or on the
presence of electron donor molecules in the gas phase.

Decreasing the pH of the solution increases the conductivity of polyaniline [54,
79, 92], while the resistance of dry polyaniline (Fig. 6.8) and polypyrrole increases
in an ammonia atmosphere [93, 94].

Electron-conducting polymers can easily be switched between conducting and
insulating states just by changing the potential, by electrochemical (or chemical)
oxidation and reduction, respectively, or by varying the composition of the contact-
ing fluid media (H+ ion activity of the solution, or the NH3, NO, etc., concentration
in the gas phase). The variation in the resistance of polyaniline as a function of
potential nicely demonstrates the conversion from the insulating to the conducting
state and vice versa (Fig. 6.9).

This is a unique property in comparison with the majority of electron-conducting
materials (e.g., metals). When the oxidation state of the polymers is varied, not just

Fig. 6.7 The conductivity of PANI in emeraldine state (PANI–E) with and without
poly(vinylsulfonate) (PVS) incorporated into the polymer matrix, as a function of the compo-
sition of the electrolyte with which the polymer was equilibrated. PANI-E + buffer: 0.05 M
C6H4(COO−)2 plus appropriate amounts of HCl or NaOH. [The concentration of the exchang-
ing anionic species, C6H4(COO−)2, is about ten times higher in the film than in the solution.]
PANI-E/PVS + buffer: 0.05 M phosphoric or boric acid plus appropriate amounts of NaOH [53]
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Fig. 6.8 The response of a PANI ammonia sensor (log relative resistance–gas concentration plot)
for different gases and vapors: (1) ammonia; (2) methanol; (3) ethanol; (4) CO; and (5) NO, at
room temperature [95]

Fig. 6.9 The change in the resistance of a polyaniline film in contact with 1 M H2SO4 as a function
of the potential. (Reproduced from [96] with the permission of Elsevier Ltd.)

their conductivity but other properties change too (e.g., color). It is this feature that
can be exploited in many practical applications [1, 97] (see Chap. 7).

Figure 6.10 shows the spectra of a PANI film measured in situ at different po-
tentials. The absorption maximum at 310–320 nm is characteristic of the reduced
diamagnetic initial state (leucoemeraldine structure), and this band decreases during
the oxidation of PANI. The band at 420–440 nm can be assigned to the paramag-
netic polaronic/radical cation state. This band appears in the first phase of oxidation
simultaneously with the increasing absorbance in the region λ > 600 nm. The latter
absorption is a characteristic feature of all electronically conducting polymers, and
it is connected with the conversion of localized redox centers into delocalized free
electron states (electron transfer from the valence band to the polaron–bipolaron
levels). At higher potentials the absorption band at ca. 430 nm (which reaches its
highest value at the beginning of the anodic voltammetric wave) decreases, and
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Fig. 6.10 In situ UV–Vis–NIR spectra of a PANI film obtained at different potentials: (1) −0.35;
(2) − 0.25; (3) − 0.15; (4) − 0.05; (5) 0.05; (6) 0.15; (7) 0.25; (8) 0.35; (9) 0.45; (10) 0.55; and
(11) 0.65 V vs. SCE. Solution: 1 moldm−3 H2SO4. (Reproduced from [98] with the permission of
Elsevier Ltd.)

a blue shift can also be observed, attesting a further transformation in the form of
the radical and an interplay between the benzenoid (leucoemeraldine) and quinoid
structures with better π-conjugation (emeraldine form). A conformational change
and intermolecular stabilization [71] as well as dimerization and disproportion of
polaronic segments [99] have also been proposed in order to explain the behav-
ior in this potential region. The absorbance related to the delocalized electrons in-
creases also in the so-called capacitive region; then, as the polymer becomes fully
oxidized (the pernigraniline structure is formed) in the region of the second voltam-
metric wave, the free electron band gradually disappears and a new band appears
at ca. 610 nm. The vibrational spectra also change during the redox transforma-
tions of conducting polymers. The results from in situ FTIR-ATR measurements
are presented in Fig. 6.11. At pH 1 the absorption intensities detected for a PANI
electrode at 1564, 1481, 1304, 1250, 1144 (semiquinoid ring vibrations), 889, 822
and 802 cm−1 increase, while absorption at 1502 cm−1 (assigned to a benzoid ring
mode) and 1203 cm−1 decrease with increasing potential. At pH 4, a band shift is
detectable (1564→ 1576, 1481→ 1487, 1144→ 1136 and 822→ 831 cm−1) and
some additional bands appear at 1375, 1184 and 864 cm−1 [100]. The occurrence
of the CH (out-of-plane) vibrational band at 831–822 cm−1 can be attributed to
a semiquinoid polaron lattice structure. The bands appearing at 1375 and 864 cm−1

at pH 4 can be assigned to a ring–N–ring vibration in the quinoid form and to
a C–H (out-of-plane) mode, respectively, and those indicate the transition from the
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Fig. 6.11a,b Changes in the FTIR-ATR spectra of PANI obtained during a potential sweep (v =
1 mVs−1) in HReO4–NaReO4 electrolyte; potential range: −200 mV to 400 mV. Reference state:
fully reduced form (−200 V). Each spectrum covers 40 mV. a pH 1; b pH 4. The arrow indicates
the direction of increasing potential. (Reproduced from [100] with the permission of The Royal
Society of Chemistry)

polaron to a bipolaron lattice structure with completely quinoid rings. At low pH
values the background absorption increases due to the high electrical conduction.
The 889 cm−1 band is due to the inserted ReO−4 anions [100].

Charging/discharging (or redox switching) processes are usually fast, but are
rather complex in nature. The steady-state cyclic voltammograms exhibit in most
cases a combination of broad anodic and cathodic peaks with a plateau in the cur-
rent at higher potentials. This is illustrated in Fig. 6.12.

The current is proportional to the scan rate, i.e., from an electrical point of view
the film behaves like a capacitor [101–107]. However, this simple result is the conse-
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Fig. 6.12a,b Cyclic voltammograms (two cycles; a) and (b) the simultaneously detected EQCM
frequency changes for a polyaniline film (L = 2.9 μm) in contact with 1 M H2SO4. Sweep rate:
100 mVs−1. (Reproduced from [96] with the permission of Elsevier Ltd.)

quence of a complicated phenomenon which includes a faradaic process (the gener-
ation of charged electronic entities at the polymer chains near the electrode surface
by electron transfer to the metal), the transport of those species throughout the film,
as well as the ion exchange at the film|solution interface (see mass changes during
charging/discharging cycles in Fig. 6.12).

Despite the abovementioned quasi-equilibrium character of the cyclic voltam-
metric curves, a pronounced hysteresis (i.e., a considerable difference between the
anodic and cathodic peak potentials) appears. Slow heterogeneous electron trans-
fer, effects of local rearrangements of polymer chains, slow mutual transformations
of various electronic species, a first-order phase transition due to an S-shaped en-
ergy diagram (e.g., due to attractive interactions between the electronic and ionic
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Fig. 6.13 Illustration of the three electron transfer pathways between metal centers in which the
electron-conducting polymer backbone participates: (1) electron transfer reaction (outer sphere
electron transfer; (2) superexchange pathway; (3) polymer-mediated pathway

charges), dimerization, and insufficient conductivity of the film at the beginning of
the anodic process have been proposed as possible explanations for the hystere-
sis [71, 99, 108–113]. (See also Sect. 6.6.)

In polymers which have an electron-conducting backbone with pendant or built-
in redox groups (e.g., conjugated metallopolymers), three electron transfer pathways
may be operative [114] (see Fig. 6.13).

There is electron hopping between the redox centers (process 1), as in conven-
tional redox polymers. Electron transfer may also occur through the polymer back-
bone via a metal–metal electronic interaction (process 2, superexchange pathway)
or via polymer-based charge carriers (process 3, polymer mediation). The electronic
interactions between the π-system of the polymer and the d-orbitals of the metal
centers usually enhance the rate of the electron transfer process. Electron transfer
via polymer-based charge carriers requires the polymer to be electronically conduc-
tive at potentials close to the formal potential of the redox groups.

6.2 Ion Transport

During electrochemical oxidation or reduction of the surface polymer films or
membranes, the overall electroneutrality of the polymer phase is retained due to
ion exchange processes between the polymer film and the bulk electrolyte solu-
tion [2,115–117]. As well as ions, solvent and other neutral molecules may enter or
leave the film during the charging/discharging processes [2–4,6,23,118–122]. In or-
der to maintain electroneutrality in the simplest case, either counterions must enter
the film or co-ions must leave it. (Co-ions are ions of the electrolyte present in the
film which have the same charge as the redox sites created by the electron transfer
reaction.) The relative contributions of ions carrying different charges to the overall
charge transport may depend on their physical properties (e.g., size) and/or on their
chemical nature (e.g., specific interactions with the polymer), as well as on other
parameters (e.g., potential) [2–4, 6, 19, 22, 23, 118–175].
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There are a wide range of reaction schemes; however, most of the redox trans-
formations that include the participation of mobile ions of the contacting electrolyte
can be represented as follows:

Reduction

P+ e−+ M+ � P−• M+ (6.17)

P
−• M+ + e−+ M+ � P2−M+

2 . (6.18)

Dimerization and protonation may also occur:

P+ P
−• M+ � P

−•
2 M+ (6.19)

2P
−• M+ � P2−

2 M+
2 (6.20)

P
−• M+ + e−+ H+ � PH−M+ (6.21)

P+ 2e−+ 2H+ � PH2 (6.22)

where P is a polymer with reducible groups and M+ is the counterion (cation).
A typical example of such a polymer is poly(tetracyanoquinodimethane) [2, 124–
126, 133]; however, the behaviors of electronically conducting polymers [e.g., the
cyclic voltammetric responses of poly(p-phenylene)] have also been elucidated
by a dimerization scheme [113]. For organic redox or conducting polymers, the
nine-member square scheme elaborated for the electrochemical transformation of
quinones can be applied partially or wholly, because electron transfer is always cou-
pled with protonation depending on the pH of the contacting solutions.

Oxidation
P+ X−� P+X−+ e− (6.23)

where X− is a counterion (anion). (Examples: polyvinylferrocene [126,134,148] or
poly[Os(II)(bpy)2(vpy)2]X−2 [136].)

P+ X−� P
+• X−+ e− (6.24)

P
+• X−+ X−� P2+X−2 + e− (6.25)

(Examples: poly(tetrathiafulvalene); dimeric species are also formed [127, 137].)
In reactions (6.17)–(6.25), cations (M+ or H+) and anions (X−) enter the film

during reduction and oxidation, respectively. In some cases cations, (i.e., the co-
ions) leave the polymer film during oxidation:

M+
2 [A(II)B(II)L6]

2− � M+ [A(II)B(III)L6]
−+ M+ + e− (6.26)

PP−SO−3 M+ � PP+SO−3 + M+ + e− (6.27)

(Examples: K+
2 [Ni(II)Fe(II)(CN)6] [132] or self-doped polypyrrole [138–141] or

polyaniline, see the scheme in Sect. 2.2.1, or poly(diphenylamine), see Sect. 2.2.2.)
The oxidation of organic polymers is often coupled with deprotonation instead

of or as well as anion incorporation [2,108]; see for example the schemes for PANI,
poly(diphenylamine), poly(o-phenylenediamine), polyphenazine, etc., in Sect. 2.2.
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Fig. 6.14a–c Cyclic voltammograms and simultaneously obtained EQCM frequency changes as
a function of scan rate for PANI electrodes in contact with 1 moldm−3 electrolyte containing
(a) ClO−4 , (b) TSA− and (c) SSA− ions, at pH 2. Scan rates are (1) 6, (2) 10, (3) 20, (4) 50,
and (5) 100 mVs−1. (TSA− = 4-toluenesulfonate, SSA− = 5-sulfosalicylate anions). (Reproduced
from [120] with the permission of Elsevier Ltd.)

Figure 6.14 shows the cyclic voltammograms and simultaneously detected
EQCM responses for PANI electrodes in contact with three different electrolytes
as a function of the scan rate. Both leucoemeraldine (L)→ emeraldine (E or EH8x)
and emeraldine→ pernigraniline (P) transitions can be seen in the voltammograms.
The respective frequency (mass) changes reveal that at pH 2 the dominant reaction
path is L→ EH8x→ P (see the scheme given in Sect. 2.2.1). (At pH 2 the rate of the
hydrolysis of pernigraniline is slow, and consequently the E (or EH8x)→ P transition
can also be studied without any deterioration of the polymer. It may also help that
at pH 2 the voltammetric wave appears at a less positive potential, since the pH de-
pendence of these peaks is−120 mV/pH.) These curves show several very interest-
ing features. First, it is evident that the relative contribution of protons (hydronium
ions) to charge transport is still substantial during the early phase of oxidation; i.e.,
some of the leucoemeraldine is still protonated (LH8x) and/or unprotonated emeral-
dine (E) also forms. It is understandable that this effect is more pronounced at lower
pH values, which is clearly apparent in Fig. 6.12. At pH 0 the mass change is minor,



6.2 Ion Transport 191

Fig. 6.14 (continued)

although a substantial amount of charge has already been injected. The low mass
change is due to the low molar mass of H+ ion, which is the species that leaves
the surface layer. The incorporation of the anions, which have a much higher molar
mass, clearly manifests itself in the observed EQCM frequency decrease [120,142].
Simultaneous proton–anion exchange can also be detected by a probe beam deflec-
tion technique. Figure 6.15 shows the cyclic voltammogram and the simultaneously
obtained voltadeflectogram for a PANI film in 1 moldm−3 HClO4 [128, 143].

The small negative deflection pre-peak is due to the dehydrogenation and ex-
pulsion of protons in the region of the first voltammetric oxidation peak. This is
followed by a large positive deflection peak which indicates anion insertion. During
the second oxidation process, where emeraldine→ pernigraniline transformations
occur, both proton and anion expulsions take place (see the scheme in Sect. 2.2.1),
which are indicated by the negative deflection. In the reduction scan, the opposite
behavior is exhibited.

Theoretical calculation based on a polaronic model [145] elaborated by Daikhin
and Levi may give an explanation for the separation of the proton and anion trans-
ports. In this model Coulomb interactions between species with opposite signs have
been taken into account. Owing to the very high repulsion forces between the
nearest-neighbor sites in the polymer chain, it is unfavorable that protons on the
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Fig. 6.14 (continued)

nitrogen atom and the benzenoid ring filled with a hole (polaron) should exist next
to each other simultaneously. Consequently, deprotonation is a necessary process
when positive charges are injected into the polymer. This provides an explanation
for the deprotonation reaction that occurs at low potentials, and also resolves the
apparent contradiction between experimental results and the consequences of ap-
plying the classical square scheme for coupled electron and proton transfer steps,
because the latter predicts that unprotonated leucoemeraldine can be oxidized at
less positive potentials than the protonated one. Second, the sweep-rate depen-
dence of the EQCM response indicates that, in both redox steps, completion of
the sorption/desorption processes depends on the time-scale of the experiment in
a similar manner. Third, the ratio of peak currents for the first and second waves
increases in the order ClO−4 < SSA− < TSA− (SSA− = 5-sulfosalicylate anions,
TSA−= 4-toluenesulfonate anions), and a similar proportionality holds for the mass
change that occurs simultaneously. A detailed discussion of the results presented in
Fig. 6.14, including solvent sorption and hysteretic behavior, can be found in [120].

The thin-layer STM technique enables a sensitive semi-quantitative local study of
the H+ exchange processes associated with the redox transformations of PANI [146].
It was found that at pH 2 significant H+ exchange only occurs during the emeraldine
� pernigraniline transition.
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Fig. 6.15a,b Cyclic voltammogram (a) and voltadeflectogram (b) of a PANI film in 1 moldm−3

HClO4. Scan rate: 50 mVs−1. Forward scan (full arrow) and backward scan (dotted arrow) are
shown. (Reproduced from [144] with the permission of Elsevier Ltd.)

The proton concentration at the PANI|electrolyte interface was monitored by
scanning electrochemical microscopy during the redox reactions of the polymer.
These experiments provided direct evidence of the increased protonation of the leu-
coemeraldine form as the concentration of added NaCl is increased [147].

The results obtained by different techniques (radiotracer [121, 126], quartz crys-
tal microbalance [22, 118–120, 122–124, 130–132, 148–162], probe beam deflec-
tion [128, 131, 143, 164], STM [146], SECM [147], etc.) have revealed that the
situation may be even more complicated than this. It has been found that the
relative contributions of anions and cations to the overall ionic charge transport
process depend upon several factors, such as the oxidation state of the poly-
mer (potential), the composition of the supporting electrolyte, and the film thick-
ness [2,19,22,23,118–132,148,150,162,164].The latter effect is shown in Fig. 6.16.

Thesephenomenacanbeunderstood in termsofmorphologicalchanges, ionmobil-
ities, interactions between the polymer and the mobile species (ions and solvent mol-
ecules), size exclusion, and so forth [19, 22, 23, 61, 78, 118–132, 148, 149, 151–173].
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Fig. 6.16a,b Effect of the thickness on the cyclic voltammetric (a) and EQCM (b) responses of
polypyrrole films. The thicknesses are (1) 0.14; (2) 0.48, and (3) 0.96 μm, respectively. Solution:
1 M NaCl; v = 10 mVs−1 [122]. (Reproduced with the permission of Springer-Verlag)

For instance, if large counterions are used during film deposition (electropolymeriza-
tion), co-ion exchange is largely observed. In this case, the large, sometimes polymeric
counterions are trapped in the polymeric layer due to strong van der Waals and elec-
trostatic forces.

The charge transport diffusion coefficient, which can be determined by transient
techniques, is characteristic of the rate-limiting step (either the electron or the ionic
charge transport). However, it is possible to decouple the electron and ion trans-



6.3 Coupling of Electron and Ionic Charge Transport 195

port using appropriate experimental techniques, and so the rates of the fundamental
charge transport processes can be determined separately.

The transport of ionic species can be described using the Nernst–Planck equa-
tion. In the absence of a mediated reaction, the convection term can be omitted,
because any stirring of the solution has no effect inside the film. At high concentra-
tions the fluxes have a more complicated form due to the upper limits on concentra-
tions and/or short-range interactions between the species. Because of the nonlinear
character of the resulting equations, the solutions are usually obtained using various
approximations. The Poisson equation is usually replaced by the local electroneu-
trality condition; this is justified for a sufficiently large ratio of the film thickness to
its Debye screening length and for a slow variation in potential. In the presence of
excess supporting electrolyte the contribution to the flux from migration may also
be neglected. Diffusion–migration transport equations have mostly been solved for
one-dimensional transport [2–4, 174, 175].

6.3 Coupling of Electron and Ionic Charge Transport

The electronic and ionic charge transport processes are coupled by the electroneu-
trality condition. This statement is valid for systems with different structures (e.g.,
uniform and porous films) as well as for different mechanisms of electronic charge
transport (e.g., electron hopping between redox centers, migration–diffusion trans-
port of an incorporated electroactive component across the film, or long-distance
movement of charged sites in the matrix); however, each case needs somewhat
different theoretical treatments and the experimental manifestation (e.g., in the
steady-state or transient current) of this effect depends on other factors (e.g.,
on the concentration of background electrolyte and the charge of the polymer)
[13–16, 41–44, 176–193]. Typically, two mobile species are considered, assum-
ing that a Donnan exclusion exists (i.e., that co-ions do not participate in the
charge transport). However, a theoretical model involving a diffusion and migra-
tion charge transport mechanism with three charge carriers has also been devel-
oped [177]. It is a fundamental feature of all these analyses that electron trans-
port is not only driven by a concentration gradient, but that migration plays also
a role. It was recognized that the electron-hopping process cannot be described
by the usual combination of the classical Fick and Nernst–Planck laws, where
the effect of the electric field is considered, but rather a second-order law should
be derived from the bimolecular character of electron hopping, as opposed to
the unimolecular character of ion displacement [13–16, 41–44]. For systems in
which the ratio of the oxidized and reduced forms is fixed and kept constant (i.e.,
the total charge of the redox species and hence the concentration of counteri-
ons are fixed), the theory predicts a maximum in the steady-state current (redox
conductivity) near the formal potential of the redox couple. The current due to
the electron hopping is higher than that which occurs in the absence of migra-
tion. A detailed analysis of the modified Nernst–Planck equation derived from
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the diffusion–migration model for coupled transport of the electronic and ionic
charge carriers indicates that under both steady-state and transient conditions, mi-
gration always leads to an enhancement of intersite electron hopping, and some-
what surprisingly the enhancement increases as the mobility of the counterions
decreases. Migration diminishes in all cases as the relative concentration of elec-
troactive fixed counterions is increased (i.e., the fixed counterions play a role sim-
ilar to that of the supporting electrolyte in solution studies). This is especially
true when the diffusion coefficient of the mobile counterions is small compared
to the diffusion coefficient for electron hopping. Another important result of this
theory is that the charge transport diffusion coefficient, which can be determined
by chronoamperometry, increases with the concentration of the redox species more
rapidly than predicted by the Dahms–Ruff equation [11, 26, 46]. (D varies as c2 or
even c3.)

The data obtained for Ru(bpy)3+/2+
3 illustrates such a situation. Based on the

results from potential step chronoamperospectrometry, Kaneko et al. concluded that
the oxidation of Ru(bpy)2+

3 to Ru(bpy)3+
3 in Nafion films takes place via electron

hopping, but physical diffusion plays a key role in the reduction [194], which is in
accordance with earlier findings [2].

The electron transfer distance, which includes the physical vibration of the redox
species around its anchoring position (called bounded motion [26]) and the distance
of the electron exchange reaction, increases as a function of potential due to the
increase in the center-to-center distance, which is 1.13 nm at 1.1 V and 1.47 nm at
1.5 V vs. SCE. The bounded motion distance, which is estimated as 0.25–0.31 nm,
remains unchanged.

The bimolecular rate coefficient of the electron transfer reaction (ke) also in-
creases with increasing potential. The apparent diffusion coefficient (Dapp) for the
reduction is higher than that measured for the oxidation. The relationship between
ke and Dapp is

Dapp = kec(δ 2 + nλ 2)/6 (6.28)

where, as well as the electron hopping distance (δ ), the bounded motion distance (λ )
is taken into account, and n is the dimension of the charge transfer, which equals 3
in this case. Equation (6.28) predicts a linear Dapp vs. c function; however, as seen
in Fig. 6.17, a faster rise in Dapp can be observed at higher concentrations. This
was explained by the increasing participation of the redox sites in the oxidation
process; i.e., at low concentrations many isolated clusters exist, and electrons are
not transported to these by hopping.

An exponential decrease in the rate coefficient of the electron transfer (ke) as
a function of the distance was assumed. As can be seen in Fig. 6.18, the rate coeffi-
cient corresponding to the redox complexes in close contact (ko) increases strongly
with the potential, so increasing the electric field enhances both the electron hopping
distance and the electron propagation rate [42, 43].

The increase in the rate of electron transfer was assigned to the enhancement
of the counterion migration rate [194]. The rate of the reduction increased linearly
with the redox center concentration, while Dapp was independent of c, which in-
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Fig. 6.17 The apparent diffusion coefficient of charge transport (Dapp) obtained by chronoamper-
ospectrometry as a function of the concentration of the Ru(bpy)2+

3 species (c) in a Nafion film. The
inset shows the Dapp vs. cy function, where y is the electrochemically active fraction determined
from optical absorbance. (Reproduced from [194] with the permission of Elsevier Ltd.)

dicates that a diffusion mechanism prevails. It was concluded that the strength of
the electrostatic interactions between Ru(bpy)2+

3 and Ru(bpy)3+
3 and the sulfonic

anions in Nafion play a key role. Since the electrostatic interaction is weaker in the
case of Ru(bpy)2+

3 , the motions of these ions are less hindered, and so their physi-
cal diffusion can contribute to charge propagation during reduction. In contrast with
reduction, the products of oxidation, i.e., Ru(bpy)3+

3 ions, form strong crosslinks
with the anionic groups of Nafion, and charge transfer takes place by electron hop-
ping.

Besides electric field effects, ion association within the polymer films plays an
important role in the dynamics of electron hopping within the films. (Extensive ion
association might be expected due to the high ion content and the low dielectric
permittivity that prevails in the interiors of many redox polymers.) According to
the model that includes ion association, the sharp rise in the apparent diffusion
coefficient as the concentration of the redox couple in the film approaches sat-
uration is an expected consequence of the shift in the ionic association equilib-
rium to produce larger concentrations of the oxidized form of the redox couple,
which is related to rapid electron acceptance from the reduced form of the cou-
ple [176].

Ion association effects have also been considered in the case of conducting poly-
mers. It is assumed that ions exist inside the polymer films in two different forms.
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Fig. 6.18 The variations in the bimolecular rate coefficient of the electron transfer reaction (ke)
and the rate coefficient corresponding to the redox complexes in close contact (ko) as a function of
the potential for the Ru(bpy)3+/2+−

3 Nafion system. (Reproduced from [194] with the permission
of Elsevier Ltd.)

The bound or immobile ions are associated with either neutral or charged sites in
the polymer matrix. Assuming the formation of bonds between the neutral sites and
ions, the splitting of the cyclic voltammetric curves and the minimum in the mass
versus charge relationship can be explained [184].

The advanced models elaborated for the low-amplitude potential perturbation of
metal/conducting polymer film/solution systems also take into account the different
mobilities of electronic (polarons) and ionic species within the uniform film. An
important feature of this approach is that the difference in the electric and ionic
mobilities (De �= Di) leads to nonuniformity of the electric field inside the bulk film,
which increases as the ratio De/Di increases, and the electric field will vanish when
De = Di [190, 192, 193].

6.4 Other Transport Processes

Beside the counterions’ sorption/desorption, the exchange of solvent and in some
cases that of the salt (acid) molecules between the polymer film and background
electrolyte is expected theoretically and has indeed been found experimentally.
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6.4.1 Solvent Transport

The equilibrium distribution of neutral molecules depends on the difference between
their standard chemical potentials in the polymer and solution phases, respectively.
The free energy of transfer is higher (i.e., the sorption of neutral molecules in the
polymer phase is greater) if the neutral species and the polymer are similar in char-
acter [2, 115–117]. For instance, more water will be incorporated into hydrophilic
polymers containing polar groups. Because in many cases a neutral polymer is con-
verted into a polyelectrolyte as a function of potential, the partitioning of water
between the polymer film and the electrolyte solution will change during the charg-
ing/discharging processes. This may cause a swelling or shrinking of the layer. The
extent of swelling is strongly affected by the electrolyte composition (both the na-
ture and concentration of the electrolyte) and temperature [2,19,116,120,122,195].

The expansion and contraction of the polymer network in conjunction with the
sorption/desorption of solvent molecules and ions can be described in terms of me-
chanical work. This mechanical contribution should be considered in the calculation
of the equilibrium electrode potential (see Chap. 5). The deformation coupled to the
redox reaction is elastic in nature. A plastic deformation occurs when a neutral, dry
film is immersed in electrolyte solution and electrolyzed. It has been observed for
a range of neutral polymer films freshly deposited on metal substrates by solvent
evaporation techniques that several potential sweeps are required for the films to be-
come fully electroactive [2, 19, 126, 195, 196]. This phenomenon has been referred
as the break-in effect (Fig. 6.19).

A secondary break-in effect may be observed when the film is in its neutral form
for a long period of time before a repeated charging process. Both break-in effects
are attributed to the incorporation of solvent molecules and ions into the film phase
during electrolysis, as well as to potential-dependent morphological changes. The
rate of the diffusive transport of solvent molecules depends on the structure of the
polymer and the motion of polymer segments. In crystalline and crosslinked poly-
mers, or below the glass transition temperature, the movement of the incorporating
species may be rather slow. On the other hand, solvent molecules act as plasticizers,
and therefore increase the rate of diffusion for both neutral and ionic species inside
the film.

6.4.2 Dynamics of Polymeric Motion

The rate of chain and segmental motions is of the utmost importance, since these
processes may determine the rate of the diffusional encounters and consequently
the rate of the electron transport process within the polymer film. Below the glass
transition temperature (Tm) the polymeric motion is practically frozen-in. Above Tm

the frequency of the chain and segmental motions strongly increase with tempera-
ture [2, 197]. The plasticizing effect of the solvent enhances the rates of all kinds of
motions in the polymer phase. At high electrolyte concentrations the ionic shielding
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Fig. 6.19a,b “Break-in effect,” as observed in cyclic voltammetric and simultaneous EQCM mea-
surements performed with a poly(tetracyanoquinodimethane) electrode. Γ = 7×10−8 molcm−2.
Electrolyte: 2.5 M LiCl. Sweep rate: 6 mVs−1. a Consecutive cyclic voltammograms; b simultane-
ously obtained EQCM frequency curves. (Reproduced from [195] with the permission of Elsevier
Ltd.)

of the charged sites of the polymer increases, and the polymer film will adopt a more
compact structure. In this case the activity of the solvent is also low, and so the film
swelling is less [2, 23, 195, 222]. In the more compact structure the molecular mo-
tions become more hindered. Covalent or electrostatic crosslinking diminishes the
rates of all of the physical diffusion processes.
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6.5 Effect of Film Structure and Morphology

In a general sense the swollen polymer films can be considered to be polymer/poly-
electrolyte gels. Various microscopic techniques have revealed a pronounced het-
erogeneity of the surface layer [2, 198–204]. In this respect, one must distin-
guish between macropores (the diameters of which considerably exceed 10 nm)
and nanopores (which represent solvent molecules and ions between the polymer
chains). Inside the macropores the thermodynamic and transport properties of ions
and solvent molecules are practically the same as those of the contacting bulk so-
lution. Space-charge regions (electric double layers) are formed at the interface be-
tween the polymer and solution phases, the thickness of which is much smaller
than the characteristic sizes of macroelements (fibrils, grains and pores). The poly-
mer phase itself consists of a polymer matrix with incorporated ions and solvent
molecules which do not form a separate continuous phase. Strong coulombic attrac-
tions between the electronic and ionic charges prevent them from being separated
by a distance significantly exceeding the Debye screening length of the medium
(ca. 0.1–0.3 nm in the charged state). There are three principal approaches to mod-
eling the structure of the polymer phase [1, 191]. One may consider a uniform, ho-
mogeneous film [116, 188, 190–192], or a porous medium [31, 34, 86, 205–208],
or an inhomogeneous homogeneous phase, where the properties of the first layer
differ from those of the bulk film (see also Sect. 3.1.3). For uniform films, the poly-
mer phase contains macromolecules, ions and solvent molecules. In equilibrium its
state is determined by the equality of the electrochemical potentials for all mobile
species in all adjacent phases. Both electronic and ionic species participate in the
formation of the space charges at the interfaces with the surrounding media, metal
and solution, respectively. The electroneutrality condition prevails inside the film;
only a small imbalance from the charge related to the electric double layer species
inside the metal or the solution parts of the interfaces is assumed. The overall elec-
trode potential represents the sum of two interfacial contributions corresponding
to the metal|polymer and polymer|solution interfaces. The potential distributions
across the metal|film|solution depend on the electrolyte concentration and the par-
titioning equilibrium. At sufficiently high concentrations of co-ions inside the film,
the potential drop at the polymer|solution interface is almost constant. In the oppo-
site limiting case the potential profile shows a gradual transformation as a function
of charging level and the potential drops vary at both interfaces [116]. This model
considers diffusion–migration transport of electronic and ionic charge carriers in
a uniform medium, coupled with possibly nonequilibrium charge transfer across the
corresponding interfaces at the boundaries of the film.

One extension of the uniform model is the inhomogeneous homogeneous
model [134, 209], where due to the strong interactions between the adsorbed poly-
mer molecules and the metal substrate (the nature of the metal and its surface geom-
etry may play an important role), the properties of this layer are different from the
rest of the film. It can be described formally by introducing an adsorption pseudoca-
pacitance and a resistance connected with the charging/discharging process within
the first layer of the film at the metal interface.
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The alternative approach, the porous medium model [31, 34, 106, 205–208, 210]
separates polymer chains from ions and solvent molecules, placing them into two
different phases. Physically, it represents a porous membrane which includes a ma-
trix formed by the polymer and pores filled with electrolyte. Therefore, this macro-
scopically homogeneous two-phase system consists of an electronically conducting
solid phase and an ionically conducting electrolyte phase. The transport proper-
ties of ions and solvent molecules in this phase may significantly differ from those
in bulk electrolyte solutions. Each of these phases has specific electric resistivities
(they may be inhomogeneous), and the two phases (i.e., their resistivities) are inter-
connected continuously by the double-layer capacitance at the surface between the
solid phase and the pores. A further interconnection results from the charge transfer
at the surface of the pores. There is also an electron exchange between the regions in
the polymer with different degrees of oxidation. Despite seemingly opposite ways
of describing the polymer phase in these approaches, the results concerning the re-
sponses to dc and ac perturbations often turned out to be similar or even identical.

Porosity effects during the charging process have long been considered in dis-
cussions of the faradaic and capacitive contributions to the current, especially in the
case of electronically conducting polymers. For instance, the peaks of cyclic voltam-
mograms were attributed to the faradaic process while the plateaus of the current
were considered to be an indication of the capacitive term [99, 105, 106, 211–215].
However, this straightforward analogy to the metal/solution interface does not work
in reality; the obviously faradaic process of the redox transformation of the redox
species in the surface layer does not lead to a direct current, unlike similar reactions
for solute species.

6.5.1 Thickness

According to the theory of metastable adsorption of de Gennes [216], when an ad-
sorbed polymer layer is in contact with a pure solvent, the layer density dimin-
ishes with increasing distance to the substrate (e.g., metal) surface. The behaviors
of several polymer film electrodes, such as poly(tetracyanoquinodimethane) [133],
poly(vinylferrocene) [148, 217], polypyrrole [218] and polyaniline [69, 219], have
been explained by assuming that the local film density decreases with film thickness;
that is, from the metal surface to the polymer|solution interface.

6.5.2 Synthesis Conditions and Nature of the Electrolyte

The film morphology (compactness, swelling) is strongly dependent on the com-
position of the solution, most notably on the type of counterions present in the
solution used during electrodeposition and the plasticizing ability of the solvent
molecules (see also Sect. 6.4). For instance, in the case of polyaniline BF−4 , ClO−4
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and F3CCOO− promote the formation of a more compact structure, while the
use of HSO−4 , NO−3 or Cl− results in a more open structure [108, 120, 199, 220].
Poly(vinylferrocene) is more swollen in the presence of SO2−

4 ions than in NO−3
or ClO−4 -containing electrolytes. This means that the different anions enter the film
together with their hydration spheres, since the magnitude of the mass change is as
follows: sulfate > nitrate > perchlorate. This corresponds to the order of degree of

Fig. 6.20a,b Cyclic voltammograms (a) and the simultaneously recorded EQCM curves (b) for
an electrochemically deposited PVF [poly(vinylferrocene)] film in contact with (1) NaClO4;
(2) NaNO3; and (3) Na2SO4|H2SO4 pH 3.4, respectively. Electrolyte concentration: 0.5 moldm−3.
Scan rate: 10 mVs−1. (Reproduced from [119] with the permission of Elsevier Ltd.)
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Fig. 6.21a–c Cyclic voltammograms and the simultaneously obtained EQCM frequency curves
recorded for a PANI electrode (a) in 1 moldm−3 HClO4, (b) and (c) in 1 moldm−3 5-sulfosalicylic
acid (HSSA) after exchanging HClO4 for HSSA. The curves shown in (b) were taken during
the first five cycles after the solution had been replaced, while those in (c) display the current
and frequency responses from the 135th to the 175th cycles. Scan rate: 100 mVs−1. (Reproduced
from [120] with the permission of Elsevier Ltd.)



6.5 Effect of Film Structure and Morphology 205

hydration of these anions. On the other hand, the ion-pair formation constant for the
oxidized sites and the ClO−4 ions is greater than that for NO−3 or SO2−

4 ions, which
is reflected in the more positive formal potential of the ferrocene/ferricenium redox
couple in Na2SO4 or NaNO3 solutions compared with NaClO4 electrolyte, as seen
in Fig. 6.20.

The more pronounced swelling also reflects the more extensive interaction be-
tween water and the charged ferricenium sites in the presence of SO2−

4 - or NO−3 -
compared to ClO−4 -containing electrolytes [119, 148]. Although in many papers it
has been claimed that, once formed, the structure would be preserved even when
the electrolyte used during electropolymerization is replaced by another one. How-
ever, this is not true. During cycling—albeit usually slowly—the morphology of the
polymer layer changes, and eventually a structure characteristic of the polymer in
that electrolyte develops. Figure 6.21 shows the results of such an experiment, when
PANI film prepared in the presence of HClO4 (see Fig. 4.2) was investigated in 5-
sulfosalicylic acid (HSSA). In the presence of perchlorate ions, PANI adopts a more
compact structure than in the solution of sulfosalicylic anions (SSA−) (compare the
respective Δ f values in Fig. 4.2). However, slow ion exchange occurs during cycling
as HClO4 is replaced by HSSA. The original electroactivity is gradually regained,
and the compact structure is simultaneously transformed into a less compact, more
swollen one.

6.5.3 Effect of Electrolyte Concentration and Temperature

The swelling and shrinking of a polyelectrolyte gel are strongly affected by the
concentration of the contacting electrolyte solution and the temperature [2, 19, 118,
119, 122]. Thermodynamic theory, which considers three contributions to the free
energy of the gel (i.e., mixing of constituents, network deformation, and electrostatic
interactions), predicts gel shrinkage as the salt concentration is increased or the
temperature is decreased [221]. The shrinking process usually occurs smoothly, but
under certain conditions the process becomes discontinuous, and the addition of
a tiny amount of salt will lead to the collapse of the gel; i.e., a drastic decrease in
the volume to a fraction of its original value.

The onset of shrinking and swelling substantially depends on temperature.
This phenomenon is akin to thermodynamic phase transitions in other branches

of physical chemistry. The abrupt deterioration of the charge transport rate in
poly(tetracyanoquinodimethane; Fig. 6.22) or poly(vinylferrocene) films [23] at
high electrolyte concentrations (10 moldm−3 LiCl or 5 moldm−3 CaCl2) and its
temperature dependence (Fig. 6.23) can be interpreted based on thermodynamic
theory [20, 23, 222]. In a more compact structure the rate of electron hopping may
increase since the concentration of redox sites is high; however, a deterioration in
the film’s permeability to the counterions due to the decrease in the free volume is
expected at the same time. The maximum observed in the peak current versus salt
concentration curve is the result of the balanced effects of the enhanced electron-
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Fig. 6.22 Cyclic voltammograms of a poly(tetracyanoquinodimethane) electrode (Γ =
13 nmolcm−2) in contact with lithium chloride solution at different concentrations: (1) 0.625,
(2) 1.25, (3) 2.5, (4) 5.0 and (5) 10.0 moldm−3. Sweep rate: 60 mVs−1. (Reproduced from [20]
with the permission of Elsevier Ltd.)

exchange process and the hindered counterion motion. The abrupt change in the free
volume of solvent-filled cavities causes a sharp decrease in the charge transport dif-
fusion coefficient [2, 20, 23, 222]. A rigorous theoretical treatment which takes into
account the extension and contraction of the polymer chain as it is electrochemi-
cally converted into a polyelectrolyte is very difficult if not impossible due to the
complexity of the polyelectrolyte systems and the lack of an appropriate set of data.

Inzelt et al. [2, 20] modeled these effects in an empirical approach by scaling
the concentration of electroactive sites in the polymer film and the effective charge

transport diffusion coefficient (Dct) with c1/2
s .

By employing the empirical equations

c = Z
(

1 + Bc1/2
s

)
(6.29)
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Fig. 6.23 Cyclic voltammograms of a PTCNQ electrode (Γ = 5.1×10−8 molcm−2) in contact
with aqueous 10 M LiCl. Scan rate: 6 mVs−1. Temperature: (1) 22, (2) 34, (3) 44, (4) 50, (5) 61,
(6) 66, and (7) 77 ◦C. (Reproduced from [222] with the permission of Elsevier Ltd.)

and
Dct = D◦ct(1−H ′c) , (6.30)

a semi-quantitative description of the effect of concentration on peak currents and
peak potentials has been obtained. D◦ct is the effective diffusion coefficient of charge
transport through the polymer film in the absence of the addition of supporting elec-
trolyte; Z, B, and H ′ are empirical parameters characteristic of the system under
study. The values of these parameters depend on the nature of the solvent, of the
counterions (their size and charge), and the polymer forming the film. Combin-
ing (6.29) and (6.30) with the Randles–Ševčík equation, as well as the appropriate
Nernst equation, gives the relationship

Ip = KI

[
1−H

(
1 + Bc1/2

s

)]1/2 (
1 + Bc1/2

s

)
(6.31)

and

Ep = KE +
RT
zF

ln

{
cs

[
1−H

(
1 + Bc1/2

s

)]1/2
}

(6.32)

where

KI = 2.69×105Do1/2
ct Av1/2Z , and H = ZH ′

KE = E�′c ±
RT
zF

lnK±0.0285 .
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The constant in the equation of the peak current (KI) includes the quantities in the
Randles–Ševčík equation; i.e., A is the electrode area, v is the scan rate, and the
charge number of the electrode reaction is assumed to be 1. The constant in the
equation of the peak potential (KE) contains the formal potential (E�′c ) and the for-
mation constant of the salt, ion pair, or complex (K). + 0.0285 V and −0.0285 V,
respectively, have to be used for the anodic and cathodic peak potentials. Where a +
or a − sign appears before the term of (RT/zF) lnK depends on the type of ions
exchanged. When counterions enter the polymer film it is + for reduction and −
for oxidation, respectively. For instance, for the reduction of TCNQ (see (2.1)), the
sign is positive. However, when co-ions leave the film, the opposite sign applies,
i.e., during oxidation (see (6.26) and (6.27)) the sign is positive. The most remark-
able conclusion of these calculations is the fact that the variation in the Ip and Ep

values with cs can be described with the same set of parameters for a given system.
In addition, the variation in Z, which is characteristic of the chemical structure of the
film, B, which in turn is linked to the swelling (solvent–polymer and ion–polymer
interactions) and H, which expresses how the permeability of the film depends on
the sizes of the penetrating ions and the solvent-filled cavities (the free volume in the
film), exhibited rather reasonable, systematic changes as the solvent was replaced
with a better one or univalent ions were substituted for bivalent ones.

6.6 Relaxation and Hysteresis Phenomena

Owing to the long relaxation times characteristic of polymeric systems, the equi-
librium or steady-state situation is often not reached within the time-scale of the
experiment. Figure 6.24 shows the change in the resistance of polyaniline after po-
tential steps.

It can be seen that the achievement of a constant resistance value takes a rather
long time, especially during the conducting-to-insulating transition. Consequently,
even slow sweep rate cyclic voltammetry does not supply reliable thermodynamic
quantities that can otherwise be derived by analyzing the changes in the peak po-
tentials. The polymeric nature of these systems is most strikingly manifested in the
relaxation phenomena linked to changes in the conditions (potential, temperature,
etc.) which appear in different effects such as the hysteresis, “first cycle,” and mem-
ory effects [19, 54, 108, 110, 145, 214, 223–234].

The first cycle or waiting time effects (where the shapes of the cyclic voltam-
mograms and the peak potentials depend on the delay time at potentials at which
the polymer is in its neutral/discharged state: see also “secondary break-in”) have
been interpreted in terms of slow morphological changes and/or the difficulty re-
moving the remaining charges from insulating surroundings [223, 225, 226]. It
should be mentioned that this problem also arises in the case of redox poly-
mers [19, 23, 125–127]. The results of fast scan rate voltammetry, chronoamper-
ometry and chronopotentiometry have also been explained by a model assuming
instantaneous two-dimensional nucleation and growth of conducting zones, and it
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Fig. 6.24a,b The current transients and the respective resistance–time curves obtained after per-
forming potential steps (a) from 0.2 to 0.15 V and (b) from 0.15 to 0.2 V for a PANI electrode in
contact with 2 moldm−3 H2SO4. (Reproduced from [54] with the permission of Elsevier Ltd.)

was concluded that oxidation and reduction must proceed by different pathways
and involve different degrees of disorder [108]. The slow change in the local pH
has also been accounted for [223]. For the conducting-to-insulating conversion, the
slow relaxation effect has been interpreted within the framework of percolation the-
ory [230, 235] and by the electrochemically stimulated conformational relaxation
(ESCR) model [110, 172, 236, 237]. Both of these theories predict a logarithmic
time dependence. The percolation theory assumes that the slow relaxation after
rapid conducting–insulating conversion is composed of three interrelated processes:
statistical structure formation, random fluctuations, and electron transfer. Accord-
ingly, the rate-determining step is either the electrochemical reaction that occurs
in electrode-percolated conducting clusters or the random rearrangement of con-
ducting clusters by electron-exchange reactions between the conducting and insu-
lating species and/or the diffusion of polymer chains. The rate of the conducting–
insulating conversion suddenly slows down at the percolation threshold.
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In the percolation models elaborated by Aoki and coworkers [228–230,235,238–
240], it is assumed that the C (“conducting”) species produced by the electrochem-
ical oxidation act as a metal-like electrode in converting the I (“insulating”) species
into the C species. The C domain generates itself, growing toward the solution phase
with a well-defined boundary between the C and the I zones. The rate of oxidation is
controlled by the rate of electron transfer from the C zone to the I zone; in a first ap-
proach the influence of the ionic charge transport is neglected. Electric double layers
may form not only at the boundary between the two zones but also at the micro-
scopic interfaces between C species and the solution penetrating into the C domain.
Since the double layer is distributed over the film in the C state, the reduction is
allowed to occur at any position or preferentially at the most active sites in the C do-
main. During reduction, a random conversion takes place in the C microdomains,
which have electric connections with the metal substrate. The conversion proceeds
until the molar fraction of the C species decreases to a threshold of percolation. As
a result, some of the C species is to left behind in the film, forming a fractal geom-
etry [228]. The C species remaining in the film can be transported to the electrode
by diffusion, or their reduction may occur via electron hopping. Since only a small
proportion of the C zones are connected electrically to the metal below the perco-
lation threshold, the conversion rate becomes very slow. This manifests itself in the
slow relaxation, which is characterized by the variations in the polymer film over
times of as long as a few hours. This is the main cause of the phenomena known as
the memory effect, the first cycle effect, and hysteresis. The key parameter of slow
relaxation is the electrolysis time in the I state, often called a waiting time, tw. The
anodic peak potential, peak current, and the spin concentration depend logarithmi-
cally on tw. Aoki investigated the dependence of the faradaic charge associated with
the switching of PANI films [238].

A distribution of C clusters was assumed. Some clusters are in contact with
the metal, while others are surrounded by other C species and I species. The rate-
determining step is the charge transfer rate at the C|I interface or the formation of
C clusters. For the time (t) dependence of the charge consumed (q), the following
equation was derived:

q = qT (1− p) = qT +
qT

a
ln

[
akso

qT
t + exp(−apc)

]
(6.33)

where qT is the total charge associated with the redox reaction; p is related to the ra-
tio of the concentrations of the oxidized (co) and reduced (cR) species, respectively
[i.e., p = co/(co + cR); a is the probability of creating C clusters for small varia-
tions in p]; k is the rate coefficient per volume of the reduction (qT dp/dt = −ks),
a potential-dependent quantity; s is the volume of all percolated clusters; so is the
volume of the percolation threshold (pc). Since 0≤ p≤ 1 or 0≤ q≤ qT, (6.29) has
a maximum of t.

It was derived [238] that pc = 0.23, and so the term exp(−apc) is negligibly
small. Therefore, the equation for the logarithmic dependence of q on the waiting
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time tw is

q = qT

[
1
a

ln tw +
1
a

ln(akso/qT)+ 1

]
. (6.34)

The value of a was determined from the q vs. ln tw plots; and it was found that a is
not constant but is instead proportional to q−0.29

T . Consequently, the volume increase
as a function of p can be obtained from the following equation:

s = pc exp
[
a′q−0.29

T (p− pc)
]

(6.35)

where a′ is a constant. The relaxation behavior of PANI has been analyzed in several
papers using percolation theory [228–230, 235, 238–240].

The ESCR model assumes that two main processes are operative concerning
the kinetics of the redox switching of conducting polymers. First is the charging–
discharging process, which includes electronic and ionic charge transport. Second is
the induced conformational change in the polymer that affects the rate of the electro-
chemical transformation, and due to the slowness of the relaxation of the polymer
this process may last much longer than the actual oxidation or reduction process.
The latter model was used to describe the redox switching of polypyrrole, where an
extensive volume increase occurs during oxidation. It should be taken into account
that extra mechanical energy is needed to open the originally compact structure. The
hysteresis effect has been explained by the difference in the oxidation and reduction
sequences.

According to the ESCR model the following steps should be considered. Upon
applying an anodic overpotential to a neutral conjugated polymer, an expansion of
the closed polymeric structure occurs initially. In this way, partial oxidation takes
place and under the influence of an electrical field counterions from the solution
enter the solid polymer at those points in the polymer/electrolyte interface where
the structure is less compact. This is called the nucleation process. Then the ox-
idized sphere expands from these points towards the polymer/metal interface and
grows parallel to the metal surface. The rate of this part of the overall reaction is
controlled by a structural relaxation involving conformational changes of polymer
segments and a swelling of the polymer due to electrostatic repulsions between the
chains and incorporations of counterions (see Fig. 6.25). The oxidation process is
completed by the diffusion of counter ions through the previously opened structure
of the polymer. Opposite processes occur during reduction. The positive charges on
the polymers are neutralized and counterions are expelled. Reverse conformational
changes lead to a shrinking of the polymer. Diffusion of the counterions becomes
more and more difficult. The structure is closing. The degree of compaction that
takes place during this closing step depends on the cathodic potential applied to the
polymer, and will be more efficient at more negative potentials. The compact struc-
ture hinders counterion exchange with the solution. A quantitative expression for
the relaxation time τ needed to open the closed polymer structure is as follows:

τ = τo exp [ΔH∗+ zc (Es−Ec)− zr (E−Eo)] (6.36)
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Fig. 6.25 Illustration of the ESCR model. (Reproduced from [172] with the permission of Elsevier
Ltd.)

where ΔH∗ is the conformational energy consumed per mole of polymeric segments
in the absence of any external electrical field; the second term zc (Es−Ec) is the
energy required to reduce, close and compact one mole of polymeric segments,
with Es = experimental potential of closure and Ec = compaction potential, and
finally zr (E −Eo) representing the energy required to open the closed structure.
(zr = charge consumed to relax one mol of polymeric segments; τo = relaxation
time in the absence of any polarization effects.)

The hysteresis effect and the non-Nernstian behavior for polyaniline have also
been elucidated with the help of polaron models by considering that the forma-
tion energies of both polarons and bipolarons increase as the degree of oxidation
increases [86, 205]. A first-order phase transition due to an S-shaped energy dia-
gram that is in connection with attractive interactions between electronic and ionic
charges has also been proposed [233]. The hysteresis phenomenon has also been
explained by the stabilization of the oxidized polymer molecules by considering
that the originally twisted, benzoid conformation is transformed into a more planar,
quinoid-like structure with better π-conjugation, which can therefore be reduced
at lower potentials (with lower energy). The planarization of the twisted segments
within a chain takes place during the first stage of the charging process, and due to
the interactions between the π-electron clouds of the neighboring charged segments
intermolecular stabilization can also occur. Intermolecular interactions are favorable
in the crystalline domains of the polymer. It is assumed that the stabilization process
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is fast [99]. Even an intermolecular coupling of the two π-radical centers forming
a σ -bond and the dimerization and disproportion of polaronic segments have also re-
cently been proposed [71,112,113]. Vorotyntsev and Heinze [113] elaborated a con-
cept based on two coexisting subsystems in the polymer matrix, i.e., the usual neu-
tral, cation radical (polaron) and dication (bipolaron) sites, and entities representing
a couple of sites where intermolecular bonds between neighboring molecules are
formed. These bonds may be either π-bonds or σ -bonds, and the dimers may also
exist in neutral, charged and doubly charged states. The idea was based on the re-
sults obtained when charging and discharging PPP films, which indicated that there
are reversible or quasireversible and irreversible processes depending on the poten-
tial intervals investigated for the oxidation and reduction processes, respectively. In
this work the distribution of redox potentials (energetic inhomogeneity) was also
considered. The concentration distributions of the various species were calculated
by using reasonable assumptions for the values of different equilibrium and kinetic
quantities. One of the results of these calculations, where the dispersion of the redox
potentials of the undimerized forms has also been taken into account, is shown in
Fig. 6.26.

During the anodic scan, the neutral form (D00) initially transformed into a singly
charged form (D01). This was then gradually replaced by the σ -bond state (Dσ ).
The concentrations of D11 and Dπ are also noticeable within this potential interval.

Fig. 6.26 Variations in the concentrations of various dimerized forms during cyclic voltammetry.
A broad energy distribution was considered for the undimerized sites, whereas each dimerized
state (D) was characterized by a single redox potential. D00, D01, D02, D11, Dπ , Dσ and Dr sym-
bolize the different dimers, where the indices 0, 1 and 2 indicate neutral, singly and doubly charged
species, respectively; e.g., D01 is a dimer of a neutral and a singly charge entity. Dπ is a π-bond
complex between the neighboring molecules, Dσ is a corresponding σ -bond complex, while Dr is
a partially discharged σ -bond complex. (Reproduced from [113] with the permission of Elsevier
Ltd.)
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Fig. 6.27a–c The cyclic voltammograms predicted by the dimerization model with energetic in-
homogeneity of undimerized sites. Curves a–c were simulated by using different fractions of the
dimerized forms, and for a and b E�′c,2−E�′c,1 = 0, while for c E�′c,2−E�′c,1 = 0.1 V, where E�′c,2 and

E�′c,1 represent the formal potentials of the two redox reactions. (Reproduced from [113] with the
permission of Elsevier Ltd.)
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During reduction the concentration profiles are quite different; the radical form (Dr)
appears in substantial amounts as an intermediate. Because the potential range in
which the given species exists is shifted, a hysteresis can be observed in the potential
variations in the principal concentrations of species D00 and Dσ . The corresponding
theoretical cyclic voltammograms are presented in Fig. 6.27.

It is worth mentioning that the considerable difference between the anodic and
cathodic peak potentials of the cyclic voltammograms for the poly(tetracyanoquino-
dimethane) redox electrode (Fig. 6.22) has been explained by the formation of
dimeric species; i.e., the slow formation of mixed-valence dimers during reduction
(charging) and the fast reoxidation of dimer dianions resulting in mixed-valence
dimers during the discharging process [19, 125].

The concentrations of the anion radicals and the dimer dianions were derived
from UV-VIS spectroelectrochemical data. The concentration of the mixed-valence
dimer was calculated from the variation in the ESR intensity and the concentration
of the other paramagnetic species, TCNQ−• [125] (see Fig. 6.28).

The shielding effects of the counterions may also contribute to the overall stabi-
lization energy.

Fig. 6.28 Distribution diagram for the species formed during the electroreduction of
poly(tetracyanoquinodimethane). A = TCNQ, A

−• = TCNQ
−• , A

−•
2 = TCNQ

−•
2 , A2−

2 = TCNQ2−
2 and

S = cTCNQ
−• + cTCNQ

−•
2

[125]



216 6 Redox Transformations and Transport Processes

The hysteresis phenomenon was analyzed in terms of two classes: dynamic hys-
teresis containing a kinetic and an ohmic component, and stationary or thermo-
dynamic hysteresis. It was concluded that the hysteresis in cyclic voltammograms
observed for poly(3-methylthiophene) is mainly kinetic in nature, while for PANI
the hysteresis (which is independent of scan rate and current) has a thermodynamic
origin [224].

While the effect of potential-induced relaxation phenomena has been studied ex-
tensively, less effort has been expended in exploring the effect of temperature. One
notable exception is a temperature shock experiment on a poly(tetracyanoquino-
dimethane) electrode. It was found that when the electrode returned from elevated
temperature to room temperature, a relatively long time (>30 min) was needed to
restore the original room-temperature voltammetric response, as seen in Fig. 6.29.

Apparently, the polymer adopts an extended, perhaps solvent, swollen confor-
mation at elevated temperatures that requires a long time to revert back to the room
temperature structure [19, 222]. Such behavior is observed in studies of polymer
gels, where varying the temperature results in the hysteresis of macroscopic poly-
mer properties such as swelling, elasticity, turbidity, and so forth.

Fig. 6.29 Cyclic voltammograms obtained for a poly(tetracyanoquinodimethane) electrode in con-
tact with 10 M LiCl at (1) 69 ◦C and (2–6) after rapid cooling at 22 ◦C, recorded after delays of
(2) 4, (3) 9, (4) 13.5, (5) 22.5, and (6) 38.5 min. (Reproduced from [222] with the permission of
Elsevier Ltd.)
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6.7 Measurements of the Rate of Charge Transport

The rate of charge transport within an electrochemically active polymer film has
been successfully studied by transient electrochemical techniques. One may dis-
tinguish between methods using large and small potentials or current perturba-
tions, respectively. Cyclic voltammetry and potential (less often current) step and
pulse techniques have been applied for basic characterization. Average values for
the charge transport diffusion coefficient can be obtained using these techniques,
since the properties of the polymer change continuously and large amounts of ions
and/or solvent molecules are exchanged between the polymer phase and the bulk
solution during the experiments. Owing to the marginal perturbations from equi-
librium (steady-state) caused by low-amplitude (< 5 mV) sinusoidal voltage, elec-
trochemical impedance spectroscopy (EIS) is evidently advantageous compared to
other techniques involving large perturbations. The actual reaction mechanism may
be elucidated and the rate-determining step assigned using combined techniques.
Information on these techniques and references associated with them can be found
in Chap. 3.
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Chapter 7
Applications of Conducting Polymers

7.1 Material Properties of Conducting Polymers

For practical reasons, electronically conducting polymers that can be prepared from
cheap compounds such as aniline, pyrrole, thiophene and their derivatives by rel-
atively simple chemical or electrochemical polymerization processes attract the
most interest. However, redox polymers are also applied in special cases, such as
in biosensors or electrochromic display devices. Nevertheless, in this chapter we
focus our attention on the applications of electronically (intrinsically) conducting
polymers, which we will refer to as “conducting polymers,” or by the abbreviations
“ECPs” and “ICPs.” The most interesting property of conducting polymers is their
high (almost metallic) conductivity, which can be changed by simple oxidation or
reduction, and also by bringing the material into contact with different compounds.
Conducting polymers usually have good corrosion stabilities when in contact with
solution or/and in the dry state. For instance, polyaniline is stable in its leucoemeral-
dine and emeraldine states, even in 10 moldm−3 acid solutions. Furthermore, ICPs
can be deposited from a liquid phase, even in complex topographies. Redox pro-
cesses combined with the intercalation of anions or cations can therefore be used
to switch the chemical, optical, electrical, magnetic, mechanic and ionic properties
of such polymers. These properties can be modified by varying the anion size and
preparation techniques; by including other chemical species for example. A quali-
tative summary of the relationship between the properties of a conducting polymer
and its charge state is given in Table 7.1.

Typical areas in which conducting polymers are applied can be described using
a double logarithmic plot of ionic resistance versus electronic resistance, as shown
in Fig. 7.1.

The positions of ideal metals, semiconductors and insulators in the diagram are
shown at the top. Constant properties exist at high ionic resistances, i.e., towards the
top of the diagram. Here, ICPs can be applied in the dry state in an inert atmosphere.
Contact with an electrolyte leads to a much wider field of applications, depending
on the specific ionic and electronic resistances associated with the charge state, such
as in batteries, displays, sensors, etc.
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Table 7.1 Qualitative properties of conducting polymers that conduct in their oxidized state, as
a function of their charge state

Properties/Charge state Reduced Oxidized

Stoichiometry Without anions (or with cations) With anions (or without cations)
Content of solvent Smaller Higher
Volume Smaller Higher
Color Transparent or bright Dark
Electronic conductivity Insulating, semiconducting Semiconducting, metallic
Ionic conductivity Smaller High
Diffusion of molecules Dependent on structure Dependent on structure
Surface tension Hydrophobic Hydrophilic

Fig. 7.1 Double logarithmic plot of ionic resistance versus electronic resistance for conducting
polymers, showing areas of application. (Reproduced from [1] with the permission of Elsevier
Ltd.)

Special properties, such as wettability, optical or membrane properties, can be
utilized in special systems (e.g., displays) or processes (e.g., metallization of holes).
Conducting polymers can therefore be grouped according to their technological field
of application (e.g., energy technology, sensors, and others). For more on this topic,
see the reviews in [2–26].
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7.2 Applications of Conducting Polymers in Various Fields
of Technologies

7.2.1 Thin-Film Deposition and Microstructuring of Conducting
Materials (Antistatic Coatings, Microwave Absorption,
Microelectronics)

Before polymers can be applied in advanced systems, their mechanical and topo-
graphic properties must first be checked. The filling of molds, holes and gaps of-
ten is a problem, depending on the preparation process. However, ICPs have an
advantage in this context. For instance, electrochemical polymerization can be car-
ried out in a hole or mold. Sometimes the growth preferentially takes place at the
edges, which can be an advantage when depositing chemicals [27]. The minimum
size of the holes to be filled is given by the molecular size of the polymer and the
hydrophilicity of the holes. Even nano-sized channels of porous silicon or Al2O3

can be filled [28, 29]. Chemical polymerization by soluble (Fe3+) or solid oxidants
(MnO2, RuCl3 [30]) can also be used.

A detailed review of the use of conducting polymers for microsystem technolo-
gies and silicon planar technology was given in [31]. Local deposition of polybithio-
phene is possible on n-type silicon using laser-assisted deposition. The production
of negative and positive microstructures with high aspect ratios and precisions is
possible. Various concepts such as direct laser writing, prestructuring of the silicon
substrates by mask techniques, or post-structuring of pre-deposited polymer films
have also been realized [31].

Fig. 7.2 Scheme for polymerization in pores. (a) Ideal case; (b) nucleation at the bottoms of the
pores; (c) nucleation at the walls of the pores. (Reproduced from [31] with the permission of
Elsevier Ltd.)
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For micro- and nanostructures with negative aspect ratios, successful filling can
only be realized if the reaction starts at the bottom of the pore (see Fig. 7.2b). This
can be achieved if the bottom of the negative microstructure is conducting while the
wall is insulating. A homogeneous reaction may also take place all over the pore
wall when an inhibiting layer (e.g., a high-field oxide), is formed at the wall.

Potential approaches to microstructuring are illustrated in Fig. 7.3.
Pre-structuring can be achieved through the usual photoresist technique (Fig. 7.3a)

or by ion implantation through a mask (Fig. 7.3b). The pre-structuring yields an insu-
lating region of the semiconductor’s surface, and so polymerization only occurs over
the rest of the surface. In the case of post-structuring, a polymer film is prepared at
the surface and then microstructuring is carried out using a chemical reaction, such as
by oxidation (Fig. 7.3c), using a photoreaction (laser ablation; Fig. 7.3d), or by me-

Fig. 7.3 Schemes for pre- and post-structuring conducting polymers. (Reproduced from [31] with
the permission of Elsevier Ltd.)
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chanical removal of the polymer film. Positive microstructures are usually obtained
by post-structuring.

In thin-film technologies, ICPs can be used as conducting layers. Two application
fields of great technical importance are antistatic protection [32,33] and electromag-
netic interference shielding by conducting polymers [34, 35]. For instance, a 0.54-
mm-thick polypyrrole–textile composite absorbs ca. 50% of the incident 30–35 W
microwave radiation [34]. PANI, PP and PT derivatives are predominant in these
fields. They are incorporated as fillers into common polymeric materials such as
poly(vinylchloride) or poly(vinylacetate) in order to substitute carbon-black-filled
materials. Poly(3,4-ethylenedioxythiophene) (PEDOT) is used as a protective layer
for photographic films [32].

A large-scale technological process was realized with the through-hole plating of
printed circuit boards [36, 37]. The insulating epoxy board is oxidized by KMnO4.
The resulting thin film of MnO2−x is used as an oxidizer for the oxidative poly-
merization of EDT. The thin film of PEDOT is conductive even at low potentials in
acidic solution. Therefore, the hole covered with conducting polymer can be directly
electroplated with copper.

In microelectronics, ICPs can be applied as charge dissipators for electron-beam
lithography. Electron-beam lithography is a direct writing method with a very high
resolution in the submicrometer range. The charging of the insulating electron beam
resist can lead to the deflection of the electron beam, resulting in image distortion.
Conducting resists or layers must therefore be applied to negate this problem. Water-
soluble PANI was introduced by IBM as a discharge solution [38].

7.2.2 Electroluminescent and Electrochromic Devices

Electrochromic devices have been realized with ICPs [2,21,39–57]. Many conduct-
ing polymers exhibit redox states with distinct electronic absorption spectra. When
the redox transformations generate new or different visible region bands, the ma-
terial is said to be electrochromic [21, 50]. The color changes from either a trans-
parent (“bleached”) state, where the polymer absorbs in the ultraviolet region, to
a colored state, or from one colored state to another (see Chap. 2). In several cases
more than two redox transformations can take place, which are accompanied by
more than two color changes. The usual color change is from pale yellow or col-
orless (the reduced state) to green or blue (the oxidized state); for example, PANI
absorbs at λ ≤ 330 nm in its reduced state, the absorbance at ∼ 440 nm increases
during the oxidation, and a broad free carrier electron band appears at λ ∼ 800 nm
at more positive potentials (oxidation state; see Fig. 4.7). During the oxidation of
PP, the following color changes can be observed: yellow↔green (λ = 420 nm),
blue↔violet (λ = 670 nm). However, colorless↔red (PPD), orange↔black [56],
or red (λ = 470 nm) ↔ blue (λ = 730 nm) (PT), etc., also occur. This effect can
be used in light-reflecting or light-transmitting devices for optical information and
storage (displays), or for glare-reduction systems and “smart windows” in cars and
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buildings. To be applicable in this context, the response time of the conducting poly-
mer must be fast enough (< 100 ms [51]) and it must be highly reversible upon
charging/discharging (for up to 105 cycles or more) [43]. Smart windows based
on a sandwich structure of ITO/PEDOT–PSS/ITO between glass have been devel-
oped [46, 47].

The color (i.e., the color change) can be tuned by using different derivatives of
the same parent monomer. For instance, 3-methylthiophene, 3-hexylthiophene and
3-octylthiophene have been electropolymerized in a room-temperature ionic liquid,
1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), and the resulting
polymers (PMeT, PHexT and POcT) exhibit slightly different color changes during
reversible redox switching [58]. Figure 7.4 shows the spectra of these polymers in
their oxidized and reduced states, respectively.

The respective color changes during oxidation are bright red → bright blue
(PMeT), orange-red→ blue (PHexT), and orange-yellow→ black-blue (POct).

The photoluminescence of polyaniline has been studied as a function of the
polymer redox state. It was stated that each of the three PANI species have flu-
orescent emissions with different quantum yields. When conductive domains are
present, the emission from excitons located either inside these domains or near
to them is efficiently quenched [40]. Organic electroluminescent devices (LED’s)
are a possible alternative to liquid crystal displays and cathodic tubes, especially
for the development of large displays. The principal setup for a polymeric LED
is ITO/light-emitting polymer/metal. A thin ITO electrode on a transparent glass
or polymeric substrate serves as the anode, while metals such as Al, Ca or Mg
are used as cathode materials. After applying an electric field, electrons and holes
are injected into the polymer. The formation of e−/h+ pairs leads to the emission
of photons. One of most important opportunities to follow from the use of poly-

Fig. 7.4 Normalized absorption spectra of poly(3-methylthiophene) (a and a′), poly(3-
hexylthiophene), (b and b′) and poly(3-octylthiophene) (c and c′) in their fully reduced and ox-
idized states, respectively. (Reproduced from [58] with the permission of Elsevier Ltd.)
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meric LEDs is the chemical tuning of the HOMO–LUMO gap of the light-emitting
polymers via tailored synthesis. Typical materials used in this context are poly(p-
phenylenevinylene) (PPPV) [59] and its derivatives or substituted polythiophenes.
The use of PANI as a first layer on the ITO electrode is reported to increase the
efficiency of the LED [42,60], and prevents the degradation of the polymer because
PANI acts as a hole-blocker [61]. Quantum efficiencies of 3%, light densities of up
to some thousand cd m−2 and light efficiencies of 5 lm W−1 are made possible using
this approach. A good overview of recent developments in this field is given by [62].

Polyfluorene is an important blue light-emitting polymer which has been studied
for applications in the emissive layers in LEDs because of its high chemical and
thermal stability as well as its high fluorescence quantum yield [63].

Poly(alkylbithiazoles) have received considerable attention because of their n-
doping capabilities and applications in LEDs. The nonyl derivative has unusual opti-
cal properties due to its crystallinity and π–π stacking behavior. The combination of
this n-type electron-accepting compound with a p-type electron-donating monomer
(comonomer) was recently attempted [64]. The electropolymerization of bis(3,4-
ethylene-dioxythiophene (EDOT)–(4,4′-dinonyl-2,2′-bithiazole) leads to a homoge-
neous and high-quality polymer film (PENBTE) which shows fast electrochromic
behavior when switched between its neutral and oxidized states. Both p- and n-
doping of the polymer is possible, as seen in Fig. 7.5.

The band gap (Eg) was calculated from the difference in the onset potentials.
The p-doping involves the thiazole unit, while both the thiazole and EDOT moieties
participate in the n-doping [64].

The changes in the visible spectra of PENBTE as function of the potential are
displayed in Fig. 7.6.

Fig. 7.5 Differential-pulse voltammetry of PENBTE in 0.1 moldm−3 Et4NBF4|CH2Cl2. (Repro-
duced from [64] with the permission of Elsevier Ltd.)
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Fig. 7.6 The spectra of a PENBTE film measured at different potentials from 0.4 V (a) to 0.8 V
(j) vs. Ag|AgCl. The potential was stepped up by 100 mV each time. (Reproduced from [64] with
the permission of Elsevier Ltd.)

Fig. 7.7a,b The change in the color of a PENTBE film deposited onto ITO-coated glass: a reduced
state (at − 0.4 V), and b oxidized state (at 0.8 V vs. Ag|AgCl). (Reproduced from [64] with the
permission of Elsevier Ltd.)
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Fig. 7.8a,b Multicyclic voltammograms of MEH–PPPV films in 0.01 moldm−3 TBAP|acetonitrile
with a scan rate of 50 mVs−1. a Negative and b positive potential ranges, i.e., n-doping and
p-doping of the polymer. (Reproduced from [65] with the permission of Elsevier Ltd.)

The color change is illustrated in Fig. 7.7. It is interesting that the oxidized form
is transmissive, while the reduced, neutral state shows intense absorption.

Among the various electroluminescent polymers available, poly(1-methoxy-4-(2-
ethyl-hexyloxy)-p-phenylenevinylene) (MEH–PPPV) seems to be a good material to
apply in LEDs and also in light-emitting electrochemical cells (LECs). In LECs, the
electronically conductive electroluminescent polymer is blended with an ionically
conductive polymer [e.g., poly(ethylene oxide) complexed with CF3SO3Li] sand-
wiched between an anode (typically ITO) and a cathode (e.g., Al). The quantum yield
of LECs is generally higher that those of most LEDs due to the better balance of both
charge carriers upon injection into the active layer, which takes place when an insu-
lating region is created between n- and p-doped layers (a p-i-n junction).

MEH–PPPV has an advantage over PPP in that it is soluble in several organic
solvents, and so can easily be prepared as a spin-cast film. A detailed characteriza-
tion of MEH–PPPV using spectroelectrochemistry and EQCM has been carried out
by Goncalves et al. [65].

The electrochemical energy gap was calculated from the difference between the
onset potentials of reduction and oxidation (φn and φp), which is the usual procedure
used to calculate this (see also earlier). In this case Eg = 2.35 eV (see Fig. 7.8).

Note that a probably more accurate method is to derive Eg values from the respec-
tive redox potentials; however, in many cases, due to the ill-defined peaks involved,
this is a difficult task to execute, and the difference between the values obtained us-
ing the two approaches is usually not more than 10–20%. MEH–PPPV also exhibits
a reversible color transition, as seen in the UV-VIS spectra displayed in Fig. 7.9.

The in situ absorption spectra of MEH–PPPV show a well-defined isosbestic
point around 570 nm, which permits the determination of the optical bandgap, Eg =
2.18 eV (λedge). Using the maximum absorption of the excitonic band, Eg = 2.51 eV
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Fig. 7.9 Absorption spectra of MEH–PPPV films in the dry state: (a) original sample; (b) after
three voltammetric cycles; (c) oxidized at 1 V vs. Ag-quasireference electrode; and (d) cycled
back to the original form. (Reproduced from [65] with the permission of Elsevier Ltd.)

can be derived, i.e., the electrochemically determined value is exactly intermediate
between the minimum and maximum values of the optical bandgaps of MEH–PPPV.
Results from EQCM studies have revealed that ClO−4 counterions and two acetoni-
trile molecules enter the layer in a reversible process during oxidation (Fig. 7.10).

The mass change increases with the number of cycles due to the gradual swelling
of the film. In the negative potential region (N), irreversible mass and charge in-
creases occur due to the sorption of solvent molecules [65].

Fig. 7.10 Mass changes observed during the oxidation of MEH–PPPV using the EQCM tech-
nique. P and N indicate positive and negative regions, respectively. (Reproduced from [65] with
the permission of Elsevier Ltd.)



7.2 Applications of Conducting Polymers in Various Fields of Technologies 235

Fig. 7.11 Photos of a PANI-based flexible electrochromic display device containing 25 pixels.
The display region and the connections were made by depositing gold on a plastic sheet using an
appropriate mask and an evaporation technique. Each pixel can be driven separately. Left: PANI is
in its oxidized state in all pixels. Right: PANI is reduced in two pixels (the bleached ones)

Due to its many advantageous properties (low cost, fast color change, good con-
trast, stability, etc.), PANI is also a favorite material for use in electrochromic dis-
play devices. Pictures of a PANI-based flexible device are shown in Fig. 7.11. The
display pattern, which consists of 25 pixels and the connections that allow each
pixel to be driven separately, was fabricated by depositing gold onto a plastic sheet.
Another plastic sheet covers the display. The electrochemical switching is executed
using a counterelectrode, which also serves as a reference electrode, and an acidic
gel electrolyte is placed between the two sealed plastic sheets.

7.2.3 Membranes and Ion Exchanger

Conducting polymers can be regarded as membranes due to their porosity [66–73].
They could therefore be used to separate gas or liquids. Free-standing (on supporting
substrates) chemically prepared PANI films are permeated selectively by gases. In
general, the larger the gas molecule, the lower the permeability through the film.

Several studies have reported a switchable permeability for water and organics
that is dependent on the redox state. For electrochemically formed PANI and PP on
metal or conducting grids, a large increase in water permeability was observed for
doped films compared with undoped (reduced) films. This can be explained by struc-
tural changes and an increase in hydrophilicity during oxidation [67]. Membranes
of 3-hexyl-PT show a decrease in permeability for dopamine with increasing oxi-
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dation [71]. Different permselectivities for anions were found and studied by [70].
Despite the ability to switch the selectivity and the excellent separation effects ob-
served for some systems, technical applications of these effects are scarce due to
low stability and a lack of pinhole-free materials.

7.2.4 Corrosion Protection

Conducting polymers can be deposited as a corrosion protection layer [17,20,24,74–
110]. Work in this area is partly motivated by the desire to replace coatings that are
hazardous to the environment and to human health. Since the equilibrium potentials
of several electronically conducting polymers are positive relative to those of iron
and aluminum, they should provide anodic protection effects similar to those pro-
vided by chromate(VI) or similar inorganic systems. Either electropolymerization
or chemical oxidation of the respective monomer can be used to form the coating.
An alternative approach is to use preformed polymers that had been rendered solu-
ble by applying substituted (e.g., alkylsulfonated) monomers. Conducting polymer
colloids have also been tried. The cheap and effective polymers PANI, PP, and PT
(and their derivatives) have mostly been used [20, 111, 112]. The favorite substrate
used in such investigations is mild steel, but aluminum, copper, titanium or even
dental materials have also been discussed [20,24]. Figure 7.12 shows the Tafel plots
obtained for bare steel and PANI-coated steel, respectively, in contact with a 3%
NaCl solution [76].

Fig. 7.12 Tafel plots (potential vs. log current) for PANI-coated steel and for bare steel in 3%
NaCl. (Reproduced from [76] with the permission of Elsevier Ltd.)
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The conducting materials are applied directly by electrodeposition onto the ac-
tive material [17] or by coating with formulated solutions of these polymers. The
efficiency and mechanism of the corrosion protection provided are not yet fully
clarified. Anodic protection on iron has been discussed [21, 83]. Several authors
have proposed that the passivation is achieved because the doped emeraldine salt
form of PANI keeps the potential of the underlying stainless steel in the passive
region [84–86]. However, other authors claim that the mechanism by which PANI
protects the underlying metal surface from corrosion is independent of the dop-
ing level [87]. Due to the redox processes taking place, thick layers of iron oxide
are formed and are stabilized against dissolution and reduction. Inhibition is also
reasonable due to geometric blocking and reduction of the active surface. The ef-
fects of the different polymer layers on the corrosion protection may be rather di-
verse. For instance, EIS and polarization resistance measurements have shown that
polypyrrole film reduces the corrosion protection efficiency of epoxy coating on
mild steel in 3.5% NaCl solution when it is used as the primary film under the
epoxy layer. On the other hand, a PANI coating significantly improved the protec-
tion efficiency of the epoxy coating against mild steel corrosion. It was related to
the healing effect of PANI upon surface passivation along a defect (scratches) [91].
Another strategy for corrosion prevention using conducting polymers is to incorpo-
rate inhibitor anions into the polymer coatings. This approach has been trialed by
coating mild steel and zinc substrates with PP containing anions as such molyb-
dates or 3-nitrosalicylate [107]. However, as well as the corrosion of metals, that of
semiconductor electrodes can also be decreased by using conducting polymers that
fill holes, thus preventing the oxidation of the semiconductors. For instance, it has
been found that ferrocene polymers enhance the stability of Si [92, 93], GaAs [92],
and Ge [93]. Nafion/TTF was used successfully in the case of Si [94]. Polypyrrole
protects n-Si [95, 96], n-CdS, n-CdSe, and n-GaAs [96]. Good results have been
obtained by using PANI to protect n-Si, N-CdS, n-CdSe, and n-GaAs [94] and PT
to protect n-CdSe and n-CdS [97], while polycarbazole diminished the corrosion of
InSe [98], and polyindole was effective in the case of n-MoSe2 [99].

7.2.5 Sensors

The use of conducting polymers in sensor technologies involves employing the
conducting polymers as an electrode modification in order to improve sensitivity,
to impart selectivity, to suppress interference, and to provide a support matrix for
sensor molecules [7, 9, 16, 18, 22, 25, 26, 113–216]. All electrochemical transducer
principles can also be realized with conducting-polymer-modified electrodes. The
role of the conducting polymer may be active (for instance, when used as a cat-
alytic layer, as a redox mediator, as a switch, or as a chemically modulated re-
sistor, a so-called “chemiresistor”) or passive (for instance, when used as a ma-
trix) [7, 9, 16, 22, 23,26, 122, 123,167,168,176,177].
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7.2.5.1 Gas Sensors

Gas sensors made of conducting polymers have high sensitivities and short response
times, and—a great advantage compared with most commercially available sen-
sors based on metal oxides—work at room temperature [18, 25, 127–165]. Polyani-
line [129–146], polypyrrole [147–154], and polythiophene [155–162] have usually
been used in gas sensor devices. The sensing principles employed in gas sensors
using conducting polymers as active sensing materials vary. The principle used de-
pends on the variables (resistance, current, absorbance, mass, etc.) measured and
the type of interaction between the gas (analyte) and the polymer. Although the in-
teraction mechanism is not entirely clear for every case, the electron-donating or
electron-withdrawing ability of the gas usually plays the determining role. The oxi-
dation state (the charge or doping level) of the polymer is altered by the transfer of
electrons from the analyte to the polymer, which causes a change in the properties
(resistance, color, work function, etc.) of the polymer.

Electron-donor gases such as NH3 increase the resistance of PANI [127–129,
132–135, 137, 141, 142,146,217] or PP [147, 148] because the electrons transferred
neutralize the positive sites (polarons), and the polymer becomes neutral. Interest-
ingly this is a reversible process; after flushing the polymer with air, the conductivity
of the polymer (sensing layer) is recovered (Fig. 7.13). Electron acceptor gases or
vapors such as NO2 and I2 usually enhance the electrical conductivity by remov-
ing electrons from the polymer, resulting in the formation of a p-type conducting
polymer.

Fig. 7.13 The response of a PANI gas sensor (relative resistance vs. time curves at 20 ◦C). 10 ppm
ammonia was injected into the air at times indicated by the arrows. The total concentrations were:
(1) 0, (2) 10, (3) 20, (4) 30, (5) 40, (6) 50 ppm; and (7) after flushing with clean air again [135]
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However, the situation is more complicated; e.g., ammonia causes an increase in
the conductivity of polycarbazole [164, 165]. In the case of PANI, it is most likely
that NH3 also causes deprotonation and contributes to increasing its resistance. This
mechanism is supported by the observation that gases or vapors that are able to trans-
fer protons to PANI (e.g., HCl, H2S or H2O) are able to enhance the conductivity of
this polymer [126, 132, 139, 146,160].

Chemiresistors consist of one or several pairs of electrodes and a layer of polymer
possessing variable conductivity connecting the electrodes (see Figs. 7.14 and 7.15).
Interdigitated electrode arrangements are also widely used. Chemiresistors are the
most popular device configuration for gas sensors. In some cases ac current is also
applied. Diode and transistor arrangements can also be fabricated. The transistors
consist of an active semiconductor layer (e.g., p-Si) in contact with two electrodes
(the “source” and the “drain”) and a third electrode (the “gate”), which is separated
from the semiconductor layer by an insulator. In this device, the conducting polymer
acts as a gate that reacts with the gases, causing its work function to change and
therefore modulating the source–drain current. Another widely used arrangement is
the field effect transistor (FET). Such an arrangement is shown in Fig. 7.15.

Fig. 7.14 Layout designs of thin-film and thick-film polymer gas sensors [135]

Fig. 7.15 Configuration of a polyaniline-based microelectrode device [217]. (Reproduced with the
permission of the American Chemical Society)
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In the case of gas sensing, the charge level of the conducting polymer (e.g.,
polyaniline) layer will change (this can also be varied by changing its potential with
a potentiostat, as shown in Fig. 7.15).

Until the source–drain voltage (VD) is smaller than the difference between the
gate voltage (VG) and the threshold potential (VT), i.e., VD < VG−VT, the source–
drain current (ID) is linearly dependent on VD:

ID =
μCW

L

(
VG−VT− VD

2

)
VD (7.1)

where μ is the mobility of the minority charge carrier, C is the gate capacitance, and
W and L are the width and the length of the channel, respectively.

In the saturation region VD > VG−VT

ID =
μCW

2L
(VG−VT) . (7.2)

Chemically sensitive field effect transistors are called CHEMFETs. If the coat-
ing of the gate of the FET is gas-sensitive, the term GASFET is used instead.
When the polymer acts as an ion exchanger with protons or other ions, it results
in a pH-sensitive or ion-sensitive device called a pH-FET or ISFET. For instance,
a potassium-sensitive device is called a K-ISFET.

In diodes, the conducting polymer (usually a p-type semiconductor) is in contact
with an n-type semiconductor or a metal. In the former case a heterojunction can
form at the interface, while in the latter case a Schottky barrier can be created. The
relation between the current density and the voltage is described by Richardson’s
equation [217]:

J = A∗T 2 exp

(
− ϕB

kBT

)
exp

(
eV

nkBT

)
(7.3)

where A∗ is the effective Richardson’s constant, ϕB is the effective barrier height, kB

is the Boltzmann constant, n is the ideality factor, e is the elementary charge, and T
is the temperature. The charge level of the polymer will change under the influence
of the analyte, which causes a variation in ϕB. Consequently either the current (J)
or the voltage (V ) can be measured.

The conductivity of the polymer layer may also depend on the physical state
of the polymer. For instance, the sorption of organic vapors (e.g., alcohol) [130,
144, 151, 156] or acetone [154] causes a swelling of the polymer that alters the
rate of interchain electron hopping. The mass change caused by the sorption can
be followed by a piezoelectric quartz-crystal microbalance (QCM) or by surface
acoustic wave (SAW) sensors. Optical changes can also be detected, although this
effect is less frequently utilized in gas sensors.

Gas sensors based on conducting polymers have high sensitivities but (usually)
low selectivities. They respond to different gases (NH3, CO2, CO, HCl, H2S) and
vapors, e.g., alcohols, acetone or nitroaromatic explosives [161]; water (humid-
ity) [136, 140] also influences their properties. However, the composition of gas
mixture can be calculated by using an array of several units containing different
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polymers possessing different sensitivities for different gases (an artificial nose).
Amperometric sensors have also been used for the detection of gases; however,
proton-conducting membranes like Nafion are usually utilized in these systems.

7.2.5.2 Electroanalysis and Biosensors

Another large field of application for conducting polymers in chemical analysis is
the detection of ions and molecules in the liquid phase [26, 166–171, 218, 219].
The development of biosensors has been an especially significant field over the
last two decades [7, 16, 22, 26, 121, 171–182, 195–216, 220–222]. Conducting poly-
mers show sensitivities toward anions or cations since Nernstian behavior is ex-
pected in relation to the counterions. However, their selectivities are usually not
very good. Therefore, EDTA [218] or ionophores have been attached to the poly-
mers in order to detect small cations. Polythiophenes have been modified by acyclic
and cyclic polyethers [23,191], and similar compounds based on PP have also been
tested [192]. Calixarene with built-in PT and PP has been investigated [193, 194].
Anion detection using polymers with positively charged groups or polymers func-
tionalized with such groups has been attempted.

The use of conducting polymers as amperometric sensors, where the detection
signal is amplified due to the catalytic properties of the polymer and/or built-in cat-
alytic entities, is straightforward, although the application of these systems as ion-
selective electrodes in potentiometry is problematic because redox state and acid–
base or ionic equilibria need to be controlled simultaneously. Nevertheless, several
attempts have been made to fabricate ion-selective electrodes based on conducting
polymers [189, 190].

Conducting polymers have attracted much interest as suitable matrices for en-
trapping enzymes. The conducting polymers used in this context must be com-
patible with biological molecules in aqueous solutions over the physiological pH
range. The conducting polymers can transfer the electric charge produced by the
biochemical reaction to an electronic circuit. Enzymes such as glucose oxidase
(GOD), nicotinamide adenine dinucleotide-dependent dehydrogenases, horseradish
peroxidase and urease have been immobilized in conducting polymer films via
electrostatic interactions, complex formation, van der Waals forces (adsorption), or
covalent bonds. The formation of crosslinks and covalent binding may cause a de-
crease in the enzymatic activity. Enzymes can be incorporated as counterions into
the conducting polymer network during electropolymerization or into the positively
charged film later on, since the surface charges of most enzymes at physiological pH
are negative. A redox mediator (e.g., ferrocene or quinone) is usually also applied
in order to ensure the transfer of electrons from the electrode to the enzyme [177].
The scheme for such an electroanalytical sensor is shown in Fig. 7.16.

The detection of biologically active molecules with high selectivity is a very
important task for researchers working in the field of analytical electrochemistry.
Biosensors fabricated from conducting polymers and enzymes can be utilized in var-
ious fields, such as in medical diagnosis and food analysis in order to detect glucose,
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Fig. 7.16 Scheme for an amperometric electrode for glucose determination where GOD is immo-
bilized in a conducting polymer film which contains a redox mediator (M)

fructose, lactate, urea, cholesterol, ascorbic acid, etc.; in immunosensors and DNA
sensors; and also for monitoring hazardous chemicals, e.g., peroxides, formaldehy-
des, phenols, etc. We will present typical examples below. An intense search for
effective glucose sensors is underway. Polypyrrole has usually been used for the
immobilization of glucose oxidase (GOD) [195–202]; however, PANI [199, 200],
poly(o-phenylenediamine) [198] and poly(neutral red) [172] have also been applied.
PANI is less frequently used in biosensors because at low pH values, where the for-
mation of polyaniline takes place and where this polymer is conductive, enzymes
are usually less stable. Amperometric biosensors for glucose have also been pre-
pared by immobilizing glucose oxidase onto ferrocene containing a siloxane-based
copolymer (Fig. 7.17), which acts as an electrocatalyst for either the oxidation or
the reduction of H2O2 that arises during the enzyme-catalyzed reaction [171]. The
structure of the siloxane-based copolymer containing pendant dendritic wedges that
possess electrically conducting ferrocene moieties and electrocatalytic activity to-
wards the oxidation of H2O2 is presented in Fig. 7.17.

Figure 7.18 shows a calibration plot for H2O2 obtained when a Pt electrode was
covered with a layer of the ferrocene-containing copolymer.

A calibration plot for amperometric glucose determination using a Pt|ferrocene
polymer|GOD electrode is displayed in Fig. 7.19.

In contrast to GOD, horseradish peroxidase (HRP) can undergo direct electron
transfer; i.e., no mediator is required, since this process is very fast [178]. The
application of GOD and HRP together has been proven to be a successful strat-
egy [179, 180]. Bienzymatic systems such as glutamate oxidase + HRP/PANI and
lactate oxidase + HRP/PANI have also been used to detect glutamic acid and lac-
tate, respectively [180]. Conducting polymer films can also possess advantageous
permselective properties which improve selectivity toward the target molecules.

Urea biosensors containing urease are based on the detection of NH+
4 and

HCO−3 [7, 204, 205]. Lactate dehydrogenase immobilized in PANI was used for
lactate measurements [7]. Cholesterol sensors have been fabricated using choles-
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Fig. 7.17 The structure of the siloxane-based copolymer containing pendant dendritic wedges that
possess ferrocenyl moieties. (Reproduced from [171] with the permission of Elsevier Ltd.)

Fig. 7.18 Calibration plots for hydrogen peroxide oxidation obtained using Pt coated with
a ferrocene-containing siloxane-based copolymer at three different potentials, as indicated in the
figure. The surface concentration of the copolymer was 1.7×10−9 molcm−2. Solution: deaerated
0.1 moldm−3 pH 7 phosphate buffer. (Reproduced from [171] with the permission of Elsevier Ltd.)

terol oxidase absorbed in PP, in which ferrocene carboxylate [206] or hexacyanofer-
rate (III) [207] were applied as mediators. Electroplated conducting polymers were
also used as antibody receptors in immunosensors [210].

DNA recognition has been achieved, for example by the sorption of DNA in
PP [209] or by PP functionalized with a covalently linked oligonucleotide [208].
Deoxyguanosine-triphosphate and 5′-phosphate modified deoxyguanosine oligonu-
cleotide (an oligomer containing twenty monomer units) was immobilized in poly-
thionine [222].



244 7 Applications of Conducting Polymers

Fig. 7.19 Calibration plots for glucose determination using a ferrocene-containing siloxane-based
copolymer (see Fig. 7.17) and glucose oxidase enzyme. Solution: air-saturated 0.1 moldm−3 pH 7
phosphate buffer. (Reproduced from [171] with the permission of Elsevier Ltd.)

In [211] the use of Nafion-coated electrodes for the in vivo measurement of neu-
rotransmitters was discussed. These polymers may have electrocatalytic properties.
It has been reported that PP and PANI catalyze the oxidation of ascorbic acid [181],
dopamine [182], and quinines [183]. Poly(acridine red) can promote the oxidation
of dopamine, and a detection limit of 1×10−9 moldm−3 can be reached using dif-
ferential pulse voltammetry, even in the presence of ascorbic acid [221].

The electrocatalytic activity of poly(3-methylthiophene) can be utilized for de-
tecting catecholamines [169].

Poly(methylene blue), in which methylene blue entities are preserved [121,226–
234], is a very good catalyst for the oxidation of hemoglobin. This property has been
utilized in an amperometric sensor [121] (see Figs. 7.20 and 7.21).

A good correlation was found between the results of the electrochemical method
and those of the spectrophotometric cyanidation analysis method, which is used in
clinical practice as a standardized protocol.

Poly(methylene blue) was also used for the electrocatalytic oxidation of pyridox-
ine hydrochloride (Vitamin B6), which results in the formation of pyridoxal. A linear
dependence was found between the electrocatalytic current and the concentration of
Vitamin B6 [234].

Poly(toluidine blue) electrode was used as a nitrite amperometric sensor [235].
Because this compound also exhibits good electrocatalytic activity toward NO,
such a sensor was also developed [170]. The product of the electroreduction of
NAD+ was identified as enzymatically active NADH at poly(neutral red) electrodes,
which is a very important recognition regarding the application of PNR electrodes
in the study, and the electrochemical regeneration of nicotinamide adenine dinu-
cleotide [236].
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Fig. 7.20 Chronoamperometric responses for consecutive injections into a flow cell of sam-
ples of whole blood diluted 1:10 in phosphate buffer (pH 6.24) and 0.5 moldm−3 NaCl on
a poly(methylene blue) electrode at E = 0.4 V vs. SCE. Flow rate: 4 mlmin−1. The tall and short
waves are the responses to 6 cm3 and 4 cm3 dilute solutions, respectively

Fig. 7.21 Comparison between electrochemical and cyanidation methods for the analysis of blood
samples provided by five donors. Blood samples 2 and 3 were from females, while 1 and 4 were
from male patients. Patients 1–4 were healthy, while patient 5 was a potentially ill donor. Experi-
mental conditions were the same as for Fig. 7.20

However, conducting polymers that do not have special catalytic groups are usu-
ally not very good catalysts. Therefore, their performances can be improved by using
substituted polymers, or more frequently catalytic moieties such as metallic parti-
cles [184, 185], oxometalates [186, 187], or ferrocene [188], etc., that have been
immobilized in the polymer films.
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7.2.6 Materials for Energy Technologies

The ability to reversibly switch conducting polymers between two redox states ini-
tiated their application to rechargeable batteries [237–261]. The first prototypes of
commercial batteries with conductive polymers used Li/polypyrrole [248] (Varta-
BASF) or Li/polyaniline [244,259,260]. It was demonstrated that high charge den-
sities can only be achieved in Li|PANI|propylene carbonate-based batteries when
PANI is dried thoroughly. The presence of traces of sorbed water in PANI re-
sults in significant degradation during the first oxidation. A significant increase
in the energy densities of rechargeable, polymer-based Li batteries to values of
> 100 Whkg−1 and > 150 WhL−1 can be expected only if Li+ plays the role of
the charge-compensating ion, i.e., by modifying conducting polymers with neg-
atively charged groups [240]. Currently, development is focused on new cath-
ode materials for lithium batteries. Even exotic systems such as the fullerene-
functionalized poly(terthiophenes) (see Sect. 2.3.4) have been proposed as cathode
materials for Li batteries [261]. Good results were obtained with substituted poly-
thiophenes and poly(1,2-di(2-thienyl)ethylene). A flexible fiber battery has been
constructed consisting of a PP/PF6 cathode and a PP/PSS anode [252]. Unre-
solved problems include the insufficient cycle stability of the system compared
with inorganic systems and its high discharge rate. A detailed review is given
in [253].

Conducting polymers have been shown to be highly effective when used as
protective layers on anodes in fuel cells [245, 262, 263]. It was demonstrated that
platinum electrocatalysts covered with PANI [263] or fluorinated polyaniline [245]
are effective anodes in microbial fuel cells, in which living microbial cultures are
used as biocatalysts for the degradation of organic fuels. In particular, 2,3,5,6-
tetrafluoroaniline is well suited for use in these batteries due to its high stabil-
ity towards microbial and chemical degradation [245]. For instance, in cultures of
Chlamydomonas reinhardtii, a green algae, photosynthetically produced hydrogen
was oxidized in situ in a fuel cell compartment containing such anodes [262]. A bio-
fuel cell electrode based on poly(vinylferrocene-co-acrylamide)-grafted carbon was
developed to obtain high current density. This electrode was employed as a glucose-
oxidizing anode, using glucose oxidase as an enzyme [264].

Another field of application is provided by the excellent ionic conductivities
of conducting polymers, which permit high discharge rates. Their use as elec-
trode materials in supercapacitors [47, 265–272] is a good example. Supercapaci-
tors require high capacitance and quick charge/discharge electrode materials. Com-
pared with classical used carbon materials, conducting polymers show promising
characteristics [273]. Further, ICPs are now used as electrode materials in capaci-
tors [47,266]. They show enlarged stability against breakdown phenomena because
of the loss of conductivity at higher field strength. The preparation of composites,
e.g., PANI/porous carbon, further widens their range of applications [141].

Lithium ion polymer batteries and laminated solid-state redox supercapacitors
have also been fabricated [271]. In these plastic power sources, a highly conducting
gel-type membrane electrolyte is placed between a PP–PANI electrode combination.
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The Li ion manganite prototypes reached densities of up to 120 Whkg−1, and spe-
cific powers of up to 1000 Wkg−1 were obtained when PP was used. The PANI–PP
system yielded a specific power of 120 Wkg−1 and a specific energy of 4 Whkg−1.

The use of organic semiconductors is of special interest because of the possi-
bilities of depositing them over large areas at low cost and synthesizing materials
tailored to special goals. A first device using a bilayer structure of copper phthalo-
cyanine and a perylene derivative is described in [274].

Conducting polymers have also been utilized in photovoltaic devices [275–279].
PANI and PT derivatives have usually been used in this context.

Due to their conducting properties, polythiophenes can only be used in photo-
voltaic devices in their reduced state. The reduction must take place electrochem-
ically before vapor deposition of the top electrode. Different layer structures and
combinations of PT with PPPV or C60 were studied [275, 276]. Al/C60-modified
PT/ITO devices exhibit a conversion efficiency of 15% with zero bias and 60%
with a bias of 2 V (for λ = 500 nm, 1.5 mWcm2).

A device with an active layer of poly(3-methylthiophene) (PMT) and an inter-
mediate layer of sulfonated polyaniline (SPAN) in the following arrangement was
created:

TO (tin oxide)|SPAN|PMT|Al

This device gave an incident-photon-to-collected-electron efficiency of 12.1%
and a power conversion efficiency of 0.8% under monochromatic irradiation [279].
Single-polymer-layer photovoltaic devices using polybithiophene (PBT) thin films
and fluorine-doped tin oxide substrate have also been constructed (Fig. 7.22). As
well as the difference in the work functions of the electrodes, the high organization
of the molecular dipoles in PBT yielded an open-circuit potential of 2 V when an
aluminum top contact was used [279].

The PBT|FTO|Al devices were characterized by measuring the current–voltage
characteristics when they were irradiated with the air mass 1.5 (AM 1.5) spec-
tral distribution, with the devices being illuminated through the glass substrate
(Fig. 7.23) [279].

The power conversion efficiency (η) of such a device can be given as follows:

η =
Uoc× Jsc×FF

EAM1.5
(7.4)

Fig. 7.22 Schematic structure of the photovoltaic device. PBT: polybithiophene, FTO: fluorine-
doped tin oxide [279]. (Reproduced with the permission of Springer-Verlag)
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Fig. 7.23 Current–voltage characteristics of an FTO (PBT) (160 nm)|Al device in the dark and
under different irradiances [279]. (Reproduced with the permission of Springer-Verlag)

where Uoc is the open-circuit voltage, Jsc is the short-circuit current density, FF is
the fill factor, and EAM1.5 is the total irradiance at the AM1.5 spectral distribution.
The fill factor is given by

FF =
Up× Ip

Uoc× Isc
(7.5)

where Up and Ip represent the maximum-power-rectangle U and I values, respec-
tively.

7.2.7 Artificial Muscles

Conducting polymers swell with increasing oxidation (doping) [43, 66, 280–290].
The ingress of counter-anions into the polymer leads to a structural change in the
polymer backbone and to an increase in volume of up to 30% [290]. These elec-
tromechanical properties are used in actuators, like polymer-based artificial muscles.
Bilayer structures based on PP [43, 289] have been described. Triple-layer actuators
consisting of two layers of conducting polymers separated by a flexible insulating
foil have been developed by Otero and coworkers to avoid the need to use a separate
metallic counter electrode [285] (Fig. 7.24).

The PP film used as the anode is swollen by the entry of hydrated ClO−4 coun-
terions, while the other PP layer, which acts as the cathode, shrinks because of the
expulsion of counterions and water molecules. These volume changes and the con-
stant length of the nonconducting film promotes the movement of the triple layer
towards the PP film that is contracted. Upon changing the direction of the current,
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Fig. 7.24 A schematic drawing of an electrochemical triple-layer actuator (polypyr-
role+ClO−4 |nonconducting, double-sided plastic tape|polypyrrole) immersed in aqueous LiClO4
solution, and the macroscopic movement of the actuator produced due to a volume change in the
PP films. (Reproduced from [285] with the permission of Elsevier Ltd.)

the movement takes place in the opposite direction. The effect depends on the con-
centration and temperature of the LiClO4 [285].

The linear actuation of PP was also studied by electrochemical deformation mea-
surements during cyclic voltammetry and potential step experiments [291]. It was
found that in TBACF3SO3|propylenecarbonate electrolyte, the shortest length of
the PP strip investigated presents itself at 0 V vs. Ag wire quasireference electrode,
while 6.6% expansion was achieved at +1 V and ca. 4% at −1 V. The potential-
dependent shrinkage and expansion phenomena show long-term stability.

An in situ electrochemical strain gauge method was applied to monitor the
mechanical properties of conducting and redox polymers such as PP, poly(3,4-
ethylenedioxypyrrole) and poly(3,6-bis(2-(3,4-ethylenedioxy)thienyl)-N-carbazole)
during their redox transformations [282].
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7.2.8 Electrocatalysis

Electrocatalysis has already been mentioned in Sect. 7.2.5, in connection with am-
perometric chemical and biological sensors. Of course, the electrocatalytic prop-
erties of conducting polymers can be utilized not only to sense substances but
also for electrochemical synthesis or in power sources. Indeed, there are end-
less ways to design tailormade electrodes for specific catalytic purposes, which
makes this approach highly attractive. Many conducting polymers act as electro-
catalysts [19,241,292–321] towards different reactions; however, the polymers that
mediate the electron transfer can also be further modified by catalytic centers built
into the polymer [322–351]. This can be achieved in different ways. Derivatives
of the monomer are used; i.e., the monomer species are chemically modified by
the appropriate functional groups before polymerization. Another technique is the
incorporation of catalytic centers into the polymer matrix. Metal nanoparticles or
oxide clusters can be produced inside the film by chemical or electrochemical re-
duction and oxidation, respectively [322, 348, 349]. Such a process is exemplified
by the deposition of Ag onto poly(1-hydroxyphenazine) (PPhOH). Due to the nar-
row potential interval over which PPhOH films are conductive, silver can be only
deposited cathodically into the film or at the film surface within this narrow interval
(from ca. 0.1 to −0.2 V vs. SCE), and the implanted Ag cannot be redissolved an-
odically due to the low conductivity of the surrounding or underlying PPhOH matrix
at positive potentials [348] (see Figs. 7.25 and 7.26).

A good scattering of metallic particles on Au|PANI films was achieved by using
a repetitive square-wave potential signal. Codeposition of Ru and Pt from suitable
combinations of H2PtCl6 and RuCl3 onto PANI films produces PANI–Pt–Ru elec-
trodes, which exhibit catalytic properties toward CO and methanol oxidation [350].

Ionic species can be immobilized by electrostatic interactions, specifically as
counterions; however, these systems can be sensitive to the redox transformations of
the polymer, i.e., “counterion” desorption is expected when the film becomes neu-
tral or oppositely charged. Other interactions (e.g., complex formation) can also be
exploited.

It should be mentioned that in some cases the higher current observed is not due
to the catalytic enhancement of the reaction but is instead a consequence of the
increased surface area. Nevertheless, this effect is also important, especially when
precious metal particles are dispersed in the polymer matrix. Although the conduct-
ing polymers are rather stable chemically, there are often problems with the long-
term physical stability when gas evolution occurs or intense mechanical stirring is
applied.

In order to design effective electrocatalytic systems, the fundamental mechanism
of how the deposited polymer layer mediates the oxidation or reduction of the sub-
strates of interest must be understood. The two main questions to be clarified are
the relationship between the conductivity of the polymer and the electrocatalytic
activity, and the location of the reaction.

It was initially assumed that polymer films in their insulating state should inhibit
the reaction at the polymer|electrolyte interface, such that kinetic measurements
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Fig. 7.25 Cyclic voltammogram (1) and the simultaneous EQCM frequency changes (2) during the
cyclic polarization of poly(1-hydroxyphenazine) film in the presence of Ag+ ions in 1 moldm−3

HClO4 +10−3 moldm−3 AgClO4 [348]

Fig. 7.26 In situ STM image of poly(1-hydroxyphenazine) film on HOPG after subsequent Ag
deposition. Electrolyte: 0.1 moldm−3 HClO4. Scan size: 1.2× 1.2 μm, Δz: 60 nm. Substrate po-
tential: −0.4 V vs. MSE. E: 5 mV, I = 5 nA [348]

could be used to test the film’s conductivity [290]. In accordance with this concept,
the oxidations of species with formal redox potentials in the insulating potential
range of the polymer are usually shifted to the interval of the onset of film conduc-
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tivity, while the reduction reactions are suppressed (at least for polymers without n-
doping). For example, for several polymers [303] the Fe2+ oxidation reaction does
not take place at either negative (insulating film) or high positive (fully oxidized
polymer) potentials, while it occurs in the intermediate potential range. Of course,
size exclusion and electrostatic repulsion effects should be considered [304, 305].

There are numerous examples of reaction catalysis by polymer films in their con-
ductive states rather than the bare electrode; e.g., reduction of oxygen [292,307,327]
and HNO3 [310], oxidation of Fe2+ [296,298,306], I−, Br−, Fe(CN)4−

6 , W(CN)4−
8 ,

Ru(CN)4−
6 [260], hydrazine [241], formic acid [311] and hydroquinone [298, 306,

352] at PANI, as well as oxygen [353] and bromine [301] reduction at PPP.
Poly(neutral red) can electrocatalyze the reduction of IO−3 , BrO−3 and O2, as well
as the oxidation of I− [354]. It was found that the rate of hydroquinone oxidation
at PANI electrodes increases by two orders of magnitude; however, this electrocat-
alytic activity of PANI films deteriorates somewhat upon aging [318].

On the other hand, the rates of some other reactions are even diminished by films
in their conducting states; e.g., ferrocene oxidation at polythiophene [44].

Exceptions to the simple relationship between polymer conductivity and its effect
on the reaction kinetics have been found. Iodine reduction on PT [300] as well
as viologens at PANI [295] take place within the conducting range but continue
at more negative potentials. These observations testify in favor of the generation
of positively charged electronic species at the polymer matrix by those reagents,
similar to dark hole injection at insulator or semiconductor electrodes [295, 300].

Exceptionally high hydrogen sorption, 6 and 8 wt% at room temperature and
under 9.3 MPa, was observed in polyaniline and polypyrrole treated with HCl. It is
believed that both molecular sieving and a stabilization effect due to the conducting
electronic environment are responsible for this unusual hydrogen sorption [319].

In most cases, the interpretation of these kinetic data assumes (usually with-
out a detailed analysis) that the reaction is localized at the film|solution interface.
For qualitative considerations, films with sufficiently high electronic conductivities
are identified with the metal electrode, which means that the whole potential drop,
i.e., its varying part, is attributed to the film|solution interface. Quite the opposite
view (i.e., that the latter interfacial potential is practically constant [72,355]) means
a close analogy to the case of redox polymer films [306, 356].

Thermodynamic analysis of the charging process, taking into account both elec-
tron exchange with the metal and ion exchange with the solution [357–359] (see
also Chap. 5), provides evidence in favor of an intermediate variant: both interfaces
are markedly polarizable. In this case, the relations for the rate coefficients or the re-
action rate have a more complicated form at high charging levels, and some features
similar to inorganic semiconductor electrodes at lower potentials. Experimental at-
tempts to verify this hypothesis [308, 359] have not supplied sufficient information
for a definitive conclusion, especially in view of the currently inadequate description
of the charging process.

The establishment of the location (reaction zone) of the electrocatalytic redox
reaction is a rather complex issue. In principle, the reaction can take place at the
polymer|electrolyte interface, within the polymer matrix at the interfaces of the
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macropores, nanopores, channels and pinholes, and/or at the metal|polymer inter-
face when the reacting species can diffuse to the metal surface through the channels
or pinholes. There are some simple observations which may indicate the location of
the reaction. For instance, it was observed that the respective reactions of H2 and O2

take place at greater overpotentials when the polymers are in their insulating state,
compared to the bare metal electrode, and the kinetics were strongly dependent on
the nature of the metal substrate [303]. This indicates that these reactions take place
at the metal|polymer interface or at the bare metal surface that is not covered by the
polymer, due to the porous or the brush-like structure [360–362] of the deposited
polymer.

The rate of the transport of the reacting species through the polymer layer may
also depend on the charging state of the polymer; positively charged species are
repelled by the positive charges of the polymers or the sizes of the solvent-filled
cavities in the pores are greater due to the extensive swelling of the charged films.
As discussed in Chap. 6, the film morphology depends on other factors, such as
the electrolyte concentration, the temperature and the nature of ions used during
the electropolymerization and in the kinetic experiments. Besides electrostatic in-
teractions, specific interactions (e.g., complex formation) may also affect the rate of
the transport process inside the film, which also influences the rate of the catalytic
current.

The dependence of the reaction rate on the film thickness suggests that the re-
action takes place within the polymer layer; however, the depth of penetration into
the layer depends on several parameters, including (among others) the time-scale of
the experiment, the charge state, the morphology and the relative rate of consecutive
transport and charge transfer steps. It is important to account for the fact that thick
films are usually less dense than thin ones [363–370] (see also Chaps. 4–6).

The situation is not significantly different when the polymer films are modified
by catalytic centers, such as clusters of transition metals [329, 330, 332, 334, 338,
344, 345], polyoxometallates [327, 335, 371], porphyrins, phthalocyanines and their
analogs [307,335], other transition metal complexes [341,342], biomolecules [372],
arenas and rotaxane [328, 336], etc.; see [7, 15, 312–314, 331, 340, 343, 373] for
reviews.

The theoretical description of electrocatalysis that takes into account electron
and ion transfer and the transport process, the permeations of the substrates, and
their combined involvement in the control over the overall kinetics has been elab-
orated by Albery and Hillman [312, 313, 373] and by Andrieux and Savéant [315],
and a good summary can be found in [314]. Practically all of the possible cases
have been considered, including Michaelis–Menten kinetics for enzyme catalysis.
Inhibition, saturation, complex mediation, etc., have also been treated. The different
situations have also been represented in diagrams. Based on the theoretical models,
the respective forms of the Koutecký–Levich equation have been obtained, which
make analyzing the results of voltammetry on stationary and rotating disc electrodes
a straightforward task.

From the dependences of the limiting current density ( jL) on the rotation rate (ω),
the concentration of the substrate species (cS), the thickness (d), and the potential, it
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is possible to derive not only kinetic parameters but also the location of the catalytic
reaction and the rate-determining step. In a relatively simple case, we can write

j−1
L = (nFkeΓ cS)−1 +

(
nFDpol

S PcSd−1 + nFDctΓTd−2
)−1

+
(

0.62nFD2/3
S ν−1/6ω1/2cS

)−1
(7.6)

where Dpol
S and Dct are the diffusion coefficients of the substrate and the charge

transport inside the polymer layer, respectively, ke is the rate of electron transfer (or
electron exchange reaction) in the polymer, Γ and ΓT are the surface concentration
and the total concentration of redox centers available for the catalytic reaction at
a given potential, and P is the distribution coefficient of the substrate between the
polymer and the electrolyte phases. The first term is related to the electron trans-
fer, the two terms in the second set of parentheses express the diffusional transport
through the polymer matrix, and the third term stands for the Levich diffusion cur-
rent in the solution; i.e., regarding the Koutecký–Levich equation, j−1

L = j−1
k + j−1

D ,
the first two terms are related to the kinetics of the reaction while the third term is
related to diffusion in the solution phase (stirring has no effect inside the polymer
layer).

When charge transfer is very easy (e.g., at limiting current potentials), the first
term of (7.6) can be neglected. If jL is independent of the layer thickness, the charge
transport in the polymer layer is not rate-determining. If these two conditions pre-
vail, only the first term in the second set of parentheses and the third term remain. It
follows that j−1

L vs. ω−1/2 gives a straight line and, knowing d and Dpol
S P or know-

ing d and P from separate experiments, Dpol
S can be calculated from the intercept.

When the catalytic reaction takes place within the polymer layer, d can be replaced
by the penetration depth, μ = PDpol

S /kF where kF is the reaction rate coefficient at
the limiting current potentials [305,306]. In this case, the plot of j−1

L vs. ω−1/2 gives
a straight line with an intercept. Upon plotting these intercepts ( j−1

k ) as a function

of c−1
S , a straight line with an intercept of zero is obtained, and μ/nFDpol

S P can be
derived from the slope. This situation has been analyzed by Mandic and Duic for
the electrocatalytic reaction of Fe2+ and hydroquinone at PANI electrodes [306].
It was found that the slope of the j−1

k vs. c−1
S plot increases as d decreases, which

indicates that there is a change in the film’s morphology which affects the penetra-
tion depth. It was also demonstrated that PANI in its protonated emeraldine form
behaves as a metal electrode, while at more positive potentials, where polyaniline
exists in pernigraniline form, the behavior of PANI resembles a redox polymer.
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Chapter 8
Historical Background
(Or: There Is Nothing New Under the Sun)

As we mentioned in Chap. 1, the 2000 Nobel Prize in Chemistry was awarded to
Heeger, MacDiarmid and Shirakawa “for the discovery and development of electri-
cally conductive polymers.”

However, as is the case for many other scientific discoveries, there were actually
several forerunners of Heeger, MacDiarmid and Shirakawa. Indeed, in this context
it is worth considering another example from the field of electrochemistry: the re-
naissance of fuel cells, which were discovered independently by W. R. Grove and
Ch. F. Schönbein in 1839.

Our case is also curious because the most important representatives of these ma-
terials, polyaniline and polypyrrole, were already being prepared by chemical or
electrochemical oxidation in the nineteenth century. Of course, for a long time they
were not called polymers, since the existence of macromolecules was not accepted
until the 1920s, and it was decades before H. Staudinger, W. Carothers, P. Flory
and other eminent scientists could convince the community of chemists that these
unusual molecules were real.

Therefore, it is somewhat interesting to review the story of polyaniline here, be-
cause it provides an insight into the nature of the development of science.

One may recall that aniline was prepared from the coal tar residues of the gas in-
dustry in the first half of the nineteenth century, and later played later a fundamental
role in the development of organic chemistry and the chemical industry. First, aniline
dyes replaced dyes from natural sources. Then coal tar dyes found use in medicine
(to stain tissues), and P. Erlich discovered the selective toxicity of these compounds.
This initiated the chemical production of medicines, and the establishment of the
pharmaceutical industry.

Dr. Henry Letheby, who was a physician and a member of the Board of Health
in London, was interested in aniline because it was poisoning workers. Letheby
observed that a bluish-green precipitate was formed at the anode during electrolysis,
which became colorless when it was reduced and regained its blue color when it was
oxidized again [1].

It should be mentioned that F. F. Runge (1834) and C. J. Fritzsche (1840), who
isolated aniline, also observed the appearance of a blue color during the oxidation
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of aniline in acidic media. Indeed, this was why Runge proposed the name kyanol
(after the Greek word for blue) or Blauöl (blue oil in German). Eventually the
name aniline, which was proposed by Fritzsche, came into general use. “Aniline”
entered the English literature through the German word “Anilin,” from the French
and Portuguese-Spanish “añil,” from the Arabic “an-nı̄l” ( ), and ultimately from
the Sanskrit word “nı̄lı̄” ( ), for indigo.

Several researchers have investigated the oxidation of aniline in order to under-
stand the mechanism of the reaction, and also to prepare useful dyes for the tex-
tile industry. Fritzsche analyzed the material called “aniline black” [2]. Then, af-
ter Letheby’s experiment, Goppelsroeder [3], Szarvasy [4] and others repeated and
verified Letheby’s findings. In the first decade of the twentieth century, a linear oc-
tameric structure was proposed and generally accepted. It was also recognized that
this compound may exist in at least four different oxidation states (emeraldine se-
ries) [5, 6], as well as that “overoxidation” and hydrolysis lead to the formation of
quinone. In 1935 Yasui [7] suggested a reaction scheme for the electrooxidation
of aniline at a carbon electrode. Khomutov and Gorbachev made the next step in
1950 [8]. They discovered the autocatalytic nature of the electrooxidation of ani-
line. In 1962 Mohilner, Adams and Argersinger reinvestigated the mechanism of
the electrooxidation of aniline in aqueous sulfuric acid solution at a platinum elec-
trode [9]. They proposed a free radical mechanism, and wrote that “the final product
of this electrode reaction is primarily the octamer emeraldine, or a very similar com-
pound” [9].

The first real breakthrough came in 1967, when Buvet delivered a lecture at the
18th Meeting of CITCE (later ISE), and this presentation appeared a year later
in Electrochimica Acta [10]. Here we cite the first sentence of this paper, which
speaks for itself: “Polyanilines are particularly representative materials in the field
of organic protolytic polyconjugated macromolecular semiconductors, because of
their constitution and chemical properties.” They also established that polyanilines
“also have redox properties,” and that “the conductivity appears to be electronic.“ It
was also shown that ”polyanilines are also ion-exchangers.“ Finally they proposed
that “polyanilines . . . can be utilized for making accumulators with organic com-
pounds.”

At the conference there were two questions: “What is the magnitude of the
activation energy of the electronic conduction process in your polymer?” (from
M. Peover), and “Did you observe a relationship between ionic transport and chem-
ical changes in the composition of the material (oxidation and reduction products)?”
(M. Pourbaix). Although both questions are related to important properties, one may
conclude that the discovery did not give rise to great excitement at the time.

While Josefowicz et al. [10] used chemically prepared PANI pellets as an elec-
trode and for conductivity measurements, investigations of the mechanism of elec-
trochemical oxidation also continued [11, 12], and the name polyaniline was gener-
ally accepted [12]. The paper of Diaz and Logan that appeared in 1980 [13] initiated
research into polymer film electrodes based on polyaniline, which continues even
today.
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We could compile the stories of polypyrrole and other conducting polymers in
a similar way, but the polyaniline saga alone provides an excellent illustration of the
development of science. In fact, the discovery in the 1970s of polyacetylene—which
had no practical importance but helped to arouse the interest of researchers and pub-
lic alike—was another episode in the history of conducting polymers. Thus, these
materials have a long history and—perhaps without any exaggeration—a bright fu-
ture.
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