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Complex-Valued Matrix Derivatives

In this complete introduction to the theory of finding derivatives of scalar-, vector-,
and matrix-valued functions in relation to complex matrix variables, Hjørungnes
describes an essential set of mathematical tools for solving research problems where
unknown parameters are contained in complex-valued matrices. Self-contained and easy
to follow, this singular reference uses numerous practical examples from signal process-
ing and communications to demonstrate how these tools can be used to analyze and
optimize the performance of engineering systems. This is the first book on complex-
valued matrix derivatives from an engineering perspective. It covers both unpatterned
and patterned matrices, uses the latest research examples to illustrate concepts, and
includes applications in a range of areas, such as wireless communications, control the-
ory, adaptive filtering, resource management, and digital signal processing. The book
includes eighty-one end-of-chapter exercises and a complete solutions manual (available
on the Web).

Are Hjørungnes is a Professor in the Faculty of Mathematics and Natural Sciences at
the University of Oslo, Norway. He is an Editor of the IEEE Transactions on Wireless
Communications, and has served as a Guest Editor of the IEEE Journal of Selected Topics
in Signal Processing and the IEEE Journal on Selected Areas in Communications.



This book addresses the problem of complex-valued derivatives in a wide range of
contexts. The mathematical presentation is rigorous but its structured and comprehensive
presentation makes the information easily accessible. Clearly, it is an invaluable reference
to researchers, professionals and students dealing with functions of complex-valued
matrices that arise frequently in many different areas. Throughout the book the examples
and exercises help the reader learn how to apply the results presented in the propositions,
lemmas and theorems. In conclusion, this book provides a well organized, easy to read,
authoritative and unique presentation that everyone looking to exploit complex functions
should have available in their own shelves and libraries.

Professor Paulo S. R. Diniz, Federal University of Rio de Janeiro

Complex vector and matrix optimization problems are often encountered by researchers
in the electrical engineering fields and much beyond. Their solution, which can some-
times be reached from using existing standard algebra literature, may however be a
time consuming and sometimes difficult process. This is particularly so when compli-
cated cost function and constraint expressions arise. This book brings together several
mathematical theories in a novel manner to offer a beautifully unified and systematic
methodology for approaching such problems. It will no doubt be a great companion to
many researchers and engineers alike.

Professor David Gesbert, EURECOM, Sophia-Antipolis, France
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Preface

This book is written as an engineering-oriented mathematics book. It introduces the field
involved in finding derivatives of complex-valued functions with respect to complex-
valued matrices, in which the output of the function may be a scalar, a vector, or
a matrix. The theory of complex-valued matrix derivatives, collected in this book,
will benefit researchers and engineers working in fields such as signal processing and
communications. Theories for finding complex-valued derivatives with respect to both
complex-valued matrices with independent components and matrices that have certain
dependencies among the components are developed and illustrative examples that show
how to find such derivatives are presented. Key results are summarized in tables. Through
several research-related examples, it will be shown how complex-valued matrix deriva-
tives can be used as a tool to solve research problems in the fields of signal processing and
communications.

This book is suitable for M.S. and Ph.D. students, researchers, engineers, and pro-
fessors working in signal processing, communications, and other fields in which the
unknown variables of a problem can be expressed as complex-valued matrices. The
goal of the book is to present the tools of complex-valued matrix derivatives such
that the reader is able to use these theories to solve open research problems in his
or her own field. Depending on the nature of the problem, the components inside the
unknown matrix might be independent, or certain interrelations might exist among
the components. Matrices with independent components are called unpatterned and, if
functional dependencies exist among the elements, the matrix is called patterned or
structured. Derivatives relating to complex matrices with independent components are
called complex-valued matrix derivatives; derivatives relating to matrices that belong to
sets that may contain certain structures are called generalized complex-valued matrix
derivatives. Researchers and engineers can use the theories presented in this book to
optimize systems that contain complex-valued matrices. The theories in this book can
be used as tools for solving problems, with the aim of minimizing or maximizing real-
valued objective functions with respect to complex-valued matrices. People who work
in research and development for future signal processing and communication systems
can benefit from this book because they can use the presented material to optimize their
complex-valued design parameters.



xii Preface

Book Overview

This book contains seven chapters. Chapter 1 gives a short introduction to the
book. Mathematical background material needed throughout the book is presented in
Chapter 2. Complex differentials and the definition of complex-valued derivatives are
provided in Chapter 3, and, in addition, several important theorems are proved. Chapter 4
uses many examples to show the reader how complex-valued derivatives can be found
for nine types of functions, depending on function output (scalar, vector, or matrix) and
input parameters (scalar, vector, or matrix). Second-order derivatives are presented in
Chapter 5, which shows how to find the Hessian matrices of complex-valued scalar,
vector, and matrix functions for unpatterned matrix input variables. Chapter 6 is devoted
to the theory of generalized complex-valued matrix derivatives. This theory includes
derivatives with respect to complex-valued matrices that belong to certain sets, such as
Hermitian matrices. Chapter 7 presents several examples that show how the theory can
be used as an important tool to solve research problems related to signal processing
and communications. All chapters except Chapter 1 include at least 11 exercises with
relevant problems taken from the chapters. A solution manual that provides complete
solutions to problems in all exercises is available at www.cambridge.org/hjorungnes.

I will be very interested to hear from you, the reader, on any comments or suggestions
regarding this book.
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1 Introduction

1.1 Introduction to the Book

To solve increasingly complicated open research problems, it is crucial to develop useful
mathematical tools. Often, the task of a researcher or an engineer is to find the optimal
values of unknown parameters that can be represented by complex-valued matrices. One
powerful tool for finding the optimal values of complex-valued matrices is to calculate
the derivatives with respect to these matrices. In this book, the main focus is on complex-
valued matrix calculus because the theory of real-valued matrix derivatives has been
thoroughly covered already in an excellent manner in Magnus and Neudecker (1988).
The purpose of this book is to provide an introduction to the area of complex-valued
matrix derivatives and to show how they can be applied as a tool for solving problems
in signal processing and communications.

The framework of complex-valued matrix derivatives can be used in the optimization
of systems that depend on complex design parameters in areas where the unknown
parameters are complex-valued matrices with independent components, or where they
belong to sets of matrices with certain structures. Many of the results discussed in
this book are summarized in tabular form, so that they are easily accessible. Sev-
eral examples taken from recently published material show how signal processing and
communication systems can be optimized using complex-valued matrix derivatives.
Note that the differentiation procedure is usually not sufficient to solve such problems
completely; however, it is often an essential step toward finding the solution to the
problem.

In many engineering problems, the unknown parameters are complex-valued matri-
ces, and often, the task of the system designer is to find the values of these complex
parameters, which optimize a certain scalar real-valued objective function. For solv-
ing these kinds of optimization problems, one approach is to find necessary conditions
for optimality. Chapter 3 shows that when a scalar real-valued function depends on a
complex-valued matrix variable, the necessary conditions for optimality can be found by
setting the derivative of the function with respect to the complex-valued matrix variable
or its complex conjugate to zero. It will also be shown that the direction of the maximum
rate of change of a real-valued scalar function, with respect to the complex-valued matrix
variable, is given by the derivative of the function with respect to the complex conjugate
of the complex-valued input matrix variable. This result has important applications in,
for example, complex-valued adaptive filters.
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This book presents a comprehensive theory on how to obtain the derivatives of
scalar-, vector-, and matrix-valued functions with respect to complex matrix variables.
The theory of finding complex-valued matrix derivatives with respect to unpatterned
matrices is based on the complex differential of the function of interest. The method
of using differentials is substantially different from the component-wise approach.1 A
key idea when using complex differentials is to treat the differential of the complex
and the complex conjugate variables as independent. This theory will be applied to
derive useful matrix derivatives that can be used, for example, in signal processing and
communications.

The complex Hessian matrix will be defined for complex scalar, vector, and matrix
functions, and how this matrix can be obtained from the second-order differential of these
functions is shown. Hessians are useful, for example, to check whether a stationary point
is a saddle point, a local minimum, or a local maximum; Hessians can also be used to
speed up the convergence of iterative algorithms.

A systematic theory on how to find generalized complex-valued matrix derivatives
is presented. These are derivatives of complex-valued matrix functions with respect to
matrices that belong to a set of complex-valued matrices, which might contain certain
dependencies among the matrix elements. Such matrices include Hermitian, symmetric,
diagonal, skew-symmetric, and skew-Hermitian. The theory of manifolds is used to
find generalized complex-valued matrix derivatives. One key point of this theory is the
requirement that the function, which spans all matrices within the set under consideration,
is diffeomorphic; this function will be called the parameterization function. Several
examples show how to find generalized complex-valued matrix derivatives with respect
to matrices belonging to sets of matrices that are relevant for signal processing and
communications.

Various applications from signal processing and communications are presented
throughout the book. The last chapter is dedicated to various applications of complex-
valued matrix derivatives.

1.2 Motivation for the Book

Complex signals appear in many parts of signal processing and communications. Good
introductions to complex-valued signal processing can be found in Mandic and Goh
(2009) and Schreier and Scharf (2010). One area where optimization problems with
complex-valued matrices appear is digital communications, in which digital filters
may contain complex-valued coefficients (Paulraj, Nabar, & Gore 2003). Other areas
include analysis of power networks and electric circuits (González-Vázquez 1988); con-
trol theory (Alexander 1984); adaptive filters (Hanna & Mandic 2003; Diniz 2008);
resource management (Han & Liu 2008); sensitivity analysis (Fränken 1997; Tsipouri-
dou & Liavas 2008); and acoustics, optics, mechanical vibrating systems, heat con-

1 In the author’s opinion, the current approach of complex-valued matrix derivatives is preferred because it
often leads to shorter and simpler calculations.
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duction, fluid flow, and electrostatics (Kreyszig 1988). Convex optimization, in which
the unknown parameters might be complex-valued, is treated in Boyd and Vanden-
berghe (2004) and Palomar and Eldar (2010). Usually, using complex-valued matrices
leads to fewer computations and more compact expressions compared with treating the
real and imaginary parts as two independent real-valued matrices. The complex-valued
approach is general and usually easier to handle than working with the real and imag-
inary parts separately, because the complex matrix variable and its complex conjugate
should be treated as independent variables when complex-valued matrix derivatives are
calculated.

One of the main reasons why complex-valued matrix derivatives are so important
is that necessary conditions for optimality can be found through these derivatives. By
setting the complex-valued matrix derivative of the objective function equal to zero,
necessary conditions for optimality are found. The theory of complex-valued matrix
derivatives and the generalized complex-valued matrix derivatives are useful tools for
researchers and engineers interested in designing systems in which the parameters are
complex-valued matrices. The theory of generalized complex-valued matrix derivatives
is particularly suited for problems with some type of structure within the unknown matrix
of the optimization problem under consideration. Examples of such structured matri-
ces include complex-valued diagonal, symmetric, skew-symmetric, Hermitian, skew-
Hermitian, orthogonal, unitary, and positive semidefinite matrices. Finding derivatives
with respect to complex-valued structured matrices is related to the field of manifolds.
The theory of manifolds is a part of mathematics involving generalized derivatives
on special geometric constructions spanned by so-called diffeomorphic functions (i.e.,
smooth invertible functions with a smooth inverse), which map the geometric construc-
tion back to a space with independent components. Optimization over such complex-
valued constrained matrix sets can be done by using the theory of generalized matrix
derivatives.

Complex-valued matrix derivatives are often used as a tool for solving problems in
signal processing and communications. In the next section, a short overview of some of
the literature on matrix derivatives is presented.

1.3 Brief Literature Summary

An early contribution to real-valued symbolic matrix calculus is found in Dwyer and
Macphail (1948), which presents a basic treatment of matrix derivatives. Matrix deriva-
tives in multivariate analysis are presented in Dwyer (1967). Another contribution is
given in Nel (1980), which emphasizes the statistical applications of matrix derivatives.

The original work (Wirtinger 1927) showed that the complex variable and its complex
conjugate can be treated as independent variables when finding derivatives. An intro-
duction on how to find the Wirtinger calculus with respect to complex-valued scalars
and vectors can be found in Fischer (2002, Appendix A). In Brandwood (1983), a theory
is developed for finding derivatives of complex-valued scalar functions with respect to
complex-valued vectors. It is argued in Brandwood (1983) that it is better to use the
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complex-valued vector and its complex conjugate as input variables instead of the real
and imaginary parts of the vector – the main reason being that the complex-valued
approach often leads to a simpler approach that requires fewer calculations than the
method that treats the real and imaginary parts explicitly. Mandic and Goh (2009, p. 20)
mention that the complex-valued representation may not always have a real physical
interpretation; however, the complex framework is general and more mathematically
tractable than working on the real and imaginary parts done separately.

An introduction to matrix derivatives, which focuses on component-wise derivatives,
and to the Kronecker product is found in Graham (1981). Moon and Stirling (2000,
Appendix E) focused on component-wise treatment of both real-valued and complex-
valued matrix derivatives. Several useful results on complex-valued matrices are col-
lected into Trees (2002, Appendix A), which also contains a few results on matrix
calculus for which a component-wise treatment was used.

Magnus and Neudecker (1988) give a very solid treatment of real-valued matrices with
independent components. However, they do not consider the case of formal derivatives,
where the differential of the complex-valued matrix and the differential of its complex
conjugate should be treated as independent; moreover, they do not treat the case of
finding derivatives with respect to complex-valued patterned matrices (i.e., matrices
containing certain structures). The problem of finding derivatives with respect to real-
valued matrices containing independent elements is well known and has been studied, for
example, in Harville (1997) and Minka (December 28, 2000). A substantial collection
of derivatives in relation to real-valued vectors and matrices can be found in Lütkepohl
(1996, Chapter 10).

Various references give brief treatments of the case of finding derivatives of real-valued
scalar functions that depend on complex-valued vectors (van den Bos 1994a; Hayes
1996, Section 2.3.10; Haykin 2002, Appendix B; Sayed 2008, Background Material,
Chapter C). A systematic and simple way to find derivatives with respect to unpatterned
complex-valued matrices is presented in Hjørungnes and Gesbert (2007a).

Two online publications (Kreutz-Delgado 2008) and (Kreutz-Delgado 2009) give an
introduction to real- and complex-valued derivatives with respect to vectors. Both first-
and second-order derivatives are studied in these references. Two Internet sites with
useful material on matrix derivatives are The Matrix Cookbook (Petersen & Pedersen
2008) and The Matrix Reference Manual (Brookes, July 25, 2009).

Hessians (second-order derivatives) of scalar functions of complex vectors are studied
in van den Bos (1994a). The theory for finding Hessian matrices of scalar complex-
valued function with respect to unpatterned complex-valued matrices and its complex
conjugate is developed in Hjørungnes and Gesbert (2007b).

The theory for finding derivatives of real-valued functions that depend on
patterned real-valued matrices is developed in Tracy and Jinadasa (1988). In
Hjørungnes and Palomar (2008b), the theory for finding derivatives of functions
that depend on complex-valued patterned matrices is studied; this was extended
in Hjørungnes and Palomar (2008a), where the connections to manifolds are exploited.
In Palomar and Verdú (2006), derivatives of certain scalar functions with respect to
complex-valued matrices are discussed, and some results for complex-valued scalar
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functions with respect to matrices that contain dependent elements are presented.
Vaidyanathan et al. (2010, Chapter 20), presents a treatment of real- and complex-
valued matrix derivatives; however, it is based on component-wise developments. Some
results on derivatives with respect to patterned matrices are presented in Vaidyanathan
et al. (2010, Chapter 20).

1.4 Brief Outline

Some of the important notations used in this book and various useful formulas are
discussed in Chapter 2. These items provide background material for later chapters. A
classification of complex variables and functions is also presented in Chapter 2, which
includes a discussion of the differences between analytic functions – subject matter
usually studied in mathematical courses for engineers, and non-analytic functions, which
are encountered when dealing with practical engineering problems of complex variables.

In Chapter 3, the complex differential is introduced. Based on the complex differential,
the definition of the derivatives of complex-valued matrix functions with respect to the
unpatterned complex-valued matrix variable and its complex conjugate is introduced. In
addition, a procedure showing how the derivatives can be found from the differential of
a function when the complex matrix variable contains independent elements is presented
in Chapter 3. This chapter also contains several important results stated in theorems,
such as the chain rule and necessary conditions for optimality for real-valued scalar
functions.

Chapter 4 states several results in tables and shows how most of these results can be
derived for nine different types of functions. These nine function types result when the
input and the output of the function take the form of a scalar, a vector, or a matrix.

The Hessian matrix of complex-valued scalar, vector, and matrix functions dependent
on complex matrices is defined in Chapter 5, which shows how this Hessian matrix can be
obtained from the second-order differential. Hessian matrices can, for example, be used
to speed up convergence of iterative algorithms, to study the convexity and concavity of
an objective function, and to perform stability analysis of iterative algorithms.

Often, in signal processing and communications, the challenge is to find a matrix
that optimizes a problem when the matrix is constrained to belong to a certain set,
such as Hermitian matrices or symmetric matrices. For solving such types of problems,
derivatives associated with matrices belonging to these sets are useful. These types of
derivatives are called generalized complex-valued matrix derivatives, and a theory for
finding such derivatives is presented in Chapter 6.

In Chapter 7, various applications taken from signal processing and communications
are presented to show how complex-valued matrix derivatives can be used as a tool to
solve research problems in these two fields.

After the seven chapters, references and the index follow.
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2.1 Introduction

In this chapter, most of the notation used in this book will be introduced. It is not assumed
that the reader is familiar with topics such as Kronecker product, Hadamard product,
or vectorization operator. Therefore, this chapter defines these concepts and gives some
of their properties. The current chapter also provides background material for matrix
manipulations that will be used later in the book. However, it contains just the minimum
of material that will be used later because many excellent books in linear algebra are
available for the reader to consult (Gantmacher 1959a–1959b; Horn & Johnson 1985;
Strang 1988; Magnus & Neudecker 1988; Golub & van Loan 1989; Horn & Johnson
1991; Lütkepohl 1996; Harville 1997; Bernstein 2005).

This chapter is organized as follows: Section 2.2 introduces the basic nota-
tion and classification used for complex-valued variables and functions. A discus-
sion of the differences between analytic and non-analytic functions is presented
in Section 2.3. Basic matrix-related definitions are provided in Section 2.4. Sev-
eral results involving matrix manipulations used in later chapters are found in Sec-
tion 2.5. Section 2.6 offers exercises related to the material included in this chap-
ter. Theoretical derivations and computer programming in MATLAB are topics of these
exercises.

2.2 Notation and Classification of Complex Variables and Functions

Denote R and C the sets of the real and complex numbers, respectively, and define
ZN � {0, 1, . . . , N − 1}. The notation used for the two matrices consisting entirely of
zeros and ones is 0N×Q and 1N×Q , respectively, where the size of the matrices is indicated
by the subindex to be N × Q.

The following conventions are always used in this book:

� Scalar quantities are denoted by lowercase symbols.
� Vector quantities are denoted by lowercase boldface symbols.
� Matrix quantities are denoted by capital boldface symbols.
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Table 2.1 Symbols and sizes of the most frequently used variables and functions.

Symbol z z Z f f F

Size 1 × 1 N × 1 N × Q 1 × 1 M × 1 M × P

2.2.1 Complex-Valued Variables

A function’s complex input argument can be a scalar, denoted z, a vector, denoted z, or
a matrix, denoted Z.

Let the symbol z denote a complex scalar variable, and let the real and imaginary part
of z be denoted by x and y, respectively, then

z = x +  y, (2.1)

where  is the imaginary unit, and  2 = −1. The absolute value of the complex number z
is denoted by |z|.

The real and imaginary operators return the real and imaginary parts of the input
matrix, respectively. These operators are denoted by Re{·} and Im{·}. If Z ∈ C

N×Q is a
complex-valued matrix, then

Z = Re {Z} +  Im {Z} , (2.2)

Z∗ = Re {Z} −  Im {Z} , (2.3)

where Re {Z} ∈ R
N×Q , Im {Z} ∈ R

N×Q , and the operator (·)∗ denote the complex
conjugate of the matrix it is applied to. The real and imaginary operators can be
expressed as

Re {Z} = 1

2
(Z + Z∗) , (2.4)

Im {Z} = 1

2
(Z − Z∗) . (2.5)

2.2.2 Complex-Valued Functions

For complex-valued functions, the following conventions are always used in this
book:

� If the function returns a scalar, then a lowercase symbol is used, for example, f .
� If the function returns a vector, then a lowercase boldface symbol is used, for example,

f .
� If the function returns a matrix, then a capital boldface symbol is used, for example,

F.

Table 2.1 shows the sizes and symbols of the variables and functions most frequently
used in the part of the book that treats complex matrix derivatives with independent
components. Note that F covers all situations because scalars f and vectors f are special
cases of a matrix. In the sequel, however, the three types of functions are distinguished
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as scalar, vector, or matrix because, as we shall see in Chapter 4, different definitions of
the derivatives, based on type of functions, are found in the literature.

2.3 Analytic versus Non-Analytic Functions

Let the symbol ⊆ mean subset of, and ⊂ proper subset of. Mathematical courses
on complex functions for engineers often involve only the analysis of analytic func-
tions (Kreyszig 1988, p. 738) defined as follows:

Definition 2.1 (Analytic Function) Let D ⊆ C be the domain1 of definition of the
function f : D → C. The function f is an analytic function in the domain D if

lim
∆z→0

f (z + ∆z) − f (z)

∆z
exists for all z ∈ D.

If f (z) satisfies the Cauchy-Riemann equations (Kreyszig 1988, pp. 740–743), then it
is analytic. A function that is analytic is also named complex differentiable, holomorphic,
or regular. The Cauchy-Riemann equations for the scalar function f can be formulated
as a single equation in the following way:

∂

∂z∗ f = 0. (2.6)

From (2.6), it is seen that any analytic function f is not dependent on the variable z∗.
This can also be seen from Theorem 1 in Kreyszig (1988, p. 804), which states that any
analytic function f (z) can be written as a power series2 with non-negative exponents
of the complex variable z, and this power series is called the Taylor series. This series
does not contain any terms that depend on z∗. The derivative of a complex-valued scalar
function in mathematical courses of complex analysis for engineers is often defined only
for analytic functions. However, in engineering problems, the functions of interest often
are not analytic because they are often real-valued functions. If a function is dependent
only on z, as are analytic functions, and is not implicitly or explicitly dependent on z∗,
then this function cannot in general be real-valued; a function can be real-valued only if
the imaginary part of f vanishes, and this is possible only if the function also depends
on terms that depend on z∗. An alternative treatment for how to find the derivative of real
functions dependent on complex variables other than the one used for analytic function
is needed. In this book, a theory that solves this problem is provided for scalar, vector,
or matrix functions and variables.

1 If f : A → B, then the set A is called the domain of f , the set B is called the range of f , and the set
{ f (x) | x ∈ A} is called the image set of f (Munkres 2000, p. 16).

2 A power series in the variable z ∈ C is an infinite sum of the form

∞∑
n=0

an (z − z0)n , where an ,

z0 ∈ C (Kreyszig 1988, p. 812).
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In engineering problems, the squared Euclidean distance is often used. Let f : C → C

be defined as

f (z) = |z|2 = zz∗. (2.7)

If the traditional definition of the derivative given in Definition 2.1 is used, then the
function f is not differentiable because

lim
∆z→0

f (z0 + ∆z) − f (z0)

∆z
= lim

∆z→0

|z0 + ∆z|2 − |z0|2
∆z

= lim
∆z→0

(z0 + ∆z)(z∗
0 + (∆z)∗) − z0z∗

0

∆z

= lim
∆z→0

(∆z) z∗
0 + z0(∆z)∗ + ∆z(∆z)∗

∆z
, (2.8)

and this limit does not exist, because different values are found depending on how ∆z is
approaching 0. Let ∆z = ∆x + ∆y. First, let ∆z approach 0 such that ∆x = 0, then
the last fraction in (2.8) is

 (∆y) z∗
0 −  z0∆y + (∆y)2

∆y
= z∗

0 − z0 − ∆y, (2.9)

which approaches z∗
0 − z0 = −2 Im{z0}, when ∆y → 0. Second, let ∆z approach 0

such that ∆y = 0, then the last fraction in (2.8) is

(∆x) z∗
0 + z0∆x + (∆x)2

∆x
= z0 + z∗

0 + ∆x, (2.10)

which approaches z0 + z∗
0 = 2 Re{z0} when ∆x → 0. For an arbitrary complex number

z0, in general, 2 Re{z0} �= −2 Im{z0}. This means that the function f (z) = |z|2 = zz∗

is not differentiable when the commonly encountered definition given in Definition 2.1
is used, and, hence, f is not analytic.

Two alternative ways (Hayes 1996, Subsection 2.3.10) are known for finding the
derivative of a scalar real-valued function f ∈ R with respect to the unknown complex-
valued matrix variable Z ∈ C

N×Q . The first way is to rewrite f as a function of the
real X and imaginary parts Y of the complex variable Z, and then to find the derivatives
of the rewritten function with respect to these two independent real variables, X and Y ,
separately. Notice that N Q independent complex unknown variables in Z correspond to
2N Q independent real variables in X and Y . The second way to deal with this problem,
which is more elegant and is used in this book, is to treat the differentials of the variables
Z and Z∗ as independent, in the way that will be shown by Lemma 3.1. Chapter 3 shows
that the derivative of f with respect to Z and Z∗ can be identified by the differential
of f .

Complex numbers cannot be ordered as real numbers can. Therefore, the objective
functions of interest, when dealing with engineering problems, are usually real valued in
such a way that it makes sense to minimize or maximize them. If a real-valued function
depends on a complex matrix Z, it must also be explicitly or implicitly dependent on
Z∗, such that the result is real (see also the discussion following (2.6)). A real-valued
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Table 2.2 Classification of functions.

Function type z, z∗ ∈ C z, z∗ ∈ C
N×1 Z, Z∗ ∈ C

N×Q

Scalar function f (z, z∗) f (z, z∗) f (Z, Z∗)

f ∈ C f : C × C → C f : C
N×1 × C

N×1 → C f : C
N×Q × C

N×Q → C

Vector function f (z, z∗) f (z, z∗) f (Z, Z∗)

f ∈ C
M×1 f : C × C → C

M×1 f : C
N×1 × C

N×1 → C
M×1 f : C

N×Q × C
N×Q → C

M×1

Matrix function F (z, z∗) F (z, z∗) F (Z, Z∗)

F ∈ C
M×P F : C × C → C

M×P F : C
N×1 × C

N×1 → C
M×P F : C

N×Q × C
N×Q → C

M×P

Adapted from Hjørungnes and Gesbert (2007a). C© 2007 IEEE.

function can consist of several terms; it is possible that some of these terms are complex
valued, even though their sum is real.

The main types of functions used throughout this book, when working with complex-
valued matrix derivatives with independent components, can be classified as in Table 2.2.
The table shows that all functions depend on a complex variable and the complex
conjugate of the same variable, and the reason for this is that the complex differential
of the variables Z and Z∗ should be treated independently. When the function has
two complex input variables of the same size (e.g., F : C

N×Q × C
N×Q → C

M×P for
the general case), then two input variables should be the complex conjugate of each
other. This means that they cannot be chosen independently of each other. However,
in Lemmas 3.1 and 6.1, it will be shown that the differentials of the two input matrix
variables Z and Z∗ are independent. The convention of using both a complex variable
and its complex conjugate explicitly in the function definition was used in Brandwood
(1983). When evaluating, for example, the most general function in Table 2.2 (i.e.,
F : C

N×Q × C
N×Q → C

M×P ), the notation adapted is that the two complex-valued
input variables should be the complex conjugates of each other. Hence, the two input
arguments of F (Z, Z∗) are a function of each other, but as will be seen in Lemma 3.1,
the differentials of the two input variables Z and Z∗ are independent. When working
with complex-valued matrix derivatives in later chapters, we will see that complex
differentials are very important.

Definition 2.2 (Formal Derivatives) Let z = x +  y, where x, y ∈ R, then the formal
derivatives, with respect to z and z∗ of f (z0) at z0 ∈ C or Wirtinger derivatives (Wirtinger
1927), are defined as

∂

∂z
f (z0) = 1

2

(
∂

∂x
f (z0) − 

∂

∂y
f (z0)

)
, (2.11)

∂

∂z∗ f (z0) = 1

2

(
∂

∂x
f (z0) + 

∂

∂y
f (z0)

)
. (2.12)

When finding ∂
∂z f (z0) and ∂

∂z∗ f (z0), the variables z and z∗ are treated as independent
variables (Brandwood 1983, Theorem 1).
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The formal derivatives above must be interpreted formally because z and z∗ cannot
be varied independently of each other (Kreutz-Delgado 2009, June 25th, Footnote 27,
p. 15). In Kreutz-Delgado (2009, June 25th), the topic of Wirtinger calculations is also
named CR-calculus.

From Definition 2.2, it follows that the derivatives of the function f with respect to
the real part x and the imaginary y part of z can be expressed as

∂

∂x
f (z0) = ∂

∂z
f (z0) + ∂

∂z∗ f (z0), (2.13)

∂

∂y
f (z0) = 

(
∂

∂z
f (z0) − ∂

∂z∗ f (z0)

)
, (2.14)

respectively.
The results in (2.13) and (2.14) are found by considering (2.11) and (2.12) as two

linear equations with the two unknowns ∂
∂x f (z0) and ∂

∂y f (z0).
If the function f is dependent on several variables, Definition 2.2 can be extended. In

Chapters 3 and 4, it will be shown how the derivatives, with respect to a complex-valued
matrix variable and its complex conjugate, of all function types given in Table 2.2 can
be identified from the complex differentials of these functions.

Example 2.1 By using Definition 2.2, the following formal derivatives are found:

∂z

∂z
= 1

2

(
∂

∂x
− 

∂

∂y

)
(x +  y) = 1

2
(1 + 1) = 1, (2.15)

∂z∗

∂z∗ = 1

2

(
∂

∂x
+ 

∂

∂y

)
(x −  y) = 1

2
(1 + 1) = 1, (2.16)

∂z

∂z∗ = 1

2

(
∂

∂x
+ 

∂

∂y

)
(x +  y) = 1

2
(1 − 1) = 0, (2.17)

∂z∗

∂z
= 1

2

(
∂

∂x
− 

∂

∂y

)
(x −  y) = 1

2
(1 − 1) = 0. (2.18)

When working with derivatives of analytic functions (see Definition 2.1), only derivatives
with respect to z are studied, and dz

dz = 1 but dz∗
dz does not exist.

Example 2.2 Let the function f : C × C → R given by f (z, z∗) = zz∗. This function is
differentiable with respect to both variables z and z∗ (when using Definition 2.2), and
the expressions for the formal derivatives are given by

∂

∂z
f (z, z∗) = z∗, (2.19)

∂

∂z∗ f (z, z∗) = z. (2.20)

When the complex variable z and its complex conjugate twin z∗ are treated as independent
variables (Brandwood 1983, Theorem 1), then the function f is differentiable in both of
these variables. Remember that, as was shown earlier in this section, the same function is
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not differentiable in the ordinary way using the traditional expression for the derivative
for analytic functions provided in Definition 2.1.

2.4 Matrix-Related Definitions

The matrix ZT represents the transpose of the matrix Z. The Hermitian operator, or
the complex conjugate transpose of a matrix Z, is given by ZH . The trace of a square
matrix Z is denoted by Tr {Z}. The determinant of a square matrix Z ∈ C

N×N is denoted
by det(Z). The inverse matrix of a square nonsingular3 matrix Z is denoted by Z−1. The
adjoint of a matrix Z ∈ C

N×N is denoted by Z# and is obtained by

Z# = det(Z)Z−1. (2.21)

The rank of a matrix A is denoted by rank(A). The operators dimC(·) and dimR(·)
return the complex and real dimension of the vector space they are applied to,
respectively. C(A), R(A), and N (A) are the symbols used for the column, row, and
null space of a matrix A ∈ C

N×Q , respectively (i.e., C(A) = {w ∈ C
N×1|w = Az,

for some z ∈ C
Q×1}, R(A) = {w ∈ C

1×Q |w = z A, for some z ∈ C
1×N }, and N (A) =

{z ∈ C
Q×1|Az = 0N×1}).

Definition 2.3 (Idempotent) A matrix A ∈ C
N×N is idempotent if A2 = A.

Definition 2.4 (Moore-Penrose Inverse) The Moore-Penrose inverse of Z ∈ C
N×Q is

denoted Z+ ∈ C
Q×N and is defined through the following four relations (Horn & John-

son 1985, p. 421): (
ZZ+)H = ZZ+, (2.22)(
Z+ Z

)H = Z+ Z, (2.23)

ZZ+ Z = Z, (2.24)

Z+ ZZ+ = Z+. (2.25)

The Moore-Penrose inverse is an extension of the traditional inverse matrix that exists
only for square nonsingular matrices (i.e., matrices with a nonzero determinant). When
designing equalizers for a memoryless MIMO system, the Moore-Penrose inverse can be
used to find the zero-forcing equalizer (Paulraj et al. 2003, pp. 152–153). A zero-forcing
equalizer tries to set the total signal error to zero, but this can lead to noise amplification
in the receiver.

Remark The indices in this book are mostly chosen to start with 0.

Definition 2.5 (Exponential Matrix Function) Let I N denote the N × N identity matrix.
If Z ∈ C

N×N , then the exponential matrix function exp : C
N×N → C

N×N is denoted

3 A nonsingular matrix is a square matrix with a nonzero determinant (i.e., an invertible matrix).
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exp(Z) and is defined as

exp(Z) =
∞∑

k=0

1

k!
Zk, (2.26)

where Z0 � I N , ∀ Z ∈ C
N×N .

Definition 2.6 (Kronecker Product) Let A ∈ C
M×N and B ∈ C

P×Q. Denote element
number (k, l) of the matrix A by ak,l . The Kronecker product (Horn & Johnson 1991),
denoted ⊗, between the complex-valued matrices A and B is defined as the matrix
A ⊗ B ∈ C

M P×N Q, given by

A ⊗ B =




a0,0 B · · · a0,N−1 B
...

...
aM−1,0 B · · · aM−1,N−1 B


 . (2.27)

Equivalently, this can be expressed as follows:

[A ⊗ B]i+ j P,k+l Q = a j,lbi,k, (2.28)

where i ∈ {0, 1, . . . , P − 1}, j ∈ {0, 1, . . . , M − 1}, k ∈ {0, 1, . . . , Q − 1}, and l ∈
{0, 1, . . . , N − 1}.
Definition 2.7 (Hadamard Product4) Let A ∈ C

M×N and B ∈ C
M×N . Denote element

number (k, l) of the matrices A and B by ak,l and bk,l , respectively. The Hadamard
product (Horn & Johnson 1991), denoted by �, between the complex-valued matrices
A and B, is defined as the matrix A � B ∈ C

M×N , given by

A � B =




a0,0b0,0 · · · a0,N−1b0,N−1
...

...
aM−1,0bM−1,0 · · · aM−1,N−1bM−1,N−1


 . (2.29)

Definition 2.8 (Vectorization Operator) Let A ∈ C
M×N and denote the i-th column of

A by ai , where i ∈ {0, 1, . . . , N − 1}. Then the vec(·) operator is defined as the M N × 1
vector given by

vec (A) =




a0

a1
...

aN−1


 . (2.30)

Let A ∈ C
N×Q , then there exists a permutation matrix that connects the vectors vec (A)

and vec
(

AT
)
. The permutation matrix that gives the connection between vec (A) and

vec
(

AT
)

is called the commutation matrix and is defined as follows:

Definition 2.9 (Commutation Matrix) Let A ∈ C
N×Q. The commutation matrix K N ,Q

is a permutation matrix of size N Q × N Q, and it gives the connection between vec (A)

4 In Bernstein (2005, p. 252), this product is called the Schur product.
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and vec
(

AT
)

in the following way:

K N ,Q vec(A) = vec(AT ). (2.31)

Example 2.3 If A ∈ C
3×2, then by studying the connection between vec(A) and vec(AT ),

together with (2.31), it can be seen that K 3,2 is given by

K 3,2 =




1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1




. (2.32)

Example 2.4 Let N = 5 and Q = 3, then,

K N ,Q =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




. (2.33)

In Exercise 2.7, the reader is asked to write a MATLAB program for finding K N ,Q for
any given positive integers N and K .

Definition 2.10 (Diagonalization Operator) Let a ∈ C
N×1, and let the i-th vector com-

ponent of a be denoted by ai , where i ∈ {0, 1, . . . , N − 1}. The diagonalization operator
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a0,0 a0,1 a0,2

a1,0

a2,0

a1,1

a2,1

a3,1

a2,2

a3,2

a1,3

aN−2,N−1

. . .

· · ·

· · ·

· · ·

...
...

...

aN−1,1 aN−1,N−1

a0,N−1

vecu(A)

vecl(A)

aN−1,0

a1,2

vecd(A)

aN−1,N−2

a ,N−11

a2,3




Figure 2.1 The way the three operators vecd (·), vecl (·), and vecu(·) are returning their elements
from the matrix A ∈ C

N×N . The operator vecd (·) returns the elements on the line along the main
diagonal, starting in the upper left corner and going down along the main diagonal; the operator
vecl (·) returns elements along the curve below the main diagonal following the order indicated in
the figure; and the operator vecu(·) returns elements along the curve above the main diagonal in
the order indicated by the arrows along that curve.

diag : C
N×1 → C

N×N is defined as

diag(a) =




a0 0 · · · 0
0 a1 · · · 0
...

. . .
...

0 0 · · · aN−1


 . (2.34)

Definition 2.11 (Special Vectorization Operators) Let A ∈ C
N×N .

Let the operator vecd : C
N×N → C

N×1 return all the elements on the main diagonal
ordered from the upper left corner and going down to the lower right corner of the input
matrix

vecd (A) = [a0,0, a1,1, a2,2, . . . , aN−1,N−1

]T
. (2.35)

Let the operator vecl : C
N×N → C

(N−1)N
2 ×1 return all the elements strictly below the

main diagonal taken in the same column-wise order as the ordinary vec-operator

vecl (A) = [a1,0, a2,0, . . . , aN−1,0, a2,1, a3,1, . . . , aN−1,1, a3,2, . . . , aN−1,N−2

]T
.

(2.36)

Let the operator vecu : C
N×N → C

(N−1)N
2 ×1 return all the elements strictly above the

main diagonal taken in a row-wise order going from left to right, starting with the first
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row, then the second, and so on

vecu (A) = [a0,1, a0,2, . . . , a0,N−1, a1,2, a1,3, . . . , a1,N−1, a2,3, . . . , aN−2,N−1

]T
.

(2.37)

For the matrix A ∈ C
N×N , Figure 2.1 shows how the three special vectorization

operators vecd (·), vecl(·), and vecu(·) pick out the elements of A and return them into
column vectors. The operator vecd (·) was also studied in Brewer (1978, Eq. (7)); the two
other operators vecl(·) and vecu(·) were defined in Hjørungnes and Palomar (2008a and
2008b).

If a ∈ C
N×1, then

vecd (diag(a)) = a. (2.38)

Hence, the operator vecd (·) is the left-inverse of the operator diag(·). If D ∈ C
N×N is a

diagonal matrix, then

diag(vecd (D)) = D, (2.39)

but this formula is not valid for non-diagonal matrices. For diagonal matrices, the
operator diag is the inverse of the operator vecd ; however, this is not true for non-
diagonal matrices.

Example 2.5 Let N = 3, then the matrix A ∈ C
N×N can be written as

A =

 a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2


 , (2.40)

where (A)k,l = ak,l ∈ C is the element in row k and column l. By using the vec(·),
vecd (·), vecl(·), and vecu(·) operators on A, it is found that

vec (A)=




a0,0

a1,0

a2,0

a0,1

a1,1

a2,1

a0,2

a1,2

a2,2




, vecd (A)=

 a0,0

a1,1

a2,2


, vecl (A)=


 a1,0

a2,0

a2,1


, vecu (A)=


 a0,1

a0,2

a1,2


.

(2.41)
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From the example above and the definition of the operators vecd (·), vecl(·), and vecu(·),
a clear connection can be seen between the four vectorization operators vec(·), vecd (·),
vecl (·), and vecu(·). These connections can be found by defining three matrices, as in
the following definition:

Definition 2.12 (Matrices Ld , Ll , and Lu) Let A ∈ C
N×N . Three unique matrices Ld ∈

Z
N 2×N
2 , Ll ∈ Z

N 2× N (N−1)
2

2 , and Lu ∈ Z
N 2× N (N−1)

2
2 contain zeros everywhere except for +1

at one place in each column; these matrices can be used to build up vec(A), where
A ∈ C

N×N is arbitrary, in the following way:

vec (A) = Ld vecd (A) + Ll vecl (A) + Lu vecu (A)

= [Ld , Ll, Lu]


 vecd (A)

vecl (A)
vecu (A)


 , (2.42)

where the terms Ld vecd (A), Ll vecl (A), and Lu vecu (A) take care of the diagonal,
strictly below diagonal, and strictly above diagonal elements of A, respectively.

To show how the three matrices Ld , Ll , and Lu can be found, the following two
examples are presented.

Example 2.6 This example is related to Example 2.5, where we studied A ∈ C
3×3

given in (2.40) and the four vectorization operators applied to A, as shown
in (2.41).

By comparing (2.41) and (2.42), the matrices Ld , Ll , and Lu are found as

Ld =




1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1




, Ll =




0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0




, Lu =




0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 1

0 0 0




. (2.43)
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Example 2.7 Let N = 4, then,

Ld =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




, Ll =




0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, Lu =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0




.

(2.44)

In Exercise 2.12, MATLAB programs should be developed for calculating the three
matrices Ld , Ll , and Lu . The matrix Ld has also been considered in Magnus and
Neudecker (1988, Problem 4, p. 64) and is called the reduction matrix in Payaró and
Palomar (2009, Appendix A). The two matrices Ll and Lu were introduced in Hjørungnes
and Palomar (2008a and 2008b).

To find and identify Hessians of complex-valued vectors and matrices, the following
definition (related to the definition in Magnus & Neudecker (1988, pp. 107–108)) is
needed:

Definition 2.13 (Block Vectorization Operator) Let C ∈ C
N×N M be the matrix given by

C = [C0 C1 · · · C M−1] , (2.45)

where each of the block matrices C i is complex valued and the square of size N × N,
where i ∈ {0, 1, . . . , M − 1}. Then the block vectorization operator is denoted by vecb(·),
and it returns the N M × N matrix given by

vecb (C) =




C0

C1
...

C M−1


 . (2.46)

If vecb
(
CT
) = C , the matrix C is called column symmetric (Magnus and Neudecker

1988, p. 108), or equivalently CT
i = C i for all i ∈ {0, 1, . . . , M − 1}.
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The above definition is an extension of Magnus and Neudecker (1988, p. 108) to
complex matrices, such that it can be used in connection with complex-valued Hessians.
A matrix that is useful for generating symmetric matrices is the duplication matrix. It is
defined next, together with yet another vectorization operator.

Definition 2.14 (Duplication Matrix) Let the operator v : C
N×N → C

(N+1)N
2 ×1 return all

the elements on and below the main diagonal taken in the same column-wise order as
the ordinary vec-operator:

v (A) = [a0,0, a1,0, . . . , aN−1,0, a1,1, a2,1, . . . , aN−1,1, a3,3, . . . , aN−1,N−1

]T
. (2.47)

Let A ∈ C
N×N be symmetric, then it is possible to construct vec(A) from v(A) with a

unique matrix of size N 2 × N (N+1)
2 called the duplication matrix; it is denoted by DN ,

and is defined by the following relation:

DN v (A) = vec (A) . (2.48)

In Exercise 2.13, an explicit formula is developed for the duplication matrix, and a
MATLAB program should be found for calculating the duplication matrix DN .

Let A ∈ C
N×N be symmetric such that AT = A. If the definition of v(·) in Defini-

tion 2.14 is compared with the definitions of vecd (·) and vecl(·) in Definition 2.11, it can
be seen that v(A) contains the same elements as the two operators vecd (A) and vecl(A).
In the next definition, the unique matrices used to transfer between these vectorization
operators are defined.

Definition 2.15 (Matrices Vd , V l , and V) Let A ∈ C
N×N be symmetric. Unique matri-

ces Vd ∈ Z

N (N+1)
2 ×N

2 and V l ∈ Z

N (N+1)
2 × N (N−1)

2
2 contain zeros everywhere except for +1 at

one place in each column, and these matrices can be used to build up v(A), from vecd (A)
and vecl (A) in the following way:

v (A) = Vd vecd (A) + V l vecl(A) = [Vd , V l]

[
vecd (A)
vecl(A)

]
. (2.49)

The square permutation matrix V ∈ Z

N (N+1)
2 × N (N+1)

2
2 is defined by

V = [Vd , V l] . (2.50)

Because the matrix V is a permutation matrix, it follows from V T V = I N (N+1)
2

that

V T
d Vd = I N , (2.51)

V T
l V l = I (N−1)N

2
, (2.52)

V T
d V l = 0N× (N−1)N

2
. (2.53)

Definition 2.16 (Standard Basis) Let the standard basis in C
N×1 be denoted by ei , where

i ∈ {0, 1, . . . , N − 1}. The standard basis in C
N×N is denoted by Ei, j ∈ C

N×N and is
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defined as

Ei, j = ei e
T
j , (2.54)

where i, j ∈ {0, 1, . . . , N − 1}.

2.5 Useful Manipulation Formulas

In this section, several useful manipulation formulas are presented. Although many of
these results are well known in the literature, they are included here to make the text
more complete.

A classical result from linear algebra is that if A ∈ C
N×Q , then (Horn & Johnson 1985,

p. 13)

rank (A) + dimC (N (A)) = Q. (2.55)

The following lemma states Hadamard’s inequality (Magnus & Neudecker 1988), and
it will be used in Chapter 6 to derive the water-filling solution of the capacity of MIMO
channels.

Lemma 2.1 Let A ∈ C
N×N be a positive definite matrix given by

A =
[

B c
cH aN−1,N−1

]
, (2.56)

where c ∈ C
(N−1)×1, B ∈ C

(N−1)×(N−1), and aN−1,N−1 represent a positive scalar. Then

det (A) ≤ aN−1,N−1 det (B) , (2.57)

with equality if and only if c = 0(N−1)×1. By repeated application of (2.57), it follows
that if A ∈ C

N×N is a positive definite matrix, then

det (A) ≤
N−1∏
k=0

ak,k, (2.58)

with equality if and only if A is diagonal.

Proof Because A is positive definite, B is positive definite and aN−1,N−1 is a positive
scalar. The matrix B−1 is also positive definite. Let P ∈ C

N×N be given as

P =
[

I N−1, 0(N−1)×1

−cH B−1, 1

]
. (2.59)

It follows that det (P) = 1. By multiplying out, it follows that

P A =
[

B, c
01×(N−1), α

]
, (2.60)
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where α = aN−1,N−1 − cH B−1c. By taking the determinant of both sides of (2.60), it
follows that

det (P A) = det (A) = α det (B) . (2.61)

Because B−1 is positive definite, it follows that cH B−1c ≥ 0. From the definition of α,
it now follows that α ≤ aN−1,N−1. Putting these results together leads to the inequality
in (2.57), where equality holds if and only if cH B−1c = 0, which is equivalent to
c = 0(N−1)×1.

The following lemma contains some of the results found in Bernstein (2005, pp. 44–
45).

Lemma 2.2 Let A ∈ C
N×N , B ∈ C

N×M , C ∈ C
M×N , and D ∈ C

M×M . If A is nonsin-
gular, then[

A B
C D

]
=
[

I N 0N×M

C A−1 I M

] [
A 0N×M

0M×N D − C A−1 B

] [
I N A−1 B

0M×N I M

]
.

(2.62)

This result leads to

det

([
A B
C D

])
= det (A) det

(
D − C A−1 B

)
. (2.63)

If D is nonsingular, then[
A B
C D

]
=
[

I N BD−1

0M×N I M

] [
A − BD−1C 0N×M

0M×N D

] [
I N 0N×M

D−1C I M

]
.

(2.64)

Hence,

det

([
A B
C D

])
= det

(
A − BD−1C

)
det (D) . (2.65)

If both A and D are nonsingular, it follows from (2.63) and (2.65) that D − C A−1 B is
nonsingular, if and only if A − BD−1C is nonsingular.

Proof The results in (2.62) and (2.64) are obtained by block matrix multiplication of
the right-hand sides of these two equations. All other results in the lemma are direct
consequences of (2.62) and (2.64).

The following lemma (Kailath, Sayed, & Hassibi 2000, p. 729) is called the matrix
inversion lemma and is used many times in signal processing and communications (Sayed
2003; Barry, Lee, & Messerschmitt 2004).

Lemma 2.3 (Matrix Inversion Lemma) Let A ∈ C
N×N , B ∈ C

N×M , C ∈ C
M×M , and

D ∈ C
M×N . If A, C , and A + BC D are invertible, then C−1 + D A−1 B is invertible

and

[A + BC D]−1 = A−1 − A−1 B
[
C−1 + D A−1 B

]−1
D A−1. (2.66)
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The reader is asked to prove this lemma in Exercise 2.17.
To reformulate expressions, the following lemmas are useful.

Lemma 2.4 Let A ∈ C
N×M and B ∈ C

M×N , then

det (I N + AB) = det (I M + BA) . (2.67)

Proof This result can be shown by taking the determinant of both sides of the following
identity:

[
I N + AB, A

0M×N , I M

] [
I N , 0N×M

−B, I M

]
=
[

I N , 0N×M

−B, I M

] [
I N , A

0M×N , I M + BA

]
,

(2.68)

which are two ways of expressing the matrix

[
I N , A
−B, I M

]
.

Alternatively, this lemma can be shown by means of (2.63) and (2.65).

Lemma 2.5 Let A ∈ C
N×M and B ∈ C

M×N . The N × N matrix I N + AB is invertible
if and only if the M × M matrix I M + BA is invertible. If these two matrices are
invertible, then

B (I N + AB)−1 = (I M + BA)−1 B. (2.69)

Proof From (2.67), it follows that I N + AB is invertible if and only if I M + BA is
invertible.

By multiplying out both sides, it can be seen that the following relation holds:

B (I N + AB) = (I M + BA) B. (2.70)

Right-multiplying the above equation with (I N + AB)−1 and left-multiplying with
(I M + BA)−1 lead to (2.69).

The following lemma can be used to show that it is difficult to parameterize the set of
all orthogonal matrices; it is found in Bernstein (2005, Corollary 11.2.4).

Lemma 2.6 Let A ∈ C
N×N , then

det (exp(A)) = exp (Tr {A}) . (2.71)

The rest of this section consists of several subsections that contain results of different
categories. Subsection 2.5.1 shows several results of the Moore-Penrose inverse that
will be useful when its complex differential is derived in Chapter 3. In Subsection 2.5.2,
results involving the trace operator are collected. Useful material with the Kronecker
and Hadamard products is presented in Subsection 2.5.3. Results that will be used to
identify second-order derivatives are formulated around complex quadratic forms in
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Subsection 2.5.4. Several lemmas that will be useful for finding generalized complex-
valued matrix derivatives in Chapter 6 are provided in Subsection 2.5.5.

2.5.1 Moore-Penrose Inverse

Lemma 2.7 Let A ∈ C
N×Q and B ∈ C

Q×R, then the following properties are valid for
the Moore-Penrose inverse:

A+ = A−1 for nonsingular A, (2.72)(
A+)+ = A, (2.73)(

AH
)+ = (A+)H

, (2.74)

AH = AH AA+ = A+ AAH , (2.75)

A+ = AH
(

A+)H
A+ = A+ (A+)H

AH , (2.76)(
AH A

)+ = A+ (A+)H
, (2.77)(

AAH
)+ = (A+)H

A+, (2.78)

A+ = (AH A
)+

AH = AH
(

AAH
)+

, (2.79)

A+ = (AH A
)−1

AH if A has full column rank, (2.80)

A+ = AH
(

AAH
)−1

if A has full row rank, (2.81)

AB = 0N×R ⇔ B+ A+ = 0R×N . (2.82)

Proof Equations (2.72), (2.73), and (2.74) can be proved by direct insertion into the
definition of the Moore-Penrose inverse.

The first part of (2.75) can be proved as follows:

AH = AH
(

AH
)+

AH = AH
(

AA+)H = AH AA+, (2.83)

where the results from (2.22) and (2.74) were used. The second part of (2.75) can be
proved in a similar way

AH = AH
(

AH
)+

AH = (A+ A
)H

AH = A+ AAH . (2.84)

The first part of (2.76) can be shown by

A+ = A+ AA+ =
(

AH
(

AH
)+)H

A+ = AH
(

A+)H
A+, (2.85)

where (2.22) was utilized in the last equality above.
The second part of (2.76) can be proved in an analogous manner

A+ = A+ AA+ = A+
((

A+)H
AH
)H

= A+ (AH
)+

AH , (2.86)

where (2.23) was used in the last equality.
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Equations (2.77) and (2.78) can be proved by using the results from (2.75) and (2.76)
in the definition of the Moore-Penrose inverse.

Equation (2.79) follows from (2.76), (2.77), and (2.78).
Equations (2.80) and (2.81) follow from (2.72) and (2.79), together with the following

fact: rank (A) = rank
(

AH A
) = rank

(
AAH

)
(Horn & Johnson 1985, Section 0.4.6).

Now, (2.82) will be shown. First, it is shown that AB = 0N×R implies that B+ A+ =
0R×N . Assume that AB = 0N×R . From (2.79), it follows that

B+ A+ = (BH B
)+

BH AH
(

AAH
)+

. (2.87)

AB = 0N×R leads to BH AH = 0R×N , then (2.87) yields B+ A+ = 0R×N . Second, it
will be shown that B+ A+ = 0R×N implies that AB = 0N×R . Assume that B+ A+ =
0R×N . Using the implication just proved (i.e., C D = 0M×P ), then D+C+ = 0P×M ,
where M and P are positive integers given by the size of the matrices C and D, gives(

A+)+ (B+)+ = 0N×R , the desired result follows from (2.73).

Lemma 2.8 Let A ∈ C
N×Q, then these equalities follow:

R (A) = R
(

A+ A
)
, (2.88)

C (A) = C
(

AA+) , (2.89)

rank (A) = rank
(

A+ A
) = rank

(
AA+) . (2.90)

Proof From (2.24) and the definition of R (A), it follows that

R (A) = {w ∈ C
1×Q | w = z A

(
A+ A

)
, for some z ∈ C

1×N
} ⊆ R

(
A+ A

)
. (2.91)

From the definition of R
(

A+ A
)
, it follows that

R
(

A+ A
) = {w ∈ C

1×Q | w = z A+ A, for some z ∈ C
1×Q
} ⊆ R (A) . (2.92)

From (2.91) and (2.92), (2.88) follows. From (2.24) and the definition of C (A), it follows
that

C (A) = {w ∈ C
N×1 | w = (AA+) Az, for some z ∈ C

Q×1
} ⊆ C

(
AA+) . (2.93)

From the definition of C
(

AA+), it follows that

C
(

AA+) = {w ∈ C
N×1 | w = AA+z, for some z ∈ C

N×1
} ⊆ C (A) . (2.94)

From (2.93) and (2.94), (2.89) follows. Equation (2.90) is a direct consequence of (2.88)
and (2.89).

2.5.2 Trace Operator

From the definition of the Tr{·} operator, it follows that

Tr
{

AT
} = Tr{A}, (2.95)
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where A ∈ C
N×N . When dealing with the trace operator, the following formula is useful:

Tr {AB} = Tr {BA} , (2.96)

where A ∈ C
N×Q and B ∈ C

Q×N . Equation (2.96) can be proved by expressing the two
sides as double sums of the components of matrices. The readers are asked to prove (2.96)
in Exercise 2.9.

The Tr{·} and vec(·) operators are connected by the following formula:

Tr
{

AT B
} = vecT (A) vec (B) , (2.97)

where vecT (A) = (vec (A))T . The identity in (2.97) is shown in Exercise 2.9.
Let am and an be two complex-valued column vectors of the same size, then

aT
man = aT

n am, (2.98)

aH
m an = aT

n a∗
m . (2.99)

For a scalar complex-valued quantity a, the following relations are obvious, but are
useful for manipulating scalar expressions:

a = Tr{a} = vec(a). (2.100)

The following result is well known from Harville (1997, Lemma 10.1.1 and Corol-
lary 10.2.2):

Proposition 2.1 If A ∈ C
N×N is idempotent, then rank (A) = Tr {A}. If A, in addition,

has full rank, then A = I N .

The reader is asked to prove Proposition 2.1 in Exercise 2.15.

2.5.3 Kronecker and Hadamard Products

Let ai ∈ C
Ni ×1, where i ∈ {0, 1}, then

vec
(
a0aT

1

) = a1 ⊗ a0. (2.101)

The result in (2.101) is shown in Exercise 2.14.

Lemma 2.9 Let A ∈ C
M×N and B ∈ C

P×Q, then

(A ⊗ B)T = AT ⊗ BT . (2.102)

The proof of Lemma 2.9 is left for the reader in Exercise 2.16.

Lemma 2.10 (Magnus & Neudecker 1988; Harville 1997) Let the sizes of the matrices
be given such that the products AC and BD are well defined. Then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. (2.103)
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Proof Let A ∈ C
M×N , B ∈ C

P×Q , C ∈ C
N×R , and D ∈ C

Q×S . Denote element number
(m, k) of the matrix A by am,k and element number (k, n) of the matrix C by ck,n . The
(m, k)-th block matrix of size P × Q of the matrix A ⊗ B is am,k B, and the (k, n)-th
block matrix of size Q × S of the matrix C ⊗ D is ck,n D. Thus, the (m, n)-th block
matrix of size P × S of the matrix (A ⊗ B)(C ⊗ D) is given by

N−1∑
k=0

am,k Bck,n D =
(

N−1∑
k=0

am,kck,n

)
BD, (2.104)

which is equal to the (m, n)-th element of AC times the P × S block BD, which is the
(m, n)-th block of size P × S of the matrix AC ⊗ BD.

To extract the vec(·) of an inner matrix from the vec(·) of a multiple-matrix product,
the following result is very useful:

Lemma 2.11 Let the sizes of the matrices A, B, and C be such that the matrix product
ABC is well defined, then

vec (ABC) = (CT ⊗ A
)

vec (B) . (2.105)

Proof Let B ∈ C
N×Q , and let B:,k denote column5 number k of the matrix B, and let

ek denote the standard basis vectors of size Q × 1, where k ∈ {0, 1, . . . , Q − 1}. Then

the matrix B can be expressed as B =
Q−1∑
k=0

B:,keT
k . By using (2.101) and (2.103), the

following expression is obtained:

vec (ABC) = vec

(
Q−1∑
k=0

AB:,keT
k C

)
=

Q−1∑
k=0

vec
(

(AB:,k)
(
CT ek

)T
)

=
Q−1∑
k=0

(
CT ek ⊗ AB:,k

) = (CT ⊗ A
) Q−1∑

k=0

(ek ⊗ B:,k)

= (CT ⊗ A
) Q−1∑

k=0

vec
(

B:,keT
k

) = (CT ⊗ A
)

vec (B) . (2.106)

Let a ∈ C
N×1, then

a = vec(a) = vec(aT ). (2.107)

If b ∈ C
1×N , then

b = vecT (b) = vecT (bT ). (2.108)

5 The notations B:,k and bk are used to denote the k-th column of the matrix B.



2.5 Useful Manipulation Formulas 27

The commutation matrix is denoted by K Q,N , and it is a permutation matrix (see
Definition 2.9). It is shown in Magnus and Neudecker (1988, Section 3.7, p. 47) that

K T
Q,N = K −1

Q,N = K N ,Q . (2.109)

The results in (2.109) are proved in Exercise 2.6.
The following result (Magnus & Neudecker 1988, Theorem 3.9) gives the reason why

the commutation matrix received its name:

Lemma 2.12 Let Ai ∈ C
Ni ×Qi where i ∈ {0, 1}, then

K N1,N0 (A0 ⊗ A1) = (A1 ⊗ A0) K Q1,Q0 . (2.110)

Proof Let X ∈ C
Q1×Q0 be an arbitrary matrix. By utilizing (2.105) and (2.31), it can be

seen that

K N1,N0 (A0 ⊗ A1) vec (X) = K N1,N0 vec
(

A1 X AT
0

) = vec
(

A0 XT AT
1

)
= (A1 ⊗ A0) vec

(
XT
) = (A1 ⊗ A0) K Q1,Q0 vec (X) . (2.111)

Because X was chosen arbitrarily, it is possible to set vec(X) = ei , where ei is the
standard basis vector in C

Q0 Q1×1. If this choice of vec(X) is inserted into (2.111), it
can be seen that the i-th columns of the two N0 N1 × Q0 Q1 matrices K N1,N0 (A0 ⊗ A1)
and (A1 ⊗ A0) K Q1,Q0 are identical. This holds for all i ∈ {0, 1, . . . , Q0 Q1 − 1}. Hence,
(2.110) follows.

The following result is also given in Magnus and Neudecker (1988, Theorem 3.10).

Lemma 2.13 Let Ai ∈ C
Ni ×Qi , then

vec (A0 ⊗ A1) = (I Q0 ⊗ K Q1,N0 ⊗ I N1

)
(vec (A0) ⊗ vec (A1)) . (2.112)

Proof Let e(Qi )
k denote the standard basis vectors of size Qi × 1. Ai can be expressed as

Ai =
Qi −1∑
ki =0

(Ai ):,ki

(
e(Qi )

ki

)T
, (2.113)
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where i ∈ {0, 1}. The left side of (2.112) can be expressed as

vec (A0 ⊗ A1) =
Q0−1∑
k0=0

Q1−1∑
k1=0

vec

([
(A0):,k0

(
e(Q0)

k0

)T
]

⊗
[

(A1):,k1

(
e(Q1)

k1

)T
])

=
Q0−1∑
k0=0

Q1−1∑
k1=0

vec

([
(A0):,k0

⊗ (A1):,k1

] [
e(Q0)

k0
⊗ e(Q1)

k1

]T
)

=
Q0−1∑
k0=0

Q1−1∑
k1=0

e(Q0)
k0

⊗ e(Q1)
k1

⊗ (A0):,k0
⊗ (A1):,k1

=
Q0−1∑
k0=0

Q1−1∑
k1=0

(
I Q0 e(Q0)

k0

)
⊗
[

K Q1,N0

(
(A0):,k0

⊗ e(Q1)
k1

)]
⊗ (I N1 (A1):,k1

)

=
Q0−1∑
k0=0

Q1−1∑
k1=0

[
I Q0 ⊗ K Q1,N0 ⊗ I N1

] [
e(Q0)

k0
⊗ (A0):,k0

⊗ e(Q1)
k1

⊗ (A1):,k1

]

= (I Q0 ⊗ K Q1,N0 ⊗ I N1

){(Q0−1∑
k0=0

vec

(
(A0):,k0

(
e(Q0)

k0

)T
))

⊗
(

Q1−1∑
k1=0

vec

(
(A1):,k1

(
e(Q1)

k1

)T
))}

= (I Q0 ⊗ K Q1,N0 ⊗ I N1

)
(vec (A0) ⊗ vec (A1)) , (2.114)

where (2.101), (2.110), Lemma 2.9, and K 1,1 = 1 have been used.

Let Ai ∈ C
N×M , then

vec (A0 � A1) = diag (vec (A0)) vec (A1) . (2.115)

The result in (2.115) is shown in Exercise 2.10.

Lemma 2.14 Let A ∈ C
N0×N1 , B ∈ C

N1×N2 , C ∈ C
N2×N3 , and D ∈ C

N3×N0 , then

Tr {ABC D} = vecT
(

DT
) [

CT ⊗ A
]

vec (B)

= vecT (B)
[
C ⊗ AT

]
vec
(

DT
)
. (2.116)

Proof The first equality in (2.116) can be shown by

Tr {ABC D} = Tr {D (ABC)} = vecT
(

DT
)

vec (ABC)

= vecT
(

DT
) [

CT ⊗ A
]

vec(B), (2.117)

where the results from (2.105) and (2.97) were used. The second equality in (2.116)
follows by using the transpose operator on the first equality in the same equation and
Lemma 2.9.
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2.5.4 Complex Quadratic Forms

Lemma 2.15 Let A, B ∈ C
N×N . zT Az = zT Bz, ∀ z ∈ C

N×1 is equivalent to A +
AT = B + BT .

Proof Let (A)k,l = ak,l and (B)k,l = bk,l . Assume that zT Az = zT Bz, ∀ z ∈ C
N×1, and

set z = ek , where k ∈ {0, 1, . . . , N − 1}. Then

eT
k Aek = eT

k Bek, (2.118)

gives that ak,k = bk,k for all k ∈ {0, 1, . . . , N − 1}. Setting z = ek + el leads to(
eT

k + eT
l

)
A(ek + el) = (eT

k + eT
l

)
B(ek + el), (2.119)

which results in ak,k + al,l + ak,l + al,k = bk,k + bl,l + bk,l + bl,k . Eliminating equal
terms from this equation gives ak,l + al,k = bk,l + bl,k , which can be written as
A + AT = B + BT .

Assuming that A + AT = B + BT , it follows that

zT Az = 1

2

(
zT Az + zT AT z

) = 1

2
zT
(

A + AT
)

z = 1

2
zT
(

B + BT
)

z

= 1

2

(
zT Bz + zT BT z

) = 1

2

(
zT Bz + zT Bz

) = zT Bz, (2.120)

for all z ∈ C
N×1.

Corollary 2.1 Let A ∈ C
N×N . zT Az = 0, ∀ z ∈ C

N×1 is equivalent to AT = −A (i.e.,
A is skew-symmetric) (Bernstein 2005, p. 81).

Proof Set B = 0N×N in Lemma 2.15, then the corollary follows.

Lemma 2.15 and Corollary 2.1 are also valid for real-valued vectors and complex-
valued matrices as stated in the following lemma and corollary:

Lemma 2.16 Let A, B ∈ C
N×N . xT Ax = xT Bx, ∀ x ∈ R

N×1 is equivalent to
A + AT = B + BT .

Proof Let (A)k,l = ak,l and (B)k,l = bk,l . Assume that xT Ax = xT Bx, ∀ x ∈ R
N×1,

and set x = ek where k ∈ {0, 1, . . . , N − 1}. Then

eT
k Aek = eT

k Bek, (2.121)

gives that ak,k = bk,k for all k ∈ {0, 1, . . . , N − 1}. Setting x = ek + el leads to(
eT

k + eT
l

)
A(ek + el) = (eT

k + eT
l

)
B(ek + el), (2.122)

which results in ak,k + al,l + ak,l + al,k = bk,k + bl,l + bk,l + bl,k . Eliminating equal
terms from this equation gives ak,l + al,k = bk,l + bl,k , which can be written A + AT =
B + BT .
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Assuming that A + AT = B + BT , it follows that

xT Ax = 1

2

(
xT Ax + xT AT x

) = 1

2
xT
(

A + AT
)

x = 1

2
xT
(

B + BT
)

x

= 1

2

(
xT Bx + xT BT x

) = 1

2

(
xT Bx + xT Bx

) = xT Bx, (2.123)

for all x ∈ R
N×1.

Corollary 2.2 Let A ∈ C
N×N . xT Ax = 0, ∀ x ∈ R

N×1 is equivalent to AT = −A (i.e.,
A is skew-symmetric) (Bernstein 2005, p. 81).

Proof Set B = 0N×N in Lemma 2.16, then the corollary follows.

Lemma 2.17 Let A, B ∈ C
N×N . zH Az = zH Bz, ∀ z ∈ C

N×1 is equivalent to A = B.

Proof Let (A)k,l = ak,l and (B)k,l = bk,l . Assume that zH Az = zH Bz, ∀ z ∈ C
N×1, and

set z = ek where k ∈ {0, 1, . . . , N − 1}. This gives in the same way as in the proof of
Lemma 2.15 that ak,k = bk,k , for all k ∈ {0, 1, . . . , N − 1}. Also in the same way as
in the proof of Lemma 2.15, setting z = ek + el leads to A + AT = B + BT . Next,
set z = ek + el , then manipulations of the expressions give A − AT = B − BT . The
equations A + AT = B + BT and A − AT = B − BT imply that A = B.

If A = B, then it follows that zH Az = zH Bz for all z ∈ C
N×1.

The next lemma shows a result that might seem surprising.

Lemma 2.18 Let A, B ∈ C
N×N . The expression xT Ax = xT Bx, ∀ x ∈ R

N×1 is equiv-
alent to zT Az = zT Bz, ∀ z ∈ C

N×1.

Proof This result follows from Lemmas 2.15 and 2.16.

Lemma 2.19 Let A, B ∈ C
M N×N where N and M are positive integers. If[
I M ⊗ zT

]
Az = [I M ⊗ zT

]
Bz, (2.124)

for all z ∈ C
N×1, then

A + vecb
(

AT
) = B + vecb

(
BT
)
. (2.125)

Proof Let the matrix A and B be given by

A =




A0

A1
...

AM−1


 , (2.126)

and

B =




B0

B1
...

BM−1


 , (2.127)

where Ai ∈ C
N×N and Bi ∈ C

N×N for all i ∈ {0, 1, . . . , M − 1}.
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Row number i of (2.124) can be expressed as

zT Ai z = zT Bi z, (2.128)

for all z ∈ C
N×1 and for all i ∈ {0, 1, . . . , M − 1}. By using Lemma 2.15 on (2.128), it

follows that

Ai + AT
i = Bi + BT

i , (2.129)

for all i ∈ {0, 1, . . . , M − 1}. By applying the block vectorization operator, the results
inside the M results in (2.129) can be written as in (2.125).

2.5.5 Results for Finding Generalized Matrix Derivatives

In this subsection, several results will be presented that will be used in Chapter 6 to find
generalized complex-valued matrix derivatives.

Lemma 2.20 Let A ∈ C
N×N . From Definition 2.11, it follows that

vecl

(
AT
) = vecu (A) . (2.130)

Lemma 2.21 The following relation holds for the matrices in Definition 2.12:

Ld LT
d + Ll L

T
l + Lu LT

u = I N 2 . (2.131)

Proof From (2.42), it follows that the N 2 × N 2 matrix [Ld , Ll, Lu] is a permutation
matrix. Hence, its inverse is given by its transposed

[Ld , Ll , Lu] [Ld , Ll , Lu]T = I N 2 . (2.132)

By multiplying out the left-hand side as a block matrix, the lemma follows.

Lemma 2.22 For the matrices defined in Definition 2.12, the following relations hold:

LT
d Ld = I N , (2.133)

LT
l Ll = I N (N−1)

2
, (2.134)

LT
u Lu = I N (N−1)

2
, (2.135)

LT
d Ll = 0N× N (N−1)

2
, (2.136)

LT
d Lu = 0N× N (N−1)

2
, (2.137)

LT
l Lu = 0 N (N−1)

2 × N (N−1)
2

. (2.138)

Proof Because the three matrices Ld , Ll , and Lu are given by nonoverlapping parts of
a permutation matrix, the above relations follow.

Lemma 2.23 Let A ∈ C
N×N , then

vec (I N � A) = Ld vecd (A) , (2.139)

where � denotes the Hadamard product (see Definition 2.7).
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Proof This follows by using the diagonal matrix I N � A in (2.42). Because I N � A
is diagonal, it follows that vecl(I N � A) = vecu(I N � A) = 0 N (N−1)

2 ×1 and vecd (I N �
A) = vecd (A). Inserting these results into (2.42) leads to (2.139).

Lemma 2.24 Let A ∈ C
N×N , then

LT
d vec (A) = vecd (A) , (2.140)

LT
l vec (A) = vecl (A) , (2.141)

LT
u vec (A) = vecu (A) . (2.142)

Proof Multiplying (2.42) from the left by LT
d and using Lemma 2.22 result in (2.140).

In a similar manner, (2.141) and (2.142) follow.

Lemma 2.25 The following relation holds between the matrices defined in Defini-
tion 2.12:

K N ,N = Ld LT
d + Ll L

T
u + Lu LT

l . (2.143)

Proof Using the operators defined earlier and the commutation matrix, we get for the
matrix A ∈ C

N×N

K N ,N vec (A) = vec
(

AT
)

= Ld vecd (A) + Ll vecu (A) + Lu vecl (A)

= Ld LT
d vec (A) + Ll L

T
u vec (A) + Lu LT

l vec (A)

= [Ld LT
d + Ll L

T
u + Lu LT

l

]
vec (A) . (2.144)

Because this holds for any A ∈ C
N×N , the lemma follows by setting vec(A) equal to the

i-th standard vector in C
N 2×1 for all i ∈ {0, 1, . . . , N 2 − 1}.

Lemma 2.26 Let A ∈ C
N×N , then

(K N ,N � I N 2 ) vec (A) = Ld vecd (A) . (2.145)

This can also be expressed as

Ld LT
d = I N 2 � K N ,N . (2.146)

Proof From (2.140), it follows that Ld vecd (A) = Ld LT
d vec (A). By studying (2.143)

and using the knowledge that Ll and Lu have distinct columns taken from an N 2 × N 2

permutation matrix, it is seen that the term Ld LT
d contains all the diagonal elements

of K N ,N . By taking the Hadamard product on each side of (2.143) with I N 2 , the
result in (2.145) follows. The result in (2.146) is a consequence of (2.140), together
with Ld vecd (A) = Ld LT

d vec (A).
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Lemma 2.27 The following relations hold:

K N ,N Ld = Ld , (2.147)

K N ,N Lu = Ll , (2.148)

K N ,N Ll = Lu, (2.149)

K N ,N DN = DN . (2.150)

Proof Note that K T
N ,N = K N ,N (Magnus & Neudecker 1988, pp. 46–48). Since

vecd (A) = LT
d vec(A) and vecd (AT ) = LT

d vec(AT ) = LT
d K N ,N vec(A) are equal for all

A ∈ C
N×N , it follows that (2.147) holds. Because vecl(A) = LT

l vec(A) and vecu(AT ) =
LT

u vec(AT ) = LT
u K N ,N vec(A) are equal for all A ∈ C

N×N , (2.148) and (2.149) are true.
Let B ∈ C

N×N be symmetric. Because

K N ,N DN v(B) = K N ,N vec (B) = vec (B) = DN v(B), (2.151)

it follows that (2.150) is valid.

Lemma 2.28 Let A ∈ C
N×N and (A)i, j = ai, j , then

A =
N−1∑
i=0

N−1∑
j=0

ai, j Ei, j =
N−1∑
i=0

ai,i Ei,i +
N−2∑
j=0

N−1∑
i= j+1

ai, j Ei, j +
N−2∑
i=0

N−1∑
j=i+1

ai, j Ei, j ,

(2.152)

where Ei, j is given in Definition 2.16, the sum
∑N−1

i=0 ai,i Ei,i takes care of all the
elements on the main diagonal, the sum

∑N−2
j=0

∑N−1
i= j+1 ai, j Ei, j considers all elements

strictly below the main diagonal, and the sum
∑N−2

i=0

∑N−1
j=i+1 ai, j Ei, j contains all terms

strictly above the main diagonal.

Proof This result follows directly from the way matrices are built up.

Lemma 2.29 The N 2 × N matrix Ld has the following properties:

Ld = [vec
(
e0eT

0

)
, vec

(
e1eT

1

)
, . . . , vec

(
eN−1eT

N−1

)]
, (2.153)

rank(Ld ) = N , (2.154)

L+
d = LT

d , (2.155)

(Ld )i+ j N ,k = δi, j,k, ∀i, j, k ∈ {0, 1, . . . , N − 1}, (2.156)

where δi, j,k denotes the Kronecker delta function with three integer-valued input argu-
ments, which is +1 when all input arguments are equal and 0 otherwise.
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Proof First, (2.153) is shown by taking the vec(·) operator on the diagonal elements
of A:

Ld vecd (A) = vec

(
N−1∑
i=0

ai,i Ei,i

)
=

N−1∑
i=0

ai,i vec (Ei,i ) =
N−1∑
i=0

ai,i vec
(
ei e

T
i

)

=
N−1∑
i=0

ei ⊗ ei ai,i = [e0 ⊗ e0, e1 ⊗ e1, . . . , eN−1 ⊗ eN−1] vecd (A)

= [vec
(
e0eT

0

)
, vec

(
e1eT

1

)
, . . . , vec

(
eN−1eT

N−1

)]
vecd (A) , (2.157)

which shows that (2.153) holds, where (2.215) from Exercise 2.14 has been used.
From (2.153), (2.154) follows directly.
Because Ld has full column rank, (2.155) follows from (2.80) and (2.133).
Let i, j, k ∈ {0, 1, . . . , N − 1}, then (2.156) can be shown as follows:

(Ld )i+ j N ,k = (ek ⊗ ek)i+ j N = δ j,k (ek)i = δ j,kδi,k = δi, j,k, (2.158)

where δk,l denotes the Kronecker delta function with two integer-valued input arguments,
i.e., δk,l = 1, when k = l and δk,l = 0 when k �= l.

Lemma 2.30 The N 2 × N (N−1)
2 matrix Ll from Definition 2.12 satisfies the following

properties:

Ll = [vec
(
e1eT

0

)
, vec

(
e2eT

0

)
, . . . , vec

(
eN−1eT

0

)
, vec

(
e2eT

1

)
, . . . , vec

(
eN−1eT

N−2

)]
,

(2.159)

rank (Ll ) = N (N − 1)

2
, (2.160)

L+
l = LT

l , (2.161)

(Ll)i+ j N ,k+l N− l2+3l+2
2

= δ j,l · δk,i , (2.162)

where i, j, k, l ∈ {0, 1, . . . , N − 1}, and k > l.

Proof Equation (2.159) can be derived by using the vec(·) operator on the terms of
A ∈ C

N×N , which are located strictly below the main diagonal

Ll vecl (A) = vec


N−2∑

j=0

N−1∑
i= j+1

ai, j Ei, j


 =

N−2∑
j=0

N−1∑
i= j+1

ai, j vec
(

Ei, j

)

=
N−2∑
j=0

N−1∑
i= j+1

ai, j vec
(
ei e

T
j

) =
N−2∑
j=0

N−1∑
i= j+1

e j ⊗ ei ai, j
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= [e0 ⊗ e1, e0 ⊗ e2, . . . , e0 ⊗ eN−1, e1 ⊗ e2, . . . , eN−2 ⊗ eN−1]




a1,0

a2,0
...

aN−1,0

a2,1
...

aN−1,N−2




= [e0 ⊗ e1, e0 ⊗ e2, . . . , e0 ⊗ eN−1, e1 ⊗ e2, . . . , eN−2 ⊗ eN−1] vecl (A) . (2.163)

Because (2.163) is valid for all A ∈ C
N×N , the result in (2.159) follows by setting

vecl (A) equal to the i-th standard basis vector in C
N (N−1)

2 ×1 for all i ∈ {0, 1, . . . , N − 1}.
The result in (2.160) follows directly by the fact that the columns of Ll are given by

different columns of a permutation matrix.
From (2.160), it follows that the N 2 × N (N−1)

2 matrix Ll has full column rank, then
(2.161) follows from (2.80) and (2.134).

It remains to show (2.162). The number of columns of Ll is N (N−1)
2 ; hence, the

element that should be decided is (Ll)i+ j N ,q , where i, j ∈ {0, 1, . . . , N − 1} and q ∈{
0, 1, . . . ,

N (N−1)
2 − 1

}
. The one-dimensional index q ∈ {0, 1, . . . ,

N (N−1)
2 − 1} runs

through all elements strictly below the main diagonal of an N × N matrix when moving
from column to column from the upper elements and down each column in the same
order as used when the operator vec(·) is applied on an N × N matrix. By studying the
one-dimensional index q carefully, it is seen that the first column of Ll corresponds to
q = 0 for elements in row number 1 and column number 0, where the numbering of
the rows and columns starts with 0. The first element in the first column of an N × N
matrix is not numbered by q because this element is not located strictly below the main
diagonal. Let the row number for generating the index q be denoted by k, and let the
column be number l of an N × N matrix, where k, l ∈ {0, 1, . . . , N − 1}. For elements
strictly below the main diagonal, it is required that k > l. By studying the number of
columns in Ll that should be generated by going along the columns of an N × N matrix
to the element in row number k and column number l, it is seen that the index q can be
expressed as in terms of k and l as

q = k + l N −
l∑

p=0

(p + 1) = k + l N − l2 + 3l + 2

2
, (2.164)

where the sum
l∑

p=0

(p + 1) represents the elements among the first l columns that should

not be indexed by q because they are located above or on the main diagonal. The
expression in (2.162) is found as follows:

(Ll)i+ j N ,k+l N− l2+3l+2
2

= (vec
(
ekeT

l

))
i+ j N

= (el ⊗ ek)i+ j N

= δ j,l (ek)i = δ j,lδk,i , (2.165)

which was going to be shown.
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Lemma 2.31 The N 2 × N (N−1)
2 matrix Lu defined in Definition 2.12 satisfies the fol-

lowing properties:

Lu=
[
vec
(
e0eT

1

)
, vec

(
e0eT

2

)
, . . . , vec

(
e0eT

N−1

)
, vec

(
e1eT

2

)
, . . . , vec

(
eN−2eT

N−1

)]
,

(2.166)

rank (Lu) = N (N − 1)

2
(2.167)

L+
u = LT

u , (2.168)

(Lu)
i+ j N ,l+k N− k2+3k+2

2
= δl, j · δk,i , (2.169)

where i, j, k, l ∈ {0, 1, . . . , N − 1} and l > k.

Proof Equation (2.166) can be derived by using the vec(·) operator on the terms of
A ∈ C

N×N , which are located strictly above the main diagonal:

Lu vecu (A)

= vec


N−2∑

i=0

N−1∑
j=i+1

ai, j Ei, j


 =

N−2∑
i=0

N−1∑
j=i+1

ai, j vec
(

Ei, j

)

=
N−2∑
i=0

N−1∑
j=i+1

ai, j vec
(
ei e

T
j

) =
N−2∑
i=0

N−1∑
j=i+1

e j ⊗ ei ai, j

= [e1 ⊗ e0, e2 ⊗ e0, . . . , eN−1 ⊗ e0, e2 ⊗ e1, . . . , eN−1 ⊗ eN−2]




a0,1

a0,2
...

a0,N−1

a1,2
...

aN−2,N−1




= [e1 ⊗ e0, e2 ⊗ e0, . . . , eN−1 ⊗ e0, e2 ⊗ e1, . . . , eN−1 ⊗ eN−2] vecu (A) . (2.170)

The equation in (2.166) now follows from (2.170) because (2.170) is valid for all
A ∈ C

N×N . The i-th columns of each side of (2.166) are shown to be equal by setting
vecu(A) equal to the i-th standard unit vector in C

N (N−1)
2 ×1.

The result in (2.167) follows from (2.166).
From (2.167), it follows that the matrix Lu has full column rank; hence, it follows

from (2.80) and (2.135) that (2.168) holds.
The matrix Lu has size N 2 × N (N−1)

2 , such the task is to specify the elements
(Lu)i+ j N ,q , where i, j ∈ {0, 1, . . . , N − 1} and q ∈ {0, 1, . . . ,

N (N−1)
2 − 1} specify the

column of Lu . Here, q is the number of elements that is strictly above the main diagonal
when the elements of an N × N matrix are visited in a row-wise manner, starting from
the first row, and going from left to right until the element in row number k and column
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number l. For elements strictly above the main diagonal, it is required that l > k. Using
the same logic as in the proof of (2.162), the column numbering of Lu can be found as

q = l + k N −
k∑

p=0

(p + 1) = l + k N − k2 + 3k + 2

2
, (2.171)

where the term
k∑

p=0

(p + 1) gives the number of elements that have been visited when

traversing the rows from left to right, which should not be counted until the element
in row number k and column number l is reached, meaning that they are located on or
below the main diagonal. The expression in (2.169) can be shown as follows:

(Lu)
i+ j N ,l+k N− k2+3k+2

2
= (vec

(
ekeT

l

))
i+ j N

= (el ⊗ ek)i+ j N

= δl, j (ek)i = δl, jδk,i , (2.172)

which is the same as in (2.169).

Proposition 2.2 Let A ∈ C
N×N , then,

vecd (A) = (A � I N ) 1N×1. (2.173)

Proof This result follows directly from the definition of vecd (·) and by multiplying out
the right side of (2.173)

(A � I N ) 1N×1 =




a0,0

a1,1
...

aN−1,N−1


 , (2.174)

which is equal to vecd (A).

The duplication matrix is well known from the literature (Magnus & Neudecker 1988,
pp. 48–53), and in the next lemma, the connectionS between the duplication matrix and
the matrices Ld , Ll , and Lu , defined in Definition 2.12, are shown.

Lemma 2.32 The following relations hold between the three special matrices Ld , Ll ,
and Lu and the duplication matrix DN :

DN = Ld V T
d + (Ll + Lu) V T

l , (2.175)

Ld = DN Vd , (2.176)

Ll + Lu = DN V l , (2.177)

Vd = D+
N Ld , (2.178)

V l = D+
N (Ll + Lu) , (2.179)

where the two matrices Vd and V l are defined in Definition 2.15.
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Proof Let A ∈ C
N×N be symmetric. For a symmetric A, it follows that vecl (A) =

vecu (A). Using this result in (2.42) yields

vec (A) = Ld vecd (A) + Ll vecl (A) + Lu vecu (A)

= Ld vecd (A) + (Ll + Lu) vecl (A)

= [Ld , Ll + Lu]

[
vecd (A)
vecl (A)

]
. (2.180)

Alternatively, vec (A) can be expressed by (2.48) as follows:

vec (A) = DN v (A) = DN [Vd , V l]

[
vecd (A)
vecl(A)

]
, (2.181)

where (2.49) was used. Because the right-hand sides of (2.180) and (2.181) are identical
for all symmetric matrices A, it follows that

[Ld , Ll + Lu] = DN [Vd , V l ] . (2.182)

Right-multiplying the above equation by [Vd , V l ]
T leads to (2.175). Multiplying out

the right-hand side of (2.182) gives DN [Vd , V l] = [DN Vd , DN V l]. By comparing
this block matrix with the block matrix on the left-hand side of (2.182), the results in
(2.176) and (2.177) follow.

The duplication matrix DN has size N 2 × N (N+1)
2 and is left invertible by its Moore-

Penrose inverse, which is given by Magnus and Neudecker (1988, p. 49):

D+
N = (DT

N DN

)−1
DT

N . (2.183)

By left-multiplying (2.48) by D+
N , the following relation holds:

v (A) = D+
N vec (A) . (2.184)

Because D+
N DN = I N , (2.178) and (2.179) follow by left-multiplying (2.176) and

(2.177) by D+
N , respectively.

2.6 Exercises

2.1 Let f : C × C → C be given by

f (z, z∗) = u(x, y) + v(x, y), (2.185)

where z = x +  y, Re{ f (z, z∗)} = u(x, y), and Im{ f (z, z∗)} = v(x, y). Show that (2.6)
is equivalent to the traditional formulation of the Cauchy-Riemann equations

∂u

∂x
= ∂v

∂y
, (2.186)

∂u

∂y
= −∂v

∂x
. (2.187)
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2.2 Functions that are going to be maximized or minimized must be real-valued.
The results of this exercise show that in engineering problems of practical inter-
ests, the objective functions that are interesting do not satisfy the Cauchy-Riemann
equations.

Let the function f : C × C → R be given by

f (z, z∗) = u(x, y) + v(x, y), (2.188)

where z = x +  y, Re{ f (z, z∗)} = u(x, y), and Im{ f (z, z∗)} = v(x, y) are real-valued;
hence, v(x, y) = 0, and assume that it satisfies the Cauchy-Riemann equations. Show
that f is then a constant function.

2.3 Decide whether the following functions are analytic or non-analytic:

f (z) = z∗, (2.189)

f (z) = sin(z), (2.190)

f (z) = exp( z), (2.191)

f (z) = |z|, (2.192)

f (z) = 1
z , (2.193)

f (z) = Re{z}, (2.194)

f (z) = Im{z}, (2.195)

f (z) = Re{z} +  Im{z}, (2.196)

f (z) = Re{z} −  Im{z}, (2.197)

f (z) = ln(z), (2.198)

where the principal value (Kreyszig 1988, p. 754) of ln(z) is used in this book.

2.4 Let z ∈ C
N×1 be an arbitrary complex-valued vector. Show that the Moore-Penrose

inverse of z is given by

z+ =
{

zH

‖z‖2 , if z �= 0N×1,

01×N , if z = 0N×1.
(2.199)

2.5 Assume that A ∈ C
N×N and B ∈ C

N×N commute (i.e., AB = BA). Show that

exp(A) exp(B) = exp(B) exp(A) = exp(A + B). (2.200)
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2.6 Show that the following properties are valid for the commutation matrix:

K T
Q,N = K −1

Q,N = K N ,Q, (2.201)

K 1,N = K N ,1 = I N , (2.202)

K Q,N =
N−1∑
j=0

Q−1∑
i=0

Ei, j ⊗ ET
i, j , (2.203)

[
K Q,N

]
i+ j N ,k+l Q

= δi,lδ j,k, (2.204)

where Ei, j of size Q × N contains only 0s except for +1 in the (i, j)-th position.

2.7 Write a MATLAB program that finds the commutation matrix K N ,Q without using
for- or while- loops. (Hint: One useful MATLAB function to avoid loops is find.)

2.8 Show that

Tr
{

AT B
} = vecT (A) vec (B) , (2.205)

where the matrices A ∈ C
N×M and B ∈ C

N×M .

2.9 Show that

Tr {AB} = Tr {BA} , (2.206)

where the matrices A ∈ C
M×N and B ∈ C

N×M .

2.10 Show that

vec (A � B) = diag (vec (A)) vec (B) , (2.207)

where A, B ∈ C
N×M .

2.11 Let A ∈ C
M×N , B ∈ C

P×Q . Use Lemma 2.13 to show that

vec (A ⊗ B) = [I N ⊗ G] vec (A) = [H ⊗ I P ] vec (B) , (2.208)

where G ∈ C
QM P×M and H ∈ C

QM N×Q are given by

G = [K Q,M ⊗ I P

]
[I M ⊗ vec (B)] , (2.209)

H = [I N ⊗ K Q,M

] [
vec (A) ⊗ I Q

]
. (2.210)

2.12 Write MATLAB programs that find the matrices Ld , Ll , and Lu without using
any for- or while- loops. (Hint: One useful MATLAB function to avoid loops is
find.)

2.13 Let the identity matrix I N (N+1)
2

have columns that are indexed as follows:

I N (N+1)
2

= [u0,0, u1,0, · · · , uN−1,0, u1,1, · · · , uN−1,1, u2,2, · · · , uN−1,N−1

]
, (2.211)
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where the vector ui, j ∈ R
N (N+1)

2 ×1 contains 0s everywhere except in component num-
ber j N + i + 1 − 1

2 ( j + 1) j .
Show6 that the duplication matrix DN of size N 2 × N (N+1)

2 can be expressed as

DN =
∑
i≥ j

vec
(
T i, j

)
uT

i, j

= [vec (T0,0) , vec (T1,0) , · · · , vec (T N−1,0) , vec (T1,1) , · · · , vec (T N−1,N−1)
]
,

(2.212)

where ui, j is defined above, and where T i, j is an N × N matrix defined as

T i, j =
{

Ei, j + E j,i , if i �= j,
Ei,i , if i = j,

(2.213)

where Ei, j is found in Definition 2.16.
By using Definitions 2.15 and (2.175), show that

DN DT
N = I N 2 + K N ,N − K N ,N � I N 2 . (2.214)

By means of (2.212), write a MATLAB program for finding the duplication matrix DN

without any for- or while- loops.

2.14 Let ai ∈ C
Ni ×1, where i ∈ {0, 1}, then show that

vec
(
a0aT

1

) = a1 ⊗ a0, (2.215)

by using the definitions of the vec operator and the Kronecker product. Show also that
the following is valid:

a0 ⊗ aT
1 = a0aT

1 = aT
1 ⊗ a0. (2.216)

2.15 Show that Proposition 2.1 holds.

2.16 Let A ∈ C
M×N and B ∈ C

P×Q . Show that

(A ⊗ B)T = AT ⊗ BT . (2.217)

2.17 Let A ∈ C
N×N , B ∈ C

N×M , C ∈ C
M×M , and D ∈ C

M×N . Use Lemma 2.2 to
show that if A ∈ C

N×N , C ∈ C
M×M , and A + BC D are invertible, then C−1 + D A−1 B

is invertible. Show that the matrix inversion lemma stated in Lemma 2.3 is valid by
showing (2.66).

2.18 Write a MATLAB program that implements the operator v : C
N×N → C

N (N+1)
2 ×1

without any loops. By using the program that implements the operator v(·), write a

6 The following result is formulated in Magnus (1988, Theorem 4.3).
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MATLAB program that finds the three matrices Vd , V l , and V without using any for- or
while- loops.

2.19 Given three positive integers M , N , and P , let A ∈ C
M×N and B ∈ C

N P×P

be column symmetric. Show that the matrix C � [A ⊗ I P ] B is column symmetric,
that is,

vecb
(
CT
) = C . (2.218)



3 Theory of Complex-Valued
Matrix Derivatives

3.1 Introduction

A theory developed for finding derivatives with respect to real-valued matrices with
independent elements was presented in Magnus and Neudecker (1988) for scalar, vector,
and matrix functions. There, the matrix derivatives with respect to a real-valued matrix
variable are found by means of the differential of the function. This theory is extended
in this chapter to the case where the function depends on a complex-valued matrix
variable and its complex conjugate, when all the elements of the matrix are independent.
It will be shown how the complex differential of the function can be used to identify
the derivative of the function with respect to both the complex-valued input matrix
variable and its complex conjugate. This is a natural extension of the real-valued vector
derivatives in Kreutz-Delgado (2008)1 and the real-valued matrix derivatives in Magnus
and Neudecker (1988) to the case of complex-valued matrix derivatives. The complex-
valued input variable and its complex conjugate should be treated as independent when
finding complex matrix derivatives. For scalar complex-valued functions that depend
on a complex-valued vector and its complex conjugate, a theory for finding derivatives
with respect to complex-valued vectors, when all the vector components are independent,
was given in Brandwood (1983). This was extended to a systematic and simple way of
finding derivatives of scalar, vector, and matrix functions with respect to complex-valued
matrices when the matrix elements are independent (Hjørungnes & Gesbert 2007a). In
this chapter, the definition of the complex-valued matrix derivative will be given, and
a procedure will be presented for how to obtain the complex-valued matrix derivative.
Central to this procedure is the complex differential of a function, because in the complex-
valued matrix definition, the first issue is to find the complex differential of the function
at hand.

The organization of the rest of this chapter is as follows: Section 3.2 contains an
introduction to the area of complex differentials, where several ways for finding the
complex differential are presented, together with the derivation of many useful complex
differentials. The most important complex differentials are collected into Table 3.1

1 Derivatives with respect to real-valued and complex-valued vectors were studied in Kreutz-Delgado (2008;
2009, June 25), respectively. Derivatives of a scalar function with respect to real-valued or complex-valued
column vectors were organized as row vectors in Kreutz-Delgado (2008; 2009, June 25). The definition
given in this chapter is a natural generalization of the definitions used in Kreutz-Delgado (2008; 2009,
June 25).
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and are easy for the reader to locate. In Section 3.3, the definition of complex-valued
matrix derivatives is given together with a procedure that can be used to find complex-
valued matrix derivatives. Fundamental results – including topics such as the chain
rule of complex-valued matrix derivatives, conditions for finding stationary points for
scalar real-valued functions, the direction in which a scalar real-valued function has
its maximum and minimum rates of change, and the steepest descent method – are
stated in Section 3.4. Section 3.5 presents exercises related to the material presented in
this chapter. Some of these exercises can be directly applied in signal processing and
communications.

3.2 Complex Differentials

Just as in the real-valued case (Magnus & Neudecker 1988), the symbol d will be used
to denote the complex differential. The complex differential has the same size as the
matrix it is applied to and can be found component-wise (i.e., (d Z)k,l = d (Z)k,l ). Let
z = x +  y ∈ C represent a complex scalar variable, where Re{z} = x and Im{z} = y.
The following four relations hold between the real and imaginary parts of z and its
complex conjugate z∗:

z = x +  y, (3.1)

z∗ = x −  y, (3.2)

x = z + z∗

2
, (3.3)

y = z − z∗

2
. (3.4)

For complex differentials (Fong 2006), these four relations can be formulated as follows:

dz = dx + dy, (3.5)

dz∗ = dx − dy, (3.6)

dx = dz + dz∗

2
, (3.7)

dy = dz − dz∗

2
. (3.8)

In studying (3.5) and (3.6), the following relation holds:

dz∗ = (dz)∗ . (3.9)

Let us consider the scalar function f : C × C → C denoted by f (z, z∗). Because the
function f can be considered as a function of the two complex-valued variables z and
z∗, both of which depend on the x and y through (3.1) and (3.2), the function f can
also be seen as a function that depends on the two real-valued variables x and y. If f
is considered as a function of the two independent real-valued variables x and y, the
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differential of f can be expressed as follows (Edwards & Penney 1986):

d f = ∂ f

∂x
dx + ∂ f

∂y
dy, (3.10)

where ∂ f
∂x and ∂ f

∂y are the partial derivatives of f with respect to x and y, respectively.
By inserting the differential expression of dx and dy from (3.7) and (3.8) into (3.10),
the following expression is found:

d f = ∂ f

∂x

dz + dz∗

2
+ ∂ f

∂y

dz − dz∗

2
= 1

2

(
∂ f

∂x
− 

∂ f

∂y

)
dz + 1

2

(
∂ f

∂x
+ 

∂ f

∂y

)
dz∗.

(3.11)

A complex-valued expression (Fong 2006, Eq. (1.4)) similar to the one in (3.10) is also
valid when z and z∗ are treated as two independent variables:

d f = ∂ f

∂z
dz + ∂ f

∂z∗ dz∗. (3.12)

If (3.11) and (3.12) are compared, it is seen that

∂ f

∂z
= 1

2

(
∂ f

∂x
− 

∂ f

∂y

)
, (3.13)

and

∂ f

∂z∗ = 1

2

(
∂ f

∂x
+ 

∂ f

∂y

)
, (3.14)

which are in agreement with the formal derivatives defined in Definition 2.2 (see (2.11)
and (2.12)).

The above analysis can be extended to a scalar complex-valued function that depends
on a complex-valued matrix variable Z and its complex conjugate Z∗. Let us study
the scalar function f : C

N×Q × C
N×Q → C denoted by f (Z, Z∗). The complex-valued

matrix variables Z and Z∗ can also be expressed:

Z = X + Y, (3.15)

Z∗ = X − Y, (3.16)

where Re{Z} = X and Im{Z} = Y . The relations in (3.15) and (3.16) are equivalent to
(2.2) and (2.3), respectively. The complex differential of a matrix is found by using the
differential operator on each element of the matrix; hence, (2.2), (2.3), (2.4), and (2.5)
can be carried over to differential forms, in the following way:

d Z = d Re {Z} + d Im {Z} = d X + dY, (3.17)

d Z∗ = d Re {Z} − d Im {Z} = d X − dY, (3.18)

d Re {Z} = d X = 1
2 (d Z + d Z∗) , (3.19)

d Im {Z} = dY = 1
2

(d Z − d Z∗) . (3.20)

Given all components within the two real-valued N × Q matrices X and Y , the differ-
ential of f might be expressed in terms of the independent real-valued variables xk,l
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and yk,l or the independent (when considering complex derivatives) complex-valued
variables zk,l and z∗

k,l in the following way:

d f =
Q−1∑
k=0

N−1∑
l=0

∂ f

∂xk,l
dxk,l +

Q−1∑
k=0

N−1∑
l=0

∂ f

∂yk,l
dyk,l (3.21)

=
Q−1∑
k=0

N−1∑
l=0

∂ f

∂zk,l
dzk,l +

Q−1∑
k=0

N−1∑
l=0

∂ f

∂z∗
k,l

dz∗
k,l , (3.22)

where ∂ f
∂xk,l

, ∂ f
∂yk,l

, ∂ f
∂zk,l

, and ∂ f
∂z∗

k,l
are the derivatives of f with respect to xk,l , yk,l , zk,l , and

z∗
k,l , respectively. The N Q formal derivatives of ∂ f

∂zk,l
and the N Q formal derivatives of

∂ f
∂z∗

k,l
can be organized into matrices in several ways; later in this and in the next chapter,

we will see several alternative definitions for the derivatives of a scalar function f with
respect to complex-valued matrices Z and Z∗.

This section contains three subsections. In Subsection 3.2.1, a procedure that can often
be used to find the complex differentials is presented. Several basic complex differentials
that are essential for finding complex derivatives are presented in Subsection 3.2.2,
together with their derivations. Two lemmas are presented in Subsection 3.2.3; these will
be used to identify both first- and second-order derivatives in this and later chapters.

3.2.1 Procedure for Finding Complex Differentials

Let the two input complex-valued matrix variables be denoted Z0 ∈ C
N×Q and Z1 ∈

C
N×Q , where all elements of these two matrices are independent. It is assumed that

these two complex-valued matrix variables can be treated independently when finding
complex-valued matrix derivatives.

A procedure that can often be used to find the differentials of a complex matrix function
F : C

N×Q × C
N×Q → C

M×P , denoted by F(Z0, Z1), is to calculate the difference

F(Z0 + d Z0, Z1 + d Z1) − F(Z0, Z1)

= First-order(d Z0, d Z1) + Higher-order(d Z0, d Z1), (3.23)

where First-order(·, ·) returns the terms that depend on d Z0 or d Z1 of the first order,
and Higher-order(·, ·) returns the terms that depend on the higher-order terms of d Z0

and d Z1. The differential is then given by First-order(·, ·) as

d F = First-order(F(Z0 + d Z0, Z1 + d Z1) − F(Z0, Z1)). (3.24)

This procedure will be used several times in this chapter.

3.2.2 Basic Complex Differential Properties

Some of the basic properties of complex differentials are presented in this subsection.

Proposition 3.1 Let A ∈ C
M×P be a constant matrix that is not dependent on the

complex matrix variable Z or Z∗. The complex differential of a constant matrix A is
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given by

d A = 0M×P . (3.25)

Proof Let the function used in (3.23) be given as F(Z0, Z1) = A. By obtaining the
difference in (3.23), it is found that

F(Z0 + d Z0, Z1 + d Z1) − F(Z0, Z1) = A − A = 0M×P . (3.26)

Here, both first-order and higher-order terms are equal to the zero matrix 0M×P . Hence,
(3.25) follows.

Proposition 3.2 Let A ∈ C
M×N , Z ∈ C

N×Q, and B ∈ C
Q×P , where A and B are inde-

pendent of Z and Z∗. Then

d(AZB) = A(d Z)B. (3.27)

Proof The procedure presented in Subsection 3.2.1 is now followed. Let the function
used in Subsection 3.2.1 be given by F(Z0, Z1) = AZ0 B. The difference on the left-
hand side of (3.23) can be written as

F(Z0 + d Z0, Z1 + d Z1) − F(Z0, Z1) = A(Z0 + d Z0)B − AZ0 B

= A(d Z0)B. (3.28)

It is seen that the left-hand side of (3.28) contains only one first-order term. By choosing
the two complex-valued matrix variables Z0 and Z1 in (3.28) as Z0 = Z and Z1 = Z∗,
it is seen that (3.27) follows.

Corollary 3.1 Let a ∈ C be a constant that is independent of Z ∈ C
N×Q and Z∗ ∈

C
N×Q. Then

d(aZ) = ad Z, (3.29)

Proof If we set A = a I N and B = I Q in (3.27), the result follows.

Proposition 3.3 Let Zi ∈ C
N×Q for i ∈ {0, 1, . . . , L − 1}. The complex differential of

a sum is given by

d(Z0 + Z1) = d Z0 + d Z1. (3.30)

The complex differential of a sum of L for such matrices can be expressed as

d

(
L−1∑
k=0

Zk

)
=

L−1∑
k=0

d Zk . (3.31)

Proof Let the function in the procedure outlined in Subsection 3.2.1 be given by
F(Z0, Z1) = Z0 + Z1. By forming the difference in (3.23), it is found that

F(Z0 + d Z0, Z1 + d Z1) − F(Z0, Z1) = Z0 + d Z0 + Z1 + d Z1 − Z0 − Z1

= d Z0 + d Z1. (3.32)
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Both terms on the right-hand side of (3.32) are of the first order in d Z0 or d Z1; hence,
(3.30) follows.

By repeated application of (3.30), (3.31) follows.

Proposition 3.4 If Z ∈ C
N×N , then

d(Tr {Z}) = Tr {d Z} . (3.33)

Proof If the procedure in Subsection 3.2.1 should be followed, it is first adapted to scalar
functions. Let the function f be defined as f : C

N×N × C
N×N → C, where it is given

by f (Z0, Z1) = Tr{Z0}. The left-hand side of (3.23) can be written as

F(Z0 + d Z0, Z1 + d Z1) − F(Z0, Z1) = Tr{Z0 + d Z0} − Tr{Z0}
= Tr{d Z0}. (3.34)

The right-hand side of (3.34) contains only first-order terms in d Z0. By choosing Z0 = Z
and Z1 = Z∗ in (3.34), the result in (3.33) follows.

Proposition 3.5 Let Z0 ∈ C
M×N and Z1 ∈ C

N×P , such that the matrix product Z0 Z1

is well defined. Then2

d Z0 Z1 = (d Z0)Z1 + Z0d Z1. (3.35)

Proof To find the complex differential of Z0 Z1, the procedure outlined in (3.23) is
followed. Let F(Z0, Z1) = Z0 Z1. First, the left-hand side of (3.23) is written as

F(Z0 + d Z0, Z1 + d Z1) − F(Z0, Z1) = Z0d Z1 + (d Z0)Z1 + (d Z0)d Z1.

The complex differential of F(Z0, Z1) can be identified as all the first-order terms on
d Z0 or d Z1; therefore, d Z0 Z1 = Z0d Z1 + (d Z0)Z1.

Proposition 3.6 Let Z0 ∈ C
N×Q and Z1 ∈ C

M×P . The complex differential of the Kro-
necker product is given by

d(Z0 ⊗ Z1) = (d Z0) ⊗ Z1 + Z0 ⊗ d Z1. (3.36)

Proof The procedure in Subsection 3.2.1 is followed, so let F : C
N×Q × C

M×P →
C

N M×Q P be given by F(Z0, Z1) = Z0 ⊗ Z1, expanding the difference of the left-hand
side of (3.23):

F(Z0 + d Z0, Z1 + d Z1)−F(Z0, Z1)= (Z0 + d Z0) ⊗ (Z1 + d Z1) − Z0 ⊗ Z1

= Z0 ⊗ d Z1 + (d Z0) ⊗ Z1 + (d Z0) ⊗ d Z1,

(3.37)

where it was used so that the Kronecker product follows the distributive law.3 Three
addends are present on the right-hand side of (3.37); the first two are of the first order
in d Z0 and d Z1, and the third addend is of the second order. Because the differential

2 In this book, the following notation is used when taking differentials of matrix products: d Z0 Z1 = d(Z0 Z1).
3 Let A, B ∈ C

N×Q and C, D ∈ C
M×P , then (A + B) ⊗ (C + D) = A ⊗ C + A ⊗ D + B ⊗ C + B ⊗ D.

This is shown in Horn and Johnson (1991, Section 4.2).
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of F is equal to the first-order terms in d Z0 and d Z1 in (3.37), the result in (3.36)
follows.

Proposition 3.7 Let Z0 ∈ C
N×Q for i ∈ {0, 1}. The complex differential of the

Hadamard product is given by

d(Z0 � Z1) = (d Z0) � Z1 + Z0 � d Z1. (3.38)

Proof Let F : C
N×Q × C

N×Q → C
N×Q be given as F(Z0, Z1) = Z0 � Z1. The differ-

ence on the left-hand side of (3.23) can be written as

F(Z0 + d Z0, Z1 + d Z1) − F(Z0, Z1) = (Z0 + d Z0) � (Z1 + d Z1)−Z0 � Z1

= Z0 � d Z1 + (d Z0) � Z1 + (d Z0) � d Z1.

(3.39)

Among the three addends on the right-hand side in (3.39), the first two are first order in
d Z0 and d Z1, and the third addend is second order. Hence, (3.38) follows.

Proposition 3.8 Let Z ∈ C
N×N be invertible. Then the complex differential of the inverse

matrix Z−1 is given by

d Z−1 = −Z−1(d Z)Z−1. (3.40)

Proof Because Z ∈ C
N×N is invertible, the following relation is satisfied:

ZZ−1 = I N . (3.41)

By applying the differential operator d on both sides of (3.41) and using the results
from (3.25) and (3.35), it is found that

(d Z)Z−1 + Zd Z−1 = d I N = 0N×N . (3.42)

Solving d Z−1 from this equation yields (3.40).

Proposition 3.9 Let reshape(·) be any linear reshaping operator4 of the input matrix.
The complex differential of the operator reshape(·) is given by

d reshape(Z) = reshape(d Z). (3.43)

Proof Because reshape(·) is a linear operator, it follows that

reshape(Z + d Z) − reshape(Z) = reshape(Z) + reshape(d Z) − reshape(Z)

= reshape(d Z). (3.44)

By using the procedure from Subsection 3.2.1, and because the right-hand side of (3.44)
contains only one first-order term, the result in (3.43) follows.

4 The size of the output vector/matrix might be different from the input, so reshape(·) performs linear reshaping
of its input argument. Hence, the reshape(·) operator might delete certain input components, keep all input
components, and/or make multiple copies of certain input components.
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The differentiation rule of the reshaping operator reshape(·) in Table 3.1 is valid for
any linear reshaping operator reshape(·) of a matrix; examples of such operators include
transpose (·)T and vec(·).
Proposition 3.10 Let Z ∈ C

N×Q. Then the complex differential of the matrix Z∗ is given
by

d Z∗ = (d Z)∗. (3.45)

Proof Because the differential operator of a matrix operates on each component of the
matrix, and because of (3.9), the expression in (3.45) is valid.

Proposition 3.11 Let Z ∈ C
N×Q. Then the differential of the complex Hermitian of Z

is given by

d ZH = (d Z)H . (3.46)

Proof Because the Hermitian operator is given by the complex conjugate transpose, this
result follows from (3.43) when using reshape(·) as the (·)T plus (3.45)

d ZH = d (Z∗)T = (d Z∗)T = ((d Z)∗
)T = (d Z)H . (3.47)

Proposition 3.12 Let Z ∈ C
N×N . Then the complex differential of the determinant is

given by

d det(Z) = Tr
{

CT (Z)d Z
}

. (3.48)

where the matrix C(Z) ∈ C
N×N contains the cofactors5 denoted by ck,l (Z) of Z. If

Z ∈ C
N×N is invertible, then the complex differential of the determinant is given by

d det(Z) = det(Z) Tr
{

Z−1d Z
}

. (3.49)

Proof Let ck,l (Z) be the cofactor of zk,l � (Z)k,l , where Z ∈ C
N×N . The determinant

can be formulated along any row or column, and if the column number l is considered,
the determinant can be written as

det (Z) =
N−1∑
k=0

ck,l (Z)zk,l, (3.50)

where the cofactor ck,l (Z) is independent of zk,l and z∗
k,l .

If f : C
N×Q × C

N×Q → C is a scalar complex-valued function denoted by f (Z, Z∗),
then the connection between the differential of f , the derivatives of f with respect to
all the components of Z and Z∗, and the differentials of the components of Z and Z∗

can be written as in (3.22). If (3.22) is used on the function f (Z, Z∗) = det(Z), where

5 A cofactor ck,l (Z) of Z ∈ C
N×N is equal to (−1)k+l times the (k, l)-th minor of Z, denoted by mk,l (Z). The

minor mk,l (Z) is equal to the determinant of the (N − 1) × (N − 1) submatrix of Z found by deleting its
k-th row and l-th column.
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N = Q, then it is found that the derivatives of f with respect to zk,l and z∗
k,l are given

by

∂

∂zk,l
f = ck,l (Z), (3.51)

∂

∂z∗
k,l

f = 0, (3.52)

where (3.50) has been utilized. Inserting (3.51) and (3.52) into (3.22) leads to

d det (Z) =
N−1∑
k=0

N−1∑
l=0

ck,l (Z)dzk,l . (3.53)

The following identity is valid for square matrices A ∈ C
N×N and B ∈ C

N×N :

Tr {AB} =
N−1∑
p=0

N−1∑
q=0

ap,qbq,p. (3.54)

If (3.54) is used on the expression in (3.53), the following expression for the differential
det (Z) is found:

d det (Z) = Tr
{

CT (Z)d Z
}

, (3.55)

where C(Z) ∈ C
N×N is the matrix of cofactors of Z such that ck,l (Z) = (C(Z))k,l .

Therefore, (3.48) holds.
Assume now that Z is invertible. The following formula is valid for invertible matri-

ces (Kreyszig 1988, p. 411):

CT (Z) = Z# = det(Z)Z−1. (3.56)

When (3.56) is used in (3.48), it follows that the differential of det (Z) can be written as

d det (Z) = Tr{Z#d Z} = det(Z) Tr
{

Z−1d Z
}

, (3.57)

which completes the last part of the proposition.

Proposition 3.13 Let Z ∈ C
N×N be nonsingular. Then the complex differential of the

adjoint of Z can be expressed as

d Z# = det(Z)
[
Tr
{

Z−1(d Z)
}

Z−1 − Z−1(d Z)Z−1
]
. (3.58)

Proof For invertible matrices Z# = det(Z)Z−1, using the complex differential operator
on this matrix relation and the results in (3.35), (3.40), and (3.49) yields

d Z# = (d det(Z))Z−1 + det(Z)d Z−1

= det(Z) Tr
{

Z−1d Z
}

Z−1 − det(Z)Z−1 (d Z) Z−1

= det(Z)
[
Tr
{

Z−1d Z
}

Z−1 − Z−1 (d Z) Z−1
]
, (3.59)

which is the desired result.
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The following differential is important when finding derivatives of the mutual infor-
mation and the capacity of an MIMO channel, because the capacity is given by the
logarithm of a determinant expression (Telatar 1995).

Proposition 3.14 Let Z ∈ C
N×N be invertible with a determinant that is not both real

and negative. Then the differential of the natural logarithm of the determinant is given
by

d ln(det(Z)) = Tr
{

Z−1d Z
}

. (3.60)

Proof In this book, the principal value is used for ln(z), and its derivative is given
by Kreyszig (1988, p. 755):

∂ ln(z)

∂z
= 1

z
. (3.61)

Hence, the complex differential of ln(z) is given by

d ln(z) = dz

z
, (3.62)

when the variable z is not located on the negative real axis or in the origin.
Assume that det(Z) is not both real and non-positive. Then

d ln(det(Z)) = d det(Z)

det(Z)
= det(Z) Tr

{
Z−1d Z

}
det(Z)

= Tr
{

Z−1d Z
}

, (3.63)

where (3.49) was used to find d det(Z).

The differential of the real-valued Moore-Penrose inverse is given in Magnus and
Neudecker (1988) and Harville (1997), but the complex-valued version is derived next.

Proposition 3.15 (Differential of the Moore-Penrose Inverse) Let Z ∈ C
N×Q. Then the

complex differential of Z+ is given by

d Z+ = −Z+(d Z)Z+ + Z+(Z+)H (d ZH )
(

I N − ZZ+)
+ (I Q − Z+ Z

)
(d ZH )(Z+)H Z+. (3.64)

Proof Equation (2.25) leads to d Z+ = d Z+ ZZ+ = (d Z+ Z)Z+ + Z+ Zd Z+. If Zd Z+

is found from d ZZ+ = (d Z)Z+ + Zd Z+, and is inserted in the expression for d Z+,
then it is found that

d Z+ = (d Z+ Z)Z+ + Z+(d ZZ+ − (d Z)Z+)

= (d Z+ Z)Z+ + Z+d ZZ+ − Z+(d Z)Z+. (3.65)

It is seen from (3.65) that it remains to express d Z+ Z and d ZZ+ in terms of d Z and
d Z∗. First, d Z+ Z is handled as

d Z+ Z = d Z+ ZZ+ Z = (d Z+ Z)Z+ Z + Z+ Z(d Z+ Z)

= (Z+ Z(d Z+ Z))H + Z+ Z(d Z+ Z). (3.66)

The expression Z(d Z+ Z) can be found from d Z = d ZZ+ Z = (d Z)Z+ Z + Z(d Z+ Z),
and it is given by Z(d Z+ Z) = d Z − (d Z)Z+ Z = (d Z)(I Q − Z+ Z). If this expression
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Table 3.1 Important complex differentials.

Function Differential of function

A 0
aZ ad Z
AZB A(d Z)B
Z0 + Z1 d Z0 + d Z1

Tr {Z} Tr {d Z}
Z0 Z1 (d Z0)Z1 + Z0d Z1

Z0 ⊗ Z1 (d Z0) ⊗ Z1 + Z0 ⊗ d Z1

Z0 � Z1 (d Z0) � Z1 + Z0 � d Z1

Z−1 −Z−1(d Z)Z−1

det(Z) det(Z) Tr
{

Z−1d Z
}

ln(det(Z)) Tr
{

Z−1d Z
}

reshape(Z) reshape(d Z)
Z∗ (d Z)∗

ZH (d Z)H

Z#
[
Tr
{

Z−1(d Z)
}

Z−1 − Z−1(d Z)Z−1
]

Z+ −Z+(d Z)Z+ + Z+(Z+)H (d ZH )
(

I N − ZZ+)+ (I Q − Z+ Z
)

(d ZH )(Z+)H Z+

ez = exp(z) ezdz
ln(z) dz

z

is inserted into (3.66), it is found that

d Z+ Z = (Z+(d Z)(I Q − Z+ Z))H + Z+(d Z)(I Q − Z+ Z)

= (I Q − Z+ Z)
(
d ZH

)
(Z+)H + Z+(d Z)(I Q − Z+ Z). (3.67)

Second, it can be shown in a similar manner that

d ZZ+ = (I N − ZZ+)(d Z)Z+ + (Z+)H
(
d ZH

)
(I N − ZZ+). (3.68)

If the expressions for d Z+ Z and d ZZ+ are inserted into (3.65), then (3.64) is
obtained.

If Z ∈ C
N×N is invertible, then the Moore-Penrose inverse reduces into the normal

matrix inverse. It is seen from (3.64) that the differential of the Moore-Penrose inverse
reduces to the differential of the inverse matrices in (3.40) if the matrix is invertible.

Several of the most important properties of complex differentials are summarized in
Table 3.1, assuming A, B, and a to be constants, and Z, Z0, and Z1 to be complex-
valued matrix variables. The complex differential of the complex exponential function
of a scalar argument ez and the complex differential of the principal value of ln(z) are
also included in Table 3.1.

3.2.3 Results Used to Identify First- and Second-Order Derivatives

The two real-valued matrix variables Re {Z} = X and Im {Z} = Y are independent of
each other, and, hence, are their differentials. Although the complex variables Z and Z∗
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are related, their differentials are linearly independent in the way of the next lemma. This
lemma is very important for identifying first-order complex-valued matrix derivatives
from the complex differential of the function under consideration. The idea of identifying
the first-order complex-valued matrix derivatives from the complex differential is the
key procedure for finding matrix derivatives.

Lemma 3.1 Let Z ∈ C
N×Q and Ai ∈ C

M×N Q. If

A0d vec(Z) + A1d vec(Z∗) = 0M×1, (3.69)

for all d Z ∈ C
N×Q, then Ai = 0M×N Q for i ∈ {0, 1}.

Proof Let Ai ∈ C
M×N Q be an arbitrary complex-valued function of Z ∈ C

N×Q and
Z∗ ∈ C

N×Q . By using the vec(·) operator on (3.17) and (3.18), it follows that d vec(Z) =
d vec(Re {Z}) + d vec(Im {Z}) and d vec(Z∗) = d vec(Re {Z}) − d vec(Im {Z}). If
these two expressions are substituted into the expression of the lemma statement given
by A0d vec(Z) + A1d vec(Z∗) = 0M×1, then it follows that

A0(d vec(Re {Z}) + d vec(Im {Z})) + A1(d vec(Re {Z}) − d vec(Im {Z})) = 0M×1.

(3.70)

This is equivalent to

(A0 + A1)d vec(Re {Z}) +  (A0 − A1)d vec(Im {Z}) = 0M×1. (3.71)

Because the differentials d Re {Z} and d Im {Z} are independent, so are the differen-
tials d vec(Re {Z}) and d vec(Im {Z}). Therefore, A0 + A1 = 0M×N Q and A0 − A1 =
0M×N Q . Hence, it follows that A0 = A1 = 0M×N Q .

The next lemma is important for identifying second-order complex-valued matrix
derivatives. These derivatives are treated in detail in Chapter 5, and they are called
Hessians.

Lemma 3.2 Let Z ∈ C
N×Q and Bi ∈ C

N Q×N Q. If(
d vecT (Z)

)
B0d vec(Z) +(d vecT (Z∗)

)
B1d vec(Z) +(d vecT (Z∗)

)
B2d vec(Z∗)=0,

(3.72)

for all d Z ∈ C
N×Q, then B0 = −BT

0 , B1 = 0N Q×N Q, and B2 = −BT
2 (i.e., B0 and B2

are skew-symmetric).

Proof Inserting the expressions d vec(Z) = d vec(Re {Z}) + d vec(Im {Z}) and
d vec(Z∗) = d vec(Re {Z}) − d vec(Im {Z}) into the second-order differential expres-
sion given in the lemma leads to[

d vecT (Re {Z})] [B0 + B1 + B2] d vec(Re {Z})
+ [d vecT (Im {Z})] [−B0 + B1 − B2] d vec(Im {Z})
+ [d vecT (Re {Z})] [ (B0 + BT

0

)+ 
(

B1 − BT
1

)
−
(

B2 + BT
2

)]
d vec(Im {Z}) = 0. (3.73)
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Equation (3.73) is valid for all d Z; furthermore, the differentials of d vec(Re {Z}) and
d vec(Im {Z}) are independent. If d vec(Im {Z}) is set to the zero vector, then it follows
from (3.73) and Corollary 2.2 (which is valid for real-valued vectors) that

B0 + B1 + B2 = −BT
0 − BT

1 − BT
2 . (3.74)

In the same way, by setting d vec(Re {Z}) to the zero vector, it follows from (3.73) and
Corollary 2.2 that

−B0 + B1 − B2 = BT
0 − BT

1 + BT
2 . (3.75)

Because of the skew-symmetry in (3.74) and (3.75) and the linear independence of
d vec(Re {Z}) and d vec(Im {Z}), it follows from (3.73) and Corollary 2.2 that(

B0 + BT
0

)+ (B1 − BT
1

)− (B2 + BT
2

) = 0N Q×N Q . (3.76)

Equations (3.74), (3.75), and (3.76) lead to B0 = −BT
0 , B1 = −BT

1 , and B2 = −BT
2 .

Because the matrices B0 and B2 are skew-symmetric, Corollary 2.1 (which is valid for
complex-valued matrices) reduces the equation stated inside the lemma formulation(

d vecT (Z)
)

B0d vec(Z) + (d vecT (Z∗)
)

B1d vec(Z)

+ (d vecT (Z∗)
)

B2d vec(Z∗) = 0, (3.77)

into
(
d vecT (Z∗)

)
B1d vec(Z) = 0. Then Lemma 2.17 results in B1 = 0N Q×N Q .

3.3 Derivative with Respect to Complex Matrices

The most general definition of the derivative is given here, from which the definitions
for less general cases follow. They will be given later in an identification table.

Definition 3.1 (Derivative wrt. Complex Matrices) Let F : C
N×Q × C

N×Q → C
M×P .

Then the derivative of the matrix function F(Z, Z∗) ∈ C
M×P with respect to Z ∈ C

N×Q

is denoted by DZ F, and the derivative of the matrix function F(Z, Z∗) ∈ C
M×P with

respect to Z∗ ∈ C
N×Q is denoted by DZ∗ F. The size of both these derivatives is

M P × N Q. The derivatives DZ F and DZ∗ F are defined by the following differential
expression:

d vec(F) = (DZ F) d vec(Z) + (DZ∗ F) d vec(Z∗). (3.78)

DZ F(Z, Z∗) and DZ∗ F(Z, Z∗) are called the Jacobian matrices of F with respect to
the matrix Z and Z∗, respectively.

Notice that Definition 3.1 is a generalization of formal derivatives, given in Defini-
tion 2.2, for the case of matrix functions that depend on complex-valued matrix variables.
For scalar functions of scalar variables, Definitions 2.2 and 3.1 return the same result,
and the reason for this can be found in Section 3.2.

Table 3.2 shows how the derivatives of the different types of functions in Table 2.2
can be identified from the differentials of these functions. By subtracting the differential
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in (3.78) from the corresponding differential in the last line of Table 3.2, it follows that

(ζ 0 − DZ F (Z, Z∗)) d vec(Z) + (ζ 1 − DZ∗ F (Z, Z∗)) d vec(Z∗) = 0M P×1. (3.79)

The derivatives in Table 3.2 then follow by applying Lemma 3.1 on this equation.
Table 3.2 is an extension of the corresponding table given in Magnus and Neudecker
(1988), which is valid in the real variable case. Table 3.2 shows that z ∈ C, z ∈ C

N×1,
Z ∈ C

N×Q , f ∈ C, f ∈ C
M×1, and F ∈ C

M×P . Furthermore, ai ∈ C, ai ∈ C
1×N , Ai ∈

C
N×Q , bi ∈ C

M×1, Bi ∈ C
M×N , β i ∈ C

M×N Q , ci ∈ C
M P×1, C i ∈ C

M P×N , and ζ i ∈
C

M P×N Q , and each of these might be a function of z, z, Z, z∗, z∗, or Z∗, but not on
the differential operator d. For example, in the most general matrix case, then in the
expression d vec(F) = ζ 0d vec(Z) + ζ 1d vec(Z∗), the two matrices ζ 0 and ζ 1 are not
dependent on the differential operator d. For scalar functions of the type f (Z, Z∗),
two alternative definitions for the derivatives are given. The notation ∂

∂ Z f (Z, Z∗) and
∂

∂ Z∗ f (Z, Z∗) will be defined in Subsection 4.2.3 in the next chapter.

Definition 3.2 (Formal Derivatives of Vector Functions wrt. Vectors) If f : C
N×1 ×

C
N×1 → C

M×1, then the two formal derivatives of a vector function with respect to
the two row vector variables zT and zH are denoted by ∂

∂zT f (z, z∗) and ∂
∂zH f (z, z∗).

These two formal derivatives are sized as M × N, and they are defined as

∂

∂zT
f (z, z∗) =




∂
∂z0

f0 · · · ∂
∂zN−1

f0

...
...

∂
∂z0

fM−1 · · · ∂
∂zN−1

fM−1


 , (3.80)

and

∂

∂zH
f (z, z∗) =




∂
∂z∗

0
f0 · · · ∂

∂z∗
N−1

f0

...
...

∂
∂z∗

0
fM−1 · · · ∂

∂z∗
N−1

fM−1


 , (3.81)

where zi and fi is the component number i of the vectors z and f , respectively.

Notice that ∂
∂zT f = Dz f and ∂

∂zH f = Dz∗ f . Using the formal derivative notation in
Definition 3.2, the derivatives of the function F(Z, Z∗), in Definition 3.1, are

DZ F(Z, Z∗) = ∂ vec(F(Z, Z∗))

∂ vecT (Z)
, (3.82)

DZ∗ F(Z, Z∗) = ∂ vec(F(Z, Z∗))

∂ vecT (Z∗)
. (3.83)

This is a generalization of the real-matrix variable case studied thoroughly in Magnus
and Neudecker (1988) to the complex-matrix variable case.

Definition 3.3 (Formal Derivative of Matrix Functions wrt. Scalars) If F : C
N×Q ×

C
N×Q → C

M×P , then the formal derivative of the matrix function F ∈ C
M×P with
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respect to the scalar z ∈ C is defined as

∂ F

∂z
=




∂ f0,0

∂z · · · ∂ f0,P−1

∂z
...

. . .
...

∂ fM−1,0

∂z · · · ∂ fM−1,P−1

∂z


 , (3.84)

where ∂ F
∂z has size M × P and fi, j is the (i, j)-th component function of F, where

i ∈ {0, 1, . . . , M − 1} and j ∈ {0, 1, . . . , P − 1}.
By using Definitions 3.2 and 3.3, it is possible to find the following alternative

expression for the derivative of the matrix function F ∈ C
M×P with respect to the

matrix Z:

DZ F(Z, Z∗) = ∂ vec(F(Z, Z∗))

∂ vecT (Z)
=




∂ f0,0

∂z0,0

∂ f0,0

∂z1,0
· · · ∂ f0,0

∂zN−1,Q−1

∂ f1,0

∂z0,0

∂ f1,0

∂z1,0
· · · ∂ f1,0

∂zN−1,Q−1

...
...

. . .
...

∂ fM−1,P−1

∂z0,0

∂ fM−1,P−1

∂z1,0
· · · ∂ fM−1,P−1

∂zN−1,Q−1




=
[
∂ vec (F)

∂z0,0

∂ vec (F)

∂z1,0
· · · ∂ vec (F)

∂zN−1,Q−1

]
=

N−1∑
n=0

Q−1∑
q=0

∂ vec (F)

∂zn,q
vecT

(
En,q

)
(3.85)

=
N−1∑
n=0

Q−1∑
q=0

vec

(
∂ F

∂zn,q

)
vecT

(
En,q

)
, (3.86)

where zi, j is the (i, j)-th component of Z, and where En,q is an N × Q matrix containing
only 0s except for +1 at the (n, q)-th position. The notation En,q is here a natural
generalization of the square matrices given in Definition 2.16 to nonsquare matrices.
Using (3.85), it follows that

DZ∗ F(Z, Z∗) =
N−1∑
n=0

Q−1∑
q=0

vec

(
∂ F

∂z∗
n,q

)
vecT

(
En,q

)
. (3.87)

The following lemma shows how to find the derivatives of the complex conjugate of a
matrix function when the derivatives of the matrix function are already known.

Lemma 3.3 Let the derivatives of F : C
N×Q × C

N×Q → C
M×P with respect to the two

complex-valued variables Z and Z∗ be known and given byDZ F andDZ∗ F, respectively.
The derivatives of the matrix function F∗ with respect to Z and Z∗ are given by

DZ F∗ = (DZ∗ F)∗ , (3.88)

DZ∗ F∗ = (DZ F)∗ . (3.89)

Proof By taking the complex conjugation of both sides of (3.78), it is found that

d vec(F∗) = (DZ F)∗ d vec (Z∗) + (DZ∗ F)∗ d vec (Z)

= (DZ∗ F)∗ d vec (Z) + (DZ F)∗ d vec (Z∗) . (3.90)

By using Definition 3.1, it is seen that (3.88) and (3.89) follow.
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Table 3.3 Procedure for finding the derivatives with respect to
complex-valued matrix variables.

Step 1: Compute the differential d vec(F).
Step 2: Manipulate the expression into the form given (3.78).
Step 3: The matrices DZ F(Z, Z∗) and DZ∗ F(Z, Z∗)

can now be read out by using Definition 3.1.

To find the derivative of a product of two functions, the following lemma can be
used:

Lemma 3.4 Let F : C
N×Q × C

N×Q → C
M×P be given by

F(Z, Z∗) = G(Z, Z∗)H(Z, Z∗), (3.91)

where G : C
N×Q × C

N×Q → C
M×R and H : C

N×Q × C
N×Q → C

R×P . Then the fol-
lowing relations hold:

DZ F = (HT ⊗ I M

)
DZG + (I P ⊗ G)DZ H, (3.92)

DZ∗ F = (HT ⊗ I M

)
DZ∗ G + (I P ⊗ G)DZ∗ H. (3.93)

Proof The complex differential of F can be expressed as

d F = I M (dG) H + G (d H) I P . (3.94)

By using the definition of the derivative of G and H after applying the vec(·), it is found
that

d vec (F) = (HT ⊗ I M

)
d vec (G) + (I P ⊗ G) d vec (H)

= (HT ⊗ I M

) [
(DZG) d vec (Z) + (DZ∗ G) d vec (Z∗)

]
+ (I P ⊗ G)

[
(DZ H) d vec (Z) + (DZ∗ H) d vec (Z∗)

]
= [(HT ⊗ I M

)
DZG + (I P ⊗ G)DZ H

]
d vec (Z)

+ [(HT ⊗ I M

)
DZ∗ G + (I P ⊗ G)DZ∗ H

]
d vec (Z∗) . (3.95)

The derivatives of F with respect to Z and Z∗ can now be identified as in (3.92) and
(3.93), respectively.

3.3.1 Procedure for Finding Complex-Valued Matrix Derivatives

Finding the derivative of the complex matrix function F with respect to the complex
matrices Z and Z∗ can be achieved using the three-step procedure shown in Table 3.3.

For less general function types, as given in Table 2.2, a similar procedure can be used.
In Chapter 4, many examples will be given for how this procedure can be used to find
complex-valued matrix derivatives for all the cases shown in Table 3.2.
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3.4 Fundamental Results on Complex-Valued Matrix Derivatives

In this section, some fundamental results are presented. All of these results are important
when solving practical optimization problems involving differentiation with respect to
a complex-valued matrix. These results include the chain rule, conditions for finding
stationary points for a scalar real-valued function that depends on complex matrices, and
in which direction a scalar real-valued function has the minimum or maximum rate of
change. It will be shown how this result should be used in the steepest ascent or descent
method (Luenberger 1973). For certain types of functions, the same procedure used for
the real-valued matrix case (Magnus & Neudecker 1988) can be used; this result is also
stated in a theorem.

The rest of this section is organized as follows: In Subsection 3.4.1, the chain rule
will be formulated and it can be used to find complicated derivatives. Subsection 3.4.2
presents several topics for scalar real-valued functions, including three equivalent ways
to find stationary points, the relationship between the complex-valued derivative of
such functions with respect to the input matrix variable and its complex conjugate, and
the directions in which such functions have maximum and minimum rates of change.
When the function has only one independent input matrix variable, the relation between
the theory presented in Magnus and Neudecker (1988) and the complex-valued matrix
derivatives is presented in Subsection 3.4.3.

3.4.1 Chain Rule

One big advantage of the way the derivative is defined in Definition 3.1 compared
with other definitions (see discussion about notation on Magnus and Neudecker (1988,
pp. 171–173) is that the chain rule is valid in a very simple form. The chain rule is
formulated in the following theorem.

Theorem 3.1 (Chain Rule) Let (S0,S1) ⊆ C
N×Q × C

N×Q, and let F : S0 × S1 →
C

M×P be differentiable with respect to its first and second arguments at an inte-
rior point (Z, Z∗) in the set S0 × S1. Let T0 × T1 ⊆ C

M×P × C
M×P be such that

(F(Z, Z∗), F∗(Z, Z∗)) ∈ T0 × T1 for all (Z, Z∗) ∈ S0 × S1. Assume that G : T0 ×
T1 → C

R×S is differentiable at an inner point (F(Z, Z∗), F∗(Z, Z∗)) ∈ T0 × T1. Define
the composite function H : S0 × S1 → C

R×S by

H (Z, Z∗) = G (F(Z, Z∗), F∗(Z, Z∗)) . (3.96)

The derivatives DZ H and DZ∗ H are as follows:

DZ H = (DFG) (DZ F) + (DF∗ G) (DZ F∗) , (3.97)

DZ∗ H = (DFG) (DZ∗ F) + (DF∗ G) (DZ∗ F∗) . (3.98)

Proof From Definition 3.1, it follows that

d vec(H) = d vec(G) = (DFG) d vec(F) + (DF∗ G) d vec(F∗). (3.99)
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The complex differentials of vec(F) and vec(F∗) are given by

d vec(F) = (DZ F) d vec(Z) + (DZ∗ F) d vec(Z∗), (3.100)

d vec(F∗) = (DZ F∗) d vec(Z) + (DZ∗ F∗) d vec(Z∗). (3.101)

By substituting the results from (3.100) and (3.101) into (3.99), and then using the
definition of the derivatives with respect to Z and Z∗, the theorem follows.

3.4.2 Scalar Real-Valued Functions

In this subsection, several results will be presented for scalar real-valued functions. Top-
ics such as necessary conditions for optimality (stationary points), the relation between
the derivative of a real-valued function with respect to the input matrix variable and its
complex conjugate, and the direction of maximum and minimum rate of change will be
treated.

The next theorem shows that when working on scalar real-valued functions that are
dependent on complex matrices, three equivalent ways can be used to identify stationary
points.6

Theorem 3.2 Let f : C
N×Q × C

N×Q → R. A stationary point of the function
f (Z, Z∗) = g(X, Y), where g : R

N×Q × R
N×Q → R and Z = X + Y is then found

by one of the following three equivalent conditions:

DXg(X, Y) = 01×N Q ∧ DY g(X, Y) = 01×N Q, (3.102)

DZ f (Z, Z∗) = 01×N Q, (3.103)

or

DZ∗ f (Z, Z∗) = 01×N Q . (3.104)

In (3.102), the symbol ∧ means that both of the equations stated in (3.102) must be
satisfied at the same time.

Proof In optimization theory (Magnus & Neudecker 1988), a stationary point is defined
as a point where the derivatives with respect to all independent variables vanish. Because
Re{Z} = X and Im{Z} = Y contain only independent variables, (3.102) gives a station-
ary point by definition. By using the chain rule, in Theorem 3.1, on both sides of the
equation f (Z, Z∗) = g(X, Y) and taking the derivative with respect to X and Y , the
following two equations are obtained:

(DZ f ) (DX Z) + (DZ∗ f ) (DX Z∗) = DXg, (3.105)

(DZ f ) (DY Z) + (DZ∗ f ) (DY Z∗) = DY g. (3.106)

From (3.17) and (3.18), it follows directly that DX Z = DX Z∗ = I N Q and DY Z =
−DY Z∗ =  I N Q . If these results are inserted into (3.105) and (3.106), these two

6 Notice that a stationary point can be a local minimum, a local maximum, or a saddle point.
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equations can be formulated into a block matrix form in the following way:[
DXg
DY g

]
=
[

1 1
 −

] [
DZ f
DZ∗ f

]
. (3.107)

This equation is equivalent to the following matrix equation:[
DZ f

DZ∗ f

]
=
[ 1

2 − 

2
1
2



2

] [
DXg
DY g

]
. (3.108)

BecauseDXg ∈ R
1×N Q andDY g ∈ R

1×N Q , it is seen from (3.108) that the three relations
(3.102), (3.103), and (3.104) are equivalent.

Notice that (3.107) and (3.108) are multivariable generalizations of the corresponding
scalar Wirtinger and partial derivatives given in (2.11), (2.12), (2.13), and (2.14).

The next theorem gives a simplified way of finding the derivative of a scalar real-
valued function with respect to Z when the derivative with respect to Z∗ is already
known.

Theorem 3.3 Let f : C
N×Q × C

N×Q → R. Then the following holds:

DZ∗ f = (DZ f )∗ . (3.109)

Proof Because f ∈ R, it is possible to write the d f in the following two ways:

d f = (DZ f ) d vec(Z) + (DZ∗ f ) d vec(Z∗), (3.110)

d f = d f ∗ = (DZ f )∗ d vec(Z∗) + (DZ∗ f )∗ d vec(Z), (3.111)

where d f = d f ∗ because f ∈ R. By subtracting (3.110) from (3.111) and then applying
Lemma 3.1, it follows that DZ f = (DZ∗ f )∗, which is equivalent to (3.109).

Let f : C
M×Q × C

M×Q → R be denoted f (Z, Z∗), where Z contains indepen-
dent matrix elements. By using the result from Theorem 3.3, (3.110) can be
rewritten as

d f = (DZ f ) d vec(Z) + (DZ∗ f ) d vec(Z∗)

= (DZ f ) d vec(Z) + (DZ f )∗ d vec(Z∗)

= (DZ f ) d vec(Z) + ((DZ f ) d vec(Z))∗

= 2 Re {(DZ f ) d vec(Z)} . (3.112)

This expression will be used in the proof of the next theorem.
In engineering, we are often interested in maximizing or minimizing a real-valued

scalar variable, so it is important to find the direction where the function is increasing
and decreasing fastest. The following theorem gives an answer to this question and can
be applied in the widely used steepest ascent and descent methods.

Theorem 3.4 Let f : C
N×Q × C

N×Q → R. The directions where the function f has
the maximum and minimum rate of change with respect to vec(Z) are given by
[DZ∗ f (Z, Z∗)]T and − [DZ∗ f (Z, Z∗)]T , respectively.
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Proof From Theorem 3.3 and (3.112), it follows that

d f = 2 Re {(DZ f ) d vec(Z)} = 2 Re
{

(DZ∗ f )∗ d vec(Z)
}

. (3.113)

Let ai ∈ C
K×1, where i ∈ {0, 1}. Then

Re
{

aH
0 a1

} =
〈[

Re {a0}
Im {a0}

]
,

[
Re {a1}
Im {a1}

]〉
, (3.114)

where 〈·, ·〉 is the ordinary Euclidean inner product (Young 1990) between real vectors
in R

2K×1. By using this inner product, the differential of f can be written as

d f = 2

〈[
Re
{

(DZ∗ f )T
}

Im
{

(DZ∗ f )T
} ] ,

[
Re {d vec(Z)}
Im {d vec(Z)}

]〉
. (3.115)

By applying the Cauchy-Schwartz inequality (Young 1990) for inner products, it can be
shown that the maximum value of d f occurs when d vec(Z) = α (DZ∗ f )T for α > 0,
and from this, it follows that the minimum rate of change occurs when d vec(Z) =
−β (DZ∗ f )T , for β > 0.

Remark Let g : C
K×1 × C

K×1 → R be given by

g (a0, a1) = 2 Re
{

aT
0 a1

}
. (3.116)

If K = 2 and a0 = [1,  ]T , then g (a0, a0) = 0 despite the fact that [1,  ]T �= 02×1.
Therefore, the function g defined in (3.116) is not an inner product, and a Cauchy-
Schwartz inequality is not valid for this function. By examining the proof of Theorem 3.4,
it can be seen that the reason why [DZ f (Z, Z∗)]T is not the direction of maximum change
of rate is that the function g in (3.116) is not an inner product.

If a real-valued function f is being optimized with respect to the variable Z by means
of the steepest ascent or descent method, it follows from Theorem 3.4 that the updating
term must be proportional to DZ∗ f (Z, Z∗), and not DZ f (Z, Z∗). The update equation
for optimizing the real-valued function in Theorem 3.4 by means of the steepest ascent
or descent method can be expressed as

vecT (Zk+1) = vecT (Zk) + µDZ∗ f (Zk, Z∗
k ), (3.117)

where µ is a real positive constant if it is a maximization problem or a real negative
constant if it is a minimization problem, and Zk ∈ C

N×Q is the value of the unknown
matrix after k iterations. In (3.117), the size of vecT (Zk) and DZ∗ f (Zk, Z∗

k ) is 1 × N Q.

Example 3.1 Let f : C × C → R be given by

f (z, z∗) = |z|2 = zz∗, (3.118)

such that f can be used to express the squared Euclidean distance. It is possible to
visualize this function over the complex plane z by a contour plot like the one shown in
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Dzf(z, z∗) = z∗

Im{z}

Re{z}

Dz∗f(z, z∗) = z

•z

Figure 3.1 Contour plot of the function f (z, z∗) = |z|2 taken from Example 3.1. The location of
an arbitrary point z is shown by •, and the two vectors Dz∗ f (z, z∗) = z and Dz f (z, z∗) = z∗ are
drawn from the point z.

Figure 3.1, and this is a widely used function in engineering. The formal derivatives of
this function are

Dz∗ f (z, z∗) = z, (3.119)

Dz f (z, z∗) = z∗. (3.120)

These two derivatives are shown with two vectors (arrows) in Figure 3.1 out of the point z,
which is marked with •. It is seen from Figure 3.1 that the function f is increasing faster
along the upper vector Dz∗ f (z, z∗) = z than along the lower vector Dz f (z, z∗) = z∗.
The function f is maximally increasing in the direction of Dz∗ f (z, z∗) = z when the
starting position is z. This simple example can be used for remembering the important
general components of Theorem 3.4.

3.4.3 One Independent Input Matrix Variable

In this subsection, the case in which the input variable of the functions is just one matrix
variable with independent matrix components will be studied. It will be shown that the
same procedure applied in the real-valued case (Magnus & Neudecker 1988) can be
used for this case.
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Theorem 3.5 Let F : C
N×Q × C

N×Q → C
M×P and G : C

N×Q → C
M×P , where the

differentials of Z0 and Z1 are assumed to be independent. If F(Z0, Z1) = G(Z0),
then DZ F (Z, Z∗) = DZG(Z) can be obtained by the procedure given in Magnus and
Neudecker (1988) for finding the derivative of the function G and DZ∗ F (Z, Z∗) =
0M P×N Q.

If F(Z0, Z1) = G(Z1), where the differentials of Z0 and Z1 are independent, then
DZ F (Z, Z∗) = 0M P×N Q, and DZ∗ F (Z, Z∗) = DZG(Z)|Z=Z∗ can be obtained by the
procedure given in Magnus and Neudecker (1988).

Proof Assume that F(Z0, Z1) = G(Z0) where Z0 and Z1 have independent differen-
tials. Applying the vec(·) and the differential operator to this equation leads to

d vec (F) = (DZ0 F
)

d vec (Z0) + (DZ1 F
)

d vec (Z1) = (DZ0 G
)

d vec (Z0) .

(3.121)

By setting Z0 = Z and Z1 = Z∗ and using Lemma 3.1, it is seen that DZ∗ F = 0M P×N Q

and DZ F (Z, Z∗) = DZG(Z). Because the last equation depends on only one matrix
variable, Z, the same techniques as given in Magnus and Neudecker (1988) can be used.
The first part of the theorem is then proved, and the second part can be shown in a similar
way.

3.5 Exercises

3.1 Let Z ∈ C
N×N , and let perm : C

N×N → C denote the permanent function of a
complex-valued input matrix, that is,

perm(Z) �
N−1∑
k=0

mk,l(Z)zk,l, (3.122)

where mk,l(Z) represents the (k, l)-th minor of Z, which is equal to the determinant
of the matrix found from Z by deleting its k-th row and l-th column. Show that the
differential of perm(Z) is given by

d perm(Z) = Tr
{

MT (Z)d Z
}

, (3.123)

where the N × N matrix M(Z) contains the minors of Z, that is, (M(Z))k,l = mk,l(Z).

3.2 When z ∈ C is a scalar, it follows from the product rule that dzk = kzk−1dz, where
k ∈ N. In this exercise, matrix versions of this result are derived. Let Z ∈ C

N×N be a
square matrix. Show that

d Zk =
k∑

l=1

Zl−1(d Z)Zk−l, (3.124)

where k ∈ N. Use (3.125) to show that

d Tr
{

Zk
} = k Tr

{
Zk−1d Z

}
. (3.125)
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3.3 Show that the complex differential of exp(Z), where Z ∈ C
N×N and exp(·) is the

exponential matrix function given in Definition 2.5, can be expressed as

d exp(Z) =
∞∑

k=0

1

(k + 1)

k∑
i=0

Zi (d Z)Zk−i . (3.126)

3.4 Show that the complex differential of Tr {exp(Z)}, where Z ∈ C
N×N and exp(·) is

given in Definition 2.5, is given by

d Tr{exp (Z)} = Tr {exp (Z) d Z} . (3.127)

From this result, show that the derivative of Tr{exp (Z)} with respect to Z is given by

DZ Tr{exp (Z)} = vecT
(
exp
(

ZT
))

. (3.128)

3.5 Let t ∈ R and A ∈ C
N×N . Show that

d

dt
exp (t A) = A exp (t A) = exp (t A) A. (3.129)

3.6 Let Z ∈ C
N×Q , and let A ∈ C

M×N and B ∈ C
Q×M be two matrices that are inde-

pendent of Z and Z∗. Show that the complex differential of Tr
{

AZ+ B
}

can be expressed
as

d Tr
{

AZ+ B
} = Tr

{
A
(−Z+(d Z)Z+ + Z+(Z+)H (d ZH )

(
I N − ZZ+)

+ (I Q − Z+ Z
)

(d ZH )(Z+)H Z+) B
}

. (3.130)

Assume that N = Q and Z ∈ C
N×N is nonsingular. Use (3.130) to find an expression

for d Tr
{

AZ−1 B
}

.

3.7 Let a ∈ C \ {0} and Z ∈ C
N×Q , and let the function F : C

N×Q × C
N×Q → C

N×Q

be given by

F(Z, Z∗) = aZ. (3.131)

Let G : C
N×Q × C

N×Q → C
R×R be denoted by G(F, F∗), and let H : C

N×Q ×
C

N×Q → C
R×R be a composed function given as

H (Z, Z∗) = G (F(Z, Z∗), F∗(Z, Z∗)) . (3.132)

By means of the chain rule, show that

DFG|F=F(Z,Z∗) = 1

a
DZ H. (3.133)

3.8 In a MIMO system, the signals are transmitted over a channel where both the trans-
mitter and the receiver are equipped with multiple antennas. Let the numbers of transmit
and receive antennas be Mt and Mr , respectively, and let the memoryless fixed MIMO
transfer channel be denoted H (see Figure 3.2). Assume that the channel is contami-
nated with white zero-mean complex circularly symmetric Gaussian-distributed additive
noise n ∈ C

Mr ×1 with covariance matrix given by the identity matrix: E
[
nnH

] = I Mr ,
where E[·] denotes the expected value operator. The mutual information, denoted I ,
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Mr × 1

H
x y

n

Mr ×MtMt × 1

Figure 3.2 MIMO channel with input vector x ∈ C
Mt ×1, additive Gaussian noise n ∈ C

Mr ×1, output
vector y ∈ C

Mr ×1, and memoryless fixed known transfer function H ∈ C
Mr ×Mt .

between the channel input, which is assumed to be zero-mean complex circularly sym-
metric Gaussian-distributed vector x ∈ C

Mt ×1, and the channel output vector y ∈ C
Mr ×1

of the MIMO channel was derived in Telatar (1995) as

I = ln
(
det
(

I Mr + HQ H H
))

, (3.134)

where Q � E
[
xxH

] ∈ C
Mt ×Mt is the covariance matrix of x ∈ C

Mt ×1, which is assumed
to be independent of the channel noise n. Consider I : C

Mr ×Mt × C
Mr ×Mt → R as a

function of H and H∗, such that this function is denoted I (H, H∗). Show that the
complex differential of I (H, H∗) can be expressed as

d I (H, H∗) = Tr
{

Q H H
(

I Mr + HQ H H
)−1

d H
}

+ Tr
{

QT HT
(

I Mr + HQ H H
)−T

d H∗
}

. (3.135)

Based on (3.135), show that the derivatives of I (H, H∗) with respect to both H and H∗

are given as

DH I (H, H∗) = vecT
((

I Mr + HQ H H
)−T

H∗ QT
)

, (3.136)

DH∗ I (H, H∗) = vecT
((

I Mr + HQ H H
)−1

HQ
)

, (3.137)

respectively. Explain why these results are in agreement with Palomar and Verdú (2006,
Theorem 1).

3.9 Let AH = A ∈ C
N×N be given. Consider the function f : C

N×1 × C
N×1 → R

defined as

f (z, z∗) = zH Az

zH z
, (3.138)

and f is defined for z �= 0N×1. The expression in (3.138) is called the Rayleigh quo-
tient (Strang 1988). By using the theory presented in this chapter, show that d f can be
expressed as

d f =
[

zH A

zH z
− zH Az(

zH z
)2 zH

]
dz +

[
zT AT

zH z
− zH Az(

zH z
)2 zT

]
dz∗. (3.139)



68 Theory of Complex-Valued Matrix Derivatives

By using Table 3.2, show that the derivatives of f with respect to z and z∗ can be
identified as

Dz f = zH A

zH z
− zH Az(

zH z
)2 zH , (3.140)

Dz∗ f = zT AT

zH z
− zH Az(

zH z
)2 zT . (3.141)

By studying the necessary conditions for optimality (i.e., Dz∗ f = 01×N ), show that
the maximum and minimum values of f are given by the maximum and minimum
eigenvalue of A.

3.10 Consider the following function f : C
N×1 × C

N×1 → R given by

f (z, z∗) = σ 2
d − zH p − pH z + zH Rz, (3.142)

where σ 2
d > 0, p ∈ C

N×1, and R ∈ C
N×N are independent of both z and z∗. The function

given in (3.142) represents the mean square error (MSE) between the output of a finite
impulse response (FIR) filter of length N with complex-valued coefficients collected into
the vector z ∈ C

N×1 and the desired output signal (Haykin 2002, Chapter 2). In (3.142),
σ 2

d represents the variance of the desired output signal, RH = R is the autocorrelation
matrix of the input signal of size N × N , and p is the cross-correlation vector between
the input vector and the desired scalar output signal. Show that the values of the FIR
filter coefficient z that is minimizing the function in (3.142) must satisfy

Rz = p. (3.143)

These are called the Wiener-Hopf equations.
Using the steepest descent method, show that the update equation for minimizing f

defined in (3.142) is given by

zk+1 = zk + µ (p − Rzk) , (3.144)

where µ is a positive step size and k is the iteration index.

3.11 Consider the linear model shown in Figure 3.2, where the output of the channel y ∈
C

Mr ×1 is given by

y = Hx + n, (3.145)

where H ∈ C
Mr ×Mt is a fixed MIMO transfer function and the input signal x ∈ C

Mt ×1 is
uncorrelated with the additive noise vector n ∈ C

Mr ×1. All signals are assumed to have
zero-mean. The three vectors x, n, and y have autocorrelation matrices given by

Rx = E
[
xxH

]
, (3.146)

Rn = E
[
nnH

]
, (3.147)

Ry = E
[
yyH
] = Rn + H Rx H H , (3.148)
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respectively. Assume that a linear complex-valued receiver filter Z ∈ C
Mt ×Mr is applied

to the received signal y such that the output of the receiver filter is Zy ∈ C
Mt ×1. Show that

the MSE, denoted f : C
Mt ×Mr × C

Mt ×Mr → R, between the output of the receiver fil-
ter Zy and the original signal x defined as f (Z, Z∗) = E

[‖Zy − x‖2
]

can be expressed
as

f (Z, Z∗) = Tr
{

Z
[
H Rx H H + Rn

]
ZH − Z H Rx − Rx H H ZH + Rx

}
. (3.149)

Show that the value of the filter coefficient Z that is minimizing the MSE function
f (Z, Z∗) is satisfying

Z = Rx H H
[
H Rx H H + Rn

]−1
. (3.150)

The minimum MSE receiver filter in (3.150) is called the Wiener filter (Sayed 2008).

3.12 Some of the results from this and the previous exercise are presented in Kailath
et al. (2000, Section 3.4) and Sayed (2003, Section 2.6).

Use the matrix inversion lemma in Lemma 2.3 to show that the minimum MSE
receiver filter in (3.150) can be reformulated as

Z = [R−1
x + H H R−1

n H
]−1

H H R−1
n . (3.151)

Show that the minimum value using the minimum MSE filter in (3.150) can be expressed
as

Tr
{[

R−1
x + H H R−1

n H
]−1
}

� g(H, H∗), (3.152)

where the function g : C
Mr ×Mt × C

Mr ×Mt → R has been defined to be equal to this
minimum MSE value. Show that the complex differential of g can be expressed as

dg = − Tr
{[

R−1
x + H H R−1

n H
]−2

H H R−1
n d H

+ [R−T
x + HT R−T

n H∗]−2
HT R−T

n d H∗
}

. (3.153)

Show that the derivatives of g with respect to H and H∗ can be expressed as

DH g = −vecT
(

R−T
n H∗ [R−T

x + HT R−T
n H∗]−2

)
, (3.154)

DH∗ g = −vecT
(

R−1
n H

[
R−1

x + H H R−1
n H

]−2
)

, (3.155)

respectively. It is observed from the above equations that (DH∗ g)∗ = DH g, which is in
agreement with Theorem 3.3.



4 Development of Complex-Valued
Derivative Formulas

4.1 Introduction

The definition of a complex-valued matrix derivative was given in Chapter 3 (see Defi-
nition 3.1). In this chapter, it will be shown how the complex-valued matrix derivatives
can be found for all nine different types of functions given in Table 2.2. Three differ-
ent choices are given for the complex-valued input variables of the functions, namely,
scalar, vector, or matrix; in addition, three possibilities for the type of output that func-
tions return, again, could be scalar, vector, or matrix. The derivative can be identified
through the complex differential by using Table 3.2. In this chapter, it will be shown how
the theory introduced in Chapters 2 and 3 can be used to find complex-valued matrix
derivatives through examples. Many results are collected inside tables to make them
more accessible.

The rest of this chapter is organized as follows: The simplest case, when the out-
put of a function is a complex-valued scalar, is treated in Section 4.2, which contains
three subsections (4.2.1, 4.2.2, and 4.2.3) when the input variables are scalars, vectors,
and matrices, respectively. Section 4.3 looks at the case of vector functions; it con-
tains Subsections 4.3.1, 4.3.2, and 4.3.3, which treat the three cases of complex-valued
scalar, vector, and matrix input variables, respectively. Matrix functions are considered
in Section 4.4, which contains three subsections. The three cases of complex-valued
matrix functions with scalar, vector, and matrix inputs are treated in Subsections 4.4.1,
4.4.2, and 4.4.3, respectively. The chapter ends with Section 4.5, which consists of
10 exercises.

4.2 Complex-Valued Derivatives of Scalar Functions

4.2.1 Complex-Valued Derivatives of f (z, z∗)

If the variables z and z∗ are treated as independent variables, then the derivatives
Dz f (z, z∗) and Dz∗ f (z, z∗) can be found as for scalar functions having two independent
variables. The case of scalar function of scalar independent variables is treated exten-
sively in the literature for scalar input variables (see, for example, Kreyszig 1988, and
Edwards & Penney 1986). See also Example 2.2 for how this can be done. To make
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the reader more familiar with how to treat the variables z and z∗ independently, some
examples are given below.

Example 4.1 By examining Definition 2.2 of the formal derivatives, the operators of
finding the derivative with respect to z and z∗ can be expressed, respectively, as

∂

∂z
= 1

2

(
∂

∂x
− 

∂

∂y

)
, (4.1)

and

∂

∂z∗ = 1

2

(
∂

∂x
+ 

∂

∂y

)
, (4.2)

where z = x +  y, Re{z} = x , and Im{z} = y. To show that the two operators in (4.1)
and (4.2) are in agreement with the fact that z and z∗ can be treated as independent
variables when finding derivatives, we can try to use the operators in (4.1) and (4.2) to
find the derivative of z and z∗, that is

∂z∗

∂z
= 1

2

(
∂

∂x
− 

∂

∂y

)
(x −  y) = 1

2
(1 − 1) = 0, (4.3)

and

∂z

∂z∗ = 1

2

(
∂

∂x
+ 

∂

∂y

)
(x +  y) = 1

2
(1 − 1) = 0, (4.4)

which are expected because z and z∗ should be treated as independent variables, as
shown by Lemma 3.1. The derivative of z and z∗ with respect to itself can be found in a
similar way, that is,

∂z

∂z
= 1

2

(
∂

∂x
− 

∂

∂y

)
(x +  y) = 1

2
(1 + 1) = 1, (4.5)

and

∂z∗

∂z∗ = 1

2

(
∂

∂x
+ 

∂

∂y

)
(x −  y) = 1

2
(1 + 1) = 1. (4.6)

The derivative of the real (x) and imaginary parts (y) of z with respect to z and z∗ can
be found as

∂x

∂z
= ∂

∂z

(
1

2
(z + z∗)

)
= 1

2
, (4.7)

∂x

∂z∗ = ∂

∂z∗

(
1

2
(z + z∗)

)
= 1

2
, (4.8)

∂y

∂z
= ∂

∂z

(
1

2
(z − z∗)

)
= 1

2
, (4.9)

∂y

∂z∗ = ∂

∂z∗

(
1

2
(z − z∗)

)
= 

2
= − 1

2
. (4.10)
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Table 4.1 Complex-valued derivatives of functions of the type f (z, z∗) .

f (z, z∗) ∂ f
∂x

∂ f
∂y

∂ f
∂z

∂ f
∂z∗

Re{z} = x 1 0 1
2

1
2

Im{z} = y 0 1 1
2

− 1
2

z 1  1 0

z∗ 1 − 0 1

These results and others are collected in Table 4.1. The derivative of z∗ with respect to
x can be found as follows:

∂z∗

∂x
= ∂ (x −  y)

∂x
= 1. (4.11)

The remaining results in Table 4.1 can be derived in a similar fashion.

Example 4.2 Let f : C × C → R be defined as

f (z, z∗) = √
zz∗ = |z| =

√
x2 + y2, (4.12)

such that f represents the squared Euclidean distance from the origin to z. Assume that
z �= 0 in this example. By treating z and z∗ as independent variables, the derivative of f
with respect to z and z∗ can be calculated as

∂ f

∂z
= ∂

√
zz∗

∂z
= z∗

2
√

z∗z
= z∗

2|z| = 1

2
e−∠z, (4.13)

∂ f

∂z∗ = ∂
√

zz∗

∂z∗ = z

2
√

z∗z
= z

2|z| = 1

2
e∠z, (4.14)

where the function ∠(·) : C\{0} → (−π, π] is the principal value of the argument
(Kreyszig 1988, Section 12.2) of the input. It is seen that (4.13) and (4.14) are in
agreement with Theorem 3.3.

These derivatives can be calculated alternatively by using Definition 2.2. This is done
by first finding the derivatives of f with respect to the real (x) and imaginary parts (y)
of z = x +  y, and then inserting the result into (2.11) and (2.12). First, the derivatives
of f with respect to x and y are found:

∂ f

∂x
= x√

x2 + y2
= Re{z}

|z| , (4.15)

and

∂ f

∂y
= y√

x2 + y2
= Im{z}

|z| . (4.16)
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Inserting the results from (4.15) and (4.16) into both (2.11) and (2.12) gives

∂ f

∂z
= 1

2

(
∂ f

∂x
− 

∂ f

∂y

)
= 1

2

(
Re{z}
|z| − 

Im{z}
|z|

)
= z∗

2|z| = 1

2
e−∠z, (4.17)

and

∂ f

∂z∗ = 1

2

(
∂ f

∂x
+ 

∂ f

∂y

)
= 1

2

(
Re{z}
|z| + 

Im{z}
|z|

)
= z

2|z| = 1

2
e∠z . (4.18)

Hence, (4.17) and (4.18) are in agreement with the results found in (4.13) and (4.14),
respectively. However, it is seen that it is more involved to find the derivatives ∂ f

∂z and
∂ f
∂z∗ by using Definition 2.2 than by treating z and z∗ independently.

Example 4.3 Let f : C × C → R be defined as

f (z, z∗) = ∠z = arctan
Im{z}
Re{z} = arctan

y

x
, (4.19)

where arctan(·) is the inverse tangent function (Edwards & Penney 1986). Expressed in
polar coordinates, z is given by

z = |z|e∠z . (4.20)

The input argument of 0 is not defined, so it is assumed that z �= 0 in this example. Two
alternative methods are presented to find the derivative of f with respect to z and z∗. By
treating z and z∗ as independent variables, it is found that

∂ f

∂z∗ = 1

1 + Im2{z}
Re2{z}

− 1
2

Re{z} − 1
2 Im{z}

Re2{z} = 

2

Re{z} +  Im{z}
Re2{z} + Im2{z} =  z

2|z|2 = 

2z∗ .

(4.21)

By using (3.109), it is found that

∂ f

∂z
=
(

∂ f

∂z∗

)∗
= − 

2z
. (4.22)

If ∂ f
∂z∗ is found by the use of the operator given in (4.2), the derivatives of f with

respect to x and y are found first:

∂ f

∂x
= 1

1 + ( y
x

)2

(−y)

x2
= −y

x2 + y2
= − Im{z}

|z|2 , (4.23)

and

∂ f

∂y
= 1

1 + ( y
x

)2

1

x
= x

x2 + y2
= Re{z}

|z|2 . (4.24)
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Inserting (4.23) and (4.24) into (2.12) yields

∂ f

∂z∗ = 1

2

(
∂ f

∂x
+ 

∂ f

∂y

)
= 1

2

(
− Im{z}

|z|2 + 
Re{z}
|z|2

)

= 1

2



|z|2 (Re{z} +  Im{z}) =  z

2|z|2 = 

2z∗ . (4.25)

It is seen that (4.21) and (4.25) give the same result; however, it is observed that direct
calculation by treating z and z∗ as independent variables is easier because it requires
fewer calculations.

Example 4.4 When optimizing a communication system where multilevel phase shift
keying (PSK) symbols are in used as the signal alphabet (Hjørungnes 2005), the deriva-
tive of |∠z| with respect to z∗ might be needed. In this example, we will study this case
by using the chain rule.

Let h : C × C → R be given by

h(z, z∗) = g( f (z, z∗)) = |∠z|, (4.26)

where the function g : R → R is defined by

g(x) = |x |, (4.27)

and f : C × C → R by

f (z, z∗) = ∠z = arctan
( y

x

)
. (4.28)

By using the chain rule (Theorem 3.1), we find that

∂h(z, z∗)

∂z∗ = ∂g(x)

∂x

∣∣∣∣
x= f (z,z∗)

∂ f (z, z∗)

∂z∗ . (4.29)

From real-valued calculus, we know that ∂|x |
∂x = |x |

x , and ∂ f (z,z∗)
∂z∗ was derived in (4.21).

Putting these results together gives

∂h(z, z∗)

∂z∗ = |∠z|
∠z



2z∗ . (4.30)

4.2.2 Complex-Valued Derivatives of f (z, z∗)

Let a ∈ C
N×1, A ∈ C

N×N , and z ∈ C
N×1. Some examples of functions of the type

f (z, z∗) include aT z, aT z∗, zT a, zH a, zT Az, zH Az, and zH Az∗. The complex differen-
tials and derivatives of these functions are shown in Table 4.2.

Two examples for how the results in Table 4.2 can be derived are given in the
sequel.
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Table 4.2 Complex-valued derivatives of functions of the type f (z, z∗) .

f (z, z∗) Differential d f Dz f (z, z∗) Dz∗ f (z, z∗)

aT z = zT a aT dz aT 01×N

aT z∗ = zH a aT dz∗ 01×N aT

zT Az zT
(

A + AT
)

dz zT
(

A + AT
)

01×N

zH Az zH Adz + zT AT dz∗ zH A zT AT

zH Az∗ zH
(

A + AT
)

dz∗ 01×N zH
(

A + AT
)

Example 4.5 Let f : C
N×1 × C

N×1 → C be given by

f (z, z∗) = zH a = aT z∗, (4.31)

where a ∈ C
N×1 is a vector independent of z and z∗. To find the derivative of this

function, the procedure outlined in Section 3.3 is followed, where the first step is to
find the complex differential of f . This complex differential should be manipulated into
the form corresponding to the function type f (z, z∗) given in Table 3.2. The complex
differential of this function can be written as

d f = (dzH
)

a = aT dz∗, (4.32)

where the complex differential rules in (3.27) and (3.43) were applied. It is seen from
the second line of Table 3.2 that now the complex differential of f is in the appropriate
form. Therefore, we can identify the derivatives of f with respect to z and z∗ as

Dz f = 01×N , (4.33)

Dz∗ f = aT , (4.34)

respectively. These results are included in Table 4.2.

The procedure for finding the derivatives is always to reformulate the complex differ-
ential of the current functional type into the corresponding form in Table 3.2, and then
to read out the derivatives directly.

Example 4.6 Let f : C
N×1 × C

N×1 → C be given by

f (z, z∗) = zH Az. (4.35)

This function frequently appears in array signal processing (Jonhson & Dudgeon 1993).
The differential of this function can be expressed as

d f = (dzH )Az + zH Adz = zH Adz + zT AT dz∗, (4.36)

where (3.27), (3.35), and (3.43) were utilized. From (4.36), the derivatives of zH Az with
respect to z and z∗ follow from Table 3.2, and the results are included in Table 4.2.
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The other lines of Table 4.2 can be derived in a similar fashion. Some of the results
included in Table 4.2 can also be found in Brandwood (1983), and they are used, for
example, in Jaffer and Jones (1995) for designing complex FIR filters with respect to
a weighted least-squares design criterion, and in Huang and Benesty (2003), for doing
adaptive blind multichannel identification in the frequency domain.

4.2.3 Complex-Valued Derivatives of f (Z, Z∗)

Examples of functions of the type f (Z, Z∗) are Tr{Z}, Tr{Z∗}, Tr{AZ}, det(Z),
Tr{Z A0 ZT A1}, Tr{Z A0 Z A1}, Tr{Z A0 ZH A1}, Tr{Z A0 Z∗ A1}, Tr{Z p}, Tr{AZ−1},
det(A0 Z A1), det(Z2), det(ZZT ), det(ZZ∗), det(ZZH ), det(Z p), λ(Z), and λ∗(Z), where
Z ∈ C

N×Q or possibly Z ∈ C
N×N , if this is required for the functions to be defined.

The sizes of A, A0, and A1 are chosen such that these functions are well defined. The
operators Tr{·} and det(·) are defined in Section 2.4, and λ(Z) returns an eigenvalue
of Z.

For functions of the type f (Z, Z∗), it is also common to arrange the formal deriva-
tives ∂

∂zk,l
f and ∂

∂z∗
k,l

f in an alternative way (Magnus & Neudecker 1988, Section 9.2)

than in the expressions DZ f (Z, Z∗) and DZ∗ f (Z, Z∗). The notation for one alternative
way of organizing all the formal derivatives is ∂

∂ Z f and ∂
∂ Z∗ f . In this alternative way,

the formal derivatives of the elements of the matrix Z ∈ C
N×Q are arranged as

∂

∂ Z
f =




∂
∂z0,0

f · · · ∂
∂z0,Q−1

f
...

...
∂

∂zN−1,0
f · · · ∂

∂zN−1,Q−1
f


 , (4.37)

∂

∂ Z∗ f =




∂
∂z∗

0,0
f · · · ∂

∂z∗
0,Q−1

f

...
...

∂
∂z∗

N−1,0
f · · · ∂

∂z∗
N−1,Q−1

f


 . (4.38)

The quantities ∂
∂ Z f and ∂

∂ Z∗ f are called the gradient of f with respect to Z and Z∗.
Equations (4.37) and (4.38) are generalizations to the complex case of one of the ways
to define the derivative of real scalar functions with respect to real matrices, as described
in Magnus and Neudecker (1988). Notice that the way of arranging the formal derivatives
in (4.37) and (4.38) is different from the way given in (3.82) and (3.83). The connection
between these two alternative ways to arrange the derivatives of a scalar function with
respect to matrices is now elaborated.

From Table 3.2, it is observed that the derivatives of f can be identified from two
alternative expressions of d f . These two alternative ways for expressing d f are equal
and can be put together as

d f = vecT (A0)d vec(Z) + vecT (A1)d vec(Z∗) (4.39)

= Tr
{

AT
0 d Z + AT

1 d Z∗} , (4.40)
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where A0 ∈ C
N×Q and A1 ∈ C

N×Q depend on Z ∈ C
N×Q and Z∗ ∈ C

N×Q in general.
The traditional way of identifying the derivatives of f with respect to Z and Z∗ can be
read out from (4.39) in the following way:

DZ f = vecT (A0), (4.41)

DZ∗ f = vecT (A1). (4.42)

In an alternative way, from (4.40), two gradients of f with respect to Z and Z∗ are
identified as

∂

∂ Z
f = A0, (4.43)

∂

∂ Z∗ f = A1. (4.44)

The size of the gradient of f with respect to Z and Z∗ (i.e., ∂
∂ Z f and ∂

∂ Z∗ f ) is N ×
Q, and the size of DZ f (Z, Z∗) and DZ∗ f (Z, Z∗) is 1 × N Q, so these two ways of
organizing the formal derivatives are different, although their components are the same.
By comparing (4.41) and (4.42) to (4.43) and (4.44), respectively, it is seen that the
connection between the two ways of defining the derivatives is given by

DZ f (Z, Z∗) = vecT

(
∂

∂ Z
f (Z, Z∗)

)
, (4.45)

DZ∗ f (Z, Z∗) = vecT

(
∂

∂ Z∗ f (Z, Z∗)

)
. (4.46)

At some places in the literature (Haykin 2002; Palomar and Verdú 2006), an alternative
notation is used for the gradient of scalar functions f : C

N×Q × C
N×Q → C. This

alternative notation used for the gradient of f with respect to Z and Z∗ is

∇Z∗ f � ∂

∂ Z
f, (4.47)

∇Z f � ∂

∂ Z∗ f, (4.48)

respectively. Because it is easy to forget that the derivation should be done with respect
to Z∗ when the notation ∇Z is used (and vice versa for Z and ∇Z∗ ), the notations ∇Z

and ∇Z∗ will not be used in this book.
From Theorem 3.4, it is seen that for a scalar real-valued function f : C

N×Q ×
C

N×Q → R, the direction with respect to vec (Z) where the function decreases fastest
is − [DZ∗ f (Z, Z∗)]T . When using the vec operator, the steepest descent method is
expressed in (3.117). If the notation introduced in (4.38) is utilized, it can be seen that
the steepest descent method (3.117) can be reformulated as

Zk+1 = Zk + µ
∂

∂ Z∗ f (Z, Z∗)

∣∣∣∣
Z=Zk

, (4.49)

where µ and Zk play the same roles as in (3.117), k represents the number of iterations,
and (4.46) was used.
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Example 4.7 Let Zi ∈ C
Ni ×Qi , where i ∈ {0, 1}, and let the function f : C

N0×Q0 ×
C

N1×Q1 → C be given by

f (Z0, Z1) = Tr {Z0 A0 Z1 A1} , (4.50)

where A0 and A1 are independent of Z0 and Z1. For the matrix product within the trace
to be well defined, A0 ∈ C

Q0×N1 and A1 ∈ C
Q1×N0 . The differential of this function can

be expressed as

d f = Tr {(d Z0)A0 Z1 A1 + Z0 A0(d Z1)A1}
= Tr {A0 Z1 A1(d Z0) + A1 Z0 A0(d Z1)} , (4.51)

where (2.96) and (2.97) have been used. From (4.51), it is possible to find the differentials
of Tr{Z A0 ZT A1}, Tr{Z A0 Z A1}, Tr{Z A0 ZH A1}, and Tr{Z A0 Z∗ A1}. The differentials
of these four functions are

d Tr{Z A0 ZT A1} = Tr
{(

A0 ZT A1 + AT
0 ZT AT

1

)
d Z
}

, (4.52)

d Tr{Z A0 Z A1} = Tr {(A0 Z A1 + A1 Z A0) d Z} , (4.53)

d Tr{Z A0 ZH A1} = Tr
{

A0 ZH A1d Z + AT
0 ZT AT

1 d Z∗} , (4.54)

d Tr{Z A0 Z∗ A1} = Tr
{

A0 Z∗ A1d Z + A1 Z A0d Z∗} , (4.55)

where (2.95) and (2.96) have been used several times. These four differential expressions
are now in the same form as (4.40), such that the derivatives of these four functions with
respect to Z and Z∗ can be found; they are included in Table 4.3.

Example 4.8 Let f : C
N×N → C be given by f (Z) = Tr{AZ−1} where Z ∈ C

N×N is
nonsingular. The differential of this function can be expressed as

d f = Tr
{

Ad Z−1
} = − Tr

{
AZ−1(d Z)Z−1

} = − Tr
{

Z−1 AZ−1d Z
}

, (4.56)

where (3.40) was utilized. The derivative of f with respect to Z and Z∗ can now be
identified; these results are included in Table 4.3.

Example 4.9 Let f : C
N×N → C be given by f (Z) = Tr {Z p} where p ∈ N is a positive

integer. By means of (3.33) and repeated application of (3.35), the differential of this
function is then given by

d f = Tr

{
p∑

i=1

Zi−1 (d Z) Z p−i

}
=

p∑
i=1

Tr
{

Z p−1d Z
} = p Tr

{
Z p−1d Z

}
. (4.57)

From this equation, it is possible to find the derivatives of the function Tr {Z p} with
respect to Z and Z∗; the results are included in Table 4.3.
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Table 4.3 Complex-valued derivatives of functions of the type f (Z, Z∗) .

f (Z, Z∗) ∂

∂ Z f ∂

∂ Z∗ f

Tr{Z} I N 0N×N

Tr{Z∗} 0N×N I N

Tr{AZ} AT 0N×Q

Tr{Z A0 ZT A1} AT
1 Z AT

0 + A1 Z A0 0N×Q

Tr{Z A0 Z A1} AT
1 ZT AT

0 + AT
0 ZT AT

1 0N×Q

Tr{Z A0 ZH A1} AT
1 Z∗ AT

0 A1 Z A0

Tr{Z A0 Z∗ A1} AT
1 ZH AT

0 AT
0 ZT AT

1

Tr{AZ−1} − (ZT
)−1

AT
(

ZT
)−1

0N×N

Tr{Z p} p
(

ZT
)p−1

0N×N

det(Z) det(Z)
(

ZT
)−1

0N×N

det(A0 Z A1) det(A0 Z A1)AT
0

(
AT

1 ZT AT
0

)−1
AT

1 0N×Q

det(Z2) 2 det2(Z)
(

ZT
)−1

0N×N

det(ZZT ) 2 det(ZZT )
(

ZZT
)−1

Z 0N×Q

det(ZZ∗) det(ZZ∗)(ZH ZT )−1 ZH det(ZZ∗)ZT
(

ZH ZT
)−1

det(ZZH ) det(ZZH )(Z∗ ZT )−1 Z∗ det(ZZH )
(

ZZH
)−1

Z

det(Z p) p detp(Z)
(

ZT
)−1

0N×N

λ(Z)
v∗

0
uT

0
v H

0
u0

0N×N

λ∗(Z) 0N×N
v0uH

0
vT

0
u∗

0

Example 4.10 Let f : C
N×Q → C be given by

f (Z) = det(A0 Z A1), (4.58)

where Z ∈ C
N×Q , A0 ∈ C

M×N , and A1 ∈ C
Q×M , where M is a positive integer. The

matrices A0 and A1 are assumed to be independent of Z. The complex differential of f
can be expressed as

d f = det(A0 Z A1) Tr
{

A1 (A0 Z A1)−1 A0d Z
}

. (4.59)

From (4.59), the derivatives of det(A0 Z A1) with respect to Z and Z∗ follow; the results
are included in Table 4.3.

Example 4.11 Let f : C
N×Q × C

Q×N → C be defined as

f (Z0, Z1) = det(Z0 Z1), (4.60)

where it is assumed that Z0 Z1 is nonsingular. Notice that Z0 ∈ C
N×Q and Z1 ∈ C

Q×N ,
such that, in general, the matrices Z0 and Z1 have different sizes. The complex
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differential of this function can be calculated by means of (3.35) and (3.49) as

d f = det(Z0 Z1) Tr
{

(Z0 Z1)−1d(Z0 Z1)
}

= det(Z0 Z1) Tr
{

Z1(Z0 Z1)−1d Z0 + (Z0 Z1)−1 Z0d Z1

}
. (4.61)

From (4.61), it is possible to find the complex differentials and derivatives of the functions
det
(

Z2
)
, det

(
ZZT

)
, det (ZZ∗), and det

(
ZZH

)
d det

(
Z2
) = 2 [det(Z)]2 Tr

{
Z−1d Z

}
, (4.62)

d det
(

ZZT
) = 2 det(ZZT ) Tr

{
ZT
(

ZZT
)−1

d Z
}

, (4.63)

d det (ZZ∗) = det(ZZ∗) Tr
{

Z∗(ZZ∗)−1d Z + (ZZ∗)−1 Zd Z∗} , (4.64)

d det
(

ZZH
) = det(ZZH ) Tr

{
ZH (ZZH )−1d Z + ZT

(
Z∗ ZT

)−1
d Z∗
}

. (4.65)

From these four complex differentials, the derivatives of these four determinant functions
can be identified; they are included in Table 4.3, assuming that the inverse matrices
involved exist.

Example 4.12 Let f : C
N×N → C be defined as

f (Z) = det(Z p), (4.66)

where p ∈ N is a positive integer and Z ∈ C
N×N is assumed to be nonsingular. From

(3.49), the complex differential of f can be expressed as

d f = d (det(Z))p = p (det(Z))p−1 d det(Z) = p (det(Z))p Tr{Z−1d Z}. (4.67)

The derivatives of f with respect to Z and Z∗ can be identified from (4.67) and they are
included in Table 4.3. The result for p = 1 is also explicitly included in Table 4.3, and
it can alternatively be derived from (4.59).

Example 4.13 Let f (Z, Z∗) = Tr
{

F(Z, Z∗)
}

, where F : C
N×Q × C

N×Q → C
M×M . It

is assumed that the complex differential of vec(F) can be expressed as in (3.78). Then, it
follows from (2.97), (3.43), and (3.78) that the complex differential of f can be written
as

d f = vecT (I M )
[
(DZ F)d vec(Z) + (DZ∗ F)d vec(Z∗)

]
. (4.68)

From this equation, DZ f and DZ∗ f follow:

DZ f = vecT (I M )DZ F, (4.69)

DZ∗ f = vecT (I M )DZ∗ F. (4.70)

When the derivatives of F are already known, the above expressions are useful for
finding the derivatives of f (Z, Z∗) = Tr

{
F(Z, Z∗)

}
.
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Example 4.14 Let λ0 be a simple eigenvalue1 of Z0 ∈ C
N×N , and let u0 ∈ C

N×1 be the
normalized corresponding eigenvector, such that Z0u0 = λ0u0. Let λ : C

N×N → C and
u : C

N×N → C
N×1 be defined such that

Zu(Z) = λ(Z)u(Z), (4.71)

uH
0 u(Z) = 1, (4.72)

λ(Z0) = λ0, (4.73)

u(Z0) = u0. (4.74)

Let the normalized left eigenvector of Z0 corresponding to λ0 be denoted v0 ∈ C
N×1

(i.e., v H
0 Z0 = λ0v H

0 ), or, equivalently ZH
0 v0 = λ∗

0v0. To find the complex differential
of λ(Z) at Z = Z0, take the complex differential of both sides of (4.71) evaluated at
Z = Z0

(d Z) u0 + Z0du = (dλ) u0 + λ0du. (4.75)

Premultiplying (4.75) by v H
0 gives

v H
0 (d Z) u0 = (dλ) v H

0 u0. (4.76)

From Horn and Johnson (1985, Lemma 6.3.10), it follows that v H
0 u0 �= 0, and, hence,

dλ = v H
0 (d Z) u0

v H
0 u0

= Tr

{
u0v H

0

v H
0 u0

d Z

}
. (4.77)

This result is included in Table 4.3, and it will be used later when the derivatives of the
eigenvector u and the Hessian of λ are found. The complex differential of λ∗ at Z0 can
now also be found by complex conjugating (4.77)

dλ∗ = vT
0 (d Z∗) u∗

0

vT
0 u∗

0

= Tr

{
u∗

0vT
0

vT
0 u∗

0

d Z∗
}

. (4.78)

These results are derived in Magnus and Neudecker (1988, Section 8.9). The derivatives
of λ(Z) and λ∗(Z) at Z0 with respect to Z and Z∗ can be found from the complex
differentials in (4.77) and (4.78); these are included in Table 4.3.

1 The matrix Z0 ∈ C
N×N has in general N different complex eigenvalues. The roots of the characteristic

equation (i.e., the eigenvalues), need not be distinct. The number of times an eigenvalue appears is equal
to its algebraic multiplicity. If one eigenvalue appears only once, it is called a simple eigenvalue (Horn &
Johnson 1985).
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4.3 Complex-Valued Derivatives of Vector Functions

4.3.1 Complex-Valued Derivatives of f (z, z∗)

Examples of functions of the type f (z, z∗) are az, azz∗, and a f (z, z∗), where a ∈ C
M×1

and z ∈ C. These functions can be differentiated by finding the complex differentials of
the scalar functions z, zz∗, and f (z, z∗), respectively.

Example 4.15 Let f (z, z∗) = a f (z, z∗), then the complex differential of this function is
given by

d f = ad f = a (Dz f (z, z∗)) dz + a (Dz∗ f (z, z∗)) dz∗, (4.79)

where d f was found from Table 3.2. From (4.79), it follows that Dz f = aDz f (z, z∗)
and Dz∗ f = aDz∗ f (z, z∗). The derivatives of the vector functions az and azz∗ follow
from these results.

4.3.2 Complex-Valued Derivatives of f (z, z∗)

Examples of functions of the type f (z, z∗) are Az, Az∗, and F(z, z∗)a, where z ∈ C
N×1,

A ∈ C
M×N , F ∈ C

M×P , and a ∈ C
P×1.

Example 4.16 Let f : C
N×1 × C

N×1 → C
M×1 be given by f (z, z∗) = F(z, z∗)a, where

F : C
N×1 × C

N×1 → C
M×P . The complex differential of f is computed as

d f = d vec( f ) = d vec(F(z, z∗)a) = (aT ⊗ I M

)
d vec(F)

= (aT ⊗ I M

) [
(Dz F (z, z∗)) dz + (Dz∗ F (z, z∗)) dz∗] , (4.80)

where (2.105) and Table 3.2 were used. From (4.80), the derivatives of f with respect
to z and z∗ follow:

Dz f = (aT ⊗ I M

)
Dz F (z, z∗) , (4.81)

Dz∗ f = (aT ⊗ I M

)
Dz∗ F (z, z∗) . (4.82)

4.3.3 Complex-Valued Derivatives of f (Z, Z∗)

Examples of functions of the type f (Z, Z∗) are Za, ZT a, Z∗a, ZH a, F(Z, Z∗)a, u(Z)
(eigenvector), u∗(Z) (eigenvector), and v H (Z) (left eigenvector), where the sizes of a,
Z, and F are chosen such that the functions are well defined. The complex differentials
of Za, ZT a, Z∗a, and ZH a follow from the complex differential of F(Z, Z∗)a, and the
complex differential of F(Z, Z∗)a can be found in an analogous manner as in (4.80).



4.3 Complex-Valued Derivatives of Vector Functions 83

Example 4.17 The complex differential of the eigenvector u(Z) is now found at Z = Z0.
The derivation here is similar to the one in Magnus and Neudecker (1988, Section 8.9),
where the same result for du at Z = Z0 was derived; however, additional details are
included here. See the discussion around (4.71) to (4.74) for an introduction to the
eigenvalue and eigenvector notation. Let Y0 = λ0 I N − Z0, then it follows from (4.75)
that

Y0du = (d Z) u0 − (dλ) u0 = (d Z) u0 − v H
0 (d Z)u0

v H
0 u0

u0

=
(

I N − u0v H
0

v H
0 u0

)
(d Z) u0, (4.83)

where (4.77) was utilized. Premultiplying (4.83) with Y+
0 (where (·)+ is the Moore-

Penrose inverse from Definition 2.4) results in

Y+
0 Y0du = Y+

0

(
I N − u0v H

0

v H
0 u0

)
(d Z) u0. (4.84)

Because λ0 is a simple eigenvalue, dimC (N (Y0)) = 1 (Horn & Johnson 1985), where
N (·) denotes the null space (see Section 2.4). Hence, it follows from (2.55) that
rank(Y0) = N − dimC (N (Y0)) = N − 1. From Y0u0 = 0N×1, it follows from (2.82)
that u+

0 Y+
0 = 01×N . It can be shown by direct insertion in Definition 2.4 of the Moore-

Penrose inverse that the inverse of the normalized eigenvector u0 is given by u+
0 = uH

0

(see Exercise 2.4 for the Moore-Penrose inverse of an arbitrary complex-valued vector).
From these results, it follows that uH

0 Y+
0 = 01×N . Set C0 = Y+

0 Y0 + u0uH
0 , then it can

be shown from the two facts uH
0 Y+

0 = 01×N and Y0u0 = 0N×1 that C2
0 = C0 (i.e., C0 is

idempotent). It can be shown by the direct use of Definition 2.4 that the matrix Y+
0 Y0 is

also idempotent. With the use of Proposition 2.1, it is found that

rank (C0) = Tr {C0} = Tr
{

Y+
0 Y0 + u0uH

0

} = Tr
{

Y+
0 Y0

}+ Tr
{

u0uH
0

}
= rank

(
Y+

0 Y0

)+ 1 = rank (Y0) + 1 = N − 1 + 1 = N , (4.85)

where (2.90) was used. From Proposition 2.1 and (4.85), it follows that C0 = I N . Using
the complex differential operator on both sides of the normalization in (4.72) yields
uH

0 du = 0. Using these results, it follows that

Y+
0 Y0du = (I N − u0uH

0

)
du = du − u0uH

0 du = du. (4.86)

Equations (4.84) and (4.86) lead to

du = (λ0 I N − Z0)+
(

I N − u0v H
0

v H
0 u0

)
(d Z) u0. (4.87)
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From (4.87), it is possible to find the derivative of the eigenvector function u(Z) evaluated
at Z0 with respect to the matrix Z in the following way:

du = vec(du) = vec

(
(λ0 I N − Z0)+

(
I N − u0v H

0

v H
0 u0

)
(d Z) u0

)

=
(

uT
0 ⊗

[
(λ0 I N − Z0)+

(
I N − u0v H

0

v H
0 u0

)])
d vec (Z) , (4.88)

where (2.105) was used. From (4.88), it follows that

DZu = uT
0 ⊗

[
(λ0 I N − Z0)+

(
I N − u0v H

0

v H
0 u0

)]
. (4.89)

The complex differential and the derivative of u∗ follow with the use of (3.45), (4.88),
and (4.89).

Example 4.18 The left eigenvector function v : C
N×N → C

N×1 with the argument Z ∈
C

N×N , denoted v(Z), is defined through the following four relations:

v H (Z)Z = λ(Z)v H , (4.90)

v H
0 v(Z) = 1, (4.91)

λ(Z0) = λ0, (4.92)

v(Z0) = v0. (4.93)

The complex differential of v(Z) at Z = Z0 can be found, using a procedure similar to
the one used in Example 4.17 for finding du at Z = Z0, leading to

dv H = v H
0 (d Z)

(
I N − u0v H

0

v H
0 u0

)
(λ0 I N − Z0)+ . (4.94)

In general, it is hard to work with derivatives of eigenvalues and eigenvectors because
the derivatives depend on the algebraic multiplicity of the corresponding eigenvalue. For
this reason, it is better to try to rewrite the objective function such that the eigenvalues
and eigenvectors do not appear explicitly. Two such cases are given in communication
problems in Hjørungnes and Gesbert (2007c and 2007d), and the latter is explained in
detail in Section 7.4.

4.4 Complex-Valued Derivatives of Matrix Functions

4.4.1 Complex-Valued Derivatives of F(z, z∗)

Examples of functions of the type F(z, z∗) are Az, Azz∗, and A f (z, z∗), where A ∈
C

M×P is independent of z and z∗. These functions can be differentiated by finding the
complex differentials of the scalar functions z, zz∗, and f (z, z∗).
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Example 4.19 Let F : C × C → C
M×P be given by

F(z, z∗) = A f (z, z∗) , (4.95)

where f : C × C → C has derivatives that can be identified from

d f = (Dz f ) dz + (Dz∗ f ) dz∗, (4.96)

and where A ∈ C
M×P is independent of z and z∗. The complex differential of vec(F)

can be expressed as

d vec (F) = vec (A) d f = vec (A) (Dz f ) dz + vec (A) (Dz∗ f ) dz∗. (4.97)

Now, the derivatives of F with respect to z and z∗ can be identified as

Dz F = vec (A)Dz f, (4.98)

Dz∗ F = vec (A)Dz∗ f. (4.99)

In more complicated examples than those shown above, the complex differential of
vec(F) should be reformulated directly, possibly component-wise, to be put into a form
such that the derivatives can be identified (i.e., following the general procedure outlined
in Section 3.3).

4.4.2 Complex-Valued Derivatives of F(z, z∗)

Examples of functions of the type F(z, z∗) are zzT and zzH , where z ∈ C
N×1.

Example 4.20 Let F : C
N×1 × C

N×1 → C
N×N be given by F(z, z∗) = zzH . The com-

plex differential of the F can be expressed as

d F = (dz)zH + zdzH . (4.100)

And from this equation, it follows that

d vec(F) = [z∗ ⊗ I N

]
d vec(z) + [I N ⊗ z] d vec(zH )

= [z∗ ⊗ I N

]
dz + [I N ⊗ z] dz∗. (4.101)

Hence, the derivatives of F(z, z∗) = zzH with respect to z and z∗ are given by

Dz F = z∗ ⊗ I N , (4.102)

Dz∗ F = I N ⊗ z. (4.103)
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Table 4.4 Complex-valued derivatives of functions of the type F (Z, Z∗) .

F (Z, Z∗) DZ F (Z, Z∗) DZ∗ F (Z, Z∗)

Z I N Q 0N Q×N Q

ZT K N ,Q 0N Q×N Q

Z∗ 0N Q×N Q I N Q

ZH 0N Q×N Q K N ,Q

ZZT (I N 2 + K N ,N ) (Z ⊗ I N ) 0N 2×N Q

ZT Z
(

I Q2 + K Q,Q

) (
I Q ⊗ ZT

)
0Q2×N Q

ZZH Z∗ ⊗ I N K N ,N (Z ⊗ I N )

Z−1 −(ZT )−1 ⊗ Z−1 0N 2×N 2

Z p

p∑
i=1

(
(ZT )p−i ⊗ Zi−1

)
0N 2×N 2

Z ⊗ Z A(Z) + B(Z) 0N 2 Q2×N Q

Z ⊗ Z∗ A(Z∗) B(Z)

Z∗ ⊗ Z∗ 0N 2 Q2×N Q A(Z∗) + B(Z∗)

Z � Z 2 diag(vec(Z)) 0N Q×N Q

Z � Z∗ diag(vec(Z∗)) diag(vec(Z))

Z∗ � Z∗ 0N Q×N Q 2 diag(vec(Z∗))

exp(Z)
∞∑

k=0

1

(k + 1)!

k∑
i=0

(
ZT
)k−i ⊗ Zi 0N 2×N 2

exp (Z∗) 0N 2×N 2

∞∑
k=0

1

(k + 1)!

k∑
i=0

((
ZH
)k−i ⊗ (Z∗)i

)

exp
(

ZH
)

0N 2×N 2

∞∑
k=0

1

(k + 1)!

k∑
i=0

(
(Z∗)k−i ⊗ (ZH )i

)
K N ,N

4.4.3 Complex-Valued Derivatives of F(Z, Z∗)

Examples of functions of the form F(Z, Z∗) are Z, ZT , Z∗, ZH , ZZT , ZT Z, ZZH , Z−1,
Z+, Z#, Z p, Z ⊗ Z, Z ⊗ Z∗, Z∗ ⊗ Z∗, Z � Z, Z � Z∗, Z∗ � Z∗, exp(Z), exp(Z∗), and
exp(ZH ), where Z ∈ C

N×Q or possibly Z ∈ C
N×N , if this is required for the function

to be defined.

Example 4.21 If F(Z) = Z ∈ C
N×Q , then

d vec(F) = d vec(Z) = I N Qd vec(Z). (4.104)

From this expression of the complex differentials of vec(F), the derivatives of F(Z) = Z
with respect to Z and Z∗ can be identified from the last line of Table 3.2. These derivatives
are included in Table 4.4.
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Example 4.22 Let F : C
N×Q × C

Q×M → C
N×M , where

F(Z0, Z1) = Z0 Z1, (4.105)

for Z0 ∈ C
N×Q and Z1 ∈ C

Q×M , such that the sizes of Z0 and Z1 are different in
general. The operator vec(·) applied to the complex differential of F, see (3.35), yields

d vec(F) = vec ((d Z0)Z1) + vec (Z0(d Z1))

= (ZT
1 ⊗ I N

)
d vec(Z0) + (I M ⊗ Z0) d vec(Z1). (4.106)

From this result, the complex differentials of ZZT , ZT Z, and ZZH can be derived and
are given by

d ZZT = (I N 2 + K N ,N ) (Z ⊗ I N ) d vec(Z), (4.107)

d ZT Z = (I Q2 + K Q,Q

) (
I Q ⊗ ZT

)
d vec(Z), (4.108)

d ZZH = (Z∗ ⊗ I N ) d vec(Z) + K N ,N (Z ⊗ I N ) d vec(Z∗), (4.109)

where K Q,N is given in Definition 2.9. The derivatives of these three functions can now
be identified; they are included in Table 4.4.

Example 4.23 Let Z ∈ C
N×N be a nonsingular matrix, and F : C

N×N → C
N×N be given

by

F(Z) = Z−1. (4.110)

By using (2.105) and (3.40), it follows that

d vec(F) = −
((

ZT
)−1 ⊗ Z−1

)
d vec(Z). (4.111)

From this result, the derivatives of F with respect to Z and Z∗ are identified and included
in Table 4.4.

Example 4.24 Let F : C
N×N → C

N×N , where

F(Z) = Z p, (4.112)

for Z ∈ C
N×N and where p ∈ N is a positive integer. Hence, the function F(Z) in (4.112)

represents matrix power. By repeated application of (3.35), it can be shown that

d F =
p∑

i=1

Zi−1(d Z)Z p−i , (4.113)
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from which it follows that

d vec(F) =
p∑

i=1

((
ZT
)p−i ⊗ Zi−1

)
d vec(Z). (4.114)

Now the derivatives of F with respect to Z and Z∗ can be found; they are included in
Table 4.4.

Example 4.25 Let F : C
N0×Q0 × C

N1×Q1 → C
N0 N1×Q0 Q1 be given by

F(Z0, Z1) = Z0 ⊗ Z1, (4.115)

where Zi ∈ C
Ni ×Qi where i ∈ {0, 1}. The complex differential of this function follows

from (3.36):

d F = (d Z0) ⊗ Z1 + Z0 ⊗ d Z1. (4.116)

Applying the vec(·) operator to (4.116) yields

d vec(F) = vec ((d Z0) ⊗ Z1) + vec (Z0 ⊗ d Z1) . (4.117)

From (2.103) and (2.112), it follows that

vec ((d Z0) ⊗ Z1) = (I Q0 ⊗ K Q1,N0 ⊗ I N1

)
[(d vec(Z0)) ⊗ vec(Z1)]

= (I Q0 ⊗ K Q1,N0 ⊗ I N1

) [(
I N0 Q0 d vec(Z0)

)⊗ (vec(Z1)1)
]

= (I Q0 ⊗ K Q1,N0 ⊗ I N1

) [(
I N0 Q0 ⊗ vec(Z1)

)
(d vec(Z0) ⊗ 1)

]
= (I Q0 ⊗ K Q1,N0 ⊗ I N1

) [
I N0 Q0 ⊗ vec(Z1)

]
d vec(Z0), (4.118)

and, in a similar way, it follows that

vec (Z0 ⊗ d Z1) = (I Q0 ⊗ K Q1,N0 ⊗ I N1

)
[vec(Z0) ⊗ d vec(Z1)]

= (I Q0 ⊗ K Q1,N0 ⊗ I N1

) [
vec(Z0) ⊗ I N1 Q1

]
d vec(Z1). (4.119)

Inserting the results from (4.118) and (4.119) into (4.117) gives

d vec(F) = (I Q0 ⊗ K Q1,N0 ⊗ I N1

) [
I N0 Q0 ⊗ vec(Z1)

]
d vec(Z0)

+ (I Q0 ⊗ K Q1,N0 ⊗ I N1

) [
vec(Z0) ⊗ I N1 Q1

]
d vec(Z1). (4.120)

Define the matrices A(Z1) and B(Z0) by

A(Z1) �
(

I Q0 ⊗ K Q1,N0 ⊗ I N1

) [
I N0 Q0 ⊗ vec(Z1)

]
, (4.121)

B(Z0) �
(

I Q0 ⊗ K Q1,N0 ⊗ I N1

) [
vec(Z0) ⊗ I N1 Q1

]
. (4.122)

By means of the matrices A(Z1) and B(Z0), it is then possible to rewrite the complex
differential of the Kronecker product F(Z0, Z1) = Z0 ⊗ Z1 as

d vec(F) = A(Z1)d vec(Z0) + B(Z0)d vec(Z1). (4.123)
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From (4.123), the complex differentials of Z ⊗ Z, Z ⊗ Z∗, and Z∗ ⊗ Z∗ can be
expressed as

d Z ⊗ Z = (A(Z) + B(Z))d vec(Z), (4.124)

d Z ⊗ Z∗ = A(Z∗)d vec(Z) + B(Z)d vec(Z∗), (4.125)

d Z∗ ⊗ Z∗ = (A(Z∗) + B(Z∗))d vec(Z∗). (4.126)

Now, the derivatives of these three functions with respect to Z and Z∗ can be identified
from the last three equations above, and these derivatives are included in Table 4.4.

Example 4.26 Let F : C
N×Q × C

N×Q → C
N×Q be given by

F(Z0, Z1) = Z0 � Z1. (4.127)

The complex differential of this function follows from (3.38) and is given by

d F = (d Z0) � Z1 + Z0 � d Z1 = Z1 � d Z0 + Z0 � d Z1. (4.128)

Applying the vec(·) operator to (4.128) and using (2.115) results in

d vec(F) = diag (vec(Z1)) d vec(Z0) + diag (vec(Z0)) d vec(Z1). (4.129)

The complex differentials of Z � Z, Z � Z∗, and Z∗ � Z∗ can be derived from (4.129):

d Z � Z = 2 diag(vec(Z))d vec(Z), (4.130)

d Z � Z∗ = diag(vec(Z∗))d vec(Z) + diag(vec(Z))d vec(Z∗), (4.131)

d Z∗ � Z∗ = 2 diag(vec(Z∗))d vec(Z∗). (4.132)

The derivatives of these three functions with respect to Z and Z∗ can now be obtained
and are included in Table 4.4.

Example 4.27 The complex differential of the exponential matrix function (see Defini-
tion 2.5) can be expressed as

d exp(Z) =
∞∑

k=1

1

k!
d Zk =

∞∑
k=0

1

(k + 1)!
d Zk+1 =

∞∑
k=0

1

(k + 1)!

k∑
i=0

Zi (d Z)Zk−i ,

(4.133)

where the complex differential rules in (3.25) and (3.35) have been used. Applying vec(·)
on (4.133) yields

d vec(exp(Z)) =
∞∑

k=0

1

(k + 1)!

k∑
i=0

((
ZT
)k−i ⊗ Zi

)
d vec(Z). (4.134)
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In a similar way, the complex differentials and derivatives of the functions exp(Z∗) and
exp(ZH ) can be found to be

d vec(exp(Z∗)) =
∞∑

k=0

1

(k + 1)!

k∑
i=0

((
ZH
)k−i ⊗ (Z∗)i

)
d vec(Z∗), (4.135)

d vec(exp(ZH )) =
∞∑

k=0

1

(k + 1)!

k∑
i=0

(
(Z∗)k−i ⊗ (ZH )i

)
K N ,N d vec(Z∗). (4.136)

The derivatives of exp(Z), exp(Z∗), and exp(ZH ) with respect to Z and Z∗ can now be
derived; they are included in Table 4.4.

Example 4.28 Let F : C
N×Q × C

N×Q → C
Q×N be given by

F(Z, Z∗) = Z+, (4.137)

where Z ∈ C
N×Q . The reason for including both variables Z and Z∗ in this function

definition is that the complex differential of Z+ (see (3.64)) depends on both d Z and
d Z∗. Using the vec(·) and the differential operator d on (3.64) and utilizing (2.105) and
(2.31) results in

d vec(F) = −
[(

Z+)T ⊗ Z+
]

d vec(Z)

+
[(

I N − (Z+)T
ZT
)

⊗ Z+ (Z+)H
]

K N ,Qd vec(Z∗)

+
[(

Z+)T (
Z+)∗ ⊗ (I Q − Z+ Z

)]
K N ,Qd vec(Z∗). (4.138)

From (4.138), the derivatives DZ F and DZ∗ F can be expressed as

DZ F = − (Z+)T ⊗ Z+, (4.139)

DZ∗ F =
{[(

I N − (Z+)T
ZT
)

⊗ Z+ (Z+)H
]

+
[(

Z+)T (
Z+)∗ ⊗ (I Q − Z+ Z

)]}
K N ,Q . (4.140)

If the matrix Z ∈ C
N×N is invertible, then Z+ = Z−1, and (4.139) and (4.140) reduce

to DZ F = −Z−T ⊗ Z−1 and DZ∗ F = 0N 2×N 2 , which is in agreement with the results
found in Example 4.23 and Table 4.4.

Example 4.29 Let F : C
N×N → C

N×N be given by F(Z) = Z# (i.e., the function F
represents the adjoint matrix of the input variable Z). The complex differential of this
function is given in (3.58). Using the vec(·) operator on (3.58) leads to

d vec(F) = det(Z)
[
vec(Z−1) vecT

(
(Z−1)T

)− [(Z−1)T ⊗ Z−1
]]

d vec(Z). (4.141)
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From this, it follows that

DZ F = det(Z)
[
vec(Z−1) vecT

(
(Z−1)T

)− [(Z−1)T ⊗ Z−1
]]

. (4.142)

Because the expressions associated with the complex differential of the Moore-Penrose
inverse and the adjoint matrices are so long, they are not included in Table 4.4.

4.5 Exercises

4.1 Use the following identity |z|2 = zz∗ and the chain rule to find ∂|z|
∂z and ∂|z|

∂z∗ . Make
sure that this alternative derivation leads to the same result as given in (4.13) and (4.14).

4.2 Show that

∂|z∗|
∂z

= z∗

2|z| , (4.143)

and

∂|z∗|
∂z∗ = z

2|z| . (4.144)

4.3 For real-valued scalar variables, we know that d|x |2
dx = dx2

dx , where x ∈ R. Show that
for the complex-valued case (i.e., z ∈ C), then

∂z2

∂z
�= ∂|z|2

∂z
, (4.145)

in general.

4.4 Find ∂∠z
∂z by differentiating (4.20) with respect to z∗.

4.5 Show that

∂∠z∗

∂z∗ = − 

2z∗ , (4.146)

and

∂∠z∗

∂z
= 

2z
, (4.147)

by means of the results already derived in this chapter.

4.6 Let AH = A ∈ C
N×N and BH = B ∈ C

N×N be given constant matrices where B is
positive or negative definite such that zH Bz �= 0,∀z �= 0N×1. Let f : C

N×1 × C
N×1 →

R be given by

f (z, z∗) = zH Az

zH Bz
, (4.148)
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where f is not defined for z = 0N×1. The expression in (4.148) is called the generalized
Rayleigh quotient. Show that the d f is given by

d f =
[

zH A

zH Bz
− zH Az(

zH Bz
)2 zH B

]
dz +

[
zT AT

zH Bz
− zH Az(

zH Bz
)2 zT BT

]
dz∗. (4.149)

From this complex differential, the derivatives of f with respect to z and z∗ are identified
as

Dz f = zH A

zH Bz
− zH Az(

zH Bz
)2 zH B, (4.150)

Dz∗ f = zT AT

zH Bz
− zH Az(

zH Bz
)2 zT BT . (4.151)

By studying the equation Dz∗ f = 01×N , show that the maximum and minimum values
of f are given by the maximum and minimum eigenvalues of the generalized eigenvalue
problem Az = λBz. See Therrien (1992, Section 2.6) for an introduction to the general-
ized eigenvalue problem Az = λBz, where λ are roots of the equation det(A − λB) = 0.

Assume that B is positive definite. Then B has a unique positive definite square
root (Horn & Johnson 1991, p. 448). Let this square root be denoted B1/2. Explain why

λmin(B−1/2 AB−1/2) ≤ f (z, z∗) ≤ λmax(B−1/2 AB−1/2), (4.152)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of the matrix
input argument.2

4.7 Show that the derivatives with respect to Z and Z∗ of the function f (Z, Z∗) =
ln(det(Z)), when Z ∈ C

N×N is nonsingular, are given by

DZ f = vecT
(

Z−T
)
, (4.153)

and

DZ∗ f = 01×N 2 . (4.154)

4.8 Assume that ZH
0 = Z0. Let λ0 be a simple real eigenvalue of Z0 ∈ C

N×N , and let
u0 ∈ C

N×1 be the normalized corresponding eigenvector, such that Z0u0 = λ0u0. Let
λ : C

N×N → C and u : C
N×N → C

N×1 be defined such that

Zu(Z) = λ(Z)u(Z), (4.155)

uH
0 u(Z) = 1, (4.156)

λ(Z0) = λ0, (4.157)

u(Z0) = u0. (4.158)

2 The eigenvalues of B−1 A are equal to the eigenvalues of B−1/2 AB−1/2 because the matrix products C D and
DC have equal eigenvalues, when C, D ∈ C

N×N and C is invertible. The reason for this can be seen from
det(λI N − C D) = det(λCC−1 − C D) = det(C(λC−1 − D)) = det((λC−1 − D)C) = det(λI N − DC).
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Show that the complex differentials dλ and du, at Z0 are given by

dλ = uH
0 (d Z) u0, (4.159)

du = (λ0 I N − Z0)+ (d Z) u0. (4.160)

4.9 Let Z ∈ C
N×N have all eigenvalues with absolute value less than one. Show that

(I N − Z)−1 =
∞∑

k=0

Zk, (4.161)

(see Magnus & Neudecker 1988, p. 169). Furthermore, show that the derivative of
(I N − Z)−1 with respect to Z and Z∗ can be expressed as

DZ (I N − Z)−1 =
∞∑

k=1

k∑
l=1

(
Zk−l

)T ⊗ Zl−1, (4.162)

DZ∗ (I N − Z)−1 = 0N 2×N 2 . (4.163)

4.10 The natural logarithm of a square complex-valued matrix Z ∈ C
N×N can be

expressed as follows (Horn & Johnson 1991, p. 492):

ln (I N − Z) � −
∞∑

k=1

1

k
Zk, (4.164)

and it is defined for all matrices Z ∈ C
N×N such that the absolute value of all eigenvalues

is smaller than one. Show that the complex differential of ln (I N − Z) can be expressed
as

d ln (I N − Z) = −
∞∑

k=1

1

k

k∑
l=1

Zl−1 (d Z) Zk−l . (4.165)

Use the expression for d ln (I N − Z) to show that the derivatives of ln (I N − Z) with
respect to Z and Z∗ are given by

DZ ln (I N − Z) = −
∞∑

k=1

1

k

k∑
l=1

(
Zk−l

)T ⊗ Zl−1, (4.166)

DZ∗ ln (I N − Z) = 0N 2×N 2 , (4.167)

respectively. Use (4.165) to show that

d Tr {ln (I N − Z)} = − Tr
{

(I N − Z)−1 d Z
}

. (4.168)

4.11 Let f : C
N×Q × C

N×Q → C be given by

f (Z, Z∗) = ln
(
det
(

Rn + Z ARx AH ZH
))

, (4.169)

where the three matrices Rn ∈ C
N×N (positive semidefinite), Rx ∈ C

P×P (positive
semidefinite), and A ∈ C

Q×P are independent of Z and Z∗. Show that the derivatives of
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f with respect to Z and Z∗ are given by

DZ f = vecT

(
R−T

n Z∗ A∗
[(

R∗
x

)−1 + AT ZT R−T
n Z∗ A∗

]−1
AT

)
, (4.170)

DZ∗ f = vecT
(

R−1
n Z A

[
R−1

x + AH ZH R−1
n Z A

]−1
AH
)

. (4.171)

Explain why (4.171) is in agreement with Palomar and Verdú (2006, Eq. (21)).

4.12 Let f : C
N×Q × C

N×Q → C be given by

f (Z, Z∗) = ln
(
det
(

Rn + AZ Rx ZH AH
))

, (4.172)

where the three matrices Rn ∈ C
P×P (positive semidefinite), Rx ∈ C

Q×Q (positive
semidefinite), and A ∈ C

P×N are independent of Z and Z∗. Show that the derivatives of
f with respect to Z and Z∗ can be expressed as

DZ f = vecT

(
AT R−T

n A∗ Z∗
((

R∗
x

)−1 + ZT AT R−T
n A∗ Z∗

)−1
)

, (4.173)

DZ∗ f = vecT
(

AH R−1
n AZ(R−1

x + ZH AH R−1
n AZ)−1

)
. (4.174)

Explain why (4.174) is in agreement with Palomar and Verdú (2006, Eq. (22)).



5 Complex Hessian Matrices for Scalar,
Vector, and Matrix Functions

5.1 Introduction

This chapter provides the tools for finding Hessians (i.e., second-order derivatives) in
a systematic way when the input variables are complex-valued matrices. The proposed
theory is useful when solving numerous problems that involve optimization when the
unknown parameter is a complex-valued matrix. In an effort to build adaptive opti-
mization algorithms, it is important to find out if a certain value of the complex-valued
parameter matrix at a stationary point1 is a maximum, minimum, or saddle point; the
Hessian can then be utilized very efficiently. The complex Hessian might also be used
to accelerate the convergence of iterative optimization algorithms, to study the stability
of iterative algorithms, and to study convexity and concavity of an objective function.
The methods presented in this chapter are general, such that many results can be derived
using the introduced framework. Complex Hessians are derived for some useful exam-
ples taken from signal processing and communications.

The problem of finding Hessians has been treated for real-valued matrix variables
in Magnus and Neudecker (1988, Chapter 10). For complex-valued vector variables,
the Hessian matrix is treated for scalar functions in Brookes (July 2009) and Kreutz-
Delgado (2009, June 25th). Both gradients and Hessians for scalar functions that depend
on complex-valued vectors are studied in van den Bos (1994a). The Hessian of real-
valued functions depending on real-valued matrix variables is used in Payaró and Palomar
(2009) to enhance the connection between information theory and estimation theory. A
complex version of Newton’s recursion formula is derived in Abatzoglou, Mendel, and
Harada (1991) and Yan and Fan (2000), and there the topic of Hessian matrices is briefly
treated for real scalar functions, which depend on complex-valued vectors. A theory
for finding complex-valued Hessian matrices is presented in this chapter for the three
cases of complex-valued scalar, vector, and matrix functions when the input variables
are complex-valued matrices.

The Hessian matrix of a function is a matrix that contains the second-order derivatives
of the function. In this chapter, the Hessian matrix will be defined; it will be also shown
how it can be obtained for the three cases of complex-valued scalar, vector, and matrix

1 Recall that a stationary point is a point where the derivative of the function is equal to the null vector,
such that a stationary point is among the points that satisfy the necessary conditions for optimality (see
Theorem 3.2).
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functions. Only the case where the function f is a complex scalar function was treated
in Hjørungnes and Gesbert (2007b). However, these results are extended to complex-
valued vector and matrix functions as well in this chapter, and these results are novel.
The way the Hessian is defined in this chapter is a generalization of the real-valued
case given in Magnus and Neudecker (1988). The main contribution of this chapter
lies in the proposed approach on how to obtain Hessians in a way that is both simple
and systematic, based on the so-called second-order complex differential of the scalar,
vector, or matrix function.

In this chapter, it is assumed that the functions are twice differentiable with respect to
the complex-valued parameter matrix and its complex conjugate. Section 3.2 presented
theory showing that these two parameter matrices have linearly independent differentials,
which will also be used in this chapter when finding the Hessians through second-order
complex differentials.

The rest of this chapter is organized as follows: Section 5.2 presents two alternative
ways for representing the complex-valued matrix variable Z and its complex conju-
gate Z∗. In Subsection 5.2.1, the first way of representing the complex-valued matrix
variables is similar to that in previous chapters, where the two matrices Z ∈ C

N×Q and
Z∗ ∈ C

N×Q are used explicitly. These two matrix variables should be treated as inde-
pendent when finding complex matrix derivatives. In addition, an augmented alternative
representation Z � [Z Z∗] ∈ C

N×2Q is presented in Subsection 5.2.2. The augmented
matrix variable Z contains only independent differentials (see Subsection 3.2.3). The
augmented representation simplifies the presentation on how to obtain complex Hes-
sians of scalar, vector, and matrix functions. In Section 5.3, it is shown how the Hessian
(second-order derivative) of a scalar function f can be found. Two alternative ways of
finding the complex Hessian of scalar function are presented. The first way is shown
in Subsection 5.3.1, where the Hessian is identified from the second-order differential
when Z and Z∗ are used as matrix variables. An alternative way of finding the Hes-
sians of complex-valued scalar functions is presented in Subsection 5.3.2, based on the
augmented matrix variable Z . The way to find the Hessian for complex-valued vector
functions is given in Section 5.4, and the case of complex-valued matrix functions is pre-
sented in Section 5.5. Several examples of how the complex Hessian might be calculated
are presented in Section 5.6 for the three cases of scalar, vector, and matrix functions.
Exercises are given in Section 5.7.

5.2 Alternative Representations of Complex-Valued Matrix Variables

5.2.1 Complex-Valued Matrix Variables Z and Z∗

As in previous chapters, one way of representing complex-valued input matrix variables
is by the use of two matrices Z ∈ C

N×Q and Z∗ ∈ C
N×Q . In this chapter, it is assumed

that all the elements within Z are independent. It follows from Lemma 3.1 that the
elements within d Z and d Z∗ are linearly independent. Lemmas 3.1 and 3.2 are presented
in Subsection 3.2.3, and they will be used in this chapter to identify the complex Hessians.
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Neither of the matrices d Z nor d Z∗ is a function of Z or Z∗ and, hence, their
differentials are the zero matrix. Mathematically, this can be formulated as

d2 Z = d (d Z) = 0N×Q = d (d Z∗) = d2 Z∗. (5.1)

The representation of the input matrix variables as Z and Z∗ will be used to develop
a theory for finding Hessians of complex-valued scalar functions in Subsection 5.3.1.
In the next subsection, an alternative representation of the complex-valued matrix vari-
ables will be presented. It will be used to simplify the process of finding complex
Hessians of scalar, vector, and matrix functions in Subsection 5.3.1, Sections 5.4, and
5.5, respectively.

5.2.2 Augmented Complex-Valued Matrix Variables Z
To simplify the presentation for the Hessians, an alternative representation of the
complex-valued matrix variables will be defined in this subsection.

From Lemma 3.1, it is seen that all the components of the two matrices d Z and d Z∗

are linearly independent. This motivates the definition of the augmented complex-valued
matrix variable Z of size N × 2Q, defined as follows:

Z �
[
Z, Z∗] ∈ C

N×2Q . (5.2)

The differentials of all the components of Z are linearly independent (see Lemma 3.1).
Hence, the matrix Z can be treated as a matrix that contains only independent elements
when finding complex-valued matrix derivatives. This augmented matrix will be used
in this chapter to develop a theory for complex-valued functions of scalars, vectors, and
matrices in similar lines, as was done for the real-valued case in Magnus and Neudecker
(1988, Chapter 10). The main reason for introducing the augmented matrix variable is
to make the presentation of the complex Hessian matrices more compact and easier
to follow. When dealing with the complex matrix variables Z and Z∗ explicitly, four
Hessian matrices have to be found instead of one, which is the case when the augmented
matrix variable Z is used.

The differential of the vectorization operator of the augmented matrix variable Z will
be used throughout this chapter and it is given by

d vec (Z) =
[

d vec (Z)
d vec (Z∗)

]
. (5.3)

The complex-valued matrix variables Z and Z∗ contain the same matrix components;
however, the matrix elements are rearranged inside the two matrix variables. Both of
the matrix variables Z and Z∗ are used in the development of complex Hessians. The
differential of the vectorization operator of the symbol Z∗ is given by

d vec (Z∗) =
[

d vec (Z∗)
d vec (Z)

]
. (5.4)
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Table 5.1 Classification of scalar, vector, and matrix functions, which
depend on the augmented matrix variable Z ∈ C

N×2Q .

Function type Z ∈ C
N×2Q

Scalar function f (Z)
f ∈ C f : C

N×2Q → C

Vector function f (Z)
f ∈ C

M×1 f : C
N×2Q → C

M×1

Matrix function F (Z)
F ∈ C

M×P F : C
N×2Q → C

M×P

From (5.3) and (5.4), it is seen that the vectors d vec (Z) and d vec (Z∗) are connected
through the following relation:

d vec (Z∗) =
[

0N Q×N Q I N Q

I N Q 0N Q×N Q

]
d vec (Z) =

{[
0 1
1 0

]
⊗ I N Q

}
d vec (Z) .

(5.5)

This is equivalent to the following expression:

d vecT (Z)=(d vecH (Z)
)[ 0N Q×N Q I N Q

I N Q 0N Q×N Q

]
=(d vecH (Z)

){[ 0 1
1 0

]
⊗ I N Q

}
,

(5.6)

which will be used later in this chapter.
The second-order differential is given by the differential of the differential of the

augmented matrix variable; it is given by

d2Z = d (dZ) = [d (d Z) d (d Z∗)
] = [0N×Q 0N×Q

] = 0N×2Q . (5.7)

In a similar manner, the second-order differential of the variable Z∗ is also the zero
matrix

d2Z∗ = d (dZ∗) = 0N×2Q . (5.8)

Three types of functions will be studied; in this chapter, these depend on the
augmented matrix variables. The three functions are scalar f : C

N×2Q → C, vec-
tor f : C

N×2Q → C
M×1, and matrix F : C

N×2Q → C
M×P . Because both matrix vari-

ables Z and Z∗ are contained within the augmented matrix variable Z , only the aug-
mented matrix variable Z is used in the function definitions in Table 5.1. The complex
conjugate of the augmented matrix variable Z∗ is not needed in this case because it is
redundant. Each of these function types is presented in Table 5.1. The theory for finding
Hessians of scalar functions of the type f (Z) is presented in Subsection 5.3.2. The
way to find Hessians of vector functions f (Z) is presented in Section 5.4. For matrix
functions F(Z), the theory for identifying the Hessians is presented in Section 5.5.

In the next section, scalar functions of the type f : C
N×Q × C

N×Q → C denoted
by f (Z, Z∗) are studied: hence, the traditional input matrix variables Z ∈ C

N×Q and
Z∗ ∈ C

N×Q are used.
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5.3 Complex Hessian Matrices of Scalar Functions

This section contains the following three subsections. In Subsection 5.3.1, the complex
Hessian matrix of a scalar function f (Z, Z∗) is found when Z and Z∗ are the matrix
variables. Complex Hessian matrices of scalar functions f (Z) are studied for the case
where the augmented matrix variable Z is used in Subsection 5.3.2. The connection
between these two approaches is explained in Subsection 5.3.3.

5.3.1 Complex Hessian Matrices of Scalar Functions Using Z and Z∗

In this subsection, a systematic theory is introduced for finding the four Hessians of a
complex-valued scalar function f : C

N×Q × C
N×Q → C with respect to a complex-

valued matrix variable Z and the complex conjugate Z∗ of this variable. The presentation
given here follows the method proposed in Hjørungnes and Gesbert (2007b). In this
subsection, the studied function is denoted by f (Z, Z∗), and it is assumed to be twice
differentiable in the matrix variables Z and Z∗. The Hessian matrix depends on two
variables such that the notation must include which variables the Hessian matrix is
calculated with respect to. If the Hessian is calculated with respect to the variables Z0

and Z1, the Hessian will be denoted byHZ0,Z1 f . Later in this section, the exact definition
of the complex Hessian matrix of a scalar function f will be given.

Because it is assumed in this section that there exist two input matrix variables Z
and Z∗, there exist four different complex Hessian matrices of the function f with
respect to all ordered combinations of these two matrix variables. It will be shown how
these four Hessian matrices of the scalar complex function f can be identified from the
second-order complex differential (d2 f ) of the scalar function. These Hessians are the
four parts of a bigger matrix, which must be checked to identify whether a stationary
point is a local minimum, maximum, or saddle point. This bigger matrix can also be
used in deciding convexity or concavity of a scalar objective function f .

When dealing with the Hessian matrix, it is the second-order differential that has to
be calculated to identify the Hessian matrix. If f ∈ C, then,

(
d2 f
)T = d (d f )T = d2 f T = d2 f, (5.9)

and if f ∈ R, then,

(
d2 f
)H = d (d f )H = d2 f H = d2 f. (5.10)

The following proposition will be used to show various symmetry conditions of
Hessian matrices in this chapter.

Proposition 5.1 Let f : C
N×Q × C

N×Q → C. It is assumed that f (Z, Z∗) is twice
differentiable with respect to all of the variables inside Z ∈ C

N×Q and Z∗ ∈ C
N×Q,

when these variables are treated as independent variables. Then, by generalizing
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Magnus and Neudecker (1988, Theorem 4, pp. 105–106) to the complex-valued case

∂2

∂zk,l∂zm,n
f = ∂2

∂zm,n∂zk,l
f, (5.11)

∂2

∂z∗
k,l∂z∗

m,n

f = ∂2

∂z∗
m,n∂z∗

k,l

f, (5.12)

∂2

∂z∗
k,l∂zm,n

f = ∂2

∂zm,n∂z∗
k,l

f, (5.13)

where m, k ∈ {0, 1, . . . , N − 1} and n, l ∈ {0, 1, . . . , Q − 1}.
The following definition is used for the complex Hessian matrix of a scalar function f ;

it is an extension of the definition given in Magnus and Neudecker (1988, p. 189) to
complex scalar functions.

Definition 5.1 (Complex Hessian Matrix of Scalar Function) Let Zi ∈ C
Ni ×Qi , where

i ∈ {0, 1}, and let f : C
N0×Q0 × C

N1×Q0 → C. The complex Hessian matrix is denoted
by HZ0,Z1 f , and it has size N1 Q1 × N0 Q0, and is defined as

HZ0,Z1 f = DZ0

(
DZ1 f

)T
. (5.14)

Remark Let pi = Ni ki + li where i ∈ {0, 1}, ki ∈ {0, 1, . . . , Qi − 1}, and li ∈
{0, 1, . . . , Ni − 1}. As a consequence of Definition 5.1 and (3.82), it follows that element
number (p0, p1) of HZ0,Z1 f is given by

(
HZ0,Z1 f

)
p0,p1

=
(
DZ0

(
DZ1 f

)T
)

p0,p1

=
[

∂

∂ vecT (Z0)

(
∂

∂ vecT (Z1)
f

)T
]

p0,p1

= ∂

∂ (vec(Z0))p1

∂

∂ (vec(Z1))p0

f = ∂

∂ (vec(Z0))N1k1+l1

∂

∂ (vec(Z1))N0k0+l0

f

= ∂2 f

∂ (Z0)l1,k1
∂ (Z1)l0,k0

. (5.15)

And as an immediate consequence of (5.15) and Proposition 5.1, it follows that, for
twice differentiable functions f ,

(HZ,Z f )T = HZ,Z f, (5.16)

(HZ∗,Z∗ f )T = HZ∗,Z∗ f, (5.17)

(HZ,Z∗ f )T = HZ∗,Z f. (5.18)

These properties will also be used later in this chapter for the scalar component functions
of vector and matrix functions.

To find an identification equation for the complex Hessians of the scalar function f
with respect to all four possible combinations of the complex matrix variables Z and Z∗,
an appropriate form of the expression d2 f is required. This expression is derived next.
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By using the definition of complex-valued matrix derivatives in Definition 3.1 on the
scalar function f , the first-order differential of the function f : C

N×Q × C
N×Q → C,

denoted by f (Z, Z∗), can be found from (3.78) as

d f = (DZ f )d vec(Z) + (DZ∗ f )d vec(Z∗), (5.19)

where DZ f ∈ C
1×N Q and DZ∗ f ∈ C

1×N Q . When finding the second-order differential
of the complex-valued scalar function f , the differential of the two derivatives DZ f and
DZ∗ f is needed. By using Definition 3.1 on the two derivatives (DZ f )T and (DZ∗ f )T ,
the following two expressions are found from (3.78):

(dDZ f )T = [DZ (DZ f )T
]

d vec(Z)+[DZ∗ (DZ f )T
]

d vec(Z∗), (5.20)

and

(dDZ∗ f )T =[DZ (DZ∗ f )T
]
d vec(Z)+[DZ∗ (DZ∗ f )T

]
d vec(Z∗). (5.21)

By taking the transposed expressions on both sides of (5.20) and (5.21), it follows that

dDZ f = [d vecT (Z)
] [
DZ (DZ f )T

]T + [d vecT (Z∗)
] [
DZ∗ (DZ f )T

]T
, (5.22)

and

dDZ∗ f = [d vecT (Z)
] [
DZ (DZ∗ f )T

]T + [d vecT (Z∗)
] [
DZ∗ (DZ∗ f )T

]T
. (5.23)

The second-order differential of f can be found by applying the differential operator
to both sides of (5.19), and then utilizing the results from (5.1), (5.22), and (5.23) as
follows:

d2 f = (dDZ f ) d vec(Z) + (dDZ∗ f )d vec(Z∗)

= [d vecT (Z)
] [
DZ (DZ f )T

]T
d vec(Z)

+ [d vecT (Z∗)
] [
DZ∗ (DZ f )T

]T
d vec(Z)

+ [d vecT (Z)
] [
DZ (DZ∗ f )T

]T
d vec(Z∗)

+ [d vecT (Z∗)
] [
DZ∗ (DZ∗ f )T

]T
d vec(Z∗)

= [d vecT (Z)
] [
DZ (DZ f )T

]
d vec(Z)

+ [d vecT (Z)
] [
DZ∗ (DZ f )T

]
d vec(Z∗)

+ [d vecT (Z∗)
] [
DZ (DZ∗ f )T

]
d vec(Z)

+ [d vecT (Z∗)
] [
DZ∗ (DZ∗ f )T

]
d vec(Z∗)

= [d vecT (Z∗), d vecT (Z)
] [ DZ (DZ∗ f )T DZ∗ (DZ∗ f )T

DZ (DZ f )T DZ∗ (DZ f )T

] [
d vec(Z)
d vec(Z∗)

]

= [d vecT (Z), d vecT (Z∗)
] [ DZ (DZ f )T DZ∗ (DZ f )T

DZ (DZ∗ f )T DZ∗ (DZ∗ f )T

] [
d vec(Z)
d vec(Z∗)

]
.

(5.24)
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By using the definition of the complex Hessian of a scalar function (see Definition 5.1),
in the last two lines of (5.24), it follows that d2 f can be rewritten as

d2 f = [d vecT (Z∗) d vecT (Z)
] [ HZ,Z∗ f HZ∗,Z∗ f

HZ,Z f HZ∗,Z f

] [
d vec(Z)
d vec(Z∗)

]
(5.25)

= [d vecT (Z) d vecT (Z∗)
] [ HZ,Z f HZ∗,Z f

HZ,Z∗ f HZ∗,Z∗ f

] [
d vec(Z)
d vec(Z∗)

]
. (5.26)

Assume that it is possible to find an expression of d2 f in the following form:

d2 f = [d vecT (Z∗)
]

A0,0d vec(Z) + [d vecT (Z∗)
]

A0,1d vec(Z∗)

+ [d vecT (Z)
]

A1,0d vec(Z) + [d vecT (Z)
]

A1,1d vec(Z∗)

= [d vecT (Z∗) d vecT (Z)
] [ A0,0 A0,1

A1,0 A1,1

] [
d vec(Z)
d vec(Z∗)

]
, (5.27)

where Ak,l with k, l ∈ {0, 1} has size N Q × N Q and can possibly be dependent on
Z and Z∗, but not on d vec(Z) or d vec(Z∗). The four complex Hessian matrices in
(5.25) can now be identified from the matrices Ak,l given in (5.27) in the following way:
Subtracting the second-order differentials in (5.25) from (5.27) yields[

d vecT (Z)
]

(A1,0 − HZ,Z f ) d vec(Z)

+ [d vecT (Z∗)
] (

A0,0 + AT
1,1 − HZ,Z∗ f − (HZ∗,Z f )T

)
d vec(Z)

+ [d vecT (Z∗)
]

(A0,1 − HZ∗,Z∗ f ) d vec(Z∗) = 0, (5.28)

and this is valid for all d Z ∈ C
N×Q . The expression in (5.28) is now of the same type as

the equation used in Lemma 3.2. Recall the symmetry properties in (5.16), (5.17), and
(5.18), which will be useful in the following. Lemma 3.2 will now be used, and it is seen
that the matrix B0 in Lemma 3.2 can be identified from (5.28) as

B0 = A1,0 − HZ,Z f. (5.29)

From Lemma 3.2, it follows that B0 = −BT
0 , and this can be expressed as

A1,0 − HZ,Z f = − (A1,0 − HZ,Z f )T . (5.30)

By using the fact that the Hessian matrix HZ,Z f is symmetric, the Hessian HZ,Z f can
be solved from (5.30):

HZ,Z f = 1

2

(
A1,0 + AT

1,0

)
. (5.31)

By using Lemma 3.2 on (5.28), the matrix B2 is identified as

B2 = A0,1 − HZ∗,Z∗ f. (5.32)

Lemma 3.2 says that B2 = −BT
2 , and by inserting B2 from (5.32), it is found that

A0,1 − HZ∗,Z∗ f = − (A0,1 − HZ∗,Z∗ f )T . (5.33)
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Table 5.2 Procedure for identifying the complex Hessians of a scalar function f ∈ C

with respect to complex-valued matrix variables Z ∈ C
N×Q and Z∗ ∈ C

N×Q .

Step 1: Compute the second-order differential d2 f .
Step 2: Manipulate d2 f into the form given in (5.27) to

identify the four N Q × N Q matrices A0,0, A0,1, A1,0, and A1,1.
Step 3: Use (5.31), (5.34), (5.36), and (5.37) to identify

the four Hessian matrices HZ,Z f , HZ∗,Z∗ f , HZ,Z∗ f , and HZ∗,Z f .

By using the fact that the Hessian matrix HZ∗,Z∗ f is symmetric (see (5.17)), the Hessian
HZ∗,Z∗ f can be solved from (5.33) to get

HZ∗,Z∗ f = 1

2

(
A0,1 + AT

0,1

)
. (5.34)

The matrix B1 in Lemma 3.2 is identified from (5.28) as

B1 = A0,0 + AT
1,1 − HZ,Z∗ f − (HZ∗,Z f )T . (5.35)

Lemma 3.2 states that B1 = 0N Q×N Q , and by using that (HZ∗,Z f )T = HZ,Z∗ f , it follows
from (5.35) that

HZ,Z∗ f = 1

2

(
A0,0 + AT

1,1

)
. (5.36)

The last remaining Hessian HZ∗,Z f is given by HZ∗,Z f = (HZ,Z∗ f )T ; hence, it follows
from (5.36) that

HZ∗,Z f = 1

2

(
AT

0,0 + A1,1

)
. (5.37)

The complex Hessian matrices of the scalar function f ∈ C can be computed using a
three-step procedure given in Table 5.2.

As an application, to check, for instance, convexity and concavity of f , the middle
block matrix of size 2N Q × 2N Q on the right-hand side of (5.25) must be positive or
negative definite, respectively. In the next lemma, it is shown that this matrix is Hermitian
for real-valued scalar functions.

Lemma 5.1 Let f : C
N×Q × C

N×Q → R, then,

[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]H

=
[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
. (5.38)
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Proof By using Definition 5.1, (5.16), (5.17), (5.18), in addition to Lemma 3.3, it is
found that[

HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]H

=
[

(HZ,Z∗ f )H (HZ,Z f )H

(HZ∗,Z∗ f )H (HZ∗,Z f )H

]

=
[

(HZ∗,Z f )∗ (HZ,Z f )∗

(HZ∗,Z∗ f )∗ (HZ,Z∗ f )∗

]
=
[ (

DZ∗ (DZ f )T
)∗ (

DZ (DZ f )T
)∗(

DZ∗ (DZ∗ f )T
)∗ (

DZ (DZ∗ f )T
)∗
]

=
[
DZ (DZ∗ f )T DZ∗ (DZ∗ f )T

DZ (DZ f )T DZ∗ (DZ f )T

]
=
[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
, (5.39)

which concludes the proof.

The Taylor series for scalar functions and variables can be found in Eriksson, Ollila,
and Koivunen (2009). By generalizing Abatzoglou et al. (1991, Eq. (A.1)) to complex-
valued matrix variables, it is possible to find the second-order Taylor series, and this is
stated in the next lemma.

Lemma 5.2 Let f : C
N×Q × C

N×Q → R. The second-order Taylor series of f in the
point Z can be expressed as

f (Z + d Z, Z∗ + d Z∗) = f (Z, Z∗)

+ (DZ f (Z, Z∗)) d vec (Z) + (DZ∗ f (Z, Z∗)) d vec (Z∗)

+ 1

2

[
d vecT (Z∗) d vecT (Z)

][ HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

][
d vec (Z)
d vec (Z∗)

]
+ r (d Z, d Z∗),

(5.40)

where the function r : C
N×Q × C

N×Q → R satisfies

lim
(d Z0,d Z1)→0N×2Q

r (d Z0, d Z1)

‖(d Z0, d Z1)‖2
F

= 0. (5.41)

The second-order Taylor series might be very useful to check the nature of a stationary
point of a real-valued function f (Z, Z∗). Assume that the function f (Z, Z∗) has a
stationary point in Z = C ∈ C

N×Q . Then, it follows from Theorem 3.2 that

DZ f (C, C∗) = 01×N Q, (5.42)

DZ∗ f (C, C∗) = 01×N Q . (5.43)

If the second-order Taylor series (5.40) is evaluated at (Z0, Z1) = (C, C∗), it is found
that

f (C + d Z0, C∗ + d Z1) = f (C, C∗)

+ 1

2

[
d vecT (Z∗) d vecT (Z)

][ HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

][
d vec (Z)
d vec (Z∗)

]
+ r (d Z0, d Z1).

(5.44)
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Near the point Z = C , it is seen from (5.44) that the function is behaving as a quadratic
function in vec ([d Z, d Z∗]). Notice that the second-order term in this variable is

vecH ([d Z, d Z∗])

[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
vec ([d Z, d Z∗]). Hence, to study the nature

of a stationary point, it is enough to study if

[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
is positive definite,

negative definite, or indefinite in the stationary point Z = C .
In the next section, the theory for finding the complex Hessian of a scalar function will

be presented when the input variable to the function is the augmented matrix variable Z .

5.3.2 Complex Hessian Matrices of Scalar Functions Using Z
In this subsection, the matrix-valued function F : C

N×Q × C
N×Q → C

M×P is consid-
ered. By using the augmented matrix variable Z , the definition of the matrix derivative
in (3.78) can be written as

d vec (F) = (DZ F) d vec (Z) + (DZ∗ F) d vec (Z∗)

= [DZ F,DZ∗ F]

[
d vec (Z)
d vec (Z∗)

]
� (DZ F) d vec (Z) , (5.45)

where the derivative of the matrix function F with respect to the augmented matrix
variable Z has been defined as

DZ F � [DZ F DZ∗ F] ∈ C
M P×2N Q . (5.46)

The matrix derivative of F with respect to the augmented matrix variable Z can be
identified from the first-order differential in (5.45).

A scalar complex-valued function f : C
N×2Q → C, which depends on Z ∈ C

N×2Q ,
is denoted by f (Z), and its derivative can be identified by substituting F by f in (5.45)
to obtain

d f = (DZ f ) d vec(Z) + (DZ∗ f ) d vec(Z∗) = [DZ f DZ∗ f ]

[
d vec (Z)
d vec (Z∗)

]

= (DZ f ) d vec (Z) , (5.47)

where

DZ f = [DZ f DZ∗ f ] , (5.48)

lies in C
1×2N Q .

The second-order differential is used to identify the Hessian also when finding the
complex Hessian with respect to the augmented matrix variable Z . The second-order
differential is found by applying the differential operator on both sides of (5.47), and
then an expression of the differential ofDZ f ∈ C

1×2N Q is needed. An expression for the
differential of the row vector DZ f can be found by using (5.45), where F is substituted
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by DZ f to obtain

d vec (DZ f ) = d (DZ f )T = (DZ (DZ f )T
)

d vec (Z) . (5.49)

Taking the transposed of both sides of the above equations yields

dDZ f = (d vecT (Z)
) (

DZ (DZ f )T
)T

. (5.50)

The complex Hessian of a scalar function f , which depends on the augmented
matrix Z , is defined in a similar way as described previously for complex Hessians
in Definition 5.1. The complex Hessian of the scalar function f with respect to Z , and
Z is a symmetric matrix (see Definition 5.1 and the following remark). It is denoted by
HZ,Z f ∈ C

2N Q×2N Q and is given by

HZ,Z f = DZ (DZ f )T . (5.51)

Here, it is assumed that f is twice differentiable with respect to all matrix components
of Z . Because there exists only one input matrix variable of the function f (Z), the only
Hessian matrix that will be considered is HZ,Z f . The complex Hessian of f can be
identified from the second-order differential of f . The second-order differential of f
can be expressed as

d2 f = d (d f ) = (dDZ f ) d vec (Z) = (d vecT (Z)
) (

DZ (DZ f )T
)T

d vec (Z)

= (d vecT (Z)
) [

DZ (DZ f )T
]

d vec (Z) = (d vecT (Z)
) [

HZ,Z f
]

d vec (Z) ,

(5.52)

where (5.50) and (5.51) have been used.
Assume that the second-order differential of f can be written in the following way:

d2 f = (d vecT (Z)
)

A d vec (Z) , (5.53)

where A ∈ C
2N Q×2N Q does not depend on the differential operator d; however, it might

depend on the matrix variables Z or Z∗. By setting the two expressions of d2 f in (5.52)
and (5.53) as equal, it follows from Lemma 2.152 that the Hessian HZ,Z f must satisfy

HZ,Z f + (HZ,Z f )T = 2HZ,Z f = A + AT , (5.54)

where it follows from Proposition 5.1 that the Hessian matrix HZ,Z f is symmetric.
Solving the Hessian HZ,Z f from (5.54) leads to

HZ,Z f = 1

2

[
A + AT

]
. (5.55)

This equation suggests a way of identifying the Hessian of a scalar complex-valued
function when the augmented matrix variable Z ∈ C

N×2Q is used. The procedure for
finding the complex Hessian of a scalar when Z is used as a matrix variable is summa-
rized in Table 5.3. Examples of how to calculate the complex Hessian of scalar functions
will be given in Subsection 5.6.1.

2 When using Lemma 2.15 here, the vector variable z in Lemma 2.15 is substituted with the differential vector
d vec (Z), and the middle square matrices A and B in Lemma 2.15 are replaced by HZ,Z f (from (5.52))
and A (from (5.53)), respectively.



5.3 Complex Hessian Matrices of Scalar Functions 107

Table 5.3 Procedure for identifying the complex Hessians of a scalar function f ∈ C

with respect to the augmented complex-valued matrix variable Z ∈ C
N×2Q .

Step 1: Compute the second-order differential d2 f .
Step 2: Manipulate d2 f into the form given in (5.53) to identify

the matrix A ∈ C
2N Q×2N Q .

Step 3: Use (5.55) to find the complex Hessian HZ,Z f .

5.3.3 Connections between Hessians When Using Two-Matrix Variable Representations

In this subsection, the connection between the two methods presented in Tables 5.2 and
5.3 will be studied.

Lemma 5.3 The following connections exist between the four HessiansHZ,Z f ,HZ∗,Z f ,
HZ,Z∗ f , and HZ∗,Z∗ f and the Hessian with respect to the augmented matrix vari-
able HZ,Z f :

HZ,Z f =
[

HZ,Z f HZ∗,Z f
HZ,Z∗ f HZ∗,Z∗ f

]
=
[

0N Q×N Q I N Q

I N Q 0N Q×N Q

][
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
.

(5.56)

Proof From (5.48), it follows that

(DZ f )T =
[

(DZ f )T

(DZ∗ f )T

]
. (5.57)

Using this result in the definition of HZ,Z f leads to

HZ,Z f = DZ (DZ f )T = DZ

[
(DZ f )T

(DZ∗ f )T

]

=
[
DZ

[
(DZ f )T

(DZ∗ f )T

]
,DZ∗

[
(DZ f )T

(DZ∗ f )T

]]
, (5.58)

where (5.46) was used in the last equality. Before proceeding, an auxiliary result will be
needed, and this is presented next.

For vector functions f 0 : C
N×Q × C

N×Q → C
M×1 and f 1 : C

N×Q × C
N×Q →

C
M×1, the following relations are valid:

DZ

[
f 0

f 1

]
=
[
DZ f 0

DZ f 1

]
, (5.59)

DZ∗

[
f 0

f 1

]
=
[
DZ∗ f 0

DZ∗ f 1

]
. (5.60)
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These can be shown to be valid by using Definition 3.1 repeatedly as follows:

d vec

([
f 0

f 1

])
=d

[
f 0

f 1

]
=
[

d f 0

d f 1

]
=
[[
DZ f 0

]
d vec (Z) + [DZ∗ f 0

]
d vec (Z∗)

[DZ f 1] d vec (Z) + [DZ∗ f 1] d vec (Z∗)

]

=
[
DZ f 0

DZ f 1

]
d vec (Z) +

[
DZ∗ f 0

DZ∗ f 1

]
d vec (Z∗) . (5.61)

By using Definition 3.1 on the above expression, (5.59) and (5.60) follow.
If (5.59) and (5.60) are utilized in (5.58), it is found that the complex Hessian with

respect to the augmented matrix variable can be written as

HZ,Z f =
[

DZ (DZ f )T DZ∗ (DZ f )T

DZ (DZ∗ f )T DZ∗ (DZ∗ f )T

]
=
[

HZ,Z f HZ∗,Z f
HZ,Z∗ f HZ∗,Z∗ f

]
, (5.62)

which proves the first equality in the lemma. The second equality in (5.56) follows from
block matrix multiplication.

Lemma 5.3 gives the connection between the Hessian HZ,Z f , which was identified
in Subsection 5.3.2, and the four Hessians HZ,Z∗ f , HZ∗,Z∗ f , HZ,Z f , and HZ∗,Z f ,
which were studied in Subsection 5.3.1. Through the relations in (5.56), the connection
between these complex Hessian matrices is found.

Assume that the second-order differential of f can be written as

d2 f = [d vecT (Z) d vecT (Z∗)
] [ A1,0 A1,1

A0,0 A0,1

] [
d vec(Z)
d vec(Z∗)

]
. (5.63)

The middle matrix on the right-hand side of the above equation is identified as A in
(5.53) when the procedure in Table 5.3 is used because the first and last factors on
the right-hand side of (5.63) are equal to d vecT (Z) and d vec (Z), respectively. By
completing the procedure in Table 5.3, it is seen that the Hessian with respect to the
augmented matrix variable Z can be written as

HZ,Z f = 1

2

{[
A1,0 A1,1

A0,0 A0,1

]
+
[

AT
1,0 AT

0,0

AT
1,1 AT

0,1

]}
= 1

2

[
A1,0 + AT

1,0 A1,1 + AT
0,0

A0,0 + AT
1,1 A0,1 + AT

0,1

]
.

(5.64)

By comparing (5.56) and (5.64), it is seen that the four identification equations for the
four HessiansHZ,Z f ,HZ∗,Z f ,HZ,Z∗ f , andHZ∗,Z∗ f in (5.31), (5.37), (5.36), and (5.34)
are in agreement with the results found here. Hence, the two methods in Tables 5.2 and
5.3 are in agreement with each other.

Let f ∈ R be a real-valued function. The second-order differential from Subsec-
tions 5.3.1 and 5.3.2 can be put together in the following manner:

d2 f = (d vecH (Z)
) [ HZ,Z∗ f HZ∗,Z∗ f

HZ,Z f HZ∗,Z f

]
d vec (Z) (5.65)

= (d vecT (Z)
) [

HZ,Z f
]

d vec (Z) . (5.66)
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From (5.65) and (5.66), it is seen that d2 f can be expressed in two equivalent ways (i.e.,
(dzH )Adz in (5.65) or (dzT )Bdz in (5.66)). Note that when studying the nature of
stationary points of real-valued scalar functions, it is quadratic forms of the type
(dzH )Adz that are considered, and not quadratic forms of the shape (dzT )Bdz.
From (5.65), it is seen that for a stationary point to be minimum or maximum, the

matrix

[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
should be positive or negative definite in the station-

ary point for a minimum or maximum, respectively. Checking the definiteness of the
matrixHZ,Z f is not relevant for determining the nature of a stationary point. Lemma 5.3
gives the connection between the two middle matrices on the right-hand side of (5.65)
and (5.66).

5.4 Complex Hessian Matrices of Vector Functions

In this section, the augmented matrix variable Z ∈ C
N×2Q is used, and a theory is

developed for how to find the complex Hessian of vector functions. Consider the twice
differentiable complex-valued vector function f defined by f : C

N×2Q → C
M×1, which

depends only on the matrix Z and is denoted by f (Z). In Chapters 2, 3, and 4, the
vector function that was studied was f : C

N×Q × C
N×Q → C

M×1, and it was denoted by
f (Z, Z∗), where the input matrix variables were Z ∈ C

N×Q and Z∗ ∈ C
N×Q . To simplify

the presentation for finding the complex Hessian of vector functions, the augmented
matrix Z is used in this section.

Let the i-th component of the vector f be denoted fi . Because all the functions fi are
scalar complex-valued functions fi : C

N×2Q → C, we know from Subsection 5.3.2 how
to identify the Hessians of the functions fi (Z) for each i ∈ {0, 1, . . . , M − 1}. This can
now be used to find the complex Hessian matrix of complex-valued vector functions. It
will be shown how the complex Hessian matrix of the vector function f can be identified
from the second-order differential of the whole vector function (i.e., d2 f ).

Definition 5.2 (Hessian of Complex Vector Functions) The Hessian matrix of the vec-
tor function f : C

N×2Q → C
M×1 is denoted by HZ,Z f and has a size of 2N QM ×

2N Q. It is defined as

HZ,Z f �




HZ,Z f0

HZ,Z f1
...

HZ,Z fM−1


 , (5.67)

where the Hessian matrix of the i-th component function fi has size 2N Q × 2N Q for
all i ∈ {0, 1, . . . , M − 1} and is denoted by HZ,Z fi . The complex Hessian of a scalar
function was defined in Definition 5.1. An alternative identical expression of the complex
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Hessian matrix of the vector function f is

HZ,Z f = DZ (DZ f )T , (5.68)

which is a natural extension of Definition 5.1.

The second-order differential d2 f ∈ C
M×1 can be expressed as

d2 f = d (d f ) = d




d f0

d f1

...

d fM−1


 =




d2 f0

d2 f1

...

d2 fM−1


 . (5.69)

Because it was shown in Subsection 5.3.2 how to identify the Hessian of the scalar com-
ponent function fi : C

N×2Q → C, this can now be used in the following developments.
From (5.52), it follows that d2 fi = (d vecT (Z)

) [
HZ,Z fi

]
d vec (Z). Using this result

in (5.69) leads to

d2 f =




d2 f0

d2 f1
...

d2 fM−1


 =



(
d vecT (Z)

) [
HZ,Z f0

]
d vec (Z)(

d vecT (Z)
) [

HZ,Z f1

]
d vec (Z)

...(
d vecT (Z)

) [
HZ,Z fM−1

]
d vec (Z)




=



(
d vecT (Z)

)
HZ,Z f0(

d vecT (Z)
)
HZ,Z f1

...(
d vecT (Z)

)
HZ,Z fM−1


 d vec (Z)

=




d vecT (Z) 01×2N Q · · · 01×2N Q

01×2N Q d vecT (Z) · · · 01×2N Q
...

...
. . .

...
01×2N Q 01×2N Q · · · d vecT (Z)






HZ,Z f0

HZ,Z f1
...

HZ,Z fM−1


 d vec (Z)

= [I M ⊗ d vecT (Z)
]



HZ,Z f0

HZ,Z f1
...

HZ,Z fM−1


 d vec (Z)

= [I M ⊗ d vecT (Z)
] [
HZ,Z f

]
d vec (Z) , (5.70)

where Definition 5.2 of the complex Hessian matrix of a vector function (see (5.67)) has
been used in the last equality.
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If the complex-valued vector function f is twice differentiable of all the compo-
nents within Z , then all the Hessian matrices HZ,Z fi are symmetric and the Hessian
matrix HZ,Z f is said to be column symmetric (see Definition 2.13).

Assume that the second-order differential expression d2 f can be written as follows:

d2 f = [I M ⊗ d vecT (Z)
]

B d vec (Z) , (5.71)

where the matrix B ∈ C
2N QM×2N Q may depend on Z and Z∗; however, it does not

depend on the differential operator d. The matrix B can be expressed as

B =




B0

B1
...

BM−1


 , (5.72)

where Bi ∈ C
2N Q×2N Q is a complex square matrix for all i ∈ {0, 1, . . . , M − 1}. The

transposed of the matrix B can be written as follows:

BT = [BT
0 BT

1 · · · BT
M−1

]
. (5.73)

To identify the Hessian matrix of f , the following matrix is needed:

vecb
(

BT
) =




BT
0

BT
1
...

BT
M−1


 , (5.74)

where the block vectorization operator vecb(·) from Definition 2.13 is used.
Because d2 f is on the left-hand side of both (5.70) and (5.71), the right-hand side

expressions of these equations have to be equal as well. Using Lemma 2.193 on the
right-hand-side expressions in (5.70) and (5.71), it follows that

HZ,Z f + vecb([HZ,Z f ]T ) = B + vecb
(

BT
)
. (5.75)

For a twice differentiable vector function, the Hessian HZ,Z f must be column sym-
metric; hence, the relation vecb([HZ,Z f ]T ) = HZ,Z f is valid. By using the column
symmetry in (5.75), it follows that

HZ,Z f = 1

2

[
B + vecb

(
BT
)]

. (5.76)

The identification equation (5.76) for complex-valued Hessian matrices of vector func-
tions is a generalization of identification in Magnus and Neudecker (1988, p. 108) to

3 Notice that when using Lemma 2.19 here, the vector variable z in Lemma 2.19 is substituted with the
differential vector d vec (Z) and the matrices A and B in Lemma 2.19 are replaced by HZ,Z f (from (5.67))
and B (from (5.71)), respectively.
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Table 5.4 Procedure for identifying the complex Hessians of a vector function f ∈ C
M×1 with

respect to the augmented complex-valued matrix variable Z ∈ C
N×2Q .

Step 1: Compute the second-order differential d2 f .
Step 2: Manipulate d2 f into the form given in (5.71) in order to identify

the matrix B ∈ C
2N QM×2N Q .

Step 3: Use (5.76) to find the complex Hessian HZ,Z f .

the case of complex-valued vector functions. The procedure for finding the complex
Hessian matrix of a vector function is summarized in Table 5.4.

5.5 Complex Hessian Matrices of Matrix Functions

Let F : C
N×Q × C

N×Q → C
M×P be a matrix function that depends on the two matrices

Z ∈ C
N×Q and Z∗ ∈ C

N×Q . An alternative equivalent representation of this function is
F : C

N×2Q → C
M×P and is denoted by F(Z), where the augmented matrix variable Z ∈

C
N×2Q is used. The last representation will be used in this section.
To identify the Hessian of a complex-valued matrix function, the second-order differ-

ential expression d2 vec (F) will be used. This is a natural generalization of the second-
order differential expressions used for scalar- and vector-valued functions presented
earlier in this chapter; it can also be remembered as the differential of the differential
expression that is used to identify the first-order derivatives of a matrix function in
Definition 3.1 (i.e., d (d vec (F))).

Let the (k, l)-th component function of F be denoted by fk,l , such that fk,l : C
N×2Q →

C is the scalar component function where k ∈ {0, 1, . . . , M − 1} and l ∈ {0, 1, . . . , P −
1} are the row and column numbers of the matrix function F. Second-order differential
d2 vec(F) ∈ C

M P×1 can be expressed as follows:

d2 vec(F) = d (d vec(F)) = d




d f0,0

d f1,0

...

d fM−1,0

d f0,1

...

d f0,P−1

...

d fM−1,P−1




=




d2 f0,0

d2 f1,0

...

d2 fM−1,0

d2 f0,1

...

d2 f0,P−1

...

d2 fM−1,P−1




. (5.77)
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Next, the definition of the complex Hessian matrix of a matrix function of the type
F : C

N×2Q → C
M×P is stated.

Definition 5.3 (Hessian Matrix of Complex Matrix Function) The Hessian of the
matrix function F : C

N×2Q → C
M×P is a matrix of size 2N QM P × 2N Q and

is defined by the M P scalar component functions within F in the following
way:

HZ,Z F �




HZ,Z f0,0

HZ,Z f1,0

...

HZ,Z fM−1,0

HZ,Z f0,1

...

HZ,Z f0,P−1

...

HZ,Z fM−1,P−1




, (5.78)

where the matrixHZ,Z fi, j of size 2N Q × 2N Q is the complex Hessian of the component
function fi, j given in Definition 5.1. The Hessian matrix of F can equivalently be
expressed as

HZ,Z F = DZ (DZ F)T . (5.79)

By comparing (5.14) and (5.79), it is seen that Definition 5.3 is a natural extension
of Definition 5.1. The two expressions (3.82) and (5.79) are used to find the following
alternative expression of the complex Hessian of a matrix function:

HZ,Z F = DZ

[
∂ vec (F)

∂ vecT (Z)

]T

= ∂

∂ vecT (Z)
vec

([
∂ vec (F)

∂ vecT (Z)

]T
)

. (5.80)

In this chapter, it is assumed that all component functions of F(Z), which are
defined as fi, j : C

N×2Q → C, are twice differentiable; hence, the complex Hessian
matrix HZ,Z fi, j is symmetric such that the Hessian matrix HZ,Z F is column symmet-
ric. The column symmetry of the complex Hessian matrix HZ,Z F can be expressed
as

vecb
([

HZ,Z F
]T) = HZ,Z F. (5.81)
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To find an expression of the complex Hessian matrix of the matrix function F, the
following calculations are used:

d2 vec (F) =




d2 f0,0

d2 f1,0
...

d2 fM−1,0

d2 f0,1
...

d2 f0,P−1
...

d2 fM−1,P−1




=




(
d vecT (Z)

) [
HZ,Z f0,0

]
d vec (Z)(

d vecT (Z)
) [

HZ,Z f1,0

]
d vec (Z)

...(
d vecT (Z)

) [
HZ,Z fM−1,0

]
d vec (Z)(

d vecT (Z)
) [

HZ,Z f0,1

]
d vec (Z)

...(
d vecT (Z)

) [
HZ,Z f0,P−1

]
d vec (Z)

...(
d vecT (Z)

) [
HZ,Z fM−1,P−1

]
d vec (Z)




=




(
d vecT (Z)

)
HZ,Z f0,0

...(
d vecT (Z)

)
HZ,Z fM−1,0

...(
d vecT (Z)

)
HZ,Z fM−1,P−1




d vec (Z)

=




d vecT (Z) · · · 01×2N Q · · · 01×2N Q

. . .
. . .

01×2N Q · · · d vecT (Z) · · · 01×2N Q

. . .
. . .

01×2N Q · · · 01×2N Q · · · d vecT (Z)







HZ,Z f0,0
...

HZ,Z fM−1,0
...

HZ,Z fM−1,P−1




d vec (Z)

= (I M P ⊗ d vecT (Z)
) [

HZ,Z F
]

d vec (Z) , (5.82)

where the definition in (5.78) has been used in the last equality.
To identify the Hessian of a complex-valued matrix function, assume that the following

expression can be found:

d2 vec (F) = (I M P ⊗ d vecT (Z)
)

Cd vec (Z) , (5.83)

where the matrix C ∈ C
2N QM P×2N Q may depend on Z and Z∗; however, it may not

depend on the differential operator d. The matrix C is given by

C =




C0,0
...

C M−1,0
...

C M−1,P−1




, (5.84)
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Table 5.5 Procedure for identifying the complex Hessian matrix of the matrix
function F ∈ C

M×P with respect to the augmented complex-valued matrix
variable Z ∈ C

N×2Q .

Step 1: Compute the second-order differential d2 vec (F).
Step 2: Manipulate d2 vec (F) into the form given in (5.83) to identify

the matrix C ∈ C
2N QM P×2N Q .

Step 3: Use (5.87) to find the complex Hessian HZ,Z F.

where Ck,l ∈ C
2N Q×2N Q is square complex-valued matrices. The transposed of the

matrix C can be expressed as

CT = [CT
0,0 · · · CT

M−1,0 · · · CT
M−1,P−1

]
. (5.85)

The block vectorization applied on CT is given by

vecb
(
CT
) =




CT
0,0
...

CT
M−1,0

...
CT

M−1,P−1




. (5.86)

The expression vecb
(
CT
)

will be used as part of the expression that finds the complex
Hessian of matrix functions.

For a twice differentiable matrix function F, the Hessian matrix HZ,Z F is column
symmetric such that it satisfies (5.81). Because the left-hand-side expressions of (5.82)
and (5.83) are identical for all dZ , Lemma 2.19 can be used on the right-hand-side
expressions of (5.82) and (5.83). When using Lemma 2.19, the matrices A and B of this
lemma are substituted by HZ,Z F and C , respectively, and the vector z of Lemma 2.19
is replaced by d vec (Z). Making these substitutions in (2.125) and solving the equation
for HZ,Z F gives us the following identification equation for the complex Hessian of a
matrix function:

HZ,Z F = 1

2

[
C + vecb

(
CT
)]

. (5.87)

Based on the above result, the procedure of finding the complex Hessian of a matrix
function is summarized in Table 5.5.

A theory has now been developed for finding the complex Hessian matrix of all
three types of scalar, vector, and matrix functions given in Table 5.1. For these three
function types that depend on the augmented matrix variable Z ∈ C

N×2Q , and treated in
Subsection 5.3.2, Sections 5.4, and 5.5, respectively, the identifying relations for finding
the complex Hessian matrix are summarized in Table 5.6. From this table, it can be seen
that the vector case is a special case of the matrix case by setting P = 1. Furthermore,
the scalar case is a special case of the vector case when M = 1.
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5.5.1 Alternative Expression of Hessian Matrix of Matrix Function

In this subsection, an alternative explicit formula will be developed for finding the
complex Hessian matrix of the matrix function F : C

N×2Q → C
M×P . By using (3.85),

the derivative of F ∈ C
M×P with respect to Z ∈ C

N×2Q is given by

DZ F =
N−1∑
n=0

2Q−1∑
q=0

vec

(
∂ F

∂wn,q

)
vecT

(
En,q

)
, (5.88)

where En,q is an N × 2Q matrix with zeros everywhere and +1 at position number
(n, q), and the (n, q)-th element of Z is denoted by wn,q because the symbol zn,q is used
earlier to denote the (n, q)-th element of Z, which is a submatrix of Z , see (5.2). By
using (5.79) and (5.88), the following calculations are done to find an explicit formula
for the complex Hessian of the matrix function F:

HZ,Z F = DZ (DZ F)T = DZ


N−1∑

i=0

2Q−1∑
j=0

vec
(

Ei, j

)
vecT

(
∂ F

∂wi, j

)

=
N−1∑
i=0

2Q−1∑
j=0

DZ

(
vec
(

Ei, j

)
vecT

(
∂ F

∂wi, j

))

=
N−1∑
n=0

2Q−1∑
q=0

N−1∑
i=0

2Q−1∑
j=0

vec


∂
[
vec
(

Ei, j

)
vecT

(
∂ F

∂wi, j

)]
∂wn,q


 vecT

(
En,q

)

=
N−1∑
n=0

2Q−1∑
q=0

N−1∑
i=0

2Q−1∑
j=0

vec

(
vec
(

Ei, j

)
vecT

(
∂2 F

∂wn,q∂wi, j

))
vecT

(
En,q

)

=
N−1∑
n=0

2Q−1∑
q=0

N−1∑
i=0

2Q−1∑
j=0

[
vec

(
∂2 F

∂wn,q∂wi, j

)
⊗ vec

(
Ei, j

)] [
1 ⊗ vecT

(
En,q

)]

=
N−1∑
n=0

2Q−1∑
q=0

N−1∑
i=0

2Q−1∑
j=0

vec

(
∂2 F

∂wn,q∂wi, j

)[
vec
(

Ei, j

)
vecT

(
En,q

)]
, (5.89)

where (2.101) was used in the second to last equality above. The expression in (5.89)
can be used to derive the complex Hessian matrix HZ,Z F directly without going all the
way through the second-order differential as mentioned earlier.

5.5.2 Chain Rule for Complex Hessian Matrices

In this subsection, the chain rule for finding the complex Hessian matrix is derived.

Theorem 5.1 (Chain Rule of Complex Hessian) Let S ⊆ C
N×2Q, and let F : S →

C
M×P be differentiable at an interior point Z of the set S. Let T ⊆ C

M×P be such
that F(Z) ∈ T for all Z ∈ S. Assume that G : T → C

R×S is differentiable at an inner
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point F(Z) ∈ T . Define the composite function H : S → C
R×S by

H (Z) = G (F(Z)) . (5.90)

The complex Hessian HZ,Z H is given by

HZ,Z H = [DFG ⊗ I2N Q

]
HZ,Z F + [I RS ⊗ (DZ F)T

] [
HF,FG

]
DZ F. (5.91)

Proof By Theorem 3.1, it follows that DZ H = (DFG)DZ F; hence,

(DZ H)T = (DZ F)T (DFG)T . (5.92)

By the definition of the complex Hessian matrix (see Definition 5.3), the complex
Hessian matrix of H can be found by taking the derivative with respect to Z of both
sides of (5.92):

HZ,Z H = DZ (DZ H)T = DZ
[
(DZ F)T (DFG)T

]
= [DFG ⊗ I2N Q

]
DZ (DZ F)T + [I RS ⊗ (DZ F)T

]
DZ (DFG)T

= [DFG ⊗ I2N Q

]
HZ,Z F + [I RS ⊗ (DZ F)T

] [
DF (DFG)T

]
DZ F, (5.93)

where the derivative of a product from Lemma 3.4 has been used. In the last equality
above, the chain rule was used because DZ (DFG)T = [DF (DFG)T

]
DZ F. By using

DF (DFG)T = HF,FG, the expression in (5.91) is obtained.

5.6 Examples of Finding Complex Hessian Matrices

This section contains three subsections. Subsection 5.6.1 shows several examples of how
to find the complex Hessian matrices of scalar functions. Examples for how to find the
Hessians of complex vector and matrix functions are shown in Subsections 5.6.2 and
5.6.3, respectively.

5.6.1 Examples of Finding Complex Hessian Matrices of Scalar Functions

Example 5.1 Let f : C
N×1 × C

N×1 → C be defined as

f (z, z∗) = zHΦz, (5.94)

where Φ ∈ C
N×N is independent of z and z∗. The second-order differential of f is given

by

d2 f = 2
(
dzH
)
Φdz = [dzH dzT

] [ 2Φ 0N×N

0N×N 0N×N

] [
dz
dz∗

]
. (5.95)

From the above expression, the Ak,l matrices in (5.27) can be identified as

A0,0 = 2Φ, A0,1 = A1,0 = A1,1 = 0N×N . (5.96)
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And from (5.31), (5.34), (5.36), and (5.37), the four complex Hessian matrices of f are
found

HZ,Z f = 0N×N , HZ∗,Z∗ f = 0N×N , HZ∗,Z f = ΦT , HZ,Z∗ f = Φ. (5.97)

The function f is often used in array signal processing (Jonhson & Dudgeon 1993)
and adaptive filtering (Diniz 2008). To check the convexity of the function f , use
the 2N Q × 2N Q middle matrix on the right-hand side of (5.25). Here, this matrix is
given by [

HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
=
[

Φ 0N×N

0N×N ΦT

]
. (5.98)

If this is positive semidefinite, then the problem is convex.

Example 5.2 Reconsider the function in Example 5.1 given in (5.94); however, now the
augmented matrix variable given in (5.2) will be used. Here, the input variables z and z∗

are vectors in C
N×1; hence, the augmented matrix variable Z is given by

Z �
[
z z∗] ∈ C

N×2. (5.99)

The connection between the input vector variables z ∈ C
N×1 and z∗ ∈ C

N×1 is given by
the following two relations:

z = Ze0, (5.100)

z∗ = Ze1, (5.101)

where the two unit vectors e0 = [1 0]T and e1 = [0 1]T have size 2 × 1.
Let us now express the function f , given in (5.94), in terms of the augmented matrix

variable Z . The function f is defined as f : C
N×2 → C, and it can be expressed as

f (Z) = eT
1 ZTΦZe0, (5.102)

where (5.100) and (5.101) are used to find expressions for z and zH , respectively. The
first-order differential of f is given by

d f = eT
1

(
dZT

)
ΦZe0 + eT

1 ZTΦ (dZ) e0. (5.103)

Using the fact that d2Z = 0N×2Q , the second-order differential can be found as
follows:

d2 f = 2eT
1

(
dZT

)
Φ (dZ) e0 = 2 Tr

{
eT

1

(
dZT

)
Φ (dZ) e0

}
= 2 Tr

{
e0eT

1

(
dZT

)
ΦdZ

} = 2 vecT
(
ΦT (dZ) e1eT

0

)
d vec (Z)

= 2
{[[

e0eT
1

]⊗ ΦT
]

d vec (Z)
}T

d vec (Z)

= 2
(
d vecT (Z)

) [[
e1eT

0

]⊗ Φ
]

d vec (Z) . (5.104)
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The second-order differential expression d2 f is now of the form given in (5.53), such
that the matrix A, used in the method presented in Subsection 5.3.2, is identified as

A = 2
[
e1eT

0

]⊗ Φ. (5.105)

The following two matrices are needed later in this example:

e1eT
0 =

[
0
1

]
[1 0] =

[
0 0
1 0

]
, (5.106)

e0eT
1 =

[
1
0

]
[0 1] =

[
0 1
0 0

]
. (5.107)

Using (5.55) to identify the Hessian matrix HZ,Z f with A given in (5.105)

HZ,Z f = 1

2

(
A + AT

) = 1

2

(
2
[
e1eT

0

]⊗ Φ + 2
[
e0eT

1

]⊗ ΦT
)

=
[

0 0
1 0

]
⊗ Φ +

[
0 1
0 0

]
⊗ ΦT =

[
0N×N ΦT

Φ 0N×N

]
, (5.108)

which is in line with the right-hand side of (5.98), having in mind the relations between
the HZ,Z f and the four matrices HZ,Z f , HZ∗,Z f , HZ,Z∗ f , and HZ∗,Z∗ f is given

in Lemma 5.3. Remember that it is the matrix

[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
that has to be

checked to find out about the nature of the stationary point, not the matrix HZ,Z f .

Example 5.3 The second-order differential of the eigenvalue function λ(Z) is now found
at Z = Z0. This derivation is similar to the one in Magnus and Neudecker (1988, p. 166),
where the same result for d2λ was found. See the discussion in (4.71) to (4.74) for an
introduction to the eigenvalue and eigenvector notations.

Applying the differential operator to both sides of (4.75) results in

2 (d Z) (du) + Z0d2u = (d2λ
)

u0 + 2 (dλ) du + λ0d2u. (5.109)

According to Horn and Johnson (1985, Lemma 6.3.10), the following inner product
is nonzero: v H

0 u0 �= 0; hence, it is possible to divide by v H
0 u0. Left-multiplying this

equation by the vector v H
0 and solving for d2λ gives

d2λ = 2v H
0 (d Z − I N dλ) du

v H
0 u0

=
2v H

0

(
d Z − I N

v H
0 (d Z)u0

v H
0 u0

)
du

v H
0 u0

=
2
(

v H
0 d Z − v H

0 (d Z)u0v H
0

v H
0 u0

)
du

v H
0 u0

=
2v H

0 (d Z)
(

I N − u0v H
0

v H
0 u0

)
(λ0 I N − Z0)+

(
I N − u0v H

0

v H
0 u0

)
(d Z) u0

v H
0 u0

, (5.110)

where (4.77) and (4.87) were utilized.
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The second-order differential d2λ, in (5.110), can be reformulated by means of (2.100)
and (2.116) in the following way:

d2λ= 2

v H
0 u0

Tr

{
u0v H

0 (d Z)

(
I N − u0v H

0

v H
0 u0

)
(λ0 I N − Z0)+

(
I N − u0v H

0

v H
0 u0

)
d Z

}

= 2

v H
0 u0

d vecT (Z)

[{(
I N − u0v H

0

v H
0 u0

)
(λ0 I N − Z0)+

(
I N − u0v H

0

v H
0 u0

)}

⊗ v∗
0uT

0

]
d vec

(
ZT
)

= 2

v H
0 u0

d vecT (Z)

[{(
I N − u0v H

0

v H
0 u0

)
(λ0 I N − Z0)+

(
I N − u0v H

0

v H
0 u0

)}

⊗ v∗
0uT

0

]
K N ,N d vec (Z) ,

(5.111)

where Lemma 2.14 was used in the second equality. From (5.111), it is possible to
identify the four complex Hessian matrices by means of (5.27), (5.31), (5.34), (5.36),
and (5.37).

Example 5.4 Let f : C
N×Q × C

N×Q → C be given by

f (Z, Z∗) = Tr
{

Z AZH
}

, (5.112)

where Z and A have sizes N × Q and Q × Q, respectively. The matrix A is independent
of the two matrix variables Z and Z∗. By using (2.116), the function f can be rewritten
as

f = vecT (Z∗)
(

AT ⊗ I N

)
vec(Z). (5.113)

By applying the differential operator twice to (5.113), it follows that the second-order
differential of f can be expressed as

d2 f = 2
(
d vecT (Z∗)

) (
AT ⊗ I N

)
d vec(Z). (5.114)

From this expression, it is possible to identify the four complex Hessian matrices by
means of (5.27), (5.31), (5.34), (5.36), and (5.37).

The following example is a slightly modified version of Hjørungnes and Gesbert
(2007b, Example 3).

Example 5.5 Define the Frobenius norm of the matrix Z ∈ C
N×Q as ‖Z‖2

F �
Tr
{

ZH Z
}

. Let f : C
N×Q × C

N×Q → R be defined as

f (Z, Z∗) = ‖Z‖2
F − Tr

{
ZT Z + ZH Z∗} , (5.115)
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where the Frobenius norm is used. The first-order differential is given by

d f =Tr
{(

d ZH
)

Z+ZH d Z−(d ZT
)

Z−ZT d Z−(d ZH
)

Z∗−ZH d Z∗}
=Tr

{(
ZH − 2ZT

)
d Z + (ZT − 2ZH

)
d Z∗}

=(vecT (Z∗) − 2 vecT (Z)
)

d vec (Z) + (vecT (Z) − 2 vecT (Z∗)
)

d vec (Z∗) .

(5.116)

Therefore, the derivatives of f with respect to Z and Z∗ are given by

DZ f = vecT (Z∗ − 2Z) , (5.117)

and

DZ∗ f = vecT (Z − 2Z∗) . (5.118)

By solving the necessary conditions for optimality from Theorem 3.2, it is seen from
the equation DZ∗ f = 01×N Q that Z = 0N×Q is a stationary point of f , and now the
nature of the stationary point Z = 0N×Q is checked by studying four complex Hessian
matrices. The second-order differential is given by

d2 f = (d vecT (Z) − 2d vecT (Z∗)
)

d vec (Z∗)

+ (d vecT (Z∗) − 2d vecT (Z)
)

d vec (Z)

= [d vecT (Z∗) d vecT (Z)]

[
I N Q −2I N Q

−2I N Q I N Q

] [
d vec (Z)
d vec (Z∗)

]
. (5.119)

From d2 f , the four Hessians in (5.31), (5.34), (5.36), and (5.37) are identified as

HZ∗,Z f = I N Q, (5.120)

HZ,Z∗ f = I N Q, (5.121)

HZ,Z f = −2I N Q, (5.122)

HZ∗,Z∗ f = −2I N Q . (5.123)

This shows that the two matrices HZ∗,Z f and HZ,Z∗ f are positive definite; however, the
bigger matrix [

HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
=
[

I N Q −2I N Q

−2I N Q I N Q

]
, (5.124)

is indefinite (Horn & Johnson 1985, p. 397) because

eH
0

[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
e0 > 0 > 1H

2N Q×1

[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
12N Q×1,

(5.125)

meaning that f has a saddle point at the origin. This shows the importance of checking

the whole matrix

[
HZ,Z∗ f HZ∗,Z∗ f
HZ,Z f HZ∗,Z f

]
when deciding whether or not a stationary
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Figure 5.1 Function from Example 5.5 with N = Q = 1.

point is a local minimum, local maximum, or saddle point. Figure 5.1 shows f for
N = Q = 1, and it is seen that the origin (marked as •) is indeed a saddle point.

5.6.2 Examples of Finding Complex Hessian Matrices of Vector Functions

Example 5.6 Let f : C
N×2Q → C

M×1 be given by

f (Z) = AZZT b, (5.126)

where A ∈ C
M×N and b ∈ C

N×1 are independent of all matrix components within
Z ∈ C

N×2Q . The first-order differential of f can be expressed as

d f = A (dZ) ZT b + AZ
(
dZT

)
b. (5.127)

The second-order differential of f can be found as

d2 f = A (dZ)
(
dZT

)
b + A (dZ)

(
dZT

)
b = 2A (dZ)

(
dZT

)
b. (5.128)

Following the procedure in Table 5.4, it is seen that the next step is to try to put the
second-order differential expression d2 f into the same form as given in (5.71). This
task can be accomplished by first trying to find the complex Hessian of the component
functions fi : C

N×2Q → C of the vector function f , where i ∈ {0, 1, . . . , M − 1}. The
second-order differential of component function number i , (i.e., d2 fi ) can be written
as

d2 fi = (2A (dZ)
(
dZT

)
b
)

i
= 2Ai,: (dZ)

(
dZT

)
b

= 2 Tr
{(

dZT
)

bAi,:dZ
} = 2 vecT

(
AT

i,:b
T dZ

)
d vec (Z)

= 2
[{

I2Q ⊗ (AT
i,:b

T
)}

d vec (Z)
]T

d vec (Z)

= (d vecT (Z)
)

2
[
I2Q ⊗ (bAi,:)

]
d vec (Z) . (5.129)
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From this expression, it is possible to identify the complex Hessian matrix of the
component function fi . However, the main task is to find the Hessian of the whole
vector function f , and the next step is to study in greater detail the expression d2 f . By
using the expression found in (5.129) inside d2 f , it is seen that

d2 f =




d2 f0

d2 f1
...

d2 fM−1


 = 2



(
d vecT (Z)

) [
I2Q ⊗ (bA0,:)

]
d vec (Z)(

d vecT (Z)
) [

I2Q ⊗ (bA1,:)
]

d vec (Z)
...(

d vecT (Z)
) [

I2Q ⊗ (bAM−1,:)
]

d vec (Z)




= [I M ⊗ d vecT (Z)
]

2




I2Q ⊗ (bA0,:)
I2Q ⊗ (bA1,:)

...
I2Q ⊗ (bAM−1,:)


 d vec (Z) . (5.130)

Now, d2 f has been developed into the form given in (5.71), and the matrix B ∈
C

2N QM×2N Q can be identified as

B = 2




I2Q ⊗ (bA0,:)
I2Q ⊗ (bA1,:)

...
I2Q ⊗ (bAM−1,:)


 . (5.131)

The complex Hessian matrix of a vector function is given by (5.76), and the last matrix
that is needed in (5.76) is vecb

(
BT
)
, which can be found from (5.131) as

vecb
(

BT
) = 2




I2Q ⊗ (AT
0,:b

T
)

I2Q ⊗ (AT
1,:b

T
)

...
I2Q ⊗ (AT

M−1,:b
T
)


 . (5.132)

By using (5.76) and the above expressions for B and vecb
(

BT
)
, the complex Hessian

matrix of f is found as

HZ,Z f =




I2Q ⊗ (bA0,: + AT
0,:b

T
)

I2Q ⊗ (bA1,: + AT
1,:b

T
)

...
I2Q ⊗ (bAM−1,: + AT

M−1,:b
T
)


 . (5.133)

From (5.133), it is observed that the complex Hessian HZ,Z f is column symmetric,
which is always the case for the Hessian of twice differentiable functions in all the matrix
variables inside Z .

This example shows that one useful strategy for finding the complex Hessian matrix
of a complex vector function is to first find the Hessian of the component functions, and
then use them in the expression of d2 f , making the expression into the appropriate form
given by (5.71).
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Example 5.7 The complex Hessian matrix of a vector function f : C
N×2Q → C

M×1 will
be found when the function is given by

f (Z) = a f (Z), (5.134)

where the scalar function f (Z) has a symmetric complex Hessian given by HZ,Z f ,
which is assumed to be known. Hence, the goal is to derive the complex Hessian of a
vector function f when the complex Hessian matrix of the scalar function f is already
known. The vector a ∈ C

M×1 is independent of Z .
The first-order differential of the vector function f is given by

d f = ad f. (5.135)

It is assumed that the scalar function f is twice differentiable, such that its Hessian
matrix is symmetric, that is,

(HZ,Z f )T = HZ,Z f. (5.136)

The second-order differential of f can be calculated as

d2 f = ad2 f = a
(
d vecT (Z)

) [
HZ,Z f

]
d vec (Z)

= [a ⊗ (d vecT (Z)
)] [

HZ,Z f
]

d vec (Z)

= [{I M a} ⊗ {(d vecT (Z)
)

I2N Q

}] [
HZ,Z f

]
d vec (Z)

= [I M ⊗ d vecT (Z)
] [

a ⊗ I2N Q

] [
HZ,Z f

]
d vec (Z) . (5.137)

From this expression, the matrix B ∈ C
2N QM×2N Q can be identified as

B = [a ⊗ I2N Q

]
HZ,Z f. (5.138)

The following expression is needed when finding the complex Hessian:

vecb
(

BT
) = vecb

(
(HZ,Z f )T

[
aT ⊗ I2N Q

]) = vecb
(
HZ,Z f

[
aT ⊗ I2N Q

])

=




a0HZ,Z f
a1HZ,Z f

...
aM−1HZ,Z f


 = [a ⊗ I2N Q

]
HZ,Z f = B, (5.139)

where a = [a0, a1, . . . , aM−1]T . Hence, the complex Hessian matrix of f can now be
found as

HZ,Z f = 1

2

(
B + vecb

(
BT
)) = B = [a ⊗ I2N Q

]
HZ,Z f. (5.140)

This example is an extension of the real-valued case where the input variable was a
vector (see Magnus & Neudecker 1988, p. 194, Section 7).
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5.6.3 Examples of Finding Complex Hessian Matrices of Matrix Functions

Example 5.8 Let the function F : C
N×2Q → C

M×P be given by

F(Z) = UZ DZT E, (5.141)

where the three matrices U ∈ C
M×N , D ∈ C

2Q×2Q , and E ∈ C
N×P are independent of

all elements within the matrix variable Z ∈ C
N×2Q . The first-order differential of the

matrix function F is given by

d F = U (dZ) DZT E + UZ D
(
dZT

)
E. (5.142)

The second-order differential of F can be found by applying the differential operator on
both sides of (5.142); this results in

d2 F = 2U (dZ) D
(
dZT

)
E, (5.143)

because d2Z = 0N×2Q .
Let the (i, j)-th component function of the matrix function F be denoted by fi, j ,

where i ∈ {0, 1, . . . , M − 1} and j ∈ {0, 1, . . . , P − 1}, hence, fi, j : C
N×2Q → C is a

scalar function. The second-order differential of fi, j can be found from (5.143) and is
given by

d2 fi, j = 2U i,: (dZ) D
(
dZT

)
E:, j . (5.144)

The expression of d2 fi, j is first manipulated in such a manner that it is expressed as
in (5.53)

d2 fi, j = 2U i,: (dZ) D
(
dZT

)
E:, j = 2 Tr

{
U i,: (dZ) D

(
dZT

)
E:, j

}
= 2 Tr

{
D
(
dZT

)
E:, jU i,:dZ

} = 2 vecT
(
U T

i,: E
T
:, j (dZ) DT

)
d vec (Z)

= 2
[{

D ⊗ (U T
i,: E

T
:, j

)}
d vec (Z)

]T
d vec (Z)

= 2
(
d vecT (Z)

) [
DT ⊗ (E:, jU i,:

)]
d vec (Z) . (5.145)
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Now, the expression of d2 vec (F) in (5.77) can be studied by inserting the results
from (5.145) into (5.77):

d2vec(F) =




d2 f0,0

d2 f1,0

...

d2 fM−1,0

d2 f0,1

...

d2 f0,P−1

...

d2 fM−1,P−1




= 2




(
d vecT (Z)

) [
DT ⊗ (E:,0U 0,:)

]
d vec (Z)(

d vecT (Z)
) [

DT ⊗ (E:,0U 1,:)
]

d vec (Z)

...(
d vecT (Z)

) [
DT ⊗ (E:,0U M−1,:)

]
d vec (Z)(

d vecT (Z)
) [

DT ⊗ (E:,1U 0,:)
]

d vec (Z)

...(
d vecT (Z)

) [
DT ⊗ (E:,P−1U 0,:)

]
d vec (Z)

...(
d vecT (Z)

) [
DT ⊗ (E:,P−1U M−1,:)

]
d vec (Z)




= [I M P ⊗ d vecT (Z)
]

2




DT ⊗ (E:,0U 0,:)

DT ⊗ (E:,0U 1,:)

...

DT ⊗ (E:,0U M−1,:)

DT ⊗ (E:,1U 0,:)

...

DT ⊗ (E:,P−1U 0,:)

...

DT ⊗ (E:,P−1U M−1,:)




d vec (Z) . (5.146)

The expression d2vec(F) is now put into the form given by (5.83), and the middle
matrix C ∈ C

2N QM P×2N Q of (5.83) can be identified as

C = 2




DT ⊗ (E:,0U 0,:)
DT ⊗ (E:,0U 1,:)

...
DT ⊗ (E:,0U M−1,:)

DT ⊗ (E:,1U 0,:)
...

DT ⊗ (E:,P−1U 0,:)
...

DT ⊗ (E:,P−1U M−1,:)




. (5.147)
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From the above equation, the matrix vecb
(
CT
)

can be found, and if that expression is
inserted into (5.87), the complex Hessian of the matrix function F is

HZ,Z F =




DT ⊗ (E:,0U 0,:) + D ⊗ (U T
0,: E

T
:,0

)
DT ⊗ (E:,0U 1,:) + D ⊗ (U T

1,: E
T
:,0

)
...

DT ⊗ (E:,0U M−1,:) + D ⊗ (U T
M−1,: E

T
:,0

)
DT ⊗ (E:,1U 0,:) + D ⊗ (U T

0,: E
T
:,1

)
...

DT ⊗ (E:,P−1U 0,:) + D ⊗ (U T
0,: E

T
:,P−1

)
...

DT ⊗ (E:,P−1U M−1,:) + D ⊗ (U T
M−1,: E

T
:,P−1

)




. (5.148)

From the above expression of the complex Hessian matrix of F, it is seen that it is
column symmetric.

As in Example 5.6, it is seen that the procedure for finding the complex Hessian
matrix in Example 5.8 was first to consider each of the component functions of F
individually, and then to collect the second-order differential of these functions into
the expression d2 vec(F). In Exercises 5.9 and 5.10, we will study how the results of
Examples 5.6 and 5.8 can be found in a more direct manner without considering each
component function individually.

Example 5.9 Let the complex Hessian matrix of the vector function f : C
N×2N P →

C
M×1 be known and denoted as HZ,Z f . Let the matrix function F : C

N×2N Q → C
M×P

be given by

F(Z) = A f (Z)b, (5.149)

where the matrix A ∈ C
M×M and the vector b ∈ C

1×P are independent of all components
of Z . In this example, an expression for the complex Hessian matrix of F will be found
as a function of the complex Hessian matrix of f .

Because the complex Hessian of f is known, it can be expressed as

d2 f = [I M ⊗ d vecT (Z)
] [
HZ,Z f

]
d vec (Z) . (5.150)

The first-order differential of F can be written as

d F = A (d f ) b. (5.151)

To find the Hessian of F, the following expression must be studied:

d2 vec (F) = vec (d (d F)) = vec
(

A
(
d2 f
)

b
) = [bT ⊗ A

]
d2 f

= [bT ⊗ A
] [

I M ⊗ d vecT (Z)
] [
HZ,Z f

]
d vec (Z) . (5.152)
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The next task is to manipulate the last expression such that it has the form given in (5.83).
To achieve this rewriting, (2.101), (2.103), and (2.110) will be used several times. The
product of the two first factors in (5.152) can be rewritten using the commutation matrix[

bT ⊗ A
] [

I M ⊗ d vecT (Z)
] = K P,M

[
A ⊗ bT

] [
I M ⊗ d vecT (Z)

]
= K P,M

[
A ⊗ (bT d vecT (Z)

)] = [(bT d vecT (Z)
)⊗ A

]
K 2N Q,M

= [bT ⊗ (d vecT (Z)
)⊗ A

]
K 2N Q,M = [(d vecT (Z)

)⊗ bT ⊗ A
]

K 2N Q,M

= [(d vecT (Z) I2N Q

)⊗ (I M P

{
bT ⊗ A

})]
K 2N Q,M

= [(d vecT (Z)
)⊗ I M P

] [
I2N Q ⊗ {bT ⊗ A

}]
K 2N Q,M

= [(d vecT (Z)
)⊗ I M P

]
K 2N Q,M P

[{
bT ⊗ A

}⊗ I2N Q

]
= K 1,M P

[
I M P ⊗ d vecT (Z)

] [
bT ⊗ A ⊗ I2N Q

]
= [I M P ⊗ d vecT (Z)

] [
bT ⊗ A ⊗ I2N Q

]
, (5.153)

where it was used such that K 1,M P = I M P = K M P,1 which follows from Exercise 2.6.
By substituting the product of the first two factors of (5.152) with the result in (5.153),
it is found that

d2 vec (F) = [I M P ⊗ d vecT (Z)
] [

bT ⊗ A ⊗ I2N Q

] [
HZ,Z f

]
d vec (Z) . (5.154)

The expression for d2 vec (F) now has the same form as in (5.83), such that the matrix C
is identified as

C = [bT ⊗ A ⊗ I2N Q

]
HZ,Z f . (5.155)

By using the result from Exercise 2.19, it is seen that C is column symmetric, that is,
vecb

(
CT
) = C . The complex Hessian of F can be found as

HZ,Z F = 1

2

[
C + vecb

(
CT
)] = C = [bT ⊗ A ⊗ I2N Q

]
HZ,Z f . (5.156)

5.7 Exercises

5.1 Let f : C
N×2Q → C be given by

f (Z) = Tr {AZ} , (5.157)

where Z ∈ C
N×2Q is the augmented matrix variable, and A ∈ C

2Q×N is independent of
Z . Show that the complex Hessian matrix of the function f is given by

HZ,Z f = 02N Q×2N Q . (5.158)

5.2 Let the function f : C
N×N → C be given by

f (Z) = ln (det (Z)) , (5.159)
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where the domain of f is the set of matrices in C
N×N that have a determinant that is not

both real and nonpositive. Calculate the second-order differential of f , and show that it
can be expressed as

d2 f = − (d vecT (Z)
) {

K N ,N

[
Z−T ⊗ Z−1

]}
d vec (Z) . (5.160)

Show from the above expression of d2 f that the complex Hessian of f with respect to
Z and Z is given by

HZ,Z f = −K N ,N

(
Z−T ⊗ Z−1

)
. (5.161)

5.3 Show that the complex Hessian matrix found in Example 5.8 reduces to the complex
Hessian matrix found in Example 5.6 for an appropriate choice of the constant matrices
and vectors involved in these examples.

5.4 This exercise is a continuation of Exercise 4.8. Assume that the conditions in
Exercise 4.8 are valid, then show that

d2λ = 2uH
0 (d Z) (λ0 I N − Z0)+ (d Z) u0. (5.162)

This is a generalization of Magnus and Neudecker (1988, Theorem 10, p. 166), which
treats the real symmetric case to the complex-valued Hermitian matrices.

5.5 Assume that the conditions in Exercise 4.8 are fulfilled. Show that the second-order
differential of the eigenvector function u evaluated at Z0 can be written as

d2u = 2 (λ0 I N − Z0)+
[
d Z − uH

0 (d Z0) u0 I N

]
(λ0 I N − Z0)+ (d Z) u0. (5.163)

5.6 Let the complex Hessian matrix of the vector function g : C
N×2Q → C

P×1 be
known and denoted by HZ,Z g. Let the matrix A ∈ C

M×P be independent of Z . Define
the vector function f : C

N×2Q → C
M×1 by

f (Z) = Ag(Z). (5.164)

Show that the second-order differential of f can be written as

d2 f = [I M ⊗ d vecT (Z)
] [

A ⊗ I2N Q

] [
HZ,Z g

]
d vec (Z) . (5.165)

From the above expression of d2 f , show that the Hessian of f is given by

HZ,Z f = [A ⊗ I2N Q

]
HZ,Z g. (5.166)

5.7 Let the complex Hessian matrix of the scalar function f : C
N×2Q → C be known

and given by HZ,Z f . The matrix function F : C
N×2Q → C

M×P is given by

F(Z) = A f (Z), (5.167)

where the matrix A ∈ C
M×P is independent of all components of Z . Show that the

second-order differential of vec (F) can be expressed as

d2 vec (F) = [I M P ⊗ d vecT (Z)
] [

vec (A) ⊗ I2N Q

] [
HZ,Z f

]
d vec (Z) . (5.168)
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Show from the above second-order differential that the complex Hessian matrix of F is
given by

HZ,Z F = [vec (A) ⊗ I2N Q

]
HZ,Z f. (5.169)

5.8 This exercise is a continuation of Exercise 3.10, where the function f : C
N×1 ×

C
N×1 → R is defined in (3.142). Let the augmented matrix variable be given by

Z �
[
z z∗] ∈ C

N×2. (5.170)

Show that the second-order differential of f can be expressed as

d2 f = 2
(
d vecT (Z)

) [[ 0 0
1 0

]
⊗ R

]
d vec (Z) . (5.171)

From the expression of d2 f , show that the complex Hessian of f is given by

HZ,Z f =
[

0N×N R∗

R 0N×N

]
. (5.172)

5.9 In this exercise, an alternative derivation of the results in Example 5.6 is made
where the results are not found in a component-wise manner, but in a more direct
approach. Show that the second-order differential of f can be written as

d2 f = 2
[
I M ⊗ d vecT (Z)

]
K M,2N Q

[
I2Q ⊗ b ⊗ A

]
d vec (Z) . (5.173)

Show that the Hessian of f can be written as

HZ,Z f = K M,2N Q

[
I2Q ⊗ b ⊗ A

]+ vecb
([

I2Q ⊗ bT ⊗ AT
]

K 2N Q,M

)
. (5.174)

Make a MATLAB implementation of the function vecb(·). By writing a MATLAB program,
verify that the expressions in (5.133) and (5.174) give the same numerical values for
HZ,Z f .

5.10 In this exercise, the complex Hessian matrix of Example 5.8 is derived in an
alternative way. Use the results from Exercise 2.11 to show that the d2 vec (F) can be
written as

d2 vec (F) = 2
[
I M P ⊗ d vecT (Z)

]
K M P,2N Q

[
D ⊗ {G ET

}]
d vec (Z) , (5.175)

where the matrix G ∈ C
M P N×P is given by

G = (K N ,P ⊗ I M ) (I P ⊗ vec (U )) . (5.176)

Show from the above expression that the complex Hessian can be expressed as

HZ,Z F = K M P,2N Q

[
D ⊗ {G ET

}]+ vecb
([

DT ⊗ {EGT
}]

K 2N Q,M P

)
. (5.177)

Write a MATLAB program that verifies numerically that the results in (5.148) and (5.177)
give the same result for the complex Hessian matrix HZ,Z F.

5.11 Assume that the complex Hessian matrix of F : C
N×2Q → C

M×P is known
and given by HZ,Z F. Show that the second-order differential d2 vec (F∗) can be
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expressed as

d2 vec (F∗) = [I M P ⊗ d vecT (Z)
](

I M P ⊗
[

0N Q×N Q I N Q

I N Q 0N Q×N Q

])
(HZ,Z F)∗

[
0N Q×N Q I N Q

I N Q 0N Q×N Q

]
d vec (Z) . (5.178)

Show that the complex Hessian matrix of F∗ is given by

HZ,Z F∗ =
(

I M P ⊗
[

0N Q×N Q I N Q

I N Q 0N Q×N Q

])
(HZ,Z F)∗

[
0N Q×N Q I N Q

I N Q 0N Q×N Q

]
.

(5.179)



6 Generalized Complex-Valued
Matrix Derivatives

6.1 Introduction

Often in signal processing and communications, problems appear for which we have
to find a complex-valued matrix that minimizes or maximizes a real-valued objec-
tive function under the constraint that the matrix belongs to a set of matrices with
a structure or pattern (i.e., where there exist some functional dependencies among
the matrix elements). The theory presented in previous chapters is not suited for the
case of functional dependencies among elements of the matrix. In this chapter, a sys-
tematic method is presented for finding the generalized derivative of complex-valued
matrix functions, which depend on matrix arguments that have a certain structure.
In Chapters 2 through 5, theory has been presented for how to find derivatives and
Hessians of complex-valued functions F : C

N×Q × C
N×Q → C

M×P with respect to
the complex-valued matrix Z ∈ C

N×Q and its complex conjugate Z∗ ∈ C
N×Q . As

seen from Lemma 3.1, the differential variables d vec(Z) and d vec(Z∗) should be
treated as independent when finding derivatives. This is the main reason why the
function F : C

N×Q × C
N×Q → C

M×P is denoted by two complex-valued input argu-
ments F(Z, Z∗) because Z ∈ C

N×Q and Z∗ ∈ C
N×Q should be treated independently

when finding complex-valued matrix derivatives (see Lemma 3.1). Based on the pre-
sented theory, up to this point, it has been assumed that all elements of the input matrix
variable Z contain independent elements. The type of derivative studied in Chapters 3,
4, and 5 is called a complex-valued matrix derivative or unpatterned complex-valued
matrix derivative. A matrix that contains independent elements will be called unpat-
terned. Hence, any matrix variable that is not unpatterned is called a patterned matrix.
An example of a patterned vector is [z, z∗], where z ∈ C.

In Tracy and Jinadasa (1988), a method was proposed for finding generalized deriva-
tives when the matrices contain real-valued components. The method proposed in Tracy
and Jinadasa (1988) is not adequate for the complex-valued matrix case; however, the
method presented in the current chapter can be used. As in Tracy and Jinadasa (1988),
a method is presented for finding the derivative of a function that depends on structured
matrices; however, in this chapter, the matrices can be complex-valued. In Palomar and
Verdú (2006), some results on derivatives of scalar functions with respect to complex-
valued matrices were provided, as were results for derivatives of complex-valued scalar
functions with respect to matrices with structure. Some of the results in Palomar and
Verdú (2006) are studied in detail in the exercises. It is shown in Palomar and Verdú
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(2007) how to link estimation theory and information theory through derivatives for
arbitrary channels. Gradients were used in Feiten, Hanly, and Mathar (2007) to show the
connection between the minimum MSE estimator and its error matrix. In Hjørungnes
and Palomar (2008a–2008b), a theory was proposed for finding derivatives of functions
that depend on complex-valued matrices with structure. Central to this theory is the
so-called pattern producing function. In this chapter, this function will be called the
parameterization function, because in general, its only requirement is that it is a diffeo-
morphism. Because the identity map is also a diffeomorphism, generalized derivatives
include the complex-valued matrix derivatives from Chapters 3 to 5, where all matrix
components are independent. Hence, the parameterization function does not necessarily
introduce any structure, and the name parameterization function will be used instead of
pattern producing function. Some of the material presented in this chapter is contained
in Hjørungnes and Palomar (2008a–2008b). The traditional chain rule for unpatterned
complex-valued matrix derivatives will be used to find the derivative of functions by
indicating the independent variables that build up the function. The reason why the
functions must have independent input variable matrices is that in the traditional chain
rule for unpatterned matrix derivatives, it is a requirement that the functions within the
chain rule must have freely chosen input arguments.

In this chapter, theory will be developed for finding complex-valued derivatives with
respect to matrices belonging to a certain set of matrices. This theory will be called
generalized complex-valued matrix derivatives. This is a natural extension of complex-
valued matrix derivatives and contains the theory of the previous chapters as a special
case. However, the theory presented in this chapter will show that it is not possible to
find generalized complex-valued derivatives with respect to an arbitrary set of complex-
valued patterned matrices. It will be shown that it is possible to find complex-valued
matrices only for certain sets of matrices. A Venn diagram for the relation between pat-
terned and unpatterned matrices, in addition to the connection between complex-valued
matrix derivatives and generalized complex-valued matrices, is shown in Figure 6.1.
The rectangle on the left side of the figure is the set of all unpatterned matrices, and the
rectangle on the right side is the set of all patterned matrices. The sets of unpatterned and
patterned matrices are disjoint, and their union is the set of all complex-valued matrix
variables. Complex-valued matrix derivatives, presented in Chapters 2 through 5, are
defined when the input variables are unpatterned; hence, in the Venn diagram, the set
of unpatterned matrices and the complex-valued matrix derivatives are the same (left
rectangle). Generalized complex-valued matrix derivatives are defined for unpatterned
matrices, in addition to a proper subset of patterned matrices. Thus, the set of matrices
for which the generalized complex-valued matrix derivatives is defined represents the
union of the left rectangle and the half circle in Figure 6.1. The theory developed in
this chapter presents the conditions and the sets of matrices for which the generalized
complex-valued matrix derivatives are defined.

Central to the theory of generalized complex-valued matrix derivatives is the so-called
parameterization function, which will be defined in this chapter. By means of the chain
rule, the derivatives with respect to the input variables of the parameterization function
will first be calculated. By introducing terms from the theory of manifolds (Spivak 2005)
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Matrix Derivatives

Matrices

Complex-Valued
Matrix Derivatives

Unpatterned Patterned
Matrices

Generalized Complex-Valued

Figure 6.1 Venn diagram of the relationships between unpatterned and patterned matrices,
in addition to complex-valued matrix derivatives and generalized complex-valued matrix
derivatives.

and combining them with formal derivatives (see Definition 2.2), it is possible to find
explicit expressions for the generalized matrix derivatives with respect to the matrices
belonging to certain sets of matrices called manifolds. The presented theory is general
and can be applied to find derivatives of functions that depend on matrices of linear
and nonlinear parameterization functions when the matrix with structure lies in a so-
called complex-valued manifold. If the parameterization function is linear in its input
matrix variables, then the manifold is called linear. Illustrative examples with relevance
to problems in signal processing and communications are presented.

In the theory of manifolds, the mathematicians (see, for example, Guillemin & Pollack
1974) have defined what is meant by derivatives with respect to objects within a manifold.
The derivative with respect to elements within the manifold must follow several main
requirements (Guillemin & Pollack 1974): (1) The chain rule should be valid for the
generalized derivative. (2) The generalized derivative contains unpatterned derivatives
as a special case. (3) The generalized derivatives are mappings between tangent spaces.
(4) In the theory of manifolds, commutative diagrams for functions are used such that
functions that start and end at the same set produce the same composite function. A
book about optimization algorithms on manifolds was written by Absil, Mahony, and
Sepulchre (2008).

The parameterization function should be a so-called diffeomorphism; this means that
the function should have several properties. One such property is that the parameteriza-
tion function depends on variables with independent differentials, and its domain must
have the same dimension as the dimension of the manifold. In addition, this function
must produce all the matrices within the manifold of interest. Another property of a
diffeomorphism is that it is a one-to-one smooth mapping of variables with independent
differentials to a set of matrices that the derivative will be found with respect to (i.e.,
the manifold). Instead of working on the complicated set of matrices with a certain
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structure, the diffeomorphism makes it possible to map the problem into a problem
where the variables with independent differentials are used.

In the following example, it will be shown that the method presented in earlier chapters
(i.e., using the differential of the function under consideration) is not applicable when
linear dependencies exist among elements of the input matrix variable.

Example 6.1 Let the complex-valued function g : C
2×2 → C be denoted by g(W), where

W ∈ C
2×2 is given by

g(W) = Tr {AW} , (6.1)

and assume that the matrix W is symmetric such that WT = W, that is, (W)0,1 = w0,1 =
(W)1,0 = w1,0 � w. The arbitrary matrix A ∈ C

2×2 is assumed to be independent of the
symmetric matrix W and (A)k,l = ak,l . The function g can be written is several ways.
Here are some identical ways to express the function g

g(W) = vecT
(

AT
)

vec (W) = [a0,0, a0,1, a1,0, a1,1

]



w0,0

w

w

w1,1




= [a0,0, a1,0, a0,1, a1,1

]



w0,0

w

w

w1,1




= [a0,0, α(a0,1 + a1,0), (1 − α)(a0,1 + a1,0), a1,1

]



w0,0

w

w

w1,1




= [a0,0, a0,1 + a1,0, a1,1

]  w0,0

w

w1,1


 , (6.2)

where α ∈ C may be chosen arbitrarily. The alternative representations in (6.2) show
that it does not make sense to try to identify the derivative by using the differential of
g when there is a dependency between the elements within W, because the differential
of g can be expressed in multiple ways. In this chapter, we present a method for finding
the derivative of a function that depends on a matrix that belongs to a manifold; hence,
it may contain structure. In Subsection 6.5.4, it will be shown how to find the derivative
of the function presented in this example.

In this chapter, the two operators dimR{·} and dimC{·} return, respectively, the real
and complex dimensions of the space they are applied to.
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The rest of this chapter is organized as follows: In Section 6.2, the procedure for finding
unpatterned complex-valued derivatives is modified to include the case where one of
the unpatterned input matrices is real-valued, in addition to another complex-valued
matrix and its complex conjugate. The chain rule and the steepest descent method are
also derived for the mixture of real- and complex-valued matrix variables in Section 6.2.
Background material from the theory of manifolds is presented in Section 6.3. The
method for finding generalized derivatives of functions that depend on complex-valued
matrices belonging to a manifold is presented in Section 6.4. Several examples are
given in Section 6.5 for how to find generalized complex-valued matrices derivatives
for different types of manifolds that are relevant for problems in signal processing and
communications. Finally, exercises related to the theory presented in this chapter are
presented in Section 6.6.

6.2 Derivatives of Mixture of Real- and Complex-Valued Matrix Variables

In this chapter, it is assumed that all elements of the matrices X ∈ R
K×L and Z ∈ C

N×Q

are independent; in addition, X and Z are independent of each other. Note that X ∈
R

K×L and Z ∈ C
N×Q have different sizes in general. For an introduction to complex

differentials, see Sections 3.2 and 3.3.1

Because the real variables X, Re {Z}, and Im {Z} are independent of each other, so are
their differentials. Although the complex variables Z and Z∗ are related, the differentials
of X, Z, and Z∗ are linearly independent in the following way:

Lemma 6.1 Let Ai ∈ C
M×N Q, B ∈ C

M×K L , X ∈ R
K×L , and Z ∈ C

N×Q, where the
matrices B, A0, and A1 might depend on X, Z, and Z∗, but not on the differential
operator. If

Bd vec(X) + A0d vec(Z) + A1d vec(Z∗) = 0M×1, (6.3)

for all d X ∈ R
K×L and d Z ∈ C

N×Q, then B = 0M×K L and Ai = 0M×N Q for i ∈ {0, 1}.
Proof If d vec(Z) = d vec(Re {Z}) + d vec(Im {Z}), then it follows by complex conju-
gation that d vec(Z∗) = d vec(Re {Z}) − d vec(Im {Z}). If d vec(Z) and d vec(Z∗) are
substituted into (6.3), then it follows that

Bd vec(X) + A0(d vec(Re {Z}) + d vec(Im {Z}))
+ A1(d vec(Re {Z}) − d vec(Im {Z})) = 0M×1. (6.4)

The last expression is equivalent to

Bd vec(X) + (A0 + A1)d vec(Re {Z}) +  (A0 − A1)d vec(Im {Z}) = 0M×1. (6.5)

1 The mixture of real- and complex-valued Gaussian distribution was treated in van den Bos (1998), and this
is a generalization of the general complex Gaussian distribution studied in van den Bos (1995b). In van den
Bos (1995a), complex-valued derivatives were used to solve a Fourier coefficient estimation problem for
which real- and complex-valued parameters were estimated jointly.
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Table 6.1 Procedure for finding the unpatterned derivatives for a mixture of real- and
complex-valued matrix variables, X ∈ R

K×L , Z ∈ C
N×Q , and Z∗ ∈ C

N×Q .

Step 1: Compute the differential d vec(F).
Step 2: Manipulate the expression into the form given in (6.6).
Step 3: The matrix DX F(X, Z, Z∗), DZ F(X, Z, Z∗), and

DZ∗ F(X, Z, Z∗) can now be read out by using Definition 6.1.

Because the three differentials d X, d Re {Z}, and d Im {Z} are independent, so are
d vec(X), d vec(Re {Z}), and d vec(Im {Z}). Thus, (6.5) leads to B = 0M×K L , A0 +
A1 = 0M×N Q , and A0 − A1 = 0M×N Q . From these relations, it follows that A0 = A1 =
0M×N Q , which concludes the proof.

Next, Definition 3.1 is extended to fit the case of handling generalized complex-valued
matrix derivatives. This is done by including a real-valued matrix in the domain of the
function under consideration, in addition to the complex-valued matrix variable and its
complex conjugate.

Definition 6.1 (Unpatterned Derivatives wrt. Real- and Complex-Valued Matrices)
Let F : R

K×L × C
N×Q × C

N×Q → C
M×P . Then, the derivative of the matrix function

F(X, Z, Z∗) ∈ C
M×P with respect to X ∈ R

K×L is denoted by DX F(X, Z, Z∗) and has
size M P × K L; the derivative with respect to Z ∈ C

N×Q is denoted byDZ F(X, Z, Z∗),
and the derivative of F(X, Z, Z∗) ∈ C

M×P with respect to Z∗ ∈ C
N×Q is denoted by

DZ∗ F(X, Z, Z∗). The size of both DZ F(X, Z, Z∗) and DZ∗ F(X, Z, Z∗) is M P × N Q.
The three matrix derivatives DX F(X, Z, Z∗), DZ F(X, Z, Z∗), and DZ∗ F(X, Z, Z∗)
are defined by the following differential expression:

d vec(F) = (DX F(X, Z, Z∗)) d vec(X)

+ (DZ F(X, Z, Z∗)) d vec(Z) + (DZ∗ F(X, Z, Z∗)) d vec(Z∗). (6.6)

The three matrices DX F(X, Z, Z∗), DZ F(X, Z, Z∗), and DZ∗ F(X, Z, Z∗) are called
the Jacobian matrices of F with respect to X, Z, and Z∗, respectively.

When finding the derivatives with respect to X, Z, and Z∗, these matrix variables
should be treated as independent matrix variables. The reason for this is Lemma 6.1,
which shows that X, Z, and Z∗ have independent differentials. Finding the derivative
of the complex-valued matrix function F with respect to the real- and complex-valued
matrices X, Z, and Z∗ can be achieved using the three-step procedure shown in Table 6.1.
An example for how this can be done is shown next.

Example 6.2 Let the complex-valued function F : R
K×L × C

N×Q × C
N×Q → C

M×P

be given by

F(X, Z, Z∗) = AXBZC ZH D, (6.7)
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where the four matrices A ∈ C
M×K , B ∈ C

L×N , C ∈ C
Q×Q , and D ∈ C

N×P are inde-
pendent of the matrix variables X ∈ R

K×L , Z ∈ C
N×Q , and Z∗ ∈ C

N×Q . By following
the procedure in Table 6.1, we get

d vec (F) = d vec
(

AXBZC ZH D
) = [(DT Z∗CT ZT BT

)⊗ A
]

d vec (X)

+ (DT Z∗CT
)⊗ (AXB) d vec (Z) + [DT ⊗ (AXBZC)

]
K N ,Qd vec (Z∗) . (6.8)

It is observed that d vec (F) has been manipulated into the form given by (6.6); hence,
the derivatives of F with respect to X, Z, and Z∗ are identified as

DX F = (DT Z∗CT ZT BT
)⊗ A, (6.9)

DZ F = (DT Z∗CT
)⊗ (AXB) , (6.10)

DZ∗ F = [DT ⊗ (AXBZC)
]

K N ,Q . (6.11)

The rest of this section contains two subsections with results for the case of a mixture
of real- and complex-valued matrix variables. In Subsection 6.2.1, the chain rule for
mixed real- and complex-variable matrix variables is presented. The steepest descent
method is derived in Subsection 6.2.2 for mixed real- and complex-valued input matrix
variables for real-valued scalar functions.

6.2.1 Chain Rule for Mixture of Real- and Complex-Valued Matrix Variables

The chain rule is now stated for the mixture of real- and complex-valued matrices. This
is a generalization of Theorem 3.1 that is better suited for handling the case of finding
generalized complex-valued derivatives.

Theorem 6.1 (Chain Rule) Let (S0,S1,S2) ⊆ R
K×L × C

N×Q × C
N×Q, and let F :

S0 × S1 × S2 → C
M×P be differentiable with respect to its first, second, and third argu-

ments at an interior point (X, Z, Z∗) in the set S0 × S1 × S2. Let T0 × T1 ⊆ C
M×P ×

C
M×P be such that (F(X, Z, Z∗), F∗(X, Z, Z∗)) ∈ T0 × T1 for all (X, Z, Z∗) ∈ S0 ×

S1 × S2. Assume that G : T0 × T1 → C
R×S is differentiable at an interior point

(F(X, Z, Z∗), F∗(X, Z, Z∗)) ∈ T0 × T1. Define the composite function H : S0 × S1 ×
S2 → C

R×S by

H (X, Z, Z∗) � G (F(X, Z, Z∗), F∗(X, Z, Z∗)) . (6.12)

The derivatives DX H, DZ H, and DZ∗ H are obtained through

DX H = (DFG)DX F + (DF∗ G)DX F∗, (6.13)

DZ H = (DFG)DZ F + (DF∗ G)DZ F∗, (6.14)

DZ∗ H = (DFG)DZ∗ F + (DF∗ G)DZ∗ F∗. (6.15)

Proof The differential of the function vec(H) can be written as

d vec (H) = d vec (G) = (DFG) d vec(F) + (DF∗ G) d vec(F∗). (6.16)
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The differentials d vec(F) and d vec(F∗) are given by

d vec(F) = (DX F) d vec(X) + (DZ F) d vec(Z) + (DZ∗ F) d vec(Z∗), (6.17)

d vec(F∗) = (DX F∗) d vec(X) + (DZ F∗) d vec(Z) + (DZ∗ F∗) d vec(Z∗), (6.18)

respectively. Inserting the two differentials d vec(F) and d vec(F∗) from (6.17) and
(6.18) into (6.16) gives the following expression:

d vec (H) = [(DFG)DX F + (DF∗ G)DX F∗] d vec(X)

+ [(DFG)DZ F + (DF∗ G)DZ F∗] d vec(Z)

+ [(DFG)DZ∗ F + (DF∗ G)DZ∗ F∗] d vec(Z∗). (6.19)

By using Definition 6.1 on (6.19), the derivatives of H with respect to X, Z, and Z∗ can
be identified as (6.13), (6.14), and (6.15), respectively.

By using Theorem 6.1 on the complex conjugate of H, it is found that the derivatives
of H∗ with respect to X, Z, and Z∗ are given by

DX H∗ = (DFG∗)DX F + (DF∗ G∗)DX F∗, (6.20)

DZ H∗ = (DFG∗)DZ F + (DF∗ G∗)DZ F∗, (6.21)

DZ∗ H∗ = (DFG∗)DZ∗ F + (DF∗ G∗)DZ∗ F∗, (6.22)

respectively. A diagram for how to find the derivatives of the functions H and H∗ with
respect to X ∈ R

K×L , Z ∈ C
N×Q , and Z∗ ∈ C

N×Q is shown in Figure 6.2. This diagram
helps to remember the chain rule.2

Remark To use the chain rule in Theorem 6.1, all variables within X ∈ R
K×L and

Z ∈ C
N×Q must be independent, and these matrices must be independent of each other.

In addition, in the definition of the function G, the arguments of this function should be
chosen with independent matrix components.

Example 6.3 (Use of Chain Rule) The chain rule will be used to derive two well-known
results, which were found in Example 2.2. Let W = {w ∈ C

2×1 | w = [z, z∗]T , z ∈ C}.
The two functions f and g from the chain rule are defined first. These play the same
role as in the chain rule. Define the function f : C × C → W by

f (z, z∗) =
[

z
z∗

]
, (6.23)

and let the function g : C
2×1 → C be given by

g

([
z0

z1

])
= z0z1. (6.24)

2 Similar diagrams were developed in Edwards and Penney (1986, Section 15–7).



6.2 Derivatives of Mixture of Real- and Complex-Valued Matrix Variables 141

DXF ∗

X ∈ R
K×L Z∗ ∈ C

N×QZ ∈ C
N×Q

F ∈ C
M×P F ∗ ∈ C

M×P

DFG DFG
∗DF∗G DF∗G∗

DZ∗F ∗
DXF DZF

DZ∗F DZF
∗

H∗ = G∗ ∈ C
R×SH = G ∈ C

R×S

Figure 6.2 Diagram showing how to find the derivatives of H(X, Z, Z∗) = G(F, F∗), with respect
to X ∈ R

K×L , Z ∈ C
N×Q , and Z∗ ∈ C

N×Q , where F and F∗ are functions of the three matrix
variables X ∈ R

K×L , Z ∈ C
N×Q , and Z∗ ∈ C

N×Q . The derivatives are shown along the curves
connecting the boxes.

In the chain rule, the following derivatives are needed:

Dz f =
[

1
0

]
, (6.25)

Dz∗ f =
[

0
1

]
, (6.26)

D[z0,z1]g = [z1, z0] . (6.27)

Let h : C × C → C be defined as

h(z, z∗) = g

(
f

([
z
z∗

]))
= zz∗ = |z|2, (6.28)

that is, the functions represent the squared Euclidean distance from the origin to Z . This
is the same function that is plotted in Figure 3.1. From the definition of formal partial
derivative (see Definition 2.2), it is seen that the following results are valid:

Dzh(z, z∗) = z∗, (6.29)

Dz∗ h(z, z∗) = z. (6.30)

These results are in agreement with the derivatives derived in Example 3.1.
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Now, these two results are derived by the use of the chain rule. From the chain rule in
Theorem 6.1, it follows that

Dzh(z) = Dzg

(
z0

z1

)∣∣∣∣
f (z)

Dz f (z) = [z∗, z]

[
1
0

]
= z∗, (6.31)

and

Dz∗ h(z) = Dzg

(
z0

z1

)∣∣∣∣
f (z)

Dz∗ f (z) = [z∗, z]

[
0
1

]
= z, (6.32)

and these are the same as in (6.29) and (6.30), respectively.

6.2.2 Steepest Ascent and Descent Methods for Mixture of Real- and
Complex-Valued Matrix Variables

When a real-valued scalar function is dependent on a mixture of real- and complex-
valued matrix variables, the steepest descent method has to be modified. This is detailed
in the following theorem:

Theorem 6.2 Let f : R
K×L × C

N×Q × C
N×Q → R. The directions where the func-

tion f has the maximum and minimum rate of change with respect to the
vector [vecT (X), vecT (Z)] are given by [DX f (X, Z, Z∗), 2DZ∗ f (X, Z, Z∗)] and
− [DX f (X, Z, Z∗), 2DZ∗ f (X, Z, Z∗)], respectively.

Proof Because f ∈ R, it is possible to write d f in two ways:

d f = (DX f ) d vec(X) + (DZ f ) d vec(Z) + (DZ∗ f ) d vec(Z∗), (6.33)

d f ∗ = (DX f ) d vec(X) + (DZ f )∗ d vec(Z∗) + (DZ∗ f )∗ d vec(Z), (6.34)

where d f = d f ∗ since f ∈ R. By subtracting (6.33) from (6.34) and then applying
Lemma 6.1, it follows3 thatDZ∗ f = (DZ f )∗. By using this result, (6.33) can be rewritten
as follows:

d f = (DX f ) d vec(X) + 2 Re {(DZ f ) d vec(Z)}
= (DX f ) d vec(X) + 2 Re

{
(DZ∗ f )∗ d vec(Z)

}
. (6.35)

If ai ∈ C
K×1, where i ∈ {0, 1}, then,

Re
{

aH
0 a1

} =
〈[

Re {a0}
Im {a0}

]
,

[
Re {a1}
Im {a1}

]〉
, (6.36)

where 〈·, ·〉 is the ordinary Euclidean inner product (Young 1990) between real vectors
in R

2K×1. By using the inner product between real-valued vectors and rewriting the

3 A similar result was obtained earlier in Lemma 3.3 for functions of the type F : C
N×Q × C

N×Q → C
M×P

(i.e., not a mixture of real- and complex-valued variables).
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right-hand side of (6.35) using (6.36), the differential of f can be written as

d f =
〈 (DX f )T

2 Re
{

(DZ∗ f )T
}

2 Im
{

(DZ∗ f )T
}

 ,


 d vec(X)

d Re {vec(Z)}
d Im {vec(Z)}


〉 . (6.37)

By applying Cauchy-Schwartz inequality (Young 1990) for inner products, it can be
shown that the maximum value of d f occurs when the two vectors in the inner product
are parallel. This can be rewritten as

[d vecT (X), d vecT (Z)] = α[DX f, 2DZ∗ f ], (6.38)

for α > 0. And the minimum rate of change occurs when

[d vecT (X), d vecT (Z)] = −β[DX f, 2DZ∗ f ], (6.39)

where β > 0.

If a real-valued function f is being optimized with respect to the parameter matrices
X and Z by means of the steepest descent method, it follows from Theorem 6.2 that
the updating term must be proportional to [DX f, 2DZ∗ f ]. The update equation for
optimizing the real-valued function in Theorem 6.2 by means of the steepest ascent or
descent method can be expressed as[

vec(Xk+1)
vec(Zk+1)

]
=
[

vec(Xk)
vec(Zk)

]
+ µ

[ (
DX f (Xk, Zk, Z∗

k )
)T

2
(
DZ∗ f (Xk, Zk, Z∗

k )
)T

]
, (6.40)

where µ is a real positive constant if it is a maximization problem or a real negative
constant if it is a minimization problem, and where Xk ∈ R

K×L and Zk ∈ C
N×Q are the

values of the unknown parameter matrices after k iterations.
The next example illustrates the importance of factor 2 in front of DZ∗ f in Theo-

rem 6.2.

Example 6.4 Consider the following non-negative real-valued function: h : R × C ×
C → R, given by

h(x, z, z∗) = x2 + zz∗ = x2 + |z|2, (6.41)

where x ∈ R and z ∈ C. The minimum value of the non-negative function h is in the
origin where its value is 0, that is, h(0, 0, 0) = 0. The derivatives of this function with
respect to x , z, and z∗ are given by

Dx h = 2x, (6.42)

Dzh = z∗, (6.43)

Dz∗ h = z, (6.44)

respectively. To test the validity of factor 2 in the steepest descent method of this function,
let us replace 2 with a factor called β. The modified steepest descent equations can be
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expressed as[
xk+1

zk+1

]
=
[

xk

zk

]
− µ

[
Dx h

βDz∗ h

]∣∣∣∣
[x,z]=[xk ,zk ]

=
[

xk

zk

]
− µ

[
2xk

βzk

]

=
[

(1 − 2µ)xk

(1 − βµ)zk

]
, (6.45)

where k is the iteration index. By studying the function h carefully, it is seen that the
three real-valued variables x , Re{z}, and Im{z} should have the same rate of change
when going toward the minimum. Hence, from the final expression in (6.45), it is seen
that β = 2 corresponds to this choice. That β = 2 is the best choice in general is shown
in Theorem 6.2.

6.3 Definitions from the Theory of Manifolds

A rich mathematical literature exists on manifolds and complex manifolds (see,
e.g., Guillemin & Pollack 1974; Remmert 1991; Fritzsche & Grauert 2002; Spivak 2005,
and Wells, Jr. 2008). Interested readers are encouraged to go deeper into the mathematical
literature on manifolds.

To use the theory of manifolds for finding the derivatives with respect to matrices
within a certain manifold, some basic definitions are given in this section. Some of these
are taken from Guillemin and Pollack (1974).

Definition 6.2 (Smooth Function) A function is called smooth if it has continuous par-
tial derivatives of all orders with respect to all its input variables.

Definition 6.3 (Diffeomorphism) A smooth bijective4 function is called a diffeomor-
phism if the inverse function is also smooth.

Because all diffeomorphisms are one-to-one and onto, their domains and image set
have the same real- or complex-valued dimensions.

Example 6.5 Notice that the function f : R → R given by f (x) = x3 is both bijective
and smooth; however, its inverse function f −1(x) = x

1
3 is not smooth because it is not

differentiable at x = 0. Therefore, this function is not a diffeomorphism.

Definition 6.4 (Real-Valued Manifold) Let X be a subset of a big ambient5 Euclidean
space R

N×1. Then, X , is a k-dimensional manifold if it is locally diffeomorphic to R
k×1,

where k ≤ N.

4 A function is bijective if it is both one-to-one (injective) and onto (surjective).
5 An ambient space is a space surrounding a mathematical object.
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For an introduction to manifolds, see Guillemin and Pollack (1974). Manifolds are a
very general framework; however, we will use this theory to find generalized complex-
valued matrix derivatives with respect to complex-valued matrices that belong to a
manifold. This means that the matrices might contain a certain structure (see Figure 6.1).

When working with generalized complex-valued matrix derivatives, there often exists
a mixture of independent real- and complex-valued matrix variables. The formal partial
derivatives are used when finding the derivatives with respect to the complex-valued
matrix variables with independent differentials. Hence, when a complex-valued matrix
variable is present (e.g., Z ∈ C

N×Q), this matrix variable has to be treated as independent
of its complex conjugate Z∗ ∈ C

N×Q when finding the derivatives. The phrase “treated
as independent” can be handled with a procedure where the complex-valued matrix
variable Z ∈ C

N×Q is replaced with the matrix variable Z0 ∈ C
N×Q , and the complex-

valued matrix variable Z∗ ∈ C
N×Q is replaced with the matrix variable Z1 ∈ C

N×Q ,
where the two matrix variables Z0 and Z1 are treated as independent.6

Definition 6.5 (Mixed Real- and Complex-Valued Manifold) Let W be a subset of the
complex space C

M×P . Then W is a (K L + 2N Q)-real-dimensional manifold7 if it
is locally diffeomorphic to R

K×L × C
N×Q × C

N×Q, where K L + 2N Q ≤ 2M P, and
where the diffeomorphism F : R

K×L × C
N×Q × C

N×Q → W ⊆ C
M×P is denoted by

F(X, Z, Z∗), and where X ∈ R
K×L and Z ∈ C

N×Q have independent components. The
components of Z and Z∗ should be treated as independent when finding complex-valued
matrix derivatives.

It is possible to find the derivative with respect to matrices that belong to a certain
manifold, and this includes some special types of patterned matrices. Hence, with the
theory presented in this chapter, it is not possible to find derivatives with respect to an
arbitrary pattern, but only with respect to matrices that belong to a manifold.

Definition 6.6 (Tangent Space) Assume that W is a mixed real- and complex-valued
manifold given by Definition 6.5; hence, W is the image of the parameterization func-
tion F : R

K×L × C
N×Q × C

N×Q → W . Let Φ : (−ε, ε) → W be a smooth curve on
the manifold W , where ε > 0. Let U ∈ C

M×P be the direction of the tangent of the
curve Φ(t) at the point Φ(0) = W ∈ W . The matrix function Φ can be expressed as

vec (Φ(t)) = vec (W) + t vec (U ) , (6.46)

where t ∈ (−ε, ε). The tangent space is denoted by TW and is defined as the set of all
pairs of the form (W, U ) called tangent vectors at the point W ∈ W .

Example 6.6 (Hermitian Matrix) Let W be the set of Hermitian N × N matrices,
that is, W = {W ∈ C

N×N | W H = W}. Then W is a subset of the ambient complex
Euclidean space C

N×N . Clearly, the actual matrix components of the Hermitian matrix

6 In Brandwood (1983, pp. 11–12), a similar procedure was used when replacing the two scalars z and z∗ with
the two independent variables z1 and z2, respectively.

7 The complex dimension of W is K L
2 + N Q, that is, dimC{W} = K L

2 + N Q = dimR{W}
2 .
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are dependent of each other because the elements strictly below the main diagonal are
a function of the elements strictly above the main diagonal. Hence, matrices in W are
patterned. The differentials of all matrix elements of W ∈ W are independent.

The function F : R
N×1 × C

(N−1)N
2 × C

(N−1)N
2 → W denoted by F(x, z, z∗) and given

by

vec(F(x, z, z∗)) = Ld x + Ll z + Luz∗, (6.47)

is one-to-one and onto W . It is also smooth, and its inverse is also smooth; hence,
it is a diffeomorphism. Therefore, W is a manifold with real dimension given by
dimR{W} = N + 2 (N−1)N

2 = N 2.
It is very important that the parameterization function cannot have too many input

variables. For example, for producing Hermitian matrices, the function H : C
N×N ×

C
N×N → W given by

H(Z, Z∗) = 1

2

(
Z + ZH

)
, (6.48)

will produce all Hermitian matrices in W when Z ∈ C
N×N is an unpatterned matrix.

The function H is not one-to-one. There are too many input variables, so this function
is not a bijection, which is one of the requirements for a diffeomorphism.

Example 6.7 (Symmetric Matrix) Let K denote the field of real R or complex C numbers,
and let W = {Z ∈ K

N×N |ZT = Z} be the set of all symmetric N × N matrices with
elements in K. Then W is a linear manifold studied in Magnus (1988) for real-valued
components. If k �= l, then (Z)k,l = (Z)l,k ; hence, Z is patterned.

Example 6.8 (Matrices Containing One Constant) LetW be the set of all complex-valued
matrices of size N × Q containing the constant c in row number k and column number l,
where k, l ∈ {0, 1, . . . , N − 1}. The set W is then a manifold because a diffeomorphism
can be found for generating W from N Q − 1 independent complex-valued parameters.

Magnus (1988) and Abadir and Magnus (2005) studied real-valued linear structures.
A linear structure is equivalent to a linear manifold, meaning that the parameterization
function is linear. Methods for how to find derivatives with respect to the real-valued
independent Euclidean input parameters to the parameterization function are presented
in Magnus (1988) and Wiens (1985). For linear manifolds; one set of basis vectors can
be chosen for the whole manifold; however, this is not the case for a nonlinear manifold.
Because the requirement for a manifold is that it is locally diffeomorphic, the choice
of basis vectors might be different for each point for nonlinear manifolds. Hence, when
working with nonlinear manifolds, it might be best to try to optimize the function with
respect to the parameters in the space of variables with independent differentials (i.e.,
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H(X,Z,Z∗) = G(F (X,Z,Z∗),F ∗(X,Z,Z∗))

W̃
∗ ∈ C

M×P
W̃ ∈ C

M×P

W=F (X,Z,Z∗)

Manifold

W ∗ ∈ W∗ ⊆ C
M×P

W ∈ W ⊆ C
M×P

G(W̃ , W̃
∗
)

(X,Z,Z∗) = F−1(W )

X ∈ R
K×L

Z ∈ C
N×Q

Z∗ ∈ C
N×Q

C
R×S

Figure 6.3 Functions used to find generalized matrix derivatives with respect to matrices W in the
manifold W and matrices W∗ in W∗. Adapted from Hjørungnes and Palomar (2008a), c© 2008
IEEE.

the input variables to the parameterization function), since one set of basis vectors is
enough for the space of input variables of the parameterization function.

6.4 Finding Generalized Complex-Valued Matrix Derivatives

In this section, a method is presented for how to find generalized matrix derivatives with
respect to matrices that belong to a manifold. The method will be derived by means of
the chain rule, the theory of manifolds, and formal derivatives.

6.4.1 Manifolds and Parameterization Function

We now want to develop a theory by which we can find the derivative also with respect
to a matrix belonging to a manifold W = F(X, Z, Z∗); to achieve this, we need the
existence of DW F−1 and DW∗ F−1, which exist only when F is a diffeomorphism (see
Definition 6.5).

Figure 6.3 shows the situation we are working under by depicting how several functions
are defined. As indicated by this figure, let the three matrices X ∈ R

K×L , Z ∈ C
N×Q ,

and Z∗ ∈ C
N×Q be matrices that contain independent differentials, such that they can

be treated as independent when finding derivatives. It is assumed that the three input
matrices X, Z, and Z∗ are used to produce all matrices in a considered manifold W ,
as they are the input variables of the parameterization function F(X, Z, Z∗), which is
a diffeomorphic function (see Definition 6.5). The range and the image set of F are
equal, and they are given by W , which is a subset of C

M×P . One arbitrary member
of W is denoted by W (see the middle part of Figure 6.3). Hence, the matrix W
represents a potentially8 patterned matrix that belongs to W . Let W̃ ∈ C

M×P be a
matrix of independent components. Hence, the matrices W̃ ∈ C

M×P and W̃
∗ ∈ C

M×P

8 Notice that generalized complex-valued matrices exist for unpatterned matrices and a subset of all patterned
matrices (see Figure 6.1).
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are unpatterned versions of the matrices W ∈ W and W∗ ∈ W∗ � {W∗ ∈ C
M×P | W ∈

W}, respectively. It is assumed that all matrices W within W can be produced by the
parameterization function F : R

K×L × C
N×Q × C

N×Q → W ⊆ C
M×P , given by

W = F(X, Z, Z∗). (6.49)

In Figure 6.3, the function F is shown as a diffeomorphism from the matrices X ∈ R
K×L ,

Z ∈ C
N×Q , and Z∗ ∈ C

N×Q onto the manifoldW ⊆ C
M×P . Figure 6.3 is a commutative

diagram, such that maps that start and end at the same set in this figure return the same
functions. In order to use the theory of complex-valued matrix derivatives (see Chapter 3),
both Z and Z∗ are used explicitly as variables, and they are treated as independent when
finding derivatives.

The parameterization function F : R
K×L × C

N×Q × C
N×Q → W is onto and one-

to-one; hence, the range and image set of F are both equal toW . Because F is a bijection,
the inverse function F−1 : W → R

K×L × C
N×Q × C

N×Q exists and is denoted by

F−1(W) = (X, Z, Z∗) = (F−1
X (W) F−1

Z (W) F−1
Z∗ (W)

)
, (6.50)

where the three functions F−1
X : W → R

K×L , F−1
Z : W → C

N×Q , and F−1
Z∗ : W →

C
N×Q are introduced in such a way that X = F−1

X (W), Z = F−1
Z (W), and Z∗ =

F−1
Z∗ (W). It is required that the function F : R

K×L × C
N×Q × C

N×Q → W is differen-
tiable when using formal derivatives. Another requirement is that the function F−1(W)
should be differentiable when using formal derivatives.

The image set of the diffeomorphic function F is W , and it has the same dimen-
sion as its domain, such that dimR{W} = dimR{RK×L × C

N×Q} = K L + 2N Q ≤
dimR{CM×P} = 2M P . This means that the set of matrices W can be parameterized
with K L independent real variables collected within X ∈ R

K×L and N Q indepen-
dent complex-valued variables inside the matrix Z ∈ C

N×Q and its complex conju-
gate Z∗ ∈ C

N×Q through (6.49). The two complex-valued matrix variables Z and Z∗

cannot be varied independently because they are the complex conjugate of each other;
however, they should be treated as independent when finding generalized complex-valued
matrix derivatives.

The inverse of the parameterization function F is denoted F−1, and it must satisfy

F−1(F(X, Z, Z∗)) = (X, Z, Z∗), (6.51)

F(F−1(W)) = W, (6.52)

for all X ∈ R
K×L , Z ∈ C

N×Q , Z∗ ∈ C
N×Q , and W ∈ W . Here, the space R

K×L ×
C

N×Q × C
N×Q contains variables that should be treated as independent when finding

derivatives, andW is the set that contains matrices in the manifold. The real dimension of
the tangent space of W , produced by the parameterization function F defined in (6.49),
is K L + 2N Q. To find the generalized complex-valued matrix derivatives, a basis for
expressing vectors of the form vec (W) should be chosen, where W ∈ W . Because the
manifold is expressed with K L + 2N Q real- and complex-valued parameters inside X ∈
R

K×L , Z ∈ C
N×Q , and Z∗ ∈ C

N×Q with independent differentials, the number of basis
vectors used to express the vector vec(W) ∈ C

M P×1 is K L + 2N Q. This will serve as a
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basis for the tangent space of W . When using these K L + 2N Q basis vectors to express
vectors of the form vec (W), the size of the generalized complex-valued matrix derivative
DW F−1 is (K L + 2N Q) × (K L + 2N Q); hence, this is a square matrix. When using
the same basis vectors of the tangent space of W to express the three derivatives DX F,
DZ F, and DZ∗ F, the sizes of these three derivatives are (K L + 2N Q) × K L , (K L +
2N Q) × N Q, and (K L + 2N Q) × N Q, respectively.

Taking the derivative with respect to X on both sides of (6.51) leads to

(
DW F−1

)
DX F = DX(X, Z, Z∗) =


 I K L

0N Q×K L

0N Q×K L


 , (6.53)

where DW F−1 and DX F are expressed in terms of the basis for the tangent space
of W , and they have size (K L + 2N Q) × (K L + 2N Q), and (K L + 2N Q) × K L ,
respectively. In a similar manner, taking the derivatives of both sides of (6.51) with
respect to Z gives

(
DW F−1

)
DZ F = DZ(X, Z, Z∗) =


 0K L×N Q

I N Q

0N Q×N Q


 , (6.54)

where the size of DW F−1 and DZ F are (K L + 2N Q) × (K L + 2N Q) and (K L +
2N Q) × N Q when expressed in terms of the basis of the tangent space ofW . Calculating
the derivatives with respect to Z∗ of both sides of (6.51) yields

(
DW F−1

)
DZ∗ F = DZ∗ (X, Z, Z∗) =


 0K L×N Q

0N Q×N Q

I N Q


 , (6.55)

where DW F−1 has size (K L + 2N Q) × (K L + 2N Q) and DZ∗ F has size (K L +
2N Q) × N Q when expressed in terms of the basis of the tangent space of W .

The three results in (6.53), (6.54), and (6.55) can be put together into a single equation
as follows: (

DW F−1
)

[DX F,DZ F,DZ∗ F] = I K L+2N Q, (6.56)

where the size of [DX F,DZ F,DZ∗ F] is (K L + 2N Q) × (K L + 2N Q) when
expressed in terms of the basis of the tangent space of W .

By calculating the derivatives of both sides of (6.52) with respect to W and expressing
the derivatives with respect to the basis of the tangent space of W , it is found that

[DX F,DZ F,DZ∗ F]DW F−1 = DW W = I K L+2N Q, (6.57)

where the size of both [DX F,DZ F,DZ∗ F] and DW F−1 are (K L + 2N Q) × (K L +
2N Q), when the basis for the tangent space of W is used.

In various examples, it will be shown how the basis of W can be chosen such that
DW F−1 = I K L+2N Q for linear manifolds. For linear manifolds, one global choice of
basis vectors for the tangent space is sufficient. In principle, we have the freedom to
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choose the K L + 2N Q basis vectors as we like, and the derivative DW F−1 depends on
this choice.

Here is a list of some of the most important requirements that the parameterization
function F : R

K×L × C
N×Q × C

N×Q → W must satisfy

� For any matrix W ∈ W , there should exist variables (X, Z, Z∗) such that
F(X, Z, Z∗) = W. This means that the parameterization function can produce all
matrices within the manifold W of interest.

� The parameterization function should produce matrices only within the manifold.
This means that for all allowable values of the independent parameters (X, Z, Z∗), the
value of F(X, Z, Z∗) should always give a matrix within the manifold W of interest.
It should never give any matrix outside this manifold.

� The number of input variables of the parameterization function should be kept to a
minimum. This means that no redundant variables should be introduced in the domain
of the parameterization function. The parameterization function should be bijective;
hence, the dimension of the domain of the parameterization function and the dimension
of the manifold of interest will be identical.

� Even though the input variables Z and Z∗ of the parameterization function should
be treated as independent variables when finding the derivatives of this function, they
are a mathematical function of each other. Formal derivatives (Wirtinger derivatives)
should be used.

� When finding a candidate for the parameterization function, this function should
satisfy the two relations in (6.56) and (6.57).

Some candidate functions for parameterization functions (diffeomorphisms) are pre-
sented next; some can be parameterization functions and others cannot.

Example 6.9 Let f : C → C be given by

f (z) = z. (6.58)

It is observed that this function does not have z∗ as an input variable, and f is the identity
function. The function f satisfies equivalent versions when only z is the input variable
of (6.56) and (6.57). Hence, the function f is a diffeomorphism because the function is
one-to-one and smooth, and its inverse function is also smooth.

Example 6.10 Let f : C → C be given by

f (z∗) = z∗. (6.59)

This function is equivalent to the function in Example 6.9; hence, the function f is a
diffeomorphism because the function is one-to-one and smooth, and its inverse function
is also smooth.
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Example 6.11 Let f : C → C be the function given by

f (z) = z∗. (6.60)

For this function, Dz f = 0; hence, it is impossible that equivalent versions of (6.56)
and (6.57), for one input variable z, are satisfied. Therefore, the function f is not a
parameterization function.

Example 6.12 Let f : C → C be the function given by

f (z∗) = z. (6.61)

This function is equivalent to the function in Example 6.11. Thus, the function f is not
a parameterization function.

Example 6.13 Let f : C × C → C be given by

f (z, z∗) = z. (6.62)

In this example. Dw f −1 =
[

1
0

]
, and [Dz f,Dz∗ f ] = [1, 0]. Hence, (6.57) is satisfied;

however, (6.56) is not satisfied. The function f is not a diffeomorphism.

Example 6.14 Let f : C → C × C be given by

f (z) =
[

z
z∗

]
. (6.63)

In this example, it is found that Dz f =
[

1
0

]
and Dw f −1 = [1, 0]. It is then observed

that (6.56) is satisfied, but (6.57) is not satisfied. Hence, the function f is not a diffeo-
morphism.

Example 6.15 Let W =
{

w ∈ C
2×1

∣∣∣∣∣ w =
[

z
z∗

]
, z ∈ C

}
. Let f : C × C → W be

given by

f (z, z∗) =
[

z
z∗

]
= w . (6.64)
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In this case, D[z,z∗] f = I2, and Dw f −1 = I2 and both (6.56) and (6.57) are satisfied.
The function f satisfies all requirements for a diffeomorphism; hence, the function f is
a parameterization function.

6.4.2 Finding the Derivative of H(X, Z, Z∗)

In this subsection, we find the derivative of the function H(X, Z, Z∗) by using the
chain rule stated in Theorem 6.1. As seen from Figure 6.3, the composed function
H : R

K×L × C
N×Q × C

N×Q → C
R×S denoted by H(X, Z, Z∗) is given by

H(X, Z, Z∗) � G(W̃, W̃
∗
)|W̃=W=F(X,Z,Z∗)

= G(F(X, Z, Z∗), F∗(X, Z, Z∗)) = G(W, W∗). (6.65)

One of the requirements for using the chain rule in Theorem 6.1 is that the matrix
functions F and G must be differentiable; this requires that these functions depend
on matrix variables that do not contain any patterns. The unpatterned matrix input
variables of the function G are W̃ and W̃

∗
, and they should be treated as independent

when finding complex-valued matrix derivatives. Let the matrix function G : C
M×P ×

C
M×P → C

R×S be defined such that the domain of this function is the set of unpatterned
matrices (W̃, W̃

∗
) ∈ C

M×P × C
M×P . We want to calculate the generalized derivative of

G(W, W∗) = G(W̃, W̃
∗
)
∣∣∣

W̃=W
with respect to W ∈ W and W∗ ∈ W∗. The chain rule

can now be used for finding the derivative of the matrix function H(X, Z, Z∗) because
in both function definitions,

G : C
M×P × C

M×P → C
R×S, (6.66)

and

F : R
K×L × C

N×Q × C
N×Q → W ⊆ C

M×P , (6.67)

the input arguments of G and F can be independently chosen because all input vari-
ables of G(W̃, W̃

∗
) and F(X, Z, Z∗) should be treated as independent when finding

complex-valued matrix derivatives. In addition, both of these functions are assumed to
be differentiable with respect to its matrix arguments. By using the chain rule, we find
the derivative of H(X, Z, Z∗), in (6.65), with respect to X, Z, and Z∗, respectively, as

DX H(X, Z, Z∗) =
(
DW̃ G(W̃, W̃

∗
)|W̃=F(X,Z,Z∗)

)
DX F(X, Z, Z∗)

+
(
DW̃

∗ G(W̃, W̃
∗
)|W̃=F(X,Z,Z∗)

)
DX F∗(X, Z, Z∗), (6.68)

DZ H(X, Z, Z∗) =
(
DW̃ G(W̃, W̃

∗
)|W̃=F(X,Z,Z∗)

)
DZ F(X, Z, Z∗)

+
(
DW̃

∗ G(W̃, W̃
∗
)|W̃=F(X,Z,Z∗)

)
DZ F∗(X, Z, Z∗), (6.69)
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and

DZ∗ H(X, Z, Z∗) =
(
DW̃ G(W̃, W̃

∗
)|W̃=F(X,Z,Z∗)

)
DZ∗ F(X, Z, Z∗)

+
(
DW̃

∗ G(W̃, W̃
∗
)|W̃=F(X,Z,Z∗)

)
DZ∗ F∗(X, Z, Z∗). (6.70)

From (6.68), (6.69), and (6.70), it is seen that the derivatives of the function H can be
found from several different derivatives of ordinary unpatterned derivatives; then the
theory of unpatterned derivatives from Section 6.2 can be applied. Hence, a method has
been found for calculating the derivative of the function H(X, Z, Z∗) with respect to
the three matrices X, Z, and Z∗.

6.4.3 Finding the Derivative of G(W, W∗)

We want to find a way of finding the derivative of the complex-valued matrix function G :
W × W∗ → C

R×S with respect to W ∈ W . This function is written G(W, W∗), where
it is assumed that it depends on the matrix W ∈ W and its complex conjugate W∗ ∈ W∗.
Generalized derivatives of the function G with respect to elements within the manifoldW
represent a mapping between the tangent space of W onto the tangent space of the
function G (Guillemin & Pollack 1974). The derivatives DW G and DW∗ G exist exactly
when there exists a diffeomorphism, as stated in Definition 6.5. From (6.49), it follows
that W∗ = F∗(X, Z, Z∗). Because the diagram in Figure 6.3 is commutative, it follows
that DW G and DW∗ G can be found as

DW G = [DX H,DZ H,DZ∗ H]DW F−1, (6.71)

DW∗ G = [DX H,DZ H,DZ∗ H]DW∗ F−1, (6.72)

whereDX H,DZ H, andDZ∗ H can be found from (6.68), (6.69), and (6.70), respectively,
while DW F−1 and DW∗ F−1 can be identified after a basis is chosen for the tangent space
of W , and the sizes of both these derivatives are (K L + 2N Q) × (K L + 2N Q). The
dimension of the tangent space of W is (K L + 2N Q), such that the sizes of both DW G
and DW∗ G are RS × (K L + 2N Q).

6.4.4 Specialization to Unpatterned Derivatives

If the matrix W is unpatterned and complex-valued, then we can choose (K , L) = (0, 0)
(the real parameter matrix X is not needed), (N , Q) = (M, P), and W = F(Z, Z∗) = Z,
and this leads to DZ∗ F(Z, Z∗) = 0N Q×N Q = DZ F∗(Z, Z∗) and DZ F(Z, Z∗) = I N Q =
DZ∗ F∗(Z, Z∗). Therefore, the derived method in (6.69) and (6.70) reduces to the method
of finding unpatterned complex-valued matrix derivatives as presented in Chapters 3
and 4.
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6.4.5 Specialization to Real-Valued Derivatives

If we try to apply the presented method to the real-valued derivatives, no functions
depend on Z and Z∗; hence, N = Q = 0. The method can then be modified by using
the function F : R

K×L → R
M×P to produce all matrices W = F(X) ∈ W ⊆ R

M×P in
the real-valued manifold W , where the unpatterned real-valued parameter matrix is
denoted X ∈ R

K×L . The function of interest is G : R
M×P → R

R×S and is denoted by
G(W). The unpatterned real-valued variables in R

M×P are collected in W̃; the composite
function is defined as H : R

K×L → R
R×S and is given by H(X) = G(W) = G(F(X)).

By using the chain rule, the derivative of H with respect to X is given by

DX H(X) = (DW̃ G(W̃)|W̃=F(X)

)
DX F(X). (6.73)

This result is consistent with the real-valued case given in Tracy and Jinadasa (1988);
hence, the presented method is a natural extension of Tracy and Jinadasa (1988) to the
complex-valued case. In Tracy and Jinadasa (1988), investigators did not use manifolds
to find generalized derivatives, but they used the chain rule to find the derivative with
respect to the input variables to the function, which produces matrices belonging to a
specific set. The presented theory in this chapter can also be used to find real-valued
generalized matrix derivatives. One important condition is that the parameterization
function F : R

K×L → W should be a diffeomorphism.

6.4.6 Specialization to Scalar Function of Square Complex-Valued Matrices

One situation that appears frequently in signal processing and communication problems
involves functions of the type g : C

N×N × C
N×N → R denoted by g(W̃, W̃

∗
), which

should be optimized when W ∈ W ⊆ C
N×N , whereW is a manifold. One way of solving

these types of problems is by using generalized complex-valued matrix derivatives.
Several ways in which this can be done are shown for various manifolds in Exercise 6.15.
A natural definition of partial derivatives with respect to matrices that belong to a
manifold W ⊆ C

N×N follows.

Definition 6.7 Assume that W is a manifold, and that g : C
N×N × C

N×N → C.
Let W ∈ W ⊆ C

N×N and W∗ ∈ W∗ ⊆ C
N×N . The derivatives of the scalar function g

with respect to W and W∗ are defined as

∂g

∂W
=

N−1∑
k=0

N−1∑
l=0

∂g

∂ (W)k,l
Ek,l, (6.74)

∂g

∂W∗ =
N−1∑
k=0

N−1∑
l=0

∂g

∂ (W∗)k,l
Ek,l, (6.75)

where Ek,l is an N × N matrix with zeros everywhere and +1 at position number
(k, l) (see Definition 2.16). If the function g is independent of the component (W)k,l

of the matrix W ∈ W , then the corresponding component of ∂g
∂W is equal to 0, that is,
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(
∂g
∂W

)
k,l

= 0. Hence, if the function g is independent of all components of the matrix W,

then ∂g
∂W = 0N×N .

This definition leads to results for complex-valued derivatives with structure that are
in accordance with results in Palomar and Verdú (2006) and Vaidyanathan et al. (2010,
Chapter 20). By using the operator vec(·) on both sides of (6.74), it is seen that

vec

(
∂g

∂W

)
=
∑
k=l

vec (Ek,l )
∂g

∂ (W)k,l
+
∑
k<l

vec (Ek,l )
∂g

∂ (W)k,l

+
∑
k>l

vec (Ek,l )
∂g

∂ (W)k,l
= Ld

∂g

∂ vecd (W)
+ Ll

∂g

∂ vecl (W)
+ Lu

∂g

∂ vecu (W)
, (6.76)

where (2.157), (2.163), and (2.170) were used. Assume that the parameterization
function F : R

N×1 × C
(N−1)N

2 ×1 × C
(N−1)N

2 ×1 → W of the manifold W is denoted by
W = F(x, z, z∗). Let the composed function h : R

N×1 × C
(N−1)N

2 ×1 × C
(N−1)N

2 ×1 → C

be defined as

h(x, z, z∗) = g(W̃, W̃
∗
)
∣∣∣

W̃=W=F(x,z,z∗)
= g(W, W∗). (6.77)

This relation shows that the functions h(x, z, z∗) and g(W, W∗) are identical. If this fact
is used in (6.76), it is found that

vec

(
∂g

∂W

)
= Ld

∂h

∂ vecd (W)
+ Ll

∂h

∂ vecl (W)
+ Lu

∂h

∂ vecu (W)
. (6.78)

This expression will be used later in this chapter to find partial derivatives of the form ∂g
∂W

when the matrix W belongs to complex-valued diagonal, symmetric, skew-symmetric,
Hermitian, or skew-Hermitian sets of matrices.

If some of the elements within W have dependent differentials when finding complex-
valued derivatives, then a nonstandard basis for the space W is often necessary. The
manifold W is a proper subset of C

N×N in these cases, and the number of the tangent
space of the manifold W is strictly less than the number of basis vectors that span C

N×N .
The number of basis vectors that spans C

N×N is N 2. In cases with dependent differentials
within W

DW g �= vecT

(
∂g

∂W

)
, (6.79)

because the sizes of each side are different. The size of DW g is a row vector of length
equal to the number of elements in W ∈ W that have independent differentials. The

size of ∂g
∂W is N × N , such that the size of vecT

(
∂g
∂W

)
is 1 × N 2. For example, if W

belongs to the set of symmetric N × N matrices, then the size of DW g is 1 × N (N+1)
2 ,

and vecT
(

∂g
∂W

)
has size 1 × N 2. This will be shown in Example 6.22.

If all the elements in W have independent differentials, then,

DW g = vecT

(
∂g

∂W

)
. (6.80)
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For example, when W belongs to the set of Hermitian matrices, all its components have
independent differentials; this will be shown in Example 6.25, and (6.80) will hold.

Now let g : C
M×P × C

M×P → R, that is, g is a real-valued function denoted by
g(W̃, W̃

∗
), where W̃ is unpatterned. Assume that W can be produced by the param-

eterization function F : R
K×L × C

N×Q × C
N×Q → W , and let h(X, Z, Z∗) be given

by

h(X, Z, Z∗) � g(W̃, W̃
∗
)|W̃=W=F(X,Z,Z∗)

= g(F(X, Z, Z∗), F∗(X, Z, Z∗)) = g(W, W∗), (6.81)

To solve

min
W∈W

g, (6.82)

the following two (among others) solution procedures can be used:

(1) Solve the two equations:

DXh(X, Z, Z∗) = 0K×L , (6.83)

DZ∗ h(X, Z, Z∗) = 0N×Q . (6.84)

The total number of equations here is K L + N Q. Because h ∈ R, (6.84) is equiva-
lent to

DZh(X, Z, Z∗) = 0N×Q . (6.85)

There exist examples for which it might be easier to solve (6.83), (6.84), and (6.85)
jointly, rather than just (6.83) and (6.84).

(2) Solve the equation:

∂g

∂W
= 0M×P . (6.86)

The number of equations here is M P .
If all elements of W ∈ W have independent differentials, then DW F−1 is invertible,
and solving

DW g = vecT

(
∂g

∂W

)
= 01×N 2 , (6.87)

might be easier than solving (6.83), (6.84), and (6.85). When DW F−1 is invertible,
it follows from (6.71) that solving (6.87) is equivalent to finding the solutions of
(6.83), (6.84), and (6.85) jointly.

The procedures (1) and (2) above are equivalent, and the way to choose depends on
the problem under consideration.
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6.5 Examples of Generalized Complex Matrix Derivatives

When working with problems of finding the generalized complex matrix derivatives, the
main difficulty is to identify the parameterization function F that produces all matrices in
the manifold W , which has a domain of the same dimension as the dimension of W . The
parameterization function F should satisfy all requirements stated in Section 6.3. In this
section, it will be shown how F can be chosen for several examples with applications in
signal processing and communications. Examples include diagonal, symmetric, skew-
symmetric, Hermitian, skew-Hermitian, unitary, and positive semidefinite matrices.

This section contains several subsections in which related examples are grouped
together. The rest of this section is organized as follows: Subsection 6.5.1 contains some
examples that show how generalized matrix derivatives can be found for scalar functions
that depend on scalar variables. Subsection 6.5.2 contains an example of how to find
the generalized complex-valued derivative with respect to patterned vectors. Diagonal
matrices are studied in Subsection 6.5.3, and derivatives with respect to symmetric matri-
ces are found in Subsection 6.5.4. Several examples of generalized matrix derivatives
with respect to Hermitian matrices are shown in Subsection 6.5.5, including an example
in which the capacity of a MIMO system is studied. Generalized derivatives of matrices
that are skew-symmetric and skew-Hermitian are found in Subsections 6.5.6 and 6.5.7,
respectively. Optimization with respect to orthogonal and unitary matrices is discussed
in Subsections 6.5.8 and 6.5.9, while optimization with respect to positive semidefinite
matrices is considered in Subsection 6.5.10.

6.5.1 Generalized Derivative with Respect to Scalar Variables

Example 6.16 Let W = {w ∈ C | w∗ = w}. Hence, W consists of all real-valued points
within C. One parameterization function9 would be f : R → W given by

w = f (x) = x, (6.88)

that is, the identity map; hence, f −1 : W → R is also the identity map, and Dx f =
Dw f −1 = 1. Consider the function g : C × C → R, given by g(w̃, w̃∗) = |w̃|2. The
unconstrained derivatives of this function are given by Dw̃g = w̃∗ and Dw̃∗ g = w̃;
these agree with the corresponding results found in Example 2.2. Define the composed
function h : R → R by

h(x) = g(w̃, w̃∗)w̃=w= f (x) = | f (x)|2 = x2. (6.89)

9 Another function that could be considered is t : C × C → W , given by t(z, z∗) = 1
2 (z + z∗). This function

is not a parameterization function because dimR{W} = 1; the dimension of the domain of this function is
dimR{C × C} = 2, where the fact that the first and second arguments of t(z, z∗) cannot be chosen freely
is used. The first and second input variables of t(z, z∗) are the complex conjugate of each other. Any
diffeomorphism has the same dimension as its domain and image set.
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The derivative of h with respect to x is found by the chain rule,

Dx h = (Dw̃g)w̃=w= f (x)Dx f + (Dw̃∗ g)w̃=w= f (x)Dx f ∗ = x · 1 + x · 1 = 2x . (6.90)

Using the method of generalized derivatives, the derivative of g with respect to w is
given by

Dwg = (Dx h)Dx f −1 = 2x · 1 = 2x, (6.91)

which is the expected result.

Example 6.17 Let g : C × C → R be given by

g(w̃, w̃∗) = w̃w̃∗ = |w̃|2. (6.92)

This is a very popular function in signal processing and communications, and it is equal
to the function shown in Figure 3.1, which is the squared Euclidean distance between
the origin and w̃. We want to find the derivative of this function when w lies on a circle
with center at the origin and radius r ∈ R

+, that is, w lies in the set

W �
{
w ∈ C | w = reθ , θ ∈ (−π, π)

}
. (6.93)

This problem can be seen as a generalized derivative because the variables w and w∗

are assumed to be constrained to W and W∗, respectively. It will be shown below how a
parameterization function can be found for producing the set W ⊂ C. From inspection
of (6.92), we know that this function should not vary along W; hence, we expect that the
generalized derivative is zero. See also Figure 3.1, which shows the contour plot of the
function g(w̃, w̃∗). Now, we use the presented method to find the generalized derivative
of g with respect to w ∈ W .

First, we consider the function g(w̃, w̃∗), where w̃ ∈ C is unconstrained. To find the
derivatives of g with respect to w̃ and w̃∗, the differential of g is found as

dg = w̃∗dw̃ + w̃dw̃∗. (6.94)

This implies that Dw̃g = w̃∗ and Dw̃∗ g = w̃.
Next, we need to find a function that depends on independent variables and parame-

terizes W in (6.93). This can be done by using one real-valued parameter because W
can be mapped over to a straight line in the real domain. Let us name the independent
variable x ∈ (−π, π) (in an open interval10) by using the following nonlinear function
f : (−π, π) → W ⊂ C:

w = f (x) = re x , (6.95)

10 A parameterization function must be a diffeomorphism; hence, in particular, it is a homeomor-
phism (Munkres 2000, p. 105). This means that the parameterization function should be continuous.
The inverse parameterization function’s map of the circle should be open; hence, the domain of the parame-
terization function should be an open interval. When deciding the domain of the parameterization function,
it is also important that the function is one-to-one and onto.
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then it follows that

w∗ = f ∗(x) = re− x . (6.96)

In this example, the independent parameter that is defining the function is real valued,
so K = L = 1, and N = Q = 0; hence, Z and Z∗ are not present (see Definition 6.5).
The derivatives of f and f ∗ with respect to x can be found as

Dx f = re x , (6.97)

Dx f ∗ = −re− x . (6.98)

The function h(x), in the presented method for finding generalized derivatives, is given
by h(x) = g(w,w∗)|w= f (x) = g( f (x), f ∗(x)) = r2. Now, we can use the chain rule to
find the derivative of h(x):

Dx h(x) = (Dw̃g(w̃, w̃∗)|w̃= f (x)

)
Dx f (x) + (Dw̃∗ g(w̃, w̃∗)|w̃= f (x)

)
Dx f ∗(x)

= e− xre x + e x (−re− x ) = 0, (6.99)

as expected because h(x) = r2 is independent of x . The derivative of g with respect to
w ∈ W can be found by the method in (6.71), and it is seen that

Dwg = (Dx h)Dw f −1 = 0 · Dw f −1 = 0, (6.100)

which is the expected result because the function g(w,w∗) stays constant when moving
along a circle with center at the origin and radius r .

Remark It is possible to imagine the function t : C → W ⊂ C given by t(z) = re∠z

as an alternative function for producing the manifold W in Example 6.17. The image set
of the function t is W; however, the problem with this function is that its domain has one
dimension in the complex domain and W has only one dimension in the real domain;
this is impossible for a diffeomorphism. It is possible to parameterize W with a function
that depends on only one real variable, and this can, for example, be done by means of
the function given in (6.95). This shows the importance of parameterizing the manifold
with a function that is a diffeomorphism.

Example 6.18 Let w̃ ∈ C be an unconstrained complex variable. Three examples of
scalar manifolds will now be presented.

(1) The set defined as

W = {w ∈ C | w = Re{w}}, (6.101)

is a manifold because the following function f : R → W ⊂ C, given by

w = f (x) = x, (6.102)

is a diffeomorphism that corresponds to a parameterization function for W .
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(2) Let the set V be defined as

V = {w ∈ C | w =  Im{w}}. (6.103)

This is a manifold because the function g : R → V ⊂ C, defined as

g(x) =  x, (6.104)

is a diffeomorphism.
(3) The set U defined as follows:

U = {w ∈ C | Re{w} = w, Re{w} > 0}, (6.105)

is also a manifold. The reason for this is that it can be parameterized by the function
h : R

+ → U ⊂ C, given by

w = h(x) = x, (6.106)

and h is a diffeomorphism.

6.5.2 Generalized Derivative with Respect to Vector Variables

Example 6.19 Let g : C
2×1 × C

2×1 → R be given by

g(w̃, w̃∗) = ‖Aw̃ − b‖2 = w̃ H AH Aw̃ − w̃ H AH b − bH Aw̃ + bH b, (6.107)

where A ∈ C
N×2 and b ∈ C

N×1 contain elements that are independent of w̃ and w̃∗

and rank(A) = 2. The vector w̃ is unpatterned. First, the unconstrained optimization
problem of minimizing g over the set w̃ ∈ C

2×1 is solved. To find necessary conditions for
optimality, the equations Dw̃ g = 01×2 orDw̃∗ g = 01×2 can be used. The derivatives Dw̃ g
and Dw̃∗ g can be found from

dg = (dw̃ H
)

AH Aw̃ + w̃ H AH Adw̃ − (dw̃ H
)

AH b − bH Adw̃

= (w̃ H AH A − bH A
)

dw̃ + (w̃ T AT A∗ − bT A∗) dw̃∗. (6.108)

Hence, the two derivatives Dw̃ g and Dw̃∗ g are given by

Dw̃ g = w̃ H AH A − bH A, (6.109)

Dw̃∗ g = w̃ T AT A∗ − bT A∗, (6.110)

respectively. Necessary conditions for the unconstrained problem min
w̃∈C2×1

g(w̃, w̃∗) can be

found by, for example, Dw̃∗ g = 01×2, and this leads to

w̃ = (AH A
)−1

AH b = A+b, (6.111)

where rank (A) = rank
(

AH A
) = 2 and (2.80) were used.
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Now, a constrained set is introduced such that the function g should be minimized
when its argument lies in W . Let W be given by

W =
{

w ∈ C
2×1

∣∣∣∣∣ w =
[

1
1

]
x + 

[
1

−1

]
y, x, y ∈ R

}

=
{

w ∈ C
2×1

∣∣∣∣∣ w =
[

z
z∗

]
, z ∈ C

}
. (6.112)

Let w ∈ W , meaning that when it is enforced, the unconstrained vector w̃ should lie
inside the set W , then it is named w . The dimension of W is given by dimR{W} = 2 or,
equivalently, dimC{W} = 1.

In the rest of this example, it will be shown how to solve the constrained complex-
valued optimization problem min

w∈W
g(w, w∗) in two alternative ways.

(a) Let the function f : C × C → W be defined as

f (z, z∗) =
[

z
z∗

]
= w . (6.113)

As in all previous chapters, when it is written that f : C × C → W , this means
that the first input argument z of f takes values from C, and simultaneously the
second input argument z∗ takes values in C; however, the two input arguments are
complex conjugates of each other. Hence, they cannot be varied independently of
each other. When calculating formal partial derivatives with respect to these two
input variables, they are treated independently. The total complex dimension of the
space of the input variables z and z∗ is 1, and this is the same dimension as the
manifold W in (6.112). It is seen that the function f produces all elements in W;
hence, it is onto W . It is also seen that f is one-to-one. Hence, f is invertible. The
derivatives of f with respect to z and z∗ are given by

Dz f =
[

1
0

]
, (6.114)

Dz∗ f =
[

0
1

]
, (6.115)

respectively. From the above two derivatives, it follows from Lemma 3.3 that

Dz f ∗ =
[

0
1

]
, (6.116)

Dz∗ f ∗ =
[

1
0

]
. (6.117)

Define the composed function h : C × C → R by

h(z, z∗) = g(w̃, w̃∗)
∣∣
w̃=w= f (z,z∗)

= g(w, w∗) = g( f (z, z∗), f ∗(z, z∗)). (6.118)
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The derivatives of h with respect to z and z∗ can be found by the chain rule as
follows:

Dzh = Dw̃ g|w̃=w Dz f + Dw̃∗ g|w̃=w Dz f ∗

= [w H AH A − bH A
] [ 1

0

]
+ [w T AT A∗ − bT A∗] [ 0

1

]
, (6.119)

and

Dz∗ h = Dw̃ g|w̃=w Dz∗ f + Dw̃∗ g|w̃=w Dz∗ f ∗

= [w H AH A − bH A
] [ 0

1

]
+ [w T AT A∗ − bT A∗] [ 1

0

]
. (6.120)

Note that (6.119) and (6.120) are the complex conjugates of each other, and this is
in agreement with Lemma 3.3. Necessary conditions for optimality can be found by
solving Dzh = 0 or, equivalently, Dz∗ h = 0 (see Theorem 3.2). In Exercise 6.1, we
observe that each of these equations has the same shape as (6.269), and it is shown
how such equations can be solved.

(b) Alternatively, the constrained optimization problem can be solved by considering
the generalized complex-valued matrix derivative Dw g, and this is done next. Let
the N × N reverse identity matrix (Bernstein 2005, p. 20) be denoted by J N , and
it has zeros everywhere except +1 on the main reverse diagonal such that, for

example, J2 =
[

0 1
1 0

]
. The function f : C × C → W is one-to-one, onto, and

differentiable. The inverse function f −1 : W → C × C, which is unique, is given
by

f −1(w) = f −1

([
z
z∗

])
=
[

z
z∗

]
= w = J2w∗, (6.121)

hence, f −1(w) = w and the derivative of f with respect to w is given by

Dw f −1 = I2. (6.122)

Because the elements of w∗ have independent differentials, we get

Dw∗ f −1 = Dw∗ (J2w∗) = J2. (6.123)

Now, the derivatives of g with respect to w and w∗ are determined. It follows
from (6.71) that

Dw g = [Dzh, Dz∗ h][
z
z∗

]
= f −1(w)

Dw f −1 = [Dzh, Dz∗ h][
z
z∗

]
= f −1(w)

=
[[

w H AH A − bH A
] [ 1

0

]
+ [w T AT A∗ − bT A∗] [ 0

1

]
,

[
w H AH A − bH A

] [ 0
1

]
+ [w T AT A∗ − bT A∗] [ 1

0

]]
. (6.124)
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When solving the equation Dw g = 01×2 using the above expression, the following
equation must be solved:[

w H AH A − bH A
]

I2 + [w T AT A∗ − bT A∗] J2 = 01×2. (6.125)

Using that w∗ = J2w , (6.125) is solved as

w = [AH A + J2 AT A∗ J2

]−1 [
AH b + J2 AT b∗] . (6.126)

In Exercise 6.2, it is shown that the solution in (6.126) satisfies J2w = w∗.
From (6.72), it follows that the derivative of g with respect to w∗ is given by

Dw∗ g = [Dzh, Dz∗ h][
z
z∗

]
= f −1(w)

Dw∗ f −1 = (Dw g) J2. (6.127)

From (6.127), it is seen that the solution of Dw∗ g = 01×2 is also given by (6.126).

In Exercise 6.3, another case of generalized derivatives is studied with respect to a
vector where a structure of the time reverse complex conjugate is considered. This is a
structure that is related to linear phase FIR filters. Let the coefficients of the causal FIR
filter H (z) =∑N−1

k=0 h(k)z−k form the vector h � [h(0), h(1), . . . , h(N − 1)]T . Then,
this filter has linear phase (Vaidyanathan 1993, p. 37, Eq. (2.4.8)) if and only if

h = d J N h∗, (6.128)

where |d| = 1. Linearly constrained adaptive filters are studied in de Campos, Werner,
and Apolinário Jr. (2004) and Diniz (2008, Section 2.5). In cases where the constraint
can be formulated as a manifold, the theory of this chapter can be used to optimize
such adaptive filters. The solution of linear equations can be written as the sum of the
particular solution and the homogeneous solution (Strang 1988, Chapter 2). This can
be used to parameterize all solutions of the set of linear equations, and it is useful, for
example, when working with linearly constrained adaptive filters.

6.5.3 Generalized Matrix Derivatives with Respect to Diagonal Matrices

Example 6.20 (Complex-Valued Diagonal Matrix) Let W be the set of diagonal N × N
complex-valued matrices, that is,

W = {W ∈ C
N×N | W � I N = W

}
, (6.129)

where � denotes the Hadamard product (see Definition 2.7). For W , the following
parameterization function F : C

N×1 → W ⊆ C
N×N can be used:

vec (W) = vec (F (z)) = Ld z, (6.130)

where z ∈ C
N×1 contains the diagonal elements of the matrices W ∈ W , and where the

N 2 × N matrix Ld is given in Definition 2.12. The function F is a diffeomorphism;
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hence, W is a manifold. From (6.130), it follows that d vec (F (z)) = Lddz, and from
this differential, the derivative of F with respect to z can be identified as

Dz F = Ld . (6.131)

Let g : C
N×N → C be given by

g(W̃) = Tr
{

AW̃
}

, (6.132)

where A ∈ C
N×N is an arbitrary complex-valued matrix, and where W̃ ∈ C

N×N contains
independent components. The differential of g can be written as dg = Tr

{
AdW̃

} =
vecT

(
AT
)

d vec
(
W̃
)
. Hence, the derivative of g with respect to W̃ is given by

DW̃ g = vecT
(

AT
)
, (6.133)

and the size of DW̃ g is 1 × N 2.
Define the composed function h : C

N×1 → C by

h(z) = g(W̃)
∣∣
W̃=W=F(z)

= g(W) = g(F (z)). (6.134)

The derivative of h with respect to z can be found by the chain rule

Dzh = (
DW̃ g

)∣∣
W̃=W

Dz F = vecT
(

AT
)

Ld = vecT
d (A) , (6.135)

where (2.140) was used.
Here, the dimension of the tangent space ofW is N . We need to choose N basis vectors

for this space. Let these be the N × N matrices denoted by Ei,i , where Ei,i contains
only 0s except +1 at the i-th main diagonal element, where i ∈ {0, 1, . . . , N − 1} (see
Definition 2.16). Any element W ∈ W can be expressed as

W = z0 E0,0 + z1 E1,1 + · · · + zN−1 EN−1,N−1 � [z]{Ei,i }, (6.136)

where [z]{Ei,i } contains the N coefficients zi in terms of the basis vectors Ei,i . If we look
at the function F : C

N×1 → W and express the output in terms of the basis Ei,i , this
function is the identity map, that is, F(z) = [z]{Ei,i }; here, it is important to be aware
that z inside F(z) is expressed in terms of the standard basis ei in C

N×1, but inside
[z]{Ei,i } the z is expressed in terms of the basis Ei,i . Definition 2.16 and (2.153) lead to
the following relation:[

vec (E0,0) , vec (E1,1) , . . . , vec (EN−1,N−1)
] = Ld . (6.137)

The inverse function F−1 : W → C
N×1 can be expressed as

F−1(W) = F−1([z]{Ei,i }) = z. (6.138)

Therefore, DW F−1 = D[z]{Ei,i } F−1 = I N . We can now use the theory of manifolds to
find DW g. The derivative of g with respect to W can be found by the method in (6.71):

DW g = (Dzh)DW F−1 = vecT
d (A) I N = vecT

d (A) . (6.139)

Note that the size of DW g is 1 × N , and it is expressed in terms of the basis chosen
for W . Hence, even though the size of both W and W̃ is N × N , the sizes of DW g and



6.5 Examples of Generalized Complex Matrix Derivatives 165

DW̃ g are different, and they are given by 1 × N and 1 × N 2, respectively. This illustrates
that the sizes of the generalized and unpatterned derivatives are different in general.

If vecd (W) = z and vecl (W) = vecu (W) = 0 (N−1)N
2 ×1 are used in (6.78), an expres-

sion for ∂g
∂W can be found as follows:

vec

(
∂g

∂W

)
= vec

(
∂h

∂W

)
= Ld

∂h

∂ vecd (W)
+ Ll

∂h

∂ vecl(W)
+ Lu

∂h

∂ vecu(W)

= Ld
∂h

∂z
= Ld (Dzh)T = Ld vecd (A) = vec (A � I N ) , (6.140)

where Definition 6.7 and Lemma 2.23 were utilized. Hence, it is observed that ∂g
∂W is

diagonal and given by

∂g

∂W
= A � I N . (6.141)

Example 6.21 Assume that diagonal matrices are considered such that W ∈ W , where
W is given in (6.129). Assume that the function g : C

N×N × C
N×N → C is given,

and that expressions for DW̃ g = vecT
(

∂g
∂W̃

)
and DW̃

∗ g = vecT
(

∂g
∂W̃

∗

)
are available.

The parameterization function for W is given in (6.130), and from this equation, it is
deduced that

Dz∗ F = 0N 2×N , (6.142)

Dz F∗ = 0N 2×N , (6.143)

Dz∗ F∗ = Ld . (6.144)

Define the composed function h : C
N×1 → C by

h(z) = g(W̃, W̃
∗
)
∣∣∣

W̃=W
= g (W, W∗) . (6.145)

The derivative of h with respect to z is found by the chain rule as

Dzh = DW̃ g
∣∣
W̃=W

Dz F + DW̃
∗ g
∣∣
W̃=W

Dz F∗ = vecT

(
∂g

∂W̃

)∣∣∣∣
W̃=W

Ld

= vecT
d

(
∂g

∂W̃

)∣∣∣∣
W̃=W

. (6.146)

When W ∈ W , it follows from (6.130) that the following three relations hold:

vecd (W) = z, (6.147)

vecl (W) = 0 (N−1)N
2 ×1, (6.148)

vecu (W) = 0 (N−1)N
2 ×1. (6.149)
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From Definition 6.7, it follows that because all off-diagonal elements of W are zero, the
derivative of g with respect to off-diagonal elements of W is zero. Hence, it follows that

∂g

∂ vecl (W)
= ∂h

∂ vecl (W)
= 0 (N−1)N

2 ×1, (6.150)

∂g

∂ vecu (W)
= ∂h

∂ vecu (W)
= 0 (N−1)N

2 ×1. (6.151)

Since vecd (W) = z contains components with independent differentials, it is found
from (6.78) that

vec

(
∂g

∂W

)
= Ld

∂h

∂ vecd (W)
+ Ll

∂h

∂ vecl (W)
+ Lu

∂h

∂ vecu (W)

= Ld (Dzh)T = Ld vecd

(
∂g

∂W̃

)∣∣∣∣
W̃=W

= vec

(
I N � ∂g

∂W̃

)∣∣∣∣
W̃=W

. (6.152)

From this, it follows that ∂g
∂W is diagonal and is given by

∂g

∂W
= I N � ∂g

∂W̃

∣∣∣∣
W̃=W

. (6.153)

It is observed that the result in (6.141) is in agreement with the result found in (6.153).

6.5.4 Generalized Matrix Derivative with Respect to Symmetric Matrices

Derivatives with respect to symmetric real-valued matrices are mentioned in Payaró and
Palomar (2009, Appendix B)11.

Example 6.22 (Symmetric Complex Matrices) Consider symmetric matrices such that
the set of matrices studied is

W = {W ∈ C
N×N | WT = W} ⊆ C

N×N . (6.154)

A parameterization function F : C
N×1 × C

(N−1)N
2 ×1 → W denoted by F (x, y) = W is

given by

vec (W) = vec (F (x, y)) = Ld x + (Ll + Lu) y, (6.155)

where x = vecd (W) ∈ C
N×1 contains the main diagonal elements of W, and y =

vecl(W) = vecu(W) ∈ C
(N−1)N

2 ×1 contains the elements strictly below and also strictly
above the main diagonal. From (6.155), it is seen that the derivatives of F with respect

11 It is suggested in Wiens (1985) (see also Payaró and Palomar 2009, Appendix B) to replace the vec(·)
operator with the v(·) operator for finding derivatives with respect to symmetric matrices.
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to x and y are, respectively,

Dx F = Ld , (6.156)

Dy F = Ll + Lu . (6.157)

Let us consider the same function g as in Example 6.20, such that g(W̃) is defined in
(6.132), and its derivative with respect to the unpatterned matrix W̃ is given by (6.133).
To apply the method presented in this chapter for finding generalized matrix derivatives
of functions, define the composed function h : C

N×1 × C
(N−1)N

2 ×1 → C as

h(x, y) = g
(
W̃
)∣∣

W̃=W
= g (W) = g (F(x, y)) . (6.158)

The derivatives of h with respect to x and y can now be found by the chain rule as

Dxh = (
DW̃ g

)∣∣
W̃=W

Dx F = vecT
(

AT
)

Ld = vecT
d (A) , (6.159)

Dyh = (
DW̃ g

)∣∣
W̃=W

Dy F = vecT
(

AT
)

(Ll + Lu) = vecT
l

(
A + AT

)
, (6.160)

respectively.
The dimension of the tangent space ofW is N (N+1)

2 . To use the theory of manifolds, we
need to find a basis for this space. Let Ei,i , defined in Definition 2.16, be a basis for the
diagonal elements, where i ∈ {0, 1, . . . , N − 1}. Furthermore, let G i be the symmetric
N × N matrix with zeros on the main diagonal and given by the following relations:

vecl(G i ) = vecu(G i ) = (Ll):,i , (6.161)

where i ∈ {0, 1, . . . ,
(N−1)N

2 − 1}. This means that the matrix G i is symmetric and con-
tains two components that are +1 in accordance with (6.161), and all other components
are zeros. As two examples, G i for i ∈ {0, 1} is given by

G0 =




0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

... · · · ...
0 0 0 · · · 0


 , G1 =




0 0 1 · · · 0
0 0 0 · · · 0
1 0 0 · · · 0
...

... · · · ...
0 0 0 · · · 0


 . (6.162)

Define x = [x0, x1, . . . , xN−1]T and y =
[

y0, y1, . . . , y (N−1)N
2 −1

]T
, then any W ∈ W can

be expressed as

W = x0 E0,0 + x1 E1,1 + · · · + xN−1 EN−1,N−1 + y0G0 + y1G1 + · · ·
+ y (N−1)N

2 −1G (N−1)N
2 −1 �

[
[x]{Ei,i }, [y]{Gi }

]
, (6.163)

where the notation
[
[x]{Ei,i }, [y]{Gi }

]
means that the basis matrices defined above in

{Ei,i }N−1
i=0 and {G i }

(N−1)N
2 −1

i=0 are used. Notice that (6.137) and the following relation are
valid: [

vec (G0) , vec (G1) , . . . , vec
(

G (N−1)N
2 −1

)]
= Ll + Lu . (6.164)

The result in (6.164) follows from (2.159) and (2.166).
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When studying the parameterization function F in terms of the basis for the tangent
space of W , we have W = F(x, y) = [[x]{Ei,i }, [y]{Gi }

]
; hence, this is the identity map.

Its inverse is also the identity map:

F−1(W) = F−1
([

[x]{Ei,i }, [y]{Gi }
]) = (x, y). (6.165)

The derivative of F−1(W) with respect to W is given by

DW F−1(W) = D[
[x]{Ei,i },[y]{Gi }

]F−1
([

[x]{Ei,i }, [y]{Gi }
]) = I N (N+1)

2
. (6.166)

Now, we are ready to find DW g by the method presented in (6.71):

DW g = [Dxh,Dyh
]
DW F−1 = [vecT

d (A) , vecT
l

(
A + AT

)]
[Ld ,Ll+Lu ]

. (6.167)

Here, DW g is expressed in terms of the basis chosen for W , which is indicated by the
subscript [Ld , Ll + Lu]. The size of DW g expressed in terms of the basis [Ld , Ll + Lu]
is 1 × N (N+1)

2 , and this is different from the size of DW̃ g, which is 1 × N 2 (see (6.133)).
Hence, this shows that, in general, DW g �= DW̃ g.

If vecd (W) = x and vecl (W) = vecu (W) = y are used in (6.78), it is found that

vec

(
∂g

∂W

)
= Ld

∂h

∂ vecd (W)
+ Ll

∂h

∂ vecl (W)
+ Lu

∂h

∂ vecu (W)

= Ld (Dxh)T + Ll

(
Dyh

)T + Lu

(
Dyh

)T

= Ld vecd (A) + (Ll + Lu) (vecl (A) + vecu (A))

= Ld vecd (A) + Ll vecl (A) + Lu vecu (A) + Ll vecu (A) + Lu vecl (A)

= vec (A) + Ll vecl

(
AT
)+ Lu vecu

(
AT
)+ Ld vecd

(
AT
)− Ld vecd

(
AT
)

= vec (A) + vec
(

AT
)− vec (A � I N ) = vec

(
A + AT − A � I N

)
, (6.168)

where Definition 2.12 and Lemmas 2.20 and 2.23 were utilized. Hence, ∂g
∂W is symmetric

and given by

∂g

∂W
= A + AT − A � I N . (6.169)

In the next example, an alternative way of defining a parameterization function for
symmetric complex-valued matrices will be given by means of the duplication matrix
(see Definition 2.14).

Example 6.23 (Symmetric Complex Matrix by the Duplication Matrix) Let W ∈ C
N×N

be symmetric such that W ∈ W , where W is defined in (6.154). Then, W can be
parameterized by the parameterization function F : C

N (N+1)
2 ×1 → W ⊆ C

N×N , given by

vec (W) = vec (F(z)) = DN z, (6.170)

where DN is the duplication matrix (see Definition 2.14) of size N 2 × N (N+1)
2 , and

z ∈ C
N (N+1)

2 ×1 contains all the independent complex variables necessary for producing
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all matrices W in the manifoldW . Some connections between the duplication matrix DN

and the three matrices Ld , Ll , and Lu are given in Lemma 2.32. Using the differential
operator on (6.170) results in d vec (F) = DN dz, and this leads to Dz F = DN .

To find the inverse parameterization function, a basis is needed for the set of matrices
within the manifold W . Let this basis be denoted by Hi ∈ Z

N×N
2 , such that

vec (Hi ) = (DN ):,i ∈ Z
N 2×1
2 , (6.171)

where i ∈
{

0, 1, . . . ,
N (N+1)

2 − 1
}

. A consequence of this is that

DN =
[
vec (H0) , vec (H1) , . . . , vec

(
H N (N+1)

2 −1

)]
. (6.172)

If W ∈ W , then W can be expressed as

vec (W) = vec (F(z)) = DN z =
N (N+1)

2 −1∑
i=0

(DN ):,i zi =
N (N+1)

2 −1∑
i=0

vec (Hi ) zi . (6.173)

This is equivalent to the following expression:

W = F(z) =
N (N+1)

2 −1∑
i=0

Hi zi � [z]{Hi } , (6.174)

where the notation [z]{Hi } means that the basis {Hi }
N (N+1)

2 −1
i=0 is used to express an arbitrary

element W ∈ W . This shows that the parameterization function F(z) = [z]{Hi } is the
identity function such that its inverse is also given by the identity function, that is,
F−1([z]{Hi }) = z. Hence, the derivative of the inverse of the parameterization function
is given by DW F−1 = D[z]{Hi } F−1 = I N (N+1)

2
.

Consider the function g defined in (6.132), and define the composed function h :
C

N (N+1)
2 ×1 → C by

h(z) = g(W̃)|W̃=W = g(W) = g(F(z)). (6.175)

The derivative of h with respect to z can be found by the chain rule as

Dzh = DW̃ g|W̃=WDz F = vecT
(

AT
)

DN . (6.176)

By using the method in (6.71), it is possible to find the generalized derivative of g with
respect to W ∈ W as follows:

DW g = (Dzh)DW F−1 = vecT
(

AT
)

DN , (6.177)

when the basis {Hi }
N (N+1)

2 −1
i=0 is used to express the elements in the manifold W .
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To show how (6.177) is related to the result found in (6.167), the result presented
in (2.175) is used to reformulate (6.177) in the following way:

vecT
(

AT
)

DN = vecT
(

AT
)

Ld V T
d + vecT

(
AT
)

(Ll + Lu) V T
l

= vecT
d

(
AT
)

V T
d + vecT

l

(
AT
)

V T
l + vecT

u

(
AT
)

V T
l

= vecT
d

(
AT
)

V T
d + vecT

l

(
AT
)

V T
l + vecT

l (A) V T
l

= vecT
d

(
AT
)

V T
d + vecT

l

(
A + AT

)
V T

l

= [vecT
d

(
AT
)
, vecT

l

(
A + AT

)] [ V T
d

V T
l

]
. (6.178)

From (2.182), it follows that

[Ld , Ll + Lu]

[
V T

d

V T
l

]
= DN . (6.179)

From (6.178) and (6.179), it is seen that (6.177) is equivalent to the result found in (6.167)
because we have found an invertible matrix V ∈ C

N (N+1)
2 × N (N+1)

2 , which transforms one
basis to another, that is, DN V = [Ld , Ll + Lu], where V = [Vd , V l] is given in Defi-
nition 2.15.

Because the matrix W is symmetric, the matrix ∂g
∂W will also be symmetric. Let us use

the matrices T i, j defined in Exercise 2.13. Using the vec(·) operator on (6.74) leads to

vec

(
∂g

∂W

)
=

N−1∑
i=0

N−1∑
j=0

vec
(

Ei, j

) ∂h

∂ (W)i, j
=
∑
i≥ j

vec
(
T i, j

) ∂h

∂ (W)i, j

= [vec (T0,0) , vec (T1,0) , · · · , vec (T N−1,0) , vec (T1,1) , · · · , vec (T N−1,N−1)
]

×




∂h
∂(W)0,0

∂h
∂(W)1,0

...
∂h

∂(W)N−1,0
∂h

∂(W)1,1

...
∂h

∂(W)N−1,N−1




= DN
∂h

∂v (W)
, (6.180)

where (6.175) has been used in the first equality by replacing g with h, and (2.212) was
used in the last equality. If v(W) = z is inserted into (6.180), it is found from (2.139),
(2.150), and (2.214) that

vec

(
∂g

∂W

)
= DN

∂h

∂v(W)
= DN (Dzh)T = DN DT

N vec
(

AT
)

= DN DT
N K N ,N vec (A) = DN DT

N vec (A)

= (I N 2 + K N ,N − K N ,N � I N 2 ) vec (A) = vec
(

A + AT − A � I N

)
. (6.181)

This result is in agreement with (6.169).
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Examples 6.22 and 6.23 show that different choices of the basis vectors for expanding
the elements of the manifold W may lead to different equivalent expressions for the
generalized derivative. The results found in Examples 6.22 and 6.23 are in agreement
with the more general result derived in Exercise 6.4 (see (6.277)).

6.5.5 Generalized Matrix Derivative with Respect to Hermitian Matrices

Example 6.24 (Hermitian) Let us define the following manifold:

W = {W ∈ C
N×N | W H = W} ⊂ C

N×N . (6.182)

An arbitrary Hermitian matrix W ∈ W can be parameterized by the real-valued vec-
tor x = vecd (W) ∈ R

N×1, which contains the real-valued main diagonal elements, and
the complex-valued vector z = vecl(W) = (vecu(W))∗ ∈ C

(N−1)N
2 ×1, which contains the

strictly below diagonal elements, and it is also equal to the complex conjugate of
the strictly above diagonal elements. One way of generating any Hermitian N × N
matrix W ∈ W is by using the parameterization function F : R

N×1 × C
(N−1)N

2 ×1 ×
C

(N−1)N
2 ×1 → W given by

vec(W) = vec (F(x, z, z∗)) = Ld x + Ll z + Luz∗. (6.183)

From (6.183), it is seen that Dx F = Ld , Dz F = Ll , and Dz∗ F = Lu . The dimen-
sion of the tangent space of W is N 2, and all elements within W ∈ W can be
treated as independent when finding derivatives. If we choose as a basis for W
the N 2 matrices of size N × N found by reshaping each of the columns of Ld ,
Ll , and Lu by “inverting” the vec-operation, we can represent W ∈ W as W �
[[x], [z], [z∗]][Ld ,Ll ,Lu ]. With this representation, the function F is the identity func-
tion because W = F(x, z, z∗) = [[x], [z], [z∗]][Ld ,Ll ,Lu ]. Therefore, the inverse func-

tion F−1 : W → R
N×1 × C

(N−1)N
2 ×1 × C

(N−1)N
2 ×1 can be expressed as

F−1(W) = F−1([[x], [z], [z∗]][Ld ,Ll ,Lu ]) = (vecd (W), vecl(W), vecu(W))

= (x, z, z∗), (6.184)

which is also the identity function. Therefore, it follows that DW F−1 = I N 2 .

Example 6.25 Let us assume that W ∈ W ⊂ C
N×N , where W is the manifold defined

in (6.182). These matrices can be produced by the parameterization function F :
R

N×1 × C
(N−1)N

2 ×1 × C
(N−1)N

2 ×1 → W given in (6.183). The derivatives of F with respect
to x ∈ R

N×1, z ∈ C
(N−1)N

2 ×1, and z∗ ∈ C
(N−1)N

2 ×1 are given in Example 6.24. From (6.183),
the differential of the complex conjugate of the parameterization function F is
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given by

d vec (W∗) = d vec (F∗) = Lddx + Ludz + Lldz∗. (6.185)

And from (6.185), it follows that the following derivatives can be identified:Dx F∗ = Ld ,
Dz F∗ = Lu , and Dz∗ F∗ = Ll .

Let g : C
N×N × C

N×N → C be given by g(W̃, W̃
∗
), where W̃ ∈ C

N×N is a matrix
containing only independent variables. Assume that the two unconstrained complex-
valued matrix derivatives of g(W̃, W̃

∗
) of size 1 × N 2 are available, and given

by DW̃ g = vecT
(

∂g
∂W̃

)
and DW̃

∗ g = vecT
(

∂g
∂W̃

∗

)
. Define the composed function h :

R
N×1 × C

(N−1)N
2 ×1 × C

(N−1)N
2 ×1 → C by

h(x, z, z∗) = g(W̃, W̃
∗
)
∣∣∣
W̃=W

= g(W, W∗) = g(F(x, z, z∗), F∗(x, z, z∗)). (6.186)

The derivatives of the function h with respect to x, z, and z∗ can be found by the chain
rule as follows:

Dxh = DW̃ g
∣∣
W̃=W

Dx F + DW̃
∗ g
∣∣
W̃=W

Dx F∗ = [DW̃ g + DW̃
∗ g
]

W̃=W
Ld

= vecT

(
∂g

∂W̃
+ ∂g

∂W̃
∗

)∣∣∣∣
W̃=W

Ld = vecT
d

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

, (6.187)

Dzh = DW̃ g
∣∣
W̃=W

Dz F + DW̃
∗ g
∣∣
W̃=W

Dz F∗

= vecT

(
∂g

∂W̃

)∣∣∣∣
W̃=W

Ll + vecT

(
∂g

∂W̃
∗

)∣∣∣∣
W̃=W

Lu

= vecT
l

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

, (6.188)

and

Dz∗ h = DW̃ g
∣∣
W̃=W

Dz∗ F + DW̃
∗ g
∣∣
W̃=W

Dz∗ F∗

= vecT

(
∂g

∂W̃

)∣∣∣∣
W̃=W

Lu + vecT

(
∂g

∂W̃
∗

)∣∣∣∣
W̃=W

Ll

= vecT
u

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

. (6.189)

The sizes of the three derivatives Dxh, Dzh, and Dz∗ h are 1 × N , 1 × (N−1)N
2 , and

1 × (N−1)N
2 , respectively. The total number of components within the three derivatives

Dxh, Dzh, and Dz∗ h are N + (N−1)N
2 + (N−1)N

2 = N 2. If the method given in (6.71) is
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used, the derivative DW g can now be expressed as

[DW g][Ld ,Ll ,Lu ] = [Dxh,Dzh,Dz∗ h]DW F−1

=
[

vecT

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

[Ld , Ll , Lu]

]
[Ld ,Ll ,Lu ]

, (6.190)

where the results from (6.187), (6.188), and (6.189), in addition to DW F−1 = I N 2 from
Example 6.24, have been utilized. In (6.190), the derivative of g with respect to the
matrix W ∈ W is expressed with the basis chosen in Example 6.24, that is, the N first
basis vectors of W are given by the N columns of Ld , then the next (N−1)N

2 as the
(N−1)N

2 columns of Ll , and the last (N−1)N
2 basis vectors are given by the (N−1)N

2
columns of Lu ; this is indicated by the subscript [Ld , Ll , Lu].

Let the matrix Z ∈ C
N×N be unpatterned. From Chapter 3, we know that unpatterned

derivatives are identified from the differential of the function, that the unpatterned
matrix variable should be written in the form d vec(Z), and that the standard basis
used to express these unpatterned derivatives is ei of size N 2 × 1 (see Definition 2.16).
To introduce this basis for the example under consideration, observe that (2.42) is
equivalent to

vecT (A) = [vecT
d (A) , vecT

l (A) , vecT
u (A)

]  LT
d

LT
l

LT
u


 . (6.191)

From this expression, it is seen that if we want to use the standard basis Ei, j (see
Definition 2.16) to express DW g, this can be done in the following way:

[DW g][Ei, j ] = [DW g][Ld ,Ll ,Lu ]


 LT

d

LT
l

LT
u


 = [Dxh, Dzh, Dz∗ h]


 LT

d

LT
l

LT
u




= vecT

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

[Ld , Ll, Lu]


 LT

d

LT
l

LT
u




=
[

vecT

(
∂g

∂W̃

)
+ vecT

((
∂g

∂W̃
∗

)T
)]

W̃=W

(6.192)

=
[
DW̃ g +

{
K N ,N vec

(
∂g

∂W̃
∗

)}T
]

W̃=W

= [DW̃ g + (DW̃
∗ g
)

K N ,N

]
W̃=W

, (6.193)

where the notation [·][Ei, j ] means that the standard basis Ei, j is used, the notation

[·][Ld ,Ll ,Lu ] means that the transform is expressed with [Ld , Ll, Lu] as basis, and Ld LT
d +

Ll L
T
l + Lu LT

u = I N 2 has been used (see Lemma 2.21). Notice that, in this example,
where the matrices are Hermitian, the sizes ofDW̃ g andDW g are both 1 × N 2; the reason
for this is that all components inside the matrix W ∈ W can be treated as independent of

each other when finding derivatives. Since for Hermitian matrices DW g = vecT
(

∂g
∂W

)
,
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it follows from (6.192) that

∂g

∂W
=
[

∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
]

W̃=W

. (6.194)

Because W∗ = WT , it follows that

∂g

∂W∗ = ∂g

∂WT =
(

∂g

∂W

)T

=
[

∂g

∂W̃
∗ +

(
∂g

∂W̃

)T
]

W̃=W

. (6.195)

Alternatively, the result in (6.194) can be found by means of (6.78) as follows:

vec

(
∂g

∂W

)
= Ld

∂h

∂ vecd (W)
+ Ll

∂h

∂ vecl (W)
+ Lu

∂h

∂ vecu (W)

= Ld (Dxh)T + Ll (Dzh)T + Lu (Dz∗ h)T

= Ld vecd

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

+ Ll vecl

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

+ Lu vecu

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

= vec

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)

W̃=W

,

(6.196)

which is equivalent to (6.194).
To find an expression for DW∗ g, the method in (6.72) can be used. First, an expression

for DW∗ F−1 should be found. To achieve this, the expression vec
(

F−1
)

is studied
because all components inside W∗ have independent differentials when W is Hermitian.
The desired expression can be found as follows:

vec
(

F−1
) =


 x

z
z∗


 =


 LT

d vec(W)
LT

l vec(W)
LT

u vec(W)


 =


 LT

d K N ,N vec(W∗)
LT

l K N ,N vec(W∗)
LT

u K N ,N vec(W∗)




=

 LT

d vec(W∗)
LT

u vec(W∗)
LT

l vec(W∗)


 =


 LT

d

LT
u

LT
l


 vec(W∗). (6.197)

Because all elements of W∗ have independent differentials, it follows from (6.197)
that

DW∗ F−1 =

 LT

d

LT
u

LT
l


 . (6.198)
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When (6.72) and (6.198) are used, it follows that DW∗ g can be expressed as

DW∗ g = [Dxh, Dzh, Dz∗ h]DW∗ F−1 = [Dxh, Dzh, Dz∗ h]


 LT

d

LT
u

LT
l




= vecT
d

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

LT
d

+ vecT
l

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

LT
u

+ vecT
u

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

LT
l

= vecT
d

(
∂g

∂W̃
∗ +

(
∂g

∂W̃

)T
)∣∣∣∣∣

W̃=W

LT
d

+ vecT
l

(
∂g

∂W̃
∗ +

(
∂g

∂W̃

)T
)∣∣∣∣∣

W̃=W

LT
l

+ vecT
u

(
∂g

∂W̃
∗ +

(
∂g

∂W̃

)T
)∣∣∣∣∣

W̃=W

LT
u

= vecT

(
∂g

∂W̃
∗ +

(
∂g

∂W̃

)T
)

W̃=W

= vecT

((
∂g

∂W

)T
)

, (6.199)

which is in agreement with the results found earlier in this example (see (6.195)).

In the next example, the theory developed in the previous example will be used to
study the derivatives of a function that is strongly related to the capacity of a Gaussian
MIMO system.

Example 6.26 Consider the set of Hermitian matrices, such that W ∈ W = {W ∈
C

Mt ×Mt | W H = W}. This is the same set of matrices considered in Examples 6.24
and 6.25.

Define the following function g : C
Mt ×Mt × C

Mt ×Mt → C, given by:

g(W̃, W̃
∗
) = ln

(
det
(

I Mr + HW̃ H H
))

, (6.200)

where W̃ ∈ C
Mt ×Mt is an unpatterned complex-valued (not necessarily Hermitian)

matrix variable. Using the theory from Chapter 3, it is found that

dg = Tr
{(

I Mr + HW̃ H H
)−1

H
(
dW̃
)

H H
}

= Tr
{

H H
(

I Mr + HW̃ H H
)−1

HdW̃
}

. (6.201)



176 Generalized Complex-Valued Matrix Derivatives

z y

n

Mr × 1

H

Mr ×Mt

B
x

Mt ×NN × 1 Mt × 1

Figure 6.4 Precoded MIMO communication system with Mt transmit and Mr receiver antennas and
with correlated additive complex-valued Gaussian noise. The precoder is denoted by B ∈ C

Mt ×N ,
the original source signal, x ∈ C

N×1, the transmitted signal, z ∈ C
Mt ×1, the Gaussian additive

signal-independent channel noise, n ∈ C
Mr ×1, the received signal, y ∈ C

Mr ×1, and the MIMO
channel transfer matrix, H ∈ C

Mr ×Mt .

From Table 3.2, it follows that

∂

∂W̃
g
(

W̃, W̃
∗) = HT

(
I Mr + H∗W̃

T
HT
)−1

H∗, (6.202)

and

∂

∂W̃
∗ g
(

W̃, W̃
∗) = 0Mt ×Mt . (6.203)

These results are valid without enforcing any structure to the matrix W̃. The above
results can be rewritten as

DW̃ g = vecT

(
HT
(

I Mr + H∗W̃
T

HT
)−1

H∗
)

, (6.204)

DW̃
∗ g = vecT

(
∂g

∂W̃
∗

)
= 01×M2

t
. (6.205)

Consider now the generalized complex-valued matrix derivatives. Assume that W ∈
W , and we want to find the generalized derivative with respect to W ∈ W . From (6.194),
(6.202), and (6.203), it follows that

∂

∂W
g (W, W∗) = HT

(
I Mr + H∗WT HT

)−1
H∗. (6.206)

Because W∗ = WT , it follows that

∂

∂W∗ g (W) =
(

∂

∂W
g (W)

)T

= H H
(

I Mr + HW HH
)−1

H. (6.207)

Example 6.27 Consider the precoded MIMO system in Figure 6.4. Assume that the
additive complex-valued channel noise n ∈ C

Mr ×1 is zero-mean, Gaussian, independent
of the original input signal vector x ∈ C

N×1, and n is correlated with the autocorrelation
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matrix given by

Σn = E
[
nnH

]
. (6.208)

The Mr × Mr matrix Σn is Hermitian. The goal of this example is to find the derivative
of the mutual information between the input vector x ∈ C

N×1 and the output vector
y ∈ C

Mr ×1 when it is considered that Σ−1
n is Hermitian. Hence, it is here assumed that

the inverse of the autocorrelation matrix Σn is a Hermitian matrix, and, for simplicity,
it is not taken into consideration that it is a positive definite matrix.

The differential entropy of the Gaussian complex-valued vector n with covariance
matrix Σn is given by Telatar (1995, Section 2):

H (n) = ln (det (πeΣn)) . (6.209)

Assume that complex Gaussian signaling is used for x. The received vector y ∈ C
Mr ×1

is complex Gaussian distributed with covariance:

Σ y = E
[
yyH
] = E

[
(H Bx + n) (H Bx + n)H

]
= E

[
(H Bx + n)

(
xH BH H H + nH

)] = H BΣx BH H H + Σn, (6.210)

where Σx = E[xxH ] and E[xnH ] = 0N×Mr . The mutual information between x and y
is given by Telatar (1995, Section 3):

I (x; y)= H (y)−H (y | x)= H (y)−H (n)= ln
(
det
(
πeΣ y

))−ln (det (πeΣn))

= ln
(
det
(
Σ yΣ

−1
n

)) = ln
(
det
(

I Mr + H BΣx BH H HΣ−1
n

))
. (6.211)

Let W̃ ∈ C
Mr ×Mr be a matrix of the same size as Σ−1

n , which represents a matrix with
independent matrix components. Define the function g : C

Mr ×Mr × C
Mr ×Mr → C as

g(W̃, W̃
∗
) = ln

(
det
(

I Mr + H BΣx BH H H W̃
))

. (6.212)

The differential of f is found as

dg = Tr
{(

I Mr + H BΣx BH H H W̃
)−1

H BΣx BH H H dW̃
}

= vecT

(
H∗ B∗Σ∗

x BT HT
(

I Mr + W̃
T

H∗ B∗Σ∗
x BT HT

)−1
)

d vec
(
W̃
)

= vecT

(
H∗ B∗

(
I N + Σ∗

x BT HT W̃
T

H∗ B∗
)−1

Σ∗
x BT HT

)
d vec

(
W̃
)

= vecT

(
H∗ B∗

((
Σ∗

x

)−1 + BT HT W̃
T

H∗ B∗
)−1

BT HT

)
d vec

(
W̃
)
, (6.213)

where Lemma 2.5 was used in the third equality. Define the matrix E(W̃) ∈ C
N×N as

E(W̃) �
(
Σ−1

x + BH H H W̃ H B
)−1

. (6.214)

Then it is seen from dg in (6.213) that the derivative of g with respect to the unpatterned
matrices W̃ and W̃

∗
can be expressed as

DW̃ g = vecT
(

H∗ B∗ET (W̃)BT HT
)
, (6.215)
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and

DW̃
∗ g = 01×M2

r
, (6.216)

respectively.
Let W be a Hermitian matrix of size Mr × Mr . The parameterization function

F(x, z, z∗) is defined in (6.183). From (6.193), it follows that for Hermitian matri-
ces, the following relation can be used to find the generalized matrix derivative in terms
of the unpatterned matrix derivative:

DW g = [DW̃ g + (DW̃
∗ g
)

K Mr ,Mr

]
W̃=W

, (6.217)

when the standard basis
{

Ei, j

}
is used to express DW g. By using this relation, it is

found that the generalized derivative of g with respect to the Hermitian matrix W can
be expressed as

DW g = vecT
(

H∗ B∗ET (W)BT HT
)
. (6.218)

When W̃ = W is used as argument for g(W̃, W̃
∗
)|W̃=W = g(W, W∗), then the function

g(W, W∗) = I (x; y), where I (x; y) is mutual information between x and y, and W is a
Hermitian matrix representing the inverse of the autocorrelation matrix of the noise vec-
tor n, that is, W represents Σ−1

n . Hence, the derivative of the mutual information I (x; y)
with respect to W is given by

DW I = vecT
(

H∗ B∗ET (W)BT HT
)
. (6.219)

Because W is Hermitian, DW I = vecT
(

∂ I
∂W

)
, and it is possible to write

∂

∂W
I = H∗ B∗ET (W)BT HT . (6.220)

Because I is scalar, it follows that

∂

∂(W)∗
I = ∂

∂(W)T
I =

(
∂

∂W
I

)T

= (H∗ B∗ET (W)BT HT
)T

= H BE(W)BH H H . (6.221)

This is in agreement with Palomar and Verdú (2006, Eq. (26)).
From the results in this example, it can be seen that

DW̃
∗ g = 01×M2

r
, (6.222)

DW∗ g = vecT
(

H BE(W)BH H H
)
. (6.223)

This means that by introducing the Hermitian structure, the derivative DW∗ g is a nonzero
vector in this example, and the unconstrained derivative DW̃

∗ g is equal to the zero
vector.
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6.5.6 Generalized Matrix Derivative with Respect to Skew-Symmetric Matrices

Example 6.28 (Skew-Symmetric) Let the set of N × N complex-valued skew-symmetric
matrices be denoted S and given by

S = {S ∈ C
N×N | ST = −S}. (6.224)

Skew-symmetric matrices have zero elements along the main diagonal, and the elements
strictly below the main diagonal in position (k, l), where k > l, are equal to the elements
strictly above the main diagonal in position (l, k) with the opposite sign. Notice that no
complex conjugation is involved in the definition of skew-symmetric complex-valued
matrices; hence, it is enough to parameterize these matrices with only the elements
strictly below the main diagonal. Skew-symmetric matrices S ∈ S ⊂ C

N×N can be
parameterized with the parameterization function F : C

(N−1)N
2 ×1 → S, given by

vec (S) = vec (F(z)) = Ll z − Luz = (Ll − Lu) z, (6.225)

where z ∈ C
(N−1)N

2 ×1 contains all the independent complex-valued variables that are
necessary for producing the skew-symmetric matrices S ∈ S. From (6.225), it is seen
that the derivatives of F with respect to z and z∗ are given by

Dz F = Ll − Lu, (6.226)

Dz∗ F = 0N 2× (N−1)N
2

. (6.227)

By complex conjugation (6.226) and (6.227), it follows that Dz F∗ = 0N 2× (N−1)N
2

and

Dz∗ F∗ = Ll − Lu . Let the function g : C
N×N × C

N×N → C be denoted g(S̃, S̃
∗
),

where S̃ ∈ C
N×N is unpatterned, and assume that the two derivatives DS̃g = vecT

(
∂g
∂ S̃

)
andDS̃

∗ g = vecT
(

∂g
∂ S̃

∗

)
are available. Define the composed function h : C

(N−1)N
2 ×1 → C

as follows:

h(z) = g(S̃, S̃
∗
)
∣∣∣

S̃=S=F(z)
= g(S, S∗) = g(F(z), F∗(z)). (6.228)

By means of the chain rule, the derivative of h with respect to z is found as follows:

Dzh = DS̃g
∣∣

S̃=S
Dz F + DS̃

∗ g
∣∣

S̃=S
Dz F∗ = vecT

(
∂g

∂ S̃

)∣∣∣∣
S̃=S

(Ll − Lu)

= vecT
l

(
∂g

∂ S̃

)∣∣∣∣
S̃=S

− vecT
u

(
∂g

∂ S̃

)∣∣∣∣
S̃=S

. (6.229)

From (6.225), it follows that vecd (S) = 0N×1, vecl (S) = z, and vecu (S) = −z. If the
result from Exercise 3.7 is used in (6.78), together with Definition 6.7, it is found
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that

vec

(
∂g

∂S

)
= Ld

∂h

∂ vecd (S)
+ Ll

∂h

∂ vecl (S)
+ Lu

∂h

∂ vecu (S)

= Ll (Dzh)T + Lu

(
D(−z)h

)T = Ll (Dzh)T − Lu (Dzh)T = (Ll − Lu) (Dzh)T

= (Ll − Lu)

[
vecl

(
∂g

∂ S̃

)
− vecu

(
∂g

∂ S̃

)]
S̃=S

= Ld vecd

(
∂g

∂ S̃

)∣∣∣∣
S̃=S

+ Ll vecl

(
∂g

∂ S̃

)∣∣∣∣
S̃=S

+ Lu vecu

(
∂g

∂ S̃

)∣∣∣∣
S̃=S

−Ld vecd

((
∂g

∂ S̃

)T
)∣∣∣∣∣

S̃=S

−Ll vecl

((
∂g

∂ S̃

)T
)∣∣∣∣∣

S̃=S

−Lu vecu

((
∂g

∂ S̃

)T
)∣∣∣∣∣

S̃=S

= vec

(
∂g

∂ S̃
−
(

∂g

∂ S̃

)T
)

S̃=S

. (6.230)

This result leads to

∂g

∂S
=
[

∂g

∂ S̃
−
(

∂g

∂ S̃

)T
]

S̃=S

. (6.231)

From (6.231), it is observed that
(

∂g
∂S

)T
= − ∂g

∂S ; hence, ∂g
∂S is skew-symmetric, implying

that ∂g
∂S has zeros on its main diagonal.

6.5.7 Generalized Matrix Derivative with Respect to Skew-Hermitian Matrices

Example 6.29 (Skew-Hermitian) Let the set of N × N skew-Hermitian matrices be
denoted by W and given by

W = {W ∈ C
N×N | W H = −W}. (6.232)

An arbitrary skew-Hermitian matrix W ∈ W ⊂ C
N×N can be parameterized by an N ×

1 real vector x = vecd (W)/ , that will produce the pure imaginary diagonal elements of
W and a complex-valued vector z = vecl (W) = −(vecu(W))∗ ∈ C

(N−1)N
2 ×1 that contains

the strictly below main diagonal elements in position (k, l), where k > l; these are equal
to the complex conjugates of the strictly above main diagonal elements in position (l, k)
with the opposite sign. One way of generating any skew-Hermitian N × N matrix is by
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using the parameterization function F : R
N×1 × C

(N−1)N
2 ×1 × C

(N−1)N
2 ×1 → W ⊂ C

N×N ,
given by

vec(W) = vec (F(x, z, z∗)) =  Ld x + Ll z − Luz∗. (6.233)

From (6.233), it follows that Dx F =  Ld , Dz F = Ll , and Dz∗ F = −Lu . By complex
conjugating both sides of (6.233), it follows that Dx F∗ = − Ld , Dz F∗ = −Lu , and
Dz∗ F∗ = Ll . The dimension of the tangent space of W is N 2, and all components of
W ∈ W can be treated as independent when finding derivatives. If we choose as a basis
for W the N 2 matrices of size N × N found by reshaping each of the columns of
 Ld , Ll , and −Lu by “inverting” the vec-operation, then we can represent W ∈ W as
W � [[x], [z], [z∗]][ Ld ,Ll ,−Lu ]. With this representation, the function F is the identity
function in a similar manner as in Example 6.24. This means that

DW F−1 = I N 2 , (6.234)

when [ Ld , Ll ,−Lu] is used as a basis for W .
Assume that the function g : C

N×N × C
N×N → C is given, and that the two deriva-

tives DW̃ g = vecT
(

∂g
∂W̃

)
and DW̃

∗ g = vecT
(

∂g
∂W̃

∗

)
are available. Define the func-

tion h : R
N×1 × C

(N−1)N
2 ×1 × C

(N−1)N
2 ×1 → C as

h(x, z, z∗) = g(W̃, W̃
∗
)
∣∣∣
W̃=W=F(x,z,z∗)

= g(W, W∗)

= g(F(x, z, z∗), F∗(x, z, z∗)). (6.235)

By the chain rule, the derivatives of h with respect to x, z, and z∗ can be found as

Dxh = DW̃ g
∣∣
W̃=W

Dx F + DW̃
∗ g
∣∣
W̃=W

Dx F∗

= vecT

(
∂g

∂W̃

)∣∣∣∣
W̃=W

 Ld − vecT

(
∂g

∂W̃
∗

)∣∣∣∣
W̃=W

 Ld

=  vecT
d

(
∂g

∂W̃

)∣∣∣∣
W̃=W

−  vecT
d

(
∂g

∂W̃
∗

)∣∣∣∣
W̃=W

, (6.236)

Dzh = DW̃ g
∣∣
W̃=W

Dz F + DW̃
∗ g
∣∣
W̃=W

Dz F∗

= vecT

(
∂g

∂W̃

)∣∣∣∣
W̃=W

Ll − vecT

(
∂g

∂W̃
∗

)∣∣∣∣
W̃=W

Lu

= vecT
l

(
∂g

∂W̃

)∣∣∣∣
W̃=W

− vecT
u

(
∂g

∂W̃
∗

)∣∣∣∣
W̃=W

, (6.237)
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and

Dz∗ h = DW̃ g
∣∣
W̃=W

Dz∗ F + DW̃
∗ g
∣∣
W̃=W

Dz∗ F∗

= − vecT

(
∂g

∂W̃

)∣∣∣∣
W̃=W

Lu + vecT

(
∂g

∂W̃
∗

)∣∣∣∣
W̃=W

Ll

= − vecT
u

(
∂g

∂W̃

)∣∣∣∣
W̃=W

+ vecT
l

(
∂g

∂W̃
∗

)∣∣∣∣
W̃=W

. (6.238)

Using the results above for finding the generalized complex-valued matrix derivative of
g with respect to W ∈ W in (6.71) leads to

[DW g][ Ld ,Ll ,−Lu ] = [Dxh,Dzh,Dz∗ h]DW F−1 = [Dxh,Dzh,Dz∗ h] , (6.239)

when [ Ld , Ll ,−Lu] is used as a basis forW . By means of Exercise 6.16, it is possible to
express the generalized complex-valued matrix derivative DW g in terms of the standard
basis {Ei, j } as follows:

[DW g]{Ei, j } = [DW g][ Ld ,Ll ,−Lu ] [ Ld , Ll,−Lu]−1=[DW g][ Ld ,Ll ,−Lu ]


 − LT

d

LT
l

−LT
u




= [Dxh,Dzh,Dz∗ h]


 − LT

d

LT
l

−LT
u




=
[
 vecT

d

(
∂g

∂W̃

)
−  vecT

d

(
∂g

∂W̃
∗

)]
W̃=W

(− LT
d

)

+
[

vecT
l

(
∂g

∂W̃

)
− vecT

u

(
∂g

∂W̃
∗

)]
W̃=W

LT
l

+
[
− vecT

u

(
∂g

∂W̃

)
+ vecT

l

(
∂g

∂W̃
∗

)]
W̃=W

(−LT
u

)

=
[

vecT
d

(
∂g

∂W̃

)]
W̃=W

LT
d −

[
vecT

d

((
∂g

∂W̃
∗

)T
)]

W̃=W

LT
d

+
[

vecT
l

(
∂g

∂W̃

)]
W̃=W

LT
l −

[
vecT

l

((
∂g

∂W̃
∗

)T
)]

W̃=W

LT
l

+
[

vecT
u

(
∂g

∂W̃

)]
W̃=W

LT
u −

[
vecT

u

((
∂g

∂W̃
∗

)T
)]

W̃=W

LT
u

= vecT

(
∂g

∂W̃

)
− vecT

(
∂g

∂W̃
∗

)
. (6.240)



6.5 Examples of Generalized Complex Matrix Derivatives 183

From (6.233), it is seen that vecd (W) = x, vecl (W) = z, and vecu (W) = −z∗. By
using (6.78) and the result from Exercise 3.7, it is found that

vec

(
∂g

∂W

)
= Ld

∂h

∂ vecd (W)
+ Ll

∂h

∂ vecl (W)
+ Lu

∂h

∂ vecu (W)

= Ld

(
Dxg

)T + Ll (Dzg)T + Lu (D−z∗ g)T

= Ld


(Dxh)T + Ll (Dzh)T − Lu (Dz∗ h)T

= − Ld

[
vecd

(
∂g

∂W̃

)
− vecd

(
∂g

∂W̃
∗

)]
W̃=W

+ Ll

[
vecl

(
∂g

∂W̃

)
− vecu

(
∂g

∂W̃
∗

)]
W̃=W

− Lu

[
− vecu

(
∂g

∂W̃

)
+ vecl

(
∂g

∂W̃
∗

)]
W̃=W

= Ld vecd

(
∂g

∂W̃

)∣∣∣∣
W̃=W

− Ld vecd

((
∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

+ Ll vecl

(
∂g

∂W̃

)∣∣∣∣
W̃=W

− Ll vecl

((
∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

+ Lu vecu

(
∂g

∂W̃

)∣∣∣∣
W̃=W

− Lu vecu

((
∂g

∂W̃
∗

)T
)∣∣∣∣∣

W̃=W

= vec

(
∂g

∂W̃
−
(

∂g

∂W̃
∗

)T
)

W̃=W

. (6.241)

From the above expression, it follows that

∂g

∂W
=
[

∂g

∂W̃
−
(

∂g

∂W̃
∗

)T
]

W̃=W

. (6.242)

It is observed that
(

∂g
∂W

)H
= − ∂g

∂W , that is, ∂g
∂W is skew-Hermitian. In addition, it is seen

that (6.240) and (6.241) are consistent.
As a particular case, consider the function g : C

2×2 × C
2×2 → C as

g(W̃, W̃
∗
) = det(W̃) = det

([
w̃0,0 w̃0,1

w̃1,0 w̃1,1

])
= w̃0,0w̃1,1 − w̃0,1w̃1,0. (6.243)
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In this case, it follows from (3.48) that the derivatives of g with respect to the unpatterned
matrices W̃ and W̃

∗
are given by

DW̃ g = vecT

([
w̃1,1 −w̃1,0

−w̃0,1 w̃0,0

])
, (6.244)

DW̃
∗ g = 01×4. (6.245)

Assume now that W is the set of 2 × 2 skew-Hermitian matrices. Then W ∈ W can be
expressed as

W =
(

w0,0 w0,1

w1,0 w1,1

)
=
(

 x0 −z∗

z  x1

)
. (6.246)

Using (6.242) to find the generalized complex-valued matrix derivative leads to

∂g

∂W
=
[

∂g

∂W̃
−
(

∂g

∂W̃
∗

)T
]

W̃=W

=
[(

w̃1,1 −w̃1,0

−w̃0,1 w̃0,0

)
− 02×2

]
W̃=W

=
(

w1,1 −w1,0

−w0,1 w0,0

)
=
(

 x1 −z
z∗  x0

)
. (6.247)

By direct calculation of ∂g
∂W using (6.74), it is found that

∂g

∂W
=
[

∂
∂w0,0

∂
∂w0,1

∂
∂w1,0

∂
∂w1,1

]
(w0,0w1,1 − w1,0w0,1)=

(
w1,1 −w1,0

−w0,1 w0,0

)
=
(

 x1 −z
z∗  x0

)
,

(6.248)

which is in agreement with (6.247).

In Table 6.2, the derivatives of the function g : C
N×N × C

N×N → C, denoted by
g(W̃, W̃

∗
), are summarized for complex-valued unpatterned, diagonal, symmetric, skew-

symmetric, Hermitian, and skew-Hermitian matrices. These results were derived earlier
in this chapter, or in Exercise 6.4.

6.5.8 Orthogonal Matrices

Example 6.30 (Orthogonal) Let Q ∈ C
N×N be an orthogonal matrix, then Q can be

found from

Q = exp(S), (6.249)

where exp(·) is the exponential matrix function stated in Definition 2.5, and S = −ST

is skew-symmetric. In (6.225), a parameterization function for the set of N × N
complex-valued skew-symmetric matrices is given. The matrix Q is orthogonal
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Table 6.2 Various results for the generalized derivatives ∂g
∂W of the function g : C

N×N × C
N×N → C

denoted by g(W̃, W̃
∗
) when the input matrix variable W̃ belongs to the set W of unpatterned, diagonal,

symmetric, skew-symmetric, Hermitian, and skew-Hermitian complex-valued matrices.

The set W belongs to ∂g
∂W

Unpatterned ∂g
∂W̃

W = {W ∈ C
N×N }

Diagonal I N � ∂g
∂W̃

∣∣
W̃=W

W = {W ∈ C
N×N | W = I N � W}

Symmetric
[

∂g
∂W̃

+ ( ∂g
∂W̃

)T − I N � ∂g
∂W̃

]
W̃=W

W = {W ∈ C
N×N | W = WT }

Skew-symmetric
[

∂g
∂W̃

− ( ∂g
∂W̃

)T
]

W̃=W
W = {W ∈ C

N×N | W = −WT }
Hermitian

[
∂g
∂W̃

+ ( ∂g

∂W̃
∗
)T
]

W̃=W
W = {W ∈ C

N×N | W = W H }
Skew-Hermitian

[
∂g
∂W̃

− ( ∂g

∂W̃
∗
)T
]

W̃=W
W = {W ∈ C

N×N | W = −W H }

because

Q QT = exp(S) exp(ST ) = exp(S) exp(−S) = exp(S − S)

= exp(0N×N ) = I N , (6.250)

where it has been shown that exp(A) exp(B) = exp(B) exp(A) = exp(A + B) when
AB = BA (see Exercise 2.5). However, (6.249) does always return an orthogonal matrix
with determinant +1 because

det(Q) = det(exp(S)) = exp (Tr {S}) = exp (0) = 1, (6.251)

where Lemma 2.6 was utilized together with the fact that Tr{S} = 0 for skew-symmetric
matrices. Because there exist infinitely many orthogonal matrices with determinant −1
when N > 1, the function in (6.249) does not parameterize the whole set of orthogonal
matrices.

6.5.9 Unitary Matrices

Example 6.31 (Unitary) Let W = {W ∈ C
N×N | W H = −W} be the set of skew-

Hermitian N × N matrices. Any complex-valued unitary N × N matrix can be
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parameterized in the following way (Rinehart 1964):

U = exp(W) = exp (F(x, z, z∗)) , (6.252)

where exp(·) is described in Definition 2.5, and W ∈ W ⊂ C
N×N is a skew-Hermitian

matrix that can be produced by the function W = F(x, z, z∗) given in (6.233). It
was shown in Example 6.29 how to find the derivative of the parameterization func-
tion F(x, z, z∗) and its complex conjugate with respect to the three vectors x, z,
and z∗.

Let W̃ ∈ C
N×N be an unpatterned complex-valued N × N matrix. The derivatives of

the two functions Û � exp(W̃) and Û
∗ � exp(W̃

∗
) are12 now found with respect to the

two unpatterned matrices W̃ ∈ C
N×N and W̃

∗ ∈ C
N×N . To achieve this, the following

results are useful:

d vec(Û ) =
∞∑

k=0

1

(k + 1)!

k∑
i=0

((
W̃

T
)k−i

⊗ W̃
i
)

d vec(W̃), (6.253)

d vec(Û
∗
) =

∞∑
k=0

1

(k + 1)!

k∑
i=0

((
W̃

H
)k−i

⊗ (W̃
∗
)i

)
d vec(W̃

∗
), (6.254)

following from (4.134) and (4.135) by adjusting the notation to the symbols used here.
From (6.253) and (6.254), the following derivatives can be found:

DW̃Û =
∞∑

k=0

1

(k + 1)!

k∑
i=0

(
W̃

T
)k−i

⊗ W̃
i
, (6.255)

DW̃
∗Û = 0N 2×N 2 , (6.256)

DW̃Û
∗ = 0N 2×N 2 , (6.257)

DW̃
∗Û

∗ =
∞∑

k=0

1

(k + 1)!

k∑
i=0

(
W̃

H
)k−i

⊗ (W̃
∗
)i . (6.258)

Consider the real-valued function g : C
N×N × C

N×N → R denoted by g(Ũ , Ũ
∗
), where

Ũ is unpatterned. Assume that the two derivatives DŨ g = vecT
(

∂g
∂Ũ

)
and DŨ

∗ g =
vecT

(
∂g

∂Ũ
∗

)
are available. Define the composed function h : R

N×1 × C
(N−1)N

2 ×1 ×
C

(N−1)N
2 ×1 → R as

h(x, z, z∗) = g
(

Ũ , Ũ
∗)∣∣∣

Ũ=U=exp(F(x,z,z∗))
= g (U , U ∗)

= g (exp(F(x, z, z∗)), exp(F∗(x, z, z∗))) , (6.259)

where F : R
N×1 × C

(N−1)N
2 ×1 × C

(N−1)N
2 ×1 → W ⊂ C

N×N is defined in (6.233). The
derivatives of h with respect to the independent variables x, z, and z∗ can be found

12 The two symbols Û and Û
∗

are used because the two matrices Û = exp(W̃) and Û
∗ = exp(W̃

∗
) can be

parameterized; hence, they are not unpatterned. The symbol Û is different from both the unitary matrix U
and the unpatterned matrix Ũ ∈ C

N×N .
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by applying the chain rule twice as follows:

Dxh(x, z, z∗) = DŨ g(Ũ , Ũ
∗
)|Ũ=UDW̃Û |W̃=WDx F

+ DŨ
∗ g(Ũ , Ũ

∗
)|Ũ=UDW̃

∗Û
∗|W̃=WDx F∗, (6.260)

Dzh(x, z, z∗) = DŨ g(Ũ , Ũ
∗
)|Ũ=UDW̃Û |W̃=WDz F

+ DŨ
∗ g(Ũ , Ũ

∗
)|Ũ=UDW̃

∗Û
∗|W̃=WDz F∗, (6.261)

Dz∗ h(x, z, z∗) = DŨ g(Ũ , Ũ
∗
)|Ũ=UDW̃Û |W̃=WDz∗ F

+ DŨ
∗ g(Ũ , Ũ

∗
)|Ũ=UDW̃

∗Û
∗|W̃=WDz∗ F∗, (6.262)

where DŨ g(Ũ , Ũ
∗
)|Ũ=U and DŨ

∗ g(Ũ , Ũ
∗
)|Ũ=U must be found for the function under

consideration, and DW̃Û |W̃=W and DW̃
∗Û

∗|W̃=W are found in (6.255) and (6.258),
respectively. The derivatives of F(x, z, z∗) and F∗(x, z, z∗) with respect to x, z, and z∗

are found in Example 6.29. To use the steepest descent method, the results in (6.260)
and (6.262) can be used in (6.40).

More information about unitary matrix optimization can be found in Abrudan,
Eriksson, and Koivunen (2008), and Manton (2002) and the references therein.

6.5.10 Positive Semidefinite Matrices

Example 6.32 (Positive Semidefinite) Let W = {S ∈ C
N×N | S � 0N×N }, where the

notation S � 0N×N means that S is positive semidefinite. If S ∈ W ⊂ C
N×N is positive

semidefinite, then S is Hermitian such that SH = S and its eigenvalues are non-negative.
Define the set L as

L�
{

L ∈ C
N×N | vec (L)= Ld x + Ll z, x ∈ {R+∪{0}}N×1, z ∈ C

(N−1)N
2 ×1

}
. (6.263)

One parameterization of an arbitrary positive semidefinite matrix is the Cholesky decom-
position (Barry, Lee, & Messerschmitt 2004, p. 506):

S = LLH , (6.264)

where L ∈ L ⊂ C
N×N is a lower triangular matrix with real non-negative elements on

its main diagonal, and independent complex-valued elements below the main diagonal.
Therefore, one way to generate L is with the function F : {R+ ∪ {0}}N×1 × C

(N−1)N
2 ×1 →

L denoted by F(x, z), where x ∈ {R+ ∪ {0}}N×1
and z ∈ C

(N−1)N
2 ×1, and F(x, z) is

given by

vec (L) = vec (F(x, z)) = Ld x + Ll z. (6.265)

The Cholesky factorization is unique (Bhatia 2007, p. 2) for positive definite matrices,
and the number of real dimensions for parameterizing a positive semidefinite matrix is
dimR{{R+ ∪ {0}}N×1} + dimR{C (N−1)N

2 ×1} = N + 2 (N−1)N
2 = N 2.
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A positive semidefinite complex-valued N × N matrix can also be factored as

S = U∆U H , (6.266)

where U ∈ C
N×N is unitary and ∆ is diagonal with non-negative elements on the main

diagonal. Assuming that the two matrices U and ∆ are independent of each other, the
number of real variables used to parameterize S as in (6.266) is

dimR{R+ ∪ {0}}N×1 + N + 2
(N − 1)N

2
= 2N + N 2 − N = N 2 + N . (6.267)

This decomposition does not represent parameterization with a minimum number of
variables because too many input variables are used to parameterize the set of positive
definite matrices when ∆ and U are parameterized independently. It is seen from the
Cholesky decomposition that the minimum number of real-valued parameters is N 2,
which is strictly less than N 2 + N .

In Magnus and Neudecker (1988, pp. 316–317), it is shown how to optimize over the
set of symmetric matrices in both an implicit and explicit manner. It is mentioned how
to optimize over the set of positive semidefinite matrices; however, they did not use the
Cholesky decomposition. They stated that a positive semidefinite matrix W ∈ C

N×N

can be parameterized by the unpatterned matrix X ∈ C
N×N as follows:

W = XH X, (6.268)

where too many parameters13 are used compared with the Cholesky decomposition
because dimR{CN×N } = 2N 2.

6.6 Exercises

6.1 Let a, b, c ∈ C be given constants. We want to solve the scalar equation

az + bz∗ = c, (6.269)

where z ∈ C is the unknown variable. Show that if |a|2 �= |b|2, the solution is given by

z = a∗c − bc∗

|a|2 − |b|2 . (6.270)

Show that if |a|2 = |b|2, then (6.269) might have no solution or infinitely many solutions.

6.2 Show that w stated in (6.126) satisfies

J2w = w∗. (6.271)

13 If the positive scalar 1 (which is a special case of a positive definite 1 × 1 matrix) is decomposed by the
Cholesky factorization, then it is written as 1 = 1 · 1, such that the Cholesky factor L (which is denoted l
here because it is a scalar) is given by l = 1, and this is a unique factorization. However, if the decomposition
in (6.268) is used, then 1 = e−θ eθ for any θ ∈ R, such that x = eθ (where the symbol x is used instead
of X because it is a scalar). Therefore, in (6.268), the decomposition is not unique.
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6.3 Define the set W by

W =

w ∈ C

2N+1

∣∣∣∣∣ w =

 z

x
J N z∗


 , z ∈ C

N×1, x ∈ R


 ⊂ C

(2N+1)×1. (6.272)

It is observed that if w ∈ W , then J2N+1w∗ = w . Hence, the set W can be interpreted
as FIR filters that are equal to their own time reverse complex conjugation. These filters
are important in signal processing and communications.

Let g : C
(2N+1)×1 × C

(2N+1)×1 → R be given by

g(w̃, w̃∗) = ‖Aw̃ − b‖2 , (6.273)

where A ∈ C
M×(2N+1) and b ∈ C

M×1, and where it is assumed that rank(A) = 2N + 1.
Show by solving Dw̃∗ g = 01×(2N+1), that the optimal solution of the unconstrained
optimization problem min

w̃∈C(2N+1)×1
g(w̃, w̃∗) is given by

w̃ = [AH A
]−1

AH b = A+b. (6.274)

A possible parameterization function for W is defined by f : R × C
N×1 × C

N×1 → W
and is given by

f (x, z, z∗) =

 z

x
J N z∗


 , (6.275)

where x ∈ R and z ∈ C
N×1.

By using generalized complex-valued vector derivatives, show that the solution of the
constrained optimization problem min

w∈W
g(w, w∗) is given by

w = [AT A∗ J2N+1 + J2N+1 AH A
]−1 (

AT b∗ + J2N+1 AH b
)
. (6.276)

Show that for the solution in (6.276), J2N+1w∗ = w is satisfied.

6.4 Let W = {W ∈ C
N×N | WT = W} with the parameterization function given

in (6.155). Assume that the function g : C
N×N × C

N×N → C is denoted by g(W̃, W̃
∗
),

and that the two derivatives DW̃ g = vecT
(

∂g
∂W̃

)
and DW̃

∗ g = vecT
(

∂g
∂W̃

∗

)
are available,

where W̃ ∈ C
N×N is unpatterned. Show that the partial derivative of g with respect to

the patterned matrix W ∈ W can be expressed as

∂g

∂W
=
[

∂g

∂W̃
+
(

∂g

∂W̃

)T

− I N � ∂g

∂W̃

]
W̃=W

. (6.277)

As an example, set g(W̃, W̃
∗
) = det

(
W̃
)
. Use (6.277) to show that

∂g

∂W
= 2C(W) − I N � C(W), (6.278)

where C(W) contains the cofactors of C .
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For a common example in signal processing, let g(W̃, W̃
∗
) = Tr

{
W̃

T
W̃
}

= ∥∥W̃
∥∥2

F
,

where W̃ ∈ C
N×N is unpatterned. Use (6.277) to show that

∂g

∂W
= 4W − 2I N � W. (6.279)

6.5 Let T ∈ C
N×N be a Toeplitz matrix (Jain 1989, p. 25) that is completely defined

by its 2N − 1 elements in the first column and row. Toeplitz matrices are characterized
by having the same element along the diagonals. The N × N complex-valued Toeplitz
matrix T can be expressed by

T =




z0 z−1 · · · · · · z−(N−1)

z1 z0 z−1 · · · z−(N−2)

z2 z1 z0 · · · z−(N−3)
...

...
. . .

. . .
...

zN−1 zN−2 · · · z1 z0


 , (6.280)

where zk ∈ C and k ∈ {0, 1, . . . , N − 1}. Let the set of all such N × N Toeplitz matrices
be denoted by T .

One parameterization function for T is F : C
(2N−1)×1 → T ⊆ C

N×N , given by

T = F(z) =
N−1∑

k=−(N−1)

zk I (k)
N , (6.281)

where z ∈ C
(2N−1)×1 contains the 2N − 1 independent complex parameters given by

z = [zN−1, zN−2, . . . , z1, z0, z−1, . . . , z−(N−1)]
T , (6.282)

and I (k)
N is defined as the N × N matrix with zeros everywhere except for +1 along the

k-th diagonal, where the diagonals are numbered from N − 1 for the lower diagonal
and −(N − 1) for the upper diagonal. In this way, the main diagonal is numbered as 0,
such that I (0)

N = I N .
Show that the derivative of T = F(z) with respect to z is given by

Dz F =
[
vec
(

I (N−1)
N

)
, vec

(
I (N−2)

N

)
, . . . vec

(
I (−(N−1))

N

)]
, (6.283)

which has size N 2 × (2N − 1).

6.6 Let T ∈ C
N×N be a Hermitian Toeplitz matrix that is completely defined by all

the N elements in the first column, where the main diagonal contains a real-valued
element and the off-diagonal elements are complex-valued. The N × N complex-valued
Hermitian Toeplitz matrix T can be expressed as

T =




x z∗
1 · · · · · · z∗

N−1

z1 x z∗
1 · · · z∗

N−2

z2 z1 x · · · z∗
N−3

...
...

. . .
. . .

...
zN−1 zN−2 · · · z1 x


 , (6.284)
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where x ∈ R and zk ∈ C for k ∈ {1, 2, . . . , N − 1}. Let the set of all such N × N
Hermitian Toeplitz matrices be denoted by T .

A parameterization function for the set of Hermitian Toeplitz matrices T is F :
R × C

(N−1)×1 × C
(N−1)×1 → T ⊂ C

N×N , given by

T = F(x, z, z∗) = x I N +
N−1∑
k=1

zk I (k)
N +

N−1∑
k=1

z∗
k I (−k)

N , (6.285)

where z ∈ C
(N−1)×1 contains the N − 1 independent complex parameters given by

z = [z1, z2, . . . , zN−1]T , (6.286)

and where I (k)
N is defined as in Exercise 6.5. Show that the derivatives of F(x, z, z∗) with

respect to x , z, and z∗ are given by

Dx F = vec (I N ) , (6.287)

Dz F =
[
vec
(

I (1)
N

)
, vec

(
I (2)

N

)
, . . . , vec

(
I (N−1)

N

)]
, (6.288)

Dz∗ F =
[
vec
(

I (−1)
N

)
, vec

(
I (−2)

N

)
, . . . , vec

(
I (−(N−1))

N

)]
, (6.289)

respectively, of sizes N 2 × 1, N 2 × (N − 1), and N 2 × (N − 1).

6.7 Let C ∈ C
N×N be a circulant matrix (Gray 2006), that is, row i + 1 is found by

circularly shifting row i one position to the right, where the last element of row i becomes
the first element of row i + 1. The N × N circulant matrix C can be expressed as

C =




z0 z1 · · · · · · zN−1

zN−1 z0 z1 · · · zN−2

zN−2 zN−1 z0 · · · zN−3
...

...
. . .

. . .
...

z1 z2 · · · zN−1 z0


 , (6.290)

where zk ∈ C for all k ∈ {0, 1, . . . , N − 1}. Let the set of all such matrices of size N × N
be denoted C. Circulant matrices are used in signal processing and communications, for
example, when calculating the discrete Fourier transform and when working on cyclic
error correcting codes (Gray 2006).

Let the primary circular matrix (Bernstein 2005, p. 213) be denoted by P N ; it has
size N × N with zeros everywhere except for ones on the diagonal just above the main
diagonal and on the lower left diagonal. As an example for N = 4, then P N is given by

P4 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 . (6.291)

Let the transpose of the first row of the circulant matrix C be given by the N × 1
vector z = [z0, z1, . . . , zN−1]T , where zk ∈ C, such that z ∈ C

N×1. A parameterization
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function F : C
N×1 → C ⊆ C

N×N for generating the circulant matrices in C is given by

C = F(z) =
N−1∑
k=0

zk Pk
N , (6.292)

because the matrix Pk
N contains 0s everywhere except on the k-th diagonal above

the main diagonal and the (N − k)-th diagonal below the main diagonal. Notice that
P N

N = P0
N = I N .

Show that the derivative of C = F(z) with respect to the vector z can be expressed as

Dz F = [vec (I N ) , vec
(

P1
N

)
, . . . , vec

(
P N−1

N

)]
, (6.293)

where Dz F has size N 2 × N .
As an application for how to use the results derived in this exercise, consider the

problem of finding the closest circulant matrix to an arbitrary matrix C0 ∈ C
N×N . This

problem can be formulated as

z = argmin
{z∈CN×1}

‖F(z) − C0‖2
F , (6.294)

where ‖W‖2
F � Tr

{
WW H

}
denotes the squared Frobenius norm (Bernstein 2005,

p. 348) and argmin returns the argument which minimizes the expression stated after
argmin. By using generalized complex-valued matrix derivatives, find the necessary
conditions for optimality of the problem given in (6.294), and show that the solution of
this problem is found as

z = 1

N
(Dz F)T vec(C0), (6.295)

where Dz F is given in (6.293). If the value of z given in (6.295) is used in (6.290), the
closest circulant matrix to C0 is found.

6.8 Let H ∈ C
N×N be a Hankel matrix (Bernstein 2005, p. 83) that is completely

defined by all the 2N − 1 elements in the first row and the last column. Hankel matrices
contain the same elements along the skew-diagonals, that is, (H)i, j = (H)k,l for all
i + j = k + l. An N × N Hankel matrix can be expressed as

H =




zN−1 zN−2 zN−3 · · · z0

zN−2 zN−3 zN−4 z−1

zN−3 zN−4 zN−5 . .
.

z−2
... . .

.

. .
.

. .
. ...

z0 z−1 z−2 · · · z−(N−1)


 , (6.296)

where zk ∈ C. Let the set of all N × N complex-valued Hankel matrices be denoted
by H.
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A possible parameterization function for producing all Hankel matrices in H is F :
C

(2N−1)×1 → H ⊆ C
N×N given by

H = F(z) =
N−1∑

k=−(N−1)

zk J(k)
N , (6.297)

where z ∈ C
(2N−1)×1 contains the 2N − 1 independent complex parameters given by

z = [zN−1, zN−2, . . . , z1, z0, z−1, . . . , z−(N−1)]
T , (6.298)

and where J(k)
N has size N × N with zeros everywhere except for +1 along the

k-th reverse diagonal, where the diagonals are numbered from N − 1 for the left upper
reverse diagonal to −(N − 1) for the right lower reverse diagonal. In this way, the reverse
identity matrix is numbered 0, such that J(0)

N = J N .
Show that the derivatives of F(z) with respect to z can be expressed as

Dz F =
[
vec
(

J(N−1)
N

)
, vec

(
J(N−2)

N

)
, . . . , vec

(
J(−(N−1))

N

)]
, (6.299)

which has size N 2 × (2N − 1).

6.9 Let V ∈ C
N×N be a Vandermonde matrix (Horn & Johnson 1985, p. 29). An

arbitrary N × N complex-valued Vandermonde matrix V can be expressed as

V =




1 z0 z2
0 · · · zN−1

0

1 z1 z2
1 · · · zN−1

1
...

...
...

...
1 zN−1 z2

N−1 · · · zN−1
N−1


 , (6.300)

where zk ∈ C for all k ∈ {0, 1, . . . , N − 1}. Let the set of all such N × N Vandermonde
matrices be denoted by V .

Define z ∈ C
N×1 to be the vector given by z = [z0, z1, . . . , zN−1]T . A parameteriza-

tion function F : C
N×1 → V ⊂ C

N×N for generating the complex-valued Vandermonde
matrix V is

V = F(z) = [1N×1, z�1, z�2, . . . , z�(N−1)
]
, (6.301)

where the special notation A�k is defined as A�k � A � A � . . . � A, where A appears
k times on the right-hand side. If A ∈ C

M×N , then A�1 = A and A�0 � 1M×N , even
when A contains zeros.

Show that the derivative of the parameterization function F with respect to z is given
by

Dz F =




0N×N

I N

2 diag(z)
3 diag2(z)

...
(N − 1) diagN−2(z)




, (6.302)
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where diagk(z) = (diag(z))k and the operator diag(·) is defined in Definition 2.10. The
size of Dz F is N 2 × N .

6.10 Consider the following capacity function C for Gaussian complex-valued MIMO
channels (Telatar 1995):

C = ln
(
det
(

I Mr + HW HH
))

, (6.303)

where H ∈ C
Mr ×Mt is a channel transfer matrix that is independent of the autocorre-

lation matrix W ∈ C
Mt ×Mt . The matrix W is a correlation matrix; thus, it is a positive

semidefinite matrix. The channel matrix H can be expressed with its singular value
decomposition (SVD) as

H = UΣV H , (6.304)

where the matrices U ∈ C
Mr ×Mr and V ∈ C

Mt ×Mt are unitary matrices while the matrix
Σ ∈ C

Mr ×Mt is diagonal and contains the singular values σi ≥ 0 in decreasing order on
its main diagonal, that is, (Σ)i,i = σi , and σi ≥ σ j when i ≤ j .

The capacity function should be minimized over the set of autocorrelation matrices W
satisfying

Tr {W} = ρ, (6.305)

where ρ > 0 is a given constant indicating the transmitted power per sent vector. By
using Hadamard’s inequality in Lemma 2.1, show that the autocorrelation matrix W that
is maximizing the capacity is given by

W = VΛV H , (6.306)

where Λ ∈ C
Mt ×Mt is a diagonal matrix with non-negative diagonal elements satisfying

Tr {Λ} = ρ. (6.307)

Let i ∈ {0, 1, . . . , min{Mr , Mt } − 1}, and let the i-th diagonal element of Λ be denoted
by λi . Show, by using the positive Lagrange multiplier µ, that the diagonal elements of
Λ maximizing the capacity can be expressed as

λi = max

(
0,

1

µ
− 1

σ 2
i

)
. (6.308)

The Lagrange multiplier µ > 0 should be chosen in such a way that the power constraint
in (6.305) is satisfied with equality. The solution in (6.308) is called the water-filling
solution (Telatar 1995).

6.11 Consider the MIMO communication system illustrated in Figure 6.4. The zero-
mean transmitted vector is denoted by z ∈ C

Mt ×1, and its autocorrelation matrix Σz ∈
C

Mt ×Mt is given by

Σz = E
[
zzH
] = BΣx BH , (6.309)

where B ∈ C
Mt ×N represents the precoder matrix, andΣx ∈ C

N×N is the autocorrelation
matrix of the original signal vector x ∈ C

N×1.
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Let the set of all Hermitian Mt × Mt matrices be given by

W = {W ∈ C
Mt ×Mt | W H = W} ⊂ C

Mt ×Mt . (6.310)

The set W is a manifold of Hermitian Mt × Mt matrices. Let W̃ ∈ C
Mt ×Mt be a matrix

with complex-valued independent components, such that W̃ is an unpatterned version of
W ∈ W . In this exercise, as a simplification, the Hermitian matrix W is used to represent
the autocorrelation matrix Σx, even though Σx is positive semidefinite. Hence, we
represent Σx with the Hermitian matrix W. This is a simplification since the set of
Hermitian matrices W is larger than the set of positive semidefinite matrices.

Let g : C
Mt ×Mt × C

Mt ×Mt → C be given as

g(W̃, W̃
∗
) = ln

(
det
(

I Mr + HW̃ H HΣ−1
n

))
. (6.311)

This means that g(W̃, W̃
∗
) has a similar shape as the mutual information; in (6.211);

however, the autocorrelation matrixΣz = BΣx BH is replaced by the unpatterned matrix
W̃. For an arbitrary unpatterned matrix W̃, the function g(W̃, W̃

∗
) is complex valued

in general. Assume that the matrices H and Σ−1
n are independent of W̃, W, and their

complex conjugates.
Show that the derivatives of g with respect to W̃ and W̃

∗
are given by

DW̃ g = vecT

(
HT
(

I Mr + Σ−T
n H∗W̃

T
HT
)−1

Σ−T
n H∗

)
, (6.312)

and

DW̃
∗ g = 01×M2

t
, (6.313)

respectively.
Use the results from Example 6.25 to show that when expressed in the standard basis,

the generalized matrix derivatives of g with respect to W and W∗ are given by

∂

∂W
g = HT

(
I Mr + Σ−T

n H∗WT HT
)−1

Σ−T
n H∗, (6.314)

∂

∂W∗ g = H HΣ−1
n

(
I Mr + HW HHΣ−1

n

)−1
H. (6.315)

Show that[
∂

∂W∗ g

]
W=BΣx BH

BΣx = H HΣ−1
n H B

(
Σ−1

x + BH H HΣ−1
n H B

)−1
. (6.316)

Explain why this is in agreement with Palomar and Verdú (2006, Eq. (23)).

6.12 Assume that the function F : C
N×Q × C

N×Q → C
M×M is given by

F(Z, Z∗) = AZCC H ZH AH � W, (6.317)

where the matrix W was defined in the last equality, and the two matrices A ∈ C
M×N and

C ∈ C
Q×P are independent of the matrix variables Z and Z∗. Show that the derivatives
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of F and F∗ with respect to Z and Z∗ are given by

DZ F = (A∗ Z∗C∗CT
)⊗ A, (6.318)

DZ∗ F = K M,M

[(
AZCC H

)⊗ A∗] , (6.319)

DZ F∗ = K M,M

[(
A∗ Z∗C∗CT

)⊗ A
]
, (6.320)

DZ∗ F∗ = (AZCC H
)⊗ A∗. (6.321)

Let the function g : C
M×M × C

M×M → C be denoted g(W̃, W̃
∗
), where the

matrix W̃ ∈ C
M×M is an unpatterned version of W. Assume that the two derivatives

DW̃ g = vecT
(

∂g
∂W̃

)
and DW̃

∗ g = vecT
(

∂g
∂W̃

∗

)
are available.

Let the composed function h : C
N×Q × C

N×Q → C be given by

h(Z, Z∗) = g(W̃, W̃
∗
)
∣∣∣

W̃=W=F(Z,Z∗)
= g(F(Z, Z∗), F∗(Z, Z∗)). (6.322)

By using the chain rule, show that the derivatives of h with respect to Z and Z∗ are given
by

∂h

∂ Z
= AT

(
∂g

∂W̃
+
(

∂g

∂W̃
∗

)T
)

A∗ Z∗C∗CT , (6.323)

∂h

∂ Z∗ = AH

[(
∂g

∂W̃

)T

+ ∂g

∂W̃
∗

]
W̃=W

AZCC H . (6.324)

6.13 Consider the MIMO system shown in Figure 6.4, and let

W = {W ∈ C
N×N | W H = W}, (6.325)

be the manifold of N × N Hermitian matrices. Let the matrix W ∈ W ⊂ C
N×N be Her-

mitian, and let W representΣx. The unpatterned version of W is denoted by W̃ ∈ C
N×N .

Let g : C
N×N × C

N×N → C be given by the mutual information function in (6.211),
where Σx is replaced by W̃, that is,

g(W̃, W̃
∗
) = ln

(
det
(

I Mr + H BW̃ BH H HΣ−1
n

))
, (6.326)

where the three matrices Σn ∈ C
Mr ×Mr (positive semidefinite), H ∈ C

Mr ×Mt , and B ∈
C

Mt ×N are independent of W̃ and W̃
∗
. Notice that the function g(W̃, W̃

∗
) is in general

complex valued when the input matrix W̃ is unpatterned. Show that the derivatives of g
with respect to W̃ and W̃

∗
are given by

DW̃ g = vecT

(
BT HT

(
I Mr + Σ−T

n H∗ B∗W̃
T

BT HT
)−1

Σ−T
n H∗ B∗

)
, (6.327)

DW̃
∗ g = 01×N 2 , (6.328)

respectively.
Because W is Hermitian, the results from Example 6.25 can be utilized. Use these

results to show that the generalized derivative of g with respect to W and W∗ when using
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the standard basis can be expressed as

∂g

∂W
= BT HT

(
I Mr + Σ−T

n H∗ B∗WT BT HT
)−1

Σ−T
n H∗ B∗, (6.329)

∂g

∂W∗ = BH H HΣ−1
n

(
I Mr + H BW BH H HΣ−1

n

)−1
H B. (6.330)

Show that[
∂

∂W∗ g

]
W=Σx

Σx = BH H HΣ−1
n H B

(
Σ−1

x + BH H HΣ−1
n H B

)−1
. (6.331)

Explain why (6.331) is in agreement with Palomar and Verdú (2006, Eq. (25)).

6.14 Consider the MIMO system shown in Figure 6.4, and let the Hermitian mani-
fold W of size Mr × Mr be given by

W = {W ∈ C
Mr ×Mr | W H = W}. (6.332)

Let the autocorrelation matrix of the noise Σn ∈ C
Mr ×Mr be represented by the

Hermitian matrix W ∈ W ⊂ C
Mr ×Mr . The unpatterned version of W is denoted by

W̃ ∈ C
Mr ×Mr , where it is assumed that W̃ and W are invertible. Let the function

g : C
Mr ×Mr × C

Mr ×Mr → C be defined by replacing Σn by the unpatterned matrix W̃
in the mutual information function of the MIMO system given in (6.211), that is,

g(W̃, W̃
∗
) = ln

(
det
(

I Mr + H BΣx BH H H W̃
−1
))

. (6.333)

Show that the unpatterned derivatives of g with respect to W̃ and W̃
∗

can be expressed
as

∂

∂W̃
g = −W̃

−T
H∗ B∗ΣT

x BT HT
(

I Mr + W̃
−T

H∗ B∗ΣT
x BT HT

)−1
W̃

−T
, (6.334)

∂

∂W̃
∗ g = 0Mr ×Mr , (6.335)

respectively.
By using the results from Example 6.25, show that the generalized derivative of g

with respect to the Hermitian matrices W and W∗ can be expressed as

∂

∂W
g = −W−T H∗ B∗ΣT

x BT HT
(

I Mr + W−T H∗ B∗ΣT
x BT HT

)−1
W−T , (6.336)

∂

∂W∗ g = −W−1
(

I Mr + H BΣx BH H H W−1
)−1

H BΣx BH H H W−1, (6.337)

respectively, when the standard basis is used to expand the Hermitian matrices in the
manifold W .

Show that

∂

∂W∗ g

∣∣∣∣
W=Σn

= −Σ−1
n H B

(
Σ−1

x + BH H HΣ−1
n H B

)−1
BH H HΣ−1

n . (6.338)

Explain why this result is in agreement with Palomar and Verdú (2006, Eq. (27)).
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6.15 Let the function g : C
N×N × C

N×N → R be given by

g(W̃, W̃
∗
) = ∥∥AW̃ − B

∥∥2

F
= Tr

{(
AW̃ − B

) (
W̃

H
AH − BH

)}
, (6.339)

where W̃ ∈ C
N×N is unpatterned, while the two matrices A ∈ C

M×N and B ∈ C
M×N are

independent of W̃ and W̃
∗
. Assume that rank (A) = N . In this exercise, the function g

will be minimized under different constraints on the input matrix variables, and the
results derived earlier in this chapter can be used to derive some of these results.

For all cases given below, show that the inverse matrices involved in the expressions
exist.
(a) Show that the derivatives of g with respect to W̃ and W̃

∗
are given by

DW̃ g = vecT
(

AT
(

A∗W̃
∗ − B∗

))
, (6.340)

DW̃
∗ g = vecT

(
AH
(

AW̃ − B
))

, (6.341)

respectively.

Because DW̃ g = vecT
(

∂g
∂W̃

)
and DW̃

∗ g = vecT
(

∂g
∂W̃

∗

)
, it follows that

∂g

∂W̃
= AT

(
A∗W̃

∗ − B∗
)

, (6.342)

∂g

∂W̃
∗ = AH

(
AW̃ − B

)
. (6.343)

By using the above derivatives, show that the minimum unconstrained value of W̃
is given by

W̃ = (AH A
)−1

AH B = A+ B, (6.344)

where (2.80) is used in the last equality.
(b) Assume that W is diagonal such that W ∈ W = {W ∈ C

N×N | W = I N � W}.
Show that

∂

∂W
g(W, W∗) = I � [AT (A∗W∗ − B∗)

]
. (6.345)

By solving ∂
∂W g(W, W∗) = 0N×N , show that the N × N diagonal matrix that mini-

mizes g must satisfy

vecd (W) = [I N � (AH A
)]−1

vecd

(
AH B

)
. (6.346)

(c) Assume that W is symmetric, such that W ∈ W = {W ∈ C
N×N | WT = W}. Show

that

∂

∂W
g(W, W∗) = AT A∗W∗ + W∗ AH A − I N � [AT A∗W∗]

− AT B∗ − BH A + I N � [AT B∗] . (6.347)
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By solving ∂
∂W g(W, W∗) = 0N×N , show that the symmetric W that minimizes g is

given by

vec (W) = [I N ⊗ (AH A
)+ (AH A

)⊗ I N − Ld LT
d

{
I N ⊗ (AH A

)}]−1

× vec
(

AH B + BT A∗ − I N � (AH B
))

. (6.348)

Show that if W is satisfying (6.348), then it is symmetric, that is, WT = W.
(d) Assume that W is skew-symmetric such that W ∈ W = {W ∈ C

N×N | WT = −W}.
Show that

∂

∂W
g(W, W∗) = AT A∗W∗ + W∗ AH A − AT B∗ + BH A. (6.349)

By solving ∂
∂W g(W, W∗) = 0N×N , show that the skew-symmetric W that minimizes

g is given by

vec (W) = [I N ⊗ (AH A
)+ (AH A

)⊗ I N

]−1
vec
(

AH B − BT A∗) . (6.350)

Show that if W is satisfying (6.350), then it is skew-symmetric, that is, WT = −W.
(e) Assume that W is Hermitian, such that W ∈ W = {W ∈ C

N×N | W H = W}. Show
that

∂

∂W
g(W, W∗) = AT A∗WT + WT AT A∗ − AT B∗ − BT A∗. (6.351)

By solving the equation ∂
∂W g(W, W∗) = 0N×N , show that the Hermitian W that

minimizes g is given by

vec (W) = [(AT A∗)⊗ I N + I N ⊗ (AH A
)]−1

vec
(

AH B + BH A
)
. (6.352)

Show that if W is satisfying (6.352), then it is Hermitian, that is, W H = W.
(f) Assume that W is skew-Hermitian, such that W ∈ W = {W ∈ C

N×N | W H =
−W}. Show that

∂

∂W
g(W, W∗) = −AT A∗WT − WT AT A∗ − AT B∗ + BT A∗. (6.353)

By solving ∂
∂W g(W, W∗) = 0N×N , show that the skew-Hermitian W that minimizes

g is given by

vec (W) = [(AT A∗)⊗ I N + I N ⊗ (AH A
)]−1

vec
(

AH B − BH A
)
. (6.354)

Show that if W is satisfying (6.354), then it is skew-Hermitian, that is, W H = −W.

6.16 Let B = {b0, b1, · · · , bN−1} be a basis for C
N×1, such that bi ∈ C

N×1 are linearly
independent and they span C

N×1. Let the matrix U ∈ C
N×N be given by

U = [b0, b1, . . . , bN−1] . (6.355)
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We say that the vector z ∈ C
N×1 has the coordinates c0, c1, . . . , cN−1 with respect to the

basis B if

z =
N−1∑
i=0

ci bi = [b0, b1, . . . , bN−1]




c0

c1
...

cN−1


 = Uc, (6.356)

where c = [c0, c1, . . . , cN−1]T ∈ C
N×1. If and only if (6.356) is satisfied, the notation

[z]B = c is used. Show that the coordinates of z with respect to the basis B are the same
as the coordinates of U−1z with respect to the standard basis {e0, e1, . . . , eN−1}, where
ei ∈ Z

N×1
2 is defined in Definition 2.16.

Let A = {a0, a1, . . . , aM−1} be a basis of C
1×M where ai ∈ C

1×M . The matrix V ∈
C

M×M is given by

V =




a0

a1
...

aM−1


 . (6.357)

Let x ∈ C
1×M ; then it is said that the vector x has coordinates d0, d1, . . . , dM−1 with

respect to the basis A if

x =
M−1∑
i=0

di ai = [d0, d1, . . . , dM−1]




a0

a1
...

aM−1


 = dV, (6.358)

where d = [d0, d1, . . . , dM−1] ∈ C
1×M . If and only if (6.358) holds, then the nota-

tion [x]A = d . Show that the coordinates of x with respect to A are the same as the coor-
dinates of xV−1 with respect to the standard basis {eT

0 , eT
1 , . . . , eT

M−1}, where ei ∈ Z
M×1
2

is given in Definition 2.16.



7 Applications in Signal Processing
and Communications

7.1 Introduction

In this chapter, several examples of how the theory of complex-valued matrix derivatives
can be used as an important tool to solve research problems taken from signal processing
and communications. The developed theory can be used to solve problems in areas where
the unknown matrices are complex-valued matrices. Examples of such areas are signal
processing and communications. Often in these areas, the objective function is a real-
valued function that depends on a continuous complex-valued matrix and its complex
conjugate. In Hjørungnes and Ramstad (1999) and Hjørungnes (2000), matrix derivatives
were used to optimize filter banks used for source coding. The book by Vaidyanathan
et al. (2010) contains material on how to optimize communication systems by means
of complex-valued derivatives. Complex-valued derivatives were applied to find the
Cramer-Rao lower bound for complex-valued parameters in van den Bos (1994b) and
Jagannatham and Rao (2004)

The rest of this chapter is organized as follows: Section 7.2 presents a problem from
signal processing on how to find the derivative and the Hessian of a real-valued function
that depends on the magnitude of the Fourier transform of the complex-valued argument
vector. In Section 7.3, an example from signal processing is studied in which the sums of
the squared absolute values of the off-diagonal elements in a covariance matrix are min-
imized. This problem of minimizing the off-diagonal elements has applications in blind
carrier frequency offset (CFO) estimation. A multiple-input multiple-output (MIMO)
precoder for coherent detection is designed in Section 7.4 for minimizing the exact
symbol error rate (SER) when an orthogonal space-time block code (OSTBC) is used
in the transmitter to encode the signal for communication over a correlated Ricean
channel. In Section 7.5, a finite impulse response (FIR) MIMO filter system is studied.
Necessary conditions for finding the minimum mean square error (MSE) receive filter
are developed for a given transmit filter, and vice versa. Finally, exercises related to this
chapter are presented in Section 7.6.

7.2 Absolute Value of Fourier Transform Example

The case that was studied in Osherovich, Zibulevsky, and Yavneh (2008) will be con-
sidered in this section. In Osherovich, Zibulevsky, and Yavneh (2008), the problem
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studied is how to reconstruct a signal from the absolute value of the Fourier transform
of a signal. This problem has applications in, for example, how to do visualization of
nano-structures. In this section, the derivatives and the Hessian of an objective function
that depends on the magnitude of the Fourier transform of the original signal will be
derived.

The rest of this section is organized as follows: Four special functions and the inverse
discrete Fourier transform (DFT) matrix are defined in Subsection 7.2.1. The objective
function that should be minimized is defined in Subsection 7.2.2. In Subsection 7.2.3,
the first-order differential and the derivatives of the objective function are found. Sub-
section 7.2.4 contains a calculation of the second-order differential and the Hessian of
the objective function.

7.2.1 Special Function and Matrix Definitions

Four special functions and one special matrix are needed in this section, and they are
now defined. The four functions are (1) the component-wise absolute value of a vector,
(2) the component-wise principal argument of complex vectors, (3) the inverse of the
component-wise absolute value of a complex vector, which does not contain any zeros,
and (4) the exponential function of a vector. These functions are used to simplify the
presentation.

Definition 7.1 Let the function | · | : C
N×1 → {R+ ∪ {0}}N×1 return the component-

wise absolute value of the vector it is applied to. If z ∈ C
N×1, then,

|z| =

∣∣∣∣∣∣∣∣∣




z0

z1
...

zN−1



∣∣∣∣∣∣∣∣∣
=




|z0|
|z1|

...
|zN−1|


 , (7.1)

where zi is the i-th component of z, where i ∈ {0, 1, . . . , N − 1}.

Definition 7.2 The function ∠(·) : C
N×1 → (−π, π]N×1 returns the component-wise

principal argument of the vector it is applied to. If z ∈ C
N×1, then,

∠z = ∠




z0

z1
...

zN−1


 =




∠z0

∠z1
...

∠zN−1


 , (7.2)

where the function ∠· : C → (−π, π] returns the principal value of the argu-
ment (Kreyszig 1988, Section 12.2) of the input.
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Definition 7.3 The function | · |−1 : {C \ {0}}N×1 → (R+)N×1 returns the component-
wise inverse of the absolute values of the input vector. If z ∈ {C \ {0}}N×1, then,

|z|−1 =




|z0|−1

|z1|−1

...
|zN−1|−1


 , (7.3)

where zi �= 0 is the i-th component of z, where i ∈ {0, 1, . . . , N − 1}.
Definition 7.4 Let z ∈ C

N×1, then the exponential function of a vector ez is defined as
the N × 1 vector:

ez =




ez0

ez1

...
ezN−1


 , (7.4)

where zi is the i-th component of the vector z, where i ∈ {0, 1, . . . , N − 1}.
Definitions 7.1, 7.2, 7.3, and 7.4 are presented above for column vectors; however,

they are also valid for row vectors.
Using the three functions |z|, ∠z, and e∠z given through Definitions 7.1, 7.2, and

7.4, the vector z ∈ C
N×1 can be expressed as

z = exp ( diag (∠z)) |z| = |z| � e∠z, (7.5)

where diag(·) is found in Definition 2.10, and where exp(·) is the exponential matrix
function defined in Definition 2.5, such that exp ( diag (∠z)) has size N × N . If z ∈
(C \ {0})N×1, then it follows from (7.5) that

e z = z � |z|−1. (7.6)

The complex conjugate of z is given by

z∗ = exp (− diag (∠z)) |z| = |z| � e−∠z . (7.7)

If z ∈ (C \ {0})N×1, then it follows from (7.7) that

e− z = z∗ � |z|−1. (7.8)

One frequently used matrix in signal processing is defined next. This is the inverse
DFT (Sayed 2003, p. 577).

Definition 7.5 The inverse DFT matrix of size N × N is denoted by FN ; it is a unitary
symmetric matrix with the (k, l)-th element given by

(FN )k,l = 1√
N

e
kl2π

N , (7.9)

where k, l ∈ {0, 1, . . . , N − 1}.
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It is observed that the inverse DFT matrix is symmetric, hence, FT
N = FN . The DFT

matrix of size N × N is a unitary matrix that is the inverse of the inverse DFT matrix.
Therefore, the DFT matrix is given by

F−1
N = FH

N = F∗
N . (7.10)

7.2.2 Objective Function Formulation

Let w ∈ C
N×1, and let the real-valued function g : C

N×1 × C
N×1 → R be given by

g(w, w∗) = ‖|w | − r‖2 = (|w |T − r T
)

(|w | − r ) = |w |T |w | − 2r T |w | + ‖r‖2,

(7.11)

where r ∈ (R+)N×1 is a constant vector that is independent of w , and w∗, and where
‖a‖ denotes the Euclidean norm of the vector a ∈ C

N×1, i.e., ‖a‖2 = aH a. One goal of
this section is to find the derivative of g with respect to w and w∗.

The function h : C
N×1 × C

N×1 → R is defined as

h(z, z∗) = g(w, w∗)
∣∣
w=F∗

N z
= g(F∗

N z, FN z∗) = ∥∥|F∗
N z| − r

∥∥2
, (7.12)

where the vector F∗
N z is the DFT transform of the vector z ∈ C

N×1. Another goal of
this section is to find the derivative of h with respect to z and z∗; this will be achieved by
the chain rule presented in Theorem 3.1 by first finding the derivative of g with respect
to w and w∗. The function h measures the distance between the magnitude of the DFT
of the original vector z ∈ C

N×1 and the constant vector r ∈ (R+)N×1.

7.2.3 First-Order Derivatives of the Objective Function

One way to find the derivative of g is through the differential of g, which can be expressed
as

dg = (d|w |)T |w | + |w |T d|w | − 2r T d|w | = 2
(|w |T − r T

)
d|w |. (7.13)

It is seen from (7.13) that an expression of d|w | is needed. From (3.22), (4.13), and
(4.14), it follows that the differential of |wi | is given by

d|wi | = 1

2
e−∠wi dwi + 1

2
e∠wi dw∗

i , (7.14)
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where i ∈ {0, 1, . . . , N − 1}, and where wi is the i-th component of the vector w . Now,
d|w | = [d|w0|, d|w1|, . . . , d|wN−1|]T can be found by

d|w | =




d|w0|
d|w1|

...
d|wN−1|


 = 1

2




e−∠w0 dw0

e−∠w1 dw1
...

e−∠wN−1 dwN−1


+ 1

2




e∠w0 dw∗
0

e∠w1 dw∗
1

...
e∠wN−1 dw∗

N−1




= 1

2
e−∠w � dw + 1

2
e∠w � dw∗

= 1

2
exp (− diag (∠w)) dw + 1

2
exp ( diag (∠w)) dw∗, (7.15)

where it has been used that exp(diag(a))b = ea � b when a, b ∈ C
N×1, and that

diag (∠w) =




∠w0 0 · · · 0
0 ∠w1 · · · 0
...

...
. . .

...
0 0 · · · ∠wN−1


 . (7.16)

By inserting the results from (7.15) into (7.13), the first-order differential of g can be
expressed as

dg = 2
(|w |T − r T

) [1

2
exp (− diag (∠w)) dw + 1

2
exp ( diag (∠w)) dw∗

]

= (|w |T − r T
) [

exp (− diag (∠w)) dw + exp ( diag (∠w)) dw∗] . (7.17)

From dg, the derivatives of g with respect to w and w∗ can be identified as

Dw g = (|w |T − r T
)

exp (− diag (∠w))

= |w |T exp (− diag (∠w)) − r T exp (− diag (∠w))

= w H − r T exp (− diag (∠w)) = w H − r T � e− (∠w)T
, (7.18)

and

Dw∗ g = (|w |T − r T
)

exp ( diag (∠w))

= |w |T exp ( diag (∠w)) − r T exp ( diag (∠w))

= w T − r T exp ( diag (∠w)) = w T − r T � e (∠w)T
, (7.19)

respectively, where (7.5) and (7.7) have been used.
To use the chain rule to find the derivative of h, let us first define the function that

returns the DFT of the input vector f : C
N×1 × C

N×1 → C
N×1; f (z, z∗) is given by

f (z, z∗) = F∗
N z, (7.20)
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where FN is given in Definition 7.5. By calculating the differentials of f and f ∗, it is
found that

Dz f = F∗
N , (7.21)

Dz∗ f = 0N×N , (7.22)

Dz f ∗ = 0N×N , (7.23)

Dz∗ f ∗ = FN . (7.24)

The chain rule in Theorem 3.1 is now used to find the derivatives of h in (7.12) with
respect to z and z∗ as

Dzh = Dw g|w=F∗
N z Dz f + Dw∗ g|w=F∗

N z Dz f ∗

= [w H − r T exp (− diag (∠w))
]

w=F∗
N z

F∗
N

= zH FN F∗
N − r T exp

(− diag
(
∠
(

F∗
N z
)))

F∗
N

= zH − r T exp
(− diag

(
∠
(

F∗
N z
)))

F∗
N

= zH −
[
r T � (FN z∗)T � ∣∣FN z∗∣∣−T

]
F∗

N , (7.25)

where |z|−T �
(|z|−1

)T = |zT |−1 (see Definition 7.3), and

Dz∗ h = Dw g|w=F∗
N z Dz∗ f + Dw∗ g|w=F∗

N z Dz∗ f ∗

= [w T − r T exp ( diag (∠w))
]

w=F∗
N z

FN

= zT F∗
N FN − r T exp

(
 diag

(
∠
(

F∗
N z
)))

FN

= zT − r T exp
(
 diag

(
∠
(

F∗
N z
)))

FN

= zT −
[
r T � (F∗

N z
)T � ∣∣F∗

N z
∣∣−T
]

FN , (7.26)

where the results from (7.18), (7.19), (7.21), (7.22), (7.23), and (7.24) were used.

7.2.4 Hessians of the Objective Function

The second-order differential can be found by calculating the differential of the first-
order differential of g. From (7.17), (7.18), and (7.19), it follows that dg is given by

dg = [w H − r T exp (− diag (∠w))
]

dw + [w T − r T exp ( diag (∠w))
]

dw∗.
(7.27)

From (7.27), it is seen that to proceed to find d2g, the following differential is needed:

d exp ( diag (∠w)) =




de∠w0 0 · · · 0
0 de∠w1 · · · 0
...

...
. . .

...
0 0 · · · de∠wN−1


 . (7.28)
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Hence, the differential de∠wi is needed. This expression can be found as

de∠wi = ∂e∠wi

∂wi
dwi + ∂e∠wi

∂w∗
i

dw∗
i = e∠wi 

(−

2wi

)
dwi + e∠wi 

(


2w∗
i

)
dw∗

i

= 1

2wi e−∠wi
dwi − 1

2w∗
i e−∠wi

dw∗
i = 1

2|wi |dwi − 1

2|wi |e−2∠wi
dw∗

i ,

(7.29)

where (3.22), (4.21), and (4.22) were utilized. By taking the complex conjugate of both
sides of (7.29), it is found that

de−∠wi = − 1

2|wi |e2∠wi
dwi + 1

2|wi |dw∗
i . (7.30)

The second-order differential of g is found by applying the differential operator on
both sides of (7.27) to obtain

d2g =[dw H −r T d exp (− diag (∠w))
]

dw +[dw T −r T d exp ( diag (∠w))
]

dw∗.
(7.31)

From (7.28) and (7.29), it follows that

d exp ( diag (∠w))

= 1

2




dw0
|w0| 0 · · · 0

0 dw1
|w1| · · · 0

...
...

. . .
...

0 0 · · · dwN−1

|wN−1|


− 1

2




e2∠w0 dw∗
0

|w0| 0 · · · 0

0
e2∠w1 dw∗

1
|w1| · · · 0

...
...

. . .
...

0 0 · · · e2∠wN−1 dw∗
N−1

|wN−1|




= 1

2
diag

(|w |−1 � dw
)− 1

2
diag

(
e2∠w � |w |−1 � dw∗) , (7.32)

where � denotes the Hadamard product defined in Definition 2.7, the special nota-
tion |w |−1 is defined in Definition 7.3, and e∠w �

[
e∠w0 , e∠w1 , . . . , e∠wN−1

]T
fol-

lows from Definition 7.4. By complex conjugation of (7.32), it follows that

d exp (− diag (∠w))= −1

2
diag

(
e−2∠w �|w |−1�dw

)+ 1

2
diag

(|w |−1�dw∗) .
(7.33)
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By putting together (7.31), (7.32), and (7.33), it is found that the second-order differential
of g can be expressed as

d2g =
[

dw H −r T 1

2

[−diag
(
e−2∠w � |w |−1 � dw

)+diag
(|w |−1 � dw∗)]] dw

+
[

dw T − r T 1

2

[
diag

(|w |−1 � dw
)− diag

(
e2∠w � |w |−1 � dw∗)]] dw∗

= (dw H
) [

2I N −diag
(
r �|w |−1

)]
dw +(dw T

) 1

2
diag

(
r �|w |−1�e−2∠w

)
dw

+ (dw H
) 1

2
diag

(
r � |w |−1 � e2∠w

)
dw∗, (7.34)

where it is used that aT diag(b � c) = bT diag(a � c) for a, b, c ∈ C
N×1. From the

theory developed in Chapter 5, it is possible to identify the Hessians of g from d2g. This
can be done by first noticing that the augmented complex-valued matrix variable W
introduced in Subsection 5.2.2 is now given by

W = [w w∗] ∈ C
N×2. (7.35)

To identify the Hessian matrix HW,W g ∈ C
2N×2N , the second-order differential d2g

should be rearranged into the same form as (5.53). This can be done as follows:

d2g =(d vecT (W)
)[ 1

2 diag
(
r �|w |−1�e−2∠w

)
I N − 1

2 diag
(
r �|w |−1

)
I N − 1

2 diag
(
r �|w |−1

)
1
2 diag

(
r � |w |−1 � e2∠w

) ]

× d vec (W) �
(
d vecT (W)

)
Ad vec (W) , (7.36)

where the middle matrix A ∈ C
2N×2N was defined. It is observed that the matrix A is

symmetric (i.e., AT = A). The Hessian matrixHW,W g can now be identified from (5.55)
as A, hence,

HW,W g = A =
[ 1

2 diag
(
r �|w |−1�e−2∠w

)
I N − 1

2 diag
(
r �|w |−1

)
I N − 1

2 diag
(
r �|w |−1

)
1
2 diag

(
r � |w |−1 � e2∠w

) ] .

(7.37)

It remains to identify the complex Hessian matrix of the function h in (7.12). This
complex Hessian matrix is denoted by HZ,Zh, where the augmented complex-valued
matrix variable is given as

Z = [z, z∗] ∈ C
N×2. (7.38)

The complex Hessian matrix HZ,Zh can be identified by the chain rule for complex
Hessian matrices in Theorem 5.1. The function F : C

N×2 → C
N×2 is first identified as

F(Z) = [F∗
N z, FN z∗] = [[F∗

N 0N×N

]
vec (Z) , [0N×N FN ] vec (Z)

]
. (7.39)

The derivative of F with respect to Z can be identified from

d vec (F) =
[

F∗
N 0N×N

0N×N FN

]
d vec (Z) . (7.40)
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From this expression of d vec (F), it is seen that d2 F = 02N×2N , and that

DZ F =
[

F∗
N 0N×N

0N×N FN

]
. (7.41)

The scalars R and S in Theorem 5.1 are identified as R = S = 1; hence, it follows
from (5.91) that HZ,Zh is given by

HZ,Zh =[1⊗(DZ F)T
] [
HW,W g

]
DZ F =

[
F∗

N 0N×N

0N×N FN

]
A

[
F∗

N 0N×N

0N×N FN

]

=
[

1
2 F∗

N diag
(
r �|w |−1�e−2∠w

)
F∗

N I N − 1
2 F∗

N diag
(
r �|w |−1

)
FN

I N − 1
2 FN diag

(
r �|w |−1

)
F∗

N
1
2 FN diag

(
r � |w |−1 � e2∠w

)
FN

]
.

(7.42)

It is observed that the final form of HZ,Zh in (7.42) is symmetric.

7.3 Minimization of Off-Diagonal Covariance Matrix Elements

This application example is related to the problem studied in Roman & Koivunen (2004)
and Roman, Visuri, and Koivunen (2006), where blind CFO estimation in orthogonal
frequency-division multiplexing (OFDM) is studied. Let the N × N covariance matrixΦ
be given by1

Φ = FH
N C H (µ)RC(µ)FN , (7.43)

where FN denotes the symmetric unitary N × N inverse DFT matrix (see Definition 7.5).
The matrix R is a given N × N positive definite autocorrelation matrix, the diagonal
N × N matrix C : R → C

N×N is dependent on the real variable µ, and C(µ) is given
by

C(µ) =




1 0 · · · 0

0 e
2πµ

N · · · 0
...

...
. . .

...

0 0 · · · e
2πµ(N−1)

N


 , (7.44)

where µ ∈ R. It can be shown that ΦH = Φ and C H (µ) = C∗(µ) = C(−µ). The covari-
ance matrix Φ in (7.43) is a simplified version of Roman and Koivunen (2004, Eq. (10)).
If the matrix Φ is diagonal, it means that the frequency offset is perfectly compen-
sated. Hence, the objective is to choose µ such that the matrix Φ becomes as close to a
diagonal matrix as possible. One possible real scalar objective function f (µ) that could
be minimized to make the matrix Φ become as diagonal as possible is the sum of the
squared magnitude of the off-diagonal elements of the matrix Φ. The term Tr

{
ΦΦH

}
is the squared Frobenius norm of Φ, hence, it is the sum of the absolute squared value

1 This covariance matrix corresponds to Roman and Koivunen (2004, Eq. (11)) when the cyclic prefix is set
to 0.
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of all elements of Φ. Furthermore, the term Tr
{
Φ � Φ∗} is the sum of all the squared

absolute values of the diagonal elements of Φ. Hence, the objective function f (µ) can
be expressed as

f (µ) =
N−1∑
k=0

N−1∑
l=0
l �=k

∣∣(Φ)k,l

∣∣2 = Tr
{
ΦΦH

}− Tr
{
Φ � Φ∗} = Tr

{
Φ2
}− Tr {Φ � Φ} ,

(7.45)
where it has been used that Φ is Hermitian and, therefore, has real diagonal elements.

The goal of this section is to find an expression of the derivative of f (µ) with respect
to µ ∈ R. This will be accomplished by the developed theory in this book; in particular,
the chain rule will be used.

Define the function Φ : C
N×N × C

N×N → C
N×N given by

Φ(C̃, C̃
∗
) = F∗

N C̃
∗
RC̃ FN , (7.46)

where the matrix C̃ ∈ C
N×N is an unpatterned version2 of the matrix C given in (7.44).

Define another function g : C
N×N → R by

g(Φ̃) = Tr
{
Φ̃

2
}

− Tr
{
Φ̃ � Φ̃

}
, (7.47)

where Φ̃ ∈ C
N×N is a matrix with independent components. The total objective func-

tion f (µ) can be expressed as

f (µ) = g(Φ̃)
∣∣
Φ̃=Φ(C̃,C̃

∗
)
∣∣

C̃=C(µ)

= g(Φ̃)
∣∣
Φ̃=Φ(C(µ),C∗(µ))

= g(Φ(C(µ), C∗(µ))). (7.48)

Applying the chain rule in Theorem 3.1 leads to

Dµ f = (
DΦ̃g

)∣∣
Φ̃=Φ(C(µ),C∗(µ))

{(
DC̃Φ

)∣∣
C̃=C(µ)

DµC

+ (DC̃
∗Φ
)∣∣

C̃=C(µ)
DµC∗

}
. (7.49)

All the derivatives in (7.49) are found in the rest of this section. The derivatives DµC
and DµC∗ are obtained by component-wise derivation, and they can be expressed as

DµC(µ) = vec







0 0 · · · 0

0 2π

N e
2πµ

N · · · 0
...

...
. . .

...

0 0 · · · 2π(N−1)
N e

2πµ(N−1)
N





 , (7.50)

DµC∗(µ) = −DµC(−µ) = (DµC(µ)
)∗

. (7.51)

The differential of the function Φ is calculated as

dΦ = F∗
N C̃

∗
R
(
dC̃
)

FN + F∗
N

(
dC̃

∗)
RC̃ FN . (7.52)

2 The same convention as used in Chapter 6 is used here to show that a matrix contains independent compo-
nents. Hence, the symbol C̃ is used for an unpatterned version of the matrix C , which is a diagonal matrix
(see (7.44)).
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Applying the vec(·) operator to this equation leads to

d vec(Φ)=
[

FN ⊗
(

F∗
N C̃

∗
R
)]

d vec
(
C̃
)+
[(

FN C̃
T

RT
)

⊗ F∗
N

]
d vec

(
C̃

∗)
.

(7.53)

From this equation, the derivatives DC̃Φ and DC̃
∗Φ are identified as follows:

DC̃Φ = FN ⊗
(

F∗
N C̃

∗
R
)

, (7.54)

DC̃
∗Φ =

(
FN C̃

T
RT
)

⊗ F∗
N . (7.55)

The derivative that remains to be found in (7.49) is DΦ̃g, and DΦ̃g can be found through
the differential of g in the following way:

dg = 2 Tr
{
Φ̃dΦ̃

}− 2 Tr
{
Φ̃ � dΦ̃

}
= 2 vecT

(
Φ̃

T
)

d vec
(
Φ̃
)− 2 vecT

(
diag(vecd (Φ̃))

)
d vec

(
Φ̃
)

= 2 vecT
(
Φ̃

T − diag(vecd (Φ̃))
)

d vec
(
Φ̃
)

= 2 vecT
(
Φ̃

T − I N � Φ̃
)

d vec
(
Φ̃
)
, (7.56)

where the identities from Exercises 7.1 and 7.2 were utilized in the second and last
equalities, respectively. Hence,

DΦ̃g = 2 vecT
(
Φ̃

T − I N � Φ̃
)

, (7.57)

and now the expression Dµ f can be found by (7.49) because all the derivatives on the
right-hand side of the equation have been found.

7.4 MIMO Precoder Design for Coherent Detection

This section follows the presentation given in Hjørungnes and Gesbert (2007c) and
shows in greater detail how the theory of complex-valued matrix derivatives can be
used to derive a fixed point method for precoder optimization. For an arbitrary given
orthogonal space-time block code (OSTBC), exact symbol error rate (SER) expressions
will be derived for a precoded MIMO system for communication over a correlated
Ricean channel. The receiver employs maximum likelihood decoding (MLD) and has
knowledge of the exact MIMO channel coefficients; the transmitter knows only the
channel statistics, that is, the Ricean factor, the line-of-sight (LOS) component, and the
autocorrelation matrix of the fading component of the channel. An iterative method is
derived for finding the exact minimum SER precoder for M-PSK, M-PAM, and M-QAM
signaling based on complex-valued matrix derivatives.

The rest of this section is organized as follows: In Subsection 7.4.1, the block model
of the MIMO system, which constitutes a transmitter containing an OSTBC and a
precoder, the MIMO channel, and the MLD in the receiver, is presented. A model for the
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x̂k

Mt × N
Mt × B Mr × Mt

x̂x

Mr × N

xk

L × 1L × 1

yk

B × N

MLD

(b)

(a)

OSTBC

√
α

Z

H

V

Y

MLDF

C(x)

vk

Figure 7.1 (a) Block model of the linearly precoded OSTBC MIMO system. (b) The equivalent
system is given by L SISO system of this type. Adapted from Hjørungnes and Gesbert (2007c),
C© 2007 IEEE.

correlated Ricean MIMO channel is presented in Subsection 7.4.2. The studied MIMO
system is equivalent to a single-input single-output (SISO) system, which is presented in
Subsection 7.4.3. Exact SER expressions are derived in Subsection 7.4.4. The problem
of finding the minimum SER precoder under a power constraint is formulated and solved
in Subsection 7.4.5.

7.4.1 Precoded OSTBC System Model

Figure 7.1 (a) shows the block MIMO system model with Mt transmit and Mr receive
antennas. One block of L symbols x0, x1, . . . , xL−1 is transmitted by means of an
OSTBC matrix C(x) of size B × N , where B and N are the space and time dimensions
of the given OSTBC, respectively, and x = [x0, x1, . . . , xL−1]T . It is assumed that the
OSTBC is given. Let xi ∈ A, where A is a signal constellation set such as M-PAM,
M-QAM, or M-PSK. If bits are used as inputs to the system, L log2 |A| bits are used to
produce the vector x, where | · | denotes cardinality. Assume that E

[|xi |2
] = σ 2

x for all
i ∈ {0, 1, . . . , L − 1}. Since the OSTBC C(x) is orthogonal, the following holds:

C(x)C H (x) = a
L−1∑
i=0

|xi |2 I B, (7.58)

where the constant a is OSTBC dependent. For example, a = 1 if C(x) = GT
2 , C(x) =

HT
3 , or C(x) = HT

4 in Tarokh, Jafarkhani, and Calderbank (1999, pp. 452–453), and
a = 2 if C(x) = (G3

c )T or C(x) = (G4
c )T in Tarokh et al. (1999, p. 1464). However, the

presented theory holds for any given OSTBC. The spatial rate of the code is L/N .
Before each code word C(x) is launched into the MIMO channel H, it is precoded

with a memoryless complex-valued matrix F of size Mt × B, such that the Mr × N
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receive signal matrix Y becomes

Y = HFC(x) + V, (7.59)

where the additive noise is contained in the block matrix V of size Mr × N , where
all the components are complex Gaussian circularly symmetric and distributed with
independent components having variance N0; H is the channel transfer MIMO matrix.
The receiver is assumed to know the channel matrix H and the precoder matrix F
exactly, and it performs MLD of block Y of size Mr × N .

7.4.2 Correlated Ricean MIMO Channel Model

In this section, it is assumed that a quasi-static non–frequency selective correlated Ricean
fading channel model (Paulraj et al. 2003) is used. Let R be the general Mt Mr × Mt Mr

positive definite autocorrelation matrix for the fading part of the channel coefficients, and

let
√

K
1+K H̄ be the mean value of the channel coefficients. The mean value represents

the LOS component of the MIMO channel. The factor K ≥ 0 is called the Ricean
factor (Paulraj et al. 2003). A channel realization of the correlated channel is found from

vec (H) =
√

K

1 + K
vec
(

H̄
)+
√

1

1 + K
vec
(

HFading

)

=
√

K

1 + K
vec
(

H̄
)+
√

1

1 + K
R1/2 vec (Hw) , (7.60)

where R1/2 is the unique positive definite matrix square root (Horn & Johnson 1991)
of the assumed invertible matrix R, where R = E

[
vec
(

HFading

)
vecH

(
HFading

)]
is

the autocorrelation matrix of the Mr × Mt fading component HFading of the channel,
and Hw of size Mr × Mt is complex Gaussian circularly symmetric distributed with
independent components having zero mean and unit variance. The notation vec (Hw) ∼
CN
(
0Mt Mr ×1, I Mt Mr

)
is used to show that the distribution of the vector vec (Hw) is

circularly symmetric complex Gaussian with mean value 0Mt Mr ×1 given in the first
argument in CN (·, ·), and its autocovariance matrix I Mt Mr in the second argument

in CN (·, ·). When using this notation, vec (H) ∼ CN
(√

K
1+K vec

(
H̄
)
, 1

1+K R
)

.

7.4.3 Equivalent Single-Input Single-Output Model

Define the positive semidefinite matrix Φ of size Mt Mr × Mt Mr as

Φ = R1/2
[(

F∗FT
)⊗ I Mr

]
R1/2. (7.61)

This matrix plays an important role in the presented theory in finding the instantaneous
effective channel gain and the exact average SER. Let the eigenvalue decomposition of
this Hermitian positive semidefinite matrix Φ be given by

Φ = UΛU H , (7.62)
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where U ∈ C
Mt Mr ×Mt Mr is unitary and Λ ∈ R

Mt Mr ×Mt Mr is a diagonal matrix containing
the non-negative eigenvalues λi of Φ on its main diagonal.

It is assumed that R is invertible. Define the real non-negative scalar α by

α � ‖HF‖2
F = Tr

{
I Mr HFFH H H

} = vecH (H)
[(

F∗FT
)⊗ I Mr

]
vec (H)

=
[√

1

1 + K
vecH (Hw) R1/2+

√
K

1 + K
vecH

(
H̄
)]

× [(F∗FT
)⊗ I Mr

][√ 1

1 + K
R1/2vec (Hw)+

√
K

1 + K
vec
(

H̄
)]

= 1

1 + K

[
vecH (Hw) +

√
K vecH

(
H̄
)

R−1/2
]
Φ

×
[
vec (Hw) +

√
K R−1/2 vec

(
H̄
)]

, (7.63)

where (2.116) was used in the third equality. The scalar α can be rewritten by means of
the eigen-decomposition of Φ as

α=
Mt Mr −1∑

i=0

λi

1 + K

∣∣∣(vec
(

H′
w

)+
√

KU H R−1/2 vec
(

H̄
))

i

∣∣∣2 , (7.64)

where vec
(

H′
w

) ∼ CN
(
0Mt Mr ×1, I Mt Mr

)
has the same distribution as vec (Hw).

By generalizing the approach given in Shin and Lee (2002) and Li, Luo, Yue, and
Yin (2001) to include a full complex-valued precoder F of size Mt × B and having the
channel correlation matrix 1/(1 + K )R and mean

√
K/(1 + K )H̄, the MIMO system

can be shown to be equivalent to a system having the following input-output relationship:

y′
k = √

αxk + v′
k, (7.65)

for k ∈ {0, 1, . . . , L − 1}, and where v′
k ∼ CN (0, N0/a) is complex circularly symmet-

ric distributed. This signal is fed into a memory-less MLD that is designed from the
signal constellation of the source symbol A. The equivalent SISO model given in (7.65)
is shown in Figure 7.1 (b). The equivalent SISO model is valid for any realization of H.

7.4.4 Exact SER Expressions for Precoded OSTBC

By considering the SISO system in Figure 7.1 (b), it is seen that the instantaneous

received signal-to-noise ratio (SNR) γ per source symbol is given by γ � aσ 2
x α

N0
= δα,

where δ � aσ 2
x

N0
. To simplify the expressions, the following three signal constellation–

dependent constants are defined:

gPSK = sin2 π

M
, gPAM = 3

M2 − 1
, gQAM = 3

2(M − 1)
. (7.66)

The symbol error probability SERγ � Pr {Error|γ } for a given γ for M-PSK, M-PAM,
and M-QAM signaling is given, respectively, by Simon and Alouini (2005, Eqs. (8.23),
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(8.5), (8.12)).

SERγ = 1

π

∫ (M−1)π
M

0
e− gPSKγ

sin2 θ dθ, (7.67)

SERγ = 2

π

M − 1

M

∫ π
2

0
e− gPAMγ

sin2 θ dθ, (7.68)

SERγ = 4

π

(
1 − 1√

M

)[
1√
M

∫ π
4

0
e− gQAMγ

sin2 θ dθ +
∫ π

2

π
4

e− gQAMγ

sin2 θ dθ

]
. (7.69)

The moment generating function of the probability density function pγ (γ ) is defined
as φγ (s) = ∫∞

0 pγ (γ )esγ dγ . Because all L source symbols go through the same SISO
system in Figure 7.1 (b), the average SER of the MIMO system can be found as

SER � Pr {Error} =
∫ ∞

0
SERγ pγ (γ )dγ. (7.70)

This integral can be rewritten in terms of the moment generating function of γ . Since

vec
(

H′
w

)+ √
KU H R−1/2 vec

(
H̄
) ∼ CN

(√
KU H R−1/2 vec

(
H̄
)
, I Mt Mr

)
, it follows

by straightforward manipulations from Turin (1960, Eq. (4a)), that the moment generat-
ing function of α can be written as

φα(s) = e−K vecH (H̄)R−1/2
[

I Mt Mr −[I Mt Mr − s
1+K Φ]−1

]
R−1/2 vec(H̄)

det
(

I Mt Mr − s
1+K Φ

) . (7.71)

Because γ = δα, the moment generating function of γ is given by

φγ (s) = φα (δs) . (7.72)

By using (7.70) and the definition of the moment generating function together with
(7.72), it is possible to express the exact SER for all signal constellations in terms of the
eigenvalues λi and eigenvectors ui of the matrix Φ:

SER = 1

π

∫ M−1
M π

0
φγ

(
− gPSK

sin2 θ

)
dθ, (7.73)

SER = 2

π

M − 1

M

∫ π
2

0
φγ

(
− gPAM

sin2 θ

)
dθ, (7.74)

SER = 4

π

(
1 − 1√

M

)[
1√
M

∫ π
4

0
φγ

(
− gQAM

sin2 θ

)
dθ +

∫ π
2

π
4

φγ

(
− gQAM

sin2 θ

)
dθ

]
,

(7.75)

for PSK, PAM, and QAM signaling, respectively.
Define the positive definite matrix A of size Mt Mr × Mt Mr as

A = I Mt Mr + δg

(1 + K ) sin2(θ )
Φ, (7.76)

where g takes one of the forms in (7.66). The symbols A(PSK), A(PAM), and A(QAM) are
used for the PSK, PAM, and QAM constellations, respectively.
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To present the SER expressions compactly, define the following real non-negative
scalar function, which is dependent on the LOS component H̄, the Ricean factor K , and
the correlation of the channel R, as

f (X) = eK vecH (H̄)R−1/2 X−1 R−1/2 vec(H̄)

| det(X)| , (7.77)

where the argument matrix X ∈ C
Mt Mr ×Mt Mr is nonsingular and Hermitian.

By inserting (7.72) into (7.73), (7.74), and (7.75) and utilizing the function defined in
(7.77), the following exact SER expressions are found

SER = f (−I Mt Mr )

π

∫ M−1
M π

0
f (A(PSK))dθ, (7.78)

SER = 2 f (−I Mt Mr )

π

M − 1

M

∫ π
2

0
f (A(PAM))dθ, (7.79)

SER = 4 f (−I Mt Mr )

π

(
1 − 1√

M

)[
1√
M

∫ π
4

0
f (A(QAM))dθ +

∫ π
2

π
4

f (A(QAM))dθ

]
,

(7.80)

for PSK, PAM, and QAM signaling, respectively.

7.4.5 Precoder Optimization Problem Statement and Optimization Algorithm

This subsection contains two parts. The first part formulates the precoder optimization
problem. The second part shows how the problem can be solved by a fixed point iteration,
and this iteration is derived using complex-valued matrix derivatives.

7.4.5.1 Optimal Precoder Problem Formulation
When an OSTBC is used, (7.58) holds, and the average power constraint on the trans-
mitted block Z � FC(x) is given by Tr{ZZH } = P; this is equivalent to

aLσ 2
x Tr

{
FFH

} = P, (7.81)

where P is the average power used by the transmitted block Z. The goal is to find the
precoder matrix F, such that the exact SER is minimized under the power constraint.
Note that the same precoder is used over all realizations of the fading channel, as it
is assumed that only channel statistics are fed back to the transmitter. In general, the
optimal precoder is dependent on N0 and, therefore, also on the SNR. The optimal
precoder is given by the following optimization problem:

Problem 7.1

min{F∈CMt ×B} SER,

subject to (7.82)

Laσ 2
x Tr

{
FFH

} = P.
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7.4.5.2 Precoder Optimization Algorithm
The constrained minimization in Problem 7.1 can be converted into an unconstrained
optimization problem by introducing a Lagrange multiplier µ′ > 0. This is done by
defining the following Lagrangian function:

L(F, F∗) = SER +µ′ Tr
{

FFH
}

. (7.83)

Define the M2
t × M2

t M2
r matrix,

Π �
[

I M2
t
⊗ vecT

(
I Mr

)] [
I Mt ⊗ K Mt ,Mr ⊗ I Mr

]
. (7.84)

To present the results compactly, define the B Mt × 1 vector q(F, θ, g, µ) as follows:

q(F, θ, g, µ) = µ
[
FT ⊗ I Mt

]
Π
[

R1/2 ⊗ (R1/2
)T
]

× vec∗ (A−1 + K A−1 R−1/2 vec
(

H̄
)

vecH
(

H̄
)

R−1/2 A−1
)

× eK vecH (H̄)R−1/2 A−1 R−1/2 vec(H̄)

sin2(θ ) det (A)
. (7.85)

Theorem 7.1 The precoder that is optimal in (7.82) must satisfy

vec (F) =
∫ M−1

M π

0
q(F, θ, gPSK, µ)dθ, (7.86)

vec (F) =
∫ π

2

0
q(F, θ, gPAM, µ)dθ, (7.87)

vec (F) = 1√
M

∫ π
4

0
q(F, θ, gQAM, µ)dθ +

∫ π
2

π
4

q(F, θ, gQAM, µ)dθ. (7.88)

for the M-PSK, M-PAM, and M-QAM constellations, respectively. The scalar µ is
positive and is chosen such that the power constraint in (7.81) is satisfied.

Proof The necessary conditions for the optimality of (7.82) are found by setting the
derivative of the Lagrangian function L(F, F∗) in (7.83) with respect to vec (F∗) equal
to the zero vector of size Mt B × 1.

The simplest part of the Lagrangian function L(F, F∗) to differentiate is the second
term µ′ Tr{FFH }, which has derivative wrt. F∗ given by

DF∗
[
µ′ Tr{FFH }] = µ′DF∗

[
vecH (F) vec(F)

] = µ′DF∗
[
vecT (F) vec(F∗)

]
= µ′ vecT (F). (7.89)

It is observed from the exact expressions of the SER in (7.78), (7.79), and (7.80)
that all these expressions have similar forms. Hence, it is enough to consider only the
M-PSK case; the M-PAM and M-QAM cases follow in a similar manner.

When finding the derivative of the SER for M-PSK with respect to F∗, it is first
seen that the factor in front of the integral expression in (7.78), that is, f (−I Mt Mr )

π
, is a

non-negative scalar, which is independent of the precoder matrix F and its complex
conjugated F∗.
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From Table 3.1, we know that dez = ezdz and d det(Z) = det(Z) Tr{Z−1d Z}, and
these will now be used. The differential of the integral of the SER in (7.78) can be
written as

d

∫ M−1
M π

0
f (A(PSK))dθ = d

∫ M−1
M π

0

eK vecH (H̄)R−1/2[A(PSK)]−1
R−1/2 vec(H̄)

det
(

A(PSK)
) dθ

=
∫ M−1

M π

0


d
{

eK vecH (H̄)R−1/2[A(PSK)]−1
R−1/2 vec(H̄)

}
det
(

A(PSK)
)

+ eK vecH (H̄)R−1/2[A(PSK)]−1
R−1/2 vec(H̄)d

{
1

det
(

A(PSK)
)
}]

dθ

=
∫ M−1

M π

0


eh K vecH

(
H̄
)

R−1/2
(

d
[

A(PSK)
]−1
)

R−1/2 vec
(

H̄
)

det
(

A(PSK)
)

− eh

det2
(

A(PSK)
)d det

(
A(PSK)

)]
dθ

=
∫ M−1

M π

0

eh

det
(

A(PSK)
) [K vecH

(
H̄
)

R−1/2
(

d
[

A(PSK)
]−1
)

R−1/2 vec
(

H̄
)

− Tr
{(

A(PSK)
)−1

d A(PSK)
}]

dθ, (7.90)

where the exponent of the exponential function h is introduced to simplify the expres-
sions, and h is defined as

h � K vecH
(

H̄
)

R−1/2
[

A(PSK)
]−1

R−1/2 vec
(

H̄
)
. (7.91)

To proceed, it is seen that an expression of d A(PSK) is needed, where A(PSK) can be
expressed as

A(PSK) = I Mt Mr + δgPSK

(1 + K ) sin2(θ )
R1/2

[(
F∗FT

)⊗ I Mr

]
R1/2. (7.92)

The differential d vec
(

A(PSK)
)

is derived in Exercise 7.4 and is stated in (7.142).
Using the fact that d A−1 = −A−1(d A)A−1 and (2.205), it is seen that (7.90) can be

rewritten as∫ M−1
M π

0

−eh

det (A)

[
Tr
{

K R−1/2 vec
(

H̄
)

vecH
(

H̄
)

R−1/2 A−1 (d A) A−1
}

+ Tr
{

A−1d A
}]

dθ =
∫ M−1

M π

0

−eh

det (A)
vecH

(
K A−1 R−1/2 vec

(
H̄
)

vecH
(

H̄
)

R−1/2 A−1 + A−1
)

d vec (A) dθ, (7.93)

where the dependency on PSK has been dropped for simplicity, and it has been used
that AH = A. After putting together the results derived above and using the results from



7.5 Minimum MSE FIR MIMO Transmit and Receive Filters 219

Mt × 1

Orderm

Mt ×N Mr ×Mt

N × 1

Order l

N ×Mr

N × 1

Order q

Mr × 1

v(n)

x(n)

{E(k)}mk=0 {C(k)}qk=0

y(n) x̂(n)ŷ(n)

{R(k)}lk=0

Figure 7.2 FIR MIMO block system model.

Exercise 7.4, it is seen that

DF∗

[∫ M−1
M π

0

eh

det (A)
dθ

]
=
∫ M−1

M π

0

−eh

det (A)

δg

(1 + K ) sin2 θ

vecH
(

K A−1 R−1/2 vec
(

H̄
)

vecH
(

H̄
)

R−1/2 A−1 + A−1
)

dθ

×
[(

R1/2
)T ⊗ R1/2

]
ΠT

[
F ⊗ I Mt

]
. (7.94)

By using the results in (7.89) and (7.94) in the equation

DF∗L = 01×Mt B, (7.95)

it is seen that the fixed point equation in (7.86) follows.
The fixed point equations for PAM and QAM in (7.87) and (7.88), respectively, can

be derived in a similar manner.

Precoder Optimization Algorithm: Equations (7.86), (7.87), and (7.88) can be used
in a fixed point iteration (Naylor & Sell 1982) to find the precoder that solves Problem 7.1.
This is done by inserting an initial precoder value in the right-hand side of the equations
of Theorem 7.1, that is, (7.86), (7.87), and (7.88), and by evaluating the corresponding
integrals to obtain an improved value of the precoder. This process is repeated until
the one-step change in F is less than some preset threshold. Notice that the positive
constants µ′ and µ are different. When we used this algorithm, convergence was always
observed.

7.5 Minimum MSE FIR MIMO Transmit and Receive Filters

The application example presented in this section is based on a simplified version of the
system studied in Hjørungnes, de Campos, and Diniz (2005). We will consider the FIR
MIMO system in Figure 7.2. The transmit and receive filters are minimized with respect
to the MSE between the output signal and a delayed version of the original input signal
subject to an average transmitted power constraint.

The rest of this section is organized as follows: In Subsection 7.5.1, the FIR MIMO
system model is introduced. Subsection 7.5.2 contains special notation that is useful for
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presenting compact expressions when working with FIR MIMO filters. The problem of
finding the FIR MIMO transmit and receive filters is formulated in Subsection 7.5.3. In
Subsection 7.5.4, it is shown how to find the equation for the minimum MSE FIR MIMO
receive filter when the FIR MIMO transmit filter is fixed. For a fixed FIR MIMO receive
filter, the minimum MSE FIR MIMO transmit filter is derived in Subsection 7.5.5 under
a constraint on the average transmitted power.

7.5.1 FIR MIMO System Model

Consider the FIR MIMO system model shown in Figure 7.2. As explained in detail
in Scaglione, Giannakis, and Barbarossa (1999), the system in Figure 7.2 includes time
division multiple access (TDMA), OFDM, code division multiple access (CDMA), and
several other structures as special cases. In this section, the symbol n is used as a time
index, and n is an integer, that is, n ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

The sizes of all time-series and FIR MIMO filters in the system are shown below
the corresponding mathematical symbols within Figure 7.2. Two input time-series are
included in the system in Figure 7.2, and these are the original time-series x(n) of size
N × 1 and the additive channel noise time-series v(n) of size Mr × 1. The channel input
time-series y(n) and the channel output time-series ŷ(n) have sizes Mt × 1 and Mr × 1,
respectively. The output of the system is the time-series x̂(n) of size N × 1. There are
no constraints on the values of N , Mt , and Mr , except that they need to be positive
integers. It is assumed that all vector time-series in Figure 7.2 are jointly wide sense
stationary.

FIR MIMO filters are used to model the transfer functions of the transmitter, the
channel, and the receiver. The three boxes shown from left to right in Figure 7.2 are the
Mt × N transmit FIR MIMO E with coefficients {E(k)}m

k=0, the Mr × Mt channel FIR
MIMO filter C with coefficients {C(k)}q

k=0, and the N × Mr receive FIR MIMO filter R
with coefficients {R(k)}l

k=0. The orders of the transmitter, channel, and receiver are m,
q, and l, respectively, and they are assumed to be known non-negative integers. The
sizes of the filter coefficient matrices E(k), C(k), and R(k) are Mt × N , Mr × Mt , and
N × Mr , respectively. The channel matrix coefficients C(k) are assumed to be known
both at the transmitter and at the receiver.

7.5.2 FIR MIMO Filter Expansions

Four expansion operators for FIR MIMO filters and one operator for vector time-series
are useful for a compact mathematical description of linear FIR MIMO systems.

Let {A(i)}ηi=0 be the filter coefficients of an FIR MIMO filter of order η and
size M0 × M1. The z-transform (Vaidyanathan 1993) of this FIR MIMO filter is given

by
η∑

i=0

A(i)z−i . The matrix A(i) is the i-th coefficient of the FIR MIMO filter denoted

by A, and it has size M0 × M1.



7.5 Minimum MSE FIR MIMO Transmit and Receive Filters 221

Definition 7.6 The row-expanded matrix A of the FIR MIMO filter A with filter coef-
ficients {A(i)}ηi=0, where A(i) ∈ C

M0×M1 , is defined as the M0 × (η + 1)M1 matrix:

A = [A(0) A(1) · · · A(η)]. (7.96)

Definition 7.7 The column-expanded matrix A of the FIR MIMO filter A with filter
coefficients {A(i)}ηi=0, where A(i) ∈ C

M0×M1 , is defined as the (η + 1)M0 × M1 matrix
given by

A =




A(η)
A(η − 1)

...
A(1)
A(0)


 . (7.97)

Definition 7.8 Let q be a non-negative integer. The row-diagonal-expanded matrix A(q)

of order q of the FIR MIMO filter A with filter coefficients {A(i)}ηi=0, where A(i) ∈
C

M0×M1 , is defined as the (q + 1)M0 × (η + q + 1)M1 matrix given by

A(q) =




A(0) A(1) A(2) · · · A(η) 0M0×M1 · · · 0M0×M1

0M0×M1 A(0) A(1) · · · A(η − 1) A(η) · · · 0M0×M1

...
. . .

. . .
. . .

. . .
...

0M0×M1 0M0×M1 · · · A(0) A(1) · · · A(η − 1) A(η)


 .

(7.98)

Definition 7.9 Let q be a non-negative integer. The column-diagonal-expanded
matrix A(q) of order q of the FIR MIMO filter A with filter coefficients {A(i)}ηi=0,
where A(i) ∈ C

M0×M1 , is defined as the (η + q + 1)M0 × (q + 1)M1 matrix given by

A(q) =




A(η) 0M0×M1 · · · 0M0×M1

A(η − 1) A(η) 0M0×M1

A(η − 2) A(η − 1)
. . .

...
...

...
. . . A(η)

A(0) A(1) A(η − 1)

0M0×M1 A(0)
. . .

...
...

. . . A(1)
0M0×M1 0M0×M1 · · · A(0)




. (7.99)

Definition 7.10 Let ν be a non-negative integer, and let x(n) be a time-series of size
N × 1. The column-expansion of a vector time-series x(n) of order ν is denoted by x(n)(ν)
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and it has size (ν + 1)N × 1. It is defined as

x(n)(ν) =




x(n)
x(n − 1)

...
x(n − ν)


 . (7.100)

The column-expansion operator for vector time-series has a certain order. In each
case, the correct size of the column-expansion of the vector time-series can be deduced
from the notation. The size of the column-expansion of a FIR MIMO filter is given by
the filter order and the size of the FIR MIMO filter.

Remark Notice that the block vectorization in Definition 2.13 and the column-expansion
in (7.97) are different but related. The main difference is that in the block vectorization,
the indexes of the block matrices are increasing when going from the top to the bottom
(see (2.46)). However, in the column-expansion of FIR MIMO filters, the indexes are
decreasing when going from the top to the bottom of the output block matrix (see (7.97)).

Next, the connection between the column-expansion of FIR MIMO filters in Defini-
tion 7.7 and the block vectorization operator in Definition 2.13 will be shown mathemat-
ically for square FIR MIMO filters. The reason for considering square FIR MIMO filters
is that the block vectorization operator in Definition 2.13 is defined only when the sub-
matrices are square. Let {C(i)}M−1

i=0 , where C(i) ∈ C
N×N is square. The row-expansion

of this FIR MIMO filter is given by

C = [C(0) C(1) · · · C(M − 1)] , (7.101)

and C ∈ C
N×N M . Let the M N × M N matrix J be given by

J �




0N×N · · · 0N×N I N

0N×N · · · I N 0N×N
...

...
...

...
I N · · · 0N×N 0N×N


 . (7.102)

The block vectorization of the row-expansion of C can be expressed as

vecb (C ) =




C(0)
C(1)

...
C(M − 1)


 , (7.103)

and vecb (C ) ∈ C
M N×N . The column-expansion of the FIR MIMO filter C is given by

C =




C(M − 1)
...

C(1)
C(0)


 , (7.104)
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and C ∈ C
M N×N . By multiplying out J vecb (C ), it is seen that the connection between

the block vectorization operator and the column-expansion is given through the following
relation:

J vecb (C ) = C , (7.105)

which is equivalent to JC = vecb (C ). These relations are valid for any square FIR
MIMO filter.

Let the vector time-series x(n) of size N × 1 be the input to the causal FIR MIMO
filter E. The FIR MIMO coefficients {E(k)}m

k=0 of E have size Mt × N . Denote the
Mt × 1 output vector time-series from the filter E as y(n) (see Figure 7.2). Assuming
that the FIR MIMO filter {E(k)}m

k=0 is linear time-invariant (LTI), then convolution can
be used to find y(n) in the following way:

y(n) =
m∑

k=0

E(k)x(n − k) = [E(0) E(1) · · · E(m)]




x(n)
x(n − 1)

...
x(n − m)




= E x(n)(m), (7.106)

where the notations in (7.96) and (7.100) have been used, and the size of the column-
expanded vector x(n)(m) is (m + 1)N × 1. In Exercise 7.5, it is shown that

y(n)(l) = E(l)x(n)(m+l), (7.107)

where l is a non-negative integer. Let the FIR MIMO filter C have size Mr × Mt

and filter coefficients given by {C(k)}q
k=0. The FIR MIMO filter B is given by the

convolution between the filters C and E, and it has size Mr × N and order m + q.
The row- and column-expansions of the filter B have sizes Mr × (m + q + 1)N and
(m + q + 1)Mr × N , respectively, and they are given by

B = C E(q), (7.108)

B = C (m) E . (7.109)

The relations in (7.108) and (7.109) are proven in Exercise 7.6. Furthermore, it can be
shown that

B(l) = C (l) E(q+l), (7.110)

B(l) = C (m+l) E(l). (7.111)

The two results in (7.110) and (7.111) are shown in Exercise 7.7.

7.5.3 FIR MIMO Transmit and Receive Filter Problems

The system should be designed such that the MSE between a delayed version of the input
and the output of the system is minimized with respect to the FIR MIMO transmit and
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receive filters subject to the average transmit power. It is assumed that all input vector
time-series, that is, x(n) and v(n), have zero-mean, and all second-order statistics of the
vector time-series are assumed to be known. The vector time-series x(n) and v(n) are
assumed to be uncorrelated.

The autocorrelation matrix of size (ν + 1)N × (ν + 1)N of the (ν + 1)N × 1 vec-
tor x(n)(ν) is defined as

Φ(ν,N )
x = E

[
x(n)(ν)

(
x(n)(ν)

)H
]
. (7.112)

The autocorrelation matrix of v(n)(ν) is defined in a similar way. Let the (m + 1)N ×
(m + 1)N matrix Ψ (m,N )

x (i) be defined as follows:

Ψ (m,N )
x (i) = E

[(
x(n)(m)

)∗ (
x(n + i)(m)

)T
]
, (7.113)

where i ∈ {−q − l,−q − l + 1, . . . , q + l}. From (7.112) and (7.113), it is seen that
the following relationship is valid:

Ψ (m,N )
x (0) = (Φ(m,N )

x

)∗ = (Φ(m,N )
x

)T
. (7.114)

The desired receiver output signal d(n) ∈ C
N×1 is often chosen as the vector time-

series given by

d(n) = x(n − δ), (7.115)

where the integer δ denotes the non-negative vector delay through the overall communi-
cation system; it should be chosen carefully depending on the channel C and the orders
of the transmit and receive filters, that is, m and l. The cross-covariance matrix �

(ν,N )
x,d of

size (ν + 1)N × N is defined as

�
(ν,N )
x,d = E

[
x(n)(ν)d H (n)

]
. (7.116)

The block MSE, denoted by E , is defined as

E = E
[‖x̂(n) − d(n)‖2

] = Tr
{

(x̂(n) − d(n))
(
x̂H (n) − d H (n)

)}
. (7.117)

By rewriting the convolution sum with the notations and relations introduced in Sub-
section 7.5.2, it is possible to express the output vector x̂(n) of the receive filter as
follows:

x̂(n) =R C (l) E(q+l)x(n)(m+q+l) + R v(n)(l). (7.118)

In Exercise 7.8, it is shown that the MSE E in (7.117) can be expressed as

E = Tr
{
Φ

(0,N )
d + R Φ(l,Mr )

v RH − R C (l) E(q+l)�
(m+q+l,N )
x,d

−
(

�
(m+q+l,N )
x,d

)H (
E(q+l)

)H (
C (l)
)H

RH

+R C (l) E(q+l)Φ(m+q+l,N )
x

(
E(q+l)

)H (
C (l)
)H

RH
}

. (7.119)

The receiver (equalizer) design problem can be formulated as follows:
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Problem 7.2 (FIR MIMO Receive Filter)

min{{R(k)}l
k=0}

E . (7.120)

The average power constraint for the channel input time-series y(n) can be expressed
as

E
[‖y(n)‖2

] = Tr
{

E Φ(m,N )
x EH

} = P, (7.121)

where (7.106) and (7.112) have been used.
The transmitter design problem is the following:

Problem 7.3 (FIR MIMO Transmit Filter)

min{{E(k)}m
k=0}

E,

subject to (7.122)

Tr
{

E Φ(m,N )
x EH

} = P.

The constrained optimization in Problem 7.3 can be converted into an unconstrained
optimization problem by using a Lagrange multiplier. The unconstrained Lagrangian
function L can be expressed as

L(E , E∗ ) = E + µ Tr
{

E Φ(m,N )
x EH

}
, (7.123)

where µ is the positive Lagrange multiplier. Necessary conditions for optimality are
found through complex-valued matrix derivatives of the positive Lagrangian function L
with respect to the conjugate of the complex unknown parameters.

7.5.4 FIR MIMO Receive Filter Optimization

In the optimization for the FIR MIMO receiver, the following three relations are needed:

∂

∂ R∗ Tr
{

R C (l) E(q+l)�
(m+q+l,N )
x,d

}
= 0N×(l+1)Mr , (7.124)

which follows from the fact that R and R∗ should be treated independently when
finding complex-valued matrix derivatives,

∂

∂ R∗ Tr
{

R Φ(l,Mr )
v RH

} = R Φ(l,Mr )
v , (7.125)

which follows from Table 4.3, and

∂

∂ R∗ Tr

{(
�

(m+q+l,N )
x,d

)H (
E(q+l)

)H (
C (l)
)H

RH

}

=
(

�
(m+q+l,N )
x,d

)H (
E(q+l)

)H (
C (l)
)H

, (7.126)

which also follows from Table 4.3.
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The derivative of the MSE E with respect to R∗ can be found by using the results
in (7.124), (7.125), and (7.126), and ∂

∂ R∗ E is given by

∂

∂ R∗ E = R Φ(l,Mr )
v −

(
�

(m+q+l,N )
x,d

)H (
E(q+l)

)H (
C (l)
)H

+ R C (l) E(q+l)Φ(m+q+l,N )
x

(
E(q+l)

)H (
C (l)
)H

. (7.127)

By solving the equation ∂
∂ R∗ E = 0N×(l+1)Mr , it is seen that the minimum MSE FIR

MIMO receiver is given by

R =
(

�
(m+q+l,N )
x,d

)H (
E(q+l)

)H (
C (l)
)H

×
[
C (l) E(q+l)Φ(m+q+l,N )

x

(
E(q+l)

)H (
C (l)
)H + Φ(l,Mr )

v

]−1
. (7.128)

7.5.5 FIR MIMO Transmit Filter Optimization

The reshape operator, denoted by T (k), which is needed in this subsection is intro-
duced next.3 The operator T (k) : C

N×(m+k+1)N → C
(k+1)N×(m+1)N produces a (k +

1)N × (m + 1)N block Toeplitz matrix from an N × (m + k + 1)N matrix. Let W be
an N × (m + k + 1)N matrix, where the i-th N × N block is given by W(i) ∈ C

N×N ,
where i ∈ {0, 1, . . . , m + k}. Then, the operator T (k) acting on the matrix W yields

T (k) {W } =




W(k) W(k + 1) · · · W(m + k)
...

...
. . .

...
W(1) W(2) · · · W(m + 1)
W(0) W(1) · · · W(m)


 , (7.129)

where k is a non-negative integer.
All terms of the unconstrained objective function L given in (7.123) that depend on

the transmit filter can be rewritten by means of the vec(·) operator. The block MSE E
can be written in terms of vec (E ) by means of the following three relations:

Tr
{

R C (l) E(q+l)�
(m+q+l,N )
x,d

}

= vecT

(
CT
(

R(q)
)T T (q+l)

{(
�

(m+q+l,N )
x,d

)T
})

vec (E ) , (7.130)

Tr

{(
�

(m+q+l,N )
x,d

)H (
E(q+l)

)H (
C (l)
)H

RH

}

= vecH (E ) vec

(
C H
(

R(q)
)H T (q+l)

{(
�

(m+q+l,N )
x,d

)H
})

, (7.131)

3 This is an example of a reshape(·) operator introduced in Proposition 3.9 where the output has multiple
copies of certain input components.
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and

Tr
{

R C (l) E(q+l)Φ(m+q+l,N )
x

(
E(q+l)

)H (
C (l)
)H

RH
}

= vecH (E )
q∑

i0=0

l∑
i1=0

l∑
i2=0

q∑
i3=0

Ψ (m,N )
x (i0 + i1 − i2 − i3)⊗

[
C H (i0)RH (i1)R(i2)C(i3)

]
vec (E ) , (7.132)

where the operator T (q+l) is defined in (7.129). The three relations in (7.130), (7.131),
and (7.132) are shown in Exercises 7.9, 7.10, and 7.11, respectively.

To find the derivative of the power constraint with respect to E∗ , the following
equation is useful:

Tr
{

E Φ(m,N )
x EH

} = Tr
{
Φ(m,N )

x EH E
} = vecH

(
E Φ(m,N )

x

)
vec (E )

= vecH
(

I Mt E Φ(m,N )
x

)
vec (E )=

[{(
Φ(m,N )

x

)T ⊗ I Mt

}
vec (E )

]H
vec (E )

= vecH (E )
[(
Φ(m,N )

x

)∗ ⊗ I Mt

]
vec (E )

= vecT (E )
[
Φ(m,N )

x ⊗ I Mt

]
vec
(

E∗ ) . (7.133)

By using the above relations, taking the derivative of the Lagrangian function L
in (7.123) with respect to E∗ , and setting the result equal to the zero vector, one obtains
the necessary conditions for the optimal FIR MIMO transmit filter. The derivative of the
Lagrangian function L with respect to E∗ is given by

DE∗ L = vecT (E )
q∑

i0=0

l∑
i1=0

l∑
i2=0

q∑
i3=0

(
Ψ (m,N )

x (i0 + i1 − i2 − i3)
)T

⊗ [C H (i0)RH (i1)R(i2)C(i3)
]T + µ vecT (E )

[
Φ(m,N )

x ⊗ I Mt

]
− vecT

(
C H
(

R(q)
)H T (q+l)

{(
�

(m+q+l,N )
x,d

)H
})

. (7.134)

For a given FIR MIMO receive filter R, the necessary condition for optimal-
ity of the optimal transmitter is found by solving DE∗ L = 01×(m+1)N Mt , which is
equivalent to

A · vec(E ) = b, (7.135)

where matrix A is an (m + 1)Mt N × (m + 1)Mt N matrix given by

A =
q∑

i0=0

l∑
i1=0

l∑
i2=0

q∑
i3=0

Ψ (m,N )
x (i0 + i1 − i2 − i3) ⊗ (C H (i0)RH (i1)R(i2)C(i3)

)

+ Ψ (m,N )
x (0) ⊗ µI Mt , (7.136)
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and the vector b of size (m + 1)Mt N × 1 is given by

b = vec

(
C H
(

R(q)
)H T (q+l)

{(
�

(m+q+l,N )
x,d

)H
})

. (7.137)

7.6 Exercises

7.1 Show that

Tr {A � B} = vecT (diag (vecd (A))) vec (B) , (7.138)

where A, B ∈ C
N×N .

7.2 Let A ∈ C
N×N . Show that

diag (vecd (A)) = I N � A. (7.139)

7.3 Using the result in (4.123), show that

vec
([

(d F∗) FT
]⊗ I Mr

) = ΠT
[
F ⊗ I Mt

]
d vec (F∗) , (7.140)

and

vec
([

F∗ (d FT
)]⊗ I Mr

) = ΠT
[
I Mt ⊗ F∗] K Mt ,Bd vec (F) , (7.141)

where the matrix Π is defined in (7.84).

7.4 Let A be defined in (7.92), where the indication of PSK is now dropped for
simplicity. Using the results from Exercise 7.3, show that

d vec (A) = δg

(1 + K ) sin2 θ

[(
R1/2
)T ⊗ R1/2

]
ΠT

[
I Mt ⊗ F∗] K Mt ,Bd vec (F)

+ δg

(1 + K ) sin2 θ

[(
R1/2
)T ⊗ R1/2

]
ΠT

[
F ⊗ I Mt

]
d vec (F∗) , (7.142)

where the matrix Π is defined in (7.84).

7.5 Let y(n) of Mt × 1 be the output of the LTI FIR MIMO filter {E(k)}m
k=0 of size Mt ×

N and order m when the vector time-series x(n) of size N × 1 is the input signal. If l
is a non-negative integer, show that the column-expanded vector of order l of the output
of the filter is given by (7.107).

7.6 Let the FIR MIMO filter coefficients {E(k)}m
k=0 of E have size Mt × N , and the

FIR MIMO filter C have size Mr × Mt with filter coefficients {C(k)}q
k=0. If the FIR

MIMO filter B is the convolution between the filters C and E, then the filter coeffi-
cients {B(k)}m+q

k=0 of B have size Mr × N . Show that the row- and column-expansions
of B are given by (7.108) and (7.109), respectively.

7.7 Let the three FIR MIMO filters with matrix coefficients {E(k)}m
k=0, {C(k)}q

k=0, and
{B(k)}m+q

k=0 be defined as in Exercise 7.6. If l is a non-negative integer, then show that
(7.110) and (7.111) hold.
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7.8 Show by inserting the result from (7.118) into (7.117) such that the block MSE of
the system in Figure 7.2 is given by (7.119).

7.9 Show that (7.130) is valid.

7.10 Show that (7.131) holds.

7.11 Show that (7.132) is valid.
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González-Vázquez, F. J. (1988), “The differentiation of functions of conjugate complex variables:
Application to power network analysis,” IEEE Trans. Educ., vol. 31, no. 4, pp. 286–291,
November.

Graham, A. (1981), Kronecker Products and Matrix Calculus with Applications, Ellis Horwood
Limited, England.

Gray, R. M. (2006), “Toeplitz and Circulant Matrices: A review,” Foundations and Trends in
Communications and Information Theory, vol. 2, no. 3, Now Publishers, Boston, MA, USA.

Guillemin, V. and Pollack, A. (1974), Differential Topology, Prentice-Hall, Inc., Englewood Cliffs,
NJ, USA.

Han, Z. and Liu, K. J. R. (2008), Resource Allocation for Wireless Networks: Basics, Techniques,
and Applications, Cambridge University Press, Cambridge, UK.

Hanna, A. I. and Mandic, D. P. (2003), “A fully adaptive normalized nonlinear gradient descent
algorithm for complex-valued nonlinear adaptive filters,” IEEE Trans. Signal Proces., vol. 51,
no. 10, pp. 2540–2549, October.

Harville, D. A. (1997), Matrix Algebra from a Statistician’s Perspective, Springer-Verlag, New
York, NY, corrected second printing, 1999.

Hayes, M. H. (1996), Statistical Digital Signal Processing and Modeling, John Wiley & Sons,
Inc., New York, NY, USA.

Haykin, S. (2002), Adaptive Filter Theory, 4th ed., Prentice Hall, Englewood Cliffs, NJ, USA.
Hjørungnes, A. (2000), Optimal Bit and Power Constrained Filter Banks, Ph.D. dissertation,

Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Available: http://www.unik.no/∼ arehj/publications/thesis.pdf.

Hjørungnes, A. (2005), Minimum symbol error rate transmitter and receiver FIR MIMO filters
for multilevel PSK signaling. In “Proc. Int. Symp. on Wireless Communication Systems,” Siena,
Italy, September 2005, IEEE, pp. 27–31.



References 233

Hjørungnes, A., de Campos, M. L. R., and Diniz, P. S. R. (2005), “Jointly optimized transmitter
and receiver FIR MIMO filters in the presence of near-end crosstalk,” IEEE Trans. Signal
Proces., vol. 53, no. 1, pp. 346–359, January.

Hjørungnes, A. and Gesbert, D. (2007a), “Complex-valued matrix differentiation: Techniques and
key results,” IEEE Trans. Signal Proces., vol. 55, no. 6, pp. 2740–2746, June.

Hjørungnes, A. and Gesbert, D. (2007b), Hessians of scalar functions which depend on complex-
valued matrices. In “Proc. Int. Symp. on Signal Proc. and Its Applications,” Sharjah, United
Arab Emirates, February.

Hjørungnes, A. and Gesbert, D. (2007c), “Precoded orthogonal space-time block codes over
correlated Ricean MIMO channels,” IEEE Trans. Signal Proces., vol. 55, no. 2, pp. 779–783,
February.

Hjørungnes, A. and Gesbert, D. (2007d), “Precoding of orthogonal space-time block codes in
arbitrarily correlated MIMO channels: Iterative and closed-form solutions,” IEEE Trans. Wirel.
Commun., vol. 6, no. 3, pp. 1072–1082, March.

Hjørungnes, A. and Palomar, D. P. (2008a), Finding patterned complex-valued matrix derivatives
by using manifolds. In “Proc. Int. Symp. on Applied Sciences in Biomedical and Communication
Technologies,” Aalborg, Denmark, October. Invited paper.

Hjørungnes, A. and Palomar, D. P. (2008b), Patterned complex-valued matrix derivatives. In
“Proc. IEEE Int. Workshop on Sensor Array and Multi-Channel Signal Processing,” Darmstadt,
Germany, pp. 293–297, July.

Hjørungnes, A. and Ramstad, T. A. (1999), Algorithm for jointly optimized analysis and synthesis
FIR filter banks. In “Proc. of the 6th IEEE Int. Conf. Electronics, Circuits and Systems,” vol. 1,
Paphos, Cyprus, pp. 369–372, September.

Horn, R. A. and Johnson, C. R. (1985), Matrix Analysis, Cambridge University Press, Cambridge,
UK. Reprinted 1999.

Horn, R. A. and Johnson, C. R. (1991), Topics in Matrix Analysis, Cambridge University Press,
Cambridge, UK. Reprinted 1999.

Huang, Y. and Benesty, J. (2003), “A class of frequency-domain adaptive approaches to blind
multichannel identification,” IEEE Trans. Signal Proces., vol. 51, no. 1, pp. 11–24, January.

Jaffer, A. G. and Jones, W. E. (1995), “Weighted least-squares design and characterization of
complex FIR filters,” IEEE Trans. Signal Proces., vol. 43, no. 10, pp. 2398–2401, October.

Jagannatham, A. K. and Rao, B. D. (2004), “Cramer-Rao lower bound for constrained complex
parameters,” IEEE Signal Proces. Lett., vol. 11, no. 11, pp. 875–878, November.

Jain, A. K. (1989), Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs,
NJ, USA.

Jonhson, D. H. and Dudgeon, D. A. (1993), Array Signal Processing: Concepts and Techniques,
Prentice-Hall, Inc., Englewood Cliffs, NJ, USA.

Kailath, T., Sayed, A. H., and Hassibi, B. (2000), Linear Estimation, Prentice-Hall, Upper Saddle
River, NJ, USA.

Kreutz-Delgado, K. (2008), “Real vector derivatives, gradients, and nonlinear least-squares,”
[Online]. Available: http://dsp.ucsd.edu/∼kreutz/PEI05.html.

Kreutz-Delgado, K. (2009, June 25), “The complex gradient operator and the CR-
calculus,” [Online]. Available: http://arxiv.org/PS cache/arxiv/pdf/0906/0906.4835v1.pdf .
Course Lecture Supplement No. ECE275A, Dept. of Electrical and Computer Engineering,
UC San Diego, CA, USA.

Kreyszig, E. (1988), Advanced Engineering Mathematics, 6th ed., John Wiley & Sons, Inc., New
York, NY, USA.



234 References

Li, X., Luo, T., Yue, G., and Yin, C. (2001), “A squaring method to simplify the decoding of
orthogonal space-time block codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1700–1703,
October.

Luenberger, D. G. (1973), Introduction to Linear and Nonlinear Programming, Addison–Wesley,
Reading, MA, USA.

Lütkepohl, H. (1996), Handbook of Matrices, John Wiley & Sons, Inc., New York, NY, USA.
Magnus, J. R. (1988), Linear Structures, Charles Griffin & Company Limited, London, UK.
Magnus, J. R. and Neudecker, H. (1988), Matrix Differential Calculus with Application in Statistics

and Econometrics, John Wiley & Sons, Inc., Essex, UK.
Mandic, D. P. and Goh, V. S. L. (2009), Complex Valued Nonlinear Adaptive Filters: Noncircularity,

Widely Linear and Neural Models, Adaptive and Learning Systems for Signal Processing,
Communications and Control Series, Wiley, Noida, India.

Manton, J. H. (2002), “Optimization algorithms exploiting unitary constraints,” IEEE Trans. Signal
Proces., vol. 50, no. 3, pp. 635–650, March.

Minka, T. P. (2000, December 28), “Old and new matrix algebra useful for statistics,” [Online].
Available: http://research.microsoft.com/∼minka/papers/matrix/.

Moon, T. K. and Stirling, W. C. (2000), Mathematical Methods and Algorithms for Signal Pro-
cessing, Prentice Hall, Inc., Englewood Cliffs, NJ, USA.

Munkres, J. R. (2000), Topology, 2nd ed., Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
Naylor, A. W. and Sell, G. R. (1982), Linear Operator Theory in Engineering and Science,

Springer-Verlag, New York, NY, USA.
Nel, D. G. (1980), “On matrix differentiation in statistics,” South African Statistical J., vol. 14,

pp. 137–193.
Osherovich, E., Zibulevsky, M., and Yavneh, I. (2008), Signal reconstruction from the modulus

of its Fourier transform, Technical report, Technion.
Palomar, D. P. and Eldar, Y. C., eds. (2010), Convex Optimization in Signal Processing and

Communications, Cambridge University Press, Cambridge, UK.
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complex-valued matrix derivative, 2, 3, 5, 23,
133–200

derivative
diagonal matrix, 163–166
Hermitian matrix, 171–178
scalar, 157–160
skew-Hermitian matrix, 180–184
skew-symmetric matrix, 179–180
symmetric matrix, 166–171
vector, 160–163

eigenvalue, 92
matrix derivative, 3
Rayleigh quotient, 92
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gradient, 76, 95
∂

∂ Z∗ f , 76
∂

∂ Z f , 76

Hadamard product �, 13, 22, 31, 32, 37, 40, 89,
163, 165, 189, 198, 207, 228

Hadamard’s inequality, 20, 194
Hankel matrix, 192
Hermitian, 103, 177, 210, 213, 216, 218

matrix, 2, 3, 5, 92, 130, 145, 155, 171, 173, 195,
196, 199

operator (·)H , 12
Toeplitz, 190

Hessian, 4, 18, 54, 95–133, 202
chain rule, 117
explicit formula, 117
matrix, 5
matrix function, 112–118
objective function, 206
scalar function, 99–109
symmetry conditions, 99
vector function, 109–112

holomorphic function, 8
homeomorphism, 158n
homogeneous solution, 163

idempotent, 12, 25, 83
identification, 54

adaptive multichannel, 76
equation, 100, 108
HZ,Z F, 115
HZ,Z f , 111
table

derivative, 56
Hessian, 116

identity
Tr
{

AT B
}

= vecT (A) vec (B), 25
∂z∗
∂z = 0, 71
∂z
∂z∗ = 0, 71

vec (ABC) =
(

CT ⊗ A
)

vec (B),
26

function, 150, 169, 171
map, 164, 168
matrix I N , 12

image set, 8n, 144, 147, 148
imaginary

operator Im{·}, 7, 137
part, 4, 7, 44, 71
unit  , 7

implication, 24
independent, 2, 4, 137, 140, 225

components, 1, 3, 4, 213
differentials, 10, 96, 135, 145, 148, 155,

156
elements, 5, 133
matrix components, 140

matrix variables, 138
variables, 3, 43
vector components, 43

inequality
Cauchy-Schwartz, 63
Hadamard, 20, 194

information theory, 95, 134
initial precoder, 219
injective, 144n
inner product, 63

Euclidean, 63, 142
integral, 215, 219
Internet, 4
inverse

(·)−1, 12, 87
K N ,Q , 27
commutation matrix K N ,Q , 27
DFT, 203

symmetric, 204
function, 144, 148, 150
matrix (·)−1, 12, 87
Moore-Penrose (·)+, 22
permutation matrix, 31
tangent arctan(·), 73

invertible, 213
iteration, 63, 68, 77, 143
iterative

algorithm, 2, 5, 95
method, 211

Jacobian matrix, 55, 138

Kronecker
delta function

three arguments δi, j,k , 33, 35
two δk,l , 34, 35

product ⊗, 4, 13, 22, 88, 228
properties, 25–28

Lagrange multiplier, 194, 217, 225
Lagrangian function, 217, 225, 227
left eigenvector, 81, 84

normalized, 81
limit, 9
linear

dependencies, 136
equations, 163
function, 135
manifold, 146, 149
model, 68
phase, 163
reshaping operator, 49n
structure, 146
time-invariant, 223

linearly independent, 96, 199
differentials, 54, 96, 137
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local
maximum point, 2, 99, 123
minimum point, 2, 99, 123

locally diffeomorphic, 144, 145, 146
LOS component, 213, 216
lower triangular, 187
LTI, 223, 228

magnitude, 202
DFT, 204

main diagonal, 15, 19, 33, 37, 167, 194, 214
zero, 179

manifold, 2, 3, 4, 134, 144–147, 164, 167
diagonal, 163, 198
Hermitian, 171, 195, 197, 199
skew-Hermitian, 180, 199
skew-symmetric, 199
symmetric, 169, 198

MATLAB, 14, 40, 42, 131
matrix

0N×Q , 6, 97
1N×Q , 6
DN , 19
FN , 204
K N,Q, 13
Ld , 17, 146, 155, 163, 164, 166, 171
Ll , 17, 146, 155, 166, 171
Lu , 17, 146, 155, 166, 171
V , 19, 42, 170
Vd , 19, 37, 42, 170
V l , 19, 37, 42, 170
autocorrelation, 194
calculus, 4
circulant, 191
coefficient, 228
cofactor, 189
commutation matrix K N,Q, 13
constant, 46
derivative, 3, 55, 138
DFT, 204
duplication matrix DN , 19
function F, 5, 7, 95, 112
Hankel, 192
Hermitian, 92, 145
inversion lemma, 21, 41, 69
minors M(Z), 65
ones 1N×Q , 6, 37
power, 87
skew-symmetric, 184
square root, 213
symmetric, 146
Toeplitz, 190
Vandermonde, 193
zeros 0N×Q , 6, 97

maximization problem, 63, 143
maximum, 109, 133

generalized eigenvalue, 92
likelihood

decoder, 211
point, 95
rate of change, 60, 61, 62, 142

mean square error, 68
memoryless, 66

MIMO system, 12
MLD, 214
precoder, 212

MIMO
channel, 66, 68, 211, 212, 213
communication, 194
matrix, 213
system, 66, 157, 176, 196, 197, 214

minimization problem, 63, 143
minimum, 109, 133

generalized eigenvalue, 92
MSE receiver, 226

filter, 69
point, 95
rate of change, 60, 61, 62, 142

minor mk,l (·), 50n, 65
MLD, 211, 213
moment generating function, 215
Moore-Penrose inverse (·)+, 12, 22, 83,

90
Ld , 33
Ll , 34
Lu , 36
duplication matrix DN , 38
vector, 39, 83

MSE, 68, 69, 219, 223
multiple antennas, 66
multivariate analysis, 3
mutual information, 52, 66, 177, 178, 195, 196

nano-structures, 202
natural

logarithm ln(·), 93, 129, 175, 194, 195, 196
determinant, 92
principal value, 52
square matrix, 93

number N, 65, 78, 80, 87
necessary conditions, 1, 3, 5, 61, 122, 160, 217, 225,

227
precoder matrix, 217

negative definite, 103, 109
Newton’s recursion, 95
noise amplification, 12
non-analytic function, 5, 8, 39
non-diagonal matrix, 16
nonlinear

function, 135, 158
manifold, 146

non-negative scalar, 217
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nonsingular, 23, 216
matrix, 12n

norm
Euclidean, 204
Frobenius, 209

notation, 5
null space N (·), 12, 83

objective function, 95, 133, 202, 204,
226

OFDM, 209, 220
off-diagonal elements, 166, 209
one independent matrix variable,

65
one-to-one, 146, 148, 158n

function, 144n
mapping, 135

onto, 146, 148, 158n
open interval, 158
optimal transmitter, 227
optimization, 1, 3, 60, 95, 225

algorithm, 135
constrained, 189
orthogonal, 184
problem, 3

SER, 216
theory, 61
unconstrained, 189
unitary, 185

matrix, 187
order, 228

channel, 220
receive filter, 224
receiver, 220
transmit filter, 224
transmitter, 220

origin, 122
orthogonal, 212

matrix, 3, 22, 184–185
OSTBC, 211, 216

matrix, 212

parameterization function, 2, 134, 135, 147–152,
189

circulant, 192
diagonal, 165
linear, 146
Hankel, 193
Hermitian, 171

Toeplitz, 191
skew-Hermitian, 181
skew-symmetric, 179, 184
symmetric, 166, 168
Toeplitz, 190
Vandermonde, 193

parameterize, 22
unitary matrix, 186

partial derivative
∂ f

∂xk,l
, 46

∂ f
∂x , 45
∂ f

∂yk,l
, 46

∂ f
∂y , 45
generalization, 62

particular solution, 163
pattern, 133, 152

producing function, 134
patterned

matrix, 4, 133, 134, 147
vector, 133

permanent perm(·), 65
permutation matrix, 13, 31

V , 19
commutation matrix K N,Q, 13, 27,

129
phase shift keying symbols, 74
polar coordinates, 73
positive

definite, 92, 103, 109, 213
matrix, 20, 177, 209, 213, 215
square root, 92

integer, 87, 220
semidefinite, 194, 195, 196, 213

matrix, 3, 93, 187–188, 213
power, 194, 216

constraint, 216, 219, 225, 227
series, 8n

precoded MIMO, 211
precoder, 194, 212, 214, 219

matrix, 213, 216
optimization, 211

algorithm, 217
problem, 216

primary circulant matrix, 191
probability density function, 215
problem, 5

formulation, 223
receiver, 224

procedure, 5
complex differential d, 46
complex-valued matrix derivative, 59,

138
Hessian

matrix function, 115
scalar function, 103, 107
vector function, 112

product
Hadamard �, 13, 22, 89, 165
Kronecker ⊗, 13, 22, 25, 88
matrix, 87

proper subset ⊂, 8, 134, 155
properties

Ld , 31–38
Ll , 31–38
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Lu , 31–38
Moore-Penrose inverse (·)+, 23

PSK, 228
symbols, 74

pure imaginary, 180

quadratic form, 109
quasi-static, 213

range, 8n, 147, 148
rank rank(·), 12, 24, 25, 83, 160, 189,

198
Ld , 33
Ll , 34
Lu , 36

rate of change
maximum, 44
minimum, 44

Rayleigh quotient, 67
generalized, 92

real
dimension dimR(·), 12, 136, 146, 148
domain, 159
numbers R, 6
operator Re{·}, 7, 137
part, 4, 7, 44, 71

real-valued
derivative, 154
function, 1, 8, 9, 104, 108, 109, 133, 156, 201,

204
manifold, 154
matrix, 4, 43

derivative, 1, 4, 43, 64
variable, 95

scalar function, 5
receive

antennas, 212
filter, 219, 223

receiver, 12, 66, 211, 220, 224
linear, 69

reconstruction, 202
reduction matrix, 18
redundant variables, 150
regular function, 8
research problem, 1, 5, 201
reshape operator, 226
resource management, 2
reverse diagonal, 162, 193
Ricean

factor, 211, 213, 216
fading, 213
model, 213

row
space R(·), 12
vector, 203

row-diagonal-expanded, 221

row-expanded, 221
row-expansion, 223, 228

saddle point, 2, 95, 99, 122, 123
scalar

expression, 25
function f , 4, 5, 7, 95, 96
real-valued function, 60, 61

Schur product �, 13n
second-order

derivative, 22, 95
differential, 2, 54, 96, 101, 105, 108, 110, 119,

120, 123
statistics, 224

sensitivity analysis, 2
SER, 211, 213, 215, 216
set

matrices, 1, 133
orthogonal matrices, 22

signal
alphabet, 74
constellation, 212, 214
error, 12
processing, 1–3, 5, 21, 44, 75, 95, 133, 135, 137,

157, 189, 190, 201
problem, 154
system, 1

reconstruction, 202
signaling, 215
simple eigenvalue, 81n, 83n, 92
singular value, 194

decomposition, 194
SISO

model, 214
system, 212, 215

skew-diagonal, 192
skew-Hermitian matrix, 3, 180, 199
skew-symmetric, 29, 30, 54

matrix, 3, 179, 199
smooth, 150

curve, 145
function, 3, 144
inverse, 3

SNR, 214, 216
source

coding, 201
symbol, 214

spatial rate, 212
special vectorization operators, 15
square, 222

matrix, 12, 111, 115, 149
root positive definite, 92

squared Euclidean distance, 9, 63, 72, 141,
158

stability, 5
stable algorithm, 95
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standard basis
Ei, j , 19, 40, 154, 164, 167, 182

generalization, 58, 117
ei , 19, 27
vector, 35

stationary points, 2, 44, 60, 61n, 95n, 99, 104, 109,
120, 122

equivalent conditions, 61
statistical applications, 3
steepest

ascent method, 60, 62, 142–144
equation, 63, 143

descent method, 60, 62, 68, 142–144
equation, 63, 68, 77, 143
unitary, 187

structure, 1, 3, 4, 133, 134, 136, 145, 155
matrix, 133

submatrix, 50n, 222
subset ⊆, 8
surjective, 144n
SVD, 194
symbolic matrix calculus, 3
symmetric, 19, 38, 106, 111, 113, 125, 130, 136, 204

matrix, 3, 5, 106, 146, 155, 166, 198
symmetry, 99

properties Hessian, 102
system, 1

output, 220

tangent, 145
space, 135, 145, 148, 153, 155, 164

symmetric, 168
vector, 145

Taylor series, 8, 104
TDMA, 220
time reverse complex conjugate, 163
time-series, 220
Toeplitz, 190
trace Tr{·}, 12, 22, 24–28, 40, 51, 78, 129, 228

of matrix product, 25
of transpose, 24

transmit
antennas, 212
filter, 219, 223, 226
power, 194, 224

transmitted block, 216
transmitter, 66, 211, 220
transpose, 12, 111, 115

K N ,Q , 27

commutation matrix K N ,Q , 27
Kronecker product ⊗, 25, 41

treated as independent, 145, 148, 152
twice differentiable, 96, 99, 106, 124, 109

unconstrained optimization, 189
problem, 160, 225

uncorrelated, 224
union, 134
unitary, 214

matrix, 3, 185–187, 194, 204
unknown parameters, 1
unpatterned, 133, 152, 153, 156, 173, 179, 196,

210
matrix, 2, 4, 5, 134, 148

Vandermonde matrix, 193
variance, 213
vector

column, 203
component, 109
delay, 224
function f , 5, 7, 95, 109, 112
row, 203
space, 12
time-series, 220, 221, 223, 224, 228
variable, 95

vectorization operator vec(·), 13, 40, 97, 155, 226,
228

column vector, 26
Hadamard product �, 28
Kronecker product ⊗, 27
matrix product, 26
row vector, 26

Venn diagram, 134, 135
visualization, 202

water-filling, 20, 194
weighted least-squares, 76
wide sense stationary, 220
Wiener filter, 69
Wiener-Hopf equations, 68
Wirtinger

calculus, 3
derivative, 10, 150

generalization, 62

zero matrix 0N×Q , 6, 97
zero-forcing equalizer, 12


	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Book Overview

	Acknowledgments
	Abbreviations
	Nomenclature
	1 Introduction
	1.1 Introduction to the Book
	1.2 Motivation for the Book
	1.3 Brief Literature Summary
	1.4 Brief Outline

	2 Background Material
	2.1 Introduction
	2.2 Notation and Classification of Complex Variables and Functions
	2.2.1 Complex-Valued Variables
	2.2.2 Complex-Valued Functions

	2.3 Analytic versus Non-Analytic Functions
	2.4 Matrix-Related Definitions
	2.5 Useful Manipulation Formulas
	2.5.1 Moore-Penrose Inverse
	2.5.2 Trace Operator
	2.5.3 Kronecker and Hadamard Products
	2.5.4 Complex Quadratic Forms
	2.5.5 Results for Finding Generalized Matrix Derivatives

	2.6 Exercises

	3 Theory of Complex-Valued Matrix Derivatives
	3.1 Introduction
	3.2 Complex Differentials
	3.2.1 Procedure for Finding Complex Differentials
	3.2.2 Basic Complex Differential Properties
	3.2.3 Results Used to Identify First- and Second-Order Derivatives

	3.3 Derivative with Respect to Complex Matrices
	3.3.1 Procedure for Finding Complex-Valued Matrix Derivatives

	3.4 Fundamental Results on Complex-Valued Matrix Derivatives
	3.4.1 Chain Rule
	3.4.2 Scalar Real-Valued Functions
	3.4.3 One Independent Input Matrix Variable

	3.5 Exercises

	4 Development of Complex-Valued Derivative Formulas
	4.1 Introduction
	4.2 Complex-Valued Derivatives of Scalar Functions
	4.2.1 Complex-Valued Derivatives of f(z, z*)
	4.2.2 Complex-Valued Derivatives of f(z, z*)
	4.2.3 Complex-Valued Derivatives of f(Z, Z*)

	4.3 Complex-Valued Derivatives of Vector Functions
	4.3.1 Complex-Valued Derivatives of f(z, z*)
	4.3.2 Complex-Valued Derivatives of f(z, z*)
	4.3.3 Complex-Valued Derivatives of f(Z, Z*)

	4.4 Complex-Valued Derivatives of Matrix Functions
	4.4.1 Complex-Valued Derivatives of F(z, z*)
	4.4.2 Complex-Valued Derivatives of F(z, z*)
	4.4.3 Complex-Valued Derivatives of F(Z, Z*)

	4.5 Exercises

	5 Complex Hessian Matrices for Scalar, Vector, and Matrix Functions
	5.1 Introduction
	5.2 Alternative Representations of Complex-Valued Matrix Variables
	5.2.1 Complex-Valued Matrix Variables Z and Z*
	5.2.2 Augmented Complex-Valued Matrix Variables Z

	5.3 Complex Hessian Matrices of Scalar Functions
	5.3.1 Complex Hessian Matrices of Scalar Functions Using Z and Z*
	5.3.2 Complex Hessian Matrices of Scalar Functions Using Z
	5.3.3 Connections between Hessians When Using Two-Matrix Variable Representations

	5.4 Complex Hessian Matrices of Vector Functions
	5.5 Complex Hessian Matrices of Matrix Functions
	5.5.1 Alternative Expression of Hessian Matrix of Matrix Function
	5.5.2 Chain Rule for Complex Hessian Matrices

	5.6 Examples of Finding Complex Hessian Matrices
	5.6.1 Examples of Finding Complex Hessian Matrices of Scalar Functions
	5.6.2 Examples of Finding Complex Hessian Matrices of Vector Functions
	5.6.3 Examples of Finding Complex Hessian Matrices of Matrix Functions

	5.7 Exercises

	6 Generalized Complex-Valued Matrix Derivatives
	6.1 Introduction
	6.2 Derivatives of Mixture of Real- and Complex-Valued Matrix Variables
	6.2.1 Chain Rule for Mixture of Real- and Complex-Valued Matrix Variables
	6.2.2 Steepest Ascent and Descent Methods for Mixture of Real- and Complex-Valued Matrix Variables

	6.3 Definitions from the Theory of Manifolds
	6.4 Finding Generalized Complex-Valued Matrix Derivatives
	6.4.1 Manifolds and Parameterization Function
	6.4.2 Finding the Derivative of H(X, Z, Z*)
	6.4.3 Finding the Derivative of G(W, W*)
	6.4.4 Specialization to Unpatterned Derivatives
	6.4.5 Specialization to Real-Valued Derivatives
	6.4.6 Specialization to Scalar Function of Square Complex-Valued Matrices

	6.5 Examples of Generalized Complex Matrix Derivatives
	6.5.1 Generalized Derivative with Respect to Scalar Variables
	6.5.2 Generalized Derivative with Respect to Vector Variables
	6.5.3 Generalized Matrix Derivatives with Respect to Diagonal Matrices
	6.5.4 Generalized Matrix Derivative with Respect to Symmetric Matrices
	6.5.5 Generalized Matrix Derivative with Respect to Hermitian Matrices
	6.5.6 Generalized Matrix Derivative with Respect to Skew-Symmetric Matrices
	6.5.7 Generalized Matrix Derivative with Respect to Skew-Hermitian Matrices
	6.5.8 Orthogonal Matrices
	6.5.9 Unitary Matrices
	6.5.10 Positive Semidefinite Matrices

	6.6 Exercises

	7 Applications in Signal Processing and Communications
	7.1 Introduction
	7.2 Absolute Value of Fourier Transform Example
	7.2.1 Special Function and Matrix Definitions
	7.2.2 Objective Function Formulation
	7.2.3 First-Order Derivatives of the Objective Function
	7.2.4 Hessians of the Objective Function

	7.3 Minimization of Off-Diagonal Covariance Matrix Elements
	7.4 MIMO Precoder Design for Coherent Detection
	7.4.1 Precoded OSTBC System Model
	7.4.2 Correlated Ricean MIMO Channel Model
	7.4.3 Equivalent Single-Input Single-Output Model
	7.4.4 Exact SER Expressions for Precoded OSTBC
	7.4.5 Precoder Optimization Problem Statement and Optimization Algorithm
	7.4.5.1 Optimal Precoder Problem Formulation
	7.4.5.2 Precoder Optimization Algorithm


	7.5 Minimum MSE FIR MIMO Transmit and Receive Filters
	7.5.1 FIR MIMO System Model
	7.5.2 FIR MIMO Filter Expansions
	7.5.3 FIR MIMO Transmit and Receive Filter Problems
	7.5.4 FIR MIMO Receive Filter Optimization
	7.5.5 FIR MIMO Transmit Filter Optimization

	7.6 Exercises

	References
	Index

