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Learning never exhausts the mind
Imparare non stanca mai la mente

—Leonardo da Vinci



Foreword

Compilers have two jobs: translating programs into a form understandable by
machines and making the translated code run efficiently. This second role, compiler
optimization is a long-standing research problem. It has led to a large number of
compiler heuristics or optimizations, each of which is designed to improve system
performance. While each of these optimizations may deliver good performance
individually, when combined they may degrade performance. Determining what
optimizations to use and in what order depends on the program and the target
platform. The different combinations and orderings quickly create a massive opti-
mization space greater than the number of atoms in the known universe. The
complexity of this problem prevents innovation in compiler research and leads to a
loss of performance. In recent years, researchers have looked to search and machine
learning-based approaches to navigate this complex space and select the best
combination and sequence of optimizations.

This book tackles the difficult problem of determining the best set of compiler
optimizations for a range of platforms. It addresses this problem using innovative
machine learning-based solutions that exploit prior knowledge. This knowledge is
used to build models that predict the right optimizations for unseen programs. It
succinctly describes the fundamental research problem and extensively surveys the
large body of prior work. This survey provides an excellent background to the
topic.

This book makes four specific technical contributions. The first considers how to
co-design VLIW micro-architecture and compiler optimizations using a
performance/area Pareto curve. The second contribution is the use of a novel
Bayesian network to predict the best optimizations using a method that explains
how program features correlate with output. The third contribution is the use of a
performance predictor to guide and select compiler optimizations without running
the code. The final contribution is the most ambitious chapter, tackling phase order
based on a unique optimization clustering approach.
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This book provides an excellent state-of-the-art survey of compiler optimization,
develops innovative solutions to long-standing problems, and most importantly of
all opens up new lines of research in compiler optimization.

October 2017
Michael O’Boyle

University of Edinburgh,
Edinburgh UK
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Preface

The diversity of today’s architectures has forced programmers to spend additional
efforts to port and tune their application source code across different platforms. In
this process, compilers need additional tuning to generate better code. Recent
compilers offer a vast number of multilayered optimizations, capable of targeting
different code segments of an application. Choosing the right set of optimizations
can significantly impact the performance of the code. This is a challenge made more
complicated by the need to find the best order in which they should be applied
given an application. Finding the best ordering is a long-standing problem in
compilation research called the phase-ordering problem. The traditional approach
for constructing compiler heuristics to solve it simply cannot cope with the enor-
mous complexity of choosing the right ordering of optimizations for each code
segment in an application. The current research focuses on exploring, studying, and
developing an innovative approach to the problem of identifying the compiler
optimizations that maximize the performance of a target application.

Overview of this Book

This book addresses two fundamental problems involved in compilation research:
the problem of selecting the best compiler optimizations and the phase-ordering
problem. Statistical analyses were extensively used to relate the performance of an
application to the applied optimizations. More precisely, machine learning models
were adapted to predict an outcome. Here, an outcome is described either in terms
of performance metrics, or the use of a certain compiler optimization. Similar to
other machine learning approaches, we use a set of training applications to learn the
statistical relationships between application features and compiler optimizations.
For instance, Bayesian networks are used to learn the statistical model to which an
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application can be represented with. We call these representations an application
feature. Thus, given a new application not included in the training set, its features
are fed to the Bayesian network as evidence. This evidence generates a bias on the
distribution, as compiler optimizations are correlated with software features. The
obtained probability distribution is application-specific and effectively focuses on
the prediction of the most promising compiler optimizations. This will be discussed
in detail in Chap. 3.

Who is this Book for?

This is a textbook that aims to showcase the very recent developments of research
approaches in the compilation research, specifically autotuning. Therefore, all
researchers in the compiler community, computer architecture, parallel computing,
and machine learning can benefit from reading it. Additionally, given the potential
industrial impact of the provided approaches, it is recommended to read to other
technical professionals as well.

Summary and Organization

This book tackles the major problems of compiler autotuning. We use machine
learning, DSE, and meta-heuristic techniques to construct efficient and accurate
models to induce prediction models.

It is organized as follows: First, we provide an extensive review of the state
of the art in Chap. 1. We survey more than hundred recent papers of the past
twenty-five years since when the applications of machine learning have been
introduced to compiler optimization field. Following the literature review, in Chap.
2, we provide a co-exploration approach using design space exploration technique
for an embedded domain, namely VLIW. We show that this technique can speed up
the performance of an application by using certain optimizations pass over our
proposed VLIW micro-architecture. In Chap. 3, we present a novel machine
learning approach to selecting the most promising compiler optimizations using
Bayesian networks. This technique significantly improves application’s perfor-
mance against using fixed optimization available at GCC where our Bayesian
network selects the most promising compiler passes. Chapters 4 and 5 are pre-
senting our novel machine learning predictive models on how to tackle the
phase-ordering problem. The former presents an intermediate approach, and the
latter showcases a complete sequence speedup predictor on the very problem.
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Finally, we present some concluding remarks and future works. Note that in this
book, the bibliography is chapter-wise.

We hope this book brings the latest research done to a wide range of readers and
promotes the use of machine learning on the field of compilation.

Toronto, ON, Canada Amir H. Ashouri
Milan, Italy Gianluca Palermo
Newark, DE, USA John Cavazos
Milan, Italy Cristina Silvano

Preface xi



Acknowledgements

The majority of the research related to this book has been carried out in the
Department of Electronics, Information and Bioengineering (DEIB) at Politecnico
di Milano. Additionally, I had the chance to be a Visiting Scholar in the Department
of Electrical Engineering and Computer Science at the University of Delaware,
USA. The collaboration allowed me to carry out further elaborations and analyses.
The work described in this book was partially supported by the European
Commission Call H2020-FET-HPC program under the grant ANTAREX-671623.

I would like to thank all my colleagues and advisers including postdoctoral and
Ph.D. fellows with whom I had the opportunity to collaborate, specially Cristina
Silvano, Gianluca Palermo, John Cavazos, Giovanni Mariani, Sotiris Xydis, Marco
Alvarez, Eunjung Park, Sameer Kulkarni, William Kilian, Andrea Bignoli, and
Robert Searles. The teamwork was truly fun and challenging at the same time, and I
was grateful to participate in numerous constructive discussions. Many thanks to
Michael O’Boyle and Erven Rohou for their valuable comments and provided
reviews. Their insight on the compiler optimization field is truly inspiring.

Last but not least, I would like to appreciate the lifetime support of my lovely
family: mother, father, and the younger brother who always have been my back-
bone during the hard times and the good times. Thank you for giving me the
positive energy to carry on and for urging me to choose this path for my life.

Amir H. Ashouri
University of Toronto

October 2017 Toronto, Canada

xiii



Contents

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Compiler Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 A Note on Terminology and Metrics . . . . . . . . . . . . . . . . 4
1.2.2 Compiler Optimization Benefits and Challenges . . . . . . . . 5
1.2.3 Compiler Optimization Problems . . . . . . . . . . . . . . . . . . . 5

1.3 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Other Machine Learning Methods . . . . . . . . . . . . . . . . . . . 14

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Design Space Exploration of Compiler Passes: A Co-Exploration
Approach for the Embedded Domain . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 VLIW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Methodology for Compiler Analysis of Customized VLIW

Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Custom VLIW Architecture Selection . . . . . . . . . . . . . . . . 28
2.3.2 Compiler Transformation Statistical Effect Analysis . . . . . . 30

2.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Selecting the Best Compiler Optimizations: A Bayesian
Network Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xv



3.3.1 Applying Program Characterization . . . . . . . . . . . . . . . . . . 46
3.3.2 Dimension-Reduction Techniques . . . . . . . . . . . . . . . . . . . 47
3.3.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Benchmark Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Compiler Transformations . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Bayesian Network Results . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.4 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.5 A Practical Usage Assessment . . . . . . . . . . . . . . . . . . . . . 63
3.4.6 Comparison with State-of-the-Art Techniques . . . . . . . . . . 65

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 The Phase-Ordering Problem: An Intermediate Speedup
Prediction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 The Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Compiler Phase-Ordering Problem . . . . . . . . . . . . . . . . . . 76
4.3.2 Application Characterization . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.3 Intermediate Speedup Prediction . . . . . . . . . . . . . . . . . . . . 77

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 The Phase-Ordering Problem: A Complete Sequence Prediction
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1 Intermediate Versus Full-Sequence Speedup Prediction . . . . . . . . . 85
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 The Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Application Characterization . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Constructing Compiler Sub-sequences . . . . . . . . . . . . . . . . 90
5.3.3 The Proposed Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.4 Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.5 Recommender Systems Heuristic . . . . . . . . . . . . . . . . . . . 97

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Analysis of Longer Sequence Length . . . . . . . . . . . . . . . . 101
5.4.2 MiCOMP Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 MiCOMP Versus the Ranking Approach . . . . . . . . . . . . . . 104

5.5 Comparative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.1 Comparison with Standard Optimization Levels . . . . . . . . . 105
5.5.2 Comparisons with State-of-the-Art Models . . . . . . . . . . . . 107
5.5.3 Comparison with Random Iterative Compilation . . . . . . . . 109

xvi Contents



5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Open Issues and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 116

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Contents xvii



Chapter 1
Background

Abstract Since the mid-1990s, researchers have been trying to use machine-
learning based approaches to solve a number of different compiler optimization prob-
lems. The techniques primarily enhance the quality of the obtained results and, more
importantly, make it feasible to tackle two main compiler optimization problems:
optimization selection (choosing which optimizations to use) and phase-ordering
(choosing the order of applying optimizations). The compiler optimization space
continues to grow due to the advancement of applications, increasing compiler opti-
mizations, and new target architectures. Generic optimization passes in compilers
cannot fully leverage newly introduced optimizations and, therefore, cannot keep
up with the pace of increasing options. This chapter summarizes and classifies the
recent advances in using machine learning for the compiler optimization field, par-
ticularly on the twomajor problems of (i) selecting the best optimizations and (ii) the
phase-ordering of optimizations. The chapter highlights the approaches taken, the
obtained results, the holistic comparisons among different approaches and finally,
the visionary path towards the near future.

1.1 Introduction

Recent developments in silicon production and fabrication led to the creation of
much faster computational units such as CPUs, GPUs, FPGAs, and similar devices
with different instruction set architectures (ISAs). Software (SW) programming par-
adigms including OpenMP,MPI, OpenCL, andOpenACC allow software developers
to exploit Hardware (HW) parallelism to port legacy serial codes on these emerging
platforms to attain application speedups. Compilers struggle to keep up with the
increasing development pace of ever-expanding hardware and software program-
ming paradigms. Additionally, the growing complexity of modern compilers and the
concern over security are among the most important problems that compilers should
answer. Moore’s law [1] states that transistor density should double every two years;
however, the rate of compilers, which are faced with many open-research problems,
have not been able to improve more than a few percentage points each year [2].

© The Author(s) 2018
A. H. Ashouri et al., Automatic Tuning of Compilers Using Machine Learning,
PoliMI SpringerBriefs, https://doi.org/10.1007/978-3-319-71489-9_1
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2 1 Background

Usually, software applications are developed in a high-level programming lan-
guage (e.g. C, C++) and then passed through the compiler to emit an executable
binary. Compilers have been used for the past 50years [2, 3] for generating machine-
dependent executable binary from high-level programming languages. Compiler
developers typically design optimization passes in order to transform each code
segment of a program to produce an optimized version of an application. The opti-
mizations can be applied at different stages of the compilation process since com-
pilers have three main layers: (i) front-end (ii) intermediate-representation (IR) and
(iii) backend. At the same time, optimizing source code by hand is a tedious task.
Compiler optimizations provide an automatic method to transform code. To this
end, optimizing the intermediate phase plays an important role on the performance
metrics. Enabling compiler optimization parameters (e.g. loop unrolling, register
allocation, etc.) might substantially benefit several performance metrics. Depend-
ing on the objectives, these metrics could be execution time, code size, or power
consumption. A holistic exploration approach to trade-off these metrics represents a
challenging problem [4].

Autotuning addresses automatic code-generation and optimization by using dif-
ferent scenarios and architectures. It constructs techniques for automatic optimiza-
tion of different parameters to maximize or minimize the satisfaction of an objective
function. Historically, optimizations were mostly in the backend where scheduling,
resource-allocation, and code-generation are done [5, 6]. The constraints form a
linear problem (ILP), thus one should solve an ILP to find an optimized design.
Recently, researchers have shown increased effort in introducing frontend and IR
optimizations. The reason is twofold: (i) the complexity of a backend compiler
requires strict and exclusive knowledge of compiler designers, and (ii) frontend
optimizations have lower overheads compared with the optimizations performed in
the back-end. Nonetheless, each has its benefits and drawbacks and is subject to
further analyses.

The major challenge in choosing the right set of compiler optimizations is the
fact that the optimizations are programming language, application, and architecture
dependent. Additionally, the word optimization is a misnomer; there is no guarantee
that the transformed code will perform better than the original version. Aggressive
optimizations can degrade the performance of the code to which they are applied [7].
Understanding the behavior of the optimizations, the perceived effects on the source-
code, and the interaction of the optimizations with each other are complex modeling
problems. This understanding is particularly difficult because compiler developers
must consider hundreds of optimizations that can be applied during the different
compilation phases. This optimization ordering dilemma creates the phase-ordering
problem.

There were a number of long-standing compiler optimization problems have not
yet been adequately addressed. These problems comprise of knowingwhat optimiza-
tions (by which configuration (i.e., the tile size in loop tiling)), and in which order
the optimizations should be used to obtain the best improvement. The former yields
the so-called problem of selecting the best compiler optimizations and the latter is
the phase-ordering problem of compiler optimizations. The phase-ordering problem
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has been an open problem for many decades [8–11]. The inability of researchers to
solve the phase-ordering problem has led to advances in the less complex problem
of selecting the right set of optimizations, but even this has yet to be fully resolved
[12–14].

In order to understand the difficulty of the problems, one should consider that the
process of selecting the right optimizations for each code segment is typically done
manually and the sequence of optimizations is constructed with little insight into the
interaction between the preceding compiler optimizations in the sequence. The task
of constructing heuristics to select the right sequence of compiler optimizations is
infeasible given the ever-growing number of compiler optimizations being integrated
into compiler frameworks. As an example, GCC has more than 200 compiler passes,
referred to as compiler options,1 and LLVM-clang and LLVM-opt both have more
than 100 transformation passes2 each. Additionally, these optimizations are applied
at very different phases of the compilation, including analysis passes and loop-nest
passes. Most optimization flags are turned off by default and compiler developers
rely on software developers to know, which optimizations will be beneficial for their
code. Compiler developers provide standard optimization levels, i.e., -O1, -O2,
-Os, etc. to introduce a fixed-sequence of compiler optimizations that, on average,
bring good performance on a set of benchmarks compiler developers tested the
optimization levelswith.However, usingpredefinedoptimizations usually is not good
enough to bring the best achievable application-specific performance. One of the key
approaches used recently in literature to find the best optimizations to apply to an
application is inducing prediction models using different classes of machine learning
[15]. Approaches which leverage machine learning to find the best optimizations to
apply will be the center focus of this book.

Contribution. In this chapter, we provide an overview of techniques and
approaches appeared so far to tackle the aforementioned problems. We elaborate
many recent papers proposed for compiler autotuning whenMachine Learning (ML)
was involved. To the best of our knowledge, the first application of machine learning
for the compiler autotuning problemwas done by [16–18]. However, therewere other
original works which tackled the problem of compiler autotuning without the use of
machine learning technique [10, 19–22], and we believe them to be the driving force
of using machine learning to the existing problems. Thus we decided to consider
the past 25years as it covers the whole time span of the literature on the very field.
Additionally, this chapter can be a connecting point for the already available surveys
[23, 24] on the compiler optimization field.

We first discuss the motivation and challenges involved in the compiler optimiza-
tion research in Sect. 1.2, followed by an analysis of the optimization space for the
two major optimization problems. Then, we discuss the machine learning models
used in Sect. 1.3 and provide a full classification of different techniques used in the
recent research. Finally, we conclude the chapter with discussion and future trends.

1https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html.
2http://llvm.org/docs/Passes.html.

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://llvm.org/docs/Passes.html


4 1 Background

Fig. 1.1 Organization of the chapter in different sections

We hope that this chapter will be useful for a wide range of readers, including
computer architects, compiler developers, researchers and technical marketing pro-
fessionals.

Organization of the chapter. In these sections, we organize the state-of-the-art
works in different categories to underscore their similarities and differences. Note
that the works presented in these sections are deeply intertwined. While we study a
certain work under a single group, several of these works belong to multiple groups.
We organize the chapter in a way that all research papers corresponding to a specific
type of classification are cited. However, we selectively focused on the most notable
works under each section and we provide more elaboration on their contribution.
Fig. 1.1 represents our organization of the chapter.

1.2 Compiler Optimizations

1.2.1 A Note on Terminology and Metrics

Since publications mentioned in this chapter originated from varying authors, termi-
nologies were locally defined and might not be strictly defined. We clarify terms
used in this chapter here and relate them to the publications discussed. Com-
piler optimization field has been referred to as compiler autotuning, compilation,
code optimization, collective optimization, and program optimization. To maintain
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clarity, we do not use all these terms but rather use optimizing compilers, or compiler
autotuning. Moreover, under each classified subsection, we will point out the other
nomenclatures that have been used widely and our reference subsequently.

1.2.2 Compiler Optimization Benefits and Challenges

The majority of potential speedup no longer arrives at the increase of processor core
clock frequencies. Automatic methods of exploiting parallelism and reducing depen-
dencies are needed. Compiler optimizations [20] allow a user to affect the generated
codewithout changing the original high-level source code.When these optimizations
are applied may result in a program running better on a target architecture. Since a
user is not able to manual tune a large code, automatic methods need to be intro-
duced. Additionally, manual tuning is not portable – transformations applied to code
running on one architecture is not guaranteed to yield the same performance increase
on another architecture. We discuss the challenges and benefits at two levels:

Research Level

One clear benefit of optimization passes is their portability – if necessary, they can
be easily adapted to newer architectures. However, there are some optimizations that
have been researchedmore thanothers. Specifically,we still have not reached the once
“holy grail” of auto-parallelizing compilers, but we have made significant progress.
Polyhedral loop analysis and transformations paved the way for safe transformations
leading to auto-parallelizable code segments. The polyhedral model also aided with
the generation of architecture-dependent, cache-friendly access patterns.

User’s Level

Compiler writers expose general-purpose transformations to end users. Ulti-
mately, a subset of these transformations leads to better architecture fitting given
source code.Over timewe have seen an overall improvement of compilers and related
tools. New high-level languages and languages extensionsmake additional optimiza-
tions possible. Directive-based programming languages, such as OpenMP [25] and
OpenACC [26], automatically transform users’ code to exploit parallelism. One of
the most advantageous contributions has been the introduction of easily expandable
compiler infrastructures such as LLVM. An advanced compiler infrastructure makes
it possible to introduce new optimizations with minimal effort.

1.2.3 Compiler Optimization Problems

The problem of interdependency among phases of compiler optimizations is not
unique to compiler optimization field. Phase inter-dependencies have been noted in
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Table 1.1 A classification based on the type of the problem

Classification References

The selection problem [16, 29–80]

The phase-ordering problem [7–11, 22, 33, 81–88]

traditional optimizing compilers between constant folding and flow analysis, and
between register allocation and code generation [10, 27].

In optimization theory [28], a feasible set, search space, or solution space is the
set of all possible points (sets of values of the choice variables) of an optimization
problem that satisfy the problem’s constraints, potentially including inequalities,
equalities, and integer constraints. A feasible set is the initial set of candidate solu-
tions to the problem before the set of candidates has been narrowed down. Compiler
optimization problempolarizes over twomajor sub-problems based on (i)whetherwe
take into account the enabling/disabling the optimizations only (optimization selec-
tion problem) or (ii) changing the ordering of those optimizations (phase-ordering
problem). Here we briefly discuss the different optimization space of the two.

Table1.1 classifies the existing literature based on the type of the problem. As
we mentioned earlier, the inability of researchers to completely solve the phase-
ordering problem has led to some advances in the problem of selecting the right set
of compiler optimizations. Thus, we see more research focusing on the selection
problem recently.

1.2.3.1 The Problem of Selecting the Best Compiler Optimizations

Several compiler optimizations form an optimization sequence. When we disre-
gard the ordering of these optimizations and focus on whether or not to apply the
optimization, we define the scope of selecting the best compiler optimizations. Pre-
vious researchers have shown that the interdependencies and interaction between
enabling/disabling optimizations in a sequence can dramatically alter the perfor-
mance of a running code even by ignoring the order of phases [12, 29].

Optimizations Space

Let us define a Boolean vector o whose elements oi are the different compiler
optimizations. Each optimization oi can be either enabled oi = 1 or disabled oi = 0.
A compiler optimization sequence to be selected is represented by the vector o
belongs to the n dimensional Boolean space of:

|ΩSelection| = {0, 1}n (1.1)

For the application ai being optimized and n represents the number of compiler
optimizations under study. Therefore, the mentioned research problem consists of an
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exponential space as its upper-bound. Having n = 10, drive us to a total space (2n)
up to |Oselection| = 1024 options to select among per interested target application ai
to be optimized and this number itself would be multiplied by different applications
A = a0 . . . aN under study.

Extended version of the current definition in Eq.1.1 is the case where we have
more than a binary choice (enabling/disabling). Certain compiler optimizations
offer multiple levels of optimization to choose among, i.e. -loop-unrolling,
loop-tiling, etc. in many compiler frameworks with different values such as
4, 8, 16,m etc. Consequently, we turn the previous equation as:

|ΩSelection_Extended| = {0, 1, . . . ,m}n (1.2)

wherem defines the number of different optimization levels a compiler optimiza-
tion has.

1.2.3.2 The Phase-Ordering Problem

Compiler designers must consider the order in which optimization phases are per-
formed; a pair of phases may be interdependent in the sense that each phase could
benefit from information produced by the other. When both the selection and the
ordering are of importance, the phase-ordering problem is formed. It is one of the
longstanding problems of compilation field and has its peer problems in numerous
other sub-fields of compiler design such as register allocation, code-generating and
compaction [10, 27].

Optimizations Space

A phase-ordering optimization sequence represented by the vector o belongs to
the n dimensional factorial space of:

|ΩPhases| = n! (1.3)

where n represents the number of compiler optimizations under study. How-
ever, the mentioned bound is for a simplified phase-ordering problem having a fixed
length optimization sequence length and no repetitive application of optimizations.
Enabling optimizations to be repeatedly applied and a variable length sequence of
optimizations will expand the problem space to:

|ΩPhases_Repetition_variableLength| =
m∑

i=0

ni (1.4)

where n is the number of optimizations under study and m is the maximum desired
length for the optimization sequence. Even for reasonable values of n and m, the



8 1 Background

entire search space is enormous. For example, assuming n and m are both equal
to 10, this leads to an optimization search space of more than 11 billion different
optimization sequences to select from for each piece of code being optimized [82].3

1.3 Machine Learning Models

Machine learning explores the study and construction of algorithms that can learn
from andmake predictions on data [89]. Many types and sub-fields of machine learn-
ing exist and here we classify them based on the broad categories: (i) Supervised
learning (ii) Unsupervised learning, and (iii) Other methods (including reinforce-
ment learning, graph-based technique, and statical methods). The classification of
all machine learning models used is depicted in Table1.2. In each subsection we pro-
vide an overview of the method and we mention the major tools and works involved.
The general formulation of the optimization problem is to construct a function that
takes as input the features of the unoptimized program being compiled. In other
words, this model takes as an input a tuple (F, T ) where F is the feature vector of
the collected instrumentation of the program being optimized; and T is one of the
several possible compiler sequences predicted to perform well on this program. Its
output is a prediction of the speedup T should achieve when applied to the original
code.

1.3.1 Supervised Learning

Supervised learning is the machine learning task of inferring a function from labeled
training data [89, 112]. The learner receives a set of labeled examples as training
data and makes predictions for all unseen points. This is the most common scenario
associated with classification, regression and ranking problems.

1.3.1.1 Bayesian Networks

Bayesian Networks (BN) [113, 114] are powerful classifiers to represent the prob-
ability distribution of different variables that characterize a certain phenomenon
such as the optimality of compiler optimization sequences. A Bayesian Network is
a direct acyclic graph whose nodes represent variables and whose edges represent
the dependencies between these variables. The probability distributions of the two
optimizations depend on the program features represented by α. Additionally, the

3The phase-ordering problem does not have a deterministic upper-bound when we have an
unbounded optimization length.
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Table 1.2 A classification based on machine learning models

Classification References

Supervised learning Bayesian networks [12, 90]

Linear models/SVMs [12, 68, 72, 82, 86, 91]

Decision trees/Random forests [45, 46, 57, 63, 77, 92–94, 94–97]

Neural networks/Genetic algorithm [8, 9, 16, 29, 30, 40, 52, 54, 55,
62, 66, 71, 73, 78, 83–85, 87, 95,
96, 98–107]

Others [12, 35, 48, 53, 59, 71, 75–78, 86,
91, 104, 106–109]

Unsupervised Clustering methods [75, 84, 87, 110, 111]

Others methods Reinforcement learning/NEAT [9, 95, 107]

Graph-based methods [62, 84, 111]

Statistical methods [9, 12, 29, 31, 32, 34, 35, 40–48,
50, 51, 56, 59, 61, 64, 68, 70, 71,
74, 77, 78, 90, 93, 95, 96, 98, 101,
107, 108, 110]

probability distribution of o2 depends on whether the optimization o1 is applied.
Nodes representing observed variables whose value can be input as evidence to the
network.

Ashouri et al. [12, 90] proposed a Bayesian network approach to address the prob-
lem of selecting the best compiler optimizations suitable for an embedded processor
to gain speedup versus the fixed standard optimizations available at different lev-
els of GCC compiler. They used static, dynamic and hybrid features to construct
an application feature vector and evaluated their approach with Cbench [115] and
Polybench [116, 117] using BN to focus on iterative compilation and showed using
the inferred compiler passes by the BN they could outperform GCC’s -O2 and -O3
by around 50%.

1.3.1.2 Linear Models and SVMs

Linear models are one of the most popular supervised learning methods to be widely
used by researchers in tackling many machine learning applications. Linear regres-
sion, nearest neighbor, and linear threshold algorithms are very stable [112]. Algo-
rithms whose output classifier does not undergoes major changes in response to
small changes in the training data. Moreover, SVMs are a supervised machine learn-
ing technique, used for both classification and regression, and it can apply linear
techniques to non-linear problems. First, SVM transforms data into a linear space by
using kernel functions and uses a linear classifier to separate data with a hyperplane.
SVM not only finds a hyperplane to separate data, but also finds the best hyperplane,
namely the maximum margin hyperplane, and shows the largest separation from the
set of hyperplanes [91].
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1.3.1.3 Decision Trees and Random Forests

A binary decision tree is a tree representation of a partition of the feature space.
Decision trees can be defined using more complex node questions resulting in par-
titions based on more complex decision surfaces [89]. Random forests or random
decision forests are an ensemble learning methods for classification, regression and
other tasks, that operate by constructing a multitude of decision trees at training time
and outputting the class that is the mode of the classes (classification) or mean pre-
diction (regression) of the individual trees. Random decision forests correct decision
trees’ habit of overfitting to their training set [112].

Fraser et al. [93] proposed to use machine learning to perform code compression.
It uses IR structure of the codes to automatically infer a decision tree that separate
IR code into a stream that compress better. They evaluated their approach with GCC
and used Opcodes which can also help predict elements of the operand stream.

Monsifrot [97] addressed the automatic generation of optimization heuristics for a
target processor by machine learning. They evaluated the potential of this method on
an always legal and simple transformation: loop unrolling. They used decision trees
to learn the behavior of the loop unrolling optimization on the code being studied
and drive to decide whether to unroll on UltraSPARC and IA-64 machines.

Fursin and Cohen [94] built an iterative and adaptive compiler framework on the
SPEC applications using a modified GCC. Building a transparent framework which
reuses all the compiler program analysis routines (from a program transformation
database) to avoid duplications in external optimization tools.

Lokuciejewski et al. [96, 118] proposed an adaptive worst-case execution time
(WCET)-aware compiler framework using Random forests for an automatic search
of compiler optimization sequences that yield highly optimized code. Besides the
objective functions ACET and code size, they consider the WCET which is a crucial
parameter for real-time systems. To find suitable trade-offs between these objec-
tives, stochastic evolutionary multi-objective algorithms identifying Pareto optimal
solutions for the objectives (WCET, ACET) and (WCET, code size) are exploited.

Luo et al. [57] proposed a technique to select a minimal set of representative
optimization variants (function versions) for such frameworks while avoiding per-
formance loss across available datasets and code-size explosion. They developed
a novel mapping mechanism using a decision tree namely, rule induction based
machine learning techniques to rapidly select best code versions at run-time based
on dataset features and minimize selection overhead.

1.3.1.4 Neural Networks and Genetic Algorithms

Neural networks (NN) are frequently employed to classify patterns based on learn-
ing from examples. Different neural network paradigms employ different learning
rules, but almost all in some way determine pattern statistics from a set of training
samples and then classify new patterns on the basis of these statistics [119]. A NN
is a network inspired by biological neural networks which are used to estimate or
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approximate functions that can depend on a large number of inputs that are generally
unknown. Artificial neural networks are typically specified using three components:
(i) architecture, (ii) activity rule, and (iii) learning rule. Genetic Algorithm (GA) is a
meta-heuristic inspired by the process of natural selection and can be paired with any
other machine learning technique or work independently. A notable GA heuristic is
NSGA which is a popular method for many optimization problems [120].

Cooper et al. [16, 101] in one of the early related work of literature, addressed the
code size of the generated binaries by using genetic algorithm to find optimization
sequences that generate small object codes. The solutions generated by this algorithm
are compared to solutions found using a fixed optimization sequence and solutions
found by testing random optimization sequences. Based on the results found by the
genetic algorithm, a new fixed sequence is developed to reduce code size.

Knijnenburg et al. [54] proposed an iterative compilation approach to tackle the
selection size of the tiling and the unrolling factors in an architecture independent
manner. They evaluated their approach using several iterative strategies based on
genetic algorithms, random sampling, and simulated annealing and compared the
results with static-techniques. The targeted compiler was native Fortran77 or g77
compiler with full optimization on. The benchmarks used were Matrix-Matrix Mul-
tiplication (M × M), Matrix-Vector Multiplication (M × V) and Forward Discrete
Cosine Transform.

Stephenson et al. [71] introduced Meta Optimization, a methodology for auto-
matically fine-tuning compiler heuristics. Meta Optimization uses machine-learning
techniques and specifically genetic programming to automatically search the space
of compiler heuristics. The authors targeted IMPACT compiler with Spec and Medi-
abench [121] applications to evaluate their approach.

Cavazos and O’Boyle [99] developed a genetic algorithm based approach to auto-
matically tune a dynamic compiler’s internal inlining heuristic. The approach used
a program’s performance to guide the search. Genetic algorithms have been used as
candidates and the geometric mean of the performance of the SPECjvm98 bench-
marks was used as their fitness function.

Agakov et al. [29] introduced machine-learning models to focus on the explo-
ration of the compiler optimizations for the most promising region. Their methodol-
ogy exploits a Markov chain oracle and an independent identically distributed (IID)
probability distribution oracle. These twomodels learned offline bias using only a cer-
tain optimizations rather than using the uniform probability distribution they applied
earlier for the RIC reference methodology. The authors reported significant speedup
by coupling these machine-learningmodels with a nearest-neighbor-classifier.When
predicting the probability distribution of the best compiler optimizations for a new
application, the classifier first selects the training application having the smallest
Euclidean distance in the feature vector space (derived by PCA). Then it learns the
probability distribution of the best compiler optimizations for this neighboring appli-
cation either by means of the Markov chain model or by using an IID model. The
probability distribution learned is then used as the predicted optimal distribution
for the new application. It has been reported that the Markov chain oracle outper-
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forms the IID oracle, followed by the RIC methodology using a uniform probability
distribution.

Kulkarni et al. [8] used a depth-first search algorithm to produce the next sequence
to evaluate in an exhaustive exploration of the phase ordering problem. To evaluate
their method, the authors used hill-climbing, simulated annealing, genetic-algorithm
and a random search on an embedded architecture.

Leather et al. [104] used grammatical evolution based on the genetic algorithm to
describe the feature space and used predictive modeling on GCC 4.3.1 to evaluate
the approach on Pentium 6 with mediabench to determine the loop-unrolling factor.

Purini et al. [87] have defined a machine learning based approach to downsam-
ple the compiler optimization sequences in LLVM’s -O2 and then applied machine
learning to learn a model. The authors introduced a clustering algorithm to clustering
sequences based on Sequence Similaritymatrix by calculating the Euclidean distance
between the two sequence vectors. In the experimental evaluation, they have men-
tioned the most frequent optimization passes with their fitness function (execution
speedup) as well.

1.3.1.5 Other Supervised Methods

For conciseness proposes, we decided to classify other supervised learning meth-
ods in this subsection. These include Lazy learning, ANOVA, K-nearest neighbor,
Gaussian process learning [89], and others.

Moss et al. [18] showed how to cast the instruction scheduling problem as a learn-
ing task, obtaining the heuristic scheduling algorithm automatically. They focused
on the narrower problem of scheduling straight-line code (also called basic blocks
of instructions). They used static and IR features of the basic block with the SPEC
benchmark to experimentally evaluate their approach by using Geometric mean as
fitness function and fold-cross-validation.

Cavazos and Moss [35] used JIT Java compiler and SPECjvm98 benchmark and
rule set induction learningmodel to decidewhether to schedule. The induced function
chooses for each block between list scheduling or not scheduling the block. Using the
induced function the authors obtained over 90% of the improvement of scheduling
every block but with less than 25% of the scheduling effort.

Tournavitis et al. [76] proposed a technique using profile-driven parallelism detec-
tion in which they could overcome the limitations of static analysis, and allowing the
identification of more application parallelism. This approach only relied on the user
for final approval. It integrated profile-driven parallelism detection and machine-
learning based mapping in a single framework. Moreover, the authors replaced the
traditional target-specific and inflexible mapping heuristics with a machine-learning
based prediction mechanism, resulting in better mapping decisions while provid-
ing more scope for adaptation to different target architectures. Finally, they have
experimentally evaluated their approach against NAS and SPEC-OMP.
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1.3.2 Unsupervised Learning

Unsupervised learning is themachine learning task of inferring a function to describe
hidden structure from unlabeled data. Since the examples given to the learner are
unlabeled, there is no error or reward signal to evaluate a potential solution [89, 122].
Unsupervised learning is closely tightened with the problem of density estimation
in statistics [123]. However, unsupervised learning also encompasses many other
techniques that seek to summarize and explain key features of the data.

1.3.2.1 Clustering Methods

One of supervised learning’s key subclasses is clustering. Clustering helps to down-
sample the chunk of unrelated compiler optimization passes into meaningful clusters
that correspond to each other, i.e., targets loop-nests or scalar values, or they should
follow each other in the same sequence. Another benefit of clustering/downsampling
is to reduce the compiler optimization space which as mentioned in Sect. 1.2.3 are
in tens of thousands orders of magnitudes.

Thomson et al. [75] present a new approach to reduce the training time of a
machine learning based compiler. They focused on the programs which best char-
acterized the optimization space and proposed to use a clustering technique, namely
GustafsonKessel algorithm, after applying the dimension reduction process. They
evaluated the clustering approach on the EEMBCv2 benchmark suite and show that
they can reduce the number of training runs by more than a factor of seven.

Ashouri et al. [32, 110] developed a hardware/software co-design toolchain to
explore compiler design space jointly with microarchitectural properties of a VLIW
processor. The authors have used clustering to derive to four (4) good hardware
architectures followedbymitigating the selectionof promising compiler optimization
with statistical techniques such as kruskal-wallis test and pareto-optimal filtering.
(This method involved with statistical methods as well. Refer to Sect. 1.3.3.3.)

Martins et al. [84, 111] tackled the problem of phase-ordering by a DSE approach
that uses a clustering-based selectionmethod for grouping functions with similarities
and exploration of a reduced search space resulting from the combination of opti-
mizations previously suggested for the functions in each group. Authors used DNA
encoding where program elements (e.g., operators and loops in function granular-
ity) are encoded in a sequence of symbols, and followed by calculating the distance
matrix and a tree construction of the optimization set. Consequently, they applied the
compiler optimization passes already included in the DSE to measure the reduction
in the total exploration time of the search space such as Genetic algorithm.



14 1 Background

1.3.3 Other Machine Learning Methods

In this section, we present the recent literature involved with using machine learning
methods that could not be classified by supervised or unsupervised learningmethods.
Examples of thesemethods are reinforcement learning, graph-basedmethods and the
statistical methods [89].

1.3.3.1 Reinforcement Learning and NEAT

Reinforcement learning (RL) is an area of machine learning inspired by behaviorist
psychology, concerned with how software agents ought to take actions in an envi-
ronment to maximize some notion of cumulative reward. The problem, due to its
generality, is studied in many other disciplines, such as game theory, control theory,
operations research, information theory, simulation-based optimization, multi-agent
systems, swarm intelligence, statistics, and genetic algorithms [89]. The interesting
difference in RL is that the training and testing phases are intermixed. To collect
information the learner should actively interact with the environment.

We decided to group RL with a neuroevolution approach called NEAT as sug-
gested by [124] since NEAT can be a strong method on the pole-balancing bench-
mark reinforcement learning tasks. NEAT alters both the weighting parameters and
structures of networks, attempting to find a balance between the fitness of evolved
solutions and their diversity. It is based on applying three key techniques: (i) track-
ing genes with historical markers to allow crossover among topologies, (ii) applying
speciation (the evolution of species) to preserve innovations, and (iii) developing
topologies incrementally from simple initial structures (complexifying).

Kulkarni et al. developed two approaches to tackle both problems of selection [95]
and the phase-ordering [9] of compiler optimizations. The approach for selecting the
good compiler passes is done using NEAT and static features to tune Java hotspot
server compiler with SPEC Java benchmarks (using two benchmarks for training and
two for testing). The authors used NEAT to train decision trees for the caller and the
callee whether to inline. The approach for the phase-ordering problem, formulates it
as a Markov process and uses a characterization of the current state of the code being
optimized to creating a better solution to the phase ordering problem. Here, they uses
NEAT to construct an artificial neural network that is capable of predicting beneficial
optimization ordering for a piece of code that is being optimized. By using a stop-
condition, the NEAT knows when to stop expanding the sequence and converging to
the final sequence.

1.3.3.2 Graph-Based Methods

Recently, graph-based methods have emerged as a powerful means of exploiting
many different machine learning applications on a wide range of applications from
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semi-supervised learning [125] to clustering and classification [126]. We decided to
place them in the section related to the other machine learning methods to be more
precise on our classification.

Park et al. [62] introduced a novel way of of both characterizing programs using a
graph-based characterization, which uses the program’s intermediate representation
and an adapted learning algorithm to predict good optimization sequences. In order to
construct the feature vectors, they used graph-kernels. The authors evaluated different
characterization techniques, focusing on loop-intensive programs. They constructed
prediction models that drive polyhedral optimizations, such as auto-parallelism and
various loop transformations.

Nobre et al. [105] proposed an iterative compilation approach using graph-based
features of the optimized code to mitigate the selecting and the ordering of the
compiler optimization passes in LLVM. After iterative evaluations, the authors could
find solutions with a speedup factor over the baseline and they provided a clustering
method to organize their finding.

1.3.3.3 Statistical Methods

Terminology across fields is quite varied for statistical methods [127]. In statistics,
where classification is often done with logistic regression or a similar procedure,
the properties of observations are termed explanatory variables (or independent vari-
ables, regressors, etc.), and the categories to be predicted are known as outcomes,
which are considered to be possible values of the dependent variable. In machine
learning [15, 89], the observations are often known as instances, the explanatory vari-
ables are termed features (grouped into a feature vector), and the possible categories
to be predicted are classes. Here we refer to the group of work in the literature which
involved with the most frequent procedures or multivariate distribution. Some refer-
ences considered Bayesian networks, decision trees or random forests as a form of
statistical methods, but we decided to have an individual section for each to classify
in a more fine-grained manner.

Pinker et al. [64] proposed an automatic iterative procedure to turn on or to turn
off compiler options. This procedure is based on orthogonal arrays that are used for
a statistical analysis of profile information to calculate the main effect of the options.
This approach can be used on top of any compiler that allows a collection of options
to be set by the user. They showed that the proposed approach outperforms -O3 of
GCC on some SPEC benchmarks.

Haneda et al. [51] introduced a statistical technique to derive amethodologywhich
trims down the search space considerably, thereby allowing a feasible and flexible
solution for defining high performance optimization strategies. They show that the
technique finds a single compiler setting for a collection of programs SPECint95 that
performs better than the standard settings of GCC.

Namolaru et al. [59] proposed a general method for systematically generating
numerical features from a program. The authors implemented the approach in a
production compiler. This method does not place any restriction on how to logically
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and algebraically aggregate semantical properties into numerical features, offering a
virtually exhaustive coverage of statistically relevant information that can be derived
from a program. They have used static features of MilePost GCC and MiBench to
evaluate their approach.

Ashouri et al. [32, 110] introduced a statistical technique to cluster and choose
the best compiler optimizations in a software/hardware co-design manner. The
authors used multi-objective optimization and Pareto-filtering to derive their micro-
architectural parameters followed by the ANOVA and Kruskal-wallis tests. Using a
performance distribution graphs as their fitness function, they selected a number of
compiler parameters to be used for a VLIW [128, 129] architecture.

1.4 Conclusions

Using compiler optimizations to exploit large-scale parallelism available on archi-
tectures and power-aware hardware is an essential task. In the coming decades,
research on compilation techniques and code optimization will play a key role in
alleviating various challenges within computer science and the high performance
computing field. This includes auto-parallelization, security, exploiting multi/many-
core processors, reliability, reproducibility, and energy efficiency.

By the advancement we have seen in GPUs, deep learning has emerged as a viable
mean of addressing many classification problems. These complex learners allow
automated systems to efficiently perform tasks with minimal programmer effort.

In this chapter, we have synthesized the research work on compiler autotuning
using machine learning and we showed the broad spectrum of the use of machine
learning techniques and their key research ideas and applications. We surveyed
research works at different levels of abstraction when machine learning models were
used.Wediscussed bothmajor problemsof compiler autotuning, namely the selection
and the phase-ordering problem along with the benchmark suits proposed to evaluate
them. In the next chapters, we tackle the aforementioned problems by means of a
design space explorations and machine learning approaches.
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Chapter 2
Design Space Exploration of Compiler
Passes: A Co-Exploration Approach
for the Embedded Domain

Abstract Very Long Instruction Word (VLIW) processors represent an attractive
solution for embedded computing, offering significant computational power with
reduced hardware complexity. However, they impose higher compiler complexity
since the instructions are executed in parallel based on the static compiler sched-
ule. Therefore, finding a promising set of compiler transformations and defining
their effects have a significant impact on the overall system performance. In this
chapter, we provide a methodology with an integrated framework to automatically
(i) generate optimized application-specific VLIW architectural configurations and
(ii) analyze compiler level transformations, enabling application-specific compiler
tuning over customized VLIW system architectures. We based the analysis on a
Design of Experiments (DoEs) procedure that statistically captures the higher order
effects among different sets of activated compiler transformations. Applying the pro-
posed methodology onto real-case embedded application scenarios, we show that (i)
only a limited set of compiler transformations exposes high confidence level (over
95%) in affecting the performance and (ii) using them we could be able to achieve
gains between 16–23% in comparison to the default optimization levels. In the next
chapters, we go deeper in building machine learning models to tackle the problem.

2.1 VLIW

Embedded system design traditionally exploits the knowledge of the target domain,
e.g., telecommunication, multimedia, home automation etc., to customize the
HW/SW coefficients found onto the deployed computing devices. Although the
functionalities of these devices differ, the computational structure and design are
tightly connected with the platform they rely on. Platform-based designs have been
proposed as a promising alternative for designing complex systems by redefining the
problem of tuning specific design parameters of the platform template.

The scientific and commercial urge to use VLIW technology seems to be raised
again after three decades of existence [1]; VLIW processor templates are being used
particularly in embedded processors, designed to perform special-purpose functions,
usually for real-time or hardware acceleration. Being able to useVLIWpower-saving
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cores in CPUs seems to be using day by day. However, the trade-offs between right
parallel execution and the speedup managed by compiler instead of hardware are
becoming a very complex task. VLIW can potentially achieve greater performance,
offering high degree of Instruction Level Parallelism (ILP) with low silicon and
power costs. On the one hand, architecture configurability of VLIW platforms offers
significant advantages regarding portability, sizing and parameter tuning provided to
the designer [1, 2]. On the other hand, it introduces a lot of complexity during opti-
mization due to multi-objective nature of the solution space and the multi-parametric
structure of the design space.

Although a significant amount of research has been conducted on exploring and
optimizing VLIW architectural parameters [3] and introducing specific compiler
optimization for VLIW processors [4, 5], there are limited references regarding the
analysis of the impacts of conventional compiler transformations onto VLIW archi-
tectures and moreover how these transformations are correlating with the underlying
architectural configuration. Nowadays, the existence of modular and reusable com-
piler tool-chains LLVM and ROSE [6] raises the opportunity for system designers
to exploit sophisticated compiler passes and customize their compiler infrastructure
accordingly. Given the large optimization space provided by the modern compiler
infrastructures, the designer has to traverse to find the best trade-off points, thus a
fine-grained and automatic characterization of the effects that each compiler trans-
formation has onto the application’s behavior, is considered of great importance.
Empirical evaluation of the effects, by simply activating and deactivating compiler
passes cannot be considered adequate, since a lot of inter-transformation interactions
and second order effects are neglected. Due to the complexity of characterizing the
solution space, there is a necessity to extend conventional exploration approaches
by applying sophisticated analysis and data-mining for extracting knowledge from
statistical results [7]. The problem becomes more demanding in the embedded com-
puting domain, which requires different optimizations related to each platform con-
figuration customized for a specific application domain. The main contribution of
this chapter consists of proposing a compiler/architecture methodology that provides
to the designer an integrated environment to automatically (i) generate optimized
application specific architectural configurations of VLIW-based platforms, and (ii)
a statistical analysis of the effects of compiler level transformations.

We target the design problem of compiler/architecture co-exploration in embed-
ded computing. Thus, we focus on enabling application-specific compiler tuning
over customized VLIW system architectures. First, a multi-objective exploration
loop targeting application-specific micro-architectural customization is applied for
extracting the best VLIW architecture candidates. We utilize the newly introduced
Roofline processor architecture model [8] for characterizing the differing architec-
tural solutions onto various resource constraints. The optimized VLIW architectural
configurations are then propagated to the compiler analysis phase in which the sta-
tistical effects of the applied compiler transformations are characterized in a fine-
grained manner. The developed exploration framework integrates the LLVM com-
piler infrastructure [9] as a source to source code transformation tool together with
the VEX compiler-simulator for mapping the transformed code onto custom VLIW
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architecture instances. We evaluated the overall methodology (customized architec-
ture selection and statistical compiler level analysis) using a GSM codec application
as the driving use case. We show that only a limited set of compiler transforma-
tions has a significant effect on optimizing performance across a set of GSM specific
VLIW processors. In addition to the application specific scenario, we present results
regarding the multiple embedded applications onto a single VLIW instance, showing
that the proposed analysis can be used to extract promising compiler transformations
in cross-application manner.

The rest of the chapter is organized as follows. Section2.2 provides a brief dis-
cussion on related work and the current state of the art in the field. In Sect. 2.3,
we introduce the basic methodology for architecture customization and statistical
compiler level analysis. Section2.3.2.1 presents the experimental evaluation of the
proposed methodology on differing customized VLIW architectures and benchmark
applications. Section2.4 summarizes the work and concludes this chapter.

2.2 Background

Although we have entered the era of multi-core systems, the high degree of instruc-
tion parallelism offered by VLIW architectures seems to make them an interesting
alternative for a large set of commercial embedded systems [1, 10, 11]. VLIW archi-
tectures are also emerging in the modern many-core embedded accelerator devices,
i.e., KALRAY MPPA256 for image and signal processing applications.

Several research works have targetted the generation of Pareto optimal VLIW
architectural configurations [3, 11] by exploring the space using pre-allocated com-
piler sequences over differing architecture instances. Towards the same direction of
VLIW architectural configuration, Wong et al. [12] introduced r-VEX, a reconfig-
urable and extensible VLIW processor. The source code is mapped using the VEX
(VLIW Example) environment [13], which forms a compilation-simulation system
that targets a broad class of VLIW processor architectures, and enables compiling,
simulating, analyzing and evaluating C programs [2].

In current literature, there is a lot of attention on iterative compilation and pre-
dictive compiler modeling to predict the potential speedup of compiler transformed
programs utilizing code features provided by static program analysis as mentioned in
the Chap.1. However, there is a lack of comprehensive analysis regarding the impact
of applying differing conventional compiler transformations on customized VLIW
architectures. Although, in VLIW compilation infrastructures [13] there are avail-
able batch compiler optimizationmodes, fine-grained analysis of compiler effects for
VLIW architectures and its relationwith architecture customization is not adequately
targeted.

http://dx.doi.org/10.1007/978-3-319-71489-9_1
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2.3 Methodology for Compiler Analysis of Customized
VLIW Architectures

In this section, we describe the proposed methodology for compiler analysis of cus-
tomized VLIW architectures. The proposed methodology comprises of two phases:
(i) Customized VLIW architecture selection and (ii) Statistical analysis of compiler
transformations. From a high-level point of view, we first generate a set of promising
VLIW architectural candidates that tailor to the characteristics of the target appli-
cation, optimizing on the performance-intensity trade-off curve with respect to the
overall hardware allocated resource. Then, statistical analysis of distributions gener-
ated over the compiler transformation space is performed on the set of these selected
customized VLIW solutions. This enables the designer to characterize the effects of
each compiler transformation in both an architecture specific manner and a cross-
architecture manner.

We used the Roofline performance model [8] as the basis for both generating
the custom architecture configurations and characterizing the effect of the com-
piler passes. Roofline relates processor performance to off-chip memory traffic. It
characterizes processor architectures in a two-dimensional space, i.e., performance
(Mops/sec) versus operational intensity (ops/Byte). Operational intensity is defined
as operations per byte of DRAM traffic, defining total byte accessed as those bytes
that go to the main memory after been filtered by the cache hierarchy. The advantage
of usingRooflinemodel is twofold: (i) it provides the designerwith an intuitive insight
visual metric for fast evaluation of the architectural optimality of the configuration
and (ii) it is useful to characterize the impact of applied compiler transformations
onto a specific architecture. For example, Fig. 2.1 depicts the Roofline model of
a specific VLIW configuration and the superposition of application configurations

Fig. 2.1 Roofline example
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Fig. 2.2 Tool-chain implementing the proposed methodology

derived from an experimental campaign of 4K different compiler parameter combi-
nations. A general trend (highlighted by the arrow in Fig. 2.1) can be easily detected
towards higher performance and operational intensity points. Given this visual rep-
resentation, a designer can identify promising compiler passes to be applied. A cus-
tom exploration and analysis framework (Fig. 2.2) has been developed based on the
integration of open source tools to implement the proposed methodology. Specif-
ically, we used Multicube Explorer [14, 15] as the central DSE engine. Given the
architectural and compiler design space descriptions, it manages to automatically
generate configuration vectors according to the specified DoE – random DoE during
the phase of custom VLIW architecture selection and random effect DoE during the
compiler transformation analysis phase. The LLVM compiler infrastructure1 is inte-
gratedwithin the framework – specifically the LLVMC front-end and the opt tool – as
a source to source transformation tool of the original application code after applying
the compiler transformations instructed by the DSE engine. The transformed code
of the application is mapped onto the VLIW processor using the VEX [13] VLIW
compiler-simulator tool, which is used for both generating different VLIW architec-
tural configurations and mapping code onto these custom VLIW processors. Custom
scripts have been developed to evaluate each examined configuration according to
the Roofline model. Statistical analysis and visualization of results are performed
using the statistical language R [16].

1LLVM projected supported its C source-to-source compiler frontend till v2.8.
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2.3.1 Custom VLIW Architecture Selection

Application-specific customization of architecture’s parameters is one of the early
system design optimization phases for defining platform configurations that meet
the desired performance specifications. Given the large number of parameters that
usually defines a processor architecture and the delay required for simulating each
possible configuration, the task of optimal micro-architectural parameter selection
forms an extremely challenging exploration problem that for reasonably represen-
tative design space definitions becomes intractable, regarding the time required for
exhaustive evaluation. Several research works utilizing well-known meta-heuristics
[3, 17] have been already proposed for generating the Pareto optimal sets of the
aforementioned optimization problem.

In this chapter, however, we slightly shift the focus of exploration from deliver-
ing the optimal set of architectural configurations to discover custom architecture
configurations that do not correspond to the boundaries of Pareto regions, i.e., very
low-cost architectures with very poor performance or very expensive architectures
that deliver very high gains regarding performance. Thus, here we invoke a relaxed
optimization search strategy that is based on a random sampling of the targeted design
space rather than on an optimization oriented strategy, e.g. simulated annealing or
NSGA-II genetic optimization [17] etc.

Table2.1 shows the micro-architectural design space, Ω , considered for the cus-
tom VLIW architecture selection phase. In the first step, we randomly sample the Ω

design space. Each explored solution is stored in the database of explored solutions,
X after being characterized according to the performance and operational intensity
metrics defined within the Roofline model, where:

Performance(x) = #Operations(x)
#NumCycles(x) × ClkFreq(x)

(2.1)

Intensity(x) = #Operations(x)
#CacheMisses(x) × CacheLineSi ze(x)

(2.2)

After the formation of the X , we are interested in finding those explored archi-
tectures that maximize the performance and operational intensity of the application
while using minimum computational and memory resources. In order to extract the
desired architectural configurations, we performPareto filtering on the solution space
defined with the X , by considering the following multi-objective optimization prob-
lem:

min
x∈Ω

⎡
⎢⎢⎢⎢⎢⎣

1

Per f ormance(x)
1

I ntensi t y(x)
#CompResources(x)
#MemResources(x)

⎤
⎥⎥⎥⎥⎥⎦

(2.3)
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Table 2.1 VLIW
microarchitectural design
space

Parameters Values (integer range)

lg2CacheSize [11–30]

lg2Sets [0,3]

lg2LineSize [5,9]

lg2ICacheSize [11,30]

lg2ICacheSets [0,3]

lg2ICacheLines [5,9]

ClkFreq [300,500]

NumCaches [1,2]

IssueWidth [1,16]

NumAlus [1,16]

NumMuls [1,4]

RegisterFile [32,128]

BranchRegister [32,128]

where computational resources are (i) number ofALUsand (ii) number ofmultipliers,
while memory resources are (i) data cache size, (ii) instruction cache size and (iii)
register file size. Although, in Eq.2.3 we present the unconstrained version of the
target optimization problem, we note that our exploration infrastructure permits also
the inclusion of arbitrary constraints either on the objectives itself or on specific
parameter combinations that the designer has a priori evaluated as not interesting.

The outcome of the optimization procedure defined in Eq.2.3 is a Pareto surface,
X p, of the explored X , thus exhibiting a large number of VLIW architectural config-
urations. In order to restrict the number of VLIW configuration that will be charac-
terized as the representative customized VLIW solutions that will be propagated to
the statistical compiler analysis phase, we perform a clustering on the performance
- intensity solution space. We used k-means [18] clustering for the aforementioned
procedure, with a configurable number of clusters, k, decided by the designer. The
clustering procedure partitions the X p solution space into k regions of interest, Xci

p ,
e.g. region of high intensity and high performance, or region of low intensity and high
performance etc. Eventually, each cluster should deliver one representative VLIW
architecture, that forms the optimal solutionwithin the cluster.We define this optimal
solution per cluster as the architectural configuration that minimizes area cost of the
processor while maximizing both the metrics of performance and operational inten-
sity. In order to extract this optimal configuration from each cluster, we iteratively
apply the following single-objective minimization problem in every Xci

p produced
by the k-means clustering:

min
x∈Xci

p

Area(x)
Performance(x) × Intensity(x)

(2.4)
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For the calculation of the area cost in Eq.2.4, the area model provided by the
McPAT [19] micro-architecture framework has been used, assuming a processor
technology of 90nm.

Finding an architectures which is optimized by using the right set of compiler
optimizations is an essential task to mitigate. However, reaching this goal has its
own tolerance and trade-off. Occasionally it happens to sacrifice the code size for
better performance or portability versus code size. Consequently, there should be a
precaution when using these options otherwise it ends up heavier and less-usable.
Without any optimization option, the compiler’s goal is to reduce the cost of compi-
lation and to make debugging produce the expected results. Turning on optimization
flags makes the compiler attempt to improve the performance and/or code size at the
expense of compilation time and possibly the ability to debug the program. Com-
pilers perform optimization based on the program knowledge. Not all optimizations
are controlled directly by an optimization pass. In this work, we select 15 compiler
passes supported by LLVM compiler are as described in the Table2.2.

2.3.1.1 DoE

Given a huge multi-objective optimization problem, it is necessary to use the design
of experiment (DoE) methods, i.e., Taguchi Design of experiment [20]. DoEs are
the basic components for building the exploration strategies. The DoE used in this
work was based on random factors which generated a set of random designed points.
In addition, the optimization algorithm used here was parallel DoE (PDoE) which
was based on the possibility of performing concurrent evaluation of the different
design points, i,e, in the experimental analyses, for each compiler transformations
per benchmark, the number of exploration was 500, therefore, it would have given
enough points for the system to use for DoE and Optimizer to generates the effects
and metrics besides the Pareto points (if exists).

2.3.2 Compiler Transformation Statistical Effect Analysis

The second phase of the proposed methodology receives as input the generated
custom VLIW architectures as described in the previous section, and for each of the
set of micro-architectural points, it evaluates the statistical effects of the compiler
transformations in a fine-grained manner. In this research work we focus on 15 of
the compiler passes supported by LLVM (see Table2.2).

As afirst step in our analysis,wehave to determine a reasonable number of samples
to produce a robust analysis of the main effects associated with the 15 compiler
parameters. In the following, each configuration of these compiler parameters, or
set of compiler options, will be defined as a vector of 15 values, where each value
represents a compiler pass option.
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Table 2.2 Selected compiler transformations from LLVM framework

Compiler transformation Abbreviation Short description

Constant propagation Constprop Constant operands instructions are replaced
with a constant value and propagated

Dead code elimination Dce Checks instructions that were used by
removed instructions to see if they are
newly dead

Function integration/Inlining Inline Bottom-up inlining of functions into callees

Combine redundant instruction Instcombine Combine instructions to form fewer, simple
instructions. This pass does not modify the
CFG and applies algebraic simplification

Loop invariant dode motion Licm Removes as much code from the body of a
loop as possible. It does this by either
hoisting code into the pre-header block, or
by sinking code to the exit blocks if it is safe

Loop strength reduction Loop-reduce Strength reduction on array references
inside loops that have as one or more of
their components the loop induction
variable

Rotates loops Loop-rotate A simple loop rotation transformation

Unroll loops Loop-unroll A simple loop unrolling

Unswitch loops Loop-unswitch Transforms loops that contain branches on
loop-invariant conditions to have multiple
loops

Promote memory to register Mem2reg It promotes memory references to be
register references

Memory copy optimizations Memcpyopt Performs various transformations related to
eliminating memcpy calls, or transforming
sets of stores into memset’s

Reassociate expressions Reassociate It reassociates commutative expressions in
an order that is designed to promote better
constant propagation

Scalar replacement of aggre-
gates

Scalarrepl It breaks up alloca instructions of aggregate
type (structure or array) into individual
alloca instructions for each member if
possible

Sparse cond const propagation Sccp It assumes values are constant and Basic
Blocks are dead unless proven otherwise. It
proves values to be constant, and replaces
them with constants and Proves conditional
branches to be unconditional

Simplify the control flow graph Simplycfg Performs dead code elimination and basic
block merging
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To accommodate our goal, we defined a randomized design of experiments DN (p)
for each compiler parameter p. DN (p) is a list of options sets:

D(p) = [
o1+, o1−, o2+, o2−, . . . , oN+, oN−

]
(2.5)

where on+ corresponds to the n-th random option set in which compiler pass
p ∈ {OFF,ON} is set to its maximum value (ON) while all the others compiler
passes are randomly chosen. In a dual way, on− is equal to on+ except that p assumes
its minimum value (OFF).

By applying thisDoE,wecan easilymeasure howmuch the impact of the transition
(− → +) for parameter p impacts (in average over all the considered options sets)
on the performance without requiring a full-factorial design. As an example, Fig. 2.3
depicts the generated performance distributions by activating and deactivating the
‘licm’ and ‘reassociate’ compiler transformations for a GSM codec application. It
can be observed that while the activation of ‘licm’ has a clear positive effect on
performance—the median is shifted towards higher performance values, this is not
the case for the ‘reassociate’ transformation for which the activation and deactivation
distributions have almost the same shape and density, thus not permitting the designer
to recognize a clear trend.

As the second step, for each optimization set in D(p) we evaluate the vector of
performance responses with the actual architecture synthesis after the compilation
and simulation of the target application. We consider the hypothesis whether the
mean of the performance given by the options sets where p was minimum (or off ) is
different from the mean where p was maximum (or on). In practice, this is framed as
a null-hypothesis statistical test, which, given the non-parametric (or non-gaussian)

(a) licm (b) reassociate

Fig. 2.3 a licm’s having significant positive effect, b reassociate’s causing no significant effect
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nature of the underlying distributions,2 cannot be assessed with as a simple ANOVA
but, instead, with a Kruskal-Wallis test [21]. To complete the hypothesis test, the
designer sets an acceptance ratio of p − value% meaning that the probability of
‘measuring’ different means when the underlying distributions are equal (or the
chance of a false positive) is less than 5%.

2.3.2.1 Statistical Analysis

As mentioned in Sect. 2.2, there have been several works involving the machine
learning techniques and predictions [22–24]. In this research work we have focused
on analyzing the effects of applying the specific compiler transformations on the
design space. The probability of certainty about the effects of a specific compiler
transformation on performance metric could be done using some statistical tests;
ANOVA, Kruskal-Wallis. ANOVA [25] test has been widely used as a reliable tester
for normal distributions. In addition, using Kruskal-Wallis [21], is a good test tool
as it assumes the distribution to be non-parametric. This method is used for testing
whether samples originated from the same distribution or not. In this work, since
dealing with empirical data on experimental results, we assumed the models as non-
parametric, therefore, Kruskal-wallis was employed. The algorithm goes as:

• 1- Rank all the groups from 1 to N together
• 2- Statistical test is elaborated among the group to calculate the value K which
contains the square of the average ranks

• 3- Finally the p-value is approximated as Pr(χ2
g−1 ≥ K )

• 4- If the statistic is not significant, then there is no real evidence of difference
between samples and could be deduced the samples comply with the model.

In this chapter, the global threshold was set as high as 5% in order to increase the
robustness of the results. Therefore, a test is deduced as passed regarding Kruskal-
wallis test in which it has the p-value smaller than 0.05. In this case, a model is
passed if and only if it had confidence threshold over 95%; experimental analyses
represented in Fig. 2.5 will be focused later in this chapter.

In this section, we experimentally evaluate the proposed methodology. We con-
sider the GSM codec embedded application as the driving use case, automatically
generating four representative application specific architectures after applying the
custom VLIW architecture selection. We use these VLIW architectures for statisti-
cally analyzing the effects of compiler transformations across differing VLIW con-
figurations. Furthermore, we analyze the compiler transformation effects in a cross-
application manner, by considering a larger set of embedded applications mapped
onto a default (application independent) VLIW processor configuration.

The first subsection, introduce the experimental setup and the framework. The sec-
ond subsection will contain the architectural selection based on themethod described

2Since the distributions are built based on empirical/experimental data, the distribution is considered
in general non-parametric.
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in Sect. 2.3.1 and exploration on standard benchmark regarding the derived config-
urations will be presented. Eventually, there will be a comparison of the default
architecture among 5 other benchmarks will be discussed and depicted with the
statistical consolidations.

We apply the overall proposed methodology considering the GSM codec as the
driving application. We apply the custom VLIW architecture selection phase to gen-
erate optimized representative VLIW architectures in an application specificmanner.
The considered architectural design space is depicted in Table2.1. We configure the
search procedure to randomly generate and evaluate 30K configurations, using a
uniform sampling over the targeted configuration space (Table2.1). Applying the
multi-objective optimization problem defined in Eq.2.3 over the 30K solutions, the
Pareto surface of the configurations that maximize performance and operational
intensity while minimizing resources is generated. Without loss of generality, we
consider the generation of k = 4 clusters over the generated Pareto surface, aiming
at generation of four GSM-specific VLIW architectures. Figure2.4 shows results of
clustering of the extracted Pareto surface and its mapping onto the two-dimensional
performance versus intensity space. Each cluster has been characterized according to
its position on the performance versus intensity space as: (i) HH for the cluster placed
to the high intensity and high performance region, (ii) LH for the low intensity and
high performance region, (iii) LL for the low intensity and low performance region,
and (iv) HL for the high intensity and low performance region, respectively.

Fig. 2.4 Four clustered Pareto-sets
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Table 2.3 VLIW architecture configurations

Parameters Arch-HL Arch-LH Arch-HH Arch-LL Arch-User

lg2CacheSize 15 12 13 12 16

lg2Sets 1 3 0 1 2

lg2LineSize 7 5 5 5 5

lg2ICacheSize 16 14 16 14 16

lg2ICacheSets 1 3 3 2 2

lg2ICacheLines 6 8 7 5 6

ClkFreq 400 450 450 300 500

NumCaches 2 1 1 1 1

IssueWidth 6 6 14 9 8

NumAlus 4 6 7 3 8

NumMuls 1 4 4 14 2

MemLoad 4 3 6 5 4

MemStore 2 8 4 6 4

RegisterFile 104 100 32 76 64

BranchRegister 76 84 88 48 64

Thefinal k = 4 representativeVLIWarchitectures are derived after applyingwithin
each cluster the optimization operator of Eq.2.4. Table2.3 reports the architectural
configuration for each of the k = 4 application specific VLIW architectures.

For each of the k = 4 application specificVLIWarchitectures, we explore the com-
piler level design space, defined in Table2.2.We generate the non-parametric distrib-
ution of the performance and intensity for each compiler transformation considering
500 samples per transformation. As described in Sect. 2.3.2, the non-parametric dis-
tributions are analyzed based on Kruskal-Wallis test to specify the statistical effect,
i.e. if the inclusion or exclusion of a specific transformation impacts in a specific
and robust manner the two considered metrics. Table2.4 summarizes the results
of Kruskal-Wallis statistical tests for each compiler transformation over the four
examined architecture configurations. As shown, four compiler passes (inline, licm,
loop-reduce and loop-rotate), over the fifteen initially considered, had a significant
impact on performance when activated. In addition, Fig. 2.5, shows the confidence
level for each of the considered compiler transformations. It is shown that the four
mentioned compiler transformations exhibit a high confidence level >99%. There-
fore, it could be implied that activating these specific transformations, the designer
can be around 99% confident that the effect on performance will be the same as the
one determined by the exploration.

In the second set of experiments, we perform statistical analysis in a cross-
application manner. For this experimental campaign, we assume a larger set of appli-
cations (namely GSM, AES encryption engine, ADPCM codec, JPEG decoder and
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Table 2.4 Summary of Kruskal-Wallis analysis on performance for GSM-specific VLIW archi-
tectures

Compiler transformation Arch-HL Arch-LH Arch-HH Arch-LL

Constprop – – – –

Dce – – – –

Inline
√ √ √ √

Instcombine – – – –

Licm
√ √ √ √

Loop reduce
√ √ √ √

Loop rotate
√ √ √ √

Loop unroll – – – –

Loop unswitch – – – –

Mem2reg – – – –

Memcpyopt – – – –

Reassociate –
√ √ √

Scalarrepl – – – –

Sccp – – – –

Simplyfycfg – – – –

Fig. 2.5 Confidence level characterization of compiler transformations regarding the effect on
performance for each on of the GSM specific VLIW architectures, resulted after Kruskal-Wallis
statistical test
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Table 2.5 Kruskal-Wallis analysis on performance for multiple applications

Compiler
transformation

GSM AES ADPCM JPEG Blowfish

Constprop – – – – –

Dce – – – – –

Inline
√

–
√ √

–

Instcombine
√

–
√ √ √

Licm
√ √ √ √ √

Loop reduce
√ √ √ √ √

Loop rotate
√ √ √ √

–

Loop unroll – – – – –

Loop
unswitch

– – – – –

Mem2reg
√ √ √ √ √

Memcpyopt – – – – –

Reassociate
√

– – – –

Scalarrepl
√

– – –
√

Sccp – – – – –

Simplyfycfg – – – – –

Blowfish block cipher). The performance of each applications has been evaluated
considering a user specified VLIW architecture, Arch-User, defined in the last col-
umn of Table2.3. For each benchmark the compiler transformation statistical effect
analysis (Sect. 2.3.2) is applied, considering distributions of 500 samples per com-
piler transformation. Table2.5 summarizes in an aggregated manner the results of
the Kruskal-Wallis analysis considering in each case a confidense level ≥5%. For
the specific setup, we observe that there is a set of four compiler parameters (licm,
loop reduce, loop rotate and mem2reg) with significant effect on the performance
and with a high confidence level over all the examined application use cases. Fur-
thermore, examining each application in isolation, the designer can derive which are
the compiler parameters that need to be pre-allocated, thus reducing significantly
the design-time required to optimize the performance of the targeted application
during iterative compilation exploration. As an example, we depict in the Fig. 2.6,
the normalized speedup gains achieved by activating the compiler transformations
proposed by our methodology in comparison with several well-known compilation
strategies. It is shown that the proposed methodology defined speedup gains in all
the examined cases between 16 and 23%.
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Fig. 2.6 The gained speed-up we gained comparing to the default LLVM-O1 optimization level in
GSM benchmark

2.4 Conclusions and Future Work

This chapter presented a methodology for a compiler/architecture co-exploration
of VLIW platform design. It provides the designer with an integrated environ-
ment to automatically (i) generate optimized application specific VLIW architec-
tural configurations and (ii) analyze in a fine-grained manner the effects of compiler
level transformations regarding the performance and operational intensity trade-offs.
Being focused more on the analysis part, we showed that the adoption of the spe-
cific methodology either in a cross-architecture and/or cross-application manner, can
deliver significant application specific insights thus enabling the designer to guide
through decisions regarding the architecture and the compilation optimization strat-
egy. Future work is aligned with our strong belief that the proposed methodology
can be exploited in a straightforward manner within automated design frameworks
focusing on performance optimization through iterative compilation and architecture
specialization.
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Chapter 3
Selecting the Best Compiler Optimizations:
A Bayesian Network Approach

Abstract After presenting our DSE approach for finding good compiler optimiza-
tions, we present our autotuning framework to tackle the problem of selecting the best
compiler passes. It leverages machine learning and an application characterization to
find the most promising optimization passes given an application. This chapter pro-
posesCOBAYN : Compiler autotuning framework using Bayesian Networks. An auto-
tuning methodology based on machine learning to speed up application performance
and to reduce the cost of the compiler optimization phases. The proposed framework
is based on the application characterization done dynamically by using independent
micro-architecture features and Bayesian networks. The chapter also presents an eval-
uation based on static analysis and hybrid feature collection approaches. Besides,
we compare our approach against several state-of-the-art machine-learning models.
Experiments are carried out on an ARM embedded platform and GCC compiler by
considering two benchmark suites with 39 applications. The set of compiler config-
urations selected by the model (less than 7% of the search space), demonstrated an
application performance speedup of up to 4.6× on Polybench (1.85× on average)
and 3.1× on Cbench (1.54× on average) with respect to standard optimization lev-
els. Moreover, the comparison of the proposed technique with (i) random iterative
compilation, (ii) machine learning-based iterative compilation and (iii) non-iterative
predictive modeling techniques, shows on average, 1.2×, 1.37× and 1.48× speedup,
respectively. Finally, the proposed method demonstrates 4× and 3× speedup, respec-
tively on cBench and Polybench, in terms of exploration efficiency given the same
quality of the solutions generated by the random iterative compilation model.

3.1 Introduction

Usually, software applications are developed in a high-level programming language
(e.g. C, C++) and then passed through the compilation phase to get the executable
binary. Optimizing the second phase (compiler optimization) plays an important role
for the performance metrics. In other words, enabling compiler optimization parame-
ters (e.g., loop unrolling, register allocation, etc.) might lead to substantial benefits
in performance metrics. Depending on the strategy, these performance metrics could
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be execution time, code size or power consumption. A holistic exploration approach
to trade-off these metrics also represents a challenging problem [1].

Application developers usually rely on compiler intelligence for software opti-
mization, but they are unaware of how the compiler itself does the job. Compiler
interface usually has some standard optimization levels which enable the user to
automatically include a set of predefined optimization sequences for the compilation
process [2]. These standard optimizations (e.g. -O1, -O2, -O3 or -Os) are known to
be beneficial for performance (or code size) in most cases. In addition to the above-
mentioned standard optimizations, there are other compiler optimizations which are
not included in the predefined optimization levels. Their effects on the software are
quite complex and mostly depend on the features of the target application. There-
fore, it is rather hard to decide whether to enable specific compiler optimizations on
the target code. Considering an application-specific embedded system domain; con-
structing an optimized compiler optimization heuristic becomes even more crucial
because the application is compiled once and then deployed on millions of devices
on the market.

So far, researchers proposed two main approaches for tackling the problem of
identifying the best compiler optimizations: (i) iterative compilation [3] and (ii)
machine-learning predictive modeling [4–6]. The former approach relies on several
recompilation phases and then selecting the best set of optimizations. Despite being
effective, this approach has high overhead as it needs to be evaluated iteratively over
all the enumerations of an optimization space. The latter approach focuses on building
machine-learning predictive models to predict the best set of compiler optimizations.
It relies on software features that are collected either offline or online. Once the model
has been trained, given a target application, it can predict a sequence of compiler
optimization options to maximize performance. Machine learning approaches nor-
mally require fewer compilation try-outs, however, their downside is the predicted
optimizations lead to an execution binary that performs worse than the one found
with iterative compilation.

In this chapter, we propose an approach to tackle the problem of identifying the
compiler optimizations that maximize the performance of a target application. In
contrast, our proposed methodology starts by applying a statistical methodology
to infer the probability distribution of the compiler optimizations to be enabled.
Then, we perform an iterative compilation process by sampling from this probability
distribution. We use two major sets of training application suites to learn the statistical
relations between application features and compiler optimizations. To the best of our
knowledge, in this work, Bayesian Networks (BN) are used for the first time in
this field to build the statistical model. Given a new application, its features are fed
into the machine-learning algorithm as evidence on the distribution. This evidence
imposes a bias on the distribution, and because compiler optimizations are correlated
with the software features, we can iteratively sample the distribution obtaining the
most promising compiler optimizations, by then exploiting an iterative compilation
process.

The experiments carried out on an embedded ARM-based platform outperformed
both standard optimization levels and the state-of-the-art iterative and not iterative
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(based on prediction models) compilation techniques while using the same number
of evaluations. Moreover, the proposed techniques demonstrated significant explo-
ration efficiency improvement of up to 4× speedup compared with random iterative
compilation when targeting the same performance. To summarize, here are our con-
tributions:

• The introduction of a BN capable of capturing the correlation between the appli-
cation features and the compiler optimizations. BN allows to represent the relation
by an acyclic graph, which can be easily analyzed graphically.

• The integration of the BN model in a compiler optimization framework. Given a
new program, the probability distribution of the best compiler optimizations can
be inferred by means of BN to focus on the optimization itself.

• The integration of both dynamic and static analysis feature collections in the frame-
work as hybrid features.

Furthermore, the experimental evaluation section reports the assessment of the
proposed methodology on an embedded ARM-based platform and the comparison
of the proposed methodology against several state-of-the-art machine learning algo-
rithms on 39 different benchmark applications.

The remainder of the chapter is organized as follows. Section 3.2 presents a quick
review of the recent related literature. Readers are referred to Chap. 1 for a more
comprehensive review on the state-of-the-art. Section 3.3 presents how the BN model
can infer the probability of the distribution. Section 3.3.1 presents different techniques
for collecting program features. Section 3.4 elaborates on the proposed framework.
Sections 3.4.4 and 3.4.5 will introduce the results obtained on the application suites
selected. Finally, Sect. 3.4.6 presents the comparison of the proposed methodology
with state-of-the-art models.

3.2 Previous Work

Optimizations carried out at compilation have been broadly used, mainly in embed-
ded computing applications. We refer to the holistic review on the survey in the
Chap. 1. However, for the chapter completeness, we would like to remind a few
related works. There are two major classes of optimization in the field of compila-
tion research: (i) The problem of selecting the best compiler optimizations and (ii)
The phase-ordering problem of compiler optimizations. As the target of this work
is in the scope of selection, here we mostly refer to these areas. However, there are
notable works to be mentioned that support the seminal concepts of the current work.

The related work in this field can be categorized into two sub-classes: (a) iterative
compilation [7] and (b) machine-learning based approaches [8, 9]. Nonetheless,
these two approaches have also been combined in many ways [4] that they cannot
be distinguished easily.

http://dx.doi.org/10.1007/978-3-319-71489-9_1
http://dx.doi.org/10.1007/978-3-319-71489-9_1
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Iterative compilation techniques were introduced as a mean to outperforming static
handcrafted optimization sequences, those usually exposed by compiler interfaces
as optimization levels. Since its introduction [7, 10], the goal of iterative compilation
has been to identify the most appropriate compiler passes for a target application.

Other authors exploit iterative compilation jointly with architectural design space
exploration for VLIW architectures [11]. The intuition was that the performance of
a computer architecture depends on the executable binary which in turn, depends
on the optimizations applied at compilation time. Thus, by studying the two prob-
lems jointly, the final architecture is optimal and the effects of different compiler
optimizations are identified at the early design stages.

Given that compilation is a time-consuming task, several groups proposed tech-
niques to predict the best compiler optimization sequences rather than applying a
trial-and-error process, such as in iterative compilation. These prediction method-
ologies are generally based on machine-learning techniques [4, 6, 8, 12, 13].

More recent literature on using different program features with machine learning
have been proposed by [14] where the authors collected IR (intermediate represen-
tation) of the kernels and utilized graph-kernels to derived the similarities between
those fetched IRs. Our approach is significantly different from the previous ones given
that it applies a statistical methodology to learn the relationships between applica-
tion features and compiler optimizations as well as between different compiler opti-
mizations where machine-learning techniques are used to capture the probability
distribution of different compiler transformations. In this work, we propose the use
of BN as a framework enabling statistical inference on the probability distribution
given the evidence of application features. Given a target application, its features are
fed to Bayesian Networks to induce an application-specific bias on the probability
distribution of compiler optimizations.

Most recent machine-learning works aim at the generation of prediction models
that, given a target application, predict the performance of the application for any
set of compiler transformations applied to it. In contrast, in our work the machine-
learning methodology aims directly at predicting the best compiler optimizations
to be applied for a target application without going through the predictions of the
resulting application performance.

Additionally, in our approach, program features are dynamic and obtained through
micro-architecture-independent characterization [15] and compared with the results
using the static profiling [16]. The adoption of dynamic profiling provides insight
into the actual program execution with the purpose of giving more weight to the code
segments executed more often (i.e. code segments whose optimization would lead
to higher benefits according to Amdahl’s law).

3.3 Proposed Methodology

The main goal of the proposed approach is to identify the best compiler optimiza-
tions to be applied to a target application. Each application is passed through a
characterization phase that generates a parametric representation of the application



3.3 Proposed Methodology 45

(a) Training the Bayesian network

(b) Optimization process for a new target application

Fig. 3.1 Overview of the proposed methodology

under analysis in terms of its main features. With little information loss, these fea-
tures are pre-processed by means of statistical dimension reduction techniques to
identify a more compact representation. A statistical model based on BN correlates
these reduced representations to the compiler optimizations to maximize application
performance.

The optimization flow is shown in Fig. 3.1 and consists of two main phases. During
the initial training phase, the Bayesian network is learned on the base of a set of
training applications (see Fig. 5.1a). During the exploitation phase, new applications
are optimized by exploiting the knowledge stored in the Bayesian Network (see an
example of a BN topology in Fig. 3.3).

During both phases, an optimization process is necessary to identify the best com-
piler optimizations to achieve the best performance. This is done for learning pur-
poses during the training phase and for optimization purposes during the exploitation

http://dx.doi.org/10.1007/978-3-319-71489-9_5
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phase. To implement the optimization process, a Design Space Exploration (DSE)
engine has been used. The DSE engine automatically compiles, executes and mea-
sures application performance by enabling/disabling different compiler optimiza-
tions. Which compiler optimizations will be enabled is decided in the Design of
Experiments (DoE) phase. In our approach, the DoE is obtained by sampling from a
given probability distribution that is either a uniform distribution (during the training
phase as in Fig. 5.1a) or an application-specific distribution inferred through the BN
(during the exploitation phase as in Fig. 5.1b).

The uniform distribution adopted during the training phase allows us to uni-
formly explore the compiler optimization space O to learn about the most promising
regions of the space. The application-specific distribution during the exploitation
phase allows us to speed up the optimization by focusing on the most promising
region of the compiler optimization space O .

3.3.1 Applying Program Characterization

The classic supervised Machine Learning (ML) approach deals with fitting a model
exploiting a function f of program characterization. Function f might use a variety
of comparison/similarity functions, such as nearest-neighbor and graph-kernels. To
obtain a more accurate fitting, compiler researchers have been trying to understand
the behavior of programs/kernels better and derive a feature vector that represents
pair functionality efficiently. As a rule of thumb, the derived feature vector must be
(i) representative enough of its program/kernel, and (ii) different programs/kernels
must not have the same feature vectors as this will confuse the subsequent machine-
learning process. Thus, building a huge non-efficient feature vector slows down the
ML process and obtain less-precision.

Another goal of this work is to exploit the efficient use of different program
characterization techniques and demonstrate their performance and effectiveness.
Three characterization techniques have been selected among state-of-the-art works,
namely, (i) dynamic feature selection using MICA [15], (ii) static analysis using
MilePost [16] framework, and (iii) our handcrafted combination of those two as
hybrid analysis.

MICA. Microarchitecture-independent workload characterization represents a
recent work on dynamic workload characterization [15]. It is a plugin for the Linux-
PIN tool [17] and is capable of characterizing the fed kernels independently from its
running architecture as it monitors the non-hardware features of the kernels. This
feature is of interest for targeting embedded domain as one might not be able to exploit
PIN tools on the board. The main categories of MICA include Instruction-Level-
Parallelism (ILP), Instruction Mix (ITypes), Branch Predictability (PPM), Register
Traffic (REG), Data Stream Stride (Stride), Instruction and Data Memory Footprint
(MEMFootprint) and Memory Reuse Distances (MEMReusedist).

MilePost. This recent tool [16, 18] was built as a plugin on top of GCC to
capture static features of the programs. One advantage of static analysis is that the

http://dx.doi.org/10.1007/978-3-319-71489-9_5
http://dx.doi.org/10.1007/978-3-319-71489-9_5
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compiler researchers do not have to run the actual binary just like what they have to
do by a dynamic feature technique. On the other hand, static analysis fails to capture
any correlations between the source code and memory hierarchy and different data
streams fed as input dataset.

Hybrid. The third characterization technique consists of the combination of the
two previous ones. We believe that, in some cases, hybrid feature selection can capture
the kernel behaviors better as it takes into account both feature-selection methods.

3.3.2 Dimension-Reduction Techniques

In the proposed approach, the dimension-reduction process is important for two
main reasons: (a) it eliminates the noise that might perturb further analyses, and
(b) it significantly reduces the training time of the BN. The techniques used are
Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA). The
experimental results show that the selection of a good dimension-reduction technique
has a significant impact on the final model quality. In the original work proposed in
[5], PCA was used. In this chapter, we changed the model by exploiting Exploratory
Factor Analysis (EFA) as explained in the following paragraphs. Experimental results
will show the benefits of using EFA with respect to PCA for the specific problem
addressed. For a quantitative comparison the readers can refer to Sect. 3.4.4, Table 3.5.

Let γ be a characterization vector storing all data of an application run. This
vector stores l variables to account for either the static, dynamic or both analyses.
Let us consider a set of known application profiles A consisting of m vectors γ . The
application profiles can be organized in a matrix P with m rows and l columns. Each
vector γ (i.e. a row in P) includes a large set of characteristics, such as the instruction
count per instruction type (for both static and dynamic analysis), information on the
memory access pattern and information characterizing the control flow (e.g. the
number and length of the basic blocks, average and maximum loop nesting, etc.).
Many of these application characteristics (columns of matrix P) are correlated to each
other in a complex way. A simple example of this correlation is the instruction mix
information collected during the static analysis and the instruction mix information
collected during the dynamic profiling (even though these are not completely the
same). A less intuitive example is between the distribution of basic block lengths
and data related to the instruction memory reuse distance. The presence of many
correlated columns in P implies that the information stored in a vector γ can be well
represented with a vector α of smaller size.

Both PCA and EFA are statistical techniques aimed at identifying a way to
represent γ with a shorter vector α while minimizing the information loss. Nev-
ertheless, they rely on different concepts for organizing this reduction [19, 20]. In
both cases, output values are derived by applying the dimension reduction and are
no longer directly representing a certain feature. While in PCA the components are
given by a combination of the observed features, in EFA the factors are represent-
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ing the hidden process behind the feature generation. In both techniques, the output
columns cannot be called by their header name and are not directly observable.

In PCA, the goal is to identify a summary of γ . To this end, a second vector ρ

of the same length of γ (i.e. l) is organized by a variable change. Specifically, the
elements of ρ are obtained through a linear combination of the elements in γ . The
way to combine the elements of γ for obtaining ρ is decided upon the analysis of
the matrix P , and is such that all elements in ρ are orthogonal (i.e. uncorrelated)
and are sorted by their variance. Thus the first elements of ρ (also named principal
components) carry most of the information of γ . The reduction can be obtained by
generating a vector α to keep only the first most significant principal components
in ρ, because the least significant ones carry little information content. Note that
principal components in ρ (thus in α) are not meant to have a meaning; they are only
used to summarize the vector γ as a signature.

In EFA, the elements in the vector of reduced size α are meant to explain the struc-
ture underlying the variables γ , while α, represents a vector of latent variables that
cannot be directly observed. The variables γ are expected to be a linear combination
of the variables in α. In EFA, this relationship explains the correlation between the
different variables in γ ; that is, correlated variables in γ are likely to depend on the
same hidden variable in α. The relationship between the latent α and the observed
variables is regressed by exploiting the maximum likely method based on the data
in matrix P .

When adopting PCA, each variable in α tends to be a mixture of all variables in γ .
Therefore, it is hard to tell what a component represents. When adopting EFA instead,
the components α tend to depend on a smaller set of elements in γ that are correlated
with each other. That is, when applying EFA, α is a compressed representation of
γ , where elements in γ that are correlated (i.e. that carry the same information) are
compressed into a reduced number of elements in α. Note that reducing the profile
size by means of EFA results in a α that better describes the type of application under
analysis in reference to PCA [21].

Consequently, having obtained γ through any of the characterization techniques,
a pre-processing filtering should be applied to ensure that the least noise has come
through and the final P is eligible to be summarized by EFA. That implies manually
(i) removing the zero columns in l and (ii) removing the redundant columns of l given
that no column l is a linear combination of another l. In contrast, the algorithmic
approach is that P needs to be transformed, as to obtain the final γ in positive-definite
covariance form [22]. Different techniques have been described in the literature
on how to transform a non-positive-definite matrix to a positive-definite one which
exceeds the scope of this chapter, but interested readers can refer to [23, 24] or use
packages in R statistical tool [25] i.e., nearPD to compute nearest positive definite
matrix.
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3.3.3 Bayesian Networks

Bayesian Networks are powerful to represent the probability distribution of different
variables that characterize a certain phenomenon. The phenomenon to be investigated
in this work is the optimality of compiler optimization sequences.

Let us define a Boolean vector o, whose elements oi are the different compiler
optimizations. Each optimization oi can be either enabled, oi = 1, or disabled,
oi = 0. In this chapter, the phase ordering problem [26] is not taken into account.
We rather consider how different optimizations oi are organized in a predefined
order embedded in the compiler. A compiler optimization sequence represented by
the vector o belongs to the n size Boolean space O = {0, 1}n , where n represents the
number of compiler optimizations under study.

An application is parametrically represented by the vector α of the k reduced
components computed either via PCA or EFA from its software features. Elements
αi in vector α generally belong to the continuous domain.

The optimal compiler optimization sequence ō ∈ O that maximizes the perfor-
mance of an application is unknown. However, it is known that the effects of a
compiler optimization oi might depend on whether another optimization o j has been
applied in the optimization sequence. Additionally, it is known that the compiler opti-
mization sequence that maximizes the performance of a given application depends
on the application itself.

The reason why the optimal compiler optimization sequence ō is unknown a priory
is because it is not possible to capture, in a deterministic way, the dependencies among
the variables in the vectors ō and α. There is no way to identify an analytic model to
exactly fit the vector function ō(α). As a matter of fact, the best optimization sequence
ō depends also on other factors that are somewhat outside our comprehension, the
unknown. It is exactly to deal with the unknown that we propose not to predict
the best optimization sequence ō but rather to infer its probability distribution. The
uncertainty stored in the probability distribution models the effects of the unknown.

As underlying probabilistic model, we selected BN because of the following
features of interest for the target problem:

• Their expressiveness allows one to include heterogeneous variables in the same
framework such as Boolean variables (in the optimization vector o) and continuous
variables (in the application characterization α).

• Their capabilities to model cause-effect dependencies. Representing these depen-
dencies is suitable for the target problem, as we expect that the benefits of some
compiler optimizations (effects) are due to the presence of some application fea-
tures (causes).

• It is possible to graphically investigate the model to visualize the dependencies
among different compiler optimizations. If needed, it is even possible to manually
edit the graph for including some a priori knowledge.

• It is possible to bias the probability distribution of some variables (the optimization
vector o) given the evidence on other variables (the application characterization α).
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Fig. 3.2 A Bayesian
Network example

This enables us to infer an application-specific distribution for the vector o from
the vector α observed by analyzing the target application.

ABayesian Network is a direct acyclic graph whose nodes represent variables and
whose edges represent the dependencies between these variables. Figure 3.2 reports
a simple example with one variable α1 representing the application features and two
variables o1, o2 representing different compiler optimizations. In this example, the
probability distributions of the two optimizations depend on the program features
represented by α. Additionally, the probability distribution of o2 depends on whether
the optimization o1 is applied. Dashed lines are used for nodes representing observed
variables whose value can be input as evidence to the network. In this example, the
variable α1 can be observed and, by introducing its evidence, it is possible to bias
the probability distributions of other variables.

Training the Bayesian model. Tools exist to construct BN automatically by
fitting the distribution of some training data [27]. To do so, first the graph topology
is identified and then the probability distribution of the variables including their
dependencies is estimated.

The identification of the graph topology is particularly complex and time con-
suming. The dimension reduction technique applied on the SW features plays a key
role in obtaining reasonable training times by limiting to k elements in the vector α,
thus reducing the number of nodes in the graph.

For efficiency reasons, the algorithm used for selecting the graph topology is a
heuristic algorithm, named K2, initialized with the Maximum Weight Spanning Tree
(MWST) ordering method as suggested in the Matlab toolbox in use [27]. The initial
ordering of the nodes for the MWST algorithm is given to let the elements α to appear
first and then the elements of o. Even if the final topological sorting of the nodes
changes according to the algorithm described in [28], by using this initialization
criterion, it always happens that the dependencies are directed from elements of
α to elements of o and not vice versa. When using the K2 algorithm, the network
topology is selected as follows. The graph is initialized with no edges to represent the
fact that each variable is independent. Then, for each variable i , following their initial
ordering, each possible edge from j to i (where j < i) is considered as a candidate
to be added to the network. A candidate edge is added to the topology if it increases
the probability that the training data were generated from the probability distribution
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the new topology describes. This method has a polynomial complexity with respect
to the number of variables involved and the number of lines in the training data set.

During the model training, we consider the softmax function for modeling the
cumulative probability distribution of the Boolean elements in vector o [27]. This
is a mathematical necessity to map in the Bayesian framework the dependencies
of Boolean variables in o with respect to continuous variables in α. In particular,
thanks to the use of softmax variables, we can express the conditional probability
P(oi = b | α j = x), where oi is a Boolean variable and α j is a continuous variable.

The coefficients of the functions describing the probability distribution of each
variable as well as their dependencies are tuned automatically to fit the distribu-
tion in the training data [27]. Training data are gathered by analyzing a set A of
training applications (Fig. 5.1a). First, application features are computed for each
application a ∈ A to enable the principal component analysis. Thus, each appli-
cation is characterized by its own principal component vector α. Then, an experi-
mental compilation campaign is carried out for each application by sampling several
compiler optimization sequences from the compiler optimization space O with a
uniform distribution. For each application, we select the 15% best-performing com-
pilation sequences among the sampled ones. The distribution of these sequences is
learned by the Bayesian Network framework in relation to vector α characterizing
the application.

Inferring an application-specific distribution. Once the Bayesian Network has
been trained, the principal component vector α obtained for a new application can be
fed as evidence to the framework to bias the distribution of the compiler optimization
vector o. To sample a compiler optimization sequence from this biased distribution,
we proceed as follows. The nodes in the direct acyclic graph describing the Bayesian
Network are sorted in topological order, i.e. if a node at position i has some prede-
cessors, those appear at positions j, j < i . At this point, all nodes representing the
variables α appear at the first positions.1 The value of each compiler optimization
oi is sampled in sequence by following the topological order such that all its par-
ent nodes have been decided. Thus, the marginal probability P(oi = 0 | P) and
P(oi = 1 |P) can be computed on the basis of the parent node vector valueP (each
parent being either an evidence α j or a previously sampled compiler optimization
o j ). Similarly, by using the maximum likelihood method, it is possible to compute
the most probable vector from this biased probability distribution. When sampling
from the application-specific probability distribution inferred through the Bayesian
Network, we always consider finding the most probable optimization sequence as
the first sample.

1This is by construction due to the initialization of the MWST and the K2 algorithms used to
discover the network topology.

http://dx.doi.org/10.1007/978-3-319-71489-9_5
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3.4 Experimental Evaluation

The goal of this section is to assess the benefits of the proposed methodology. In this
work, we run the experimental campaign on an ARMv7 Cortex-A9 architecture as
part of a TI-OMAP 4430 processor [29] with ArchLinux and GCC-ARM 4.6.3.

3.4.1 Benchmark Suites

To assess the proposed methodology, we have used two major benchmark suites:
(i) cBench [30], and (ii) PolyBench [31, 32]. Each consists of different classes of
applications and kernels ranging from security and cryptography algorithms to office
and image-processing applications. Readers can refer to Table 3.1 for the list of
applications selected in the two benchmark suites.

3.4.1.1 cBench

The cBench suite [30] is a collection of open-source programs with multiple data sets
assembled by the community to enable realistic workload execution and targeted by
many different compilers such as GCC, LLVM, etc. The source code of individual
programs is simplified to facilitate portability; therefore, it has been targeted in
autotuning and iterative compilation research work. Of the available data sets for
every individual kernel, we have selected five and sorted them in a way that dataset1
is always the smallest and dataset5 the largest. This ensures that for every kernel we
have exposed enough of the input load to be able to measure fair runtime executions.

3.4.1.2 PolyBench

The PolyBench benchmark suite [31, 32] consists of benchmarks with static control
parts. The purpose is to make the execution and monitoring of applications uniform.
One of the main features of the PolyBench suite is that there is a single file per
application, tunable at compile-time and used for kernel instrumentation. It performs
extra operations such as cache flushing before the execution and can set real-time
scheduling to prevent OS interference. We have defined two different data sets for
each individual application to expose the main function with different input loads.
PolyBench has a variety of benchmarks, i.e. 2D and 3D matrix multiplication, vector
decomposition, etc. This suite is also suitable for parallel programming, which is
beyond the focus of this work.
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Table 3.1 Benchmark suites used in this work

cBench list Description

(a) cBench applications selected for this work

automotive_bitcount Bit counter

automotive_qsort1 Quick sort

automotive_susan_c Smallest univalue segment assimilating nucleus corner

automotive_susan_e Smallest univalue segment assimilating nucleus edge

automotive_susan_s Smallest univalue segment assimilating nucleus S

security_blowfish_d Symmetric-key block cipher decoder

security_blowfish_e Symmetric-key block cipher encoder

security_rijndael_d AES algorithm Rijndael decoder

security_rijndael_e AES algorithm Rijndael encoder

security_sha NIST secure hash algorithm

telecom_adpcm_c Intel/dvi adpcm coder/decoder coder

telecom_adpcm_d Intel/dvi adpcm coder/decoder decoder

telecom_CRC32 32 BIT ANSI X3.66 crc checksum files

consumer_jpeg_c JPEG kernel

consumer_jpeg_d JPEG kernel

consumer_tiff2bw convert a color TIFF image to grey scale

consumer_tiff2rgba convert a TIFF image to RGBA color space

consumer_tiffdither convert a TIFF image to dither noisespace

consumer_tiffmedian convert a color TIFF image to create a TIFF palette file

network_dijkstra Dijkstra’s algorithm

network_patricia Patricia Trie data structure

office_stringsearch1 Boyer-Moore-Horspool pattern match

bzip2d Burrows—Wheeler compression algorithm

bzip2e Burrows—Wheeler compression algorithm

(continued)
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Table 3.1 (continued)

PolyBench list Description

(b) Linear-algebra/applications of the PolyBench suite selected for this work

2 mm 2 Matrix multiplications (D = A×B; E = C×D)

3 mm 3 Matrix multiplications (E = A×B; F = C×D; G = E×F)

atax Matrix transpose and vector multiplication

bicg BiCG Sub Kernel of BiCGStab linear solver

cholesky Cholesky decomposition

doitgen Correlation computation

gemm Matrix-multiply C = αA×B + βC

gemver Vector multiplication and matrix addition

gesummv Scalar, vector and matrix multiplication

mvt Matrix vector product and transpose

symm Symmetric matrix-multiply

syr2k Symmetric rank—2k operations

syrk Symmetric rank—k operations

trisolv Triangular solver

trmm Triangular matrix-multiply

3.4.2 Compiler Transformations

The compiler transformations analyzed have been reported in Table 3.2. We based
our design space on the work of [3]. The authors implemented sensitivity analysis
over a vast majority of the compiler optimizations and defined with a list of promis-
ing passes. Building upon their work, we selected the compiler optimizations with
a speedup factor greater than 1.10. They are applied to improve application perfor-
mance beyond the standard optimization level -O3 and have not yet been included
in any prior optimization level. The optimizations can be enabled or disabled using
their respective compiler optimization flags. The standard optimization level -O3 has
been also used to collect the dynamic software-features for each application on both
training and inference phases.

The application execution time has been estimated by using the Linux-perf tool.
The execution time is done by averaging five loop-wraps of the specific compiled
binary with one second of sleep in between five different executions of those loop-
wraps. Therefore, in total, each transformed binary has been executed 25 times as
five packages of five loop-wraps to ensure better accuracy of estimations and fairness
among the generation of executions. This technique is used both in the training and
the inference phases.
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Table 3.2 Compiler optimizations under analysis (beyond -O3)

Compiler transformation Abbreviation Short description

-funsafe-math-optimizations math-opt Allow optimizations for floating-point
arithmetic that (a) assume valid arguments
and results and (b) may violate IEEE or
ANSI standards

-fno-guess-branch-probability fn-gss-br Do not guess branch probabilities using
heuristics

-fno-ivopts fn-ivopt Disable induction variable optimizations on
trees

-fno-tree-loop-optimize fn-tree-br Disable loop optimizations on trees

-fno-inline-functions fn-inline Disable optimization that inline all simple
functions

-funroll-all-loops funroll-lo Unroll all loops, even if their number of
iterations is uncertain

-O2 O2 Overwrite the -O3 optimization level by
disabling some optimizations involving a
space-speed trade-off

3.4.3 Bayesian Network Results

In this work, Matlab environment [27, 33] has been used to train the Bayesian
Network. We have usedExploratoryFactor Analysis (EFA) of application features for
the seven compiler optimization flags listed in Table 5.2. As stated in Sect. 3.3.2, one
of the features of using EFA is that the factors are linear combinations that maximize
the shared portion of the variance. Therefore, as a prerequisite, the covariance matrix
should be positive definite. The pre-processing helps purify the highly correlated
application characterization columns that are linearly correlated. In theory, PCA
accepts any matrix ignoring the aforementioned condition and that is why we think
applying factor analysis as our dimension reduction technique tends to obtain the most
important factors and correlate them with the compiler optimizations. The decision
on the numbers of factors has been derived from theKaiser test [34]. The test implies
taking only the factors having greater than 1 in the covariance matrix. In other words,
the Kaiser rule is to drop all components with eigenvalues under 1, this being the
eigenvalue equal to the information accounted for by an average single item. Table 3.3
reports the factors derived for each benchmark and characterization method.

Table 3.3 represents the number of features that have been produced both origi-
nally by the different feature selection techniques and by the Kaiser test. The third
column is the original number of features and the last one refers to range of selected
factors in each specific benchmark suite/feature selection method. Note that the
last column reports the range of selected factors rather than a number as we have
used cross-validation approach in the experimental campaign, thus different applica-
tions/datasets/feature selection techniques can result in a different number of factors
to be used in COBAYN’s framework.

http://dx.doi.org/10.1007/978-3-319-71489-9_5
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Table 3.3 Kaiser test results

Application Characterization
method

Original no. of factors Range of selected
factors by Kaiser test

cBench MICA (Dynamic) 99 [7–11]

cBench MILEPOST (Static) 53 [4–6]

cBench Hybrid 143 [8–10]

polyBench MICA (Dynamic) 99 [5–7]

polyBench MILEPOST (Static) 53 [4–6]

polyBench Hybrid 143 [4–5]

In this work, while training has been carried out using each application/dataset pair
separately, the validation has been done through an application-level cross-validation
(Leave-One-Out cross-validation, LOO). We train different BNs, each by excluding
an applications (together with all its input dataset) from the training set.

UsingBN enables us to investigate graphically the dependencies between the vari-
ables involved in the compiler optimization problem and to correlate them with the
selected factors of the program characterization. We train a final Bayesian Network
including all applications in the training set. The resulting network topology is a
directed acyclic graph DAG, as shown in Fig. 3.3. By removing security_rijndael_e
application from the training set, the graph topology slightly changes, mainly in
terms of the different edges connecting the Principal Components (PC)/program
factors (FA) nodes to the compiler optimization nodes. This is due to the change
in the program features and its factors, which are computed in a different way. For
the sake of conciseness, we do not report all graph topologies derived by the LOO
technique for each individual trained Bayesian Network.

The nodes of the topology graph reported in Fig. 3.3 are organized in layers. The
first layer reports the FAs that are the observable variables (reported as dashed lines).
The second layer contains the compiler optimizations whose parents are the PC
nodes (or FA nodes depending weather PCA or EFA is used). Therefore the effects

PC.1 PC.2 PC.3 PC.4 PC.5 PC.6 PC.7 PC.8 PC.9 PC.10

math−opt

fn−gss−br fn−ivopt

fn−tree−opt fn−inline funroll−lo O2

Fig. 3.3 Topology of the Bayesian Network if security_rijndael_e is left out of the training set



3.4 Experimental Evaluation 57

of these compiler optimizations depend only on the application characterization in
terms of its features. In the third layer, the compiler optimization nodes whose parents
include optimization nodes from the second layer are listed. Once a new application
is characterized for a target application data set, the evidence related to the PCs (or
FAs) of its features is fed to the network in the first layer. Then, the probability
distributions of other nodes can be inferred in turn on the second and third layers.
There are two nodes in the third layer of Fig. 3.3. The first one is the fn-gss-br node
that depends on funroll-lo because unrolling loops impacts the predictability of the
branches implementing these loops. Moreover, funroll-lo impacts the effectiveness
of the heuristic branch probability estimation, thus fn-gss-br. The second node in the
third layer is the fn-ivopt node, which depends on fn-tree-opt as parent node in the
second layer. Both these optimizations work on trees and therefore their effects are
interdependent. While sampling compiler optimizations from the Bayesian Network,
the decisions of whether to apply fn-gss-br and fn-ivopt are taken after deciding
whether to apply funroll-lo and fn-tree-opt.

Table 3.4 shows the fine-grain breakdown of the timing when we use COBAYN
framework. We have reported the time spent for each phase of the proposed technique,
both on the training phase (done offline) and on the inference phase (done online).
Constructing COBAYN’s network is a one-time process and depends on the number
of applications in the training set. The time needed to collect the training data is
on the other side, depends not only on the number but also on the applications and
data-set used for the training. The same applies to the time needed for compiling and
executing the target application during the online compiler autotuning phase. To this
end, Table 3.4 reports the numbers for each specific phase considering the Cbench as
training set and Susan as the target application. During the offline training-phase, the
time needed for data collection on the case of Cbench, is around 2 days. It includes
the time needed for each benchmark to compile and execute, considering all set of
configurations and the feature collection phase. The time needed to post-process the
data and to generate the Bayesian Network model is around 70 s.

During the online phase (inference phase), the time needed for extracting the
software features from the target application is 14.4 s while querying BN is less than
1 s. The compilation and execution-time on the target platform for Susan are 4.5

Table 3.4 COBAYN timing breakdown for offline training and online inference for Susan
application

Phase Tag and category Time (s)

Offline training (A) Offline data-collection 2 days

(B) Construct BN 70 s

Online inference (C) SW Feature collection 14.4 s

(D) BN Inference 0.85 s

(E) Susan compilation 4.5 s

(F) Susan execution 8.9 s
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and 8.9 s, respectively. Those numbers show that the initial overhead in adopting the
proposed methodology on the user-side (composed of the software feature extrac-
tion and BN inference) is less than 2 compilation/executions pairs, for this specific
example.

3.4.4 Comparison Results

It is well known that Random Iterative Compilation (RIC) can improve application
performance compared with static handcrafted compiler optimization sequences [4].
Additionally, given the complexity of the iterative compilation problem, it has been
proved that drawing compiler optimization sequences at random is as good as apply-
ing other optimization algorithms such as genetic algorithms or simulated annealing
[3–5, 12]. Accordingly, to evaluate the proposed approach, we compared our results
with (1) standard optimization levels -O2 and -O3 (2) the Random Iterative Com-
pilation (RIC) methodology that samples compiler optimization sequences from the
uniform distribution, and (3) two state-of-the-art methodologies coupling machine
learning with an iterative methodology, and a optimization speedup predictor method-
ology, respectively.

The proposed methodology samples different compiler optimization sequences
from the BN. The performance achieved by the best application binary depends on the
number of sequences sampled from the model. In this section, the results of applying
the proposed methodology using two benchmark suites with respect to standard
optimization levels and the random iterative compilation have been reported. The
performance speedup on the first comparison section is measured in reference to -O2
and -O3, which are the optimization levels available for GCC. In addition, we show
the speedup of the proposed methodology with respect to our previous work [5].

3.4.4.1 Bayesian Networks Performance Evaluation

Table 3.5 reports COBAYN’s speedup achieved over the standard optimization levels
of -O2 and -O3 and Random Iterative Compilation (RIC). The last column represents
the average speedup achieved by revising ourBayesian Network engine and using the
Explanatory Factor Analysis (EFA) described in the Sect. 3.3.2 with respect to PCA
in [5]. Note that all speedup values have been averaged using harmonic mean. It is
observed that in all categories, COBAYN outperforms standard optimization levels
and the previous approach. The comparison with respect to the RIC has been reported
by the harmonic average over the speedup data derived by dividing the COBAYN’s
performance data by the RIC data in full space. It can be seen that dynamic feature
selection brings best results followed by the hybrid and static method. However, in
certain cases (cBench using hybrid SW features), it narrowly reaches the performance
of dynamic feature selection.
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Table 3.5 COBAYN (BN using EFA) speedup w.r.t standard optimization levels (-O2 and -O3)
and Random Iterative Compilation (RIC) and our previous approach of BN in [5] using PCA

Benchmarks Features COBAYN Speedup w.r.t

-O2 -O3 RIC BN w/ PCA

Cbench Dynamic 1.6093 1.528 1.2029 1.0744

Cbench Static 1.5447 1.478 1.1143 1.0543

Cbench Hybrid 1.5858 1.5066 1.2086 1.0654

Cbench average 1.5795 1.5035 1.1743 1.0617

PolyBench Dynamic 1.9845 1.8387 1.3230 1.0921

PolyBench Static 1.9353 1.8215 1.1518 1.0724

PolyBench Hybrid 1.9441 1.7726 1.2333 1.1078

PolyBench average 1.9541 1.8101 1.2350 1.0901

Overall (Harmonic mean) 1.7669 1.6571 1.2052 1.0771

Using two major benchmarks and three different application characterization tech-
niques, we report six different plots showcasing the benefits of the proposed method-
ology with respect to the GCC standard optimization levels. Figure 3.4, reports the
speedups by considering a sample of eight different compiler optimization sequences.
For each benchmark, the results have been averaged on the different data sets. All
results have been sorted by the speedup values of -O3 and have been matched with
their corresponding -O2 value. The bar plot is colored in blue and red, respectively,
for the speedup achieved with respect to -O2 and -O3. All applications have achieved
a speedup in reference to the performance of -O2 and -O3. This happens with the
exception of gemm in reference to -O3 for static and hybrid feature-selection tech-
niques and consumer-jpeg-d in reference to -O3 when using the dynamic method
for feature selection. These applications reach their best performance using -O3 for
two data sets out of five, and it was not possible to surpass this maximum by relying
on the compiler transformations under consideration. On average for Cbench, the
speedups are of 1.57 and 1.5 in reference to -O2 and -O3, respectively, and 1.95 and
1.81 for PolyBench. The maximum speedup observed is 3.1× and 4.7×. Table 3.5
reports the speedup gained using COBAYN compared with the standard optimization
levels, Random Iterative Compilation (RIC) and our previous approach exploiting
PCA as dimension-reduction method.

3.4.4.2 COBAYN’s Portability Analysis

The results reported in this section are computed by means of LOO cross-validation
on the two individual benchmark suites separately, one with 24 and the other with
15 applications. As the nature of these two benchmark suites is totally different, we
believed it would be unfair to train on one and test on the other, so we analyzed
the feasibility of mixing these applications in a fair heterogeneous set of BigSet so
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(a) BN with dynamic features
on cBench
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(b) BN with dynamic features
on PolyBench
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(c) BN with static features
on cBench
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(d) BN with static features
on PolyBench
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(e) BN with dynamic+static features
on cBench
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(f) BN with dynamic+static features
on PolyBench

Fig. 3.4 Performance speedup w.r.t -O2 and -O3
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Table 3.6 Evaluation of different BigSet formation in COBAYN Model construction. Note that
COBAYN’s default refers to the version of COBAYN trained on a single benchmark set

BigSet combination Speedup w.r.t. COBAYN’s
default

Cbench PolyBench

24 (All) 15 (All) 1.1143

15 15 1.0743

10 10 1.0432

5 5 0.9896

that COBAYN’s engine gets evaluated. To this end, we tried 4 different scenarios,
where the BigSet is obtained by: (i) including all 39 available applications, (ii) 15
applications of Cbench and 15 applications of PolyBench, (iii) selecting 10 Cbench
and 10 PolyBench and finally (iv) 5 applications from each of those. Therefore,
the BigSet was initialized with 39, 30, 20 and 10 different applications, and LOO
cross-validation was carried-out. Table 3.6 reports the speedup gained in these sce-
narios. It is observed that COBAYN framework benefits from having (a) more appli-
cations, and (b) heterogeneous applications in the training set. The speedup listed
in Table 3.6 is higher when BigSet accounts for more applications and, even just 10
applications per benchmark suite, it is higher than one (the default setting for the
experimental results in this work refers to the COBAYN trained only on one of the
two benchmark suites).

3.4.4.3 Performance Improvement

Let us define the Normalized Performance Improvement (NPI) as the ratio of the
performance improvement achieved over the potential performance improvement:

NPI = Eref − E

Eref − Ebest
(3.1)

where E is the execution time achieved by the methodology under consideration,
Eref is the execution time achieved with a reference compilation methodology and
Ebest is the best execution time computed through an exhaustive exploration of all
possible compiler optimization sequences (in our case 128 different sequences). As
the execution time E of the iterative compilation methodology under analysis gets
closer to the reference execution time Eref , the NPI gets closer to 0, reporting that
no improvement is returned. In the same way, as E gets closer to the best execution
time Ebest , while NPI gets close to 1, reporting that the entire potential performance
improvement has been achieved.

Figure 3.5 reports for six different benchmark/feature selection methods. The NPI
achieved by the proposed optimization technique and by the RIC technique in refer-
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(a) BN with dynamic features
on cBench
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(b) BN with dynamic features
on PolyBench
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(c) BN with static features
on cBench
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(d) BN with static features
on PolyBench
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(e) BN with hybrid features
on cBench
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Fig. 3.5 Normalized performance improvement (NPI) w.r.t. RIC model
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ence to the execution time obtained by -O3 (Eref ). It is noticeable that NPI has the
upper-hand on performance on every number of extractions with respect to RIC. For
readability purposes, we have only reported the first 50 extraction of the design space.
The trend is continuously applied to the rest of the extractions until both get the max-
imum performance value of 1 at extraction no. 128, which accounts for the optimal
compiler sequence given the specific application (also it is the optimal performance
using exhaustive search). The comparisons reported in Fig. 3.5 were carried out by
considering the same number of compiler optimization sequences sampled for both
the RIC and the proposed approach. We acknowledge the fact that there is still room
for improvement in future work. However, NPI figures show that in all cases, the
proposed method was superior in terms of performance and that 30 extractions, on
the current scale, reach 80% of the optimality.

3.4.5 A Practical Usage Assessment

When using iterative compilation in realistic cases, we need to decide how much
effort should be spent on the optimization itself. This effort can be measured in terms
of optimization time, which is directly proportional to the number of compilations to
be executed. Thus, in this section, we evaluate the proposed optimization approach in
terms of the application performance reached after a fixed number of compilations.
In particular, we fix this number to eight which represents 6.25% of the overall
optimization space. Our model has been compared with RIC and in Fig. 3.6, we
report the violin plot for application speedup, while keeping the compilation effort
of the proposed methodology to eight compilations (or extractions) and varying the
compilation efforts of the RIC to explore more compiler space in the long run. Each
individual distribution in Fig. 3.6 represents the performance of the proposed work
with respect to RIC across different extractions. The red cross marks the mean and
the green square marks the median of each violin distribution. It can be seen that
the proposed methodology with BN inference achieved an at least 3× reduction in
exploration process effort compared with the same extraction of RIC. Here we define
exploration speedup as the factor measuring the aforementioned metrics, enabling
the researchers to traverse the compiler design space more efficiently.

Accordingly, by increasing the compilation efforts on RIC, while keeping the
exploration efforts of the proposed approach constant, the application speedup of
COBAYN decreases. On average, RIC needs 24-32 extractions to achieve the appli-
cation performance obtained with eight extractions by COBAYN. This means that
COBAYN provides a speedup of 3-4× in terms of optimization efforts, that is
only slightly impacted by the initial overhead (less than 2 evaluations) reported in
Sect. 3.4.3. Furthermore, at the most extreme case, when RIC exhaustively enumer-
ates and explores the full-space, 8 extractions of COBAYN, on average, still could
gain up to 91% of the optimal solution. This is shown on the final distribution of
each violin plot separated by a vertical dashed-line.
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(a) BN with dynamic features
on cBench
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(b) BN with dynamic features
on PolyBench
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(c) BN with static features on cBench
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PolyBench
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features on cBench
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Fig. 3.6 Exploration speedup of 8 extractions w.r.t different evaluations of RIC
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3.4.6 Comparison with State-of-the-Art Techniques

In this section, we compare the quality of the COBAYN results with respect to
approaches that derived from (A) an iterative compilation and (B) a non-iterative
compilation methodology.

3.4.6.1 Comparison to a Iterative Compilation Methodology

Agakov et al. [4] leveraged machine-learning models to focus on the exploration of
the compiler optimization. Their methodology exploits a Markov chain oracle and an
independent identically distributed (IID) probability distribution oracle. These two
models learned offline bias certain optimizations over others and replace the uniform
probability distribution we applied earlier for the RIC reference methodology. Their
work reports significant speedup by coupling these machine-learning models with a
nearest-neighbor-classifier. When predicting the probability distribution of the best
compiler optimizations for a new application, the classifier first selects the training
application having the smallest Euclidean distance in the feature vector space (derived
by PCA). Then it learns the probability distribution of the best compiler optimizations
for this neighboring application either by means of the Markov chain model or by
using an IID model. These probability distribution learnt is then used as the predicted
optimal distribution for the new application. It has been reported that the Markov
chain oracle outperforms the IID oracle, followed by the RIC methodology using a
uniform probability distribution.

We constructs the P(S) probability matrix reported in Sects. 4.2 and 4.3 of [4] as:

P(SI I D) = s1, s1, ..., sL =
L∏

i=1

P(si ) (3.2)

P(SMarkov) = P(s1)

L∏

i=2

P(si |si−1) (3.3)

where P(SI I D) and P(SMarkov) define the probability of the specific sequence with
IID and Markovian property for the optimization t1, t1, ..., tL . Using LOO cross-
validation, we find the closest neighbor for each cBench application trained by the
two oracles, and we sample from their probability distributions. To comply with the
original work in [4], we consider only the five most relevant principal components
PCs and account only for the static program features (also when applying COBAYN).
The results are depicted in Fig. 3.7. It shows that COBAYN is faster in reaching higher
speedup values. The results are scaled and normalized with respect to -O3 by using
the NPI value (Eq. 5.5). COBAYN is able to capture a more realistic probability
matrix of the compiler optimization problem and achieves with faster convergence

http://dx.doi.org/10.1007/978-3-319-71489-9_4
http://dx.doi.org/10.1007/978-3-319-71489-9_4
http://dx.doi.org/10.1007/978-3-319-71489-9_5
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Fig. 3.7 NRI-scales speedup comparison of COBAYN with IID-oracle and MAR-oracle reported
in [4]

towards the optimal result. It brings 1.25× and 1.47× speedup with respect to IID
and the Markov oracle, respectively.

3.4.6.2 Comparison to a Non-iterative Compilation Methodology

Park et al. [35] used a polyhedral compiler framework capable of predicting the
speedup for an unseen application. They used certain loop-optimizations in their
design-space and surfed the full-search of the space. They reported the average
speedup gained with respect to standard optimization O3 by using different machine-
learning models on WEKA [36] machine-learning environment.

(i) Their predictive models are based on performance counters that are collected
from the underlying architecture while running the applications. Therefore, the pro-
gram features to be exposed to the model are architecture dependent, and the model
loses its portability when it is used for a different architecture.

(ii) We also explore a different compiler optimization space. They have explored
polyhedral optimization space including loop transformations, whereas we focus
on GCC optimization space including loop transformations and other optimizations
such as inlining, math optimizations, etc.

(iii) Furthermore, our model is based on a statistical analysis and BN, whereas they
use a different set of machine-learning techniques, namely, predictive models. [35].

Nonetheless, we compare their methodology by applying it to the problem at
hand. Table 3.7 reports the results obtained by using the machine-learning models in
[35] on our compiler optimization space. We reproduced the data on both 1-shot and
8-shot scenarios to conform with the number of inference (predictions) COBAYN
has in the current work. We use the Harmonic mean to average the speedup here.
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Table 3.7 COBAYN speedup w.r.t. the average speedup gained with predictive modeling in both
1-shot and 8-shot scenarios reported in [35]

Algorithm and parameter configuration COBAYN Speedup

w.r.t 1-shot w.r.t 8-shot

LR -S 0 1.7551 1.6673

LR -S 1 1.7590 1.6710

LR -S 2 1.7191 1.6331

SVM NormalizedPolykernel -C 1.0 -E 8.0 1.5437 1.4665

SVM RBFKernel -C 2.0 -G 0.0 1.5206 1.4445

SVM RBFKernel -C 2.0 -G 25.0 1.5082 1.4327

SVM RBFKernel -C 2.0 -G 50.0 1.5045 1.4292

SVM RBFKernel -C 2.0 -G 75.0 1.5029 1.4277

SVM RBFKernel -C 2.0 -G 30.0 1.4927 1.4180

SVM RBFKernel -C 4.0 -G 30.0 1.5073 1.4319

SVM RBFKernel -C 0.01 -G 30.0 1.5073 1.4374

SVM RBFKernel -C 4.0 -G 50.0 1.5045 1.4292

IBk -K 1 1.4447 1.3724

IBk -K 2 1.4667 1.3933

IBk -K 5 1.4887 1.4142

M5P -M 1.0 1.4281 1.3566

M5P -M 2.0 1.4282 1.3567

M5P -M 4.0 1.4282 1.3568

M5P -M 10.0 1.4575 1.3846

M5P -M 50.0 1.4913 1.4167

K* -B 0 -M a 1.5192 1.4432

K* -B 20 -M a 1.5216 1.4455

K* -B 25 -M a 1.5258 1.4495

K* -B 50 -M a 1.4740 1.4003

K* -B 75 -M a 1.4737 1.4001

K* -B 100 -M a 1.5172 1.4413

K* -B 0 -M n 1.5208 1.4447

K* -B 20 -M n 1.5216 1.4455

K* -B 25 -M n 1.5258 1.4495

K* -B 50 -M n 1.4740 1.4003

MLP -L 0.3 -N 500 -H a 2.0435 1.9413

MLP -L 0.05 -N 500 -H a 1.6738 1.5901

MLP -L 0.1 -N 500 -H a 1.7246 1.6383

MLP -L 0.5 -N 500 -H a 1.8138 1.7231

MLP -L 0.9 -N 500 -H a 1.5250 1.4487

(continued)
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Table 3.7 (continued)

Algorithm and parameter configuration COBAYN Speedup

w.r.t 1-shot w.r.t 8-shot

MLP -L 0.4 -N 500 -H a 1.9426 1.8454

MLP -L 0.5 -N 1000 -H a 1.8535 1.7608

MLP -L 0.5 -N 1500 -H a 1.7388 1.6518

MLP -L 0.5 -N 500 -H t 1.5579 1.4801

AVERAGE (Harmonic mean) 1.5622 1.4841

Note that Harmonic mean is always less than or equal to the arithmetic mean [37]. In
all cases, COBAYN outperforms the reference methodology; specifically we have at
least 1.3× and up to 2.04× speedup compared with the best achieved results reported
in [35].

3.5 Conclusions

This chapter presented COBAYN, a methodology to infer by means of a Bayesian
framework the best compiler optimizations to be applied for optimizing the perfor-
mance of a target application. The methodology uses target independent software
features to sample a statistical model built using Bayesian Networks to extract a set
of suitable compiler configurations. Feature reduction techniques have been adopted
to reduce the complexity and training time of the Bayesian model while also eliminat-
ing possible noise in the data and improving the quality of the results. The proposed
approach has been evaluated on an ARM-based platform, using GCC compiler. The
experimental results demonstrated that the proposed technique outperforms both
standard optimization levels and state-of-the-art iterative and not iterative compila-
tion techniques while using the same number of evaluations.

In the following chapter, we move towards tackling the phase-ordering problem
of compiler optimizations using machine learning.
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Chapter 4
The Phase-Ordering Problem: An
Intermediate Speedup Prediction Approach

Abstract This chapter presents the first of twomethods to tackle the phase-ordering
problem of compiler optimizations. Here, we present an intermediate speedup pre-
diction approach followed by a full-sequence prediction approach in the next chapter
and we show pros and cons of each approach in detail. Today’s compilers offer a vast
number of transformation options to choose among, and this choice can significantly
impact on the performance of the code being optimized. Not only the selection of
compiler options represents a hard problem to be solved, but also the ordering of the
phases is adding further complexity, making it a long-standing problem in compila-
tion research. This chapter presents an innovative approach to tackling the compiler
phase-ordering problem by using predictive modeling. The proposed methodology
enables (i) to efficiently explore compiler exploration space including optimization
permutations and repetitions and (ii) to extract the application dynamic features to
predict the next-best optimization to be applied to maximize the performance given
the current status. Experimental results are done by assessing the proposed method-
ology with utilizing two different search heuristics on the compiler optimization
space and it demonstrates the effectiveness of the methodology on the selected set
of applications. Using the proposed methodology on average we observed up to 4%
execution speedup with respect to LLVM standard baseline.

4.1 Introduction

Selecting the best ordering of compiler optimizations for an application has been
an open problem in the field for many decades and the problem is known to be
NP-hard. The unrealistic exhaustive search is the only solution that seems appealing
to achieve the optimal solution. Compiler researchers rely on their insights on the
compiler backend to come up with some predefined sequences and ordering. This
process is usually done tentatively and the selected pass is constructed with little
insight on the interaction between the selected compiler options. However, to come
up with an optimal solution, researchers might have to spend several years to run
different code variants and this is simply unfeasible, given the growing design space
composed of different architectures and software models that rely on modern com-

© The Author(s) 2018
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piler frameworks. As an example, GCC compiler has more than 200 compiler passes
and LLVM-OPT hasmore than 100, and these optimizations are working on different
layers of application e.g. analysis passes, loop-nest passes, etc. Most of the passes
are usually turned off by default and compiler developers rely on software developers
to know which optimization can be beneficial for their code. The so-called average
case has been defined as to get certain standard optimization levels, e.g. O1, O2, Os,
etc. to introduce a fix sequence of compiler options, that on average can bring good
results for most applications. Given the peculiarity of the problem, this certainly is
not enough.

Exploiting compiler optimizations in application-specific embedded domains,
where applications are compiled once and then deployed on the market on millions
of devices is troublesome. The reason why is because embedded systems are usually
designed with tight extra-functional properties constraints. Second, the large variety
of embedded platforms cannot be faced with the average case provided by standard
optimization levels, thus custom compiler optimization sequences might lead to sub-
stantial benefits in reference to several performance metrics (e.g. execution time,
power consumption, memory footprint).

In the High Performance Computing (HPC) domain, parallel computer systems
are increasinglymore complex. Currently, HPC systems offering a peak performance
of several Petaflops have hundreds of thousands of cores to be managed efficiently.
Those machines have deep software stack, which has to be exploited by the pro-
grammer to tune the program. Moreover, to reduce the power consumption of those
systems, advanced hardware and software techniques are applied, such as the usage
of GPUs that are highly specialized for regular data parallel computations via simple
processing cores and high bandwidth to the graphics memory. Numerous scientific
and engineering compute-intensive applications spend most of their execution time
in loop nests that are suitable for high-level optimizations. Typical examples include
dense linear algebra codes and stencil-based iterative methods [25]. Polyhedral com-
pilation is a recent attempt to bring mathematical representation focusing on the
loop-nest of the polyhedral model including many different tools [4, 5, 16, 20].

In this chapter, we tackle the phase-ordering problem by using predictive model-
ing. Our predictive model can predict the next-best compiler optimization to apply
given the current status of the application under analysis. The status of the applica-
tion is defined by a vector of representative features that has been collected dynami-
cally and it is independent from the architecture the code is running on. We call this
approach an intermediate speedupprediction as it finds the best available optimization
to apply at each intermediate state of an application. The proposed predictive model
has been trained off-line with different permutations of the compiler flags (allowing
repetitions and dynamic sequence length). Thus, the proposed method receives as
input the program features and it generates the next-best compiler option to maxi-
mize the performance of the application.We selected a set of benchmark applications
to assess the benefits of the proposed approach and to prove its feasibility.

In this chapter, we propose a predictive modeling methodology to mitigate the
phase-ordering problem, In particular, the main contributions are:
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• Predictive modeling methodology capable of capturing the correlation between
the program features and the compiler optimization at each state.

• The integration of the predictive modeling within a compiler framework. The
generated model is trained by means of Machine Learning to focus on the next-
immediate best compiler optimization to be applied given the current status of the
application for any new previously unobserved program.

• Tackling the phase-ordering problem on utilizing different relative positioning of
the sequences of compiler options previously acquired as good sequences from
LLVM standard optimization level and explore the design space by using a larger
set of compiler flags rather than the individual options.

• Intermediate speedup predictive modeling, capable of iteratively predicting the
next-best compiler option using two search heuristics to be applied given the
current status of the application under optimization.

We apply prediction modeling techniques originally proposed in [9] for selecting
the best compiler optimizations. However, the original work was mostly performing
predictions on fixed optimization vectors length, while our proposed model is able
to iteratively call the function and generate the next-best optimization to be applied,
given the current status of the application. This feature is certainly vital for the phase-
ordering problem because of: (i) it opens up to complete the new states towards
exploring more regions of interest in the design space and (ii) it enables us to apply
repetitions on the application being optimized. Moreover, the original work was
tackling the problem of selection of best compiler optimization, while the current
work is targeting the substantially harder problem of phase-ordering.

The rest of the chapter has been organized as follows. Section4.2 provides a brief
discussion on the related work. In Sect. 4.3, we introduce the predictive modeling
approach to tackle phase-ordering. Section4.4 presents experimental evaluation of
the proposed methodology on an Unix-based Intel platform. Finally, Sect. 4.5 sum-
marizes the outcome of the work and some future paths.

4.2 Related Work

We have extensively presented the literature in the Chap.1. However, for the sake
of completeness, we reiterate on a few important related work here. Phase-ordering
problem is closely tightened with the selection of the best compiler options problem.
Therefore, study on the literature can be classified in twomain classes: (i) autotuning
and iterative compilation approaches [1, 3, 7, 8] and (ii) applying machine learning
to compilation [2, 24]. Nevertheless, these two approaches have been amalgamated
in many ways by exploiting different techniques and methodologies.

There are quite a few studies that have tackled the phase-ordering problem.
Authors in [19] have applied Neuro-Evolution for Augmenting Topologies (NEAT)
on Jikes dynamic compiler and come up with sets of good ordering of phases. Other
works have approached the problem by exploiting compiler backend optimizations

http://dx.doi.org/10.1007/978-3-319-71489-9_1
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and using statistical tests to reduce code-size [12]. Authors in [18] exhaustively
exploring the ordering space at functions’ granularity level and evaluate theirmethod-
ology with search tree algorithms and in [22] the authors have exploited iterative
compilation with the information relying on relative passes in previously generated
compiler options in the sequence in function level.

Our approach is rather different with respect to the literature, given that we pro-
pose a predictive modelingmethodology utilizing an independent micro-architecture
characterization features for all different permutations with repetitions of the com-
piler options and come up with the prediction of the next-best compiler option to
be applied on the application given the current status. This is called an intermedi-
ate speedup predictor and is able to predict good set of compiler options even with
dynamic lengths and it is not just limited to fixed vector length. We use previously
acquired relative positioning of the promising sequences utilized on LLVM standard
optimization levels and treat each of those acquired sequences as one whole. In this
case, we could apply phase ordering feasibility on a larger set of compiler options,
while generating less design space in the problem.

4.3 The Proposed Methodology

Main goal of the proposed methodology is to identify the feasibility of tackling the
phase ordering problem using a predictive modeling methodology. Each application
optimized with a unique compiler options sequence is passed through a characteri-
zation phase, that generates a parametric representation of its dynamic features. A
model based on predictive modeling correlates these features to the compiler opti-
mizations applied such as to predict the application speedup by using the next-best
compiler optimization at each level.

The optimization flow is represented in Fig. 4.1. It consists of three main phases:
(1) Data collection where different instances of the application are executed and an
application characterizations is collected with the speedup achieved by utilizing the
specific compiler pass, (2) Training phase where a predictive modeling is learned
on the base of a set of training applications, and (3) Exploitation phase, where new
applications are optimized by exploiting the knowledge stored in the trained predic-
tive model. The model is able to predict, given the current program characterization,
the intermediate speedups associated with each of the compiler optimization under
analysis.

During the second and the third phases, an optimization process is necessary to
identify the best compiler optimizations to be enabled to get the best performance.
This is done for learning purposes during the training phase and for optimization
purposes during the exploitation phase. To implement the optimization process, a
Design Space Exploration (DSE) engine has been used. This DSE engine compiles,
executes and measures application performance by enabling and disabling different
permutations with repetitions of compiler optimizations.
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Fig. 4.1 Proposed framework: offline-training phase which is done once, and online-prediction
phase for optimizing new unseen applications
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In our approach the DoE is obtained by exhaustive exploration including all per-
mutations with repetitions of compiler configurations (during the training phase as
shown in Fig. 4.1) either by means of the whole sequence at once or the current
compiler optimization that has been applied to the previous state. On the other side,
exploitation phase, they are generated by means of predicting the whole sequence at
once or as the next-best configuration to be applied given the current status. These two
different techniqueswill be elaboratedmore in Sects. 4.3.3.1 and 4.3.3.2 respectively.

4.3.1 Compiler Phase-Ordering Problem

We have formulated the optimization space of the phase-ordering problem in Chap. 1
in details. Here is a quick recap of what we discussed earlier in this book.

The phase-ordering problem, let us define a Boolean vector o whose elements
oi are the different compiler optimizations. A Phase-ordering compiler optimiza-
tion sequence represented by the vector o belongs to the n dimensional factorial
space |Ophases| = n!, where n represents the number of compiler optimizations
under study. However, the mentioned bound is for a simplified phase-ordering prob-
lem given fixed vector length without repetitions. Enabling repetitions and dynamic
length will expand the design space size to:

|Ophases_repetition| =
m∑

i=0

ni (4.1)

where n is the number of interesting optimizations under study andm is themaximum
desired length for the optimization sequence length. In this case, assuming the same
n and m equal to 10, |Ophases_repetition| will drive up to more than 11 Billion
different configurations to select per each application.

The oi in this work consists more than one single compiler optimizations. These
set of optimizations are derived from the LLVM standard optimization level. Reader
can refer to the specific oi in Sect. 4.4; Table4.2.We treat each of the whole sequence
(which being referred to as genes) as a discrete variable, so that each optimization
oi can be either enabled oi = 1 or disabled oi = 0 and enabling the oi will enable
all its contained sub-optimizations respectively.

4.3.2 Application Characterization

For our predictivemodeling presented in this chapter, againwe exploit PIN [21] based
dynamic profiling framework to analyze the behavior of the different applications at
execution time. Refer to the previous chapters for more information on how MICA
can characterize an application.

http://dx.doi.org/10.1007/978-3-319-71489-9_1
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Upon collecting the features from an application, we use PCA. To reiterate, PCA
is a technique to transform a set of correlated parameters (application features) into a
set of orthogonal (i.e. uncorrelated) principal components. The PCA transformation
aims at sorting the principal components by descending order based on their variance
[15]. For instance, the first components include the most of the input data variability,
i.e. they represent the most of the information contained in the input data. To reduce
the number of input features, while keeping most of the information contained in the
input data, it is simply needed to use the first k principal components as suggested in
[14]. In particular, we set k = 10 to trade off the information stored in the application
characterization and the time required to train the predictive modeling.

4.3.3 Intermediate Speedup Prediction

We present our prediction approach in this section. We call this approach interme-
diate speedup prediction. The general formulation of the optimization problem is to
construct a function that takes as input the features of the current status of a program
being optimized to generate as output the the next-best optimization to be applied that
maximize the immediate predicted speedup. We used the prediction model originally
proposed in [9]. However, the original work was mostly performing predictions on
fixed optimization vectors length, while our proposed model is able to iteratively
call the function and generate the next-best optimization to be applied, given the
current status of the application. This feature is certainly vital for the phase-ordering
problem because of: (i) it opens up to complete the new states towards exploring
more regions of interest in the design space and (ii) it enables us to apply repetitions
on the application being optimized.

An application is parametrically represented by the vector ρ, whose elements αi

are the first k principal components of its dynamic profiling features. Elements αi

in the vector ρ generally belong to the continuous domain. The optimal compiler
optimization sequence ō ∈ O that maximizes the performance of an application is
generally unknown. However, it is known that the effects of a compiler optimization
oi might depend on whether or not another optimization oj is applied.

Our models predict optimizations to apply to unseen programs that were not used
in training the model. To this purpose, we need to feed as input a characterization
of the unseen program. The model is able to predict the speedup of each possible
optimization set O in our predictive optimization space, given the characteristics
of the unseen program. We order the predicted speedups to determine which opti-
mization set is predicted best, and we apply the predicted best optimization set(s) to
the unseen program. In the experimental Sect. 4.4, we use a leave-one-benchmark-
out cross-validation procedure for evaluating the models. The proposed predictive
modeling is going to introduce two different heuristics on predictive modeling.
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4.3.3.1 DFS Search Heuristic

Depth-First Search (DFS) and its optimized version Depth-First Iterative Deepening
[17] are well-known tree traversing algorithms. DFS starts at the root and explores
as far as possible along each branch before backtracking. Adapting the heuristic
on the current problem, we propose to start from an empty optimization sequence
oo, Considering sequence oi , for each of the possible optimizations we predict the
immediate speedup δi derived from applying oi after oi in the compilation process.
The Intermediate speedup is computed as:

ei = Exec_time(oi )/Exec_time(oj) (4.2)

where ei is the ratio between the execution time of the program compiled using oi
and the execution time of the version of the program generated using oj. We define
oj as oi followed by oi .

Then, we order the possible optimizations by the value of the predicted immediate
speedup δ. If none of the optimizations oi to be explored has an associated immediate
speedup δi greater than 1, we choose oi as the next sequence to test, and we use it
to compile the program and measure corresponding execution time. Otherwise, we
repeat the same exploration process starting from sequence oj, that is oi followed by
the still unexplored oi maximizing predicted immediate speedup δi .

Once all the possible optimizations o have been explored, and the original
sequence oi tested, the algorithm backtracks to the previously considered sequence
ok , that is, oi without its last optimization. If a sequence oi has reached the max-
imum optimization sequence length N to be considered, we stop applying further
optimizations after it. We then evaluate oi it and backtrack to the previous node. The
algorithm explores the complete optimization space using this policy and terminates
when reaching the backtracking point for the initial empty sequence oo.

4.3.3.2 Exhaustive Search Heuristic

The second iterative approach is tackling the exploration with exhaustive search.
A model trained using machine learning techniques produces speedup predictions
for all the configurations in the complete considered sequence space. Ordered by
decreasing predicted speedup values, the sequences are then applied to the program,
and their actual speedup is measured. This approach has been successfully used in
selecting of the best compiler sequences problem, but lacks of applicability in the
phase-ordering problem, given the complexity increase of the configuration space.

In our specific case, we modify this methodology to adapt it to our application
scenario. In particular, as described previously at Sect. 4.3.3.1; Eq.4.3, the model we
trained is able to predict only intermediate speedups δ (i.e. the speedup of oj over oi ,
where oj is the optimization sequence obtained by applying oi after oi . We are able to
predict the actual speedup of optimization sequence o byMultiplying the immediate
speedups δi predicted at each optimization oi ∈ o:
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oo :
∏

Oi∈o
δ(oi ) (4.3)

whereoi is each individual optimization options to be explored. Theproposed exhaus-
tive exploration computes the immediate speedups starting from the initial empty
sequence oo to the complete optimization space. In this way, we are able to predict
the speedup of every optimization sequence o ∈ O and map our system to the classic
exhaustive predictions methodology we described.

4.4 Experimental Evaluation

We assess the proposed methodology of the intermediate speedup on quad-core
Intel-Xeon E1607 running at 3.00 GHz. We have used LLVM compilation tool v3.8
within our framework. A subset of Cbench benchmark suite [10] consisting of six
different applications has been integrated within the framework. The list of selected
applications has been reported in Table4.1. Table4.2 presents the utilized sets of
LLVM optimizations categories in 4 different genes. The utilized passes are part of
the LLVM standard optimization levels andwe exploited the phase-ordering scenario
having them relatively fixed internally while altering the whole sequence externally
at each phase. In this mode, we speculated that we could explore more interesting
regions of the design space thus being able to reach higher potential speedups. The
utilized 4 different genes, consists of 30 compiler optimizations in total and 13
unique optimizations. One of the features of the proposed methodology is that it
supports repetitions in the compiler design space. Table4.3 represents the maximum
achievable speedup enabling repetition feature on every individual application. We
observe that excluding two applications that coincidentally had their gene having the
best achievable speedup without repetitions (thus enabling repetition was converging
to the very same result), the other four are gaining benefits fromenabling this features.
We used harmonic mean to better report the average of the speedups rather than
arithmetic mean here [13].

Table 4.1 Applications used in this work

Applications Description

automotive_bitcount Bit counter

automotive_qsort1 Quick sort

automotive_susan_c Smallest univalue segment assimilating nucleus corner

automotive_susan_e Smallest univalue segment assimilating nucleus corner

network_dijkstra Dijkstra’s algorithm

network_patricia Patricia trie data structure



80 4 The Phase-Ordering Problem: An Intermediate Speedup Prediction Approach

Table 4.2 Compiler optimizations under analysis: derived from LLVM-opt

Gene Abbreviation Relative positioning of the optimizations

A domtreeRULE -domtree -memdep -dse -adce
-instcombine -simplifycfg -domtree
-loops -loop-simplify -lcssa -branch-prob

B simplifycfgRULE -simplifycfg -reassociate -domtree -loops
-loop-simplify

C memdepRULE -memdep -domtree -memdep -gvn
-memdep -memcpyopt -sccp

D loopsRule -loops -loop-simplify -lcssa -branch-prob
-block-freq -scalar-evolution
-loop-vectorize

Total number of optimizations 30

Unique number of optimizations 13

Table 4.3 Best found optimization passes by enabling repetition

Application With repetition Without repetition Speedup (%)

automotive-susan-c CDD CD 9.34

network-patricia CDCD AD 60.37

automotive-qsort1 CBA CBA –

automotive-bitcount CCBB CDB 2.41

network-dijkstra ACAB AD 36.59

automotive-susan-e CD CD –

Harmonic mean 7.68

The application execution time is estimated by using the Linux-Perf tool. Exe-
cution time required to process a given data set by a compiled application binary is
estimated by averaging four different executions. In order to implement dimension
reduction technique, we used PCA having set PCs to 10 in this work. The PCA
components have been computed by using the MICA features collected from each
application run, normalized by standard deviation across all data sets.Our exploration
experiments have been generated by using the data previously collected offline.

WEKA Machine Learning tool [11] has been integrated into our framework to
exploit predictive modeling algorithms. More in detail, in this work, we assessed the
proposed methodology with Linear Regression (LR) Machine Learning algorithm
activating theM5 attribute selectionmethodwith default ridge parameter. Experimen-
tal results has been carried out by means of leave-one-out cross-validation. Given
a new unseen application in the training set, the current program feature already
obtained offline will impose a bias on the trained model and the predictive modeling
will be able to predict the next-best optimization to be applied tomaximize the imme-
diate speedup in a greedy manner. As mentioned in Eq.4.1, given the complexity of
the problem, we assessed the feasibility of our proposed approach with four different
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Fig. 4.2 Average Speedup of the proposed methodology across all applications

sequences of compiler options with a total of 30 compiler optimizations (13 unique
optimizations) to be used in the design space. Generating different permutations with
repetitions and enabling dynamic sequence length led to 341 different variations and
2046 for all considered applications.

The results obtained by exploring the phase-ordering space with the two proposed
heuristics is reported in Fig. 4.2. It shows that the revised DFS search approach,
namely an Iterative Deepening First Search policy (based on a greedy Depth First
Search (DFS) heuristic) is doing slightly better with respect to the exhaustive search
heuristic presented in Sect. 4.3.3. We define the actual speedup line as the speedup
observed from running the application using the compiler optimization prediction
of the machine learning model. Table4.4 is presenting the quantitative values of
utilizing the two predictivemodeling algorithmswithin our framework.We evaluated
our iterative greedy approaches with the classic 1-shot predictive speedup approach
mentioned in [6, 9, 23] and the results reported in Table4.4 are the average output of
the one-shot approach per application. One-shot approach is extracting the prediction
by means of one-extraction only and observe its speedup gain. In average, these two
search algorithms demonstrated respectively 4 and 2% performance speedup over
LLVM default performance.

The graph in Fig. 4.2 demonstrates that the performance of the greedy exploration
policy in the early generation of the prediction is better than the exhaustive search
methodology for the selected benchmarks. The horizontal axis represents different
variations of the applications. This is rather interesting because in the phase-ordering
problem the cardinality of the optimization sequence space O is too huge for an
exhaustive search policy to be applied. On average, by traversing 15%of the compiler
design space, we can reach up to 80% of the best found options in the design space.
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Table 4.4 Average speedup of the one-shot prediction for both approaches w.r.t LLVM baseline

Application Greedy DFS Exhaustive search

automotive-susan-c 0.9808 0.9658

network-patricia 1.0069 1.002

automotive-qsort1 1.1255 0.9670

automotive-bitcount 1.0848 1.1506

network-dijkstra 0.9988 0.9988

automotive-susan-e 1.0617 1.1015

Average 1.0431 1.0242

4.5 Conclusions

This chapter presented a method based on predictive modeling to select the next-
best compiler option (intermediate speedup prediction) to be applied to maximize
the application performance. Experimental results exploiting two different search
heuristics on the selected set of benchmarks demonstrated respectively 4 and 2%
performance speedup with respect to the default LLVM compiler framework.

In the next chapter, we provide another prediction approach namely, full-sequence
prediction to tackle the phase-ordering problem of optimizations.
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Chapter 5
The Phase-Ordering Problem: A Complete
Sequence Prediction Approach

Abstract This chapter proposes our second approach to tackle the phase-ordering
problem. We already showed our intermediate speedup prediction method in Chap. 4.
Here, we present our full-sequence speedup prediction method called MiCOMP.
MiCOMP: Mitigating the Compiler Phase-ordering problem using optimization sub-
sequences and machine learning, is an autotuning framework to mitigate the compiler
phase-ordering problem based on machine-learning techniques effectively. The idea
is to cluster the optimization passes of the LLVM O3 setting into different clusters
to predict the speedup of the complete-sequence of all the optimization clusters. The
predictive model uses (i) dynamic features, (ii) an encoded version of the compiler
sequence and (iii) an exploration heuristic to tackle the problem. Experimental results
using the LLVM compiler framework and the Cbench suite show the effectiveness
of the encoding technique to application-based reordering of passes while using a
number of predictive models. We performed statistical analysis on the prediction
space and compared against (i) standard optimization levels O2 and O3, (ii) random
iterative compilation, and (iii) two recent non-iterative approaches. We demonstrate
that our proposed methodology outperforms the performance of -O1, -O2, and -O3
optimization levels in just a few iterations, reaching an average performance speedup
of 1.26 (up to 1.51) on the Cbench benchmark suite.

5.1 Intermediate Versus Full-Sequence Speedup Prediction

Recent compilers offer a vast number of multilayered optimizations, capable of tar-
geting different code segments of an application. Choosing among these optimiza-
tions can significantly impact the performance of the code being optimized. The
selection of the right set of compiler optimizations for a particular code segment is a
hard problem, but finding the best ordering of these optimizations adds further com-
plexity. In fact, finding the best ordering is a long standing problem in compilation
research called the phase-ordering problem. The traditional approach of construct-
ing compiler heuristics to solve this problem simply can not cope with the enormous
complexity of choosing the right ordering of optimizations for every code segment
in an application.
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Finding the best ordering of compiler optimizations can have substantial benefits
for performance metrics such as execution time, power consumption and code-size.
To this end, using predefined optimizations usually is not good enough to bring
the best achievable application-specific performance. In this chapter, we propose a
framework to mitigate the complexity of the phase-ordering problem. So far, there
are two potential techniques we could use to predict good optimization orders for
code being optimized:

• (i) Intermediate Sequence Prediction: This technique uses a model to predict the
current best optimization (from a given set of optimizations) that should be applied
based on the characteristics of code in its present state [1, 2].

• (ii) Complete Sequence Prediction: This technique uses a model to predict the
complete sequence of optimizations that needs to be applied to the code just by
looking at characteristics of the code. Although this technique has been extensively
used in the selection problem of the compiler optimizations [3–6], there has been
no work tackling the phase-ordering with the aforementioned method.

The framework proposed in this chapter, MiCOMP, falls under the second cate-
gory. It uses predictive models on complete optimization sequences, rather than indi-
vidual optimizations. We characterize applications as a vector of dynamic features
that are independent of the target architecture. Predicting the complete optimization
sequence to apply to a piece of code, i.e., complete sequence prediction, has the
benefit of only requiring a single-round of feature collection of the code before any
optimizations are applied to it. In order to use classic machine learning algorithms
with the phase-ordering problem, we adapt an encoding scheme to transform variable-
length vectors of optimizations into fixed-length vectors. Our prediction models are
trained offline and program features and different compiler configurations are fed
as inputs. As outputs, a prediction model predicts the speedup without the need to
actually run the code on the target architecture. The dynamic characterization is inde-
pendent from the architecture the code is running, thus it brings portability among
different architectures. Additionally, we define exploration heuristics to find the best
models in the shortest time. We refer to time as the minimum number of predictions
from the model to obtain the best version of the code being optimized. The heuristic is
based on Adjusted Cosine Similarity [7] to correlate different configurations of opti-
mizations with their corresponding predicted speedups across all the training data. A
recommendation algorithm enables us to explore only a fraction of the configuration
space to reach the best speedups rather than a simple sorting/ranking [3–6]. In our
experimental results, we show that our technique can outperform LLVM’s highest
optimization level of -O3 by just a few predictions. We also show competitive and
quantitative comparisons with respect to state-of-the-art iterative and non-iterative
models. We selected a variety of applications from the Ctuning Cbench benchmark
[8] to assess and evaluate the benefits of the proposed approach and to prove its
feasibility. The main contributions of the proposed approach are as follows:

• An independent predictive-modeling framework, capable of capturing the corre-
lation between different compiler optimizations and their predicted speedup with-
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out having to run optimized code variants on the target platform. Our autotuning
framework can be paired with any desired predictive models.

• Dynamically reordering the optimizations within the LLVM optimization level
-O3. We have clustered different compiler optimizations, all taken from LLVM’s
O3 into 5 different groups. The order of optimizations within a group is internally
fixed but the ordering of the groups can be altered. In this work, these groups
are called sub-sequences and we exploit the phase-ordering by using these sub-
sequences rather than the individual optimizations. By starting from no optimiza-
tions (as the baseline) and exploring different orderings of the sub-sequences using
the same optimizations available to -O3, we outperformed -O3.

• Adapting a simple mapping technique to encode an optimization sequence into a
bit string. The proposed technique allows us to apply traditional machine learning
algorithms as they are mostly designed to cope with both fixed-length feature
vectors.

• Adapting a Recommender System (RS) approach on the prediction space to use
dynamic information. We show this can boost the exploration and help to obtain
better speedups.

The rest of the chapter organized as follows: Sect. 5.2 presents related work.
Section 5.3 introduces our proposed methodology including all its components. In
Sect. 5.4, we present our experimental results and evaluate the results by means of
several comparisons in the Sect. 5.5. We conclude this chapter with future work and
the conclusion.

5.2 Related Work

As we discussed in the previous chapter, literature [9] on the phase-ordering problem
is closely related to the problem of selecting the best set of compiler optimizations
in a fixed ordering. Recent literature can be classified into two main classes: (i)
autotuning and iterative compilation approaches and (ii) applying machine learning to
the problem of optimization selection. (Readers can refer to Chap. 1 for the complete
survey on the literature.)

Our approach, MiCOMP, is significantly different compared with those mentioned
in the literature. Our work mostly resembles the approach of Park et al. [5, 6]. How-
ever, our techniques tackle the significantly harder problem of the phase-ordering. We
introduce a mapping function that encodes an optimization sequence into a bit string.
It preserves the ordering and the repetition of the optimizations. At the same time,
the proposed work is able to predict the complete optimization sequence to apply
to the unoptimized code, rather than predicting the best optimization to apply to the
current state of the optimized code [1, 2]. An intermediate sequence approach needs
multiple profiling of the application being optimized (based on the characteristics of
code in its present state) while we need to profile just once, both in the offline-training
and the online-prediction. We use dynamic architecture independent features to feed
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into our model. Moreover, we used clustering over all passes in LLVM’s -O3, that
tended to perform well, to significantly outperform the single optimization sequence
performed by -O3 itself. We do that by re-ordering these sub-sequences automat-
ically based on the type of the application under optimization. To summarize, the
proposed work is the first approach that uses machine-learning based techniques on
the phase-ordering problem to predict the complete sequence of optimizations. In
Sect. 5.4, we improve the machine-learning model through Recommender Systems
technique and assess the experimental results we obtain against the state-of-the-art
phase-ordering approaches.

5.3 The Proposed Methodology

Compilers typically ship with standard optimization levels (e.g.-O2, -O3 and
-Ofast) each tuned at the compiler factory to obtain a certain level of perfor-

mance on a standard set of benchmarks. These optimization levels do not always
translate to good performance on other applications. The main objective of the pro-
posed methodology is to introduce a compiler autotuning framework, which is able
to dynamically reorder the compiler passes within LLVM’s optimization level -O3,
to achieve the maximum speedup for the applications being optimized. We found that
if we could reorder sub-sequences of optimizations that tended to perform well, we
could significantly outperform the single optimization sequence performed by -O3.
This process should be customized based on the features of the application under
analysis. To mitigate the phase-ordering problem, a model has to be constructed in
such a way that it can correlate the effect of using different compiler sequences and
the corresponding achievable speedup. MiCOMP uses such a model, and it can (i)
recommend good sequences of optimizations that maximize an application’s perfor-
mance and (ii) these good-sequences are recommended with very few predictions.

There are certain limitations facing the ever increasing complexity of the prob-
lem. The phase-ordering problem is also complicated by enabling the possibility
of variable-length compiler sequences. State-of-the-art approaches for selecting the
right set of optimizations used fixed length feature-vectors [3, 5, 6]. Therefore,
in order to tackle the phase-ordering problem, we propose to encode the phase-
ordering space into a conventional fixed-length feature vector space to apply tra-
ditional machine learning algorithms. We provide a simple encoding-scheme with
mathematical deduction in Sect. 5.3.3. During the prediction phase, MiCOMP pro-
poses an iterative process in which different solutions are explored by evaluating
different optimization sequences with the potential of leading to higher speedups.
We predict optimization sequences that will perform well against using state-of-the-
art ranking [5, 6] techniques.

Figure 5.1 illustrates the two main phases of MiCOMP: (i) offline training and (ii)
online prediction.

The offline training phase is used to learn about the effects of compiler opti-
mizations when compiling an application. In particular, this phase is used to induce a
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(a) Training MiCOMP

(b) Testing MiCOMP

Fig. 5.1 Proposed framework: offline-training phase which is done once, and online-prediction
phase for optimizing new unseen applications

prediction model considering application features and applied optimizations (includ-
ing order and repetitions). This phase is performed once for each compiler and the
model is built on a set of representative applications. In this phase, each applica-
tion is passed through a single round of feature collection to extract an application’s
characteristics. A dynamic profiler is used to generate a representation of the pro-
gram in terms of its features. Since a very large set of features is extracted for
each application, we apply a dimension-reduction technique to reduce the number
of features that is fed as input to the prediction model (e.g. PCA (Principal Com-
ponent Analysis) [10]). This speeds up the learning during the model construction
process. Application-profiling and dimension-reduction techniques are extensively
described in Sect. 5.3.1. Next, an application is compiled with different configu-
rations of compiler optimizations, executed and profiled in terms of speedup with
respect to LLVM ’s -O3. The speedup values together with the reduced program fea-
tures and an encoded version of the used compiler optimizations (characterized by a
fixed-length binary output, see Sect. 5.3.3) are fed to a machine learning algorithm
to induce the speedup predictor (see Sect. 5.3.4). This model can then used during
the online phase.

The online prediction phase, is used every time a new application is optimized.
To this end, we use the same feature extraction and dimension reduction techniques
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described in the offline training phase. The collected features are used to query the
speedup prediction model to predict the best set of compiler sequences to apply to an
application. The goal of our method is to discover the fewest number of predictions
that will be needed to obtain the optimization sequence that gives the best speedup
possible. Thus, MiCOMP has been coupled with a heuristic derived from the field of
Recommender Systems (see Sect. 5.3.5). This technique is used to obtain a predicted
set of optimization sequences where each sequence is as diverse as possible to the
other sequences in the set, thus guaranteeing coverage of a large part of the optimiza-
tion configuration space, consequently obtaining a set of optimization sequences that
are robust to model inaccuracies.

5.3.1 Application Characterization

In this work, we used a PIN-based [11] dynamic instrumentation framework to ana-
lyze and characterize the behavior of applications at execution-time. In particular,
our framework provides a high level Micro-architectural Independent Characteriza-
tion of Applications (MICA) [12] suitable for characterizing applications in a target
architecture agnostic manner. There is no static syntactic analysis, but the framework
is solely based on dynamic MICA profiling. Readers can refer to Chap. 3 for more
details on the MICA framework.

In our experimental setup, an application is compiled and profiled on an Intel
XEON machine, while the target architecture where the application will eventually
execute (i.e. the architecture for which the application is being optimized) will be
a different platform. That is, the machine learning model will be fed a high level
abstraction of the application characterization carried out with MICA. This allows
us to easily change the target architecture without the need of replicating the profiling
infrastructure.

To reduce the number of input features, while keeping most of the information
contained in the input data, one simply needs to use the first k principal components
as suggested in in previous work [12]. In particular, we set k = 5, which captures
more than 98% of the overall variance across all training sets.

5.3.2 Constructing Compiler Sub-sequences

In this section, we briefly explain our novel idea behind clustering certain com-
piler optimizations as sub-sequences. A phase-ordering optimization sequence rep-
resented by the vector o belongs to the n dimensional factorial space |Ωphases| = n!,
where n represents the number of compiler optimizations under study. However, the
mentioned bound is for a simplified phase-ordering problem having a fixed length
optimization sequence length and no repetitive application of optimizations. Enabling
optimizations to be repeatedly applied and a variable length sequence of optimiza-
tions will expand the problem space to:

http://dx.doi.org/10.1007/978-3-319-71489-9_3
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|Ωphases_repetition| =
m∑

i=0

ni (5.1)

where n is the number of optimizations under study and m is the maximum desired
length for the optimization sequence. Even for reasonable values for n and m, the
entire search space is enormous. For example, assuming n and m are both equal
to 10, this leads to an optimization search space of more than 11 billion different
optimization sequences to select from for each piece of code being optimized [1].

5.3.2.1 The Optimization Dependence Graph

Mitigating the phase-ordering problem with previous approaches is not practical
due to a large number of different possible optimization sequences to select from
each piece of code being optimized. MiCOMP, proposes to group optimizations into
clusters of sub-sequences that are known to perform well, which reduces the size of
the search space to explore and thus introduces scalability. There are 157 compiler
passes in LLVM optimization level -O3 (more than 60 unique compiler passes) and
selecting the most promising sub-sequences from these optimizations can positively
affect the autotuning process. Among all these 157 compiler passes, some are analysis
passes (i.e. basicaa, memdep, etc.) which do not transform the code directly, but
instead provide analysis information to other compiler passes that follow them. The
rest are transformation passes, i.e., Aggressive Dead Code Elimination (adce), Loop
Invariant Code Motion (licm), loop-rotate, etc., which perform optimizations on the
code.1

In this chapter, we introduce the idea of clustering sub-sequences of all the passes
available to the optimization level -O3 and adapt prediction models to order these
sub-sequences in ways that improve the performance of a particular application. We
show that this technique can improve the performance of an application over using
-O3 by evaluating a few predicted orderings of the sub-sequences of optimizations.

Let o = {o1, . . . , oN } be the set of all transformation passes from LLVM opti-
mization level -O3. We can represent the optimizations in optimization level -O3,
with a directed graph of G = (V,E) where V is the set of nodes representing the
optimizations and E is the set of edges, where we add an edge between two opti-
mization nodes if that pair of optimizations appears in the optimization sequence
in -O3. Further, we can annotate an edge with the number of times that each pair
of optimizations consecutively appears in the sequence. The outcome of this is a
graph. We term the optimization dependence graph. This graph can be represented
by a Weighted Adjacency Matrix that has the size of N × N. This matrix can be
used for clustering optimizations into different sub-sequences. Figure 5.2 shows the
constructed graph on -O3.

1http://llvm.org/docs/Passes.html.

http://llvm.org/docs/Passes.html.
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Fig. 5.2 Generated directed graph for LLVM’s -O3. Each node in the graph represents an opti-
mization pass. The edge thickness indicates the strengths in the connection between two nodes

5.3.2.2 Graph and Sub-sequence Clustering

For our clustering of optimizations into sub-sequences, we could have used any
number of the numerous clustering methods proposed in the literature related to
Pattern Recognition (e.g. iterative, hierarchical, divisive, etc.,) [13]. We selected
agglomerative clustering [14] which is an iterative clustering technique that merges
smaller clusters and improves the complexity of k-mean clustering on graphs [13].
A key insight of this method is that it treats clusters as a dynamical system and
its samples as states. The algorithm works as follows: Agglomerative clustering
receives as input the matrix of the graph G and the number of desired clusters (nT )
and builds (i) the graph G with k-nearest-neighbors upon computing its Weighted
Adjacency Matrix (W ). (ii) The algorithm then calculates the transition probabilities
and (iii) forms sample clusters C = {c1, . . . , cnc}. (iv) It enters a loop to iteratively
try to add more sub-clusters to the already available clusters in C as long as the
conditional sum of the all-path integrals within the new sub-clusters maximizes some
objective function (argmax) [14]. A path integral is a metric to measure the stability
of a dynamical system and is computed by summing the paths within the cluster
on the directed graph weighted by transition probabilities. We used the algorithm
and tentatively increased the number of max desired clusters until no clusters could
be added. The final five clusters, namely, the best optimization sub-sequences the
algorithm could find are reported in Sect. 5.4; Table 5.2.
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5.3.2.3 Benefits of Sub-sequences

Clustering optimizations into sub-sequences makes sense. Certain analysis algo-
rithms typically should be done before an optimization in order for the optimization
to have any significant impact. For example, we may want to run analysis that per-
forms basic block counts and predicts branch instruction outcomes before applying
an optimization that reorders the code blocks in an application. Additionally, it is
likely that -O3 will contain optimizations that should follow other optimizations in
order to obtain the best performance. Thus, forming a cluster of optimizations that
should be applied together makes a lot of sense.

5.3.3 The Proposed Mapper

Constructing prediction models for the problem of selecting the right compiler opti-
mizations with fixed-length feature vectors has been extensively studied [3–6]. How-
ever, prediction models fall short when correlating program characterizations with
the right compiler optimizations to apply when it comes to a variable optimiza-
tion sequence length [15]. Therefore, we adapt a simple encoding technique which
allows us to map the representation of the compiler phase-ordering sub-sequences to
a fixed-length vector of optimizations and at the same time preserves the order of opti-
mizations in the sequence. Our proposed mapping function encodes an optimization
sequence into a bit string.

Let A = {α1, . . . , αN } be the set of all variables, which can be thought of as
an alphabet. Every αi is a letter. A finite string of not necessarily distinct letters is
called a word. Thus, each word is a concatenation of the form αi1 , αi2 · · · αik , where
i1, i2, . . . , ik ∈ {1, . . . ,M}. The integer k is the length of the word. We will also
allow the empty word which by definition has length zero.

There is a simple way of encoding the space W of all words of length at most M
using the space described by {0, 1}N×M consisting of all binary strings of the fixed
length N × M. To see this, consider the mapping function f : A → {0, 1}N which
maps each letter αi to the binary string f (αi) = b1 · · · bM , where

bj =
{

1 if j = i

0 if j �= i.

Now we define the mapping function F : W → {0, 1}N×M by mapping each word
αi1 , αi2 · · ·αik to the binary string

F(αi1 , αi2 · · ·αik ) = f (αi1)f (αi2) · · · f (αik ) 0 · · · 0︸ ︷︷ ︸
N−k times

,
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Fig. 5.3 An example of the proposed encoder where {N = 5,M = 6}: Each letter represents a
compiler sub-sequences containing different compiler optimizations

where 0 = 0 · · · 0 is the zero string of length N . Evidently the map F is one-to-one.
The image F(W ) is much smaller than the target space {0, 1}N×M , as these sets have∑M

k=0 N
k and 2N×M elements, respectively.

If we identify each element of {0, 1}N×M with a concatenation s1 · · · sN of N
elements of {0, 1}N , the image F(W ) can be simply characterized by the following
two requirements:

1. Each si has at most one non-zero binary digit.
2. If si = 0 and sj �= 0, then i > j.

Given the proposed mapping, there exists a one-to-one (1:1) mapping F for every
instance of A = {α1, . . . , αN } with the binary size of N × M that has the same
characteristics of the original presentation with the benefit of having a fixed N × M
length. An example of the proposed mapping function is shown on the Fig. 5.3.
Our adapted mapping function uses a one-hot encoding approach [16] for N = 5 and
M = 6 to assign a single high (1) at each segment of the transformed binary while
other bits are turned off (0). This technique can inexpensively preserve the order
and the repetitions of optimizations in a sequence, at the same time it assures the
transformed feature vector has fixed-length size.

5.3.4 Predictive Modeling

The methodology in Fig. 5.1 illustrates the use of predictive modeling in both the
offline (training) and online (testing) phases of the of the process. We used the pre-
dictive modeling in the offline training phase to (i) construct the model and in (ii) the
online prediction phase we exploit the constructed model on the target application to
pedict the speedup of a complete optimization sequence without the need to actually
apply the sequence of optimizations to the code.
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5.3.4.1 Constructing the Prediction Model

Predictive modeling is the process of constructing, testing and validating a model to
predict an unobserved outcome based on a characterization of a state from which to
predict the outcome. In this chapter, the state being characterized is the code being
optimized and the predicted outcome corresponds to the speedup metric calculated
by normalizing the execution time of the current optimization sequence by the exe-
cution time of the baseline optimization sequence. The general formulation of the
optimization problem is to construct a function that takes as input the features of the
unoptimized program being compiled. In other words, this model takes as an input
a tuple (F,T) where F is the feature vector of the collected instrumentation of the
program being optimized; and T is one of the several possible compiler sequences
predicted to perform well on this program. Its output is a prediction of the speedup
T should achieve when applied to the original code.

5.3.4.2 Analysis of Selecting the Compilation Baseline

As explained in Sect. 5.3.2, we do not use any of the default compilation optimization
levels as a baseline to start from since we used all compiler optimizations passes that
are used in-O3 for our clustering purposes (see Sect. 5.3.2.2). Additionally, we found
that using a baseline compiler optimization level to start from ultimately reduces the
speedup achievable from the sequence we construct with predictive modeling. We
empirically justify this argument by running a set of experiments, one without using
a compiler optimization level as a baseline and a set of experiments where we use
a sequence of optimizations to apply on top of different -OX baselines. Figure 5.4
illustrates the mean of MiCOMP’s proposed optimization sequences using different
compilation baselines. All four speedup lines have an upper-bound of sequences
of length five. Results suggest that using MiCOMP optimization sequence without
an optimization level as a baseline can lead to substantial benefits compared with
using any of -OX optimization levels as a baseline. MiCOMP targets the region of
interest where the highest achievable speedup values are located and it drives the
prediction model to reach that part of the optimization sequence search space least
number of predictions. Note that using a baseline of -O1, -O2, or -O3 all converge
to a sub-optimal speedup. Thus, applying certain sequences causes a degradation in
performance as can be seen by using these standard optimization levels as a baseline.
The better option is to not use a baseline sequence at all and to allow MICOMP to
predict the best sequence to apply on its own.

The insights of this experiment are threefold: (i) The clustering technique is ben-
eficial; first, to gain better speedup values and second, to reduce the number of
compiler optimization sequences needed to achieve the best results from around
50 to 5 so that our iterative compilation method is both scalable and practical. (ii)
The sub-sequences can be coupled with machine-learning techniques so they can be
reordered based on the applications being optimized while outperforming the highest
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Fig. 5.4 Empirical analysis of having different compilation baseline across all CBench applications
(Harmonic mean). Region of interest is depicted where MiCOMP sub-sequences outperformed other
compiler sequences having a fixed standard compilation baseline

standard optimizations levels. (iii) Phase-ordering indeed does matter in the field of
compilers; i.e., using the same set of optimization flags available to -O3, MiCOMP
can significantly outperform -O3 itself.

5.3.4.3 Application-Specific Prediction

Our machine-learning constructed models can be used for unseen target applications
to predict the speedup when applying compiler sequences to them. The predicted
speedup values correspond to the optimization sequence applied to the program.
For a given input program, first a feature vector containing dynamic instrumentation
is collected. Then, our prediction model is fed the features of the program being
compiled to predict the expected speedup if an optimization sequence T was applied
to it. By predicting the performance of each possible optimization sequence that
can be applied, it is possible to rank the optimization sequences according to their
expected speedup and only select the sequences to actually apply that are predicted
to give the highest speedups.

A state-of-the-art ranking approach [4, 6] was used to rank optimization sequences
in descending order, and we only select the top N optimization sequences to evaluate
their actual optimization quality. In this work, we propose an iterative process in
which different solutions are explored to find those leading to higher speedups. In
other words, our proposed exploration technique uses the output of our prediction
model to generate an initial exploration strategy, and the exploration strategy dynam-
ically updates itself in order to reach the highest speedup values in the least number
of predictions.
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5.3.5 Recommender Systems Heuristic

Mitigating the phase-ordering problem imposes a proper exploration strategy. In the
initial steps taken by [1, 2], the authors defined iterative exploration heuristics, based
on the current optimized state of the target application being compiled, to select the
next best optimization to apply, which will bring the eventual best speedup. As the
current state of the optimized application depends on the optimizations that were
already applied, this previous approach required several rounds of feature collection.
In this chapter, we propose a predictive approach that generates the complete opti-
mization sequence for a program that has not been optimized, thus it needs to collect
features only once before any optimizations are applied.

5.3.5.1 Adjusted Cosine Similarity

Many of the aforementioned state-of-the-art approaches, tackling both the selection
and the phase-ordering problem, define exploration strategies on the optimizations
design space. Yet, to the best of the authors’ knowledge, none of them make use
of information in order to dynamically improve the strategy itself. Dynamic infor-
mation, in our particular case, is the predicted speedup on the sequences already
explored and evaluated. The knowledge can be effectively used to improve the initial
exploration. The technique we propose leverages the similarity between the unex-
plored and the explored optimization sequences. In particular, our proposed tech-
nique prioritizes the evaluation of solutions less similar to the ones already explored.
is especially important for the phase-ordering problem where there are a plethora
of optimization sequences that need to be explored. The similarity measure is based
on how close the achieved speedup is for predicted solutions across all the training
sets. As an example, let Sp,i and Sp,j be the predicted speedups of the sequence i and
j when applied to program p in the set of programs P. We define an iterative process
to look for predicted similarities in i and j.

In recommender system (RS), an algorithm called Basic Cosine Similarity [7]
is used to correlate users and items. However, computing the similarity using this
algorithm has one important drawback; the difference in rating scale are not taken
into account. The Adjusted Cosine Similarity offsets this drawback by subtracting
the corresponding user-average from each co-rated pair. Adapting this technique, we
can compute the Adjusted Cosine Similarity between optimization sequence i and j
as:

sim(i, j) =
∑

p∈P(Sp,i − S̄p)(Sp,j − S̄p)√∑
p∈P(Sp,i − S̄p)2

√∑
p∈P(Sp,j − S̄p)2

(5.2)

where Sp,i is the speedup achieved by sequence i when applied to program p of all
set of programs P, and S̄p is the average speedup on program p. We use the computed
measure to evaluate the correlation between a pair of optimization sequences to boost
our exploration strategy.
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Algorithm 1 Proposed heuristic using Adjusted Cosine Similarity
tmpTestedSet = EmptySet
while phases Not Tested Yet do
tmpTestedSet = EmptySet
for phases in prediction space do
if new phases exist then
if similar solution exists then

Skip Phases
else {Test phases: sim(i, j)}

Add phases
end if

end if
end for

end while

The pseudocode of the algorithm is shown in Algorithm 1. The exploration strat-
egy is defined as follows:

1. Sort predicted speedup solutions in decreasing order in a list.
2. Test solutions in order. If the solution to test is too similar to one already tested

in the current list iteration, skip it.
3. If the end of the list has been reached and there are still optimization sequences

to test, go to 2., starting from the head of the list and excluding already tested
solutions.

High values of Adjusted Cosine Similarity (ACS) for a pair of optimization
sequences are the consequence of achieving pairwise similar speedups across all
training data. We exploit this measure to give exploration priority to the solutions
that are less similar to the ones already tested. This allows our ACS algorithm to boost
exploration to cover different areas of the optimization sequence space quicker than
it would have achieved by predictive modeling alone, thus achieving better speedups
with fewer exploration steps.

5.4 Experimental Results

In this section, we evaluate our proposed methodology on an Intel Xeon architec-
ture. We adapted our instrumentation and architecture-independent tool (Sect. 5.3.1)
to extract characteristics from a large set of benchmarks from the Ctuning CBench
suite [8]. We have used LLVM compilation framework v3.8 (Clang for the fron-
tend/backend and Opt for the optimization passes). The training set consists of dif-
ferent applications ranging from automotive, security, office, and telecom. The list of
applications we evaluated is reported in Table 5.1. Table 5.2 illustrates the list of dif-
ferent compiler optimizations that are clustered into 5 different sub-sequences (refer
to Sect. 5.3.2.2) that are derived from LLVM’s -O3. We used the sub-sequences with
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Table 5.1 Applications under analysis (CTuning CBench suite [8])

cBench list Description

automotive_bitcount Bit counter

automotive_qsort1 Quick sort

automotive_susan_c Smallest Univalue Segment Assimilating Nucleus Corners

automotive_susan_e Smallest Univalue Segment Assimilating Nucleus Edges

automotive_susan_s Smallest Univalue Segment Assimilating Nucleus Smoothing

security_blowfish_d Symmetric-key block cipher Decoder

security_blowfish_e Symmetric-key block cipher Encoder

security_rijndael_d AES algorithm Rijndael Decoder

security_rijndael_e AES algorithm Rijndael Encoder

security_sha NIST Secure Hash Algorithm

telecom_adpcm_c Intel/dvi adpcm coder/decoder Coder

telecom_adpcm_d Intel/dvi adpcm coder/decoder Decoder

telecom_gsm gsm encoder/decoder

consumer_jpeg_c JPEG kernel

consumer_jpeg_d JPEG kernel

consumer_tiff2bw convert a color TIFF image to grey scale

consumer_tiff2rgba convert a TIFF image to RGBA color space

consumer_tiffdither convert a TIFF image to dither noisespace

consumer_tiffmedian convert a color TIFF image to create a TIFF palette file

network_dijkstra Dijkstra’s algorithm

network_patricia Patricia Trie data structure

office_stringsearch1 Boyer-Moore-Horspool pattern match

bzip2d Burrows-Wheeler compression algorithm

bzip2e Burrows-Wheeler compression algorithm

no baseline in MiCOMP and generate the design space enabling orderings and repeti-
tions of these sub-sequences. The optimizations are fixed within a sub-sequence, but
sub-sequences are allowed to appear in any order in the full optimization sequence.

An application’s execution time is measured by using the Linux Perf tool. The
execution time of a compiled application binary is measured by averaging the execu-
tion times of three different executions. In order to implement a dimension reduction
technique we applied PCA. This analysis reveals that by using a 5-D vector of fea-
tures we can capture 98% of the variance available in the training set. The Principal
Components (PCs) have been computed using the MICA features collected from
application executions (it is required only once), normalized by standard deviation
across all data sets. An application characterization phase takes between 15 to 50 sec-
onds depending on the type of the application. We noticed a small factor of slowdown
when we perform the feature collection phase versus measuring the pure application’s
execution time. The overhead is negligible first, as it is required once and second,
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Table 5.2 Candidate clusters of compiler optimizations into sub-sequences (all derived from
-LLVM -O3)

sub-seq Compiler passes

A -alignment-from-assumptions -argpromotion -barrier -bdce -block-freq -branch-prob
-constmerge -deadargelim -demanded-bits -dse float2int -forceattrs -functionattrs
-globaldce -globalopt -globals-aa -gvn -indvars -inferattrs -inline -ipsccp
-jump-threading -lcssa -loop-accesses -loop-deletion -loop-idiom -loop-unroll
-loop-unswitch -loop-vectorize -mldst-motion -prune-eh -reassociate
-rpo-functionattrs -sccp -simplyfycfg -sroa -strip-dead-prototypes

B -licm -mem2reg

C -instcombine -loop-rotate -loop-simplyfy

D -memcpyopt

E -adce -loop-unswitch -slp-vectorize -tailcallelim

Table 5.3 List of the predictive models used in our experiments

Predictive model Description

MultilayerPerceptron (MLP) A feedforward artificial neural network model that maps sets of
input data onto a set of appropriate outputs. A MLP consists of
multiple layers of nodes in a directed graph, with each layer fully
connected to the next one

Linear regression (LR) An approach for modeling the relationship between a scalar
dependent variable y and one or more explanatory variables (or
independent variables) denoted X. In linear regression, the
relationships are modeled using linear predictor functions whose
unknown model parameters are estimated from the data

KStar It is an instance-based classifier, that is the class of a test instance
is based upon the class of those training instances similar to it, as
determined by some similarity function. It differs from other
instance-based learners in that it uses an entropy-based distance
function

Note that the proposed methodology is independent from any specific machine-learning algorithm
(classifier) and it can be paired with any algorithm desired

the speedup gained by using MiCOMP is far higher. The proposed methodology is
prediction model independent, and we report the results using three different mod-
els described in Table 5.3. Machine learning algorithms we used include (i) a Linear
Regression (LR) classifier using the M5 attribute selection method with default ridge
parameter, (ii) a Multilayer Perception that back-propagates to classify instances and
using the default configuration, and the (iii) K* algorithm using default settings.

In this work, the WEKA machine learning tool [17] has been integrated into our
framework. We trained different speedup predictors, each one by excluding from
the training application set, one of the applications. This technique is called Leave-
One-Out-Cross Validation (LOOCV) and ensures a fair evaluation of our trained
models. Validation data is used on the application excluded from the training set for
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prediction purpose. In MiCOMP, cross validation is done in a few minutes for each
application under analysis.2

5.4.1 Analysis of Longer Sequence Length

As described in Sect. 5.3, MiCOMP requires an upper bound on the sequence length
for using the encoding scheme. To this end, we evaluate MiCOMP by different
max values for the sequence length. A speedup prediction model requires a one time
expensive training be done in order to construct an accurate model. We believe that the
longer the sequence length, the better the chance of finding higher speedup values.
To that end, we have tested our proposed sub-sequences with different maximum
sequence lengths to empirically find the most effective length across all the training
applications. This is done also with the goal of scalability and speeding up the training
phase.

Figure 5.5 gives the Harmonic mean (as suggested by [18].3) values of the actual
speedups using five selected applications each having different upper bound sequence
lengths. We randomly selected an application from each of CBench categories (auto-
motive, compression, telecom, consumer and network) since it was impractical to
do this analysis with all applications. Having the upper bounds set to 3, 4, 5, 6 and
7 respectively, gives search spaces of 156, 781, 3909, 19 and 97 k distinct permuta-
tions of sub-sequences with repetitions enabled (refer to Eq. 5.1 for the optimization

2Model construction is heavily correlated with the type of machine learning algorithm we use. We
observed LR to be the fastest and MLP to be slowest for our data.
3We provide harmonic mean rather than arithmetic mean as we are dealing with averaging speedups.
Note that harmonic-mean is always less than or equal to arithmetic-mean.
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space). The five speedup lines show the trend of reaching a higher speedup value
by iteratively exploring more fraction of optimization space. The maximum speedup
found against -O3 using sequence lengths of 3, 4, 5, 6, and 7, respectively, are 1.23,
1.34, 1.38, 1.44 and 1.45. These results suggest to set the maximum length to 6
as this ensures achieving good speedups while avoiding a potential exploration of
100 K sequences per each application in the training set. For our optimization sub-
sequences, this empirically found upper bound value is the right trade-off between
choosing a good optimization sequence space and the possibility to explore effi-
ciently.

5.4.2 MiCOMP Prediction Accuracy

Unlike sequence prediction models [6, 19, 20] in speedup prediction approaches,
prediction quality is measured by means of prediction error. This metric demonstrates
how close the prediction values were to the actual speedups given the same sequence.
We use the following different error measurement techniques.

5.4.2.1 Mean Absolute Error

In statistics, the Mean Absolute Error (MAE) [21] is a quantity used to measure how
close predictions are to the eventual outcomes. The mean absolute error is given by:

MAE = 1

n

n∑

i=1

|fi − yi| (5.3)

where we define ei as |fi−yi| given fi as the prediction values and yi the actual values.
Consequently, the value ei is inverse proportional to the accuracy of the prediction.

5.4.2.2 Approximation Error

Complementary to MAE, Approximation Error (AE) [22] is a common error mea-
surement whereas in some data there is some discrepancy between an exact value
and the approximation. An approximation error can occur because (i) certain mea-
surements of the data are not precise (which we consider it can be the case for any
computer scientific measurement) and (ii) approximated values are used instead of
the real values (the iterative prediction way keeps using the predicted values). It is
calculated as:

δ = |ε|
|v| = |v − vapprox|

|v| (5.4)
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Table 5.4 Average error rate for the proposed mapping function versus an arbitrary mapping

M.L MiCOMP mapping function No mapping Improvement factor

MAE AE MAE AE MAE AE

MLP 0.06798 0.05479 0.10826 0.11838 1.59× 2.16×
LR 0.07525 0.07795 0.12879 0.13974 1.71× 1.79×
KStar 0.05179 0.05078 0.09188 0.10866 1.77× 2.13×

where the absolute error is the magnitude of the difference between the exact value
and the approximation. These definitions can be extended to the case when v and
vapproximate are n-dimensional vectors, then by replacing the absolute error with an
n-norm error.

5.4.2.3 Prediction Accuracy

We provide the prediction’s error rate in Table 5.4. We observe that the arbitrary
mapping leads to higher error rates in the prediction values. Exploiting the adapted
encoding scheme reduces the noise on the prediction and stabilizes the output trend
with lower error-rate. Table 5.4 shows that the KStar model does slightly better in
terms of accuracy compared with other models, it achieves around 5% error rate on
average. In general, having a smaller error rate does not always guarantee higher per-
formance gain but rather showcases the accuracy of the prediction model to capture
the correlation between different compiler sub-sequences and the speedup values.4

5.4.2.4 Iterative Compilation Max Speedups

Iterative compilation is known to be able to achieve good performance results when
compiling applications [23]. However, the approach is expensive and should be
combined with more intelligent search algorithms [19, 20]. Table 5.5 reports the
maximum speedups found by an iterative compilation approach using our proposed
clustering while exploring the full optimization space. This experiment empirically
confirms that the proposed clustering is useful on the phase-ordering space since
we show that we can achieve on average a 26% speedup versus -O3. Figure 5.4
illustrates the trend when using MiCOMP sub-sequences with no baseline compared
with having a baseline (e.g.: -O1, -O2 or -O3). The best optimization sequence for
each of applications under-analysis and its speedup value are reported in the second

4We are aware of the many other encoding possibilities that are more efficient (currently having N×
M length). However, we believe that extending the current encoding scheme to a more sophisticated
version is out of scope of the work. Moreover, the proposed clustering technique can effectively
reduce the number of N , thus the encoding scheme is scalable for higher orders.
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Table 5.5 Best compiler optimization sub-sequences found using an iterative compilation and their
related speedups

Application Best sub-sequence Speedup w.r.t. -O3

telecom_adpcm_c ECDDCC 1.35

security_sha ACCACE 1.06

security_blowfish_e BCCEEA 1.03

automotive_susan_e AABACA 1.15

consumer_tiffdither DCEDCD 1.20

security_rijndael_e CAEEC 1.10

consumer_tiff2bw CCDCD 1.30

bzip2e CBADCA 1.30

automotive_susan_s ECCCDE 1.22

office_stringsearch1 ABCBAC 1.07

telecom_adpcm_d DCAACA 1.13

consumer_jpeg_c DDC 1.14

network_patricia CECBAA 1.08

automotive_susan_c BDBCCB 1.23

consumer_tiff2rgba DEDDC 1.32

automotive_qsort1 CBAAAC 1.04

security_blowfish_d DACECA 1.05

network_dijkstra EECBBE 1.51

security_rijndael_d ECEACD 1.05

bzip2d CBDACA 1.29

automotive_bitcount BEACCA 1.07

consumer_jpeg_d CCED 1.18

consumer_tiffmedian BCBACB 1.15

telecom_gsm BACBAC 1.07

Harmonic mean 1.26

and the third columns of Table 5.5. Readers can refer to Table 5.2 to find the exact
set of compiler optimizations clustered in each sub-sequence.

5.4.3 MiCOMP Versus the Ranking Approach

Our proposed approach can improve the exploration to find the best optimization
sequences in an optimization search space and to find the best speedups using a fewer
number of predictions. Table 5.6 reports the comparison between the best speedup
found by our approach and a state-of-the-art N-shot approach [4, 6]. The results,
averaged using a Harmonic mean across all applications, show that using the same
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Table 5.6 Prediction improvement of MiCOMP based on Adjusted Cosine Similarities against the
Ranking (N-shot approach)

Exploration
Techniques

Top-1 Top-5 Top-10 Top-15 Top-20

MiCOMP 1.01 1.06 1.09 1.10 1.12

Ranking 0.93 1.02 1.06 1.07 1.08

number of predictions from both models, our exploration technique can outperform
the ranking approach on every number of predicted optimization sequences used
(1, 5, 10, 15 and 20). This shows that our proposed methodology can effectively
predicts the best compiler sequences to use and converges faster to better solutions
in the space.

5.5 Comparative Results

In this section we evaluate the results of our model against three different techniques:
(i) Standard optimization levels, (ii) Random Iterative Compilation (RIC) and, (iii)
Non-iterative Models. We use our MiCOMP exploration policy and compare the
performance of predictions to a previously published ranking approach. For each
application under analysis, we tested the speedup gained using 1, 5 and 10 predic-
tions and provide the Harmonic mean values. Table 5.7, reports the results. For each
application and number of predictions, we provide two: i) achieved speedup com-
pared with -O3 and, ii) achieved speedup compared with the optimal solution for the
specific application. For example, one can see that for the network_dijkstra applica-
tion we can gain a higher speedup values using MiCOMP and, on average even better
than -O3 from just the first prediction. Moreover, we can achieve a 4% performance
improvement over -O3 when we use 5 predicted optimization sequences from our
model. Over all our benchmarks, using our model we can achieve 1%, 4%, and 9%
speedups over -O3 using 1, 5, and 10 predicted optimization sequences, respectively.
Consequently, our technique allows MiCOMP to outperform -O3 by high margins.
Thus combining prediction models with iterative compilation achieves much bet-
ter performance than using pure iterative compilation alone. For example, note in
Fig. 5.5 that it takes a pure iterative compilation technique 100–5000 iterations to
surpass the performance of -O3.

5.5.1 Comparison with Standard Optimization Levels

Standard optimization levels have been introduced to achieve good performance on
average. However, they are coming short of the customized auto-tuning framework
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Table 5.7 MLP’s speedup table against LLVM’s -O3. Reported numbers are A (B%): (A) speedup
and (B) achieved speedup w.r.t. the optimal speedup value

Application 1 prediction 5 predictions 10 predictions

automotive_bitcount 1.04 (95.38%) 1.07 (98.12%) 1.08 (98.92%)

automotive_qsort1 1.01 (95.32%) 1.03 (96.93%) 1.03 (97.55%)

automotive_susan_c 1.04 (96.61%) 1.06 (98.53%) 1.06 (99.07%)

automotive_susan_e 1.04 (96.47%) 1.03 (98.41%) 1.04 (99.00%)

automotive_susan_s 0.99 (96.26%) 1.01 (98.42%) 1.02 (98.98%)

bzip2d 0.93 (92.77%) 0.96 (94.02%) 1.00 (94.37%)

bzip2e 1.09 (83.77%) 1.10 (86.02%) 1.12 (90.37%)

consumer_jpeg_c 1.01 (85.18%) 1.07 (90.35%) 1.10 (94.51%)

consumer_jpeg_d 1.09 (84.70%) 1.14 (88.97%) 1.17 (97.85%)

consumer_tiff2bw 0.96 (75.54%) 0.99 (80.59%) 1.02 (82.46%)

consumer_tiff2rgba 0.91 (80.61%) 0.95 (86.19%) 1.07 (88.08%)

consumer_tiffdither 1.02 (80.14%) 1.09 (85.86%) 1.11 (87.68%)

consumer_tiffmedian 0.94 (79.21%) 1.02 (85.72%) 1.06 (89.31%)

network_dijkstra 1.13 (60.00%) 1.29 (68.46%) 1.38 (73.00%)

network_patricia 0.91 (64.99%) 0.93 (70.79%) 0.97 (73.91%)

security_sha 0.91 (64.99%) 1.01 (70.79%) 1.03 (73.91%)

security_blowfish_e 0.92 (64.99%) 1.03 (70.79%) 1.03 (73.91%)

security_blowfish_d 0.91 (64.99%) 0.99 (70.79%) 1.02 (73.91%)

security_rijndael_e 0.92 (64.99%) 1.02 (70.79%) 1.01 (73.91%)

security_rijndael_d 0.89 (64.99%) 1.01 (70.79%) 1.04 (73.91%)

telecom_adpcm_c 0.91 (64.99%) 1.01 (70.79%) 1.02 (73.91%)

telecom_adpcm_d 0.92 (64.99%) 1.02 (70.79%) 1.01 (73.91%)

telecom_gsm_d 0.89 (64.99%) 1.03 (70.79%) 1.04 (73.91%)

Harmonic mean 1.01 (82.74%) 1.04 (87.51%) 1.09 (91.52%)

per architecture/application/dataset. As we showed in Table 5.7, MiCOMP can sur-
pass the performance of -O3 with a few predictions on application bases. Here we
provide Table 5.8 which reports more fine-grained speedup over all standard opti-
mization levels. This demonstrates how fast (first number in the tuple) and in what
percentage of the explored space (the second number), the framework is reaching a
sequence which can outperform the specific standard optimization level. Each col-
umn is reporting two values: (i) in how many predictions and (ii) in what percentage
of the whole configuration space the propped methodology can outperformOX levels.
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Table 5.8 Average Speedup w.r.t LLVM -O3. Numbers are A (B%): (A) How fast (in terms of
number of predictions) in average the proposed methodology outperforms LLVM standard Opti-
mizations. (B) The percentage of the optimization space explored to satisfy the goal

Predictive modeling -O1 -O2 -O3

MultilayerPerceptron 1 (0.01%) 1 (0.01%) 3 (0.02%)

LinearRegression 1 (0.01%) 1 (0.01%) 3 (0.02%)

KStar 1 (0.01%) 1 (0.01%) 2 (0.016%)

5.5.2 Comparisons with State-of-the-Art Models

In this section, we compare MiCOMP with two state-of-the-art intermediate-sequence
prediction approaches proposed in [1, 2].

5.5.2.1 Intermediate Speedup Comparison Case. (A)

Kulkarni et al. [2] used Neuro-Evolution for Augmenting Topologies (NEAT) to pre-
dict the best compiler optimization to apply given the state of source-code being
optimized by the dynamic JIT Jikes RVM compiler. They used static source-code
features to characterize each state of application under optimization, as opposed to the
technique we propose in this chapter where we obtain features of the code only once
before it is optimized. Kulkarni et al., used NEAT, a machine-learning framework
based on genetic evolution, to generate many neural-networks where each network
was evaluated on the task of using static source code features to predict the next com-
piler optimization to apply. NEAT can make optimization predictions to any given
maximum-length to predict the most beneficial sequence of optimizations for the tar-
get application being compiled. In NEAT training time was reported around 10 days
while the current approach requires a few hours to construct the model. Another
advantage of the current work is the fact that is supporting multiple predictions from
the prediction-space while the NEAT approach can produce one-shot result based on
the stop condition for each application and neural network configuration. We repro-
duced the work by Kulkarni et al. [2] by using 100 chromosomes and 500 generations
on 12 cores Xeon(R) CPU E5-1650 v2 @ 3.50GHz with 12GB running on Ubuntu
and we report the result in Table 5.9. We ran NEAT in parallel with average running
time of 1.75 hours per model (the longest took 4 hours). For this comparison, we
used the same training data of up to the length of 4 for both MiCOMP and Kulka-
rni et al. to be uniform on both comparisons as NEAT needs feature collection on
each iteration and collecting 19 k feature vectors for the number of applications in
our training set was impractical. The training/prediction is done with leave-one-out
cross-validation to be uniform to the reported experimental results in this chapter.
We used Harmonic-mean to average the speedup gains on both models and observed
1.0295× speedup (5% performance improvement) against the mentioned work.
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Table 5.9 Performance comparison of the single prediction by MiCOMP against the intermediate
speedup approach reported in in previous work [2]

Application NEAT MiCOMP

Best NN Size 1 prediction 1 prediction

automotive_qsort1 1105 1.0336 1.0385

automotive_bitcount 1536 1.0923 1.0498

automotive_susan_c 607 1 1.0491

automotive_susan_e 613 1 1.0481

automotive_susan_s 1295 1.0135 1.0195

bzip2d 1159 1 0.9698

consumer_jpeg_c 1327 1.0205 1.1882

consumer_jpeg_e 596 1 1.0981

consumer_tiff2bw 1038 0.9522 0.9491

consumer_tiff2rgba 1147 0.9905 0.9295

consumer_tiffdither 612 1 1.0288

consumer_tiffmedian 1356 0.9097 0.9497

network_dijkstra 1343 1.0353 1.1382

network_patricia 622 0.7971 0.8585

Harmonic Mean 0.9742 1.0275

All values are normalized by -O3

5.5.2.2 Intermediate Speedup Comparison Case. (B)

Ashouri et al. [1] demonstrated a predictive methodology in order to predict the
intermediate speedup obtained by an optimization from the configuration space,
given the current state of the application. The fitness function for the intermediate
speedup is the ratio between the execution times of the program before and after the
optimization process. They exploited predictive models to correlate the current state
of the dynamic features of the application under study with the current state of the
compiler optimization to come up with a speedup value and utilize heuristics to search
that space. Ashouri et al. used dynamic feature selections, however as mentioned in
Sect. 5.5.2.1, a major downside in this work is that application feature should be
collected on every state by means dynamic feature extraction and this makes the
system impractical on large-scale data. There is an extension to the aforementioned
work. Their comparison baseline was LLVM’s default optimization, while here we
provide a comparison against LLVM’s -O3 (we show MiCOMP can outperform an
aggressive optimization setting in LLVM, that is, -O3, in only a few predictions.).
Figure 5.6 demonstrates the comparison. For this comparison, we used the same
training data of up to the length of 4 for both MiCOMP and Ashouri et al. to be
uniform on both comparisons. We observe that except the first two predictions, the
proposed approach outperforms the intermediate speedup methodology reported in
this work and on average MiCOMP brings 11% speedup gain.
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Fig. 5.6 Performance of MiCOMP w.r.t the performance of intermediate speedup predictor
approach [1]

5.5.3 Comparison with Random Iterative Compilation

As we illustrated in Sect. 5.4.2.4, iterative compilation can improve application per-
formance over standard compiler optimization sequences [19, 23]. Additionally,
several published works have shown that drawing compiler optimization sequences
at random can often be as good as using other more complicated search algorithms,
such as genetic algorithms or simulated annealing [3, 19, 24]. In this section, we com-
pare the effectiveness of MiCOMP to a Random Iterative Compilation (RIC) method
that samples sequences from a uniform distribution. We randomized the distribution
of predictions 10000 times to make sure the obtained model is totally uniform. Our
results are presented in Fig. 5.7. To present our results, we define Normalized Per-
formance Improvement (NPI) as the ratio of the performance improvement achieved
over the potential performance improvement:

NPI = Eref − E

Eref − Ebest
(5.5)

whereE is the execution time achieved by the methodology under consideration, Eref

is the execution time achieved with a reference compilation methodology and Ebest

is the best execution time that can be obtained through an exhaustive exploration
of all possible compiler optimization sequences in the optimization space we are
exploring. As the execution time E of the iterative compilation methodology under
analysis gets closer to the reference execution time Eref , the value of NPI gets closer
to 0, where 0 indicates no improvement was obtained. As E approaches the best
execution time, Ebest , the value of NPI approaches 1. An NPI value of 1 indicates
that the optimal performance available was achieved. The goal of the evaluation in this
section is to show how effective MiCOMP is at exploring the optimization sequence
space compared to RIC. Figure 5.7a shows results for both MiCOMP and RIC with
the same. The X axis pertains to the number of predicted optimization sequences
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Fig. 5.7 MiCOMP performance comparison versus Random Iteration Compilation
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used and the Y axis shows their corresponding speedup values. We used NPI (scaled
within [−∞, 1]) and the speedups are all normalized by -O3 performance. Thus,
Y = 0 is the speedup line corresponding to -O3. We observe that the performance of
MiCOMP outperforms Random Iterative Compilation for each number of predicted
optimization sequences used. Note the larger the number of predicted sequences
used, the more significant the performance difference between MiCOMP and RIC.
Table 5.5 gives the the absolute speedup values.

Figure 5.7b displays another result where we compare a fixed number of predicted
optimization sequences for MiCOMP, that is 5 predicted sequences, versus different
number of predicted sequences from RIC. That is we observe the prediction quality
of MiCOMP compared to different numbers of predicted optimization sequences
drawn from a random distribution. Figure 5.7b depicts this scenario using a violin
plot where the Y axis pertains to the speedup with respect to the RIC and the X axis
corresponds to the different predicted optimization sequences obtained from RIC.
Statistically, we observe that the quality of the 5-prediction of MiCOMP is as good
as using 25 prediction optimization sequences from RIC. In our experiments, we
observed that the predicted optimization sequences derived by MiCOMP can give
up to 5× exploration speedup versus the RIC method.

5.6 Conclusion

This chapter presented MiCOMP, a framework to exploit predictive modeling to solve
the compiler phase-ordering problem. We proposed a clustering technique for all the
compiler optimizations in LLVM’s -O3 and clustered them in five different opti-
mization sub-sequences to speedup the training and exploration phase. This method
outperforms LLVM’s -O3 optimization sequence. Moreover, MiCOMP has a simple
mapping function that encodes an optimization sequence into a bit string, allowing
us to apply standard machine learning techniques that require fixed length feature
vectors. We incorporated analogies between the analyzed problem and the context
of Recommender Systems, and integrate similarity measures to boost exploration
efficiency. We show that MiCOMP outperforms LLVM’s standard optimization lev-
els with just a few predicted of optimizations sequences and achieves top 80% of
the available speedup by traversing less than 5% of the optimization sequence space.
This is rather crucial when the optimization space can consist of a variety of different
optimization sequences.
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Chapter 6
Concluding Remarks

In this book, we have tackled the major problems of compiler autotuning. We have
usedmachine learning, DSE, andmeta-heuristic techniques to construct efficient and
accurate models to induce prediction models.

This chapter unfolds in two main sections. Section6.1 summarizes the main con-
tribution and Sect. 6.2 provides a list of open issues and our future direction towards
tackling those challenges.

6.1 Main Contributions

This book presented the following contributions.

1. We extensively surveyed the literature of the past 25years and classified the
papers by the type of contribution, the prediction models, and many other sub-
features.We hope the survey is useful for a wide range of researchers and industry
professionals.

2. We provided a co-exploration framework to statistically analyzing the compiler
level parameters over a customized VLIW architecture. Moreover, we applied
several statistical tests, e.g., ANOVA, Kruskal-Wallis, and clustering techniques
and we showed that not all the available compiler parameters are beneficial to use
within the embedded domain.

3. Chapter4 presented COBAYN framework for autotuning compiler passes using
Bayesian networks. It uses application’s characteristics to predict the best set of
optimization passes on given application. We experimentally showed that this
framework outperforms GCC’s standard optimization levels, i.e.,−O2 and−O3
and betters the state-of-the-art approaches.

4. An intermediate speedup predictor was presented towards tackling the phase-
ordering problem in Chap.4. Choosing the best local alternative as the next-best
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optimization to use might lead to a local minimum, whereas other paths with less
steep initials, might end up in a better global point. The main goal of this chapter
was to familiarize with the difficult problem of the phase ordering of the compiler
optimizations and an intuitive approach to tackling such.

5. Last but not least, MiCOMP was presented as a framework for mitigating the
phase-ordering problem. It uses predictive modeling to form the best ordering
of phases for an application under analysis. A major advantage of MiCOMP is
the fact that it predicts the full optimization sequence at once. We experimentally
showed that the framework outperforms state-of-the-art techniques, also within
a few predictions it can outperform standard optimization levels.

6.2 Open Issues and Future Directions

We identify the challenges and open issues involved in optimizing compilers.

1. Leveraging COBAYN and MiCOMP address a few research questions. How-
ever, these approaches can be further improved and be more accurate. Inducing
prediction models always deals with approximations; therefore there wouldn’t
be a definite optimal result for a given problem. By the advancement in new
machine learning techniques, i.e., deep learning, etc. it is expected that we adapt
more accurate models to achieve results, yet this remains an open question to be
answered.

2. Parallel and heterogeneous computing brought both new applications and chal-
lenges for autotuning. Now, it is up to the compiler researchers to adapt and
introduce novel tuning techniques for CPU, GPU, and other accelerators. This
direction is indeed both challenging and interesting for future research.

3. Multi-objective optimization strategies need to be exploited for power-aware and
energy efficient systems. Finding the right Pareto-curve representing the right set
of optimization is still an open challenge.

We hope that the book paves the way to fine-grain knowledge and understanding
of the discussed problems and light up more ideas for young researchers to carry on
the path towards tackling the existing open issues.
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