
Studies in Computational Intelligence 765

Alexander Gelbukh
Hiram Calvo

Automatic
Syntactic
Analysis Based
on Selectional
Preferences

Studies in Computational Intelligence

Volume 765

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Alexander Gelbukh • Hiram Calvo

Automatic Syntactic Analysis
Based on Selectional
Preferences

123

Alexander Gelbukh
Centro de Investigación en Computación
(CIC)

Instituto Politécnico Nacional (IPN)
Mexico City
Mexico

Hiram Calvo
Centro de Investigación en Computación
(CIC)

Instituto Politécnico Nacional (IPN)
Mexico City
Mexico

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-74053-9 ISBN 978-3-319-74054-6 (eBook)
https://doi.org/10.1007/978-3-319-74054-6

Library of Congress Control Number: 2018930105

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1 Introduction . 1
1.1 Purpose . 1
1.2 Structure . 2
1.3 Field of Study . 3

1.3.1 Natural Language and Computational Linguistics 3
1.3.2 Levels of Linguistic Processing 4
1.3.3 Ambiguities in Natural Language 8

2 First Approach: Sentence Analysis Using Rewriting Rules 11
2.1 Related Work . 15
2.2 Characteristics of SOC Systems . 16
2.3 Direct Translation Grammar . 16
2.4 Definition . 17

2.4.1 Rule Order . 18
2.4.2 Rule Components . 18

2.5 Object Reference and Context Management 22
2.5.1 Embedded Functions for Context and Object

Reference Management . 22
2.5.2 Conditional Markers . 23

2.6 Processing of Sample Queries . 23
2.6.1 Rule Set . 24
2.6.2 Rules in Action . 25

2.7 Conclusions . 26

3 Second Approach: Constituent Grammars 29
3.1 Representation Using Typed Feature Structures 29

3.1.1 Introduction . 30
3.1.2 Representing Situations with Typed Feature

Structures . 31
3.1.3 Minsky’s Frames and Situations 38

v

3.2 Adding a Knowledge Base . 39
3.2.1 TFS as Knowledge Representation 40
3.2.2 Structure of the TFS Knowledge Base 41
3.2.3 Building a TFS Knowledge Base 42

3.3 Conclusions . 43

4 Third Approach: Dependency Trees . 45
4.1 Introduction . 45
4.2 Related Work . 48
4.3 Algorithm . 49

4.3.1 Preprocessing . 49
4.3.2 Rules . 51
4.3.3 Prepositional Phrase Attachment 53
4.3.4 Heuristics . 53
4.3.5 Selection of the Root . 54

5 Evaluation of the Dependency Parser . 55
5.1 Definition of a Gold Standard . 55

5.1.1 The Spanish 3LB Treebank . 55
5.1.2 Transformation Procedure . 56
5.1.3 Extracting the Grammar . 56
5.1.4 Experimental Results . 62
5.1.5 Conclusions . 64

5.2 Evaluation of Our Parser . 64
5.3 Conclusions . 66

6 Applications . 69
6.1 Selectional Preferences . 69

6.1.1 Introduction . 69
6.1.2 Related Works . 70
6.1.3 Methodology . 71
6.1.4 Evaluation . 73
6.1.5 Other Applications . 74
6.1.6 Conclusions . 75

6.2 Steganography . 75
6.2.1 Some Definitions . 75
6.2.2 The Context of Words . 76
6.2.3 Verifying Word Combinations 77
6.2.4 Selectional Preferences for Synonym Paraphrasing 78
6.2.5 The Algorithm . 79
6.2.6 A Manually Traced Example in Spanish 80
6.2.7 Conclusions . 82

vi Contents

7 Prepositional Phrase Attachment Disambiguation 85
7.1 Using the Internet . 85

7.1.1 Introduction . 85
7.1.2 Volk’s Method . 86
7.1.3 Improving Performance . 88
7.1.4 Experiment and Results . 89
7.1.5 Conclusions . 91

7.2 PP Attachment Disambiguation Using Selectional
Preferences . 91
7.2.1 Related Work . 93
7.2.2 Sources of Noun Semantic Classification 94
7.2.3 Preparing Sources for Selectional Preferences

Extraction . 94
7.2.4 Extracting Selectional Preferences Information 96
7.2.5 Experimental Results . 97
7.2.6 Conclusions and Future Work 99

7.3 Applying Different Smoothing Methods 99
7.3.1 Theoretical Background . 99
7.3.2 PP Attachment with No Backoff 101
7.3.3 WordNet Backoff . 103
7.3.4 Thesaurus Backoff . 107
7.3.5 Comparison of Methods . 109
7.3.6 Conclusions . 110

8 The Unsupervised Approach: Grammar Induction 111
8.1 Introduction . 111

8.1.1 Overview of Syntactic Analyzers 112
8.1.2 Supervised Syntactic Analysis 112
8.1.3 SemiSupervised Dependency Syntax Analysis 112
8.1.4 Unsupervised Syntax Analysis 113

8.2 Grammar Induction Algorithms . 114
8.3 Implementation . 114

8.3.1 PoS Tagging of Raw Text . 115
8.3.2 ABL’s Output Processing . 115
8.3.3 EMILE’s Output . 116

8.4 Parameter Selection for Grammar Inductors 117
8.5 From Chunks to Dependency Relations 119

8.5.1 Lexical Categories Precedence 119
8.6 Evaluation of Dependencies . 121
8.7 Building an English Parser in a Few Days 122
8.8 Conclusions and Future Work . 123

Contents vii

9 Multiple Argument Handling . 125
9.1 One Argument Is not Enough . 126
9.2 Approaches for Learning Verb Argument Preferences 127

9.2.1 Selectional Preferences . 128
9.2.2 Subcategorization Frames . 128
9.2.3 Word-Space Model . 128

9.3 A Word-Space Model . 129
9.3.1 Evaluation . 130
9.3.2 Analysis . 131

9.4 The Dependency Language Model . 133
9.4.1 Models for Plausible Argument Estimation 134
9.4.2 Evaluation . 136
9.4.3 Analysis . 137

9.5 Interpolated PLSI . 138
9.5.1 iPLSI—Interpolated PLSI . 138
9.5.2 Experiments . 138
9.5.3 iPLSI Results . 141
9.5.4 The N-Grams Test . 142
9.5.5 Analysis . 143

10 The Need for Full Co-Occurrence . 145
10.1 Method . 146

10.1.1 Assembling SVM Features for Training
and Testing . 147

10.2 Experiments . 149
10.2.1 Analysis of Adding Manually Crafted

Information . 150
10.3 Conclusions and Future Work . 154

References . 155

viii Contents

Chapter 1
Introduction

1.1 Purpose

The most valuable treasure of humankind is knowledge. Computers have a better
capability than humans to handle great amounts of information: search for infor-
mation, apply simple inference, and look for answers to questions…. However, our
treasure, which exists in the form of natural language texts—news boards, news-
papers, and books in digital libraries and the Internet—is not understandable to
computers; they deal with it as a chain of letters and not as knowledge.

This book describes several sentence analysis methods that are based on the
syntactic and semantic characteristics of the sentences. It also describes a disam-
biguation algorithm that is based on linguistic and semantic knowledge obtained
from a large quantity of text.

The methods described in this book pay special attention to correctly dividing
structures that correspond to entities mentioned in a sentence; for example, {the
man with a gray coat who is standing in that corner} is my father. Doing so enables
us to perform further tasks, such as question answering, information retrieval,
automatic translation, and logical text formalization.

We use several techniques to parse a sentence. We begin with simple heuristics
and combine them to analyze more complex objects, such as subordinate and
relative clauses. For example, a noun is most often preceded by an article (the book,
the house, etc.), but then modifiers are added to that particular noun (i.e., object),
such as adjectives or other descriptors. During this process, several ambiguities may
arise; to solve these, we use selectional preferences.

Selectional preferences are conventionally determined based on the association
between a pair of words. However, in several cases, selectional preference depends
on several arguments, and not just one argument. For example, in the cow eats
grass and the girl eats ice cream, it is unlikely that a girl eats grass and vice versa;
therefore, the preference of eat depends on who is eating. A more complex situation
can be found where more than one argument is involved to determine the preference

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_1

1

of a third argument. Several proposals for handling dependency correlations in a
sentence will be proposed over the course of this book. We will also describe new
contributions for automatic selectional preference extraction as well as its many
applications, and conventions for representing a sentence as a dependency structure
will also be established.

1.2 Structure

We are mainly motivated in computational linguistics by the idea of an intelligent
machine that is capable of understanding natural language and of conversing with
human beings as if it were, itself, human. This ideal machine, as in science fiction
movies, is still far from being realized. However, there are currently many useful
tools for handling natural language. Advancing these tools is another goal of our
study.

We begin with a rough description of computational linguistics, describing what
it is and what its most common problems are, before focusing on sentence analysis.
Our goal is outlined in Sect. 1.1, but there are several approaches by which it may be
achieved. We explore several of these approaches in Chaps. 2 and 3, examining each
approach’s advantages and disadvantages. Chapter 2 examines sentence analysis of
user utterances by rewriting rules. Chapter 3 looks at text representation through the
formalism of constituents. Chapter 4 discusses the formalism of dependencies.

After exploring these approaches, at the end of Chap. 4, we present the state of
the art of automatic extraction of semantic roles and selectional preferences. Some
questions will remain, which we try to answer in the following chapters.

In Chap. 5, we describe our evaluation scheme and the results we obtained.
First, we manually convert a syntactic annotated text to its dependency structure;
then, we compare manual labels to automatically obtained labels.

In Chap. 6, we discuss applications of the parser outlined in Chap. 4, such as
using it for word sense disambiguation (Sect. 6.1.4, Steganography 6.2). In Chap. 7,
we propose solutions to the problem of prepositional phrase attachment.

In Chap. 8, we study an unsupervised approach with a “grammar induction
parser.”

Finally, in Chap. 9, we deal with the problem of multi-argument dependency,
and in Chap. 10, we deal with the problem of needing all arguments of a verb to
have full co-occurrence in order to predict them.

2 1 Introduction

1.3 Field of Study

1.3.1 Natural Language and Computational Linguistics1

Linguistics studies human language. Within this vast science are sub-fields repre-
senting its intersection with other fields of scientific knowledge—for example,
psycholinguistics or sociolinguistics—through technology, education, medicine,
art, and other human activities. In particular, a special intersection exists between
linguistics and computing that offers mutual benefits to both.

On the one hand, linguistics knowledge is the theoretical basis for the study of a
large range of highly important technological applications for our incipient infor-
mation society—for example, the searching and handling of knowledge, natural
language interfaces between humans and computers or robots, and automatic
translation.

On the other hand, computational technologies offer tools to linguists. Until two
decades ago, researchers could not have even dreamed of these tools and, until
recently, linguists could not make everyday use of them due to the prohibitive cost of
computing power and/or data storage. To name a few, these tools include immediate
search results for any given word’s usage and construction within large amounts of
text; complex statistics obtained incredibly fast; the almost-instantaneous (compared
with the speed of pencil and eraser) analysis, marking, and classification of any text;
and automatic detection of the structure of an unknown language. The advanced
search engines of the Internet have opened the door to a whole world of language—
to a corpus so vast, it could reasonably be stated that all human language is available
in a palpable and measurable way. In comparison, a conventional corpus represents a
mere drop in the vast ocean of humanity’s collective use of language.

Among these benefits is the possibility of the massive verification of theories,
grammars, and linguistic dictionaries, which is simply outstanding. Some years ago,
to verify a colleague’s proposed grammar, a linguist had to use his or her intuition
in searching for examples not covered by the proposed grammar; if no such
example was found, the linguist had to suppose the grammar complete. Nowadays,
automatic grammar analyzers will not only verify whether a grammar is complete,
they will also quantifiably measure to what extent the grammar is complete and the
productivity of each of the grammar’s rules.

However, the main benefit that computer technologies offer linguistics in all its
subfields (from lexicography to semantics and pragmatics) is the motivation to
compile a language description in a complete and precise way—that is, formally.

More specifically, this relationship can be described in the following way.
Linguistics, as every science, constructs the models and descriptions of its object of
study: natural language. Conventionally, such descriptions were focused on the
human reader, in many cases resorting—sometimes even without the author’s
notice—to the reader’s common sense, intuition, and own knowledge of language.

1Based on [85].

1.3 Field of Study 3

Historically, the first challenge for such descriptions was the description of any
given foreign language, where it was impossible to resort to the reader’s own
linguistics sense; such descriptions of foreign languages actually helped greatly
improve the clarity of language descriptions, now called “formality.” However,
even in these descriptions, analogies with the reader’s own language were often
implicitly used for support, not to mention persistent references to common sense.

The computational revolution has given linguists an interlocutor with a singular
property: without having either prior knowledge, intuition, or common sense,
computers are highly capable of interpreting and literally applying the language
descriptions provided by linguists. Just as we struggle to answer children’s ques-
tions about things we once thought obvious, computers force linguists to sharpen
and complete their formulations. In this way, computing assists linguistics (a tra-
ditionally humanistic science) to express terms formally.

The wide field where linguistics and computing interact and intersect is, in turn,
structured into several (more specific) sciences. In particular, the science of com-
putational linguistics is about the construction of language models that are un-
derstandable to computers—that is, more formal than conventional models, which
are oriented to human readers.

1.3.2 Levels of Linguistic Processing2

From a technical point of view, natural language processing (NLP) aims to prac-
tically solve some issues that are studied by computational linguistics. NLP is
highly complex because of the amount of knowledge involved. Compilation of this
knowledge is one problem of linguistic systems engineering, and automatic learning
from large-scale text corpora is a solution commonly used to solve that problem.

Another solution is to partition processing into steps (phases) that correspond to
the levels (layers) of language: morphological (word) analysis, syntactic (sentence)
analysis, and semantic (whole text) analysis. Yet, this solution yields another
problem: ambiguity. Ambiguities produced in one level (for example, is test a noun
or verb?) must be solved in other levels of analysis. Ambiguity is probably the most
important problem in natural language analysis. Traditionally, natural language has
been divided into the following levels of language:

1. phonetics/phonology
2. morphology
3. syntax
4. semantics
5. pragmatics
6. discourse

2Based on [85].

4 1 Introduction

There are no particular criteria for separating each level; rather, the differences
between levels are based on the analysis approach used in each one. Therefore,
there may be overlap between levels, which does not necessarily indicate contra-
diction. For example, some phenomena are related to both phonology and mor-
phology (for example, stem alternations such as mouse-mice and do-did).

Each language level and their computational advances will be briefly discussed
in the following subheadings.

1.3.2.1 Phonetics/Phonology

Phonetics is the area of linguistics devoted to the exploration of sound character-
istics, which is a substantial form of language. Because phonetics is devoted to
sound characteristics, its methods are mostly physical, which makes its position in
linguistics quite independent.

Problems in computational phonetics are related to the development of voice
recognition and speech synthesis. Even though there are voice recognition systems—
that is, the computer can recognize words uttered in front of a microphone—the
percentage of correctly identified words is relatively low. Among systems of speech
synthesis, there is much more success. Some such systems are able to speak with a
robotic accent but do not sound completely human (several generation modules are
available for testing at loquendo.com). Furthermore, speech synthesis systems have a
rather restricted area of application: usually, it is much faster, comfortable, and safe
to read a message than listen to it. Thus, speech synthesis systems are basically only
truly useful to people with sight deficiencies.

Phonology is also interested in sounds, but from another point of view.
Phonology’s interest lies in the position of a sound within the sound system of a
certain language—that is, the relationships a sound has with the other sounds in the
system and the implications of such relationships. For example, why can Japanese
speakers not easily distinguish between the [r] and [l] phonemes? Why do foreigners
speak Spanish with a noticeable accent—such as pronouncing [r] as [rr]? Why do
native Spanish speakers usually have accents when speaking certain other languages
—for example, not being able to pronounce [hard l] as l is pronounced in English?
The answer is the same in all cases: their native languages have no opposition
between the phonemes mentioned; because of this, differences that seem very
noticeable in some languages are insignificant in others. In Japanese, there is no [l]
phoneme; in the majority of languages, there is only one phoneme for [r]-[rr] and,
obviously, its duration is not important (Spanish represents the contrary case). On
the other hand, in Spanish there is no [hard l] phoneme—only [l] (soft l) exists—
thus, when native Spanish speakers speak English, they pronounce [hard l] softly as
in their mother tongue.

1.3 Field of Study 5

1.3.2.2 Morphology

Morphology looks at the internal structure of words (suffixes, prefixes, stems,
inflections) and the system of grammatical language categories (gender, number,
etc.). Some languages are vastly different from English. For example, in Arab, the
stem or root has three consonants and the diverse grammatical forms of a word are
made by means of inserting vowels between the consonants (KiTaB <the book>,
KaTiB <reading>); in Mandarin, there is almost no morphological form for words,
which is compensated for on the syntax level (by using a fixed word order, auxiliary
words, etc.); in Turkish languages, each suffix attached to a root expresses a single
value of a grammatical category. For example, in Azerbaijan, the single form baj-
dyr-abil-dy-my (which has four grammatical morphemes) means “if he could make
see;” these four morphemes express possibility (can), obligation (make), past, and
interrogation. Thus, it is not possible to translate this word with a single English
word because the morphemes (which are grammatical and inside the word in
Azerbaijan) correspond to auxiliary verbs in English. (Note that it is possible to
build words in Azerbaijan that have more than 10 morphemes.)

Problems in computational morphology are related to the development of sys-
tems of analysis and automatic morphological synthesis. The development of such
modules still requires great effort because they are required in order to build great
root dictionaries (whose entries should number in the hundred thousands). In
general, there is a methodology for such development, and systems are currently
working for many different languages. The problem, however, is to design a
standard for such modules.

1.3.2.3 Syntax

The main task at the syntax level is to describe how words in a sentence are related
and what function each word performs—that is, to build the structure of the sen-
tence of a language.

Rules for building sentences are defined prescriptively for humans: correct forms
are given and deviations from those forms are banned. In other words, the preferred
usage for that language is clearly provided. In contrast, rules for the linguistic
processing of texts must be descriptive, establishing methods to define both pos-
sible and impossible phrases for a specific language.

Possible phrases for a specific language are grammatical sequences, that is, they
obey grammatical laws and do not require contextual knowledge; ungrammatical
phrases must be propagated to levels that consider context and reasoning in a wider
sense. Establishing methods that uniquely determine grammatical sequences during
the linguistic processing of text has been the goal of grammar formalisms in
computational linguistics. In that field of study, mainly two approaches have been
considered: dependencies and constituents. In dependencies, relationships are
marked with arrows and a word can have several words depending on it. In con-
stituents, relationships are represented as a binary tree.

6 1 Introduction

The study of computational syntax requires methods for both automatic analysis
and synthesis—that is, methods for constructing the phrase structure and methods
for generating the phrase based on its structure. Developing generators is an easier
task, where it is clear which algorithms are necessary for these systems. On the
contrary, developing syntactic analyzers (also called parsers) is still an open
problem, particularly for languages that do not have a fixed word order, like
Spanish. In English, the word order is fixed and, because of this, English-based
theories are not so easily adapted to other languages. We will present a parser in the
later sections.

1.3.2.4 Semantics

The purpose of semantics is to understand the phrase. But what does it mean to
understand? In order to understand, it is necessary to know the meaning of all
words and to interpret their syntactic relationships. Researchers partially agree that
the results of semantic analysis should be semantic networks, where all concepts
and their relationships are represented. Another possible representation is some-
thing very similar to semantic networks: conceptual graphs. Then, what we need to
know is how to transform a syntactic tree into a semantic network. That problem
still does not have a general solution.

Another task of semantics (or, more specifically, its subfields of lexicology and
lexicography) is to define word senses. This is a difficult task, whether done
manually or automatically. The results of such sense definitions can be seen in the
form of dictionaries. The main problem here is that there is always3 a vicious circle
in a word’s definition because all words are defined through other words. For
example, defining cock as “the male of a hen” and hen as “the female of a cock” will
not help someone wanting to learn what a cock and hen are. In this example, the
vicious circle is very short; usually, circles are larger—but they are avoidable.
Computational semantics can help by looking for a set of words through which
other words are defined. The set of words is called the defining vocabulary.
Computational semantics can also help in evaluating the quality of dictionaries—as
we all know, there are both good and bad dictionaries available.

An important application of semantic analysis is word sense disambiguation. For
example, a bank can be an institution, a place to sit, or a place where fish live. It is
possible to determine which of these meanings is meant by analyzing other words
used in context. For example, in I went to the bank to withdraw money, the words
withdraw and money show that this use refers to the institution; meanwhile, the
bank is very clean and I can see the fish refers to a bank where fish live. However,
in that bank is very good and efficient, it is impossible to automatically determine
the correct definition—without greater context, it cannot even be done manually.

3If there is no vicious circle, then some words are not defined [84].

1.3 Field of Study 7

In summary, a lot of research is still needed in the field of computational
semantics.

1.3.2.5 Pragmatics

It is often said that pragmatics is about relationships between a sentence and the
external world. A famous example is where you and I are eating together and I ask
you if I can have the salt; you say, “yes,” but keep eating. Surely, the response in
that example is formally correct because I can have the salt (that is the literal
meaning of the question), but my intention was to request the salt, and not to ask
about the possibility of my having it. In other words, we can say that pragmatics
studies the intentions of the author or speaker.

Pragmatics also studies sentences that are interesting in that they, themselves, are
the action. This type of sentence is called a performative, and a good example is the
sentence I promise. Note that I promise is precisely the action of to promise.

Because many difficulties are often found at the semantic level, it is usually
difficult to continue analysis into the next level (discourse), but it is also a level
worthy of consideration.

1.3.2.6 Discourse

Usually, we do not talk in isolated sentences. Rather, we most often communicate
with a string of sentences, which have certain associations with one another,
making them more than just sentences. Indeed, what we have then is a new entity
called a discourse.

A very important problem exists in the analysis of discourse: co-reference.
A certain type of co-reference is called anaphoric reference; it points to previous
references.

For example, the discourses “I saw a new house yesterday. Its kitchen was
exceptionally big” (its = house’s) and “John arrived. He was tired” (he = John)
contain co-reference relationships, which the computer needs to interpret in order to
build semantic representations.

Very good algorithms for co-reference resolutions exist and are correct up to
90% of the time; however, solving the other 10% is difficult.

1.3.3 Ambiguities in Natural Language

Ambiguity in a linguistic process occurs when several interpretations can be
admitted from the representation or when it is not possible to determine which
structure is correct. To disambiguate—that is, to select the most adequate meaning

8 1 Introduction

or structure from a known set of possibilities—several solution strategies are
required.

Related to syntax, there is ambiguity in the marking of parts of speech. This
ambiguity refers to the fact that one word can have several syntactic categories; for
example, on could be a preposition or an adverb, and can could be a verb or a noun
(tin can). Knowing the correct category for each word in a sentence aids in syntactic
disambiguation; however, disambiguation of this categorizing requires, in turn, a
certain kind of syntactic analysis.

Syntactic analysis deals with several forms of ambiguity. The main ambiguity
occurs when the syntactic information is not enough to make a decision of structural
assignment. Such ambiguity exists even for native speakers—that is, there are
different interpretations for a single phrase. For example, in John sees a man with a
telescope, two different interpretations are possible: John uses a telescope to see a
man or John sees a man who has a telescope.

Ambiguity also exists in predicative complements. For example, in I like to drink
wine with my friends, the phrase with my friends is a complement of to drink—not
of wine. A human speaker would not consider the possibility of grouping wine and
with my friends, but both are real possibilities to a computer.

As mentioned, lexical information can be helpful when solving many ambigu-
ities. In other cases, semantic proximity helps to disambiguate. For example, in both
I like to drink liquor with mint and I like to drink liquor with my friends, the
semantic class of the last noun helps solve the ambiguity—which part of the phrase
is linked to the prepositional phrases (PPs) with mint and with my friends? Note that
neither mint nor friends is ambiguous by itself; however, friends is semantically
closer to drink than to liquous, and mint is semantically closer to liquor than to
drink.

In this book, we focus mainly on syntactic analysis along with semantic features
(mainly, lexical semantics) in order to simultaneously solve both word and structure
ambiguities.

1.3 Field of Study 9

Chapter 2
First Approach: Sentence Analysis Using
Rewriting Rules

Some of the earliest useful user interaction systems involving sentence analysis
used rewriting rules. A famous example of one such system is SHRDLU, which
was created in the 1960s by Terry Winograd at the Massachusetts Institute of
Technology and was able to solve many of the problems that arise when conversing
with a computer.

SHRDLU is not an acronym. The name is based on the frequency with which
letters are used in the English language; in order, the most frequently used letters in
English are E, T, A, O, I, N, S, H, R, D, L, and U. SHRDLU was designed with
several rows of linotypes representing every letter in the English language; these
rows were arranged from the most frequently used letters to the least frequently
used ones—thus, the first row of linotypes spelled ETAOIN and the second row
spelled SHRDLU. Winograd chose this name inspired by a science fiction story
written by Fredric Brown1 in 1942. This story is about an intelligent linotype that
learns everything it types and then, eventually, attempts world domination.

SHRDLU’s purpose was to understand natural language. It allowed users to
dialogue with a computer (using a keyboard and screen) about a small selection of
objects, which were shown with a cathode ray tube (CRT) screen connected to a
PDP-6 computer. By restricting its domain to a very small selection of objects (a
micro-world), the program was able to support dialogues wherein the computer
seemed to understand anything requested by the user.

1http://www.sfsite.com/isfdb-bin/exact_author.cgi?Fredric_Brown

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_2

11

http://www.sfsite.com/isfdb-bin/exact_author.cgi%3fFredric_Brown

Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)

Person: GRASP THE PYRAMID.

Computer: I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING

AND PUT IT INTO THE BOX.

Computer: BY ''IT,'' I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN

THE ONE I AM HOLDING.

Computer: OK. (does it)

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: WHAT IS THE PYRAMID SUPPORTED BY?

Computer: THE BOX.

Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

Computer: FOUR OF THEM.

Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE WHICH I TOLD

YOU TO PICK UP?

Computer: YES, THE RED CUBE.

Person: IS IT SUPPORTED?

Computer: YES, BY THE TABLE.

Person: CAN THE TABLE PICK UP BLOCKS?

Computer: NO.

⋮

This dialogue shows very advanced features of natural language understanding:
micro-world knowledge, understanding of question and request, reference resolu-
tion (this, the one I told you to pick up), etc. These characteristics allow the user to
manipulate a computer using natural language.

The blocks micro-world (image taken from http://hci.stanford.edu/*winograd/shrdlu/)

12 2 First Approach: Sentence Analysis Using Rewriting Rules

http://hci.stanford.edu/%7ewinograd/shrdlu/

In general, human-machine communication in real world situations is carried as
dialogue consisting of a user’s requests for information or action and the com-
puter’s verbal- or action-based response, In this chapter, we present a system that
deals with this kind of interaction through a rewriting rules grammar; this system
has certain features—such as modification of an object’s properties, substitution
using wildcards, and in-line functions. Our goal is to produce one or more specific
computer instructions derived from the user’s requests. Grammar rules and special
context objects (called “scenes”) translate objects referenced within the request into
symbols. Then the instructions are executed by an external system. Examples are
given where the computer was requested to place 3-dimensional objects following
natural language instructions; the natural language used was Spanish.

Spatial object composition (SOC) refers to manipulating physical or virtual
prefabricated pieces (such as furniture parts) in order to assemble them into new
objects or scenes (such as office design). Many computer applications—such as
computer-aided design programs—deal with SOC. Objects that are to be placed in
the room are predefined (furniture, doors, windows, etc.) and can be selected from a
catalog and set in the virtual scene the user selects.

Obviously, SOC is not limited to house design. Since we live in a spatial world
of decomposable objects, many various applications exist. For example, suppose a
user wants to construct a bookcase. To do so, he or she first selects planks and then
fits those parts together until the desired bookcase is constructed. This is an
example of creating a new object.

By their nature, such systems are intended to be used by people without any
computer-related knowledge or skill. Thus, their interfaces must be intuitive and not
require any training or instruction. Natural language is, of course, a perfect means
of attaining such interaction and would allow users to interact with the computer
similarly to how they would interact with human workers. Indeed, human-computer
interaction in such systems is mostly imperative: the user gives a command and the
computer executes the requested task. These commands can be given in natural
language imperatives. This is the root of our motivation to develop a framework for
integration of natural language interfaces with SOC systems.

Within the proposed framework, it is possible to translate the input sentence
Could you put the chair next to the table please? into a sequence of commands
directly interpretable by the system’s engine: move(obj_chair1,getpos
(obj_table1)þþ), which means that the system must place obj_chair1
(the chair the user referred to) as near as possible to the position of obj_table1
(the table already existing in the scene).2 We do this by transforming the original
sentence step-by-step, as follows:

Could you put the chair next to the table, please?
Could you put the chair next to the table

2Here, obj_ stands for an object, getpos for a function that gets the position of the object, and
++ for the operation that changes a position to the nearest available.

2 First Approach: Sentence Analysis Using Rewriting Rules 13

put the chair next to the table
put obj_chair1 next to the table
put obj_chair1 next to obj_table1
put obj_chair1 nextto obj_table1
put obj_chair1 (getpos(obj_table1)++)
move(obj_chair1,(getpos(obj_table1)++))

An action-request system is an integrated system in which the user interacts with
a computer by posing questions or requesting actions to be performed within a
particular area or subject. The computer answers or performs the requested action.
This kind of system has a specific domain and a limited number of objects and
actions that can be performed on them. This limitation allows us to think of a
natural language interface where the requested actions and asked questions are
posed to the system in a free and natural way. The system should react to these
requests by completing (or answering) what was requested in a coherent way. In
this way, the user can acknowledge that the system understood his or her request.

Our system will be based on a rewriting rules grammar; however, our goal is
different from that of generative grammars, which are created to verify whether the
sentences of a particular language are well formed [175]. Because our goal is
different, we could say that we are not following the traditional concept of a
generative grammar. Our formalism is a rewriting rules grammar but is different
from other such grammars in that ours includes the ability to modify properties,
perform substitution by means of wildcards, and allows the use of in-line functions.
The purpose of this grammar is to reduce language expression to a logic form (a set
of instructions) by applying the rewriting rules directly to users’ expressions.

To better show how our system works, we assume a task where geometric
objects—such as spheres, toruses, planes, and other geometric figures—can be
combined on a three-dimensional canvas. This graphical task was chosen because it
allows the representation of objects to be shared between humans and computers
since it is easy to visualize. It is important to make the context for the user and
system evident; without this particular feature, the search for referenced objects
would not be possible, as explained later.

Additionally, a visual task like the one proposed allows us to create more
complex objects through constructive solid geometry (CSG), using operators like
union, intersection, difference, and combination (merge) [94]. In this way, new
objects can be created. All objects can have properties (such as texture, reflectivity,
refraction index, etc.) that can be modified through natural language.

As discussed in the introduction to this chapter, one of the first systems to handle
objects through natural language was SHRDLU. Though our system might seem
similar to SHRDLU, our goal is not to recreate it but, rather, to create a system that
can handle both tasks that involve objects in a spatial environment and generic
instructions in natural language.

An example of the kind of expression that users can pose to the system is ¿Me
puedes poner el tercero junto al toroide? (Can you put the third one next to the
torus?). After applying seven rewriting rules, which we will describe in detail later
(see Sect. 2.6), we obtain the following instructions:

14 2 First Approach: Sentence Analysis Using Rewriting Rules

move(objcat021_03, getpos(obj002)); sos.push(obj003); oos.-
push(obj002).

The instruction move(objcat021_03) will be performed by an external
function that moves the requested object. sos.push(obj003) and oos.push
(obj002) are in-line functions used for handling the object and the context.
These functions will be detailed in Sect. 2.4.2.6. In the following sections we will
present related work, details of the grammar, its mechanism for object and context
handling, and, finally, processing examples for four sentences.

2.1 Related Work

Historically, the first systems with natural language interfaces (NLIs) were devel-
oped on an ad hoc basis for specific applications. Some examples include:

• DEACON (Direct English Access Control), which allowed computers to answer
questions [62];

• SHRDLU, which moved virtual geometric blocks using verbal commands from
human users [201];

• LUNAR, which allowed human users to query a lunar rocks database [203]; and
• LADDER, which answered questions in the English language about naval

logistics data [100].

Since the world model was interwoven into these programs’ operations,
changing their application domains would be an expensive and complicated
process.

Later, other systems with NLIs, designed with a broader scope of application,
were created. These were mainly oriented to database information retrieval—for
example, INTELLECT [99], TEAM [97], JANUS [200], and SQUIRREL [9].

Some recently developed systems handle natural language imperatives for
multiple purposes. For example, KAIRAI (which means “puppet”) has several
virtual robots (avatars) that can move forward, turn, or push an object [5, 181]. By
manipulating these robots with commands, the user can move and place objects in
the virtual world. (KAIRAI is developed for use only with the Japanese language.)
A similar system, AnimAL, uses an natural language interface (NLI) to control the
movements of an avatar in a virtual environment [66, 67, 197]. Di Eugenio, who
helped design AnimAL [66, 67], treated the problem of understanding phrases such
as do x to do y as cut a square in half to make two triangles.

We are not aware, however, of any recent works specifically devoted to pro-
viding an NLI framework to SOC systems in general.

2 First Approach: Sentence Analysis Using Rewriting Rules 15

2.2 Characteristics of SOC Systems

SOC systems, in general, restrict the use of natural language in a number of ways.
In our framework, we rely on these restrictions to simplify the corresponding
mechanisms. Specifically, SOC systems have the following characteristics relevant
to designing an NLI:

1. They have predefined basic objects that can be used to construct new ones,
which allows us to begin with a reduced set of object names that must be
recognized.

2. Objects have properties by which they can be referred, e.g., red plank as
opposed to green plank. Properties let us keep our set of object names small.

3. There is a visual-spatial representation common to the user and computer.
With this, the user is aware that the only existing objects are those that can be
observed in the catalogs and current scene. Only observable objects are relevant
to the composition task.

4. Objects have a limited number of actions that can be applied to them. These
can be mapped to corresponding computer instructions.

The user and computer manipulate a finite set of objects, which have properties and
actions attached to them. To design a suitable NLI, we must find a mechanism that
relates natural language sentences to corresponding computer instructions. This relation
is implemented through the direct translation grammar presented in the next section.

2.3 Direct Translation Grammar

Since Chomsky’s transformational model first appeared in 1957 [50], a number of
models within the generative paradigm have been suggested, such as case gram-
mars [76], functional grammars [106], and, recently, phrase structure grammars
[83]. Traditionally, generative grammars are designed to model the whole set of
sentences that a native speaker of a natural language considers acceptable [161].
Generative linguistics views language as a mathematical object and builds theories
similar to the sets of axioms and inference rules found in mathematics. A sentence
is grammatical if there is some derivation that demonstrates that its structure cor-
responds to the given set of rules, much as a proof demonstrates the correctness of a
mathematical proposition [202].

Phrase structure grammars (PSGs), of which HPSG (Head-driven Phrase
Structure Grammar) [175] is the most widely known, follow this generative para-
digm. To analyze a sentence, that sentence is first hierarchically structured to form
phrase-structure trees. PSGs are used to characterize these phrase-structure trees and
consist of a set of non-terminal symbols (phrase-structure categories such as noun,
verb, determiner, preposition, noun phrase, verbal phrase, sentence, etc.), a set of
terminal symbols (lexical items such as buy, John, eaten, in, the, etc.), and a set of

16 2 First Approach: Sentence Analysis Using Rewriting Rules

rules that relate a non-terminal symbol with a string of either terminal or
non-terminal symbols [105]. To analyze a sentence, suitable rules can be applied to
the terminal symbol string until the non-terminal symbol S is reached.

The phrase-structure tree obtained during this process can be analyzed later to
generate computer instructions equivalent to the input sentence. However, this
process can be done directly if we change the purpose of our grammar such that the
grammar rules are used to directly reach computer instructions—instead of using
the grammar rules to break down natural language sentences into parts of speech
(phrase structures) and then converting the structure of those sentences to computer
instructions. Thus, our focus is different from that of generative grammars in that
we are not interested in determining if a sentence is well formed. In addition, we are
not interested in modeling the whole language but only the small subset that is
relevant to the user’s current task.

The grammar we propose for translating natural language sentences into com-
puter instructions is a rewriting rules grammar with additional characteristics
included in order to handle context and object references. We call it the “direct
translation grammar” (DTG).

Within DTG, lexical and morphological treatments are included, and the cate-
gories used refer to both syntactic and semantic concepts of the sentences.
Therefore, we can consider DTG a semantic grammar [32]. In semantic grammars,
the choice of categories is based on the semantics of the world and the intended
application’s domain as well as on regularities of the language. Although they are
not currently widely used, semantic grammars have several advantages—such as
efficiency, habitability (in the sense of Watt [196]), handling of discourse phe-
nomena, and the fact that they are self-explanatory. Such grammars allow the use of
semantic restrictions to reduce the number of alternative interpretations that can be
considered at a certain moment, in contrast to highly modular systems, which
fragment the interpretation process.

2.4 Definition

We define a direct translation grammar as an ordered list of rewriting rules that have
the form a ! b, where a and b are strings consisting of one or more of the
following elements, in any order:

1. natural language words,
2. tags with properties,
3. wildcards,
4. names of external procedures,
5. symbolic references to objects, and
6. embedded functions for context control and object reference handling.

Two or more rules with the same a are not allowed.

2.3 Direct Translation Grammar 17

2.4.1 Rule Order

Rule processing is ordered. The rules for a, consisting only of natural language
words, are first considered—beginning with those rules that have a greater number
of words than the others. If no rule can be applied, the rest of the rules are
considered according to the number of elements that compose a, with rules con-
taining the most being considered first. Rules with the most elements are considered
first because elements such as “the red table” must be considered before elements
such as “the table” can be. Indeed, a longer string of words means a more specific
reference to any given object.

Each time a new rule is applied, rule processing restarts from the top of the list in
the order just explained. The process finishes when no rule can be applied; the
resulting string at that point is the output of the program. The translation process is
considered successful if the resulting string consists only of symbolic references to
objects and names of external procedures. To avoid infinite cycling, the process is
aborted if some rule is applied more than once and its application results in a
previously obtained string; in such a case, translation is considered unsuccessful.

2.4.2 Rule Components

In this section, we explain each element that is used in the rules listed in Sect. 2.4.

2.4.2.1 Natural Language Words

Initially, an input sentence consists only of words. Put the chair next to the table is
a sentence composed of seven words; in the sub-sections that follow, that sentence
will be translated into a sequence of external procedures. Words are letter strings
and do not have any properties.

2.4.2.2 Tags with Properties

Tags with properties have the form

d p1; p2; . . .; pnf g;

where d is the name of the tag and p1, p2, …, pn are its properties in the form
name:value, e.g., put{C:V, T:IMP}. In Table 2.1, we present the most
common properties and their possible values.

18 2 First Approach: Sentence Analysis Using Rewriting Rules

This construction resembles traditional feature structures. However, feature
structures, as defined by Kay in [106], undergo inheritance mechanisms and uni-
fication. Our tags are not related to such mechanisms.

The following rule converts the Spanish word pon “putimperative” into a tag:

pon --> poner{C:V, T:IMP, S:2S, A:1S}.

This rule substitutes every occurrence of pon in the input string by the tag
poner{C:V, T:IMP, S:2S, O:1S} with the following properties: category
being verb, tense being imperative, subject being of second person singular, (im-
plicit) dative object being of first person singular.

2.4.2.3 Wildcards

Wildcards are defined by a label that may optionally be followed by a set of
properties (as defined in Sect. 2.4.2.2) contained in square brackets:

u[p1, p2, …, pn].

Wildcards allow rules to be generalized in order to avoid redundant rule repe-
titions; they also make it possible to apply a rule over a set of tags that share one or
more properties. The scope of a wildcard is limited to its rule.

A wildcard u matches a tag d if d has all the properties listed for u at the same
values. For example, both wildcards A[C:V] and B[T:IMP, S2S] match the
tag poner{C:V, T:IMP, S:2S, O:1S}, but C[C:V, T:PRES] does not
because tag poner{C:V, T:IMP, S:2S, O:1S} does not have the property
Tense with value Present.

Table 2.1 Common properties and the values used for them in the in-text examples

Name Property Possible values

C Category N (noun), V (verb), ADJ (adjective), ADV (adverb), PRO
(pronoun), DEFART (definite article), INDART (indefinite article),
OBJ (object), POS (position)

G Gender M (masculine), F (feminine), N (neutral)

N Number S (singular), P (plural)

T Verbal tense PRES (present), INF (infinitive), IMP (imperative), SUBJ
(subjunctive)

S Subject form For verbs: the number and gender of the subject (this is
morphologically relevant for Spanish)

O Object form For verbs: the number and gender of the object (morphologically
relevant for Spanish)

A Dative
object form

For verbs: the number and gender of the indirect (dative) object
(morphologically relevant for Spanish)

Q Quantity V, L, R, U, M (very little, little, regular, much/many, very much/
many)

2.4 Definition 19

When used in the right-hand side of the rule, a wildcard can be used to modify
properties by specifying another value for the property that it originally matched.
For example, consider the collocation podrías juntarlo (“could you put it together”)
which is a polite euphemism for the imperative júntalo (“put it together”). To
transform the collocation into an imperative, we first apply the following rules:

podr�ias��[poder C:V;T:SUBJ; S:2Sf g ð2:1Þ

juntarlo��[juntar C:V;T:INF;O:3SMf g: ð2:2Þ

We then use a wildcard to transform any such construction into an imperative;
note the use of a wildcard to change the property T from INF to IMP:

poder C:V;T:SUBJ; S:2Sf gA C:V;T:INF½ � � �[A T:IMP½ �; ð2:3Þ

which results in the following output string:

juntar C:V,T:IMP;O:3SMf g: ð2:4Þ

Due to the wildcards, rule (3) works for any polite expression in the form
podrías (“could you”) + infinitive verb.

Usually, properties found within brackets are accessed for the object whose
name appears immediately to the left of those brackets. However, access to prop-
erties for other objects outside the brackets is possible through the use of the dot
notation defined as follows. Consider the following string:

juntar{C:V,T:IMP,O:3SM} un poco más
“put it together” “a bit more”

the collocation un poco más (“a bit more”) can be transformed into a quantity
adverb by the rule

un pocom�as��[x C:ADV, Q:Lf g; ð2:5Þ

which then can be transformed into the verb’s property by the rule:

A C:V½ � B C:ADV;Q½ � � �[A Q:B:Q½ �; ð2:6Þ

which means, “if a verb A is followed by an adverb B with some quantity, then add
to this verb the property quantity with the same value that it has in B.” The latter
construction is expressed in (2.6) as B.Q standing for the value of Q in B.

If a property is specified for a wildcard that has no value, then—to match the
wildcard—the property must be present, regardless of its value.

Note that, because of their ability to replace other properties, wildcards are not
reduced for the unification of properties [111].

20 2 First Approach: Sentence Analysis Using Rewriting Rules

2.4.2.4 External Procedures

External procedures that include arguments are formed by a procedure name fol-
lowed by an argument list:

procedure_name (arg1, arg2, …, argn),

where n is a natural number that may be 0, in which case the procedure has no
arguments. Unlike functions, procedures do not return any value. They are executed
by the SOC system’s engine after the successful application of rules over an
utterance. For example,

move(A,B)

is an external procedure that places object A in position B.

2.4.2.5 Symbolic References to Objects

A scene is an object composed of other objects. In turn, these other objects can be
composed of still other objects. For example, catalogs are objects that are composed
of elements that are also objects.

Such compositionality permits us to establish nested contexts in order to resolve
references to objects based on the scene on which the user’s attention is focused at
any given moment. Each of the objects inside a scene has properties that can be
accessed by our conversion rules by means of tags.

In contrast to grammatical properties, which are described exclusively within our
conversion rules, object properties belong to the SOC system and can vary. These
properties can be, for example, position, size, components, color, material, density,
alterability, shape, and any set of actions that can be applied to the given object.

Labels that begin with obj_ denote symbolic references to objects. For
example, obj_box231 refers to a particular box that appears in a particular scene.

2.4.2.6 Embedded Functions for Context and Object Reference
Handling

Embedded functions, which are a means to provide object reference handling, are
discussed in the next section.

2.4 Definition 21

2.5 Object Reference and Context Management

For each noun, pronoun, or noun phrase, we need to find a unique symbolic
reference to the particular object meant by the user. However, the same expression
(as strings of letters) can be used to refer to different particular objects, depending
on the context. To transform an expression into a symbolic reference, we should
first determine the context for it [158].

To provide context handling, we consider context to be an object (called a
“scene object”) that contains other objects. Similarly to SQUIRREL [9], in our
model, context and object reference are managed by stacks. However, we use three
stacks instead of one: subject-object stack (sos), object-object stack (oos), and
context (or scene) stack (ss).

A context change occurs when the user shifts his or her attention from the object
itself to its components, or vice versa. For example, the user can consider a catalog
or objects from this catalog or parts of specific objects from this catalog. Here, we
see that catalog objects belong to one context (the catalog), while objects in it
belong to another context. Each of these contexts is called a scene.

2.5.1 Embedded Functions for Context and Object
Reference Management

Besides standard operations over stacks (push and pop), we can search for objects
by property in a given stack (sos, oos, or ss). Embedded functions for objects and
context management are listed below. These functions are executed in-line, that is,
they are evaluated immediately after application of the rule that generated them in
the string and before applying another rule.

Syntactically, embedded functions are denoted by the function name followed by
the argument list, which may be empty:

object function_name(arg1, arg2, …, argn),

where n is a natural number (possibly zero). A function must return an object.
Table 2.2 shows the embedded functions and procedures used in our formalism.

Using the three stacks, we can define the procedure for searching for the object
referenced by the user as follows:

search object in sos

if it is not found: search object in oos,

P1: if it is not found: goto SearchSS

SearchSS:

search object in ss,

if it is not found: until it is found do:

ss.pop();

repeat SearchSS.

22 2 First Approach: Sentence Analysis Using Rewriting Rules

2.5.2 Conditional Markers

A conditional marker is a function used for making decisions during rule pro-
cessing. Its format is

if <condition> then <object1> else <object2> end.

This in-line function returns object1 if the condition is met; it returns object2,
otherwise. For example, the procedure SearchSS (above) can be implemented as
follows:

A[C:ARTDET] B[C:SUST] ->

if sos.last (name = A.name) then sos.last (name = A.name) else

if oos.last (name = A.name) then oos.last (name = A.name) else

if ss.last (name = A.name) then ss.last (name = A.name)

else ss.pop () A B end

As we can see from this rule, recursion is expressed by rewriting the left-hand
side of the rule as the right-hand side, which—in this rule—is expressed as A B in
the last line.

2.6 Processing of Sample Queries

Here, we present a rule set that is able to process several utterances in the Spanish
language. These utterances (abridged “utt”) are inspired by dialogues presented in
[157].

utt.1: ¿Me puedes mostrar el catálogo? “Can you show me the catalog?”
utt.2: ¿Me puedes mostrar el catálogo de objetos formados por esferas? “Can you

show me the catalog of objects made of spheres?”

Table 2.2 Embedded functions and procedures

Function Description

push (s, x) Pushes the object x onto the stack s

object pop (s) Pops and returns the top object from the stack s

object last (s) Returns the object from the top of the stack s without popping it

object last (s,
p = v)

Searches for the first object with the value v of the property p, starting
from the top of the stack s. If no object is found, it returns NIL

2.5 Object Reference and Context Management 23

utt.3: A ver, ¿cuál es la diferencia entre el tercero y el cuarto? “Let me see, what
is the difference between the third and the fourth one?”

utt.4: ¿Me puedes poner el tercero junto al toroide? “Can you put the third one
next to the torus for me?”

2.6.1 Rule Set

Here is the set of rules used to analyze the fragment of utterances presented above.
Rule 1 synthesizes procedure P1 for referenced object searching.

24 2 First Approach: Sentence Analysis Using Rewriting Rules

2.6.2 Rules in Action

Now, we can process the utterances presented at the beginning of this section. The
number at the left indicates the number of the rule used between one step and the
next.

utt1: ¿Me puedes mostrar el catálogo? “Can you show me the catalog?”

utt2: ¿Me puedes mostrar el catálogo de objetos formados por esferas? “Can
you show me the catalog of objects made of spheres?”

utt3: A ver, ¿Cuál es la diferencia entre el tercero y el cuarto? “Let me see, what
is the difference between the third and the fourth one?”

2.6 Processing of Sample Queries 25

utt4: ¿Me puedes poner el tercer junto al toroide? “Can you put the third one
next to the torus for me?”

In the last line, the object is copied when it is moved from one context to
another.

2.7 Conclusions

In this chapter, we have presented a system that can derive one or more specific
computer instructions from a request by the end user. Objects referenced within this
request are translated to symbols by a rewriting rules grammar with property
modification, wildcard substitution, in-line functions, and the use of special context
objects called “scenes.” Instructions are then executed by an external system.

The system can be used for computer tasks that meet the following conditions:
the user and the computer share common contexts, which are visualized, and the
application domain is limited. We have presented examples for the task of placing
objects in a three-dimensional canvas. This work can be extended to cover not only
abstract geometric objects, but also world objects within a modeled world. In
addition, by using special functions, this system can be enhanced to allow new rules
to be created by previous rules, thus automating dynamic grammar extension
through dialogue.

26 2 First Approach: Sentence Analysis Using Rewriting Rules

SOC systems have characteristics that allow them to directly translate natural
language sentences into computer instructions. In an SOC system, the language
used is imperative; objects are previously defined and can be combined to create
new ones; objects have properties; objects are always present; a spatial, common
representation exists visually; and a limited number of actions exist over these
objects.

Given these characteristics, we have shown how such translations can be done
with the DTG. We have presented both a framework based on that grammar and a
mechanism for object reference and context management. The problem of resolving
object references is solved within this framework through a context stacks mech-
anism and conditionals embedded in the DTG’s rules.

This system can be extended to allow for new rules to be created out of existing
ones. In this way, it can be dynamically extended through dialogue. The devel-
opment of this idea is a topic for future work.

2.7 Conclusions 27

Chapter 3
Second Approach: Constituent Grammars

In this chapter, we tackle sentence analysis using the constituent approach. This
approach has two problems. The first is the difficulty of extracting information
about characters and actions from factual reports such as news articles, web pages,
and circumscribed stories. To construct the structure of a sentence, there should be
interaction with previously acquired knowledge. In turn, such knowledge should be
expressed in a structured way so that simple inferences may be used when nec-
essary. We will deal with this problem in detail in Sect. 3.1.

The second problem is the difficulty of obtaining semantic indices from several
sentences. Currently, widely known formalisms such as HPSG [175] do not con-
sider this problem by themselves. We will discuss that in Sect. 3.2.

3.1 Representation Using Typed Feature Structures

We propose extracting information about characters and actions from a
self-contained story, such as news reports. Such information is stored in structures
called “situations.” We will show how these situations can be constructed by
unifying the constituents of sentence analysis with knowledge previously stored in
typed feature structures. These situations can in turn be used in the form of
knowledge. This combination of situations constructs a supra-structure that repre-
sents the understanding of a factual report and that can be used to answer questions
about facts and their participants.

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_3

29

3.1.1 Introduction

Factual reports are texts in which facts are described in an ordered manner; each
participant of these facts is circumscribed within the text. These characteristics allow
us to apply techniques for dealing knowledge of practical complexity. By “practical
complexity,” we mean mid-term feasible applications. For example, understanding a
story can be undertaken in several ways, and one element that must be taken into
account is the amount of previously acquired knowledge necessary for under-
standing the story. Minsky [137] includes an example of this type of understanding:

There was once a Wolf who saw a Lamb drinking at a river and wanted an excuse to eat it.
For that purpose, even though he himself was upstream, he accused the Lamb of stirring up
the water and keeping him from drinking.

Minsky argues that the key to understanding this text is to realize:

1. The lamb’s stirring the water produces mud,
2. If water has mud, it cannot be drunk,
3. If the wolf is upstream, the fact that the lamb stirs the water does not affect the

wolf, and so
4. The wolf is lying.

However, these inferences require quite a large structured knowledge system for
a machine, and the construction of such a general knowledge system is not our goal
at this point. First, we need to solve tasks at a lower level:

1. Identification of characters, places, and objects in the story.
2. Identification of the described actions.
3. Identification of actions that are not done but are mentioned within the story.
4. Formulation of the arguments for each action. These arguments can be seen as

answers to “wh” questions: who, where, what, when, why, and whom. Each
action with its arguments is a structure that we call “situation.”

5. Establishment of the temporal sequence of situations corresponding to the
story’s flow.

Following this approach, for the passage of the wolf and the lamb, we find that:

1. The characters are the Wolf and the Lamb.
2. The places are the River and Upstream.
3. The situations are:

• The Wolf sees the Lamb.
• The Lamb drinks.
• The Lamb is in the River.
• The Wolf wants (to eat the Lamb).
• The Wolf is in Upstream.
• The Wolf accuses the Lamb of (stirring the Water).
• The lamb does not let (the Wolf drink the Water).

30 3 Second Approach: Constituent Grammars

Each string of words in parenthesis is also a situation, but note that those
situations do not necessarily occur. In this case, the Wolf’s eating the Lamb does
not occur (nor do we know that it will occur). Similarly, the other two parenthetical
situations—the Lamb’s stirring the Water and the Lamb’s not letting the Wolf drink
the Water—do not actually occur in this story.

(Capitalized words point to particular instances of characters, places, and objects
in this particular story.)

3.1.2 Representing Situations with Typed Feature
Structures

In order to construct and represent situations, we propose use of typed feature
structures (TFSs). This formalism permits us to cover every level of linguistic
description [43]: basic sentence type (PoS) construction, intermediate sentence type
construction (e.g., structures for specifying individuals), situations with comple-
ments construction, and, finally, story structure construction.

We can represent a situation as a feature structure, as shown in Fig. 3.1. This
representation is an attribute value matrix (AVM). We represent attributes in
uppercase letters and values in lowercase ones.

For instance, sit_thing indicates that the values for WHAT and WHY can be a
situation and thing. TIME has a numeric value that corresponds to the sequence in
which situations are mentioned. OCCURS is the feature that indicates whether a
situation occurs within the story.

Fig. 3.1 AVM (attribute
value matrix) for the type
situation

3.1 Representation Using Typed Feature Structures 31

The fact that feature structures are typed permits us to handle object hierarchies,
such as stating that a man is a human, that humans are individuals, and that,
therefore, humans can be participants in an action as values for WHO and/or WHOM.

3.1.2.1 Interaction Between Syntax and Knowledge

Before we explain how situations are constructed, we will discuss briefly the
interaction between syntax and knowledge.

Traditionally, TFSs have been used mostly for syntax analysis, whereas
frame-based systems are mostly used to handle knowledge. Examples of the use of
these formalisms are HPSG [175], a well-known formalism that combines the use
of generative grammars with the benefits of TFS, and NEOCLASSIC [153], a
frame-based knowledge representation system.

We believe that in order to successfully construct a situation, these two tradi-
tionally separate stages need to be blended so that interaction between them is
possible. The formalism we choose to represent both syntax and knowledge is TFS,
because it shares characteristics with frame-based systems:

1. Both frames and TFS are organized in hierarchies.
2. Frames are composed out of slots (equivalent to feature structures’ attributes) for

which fillers (equivalent to feature structures’ values or references to other
frame-feature structures) must be specified or computed [144].

3. Both frames and TFS are declarative.
4. TFS’s logic is similar to the logic used by frames: description logics.

Description logics are part of first-order logics and are used by frame-based
systems for reasoning. In description logics, it is possible to construct a hierarchy of
concepts from atomic concepts and attributes, usually called “roles” [145]. The only
difference between the feature logics used by TFS and the description logics used
by frame-based systems is that feature logics’ attributes are single-valued, while
description logics’ attributes are multi-valued. This may seem like a slight differ-
ence, but it could be the difference between decidable and undecidable reasoning
problems [146].

3.1.2.2 Construction of Situations

The linguistic knowledge building (LKB) system is a programming environment
for TFS. LKB follows the formalism introduced by Shiber [180].

Although LKB has been most extensively tested with grammars based on HPSG
[175] (e.g., ERG from the LinGO project [60]), LKB is intended to be
framework-independent [59].

LKB is used mostly for the lexical parsing of sentences; however, it can also be
used for storing and interacting with knowledge.

32 3 Second Approach: Constituent Grammars

Currently, to deal with a semantic representation, LKB makes use of a grammar
that has special markers (e.g., LISZT and HANDEL) to build a minimal recursion
semantics (MRS) [63] representation. MRS produces a flat logical representation
intended mainly for handling transfer and quantifier phenomena. MRS output is
mainly suited for translation and has been successfully used in the Verbmobil
project [42]. However, for our purposes, MRS drops specific syntactic information
that would allow us to identify the grammatical role that each constituent plays, thus
making it difficult to determine if a constituent fills the WHO or the WHOM slot,
for example.

As we proposed in Sect. 3.1, we will use TFS to construct a situation. The
construction of situations corresponds to each sentence.

To handle situations as TFS in LKB, we establish the types shown in Fig. 3.2,
along with their corresponding hierarchy, using standard LKB notation for lists,
TFS, and unification (i.e., &). We assume that types enclosed in asterisks are
predefined, with *top* being the most general type available in the type hierarchy.

To illustrate how situations are constructed, we will use the Wolf and Lamb
example from [137]. A fragment of that story is reproduced here for your
convenience:

There was once a Wolf who saw a Lamb drinking at a river and wanted an excuse to eat it.
For that purpose, even though he himself was upstream, he accused the Lamb of stirring up
the water and keeping him from drinking.

The example we present illustrates the construction of situations. Therefore,
syntax and other phenomena—with their inherent complexity—are not covered
here. Syntax analysis is addressed in this example as pattern matching. For larger
scale systems, formalisms such as HPSG can be used within this approach since
such formalisms are capable of handling TFS.

To construct a situation, we assume that the system previously obtained infor-
mation about the possible roles that each entity can have. For example, “River” and
“Upstream” are places, “Wolf” and “Lamb” are individuals, and “Water” is an
object (see Fig. 3.3).

Entities can be formed by more than one word. We do not know a priori any of
the possible properties these entities may have (e.g., big Lamb, a Lamb named
Dolly, etc.). These properties will be filled in as the story is analyzed.

Knowledge of whether or not a situation occurs is important to understanding the
flow of the story. In the example of the Wolf and the Lamb, the situation of the
Lamb stirring the Water and thus keeping the Wolf from drinking does not really
occur; this is a situation mentioned as a consequence of the Wolf wanting an excuse
to do something. Thus, to define whether a situation occurs, we consider that when
a situation is subordinated by other situation, the subordinated situation does not
occur.

We will analyze the fragment of the story presented above word-by-word fol-
lowing a specific order. Note that feature logic is declarative; thus, this analysis
could be done in any order and still yield the same results.

3.1 Representation Using Typed Feature Structures 33

n := *top*.

occ := *boolean*.

occ_if := occ &

 [IF situation].

whatsit := situation &

 [WHAT sit_thing].

whysit := situation &

 [WHY sit_thing].

sit_thing := situation

& thing.

tpi := *top* &

 [ORTH string].

thing := tpi.

place := tpi.

individual := tpi.

action := tpi.

situation := *top* &

 [ACT action,

 TIME n,

 WHO individual,

 WHERE place,

 WITH thing,

 NEG *boolean*,

 WHOM individual,

 OCCURS occ].

story := *top* &

 [INDIVIDUALS

list,

 PLACES *list*,

 OBJECTS *list*,

 ARGS *list*].

Fig. 3.2 LKB types for
representing situations and
stories

#wolf [individual]

#lamb [individual]

#river [place]

#upstream [place]

#water [object]

Fig. 3.3 Entities consulted
from the lexicon

34 3 Second Approach: Constituent Grammars

We will begin by analyzing the first sentence (3.1):

There was once a wolf who saw a lamb drinking at a river and wanted an excuse to eat it.

ð3:1Þ
The first words of (3.2) match a pattern that introduces the wolf as an indi-

vidual: there + was + once + a + individual. This pattern then leads to
the representation shown in (3.3).

there was once a Wolf ð3:2Þ

ð3:3Þ

This structure can be combined with a corresponding structure in the knowledge
base (implemented as TFS) to find the possible properties of wolves in general.

To avoid rewriting the feature structures we identify in this analysis, we instead
write a reference to those structures using LKB notation, in which labels begin with #.

#wolf [individual

NAME wolf

 ORTH "wolf"].

ð3:4Þ

We can then write the sentence being analyzed as (3.5):

#wolf who saw a Lamb drinking at a river ð3:5Þ
A feature structure of type individual followed by a lexeme who, makes who

absorb the individual. The rule doing this is (3.6):

individual_who := individual &

 [NAME #1,

ORTH #2,

ARGS < individual & [NAME #1,

ORTH #2],

lexeme_who]>].

ð3:6Þ

The sentence now becomes

#wolf saw a Lamb drinking at a river. ð3:7Þ

[individual

 NAME wolf

 ORTH "wolf"]

3.1 Representation Using Typed Feature Structures 35

We then turn our attention to Lamb drinking at a river. This is another situation,
but first we must add the lamb individual to our story.

#lamb [individual

ORTH "lamb"].

NAME lamb ð3:8Þ

a Lamb drinking at a river is then converted into

#lamb drinking at a river. ð3:9Þ
The previously defined lexicon (see Fig. 5.3) provides the information that

river can be a place. However, river is not restricted to only one category; in
case several choices are available, unification will help select the correct one(s).
river is then considered as

#river [place

 NAME river

 ORTH "river"]

ð3:10Þ

We do not show here the details of a reference resolution mechanism that could
establish the difference between “a river” and “the river” according to previously
introduced entities. Instead, for this work, we assume that each time an entity is
mentioned, its feature structure equivalent is introduced. When the supra-structure
story is formed, two feature structures (FSs) corresponding to the same entity will
unify. If two FSs of the same kind have conflicting particular characteristics (such
as, red river and blue river), unification will fail and then two different entities will
be considered.

#river can be later unified with a knowledge base so that the system is able to
infer that #river is made of #water. For simplicity in this example, we assume that
this kind of information has not been implemented.

Returning to the analysis of (3.9), we can verify from our lexicon that
drinking unifies with the type action (verb). We will call the feature structure for
this particular action #drink (3.11), thus obtaining (3.12).

#drink [action

 NAME drink

 TENSE gerund

 ORTH "drinking"]

ð3:11Þ

#lamb #drink at #river ð3:12Þ

36 3 Second Approach: Constituent Grammars

Now we can apply the FS rule that creates a situation when the sequence:
individual, action, “at,” place is found:

[situation

 ACT #2

 WHAT

 WHERE #3

 ARGS <#1, #2, lexeme_at, #3 >]

 WHO #1
ð3:13Þ

Exceptions to rule (3.13) can be handled as additional constraint rules. Applying
this rule, we have situation #s2:

#s2 [situation

 ACT drink

 WHAT

 WHERE #river]

who #lamb ð3:14Þ

We return to the main sentence (3.7), substituting the last situation we have just
found:

#wolf saw #s2. ð3:15Þ
This then forms another situation:

#s1 [situation

ACT see

 WHAT #s2]

ð3:16Þ

Finally, the first sentence is a situation:

#s1 ð3:17Þ
#s1 has a subordinated situation, #s2. The rest of the story fragment of the

Wolf and the Lamb can be analyzed in a similar way. The entities consulted from
the lexicon are shown in Fig. 3.2 (LKB types for representing situations and stories)
and the story structure obtained after this analysis is shown in Fig. 3.4 (Feature
structure for the story fragment of the Wolf and the Lamb).

3.1 Representation Using Typed Feature Structures 37

3.1.3 Minsky’s Frames and Situations

Minsky argues in [137] that frames are like a network of nodes and relationships:
the top levels of a frame are fixed and represent things that are always true about a
supposed situation, while lower levels have terminals (slots) that must be filled by
specific instances or data. Conditions specified by markers require that a slot
assignation is a person, object, or pointer to a sub-frame of a certain type.

story & [
INDIVIDUALS <#wolf & wolf1, #lamb & lamb1>,

PLACES <#river & river1, #upstream &
 upstream1>,

OBJECTS <#water & water1>,

SITUATIONS <#S1 [situation
 TIME 1
 ACT see
 WHO #wolf
 WHAT #s2
 OCC yes],

#S2 [situation
 TIME 1
 ACT drink
 WHO #lamb
 WHAT (liquid)
 WHERE #c
 OCC yes],

 #s3 [situation
 TIME 2
 ACT want
 WHO #wolf
 WHAT #s4
 OCC yes],

#s4 [situation
 TIME 2
 ACT eat
 WHO #wolf
 WHAT #lamb
 OCC no],

 #s5 [situation
 TIME 3
 ACT is
 WHO #wolf
 WHERE #upstream
 OCC yes],

#s6 [situation
 TIME 4
 ACT accuse
 WHO #wolf
 WHAT #s8
 WHY #s3
 OCC yes],

 #s7 [situation
 TIME 4
 ACT accuse
 WHO #wolf
 WHAT #s9
 WHY #s3
 OCC yes],

#s8 [situation
 TIME 4
 ACT stir
 WHO #lamb
 WHAT #water
 OCC no],

 #s9 [situation
 TIME 4
 ACT let
 WHO #lamb
 WHAT #s10
 NEG true
 OCC no],

#s10 [situation
 TIME 4
 ACT drink
 WHO #wolf
 WHAT (liquid)
 OCC no] >]

Fig. 3.4 Feature structure for the story fragment of the Wolf and the Lamb

38 3 Second Approach: Constituent Grammars

A terminal that has acquired a feminine person marker will reject pronominal
masculine assignations. In this sense, Minsky’s frames are very similar to a feature
structure. Each frame could be regarded as a feature structure, with slots being the
values of the attributes in the attribute-value structure. However, there is an
important difference among Minsky’s frames and our view of situation
representation.

Minsky talks about frames as data structure to represent a stereotyped situation,
like being in a special kind of room or going to a child’s birthday party. Minsky
considers that frames must contain information about how they must be used, about
expectations, and about what to do if expectations are not met. In contrast, we
consider a situation as a simple transitory unit of the state of things within a story.
Consider the sentence: The man wants to dance with Mary. This sentence contains
two situations: (Situation 1) wants. Who? The Man. What? refers to situation 2.
Occurs? Yes. (Situation 2) dance. Who? The Man (the same man), (with) Whom?
Mary? Occurs? No. In these situations, we do not consider (in contrast with
Minsky) information about how to use a frame, expectations, or what to do if
expectations are not met.

3.2 Adding a Knowledge Base

In this section, we show how a knowledge base can be constructed
semi-automatically from a text using typed feature structure (TFS)-based for-
malisms such as HPSG. This knowledge base can be consulted in subsequent
analyses in order to resolve intersentential co-references.

Understanding a text implies being able to identify the entities described in it, the
properties of those entities, and the situations in which they participate. Modern
grammars usually specify such information using reference indices. For example,
the entry for give in HPSG is defined as [175].

Here, in the semantic section (SEM) of the definition, the entities participating
in situation s are referred to by the indices i, j, and k. Different entities are referred
to by different indices, and the same entity by the same index (co-reference).

However, the implementations we are aware of maintain such correspondence
only within one sentence. For each new sentence, the count of indices restarts from
1, thus destroying the one-to-one correspondence between entities and indices: the

3.1 Representation Using Typed Feature Structures 39

entity referred to by index 1 in one sentence has nothing to do with the entity
referred to by index 1 in the next sentence. Thus, to maintain semantic coherence
within the discourse, it is important to correlate all indices that refer to the same
entity throughout the text.

To do so, we propose a mechanism that creates and maintains semantic struc-
tures separately from sentence analysis. We store these structures in a knowledge
base that is built alongside text parsing. In this base, the structures are in a
one-to-one correspondence with the entities mentioned throughout the text.

Apart from representing the semantics of the text, this knowledge base can be
consulted during text analysis to resolve co-references: when an entity with certain
properties is mentioned in the text in the context implying co-reference (e.g., when
the entity appears with a definite article), we look in the knowledge base for a
suitable entity with the same or compatible properties that was defined earlier.
Various heuristics are applied and different sources of evidence are considered in
making the final decision regarding the presence or absence of a co-reference.

Discussion of the co-reference resolution heuristics is out of the scope of this
section: here, we only discuss the form of representation used for entities and
situations in our knowledge base. In Sect. 3.2.1, we consider the TFS formalism for
parsing and knowledge representation. In Sect. 3.2.2, we explain the desired con-
tents of our knowledge base. In Sect. 3.2.3, we discuss how it is built.

3.2.1 TFS as Knowledge Representation

Since we want to combine the functionality of HPSG-like grammars with a
knowledge base, it is desirable to use a single formalism for both sentence analysis
and knowledge representation.

For knowledge representation, systems based on description logics (DL) are
traditionally used. These systems are also known as “terminological logics systems”
or “KL-ONE-like systems,” e.g., NEOCLASSIC [153], BACK [103], CRACK
(online) [26], FaCT [12], LOOM [121], and RACER [98]. However, such for-
malisms are not designed for sentence analysis.

On the other hand, the same formalism—TFS—that is used in HPSG-like
grammars for sentence analysis can be used for knowledge representation—
specifically, for building the knowledge base while parsing text and even for
implementing reasoning [43]. The logic implemented in TFS by means of unifi-
cation is called feature logic (FL). As in DL, in FL it is possible to construct a
concept hierarchy from atomic concepts and attributes usually referred to as roles in
DL. The main difference between FL and DL is that FL’s attributes are
single-valued, while attributes in DL are multi-valued [145]; however, this is a
minor difference since, in FL, attributes can be lists of values.

For example, in the DL system NEOCLASSIC, one can create an individual
using the function createIndividual (sandy person). This can be represented by
the TFS sandy, which is a subtype of person. Afterward, addToldInformation

40 3 Second Approach: Constituent Grammars

(sandy fills (has dress)) can be seen as an operation on the TFS sandy, thus
adding a feature. The resulting TFS is

sandy
[HAS dress].

For retrieval, getInstances (<concept>) is used, where <concept> (e.g.,
HASDRESS) can be defined as createConcept (HASDRESS fills (has dress)).
This way, the command getInstances (HASDRESS) is equivalent to unifying all
available instances with the TFS [HAS dress], thus obtaining the whole TFS
sandy.

3.2.2 Structure of the TFS Knowledge Base

Now that we have shown that TFS can be used for knowledge representation, we
will discuss the structure of the knowledge base we want to obtain from a text.

An HPSG-like grammar has a lexicon that relates a word string with the types
(parts of speech) to which the string can be mapped. The gradual combination of
terms constructs parts of speech, which in turn form syntagmata.

At an appropriate point, we convert these terms into entities—TFS representa-
tions of animate or inanimate, real or abstract objects. These entities are added to
the knowledge base.

Figure 3.5 shows the structures that result in the knowledge base after the text
fragment is analyzed.

There is a big, red bookshelfi in the living roomj. Johni’’s booksj’ are neatly placed on itk ð3:18Þ
References to entities are marked here with the corresponding sentence analysis

indices, which make clear the correspondence between TFS structures and the text.
However, these indices do not point to letter strings; rather, they are sequential
numbers produced by sentence analysis. In Fig. 3.5, strings such as John, bookshelf,
and it are included only for clarity and are not a proper part of the structures.

Fig. 3.5 TFS structures extracted from text (3.1)

3.2 Adding a Knowledge Base 41

The name of a TFS is formed by its type and indexed by a number. Ent0, …,
Ent3 are entities; note that they store the role they are given when used in situations.
In Fig. 3.5, ACT stands for action, REF for reference, ADVG for adverbial group,
ADV for adverb, and ADJ for adjective.

S0 and S1 are situations. Situations are formed by the attributes ACT (action),
WHO, WHAT, WHERE, WHOM, WHY, and WITH, among others.

Note that sometimes the semantic relationship cannot (easily) be obtained from
the immediate context. For example, John’s books does not necessarily refer to the
books that John has, but perhaps to those that he has written. A possible way to
resolve such ambiguities is to ask a human operator; other possible ways are not
discussed here.

Semantic representation of text, as in Fig. 3.5, allows us to search for entities
mentioned in that text by a given set of properties. This can be used both for
co-reference resolution during text analysis and for answering questions. For
example, a dialogue system allows users to ask: Is there a bookshelf in the living
room? Where are John’s books? The answers to these questions can be easily found
by unifying the properties mentioned in the questions with the objects stored in the
knowledge base.

3.2.3 Building a TFS Knowledge Base

We have so far seen how four entities (a bookshelf, the living room, the books, and
John) extracted from two sentences can be represented. Now, we will briefly
describe the mechanism that allows a TFS parse system to construct and use such
representations.

To maintain the knowledge base (KB), three functions are used: INTRO, ADD,
and GET. The objects introduced into the base with the function INTRO persist in a
scope that is broader than a single sentence and can be modified with ADD or
retrieved with GET while analyzing other sentences. Since the entities are repre-
sented as TFS, unification is the only operation that we use in these functions.

3.2.3.1 Function INTRO

This function adds an entity to the KB and returns a pointer to the newly added
entity. This pointer is used as a term in the TFS rules. The argument for INTRO is a
<TFS_description>. A <TFS description> is a TFS with the specification of the
attribute’s values in the notation ATTRIBUTE:value. This specification can be
incomplete (under-specified). If some value is another TFS, we enclose it in
parentheses.

INTRO is similar to NEOCLASSIC’s createConcept. An example of using
this function is:

42 3 Second Approach: Constituent Grammars

INTRO(IND:(REF:i))
In this example, i will be taken as the index for the current individual’s feature

REF.

3.2.3.2 Function ADD

With this function, we can add attributes to entities previously created in the KB.
ADD’s argument is a <TFS_description>, where the TFS of the TFS description is
an instantiated TFS previously created in the KB with INTRO. For this function,
the <TFS_description> must be complete (all values at every level must be
specified). If the entity referenced by the <TFS_description> has already filled the
attribute that we are attempting to add but its value is different, the attribute’s value
is converted into a list that contains both values. If the attribute’s value is already a
list and does not contain the value we are adding, then the new value is appended.

List elements can be later selected by standard unification methods without
considering the order of these elements within the list. The following example
demonstrates the addition of an adjective as a property of an individual:

ADD(IND:(PROP:(ADJ))

3.2.3.3 Function GET

This function returns the entity or entities that unify with the <TFS_description>
provided. For example,

GET(S:(WHO:IND1,WHOM:IND2))

obtains all situations where the agent unifies with IND1 and the beneficiary unifies
with IND2. IND1 and IND2 are terms that correspond to specific entities derived
from a previous analysis.

3.3 Conclusions

We have shown that, for sentence analysis, the typed feature structure
(TFS) formalism permits us to address different levels to better understand a story.
TFSs are a well-studied formalism that guarantees the computability of its logic.
The groundwork we have presented allows situations to be extracted from a factual
report so that it is possible to ask simple questions about the text—such as who did
something or where she or he did it. This can be used in a web-query system to
obtain relevant results about events described in a factual report.

We have also proposed using a knowledge base with persistent objects (entities
and situations) in order to maintain co-references across sentences in HPSG-like
grammatical formalisms. This knowledge base is built from the text in a (semi)-

3.2 Adding a Knowledge Base 43

automatic way. Entities are available during the whole analysis of a text (rather than
for only one sentence) and can also be used after the text has been analyzed, e.g., to
answer questions or as a semantic representation of the text.

Adhering to Minsky’s frames approach allows us to analyze individuals
throughout a story so that characters’ behavior can be generalized in a model in
order to predict their reactions and interactions, thus tending toward common sense
acquisition and expectations in the sense of Minsky’s frames. However, for prac-
tical analysis of great quantities of text, a large grammar and a large collection of
TFSs become unwieldy; thus, we need to compare other approaches for efficient
sentence analysis.

44 3 Second Approach: Constituent Grammars

Chapter 4
Third Approach: Dependency Trees

After exploring several approaches and representational structures in the previous
two chapters, we found that the formalism that best suits our needs is the depen-
dency tree representation. Thus, in this chapter, we present a parser that is based on
a dependency tree. This parser’s algorithm uses heuristic rules to infer dependency
relationships between words, and it uses word co-occurrence statistics (which are
learned in an unsupervised manner) to resolve ambiguities such as PP attachments.
If a complete parse cannot be produced, a partial structure is built with some (if not
all) dependency relations identified. Evaluation shows that in spite of its simplicity,
this parser’s accuracy is superior to existing available parsers (as tested for use with
Spanish). Though certain grammatical rules, as well as lexical resources, are
specific for Spanish, the suggested approach is language-independent.

4.1 Introduction

As we have seen, the two main approaches to syntactic analysis are those oriented
to the constituency and dependency structures, respectively. In the constituency
approach, the structure of the sentence is described by grouping words together and
specifying the type of each group, usually according to its main word [50]:

The old man½ �NP loves a youngwoman½ �NP
� �

VP

h i
S

Here, NP stands for noun phrase, VP for verb phrase, and S for the whole
sentence. Such a tree can also be graphically represented:

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_4

45

S

VP

NP NP

The old man loves a young woman

In this case, the nodes stand for text spans (constituents) and the arcs for
“consists of” relationships.

In the dependency approach, words are considered “dependent” from, or mod-
ifying of, other words [133]. A word modifies another word (and is called the
“governor”) if it adds details to that word, and the whole combination inherits the
syntactic (and semantic) properties of the governor: old man is a kind of man (not a
kind of old); man loves woman is a kind of (situation of) love (not, say, a kind of
woman). Such dependency is represented by an arrow from the governor to the
governed word:

 The old man loves a young woman

In graphical form:

loves

man woman

The old a young

where the arcs represent the dependency relationships between individual words,
the words of the lower levels contributing details to those of the upper levels while
preserving the syntactic properties of those words.

In spite of a 40-year discussion in the literature, there is no consensus as to
which formalism is better. Though combined formalisms such as HPSG [175] have
been proposed, these seem to bear both the advantages and disadvantages of the
heritage approaches they represent, thus impeding their widespread use in natural
language processing. Most likely, the usefulness of one of the two approaches
depends on the specific task at hand.

Our motivation was two-fold for this work. Our first was the study of the lexical
compatibility of specific words—in particular, the compilation and use of a dic-
tionary of collocations (stable or frequent word combinations) such as eat bread or
deep sleep, as opposed to *eat sleep and *deep bread [18]. Such combinations were
shown to be useful for tasks ranging from syntactic analysis [209] and machine
translation [22] to semantic error correction [23] and steganography [15]. The
dependency approach to syntax seems much more appropriate than the constituency
approach for such a task.

46 4 Third Approach: Dependency Trees

Our second motivation was the construction of a semantic representation of text,
even if partial, for a range of applications from information retrieval and text mining
[140, 141] to software specifications [68]. All known semantic approaches—such
as conceptual graphs [183], minimal recursion semantics [61], and semantic net-
works [133]—roughly resemble a set of predicates, where individual words rep-
resent predicates or their arguments (which, in turn, can be predicates). The
resulting structures are in much closer direct correspondence with a dependency
tree than they are with a constituency tree of the same sentence; thus, the depen-
dency syntax seems more appropriate for direct translation into semantic structures.
Specifically, the dependency structure makes it much easier to match—say in
information retrieval—paraphrases of the same meaning (such as active/passive
voice transformation) or to transform one such synonymous structure into another.

In addition, we found that a dependency parser can be much more easily made
robust than can a constituency parser. Known approaches to dependency parsing
cope much easier with both incomplete grammars and ungrammatical sentences
than do standard approaches to context-free parsing.

Indeed, a standard context-free parser builds structures incrementally so that
failure to construct a constituent means it is impossible to construct all further
constituents that should have contained that one. What is more, an incorrect
decision in an early stage of parsing leads to completely or largely incorrect final
results.

In contrast, with dependency parsing, the selection of a governor for a given
word or the decision of whether the two given words are connected by a depen-
dency relation is much more (though not at all completely) decoupled from cor-
responding decisions on other pairs of words. This means it is possible to continue
parsing even if some decisions cannot be made successfully. The resulting structure
may prove to be incomplete (with some relationships missing) or not completely
correct (with some relationships wrongly identified). However, an incorrect deci-
sion on a particular pair of words usually does not cause a snowball effect of
cascaded errors in later steps of the parsing process.

In this chapter, we present DILUCT, a simple robust dependency parser for
Spanish. Though some specific rules, lexical resources, and preprocessing tools are
specific for Spanish, the general framework is language-independent. An online
demonstration and the system’s source code are available online.1

The parser uses an ordered set of simple heuristic rules to iteratively determine
the dependency relationships between words not yet assigned to a governor. In case
of certain types of ambiguities, word co-occurrence statistics [which are gathered in
an unsupervised manner either from a large corpus or from the Web (through
querying a search engine)] are used to select the most probable variant. No man-
ually prepared treebank is used for training.

We evaluated the parser by counting the number of correctly identified depen-
dency relationships on a relatively small treebank. Experiments showed that the

1www.diluct.com

4.1 Introduction 47

accuracy of our system is superior to that of existing Spanish parsers, such as
TACAT (48) and Connexor.

The rest of this section is organized as follows. In Sect. 4.2, we discuss existing
approaches to dependency parsing that have influenced our work. In Sect. 4.3, we
present our algorithm; in Sect. 4.3.3, we provide evaluation results.

4.2 Related Work

The dependency approach to syntax was first introduced by Tesnière [114] and then
further developed by Mel’čuk [133], who used it extensively in his meaning , text
theory [133, 185] in connection to semantic representation as well as to a number of
lexical properties of words, including lexical functions [21, 131].

One of the first serious attempts to construct a dependency parser that we are
aware of is the syntactic module of the English-Russian machine translation system
ETAP [4]. That parsing algorithm consists of two main steps:

1. Every individual word pair that could have a plausible dependency relationship
is identified.

2. So-called filters remove links that are incompatible with other identified links.
3. Of the remaining potential links, a subset forming a tree (namely, a projective

tree except for certain specific situations) is chosen.

In ETAP, the grammar (a compendium of situations where a dependency rela-
tionship is potentially plausible) is described in a specially developed specification
language that describes the patterns for which to search in the sentence and the
tree-constructing actions that are to be performed when such a pattern is found.
Both the patterns and the actions are expressed in a semi-procedural way by the
grammar interpreter’s use of numerous built-in functions (some of which are
language-dependent). An average pattern-action rule comprises 10–20 lines of tight
code. To the best of our knowledge, no statistical information is currently used in
the ETAP parser.

Our work is inspired by this approach; however, our main design is different
from that of ETAP in several ways. First, our parser is meant to be much simpler,
even if at the cost of inevitable loss of accuracy. Second, we do not rely on complex
and detailed lexical recourses. Third, we do rely on word co-occurrence statistics,
which we believe compensates for the lack of a complete grammar.

Indeed, Yuret [209] has shown that co-occurrence statistics (more precisely, a
similar measure that he calls lexical attraction) alone can provide enough infor-
mation for highly accurate dependency parsing, with no handmade grammar at all.
His algorithm selects the projective tree that provides the highest total value of
lexical attraction of all connected word pairs. However, his approach relies on large
quantities of training data (though the training, itself, is unsupervised). In addition,
his approach can only construct projective trees (a tree is called “projective” if it has
no crossing arcs in the graphical representation shown in Sect. 4.1).

48 4 Third Approach: Dependency Trees

We believe that a combined approach using both a simple handmade grammar
and word co-occurrence statistics (that are learned in an unsupervised manner from
a smaller corpus) provides a reasonable compromise between accuracy and prac-
tical feasibility.

On the other hand, the mainstream of current research on dependency parsing is
oriented to formal grammars [65]. In fact, the HPSG grammar [159] was perhaps
one of the first successful attempts to, in effect, achieve a dependency structure
(which is necessary both for using lexical information in the parser itself and for
constructing semantic representations) by using a combination of constituency and
dependency machinery. As we have mentioned, low robustness is a disadvantage of
non-heuristically-based approaches.

Three syntactic parsers with realistic coverage that are available for the Spanish
language are the commercially available XEROX parser2 and Connexor Machinese
Syntax3 as well as the freely available parser TACAT.4 We used the latter two
systems in order to compare their accuracy with that of our system. Only
Connexor’s system is really dependency-based, relying on the functional depen-
dency grammar formalism [188]; the other two are constituency-based.

4.3 Algorithm

Following the standard approach, we first pre-process the input text, which basi-
cally includes tokenizing, sentence splitting, tagging, and lemmatizing, and then,
we apply the parsing algorithm proper.

4.3.1 Preprocessing

4.3.1.1 Tokenization and Sentence Splitting

The text is tokenized into words and punctuation marks and then split into
sentences.

We currently do not distinguish between punctuation marks; thus, each mark is
substituted with a comma (in the future, we will consider different treatments for
different punctuation marks).

Two compounds of article and preposition are split: del ! de el (of the) and
al ! a el (to the).

2Which used to be on www.xrce.xerox.com/research/mltt/demos/spanish.html, but seems to have
been recently removed.
3www.connexor.com/demo/syntax
4www.lsi.upc.es/*nlp/freeling/demo.php

4.2 Related Work 49

http://www.xrce.xerox.com/research/mltt/demos/spanish.html
http://www.connexor.com/demo/syntax
http://www.lsi.upc.es/%7enlp/freeling/demo.php

Compound prepositions represented in writing as several words are joined into
one word. For example: con la intención de (in order to), a lo largo de (throughout),
etc. A few adverbial phrases—for instance, a pesar de (in spite of), de otra manera
(otherwise), etc.—and several pronominal phrases—such as sí mismo (itself)—are
similarly treated. The list of such combinations is small (currently including 62
items) and closed. Though we currently do not perform named entity recognition,
we plan to do so in the future.

4.3.1.2 Tagging

The text is part of speech (PoS)-tagged using the TnT tagger [25] trained on the
Spanish corpus CLiC-TALP.5 This tagger has a performance of over 94% [142].

We also correct some frequent errors of the TnT tagger. For example:

Rule Example

Det Adj V ! Det S V el inglés vino
“the English(man) came”

Det Adj Prep ! Det S Prep el inglés con
“the English(man) with”

4.3.1.3 Lemmatizing

We use a dictionary-based Spanish morphological analyzer [86].6 In case of
ambiguity, the variant of the PoS that is reported by the tagger is selected, with the
following exceptions:

Tagger predicted Analyzer found Example

Adjective Past participle dado “given”

Adverb Present participle dando “giving”

Noun Infinitive dar “to give”

If the analyzer does not give an option in the first column but does give one in
the second column, the latter is accepted.

If an expected noun, adjective, or participle is not recognized by the analyzer, we
remove a suffix, e.g., flaquito ! flaco (little (and) skinny ! skinny). To do so, we
remove a suspected suffix and check whether the word is then recognized by the
morphological analyzer. Examples of suffix removal rules include:

5clic.fil.ub.es
6www.Gelbukh.com/agme

50 4 Third Approach: Dependency Trees

http://www.Gelbukh.com/agme

Rule Example

-cita ! -za tacita ! taza
“little cup ! cup”

-quilla ! -ca chiquilla ! chica
“nice girl ! girl”

4.3.2 Rules

Parsing rules are applied to the lemmatized text. Following an approach similar to
that of [4, 34], we represent a rule as a sub-graph (e.g., N ← V) using the following
steps:

1. A substring matching the sequence of words in the rule is searched for in the
sentence.

2. Syntactic relationships between the matched words are established according to
those specified in the rule.

3. All words that have been assigned a governor by the rule are removed from the
sentence because they do not participate in further comparisons at step 1.

For example, for the sentence Un perro grande ladra (a big dog barks):

Sentence Rule

Un(Det) perro(N) grande(Adj) ladra (V) Det ← N

N ! Adj

N ← V

Done

As can be seen from that example, the order of the rule application is important.
The rules are ordered; at each iteration of the algorithm, the first applicable rule is
applied, after which the algorithm continues looking for subsequent applicable
rules. Processing stops when no rule can be applied.

Note that one consequence of such an algorithm is its natural treatment of
repeated modifiers. For example, in the phrases el otro día (the other day) and libro
nuevo interesante (new, interesting book) the two determiners (both of which are

4.3 Algorithm 51

adjectives) will be connected as modifiers to their respective nouns by the same rule
Det ← N (N ! Adj) at two successive iterations of the algorithm.

Our rules are not yet fully formalized (which is why we call our approach
“semi-heuristic”), so in what follows we will provide additional comments to some
rules. At present, the following rules are included7:

Rule Example

Auxiliary verb system and verb chains

estar | andar ← Ger estar comiendo “to be eating”

haber | ser ← Part haber comido “to have eaten”

haber ← estado ← Ger haber estado comiendo “have been eating”

irpres a ← Inf ir a comer “to be going to eat”

irpres ← Ger ← Inf ir queriendo comer “keep wanting to eat”

V ! que ! Inf tener que comer “to have to eat”

V ! V querer comer “to want to eat”

Standard constructions

Adv ← Adj muy alegre “very happy”

Det ← N un hombre “a man”

N ! Adj hombre alto “tall man”

Adj ← N gran hombre “great man”

V ! Adv venir tarde “come late”

Adv ← V perfectamente entender “understand perfectly”

Conjunctions (see explanation below)

N Conj N V(pl)) [N N] V(pl) Juan y María hablan “John and Mary speak”

X Conj X) [X X]
(X stands for any)

(libro) nuevo e interesante “new and interesting (book)”

Other rules

N ! que V hombre que habla “man that speaks”

que ! V que habla “that speaks”

hombre tal que “a man such that”; hombre, que “man,
which”

Det ← Pron otro yo “another I”

V ! Adj sentir triste “to feel sad”

hombre, alto “man, tall”

hombre, mujer “man, woman”

N ! Prep ! V obligación de hablar “obligation to speak”

comer, dormir “eat, sleep”

V Det ← V aborrecer el hacer “hate doing”

7The bar | stands for variants: estar | andar ← Ger stands for two rules, estar ← Ger and
andar ← Ger.

52 4 Third Approach: Dependency Trees

Coordinative conjunctions have always been tricky for dependency formalisms
and an argument in favor of constituency approaches. Following Gladki’s idea [92],
we represent coordinated words in a constituency-like manner, joining them in a
compound quasi word. In the resulting “tree,” we effectively duplicate (or multiply)
each arc coming to or going from such a special node. For example, a fragment
[John Mary] ← speak (John and Mary speak) is interpreted as representing two
relationships: John ← speak and Mary ← speak. A fragment merry ← [John
Mary] ← marry (Merry John and Mary marry) yields the following dependency
pairs: merry ← John ← marry and merry ← Mary ← marry. We should note
that, currently, this machinery is not yet fully implemented in our system.

Accordingly, our rules for handling conjunctions are more like rewriting rules
than tree construction rules. The first rule forms a compound quasi word out of two
coordinated nouns if they precede a plural verb. That rule eliminates the con-
junction since, in our implementation, conjunctions do not participate in the tree
structure. Basically, what the rule does is assure that the verb having such a
compound subject is plural, i.e., it rules out the interpretation of John loves Mary
and Jack loves Jill as John loves [Mary and Jack] loves Jill.

4.3.3 Prepositional Phrase Attachment

This stage is performed after the application of the rules described in the previous
section.

For any preposition that has not yet been attached to a governor, its compatibility
with every noun and every verb in the sentence is evaluated using word
co-occurrence statistics (which can be obtained by a simple query to an Internet
search engine). The obtained measure is combined with a penalty on the linear
distance: the more distant a potential governor is from the preposition in question,
the less appropriate it is for attachment. This will be discussed in the next chapter.

4.3.4 Heuristics

Heuristics are applied after the stages described in the previous sections. The
purpose of the heuristics is to attach words that were not assigned to any governor
during the rule application stage.

The system currently uses the following heuristics, which are iteratively applied
in this order, in a manner similar to how the rules are applied:

1. An unattached que (that, which) is attached to the nearest verb (to the left or
right of que) that does not have another que as its immediate or indirect
governor.

4.3 Algorithm 53

2. An unattached pronoun is attached to the nearest verb that does not have que as
its immediate or indirect governor.

3. An unattached N is attached to the most probable verb that does not have que as
its immediate or indirect governor. To estimate probability, an algorithm similar
to the one described in the previous section is used. The statistics described in
(Calvo et al. 2005) are used.

4. For an unattached verb v, the nearest other verb w is looked for to the left; if
there is no verb to the left, then the nearest one to the right is looked for. If w has
que as a direct or indirect governor, then v is attached to that que; otherwise, it is
attached to w.

5. An unattached adverb or subordinative conjunction (except for que) is attached
to the nearest verb (to the left or right of que) that does not have another que as
its immediate or indirect governor.

Note that if the sentence contains more than one verb, each verb will be attached
to another verb at step 4, which can result in a circular dependency. However, this is
harmless since such a circular dependency will be broken at the last stage of
processing.

4.3.5 Selection of the Root

The structure built during the algorithm’s steps described in the previous sections
can be redundant. In particular, it can contain circular dependencies between verbs.
The final step of analysis, then, is to select the most appropriate root.

We use the following simple heuristics to select the root. For each node in the
obtained digraph, we count the number of other nodes reachable from the given one
through a directed path along the arrows. The word that maximizes this number is
selected as the root; in particular, all its incoming arcs are deleted from the final
structure.

54 4 Third Approach: Dependency Trees

Chapter 5
Evaluation of the Dependency Parser

Many corpora are annotated using constituent formalism. However, our goal is to
evaluate parsers within the dependency formalism, which means we need a gold
standard in the dependency formalism. In order to achieve this, we present an
unsupervised heuristic (see Sect. 5.1) that aims to convert a constituent-annotated
corpus into a dependency-annotated corpus, which then makes it possible to
evaluate the parser presented in Chap. 4. A description of that evaluation can be
found in Sect. 5.2.

5.1 Definition of a Gold Standard

Here, we present a method for converting an existing, manually tagged, constituent
corpus into a dependency corpus. Roughly, this method consists of extracting a
context-free grammar for the labeled text in order to automatically identify the head in
each rule and then using that information to build a dependency tree. Our heuristics
identify rules’ heads with a precision of 99% and a coverage of 80%; the algorithm
correctly identifies 92%of the dependency relationships betweenwords in a sentence.

This section is organized as follows. Section 5.1.1 briefly introduces the con-
stituent corpus that was the base for our experiments. Sections 5.1.2 and 5.1.3
present, in detail, the procedure we used to transform that corpus into a dependency
corpus as well as the heuristics we used in that conversion. Section 5.1.4 discusses
our experimental results, and Sect. 5.1.5 presents the conclusions.

5.1.1 The Spanish 3LB Treebank

Cast3LB is a corpus of one hundred thousand words (approximately 3,700 sen-
tences) that was created from two other corpora: the CLiCTALP corpus (75,000
words), which is a balanced and morphologically annotated corpus containing

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_5

55

literary, journalistic, scientific, etc. language; and the corpus of the EFE Spanish
news agency (25,000 words) that corresponds to the year 2000.

The annotation process was completed in two steps. In the first step, a subset of
the corpus was selected and annotated twice by two different annotators; the results
of this double annotation process were compared and a disagreement typology
regarding assignation was established. After a process of analysis and discussion,
an annotation handbook was produced, in which the main criteria to follow in cases
of ambiguity are described. In the second step, the rest of the corpus was annotated
according to the all-words strategy. The lexical items that are annotated are those
words that have lexical meaning, i.e., nouns, verbs, and adjectives [143].

5.1.2 Transformation Procedure

The transformation procedure can be described roughly as follows:

1. Extract the constituency grammar rules from the 3LB treebank.
2. Use heuristics to find the head component of each rule.
3. Recursively use information regarding the heads to determine which rules will

find which component to rise in the tree.

These steps are described in detail in the following sections.

5.1.3 Extracting the Grammar

To extract the grammar from the 3LB treebank, we used the following steps.
Simplification of the constituency treebank. The 3LB treebank divides tags into

two parts. The first specifies the part of speech—for example, clause, noun, verb,
noun phrase, etc. For our purposes, this is the most important part of the tag. The
second part specifies additional features, such as gender and number for noun
phrases or the kind of subordinate clause used. These features can be elided to
reduce the number of grammatical rules included without affecting the transfor-
mation. For example, for a clause, the 3LB treebank uses: S (clause), S.F.C. (co-
ordinate clause), or S.F.C.co-CD (object coordinate clause). We mapped each of
these to a single label, S. For nominal groups, 3LB uses grup.nom (nominal group),
grup.nom.fp (feminine plural nominal group), grup.nom.ms (masculine singular
nominal group), grup.nom.co (coordinate nominal group), etc.; we mapped these to
a single label, grupnom. Figure 5.1 shows part of the 3LB treebank using its
original labels; Fig. 5.2 shows the same part using the transformed labels.

In order to reduce the number of the resulting grammar’s patterns, we also
simplified the tagging of the 3LB treebank by eliminating all punctuation marks.

56 5 Evaluation of the Dependency Parser

Pattern extraction. To extract all of the grammar’s rules, each node with more
than one child is considered to be the left part of a rule while their children are the
right part of the rule. For example, the patterns extracted from the sentence shown
in Fig. 5.3 are shown in Fig. 5.4. Here grupnom is a nominal group, coord is a

esualcS(
 (S.F.C.co-CD clause
 (S.F.C clause
 (sn-SUJ noun phrase
 (espec.fp specifier
 (da0fp0 Las el)) determiner The feminine plural the

puorglanimonpf.mon.purg(
nuon)avresersavreser000pfcn(reserves reserve

esarhplanoitisoperpps(
noitisoperpperp(
noitisoperp))eded00sps(of of
esarhpnuonns(

puorglanimonoc.mon.purg(
puorglanimonsm.mon.purg(

nuon))orooro000smcn(gold gold
etanidroocdrooc(
etanidrooc))yycc(and and

puorglanimonpf.mon.purg(
 (ncfp000 divisas divisa))))) noun currencies currency

esarhplanoitisoperpps(
noitisoperpperp(
noitisoperp))eded00sps(from from
esarhpnuonns(

puorglanimonmon.purg(
nuon))))))aisuRaisuR00000pn(Russia Russia

esarhpbrevvg(
brev))ribusnoreibus0p3simv(raised to_raise

esarhpnuonCC-ns(
puorglanimonmon.purg(

 (Zm 800_millones_de_dolares
800_millones_de_dolares))))

number 800_millions_of_dollars
800_millions_of_dollars

Fig. 5.1 A sentence with its original labels from the 3LB treebank. “The reserves of gold and
currency from Russia rose by 800 million dollars”

(sp

 (prep

 (@sps00 de de))

 (sn

 (grupnom

 (grupnom

 (@n oro oro))

 (coord

 (@cc y y))

 (grupnom

 (@n divisas divisa)))))

Fig. 5.2 Nodes that only have one leaf marked as the head

5.1 Definition of a Gold Standard 57

coordinate, sp is a PP, prep is a preposition, sn is a noun phrase, n is a noun, espec
is a specifier, S is a clause, and gv is a verb phrase. A clause (S) can be composed by
a noun phrase (sn), verb phrase (gv), and noun phrase (sn).

5.1.3.1 Marking the Head

After extracting all patterns that form the grammar, the head of each pattern is
automatically marked using simple heuristics. We denote the dead of a rule with the
@ symbol. The heuristics we use are as follows:

1. If the rule contains only one element (or only one of its elements can be a head,
see below heuristics 10 and 11), then it is the head, e.g.,

grupnom ← @n

Fig. 5.3 Patterns to be extracted from the sentence. “The reserves of gold and currency from
Russia rose by 800 million dollars”

gr
sp
gr
sn
S

rupnom ←
p ← prep
rupnom ←
n ← espe
← sn gv

← grupno
sn
← n sp sp
c grupno
 sn

om coord

p
om

d grupnommFig. 5.4 Extracted patterns
of the sentence. “The reserves
of gold and currency from
Russia rose in 800 millions of
dollars”

58 5 Evaluation of the Dependency Parser

2. If the pattern contains one coordinate (coord), then it is the head, e.g.,

grupnom ← grupnom @coord grupnom
S ← @coord sn gv sn

3. If the pattern contains two or more coordinates, then the first is the head, e.g.,

S ← @coord S coord S
Sp ← @coord sp coord sp

4. If the pattern contains a verb phrase (gv), then it is the head, e.g.,

S ← sn @gv sn
S ← sadv sn @gv S Fp

5. If the pattern contains a relative pronoun (relatiu), then it is the head, e.g.,

sp ← prep @relatiu
sn ← @relatiu grupnom

6. If the pattern contains a preposition (prep) as its first element, followed by only
one element (regardless of what that element may be), then the preposition is
the head, e.g.,

sp ← @prep sn
sp ← @prep sp

7. If the pattern contains an infinitive verb (infinitiu), then it is the head, e.g.,

S ← @infinitiu S sn
S ← conj @infinitiu
S ← neg @infinitiu sa

8. If the pattern contains a present participle (gerundi), then it is the head, e.g.,

S ← @gerundi S

9. If the pattern contains a main verb (vm), then it is the head, e.g.,

gv ← va @vm
infinitiu ← va @vm

10. If the pattern contains an auxiliary verb (va) and any other verb, then the
auxiliary verb is never the head, e.g.,

gv ← va @vs

11. If the pattern contains a specifier (espec) as its first element, then it is never the
head, e.g.,

sn ← espec @grupnom
sn ← espec @sp

5.1 Definition of a Gold Standard 59

12. For patterns with a noun phrase (grupnom) as the father node, if the pattern
contains a noun (n), then it is the head, e.g.,

grupnom ← s @n sp
grupnom ← @n sn
grupnom ← s @n S

13. For patterns with a noun phrase (grupnom) as the father node, if the pattern
contains a noun phrase (grupnom), then it is the head, e.g.,

grupnom ← @grupnom s
grupnom ← @grupnom sn

14. For patterns with a specifier (espec) as the father node, if the pattern contains a
definitive article (da), then it is the head, e.g.,

espec ← @da di
espec ← @da dn

15. If the pattern contains a qualificative adjective (aq) and a PP (sp), then the
adjective is the head, e.g.,

S ← sadv @aq sadv
sa ← sadv @aq sp sp

The application order of these rules is important. For example, if we apply rule 2
before rule 1 in the pattern—S ← coord sn gv sn Fp—the head would be gv instead
of the correct head coord. Hence, rule 1 should be applied first.

5.1.3.2 Using Marked Heads for the Transformation

The transformation algorithm recursively uses the information of the patterns
marked with heads to determine which components will rise in the tree. This means
that the head will be disconnected from its brothers and placed in the father node
position.

In order to more clearly understand the algorithm, we describe it in detail:

1. Traverse the constituency tree in depth from left to right, beginning at the root
and visiting the children nodes recursively.

2. For each pattern in the tree, search the rules to find which element is the head.
3. Mark the head in the constituency tree. Disconnect it from its brothers and place

it in the father node position.

The algorithm finishes when a head node is raised as a root. For example,
consider the following figures.

Figure 5.5 shows a constituency tree that will be transformed into a dependency
tree. Remember that nodes with only one leaf were marked in the extraction
grammar.

60 5 Evaluation of the Dependency Parser

After the algorithm, the first pattern to be found is: grupnom ← grupnom coord
grupnom, where grupnom is a nominal group and coord is a coordinate.

Looking at the rules we find that the head of these patterns is the coordinate
(coord). We mark the head in the constituency tree and disconnect it by putting it in
the father node position, as shown in Fig. 5.6.

Fig. 5.5 Constituency tree. “The reserves of gold and currency from Russia rose by
800 million dollars”

Fig. 5.6 Constituency tree. “The reserves of gold and currency from Russia rose by
800 million dollars”

5.1 Definition of a Gold Standard 61

The algorithm completes its execution until the root node is raised. The resulting
dependency tree is shown in Figs. 5.7 and 5.8.

5.1.4 Experimental Results

The algorithm found 2663 grammar rules. From those, 339 (12%) are repeated
more than 10 times and 2324 (88%) less than 10 times. The twenty most frequent
rules (with their respective number of occurrences) are:

12,403 sn ← espec grupnom
11,192 sp ← prep sn
3229 grupnom ← n sp

Fig. 5.7 Resulting dependency tree with labels

Fig. 5.8 Resulting dependency tree without labels

62 5 Evaluation of the Dependency Parser

1879 grupnom ← n s
1054 sp ← prep S
968 grupnom ← n S
542 gv ← va vm
535 grupnom ← s n
515 S ← infinitiu sn
454 grupnom ← n s sp
392 grupnom ← n sn
390 grupnom ← grupnom coord grupnom
386 sn ← sn coord sn
368 grupnom ← s n sp
356 gv ← vm infinitiu
343 S ← S coord S Fp
315 S ← S coord S
276 sp ← prep sn Fc
270 grupnom ← n sp sp
268 S ← infinitiu sp

5.1.4.1 Head Identification

The heuristics covered (i.e., automatically labeled) 2210 (79.2%) of all extracted
grammar rules.

We randomly selected 300 rules and marked them manually. Comparison
showed that all but two (99.9%) marks coincided (see Fig. 5.9). These two rules are
not matched because the heuristic rules do not consider these cases.

Based on these comparison statistics, we believe that at least 95% of the auto-
matically marked rules from 3LB are correctly marked.

5.1.4.2 Construction of Dependency Trees

We followed the evaluation scheme proposed by Briscoe et al. [29], in which
parsing accuracy is evaluated based on grammatical relationships between lem-
matized lexical heads. This scheme is suitable for evaluating dependency and
constituency parsers because it considers tree relationships that are present in both
formalisms—for example, [Det car the] and [DirectObject drop it]. For our eval-
uation, we extracted triples from the dependency trees obtained by our method and
compared them with manually extracted triples from the same 3LB treebank.

Automatically marked Manually marked
infinitiu <-- van0000 vmp00sm sps00 @infinitiu infinitiu <-- van0000 @vmp00sm sps00 infinitiu
S.F.C.co-CD <-- conj.subord S.F.C @coord S.F.C S.F.C.co-CD <-- @conj.subord S.F.C coord S.F.C

Fig. 5.9 Rules that did not match

5.1 Definition of a Gold Standard 63

A triple is a dependency relationship between a father node, a child node, and
the type of their relationship. For example, the dependency triples extracted from
the phrase The old man loves the young lady are:

love SUBJ man
man DET the
man ADJ old
love OBJ lady
lady DET the
lady ADJ young

The algorithm extracted 65,997 dependency triples from the whole 3LB
treebank.

For evaluation, we randomly selected 35 sentences from the treebank and
manually converted them to dependency trees, which gave us 399 dependency
triples. We then applied our procedure to those sentences. Since, for a sentence of
n words, there must be (n − 1) triples, our procedure also output 399 triples; of
them, 368 (92%) coincided with those manually identified. Extrapolating this
statistic, we infer that more than 90% (some 60,000) of the dependency triples that
we extracted from the 3LB treebank are correct.

5.1.5 Conclusions

Dependency representation of syntactic structures has important advantages in
certain applications—particularly in regards to nearly everything related to lexi-
calization and lexicography. However, the majority of existing tools and resources,
such as parsers, grammars, and treebanks, are oriented to a constituency approach.

We have presented a simple, unsupervised technique that allows for the auto-
matic transformation of constituency trees into dependency trees. This technique
uses certain simple heuristics that depend on the specific tag set used in a given
treebank or grammar. Our technique does not deal with difficult or arguable phe-
nomena in dependency syntax but still recovers the bulk of dependency relations.
Such “quick-and-dirty” results are quite usable in most practical applications.

Thus, our technique allows for existing parsers or treebanks to be reused for
applications requiring dependency structures.

5.2 Evaluation of Our Parser

This section presents a comparison of our parser against a hand-tagged gold
standard. We also compared our parser with two widely known Spanish-language
parsers: Connexor Machinese Syntax for Spanish (a dependency parser) and
TACAT (a constituency parser).

64 5 Evaluation of the Dependency Parser

We followed the evaluation scheme proposed by Briscoe et al. [29], which
evaluates parsing accuracy based on grammatical relationships between lemmatized
lexical heads. This scheme is suitable for evaluating both dependency and con-
stituency parsers because it considers tree relationships that are present in both
formalisms—for example, [Det car the] and [DirectObject drop it]. For our eval-
uative purposes, we translated the output of the three parsers and the gold standard
into a series of triples that included two words and their relationship. The triples
from the parsers were then compared against the triples from the gold standard to
find correspondence.

We chose the corpus Cast3LB as our gold standard because it is, until now, the
only syntactically tagged corpus for Spanish that is widely available. Cast3LB is a
corpus consisting of 100,000 words (approximately 3,700 sentences) extracted from
two corpora: the CLiCTALP corpus (75,000 words), a balanced corpus containing
literary, journalistic, scientific, and other topics; and the EFE Spanish news agency
(25,000 words) corpus that corresponds to the year 2000. That corpus was anno-
tated according to Civit and Martí [53] using the constituency approach; so we first
convert it to a dependency treebank. A rough description of this procedure follows.
For details, see Gelbukh et al. [88].

1. Extract patterns from the treebank to form rules. For example, a node called NP
with two children, Det and N, yields the rule NP ! Det N.

2. Use heuristics to find the head component of each rule. For example, a noun will
always be the head in a rule except when a verb is present. The head is marked
with the @ symbol: NP ! Det @N.

3. Use this information to establish the connections between heads of each
constituent.

4. Extract triples for each dependency relationship in the dependency treebank.

For example, consider the following table, which shows the triples for the
sentence taken from Cast3LB. El más reciente caso de caridad burocratizada es el
de los bosnios, niños, y adultos (“the most recent case of bureaucratized charity is
the one about Bosnians, children, and adults”). In some cases, the parsers extracted
additional triples not found in the gold standard.

Spanish triples Gloss 3LB Connexor DILUCT TACAT

adulto DET el ‘the adult’ ✓

bosnio DET el ‘the bosnian’ ✓ ✓ ✓

caridad ADJ
burocratizado

‘bureaucratized
charity’

✓ ✓ ✓

caso ADJ reciente ‘recent case’ ✓ ✓ ✓

caso DET el ‘the case’ ✓ ✓ ✓

caso PREP de ‘case of’ ✓ ✓ ✓ ✓

de DET el ‘of the’ ✓ ✓

de SUST adulto ‘of adult’ ✓

(continued)

5.2 Evaluation of Our Parser 65

(continued)

Spanish triples Gloss 3LB Connexor DILUCT TACAT

de SUST bosnio ‘of bosnian’ ✓ ✓

de SUST caridad ‘of charity’ ✓ ✓ ✓ ✓

de SUST niño ‘of children’ ✓

niño DET el ‘the child’ ✓

reciente ADV más ‘most recent’ ✓ ✓

ser PREP de ‘be of’ ✓ ✓ ✓

ser SUST caso ‘be case’ ✓ ✓ ✓

recentar SUST caso ‘to recent case’ ✓

caso ADJ más ‘case most’ ✓

bosnio SUST niño ‘bosnian child’ ✓

ser SUST adulto ‘be adult’ ✓

de, ‘of,’ ✓

, los ‘, the’ ✓

, bosnios ‘, Bosnian’ ✓

We extracted 190 random sentences from the 3LB treebank and parsed them
using Connexor and DILUCT. The precision, recall, and F-measure of the different
parsers against Cast3LB are as follows:

Precision Recall F-measure

Connexor 0.55 0.38 0.45

DILUCT 0.47 0.55 0.51

TACAT1
– 0.30 –

Note that the Connexor parser, although it has a slightly better precision and a
rather similar F-measure as our system, is not freely available and is, of course, not
an open source.

5.3 Conclusions

We have presented a simple and robust dependency parser for Spanish. It uses
simple handmade heuristic rules for decisions regarding the admissibility of
structural elements and word co-occurrence statistics for disambiguation. The
statistics are either learned from a large corpus or obtained by querying an Internet
search engine in an unsupervised manner—i.e., no manually created treebank is
used for training. In case the parser cannot produce a complete tree, a partial
structure is returned that consists of the dependency links it could recognize.

1Results for TACAT were kindly provided by Jordi Atserias.

66 5 Evaluation of the Dependency Parser

For details of our evaluation of this system, see Sect. 5.2. A comparison of the
accuracy of our parser with two available systems for Spanish shows that our parser
outperforms both.

Though a number of grammar rules are specific for Spanish, the approach itself
is language-independent. In the future, we plan to develop similar parsers for other
languages, including English, for which the necessary preprocessing tools—such as
a PoS tagger and lemmatizer—are already available.

One possible direction our future work may take is improving the grammatical
rules system. The current rules sometimes do their job in a quick-and-dirty manner,
which—while resulting in just the right thing to do in most cases—can be done with
greater attention to details.

Finally, we plan to evaluate the usefulness of our parser for real information
retrieval, text mining, and construction of semantic textual representations (such as
conceptual graphs).

5.3 Conclusions 67

Chapter 6
Applications

6.1 Selectional Preferences

In this chapter, we propose a method for extracting selectional preferences that are
linked to an ontology: namely, WordNet. This information is used, among other
possible applications, to perform word sense disambiguation. An evaluation of this
method, using Senseval-2, is also given. The results of this experiment are com-
parable to those obtained by Resnik when he used selectional preferences for the
English language; however, our proposed method is more advantageous in that it
does not require any previous morphological, syntactic, or semantic annotation of
the text.

6.1.1 Introduction

Selectional preferences measure an argument’s coupling degree (direct and indirect
objects as well as prepositional complements) with regard to a verb. For example,
for the verb to drink, the direct objects water, juice, vodka, and milk are more
probable than bread, ideas, or herb.

For a system to have as large a potential coverage of verb complements as
possible, it is necessary to have a very big training corpus. However, even very big
corpora of hundreds of millions of words fail to include certain word combinations
—even those that may be of everyday use.

One possible solution to this problem is to use word classes. In this case, water,
juice, vodka, and milk belong to the liquid class; thus, we can establish an asso-
ciation between the liquid class and the verb to drink. However, not all verbs have
this kind of specific association. For example, the verb to take could have argu-
ments from many different classes: to take account, to take seat, to take advan-
tage… .

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_6

69

On the other hand, each word can have more than one classification—in which
case, both the meaning (or sense) of a word and its characteristics must be con-
sidered to determine whether it belongs to a specific class. For example, if we
consider the color of objects, we would select the white objects class for milk. If we
consider physical properties, we would say that milk belongs to the fluids, liquids
class or even to the antacids class. The selected class for milk could also be
basic_food, and so forth. In other words, the relevant classification for a word
depends on its intended use—not only on its meaning.

In order to find relationships between the use and sense of a noun and the
selectional preferences of a verb, two kinds of information are necessary: (1) the
ontological information of a word so that the word will not be linked in a flat
manner to a single class, and (2) information about the use of a word, given a verb,
linked to a specific position in the ontology.

In the following section, we describe a method to extract selectional preferences
that are linked to an ontology. This information helps to solve several problems
within the area of statistical models combined with knowledge [165, 166]. For
example, refer to Fig. 6.2, which gives arguments for three verbs using the
WordNet ontology hierarchy. The aim of our method is to obtain a similar table
and, subsequently, use that information to perform word sense disambiguation
(WSD).

6.1.2 Related Works

One of the first works on selectional preference extraction linked to WordNet
senses is Resnik’s [167], which is devoted mainly to word sense disambiguation in
English. Resnik assumed that a text annotated with word senses was a
difficult-to-obtain resource, so he based his work on text that was tagged only
morphologically. Subsequently, Agirre and Martinez [1, 2] linked verb usage with
their arguments. In contrast with Resnik, Agirre and Martínez assumed the exis-
tence of text that is annotated with word senses: Sem-Cor, in English. Other
supervised WSD systems include John Hopkins University’s system (JHU) [208],
which won the Senseval-2 competition, and a maximum entropy WSD system by
Suarez and Palomar [187]. The first system combined, by means of a voting-based
classifier, several WSD subsystems that were based on different methods: decision
lists [207], cosine-based vector models, and Bayesian classifiers. The second sys-
tem selected a best-feature selection for classifying word senses and a voting
system. These systems both had scores of around 0.70 in the Senseval-2 tests.

We take into account the fact that a resource like Sem-Cor is not currently
available for many languages and that the cost of building such a resource is high.
Accordingly, we follow Resnik’s approach in assuming that there is not a large
enough quantity of text annotated with word senses. Furthermore, we consider that
the WSD process must be completely automatic, so all the text we use is

70 6 Applications

automatically tagged with morphological and part-of-speech (PoS) tags.
Accordingly, our system is fully unsupervised.

Previously, unsupervised systems have not achieved the same performance as
that achieved by supervised systems: Carroll and McCarthy [45] present a system
that uses selectional preferences for WSD that obtains 69.1% precision and 20.5%
recall; the unsupervised method presented by Agirre and Martinez [3] obtains
49.8% recall, which is the only performance measure used; Resnik’s unsupervised
method [167] achieves 40% correct disambiguation.

The following sections describe our method and measure its performance.

6.1.3 Methodology

In order to enhance an ontology with usage values for its synsets, we used Spanish
EuroWordNet 1.0.7 (S-EWN)1 and a corpus of 161 million words that correspond
to four years’ worth of publications from three separate Mexican newspapers. This
corpus contains approximately 60 million sentences. The text was automatically
PoS tagged using the statistical PoS tagger TnT, which was trained with the
CliC-TALP corpus. We found, as well as [142], that this tagger has about 94%
accuracy for Spanish. Afterward, simple grouping rules were used to find chunks of
adjective+noun, adverb+verb, etc. Subordinate phrases were included.

Once the text was tagged, the following combinations were extracted: verb
+left_subject, verb+right_subject, and verb+preposition+noun. Here the symbol
“+” indicates immediate adjacency. We avoided patterns that included intermediate
words in order to avoid possible noise; for example, patterns such as verb+X
+preposition+noun (in which X replaces any word or set of words) were discarded.

Figure 6.1 provides an example of word patterns extracted in this way. The
symbol “>” indicates that the noun appears immediately to the right of the verb
(thus, becoming an object), while the symbol “<” indicates that the noun appears
immediately to the left of the verb (thus, is a subject). A preposition corresponds to
the form verb+preposition+noun.

Afterward, the noun of each combination is looked up in WordNet and its
frequency increased by one. In the case that this noun has more than one sense, the
frequency is evenly distributed among each of those senses. For example, if book
has five senses, each one receives a count of 1/5.

This value is propagated up the WordNet hierarchy by following the hypernyms
of each sense. The higher the level, the less impact a frequency count should have;
thus, this value is multiplied by 1

level. For example, for the first lower level (the leaf),
the value for the occurrence of a verb for that synset is increased by 1; in the second
level, it is increased by 0.5; in the third, by 0.33; etc. In the first example shown in

1S-EWN was jointly developed by the University of Barcelona (UB), Universidad Nacional de
Educación a Distancia (UNED), and Universidad Politécnica de Cataluña (UPC), Spain.

6.1 Selectional Preferences 71

Fig. 6.2, permission has three different senses. Figure 6.3 shows the WordNet
fragment corresponding to permission. When the combination have a permission is
seen in the corpus used for counting occurrences, one count will be added for
permission (have a); 1

2 � 13 will be added for the sense of permission that corresponds
to sanction, approval, and liberty; 1

3 � 13 will be added for its sense that corresponds
to authorization, message, and freedom; and so on.

These values were added for each occurrence in the counting corpus. The result
was an onthology with weighted usage numbers (selectional preferences) for each
verb’s arguments. Figure 6.1 shows the results for the combinations have a per-
mission and read > book; numbers appearing in that figure correspond to the
corresponding synset correspondence in E-WordNet.

have a permission:
 00629673n → sanction 58.96 → authorization 231.89 → management 83.01 → social_control 115.54 → action

1808.92
04368291n → approval 232.57 → message 570.55 → communication 1066.30 → social relationship 761.52 →

relation 847.98 → abstraction 1734.82
 08562692n → liberty 198.76 → freedom 198.76 → state 640.99

cross > channel
 02342911n → way 3.00 → trough 8.83 → artifact 20.12 → unanimated_obect 37.10 → entity 37.63
 02233055n → conduit 6.00 → way 3.00 → trough 8.83 → artifact 20.12 → unanimated_object 37.10 → entity

37.63
 03623897n → conduit 5.00 → anatomic_structure 5.00 → body_part 8.90 → part 7.22 → entity 37.63
 04143847n → transmission 1.67 → communication 3.95 → action 6.29
 05680706n → depression 2.33 → geological_formation 2.83 → natural_object 14.50 → unanimated_object 37.10

→ entity 37.63
 05729203n → water 4.17 → unanimated_object 37.10 → entity 37.63

read > book:
 01712031n → (tripe) stomach 51.30 → internal_organ 34.20 → organ 29.01 → body_part 31.90 → piece 53.86 →

entity 271.28
02174965n → product 177.33 → creation 164.83 → artifact 209.80 → inanimate_object 232.52 → entity 271.28

 04214018n → section 93.82 → writing 514.13 → written_language 377.39 → communication 831.37 →
social_relationship 645.04 → relation 628.82 → abstraction 587.39

 04222100n → publication 106.00 → work 282.98 → product 177.33 → creation 164.83 → artifact 209.80 →
inanimate_object 232.52 → entity 271.28

 04545280n → dramatic_work 74.49 → writing 514.13 → written_language 377.39 → communication 831.37 →
social_relationship 645.04 → relation 628.82 → abstraction 587.39

Fig. 6.1 Ontology with usage values for the combinations cross channel, have a permission, and
read book

1 have a permission
2 retire from system
3 hit > ball
4 solve > problem
5 give > signal
6 existe < incognite
7 put in pan
8 take from source
9 drink > vodka

Fig. 6.2 Sample
combinations

72 6 Applications

Figure 6.1 shows that this information can be used to choose the most probable
sense of a word, since we know the verb related to that word. For example, for read,
the less frequent sense is stomach (tripe); the most probable one is product (cre-
ation), followed by publication (work). Channel has six senses listed by WordNet:
way, conduit, clear, conduit (anatomic), transmission, depression, and water. The
sense marked with the highest number of occurrences is conduit, while the one with
fewer occurrences is transmission (meaning, for example, the channel of trans-
mission or TV channel); one cannot cross a TV channel. Currently, we have
acquired 1.5 million selectional preference patterns that are linked to the WordNet
synsets. Each pattern consists of a verb, a preposition (in some cases), and a synset.
This information can be used to disambiguate the sense of the word, given the verb
with which it is used. In the next section, we describe an experiment in which we
measured the WSD performance of this method.

6.1.4 Evaluation

Senseval is a series of WSD evaluation exercises organized by the ACL-SIGLEX
(Special Interest Group on the Lexicon of the Association for Computational
Linguistics). Data for these competitions are available online. We applied our
method to the Spanish 2001 competition.

The evaluation set comprises slightly more than 1000 sentences. Each sentence
contains one word, for which the correct sense, among those listed for it in
WordNet, is indicated.

Our evaluation showed that 577 of 931 cases were resolved (a recall of *62%).
Of those, 223 corresponded in a fine-grained way to the sense that was manually
annotated (precision *38.5%). These results are similar to those obtained by
Resnik [167] for English, who obtained, on average, 42.55% precision for rela-
tionships between subjects and verbs only. Note that these results are much better

sanction approval liberty

authorization

management

social control

action

message

communication

social relation

relation

abstraction

freedom

state

permission

Fig. 6.3 WordNet structure
for permission

6.1 Selectional Preferences 73

than those obtained through the random selection of senses (around 28% as
reported in [167]).

6.1.4.1 Discussion

Results show a lower performance for our proposed system compared with
supervised WSD systems—for example, Suarez and Palomar [187] report a score of
0.702 for the same evaluation set of nouns from Senseval-2. In comparison with
existing unsupervised WSD systems (i.e., [3, 45, 167) our method has better recall
but lower precision, in some cases, because our method only considers verb-noun
relationships and sometimes a word’s sense is strongly linked to a preceding noun
(this is particularly true for pairs of nouns that form a single PP).

On the other hand, our method has relatively low coverage since we only
consider verb-subject and verb-object relationships. Other WSD methods may rely
on other relationships, such as adjective-noun and other relationships involving
modifiers. For example, we find the following text in the evaluation set: The
Apocalypse has nothing to do with Star Wars or the atomic bomb. The sense of the
word bomb is completely determined by its adjective (atomic)—not by the central
verb of the subordinate clause (do). Thus, in this case, determining the sense of
bomb with the full combination of do, with, and bomb is not the best strategy.

In order to improve this method, we can include more information regarding
combinations of adjectives and adverbs.

6.1.5 Other Applications

Besides WSD, information regarding the selectional preferences obtained by this
method can be used to solve important problems such as syntactic disambiguation.
For example, consider the phrase Pintó un pintor un cuadro (literally, “painted a
painter a painting,” which means “a painter painted a painting”). In Spanish, it is
possible to put the subject to the right of the verb. In English, there is ambiguity
since it is not possible to decide which noun is the subject of the sentence; however,
because in Spanish a rather free word order is used, even Pintó un cuadro un pintor
(literally, “painted a painting a painter”) has the same meaning.

For languages in which such freedom of word order does not exist, it is possible
consult the ontology linked with the selectional preferences already constructed
using our proposed method in order to decide which word is the subject (painting or
painter). First, we find that the subject appears to the left of the verb 72.6% of the
time [139]. Then, searching for un pintor pintó (“a painter painted”) returns the
following chain of hypernyms with occurrence values: painter ! artist
1.00 ! creator 0.67 ! human_being 2.48 ! cause 1.98. Finally, the search of
un cuadro pintó (“a painting painted”) returns scene ! situation 0.42 ! state
0.34. That is, painter (1.00) is more likely to be the subject than painting (0.42) for

74 6 Applications

this sentence. A large-scale implementation of this method is a planned topic of
future work.

6.1.6 Conclusions

We have presented a method for extracting selectional preferences that are linked to
an ontology and applied those preferences to WSD. The obtained information is
useful for solving several tasks that require information about the use of words in
relationship to a verb in a sentence. The results of our WSD evaluation show that,
despite still having much room for improvement, we have obtained results that are
comparable with those of previous works that assume no morphological, PoS, or
semantic annotation.

6.2 Steganography

Linguistic steganography allows information to be hidden in a text. The resulting
text must be grammatically correct and semantically coherent to be accurate.
Among several methods of linguistic steganography, we adhere to previous
approaches that use synonymous paraphrasing, i.e., substituting content words with
their equivalent. Context must be considered in order to avoid substitutions that
could disrupt the text’s coherence (for example, spicy dog instead hot dog). We
base our method on previous works in linguistic steganography that use colloca-
tions to verify context, but propose using selectional preferences instead of collo-
cations because selectional preferences can be collected automatically in a reliable
manner, thus allowing our method to be applied to any language.

Our work is based on previous works [15, 17] that use a manually collected
collocations database. However, manually collecting collocations could take many
years; one Russian collocations database [16] took more than 14 years to complete.
On the other hand, using the Internet to verify collocations [20] is not adequate for
split collocations (such as make an awful mistake) because current web search
engines do not allow such searches—the closest search tool is the NEAR operator,
which is not precise because it is not restricted to a single sentence.

6.2.1 Some Definitions

Linguistic steganography comprises a set of methods and techniques that allow
information to be hidden in a text based on the reader’s own linguistic knowledge.
To be effective, the resulting text must have grammatical correctness and semantic
cohesion.

6.1 Selectional Preferences 75

There are two main approaches to linguistic steganography: (1) generating text
and (2) changing previously written text. To illustrate the first approach, consider a
verb–preposition–noun sentence model. This model can generate valid sentences
such as go to bed, sing a song, etc. However, a non-trivial problem arises when
trying to generate a coherent text using this sentence: John goes to bed, and then
John sings a song. This type of non-coherent text is not free of suspicion. As
Chapman et al. [46] indicates, the same happens when using more elaborate sen-
tence models extracted from previously written text.

In the second approach, some words in the source text are replaced by other
words, depending on the bit sequence to be hidden. These changes are detectable
only at the intended receiver’s side. In the best cases, the resulting text maintains
the original meaning of the source text.

As in [15, 17, 20], we adhere to the second approach because it is far more
realistic; indeed, generating text from scratch requires not only syntactic and
semantic information but also pragmatic information.

In this work, we do not consider other methods of textual steganography such as
text formatting, varying space width, or other non-linguistic encoding methods. We
do not consider such methods because genuine linguistic methods allow a message
to be transmitted independent of the medium—linguistic steganography allows a
message to be transmitted over the internet, the telephone, a radio broadcast, etc.

To put it in other words, we continue to develop the method of linguistic
steganography that replaces textual words by their synonyms [15]. This work
allows information to remain concealed in unsuspicious texts along with linguistic
correctness and the original meaning of the source text. In addition, we take
advantage of existing resources to extend coverage of this method to virtually any
language—whenever the resources required exist for that language. We do so by
considering an alternative source for the context of words.

6.2.2 The Context of Words

The context of a given word is the words that surround it within a sentence. In many
studies, only the surrounding words are considered when forming collocations with
the given word. Other authors consider collocations as a sequence of two or more
consecutive words that has characteristics of a syntactic and semantic unit and
whose exact and unambiguous meaning or connotation cannot be derived directly
from the meaning or connotation of its components, as defined by Choueka [51].
Examples that fall within this definition, including idioms, are hot dog, white wine
(actually white wine is yellow) [122], kick the bucket, and piece of cake.

Furthermore, current usage of the term collocation also includes combinations of
words that maintain their original meaning (such as strong coffee) but are consid-
ered collocations because substituting any one of their components with equivalent
words yields an understandable but unusual combination (such as powerful coffee,
strong rain (instead of heavy rain), and do a mistake (instead of make a mistake)).

76 6 Applications

Moreover, collocations are not necessarily adjacent words, e.g., making an awful
mistake may involve subcategorization issues, as we illustrate below.

The links between components of collocations are syntagmatic. These are, for
example, the link between a verb and a noun filling its valence (made ! of stone)
or the link between a noun and its adjective modifier (black ← stone). This type of
relationship can be clearly seen in a dependency representation. The context of a
word is given then by its dependency relationships. For example, consider the
sentence Mary read us a fairy tale in Fig. 6.4.

To illustrate the influence of a word’s context in a sentence, we substitute words
with their equivalent (i.e., synonyms). For example, among synonyms of fairy are
pixie and nymph. Substituting fairy by these equivalents yields, however, a very
strange sounding sentence—Mary read us a pixie tale or Mary read us a nymph
tale—which is possible but sounds odd since fairy depends strongly on tale.
Another example is substituting yarn for tale—forgetting about fairy for a moment.
In this case, it is odd to say read us a yarn, since it would be much more natural to
say spin us a yarn instead—not considering spin us a fairy yarn! This shows the
strength between the verb (read and spin) and one of its arguments (tale and yarn,
respectively).

Subcategorization has an important role in collocation consideration. For
example, consider the synonyms for to tell: to relate, to spin, and to say. If one
wanted to change read for one of its synonyms, its context and structure must be
considered in order to maintain the same meaning—and naturalness—of the sen-
tence. Simply changing read to related would yieldMary related us a fairy tale; for
this to be a natural-sounding sentence, a different structure (i.e., subcategorization
frame) should be used: Mary related a fairy tale to us.

In contrast to this latter example, in this work we focus only on synonyms that
maintain the structure and word order of a sentence as well as the number of words
—counting stable multi-words such as hot dog as one unit. We use word combi-
nations to verify that the synonymous paraphrasing results in a natural and coherent
text.

6.2.3 Verifying Word Combinations

Our goal is to create synonym paraphrasing that considers context. In [15, 17] a
previously collected collocation, DB was used. Currently, however, only a few

taleus

read

Mary

a fairy

Fig. 6.4 Simplified
dependency representation
tree for Mary read us a fairy
tale

6.2 Steganography 77

electronic collocation databases are readily available. To our knowledge, such
publicly available databases did not exist until 1997, when the Advanced Reader’s
Collocation Searcher (ARCS) for English emerged [14]; however, this is now
inferior to the Oxford Collocation Dictionary [148] in all respects.

The only project in the last decade to develop a very large collocation DB for
local use was dedicated to the Russian language and produced an interactive system
called CrossLexica [16, 18, 19]. It is mainly a large database of Russian colloca-
tions, but it also contains the equivalent of a Russian WordNet that contains a
synonym dictionary and a hyponym/hypernym hierarchy.

A manually collected DB of collocations cannot list every possible pair of words
—especially free word combinations such as big boy, walk in the street, etc. Thus,
several methods for extracting collocations automatically are described in [122,
154]. However, the quality of these automatically obtained collocations is not as
good as the quality of those obtained by hand. In addition, as we showed in
Sect. 6.2.2, the context of a word is strongly related to the structure of the sentence.
Hence, we need linguistic knowledge in addition to purely statistic methods.

Furthermore, polysemous words have several synonyms that cannot substitute
the original word without changing the meaning of the text because these synonyms
are for other senses of the word. For example plant can be substituted by vegetable
or by factory, depending on context.

Till date, we have identified the following requirements for automatic determi-
nation of possible word combinations: a corpus (from which to learn), semantic
knowledge, and sentence structure. The linguistic knowledge we use, which covers
semantics and allows determination of sentence structure, is a set of selectional
preferences.

6.2.4 Selectional Preferences for Synonym Paraphrasing

Selectional preferences measure the degree to which a verb prefers an argument—a
subject, an object, or a circumstantial modifier. The selectional preferences prin-
ciple can also be applied to adjective-noun relationships, verb-adverb relationships,
and PPs, thus yielding a database of preferences that can be regarded as graded
collocations with the aid of semantic generalizations. For example, if harvest plants
appears in a training corpus and if we know that harvest prefers arguments of the
type flora, then we can restrict synonyms for plant to those that are only related to
flora, thus excluding those related to manufacturing processes.

In addition, selectional preferences can aid in the determination of sentence
structures. For example, the syntactic structure of I see the cat with a telescope is
disambiguated considering that see with {an instrument} is more frequently used
than is cat with a {instrument}. Calvo and Gelbukh propose a method for PP
attachment disambiguation in [41] and show how this information can be used to
restrict a word’s meaning in [38].

78 6 Applications

For this work, we use a selectional preferences database that is based on a corpus
containing four years’ worth of Mexican newspapers with 161 million words, as in
[39].

6.2.5 The Algorithm

The proposed steganographic algorithm has two inputs:

• The information to be hidden, in the shape of a bit sequence.
• The source text, which must be written in a natural language with a minimal

length that is approximately 500 times greater than that of the information to be
hidden. The text format can be arbitrary, but the text proper should be ortho-
graphically correct so as to lessen the probability of unintended corrections
during transmission. Such corrections can change the number of synonymous
words in the text or the conditions for their verification and, thus, desynchronize
the steganography versus steganalysis. The text should not be semantically
specific, i.e., it should not be a mere list of names or sequence of numbers. In
this respect, newswire flows or political articles are quite acceptable. Any long
fragments of an inappropriate type increase the total length required for
steganographic use.

The steps of the algorithm follow:
A1. Tagging and lemmatizing. The text is tagged using the TnT tagger, which has
been trained with the Spanish corpus LEXESP [179]. That corpus has been reported
to be 94% accurate for the Spanish language [142]. The text is then lemmatized by
trying morphological variants against a dictionary [116].
A2. Identification of word combinations that can be paraphrased. The fol-
lowing patterns are extracted for each sentence; subordinate clauses are treated as
separated sentences so that there is only one verb per sentence.

(i) noun+verb
(ii) verb+noun
(iii) noun+preposition+noun
(iv) verb, preposition+noun

The symbol “+” denotes adjacency while a comma denotes near to—in the same
sentence. All other words—adverbs, adjectives, articles, etc.—are discarded.

For patterns iii and iv, ambiguity is possible when certain nouns are attached to
either the previous noun or the main verb of the sentence. For example, in I eat rice
with chopsticks, the noun chopsticks could be attached to either rice or eat. This
ambiguity is solved by considering the strengths of the selectional preferences of
both possibilities. Only the strongest combination is considered [39]. In the pre-
vious example, eat with chopsticks (pattern iv) is stronger than rice with chopsticks

6.2 Steganography 79

(pattern iii). Conversely, in I eat rice with beans, rice with beans (pattern iii) is
stronger than eat with beans (pattern iv).
A3. Selectional preference evaluation of synonyms. Synonyms are generated for
each word (except prepositions) in the pattern. Then, different combinations are
tested against a previously acquired selectional preferences database—details on
how to extract this database are described in Sect. 6.2.4. This database yields a
score for a given combination. This score is calculated using a mutual information
formula: freq(w1, w2)/[freq(w1) +freq(w2) + freq(w1, w2)]. Different formulae for
calculating mutual information are presented in [122]. If the score of a combination
is greater than a threshold, the combination is listed as a possible substitution. Some
patterns may have more than one possible substitution, in which case each is listed
in a particular order, e.g., starting from the highest selectional preferences and
ending with the value closest to a given threshold. Additionally, the original con-
struction is ranked using the same selectional preferences database.
A4. Enciphering. Each bit of information to be encoded decides which synonym
paraphrasing will be done. Some patterns have several options for substitution,
where each paraphrase may represent more than one bit. For example, given four
possible substitutions, it is possible to represent four combinations of two bits—
namely, 00, 01, 10, and 11.
A5. Re-agreement. If there are any substitutions that require simple syntactic
structure changes, these are done now. For example, in Spanish, historia (“story”)
can be substituted by cuento (“tale”), but historia is feminine and cuento is mas-
culine. Thus, it is necessary to change the article la (feminine “the”) to el (mas-
culine “the”), which results in el cuento and avoids la cuento.

At the receiver side, it is necessary to decode the hidden information, which is
the task of a specific decoder-steganalyzer. The decoder-steganalyzer possesses the
same resources as the encoder: the selectional preferences database and the tagging
module. The text is tagged as in A1; the patterns are extracted as in A2. The
synonym paraphrases are ranked as in A3; bits are extracted by mapping each
possible combination in the same way as in A3 and A4. Re-agreement does not
represent a problem during the decoding process, because articles and other words
were discarded in A1.

6.2.6 A Manually Traced Example in Spanish

To illustrate the above-mentioned algorithm, we apply our method to hide a small
amount of information in a fragment of Spanish text that has been extracted from a
local newspaper2—see Fig. 6.5. The translation of this fragment is: “Sheltered in
the Madison Square Garden to protect themselves against “terrorist” and protester’s
threats, Republicans began their celebration with self-congratulations of how they

2La Jornada, Mexico, August 2004.

80 6 Applications

handled September 11. Indeed, when NY was selected to host the convention, the
idea was to return under the shadow of the Twin Towers with G. W. Bush, as
Commander in Chief of Iraq and Afghanistan, leading the great struggle of good
against the “axes of evil.” But reality necessitated that the program’s angle
change…”.

We have listed several possible synonyms (obtained from a dictionary [113]) for
various words in this example. Not every substitution is verifiable since our
selectional preferences database does not contain every possible instance. Such is
the case for combinations such as Madison Square Garden, for example. Other
combinations—asegurar(se) contra amenazas (“ensure (themselves) against
threats”) versus consolidar(se) contra amenazas (“consolidate (themselves) against
threats”)—can be verified in our selectional preferences database: the first yields a
score of 3 and the second yields a score of 0.2. If we set our threshold at around 0.5,
the second option will be discarded.

Table 6.1 gives additional combinations of nouns that have been verified by the
selectional preferences database. Entries not contained in the selectional preferences
database are marked with a question mark (“?”).

In Table 6.1, combinations above the threshold (0.5) are shown in bold.
Alternative possibilities that allow the representation of one bit are marked in light
gray; those that can represent two bits are marked with dark gray.

The fragment of text used for our example can hide eight bits (i.e., 1 byte) of
information. The text has around 500 bytes. Thus, the ratio that measures

en el Madison Square Garden para contra amenazas "terroristas"

y de manifestantes, los republicanos su festejo con auto elogios de cómo

el 11 de septiembre. De hecho, cuando se a NY para la

convención, la era regresar bajo la de las Torres Gemelas con G. W.

Bush como comandante en en Irak, Afganistán y la gran del

contra los "ejes del mal". Pero la realidad ha obligado a cambiar el

del programa...

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Guarecidos
osResguardad

dosAtrinchera

⎭
⎬
⎫

⎩
⎨
⎧

seconsolidar
asegurarse

⎭
⎬
⎫

⎩
⎨
⎧

seconsolidar
asegurarse

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

retaron*
* noraifased

oratnerfne n
encararon

⎭
⎬
⎫

⎩
⎨
⎧
eligió
seleccionó

⎭
⎬
⎫

⎩
⎨
⎧
eligió
seleccionó

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

creencia*
proyecto

concepto*
idea

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

* dadicapo
silueta*

sombra

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

* nórtap
líder*

jefe

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

oconduciend
empezando*

* odnaicini
oencabezand

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

oconduciend
empezando*

* odnaicini
oencabezand

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

sí*
* anutrof

patrimonio*
bien

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

aire
* azreuf
tono

Fig. 6.5 Text with synonyms for paraphrasing—bad substitutions are marked with *

6.2 Steganography 81

steganographic bandwidth is approximately 0.002, which means that the text must
be 500 times longer than the hidden information.

6.2.7 Conclusions

As with its previous version, the proposed method of linguistic steganography
conserves the meaning of the carrier text as well as its inconspicuousness. One of
the main advantages of our method is that it does not require a manually collected
database of collocations. Instead, automatically extracted selectional preferences are
used to acquire a large database. Since the method presented in this section is based
on automatically acquired resources, it is possible to extend its application to many
languages, e.g., Spanish. The results are less refined than those obtained with
manually collected collocations, but they seem acceptable.

Table 6.1 Verified combinations and their score(s) from Fig. 3.2

word combination s word combination s word combination s
atrincherar en Madison ? creencia ser 0.31 conducir torneo 0.03
resguardar en Madison ? sombra de torre ? encabezar riña 0
guarecer en Madison ? silueta de torre ? empezar riña 0
asegurar contra
amenaza

3 opacidad de torre ? conducir riña 0

consolidar contra
amenaza

0.2 comandante en jefe 6.7 lucha de bien 0.7

iniciar festejo 0.7 comandante en líder 0.45 lucha de patrimonio 0
comenzar festejo 0.8 comandante en

patrón
0.4 lucha de fortuna 0

emprender festejo 0.4 jefe en Irak ? lucha de sí 0
originar festejo 0 líder en Irak ? torneo de bien 0
encarar 11 ? patrón en Irak ? torneo de fortuna 0
enfrentar 11 ? encabezar lucha 2.1 torneo de sí 0
desafiar 11 ? iniciar lucha 1.75 riña de bien 0
retar 11 ? conducir lucha 0.8 riña de patrimonio 0
seleccionar a NY 1.3 encabezar rivalidad 0.67 riña de fortuna 0
elegir a NY 1.2 iniciar torneo 0.47 riña de sí 0
celebrar convención 1.9 empezar lucha 0.4 rivalidad de bien 0
hacer convención 1.8 empezar torneo 0.3 rivalidad de

patrimonio
0

realizar convención 1.6 encabezar torneo 0.28 rivalidad de fortuna 0
festejar convención 0.5 iniciar rivalidad 0.08 rivalidad de sí 0
idea ser 0.7 iniciar riña 0.05 aire de programa 0.66
proyecto ser 0.6 empezar rivalidad 0.05 tono de programa 0.54
concepto ser 0.4 conducir rivalidad 0.05 fuerza de programa 0.23

82 6 Applications

On the other hand, the mean steganographic bandwidth value of 0.002, which is
obtained with local synonymous paraphrasing, seems rather low. An example of the
maximum synonym paraphrasing that can be reached is provided in [15]. That
study argues that, by starting from the samples of synonymous paraphrasing given
by I. Mel’čuk, the maximum steganographic bandwidth can reach approximately
0.016; this value can be obtained by considering synonym paraphrasing for com-
plete phrases, such as ayudar (“to help”) and dar ayuda (“to give help”). Compiling
a list of such phrases that can be substituted for one another is currently in the very
early stages of development. Our method reaches 12.5% of the maximum possible
level without considering adjective variants. Thus, the obtainable value of synonym
paraphrasing bandwidth evidently depends on how saturated the linguistic resour-
ces are. For this reason, such resources should be developed further, without any
clear-cut limits of perfection. In particular, the bandwidth value obtained by our
method can be improved by taking adjective variants into consideration; this is,
thus, part of our planned future work.

As to our algorithm, we hardly consider it faultless. The following issues now
seem especially acute:

• Large chains of word combinations, such as encabezando la lucha del bien
contra los “ejes del mal” (“leading the great struggle of good against the ‘axes
of evil’”) can lead to the wrong selection of synonyms since each combination is
considered only by pairs, ignoring every other combination that makes up the
whole.

• A large database of named entities is necessary in order to recognize phrases
such as el 11 de septiembre (“September 11”) or Madison Square Garden.
Particularly, using the selectional preferences model can help because knowing
that Madison Square Garden is a place helps to evaluate combinations such as
Atrincherados/resguardados/guarecidos en el Madison Square Garden
(“Entrenched/protected/sheltered/in Madison Square Garden”).

• Threshold adjustments should be made automatically.

Each of these problems will be investigated in depth in future work.

6.2 Steganography 83

Chapter 7
Prepositional Phrase Attachment
Disambiguation

7.1 Using the Internet

The problem of disambiguating PP attachments consists of determining if a PP is
part of a noun phrase (as in He sees the room with books) or a verb phrase (as in He
fills the room with books). Volk has proposed two variants of a method that queries
an Internet search engine to find the most probable PP attachment [194, 195]. Here,
we apply the latest variant of Volk’s method to Spanish, with several differences
allowing us to attain better performance nearer that of statistical methods using
treebanks.

7.1.1 Introduction

In many languages, PP, such as in the garden, can be attached to either noun
phrases (NPs)—the grasshopper in the garden—or verb phrases (VPs)—plays in
the garden. Sometimes several possibilities exist for a single PP attachment. For
example, in The police accused the man of robbery, there are two possibilities:
(1) the object is the man of robbery, or (2) the object is the man and the accusation
is of robbery. English speakers know that the second option is the correct one,
whereas a machine needs a method to automatically determine the correct option.

Several methods based on treebank statistics exist for finding the correct PP
attachment place. These methods have been reported to achieve accuracy rates of up
to 84.5% (see [28, 57, 77, 134, 162, 210]). However, resources like treebanks are
not available for many languages and are difficult to port; thus, a method that is less
resource-demanding is desirable. Ratnaparkhi shows in [163] a method that requires
only a PoS tagger and morphological information; in that method, raw text is used
to train the tagger.

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_7

85

The quality of the training corpus significantly determines the results’ correct-
ness. In particular, in order to reduce the effects of noise in a corpus and to consider
most phenomena, a very large corpus is desirable. Eric Brill argues in [27] that it is
possible to achieve state-of-the-art accuracy with relatively simple methods whose
power comes from the plethora of text available to these systems. His study also
gives examples of several natural language processing (NLP) applications that
benefit from the use of very large copora.

Nowadays, large corpora comprise more than 100 million words, and the Web
can be seen as the largest corpus with more than one billion documents. Particularly
for Spanish, Bolshakov and Galicia-Haro report that approximately 12,400,000
pages can be found through Google [16]. We can consider the Web as a corpus big
enough and diverse enough to obtain better results using statistical NLP methods.

Using the Web as corpus is a recently growing trend; a count of existing research
that tries to harness the potential of the Web for NLP can be found in [108]. In
particular, for the problem of finding the correct PP attachment, Volk [194, 195]
proposes variants of a method that queries an Internet search engine to find the most
probable PP attachment.

Here, we show the results of applying the latest variant of Volk’s method with a
few key differences to Spanish. In Sect. 7.1.2, we explain the variants of Volk’s
method. In Sect. 7.1.3, we discuss the differences between his method and ours. In
Sect. 7.1.4, we provide details of our experiment and the results obtained. Finally,
in Sect. 7.1.5, we present our conclusions.

7.1.2 Volk’s Method

Volk proposes two variants of the same method to decide whether a PP attaches to
an NP or VP. In this section, we describe both variants and discuss their results.

7.1.2.1 First Variant

In [194], Volk proposes uses the Web as a corpus to disambiguate PP attachments
by considering the co-occurrence frequencies (freq) of verb+preposition construc-
tions against those of noun+preposition constructions. The formula used to calcu-
late these co-occurrence frequencies is:

cooc(X,P) = freq(X,P) / freq (X)

where X can be either a noun or a verb. For example, for He fills the room with
books, N = room, P = with, and V = fill. cooc(X,P) is a value between 0 (no
co-occurrences found) and 1 (co-occurrence always happens).

freq (X,P) is calculated by querying the Altavista search engine using the
NEAR operator: freq(X,P) = query(''X NEAR P'').

86 7 Prepositional Phrase Attachment Disambiguation

To choose the correct attachment, cooc(N+P) and cooc(V+P) are calculated
and the higher value determines the attachment. If a cooc value is lower than a
minimum co-occurrence threshold, the attachment cannot be decided; thus, it is not
covered. By adjusting the minimum co-occurrence threshold, Volk’s 2000 algo-
rithm can attain either very good coverage and poor accuracy or very good accuracy
and low coverage. Table 7.1 shows the coverage/accuracy values for Volk’s
experiments.

Volk also concludes, in [194], that using full forms is better than using lemmas.
Vandeghinste conducted the same experiment in Dutch [192] and obtained a

coverage of 100% and an accuracy of 58.4%. To obtain an accuracy of 75%,
Vandeghinste used a threshold of 0.606, which yielded a coverage of only 21.6%.

7.1.2.2 Second Variant

In a subsequent article [195], Volk used a different formula to calculate
co-occurrences. Now, the head noun of the PP is included within the queries. The
formula is as follows:

cooc(X,P, N2) = freq(X, P, N2) / freq(X)

freq (X,P,N
2
) is calculated by querying the Altavista search engine using the

NEAR operator: freq(X,P,N
2
) = query(“X NEAR P NEAR N

2
”). X can be N1 or

V. For example, for He fills the room with books, N1 = room, P = with, N2 = books
and V = fill.

Volk experiments first with requiring that both cooc(N
1
,P,N

2
) and cooc(V,P,N

2
)

be calculated to determine a result. Then, he considers using a threshold to deter-
mine the PP attachment if either cooc(N1

,P,N
2
) or cooc(V,P,N2

) is unknown. That
is, if cooc(N1

,P,N
2
) is unknown, cooc(V,P,N2

) must be higher than the threshold to
decide that the PP is attached to the verb and vice versa. Afterward, by including
both lemmas and full forms in queries, Volk attains a better performance; fur-
thermore, by defaulting to noun attachments for previously uncovered attachments,
he attains a coverage of 100%. His results are shown in Table 7.2.

In Vandeghinste’s Dutch experiments, requiring both cooc(N
1
,P,N

2
) and

cooc(V,P,N
2
) achieves a coverage of 50.2% with an accuracy of 68.92%. By using

a threshold and including both lemmas and full forms in queries, he reaches 27%
coverage with an accuracy of 75%. To obtain 100% coverage, Vandeghinste
defaults previously uncovered cases to noun attachments, obtaining an accuracy of
73.08%.

Table 7.1 Coverage and
accuracy for Volk’s 2000
algorithm

Threshold Coverage (%) Accuracy (%)

0.1 99.0 68

0.3 36.7 75

0.5 7.7 82

7.1 Using the Internet 87

7.1.3 Improving Performance

Methods for resolving PP attachment ambiguity based on treebank statistics
achieve, by far, better performance than do the experiments described above.
Nonetheless, we believe that several elements could be changed to improve
methods based on Web queries.

One such element is the size of the document databases of search engines—
indeed, this is relevant to obtaining representative co-occurrence frequencies for
any given language. We know that not every search engine yields the same results.
For example, Table 7.3 shows the number of co-occurrences found using different
search engines for the same words.

A recent “search engine showdown”1 lists Google as having the largest docu-
ment database. Thus, we have determined that using Google to obtain word
co-occurrence frequencies will likely yield better results.

Another element to consider is the use of the NEAR operator. We decided not to
use it for our experiments because it does not guarantee that query words appear in
the same sentence. Consider the following queries from Altavista:

wash NEAR with NEAR door 6,395 results (1)

wash NEAR with NEAR bleach 6,252 results (2)

(1) yields 6,395 pages found, even when books are unrelated to the wash
operation, and (2) yields 6,252 pages found. Thus, we can see that there is not a clear

Table 7.2 Results of Volk’s 2001 method

Coverage
(%)

Accuracy
(%)

Requiring
both cooc
(N1,P,
N2) and
cooc(V,P,N2)

Threshold when
one of cooc
(N1,P,N2) or
cooc(V,P,N2)
is not known

Includes
both
lemmas
and full
forms in
queries

Defaults to
noun
attachment
for
uncovered
attachments

55 74.32 ✓ NA

63 75.04 0.001

71 75.59 0.001 ✓

85 74.23 0 ✓

100 73.08 0 ✓ ✓

Table 7.3 Number of
co-occurrences found using
different search engines

leer en el metro read in the subway

Google 104 30

All-the-web 56 23

Altavista 34 16

Teoma 15 19

1www.searchengineshowdown.com

88 7 Prepositional Phrase Attachment Disambiguation

distinction for when a preposition+noun is related to a verb. On the other hand, using
an exact phrase search yields 0 results, marking a clear distinction between “wash
with door” and “wash with bleach.” The results found are as follows:

Exact phrase search Results Search engine

“wash with door” 0 Altavista

“wash with bleach” 100 Altavista

“wash with door” 0 Google

“wash with bleach” 202 Google

Following [195], we use jointly full forms and lemmatized forms of nouns and verbs
to obtain better performance. However, since we are not using the NEAR operator, we
must consider the determiners that can be placed between the noun or verb and the
preposition. Also, we consider that the nucleus of the PP might appear in plural form
without affecting its use. To illustrate this, consider the following sentence2:

Veo al gato con un telescopio (“I see the cat with a telescope”)

The attachments are calculated by the queries shown in Table 7.4.
Since freq(veo,con,telescopio) is higher than freq(gato,con,

telescopio), the attachment is given to veo con telescopio.

7.1.4 Experiment and Results

For our evaluation, we randomly extracted 100 sentences from the LEXESP corpus
of Spanish [64] and the newspaper Milenio Diario.3 All searches were restricted to
only pages in Spanish.

First, we considered not restricting queries to a specific language, given that a
benefit could be obtained from retrieving similar words across languages—such as
French and Spanish. For example, the phrase responsables de la debacle (“culprits
of the collapse”) is used in both languages with the only difference being the word
accentuation for debacle (débâcle in French, debacle in Spanish). As Google does
not take into account word accentuation, results for both languages are returned by
the same query. However, with an unrestricted search, Google returns different
counts in its API4 than it does in its GUI.5 For example, for ver (“to see”), Google’s
GUI returns 270,000 results, whereas its API returns more than 20,000,000, even
with the “group similar results” filter turned on. This enormous deviation can be
reduced by restricting queries to a specific language. By restricting the query to

2Example borrowed from [79].
3www.milenio.com.
4Google API is a web service that uses the SOAP and WSDL standards to allow a program to
directly query the Google search engine. More information can be found at api.google.com .
5www.google.com.

7.1 Using the Internet 89

Spanish, a search for ver (“to see”) returns 258,000 results in Google’s GUI,
whereas the API returns 296,000. We do not know the reason for this difference, but
it does not have a significant impact on our experiment (Table 7.5).

Table 7.4 Queries to determine the PP attachment of Veo al gato con un telescopio and I see the
cat with a telescope

Veo al gato con un telescopio Hits I see the cat with a telescope Hits

ver 296,000 see 194,000,000

“ver con telescopio” 8 “see with telescope” 13

“ver con telescopios” 32 “see with telescopes” 76

“ver con un telescopio” 49 “see with a telescope” 403

“ver con el telescopio” 23 “see with the telescope” 148

“ver con unos telescopios” 0 “see with some telescopes” 0

“ver con los telescopios” 7 “see with the telescopes” 14

veo 642,000

“veo con telescopio” 0

“veo con telescopios” 0

“veo con un telescopio” 0

“veo con unos telescopios” 0

“veo con el telescopio” 1

“veo con los telescopios” 0

freq(veo,con,telescopio) = 1.279 � 10−4 freq(see,with,telescope) = 3.371 � 10−6

gato 185,000 cat 24,100,000

“gato con telescopio” 0 “cat with telescope” 0

“gato con telescopios” 0 “cat with telescopes” 0

“gato con un telescopio” 3 “cat with a telescope” 9

“gato con unos telescopios” 0 “cat with some telescopes” 0

“gato con el telescopio” 6 “cat with the telescope” 2

“gato con los telescopios” 0 “cat with the telescopes” 0

freq(gato,con,telescopio) = 0.486 � 10−4 freq(cat,with,telescope) = 0.456 � 10−6

Table 7.5 Occurrence examples for some verbs in Spanish

Triple Literal English
translation

Occurrences % of total verb occurrences
(%)

ir a {actividad} go to {activity} 711 2.41

ir a {tiempo} go to {time} 112 0.38

ir hasta {comida} go until {food} 1 0.00

beber {sustancia} drink {substance} 242 8.12

beber de {sustancia} drink of {substance} 106 3.56

beber con {comida} drink with {food} 1 0.03

amar a
{agente_causal}

love to {causal_agent} 70 2.77

amar a {lugar} love to {place} 12 0.47

amar a {sustancia} love to {substance} 2 0.08

90 7 Prepositional Phrase Attachment Disambiguation

The sentences used in our experiment contain 181 cases of preposition attach-
ment ambiguity. From those, 162 could be automatically resolved; these were
verified manually, and it was determined that 149 were resolved correctly and 13
incorrectly.

We obtained a coverage of 89.5% with an accuracy of 91.97%, compared with
the coverage and accuracy obtained by Volk. Without considering coverage, the
overall percentage of attachment ambiguities resolved correctly is 82.3%.

7.1.5 Conclusions

We have managed to improve performance using Volk’s method by implementing
the following differences: using exact phrase searches instead of the NEAR operator,
using a search engine with a larger document database, searching combinations of
words that include definite and indefinite articles, and searching for both the sin-
gular and plural forms of words when possible. The results obtained with this
method (89.5% coverage, 91.97% accuracy, 82.3% overall) are very close to those
obtained using treebank statistics, without the need of such resources. Our method
can be tested at likufanele.com/ppattach.

7.2 PP Attachment Disambiguation Using Selectional
Preferences

Extracting information automatically from texts for database representation requires
previously well-grouped phrases so that entities can be separated adequately. This
problem is known as PP attachment disambiguation. Current PP attachment dis-
ambiguation systems either require an annotated treebank or use an Internet search
engine to achieve a precision of more than 90%. Unfortunately, such resources are
not always available. In addition, using the same techniques that use the Web as a
corpus may not achieve the same results when using local corpora. Here, we present
an unsupervised method for generalizing local corpora information by means of the
semantic classification of nouns based on the top 25 unique beginner concepts of
WordNet. We then propose a method that uses this information for PP attachment
disambiguation.

Extracting information automatically from texts for a structured representation
requires previously well-grouped phrases so that entities can be separated ade-
quately. For example, in the sentence See the cat with a telescope, two different
groupings are possible: See [the cat] [with a telescope] or See [the cat with a
telescope]. The first case involves two different entities, while the second case has a
single entity. This problem is known in syntactic analysis as PP attachment
disambiguation.

7.1 Using the Internet 91

There are several methods for disambiguating a PP attachment. Earlier methods,
e.g., those described in [28, 162], achieve accuracy rates of up to 84.5% using
treebank statistics. Kudo and Matsumoto [113] obtained 95.77% accuracy with an
algorithm that required weeks of training, and Lüdtke and Sato [120] achieved
94.9% accuracy with one that only required three hours. Both methods require a
corpus that is annotated syntactically with chunk marks; however, this kind of
corpus is not available for every language and the cost of building one is rather
high, considering the number of person-hours that are required. A method that
works with untagged text is presented in [36]. That method has an accuracy rate of
82.3% and uses the Web as a corpus, which means that it can be slow—up to 18
queries are used to resolve a single PP attachment ambiguity, and each preposition
+noun pair found in a sentence multiplies that number.

The algorithm presented in [36] is based on the idea that a very big corpus has
enough representative terms to allow PP attachment disambiguation. Since it is
possible to have very big corpora locally these days, we ran experiments to explore
the possibility of applying such a method without an Internet connection. We tested
with a very big corpus of 161 million words in 61 million sentences. This corpus
was obtained online and pulled three years’ of publication from four newspapers.
The results were disappointing—the same algorithm that used the Web as a corpus
to yield a recall of almost 90% had a recall of only 36% and a precision of almost
67% using this local newspaper corpus instead of the Web.

Therefore, we hypothesize that the information contained in the local newspaper
corpus needs to be generalized in order to maximize recall and precision. To do so,
selectional preferences—which measure the probability that a complement is used
for a certain verb, based on the semantic classification of the complement—may be
used. In this way, the problem of analyzing I see the cat with a telescope can be
solved by instead considering I see {animal} with {instrument}.

For example, to disambiguate the PP attachment for the sentence Bebe de la
jarra de la cocina (“(he) drinks from the jar of the kitchen”), selectional preferences
provide information such as the knowledge that from {place} is an uncommon
complement for the verb bebe (“drinks”) and, thus, the probability of attaching this
complement to bebe is low. Therefore, it is attached instead to the noun jarra,
yielding Bebe de [la jarra de la cocina] (“(he) drinks [from the jar of the kitchen]”)
(Fig. 7.1).

Table 7.8 gives additional occurrence examples for some Spanish verbs. From
this table, we can see that the verb ir (“to go”) is mainly used with the complement
a {activity} (“to {activity}”). Lesser used combinations have almost zero occur-
rences, such as ir hasta {food} (which literally means “go until {food}”). Lastly, the
verb amar (“to love”) is often used with the preposition a (“to”).

In this chapter, we propose a method to obtain selectional preferences infor-
mation such as that shown in Table 7.6. In Sect. 7.2.1, we will briefly discuss
related work on selectional preferences. Sections 7.2.2–7.2.4 explain our method.
In Sect. 7.2.5, we present an experiment and evaluation of our method as applied to
PP attachment disambiguation. Finally, we conclude the chapter. Our conclusions
and plans for future work in this area are discussed in Sect. 7.2.6.

92 7 Prepositional Phrase Attachment Disambiguation

Fig. 7.1 Examples of words for the categories shown in Table 7.1

Table 7.6 Examples of semantic classifications of nouns

Word English translation Classification

rapaz
rapidez
rapiña

predatory
quickness
prey

activity
activity
shape

rancho ranch place

raqueta racket thing

raquitismo rickets activity

rascacielos skyscraper activity

rasgo feature shape

rastreo tracking activity

rastro track activity

rata rat animal

ratero robber causal agent

rato moment place

ratón mouse animal

raya
boundary
manta ray
dash

activity
animal
shape

rayo ray activity

raza race grouping

razón reason attribute

raíz root part

reacción reaction activity

reactor reactor thing

real real grouping

realidad reality attribute

realismo realism shape

realización realization activity

realizador producer causal agent

7.2.1 Related Work

The terms selectional constraints and selectional preferences are relatively new,
although similar concepts are present in works such as [71, 199]. One of the earliest
works using these terms is [166], where Resnik considered selectional constraints to

7.2 PP Attachment Disambiguation Using Selectional Preferences 93

determine the restrictions that a verb imposes on its object. Selectional constraints
have rough values, such as whether an object of a certain type can be used with a
verb. Selectional preferences are graded and measure, for example, the probability
that an object is used for a given verb [167]. Such works use a shallow parsed
corpus and a semantic class lexicon to find selectional preferences for word sense
disambiguation.

Another work that uses semantic classes for syntactic disambiguation is [160]. In
that work, Prescher et al. use an EM clustering algorithm to obtain a probabilistic
lexicon based on classes. This lexicon is used to disambiguate target words in
automatic translation.

A work that particularly uses WordNet classes to resolve PP attachment is [28].
In that work, Brill and Resnik apply the transformation-based error-driven learning
model to disambiguate the PP attachment, obtaining an accuracy of 81.8%; theirs is
a supervised algorithm.

As far as we know, selectional preferences have not yet been used in unsuper-
vised models for PP attachment disambiguation.

7.2.2 Sources of Noun Semantic Classification

A semantic classification for nouns can be obtained from existing WordNets by
using a reduced set of classes that correspond to the unique beginners for WordNet
nouns described in [90]. These classes are activity, animal, life_form, phenomenon,
thing, causal_agent, place, flora, cognition, process, event, feeling, form, food,
state, grouping, substance, attribute, time, part, possession, and motivation. To
these unique beginners, name and quantity are added. The name class corresponds
to capitalized words that are not found in the semantic dictionary and quantity class
corresponds to numbers.

Since not every word is covered by WordNet and since there is not a WordNet
for every language, the semantic classes can be alternatively obtained automatically
from human-oriented explanatory dictionaries; a method for doing so is explained
in detail in [37]. Examples of semantic classification of nouns extracted from a
human-oriented explanatory dictionary [115] using this method are shown in
Table 7.8.

7.2.3 Preparing Sources for Selectional Preferences
Extraction

Journals and newspapers are common sources for large amounts of
medium-to-good quality text. However, these media tend to express many ideas in a
small amount of space.

94 7 Prepositional Phrase Attachment Disambiguation

This tendency leads to long sentences that are full of subordinate clauses,
especially for languages that allow an unlimited number of such clauses to be
nested together. Therefore, one of the first problems to be solved is how to break a
sentence into several sub-sentences. Consider, for example, the sentence shown in
Fig. 7.2—it is a single sentence extracted from a Spanish newspaper.

We use two kinds of delimiters to separate subordinate sentences: delimiter
words and delimiter patterns. Examples of delimiter words are pues (“well”), ya que
(“given that”), porque (“because”), cuando (“when”), como (“as”), si (“if”), por eso
(“because of that”), y luego (“and then”), con lo cual (“with which”), mientras (“in
the meantime”), con la cual (“with which”) (feminine), and mientras que (“while”).

Y ahora, cuando
(el mundo) está gobernado por (las leyes del mercado),

cuando
(lo determinante en la vida) es
comprar o
vender, sin
fijarse en <los que
carecen de todo>,
son fácilmente comprensibles <las razones de

<la ola de publicidad global que
convenció <a los posibles compradores de servicios y

regalos > de que
había (grandes razones) para
celebrar> y

como les pareciese poco (el fin de año)
se lanzaron a
propagar (el fin del siglo y del milenio)

Literal English translation:
And now, when
the world is governed by market's laws, when
what determines life is
to buy or
to sell without
taking into account those that
don't have anything,
easily understandable are the reasons for

the global publicity wave that
convinced the possible buyers of services and gifts that
there were great reasons to
celebrate, and

as the end of the year was not enough for them,
they launched themselves
to propagate the end of the century and the millennium

Fig. 7.2 Very long sentence in a style typically found in journals. () surround simple NPs; < >
surround NP subordinate clauses, verbs are in boldface

7.2 PP Attachment Disambiguation Using Selectional Preferences 95

Examples of delimiter patterns are shown in Fig. 7.3; those patterns are PoS-based,
so the text was shallow parsed prior to their application.

The sentence in Fig. 7.2 was separated using this simple technique so that each
sub-sentence would lie in a different row.

7.2.4 Extracting Selectional Preferences Information

Now that sentences are tagged and separated, our purpose is to find the following
syntactic patterns:

1. Verb NEAR Preposition NEXT_TO Noun
2. Verb NEAR Noun
3. Noun NEAR Verb
4. Noun NEXT_TO Preposition NEXT_TO Noun

Patterns 1–3 will be referred to henceforth as verb patterns. Pattern 4 will be
referred as a noun or noun classification pattern. The NEAR operator indicates that
there might be other words in between. The operator NEXT TO indicates that there are
no words in between. Note that word order is preserved; thus, pattern 2 is different
from pattern 3. The results of these patterns are stored in a database. For verbs, the
lemma is stored. For nouns, its semantic classification, when available through
Spanish WordNet, is stored. Since a noun may have several semantic classifications
due to, for example, having several word senses, a different pattern is stored for
each semantic classification. For example, see Table 7.8, which shows the infor-
mation extracted for the sentence in Fig. 7.2 (Table 7.7).

Once this information is collected, the occurrence of patterns is counted. For
example, the last two rows in Table 7.8 (fin, de, año and fin, de, siglo) add two of
each of the following occurrences: place of cognition, cognition of cognition, event
of cognition, time of cognition, place of time, cognition of time, event of time, and
time of time. (An example of the type of information that results from this process is
shown in Table 7.8.) This information is then used as a measur e of the selectional
preference that a noun has to either a given verb or to another noun.

PREP V ,
V ADV que
, PRON V
V PREP N , N V
V PREP N , N PRON V
V PREP N V
V de que

CONJ PRON V
PREP DET que N
N que V
, donde
N , N
CONJ N N V
CONJ N PRON V

CONJ N V
PREP DET V
, N V
N , que V
N , CONJ que
N que N PRON V
CONJ PRON que V V

Fig. 7.3 Delimiter patterns. V verb, PREP preposition, CONJ conjunction, DET determiner, N
noun, and lowercase indicates strings of words

96 7 Prepositional Phrase Attachment Disambiguation

7.2.5 Experimental Results

The procedure explained in the previous sections was applied to a corpus of
161 million words comprising more than three years’ worth of articles from four
different Mexican newspapers. It took approximately three days on a Pentium IV
PC to obtain 893,278 different selectional preferences for verb patterns (Patterns 1–
3) for 5,387 verb roots and 55,469 different semantic selectional preferences for
noun classification patterns (pattern 4).

7.2.5.1 PP Attachment Disambiguation

In order to evaluate the quality of the selectional preferences obtained, we tested
their performance in PP attachment disambiguation. Consider the first two rows of
Table 7.8, which correspond to the fragment governed by the laws of the market.
That fragment reports two patterns of selectional preferences: govern by {cognition}
and govern of {activity/thing}. With these obtained selectional preferences, it is
possible to automatically determine the correct PP attachment: values of
co-occurrence for govern of {activity/thing} and {cognition} of {activity/thing} are
compared. The highest value sets the attachment.

Table 7.7 Semantic patterns information extracted from the sentence given in Fig. 7.2

Words Literal translation Pattern

gobernado, por,
ley

governed, by, law gobernar, por, cognition

gobernado, de,
mercado

governed, of,
market

gobernar, de, activity thing

es, en, vida is, in, life ser, en, state life_form causal_agent attribute

convenció, a,
comprador

convinced, to,
buyer

convencer, a, causal_agent

convenció, de,
servicio

convinced, of,
service

convencer, de, activity process possession
thing grouping

pareciese, de, año may seem, of, year parecer, de, cognition time

lanzaron, de, año released, of, year lanzar, de, cognition time

propagar, de, siglo propagate, of,
century

propagar, de, cognition time

propagar, de,
milenio

propagate, of,
millennium

propagar, de, cognition time

ley, de, mercado law, of, market cognition, de, activity thing

ola, de, publicidad wave, of, publicity event, de, activity cognition

comprador, de,
servicio

buyer, of, service causal_agent, de, activity process possession
thing grouping

fin, de, año end, of, year place cognition event time, de, cognition time

fin, de, siglo end, of, century place cognition event time, de, cognition time

7.2 PP Attachment Disambiguation Using Selectional Preferences 97

Formally, to decide if noun N2 is attached to its preceding noun N1 or is instead
attached to verb V of the local sentence, the values of frequency for those attach-
ments are compared using the following formula [195]:

freqðX;P;C2Þ ¼ occðX;P;C2Þ
occðXÞþ occðC2Þ

where X can be V (a verb) or C1 (the classification of the first noun N1). P is a
preposition and C2 is the classification of the second noun N2. If freq(C1, P,
C2) > freq(V, P, C2), then the attachment is assigned to noun N1. Otherwise, the
attachment is assigned to verb V. The values of occ(X, P, C2) are the number of
occurrences of the corresponding pattern in the corpus. See Table 7.6 for examples
of verb occurrences. Examples of noun classification occurrences taken from the
Spanish journal corpus are {place} of {cognition}: 354,213; {place} with {food}:
206; and {place} without {flora}: 21. The values of occ(X) are the number of
occurrences of the verb or noun classification in the corpus. For example, for
{place}, the number of occurrences is 2,858,150.

7.2.5.2 Evaluation

The evaluation was conducted on three different files of the LEXESP corpus [179],
which contains 10,926 words in 546 sentences. On an average, this method
achieved a precision of 78.19% and a recall of 76.04%. Details for each file pro-
cessed are shown in Table 7.9.

Table 7.8 Results of PP attachment disambiguation using selectional preferences

File #Sentences Words Average words per
sentence

Kind of
text

Precision
(%)

Recall
(%)

n1 252 4,384 17.40 News 80.76 75.94

t1 74 1,885 25.47 Narrative 73.01 71.12

d1 220 4,657 21.17 Sports 80.80 81.08

Total 546 10,926 Average 78.19 76.04

Table 7.9 State of the art for PP attachment disambiguation

Human (without context) Use WordNet backoff Use thesaurus backoff

Ratnaparkhi
[162]

88.2 Stetina and Nagao
[186]

88.1 Pantel and Lin
[151]

84.3

Mitchell [138] 78.3 Li and Abe 1998 [118] 85.2 McLauchlan [130] 85.0

98 7 Prepositional Phrase Attachment Disambiguation

7.2.6 Conclusions and Future Work

Using selectional preferences for PP attachment disambiguation yielded a precision
of 78.19% and a recall of 76.04%. These results are not as good as the ones
obtained with other methods, which had accuracies as high as 95%. However, this
method does not require any expensive resources such as an annotated corpus or an
Internet connection (to use the Web as a corpus); it does not even need to use a
semantic hierarchy (such as WordNet) since the semantic classes can be obtained
from human-oriented explanatory dictionaries, as discussed in Sect. 7.2.2.

We found also that, at least for this task, applying techniques that use the Web as
a corpus to local corpora reduces the performance of those techniques more than
50% of the time, even if the local corpora are very big.

In order to improve results for PP attachment disambiguation using selectional
preferences, our hypothesis is that instead of using only 25 fixed semantic classes,
intermediate classes can be obtained using a whole hierarchy. In this way, it would
be possible to have a flexible particularization for terms commonly used together,
i.e., collocations such as fin de año (“end of year”), while maintaining the power of
generalization. Another area for further development is the addition of a WSD
module so that not every semantic classification for a single word is considered (see
Sect. 6.1).

7.3 Applying Different Smoothing Methods

PP attachment can be addressed by considering the frequency counts of dependency
triples contained within any given nonannotated corpus. However, even very large
corpora fail to contain all possible triples. To solve this problem, several techniques
have been used. Here, we evaluate two different backoff methods; one is based on
WordNet and the other on a distributional (automatically created) thesaurus. Our
evaluation uses Spanish. The thesaurus is created using the dependency triples
found in the same corpus that is used to count the frequency of unambiguous
triples. The training corpus used for both methods is an encyclopedia. The method
based on a distributional thesaurus has higher coverage but lower precision than the
method based on WordNet.

7.3.1 Theoretical Background

The PP attachment task can be illustrated by considering the canonical example I
see a cat with a telescope. In this sentence, the PP with a telescope can be attached
to either see or cat. Simple methods based on corpora address this problem by
looking at the frequency counts of either word or dependency triples: see with

7.2 PP Attachment Disambiguation Using Selectional Preferences 99

telescope versus cat with telescope. In order to find enough occurrences of such
triples, a very large corpus is needed. Such corpora are now available, and the Web
may also be used [36, 195]; however, still some combinations of words do not
occur. This is a familiar effect of Zipf’s law: few words are very common and many
words occur with low frequency [122]. The same is true for word combinations.

To address this problem, several backoff techniques have been explored. In
general, “backing off” comprises looking at statistics for a set of words when there
is insufficient data for a particular word. Thus, cat with telescope turns into
ANIMAL with INSTRUMENT and see with telescope turns into see with
INSTRUMENT (capitals denote sets of words). One way to identify the set of
words associated with a given word is to use WordNet; another is to use a distri-
butional thesaurus. A distributional thesaurus is a thesaurus that is generated
automatically from a corpus by finding words that occur in similar contexts [96,
184, 198]. Both approaches have already been explored (for English) and been
shown to yield results close to human disambiguation (see Table 7.10).

Experiments using different techniques have been carried out independently; to
date, there are no evaluations comparing WordNet to distributional thesauruses as
we do here, according to [108]. To make this comparison, we use a single corpus
for both cases, and the same corpus is used to generate both the thesaurus and
WordNet generalizations; that same corpus is also used to count the number of
dependency triples.

Our evaluation uses Spanish. This is, to the best of our knowledge, the first work
exploring backoff methods for PP attachments in a language other than English.

Table 7.10 Different formulae for calculating VScore and NScore

Description VScore NScore

S The simplest one |v, p, n2| |n1, p, n2|

S2 Considering doubles too |v, p, n2| � |v, p, *| |n1, p, n2| � |n1, p, *|

LL3 Log likelihood ratio See Fig. 7.2

Feat Simplified Roth features 171 and
198

log(|*, p, *|/|*, *,
*|) +
log(|v, p, n2|/|*, *,
*|) +
log(|v, p, *|/|v, *,
*|) +
log(|*, p, n2|/|*, *,
n2|)

log(|*, p, *|/|*, *, *|) +
log(|n1, p, n2|/|*, *,
*|) +
log(|n1, p, *|/|v, *,
*|) +
log(|*, p, n2|/|*, *, n2|)

100 7 Prepositional Phrase Attachment Disambiguation

7.3.2 PP Attachment with No Backoff

7.3.2.1 Building Resources

The main resource is the count of dependency triples (DTC). To increase coverage,
instead of considering strictly adjacent words, we consider dependency relation-
ships between word types (lemmas). Only unambiguous dependency relationships
are considered. For example, the sentences I see with a telescope and A cat with
three legs is walking will provide the dependency triples see, with, telescope and
cat, with, legs, respectively. However, the sentence I see a cat with a telescope will
not provide any dependency triple since it is an ambiguous case.

We extract all dependency triples from our corpus in a batch process. We first
tag the text morphologically and then group adjectives with nouns and adverbs with
verbs. Then, we search for the patterns verb preposition noun, noun preposition
noun, noun verb, and verb noun. Determiners, pronouns, and other words are
ignored.

According to Lin [119], dependency triples consist of two words and the
grammatical relationship, including prepositions, between those two words in the
input sentence. To illustrate the type of dependency triples extracted, consider a
microcorpus (lC) consisting of two sentences: A lady sees with a telescope and The
lady with a hat sees a cat. The triples corresponding to this lC are shown in
Fig. 7.4. We then denote the number of occurrences of a triple w; r;w0h i as
w; r;w0j j. From lC, |lady, SUBJ, see| = 2 and |lady, with, hat | = 1. |*, *, *| denotes
the total number of triples (10 in lC), and an asterisk * represents any word or
relationship. In lC, |see, *, *| = 4, |*, with, *| = 2, and |*, *, lady| = 2 (Table 7.10).

Grammatical relationships without prepositions will be useful later for building
the thesaurus, where word similarity will be calculated based on the contexts shared
between two words. Now, however, we use DTC only to count verb–preposition–
noun2 and noun1–preposition–noun2 triples to determine a PP attachment, as
explained in the following section.

7.3.2.2 Applying Resources

The task is to decide the correct attachment of p, n2 given a 4-tuple of verb noun1
preposition noun2: (v, n1, p, n2). The attachment of p, n2 can be either to the verb
v or the noun n1. The simplest unsupervised algorithm selects the attachment

Fig. 7.4 Dependency triples extracted from lC

7.3 Applying Different Smoothing Methods 101

according to highest of VScore = |v, p, n2| or NScore = |n1, p, n2|. When both
values are equal, we say that the attachment is undeterminable using this method.

The corpus used to count dependency triples in this experiment was the whole
Encarta Encyclopedia 2004 in Spanish [136], which has 18.59 M tokens, 117,928
word types in 73 MB of text, 747,239 sentences, and 39,685 definitions. The
corpus was tagged using the TnT tagger that was trained with the manually tagged
(morphologically) corpus CLiC-TALP6 and lemmatized using the Spanish Anaya
dictionary [116].

Once the corpus is morphologically tagged and lemmatized, the dependency
triples are extracted. Encarta produced 7 M dependency triple tokens, of which 3 M
were different triples, i.e., there were 3 M dependency triple types. 0.7 M tokens
(0.43 M triple types) involved prepositions.

We used four different formulae to calculate the VScore and NScore; these are
listed in Table 7.11. The first two formulae can be seen as the calculus of the
probability of each triple, e.g., p(v, p, n2) = |v, p, n2|/|*, *, *|. Since both VScore and
NScore are divided by the same number |*, *, *|, it can be omitted without any
difference. For the log-likelihood7 formulae, see Fig. 7.5.

Following the PP attachment evaluation method used by Ratnaparkhi et al.
[162], the task is to determine the correct attachment given a 4-tuple (v, n1, p, n2).
We extracted 1,137 4-tuples, along with their correct attachment (N or V), from the
manually tagged corpus Cast-3LB8 [143]. Samples of these 4-tuples are shown in
Table 7.11.

Fig. 7.5 Formulae for calculating the three-point log-likelihood

6http://clic.fil.ub.es. The TnT tagger trained with the CLiC-TALP corpus has a performance of
over 92% [142].
7Log-likelihood was calculated using the Ngram Statistics Package. See [8].
8Cast-3LB is part of the 3LB project, financed by the Science and Technology Ministry of Spain.
3LB.

102 7 Prepositional Phrase Attachment Disambiguation

http://clic.fil.ub.es

The baseline can be defined in two ways: (1) assign all attachments to noun1,
which gives a precision of 0.736, or (2) exclude all 4-tuples with the preposition de
(“of”). The latter is based on the fact that the preposition de attaches to a noun in
96.9% of all 1,137 4-tuples found,9 resulting in a precision of 0.855, which is high
for a baseline since the human agreement level is 0.883. Thus, to avoid such a
highly biased baseline, we opted to exclude all 4-tuples with the preposition de—no
other preposition presents such a high bias. Our evaluations were then done using
only 419 of the 1,137 4-tuples extracted. The baseline in this case comprises
assigning all attachments to the verb, which provides a precision rate of 66.1%. The
human intertagger agreement for 4-tuples excluding the preposition de is 78.7%,
which is substantially lower than the human agreement for all 4-tuples. Our results
are shown in Table 7.12.

The highest precision is provided by formula S2; thus, from now on, we will use
that formula to compare results between the different backoff methods.

7.3.3 WordNet Backoff

7.3.3.1 Building the Dictionary

In order to determine the correct PP attachment, we need a wider coverage of
dependency relationships. To that end, we constructed a dictionary that uses

Table 7.11 Samples of the 4-tuples (v, n1, p, n2) used for evaluation

4-tuples English gloss

informar comunicado del Banco_Central N inform communication of Central_Bank N

producir beneficio durante periodo V produce benefit during period V

defender resultado de elección N defend results of election N

recibir contenido por Internet V receive contents by Internet V

planchar camisa de puño N iron shirt of cuff N

Table 7.12 Comparison of
the formulae to calculate
VScore and NScore

Method Coverage Precision

Baseline 1.000 0.661

S 0.127 0.750

S2 0.127 0.773
LL3 0.127 0.736

Feat 0.127 0.717

9This is valid also for English. For the training set provided by Ratnaparkhi, the preposition of
attaches to a noun in 99.5% of the 20,801 4-tuples.

7.3 Applying Different Smoothing Methods 103

WordNet in order to obtain generalizations of dependency relationships. For
example, eat with fork, eat with spoon, and eat with knife are generalized into eat
with {tableware}. Note that {tableware} is not a word but rather a concept in
WordNet, which provides the knowledge that fork, spoon, and knife are {table-
ware}. This way, if an unseen triple (such as eat with chopsticks) is found,
WordNet can help by saying that chopsticks are {tableware} too, and thus, we can
apply our knowledge about eat with {tableware} to eat with chopsticks.

Before we describe our method, let us introduce some notation. Every word w is
linked to one or more synsets in WordNet, according to its different senses. Wn

denotes the synset corresponding to the n-th sense of w, and N denotes the total
number of senses. The hypernyms of each of these synsets provide several paths to
the root. Wm

n denotes the m-th hypernym of the n-th sense of w′, and Mn denotes the
depth, i.e., the number of hypernyms to the root for sense number n.

For example, glass has seven senses in WordNet. The third hypernym of the
fourth sense of glass is denoted by W3

4 = astronomical_telescope. An extract for
glass from WordNet is given below for illustration:

Sense 2: glass (drinking glass) ! container ! instrumentality ! artifact ! object
! whole ! object ! entity

Sense 4: glass (spyglass) ! refracting_telescope ! optical_telescope ! astro-
nomical_telescope ! telescope ! magnifier ! scientific_instrument !
instrument ! device ! instrumentality ! artifact ! object ! entity

Our WordNet backoff method is based on [38, 54]. To extend a score (either
NScore or VScore) through WordNet, we must consider all triples that involve the
same w and r, varying w′ (as in the case of learning eat with {tableware} from
several examples of eat with *). This set of triples is denoted by w; r; �h i. For each
involved w′, we evenly distribute10 each score s(w, r, w′) among each of its senses
of w′ (as in [167]), and the result is then propagated to all hypernyms Wm

n . The
resulting value is accumulative: higher nodes in WordNet collect information from
all their daughters. In this way, general concepts summarize the usage (frequency of
triples) of specific concepts (hyponyms).

To avoid overgeneralization (that is, the excessive accumulation at top levels,),
the depth of the hypernyms must be considered. Sometimes the depth of the
hypernyms’ chain is very large (as in that of Sense 4 for glass), and sometimes it is
small (as in that of Sense 2 for glass). A useful propagation formula that allows
generalization and considers the depth of hypernym chains is given below
(Table 7.13):

sðw; r;Wm
n Þ ¼ s w; r; w0ð Þ=N½ � � 1� m� 1=Mnð Þ½ � ð7:1Þ

10We assume an equiprobable distribution, which is problematic. However, there are currently no
comprehensive sense-tagged texts for Spanish from which to extract sense distributions.

104 7 Prepositional Phrase Attachment Disambiguation

In addition, the number of triples contributing to a certain WordNet node is
counted for averaging at the upper levels. That is, after considering k triples
w; r; �h i, we count the number of triple types that contribute to each node. Then, the
value of each node is divided by that number.

An illustration of our algorithm is shown in Fig. 7.6. Suppose we only have
three triples, each of which is listed along with its count in Fig. 7.6. The frequency
count for each triple is added to the corresponding word in WordNet. For eat with
fork, the node for the word fork is labeled with three counts for eat with. fork may
be used with other combinations of words, but we show here only those values
associated with eat with, i.e., w; r; �h i. According to Formula (7.1), the value
obtained by labeling fork with three counts is divided by the number of senses that
fork has. In this example, we assume two different senses of fork, each with its own
hypernyms: {division} and {cutlery}. Focusing on the {cutlery} branch, we see
how this value is propagated toward {entity}. For this branch, there are five levels
of depth from {entity} to fork (M2 = 5)—the other branch has four levels (M1 = 4).
Following the propagation of fork up the tree, we see how each level has a lower
weight factor—that for {tableware} is 3/5 and that for {entity} is only 1/5. Each
node is accumulative; therefore, {cutlery} accumulates the values for fork, knife,
and spoon. The value for {cutlery} is divided by three because that is the number of
types of contributing triples. If we had another triple, such as eat with chopsticks,
then {cutlery} would remain untouched, but {tableware} would be divided by four.

For our experiment, we used Spanish EuroWordNet11 1.0.7 (S-EWN) [74],
which has 93,627 synsets (62,545 nouns, 18,517 adjectives, 12,565 verbs), 51,593
hyponym/hypernym relationships, 10,692 meronym relationships, and 952 role
information entries (noun agent, instrument, location, or patient). We propagated all
dependency triples in DTC using Formula (7.1) (the creation of DTC is explained in
Sect. 7.3.2.1).

The WordNet backoff algorithm presented in this section produces subjectively
good results. Table 7.14 lists the top three qualifying triples in which con has a
relationship with two common Spanish verbs.

Table 7.13 Examples of
relationship triples (w, r, w′)
with WordNet backoff

w r w′ English Score

comer con mano hand 3.49

‘eat’ ‘with’ cubiertos cutlery 1.31

tenedor fork 1.19

matar con arma weapon 0.27

‘kill’ ‘with’ armamento armaments 0.23

utillaje utensil 0.18

11S-EWN was developed jointly by the University of Barcelona (UB), the National University of
Open Education (UNED), and the Polytechnic University of Cataluña (UPC), Spain.

7.3 Applying Different Smoothing Methods 105

7.3.3.2 Using the Dictionary

To decide a PP attachment in a 4-tuple (v, n1, p, n2), we calculate NScore for (n1, p,
n2), and VScore for (v, p, n2) as in Sect. 7.3.2.2. The highest score determines the
attachment. WordNet backoff is applied when a triple is not found. In this case, n2 is
substituted by its hypernyms until the score from the new triple (x, p, Wm

n) is found
in the previously calculated WordNet-extended scores. When calculating NScore,
x is n1, and when calculating VScore, x is v. The highest score determines the

entity

artifact

tableware

cutlery

cutter spoonfork

knife

division

change

action

projection
(tongue)

weapon

triple c
ount

eat with
knife

1

eat with
spoon

4

eat with
fork

3

fork knife spoon

……

chopsticks

Fig. 7.6 Example of the propagation of a triple’s counts in WordNet

106 7 Prepositional Phrase Attachment Disambiguation

attachment. Note that we are backing off only n2. We decided not to back off
v because the verb structure in S-EWN has very few hypernym relations for verbs
(7,172), and the definition of a hypernym for a verb is not clear in many cases.
Since we do not back off v, we cannot back off n1 as this would introduce a bias of
NScores against VScores. Moreover, note that Wm

n is a specific synset in the
WordNet hierarchy, and hence it has a specific sense. The problem of disam-
biguating the sense of n2 is solved by choosing the highest value from each set of
senses in each hypernym layer; see [38, 186] for WSD using PP attachment
information. Results for this method will be presented in Sect. 5.

Following the example from Fig. 7.6, suppose we want to calculate the VScore
for eat with chopsticks. Since this triple is not found in our corpus of frequency
counts, we search for the hypernyms of chopsticks, in this case, {tableware}. Then,
the value of this node is used to calculate VScore.

7.3.4 Thesaurus Backoff

7.3.4.1 Building the Dictionary

Here, we describe the automatic building of a thesaurus so that words not found in
the dependency triples can be substituted by similar words. This similarity measure
is based on Lin’s work [151]. This thesaurus is based on the similarity measure
described in [119]. The similarity between two words w1 and w2 as defined by Lin
is as follows:

simlinðw1w2Þ ¼
P

ðr;wÞ2Tðw1Þ \ Tðw2Þ ðIðw1; r;wÞþ Iðw2; r;wÞÞ
P

ðr;wÞ2Tðw1Þ Iðw1; r;wÞþ
P

ðr;wÞ2Tðw2Þ Iðw2; r;wÞ

Iðw1; r;w
0Þ ¼ log

w; r;wj j � �; r; �j j
w; r; �j j � �; r;w0j j

T(w) is the set of pairs (r, w′) such that I(w, r, w′) is positive. The algorithm for
building the thesaurus is as follows:

Table 7.14 Example of
similar words using Lin’s
similarity method

Word w Similar word w′ English simlin(w, w′)

guitarrista pianista pianist 0.141

‘guitarist’ fisiólogo physiologist 0.139

educador teacher 0.129

devoción afecto affection 0.095

‘devotion’ respeto respect 0.091

admiración admiration 0.078

leer editar to edit 0.078

‘to read’ traducir to translate 0.076

publicar to publish 0.072

7.3 Applying Different Smoothing Methods 107

Table 7.15 Experimental results for PP attachment disambiguation

Method Coverage Precision Average

Manual agreement (human) 1.000 0.787 0.894

Default to verb (baseline) 1.000 0.661 0.831

No backoff 0.127 0.773 0.450

WordNet backoff 0.661 0.693 0.677

Distributional thesaurus backoff 0.740 0.677 0.707

for each word type w1 in the corpus

 for each word type w2 in the corpus

 sims(w1) {simlin(w1,w2), w2}

sort sims(w1) by similarity in descending order

Like the WordNet method, this gives subjectively satisfactory results:
Table 7.15 lists the three most similar words to guitarrista “guitarrist,” devoción
“devotion,” and leer “to read.”

7.3.4.2 Using the Dictionary

To determine a PP attachment in a 4-tuple (v, n1, p, n2), our algorithm calculates the
NScore for (n1, p, n2) and the VScore for (v, p, n2), as in Sect. 7.3.2.2. The highest
score determines the attachment. When a triple is not found, the backoff algorithm is
applied. In this case, n2 is substituted by its most similar word n′2, which is calculated
using simlin(n2, n′2). If the new triple (x, p, n′2) is found in the count of dependency
triples (DTC), it is used to calculate the score. If it is not found, the next most similar
word is tried as a substitution; this continues until the new triple (x, p, n′2) is found.
When calculating NScore, x is n1; when calculating VScore, x is v. The highest score
determines the attachment. When n = 1, the n-th most similar word corresponds to
the first most similar word—for example, pianist for guitarist. For n = 2, the first
most similar word would be physiologist and so on. The algorithm is given below.

To decide the attachment in (v,n1,p,n2):

 VSCore = count(v,p,n2)
 NScore = count(n1,p,n2)
 n, m 1
 if NScore = 0
 while NScore = 0 & exists n-th word most similar to n2
 simn2 n-th word most similar to n2
 factor sim(n2,simn2)
 NScore count(n1,p,simn2) factor
 n n + 1
 if VScore = 0
 while VScore = 0 & exists n-th word most similar to n2
 simn2 m-th word most similar to n2
 factor sim(n2,simn2)
 VScore count(n1,p,simn2) factor
 m m + 1

 if NScore = VScore then cannot decide
 if NScore > Vscore then attachment is to n1
 if NScore < Vscore then attachment is to v

108 7 Prepositional Phrase Attachment Disambiguation

7.3.5 Comparison of Methods

In this section, we compare results of the three methods: no backoff, WordNet
backoff, and thesaurus backoff. The results are listed in Table 10.4 along with
baseline and manual agreement results. The third column shows the average
between coverage and precision. Note that the baseline shown in Table 10.4
involves supervised knowledge: most attachments, after excluding de cases, are to
the noun. The highest precision, coverage, and average values are in boldface. After
excluding de cases, 419 cases remain. For 12.7%, all three algorithms have the
same result; so the differences between WordNet backoff and distributional the-
saurus backoff are based on the remaining 366 cases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

WN 0.399 0.487 0.520 0.570 0.597 0.597 0.606 0.635 0.644 0.661

Thes. 0.525 0.633 0.628 0.680 0.692 0.695 0.700 0.716 0.735 0.740

10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

WN 0.399 0.487 0.520 0.570 0.597 0.597 0.606 0.635 0.644 0.661

Thes. 0.525 0.633 0.628 0.680 0.692 0.695 0.700 0.716 0.735 0.740

10 20 30 40 50 60 70 80 90 100

% of DTC

Pr
ec

is
io

n

% of DTC

C
ov

er
ag

e

Fig. 7.7 Precision and coverage using different percentages of triple counts (0–100%)

7.3 Applying Different Smoothing Methods 109

Yet, not all cases are covered by these backoff methods—either because no
substitution can be found for a certain word (as is the case for several acronyms or
proper names) or because the triple cannot be found in DTC even after trying all
possible substitutions. In general, the coverage we obtained is low because of the
size of the corpus used to count attachment frequencies; although an encyclopedia
provides many different words, the number of extracted prepositional attachments is
rather low. We believe that using a bigger corpus will yield higher coverage
measurements while maintaining the same relationship between the studied backoff
methods, as suggested by our experiments, which only used randomly chosen
partial percentages of the DTC corpus (see Fig. 7.7). Note that we used a totally
unsupervised model. That is, we do not use any other backoff technique for
uncovered cases in either algorithm.

7.3.6 Conclusions

Of the three methods evaluated for PP attachment, the best average measure was
0.707, which was obtained using the thesaurus backoff method, which has greater
coverage than the other methods. However, that method has lower precision rates
than does the WordNet backoff method. The no backoff method had very low
coverage (0.127), but for the attachments that were covered, it had the best results:
0.773, which is close to manual agreement results. (Remember that this agreement
is calculated after excluding the highly biased preposition de (“of”), which is
practically always attached to nouns.) The WordNet backoff method’s performance
could be improved by adding information regarding the sense distribution of each
word, rather than assuming an equiprobable distribution; however, doing so would
push this method closer to being a supervised approach, and moreover, no resource
providing such sense distributions is available for the Spanish language.

Our results indicate that an automatically built resource (in this case, a thesaurus)
can be used instead of a manually built one and can still obtain similar results.

Our future work will explore using much larger corpora for counting triples and
experiment with more sophisticated algorithms for determining attachments based
on the thesaurus.

110 7 Prepositional Phrase Attachment Disambiguation

Chapter 8
The Unsupervised Approach: Grammar
Induction

8.1 Introduction

There are mainly two approaches for creating syntactic dependency analyzers:
supervised and unsupervised. The main goal of the first approach is to attain the best
possible performance for a single language. For this purpose, a large collection of
resources is gathered (using manually annotated corpora with part-of-speech anno-
tations and syntactic and structure tags), which requires a significant amount of work
and time. The state of the art in this approach attains syntactic annotation in about
85% of all full sentences [172]; in English, it attains over 90%. On the other hand, the
unsupervised approach tries to discover the structure of a text using only raw text,
which allows the creation of a dependency analyzer for virtually any language. Here,
we explore this second approach. We present the model of an unsupervised depen-
dency analyzer, named DILUCT-GI (GI short for grammar inference). We also
propose adding morphological information both before and after the grammar
induction process, thus converting shallow parsing to dependencies by reconstruct-
ing unavailable dependency information from the grammar inductors by means of a
lexical categories precedence system, in a simpler fashion than that used in previous
studies that implemented complex rule systems [53, 87, 169].

In the following sections, we present an overview of syntactic analyzers
(Sects. 8.1.1–8.1.4), grammar induction algorithms (Sect. 8.2), and our system’s
implementation (Sects. 8.3 and 8.4). We also describe our method for converting
constituent chunks into dependencies (Sect. 8.5), introduce the lexical categories
precedence hierarchy (Sect. 8.5.1), and evaluate our method for use with both
Spanish (Sect. 8.6) and English (Sect. 8.7). Our conclusions and discussion of
future work are given in Sect. 8.8.

This chapter has been written with Omar Juárez-Gambino, ESCOM-IPN.

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_8

111

8.1.1 Overview of Syntactic Analyzers

Recent syntactic analyzers have used manually tagged corpora to learn grammar
structures [48]. Some analyzers have tried to learn grammar rules different from
those used in the training corpus; however, these analyzers are usually less suc-
cessful than the previously mentioned ones [30, 155].

Most of the analyzers in question use statistical techniques. Different probabil-
ities are assigned to every possible representation of a sentence; the most probable
representation is then selected and presented as the correct one. In the following
sections, we present the state-of-the-art supervised, semisupervised, and unsuper-
vised syntactic analyzers for comparison (Table 8.1).

8.1.2 Supervised Syntactic Analysis

Most state-of-the-art supervised syntactic analyzers were established during the
shared task of CONLL-X [33], which involved 19 analyzers for 13 different lan-
guages. The vast majority of these analyzers were based on treebanks, though each
used different machine-learning methods. For example, the NAIST multilingual
dependency analyzer includes use of support vector machines and EM algorithms.
NAIST dependency analyzer’s results are listed in Table 8.2 [49].

English’s state-of-the-art supervised syntactic analyzer (Penn Treebank con-
verted to dependencies) corresponds to transition-based systems such as NAIST’s
[205], graph-based algorithms [128], ensemble parsers [128, 176], and phrase-
structure-based analyzers, such as those by Collins et al. [58] and Charniak [47].
The performance of these systems is shown in Table 8.1.

8.1.3 SemiSupervised Dependency Syntax Analysis

Connexor is a semisupervised syntactic dependency analyzer that is commercially
available for several languages (English, Spanish, French, German, Swedish, and

Table 8.1 Unlabelled
attachment scores of
supervised dependency
analyzers for English

Analyzer UAS score

McDonald 93.2

Sagae and Lavie 92.7

Charniak 92.2

Collins 91.7

McDonald and Pereira 91.5

Isozaki et al. 91.4

McDonald et al. 91.0

Yamada and Matsumoto 90.4

112 8 The Unsupervised Approach: Grammar Induction

Finnish). This analyzer is based on the functional dependency grammar approach
developed by Tapanainen and Järvinen [189] and is composed of three elements:
lexicon; morphologic disambiguation module focused on subcategorical informa-
tion such as person, gender, and number; and a functional dependency grammar
(FDG).

Another semisupervised syntactic analyzer is DILUCT [40]: an algorithm that
uses heuristics in order to discover relationships between words and co-occurrence
statistics learned in an unsupervised way in order to resolve PP attachment issues.

8.1.4 Unsupervised Syntax Analysis

This approach is relatively new, being one of the seminal works of Yuret [209].
Subsequently, several works—such as grammar bigrams [152], top-down genera-
tive models [110], contrastive estimation [182], and nonprojective examples [129]
—have applied it to certain adjunction phenomena for syntax analysis.

Gorla et al. [95] propose two methods for elaborating upon an unsupervised
dependency analysis system; however, to the best of our knowledge, this system is
still under development. Our proposal differs completely from theirs.

Cohen et al. [56] use Bayesian parameter estimation for unsupervised depen-
dency analysis, obtaining a precision of adjunction of 59.4% for sentences shorter
than 10 words, 45.9% for sentences shorter than 20 words, and 40.5% for all
sentences. They use minimum Bayes-Risk classification for English, and the
grammar they obtain is a probabilistic grammar that is trained and tested with only
PoS tags.

Table 8.2 The NAIST
supervised dependency
syntax analyzer’s precision
results

Language Precision

Arab 65.19

Chinese 84.27

Czech 76.24

Danish 81.72

Dutch 71.77

German 84.11

Japanese 89.91

Portuguese 85.07

Slovene 71.42

Spanish 80.46

Swedish 81.08

Turkish 61.22

Bulgarian 86.34

8.1 Introduction 113

8.2 Grammar Induction Algorithms

Grammar induction algorithms have used several techniques and tools from natural
language processing—including categorial grammar (CG), which was first pro-
posed by Ajdukiewicz in 1935. Despite not being designed as a learning paradigm,
CG has been used for similar purposes; for example, GraSp [102] is an algorithm
that uses CG.

EMILE [73] is another algorithm based on CG; it learns shallow languages in an
incremental way and has been applied to natural languages with the assumption that
such languages are shallow. By shallow, we mean the property by which, for any
constituent type in a language, there are minimal well-supported units for that kind.
EMILE aligns whole sentences (trying to isolate minimal units), which are then
used to process longer sequences. This method is efficient because its alignment is
not recursive, which also means that EMILE offers only a limited treatment of
nested and recursive structures. Given its widespread use, we selected the EMILE
grammar inductor for the experiments discussed in Sect. 8.3.3.

Searching for string patterns is another technique used for grammar induction
algorithms. The idea of this method is to look for repeating patterns that are
expected to have a specific function. An algorithm based on this idea is grammatical
bigram (GB) [156] which uses dependency grammar formalism to describe the
established relationships between pairs of words. If the algorithm finds that the
dependents of a head and its order are completely independent, the grammar is
simplified. The procedure consists of learning the optimal parameters (probability
of dependency for a head) for which statistical measures are used.

Another algorithm based on the technique of looking for repeating patterns is
alignment-based learning (ABL) [193], which is the only expectation–maximiza-
tion algorithm applied to raw text [31]. Along with EMILE, we chose this inductor
for the experiments detailed in Sect. 8.3.2.

Other paradigms are used for grammar inductors not covered in this work, such
as memory-based learning [72] and evolutive optimization [109]. Roberts and
Atwell provide a detailed review of these methods [170].

8.3 Implementation

Several steps are involved in using the grammar inference algorithms previously
described to create a dependency analyzer. We describe the process in four stages:

1. Add morphological tags to improve the inductors’ performance (Sect. 8.3.1).
2. Complete grammar induction. We used the grammar induction tools ABL

(Sect. 8.3.2) and EMILE (Sect. 8.3.3), both of which are open source and freely
available from their author’s page.1

1ilk.uvt.nl/*menno/research/software/abl and staff.science.uva.nl/*pietera/Emile/.

114 8 The Unsupervised Approach: Grammar Induction

http://ilk.uvt.nl/%7emenno/research/software/abl
http://staff.science.uva.nl/%7epietera/Emile/

3. Tune the grammar inductors’ parameters. (Sect. 8.4).
4. Convert the grammar inductors’ output (a shallow parse) to dependency rela-

tionships. We propose using a simple algorithm based on lexical category
precedence (see Sect. 8.5).

In the following subsections, we discuss each stage in detail. To illustrate our
procedure, we will use the Spanish CAST-3LB corpus [52] as a means of exem-
plification; however, our approach should work for any language that requires only
a PoS tagger as an external resource.

8.3.1 PoS Tagging of Raw Text

CAST-3LB is a Spanish dependency-tagged corpus that we use as a gold standard
for comparison against our annotated version. However, in order to simulate real
situations, our algorithm was given access only to CAST-3LB’s raw text.

We generated a PoS-tagged version of the raw CAST-3LB corpus using the TnT
tagger [25], which was trained using the Spanish CLiC-TALP Corpus.2 The TnT
tagger has a performance of 94% with these settings [142]. Gambino and Calvo
[80] discuss the benefits of adding morphological tag information prior to grammar
induction.

Sample input text follows. The English translation of the following text is “since
then, he entered into a state of complete silence.” In addition, b gives the added PoS
information.

(a) desde entonces entró en silencio absoluto.
(b) desde/sps00 entonces/rg entró/vmis3s0 en/sps00

silencio/ncms000 absoluto/aq0ms0./Fp

8.3.2 ABL’s Output Processing

The output from ABL shows the corresponding (possibly nested) chunks of the
input text. Consider the following sentence: “The reserves of gold are valued at 300
USD per gold troy ounce.” The words in bold, below, correspond to the numbers
that are also in bold, thus indicating hypothesis (rule number) 305.

las reservas en oro se valoran en_base_a 300_dólares
estadounidenses por cada onza troy de oro.

2http://clic.fil.ub.es.

8.3 Implementation 115

http://clic.fil.ub.es

@@@(0,1,[3])(15,16,[2])(2,3,[152])(8,9,[154])(0,16,
[0])(13,14,[280])(14,15,[281])(9,10,[285])(4,5,[288])
(3,4,[292])(1,2,[297])(10,11,[302])(11,13,[305])(3,8,
[153])(10,13,[291])(9,15,[155])

The numbers 11, 13 show the beginning and end of the chunk. Note that
hypothesis 291 (shown underlined) consequently comprises hypotheses 302 and
305 because it covers words from 10 to 13. From this notation, we derive the
production rules for each sentence as follows:

0 ! [3] [297] [152] [153] [155] [2]

3 ! las

297 ! reservas

152 ! en

153 ! [292] [288] valoran en_base_a 300_dólares [154]

292 ! oro

288 ! se

154 ! estadounidenses

155 ! [285] [291] [280] [281]

285 ! por

291 ! [302] [305]

302 ! cada

305 ! onza troy

280 ! de

281 ! oro

2 ! .

Grouped Chunks
(las reservas en (oro se valoran en_base_a 300_dólares

estadounidenses) (por (cada (onza troy)) de oro).)
In some cases, chunks were not added as rules because they were used only once

—for example, valoran.

8.3.3 EMILE’s Output

Emile’s output is a set of grammar production rules, as in
The boy plays with the ball.
The boy plays in the park.

[0] ! the boy[1]|[2]
[1] ! plays with the ball
[2] ! plays in the park

116 8 The Unsupervised Approach: Grammar Induction

It is also capable of producing grouped chunks, as in
(the boy (plays with the ball) [1] [0])
(the boy (plays in the park) [2] [0])

8.4 Parameter Selection for Grammar Inductors

In order to find the best parameters for grammar inductors, we compared the output
of our inductors with the output obtained using the gold standard CAST-3LB. We
compared the location of opening and closing parentheses. For example, the fol-
lowing sentence (“We cannot remember either why they came.”) shows the original
CAST-3LB chunking and a sample output after grammar induction.

CAST-3LB:
(tampoco recordamos ((por qué) llegaron).)
Grammar Inductor:
(tampoco (recordamos (por qué) llegaron.))
The first and third opening parentheses are in the same position as the first and

third closing parentheses (shown in bold). From here, we computed the Recall,
Precision, and F-score measures as follows. Note that these measures were used
only for parameter selection in this middle stage (Table 8.3).

Recall =
of coincident parenthesis

Total# of parenthesis inGold Standard

Table 8.3 ABL with
different parameters test

Corpus Recall Precision F-score

Parameters Alignment method: Biased
Selection method: Branch

Raw (%) 17.58 21.19 19.22

Raw + PoS (%) 17.60 21.27 19.26

Parameters Alignment method: Biased
Selection method: Leaf

Raw (%) 14.27 26.21 18.48

Raw + PoS (%) 14.56 26.63 18.82

Parameters Alignment method: Default
Selection method: Branch

Raw (%) 16.88 23.64 19.69
Raw + PoS (%) 16.96 23.50 19.70

Parameters Alignment method: Default
Selection method: Leaf

Raw (%) 11.69 31.24 17.01

Raw + PoS (%) 12.39 31.24 17.74

8.3 Implementation 117

Precision =
of coincident parenthesis

Total# of parenthesis in Induction

F-Score combines recall and precision into one score. We selected b = 1 so that
recall and precision are equally weighed.

Fb ¼
b2 þ 1
� � � Precision � Recall

b2 � PrecisionþRecall
� �

EMILE provides the following selection of parameters:

1. total_support_percentage of context/expression of a particular type.
2. expression_support_percentage for an expression in a determined context.
3. context_support_percentage of appearances in a context along with expression

of certain type.
4. rule_support_percentage of characteristic expressions for a type that can be

substituted by one of the referred types in the rule. A rule will be incorporated
into the grammar only if this percentage is exceeded.

Tables 8.4 and 8.5 show the performances obtained with different parameters.
We show the best, the default (in italics), and the worst 4 F-scores—however, note
that precision is highest in just one of these cases.

Table 8.4 Parameter
selection for EMILE (no PoS
Tags, i.e., raw text only)

A 2 3 4 Recall (%) Prec. (%) F (%)

50 20 20 25 9.75 53.72 16.51
60 30 30 30 9.72 54.17 16.49

40 40 40 20 9.71 53.95 16.46

50 40 40 25 9.68 54.39 16.44

75 50 50 50 9.53 55.06 16.25

50 30 30 25 9.47 54.90 16.16

70 30 30 35 7.50 42.71 12.76

80 50 50 40 7.47 42.84 12.72

70 50 50 35 7.46 42.91 12.71

Table 8.5 Parameter
selection for EMILE (using
PoS Tags, i.e., raw + PoS)

1 2 3 4 Recall (%) Prec. (%) F (%)

70 70 70 35 9.55 54.96 18.91
50 20 20 25 9.80 53.78 16.57

60 20 20 30 9.69 54.43 16.45

70 20 20 35 9.67 54.58 16.42

70 60 60 35 9.45 54.75 16.11

75 50 50 50 9.40 53.06 15.97

70 30 30 35 7.40 42.61 12.61

70 50 50 35 7.30 42.55 12.46

118 8 The Unsupervised Approach: Grammar Induction

ABL provides three alignment methods: default, biased, and all. It also provides
three selection methods: first, leaf, and branch. Table 8.5 shows the results of
testing with different parameters.

8.5 From Chunks to Dependency Relations

The CAST-3LB and output from the grammar inductors can be regarded as chunks
of constituents. In this section, we explore a simple mechanism for transforming
these constituent chunks into dependencies. First, we review some considerations
regarding this conversion.

Ninio [147] points out that the relationship between constituents and depen-
dencies is formally weak. Grammatical relationships are primary to a dependency
grammar and, as such, do not have a role within the dependency approach.
However, these relationships can be derived from one representation to the other.
Marneffe et al. [123] generated typed dependency trees from constituent trees using
a constituent grammar analyzer; they later identified the constituent heads following
rules proposed by Collins et al. [58].

Robinson [171] points that one important difference between both representa-
tions is that the dependency approach uses only terminal categories, while the
constituent approach uses categories of a higher degree; despite this, there is a
systematic correspondence between the trees produced by each approach. We
propose a series of rules by which it is possible to convert one representation into
the other.

Gelbukh et al. [88] proposes a procedure based in heuristics and coded as 15
rules in order to mark the head so that a constituent corpus may be converted into a
dependency corpus with an accuracy estimated at 95%. Civit et al. [53] propose a
similar method based on linguistically motivated rules, which are encoded in a head
table, but they do not provide an evaluation of that method.

In this work, we look for a simple yet effective way of completing such con-
version given that we do not have constituent tags available—only PoS tags.

8.5.1 Lexical Categories Precedence

Hengeveld [101] suggests that there exist common lexical hierarchies among the
majority of languages, including both flexible its and inflexible languages, when
referring to the linguistic regularity of such languages. He does not, however,
mention application to syntactic analysis. On the other hand, Genthial et al. [91]
suggest the existence of a lexical category (LC) hierarchy for the construction of
syntactic structures. When applying these structures, however, Genthial et al. code
them into rules in a similar manner as Gelbukh et al. [88] and Civit et al. [53].

8.4 Parameter Selection for Grammar Inductors 119

We propose using a LC hierarchy to determine the head for dependency analysis
starting from a shallow parse. Our procedure is described in the following
pseudo-algorithm.

function convert (syntactic groups, head)

1. get the most deep-nested syntactic group
2. obtain words and LC from this syntactic group
3. compare the LC of the group
4. mark the word with highest LC precedence as head of this

group
5. mark other words as dependent
6. convert(rest of syntactic groups, head of the group)

end function.

In order to obtain the correct LC hierarchy, we used the original syntactic groups
found in the CAST-3LB gold standard. Iteratively, we adjusted the LC hierarchy
until a representative sample group of sentences of the gold standard were parsed
correctly. The LC hierarchy we obtained is listed below from highest (1) to lowest
(12) precedence. The symbols in parentheses correspond to the 3LB tagging sys-
tem. However, as we will show later, this hierarchy can be easily adapted to a
different tagging system.

1. Verb (v)
2. Adverb (rg)
3. Noun (n)
4. Adjective (a)
5. Pronoun (p)
6. Negation (rn)
7. Subordinated conjunction (cs)
8. Preposition (s)
9. Determiner (d)

10. Coordinated conjunction (c)
11. Interjection (i)
12. Punctuation symbols (f)

We found that additional information conveyed by the tags was not necessary for
the correct identification of hierarchical position—i.e., vmis3s0 is simplified to v.
Additional information (such as person, gender, number, or tense) is discarded for
verbs. This simplification is done for every PoS.

For the previously studied example, “since then, he entered into a state of
absolute silence,” the chunks are as follows:

((since/s then/rg) he/p entered/v (in/s (absolute/a
silence/n)./Fp)

120 8 The Unsupervised Approach: Grammar Induction

The heads, according to our system are as follows:

Components HHead selected

since/s then/rg then/rg

absolute/a silence/n Silence/n

he/p entered/v entered/v

then, heads contend at a higher level

then/rg entered/v entered/v

silence/n in/s silence/n

entered/v silence/n entered/v

entered ./f entered/v

This yields the tree shown in Fig. 8.1.

8.6 Evaluation of Dependencies

Briscoe et al. [29] suggest evaluating the accuracy of syntactic analyzers based on
the grammar relationships between lemmatized lexical heads. Each tree can be
represented as an n-ary representation with n triples: each dependency relationship
has a head, dependent, and relationship type. Following this, we compare two
dependency analyses by comparing every triple in them. When we generated extra
triples, they were counted as errors since they are outside the gold standard.

Consider the following example of triple comparison. In this case, the precision
would be 6/7 and recall 6/8.

System output Gold standard

entered v 0 ✓ entered v 0

since s then ✓ since s then

then rg entered ✓ then rg entered

The p entered ✕ –

silence n entered ✓ silence n entered

in s silence ✕ in s entered

absolute a silence ✓ absolute a silence

. f entered ✓ . f entered

Fig. 8.1 Dependency tree for
sample sentence

8.5 From Chunks to Dependency Relations 121

CAST-3LB is a Spanish corpus with 3,700 tagged sentences. The best scores we
obtained were 31.83% recall, 32.36% precision, and 32.09% F-measure—using
ABL, Text, and PoS tags, the Default alignment mode, and Branch selection
method. Table 8.6 compares these results with other semisupervised dependency
analyzers: DILUCT [40] and TACAT [6]. TACAT is a shallow syntactic parser for
Spanish; hence, our results were converted into dependencies for comparison.3 The
compared analyzers use resources such as dictionaries, rules, and syntactic anno-
tations, whereas our proposal uses only morphological annotations; so this com-
parison might be unfair. However, to the best of our knowledge, there is presently
no unsupervised dependency analyzer for Spanish available for comparison.

8.7 Building an English Parser in a Few Days

In order to perform a fair comparison, we need to compare our method with another
unsupervised method. For example, for English, the syntactic analyzer from Cohen
et al. [56], which uses unsupervised Bayesian parameter estimation, obtains an
adjunction precision of 59.4% for sentences shorter than 10 words, 45.9% for
sentences shorter than 20 words, and 40.5% for all sentences. The grammar is
inferred based on PoS tags with no words, and its output is not a dependency tree.
Gorla et al. [95] did not report results of their unsupervised dependency analyzer.

We did an implementation of a parser for English based on the Susanne corpus
[178], which consists of 7500 annotated English sentences. As before, we used only
the raw text and morphological tags of this corpus, ignoring all syntactic infor-
mation as input for our syntactic analyzer and used the annotation as the gold
standard.

The Susanne corpus is annotated following the Susanne analytic scheme.
Genabith et al. [89] recommend converting a corpus to the Xbar notation to min-
imize the creation of context free grammar (CFG) rules for grammar induction;
therefore, we used the Xbar annotated version of the Susanne corpus, which was

Table 8.6 Comparison of our system (DILUCT-GI) with other systems

Measures Resources

System Recall
(%)

Precision
(%)

F-measure
(%)

Dictionaries Rules Syntactic
annotations

Morphol.
annotations

DILUCT 55 47 51 ✓ ✓ ✓ ✓

Connexor 42.15 39.60 40.83 ✓ ✓ ✓ ✓

DILUCT-GI 31.83 32.36 32.09 ✓

TACAT 30 – – ✓ ✓ • •

3Results kindly provided by Jordi Atserias, Technical University of Catalonia.

122 8 The Unsupervised Approach: Grammar Induction

created by Nick Cercone.4 This corpus’s morphological tags are different from
those of other corpora; for example, pronouns are tagged as nouns and adjectives
and adverbs are classified together. Based on the previous LC hierarchy, we
obtained, and by retesting our sample sentences, we quickly obtained the Susanne
English LC hierarchy, which follows.

• Verb (V)
• Auxiliary verb (have, be, being)
• Auxiliary (Aux)
• Noun (N)
• Adjective_1 (Aeasy)
• Adjective_2 (A)
• Preposition (P)
• Determiner (D)
• Predeterminer (PreDet)
• Conjunction (C)

Results are shown in Table 8.7 for the best parameters found in Sect. 8.4.

8.8 Conclusions and Future Work

Although not directly comparable, our system’s performance with English suggests
that using a bigger corpus for Spanish may result in better performance—the corpus
for English has 7500 sentences, whereas 3LB for Spanish has only 3500.

For dependency analysis, ABL had better performance than EMILE. EMILE
stores all content-expression pairs during the induction process in order to create a
new nonterminal as part of the grammar; therefore, van Zaanen and Adriaans [193]
believe that EMILE will obtain better results with a big corpus (more than 100,000
sentences). On the other hand, ABL uses a greedy algorithm that stores all possible
constituents found before selecting the best, which allows ABL to have a better
performance with small corpora.

Table 8.7 DILUCT-GI
dependency analyzer results
for the Susanne corpus

Corpus Recall Precision F-score

Parameters Alignment method: Biased
Selection method: Branch

Raw + PoS (%) 40.41 40.33 40.37
Parameters Alignment method: Default

Selection method: Branch
Raw + PoS (%) 39.03 38.97 39.00

4Available at www.student.cs.uwaterloo.ca/*cs786s/susanne/.

8.7 Building an English Parser in a Few Days 123

http://www.student.cs.uwaterloo.ca/%7ecs786s/susanne/

We obtained better results using a combined corpus of words and tags; the
improvement was relatively small but constant in all configurations tested. During
the alignment process, the information provided by tags helps to disambiguate
constituents that belong to several lexical categories.

We found that the ABL grammar inductor had better performance than that
reported by its authors, who tested with the Wall Street Journal corpus in English
[193] and obtained a recall rate of 12%. The Biased-Branch configuration for ABL
obtained the highest recall (17.60%), while the Default-Leaf configuration obtained
the highest precision (31.24%). As expected, the more syntactic groups found, the
less precision they have.

We presented a model for dependency analysis, which can be reasonably easy to
adapt to other languages, based on unsupervised learning of raw text annotated with
morphological tags. To the best of our knowledge, this would be the first unsu-
pervised (after adding PoS tags) dependency analyzer for Spanish; when used for
English, our analyzer achieved results that are within the results of the
state-of-the-art analyzer. Despite there still being room for improvement, our pro-
posed model alleviates some intrinsic limitations—such as those associated with
using grammar inductors for learning [93]—by adding morphologic information
before the induction process begins as well as a novel system for converting a
shallow parse into a dependency analysis by means of an LC precedence hierarchy.
Our method can be used for languages where linguistic resources are scarce, given
that morphologic tags are available. We believe that the romance languages (at
least) share a similar lexical precedence hierarchy; however, proving this (as well as
testing with other corpora) is left for future work.

124 8 The Unsupervised Approach: Grammar Induction

Chapter 9
Multiple Argument Handling

A sentence can be regarded as a verb with multiple arguments. The plausibility of
each argument depends not only on the verb but also on other arguments.
Measuring the plausibility of verb arguments is necessary in several tasks, such as
semantic role labeling, where grouping verb arguments and measuring the plausi-
bility increases performance [70, 135]. Metaphor recognition also requires
knowledge of verb argument plausibility in order to recognize uncommon usages,
which would suggest either the presence of a metaphor or a coherence mistake (e.g.,
drink the moon in a glass). Malapropism detection can use the measure of the
plausibility of an argument to determine word misuse [24]—such as in hysteric
center instead of historic center, density has brought me to you instead of destiny
has brought me to you, a tattoo subject instead of a taboo subject, and don’t be
ironing instead of don’t be ironic. Furthermore, anaphora resolution consists of
finding referenced objects, thus requiring (among other things) information about
the plausibility of the arguments at hand, i.e., what kind of filler is more likely to
satisfy the sentence’s constraints. For example, The boy plays with it there, It eats
grass, and I drank it in a glass.

Determining verb argument plausibility can be seen as collecting a large data-
base of semantic frames with detailed categories and examples that fit these cate-
gories. For this purpose, recent works take advantage of existing, manually crafted
resources such as WordNet, Wikipedia, FrameNet, VerbNet, and PropBank. For
example, Reisinger and Paşca [164] annotate existing WordNet concepts with
attributes and extend is-a relationships based on Latent Dirichlet Allocation on Web
documents and Wikipedia, and Yamada et al. [206] explore extracting hyponym
relationships from Wikipedia using pattern-based discovery and distributional
similarity clustering. The problem with the semantic frames approach for this task is
that semantic frames are too general. For example, Korhonen [112] considers the
verbs to fly, to sail, and to slide similar and finds a single subcategorization frame

This chapter has been written with Kentaro Inui and Yuji Matsumoto.

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_9

125

for all the three. On the other hand, approaches based on n-grams are too particular,
even when used with a very big corpus (such as the Web), have two problems:
unavailable combinations and counts that are biased by various syntactic con-
structions. For example, solving the PP attachment for extinguish fire with water
using Google1 yields 319,000 hits for fire with water and 32,100 hits for extinguish
with water, which results in *(extinguish (fire with water)) instead of (extinguish
(fire) with water). Thus, we need a way to smoothen these counts. Since Resnik
[166], selectional preferences have been used to do so for verb-to-class preferences,
and Agirre and Martinez [1] have used generalization to then transform
verb-class-to-noun-class preferences. More recently, McCarthy and Carroll [124]
have disambiguated nouns, verbs, and adjectives using automatically acquired
selectional preferences as probability distributions over the WordNet noun hypo-
nym hierarchy; they then evaluate with Senseval-2. However, these works have a
common problem: they address each argument for a verb separately.

9.1 One Argument Is not Enough

Consider the following sentences: There is hay at the farm. The cow eats it.
We would like to connect it with hay, not with farm. From selectional prefer-

ences, we know that the object of eat should be something edible; so we can say
that hay is more edible than farm, thus solving the issue. We have similar
knowledge from semantic frames, but in a broader sense, there is an ingester and an
ingestible.

However, this information can be insufficient in cases where the selectional
preference depends on other arguments from the clause. For example: The cow eats
hay, but the man will eat it.

In this case, it is not enough to know that it should be edible: the resolution also
depends on who is eating. In this case, it is unlikely that the man will eat hay; so the
sentence might refer to the fact that the man will eat the cow. The same happens
with other of verb arguments. For example, the FrameNet peripheral arguments for
the ingestion frame include instrument and place. However, some things are
ingested with an instrument—e.g., soup is eaten with a spoon, while rice is eaten
with a fork or chopsticks (depending on who is eating). Plausible argument
extraction allows us to construct a database dictionary for this kind of information,
which can be regarded as common sense since it is possible to use large blocks of
text to automatically learn the types of activities performed by groups of entities
(see Fig. 9.1).

The goal of our work is to construct such a database. To do so, we need to obtain
information related to selectional preferences and semantic frames extraction.

1Google query as of April 2010.

126 9 Multiple Argument Handling

In the next sections, we will present related work that has been organized into
different approaches (Sect. 9.2). We will present a proposal based on the
word-space model (Sect. 9.3) as well as a proposal based on language modeling
(Sect. 9.4). Then, we will present our major contributions (Sect. 9.5), which consist
of interpolated probabilistic Latent Semantic Indexing Model (PLSI) for handling
three correlated variables. In each section, we will present several experiments to
find how different parameters affect behavior as well as to compare the different
approaches.

9.2 Approaches for Learning Verb Argument Preferences

The problem of automatic verb argument plausibility acquisition can be studied
from several points of view. From the viewpoint of the type of information
extracted, we can find related work for selectional preferences and semantic frames
extraction. From the viewpoint of selectional preferences, the task is focused on
automatically obtaining classes of arguments for a given verb and syntactic con-
struction. From the viewpoint of semantic frames, arguments are grouped by the
semantic role they have, regardless of their syntactic construction; this viewpoint
emphasizes the distinction between core (indispensable) and peripheral arguments.
On the other hand, we can consider the viewpoint of how information is repre-
sented: the task can be regarded as a case of statistic language modeling, where the
missing argument should be inferred with high probability by taking in the given
context, or it can be regarded as a word-space model task such as that frequently
seen in IR systems. In the next sections, we will present work related to this task
from each different viewpoint.

Fig. 9.1 A verb linking groups of related arguments

9.1 One Argument Is not Enough 127

9.2.1 Selectional Preferences

Selectional preferences acquisition can be regarded as one of the first attempts to
automatically find argument plausibility; earlier attempts dealt with simpler <verb,
argument> pairs. Since the learning resource is sparse, each work uses a general-
ization or smoothing mechanism to extend coverage. Resnik [166] uses WordNet to
generalize the object argument. Agirre and Martinez [1] use a class-to-class model
so that both the verb and the object argument are generalized by belonging to a
WordNet class. McCarthy and Carrol [126] acquire selectional preferences as
probability distributions over the WordNet noun hyponym hierarchy and use
argument relationships other than the object-argument. Padó and Lapata [150]
combine semantic and syntactic information by using corpora with semantic role
annotations (i.e., FrameNet and PropBank) to estimate their model and then apply
class-based smoothing using WordNet.

9.2.2 Subcategorization Frames

The following works deal with the problem of semisupervised argument plausibility
extraction from the subcategorization frames extraction approach. Salgeiro et al.
acquire verb argument structures by generalizing nouns using a named entity rec-
ognizer (IdentiFinder) and then using the noisy channel framework for argument
prediction. Examples of the kind of information they work with include the fol-
lowing: organization bought organization from organization, thing bought the
outstanding shares on date, and (sometimes without generalization) the cafeteria
bought extra plates.

The work by Kawahara and Kurohashi [107] is also semisupervised; they
generalize using a manually created thesaurus. To find case frames, they use the
closest argument together with the verb, thus obtaining verb sense disambiguation
for cases similar to the example motivating us, which is presented in Sect. 9.1.

9.2.3 Word-Space Model

Traditionally, using information retrieval, words have been represented as docu-
ments and semantic context as features so that it is possible to build co-occurrence
matrices or word spaces where each intersection of a word and context shows the
frequency count of each. This approach has been recently used with syntactic
relationships as well [150]. An important issue within this approach is the similarity
measure chosen for comparing words (documents), given its features. Popular
similarity measures range from simple [such as Euclidean distance, cosine, and

128 9 Multiple Argument Handling

Jaccard’s coefficient [117]] to more complex (such as Hindle’s and Lin’s) measures
[119].

In the next sections, we will present a simple proposal within the approach of the
word-space model (Sect. 9.3) and then present two algorithms within the language
modeling approach (Sect. 9.4).

9.3 A Word-Space Model

We begin with a simple model to explore the possibilities of the last two approa-
ches. Here, we propose a model based on the word-space model. Since we want to
consider argument co-relation, the following information is used:

P(v, r1, n1, r2, n2), where v is a verb, r1 is the relationship between v and n1
(noun) as subject, object, preposition, or adverb. r2 and n2 are analogous. If we
assume that n has a different function when used with another relationship, then we
can consider that r and n form a new symbol, called a. Thus, we can simplify our
5-tuple to P(v, a1, a2). We want to know, given a verb and an argument a1, which a2
is the most plausible; we can write this as P(a2|v, a1). For PLSI, this can be
estimated using

P a2; v; a1ð Þ ¼ Sum Zi;P zð Þ � P a2jzð Þ � P v; a1jzð Þð Þ:

For the word-space model, we can build a matrix where a2 is the rows (docu-
ments) and v, a1 are features. Since this matrix is very sparse, we use a thesaurus to
smooth the argument values. To do so, we loosely followed the approach proposed
by McCarthy et al. [125] for finding the predominant sense; however, in this case,
we used the k nearest neighbors of each argument ai to find the prevalence score of
an unseen triple given its similarity to all triples present in the corpus, measuring
this similarity between the arguments. In other words, just as McCarthy et al. [125]
and Tejada et al. [190, 191] did for WSD, we have each similar argument vote for
the plausibility of each triple.

Prevalence v; x1; x2ð Þ ¼

P
\v;a1;a2 [2T

sim a1; x1ð Þ � simða2; x2Þ � PMLE v; a1; a2ð Þ
P

\v;a1;a2 [2T
sim exists a1; a2; x1; x2ð Þ

where T is the whole set of <verb, argument1, argument2> triples, PMLE is the
maximum likelihood of <verb, argument1, argument2>, and

sim exists a1; a2; x1; x2ð Þ ¼ 1 if sim a1; x1ð Þ � sim a2; x2ð Þ[0
0 otherwise

�

To measure the similarity between the arguments, we built a thesaurus using the
method described by Lin [119], using the Minipar browser [119] over

9.2 Approaches for Learning Verb Argument Preferences 129

short-distance relationships, i.e., we previously separated subordinate clauses. We
obtained triples <v, a1, a2> from this corpus, which were counted and then used to
build the thesaurus and as a source of verb and argument co-occurrences.

9.3.1 Evaluation

We compared these two models in a pseudo-disambiguation task such as that
presented by Weeds and Weir [204]. First, we obtained triples v; a1; a2h i from the
corpus. Then, we divided the corpus into two parts: training (80%) and testing
(20%). With the training part, we trained the PLSI model and created the WSM.
This WSM was also used to obtain the similarity measure for every pair of argu-
ments a2; a02. This enables us to calculate Feasibility v; a1; a2ð Þ. For evaluation, we
artificially created 4-tuples v; a1; a2; a02

� �
, which were formed by taking every triple

v; a1; a2h i from the testing corpus and generating an artificial tuple v; a1; a02
� �

by
choosing a random a02 with r02 ¼ r2, and making sure that this new random triple
v; a1; a02
� �

was not present in the training corpus. This task consists of selecting the
correct tuple. Ties occur when both tuples are given the same nonzero score (see
Table 9.1).

We compared two models based on the statistical language model (see
Sect. 9.3.2.1) and the word-space model approaches, respectively. Using the patent
corpus from the NII Test Collection for Information Retrieval System (NTCIR-5)
Patent [78], we parsed 7,300 million tokens and then extracted the chain of

Table 9.1 Pseudo-disambiguation task sample: choose the right option

Verb Arg Option 1 Option 2

add subj: I obj: gallery obj: member

calculate obj: flowrate subj: worksheet subj: income

read obj: question answer stir

seem it just unlikely

go overboard subj: we subj: they

write subj: he obj: plan obj: appreciation

see obj: example in: case in: london

become subj: they obj: king obj: park

eat obj: insect subj: it subj: this

do subj: When obj: you obj: dog

get but obj: them obj: function

fix subj: I obj: driver obj: goods

fix obj: it firmly fresh

read subj: he obj: time obj: conclusion

need obj: help before climb

seem likely subj: it subj: act

130 9 Multiple Argument Handling

relationships in a directed way—that is, for the sentence X add Y to Z by W, we
extracted the triples <add, subj-X, obj-Y>, <add, obj-Y, to-Z>, and <add, to-Z,
by-W> and obtained 706 M triples in the form <v, a1, a2>. We considered only
chained asymmetric relationships to avoid false similarities between words that
co-occur in the same sentence.

Following Weeds and Weir’s method [204], we chose a mix of 20 high- and
low-frequency verbs and extracted every triple <v, a1, a2> present in the triples corpus
for each. Then, we performed experiments with the PLSI and WSM algorithms.

We experimented with different numbers of topics for the latent variable z in
PLSI and with different numbers of neighbors from the Lin thesaurus for the WSM
expansion. Results are shown in Table 9.2 for individual words: 10 neighbors for
WSM and 10 topics for PLSI. Figure 9.2 shows the average results for different
neighbors and topics.

9.3.2 Analysis

We have shown results for an algorithm within the WSM approach for unsuper-
vised plausible argument extraction and compared them with those of a traditional
PLSI approach, obtaining particular evidence to support that it is possible to achieve

Table 9.2 Precision (P) and Recall (R) for each verb for 10 neighbors (WSM) and 10 topics
(PLSI)

Verb Triples WSM-10 PLSI-10

P R P R

eat 31 0.98 0.92 1.00 0.04

seem 77 0.88 0.09 0.64 0.38

learn 204 0.82 0.10 0.57 0.22

inspect 317 0.84 0.19 0.43 0.12

like 477 0.79 0.13 0.54 0.24

come 1,548 0.69 0.23 0.78 0.17

play 1,634 0.68 0.18 0.69 0.19

go 1,901 0.81 0.25 0.80 0.15

do 2,766 0.80 0.24 0.77 0.19

calculate 4,676 0.91 0.36 0.81 0.13

fix 4,772 0.90 0.41 0.80 0.13

see 4,857 0.76 0.23 0.84 0.20

write 6,574 0.89 0.31 0.82 0.15

read 8,962 0.91 0.36 0.82 0.11

add 15,636 0.94 0.36 0.81 0.10

have 127,989 0.95 0.48 0.89 0.03

average 11,401 0.85 0.30 0.75 0.16

9.3 A Word-Space Model 131

good results with the method that votes for common triples using a distributional
thesaurus. The results appear to be consistent with previous works that use distri-
butional thesauruses [37, 190, 191] (see Fig. 9.2): adding information increases
coverage with little sacrifice of precision.

We used no other resource after the dependency parser (such as named entity
recognizers or labeled data training for machine-learning algorithms) so that from
this stage, the algorithm is unsupervised.

To further develop this approach, it is possible to experiment with the upper limit
of the increasing coverage since each neighbor from the thesaurus adds noise. We
have experimented with building the thesaurus using the same corpus and found
significant differences when the encyclopedia corpus was used to build the dic-
tionary since a broader and richer context could be found.

Future work may explore the effect of using other similarity measures, as well as
of constructing a similarity table with simpler objects—for instance, a single noun
instead of a composite object.

In the next section, we explore other proposals within the language model.

9.3.2.1 Language Modeling

We regard the task of finding the plausibility of a certain argument for a set of
sentences as estimating a word given a specific context (see Fig. 9.3). Particularly,
for this work, we consider context as the grammar relationships for a particular
verb:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 PLSI

20 PLSI

50 PLSI

100 PLSI

500 PLSI

1000 PLSI

1 W
SM

2 W
SM

5 W
SM

10 W
SM

20 W
SM

50 W
SM

precision
recall

Fig. 9.2 Results for (topics)-PLSI and (neighbors)-WSM

132 9 Multiple Argument Handling

P w; cð Þ ¼ P cð Þ � P cjwð Þ ð9:1Þ

which can be estimated in many ways—particularly, by using a hidden Markov
model or using latent variables to smooth for PLSI:

P w; cð Þ ¼
X

zi

P zð Þ � P wjzð Þ � P cjzð Þ

The conditional probability can be calculated from n-gram frequency counts.

9.4 The Dependency Language Model

Most previous work in SLM has been devoted to speech recognition tasks [55, 174]
using maximum entropy models. Mostly because of space limitations, these models
are usually limited to sequential 3-gram models. However, several works have
shown that relying only on sequential n-grams is not always the best strategy [81,
82]. Consider the example borrowed from [81]: [A baby] [in the next seat] cried
[throughout the flight]. An n-gram model would try to predict cried from next seat,
whereas a dependency language model (DLM) would try to predict cried from
baby.

In this section, we explore creating a DLM to obtain feasible scenario fillers,
which can be regarded as extracting selectional preferences [166] but with a broader
context for each filler. We show in Sect. 9.4.1.1 how this additional information
helps in choosing the best filler candidate. Then, in Sects. 9.4.1.2 and 9.4.1.3, we
present our implementations of two models for creating a DLM: one based on PLSI
(Sect. 9.4.1.2) and the other based on k-nearest neighbors (KNN) (Sect. 9.4.1.3).

Fig. 9.3 Each document in PLSI is represented as a mixture of topics

9.3 A Word-Space Model 133

In Sect. 9.4.2, we describe our experiments for comparing both algorithms in a
pseudo-disambiguation task. Our results are analyzed in Sect. 9.4.3.

9.4.1 Models for Plausible Argument Estimation

9.4.1.1 Feasible Scenario Fillers

Consider that we want to find the most feasible thing eaten given the verb to eat.
Since eat has several senses, this filler could be food or a material, depending on
who is eating (see Tables 9.3 and 9.4). In Table 9.3, the subject is cow. Count, in
that table, represents the total number of counts that voted for cow combinations
divided by the number of sources. These tables show our system’s (KNN DLM)
actual output.

In Table 9.4, the subject is acid. It is possible, in that table, to see different
adequate fillers depending on the subject doing the action.

If we consider the problem of estimating P a2jv; a1ð Þ instead of estimating only
P a2jvð Þ—where a1 and a2 are arguments and v is a verb—the data sparseness
problem increases. This has been solved mainly by using external resources such as
WordNet [1, 126, 166]; semantic-role annotated resources such as FrameNet and
PropBank [150]; a named entity recognizer such as IdentiFinder [177]; or other
manually created thesauruses [107].

Table 9.3 Feasible arguments for (eat, subject: cow)

1.3.3 Verb Argument 1 Argument 2 Count Sources

1 eat subj: cow obj: hay 0.89 2

2 eat subj: cow obj: kg/d 0.49 1

3 eat subj: cow obj: grass 0.42 12

Table 9.4 Feasible arguments for (eat, subject: acid)

Verb Argument 1 Argument 2 Count Sources

1 eat subj:acid obj:fiber 2 2

2 eat subj:acid obj:group 1 4

3 eat subj:acid obj:era 0.66 2

4 eat subj:acid away 0.25 40

5 eat subj:acid obj:digest 0.19 2

6 eat subj:acid of:film 0.18 2

7 eat subj:acid in:solvent 0.13 1

8 eat subj:acid obj:particle 0.11 4

9 eat subj:acid obj:layer 0.10 3

134 9 Multiple Argument Handling

In this section, we aim to determine the extent to which information from the
corpus itself can be used to estimate P a2jv; a1ð Þ without using additional resources.
To do so, two techniques are used for dealing with the data sparseness problem; we
describe both in the next section.

9.4.1.2 PLSI—Probabilistic Latent Semantic Indexing

As stated before, we can regard the task of finding the plausibility of a certain
argument for a set of sentences as estimating a word given a specific context. Since
we want to consider argument co-relation, we have

P v; r1; n1; r2; n2ð Þ

where v is a verb, r1 is the relationship between the verb and n1 (noun) as subject,
object, preposition, or adverb. r2 and n2 are analogous. If we assume that n has a
different function when used with another relationship, then we can consider that r
and n form a new symbol, called a. Thus, we can simplify our 5-tuple
P v; r1; n1; r2; n2ð Þ to P v; a1; a2ð Þ.

We want to know, given a verb and an argument a1, which a2 is the most
plausible argument, i.e., P a2jv; a1ð Þ. We can write the probability of finding a
particular verb and two of its syntactic relationships as

P v; a1; a2ð Þ ¼ P v; a1ð Þ � P a2jv; a1ð Þ;

which can be estimated in several ways. Particularly, for this work, we use PLSI
[103] because we can exploit the concept of latent variables to deal with data
sparseness.

The probabilistic latent semantic indexing model (PLSI) introduced by [103]
arose from latent semantic indexing [69]. The model attempts to associate an
unobserved class variable z 2 Z = {z1, …, zk} (in our case, a generalization of the
correlation of the co-occurrence of v, a1, and a2) and two sets of observables:
arguments and verbs + arguments. In terms of a generative model, it can be defined
as follows: a v, a1 pair is selected with probability P(v, a1), latent class z is then
selected with probability P(z|v, a1), and an argument a2 is finally selected with
probability P(a2|z). It is possible to use PLSI [103] in this way, which is also
expressed as (2).

P v; a1; a2ð Þ ¼
X

z

P zið Þ � P a2jzið Þ � P v; a1jzið Þ ð9:2Þ

z is a latent variable capturing the correlation between a2 and the co-occurrence
of (v, a1) simultaneously. Using a single latent variable to correlate three variables
may lead to poor PLSI performance; so in the next section, we explore different
ways to use latent semantic variables for smoothing.

9.4 The Dependency Language Model 135

9.4.1.3 K-Nearest Neighbors Model

This model uses the k nearest neighbors of each argument to find the plausibility of
an unseen triple, given its similarity to all triples present in the corpus, and then
measuring this similarity between arguments. See Fig. 9.4 for the pseudo-algorithm
of this model.

Since the votes are accumulative, triples that have words with many similar
words will get more votes.

Common similarity measures range from Euclidean distance, cosine, and
Jaccard’s coefficient [117] to Hindle’s and Lin’s respective measures [119]. Weeds
and Weir [204] show that the distributional measure with best performance is Lin’s;
so we used that measure to smooth the co-occurrence space, following the proce-
dure described by Lin [119].

9.4.2 Evaluation

For these experiments, we used the same setting as that presented in Sect. 9.3.1. We
artificially created 4–tuples v; a1; a2; a02

� �
, which were formed by taking all triples

v; a1; a2h i from the testing corpus and then generating an artificial triple v; a1; a02
� �

by choosing a random a02 with r
0
2 ¼ r2 and then ensuring that this new random triple

v; a1; a02
� �

was not present in the training corpus. Thus, the task consisted of
selecting the correct triple.

For evaluation, as in Sect. 9.3.1, we used the patent corpus from the NII Test
Collection for Information Retrieval System (NTCIR-5) Patent [78]. We parsed
7,300 million tokens with the MINIPAR parser [119] and then extracted the chain of
relationships in a directedway. That is, for the sentenceX add Y to Z byW, we extracted
the triples add; subj�X; obj�Yh i, add; obj�Y ; to�Zh i, and add; to�Z; by�Wh i

We obtained 177 M triples in the form v; a1; a2h i.

9.4.2.1 Effects of Added Context

To evaluate the impact of adding more information for verb argument prediction,
we created a joint minicorpus that consists of 1,000 triples for each of the verbs

for each triple <v,a1,a2> with observed count c,
for each argument a1,a2
Find its k most similar words a1s1…a1sk, a2s1…a2sk
with similarities s1s1, ..., s1sk and s2s1,...,s2sk.

Add votes for each new triple <v,a1si,a2sj> += c·s1si·s2sj

Fig. 9.4 Pseudo-algorithm for the K-nearest neighbors DLM algorithm

136 9 Multiple Argument Handling

from the patent corpus: (add, calculate, come, do, eat, fix, go, have, inspect, learn,
like, read, see, seem, write). We first estimated an argument’s plausibility given a
verb P a2jvð Þ we then used additional information from other arguments P a2jv; a1ð Þ
in order to compare results for both models.

For completely new words, it is sometimes impossible to estimate an argument’s
plausibility; thus, in such cases, we measured precision and recall. Precision
measures how many attachments were correctly predicted from the covered
examples, and recall measures the correctly predicted attachment from the whole
test set. Because we are interested in measuring the precision and coverage of these
methods, we did not implement any backoff technique.

9.4.3 Analysis

Operating separately on verbs (one mini-corpus per verb) yields better results for
PLSI (precision results of above 0.8) but seems not to affect EXPANSOR KNN.
For small amounts of context P a2jvð Þ PLSI works better than EXPANSOR KNN;
for greater amounts P a2jv; a1ð Þ EXPANSOR KNN works better.

In general, PLSI prefers a small number of topics, even for a large corpus (the
largest corpus used in the experiments had around 20 topics). Recall for
EXPANSOR KNN seems to improve steadily when more neighbors are added,
though a small amount of precision is lost. Overall, expanding with a few neighbors
(1–5) does not appear useful. In particular, as Fig. 9.5 shows, when recall is very
low, precision can be either very high or very low because when few cases are
solved, performance tends to be random. In general, the recall results seem low

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

TEST
TRAIN

10 PLSI

20 PLSI

50 PLSI

100 PLSI

500 PLSI

1000 PLSI

1 EXPANSO
R

2 EXPANSO
R

5 EXPANSO
R

10 EXPANSO
R

20 EXPANSO
R

50 EXPANSO
R

100 EXPANSO
R

P(a2|v) P P(a2|v,a1) P P(a2|v) R P(a2|v,a1) R

Fig. 9.5 Raw effect of adding more context: prediction based only on the verb versus prediction
based on the verb plus one argument. EXPANSOR is the proposed KNN-based model

9.4 The Dependency Language Model 137

because we did not use any backoff method. If we compare the precision of the
EXPANSOR KNN full model (based on more context), we can think of backing off
to PLSI based on pairs P a2jvð Þ, which would yield the best possible results and
which is left as future work.

We evaluated two different dependency language models using a
pseudo-disambiguation test. The KNN-based model outperformed the PLSI model
when data sparseness was increased by added data. Effective smoothing is achieved
by using similarity measures from the L in distributional thesaurus to vote.

Since the PLSI model, we use deals with several arguments with a single latent
variable; in the next section, we will present an original improvement that consists
of interpolating several PLSI models for handling multiple arguments.

9.5 Interpolated PLSI

In this section, we propose a new model (called interpolated PLSI) that allows
multiple latent semantic variables to be used; it is based on the algorithm described
in Sect. 9.4.1.2.

9.5.1 iPLSI—Interpolated PLSI

The previous PLSI formula originally used crushes to associate information from a2
with that from v, a1 so that one single latent variable results. This causes two
problems: data sparseness and correlations between two variables. Thus, we pro-
pose a variation that uses interpolation based on each pair of arguments for a triple.
We show an interpolated way of estimating the probability of a triple based on the
co-occurrences of its different pairs.

Additionally, we test a model that considers additional information. Note that ai
(the latent variable topics) should not be confused with a1 and a2 (the arguments).

See Fig. 9.6 for a graphical representation of this concept. Each latent variable is
represented by a letter in a small circle. Big circles surround the components of the
dependency triple to be estimated. A black dot shows the co-occurrence of two
variables; each contributes to the estimation of the triple v, a1, a2.

9.5.2 Experiments

We compare these two models in a pseudo-disambiguation task, as shown in
Sect. 9.3.1. However, in order to have a wider range of co-occurring words, we

138 9 Multiple Argument Handling

used the UkWaC corpus [75] for these evaluations. The UkWaC corpus is a large
balanced corpus of English from UK websites with more than 2 billion tokens.2 We
created two wordsets for the verbs: play, eat, add, calculate, fix, read, write, have,
learn, inspect, like, do, come, go, see, seem, give, take, keep, make, put, send, say,
get, walk, run, study, need, and become. These verbs were chosen as a sample of
frequently occurring verbs as well as not-so-frequently occurring verbs. They are
also verbs that can take a great variety of arguments (i.e., their ambiguity is high),
such as take. Each wordset contains 1,000 or 2,500 verb dependency triples per
verb. The first wordset is evaluated against 5,279 verb dependency triples, while the
second wordset is evaluated against 12,677 verb dependency triples, this latter
corresponding roughly to 20% of the total number of triples in each wordset
(Table 9.5).

9.5.2.1 Results of the Original Algorithm with the New Corpus

Here, we present results for this new corpus using the original PLSI and KNN
algorithms. Tests were carried out with one 7-topic variable for PLSI and a
100-nearest-neighbors expansion for KNN. We have shown in Sect. 9.4.2.1 that for
estimating the probability of an argument a2, P a2jv; a1ð Þ works better than P a2jvð Þ.
The following table confirms this for different wordset sizes. In most cases, KNN

Fig. 9.6 Graphical representation of interpolated probabilistic latent semantic indexing (iPLSI).
The tuple v, a1, a2 is estimated by using latent variables based on pairs of two variables and/or the
pair of a variable and the co-occurrence of two variables

2A tool including queries to this corpus can be found at http://sketchengine.co.uk.

9.5 Interpolated PLSI 139

http://sketchengine.co.uk

performs better than the original PLSI in precision and recall (the best of the KNN
variations is better than the best of the PLSI variations). Contrary to KNN, PLSI’s
performance increases with the size of the wordset, probably because there is more
confusion in KNN than in PLSI when the same number of topics is used. This can
also be seen in Figs. 9.7 and 9.8: recall improves slightly for larger data sets and
more topics.

9.5.2.2 Measuring the Learning Rate

This experiment consisted of gradually increasing the number of triples from 125 to
2,000 dependency triples per verb to examine the effects of using smaller corpora.
Results are shown in Fig. 9.7. In this figure, KNN outperforms PLSI when more
data is added. Indeed, KNN precision is higher in all experiments. The best results
for PLSI were obtained using seven topics; the best for KNN were obtained using
200 neighbors.

Table 9.5 Results of the original PLSI and KNN algorithms for a test with the UKWaC corpus

Mode Algorithm Wordset size Prec. Recall F-score

PLSI 1,000 0.5333 0.2582 0.3479

KNN 1,000 0.7184 0.5237 0.6058

PLSI 2,500 0.5456 0.2391 0.3325

KNN 2,500 0.7499 0.5032 0.6023

PLSI 1,000 0.4315 0.1044 0.1681

KNN 1,000 0.8236 0.5492 0.6590

PLSI 2,500 0.3414 0.0611 0.1036

KNN 2,500 0.8561 0.6858 0.7615

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TE
ST

0
TR

AI
N

0
PL

SI
10

PL
SI

20
PL

SI
50

PL
SI

10
0

PL
SI

50
0

PL
SI

10
00

KN
N

1
KN

N
2

KN
N

5
KN

N
10

KN
N

20
KN

N
50

KN
N

10
0

KN
N

20
0

Precision

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TE
ST

0
TR

AI
N

0
PL

SI
10

PL
SI

20
PL

SI
50

PL
SI

10
0

PL
SI

50
0

PL
SI

10
00

KN
N

1
KN

N
2

KN
N

5
KN

N
10

KN
N

20
KN

N
50

KN
N

10
0

KN
N

20
0

Recall 125 tpv

250 tpv

500 tpv

750 tpv

1000 tpv

2000 tpv

Fig. 9.7 Average of precision and recall for the original PLSI and KNN showing learning rate
(each series has different number of triples per verb, tpv). No frequency threshold was used. The
numbers and the lower part show the number of topics for PLSI and the number of neighbours for
KNN

140 9 Multiple Argument Handling

9.5.2.3 Results with no Pre-filtering

Previous results used a pre-filtering threshold of 4—that is, triples with less than
four occurrences were discarded. Here, we present results with no pre-filtering. In
Fig. 9.8, the results for KNN fall dramatically. PLSI is able to perform better with
20 topics, which suggests that PLSI is better able to smooth single occurrences of
certain triples. KNN is better for work with frequently occurring triples. However,
we require a method that can handle occurrences of infrequent words, since
pre-filtering implies losing data that could be useful afterward—for example, if
tezgüino is mentioned only once in the training test, it could be lost when it is
needed later. For this reason, we believe it is important to be able to learn infor-
mation for infrequently mentioned entities. The next section presents results
regarding the improvements that are possible when PLSI is used to handle non-
filtered items.

9.5.3 iPLSI Results

As presented in Sect. 9.5.1, we tested different models for their effectiveness in
combining latent semantic variables. The mode part shows the latent variables that
were used for these tests. For example, for the a, c row, the estimation was carried
using Eq. (9.3). Results are presented Table 9.6.

PE v; a1a2ð Þ � fa v; a1; a2ð Þþ fc v; a1; a2ð Þ ð9:3Þ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TE
ST

0
TR

AI
N

0
PL

SI
2

PL
SI

5
PL

SI
7

PL
SI

10
PL

SI
20

PL
SI

50
PL

SI
10

0
PL

SI
50

0
KN

N
1

KN
N

2
KN

N
5

KN
N

10
KN

N
20

KN
N

50
KN

N
10

0
KN

N
20

0

Precision

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TE
ST

0
TR

AI
N

0
PL

SI
2

PL
SI

5
PL

SI
7

PL
SI

10
PL

SI
20

PL
SI

50
PL

SI
10

0
PL

SI
50

0
KN

N
1

KN
N

2
KN

N
5

KN
N

10
KN

N
20

KN
N

50
KN

N
10

0
KN

N
20

0

Recall 125
tpv
250
tpv
500
tpv
750
tpv
1000
tpv
2000
tpv

Fig. 9.8 Precision and recall for the original PLSI and KNN with learning rate (each series has
different number of triples per verb, tpv). The frequency threshold for triples was set to 4. The
numbers and the lower part show the number of topics for PLSI and the number of neighbours for
KNN

9.5 Interpolated PLSI 141

As Table 9.6 shows, the best results were obtained for o, (using only the
information from a1, a2) followed by m, o, which combines the information from v,
a1 and a1, a2. The m, n, o and n, o modes include n, which has no impact in this test
because it is always fixed and which is of little help in deciding the better triple.
However, as we show in the following section, in a test with pure n-grams
(non-dependency triples, as in all previous tests), the three components (in this case
m, n, and o) contribute to the estimation.

9.5.4 The N-Grams Test

We conducted an n-grams test to prove that the three components contribute to the
interpolation and avoid the bias that the parser might induce. Trigrams of bigrams
were selected from the UkWaC corpus in a similar manner to that discussed for our
previous experiments. In this case, however, we did not use dependency relation-
ships; instead, we used sliding windows of hexagrams distributed in trigrams in
order to mimic the way function words (e.g., prepositions or determiners) affect
triples in the dependency model. The n-grams were extracted for n-grams related to
the same verbs described in Sect. 9.5.2. As with the dependency triples task, this
task consisted of choosing one of two options. The correct case is always the first
triple, though the system does not know this. We used 80% of the trigrams as a base
for prediction (training) and 20% for testing. Tests were conducted using the best
performance models of the previous experiment (m, n and m, n, o) for anywhere
from 500 triples per verb to 5,000 triples per verb.

From Table 9.7, we can see that m, n, o always has the best performance.

Table 9.6 Comparison of different iPLSI modes, each of which selects a different estimator.
KNN is shown in the last row for reference

Mode Precision Recall Mode Precision Recall

a, b, c 0.78 0.78 m, n, o 0.83 0.83

a 0.67 0.60 m 0.78 0.77

b 0.44 0.44 n 0.50 0.48

c 0.77 0.77 o 0.84 0.84

a, c 0.62 0.62 m, n 0.77 0.77

a, b 0.78 0.78 m, o 0.83 0.83

b, c 0.76 0.76 n, o 0.84 0.84

KNN 0.74 0.51 a, b, c, m, n, o 0.80 0.80

142 9 Multiple Argument Handling

9.5.5 Analysis

We have seen that the KNN algorithm outperforms single-variable PLSI, and we
have studied the learning rate of both algorithms, showing that KNN’s recall
increases when more data is added, without losing much precision; however, KNN
strongly requires a pre-filtering phrase that eventually leads to an important loss of
scarcely occurring words. Such words are important for our purposes because
filtering them out would prevent us from generalizing rare words in order to
measure their plausibility. The interpolated PLSI (iPLSI) algorithm proposed here
deals with that issue, yielding better results than single-variable PLSI. We have
found that it is possible to select the more feasible hexagram of two options with a
75% recall for raw n-grams grouped as trigrams of bigrams and up to an 83% recall
for dependency trigrams. The conducted tests prove that it is possible to select the
correct candidate for a triple, which can be regarded as part of a sentence; this
allows us to calculate the most plausible argument in a sentence using a broader
context as given by a verb and one other argument.

iPLSI outperforms the previous KNN model but still has room for improvement
—in particular, estimating the co-occurrence of two arguments simultaneously. The
next chapter proposes a model that allows us to do so in order to determine if using
more arguments improves argument prediction. Results using that model will then
be compared with results from our previous approaches.

Table 9.7 Results of iPLSI for hexagrams grouped as trigrams of bigrams. It shows that it is
possible to select the correct trigram amongst two in 75% of the cases

Size, mode Prec. Recall Size, mode Prec. Recall

500 m, n 0.75 0.70 2,000 m, n, o 0.77 0.77

500 m, n, o 0.78 0.74 3,000 m, n 0.70 0.70

1000 m, n 0.70 0.70 3,000 m, n, o 0.75 0.75

1000 m, n, o 0.76 0.76 5,000 m, n 0.72 0.72

2000 m, n 0.73 0.72 5,000 m, n, o 0.76 0.76

9.5 Interpolated PLSI 143

Chapter 10
The Need for Full Co-Occurrence

We have previously shown that simultaneously considering three arguments yields
better precision than does considering only two, though with a certain loss of recall.
Kawahara and Kurohashi [107] differentiate the main verb using the closest argu-
ment in order to disambiguate verbs for learning preferences. For example, play a
joke and play a guitar will have different argument preferences; however, in some
cases, this is not enough—as can be seen from the following example, where the
verb has different meanings depending on a distant argument:

Play a scene for friends in the theater (where play means to act)

and

Play a scene for friends in the VCR (where play means to reproduce).

Recent works, beginning with Bergsma et al. [13], have proposed a discrimi-
native approach for learning selectional preferences. Ritter et al. [168] and Ó
Séaghdha [149] propose a LinkLDA (latent Dirichlet allocation) model with
linked-topic hidden variables drawn from the same distribution to model <subject,
verb, object> combinations, such as <man, eats, ramen> and <cow, eats, grass>.
However, these works consider, at most, trinary relationships. In order to consider
as many arguments as possible for clustering verb preferences, we propose a
general model for learning all co-related preferences in a sentence, thus allowing us
to measure the plausibility of occurrence. In addition, this model allows us to use
statistical as well as manual resources, such as dictionaries or WordNet, to improve
predictions. In this work, we give an example that uses PLSI, mutual information,
and WordNet in order to measure the plausibility of occurrence.

Furthermore, at this point, there are several particular questions that we seek to
answer.

1. With automatic learning, building the co-occurrence table out from real exam-
ples can be done in several different ways. Which way is the best?

2. Is joining verb and noun information in a single table better for the model?
3. Can using an SVM that has been trained only with PLSI information outperform

the PLSI model itself?

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6_10

145

4. How does the model perform when the training information varies?
5. Does combining statistical information (from both PLSI and PMI) with manu-

ally crafted resource information, such as WordNet, improve results?
6. Should we consider using the model for more than just trinary relationships?

10.1 Method

First, by parsing the UkWaC corpus with MINIPAR [119], thus obtaining a lem-
matized dependency representation, we build the resource that counts
co-occurrences. The UkWaC corpus [75] is a large balanced corpus of English from
UK websites with more than 2 billion tokens. The sentence Play a scene for friends
in the theater becomes “play obj:scene for:friend in:theater.” We then pre-calculate
the mutual information statistics between all pairs of words, i.e., (play, obj:scene),
(play, for:friend), (play, in:theater), (obj:scene, for:friend), (obj:scene, in:theater),
(for:friend, in:theater), and afterward proceed to calculate the topic representation of
each word using PLSI.

As discussed previously, in Sect. 9.4.1.2, the probabilistic latent semantic
indexing model (PLSI) [103] attempts to associate an unobserved class variable
z 2 Z = {z1, …, zk} with two sets of observable arguments. In terms of generative
models, this process can be defined as follows: a document is selected with
probability P(d), a latent class z is selected with probability P(z|d), and a word w is
selected with probability P(w|z). This can alternatively be represented as Eq. (10.1).

Pðd;wÞ ¼
X

z

PðziÞ � PðdjziÞ � PðwjziÞ ð10:1Þ

Given a set of sentences, there are several ways to consider what is a word and
what is a document. We can then group documents by either verb or noun. That is,
the document eat will be for all arguments co-occurring with the verb eat, or the
document ball will be for all other arguments and verbs co-occurring with the noun
ball—such as play, with:stripes, and for:exercise (see Table 10.1). On the other
hand, documents can only be nouns, and the co-occurrents would then be verbs plus
functions (see Table 10.2).

Table 10.1 Co-occurrence
table (verbs+nouns)

With friend In park

Play 1 1

Eat 1

Ball 1

Yoyo 1

146 10 The Need for Full Co-Occurrence

To summarize, the following different ways of building the PLSI sentence
co-occurrence matrix are listed below. fn means function:noun (with:stripes), v
means verb (play), n means noun (ball), and vf means verb:function (play:with). In
some cases, Baroni and Lenci [10] performed experiments with similar matrices.
Their nomenclature is indicated in square brackets.

a. (fn|v,fn|v)
bc. (fn,fn), (v,fn) [LCxLC, CxLC]
d. (v|n,fn)
ef. (v,fn), (n,fn) [CxLC,CxLC]
g. (n,vf|nf) [CxCL]
h,i. (n,vf) (n,nf)

Note that modes a and bc are the same; however, bc considers building and
training the PLSI model separately for nouns and verbs. The same happens for
modes d, ef, g and hi. In Sect. 10.2, we detail the results for each of these different
settings when building the PLSI sentence co-occurrence matrix.

10.1.1 Assembling SVM Features for Training and Testing

Once the PLSI and PMI resources are built, the training and test sentences are
parsed with MINIPAR, but only the first-level shallow parse is used. We mapped
features to positions in a vector. Every argument has a fixed offset, i.e., the subject
will always be in the first position, the object in the 75th position, arguments
beginning with in at the 150th position, etc. In this way, the correlation can be
captured by an SVM learner. We have chosen a second-degree polynomial kernel
that can capture combinations of features. Each argument is decomposed in several
subfeatures, which consist of the projection of each word in the PLSI topic space,
the pointwise mutual information (PMI) between the target and feature words, and
the projection of the feature word in the WordNet space.

The PMI was calculated as

PMIðt1; t2Þ ¼ logPðt1; t2Þ
Pðt1; t2Þ

Table 10.3 provides an example of the learning data. For the sentence play a
scene for friends in the theater, the word scene is projected in three topics z1, z2,

Table 10.2 Co-occurrence
table (nouns only)

Play with Play at

Yoyo 1

Ball 1

10.1 Method 147

and z3 as 0.3, 0.2, and 0.5, respectively. (note, however, that the experiments
considered this projection into 38 topics;) We then calculate the projection in a
WordNet space for each word, which is done by calculating the jcn distance [104]
with regard to the 38 top concepts in WordNet, as shown in Table 10.4. The PMI
value for the target word and every target word is also included: (scene, scene) 1,
(scene, in theater) 0.4, and (scene, for friends) 0.2.

Table 10.3 Simplified example representation for SVM training and testing (one long row)

verb subj obj (target)

play z1 z2 z3 PMI wn1 wn2 wn3 z1 z2 z3 PMI wn1 wn2 wn3
0.3 0.2 0.5 1 0.8 0.3 0.2

in on
z1 z2 z3 PMI wn1 wn2 wn3 z1 z2 z3 PMI wn1 wn2 wn3
0.4 0.3 0.8 0.4 0.2 0.4 0.3

with for
z1 z2 z3 PMI wn1 wn2 wn3 z1 z2 z3 PMI wn1 wn2 wn3

0.4 0.6 0.4 0.2 0.1 0.9 0.1

Table 10.4 Top concepts in
WordNet

dry_land_1 money_2

object_1 garment_1

being_1 feeling_1

human_1 change_of_state_1

animal_1 motion_2

flora_1 effect_4

artifact_1 phenomenon_1

instrument_2 activity_1

device_2 act_1

product_2 state_1

writing_4 abstraction_1

construction_4 attribute_1

worker_2 relation_1

creation_3 cognition_1

food_1 unit_6

beverage_1 relationship_3

location_1 time_1

symbol_2 fluid_2

substance_1

148 10 The Need for Full Co-Occurrence

10.2 Experiments

Let us recall the questions we want to answer for these experiments.

1. With automatic learning, building the co-occurrence table out from real exam-
ples can be done in several different ways. Which way is the best?

2. Is joining verb and noun information in a single table better for the model?
3. Can using an SVM that has been trained only with PLSI information outperform

the PLSI model itself?
4. How does the model perform when the training information varies?
5. Does combining statistical information (from both PLSI and PMI) with manu-

ally crafted resource information, such as WordNet, improve results?

Following Weeds and Weir [204], we perform experiments for a
pseudo-disambiguation task that consists of changing a target word (in this case, a
direct object), at which point the system should identify the most plausible sentence
by considering the verb and all of its arguments. For example, for the sentences I
eat rice with chopsticks at the cafeteria and I eat bag with chopsticks at the
cafeteria, the system should be able to identify the first as the most plausible. This
experiment setting is similar to experiments previously discussed in Sects. 9.3.1,
9.4.2, and 9.5.2, but in this case, we are considering full phrases instead of only
quadruples. We randomly obtained 50 sentences from the WSJ corpus for the verbs:
play, eat, add, calculate, fix, read, write, have, learn, inspect, like, do, come, go,
see, seem, give, take, keep, make, put, send, say, get, walk, run, study, need, and
become. These verbs were chosen as a sample of both highly frequent and infre-
quent verbs. They are also verbs that can take a great variety of arguments (i.e.,
their ambiguity is high), such as take. For training, we created wordsets for the
same verbs. Each training wordset contains 125, 250, or 500 verb dependency
triples per verb; varying this size allows us to answer Question 4. These wordsets
were used both to train the PLSI model and also to create the PMI database. The
same wordsets were then used to train the SVM. Each sentence was treated as a
row, as described in Sect. 10.1.1, with each feature expanded in PLSI subfeatures
(topics). We randomly generated two false examples for every good example. For
testing, we generated a false example for every existing test example.

At this point, we have not yet included information about WordNet. The first
experiment explores different ways of building the co-occurrence matrix, as
described in Sect. 10.1 (Questions 1 and 2). We compare using PLSI and PM with
and without SVM learning to answer Question 3 (see results in Table 10.5).

10.2 Experiments 149

From Table 10.5 and Fig. 10.1, we see that, in all cases, considering all argu-
ments (which is done by adding the SVM learning stage to the PLSI binary
co-occurrences) improves performance. In addition, whereas mode g (n,vf|nf) has
greater coverage for creating the co-occurrence matrix, mode d (v|n,fn) is always
the best choice for precision and recall. We also observe that performance increases
with the amount of data in the training wordset.

Both the g and d modes combine verbs and nouns; hence, the answer to Question
2 is yes, it is better to join nouns and verbs in a single table.

10.2.1 Analysis of Adding Manually Crafted Information

In this experiment, we add manually crafted information to the model. As described
in Sect. 10.1.1, we add information to the training and testing table regarding the

Table 10.5 Results of using different modes for building the co-occurrence matrix for PLSI and
for using PLSI and PM with and without SVM learning

Train
size

Mode SVM
(PLSI
and PM)

PLSI * PM SVM
(PLSI
and PM)

PLSI * PM SVM
(PLSI
and PM)

PLSI * PM

Coverage Coverage Precision Precision Recall Recall

125 a 0.70 0.68 0.58 0.64 0.40 0.44

125 bc 0.69 0.68 0.56 0.59 0.39 0.40

125 d 0.83 0.74 0.65 0.59 0.54 0.44

125 ef 0.83 0.74 0.59 0.60 0.48 0.44

125 g 0.86 0.80 0.58 0.56 0.49 0.45

125 hi 0.83 0.72 0.62 0.58 0.51 0.42

250 a 0.78 0.78 0.62 0.59 0.48 0.45

250 bc 0.78 0.77 0.58 0.61 0.45 0.47

250 d 0.88 0.78 0.65 0.60 0.57 0.47

250 ef 0.88 0.78 0.59 0.57 0.52 0.45

250 g 0.90 0.83 0.61 0.55 0.54 0.45

250 hi 0.88 0.79 0.64 0.55 0.56 0.44

500 a 0.86 0.85 0.57 0.54 0.49 0.46

500 bc 0.85 0.85 0.62 0.57 0.53 0.48

500 d 0.92 0.81 0.68 0.58 0.62 0.47

500 ef 0.92 0.81 0.60 0.49 0.55 0.39

500 g 0.93 0.86 0.62 0.56 0.58 0.48
500 hi 0.92 0.79 0.64 0.56 0.59 0.44

150 10 The Need for Full Co-Occurrence

distance of arguments to the 38 most common concepts in WordNet. Table 10.6
shows the results we obtained.

From Fig. 10.2, we see that, in most cases, combining the three sources of
information improves the learning rate; separately, however, PMI provides the
highest learning rate. Coverage is always best when the three resources are

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Coverage (SVM(PLSI&PM)) Coverage (PLSI*PM)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

Precision (SVM(PLSI&PM)) Precision (PLSI*PM)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

Recall (SVM(PLSI&PM)) Recall (PLSI*PM)

Fig. 10.1 Coverage, precision, and recall results from the first experiment

10.2 Experiments 151

combined. However, for small amounts of training data, precision is better with
PMI only while PLSI gives better support when more data is added. Recall is
greater for cases in which WordNet information is used. On average, except for
precision, the best values are obtained when the three resources are combined.

Table 10.6 Results of the pseudo-disambiguation task with different settings for PMI, PLSI, and
WordNet (WN)

PMI PLSI WN Learning
(%)

Coverage
(%)

Precision
(%)

Recall
(%)

F (%)

Wordset 125

0 0 1 68.36 89.44 54.88 49.09 51.82%

0 1 0 89.59 82.61 66.96 55.23 60.53

0 1 1 92.60 96.09 63.23 60.76 61.97

1 0 0 93.63 46.62 70.98 33.10 45.15

1 0 1 94.55 94.88 65.85 62.48 64.12
1 1 0 97.14 83.03 66.09 54.85 59.95

1 1 1 98.01 96.09 65.26 62.71 63.96

Wordset 250

0 0 1 67.85 89.49 53.87 48.21 50.88

0 1 0 88.01 87.02 69.44 60.43 64.62

0 1 1 90.82 96.28 68.22 65.69 66.93
1 0 0 93.24 55.18 70.34 38.81 50.02

1 0 1 93.78 95.39 64.86 61.87 63.33

1 1 0 96.88 87.12 68.99 60.11 64.24

1 1 1 97.28 96.28 66.10 64.64 65.36

Wordset 500

0 0 1 91.09 89.49 46.75 41.84 44.16

0 1 0 86.75 91.58 68.32 62.57 65.32

0 1 1 93.46 96.79 54.37 52.63 53.49

1 0 0 92.95 64.62 65.11 42.07 51.11

1 0 1 93.46 95.72 63.18 60.48 61.80

1 1 0 96.65 91.72 68.77 63.08 65.80
1 1 1 96.68 97.69 65.51 63.41 64.44

Average

0 0 1 91.09 89.47 51.83 46.38 48.96

0 1 0 86.75 87.07 68.24 59.41 63.49

0 1 1 93.46 96.39 61.94 59.69 60.80

1 0 0 92.95 55.47 68.81 37.99 48.76

1 0 1 93.46 95.33 64.63 61.61 63.08

1 1 0 96.65 87.29 67.95 59.35 63.33

1 1 1 96.68 96.69 65.62 63.59 64.59

152 10 The Need for Full Co-Occurrence

40.00%
45.00%
50.00%
55.00%
60.00%
65.00%
70.00%
75.00%

125 250 500

Pr
ec
is
io
n

PMI
PLSI
WN
PMI+PLSI
PMI+WN
PLSI+WN
ALL

30.00%

40.00%

50.00%

60.00%

70.00%

125 250 500

Re
ca
ll

PMI
PLSI
WN
PMI+PLSI
PMI+WN
PLSI+WN

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

125 250 500

F
sc
or
e

PMI
PLSI
WN
PMI+PLSI
PMI+WN
PLSI+WN
ALL

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

PMI PLSI WN PMI+PLSI PMI+WN PLSI+WN ALL

F
sc
or
e 125

250
500

Fig. 10.2 Precision, recall and F score (by training size and by method) for different training
corpus’ sizes (125, 250 and 500) and feature combinations (PMI, PLSI and WN)

10.2 Experiments 153

10.3 Conclusions and Future Work

Despite the low amount of training data, we were able to obtain prediction rates
above a trivial baseline of random selection between two options. With these
experiments, it was possible to determine the impact of using several resources and
also to measure the benefit of using an ensemble model for SVM with regard to a
simple PLSI model. We found that considering all co-occurrences of an argument in
a sentence increases recall by 10%. We also observed that as expected, adding more
data increases coverage; however, recall is increased to a greater extent when using
SVM over PLSI rather than using PLSI only. Using SVM increases coverage,
precision, and recall—even when trained with the same information available to
PLSI. This suggests that randomly generating negative examples and applying
machine learning to this sample may improve the performance of tasks using topic
models.

154 10 The Need for Full Co-Occurrence

References

1. Agirre, Eneko, and David Martinez. 2001. Learning Class-to-Class Selectional Preferences.
In Proceedings of the Workshop Computational Natural Language Learning
(CoNLL-2001), Toulousse, France (A).

2. Agirre, Eneko, and David Martinez. 2002. Integrating Selectional Preferences in WordNet.
In Proceedings of the First International WordNet Conference, Mysore, India (A).

3. Agirre, Eneko, and David Martínez. 2004. Unsupervised WSD Based on Automatically
Retrieved Examples: The Importance of Bias. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), Barcelona, Spain.

4. Apresyan, Yuri D., Igor Boguslavski, Leonid Iomdin, Alexandr Lazurski, Nikolaj Pertsov,
Vladimir Sannikov, and Leonid Tsinman. 1989. Linguistic Support of the ETAP-2 System
(in Russian). Moscow: Nauka.

5. Asoh, H., T. Matsui, J. Fry, F. Asano, and S. Hayamizu. 1999. A Spoken Dialog System for
a Mobile Office Robot. In Proceedings of Eurospeech ‘99, 1139–1142. Budapest.

6. Atserias, J., and H. Rodríguez. 1998. TACAT: TAgged Corpus Text Analyzer. Technical
Report LSI-UPC RT-2-98.

7. Baker, C.F., C.J. Fillmore, and J.B. Lowe. 1998. The Berkeley FrameNet Project. In
Proceedings of the COLING-ACL, Montreal, Canada.

8. Banerjee, Satanjeev, and Ted Pedersen. 2003. The Design, Implementation, and Use of the
Ngram Statistic Package. In Proceedings of the Fourth International Conference on
Intelligent Text Processing and Computational Linguistics, Mexico City, 370–381.

9. Barros, Flavia de Almeida. 1995. A Treatment of Anaphora in Portable Natural Language
Front Ends to Data Bases. Ph.D. thesis, University of Essex, UK, 231p.

10. Baroni, M., and A. Lenci, 2009. One distributional memory, many semantic spaces. In
Proceedings of the EACL 2009 Geometrical Models for Natural Language Semantics
(GEMS) Workshop, (pp. 1–8). ACL, East Stroudsburg.

11. Baum, L., T. Petria, G. Soules, and N. Weiss. 1970. A Maximization Technique Occurring
in the Statistical Analysis of Probabilistic Functions of Markov Chains. The Annals of
Mathematical Statistics 41 (1): 164–171.

12. Bechhofer, S., I. Horrocks, P.F. Patel-Schneider, and S. Tessaris. 1999. A Proposal for a
Description Logic Interface. In Proceedings of the International Workshop on Description
Logics (DL'99), ed. P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and
P. Patel-Schneider, 33–36.

13. Bergsma, S., Lin, D., and R. Goebel, 2008. Discriminative learning of selectional
preference for unlabeled text. In: Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, 59–68.

14. Bogatz, H. The Advanced Reader’s Collocation Searcher (ARCS).http://www.elda.fr/
catalogue/en/text/M0013.html.

© Springer International Publishing AG 2018
A. Gelbukh and H. Calvo, Automatic Syntactic Analysis Based
on Selectional Preferences, Studies in Computational Intelligence 765,
https://doi.org/10.1007/978-3-319-74054-6

155

http://www.elda.fr/catalogue/en/text/M0013.html
http://www.elda.fr/catalogue/en/text/M0013.html

15. Bolshakov, Igor A. 2004. A Method of Linguistic Steganography Based on
Collocationally-Verified Synonymy. In Information Hiding 2004, vol. 3200, 180–191.
Lecture Notes in Computer Science. Springer (BB).

16. Bolshakov, Igor A. 2004. Getting One’s First Million… Collocations. In Proceedings of the
5th International Conference on Computational Linguistics and Intelligent Text Processing
(CICLing-2004), vol. 2945, ed. A. Gelbukh, 229–242. LNCS. Springer, 1997 (B).

17. Bolshakov, Igor A. 2004. Two Methods of Synonymous Paraphrasing in Linguistic
Steganography (in Russian, abstract in English). In Proceedings of the International
Conference on Dialogue’2004, Verhnevolzhskij, Russia, June 2004, 62–67.

18. Bolshakov, Igor A., and A. Gelbukh. 2000. A Very Large Database of Collocations and
Semantic Links. In Natural Language Processing and Information Systems. Proceedings of
the International Conference on Applications of Natural Language to Information Systems
NLDB-2000, vol. 1959, ed. M. Bouzeghoub et al., 103–114. LNCS. Springer, 2001 (B).
www.gelbukh.com/CV/Publications/2000/NLDB-2000-XLex.htm.

19. Bolshakov, Igor A., and A. Gelbukh. 2002. Heuristics-Based Replenishment of Collocation
Databases. In Advances in Natural Language Processing. Proceedings of the International
Conference on PorTAL 2002, Faro, Portugal, vol. 2389, ed. E. Ranchhold, and N.
J. Mamede, 25–32, LNAI. Springer.

20. Bolshakov, Igor A., A. Gelbukh. 2004. Synonymous Paraphrasing Using WordNet and
Internet. In Proceedings of the 9th International Conference on Application of Natural
Language to Information Systems NLDB-2004, vol. 3136, ed. F. Meziane, and E. Métais.
LNCS. Springer.

21 Bolshakov, Igor A., and Alexander Gelbukh. 1998. Lexical Functions in Spanish. In
Proceedings of the CIC-98, Simposium Internacional de Computación, Mexico, 383–395.
www.gelbukh.com/CV/Publications/1998/CIC-98-Lexical-Functions.htm.

22. Bolshakov, Igor A., and Alexander Gelbukh. 2001. A Large Database of Collocations and
Semantic References: Interlingual Applications. International Journal of Translation 13
(1–2): 167–187. (B).

23. Bolshakov, Igor A., and Alexander Gelbukh. 2003. On Detection of Malapropisms by
Multistage Collocation Testing. In NLDB-2003, 8th International Conference on
Application of Natural Language to Information Systems, 28–41. Bonner Köllen Verlag
(B).

24. Bolshakov, I. A. 2005. An experiment in detection and correction of malapropisms through
the web. LNCS 3406: 803-815.

25. Brants, Thorsten. 2000. TNT—A Statistical Part-of-Speech Tagger. In ANLP-2000, 6th
Applied NLP Conference, Seattle, Washington, USA.

26. Bresciani, Paolo, Enrico Franconi, and Sergio Tessaris. 1995. Implementing and Testing
Expressive Description Logics: A Preliminary Report. In Proceedings of the 1995
International Workshop on Description Logics, Rome, Italy.

27. Brill, Eric. 2003. Processing Natural Language Without Natural Language Processing. In
4th International Conference on Computational Linguistics and Intelligent Text Processing
(CICLing 2003), ed. Alexander Gelbukh, 360–369. Mexico.

28. Brill, Eric, and Phil Resnik. 1994. A Rule Based Approach to Prepositional Phrase
Attachment Disambiguation. In Proceedings of the Fifteenth International Conference on
Computational Linguistics (COLING) (B).

29. Briscoe, Ted, John Carroll, Jonathan Graham, and Ann Copestake. 2002. Relational
Evaluation Schemes. In Proceedings of the Beyond PARSEVAL Workshop at the 3rd
International Conference on Language Resources and Evaluation, Las Palmas, Gran
Canaria, 4–8 (B).

30. Briscoe, Ted, and Nick Waegner. 1993. Generalized Probabilistic LR Parsing of Natural
Language (Corpora) With Unification-Based Grammars. Computational Linguistics 19: 25–
69.

156 References

http://www.gelbukh.com/CV/Publications/2000/NLDB-2000-XLex.htm.
http://www.gelbukh.com/CV/Publications/1998/CIC-98-Lexical-Functions.htm

31. Brooks, David J. 2006. Unsupervised Grammar Induction by Distribution and Attachment.
In Proceedings of the 10th Conference on Computational Natural Language Learning
(CoNLL-X), 117–124. New York City: Association for Computational Linguistics.

32. Burton, R. 1992. Phrase-Structure Grammar. In Encyclopedia of Artificial Intelligence, vol.
1, ed. Stuart Shapiro.

33. Buchholz, Sabine, and Erwin Marsi. 2006. CoNLL-X Shared Task on Multilingual
Dependency Parsing. In Proceedings of the Tenth Conference on Computational Natural
Language Learning, 149–164.

34. Calvo, Hiram, and Alexander Gelbukh. 2003. Natural Language Interface Framework for
Spatial Object Composition Systems. In Procesamiento de Lenguaje Natural, N 31.www.
gelbukh.com/CV/Publications/2003/sepln03-2f.pdf.

35. Calvo, Hiram, and Alexander Gelbukh. 2008. Automatic Semantic Role Labeling Using
Selectional Preferences with Very Large Corpora. Computación y Sistemas 12 (1): 128–
150.

36. Calvo, Hiram, and Alexander Gelbukh. 2003. Improving Disambiguation of Prepositional
Phrase Attachments Using the Web as Corpus. In Proceedings of 8th Iberoamerican
Congress on Pattern Recognition (CIARP’2003), Havana (Cuba), 592–598 (C C).

37. Calvo, Hiram, and Alexander Gelbukh. 2004. Extracting Semantic Categories of Nouns for
Syntactic Disambiguation from Human-Oriented Explanatory Dictionaries. In
Computational Linguistics and Intelligent Text Processing (CICLing-2004), vol. 2945,
ed. A. Gelbukh. Lecture Notes in Computer Science. Springer.

38. Calvo, Hiram, and Alexander Gelbukh. 2004. Unsupervised Learning of Ontology-Linked
Selectional Preferences. In Proceedings of Progress in Pattern Recognition, Speech and
Image Analysis (CIARP’2004). LNCS. Springer (C).

39. Calvo, Hiram, and Alexander Gelbukh. 2004. Acquiring Selectional Preferences from
Untagged Text for Prepositional Phrase Attachment Disambiguation. In Proceedings of the
NLDB-2004, vol. 3136, 207–216. Lecture Notes in Computer Science (C).

40. Calvo, Hiram, and Alexander Gelbukh. 2006. DILUCT: An Open-Source Spanish
Dependency Parser Based on Rules, Heuristics, and Selectional Preferences. In NLDB
2006, 164–175.

41. Cano Aguilar, R. 1987. Estructuras sintácticas transitivas en el español actual, ed. Gredos.
Madrid.

42. Caroli, F., R. Nübel, B. Ripplinger, and J. Schütz. 1994. Transfer in VerbMobil. In IAI
Saarbrücken VerbMobil-Report 11, May 1994 (C).

43. Carpenter, Bob. 1992. The Logic of Typed Feature Structures, vol. 32. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press (C).

44. Carreras, Xavier, Isaac Chao, Lluis Padró, and Muntsa Padró. 2004. FreeLing: An
Open-Source Suite of Language Analyzers. In Proceedings of the 4th International
Conference on Language Resources and Evaluation (LREC-04), Portugal.

45. Carroll, John, Diana McCarthy (2000) Word sense disambiguation using automatically
acquired verbal preferences. In Computers and the Humanities, 34(1–2), Netherlands.

46. Chapman, M., G.I. Davida, and M. Rennhard. 2001. A Practical and Effective Approach to
Large-Scale Automated Linguistic Steganography. In Information Security. Proceedings of
International Conference on Information and Communication Security (ICS 2001), vol.
2200, ed. G.I. Davida, and Y. Frankel, 156–165. LNCS. Springer.

47. Charniak, Eugene. 2000. A Maximum-Entropy-Inspired Parser. In NAACL-2000, 132–139.
48. Charniak, Eugene. 1997. Statistical Techniques for Natural Language Parsing. AI Magazine

18: 33–43.
49. Cheng, Yuchang, Masayuki Asahara, and Yuji Matsumoto. 2006. Multi-lingual

Dependency Parsing at NAIST. CONLL-X. Nara Institute of Science and Technology.
50. Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton & Co. (CC).

References 157

http://www.gelbukh.com/CV/Publications/2003/sepln03-2f.pdf
http://www.gelbukh.com/CV/Publications/2003/sepln03-2f.pdf

51. Choueka, Y. 1988. Looking for Needles in a Haystack or Locating Interesting Collocational
Expressions in Large Textual Database. In Proceedings of Conference on User-Oriented
Content-Based Text and Image Handling (RIAO'88), 609–623.

52. Civit, Montserrat. 2003. Criterios de etiquetación y desambiguación morfosintática de
corpus en español. Tesis doctoral, Departament de Lingüística, Universitat de Barcelona.

53. Civit, Montserrat, Ma. Antònia Martí, and Núria Bufí. 2006. From Constituents to
Dependencies, vol. 4139, 141–152. LNCS. Springer.

54. Clark, Stephen, and David Weir. 2002. Class-Based Probability Estimation Using a
Semantic Hierarchy. Computational Linguistics 28 (2).

55. Clarkson, P. R. and R. Rosenfeld. 1997. Statistical language modeling using the
cmu-cambridge toolkit. In Proceedings of the ESCA Eurospeech.

56. Cohen, S.B., Kevin Gimpel, and Noah A. Smith 2008. Unsupervised Bayesian Parameter
Estimation for Dependency Parsing. In Advances in NIPS 22.

57. Collins, Michael, and James Brooks. 1995. Prepositional Phrase Attachment through a
Backed-of Model. In Proceedings of the Third Workshop on Very Large Corpora, ed.
David Yarouwsky, and Kenneth Church, 27–38. Cambridge, Massachussets.

58. Collins, Michael. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.
D. thesis, University of Pennsylvania.

59. Copestake, Ann. 2001. Implementing Typed Feature Structure Grammars. The University
of Chicago Press.

60. Copestake, Ann, and Dan Flickinger. 2000. An Open-Source Grammar Development
Environment and Broad-Coverage English Grammar Using HPSG. In Second conference
on Language Resources and Evaluation (LREC-2000), Athens, Greece.

61. Copestake, Ann, Dan Flickinger, and Ivan A. Sag. 1997. Minimal Recursion Semantics. An
Introduction. CSLI, Stanford University.

62. Craig, J., S. Berezner, C. Homer, and C. Longyear. 1966. DEACON: Direct English Access
and Control. In Proceedings of AFIPS Fall Joint Conference, San Francisco, CA, vol. 29,
365–380.

63. Cruse, D.A. 1986. Lexical Semantics. Cambridge, England: Cambridge University Press.
64. Cuetos, Fernando, Maria Antonia Martí, and Valiña Carreiras. 2000. Léxico informatizado

del Español. Edicions de la Universitat de Barcelona.
65. Debusmann, Ralph, Denys Duchier, and Geert-Jan M. Kruijff. 2004. Extensible

Dependency Grammar: A New Methodology. In Recent Advances in Dependency
Grammar. Proceedings of a Workshop at COLING-2004, Geneve.

66. Di Eugenio, Barbara. 1993. Understanding Natural Language Instructions: A
Computational Approach to Purpose Clauses. Ph.D. thesis, University of Pennsylvania,
December. Technical Report MS-CIS-93-91.

67. Di Eugenio, Barbara. 1996. Pragmatic Overloading in Natural Language Instructions.
International Journal of Expert Systems 9.

68. Díaz, Isabel, Lidia Moreno, Inmaculada Fuentes, and Oscar Pastor. 2005. Integrating
Natural Language Techniques in OO-Method. In Computational Linguistics and Intelligent
Text Processing (CICLing-2005), vol. 3406, ed. Alexander Gelbukh, 560–571. Lecture
Notes in Computer Science, Springer.

69. Deerwester, S., S. T. Dumais, G. W. Furnas, Thomas K. L, and Richard Harshman. 1990.
Indexing by latent semantic analysis. Journal of the American Society for Information
Science, 391–407.

70. Deschacht, K. and M. Moens. 2009. Semi-supervised semantic role labeling using the latent
words language model. In Proceedings of the 2009 conference on empirical methods in
natural language processing (EMNLP 2009), 21–29.

71. Dik, Simon C. 1989. The Theory of Functional Grammar, Part I: The Structure of the
Clause. Dordrecht: Foris Publications.

158 References

72. Domingos, P. 1995. The RISE 2.0 System: A Case Study in Multistrategy Learning.
Technical Report 95-2. Department of Information and Computer Science, University of
California.

73. Dörnenburg, E. 1997. Extension of the EMILE Algorithm for Inductive Learning of
Context-Free Grammars for Natural Languages. Master’s thesis, University of Dortmund.

74. Farreres, X., G. Rigau, H. Rodríguez. 1998. Using WordNet for Building WordNets. In
Proceedings of COLING-ACL Workshop “Usage of WordNet in Natural Language
Processing Systems”, Montreal, Canada.

75. Ferraresi, A., Zanchetta, E., Baroni, M., and S. Bernardini, 2008. Introducing and
evaluating ukWaC, a very large web-derived corpus of English. In Proceedings of the
WAC4 Workshop at LREC, Marrakech, 45–54.

76. Fillmore, Charles. 1968. The Case for Case. In Universals in Linguistic Theory, ed. Emmon
Bach, and Robert T. Harms, 1–90. Chicago: Holt, Rinehart and Winston (F).

77. Franz, Alexander. 1997. Independence Assumptions Considered Harmful. In ACL.
78. Fuji, A., and M. Iwayama, (eds.) 2005. Patent retrieval task (PATENT). In Fifth NTCIR

Workshop Meeting on Evaluation of Information Access Technologies: Information
Retrieval, Question Answering and Cross-Lingual Information Access.

79. Galicia–Haro, Sofia, Alexander Gelbukh, and Igor A. Bolshakov. 2001. Una aproximación
para resolución de ambigüedad estructural empleando tres mecanismos diferentes. In
Procesamiento de Lenguaje Natural, No. 27, Sept 2001. Sociedad Española para el
Procesamiento de Lenguaje Natural (SEPLN), Spain, 55–64.

80. Gambino, Omar J., and Hiram Calvo. 2007. On the Usage of Morphological Tags for
Grammar Induction, vol. 4827, 912–921. Lecture Notes on Artificial Intelligence. Springer.

81. Gao J. and H. Suzuki. 2003. Learning of dependency structure for language modeling. In
Annual Meeting of the ACL archive, Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics, 1: 2003.

82. Gao J., J. Y. Nie, G. Wu, and G. Cao. 2004. Dependence language model for information
retrieval. In Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, 170–177.

83. Gazdar, Gerald. 1982. Phrase Structure Grammar. In The Nature of Syntactic
Representation, ed. P. Jacobsen, and G.K. Pullum. Boston, Massachussets: Reidel.

84. Gelbukh, Alexander, and Grigori Sidorov. 2002. Automatic Selection of Defining
Vocabulary in an Explanatory Dictionary. In Computational Linguistics and Intelligent
Text Processing, 300–303. Berlin, Heidelberg: Springer.

85. Gelbukh, Alexander, and Grigori Sidorov. 2004. Procesamiento automático del español
con enfoque en recursos léxicos grandes. IPN.

86. Gelbukh, Alexander, Grigori Sidorov, and Francisco Velásquez. 2003. Análisis
morfológico automático del español a través de generación. Escritos 28: 9–26.

87. Gelbukh, Alexander, Grigori Sidorov, and Liliana Chanona. 2002. Corpus virtual, virtual:
Un diccionario grande de contextos de palabras españolas compilado a través de Internet. In
Proceedings of Multilingual Information Access and Natural Language Processing,
International Workshop,IBERAMIA-2002, VII Iberoamerican Conference on Artificial
Intelligence, Spain Seville, ed. Julio Gonzalo, Anselmo Peñas, and Antonio Ferrández, 7–
14, 12–15 Nov (G).

88. Gelbukh, Alexander, S. Torres, and H. Calvo. 2005. Transforming a Constituency Treebank
into a Dependency Treebank. Submitted to Procesamiento del Lenguaje Natural, No. 35,
Spain, 1997.

89. van Genabith, Josef, Anette Frank, and Andy Way. 2001. Treebank vs. Xbar-based
Automatic F-Structure Anotation. In Proceedings of the LFG01 Conference. University of
Hong Kong, Hong Kong, CSLI Publications.

90. George, Miller. 1990. WordNet: An On-line Lexical Database. International Journal of
Lexicography 3 (4): 235–312.

References 159

91. Genthial, Damien, Jacques Courtin, and Irene Kowarski. 1990. Contribution of a Category
Hierarchy to the Robustness of Syntactic Parsing. In COLING 1990, 139–144.

92. Gladki, V. 1985. Syntax Structures of Natural Language in Automated Dialogue Systems
(in Russian). Moscow: Nauka.

93. Gold, E.M. 1967. Language Identification in the Limit. Information and Control 10 (5):
447–474.

94. Goldstein, R.A., and R. Nagel. 1971. 3-D Visual Simulation. Simulation 16: 25–31.
95. Gorla, Jagadeesh, Amit Goyal, and Rajeev Sangal. 2007. Two Approaches for Building an

Unsupervised Dependency Parser and their Other Applications, 1860–1861. AAAI.
96. Grefenstette, G. 1994. Explorations in Automatic Thesaurus Discovery. Kluwer.
97. Grosz, B.J., D. Appelt, P. Martin, and F.C.N. Pereira. 1987. TEAM: An Experiment in the

Design of Transportable Natural-Language Interfaces. Artificial Intelligence 32: 173–243.
98. Haarslev, Volker, and Ralf Möller. 2000. Consistency Testing: The RACE Experience. In

Proceedings of Automated Reasoning with Analytic Tableaux and Related
Methods TABLEAUX 2000, University of St Andrews, Scotland, 4–7 July. Springer.

99. Harris, L. 1984. Experience with INTELLECT: Artificial Intelligence Technology Transfer.
The AI Magazine 2 (2): 43–50.

100. Hendrix, G.G., E. Sacerdoti, D. Sagalowowicz, and J. Slocum. 1978. Developing a Natural
Language Interface to Complex Data. ACM Transactions on Database Systems 3 (2): 105–
147.

101. Hengeveld, K. 1992. Parts of Speech. In Layered Structure and Reference in a Functional
Perspective, Benjamins, Amsterdam, ed. M. Fortescue, P. Harder, and L. Kristoffersenpp,
29–56.

102. Henrichsen, P.J. 2002. GraSp: Grammar Learning from Unlabelled Speech Corpora. In
Proceedings of CoNLL-2002, Taipei, Taiwan, ed. D. Roth, and A. Van den Bosch, 22–28.

103. Hoppe, Th., C. Kindermann, J.J. Quantz, A. Schmiedel, and M. Fischer. 1993 BACK V5
Tutorial & Manual. KIT Report 100, Technical University of Berlin.

104. Jiang, J., and D. Conrath, 1997. Semantic similarity based on corpus statistics and lexical
taxonomy. In Proceeding of the International Conference on Research in Computational
Linguistics, ROCLING X.

105. Joshi, Aravind. 1992. Phrase-Structure Grammar. In Encyclopedia of Artificial Intelligence,
vol. 1, ed. Stuart Shapiro. New York: John Wiley & Sons, Inc. Publishers.

106. Kay, Martin. 1979. Functional Grammar. In Proceedings of the 5th Annual Meeting of the
Berkeley Linguistic Society, 142–158.

107. Kawahara, D. and S. Kurohashi. 2001. Japanese case frame construction by coupling the
verb and its closest case component. In 1st International Conference on Human Language
Technology Research, ACL.

108. Keller, Frank, and Mirella Lapata. 2003. Using the Web to Obtain Frequencies for Unseen
Bigrams. Computational Linguistics 29: 3.

109. Kirby, S. 2002. Natural Language from Artificial Life. Artificial Life 8 (2): 185–215.
110. Klein, D., and C. Manning. 2004. Corpus-Based Induction of Syntactic Structure: Models

of Dependency and Constituency. In Proceedings of the ACL.
111. Knight, Kevin. 1992. Unification. In Encyclopedia of Artificial Intelligence, vol. 2, ed.

Stuart Shapiro. New York: John Wiley & Sons, Inc. Publishers.
112. Korhonen, Anna, 2000. Using semantically motivated estimates to help subcategorization

acquisi-tion. In Proceedings of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora. Hong Kong. 216–223.

113. Kudo, T., and Y. Matsumoto. 2000. Use of Support Vector Learning for Chunk
Identification. In Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal.

114. Lucien, Tesnière. 1959. Eléments de syntaxe structurale. Paris: Librairie Klincksieck.
115. Lara, Luis Fernando. 1996. Diccionario del español usual en México. Digital edition.

Colegio de México, Center of Linguistic and Literary Studies.
116. Lázaro Carreter, F. (ed.). 1991. Diccionario Anaya de la Lengua, Vox (L).

160 References

117. Lee, L., 1999. Measures of distributional similarity. In Proceedings of 37th ACL.
118. Li, Hang, and Naoki Abe. 1998. Word Clustering and Disambiguation Based on

Co-ocurrence Data. In Proceedings of COLING ’98, 749–755.
119. Lin, Dekang. 1998. An Information-Theoretic Measure of Similarity. In Proceedings of

ICML’98, 296–304.
120. Lüdtke, Dirk, and Satoshi Sato. 2003. Fast Base NP Chunking with Decision Trees—

Experiments on Different POS Tag Settings. In Computational Linguistics and Intelligent
Text Processing, ed. A. Gelbukh, 136–147. LNCS. Springer.

121. MacGregor, Robert. 1991. Using a Description Classifier to Enhance Deductive Inference.
In Proceedings of the Seventh IEEE Conference on AI Applications, Miami, Florida, Feb,
141–147.

122. Manning, C.D., and H. Schütze. 1999. Foundations of Statistical Natural Language
Processing, 2nd ed. Cambridge, MA, USA: The MIT Press. (M M).

123. de Marneffe, Marie-Catherine, Bill MacCartney, and Christopher D. Manning. 2006.
Generating Typed Dependency Parses from Phrase Structure Parses. In Proceedings of
LREC-06.

124. McCarthy, D. and J. Carroll. 2003. Disambiguating nouns, verbs and adjectives using
automatically acquired selectional preferences. Computational Linguistics 29(4): 639-654.

125. McCarthy, D., R. Koeling, J. Weeds, and J. Carroll. 2004. Finding predominant senses in
untagged text. In Proceedings 42nd meeting of the ACL, 280–287.

126. McCarthy, D. and J. Carroll. 2006. Disambiguating nouns, verbs, and adjectives using
automatically acquired selectional preferences. Computational Linguistics 29(4): 639–654.

127. McDonald, R., K. Lerman, and F. Pereira. 2006. Multilingual Dependency Analysis with a
Two-stage Discriminative Parser. In Proceedings of the CoNLL.

128. McDonald, R., K. Crammer, and F. Pereira 2005. Online Large-Margin Training of
Dependency Parsers. In Proceedings of the ACL.

129. McDonald, Ryan, and G. Satta. 2007. On the Complexity of Non-projective Data-Driven
Dependency Parsing. In Proceedings of the IWPT.

130. McLauchlan, Mark. 2004. Thesauruses for Prepositional Phrase Attachment. In
Proceedings of CoNLL-2004, Boston, MA, USA, 73–80.

131. Mel’čuk, Igor A. 1996. Lexical Functions: A Tool for the Description of Lexical Relations
in the Lexicon. In Lexical Functions in Lexicography and Natural Language Processing,
ed. L. Wanner, 37–102. Amsterdam/Philadelphia: Benjamins.

132. Mel’čuk, Igor A. 1981. Meaning-Text Models: A Recent Trend in Soviet Linguistics.
Annual Review of Anthropology 10: 27–62.

133. Mel’čuk, Igor A. 1988. Dependency Syntax: Theory and Practice. New York: State
University Press.

134. Merlo, Paola, Matthew W. Crocker, and Cathy Berthouzoz. 1997. Attaching Multiple
Prepositional Phrases: Generalized Backer-off Estimation. In Second Conference on
Empirical Methods in Natural Language Processing, ed. Claire Cardie, and Ralph
Weischedel, 149–155, Providence, R.I., 1–2 Aug 1997.

135. Merlo, P. and L. Van Der Plas. 2009. Abstraction and generalisation in semantic role labels:
propbank, verbnet or both? In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, 288–296. Association for Computational Linguistics.

136. Microsoft, Biblioteca de Consulta Microsoft Encarta 2004, Microsoft Corporation. 1994–
2004.

137. Minsky, Marvin. 1975. A Framework for Representing Knowledge. In The Psychology of
Computer Vision, ed. P. Winston, 211–277. New York: McGraw Hill.

138. Mitchell, Brian. 2003. Prepositional Phrase Attachment Using Machine Learning
Algorithms. Ph.D. thesis, University of Sheffield.

References 161

139. Monedero, J., J. González, J. Goñi, C. Iglesias, and A. Nieto. 1995. Obtención automática
de marcos de subcategorización verbal a partir de texto etiquetado: el sistema SOAMAS. In
Actas del XI Congreso de la Sociedad Española para el Procesamiento del Lenguaje
Natural SEPLN 95, Bilbao, Spain, 241–254 (M).

140. Montes-y-Gómez, Manuel, Alexander F. Gelbukh, and Aurelio López-López. 2002. Text
Mining at Detail Level Using Conceptual Graphs. In Conceptual Structures: Integration
and Interfaces, 10th International Conference on Conceptual Structures (ICCS-2002),
Bulgaria, vol. 2393, ed. Uta Priss et al., 122–136. Lecture Notes in Computer Science.
Springer.

141. Montes-y-Gómez, Manuel, Aurelio López-López, and Alexander Gelbukh. 2000.
Information Retrieval with Conceptual Graph Matching. In Proceedings of DEXA-2000,
11th International Conference on Database and Expert Systems Applications, England, vol.
1873, 312–321. Lecture Notes in Computer Science, Springer.

142. Morales-Carrasco, R., and Alexander Gelbukh. 2003. Evaluation of TnT Tagger for
Spanish. In Proceedings of the Fourth Mexican International Conference on Computer
Science ENC’03, Tlaxcala, México, 18–28.

143. Navarro, Borja, Montserrat Civit, M. Antonia Martí, R. Marcos, and B. Fernández. 2003.
Syntactic, Semantic and Pragmatic Annotation in Cast3LB. In Shallow Processing of Large
Corpora (SProLaC), A Workshop of Corpus Linguistics, Lancaster, UK (N).

144. Nebel, Bernhard. 1999. Frame-Based Systems. In MIT Encyclopedia of the Cognitive
Sciences, ed. Robert A. Wilson, and Frank Keil, 324–325. Cambridge, MA: MIT Press.

145. Nebel, Bernhard. 2001. Logics for Knowledge Representation. In International
Encyclopedia of the Social and Behavioral Sciences, Kluwer, Dordrecht, ed. N.
J. Smelser, and P. B. Baltes (N).

146. Nebel, Bernhard, and Gert Smolka. 1991. Attributive Description Formalisms.. and the Rest
of the World. In Text Understanding in LILOG, ed. O. Herzog, and C. Rollinger, 439–452.
Berlin: Springer.

147. Ninio, A. 1996. A Proposal for the Adoption of Dependency Grammar as the Framework
for the Study of Language Acquisition, Volume in Honor of Shlomo Kugelmass, 85–103.

148. Oxford Collocations Dictionary for Students of English. Oxford University Press. 2003.
149. Ó Se ́aghdha, D. 2010. Latent variable models of selectional preference. In: Proceedings of

the 48th Annual Meeting of the Association of Computational Linguistics, 435–444.
150. Padó, S. and M. Lapata, 2007. Dependency-based construction of semantic space models,

Computational Linguistics 33(2): 161–199.
151. Pantel, Patrick, and Dekang Lin. 2000. An Unsupervised Approach to Prepositional Phrase

Attachment Using Contextually Similar Words. In Proceedings of Association for
Computational Linguistics (ACL-00), Hong Kong, 101–108.

152. Paskin, M.A. 2001. Cubic-Time Parsing and Learning Algorithms for Grammatical
Bigram Models. Technical Report, UCB/CSD-01-1148, Computer Science Division,
University of California Berkeley.

153. Patel-Schneider, Peter F., Merryll Abrahams, Lori Alperin Resnick, Deborah L.
McGuinness, and Alex Borgida. 1996. NeoClassic Reference Manual: Version 1.0.
Artificial Intelligence Principles Research Department, AT&T Labs Research (P).

154. Pearce, Darren. 2002. A Comparative Evaluation of Collocation Extraction Techniques. In
Proceedings of the Third International Conference on Language Resources and
Evaluation, Las Palmas, Canary Islands, Spain.

155. Pereira, F., N. Tishby, and L. Lee. 1993. Distributional Clustering of English Words. In
Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics,
ACL, 183–190.

156. Pereira, Fernando, and Yves Schabes. 1992. Inside-Outside Reestimation from Partially
Bracketed Corpora. In 27th Annual Meeting of the Association for Computational
Linguistics, ACL, 128–135.

162 References

157. Pineda, L.A., A. Massé, I. Meza, M. Salas, E. Schwarz, E. Uraga, and L. Villaseñor. 2002.
The DIME Project. Department of Computer Science, IIMAS, UNAM.

158. Pineda, L.A., and G. Garza. 2000. A Model for Multimodal Reference Resolution.
Computational Linguistics 26 (2): 139–193. (P).

159. Pollard, Carl, and Ivan Sag. 1994. Head-Driven Phrase Structure Grammar. Chicago, IL
and London, UK: University of Chicago Press.

160. Prescher, D., S. Riezler, and M. Rooth. 2000. Using a Probabilistic Class-Based Lexicon
for Lexical Ambiguity Resolution. In Proceedings of the 18th International Conference on
Computational Linguistics, Saarland University, Saarbrücken, Germany, July–August
2000. ICCL (P).

161. Pullum, Geoffrey K. 1999. Generative Grammar. In The MIT Encyclopedia of the Cognitive
Sciences, ed. Frank C. Keil, and Robert A. Wilson, 340–343. Cambridge, MA: The MIT
Press.

162. Ratnaparkhi Adwait, Jeff Reynar, and Salim Roukos. 1994. A Maximum Entropy Model
for Prepositional Phrase Attachment. In Proceedings of the ARPA Human Language
Technology Workshop, 250–255 (RR).

163. Ratnaparkhi, Adwait. 1998. Statistical Models for Unsupervised Prepositional Phrase
Attachment. In Proceedings of the 36th ACL and 17th COLING, 1079–1085.

164. Reisinger, J and Marius Paşca. 2009. Latent Variable models of concept-attribute
attachment. In Proceedings 47th Annual Meeting of the ACL and the 4th IJCNLP of the
AFNLP, 620–628.

165. Resnik, Philip. 1993. Selection and Information: A Class-Based Approach to Lexical
Relationships. Tesis doctoral, University of Pennsylvania (R).

166. Resnik, Philip. 1996. Selectional Constraints: An Information-Theoretic Model and Its
Computational Realization. Cognition 61 (1–2): 127–159. (R R R).

167. Resnik, Philip. 1997. Selectional Preference and Sense Disambiguation. In Proceedings of
the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and
How? ACL, 52–57. Washington, DC, USA (R R R R).

168. Ritter, A., Mausam, and O. Etzioni, 2010. A latent dirichlet allocation method for
selectional preferences. In: Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, 424–434.

169. Roark, B., and E. Charniak. 1998. Noun-Phrase Co-occurence Statistics for Semi-automatic
Semantic Lexicon Construction. In Proceedings of the 17th International Conference on
Computational Linguistics (ICCL), 1110–1116. Montréal, Canada: Université de Montréal.

170. Roberts A, and E. Atwell. 2003. The Use of Corpora for Automatic Evaluation of Grammar
Inference Systems. In Proceedings of CL2003: International Conference on Corpus
Linguistics, UCREL technical paper number 16, ed. D. Archer, P. Rayson, A. Wilson, and
T. McEnery. UCREL, Lancaster University, 657–661.

171. Robinson, Jane J. 1967. Methods for Obtaining Corresponding Phrase Structure and
Dependency Grammars. In Proceedings of the 1967 conference on Computational
linguistics, 1–25.

172. Rooth, M. 1995. Two-Dimensional Clusters in Grammatical Relations. In Proceedings of
the Symposium on Representation and Acquisition of Lexical Knowledge, AAAI, Stanford
University, Stanford, CA, USA.

173. Roth, D. 1998. Learning to Resolve Natural Language Ambiguities: A Unified Approach.
In Proceedings of AAAI-98, Madison, Wisconsin, 806–813.

174. Rosenfeld, R., 2000. Two decades of statistical language modeling: where do we go from
here?, In Proceedings of the IEEE 88(8): 1270–1278.

175. Sag, Ivan A., and Tom Wasow. 1999. Syntactic Theory: A Formal Introduction. Center for
the Study of Language and Information, CSLI Publications (SSSS).

176. Sagae, K., and A. Lavie. 2006. Parser Combination by Reparsing. In Proceedings of the
HLT/NAACL.

References 163

177. Salgueiro P., T. Alexandre, D. Marcu, and M. Volpe Nunes. 2006. Unsupervised learning
of verb argument structures. Springer LNCS 3878.

178. Sampson, Geoffrey. 1995. English for the Computer, The SUSANNE Corpus and Analytic
Scheme. Clarendon Press.

179. Sebastián, N., M.A. Martí, M.F. Carreiras, and F. Cuestos. 2000. Lexesp, léxico
informatizado del español, Edicions de la Universitat de Barcelona (SS).

180. Shieber, Stuart. 1986. An Introduction to Unification-Based Approaches to Grammar. CSLI
Publications.

181. Shinyama, Y., Tokunaga, T., and Tanaka, H. 2000. Kairai—Software Robots
Understanding Natural Language. In Third International Workshop on Human-Computer
Conversation, Bellagio, Italy.

182. Smith, N., and J. Eisner. 2005. Guiding Unsupervised Grammar Induction Using
Contrastive Estimation. In Working Notes of the International Joint Conference on
Artificial Intelligence Workshop on Grammatical Inference Applications.

183. Sowa, John F. 1984. Conceptual Structures: Information Processing in Mind and Machine.
Reading, MA: Addison-Wesley Publishing Co. (S).

184. Sparck-Jones, Karen. 1986. Synonymy and Semantic Classification. Edinburgh: Edinburgh
University Press.

185. Steele, James (ed.). 1990. Meaning-Text Theory. Linguistics, Lexicography, and
Implications. Ottawa: University of Ottawa Press.

186. Stetina, Jiri, and Makoto Nagao. 1997. Corpus Based PP Attachment Ambiguity Resolution
with a Semantic Dictionary. In Proceedings of WVLC ’97, 66–80.

187. Suárez, A., and M. Palomar. 2002. A Maximum Entropy-based Word Sense
Disambiguation System. In Proceedings of the 19th International Conference on
Computational Linguistics, COLING 2002, Taipei, Taiwan, vol. 2, ed. Hsin-Hsi Chen,
and Chin-Yew Lin, 960–966 (S).

188. Tapanainen, Pasi. 1999. Parsing in Two Frameworks: Finite-State and Functional
Dependency Grammar. Academic Dissertation. University of Helsinki, Language
Technology, Department of General Linguistics, Faculty of Arts.

189. Tapanainen, Pasi, and Timo Järvinen. 1997. A Non-projective Dependency Parser. In
Proceedings of the 5th Conference on Applied Natural Language Processing, Washington,
D.C., 64–71.

190. Tejada, J., Gelbukh A., Calvo, H. 2008a. An innovative two-stage wsd unsupervised
method. SEPLN Journal 40.

191. Tejada, J., Gelbukh A., Calvo, H. 2008b. Unsupervised WSD with a dynamic thesaurus. In
11th International Conference on Text, Speech and Dialogue. TSD 2008, Brno, Czech
Republic, 8–12 Sept.

192. Vandeghinste, Vincent. 2002. Resolving PP Attachment Ambiguities Using the WWW. In
The Thirteenth Meeting of Computational Linguistics in The Netherlands, CLIN 2002
Abstracts, Groningen, 2002.

193. van Zaanen, M. 2002. Bootstrapping Structure into Language: Alignment-Based Learning.
Ph.D. thesis, School of Computing, University of Leeds.

194. Volk, Martin. 2000. Scaling Up. Using the WWW to Resolve PP Attachment Ambiguities.
In Proceedings of Konvens 2000, Ilmenau, Oct 2000.

195. Volk, Martin. 2001. Exploiting the WWW as a Corpus to Resolve PP Attachment
Ambiguities. In Proceeding of Corpus Linguistics 2001. Lancaster (V V).

196. Watt, W. 1968. Habitability. American Documentation 19: 338–351.
197. Webber, Bonnie. 1995. Instructing Animated Agents: Viewing Language in Behavioral

Terms. In Proceedings of the International Conference on Cooperative Multi-modal
Communications, Eindhoven, Netherlands.

198. Weeds, Julie. 2003. Measures and Applications of Lexical Distributional Similarity. Ph.D.
thesis, University of Sussex.

199. Weinreich, Uriel. 1972. Explorations in Semantic Theory. The Hague: Mouton.

164 References

200. Weischedel, R.M. 1989. A Hybrid Approach to Representation in the JANUS Natural
Language Processor. In Proceedings of the 27th ACL, Vancouver, British Columbia, 193–
202.

201. Winograd, Terry. 1972. Understanding Natural Language. New York: Academic Press.
(W).

202. Winograd, Terry. 1983. Language as a Cognitive Process. Volume I: Syntax. Stanford
University. Addison-Wesley Publishing Company (W).

203. Woods, W.A., R.M. Kaplan, and B.L. Nash-Webber. 1972. The Lunar Science Natural
Language Information System: Final Report. BBN Report No. 2378. Bolt, Beranek and
Newman Inc. Cambridge, MA.

204. Weeds, J. and D. Weir. 2003. A general framework for distributional similarity, In
Proceedings conference on EMNLP 10: 81–88.

205. Yamada, Hiroyasu, and Yuji Matsumoto. 2003. Statistical Dependency Analysis with
Support Vector Machines. In Proceedings of the 8th International Workshop on Parsing
Technologies (IWPT), 195–206.

206. Yamada I., K. Torisawa, J. Kazama, K. Kuroda, M. Murata, S. de Saeger, F. Bond and A.
Sumida. 2009. Hypernym discovery based on distributional similarity and hierarchical
structures. In Proceedings 2009 Conference on Empirical Methods in Natural Language
Processing, 929–937.

207. Yarowsky, D. 2000. Hierarchical Decision Lists for Word Sense Disambiguation.
Computers and the Humanities 34 (2): 179–186.

208. Yarowsky, David, S. Cucerzan, R. Florian, C. Schafer, and R. Wicentowski. 2001. The
Johns Hopkins SENSEVAL-2 System Description. In The Proceedings of SENSEVAL-2:
Second International Workshop on Evaluating Word Sense Disambiguation Systems,
Toulouse, France, ed. Preiss, and Yarowsky, 163–166.

209. Yuret, Deniz. 1998. Discovery of Linguistic Relations Using Lexical Attraction. Ph.D.
thesis, MIT (Y).

210. Zavrel, Jakub, and Walter Daelemans. 1997. Memory-Based Learning: Using Similarity for
Smoothing. In Proceedings of the ACL’97.

References 165

	Contents
	1 Introduction
	1.1 Purpose
	1.2 Structure
	1.3 Field of Study
	1.3.1 Natural Language and Computational Linguistics
	1.3.2 Levels of Linguistic Processing
	1.3.2.1 Phonetics/Phonology
	1.3.2.2 Morphology
	1.3.2.3 Syntax
	1.3.2.4 Semantics
	1.3.2.5 Pragmatics
	1.3.2.6 Discourse

	1.3.3 Ambiguities in Natural Language

	2 First Approach: Sentence Analysis Using Rewriting Rules
	2.1 Related Work
	2.2 Characteristics of SOC Systems
	2.3 Direct Translation Grammar
	2.4 Definition
	2.4.1 Rule Order
	2.4.2 Rule Components
	2.4.2.1 Natural Language Words
	2.4.2.2 Tags with Properties
	2.4.2.3 Wildcards
	2.4.2.4 External Procedures 
	2.4.2.5 Symbolic References to Objects
	2.4.2.6 Embedded Functions for Context and Object Reference Handling

	2.5 Object Reference and Context Management
	2.5.1 Embedded Functions for Context and Object Reference Management
	2.5.2 Conditional Markers

	2.6 Processing of Sample Queries
	2.6.1 Rule Set
	2.6.2 Rules in Action

	2.7 Conclusions

	3 Second Approach: Constituent Grammars
	3.1 Representation Using Typed Feature Structures
	3.1.1 Introduction
	3.1.2 Representing Situations with Typed Feature Structures
	3.1.2.1 Interaction Between Syntax and Knowledge
	3.1.2.2 Construction of Situations

	3.1.3 Minsky’s Frames and Situations

	3.2 Adding a Knowledge Base
	3.2.1 TFS as Knowledge Representation
	3.2.2 Structure of the TFS Knowledge Base
	3.2.3 Building a TFS Knowledge Base
	3.2.3.1 Function INTRO
	3.2.3.2 Function ADD
	3.2.3.3 Function GET

	3.3 Conclusions

	4 Third Approach: Dependency Trees
	4.1 Introduction
	4.2 Related Work
	4.3 Algorithm
	4.3.1 Preprocessing
	4.3.1.1 Tokenization and Sentence Splitting
	4.3.1.2 Tagging
	4.3.1.3 Lemmatizing

	4.3.2 Rules
	4.3.3 Prepositional Phrase Attachment
	4.3.4 Heuristics
	4.3.5 Selection of the Root

	5 Evaluation of the Dependency Parser
	5.1 Definition of a Gold Standard
	5.1.1 The Spanish 3LB Treebank
	5.1.2 Transformation Procedure
	5.1.3 Extracting the Grammar
	5.1.3.1 Marking the Head
	5.1.3.2 Using Marked Heads for the Transformation

	5.1.4 Experimental Results
	5.1.4.1 Head Identification
	5.1.4.2 Construction of Dependency Trees

	5.1.5 Conclusions

	5.2 Evaluation of Our Parser
	5.3 Conclusions

	6 Applications
	6.1 Selectional Preferences
	6.1.1 Introduction
	6.1.2 Related Works
	6.1.3 Methodology
	6.1.4 Evaluation
	6.1.4.1 Discussion

	6.1.5 Other Applications
	6.1.6 Conclusions

	6.2 Steganography
	6.2.1 Some Definitions
	6.2.2 The Context of Words
	6.2.3 Verifying Word Combinations
	6.2.4 Selectional Preferences for Synonym Paraphrasing
	6.2.5 The Algorithm
	6.2.6 A Manually Traced Example in Spanish
	6.2.7 Conclusions

	7 Prepositional Phrase Attachment Disambiguation
	7.1 Using the Internet
	7.1.1 Introduction
	7.1.2 Volk’s Method
	7.1.2.1 First Variant
	7.1.2.2 Second Variant

	7.1.3 Improving Performance
	7.1.4 Experiment and Results
	7.1.5 Conclusions

	7.2 PP Attachment Disambiguation Using Selectional Preferences
	7.2.1 Related Work
	7.2.2 Sources of Noun Semantic Classification
	7.2.3 Preparing Sources for Selectional Preferences Extraction
	7.2.4 Extracting Selectional Preferences Information
	7.2.5 Experimental Results
	7.2.5.1 PP Attachment Disambiguation
	7.2.5.2 Evaluation

	7.2.6 Conclusions and Future Work

	7.3 Applying Different Smoothing Methods
	7.3.1 Theoretical Background
	7.3.2 PP Attachment with No Backoff
	7.3.2.1 Building Resources
	7.3.2.2 Applying Resources

	7.3.3 WordNet Backoff
	7.3.3.1 Building the Dictionary
	7.3.3.2 Using the Dictionary

	7.3.4 Thesaurus Backoff
	7.3.4.1 Building the Dictionary
	7.3.4.2 Using the Dictionary

	7.3.5 Comparison of Methods
	7.3.6 Conclusions

	8 The Unsupervised Approach: Grammar Induction
	8.1 Introduction
	8.1.1 Overview of Syntactic Analyzers
	8.1.2 Supervised Syntactic Analysis
	8.1.3 SemiSupervised Dependency Syntax Analysis
	8.1.4 Unsupervised Syntax Analysis

	8.2 Grammar Induction Algorithms
	8.3 Implementation
	8.3.1 PoS Tagging of Raw Text
	8.3.2 ABL’s Output Processing
	8.3.3 EMILE’s Output

	8.4 Parameter Selection for Grammar Inductors
	8.5 From Chunks to Dependency Relations
	8.5.1 Lexical Categories Precedence

	8.6 Evaluation of Dependencies
	8.7 Building an English Parser in a Few Days
	8.8 Conclusions and Future Work

	9 Multiple Argument Handling
	9.1 One Argument Is not Enough
	9.2 Approaches for Learning Verb Argument Preferences
	9.2.1 Selectional Preferences
	9.2.2 Subcategorization Frames
	9.2.3 Word-Space Model

	9.3 A Word-Space Model
	9.3.1 Evaluation
	9.3.2 Analysis
	9.3.2.1 Language Modeling

	9.4 The Dependency Language Model
	9.4.1 Models for Plausible Argument Estimation
	9.4.1.1 Feasible Scenario Fillers
	9.4.1.2 PLSI—Probabilistic Latent Semantic Indexing
	9.4.1.3 K-Nearest Neighbors Model

	9.4.2 Evaluation
	9.4.2.1 Effects of Added Context

	9.4.3 Analysis

	9.5 Interpolated PLSI
	9.5.1 iPLSI—Interpolated PLSI
	9.5.2 Experiments
	9.5.2.1 Results of the Original Algorithm with the New Corpus
	9.5.2.2 Measuring the Learning Rate
	9.5.2.3 Results with no Pre-filtering

	9.5.3 iPLSI Results
	9.5.4 The N-Grams Test
	9.5.5 Analysis

	10 The Need for Full Co-Occurrence
	10.1 Method
	10.1.1 Assembling SVM Features for Training and Testing

	10.2 Experiments
	10.2.1 Analysis of Adding Manually Crafted Information

	10.3 Conclusions and Future Work

	References

