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Foreword

The satellite gravimetry mission GRACE marks the beginning of a new level of
engagement of geodesy in climate research. Since its launch in 2002, GRACE is
delivering uninterrupted series of rather detailed maps of temporal variations of the
Earth’s gravity field. They reflect changes in the continental water cycle, quantify
mass losses and gains of glaciers and the ice shields of Greenland and Antarctica,
and allow to discriminate the steric from the mass component of global sea level
rise and determine postglacial land uplift. Important statements on sea level rise and
global ice mass balance in the IPCC report 2013 [62] are based on GRACE data.

The measurement principle of GRACE is high-precision intersatellite tracking
between its two low-orbiting satellites. GRACE is now in its final mission phase
and will hopefully be followed in 2017 or 2018 by an almost identical mission. This
is a necessity, for time series of thirty years and more are required to unambigu-
ously identify climate-related signals. Therefore, in order to ensure continuity of
such data, preparations have started toward concepts for a mission thereafter. Very
likely, it will again be based on the principle of ‘satellite-to-satellite tracking
between low-orbiting satellites (SST low-low).’ In addition, the goal will be to
make it a mission superior to GRACE in terms of spatial and temporal resolution
and measurement precision. This will ask for improved concepts in terms of
technology, data analysis, and interpretation.

In order to get young scientists interested and prepared for such a mission, Prof.
Jakob Flury, the speaker of the Collaborative Research Center 1128, together with
Dr. Majid Naeimi took the initiative for the autumn school ‘Global Gravity Field
Modeling from Satellite-to-Satellite Tracking Data.’ The aim of Collaborative
Research Center 1128 ‘Relativistic Geodesy and Gravimetry with Quantum
Sensors’ funded by the Deutsche Forschungsgemeinschaft (DFG) is to explore new
frontiers of the determination of the Earth’s gravitational field and of monitoring the
global and regional mass redistribution. Thus, the autumn school fits perfectly to its
agenda.

But why exactly ‘satellite-to-satellite tracking’? Let me say a few words about
the history of this so successful technique. Since Newton, it is well known that the
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orbit of any artificial satellite orbiting the Earth is perfectly analogous to the free fall
of an apple from a tree or a prism in a vacuum tube of an absolute gravimeter.
Tracking the orbital motion of a satellite is therefore analogous to the measurement
of the free fall of a test mass in the laboratory. Both types of experiments, tracking
of satellites and as free-fall experiments in the laboratory, are applied in practice in
order to determine the attraction of the Earth. However, the satellite experiment is
confronted with two fundamental obstacles: First, while it is relatively easy in a
laboratory to follow the complete free fall of a prism using, e.g., laser interfer-
ometry, it is almost impossible to get a long and evenly distributed sequence of
tracking data to a satellite from an observatory on Earth, the limitations being
visibility and weather conditions. Thus, only in a complicated patchwork of
observations collected from many tracking stations, data taken from several satel-
lites, and using various types of tracking techniques, it became possible, step by
step, to derive comprehensive gravity models. The development in the USA is
described in two fascinating volumes, edited by Henriksen [58]. The situation
changed with the advent of GPS in the nineties. From then on, any low-orbiting
satellite could be tracked from the configuration of GPS satellites at high altitude,
uninterruptedly, and even three dimensional. Second, as expressed by Newton’s
inverse-squared distance law, the signal strength of gravity gets rapidly weaker with
the square of the distance from the Earth. As a consequence, at satellite altitude,
only a highly damped version of the Earth’s gravity field can be observed. This is
and was an intrinsic limitation of any type of satellite gravimetry. Therefore to
obtain the Earth’s gravity field with high accuracy and high spatial resolution, this
damping issue should be resolved. One measure is, of course, to use satellites
orbiting the Earth at lowest possible orbits, just to be as close to the attracting
Earth’s masses as possible. A second countermeasure is ‘differentiation,’ i.e.. either
satellite gradiometry or satellite-to-satellite tracking.

Gravity field determination from space is as old as space age itself. It started with
the first missions Sputnik 1 and Sputnik 2 in 1957. Taking their radio Doppler
signal, the Earth’s oblateness could be deduced with an unprecedented accuracy
making more than 100 years lasting effort of geodetic arc measurements and tri-
angulation obsolete ([23] or [102], see also [63]). However, refined gravity
recovery, i.e., the construction of models beyond solely the determination of J2,
turned out to be a complicated and long journey, again [58]. The development of
geopotential modeling is described in [118]. In 1960 [3], the idea was spelled out of
using tracking between spacecraft for gravity field determination. It became more
concrete in [160]. What does it help? Measuring the relative motion between
satellites eliminates the major and well-known gravitational effect, that of the
spherical, slightly flattened Earth, which is almost identical for the two spacecraft.
This leads to a strong amplification of the short-wavelength signal part of the
Earth’s gravity field relative to the remaining long-wavelength features. In a
mathematical sense, it is like differentiation or like measuring the gravity gradient
along the line connecting the two satellites. From the point of view of Fourier series
analysis, it is the well-known effect of differentiation resulting in a multiplication
of the series elements by their wave number, e.g. [20]. On invitation of NASA,
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leading Earth scientists gathered in Williamstown in 1969 to formulate a vision for
a future Earth science program from space [80]. Satellite-to-satellite tracking was an
element of this report. It is still worthwhile to read this report because it is truly
visionary both in terms of the identification of the Earth science objectives and the
ideas of their realization using new satellite mission concepts. The ideas of the
Williamstown report were the basis of concrete program elements in 1972 in
NASA’s EOPAP report [109]. There, dedicated satellite gravimetry took shape, the
so-called GRAVSAT mission ideas of satellite-to-satellite tracking in the high–low
and low–low mode and satellite gradiometry. Analyzing the tracking data from
Earth to the Apollo lunar orbiters for the purpose of gravity field recovery can be
regarded the first realization of a high–low satellite-to-satellite tracking experiment
[108]. Other high–low tracking tests were between the relay satellite ATS-6 and
Apollo/Soyuz [150] and between ATS-6 and Geos-3 [51, 94, 128, 134, 159].
A first, not quite successful attempt of low–low tracking was the gravimetric use
of the data of the docking experiment between the Apollo and Soyuz spacecraft
[156].

In Europe, the first initiative in this direction was a summer school on satellite
geodynamics in Lannion in 1974 sponsored by the French space agency CNES,
where leading European geodesists and geophysicists discussed ideas about dedi-
cated satellite gravimetry missions and their theoretical background, [4]. In 1978, it
followed a workshop on Space Oceanography, Navigation and Geodynamics
(SONG) organized by the European Space Agency [37]; it was the first step toward
an ESA Earth observation program, and satellite-to-satellite tracking and gra-
diometry were on its agenda [127]. In parallel, ESA ran a first study mission and
system definition study of a low–low satellite-to-satellite tracking experiment for
gravity field determination, called SLALOM [5]. The idea was laser tracking from
the space shuttle to two passive compact cannon ball satellites.

A theoretical milestone was [100]: Meissl formulated a framework connecting
the spectral representation of various gravity functionals, such a geoid heights,
gravity anomalies, and gravity gradients at altitude and at the Earth’s surface, in a
systematic way in terms of spherical harmonics. Later, this framework was denoted
Meissl scheme [126], see also [124, 125]. Other important theoretical contributions
and simulation work on satellite-to-satellite tracking were [26, 27, 50, 74, 79, 107,
130, 135, 152].

However, the necessary technology was not yet mature enough to get a dedi-
cated low–low SST gravity mission approved. An analysis of the state of the art
took place in a workshop organized by the US National Research Council: appli-
cations of a dedicated gravitational satellite mission [113], followed by several
mission proposals in the years thereafter. While the European side concentrated on
satellite gradiometry, i.e., the measurement of the relative gravitational acceleration
between several test masses inside one satellite, the US American side pursued the
realization of a low–low satellite-to-satellite mission, from 1979 on as Gravity
Research Mission (GRM). Of great importance were simulation studies showing the
potential of such a mission for determining temporal variations of the gravity field,
caused by mass transport processes in system Earth, such as ice melting, sea level

Foreword vii



rise, and glacial isostatic adjustment [32, 154]. In 2002, GRACE was launched, the
first low–low satellite-to-satellite tracking mission, the beginning of an amazing
success story [140]. In 2012, the NASA GRAIL mission employed the same
mission and sensor concept to the determination of the lunar gravity field [166].

The autumn school, supported by the Wilhelm und Else Heraeus foundation,
took place from October 4 to 9, 2015, at the Physikzentrum in Bad Honnef,
Germany. The organizers succeeded to attract as teachers five of the leading experts
in this field. In their lectures, the participants were introduced into the basic
alternative approaches of data analysis as well as into the characteristics, strength,
and limitations of these methods. Furthermore, in order to deepen insight, they
together with coworkers prepared and supervised labs. In a series of evening talks,
additional selected topics were presented, ranging from future technology via
advanced methodology, relativistic modeling to Earth application. About fifty
students from 16 countries participated in the autumn school. Their unanimous
conclusion is well prepared, perfectly organized, good atmosphere, and very useful.

Special thanks go to Prof. Flury and Dr. Naeimi, to all lecturers and their
coworkers, and to the Physikzentrum and Wilhelm und Else Heraeus foundation.

Munich, Germany Reiner Rummel
June 2016
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Preface

The present book collects the lecture notes of the international Wilhelm und Else
Heraeus autumn school ‘Global Gravity Field Modeling from Satellite-to-Satellite
Tracking Data,’ held from October 4 to 9, 2015, in Bad Honnef, Germany. The first
ideas of the autumn school (the initial plan was a summer school) came up in
November 2013 during an internal discussion in Hannover on the requirements for
the GRACE/GRACE Follow-On Mock Data Challenge project1 in the
Collaborative Research Center (Sonderforschungsbereich) 1128 ‘Relativistic
Geodesy and Gravimetry with Quantum Sensors (geo-Q)’ of Leibniz Universität
Hannover.2 The idea soon attracted attention, and we received positive feedback
from experts of the field.

In a rather short period of application time, we received many applications from
around the world and we are pleased for hosting over fifty participants from
Germany, USA, Switzerland, Austria, India, China, Iran, Russia, Bulgaria,
Netherlands, Poland, Brazil, Luxembourg, Canada, and Sweden.

The main goal of the autumn school was to provide a basis to the interested
students and geodesists for analyzing SST data from current and future satellite
missions. The emphasis was put on different approaches for the recovery of the
Earth’s gravity field. These techniques are the acceleration approach, the energy
balance approach, and the classical (variational) approach. In addition, the related
subjects of orbit determination and parameter estimation were included.

The school started on Sunday 4 October with an opening talk by Prof. Reiner
Rummel about the spherical harmonic analysis and gravity field determination and
was followed by a 5-day intensive program. Core topic lectures on each morning

1http://www.geoq.uni-hannover.de/mock.html
2http://www.geoq.uni-hannover.de
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were complemented by more numerical and practical exercises in the afternoon.
The chapters of this book are based on the core topic lectures given on each day as
follows:

1. Parameter Estimation for Satellite Gravity Field Modeling, by Prof. Jürgen
Kusche and Anne Springer, University of Bonn, Germany

This chapter gives first a general overview about Gauss–Markov models and their
use in the presence of observation noise. Variance component estimation, regu-
larization, and biased estimation are addressed. Exercises at the end of the chapter
give more insight into the applications for gravity field determination from GRACE
data.

2. Precise Orbit Determination, by Prof. Adrian Jäggi and Dr. Daniel Arnold,
University of Bern, Switzerland

Here, the general issues of orbit modeling such as the treatment of tracking data,
orbit representation techniques, and the orbit determination problem together with
gravity field parameterization are considered. Two exercises for a deeper under-
standing of orbit determination are added.

3. The Classical Variational Approach, by Prof. Srinivas Bettadpour and
Christopher McCullough, University of Texas at Austin, USA

The basic principles of the classical approach used by processing centers such as
CSR and GFZ are discussed, followed by numerical exercises for more
understanding.

4. The Acceleration Approach, by Dr. Matthias Weigelt, Institut für Erdmessung,
Leibniz Universität Hannover, Hannover, Germany

A comprehensive overview about the acceleration approach including the strengths
and drawbacks of this method is provided in this chapter. Approximate and rigorous
solutions using this approach are discussed, with the exercises on the numerical
aspects.

5. The Energy Balance Approach, by Prof. Christopher Jekeli, Ohio State
University, USA

This chapter reviews the energy integral for the derivation of potential differences
along the satellite orbit and for gravity field determination. Aspects of this approach
including the separation of the temporal variations, the rotational potential, kinetic
potential, and dissipative forces are described. Similar to other chapters, exercises
provide more understanding about the numerical details of the method.
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Chapter 1
Parameter Estimation for Satellite Gravity
Field Modeling

Jürgen Kusche and Anne Springer

Abstract In simple words, parameter estimation is the process of extracting well-
defined best ‘guesses’ of geophysical or measurement-system related values from
uncertain and erroneous, conflicting and possibly at the same time incomplete data.
These data may provide information on the sought-for parameters by way of direct
observation, but much more often this relation is very indirect. Anyway, we know
that we can never know ‘true’ parameters but we are satisfied with ‘estimates’ as
long as these are ‘best’ in some way, like having the least spread for a given breed
of data errors.

This itself is a challenge common to all natural sciences (and most social sciences
where ‘empirical’ studies are relevant). In satellite gravity field determination, the
most relevant sought-for quantity is a geophysical field that has an infinite number of
degrees of freedom and no preferred degree of truncation—this renders the applica-
tion of standard and centuries-old methods such as least squares more complicated.
This also continues to create confusion among data analysts from different back-
grounds. Constructive approximation theory, rooted in functional analysis, provides
a modern approach of breaking down the problem to a finite number of parameters
without the uneasy feeling of ‘omitting’ something important. But the error bounds
provided by approximation theory depend on such abstract ideas as kernel functions
that describe the smoothness of a space.

Least-squaresmethods are by nomeans the single unchallenged approach in satel-
lite gravity analysis, due to the reason just mentioned. However, they are straight-
forward to apply, and they lead to error estimates that at least offer a way to address
the uncertainty introduced by real measurement systems.

J. Kusche (B) · A. Springer
Institute for Geodesy and Geoinformation, Bonn University, Bonn, Germany
e-mail: kusche@geod.uni-bonn.de

A. Springer
e-mail: springer@geod.uni-bonn.de

© Springer International Publishing AG 2017
M. Naeimi and J. Flury (eds.), Global Gravity Field Modeling
from Satellite-to-Satellite Tracking Data, Lecture Notes in Earth System Sciences,
DOI 10.1007/978-3-319-49941-3_1
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2 J. Kusche and A. Springer

Least squares methods, in our view, allow to tackle some of today’s challenges in
satellite gravity data analysis, like (1) efficiently dealing with large amounts of data
and of sought-for parameters, (2) quantifying the effect of data errors and so-called
background model errors on spherical harmonics and derived science results more
or less comprehensively, and (3) ‘consistently’ combining data sets from different
instruments, satellites, and processing chains, in the presence of inconsistencies that
are ‘known’ but hard to pinpoint and too costly to remove from a first principles
point of view.

The development of the least squares method originated in a need for fitting tech-
niques that materialized already in ancient times, with the first astronomical/geodetic
observations that relate to the radius of the Earth and the orbital radii of the Earth and
the Moon [109]. Later, and well-known in geodesy, meridional arc measurements
were carried out in order to determine the flattening of the ellipsoidal Earth. For these
measurements, one could not simply derive the parameter of interest from a single
measurement and average the data. Laplace (1749–1827) developed several fitting
techniques, aiming at e.g. minimizing the maximum error between fitted ellipsoid
and data, and later, minimizing the average absolute value of the errors subject to
constraining the sum of them to zero. Much of this work was influenced by Boscov-
itch (1711–1787) who, less known to us today, worked on the same problem and
developed first principles of what we would call adjustment theory. Legendre (1752–
1833) published the method of normal equations for least squares to be applied in
the analysis of arc measurements, and Gauss (1777–1855) developed the method of
weighted least squares as we know it today, albeit without relying to matrix notation
at that time. He applied LS to his determinations of planetary and asteroid orbits,
and of course in the adjustment of large-scale trigonometric surveys.

These lecture notes were compiled on the occasion of the International Autumn
School ‘Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data’,
organized byDFG’s SFB ‘geo-Q’ atOctober 4–9, 2015 inBadHonnef,Germany.Our
aim was to give students with different background an introduction to some concepts
from parameter estimation that are common and useful for analyzing satellite gravity
data (i.e. typically solving for sets of spherical harmonic coefficients). The focus was
on concepts, and technical proofs were avoided.

1.1 Notation

Vectors are denoted by a, x and matrices by capital letters, A, X, etc. Although it
would be more consistent, we refrain from distinguishing between random variables
and their realizations.

E(·) and D(·) are expectation and dispersion (covariance) operators. By ·̂ we
denote an estimated quantity. Note that ĉ2 differs from ̂c2.

Spherical harmonics are Ynm(λ, θ), i.e. for m > 0 these are the Cnm(λ, θ), for
m < 0 the Snm(λ, θ). They are considered as fully normalized (we drop the overbar).
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1.2 Literature

Adjustment problems are addressed in various scientific fields and, thus, there is a
vast amount of literature on this topic. Here, a selective and inevitably incomplete
overview on publications relevant in the field of geodesy is given.

A tutorial on the history of least squares adjustment including several exam-
ples based on typical geodetic problems (e.g. related to the shape of the Earth)
is provided by [109]. For an introduction into the field of adjustment theory and
statistics we recommend a comprehensive textbook written by a scientist deeply
involved in the development of satellite geodesy [85]. [13] approaches the topic
from an applied mathematician’s perspective, concentrating on discrete least squares
problems including the design of efficient solvers. Among the contributions focus-
ing on gravity field determination we would like to highlight [127] who discusses
numerical strategies for large adjustment problems with a focus on decorrelation
and iterative solution. [22] expands this work and addresses several aspects of least
squares gravity field estimation in a massive parallel programming concept. Quality
measures that can be applied to both unconstrained and constrained global gravity
analyses/solutions are reviewed by [19].

As gravity field recovery from satellite data represents an ill-posed problem reg-
ularization is a key issue. An in-depth study on regularization applied to the GOCE
problem was published by [33]. For an optimal choice of the regularization para-
meters Variance-Component Estimation (VCE) proved to be a good choice. In his
groundbreaking paper of 1979 [40] suggested theVCE iterative proceduremost com-
mon in use until today. For a theoretical derivation and justification of VCE within
the Maximum Likelihood framework [84] is a good reference. Deeper insights into
VCE and a comparison to Lerch’s optimal weighting are given by [87] who also
introduces a Monte Carlo approach for variance-component estimation. A compre-
hensive discussion of several VCE techniques with application to gravity modeling
was published by [145] and also includes hypothesis testing for auxiliary parameters.

1.3 Gauss-Markov Model

One of the most important models in the statistical analysis of measured data yi , i =
1 . . . n is theGauss-Markov Model, or in briefGMM. Many books have been written
on statistical data analysis in general, on the GMM, on the famous least squares
method and its application in geodesy, adjustment theory, but in the the discussion
below we will strictly follow the excellent work by Karl-Rudolf Koch, Parameter
estimation and hypothesis testing in linear models [85].

What is not in the mixed bag presented here, is the application of parameter esti-
mation theory to modern problems of geodesy that cannot be formulated through the
GMM: mixed integer-float estimation as in GNSS ambiguity resolution problems,
estimation with multiplicative noise as e.g. in radar altimetry and InSAR, classifica-
tion problems as in altimetry and remote sensing.
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1.3.1 Assumptions Underlying the Gauss-Markov Model

In the GMM one assumes that (1) the mathematical expectation of the data (loosely
speaking, the error-free data) can be related linearly to a set of unknown but fixed
parameters x j , j = 1 . . .m, and (2) and that we have at our hand a knowledge of the
variances and covariances of the data errors, up to some common factor.

The analysis framework provided by the GMM is much more general as e.g.
considered in time series analysis. The data that are considered to provide information
(inference) on the parameters may be collected at the same time at different locations,
at different times from the same instrument, or simply a combination of any of these
situations.

1.3.1.1 Formulation of the Gauss-Markov Model

Writing data and parameters in vector notation, the above translates into the most
basic formulation of the GMM,

E(y) = Ax and D(y) = σ 2I , (1.1)

with y = n × 1 data vector, x = m × 1 parameter vector,A = n × m full-rank obser-
vation equation matrix or design matrix, and the variance factor σ 2. In the above, we
assume that all observations have the same error variance and that they are uncorre-
lated with respect to each other.

As a reminder, the expectation E(y) and the covariance matrix D(y) of the obser-
vations are

E(y) =
∫

y p(y) dy and D(y) = E
(

(y − E(y))(y − E(y))T
)

.

Loosely speaking, the expectation E(y) is what we would obtain by averaging an
infinite number of data vectors, where the frequency of the occurence of a certain
measured outcome is given by the probability density function p(y). The covariance
(or dispersion) matrix is what we would obtain by averaging an infinite number of
samples of the deviation of the data vector to its expectation (the data errors), taken to
the outer product. On the diagonal, D(yi ) = D(yi , yi ) = E(yi − E(yi ))2 = E(e2i )
is the error variance, on the off-diagonal D(yi , y j ) = E((yi − E(yi )(y j − E(y j )) =
E(ei e j ) the data error covariance. In the above, it is assumed to be zero.

On introducing the (unknown) observation errors ei , i = 1 . . . n, this may be
recast as

y + e = Ax with E(e) = 0 and D(e) = Cee = σ 2I . (1.2)
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In otherwords, for the i-th observation, D(ei ) = E(e2i ) iswhatwewould obtain by

averaging an infinite number k → ∞ of e(k)
i

2
, and D(ei , e j ) = E(ei e j ) by averaging

the e(k)
i e(k)

j .

1.3.1.2 Properties of the Gauss-Markov Model

In Eq. (1.1), y is a vector of observed measurement values. The matrix A must be
given, it realizes our—possibly hypothetical—understanding of the mathematical
and physical relation of the data to some set of ‘explaining’ parameters x—the
model that relates observables to (sometimes called) hidden parameters. Here, we
will consider only the most common case with n > m; i.e. more data than parameters
to be estimated. Obviously, different formulations of the model are possible and this
affects the definition of x.

Example Fitting a polynomial to a set of measurement a first model reads

y(ti ) + εi = a0 + (ti − t0)a1 + 1

2
(ti − t0)

2a2

while a second one can be formulated as

y(ti ) + εi = b0 + ti b1 + t2i b2.

It is clear that a0 = b0, a1 + 2t0a2 = b1, 1
2 t

2
0a2 = b2. In the first model of the

example, the rows ai of the design matrix that correspond to the i th measurement,
are made up by the entries 1 (corresponding to a0), (ti − t0), and 1

2 (ti − t0)2.
Parameters x are considered as fixed, i.e. unknown but deterministic and non-

random quantities in the above. This differs in the Bayesian approach, where the
parameters are considered as stochastic and, consequently, a PDF has to be specified
for them. In the Bayesian terminology, the above model would be written as

E(y|x) = Ax and D(y|σ 2) = σ 2I

where ·|x and ·|σ 2 means under the condition that the unknown parameters x and
σ 2 are given.

An evenly sampled sequence of measurements yi = y(ti ) (e.g. ranging data in
satellite gravimetry) can be related to the spherical harmonics of the gravity field
cnm and snm , and this is ultimately done when the final parameter estimation step is
performed. On the other hand, one may view at the stream of data from a time series
perspective, and fit, e.g. within a certain time window of p consecutive samples,
simple models (e.g. simple polynomials, Chebyshev polynomials) that disregard the
gravity field. Without introducing the error contributions, the system above would
read y = Ax; it is inconsistent and has no solution (at least not for a given, measured
data vector). For the moment we assume A has full rank; this assumption can be later
relaxed.
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Observation errors e are unknown by definition. Also, in the formulation we do
not have to assume the errors to be normally distributed. In the GMM, data errors are
considered as stochastic but the only assumption thatwemake is that their expectation
is zero and that their covariance matrix is given up to some factor. In particular, we
don’t have to assume the errors follow a normal distribution. The above implies that

E(e) =
∫

e p(e) de = 0 and D(e) = E(ee)T = σ 2I.

The variance factor σ 2 can be assumed as unknown and estimated. In fact its
value is not required in the standard solution to the GMM, and therefore it can
be estimated from the fit of the observed data to the ‘predicted data’. In practice,
the variance factor is often identified with an overall scaling factor for the a-priori
accuracy of the observations, and we expect to estimate a factor close to one in case
our a-priori assumption on the data error variance was a good one. At the same time,
this means if we believe we know σ 2 in advance, it is still a good test to estimate it.
In the above, the error covariance matrix is assumed as diagonal; this can be relaxed
soon.

1.3.1.3 Generalization of the Gauss-Markov Model

In the GMM it is possible to relate each single observation yi to the unknown para-
meters. But in applications, one may have several observations within one equation.
There are more general models that relate linear functionals of ‘original’ data to
unknowns, e.g. By + e = Ax but we do not consider them here. One example are
multiplicative noise models, e.g. yi = εiaT

i x with E(εi ) = 1, that are needed for
representing speckle noise of radar measurements.

Moreover, in reality, the entries of the matrix A will often contain measured
quantities. For example, in satellite gravity field determination, typically the orbit of
a satellite is required to build the entries of matrix A. It is a known fact that such
errors may be critical, but in the standard GMM, errors of this kind are not taken into
account. There are more general statistical models, e.g. the Gauss-Helmert model
or the Errors-in-Variables and Total Least Squares models (y + e = (A + E)x with
E(E) = 0) where one can account for random errors in the design matrix, but these
are usually more difficult to apply. In gravity field determination, it is much more
common to parameterize such errors, i.e. to relate them to deterministic parameters
and thus augment the parameter vector.

1.3.2 Parameter Estimation in the Gauss-Markov Model

For the above model, since we do not know the ‘real value’ of the data or of the data
errors, it is only possible to derive a statistical estimate x̂ of the parameter vector x.
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The value that we obtain for this estimate depends on the unknown data errors and
its deviation from the expectation is thus uncertain. Therefore, we also would like
to derive a measure for the statistical uncertainty with which x̂ has been obtained.
Typically, this means we derive an estimate for the covariance matrix D(x̂).

In order to do so, we need to apply some sort of statistical theory, which is to
say to adopt some principle for arriving at an estimate that minimizes a quantity
which can be reasonably interpreted. In other words, we need to cast ‘plausibility’
into a mathematical framework. Fortunately, for the above model, the principle of
best linear unbiased estimation (BLUE), the least-squares method, and themaximum
likelihood method (ML) on assuming a Gaussian pdf for the errors all arrive at the
same estimate x̂ for the parameters:

x̂ = (

AT A
)−1

AT y. (1.3)

An estimate is called unbiased whenever E(x̂) = x. This means, assuming we
collect more and more data (of the same kind), the estimate will get closer and closer
to the true value. In the case we discuss here, this means

E(x̂) = E
(

(

AT A
)−1

AT y
)

= (

AT A
)−1

AT Ax = x

which, as expected, tells that the estimate is unbiased. In theGMM the above estimate
is often called a linear regression. The estimate is obtained as a weighted linear
combination of the data. If the data errors are normally distributed, the errors of the
estimate will be so as well. Obviously, for computing x̂ it is not required to know the
variance factor.

The above estimate is often written with normal equation matrix N and right-hand
side vector r as

x̂ = (N)−1 r with N = AT A and r = AT y.

Or, in order to emphasize the linear nature of the estimate this can be reformulated as

x̂ = Ly with L = (

AT A
)−1

AT .

Example Assume, for the moment, we have measured values of the gravitational
potential, obtained at a given constant (geocentric) satellite altitude r . With other
words, we assume the data is given on a sphere with radius r encompassing the
Earth (in so-called space-wise approaches, one ‘projects’ data observed at varying
orbital height to the height of a mean orbital sphere, think of employing a refer-
ence vertical gradient of the potential times altitude difference). We would like to
determine the spherical harmonic coefficients vnm of the gravity field. In this—
strongly simplified—case, the model reads for a single observation yi = y(λi , θi )
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yi + ei =
∞

∑

n=0

n
∑

m=−n

(a

r

)n+1
Ynm(λi , θi ) vnm, (1.4)

and a is the reference radius associated with the coefficients. Here we use

Ynm(λ, θ) = Pnm(cos θ) cos(mλ)

Pn|m|(cos θ) sin(|m|λ)
and vnm = cnm

sn|m|
for

m ≥ 0
m < 0

.

Obviously, we have to truncate the series to some finite degree n̄, in order to ‘fit
into the GMM framework’. Then, the estimate

x̂ =
⎡

⎢

⎣

v̂00
...

v̂n̄n̄

⎤

⎥

⎦

is obtained from the above with realizing that

y =
⎡

⎢

⎣

y(λ1, θ1)
...

y(λn, θn)

⎤

⎥

⎦ and A =
⎡

⎢

⎣

(

a
r

)1
Y00(λ1, θ1) . . .

(

a
r

)n̄+1
Yn̄n̄(λ1, θ1)

(

a
r

)1
Y00(λn, θn) . . .

(

a
r

)n̄+1
Yn̄n̄(λn, θn)

⎤

⎥

⎦ .

It is interesting to note that the least squares estimate x̂ = N−1r = Wr apparently
looks like a discretized integral over the data, with a particular choice of integration
weights:

r̂ = AT y =
⎡

⎢

⎣

r̂00
...

r̂n̄n̄

⎤

⎥

⎦
with rnm =

∑

i

(a

r

)n+1
Ynm(λi , θi ) yi

and

N =
⎡

⎣

N00;00 . . . N00;n̄n̄

N00;n̄n̄ . . . Nn̄n̄;n̄n̄

⎤

⎦

with

Nnm;n′m ′ =
∑

i

(a

r

)n+n′+2
Ynm(λi , θi )Yn′m ′(λi , θi ).

Again, this resembles the well known integral
∫

Ω
Ynm(·)Yn′m ′(·)d·.

It is quite obvious from the above that the choice of the reference radius a affects
the condition of the normal equation system. The closer we chose a to the satellite

orbital height r , the more will a
r and

(

a
r

)n+n′+2
approach unity. With the spherical

harmonics normalized, all main diagonal entries will be of the same magnitude. Yet,
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the price we have to pay is that the coefficients determined in this way describe
the potential at satellite height. Once we would employ them to, e.g. derive geoid
heights, we have to apply the

(

a
r

)n+1
to them. There is no way to escape downward

continuation and the increasing instability for higher degrees that it adds.
Assuming the observations as temporally uncorrelated, and given as a long time

series (collected along a satellite orbit over many years), it is numerically most
efficient to assemble the normal equation system ‘on-the-fly’, in batches or even for
single observations. A single observations can be written as

yi + ei = aT
i x (1.5)

with aT
i being one row of the design matrix. This means, the corresponding normal

equation system is
Ni = aiaT

i ri = aiy. (1.6)

The outer product can be computed very efficiently using library routines, and
N = ∑

i Ni can be updated on the fly. Furthermore, whenever the observations in a
satellite gravity determination problem are distributed very dense, on similar heights,
andwithout a polar gap, and assuming they areweighted per area, the normal equation
matrixwill appear as near block diagonal. In fact, conditions of discrete orthogonality
have to be met to create a block diagonal matrix that allows to use specially designed
solvers.

Example Estimating spherical harmonic coefficients from simulated, error-free val-
ues of the gravitational potential along a given satellite orbit using the relationship
of Eq. (1.4) results into a near block diagonal normal equation matrix as shown in
Fig. 1.1. Even (uneven) coefficients of the same order are highly correlated.

Fig. 1.1 Example of the normal equation matrix for estimating spherical harmonic coefficients
from simulated gravitational potential using Eq. (1.4). The gravitational potential was simulated
along a real GRACE orbit of one month at an altitude of about 480km with a sampling of 60 s.
The presented normal equation matrix was computed up to degree and order n̄ = 10. The parameter
vector is sorted order-wise and contains first all cosine components and then all sine components.
Particularly high correlations exist between even (uneven) coefficients of the same order
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1.3.3 Deriving the Estimator Through
the Maximum-Likelihood Method

Ashas been said before, the estimatorEq. (1.3) canbederived fromvarious principles,
which means that it features a broad spectrum of optimality properties. This explains
its popularity.

In the following, we chose the Maximum-Likelihood (ML) method to derive the
estimator. The reason for this is of didactic nature; the ML method is often used to
derive efficient estimators in other problems, such as those with multiplicative noise
or where estimators for extreme values are sought.

In the ML method, we have to assume we know the pdf of the observations. In
problems of satellite gravity, we usually assume the noise is Gaussian (N (·)). This
means, we add to the model Eq. (1.2) the assumption

y ∼ N (Ax, σ 2I) (1.7)

where∼means ‘is distributed as’. In ML, the pdf of the observations is viewed upon
as a function of the parameters (x and σ 2 in case of the GMM) for given (i.e. the
observed) data y. The parameters are then chosen as those for which the probability
to observe the given data is biggest. In the general case, this leads to an optimization
problem that is often solved numerically, but for the GMM an analytical solution
exists which coincides with the LS estimator. In satellite gravity, the ML principle
simply translates as: upon all possible gravity fields the one that has the highest
probability to generate the observed orbits and ranging data is the one that we chose.

With the definition of the multivariate Gaussian PDF, and with what has been said
before, the Likelihood function is

L(y, x, σ 2) = 1

(2πσ 2)n/2
e− (y−Ax)T (y−Ax)

2σ2 . (1.8)

Now the ML estimates for x and σ 2 are to be found by maximizing the above. It
is allowed and common to replace L by the log-Likelihood lnL , since both functions
can be easily shown to have extrema at the same positions. With this, we have to
equate the partial derivatives of lnL to zero:

∂lnL(y, x, σ 2)

∂x
= 0 and

∂lnL(y, x, σ 2)

∂σ 2
= 0 . (1.9)

We obtain

lnL(y, x, σ 2) = −n

2
ln2π − n

2
lnσ 2 − 1

2σ 2
(y − Ax)T (y − Ax)
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and the conditions:

∂lnL(y, x, σ 2)

∂x
= − 1

2σ 2

∂

∂x

(−2yT Ax + xT AT Ax
) = 0

and
∂lnL(y, x, σ 2)

∂σ 2
= − n

2σ 2
+ 1

2σ 4
(y − Ax)T (y − Ax) = 0.

From the first condition, one obtains readily the estimate Eq. (1.3). From the
second condition, one obtaines

̂σ 2
ML = 1

n

(

y − Ax̂
)T (

y − Ax̂
)

.

The ML estimate for the variance factor σ 2 can be shown to be biased. This is an
example where different estimation principles lead to different results in practice.We
tend to use the unbiased estimator as discussed below in practical applications.But the
unbiased one will then obviously not maximize the probability to obtain the observed
data. For all estimation problems that are more complicated than the simple Gaussian
linear model, additive noise case, we have to live with the ambiguity of estimators,
and the estimator should be chosen based on the relevance of the underlying principle
for the problem in question.

Gaussianity of noise is often taken for granted, owing to the central limits theorem
that states that in case of many, equally important error sources adding up with
arbitrary pdf, the limit will be Gaussian. There are many counterexamples in real
applications where this is not valid; radar observing systems is a typical one (Speckle
noise). More important possibly in satellite gravity, it has been shown several times
that geophysical ‘noise’, i.e. signal anomalies with respect to climatology or simple
models, is not Gaussian.

1.3.4 Unbiased Estimate of the Variance Factor

An unbiased estimate for the variance factor, which means E(̂σ 2) = σ 2, is found
from the data residuals ê = y − Ax̂ as

̂σ 2 = Ω

n − m
with Ω = (

y − Ax̂
)T (

y − Ax̂
)

. (1.10)

Here, Ω is the residual square sum, or RSS, with the residuals representing esti-
mates of the errors (the errors remain unknown). On assuming the data error pdf
is normal, the residuals will be normally distributed, and it can be shown that ̂σ 2 fol-
lows a χ2-distribution. Therefore, in a practical problem, it is a good idea to check
whether the histogram of the residuals ê resembles a Gaussian.
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Estimation of the variance factor represents a problem where different estima-
tion principles yield different estimators: The Maximum-Likelihood estimate for ̂σ 2

would read Ω
n , but it is not an unbiased estimate. Rather than the unbiased estimate

for ̂σ 2 from Eq. (1.10) the square root of this is usually considered in applications,
but it is, strictly speaking, not necessarily a unbiased estimate of σ .

Finally, realizing that x̂ = Ly, we note that the error covariance matrix of the
estimate x̂ will be

D(x̂) = LD(y)LT = (

AT A
)−1

AT (σ 2I)A
(

AT A
)−1 = σ 2

(

AT A
)−1

(1.11)

or
D(x̂) = Cx̂ = σ 2N−1 .

With our estimate for σ 2, we obtain

Ĉx̂ = ̂σ 2N−1 .

1.3.5 Outer Product or Sample Representation
of the Variance-Covariance Matrix

Let a be a vector of random variables, e.g. the data vector y, an estimate of the
parameter vector x̂ or based on this, an estimate for some linear functional of the
parameters ẑ (see later).

In satellite gravimetry, a representation Caa of the variance-covariance matrix
(VCM) of a is required for many applications, for gravity analysis, error propagation
to functionals, for data assimilation and so on. It is considered a product of the
analysis that can be exchanged with other analysists.

By definition, the covariance matrix of a reads

D(a) = E
(

(a − E(a))(a − E(a))T
)

.

Now assuming we have a sufficiently large set of sample realizations a(i) of a,
this suggests that

C̄aa = 1

Ni

∑

(a(i) − ā)(a(i) − ā)T

with

ā = 1

Ni
a(i)

provides an approximation to D(a) in the sense of Ni → ∞. The above, C̄aa, repre-
sents a rank-Ni approximation in outer-product representation. It is sometimes called
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Monte Carlo representation of the VCM. This representation has some advantages
and disadvantages:

Pros:

• The sample representation is extremely easy to apply, e.g. in error propagation. For
example, error propagation of SH coefficient errors to radial orbit errors, important
in radar altimetry, can be realized through Ni orbit integration and a final averaging.

• It applies to nonlinear error propagation in the same way.
• Samples do not necessarily have to be independent of each other. This opens
the way to advanced Monte Carlo sampling schemes like Gibbs sampling or
Metropolis-Hastings.

Cons:

• C̄aa as above is rank-deficient. Even if the number of samples reaches thedimension
of the matrix, there is no guarantee that the matrix has full rank.

• It is difficult to find useable rules for howmany samples are required in a particular
problem, in order to have a good approximation.

1.4 Gauss-Markov Model with Observation Weighting

In many applications, observations of very different nature (e.g. from different sen-
sors, measurements of different physical quantities) are to be combined. On the one
hand, assuming we know that certain observations are less accurate than others, it
appears natural to take this into account in the design of the estimator. On the other
hand, when we have observations of different physical nature, a simple change of the
units for one data set would lead to different results which is unwanted. The GMM,
to accommodate for this situation, can be cast into the more general notation

E(y) = Ax and D(y) = σ 2P−1 . (1.12)

Here, our assumption is that we know—up to some overall factor—the covariance
matrix P−1 of the data. This is to say, we know the specific variances of the data and
we know (or assume to know) the correlations between the observations. The above
model assumes implicitly that the inverse of the covariance matrix exists (it is the
positive definite weight matrix P); so we cannot have zero variances which would
correspond to ‘perfect’ data.

In order to derive estimators and other properties for the abovemodel, it is common
to factorize the weight matrix, and reformulate the above first in the original form.
With the Cholesky factorization G of P we obtain

P = GGT , Ā = GT A, ȳ = GT y, and ē = GT e
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and the above GMM can be transformed as

E(ȳ) = Āx and D(ȳ) = σ 2I .

Therefrom, we then obtain that the respective (BLUE, ML, LS)- estimate for the
parameter vector follows in the well-known form

x̂ = (

ĀT Ā
)−1

ĀT ȳ = (

AT PA
)−1

AT Py. (1.13)

Similar, we obtain the variance factor

̂σ 2 = Ω

n − m
(1.14)

with

Ω = (

ȳ − Āx̂
)T (

ȳ − Āx̂
) = (

y − Ax̂
)T

P
(

y − Ax̂
) = êT PêT (1.15)

and the covariance matrix of the parameter vector

D(x̂) = Cx̂ = σ 2
(

AT PA
)−1

and Ĉx̂ = ̂σ 2
(

AT PA
)−1

. (1.16)

These estimates are at the core of countless software packages. From a practical
point of view, we observe that if we are only interested in x̂, it is not necessary to
explicitly calculate the inverse of the normal equation matrix. Rather, the problem is
formulated as solving the normal equations according to

(

AT PA
)

x̂ = AT Py or Nx̂ = r.

This canbe achieved throughCholeskydecomposition, or through iterative solvers
(e.g. the conjugate gradient method, or the least squares CG method).

In many applications, the data vector is composed of a finite set of independent
observations groups yi , e.g. collected frommeasurements to different satellites, using
different instruments, or both. In this case the data covariance matrix can be assumed
as block-diagonal and reads

D(y) = σ 2

⎡

⎣

P−1
1 · · ·

P−1
k

⎤

⎦ .

In this case it is easy to show that the normal equation matrix and right-hand side
can be build as
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N = AT PA =
k

∑

i=1

AT
i PiAi and r = AT Py =

k
∑

i=1

AT
i Piyi .

We call this process assembling the normal equations. When assembling the nor-
mal equations in a large problem, it is common to discard the observations afterwards
(i.e. compute the normals ‘on the fly’). On the other hand, estimating σ 2 requires
computing the RSS, and this requires to compare the original observations with their
predictions, using the GMM estimate. It is possible to show that

Ω = yT Py − yT PAT x̂ = yT Py − rT x̂.

In other words, it would suffice to compute the observation square sum yT Py
during the assembly of the normal equations—storing the y is not necessary.

1.4.1 Additional Considerations

Correlation between observations or groups of observations lead to a number of
practical questions: the contribution of each group to the estimate, the structure of the
normal equationmatrix, and possible decorrelation procedures. Likewise, correlation
between parameters or groups of parameters is an interesting issue to discuss.

1.4.1.1 Covariance of the Adjustment Residuals

The adjustment residuals
ê = y − Ax̂

differ from zero, since the observations have errors but also the estimated parameters
and therefore the predicted observations have errors. Straightforward error propaga-
tion tells that

D(ê) = Cê = D(y) + AD(x̂)AT = σ 2
(

P−1 + A(AT PA)−1A
)

.

In other words, an empirical analysis of the observation residuals in terms of auto-
and cross-covariance (say, leading to C̄ê), can be used to assess the data covariance
σ 2P−1 whenever the second term can be neglected.

Example The adjustment residuals of the above example for error free simulated
gravitational potential decrease for increasing maximum degree n̄ as shown in
Fig. 1.2.
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Fig. 1.2 As also described in the example above gravitational potential was simulated from Eq.
(1.4) up to n̄ = 30 along a satellite orbit in 480km altitude with a temporal resolution of 60 s. In a the
adjustment residuals for solving the normal equations up to degree and order n̄ = 10 are visualized
spatially. In b the normal equations are solved up to degree and order n̄ = 20. Obviously, the higher
the maximum degree n̄ of the series of spherical harmonics, the better also small features can be
resolved. The spatial correlations also imply temporal correlations along the satellite orbit

1.4.1.2 Contribution of a Single Data Set

It can be immediately seen that each individual data set (i), in a multi-sensor or
multi-satellite analysis, adds to the overall solution with the weighting

Ti = AT
i PiAi (AT PA)−1 = NiN−1 . (1.17)

It is obvious that
∑

i Ti = I, and
∑

i traceTi = m (number of parameters). It is
therefore common to associate

mi = traceTi =
∑

j

ti; j (1.18)

with the overall contribution of the i-th data set, and the j-th diagonal entries of
the Ti

ti; j = (Ti ) j j (1.19)

with the contribution of the i-th data set to the j-th parameters, although this is
a simplification. Observing matrix reordering rules under the trace operator, we
may write mi = trace(GT

i AiN−1AT
i Gi ) = trace(GT

i AiUi ). Ui contains in each of
its columns the solution of the full normal equations with the i-th right hand side,
assuming a unit data vector (1 in the i-th row, zero otherwise). This is to say the, once
we have a software that solves the normal equation and gives us access to the partial
right-hand sides, we can compute contribution numbers. When the parameters of the
GMM are the spherical harmonics, this gives rise to the popular triangle contribution
plots.
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1.4.1.3 Observation Weighting and Filtering

In the more general GMM with observation weighting, either the application of the
weight matrix P or of its Cholesky factor G to m + 1 vectors is required: to the m
column vectors of the design matrix plus the data vector. Assembling the normal
equations can be recast as

N = AT (PA) and r = AT (Py)

or
N = (

AT G
) (

GT A
)

and r = (

AT G
) (

GT y
)

This may pose a numerical problem whenever the bandwith of the weight matrix
(number of nonzero entries) is large, i.e. in caseswheremany observations are present
(e.g. millions) and these observations are correlated over long time intervals.

Consider the second formulation. The application of G to either the ai j or to the
yi can be written as

z̄i =
m

∑

j=1

g ji z j .

We may instead seek to design a ‘simple filter’ that approximates the above
matrix vector operation, e.g. in the form (see [127] for a much more comprehensive
discussion)

z̃i =
i+k
∑

i−k

hkzi .

Whether this is possible, and to what extent (i.e. how big the effect of ‘incorrect’
weighting is on the estimate is), depends on the matrix P of course.

On the other hand, usually one has an idea about observation correlations rather
than the weighting in the first place. This means we start with Cyy = P−1 and try to
avoid the inversion of this matrix in the first place. So, the application of the filter
has to mimic the application of C−1 (or of its Cholesky factor) to a vector. We speak
of decorrelation filtering.

The filter that mimics themultiplication with the Cholesky factorG, when applied
to the correlated observation errors,would have the effect of removing the correlation.
In other words, the filter one seeks is a whitening filter. It is thus common to consider
the observation residuals as an approximation to the correlated data noise, compute
an empirical power spectral density (PSD), and then design a filter such that the PSD
of the filtered residuals is as white as possible.
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1.4.1.4 Truncated GMM

It may not be possible to consider all parameters that are unknown in the real-world
problem as ‘unknowns’ in the GMM. This raises the question whether, and under
which conditions, suchmodel approximations lead to biased estimates. Let us assume
the ‘correct’ GMM reads

E(y) = [

A1 A2
]

[

x1
x2

]

and D(y) = σ 2I

with the u × 1 parameter vector, while we estimate only the k × 1 first portion of
the parameter vector in the ‘truncated’ GMM

E(y) = A1x1 and D(y) = σ 2I

which leads to the ‘truncated’ estimates

x̃1 = (AT
1 A1)

−1AT
1 y ẽ = A1x̂1 − y .

It is easy to show that

E(x̃1) = x1 + (AT
1 A1)

−1AT
1 A2x2.

This means, the estimate x̃1 in the ‘truncated’ model is systematically biased,
since the term on the right-hand side (the bias) is not a random but a fixed quantity.
However, the estimate is unbiased under the condition that either (1) x2 = 0 or (2)
AT

1 A2 = 0. The last condition simply means that the original ‘correct’ GMM can
be partitioned into two independent models (the normal equation matrix would be
block-diagonal), and that the two portions of the parameter vector would be obtained
uncorrelated w.r.t. each other.

Moreover one can show that

E(Ω̃) = E(ẽT ẽ) = σ 2(n − k) + xT
2 AT

2 (I − A1(AT
1 A1)

−1AT
1 )A2x2 .

In other words, the statistical expectation of the RSS is bigger than σ 2(n − k).
This leads to the rule: If σ 2 is known and we obtain an estimate for it in the GMM
which is significantly bigger than what we know, this may mean that the model is
underparameterized.

Example In the case of measured values of the gravitational potential, that we dis-
cussed before, the entries of AT

1 A2 are made up by the sums

∑

i

(a

r

)n+n′
Ynm(λi , θi )Yn′m ′(λi , θi )
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for n ≤ n̄ and n′ > n̄. This means, again, whether the truncation effect is significant
depends largely onwhether the data distribution andweighting resembles integration
on the sphere (then we would have orthogonality).

1.4.1.5 Common and Local Parameters

As was mentioned earlier, in satellite geodesy it is quite common to partition the
data (vector) into different groups; i.e. according to specific observation sensors,
techniques, or satellites. Similar, often the unknown parameters of the problem can
be partitioned. While common parameters x(c) refer to those parameters that are
linked to all data sets (such as the spherical harmonic coefficients in a gravity field
determination problem), local parameters x(l)

k contain all those which are specific to a
particular observation group k only (such as arc-dependent parameters, e.g. the initial
state vector, or instrumental biases). Due to numerical reasons, it is very popular to
separate these within the GMM.

Assuming k uncorrelated observation groups, and superscripts (c) and (l) referring
to common and local, the GMM in this case can be written as

E(y) = E

⎡

⎣

y1
. . .

yk

⎤

⎦ =
⎡

⎣

A(l)
1 0 . . . A(c)

1
. . . . . . . . . . . .

0 . . . A(l)
k A(c)

k

⎤

⎦

⎡

⎢

⎢

⎣

x(l)
1

. . .

x(l)
k

x(c)

⎤

⎥

⎥

⎦

(1.20)

and

D(y) = D

⎡

⎣

y1
. . .

yk

⎤

⎦ = σ 2

⎡

⎣

P−1
1 · · ·

P−1
k

⎤

⎦ .

Of course, the estimate for the entire parameter vector x̂ is found as

x̂ = (

AT PA
)−1

AT Py.

With the above described partitioning of the data vector, design matrix and weight
matrix, is possible to recast the normal equations for the common parameters in the
reduced form

(

k
∑

i=1

N̄(cc)
i

)

x̂(c) =
k

∑

i=1

r̄(c)
i or N̄(cc)x̂(c) = r̄(c) (1.21)

with

N̄(cc)
i = A(c)T

i PiA
(c)
i − A(c)T

i PiA
(l)
i

(

A(l)T
i PiA

(l)
i

)−1
A(l)T

i PiA
(c)
i (1.22)
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and

r̄(c)
i = A(c)T

i Piyi − A(c)T
i PiA

(l)
i

(

A(l)T
i PiA

(l)
i

)−1
A(l)T

i Piyi . (1.23)

The i-th local parameter vector follows from substituting the estimate of the
common parameter vector according to

(

A(l)T
i PiA

(l)
i

)

x̂(l)
i = A(l)T

i Piyi − A(l)T
i PiA

(c)
i x̂(c) = A(l)T

i Pi (yi − A(c)
i x̂(c)).

(1.24)
The normal equations for the local parameters of group i appear as if we would

only solve the data yi of group i for these parameters, with a correction term A(c)
i x̂(c)

on the right hand side. The data are reduced for the theoretical observations predicted
by the estimated global parameters. This obviously comes down to a reduction-
backsubstitution procedure. It is extremely common in applications where many
local parameters are to be estimated, since the size of the normal equations systems
to be solved is reduced to the number of the common parameters.

The covariance matrices for the global and local parameters of group i are found,
from error propagation, as

D(x̂(c)) = σ 2
(

N̄(cc)
)−1

and

D(x̂(l)
i ) = σ 2

(

(

N̄(ll)
i

)−1 +
(

N̄(ll)
i

)−1
N̄(lc)

i

(

N̄(cc)
)−1

N̄(cl)
i

(

N̄(ll)
i

)−1
)

(1.25)

with
N̄(ll)

i = A(l)T
i PiA

(l)
i N̄(lc)

i = A(l)T
i PiA

(c)
i .

And, from error propagation, we obtain as well the cross-covariance matrix
between the common and the local parameters,

C
(

x̂(l), x̂(c)
i

)

= σ 2
(

N̄(ll)
i

)−1
N̄(lc)

i

(

N̄(cc)
)−1

. (1.26)

Example In satellite gravimetry, it is common to estimate so called empirical 1/rev .
(once-per-revolution), 2/rev ., etc. parameters, which are simply meant to absorb
remaining systematic errors in the observation time series. Similary, per orbital arc
(i.e. observation group i) state vector and instrument bias parameters are estimated
together with the harmonics. Do these parameters absorb (part of) the gravity signal?
A formal answer can be gained by studying the correlation between the estimated
harmonics (in the common vector) and the local parameters.
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1.4.2 Linear Functionals

Often we are interested in linear functionals of an estimate x̂,

ẑ = Bx̂ . (1.27)

Assuming x̂ is a linear combination of the data y, then the same holds for ẑ and
we error propagation leads to

D(ẑ) = BD(x̂)BT and Cẑ = BCx̂BT . (1.28)

Assuming Cx̂ is given in outer product representation we can write

C̄ẑẑ = 1

Ni
(Bx̂(i) − Bx̂)(Bx̂(i) − Bx̂)T .

Example Many functionals of gravity, when expressed in so-called spherical approx-
imation and parameterized through a truncated spherical harmonic expansion, are
linear, e.g. gravity anomalies

δg(λi , θi ) =
n̄

∑

n=0

n
∑

m=−n

n − 1

a
Ynm(λi , θi ) vnm .

Obviously, matrix B maps the SH coefficients vnm to a (regular) grid. This implies
that not only the errors (variances) of gridded quantities can be propagated from the
covariance matrix of harmonics, but also the correlations between grid values. In fact
such correlations will strongly depend on the spatial distance of the grid nodes, and
they may be quite high for neighboring grid points. It advisable to propagate to a
regular grid, along parallels. This would allow computing Legendre functions only
once. Several numerical tricks may be played along this line.

1.4.3 Nonlinear Problem

In many real-world applications, the original model however reads

y + e = f (x). (1.29)

Linearization about a given reference solution x0 with theoretical observations y0 =
f (x0) leads to

δy + e + s = Fδx (1.30)
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with

F = ∂y
∂x

∣

∣

∣

∣

x0

, δy = y − y0, and δx = x − x0 .

It is important to understand that the linearization error s is not a stochastic quan-
tity. The estimate for the parameter increment is usually sought as

̂δx = (

AT PA
)−1

AT Pδy . (1.31)

With this, we choose as the new reference solution

x1 = x0 + ̂δx

and the process is iterated until convergence is reached (or it is clear that it will not
be reached).

Example In satellite gravity field determination, the most common approach to link
observations y and parameters x is the variational equations approach. Let us assume
the parameters can be grouped as

x =
⎡

⎣

z(ti )
a
p

⎤

⎦

where z(ti ) are state vector unknowns (orbit and velocity at the begin of a satellite
arc or analysis interval, e.g. 0 h 0 m 0 s every day), a are force model parame-
ters (e.g. spherical harmonic coefficients), and p are additional parameters directly
related to themeasurements (e.g. instrumental bias). The abovementioned linearized
observation equations then read

y + e + s = y0 +
(

∂y
∂z

)

�(t, ti )(z(ti ) − z0(ti )) +
(

∂y
∂z

)

S(t)(a − a0) +
(

∂y
∂p

)

(p − p0) .

Here, �(t, ti ) and S(t) are the transition matrix and sensitivity matrix that need
to be determined by numerical integration along with the orbit:

�(t, ti ) =
(

∂z(t)
∂z(ti )

)

and S(t) =
(

∂z(t)
∂a

)

.

This can finally be written as y + ẽ = Ax.
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1.4.4 Variance-Component Estimation

As we have seen, in the GMM it is not required to know the variance factor, as it
drops out in the estimation of the parameter vector, and it can be estimated from
the residual square sum. This, however, is true only if a single, overall factor, is
unknown. As has been mentioned before, in satellite gravimetry we have often to
deal with data from multiple instruments or even multiple satellites within a single
GMM. Moreover, often we have an idea of the instrument noise but it is hard to
assess the errors introduced by background models, additional corrections relying
on auxiliary data, and so on. This all leads to the situation that we would prefer to
estimate a variance factor per observation group. Observations groups may even rep-
resent different time periods of the same instrument and satellite; e.g. data collected
along subsequent orbital arcs. For example, varying ionospheric activity may affect
microwave measurement noise in ways hard to predict, so that it appears natural that
some days or arcs have a higher noise level than others.

The method of variance-component estimation (VCE), developed almost inde-
pendently in various scientific disciplines like geodesy, agricultural /econometrics,
and medical statistics, has been frequently applied to this problem. The idea of VCE
is to formulate a more general joint estimation problem where, in addition to the x,
two or more unknown parameters within the data covariance matrix are to be esti-
mated. These parameters are usually considered as multiplicative to certain structure
matrices, such that a linear combination makes up the data covariance matrix. Differ-
ent estimation principles like BIQUE (best invariant quadratic unbiased estimate),
ML, or the Bayesian approach lead to different estimates in the same model.

In this context we will consider only a single model, where observation groups
are considered as uncorrelated with respect to each other, and where only the overall
variance factor per group is sought. It is the model which has been considered when
we discussed partitioning into global and local parameters with

E(y) = E

⎡

⎣

y1
. . .

yk

⎤

⎦ =
⎡

⎣

A(l)
1 0 . . . A(c)

1
. . . . . . . . . . . .

0 . . . A(l)
k A(c)

k

⎤

⎦

⎡

⎢

⎢

⎣

x(l)
1

. . .

x(l)
k

x(c)

⎤

⎥

⎥

⎦

(1.32)

and

D(y) = D

⎡

⎣

y1
. . .

yk

⎤

⎦ =
⎡

⎣

σ 2
1 P−1

1 · · ·
σ 2
k P−1

k

⎤

⎦ .

In other words, next to x we seek σ = (σ 2
1 , . . . , σ 2

k )T .
It is clear that this is a difficult problem. For example, the estimates for σ have to

be strictly positive. It is further not obvious under which circumstances the problem
has full rank. Moreover, as the relative size of the variance factors (the weighting of
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the different groups with respect to each other) will undoubtly affect the estimate of
x, an iterative approach may be required.

An iterative solution that converges to the ML estimate in the above problem
(and to the MINQE estimate, if it exists) has been given in [87], following work by
[40, 84]. The method is as follows:

• Select start values σ
2[0]
j , j = 1, . . . , k.

• Then, for p = 0, . . . iterate:

– the computation of the local and global parameters x̂(l)[p]
j , x̂(c)[p], and of the data

residuals ê[p]
j within all groups.

– the computation of the group redundancy numbers r [p]
j ,

r j = −trace
∂ ê j

∂y j
= n j − 1

σ 2
j

traceÃT
j P j ÃN−1. (1.33)

– the computation of the variance-components σ
2[p]
j ,

σ 2
j = ê jP j ê j

r j
. (1.34)

1.5 Regularization and Biased Estimation

In the following we will briefly look at three different concepts of estimation that
differ from the BLUE as discussed before:

• Tikhonov-type regularization (Kaula-type regularization)
• Truncated Singular Value Decomposition
• Estimation with prior information

Biased estimation is a well-known concept in satellite gravity determination. The
reason for this is, chosing a biased estimator allows one to decrease the variance of
the estimate and thus its sensitivity with respect to data errors. In satellite gravimetry,
data are collected at satellite altitude where the gravity field is damped (increasingly
for higher harmonics). Mathematically speaking, determination of harmonics from
satellite data represents an ill-posed problem, and so are all related problems (deter-
mination of surface mass, of gravity anomalies). This translates in ill-conditioned
normal equations systems and large variances and covariances for the estimated
parameters. In fact, in many cases the unbiased LS estimates would lead to wildly
oscillating harmonics. In biased estimation we know that the result is not unbiased
but we can dramatically reduce this sensitivity.
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1.5.1 Tikhonov Estimator

Let us consider the GMM as above, and the popular Tikhonov estimator

x̂+ = (

AT PA + R
)−1

AT Py (1.35)

with R being positive definite, and in most applications diagonal. The expectation is

E(x̂+) = (

AT PA + R
)−1

AT PAx = x − (

AT PA + R
)−1

Rx �= x . (1.36)

This gives rise to define the bias of x̂ as

bx̂+ = E(x̂+ − x) = (

AT PA + R
)−1

Rx. (1.37)

The bias bx̂ characterizes important properties of the estimator, and it would be
good to know it. Unfortunately it depends on the unknown true parameter vector
and so it remains elusive. Many researchers have proposed to work with a first-order
approximation, by replacing the true vector on the right hand side by its Tikhonov
estimate

b[1]
x̂ = (

AT PA + R
)−1

Rx̂+.

We would like to mention that, when regularizing an already linearized problem,
the choice of the linearization point becomes important. This is so since one usually
applies regularization to the determination of δx = x − x0, which is then biased
towards zero, while one is finally interested in x = x0 + δx (which is then biased
towards x0).

The covariance matrix of the estimator is found from linear error propagation as

D(x̂+) = (

AT PA + R
)−1

AT PA
(

AT PA + R
)−1

.

Let us recall the definition of the covariance matrix

D(x̂+) = E
(

(x̂+ − E(x̂+))(x̂+ − E(x̂+))T
)

.

The covariance matrix provides a metric for the spreading of the estimate w.r.t.
its expectation. This tells about the sensitivity of the estimate, but in case of biased
estimation it does not inform us about the spreading of the estimate w.r.t. the truth.
It is therefore common to consider the mean square error or MSE matrix,

M(x̂+) = E
(

(x̂+ − x)(x̂+ − x)T
) = D(x̂+) + bx̂+bT

x̂+ .

The MSE matrix is likely more informative, but its practical computation would
require knowledge of the estimation bias (which we don’t have).
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Very often, the estimate is formulated as

x̂+
α = (

AT PA + α2R
)−1

AT Py

with R given, and α2 to be determined though some kind of optimization proce-
dure. Numerous papers have been written on this subject. A good first guess may be
α2 = trace(AT PA)

traceR . More sophisticated methods are the L-curve method, the General-
izedCross-Validation, and theVariance-Component Estimationmethod. In statistical
literature those kind of problems are called ridge regression.

In his original publications, Tikhonov did not consider the discrete case (with a
finite number of parameters, aswe do here) at all, but the functional-analytic problem,
where a certain function is sought that both fits a data function and attains minimum
norm. So it is, strictly speaking, incorrect to call the estimate Tikhonov regularization,
in particular when no reference is made to the underlying continuous norm.

1.5.1.1 Related Concepts

Obviously, the Tikhonov estimate can be understood as a filtered version of the LS
estimate

x̂+ = Wx̂

with
W = (

AT PA + R
)−1

AT PA = I − (

AT PA + R
)−1

R .

Since R is positive definite, it can be shown that the eigenvalues of W are smaller
than one, and its application reduces the ‘length’ of the parameter estimate.

In addition, the estimate x̂+ provides the solution to a hybrid norm minimization
problem; i.e. it is the minimizer of

Ω = (

y − Ax̂
)T

P
(

y − Ax̂
) + x̂T Rx̂ .

In satellite gravity determination problems, this leads to the question under which
conditions the matrix norm ||x||R = xT Rx can be interpreted in a physical sense, i.e.
in relation to the gravity field. For example, it is clear that

||V ||L2(ω) =
∫

ω

V 2(θ, λ)dω =
∞

∑

n=0

n
∑

m=−n

v2nm =
∞

∑

n=0

n
∑

m=−n

c2nm + s2nm =
∞

∑

n=0

c2n

with fully (4π -) normalized harmonic coefficients. In other words, Tikhonov regu-
larization with R = I can be viewed as involving a discrete approximation
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xT Rx =
n̄

∑

n=0

n
∑

m=−n

v2nm =
n̄

∑

n=0

c2n

of the total power (or RMS) of the geopotential averaged over the sphere, into the
minimization functional. This is sometimes called zero-order Tikhonov regulariza-
tion. The estimate seeks to fit the harmonic coefficients to the data but at the same
time the averaged square geopotential should be minimized. Likewise, first- and sec-
ond order TR can be related to minimizing the (surface) gradient or Laplacian of the
potential [33].

1.5.1.2 Kaula Regularization

In classical geodesy, the most prominent example is Kaula regularization. In this
case the regularization matrix becomes

R =

⎡

⎢

⎢

⎢

⎢

⎣

1
· · ·

n4

· · ·
n̄4

⎤

⎥

⎥

⎥

⎥

⎦

.

Numerous papers ascribe Kaula regularization toWilliam Kaula and cite his clas-
sical textbook on Satellite Geodesy. In fact this is incorrect, this technique is never
mentioned or even advocated in this classical work. Kaula regularization is rooted
in the observation that the degree variance spectrum of the Earth’s gravitational
potential, i.e.

c2n =
n

∑

m=−n

v2nm

can be, to some extent, approximated by an analytic expression c̄2n = f (n) (a degree-
variance model). In the simplest case one would write

f (n) = a

n4
.

Obviously, Kaula regularization is intended to guarantee that

xT Rx =
n̄

∑

n=0

a

n4
n4 = n̄a

is finite. Kaula regularization is usually motivated as (see below) follows: We intro-
duce an a-priori observation of zero for each individual coefficient. Since we know
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Fig. 1.3 This figure shows
the square root of the degree
variances of spherical
harmonic coeffcients
estimated up to degree and
order n̄ = 30 for three
different cases: (i) error free
simulated gravitational
potential (see Eq. (1.4)),
(ii) simulated gravitational
potential disturbed with
random Gaussian noise with
zero mean and a standard
deviation of 100 m2

/s2 , and
(iii) disturbed potential and
applying Kaula
regularization
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each individual coefficient has an expectedmagnitude of the order a
n4 , this is assumed

to represent the variance of these zero observations.
From this line of reasoning follows, that Kaula regularization can be motivated

only if we estimate the full field. Today, we have much better knowledge and we
typically estimate a residual field w.r.t. a background mean gravity model. Kaula
regularization can thus not be motivated anymore as introducing unbiased prior
information and it should be viewed as a biased estimation technique. When estimat-
ing time variable gravity fields with GRACE, authors have derived degree-variance
models that describe the signal power in the temporal changes and built regularization
techniques on this. On yet another subject, it is possible to introduce regularization
that constrains the field for some defined spatial region only (polar regions above
certain latitude, or land/ocean region), but the price to pay will be a dense matrix R.

Example Spherical harmonic coefficients are estimated (i) from error free simulated
gravitational potential, (ii) from simulated gravitational potential disturbed with ran-
dom Gaussian noise, and (iii) from disturbed potential and applying Kaula regular-
ization. The corresponding square root of the degree variances is shown in Fig. 1.3.
In case (ii), the higher degrees are dominated by noise that is amplified due to the
downward continuation process (red line). Applying Kaula regularization, in case
(iii) the estimated parameters are forced against zero with increasing strength for the
higher degrees.

1.5.2 SVD and TSVD

The original GMM y + e = Ax may be transformed to canonical form using the
SVD of A,

A = UDVT
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with orthogonal n × n U, orthogonal m × m V, and rectangular n × m diagonal
D = diag(d1, . . . , dm). With this, we can write

UT y + UT e = UT UDVT x = DVT x

or
ỹ + ẽ = Dx̃ .

And the LS estimate of x can be written, with m × m � = DT D and

AT A = VDT UT UDVT = VDT DVT = V�VT

as
x̂ = (

AT A
)−1

AT y = V�VT VDUT y = V�Dỹ .

It is easy to see that this can now be written as

x̂ =
m

∑

i=1

vi
di
d2
i

(uiy) .

Let us consider the Tikhonov regularization with R = α2I. On realizing that

AT A + α2I = V
(

�α2I
)

VT

we find that

x̂+
α =

m
∑

i=1

vi
di

d2
i + α2

(uiy) .

It appears the singular values are damped (with respect to the least squares esti-
mate)while the singular vectors aremaintained. Starting from theSVDrepresentation
of the Tikhonov estimate, one can devise other estimates by generalizing the concept.
i.e. one prescribes

x̂+
α =

m
∑

i=1

vi f (di )(uiy) .

The truncatedSVDestimate (TSVD)has gainedpopularity similar to theTikhonov
estimator. The TSVD simply reads (p < m)

x̂(p) =
p

∑

i=1

vi
di
d2
i

(uiy) .
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1.5.3 Estimation with Prior Information

Finally, a very different view on the problem is as follows. Assuming we do have
prior information on the parameter vector, i.e. before we collect measurements.

In reality mostly one has some information. In particular, the Earth’s gravity field
has been determined numerous times before, from satellite and terrestrial data, and
we just aim at improving this. One can think of writing the GMM with the ‘new’
data as

E(y) = Ax and D(y) = σ 2P−1 . (1.38)

With this, assuming the first data set has been utilized to produce a prior estimate
x0 with covariance

E (x0) = x and D (x0) = R−1

one can write the ‘new’ or updated estimate utilizing the ‘new’ data as

x̂ = (

AT PA + R
)−1 (

AT Py + x0
)

(1.39)

with
D(x̂) = (

AT PA + R
)−1

. (1.40)

This, formally, equals to the Tikhonov estimate, and the estimation with prior
information shares thus the same stabilizing properties. However the covariance
of the estimate differs, and the estimate is now unbiased—under the mentioned
assumptions.

Estimation with prior information is often identified with Bayesian estimation but
this is not true. Bayesian estimation always assumes that one has prior information,
but this prior information can be non-informative (i.e. it does not carry information
thatmodifies or ‘sharpens’ the pdf of the unknowns).On the other hand, non-Bayesian
theory does allow prior information to be introduced as well. However, a difference
in the concepts exists at a deeper (or more philosophical) level.

In non-Bayesian estimation, specifying prior information on the unknown para-
meters implicitly requires that we assume this information as the outcome of a—
repeatable—random experiment. A prior measurement would be such an experi-
ment that provides us with a covariance matrix, but specifying prior information on
high-degree harmonics of the gravity field, or its temporal variation, beyond those
that have actually been measured, is difficult to justify on theoretical grounds in
non-Bayesian theory. In contrast, Bayesian theory simply assumes that we do have
uncertain knowledge, not necessarily related to actual observations, and that we for-
malize this knowledge (or rather believe) into mathematical form. Of course, our
knowledge is always incomplete. Bayesian estimation is not more sensitive toward
prior information than conventional estimation is. It rather forces us to formalize
our—often vague—knowledge.
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1.6 Exercises

Data and files needed for the following exercises are available online at:
http://www.geoq.uni-hannover.de/autumnschool-data
http://extras.springer.com

Purpose of the practical: In this practical the Gauss-Markov-Model (GMM)will be
implemented for the computation of spherical harmonic coefficients from given grav-
itational potential. The error-free gravitational potential is provided along a satellite
orbit of one month with a sampling of 60 s. First, the adjustment problem will be
solved up to different degrees nmax . Then, the influence of noise will be assessed and
regularization will be applied.

1: Estimation of spherical harmonic coefficients

(a) Load the file potential_2007-07.mat. The four columns contain the orbit loca-
tions (longitude [◦], latitude [◦], height [m]) and the values of the gravitational
potential [m2

/s2 ]. Visualize the data with respect to the reference potential pro-
vided in the file referencePotential.mat using the function showData.

(b) Set up the design matrix A, which relates spherical harmonic coefficients and
given gravitational potential, for arbitrary maximum degree nmax . Use the func-
tion calculatePnm for the computation of the Legendre functions. The
gravity constant times the Earth’s mass amounts to GM = 3.9860044150 ×
1014 m3

/s2 and the Earth’s radius is a = 6378137m. (The parameter vector
should be sorted order-wise and according to cosine and sine components:
c0,0, c1,0, c2,0, c3,0, ..., c1,1, c2,1, c3,1, ..., cnmax ,nmax , s1,1, s2,1, s3,1, ..., snmax ,nmax .)

(c) Compute the normal equation matrix N for nmax = 10. Visualize the matrix using
the function showN and discuss its special structure.

(d) Set up the normal equations up to degree and order 10, 20, 30, and 40 and esti-
mate the parameter vector x using cholesky decomposition (Matlab:chol).
Visualize the estimated parameters using the function showParameters
and the degree variances of the estimated parameter vector using the function
showSqrtDegreeVariances. Discuss the results.

(e) Compute the residuals ê = y − Ax̂ for degree and order 10, 20, 30, and 40 and
visualize them using the function showData.

2: Influence of noise

(a) Perturb the given gravitational potential with random Gaussian noise with zero
mean and standard deviations of 10 m2

/s2 , 100 m2
/s2 , and 1000 m2

/s2 (Matlab:
randn).

(b) Repeat exercise 1.d for nmax = 40 with the perturbed observations.Which effect
has the noise on estimated parameters of different degree?

3: Regularization

(a) Set up a Tikhonov-type Kaula regularization matrix for arbitrary degree nmax .

http://www.geoq.uni-hannover.de/autumnschool-data
http://extras.springer.com
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(b) Apply the regularization matrix for estimating the parameters up to degree nmax

= 10, 20, 30, and 40 from the gravitational potential perturbed with Gaussian
noise (σ = 100 m2

/s2 ). Choose an appropriate scaling factor for the regularization
matrix.

(c) Investigate the effects fromnoisewith varying strength and fromdifferent scaling
of the regularization matrix.

MATLAB functions:

function [Pnm] = calculatePnm(theta, nmax)
Calculation of normalized Legendre Functions using stable recursion formulas.
Input • theta: co-latitude at which the Legendre Functions are

computed. The dimension is 1 × 1. [rad]

• nmax: maximum degree up to which the Legendre Functions are
computed. The dimension is 1 × 1.

Output • Pnm: nmax × nmax matrix containing the normalized Legendre
functions.

function [cnm, snm] = sortCoefficients(x, nmax)
Divides the parameter vector x into two triangular matrix for cosine spherical
harmonic coefficients cnm and sine spherical harmonic coefficients snm .
Input • x: n × 1 vector containing the estimated spherical harmonic

coefficients sorted order-wise and according to cosine
and sine components:
c0,0, c1,0, c2,0, c3,0, ..., c1,1, c2,1, c3,1, ..., cnmax ,nmax ,

s1,1, s2,1, s3,1, s4,1, ....., snmax ,nmax .
The dimension n is the number of the parameters.

• nmax: maximum degree up to which the spherical harmonic
coefficients are given. The dimension is 1 × 1.

Output • cnm: nmax × nmax matrix containing the cosine spherical
harmonic coefficients.

• snm: nmax × nmax matrix containing the sine spherical
harmonic coefficients.

Functions for visualization:

function showData(data, longitude, latitude, titleString)
Visualization of (global) data along a satellite’s orbit. All values are given in a
column vector data. The longitude and latitude values corresponding to the orbit
positions are given in the vectors longitude and latitude.
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Input • data: n × 1 vector containing the data values.

• longitude: n × 1 vector containing the longitude values of the
orbit positions. [degree]

• latitude: n × 1 vector containing the latitude values of the
orbit positions. [degree]

Output • 2D-plot of the values along the satellite’s orbit.

function showN(N,titleString)
Visualization of the normal equation matrix.
Input • N: n × n normal equation matrix. The dimension n is the number of

the parameters.

Output • 2D-plot of the normal equation matrix.

function showParameters(x,nmax,titleString)
Visualization of the estimated parameters in a triangular plot.
Input • x: n × 1 vector containing the estimated spherical harmonic

coefficients sorted order-wise and according to cosine and sine
components:
c0,0, c1,0, c2,0, c3,0, ..., c1,1, c2,1, c3,1, ..., cnmax ,nmax ,

s1,1, s2,1, s3,1, s4,1, ....., snmax ,nmax .
The dimension n is the number of the parameters.

• nmax: maximum degree up to which the parameters are estimated.
The dimension is 1 × 1.

Output • 2D-plot of the spherical harmonic coefficients.

function showSqrtDegreeVariances(x,nmax,titleString)
Computation and visualization of the square root of the degree variances from
degree 3 to degree nmax . The square root of the degree variances of degree n are

computed according to vn =
√

∑n
m=0(c

2
nm + s2nm).
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Input • x: n × 1 vector containing the estimated spherical harmonic
coefficients sorted order-wise and according to cosine and sine
components:
c0,0, c1,0, c2,0, c3,0, ..., c1,1, c2,1, c3,1, ..., cnmax ,nmax ,

s1,1, s2,1, s3,1, s4,1, ....., snmax ,nmax .
The dimension n is the number of the parameters.

• nmax: maximum degree up to which the parameters are estimated.
The dimension is 1 × 1.

Output • 1D-plot of the square root of the degree variances using a
logarithmic scale and starting at degree 3.



Chapter 2
Precise Orbit Determination

Adrian Jäggi and Daniel Arnold

Abstract Precise Orbit Determination (POD) is an integral part for analyzing mea-
surements from space geodetic techniques such as Satellite Laser Ranging (SLR)
and Global Navigation Satellite Systems (GNSS) such as the Global Positioning
System (GPS). In the last two decades, POD based on GPS data has furthermore
been established as one of the standard techniques to derive trajectories of satellites
in the low Earth orbit (LEO) with highest accuracy. Since the launch of dedicated
gravity missions, GPS sensors are not only used as a key tracking system for LEO
POD, but also for extracting the long wavelength part of the Earth’s gravity field
(together with SLR to spherical satellites). This chapter introduces SLR and GNSS
measurements collected by the terrestrial networks of the International Laser Rang-
ing Service (ILRS) and the International GNSS Service (IGS) as the observational
basis for the realization of a terrestrial reference frame from satellite data. On this
foundation, the basic equations andmathematical methods of orbit determination are
introduced and extensively discussed. Pseudo-stochastic orbit modeling techniques
are eventually presented as a general and efficient concept to determine satellite tra-
jectories of highest quality even in presence of deficient force models, covering the
full range between dynamic and purely kinematic solutions. Selected results from
the application of the discussed orbit determination techniques are highlighted for
GPS LEO data. Special emphasis is also put to present orbit determination in the
context of more general orbit determination problems, where satellite trajectories are
simultaneously determined with other parameters encompassing (at maximum) all
pillars of geodesy, i.e., the shape, rotation, and gravity field of the Earth.
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2.1 Precise Tracking Data

Precise orbit determination of artificial satellites requires precise measurements
which are related to the position or velocity of the satellites. These data are today col-
lected by satellite tracking systems which measure the properties of the propagation
of electromagnetic waves between the transmitter and receiver. In this chapter we
focus on precise tracking data collected from Global Navigation Satellite Systems
(GNSS), Satellite Laser Ranging (SLR), and inter-satellite ranging. For an overview
of various (other) tracking systems the reader is referred to, e.g., [104].

2.1.1 Global Positioning System

Over the past four decades, the Global Positioning System (GPS) has evolved from
a predominantly military navigation system into an indispensable tool not only for
society at large, but also for geodetic research and global monitoring of the Earth
[106].Over the past two decades,GPShas also become a unique tool for deriving very
precise orbits of satellites in the LowEarthOrbit (LEO). Equippedwith onboardGPS
receivers, uninterrupted three-dimensionalGPS trackingmakes it possible to perform
LEO orbit determination with unprecedented accuracy by combining the strength of
dense GPS measurements with the strength of the dynamic laws, e.g., [64]. Over
the past decade, the world of satellite navigation has experienced further dramatic
changes: with the Russian GLONASS, a second GNSS has achieved full operational
status, GPS is introducing modernized civil navigation signals, and a variety of new
navigation constellations are being built up in Asia and Europe [106]. Most of these
recent developments are not yet available in current spaceborne receivers, which still
rely uniquely on GPS at the time of writing these lecture notes.

The GPS satellites are arranged in six orbital planes which are inclined by about
55◦ with respect to the Earth’s equator and equally separated by 60◦ on the equator.
The satellite orbits are close to circular, with a semi-major axis of about 26 600km.
The orbital revolution period is about 11h 58min, which is half a sidereal day. The
full constellation of 24 active satellites (currently 32) guarantees that at least four
satellites are simultaneously visible at any time and any location on and in the vicinity
of the Earth’s surface. All GPS satellites are equipped with an ensemble of atomic
clocks to generate coherent carriers in the L-band, e.g., the L1 and L2 carriers with
wavelengths of λ1 ≈ 19.0cm and λ2 ≈ 24.4cm. Pseudo-random noise codes are
generated and modulated on these carriers by the phase modulation technique. For a
more detailed description, the reader is referred to, e.g., [60].
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2.1.1.1 International GNSS Service

By the late 1980s, many organizations had recognized the potential of GPS for geo-
desy and geodynamics. A test campaign, conducted in summer of 1992, involved
the deployment and operation of a global GPS tracking network, the rapid acquisi-
tion of observational data and transfer to global data centers (DCs), and the regular
data analysis by several analysis centers (ACs). Thanks to the successful operation
and to the continuing effort of the large majority of participating organizations, the
International GNSS Service (IGS) became an official service of the International
Association of Geodesy (IAG) on January 1, 1994 [9]. Since then, more than 200
organizations, agencies, and universities have shared their resources to define inter-
national standards and to establish an independent ground segment, which generates
high-accuracy products on a best efforts basis with reliability through redundancy.
About ten ACs produce precise ephemerides and clocks of all active GPS satellites,
Earth rotation parameters (ERP’s), coordinates, velocities and clock corrections to
GPS time, global ionosphere maps, and station troposphere zenith path delays for the
IGS tracking sites. In order to respond to the ongoing modernization of the GPS and
to make use of the newly emerging GNSS, the IGS has initiated the Multi-GNSS-
EXperiment (MGEX) [106].

2.1.1.2 GNSS Observation Equations

GPS receivers collect several types of GPS code observations, e.g., the C/A-, P1-,
and P2-code observations, and carrier phase observations, denoted as LA, L1, and L2.
The code observation (or pseudo-range) of the satellite k at time T k and registered
by the receiver i at time Ti , is defined as

Pk
i

.= c (Ti − T k) , (2.1)

where Pk
i is expressed in units of length, c is the speed of light, Ti is the arrival (or

observation) time of the signal, as measured by the clock of receiver i , and T k is the
transmission time of the signal, as measured by the clock of satellite k.

GPS positioning is thus primarily based on one-way measurements of the signal
traveling time. Therefore, a common reference time, the so-called GPS system time
[123], has been defined, which is aligned to the international atomic time (TAI) with
a constant offset of −19s. Although the GPS satellites are equipped with atomic
clocks, their clocks have a time-varying offset to GPS time. The same holds for GPS
receivers, which are usually not equipped with ultra-stable oscillators. Due to the
lack of synchronization between transmitter and receiver clocks, one cannot directly
derive ranges from the codemeasurements,which therefore are called pseudo-ranges.
Most receivers usually keep their clocks synchronized with respect to GPS time, but
there are also receivers with internal clocks, which are not steered to integer seconds
of GPS time. As GPS satellite and receiver clocks are usually affected by a drift,
both, transmitter and receiver clock offsets, are only valid for a certain epoch.
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The pseudo-range Pk
i may be related to the slant range ρk

i , i.e., to the geometric
distance between the receiver i at signal reception, expressed in GPS time ti , and the
satellite k at signal transmission, expressed in GPS time t k , as well, and to the delays
due to the Earth’s atmosphere as

Pk
i = ρk

i − c · Δt k + c · Δti + Δρk
i,trop + Δρk

i,ion + εkPi , (2.2)

where Δt k = T k − t k is the clock offset of the satellite k w.r.t. the GPS system time,
Δti = Ti − ti is the clock offset of the receiver i w.r.t. the GPS system time, Δρk

i,trop

and Δρk
i,ion are the signal delays due to the troposphere and ionosphere, expressed in

units of length, and εkPi is the residual. Further terms such as relativistic corrections
have to be included in the term ρk

i to ensure a correct modeling.
The carrier phase observation L A, L1, or L2 corresponding to the code observation

is defined as
Lk
i

.= λ (φi − φk + Nk
i ) , (2.3)

where Lk
i is the accumulated carrier phase observation, expressed in units of length,

λ is the corresponding wavelength, φi is the carrier phase of the reference signal
generated by the receiver i at arrival time Ti , φk is the carrier phase of the transmitted
signal at transmission time T k , and Nk

i is the initial carrier phase ambiguity, expressed
in an integer number of cycles of λ. The carrier phase observation equation may be
formulated in analogy to the code observation equation (2.2) as

Lk
i = ρk

i − c · Δt k + c · Δti + Δρk
i,trop − Δρk

i,ion + λ · Bk
i + εkLi , (2.4)

where Bk
i denotes a constant bias related to the initial carrier phase ambiguity,

expressed in cycles. The major difference to the code observation equation (2.2)
is the bias term Bk

i , which consists of the integer-valued initial carrier phase ambigu-
ity Nk

i , the real-valued non-zero phase difference between φi and φk at any common
epoch, and the real-valued satellite and receiver specific hardware delays. If the
receiver loses lock of the signal, an additional bias term has to be set up due to the
discontinuity (cycle slip) in the accumulated carrier phase observations. An addi-
tional difference to the code observation equation (2.2) is the opposite sign of the
ionospheric refraction term Δρk

i,ion due to a phase advance instead of a group delay.
In summary, the observation equations provided by a dual-frequencyGPS receiver

at a certain observation ti may be written as

Pk
i,1 = ρ̃k

i + I ki + εkP1i

Pk
i,2 = ρ̃k

i + ξ · I ki + εkP2i (2.5)

Lk
i,1 = ρ̃k

i − I ki + λ1 · Bk
i,1 + εkL1i

Lk
i,2 = ρ̃k

i − ξ · I ki + λ2 · Bk
i,2 + εkL2i ,
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where Pk
i,1, P

k
i,2 are the code observations on both frequencies, Lk

i,1, L
k
i,2 are the

accumulated carrier phase observations on both frequencies, and where ρ̃k
i is the

geometric distance between the receiver i and the satellite k including the clock off-
sets and the tropospheric refraction. Bk

i,1, B
k
i,2 are the carrier phase bias parameters

on both frequencies, and εkP1i , ε
k
P2i

, εkL1i
, εkL2i

the residuals of all measurements. The
ionosphere is a dispersive medium for the L-band carrier waves broadcasted by the
GPS satellites and the ionospheric refraction is thus proportional to 1/ν2 in first-order
approximation of the carrier frequency ν. The signal delays Δρk

i,ion on both frequen-
cies may therefore be expressed as a function of the L1-related ionospheric refraction
I ki . The L2-related ionospheric refraction then follows by a simple multiplication of
I ki by the conversion factor ξ = ν2

1/ν
2
2 ≈ 1.6469.

Because the code observations are two to three orders of magnitude less precise
than the carrier phase observations, which exhibit a thermal noise at the level of
mm only, the carrier phase observables are primarily used for high-precision geo-
detic applications. In order to minimize or eliminate specific error sources, such
as ionospheric refraction on the right-hand sides of Eq. (2.5), it is common prac-
tice to form differences between the original measurements with GPS observations
from other receivers (single or double-differences), or to form linear combinations of
the original dual-frequency measurements, e.g., the ionosphere-free linear combina-
tion, or to combine both techniques. It is, however, also possible to directly process
the original (undifferenced) observations from Eq. (2.5) by estimating epoch-wise
ionosphere delays, e.g., [163]. For a general discussion and thorough derivation of
the GPS observation equations and their linear combinations, e.g., in the context of
ambiguity resolution, the reader is referred to [143].

2.1.2 Satellite Laser Ranging

The first SLR measurements to a satellite equipped with laser reflectors were col-
lected on 31 October, 1964 at the NASA Goddard Geophysical and Astronomical
Observatory, only four years after the first laser was constructed [131]. Since then
the SLR technique has evolved to one of the most important space-geodetic tech-
niques for the determination of the terrestrial reference frame, the determination of
the Earth’s gravity field, and the validation of results from the other space-geodetic
techniques such as GNSS and Very Long Baseline Interferometry (VLBI). For a
summary of the current achievements of SLR, the reader is referred to, e.g., [137].

SLR measures the round-trip time of flight Δt ki of the ultra-short and highly
energetic laser pulses transmitted by a ground station i through a telescope and
reflected by special corner cubes onboard of a satellite k back to the telescope.
The two-way time of flight may be transformed into a distance by multiplying the
time of flight by the speed of light. Similar to other space-geodetic techniques, a
number of corrections need to be made, e.g., due to atmospheric delays, relativistic
effects, satellite center-of-mass corrections, laser system offsets, etc. Because the
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same electronic time interval counter is used at a ground station to register the
emission time of a laser pulse and the reception time of the pulse, the SLR two-way
measurements are virtually free of synchronization errors. Focusing on the geometric
part and omitting all other terms, the fundamental SLR observation equation reads as

Δtki = τ ki,up + τ ki,down = 1

c

(

|ri (tsat − τ ki,up) − rk(tsat )| + |ri (tsat + τ ki,down) − rk(tsat )|
)

,

(2.6)

where Δt ki is the sum of the uplink and downlink time of flight of the laser pulse, ri
is the inertial position of the laser station i at emission time tsat − τ k

i,up and reception
time tsat + τ k

i,down , respectively, and rk is the inertial position of the optical phase
center at the satellite k at the reflection time tsat . Assuming τ k

i,up ≈ τ k
i,down ≈ 1

2 Δt ki
the inertial position of the laser station may be approximated as

ri (tsat ± 1

2
Δt ki ) ≈ ri (tsat ) ± 1

2
Δt ki · ṙi (tsat ) . (2.7)

Neglecting higher-order terms, the observation equation (2.6) may then be simpli-
fied to

Δt ki = 2

c
|ri (tsat ) − rk(tsat )| , (2.8)

where the inertial positions ri and rk of the laser station i and of the satellite k both
refer to the pulse reflection time tsat at the satellite. The approximation is sufficient
for terrestrial laser ranging up to the altitude of GNSS satellites. For time of flight
measurements to distant targets, e.g., for Lunar LaserRanging (LLR), the observation
equation (2.6) has to be used.

2.2 Orbit Representation

The slant range ρk
i contains the necessary geometric information to perform orbit

determination of the satellites tracked by the respective tracking data. When deter-
mining a LEO orbit from undifferenced GNSS tracking data, the observation equa-
tion (2.5) or their ionosphere-free linear combinations have to be used. The relevant
geometric term reads as

ρk
leo = |rleo(tleo) − rk(tleo − τ k

leo)| , (2.9)

where rleo is the inertial position of the LEO antenna phase center at GPS time tleo,
rk is the inertial position of the antenna phase center of GPS satellite k at GPS time
tleo − τ k

leo, where τ k
leo is the signal traveling time between the two phase centers.

As Earth orbiting satellites are usually extended objects of considerable size, any
of its instruments normally is not located at the satellite’s center of mass. The motion



2 Precise Orbit Determination 41

GPSk

GPS j GPS l

GPSm

r j( )t /c- j
r ( )t

j
k

l

m

Earth

LEO position

GPSk

GPS j GPS l

GPSm

r j( )t /c- j
r ( )t

j
k

l

m

Earth

LEO orbit

GPSk

GPS j GPS l

GPSm

r j( )t /c- j
r ( )t

j
k

l

m

Earth

LEO orbit

Fig. 2.1 Kinematic (left), dynamic (middle), and reduced-dynamic (right) orbit representation

of the phase center position of an onboard GNSS antenna or an SLR reflector in
inertial space thus comprises the satellite’s center of mass motion around the Earth,
and the rotation of the satellite body around its center of mass. The orientation of a
satellite-fixed coordinate system in inertial space is called the attitude of the satellite.
In order to relate the phase center to the center of mass of the LEO spacecraft in
inertial space at time tleo, the location of the antenna phase center position in the
satellite-fixed coordinate system and the attitude of the satellite, e.g., as measured
by onboard star cameras, have to be known. If both are fulfilled, the LEO center
of mass position in Eq. (2.9) may be modeled either by a kinematic, a dynamic, or
a reduced-dynamic orbit. The three orbit types are illustrated by Fig. 2.1 for LEO
orbit determination from GNSS tracking data and are described in more detail in the
following subsections.

2.2.1 Kinematic Orbit Representation

Kinematic orbit determination describes the satellite’s orbital motion by three Carte-
sian coordinates, estimated from the tracking data for each measurement epoch. The
kinematic representation is not limited to satellite orbits, but can be used for all kinds
of moving objects, e.g., cars, ships, aircrafts. The inertial phase center position rleo
of the onboard antenna is related to the satellite’s center of mass by

rleo(tleo) = R(tleo) · rleo,e,0(tleo; x1, y1, z1, ..., xn, yn, zn) + δrleo,ant (tleo) , (2.10)

whereR is the transformationmatrix from theEarth-fixed to the inertial frame, rleo,e,0
is the position vector of the LEO center of mass in the Earth-fixed frame, x1, y1, z1,
..., xn, yn, zn are the epoch-wise kinematic coordinates, and δrleo,ant is the antenna
phase center offset in the inertial frame.

δrleo,ant is assumed to be known, and is obtained in the inertial frame from given
antenna phase center offsets (and variations), and the LEO attitude. The epoch-wise
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kinematic coordinates, either of the center of mass or of the phase center of the
antenna, are the unknown parameters of the orbit determination and often directly
set-up in the Earth-fixed system. Kinematic positions of the antenna phase center
may be estimated from the tracking data without the knowledge of the phase center
offsets δrleo,ant and the satellite attitude, which is not possible for the center of mass.

Figure2.1 (left) shows that a kinematic LEO orbit is a satellite ephemerides pro-
vided at the (discrete)measurement epochs of the onboardGNSS receiver. Kinematic
positions are derived by geometric means only by a precise point positioning (PPP)
approach [167], implying that no position information can be derived for between
measurement epochs. No velocity or acceleration information can be directly derived
from a kinematic trajectory. This is relevant for gravity field determination from
kinematic positions when using the acceleration approach or the energy balance as
discussed in Chaps. 4 and 5. Numerical differentiation schemes are inevitable and a
proper selection of the associated parameters (filter length, filter degree) is crucial,
e.g., [6].

Figure2.2 shows an extract of a 1-s ephemerides of the GOCE kinematic positions
in the SP3 format [122], which provides satellite positions (in km) in the International
Terrestrial Reference Frame [1]. Because kinematic positions are always referring
to the actual measurement epochs (expressed in Fig. 2.2 in GPS time), they cannot
be provided on a completely regular 1 s grid. Also the time tags do not necessar-
ily need to coincide with integer seconds. This is obvious for the GOCE onboard
receivers, for which the internal clocks were not steered to integer seconds. If more
digits are required for the time tags, clock corrections may be provided in the last
column of Fig. 2.2 (expressed in µs) to compute the time tags by subtracting the
clock corrections from the nominal epochs.

Fig. 2.2 Extract of kinematic GOCE positions at begin of 2 Nov, 2009

http://dx.doi.org/10.1007/978-3-319-49941-3_4
http://dx.doi.org/10.1007/978-3-319-49941-3_5
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Kinematic LEO positions are derived without using any information on the LEO
dynamics [151]. Kinematic positions therefore may be used for gravity field determi-
nation as pseudo-observations for both alternative (energy balance approach, accel-
eration approach) and classical gravity field recovery methods (variational equations
approach). Reference [46] used for the first time kinematic CHAMP positions and
demonstrated that gravity field determination is feasible using the energy balance
method [113]. The use of precise kinematic positions stimulated several research
groups working on gravity field recovery in the first decade of the 21st century due
to the less demanding computational resources than in the case of classical numerical
integration techniques, e.g., [149]. For groups using the classical approach, e.g., [11],
kinematic positions are attractive, as well, thanks to a much simplified handling of
the pseudo-observations compared to the original GNSS tracking data.

Kinematic positions are referred to as pseudo-observations, because they are not
original observations but derived from GPS data. Due to the presence of the ambi-
guity parameters in the GPS carrier phase observation equation (2.4), kinematic
positions derived from GPS carrier phase data are furthermore not independent but
correlated. Figure2.3 (left) shows a zoom on 700 epochs of the correlation matrix
of the Earth-fixed z-component of GRACE-B kinematic positions. Off-diagonal ele-
ments are shown over 200 epochs, which corresponds to slightly more than one
revolution period (exactly 100min due to a 30s position sampling). As expected,
the correlations are decreasing on average for increasing epoch differences. Spots
of higher correlations may be recognized, as well, which are related to the satellite
crossings of the Earth’s equator and are thus occurring twice-per-revolution. The bet-
ter tracking geometry in these regions ensures a better connection of the GPS carrier
phase observations (smaller number of interruptions due to multiple ambiguities)
and leads to more correlated kinematic positions. On average the correlations drop
on this example day to 51% after one epoch of 30s, to 40% after twenty epochs, to
26% after forty epochs, and to below 10% after one hundred epochs. During peri-
ods of high correlations, however, values of more than 80% may still be observed
after forty epochs, and even after one hundred epochs correlations may still be as
high as 45%.

Figure2.3 (right) shows for one example day the residuals for distances between
the two GRACE satellites as derived from different GPS-based orbit determina-
tions and biased ranges, which are directly observed by the ultra-precise K-Band
ranging system. The best performance (smallest residuals) is obtained for the solu-
tion ‘PHASE’, where the original GPS carrier phase data are directly used as
observations for a reduced-dynamic orbit determination (see Sect. 2.2.3 for more
details on reduced-dynamic orbit determination). For solution ‘KIN-EPO’, where
the same reduced-dynamic orbit parameters are solved from kinematic positions
used as pseudo-observations with only epoch-wise covariance information taken
into account for the observation weighting in the least-squares adjustment, a signif-
icant degradation is obtained. It is obviously not sufficient to only take into account
an epoch-wise weighting in the least-squares adjustment, because long-period vari-
ations of the kinematic positions are then erroneously fitted by the parameters of the
reduced-dynamic orbit model instead of being interpreted as a pure consequence of
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Fig. 2.3 Extract of correlation matrices of the Earth-fixed z-component of GRACE-B kinematic
positions for one example day (left) and K-band range residuals for distances between reduced-
dynamic GRACE-A and -B orbits stemming from different observation handling (right). Figures
from [70]

the ambiguity-induced correlations in time. For solutions ‘KIN-50’ and ‘KIN-200’,
where covariances over 50 and 200 epochs are taken into account for the observation
weighting, respectively, a considerable improvement of the orbit quality is achieved.
Solution ‘KIN-200’ shows in essence the same quality as the ‘PHASE’ solution. It
has to be emphasized that it is necessary to take into account the rather large number
of 200 off-diagonal blocks to achieve a close equivalence to the ‘PHASE’ solution.

Similar to orbit determination, covariance information from the kinematic posi-
tioning has also to be taken into account to obtain equivalent results for gravity field
recovery as from original GPS carrier phase data [70]. To further exploit kinematic
positions for gravity field recovery, empirically derived covariance information is
sometimes taken into account in addition [163].

2.2.2 Dynamic Orbit Representation

Dynamic orbit determination describes the motion of the satellite’s center of mass
as a particular solution of an equation of motion. As real satellite trajectories are
always particular solutions of an equation of motion, a dynamic orbit representation
is certainly the most natural choice for modeling orbital motion. In dynamic orbit
determination, the phase center of the onboard antenna is related to the satellite’s
center of mass as

rleo(tleo) = rleo,0(tleo; a, e, i,Ω,ω, u0; Q1, ..., Qd) + δrleo,ant (tleo) , (2.11)

where rleo,0 is the LEO center of mass position in the inertial frame, a, e, i,Ω,ω, u0
are six LEO orbital elements, Q1, ..., Qd are additional LEO dynamical orbit para-



2 Precise Orbit Determination 45

meters, and δrleo,ant is the antenna phase center offset with respect to the center of
mass in the inertial frame.

In analogy to Eq. (2.10), δrleo,ant is considered as known. The unknown para-
meters are the LEO initial osculating orbital elements Oj , j = 1, ..., 6, and addi-
tional dynamical orbit parameters Q1, ..., Qd . The latter may be scaling factors of
analytically or numerically known accelerations, e.g., derived from a model of the
Earth’s gravity field, or non-gravitational accelerations as measured by an on-board
accelerometer.

In a dynamic orbit representation the LEO center of mass position rleo,0 is mod-
eled as a particular solution of an equation of motion. Dynamic force models are
used to describe the equation of motion and to propagate the satellite’s center of
mass position and velocity over time by numerical integration techniques. Figure2.1
(middle) shows that a dynamic LEO orbit derived fromGNSS tracking data therefore
provides a satellite ephemerides, which may be evaluated at any epoch within the
orbital arc. By construction, the orbital trajectory is fully dependent on the underly-
ing force models. The equation of motion of an Earth-orbiting satellite including all
perturbations reads

r̈ = −GM
r
r3

+ f p(t, r, ṙ, Q1, ..., Qd)
.= f (2.12)

with the initial conditions

r(t0) = r(a, e, i,Ω,ω, u0; t0) and ṙ(t0) = ṙ(a, e, i,Ω,ω, u0; t0) , (2.13)

where GM is the gravity constant times the mass of the Earth, r the geocentric
position of the satellite in the inertial frame, f p the perturbing acceleration acting
on the satellite in the inertial frame, and f the total acceleration. The acceleration f p
comprises all modeled gravitational and non-gravitational perturbations. The force
models used may explicitly depend on the time t , or implicitly through the position
vector r and the velocity vector ṙ of the satellite, as well as on additional force model
parameters Q1, ..., Qd that need to be adjusted.

At least one set of initial conditions (initial osculating elements) is estimated from
the tracking data in a dynamic orbit determination procedure. Figure2.4 illustrates
the orbit represented by the six initial osculating elements (Keplerian elements) a,
e, i , Ω , ω, and u0 at time t0. The semi-major axis a and the numerical eccentricity
e describe the orbit’s size and shape, the inclination i and the right ascension Ω of
the ascending node describe the orbital plane with respect to the Earth’s equator, the
argument ω of the perigee Π describes the orbit’s orientation, and the argument of
latitude u0 describes the satellite’s position at time t0. These six initial osculating
elements are equivalent to the coordinates of the initial position and velocity vectors
(state vector) at time t0 as indicated by Eq. (2.13). The formulas of the two-body
problem are conventionally used to relate one set of osculating orbital elements to
the state vector and vice versa [7].
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Fig. 2.4 Initial osculating elements a, e, i , Ω , ω, and the argument of latitude u. Figure from [7]

Fig. 2.5 Osculating semi-major axis (top) and right ascension of ascending node of the GOCE
orbit on 2 Nov, 2009

Figure2.5 illustrates the time evolution of the osculating semi-major axis a (top)
and the right ascension Ω (bottom) of the ascending node of the GOCE orbit. The
full force field was used to propagate the GOCE orbit by numerical integration over
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one day and to compute osculating elements from the obtained position and velocity
vectors. The observed variations are mainly due to the oblateness of the Earth [8].
Figure2.5 (top) shows twice-per-revolution periodic variations with an amplitude of
about 10km around a mean semi-major axis of 6632.9km, which corresponds to
a mean GOCE orbital altitude of 254.9km. Apart from small twice-per-revolution
periodic variations, Fig. 2.5 (bottom) shows a pronounced linear drift of ≈ 1◦/day
(360◦/365days). The node advances, because the inclination of the GOCE orbit is
about 96◦ >90◦, which in turn is required to maintain the sun-synchronous GOCE
orbit. Both effects shown in Fig. 2.5 are mainly due to the oblateness of the Earth
and can be explained by solving the Gaussian perturbation equations by first order
perturbation theory, see e.g., [7].

2.2.3 Reduced-Dynamic Orbit Representation

The real-world dynamics of LEO satellites is not known to the precision required
by highly precise tracking data such as GPS or K-band observations. Therefore, the
concept of reduced-dynamic orbit determination has already been introduced sev-
eral decades ago to better exploit precise tracking data such as GPS carrier phase
measurements, [161, 162]. Reduced-dynamic orbits are accomplished by comple-
menting the deterministic orbit model by additional stochastic parameters, which are
adjusted together with the deterministic orbit parameters.

Pseudo-stochastic orbit modeling as presented in this chapter may be considered
as a particular realization of the reduced-dynamic orbit determination technique
and is discussed according to [64]. It makes use of both the geometric strength
of GNSS observations and that satellite trajectories are particular solutions of a
deterministic equation of motion. The attribute ‘pseudo’ distinguishes this method
from stochastic orbit modeling where a satellite trajectory is modeled as a solution of
a stochastic differential equation [73]. Pseudo-stochastic orbit modeling, in contrast,
introduces additional empirical parameters P1, ..., Ps , subsequently referred to as
pseudo-stochastic orbit parameters, to the deterministic equation of motion (2.12),
which then reads as

r̈ = −GM
r
r3

+ f p(t, r, ṙ, Q1, ..., Qd , P1, ..., Ps)
.= f . (2.14)

The attribute ‘stochastic’ arises from the practice to optionally characterize these
additional parameters by a priori known statistical properties like, e.g., expecta-
tion values and a priori weights, which constrain the estimated parameters to user-
specified expectation values.

Figure2.1 (middle, right) shows that a (reduced-) dynamic LEO orbit is a satellite
ephemerides, which may be evaluated at any epoch within the orbital arc. Conse-
quently reduced-dynamic positions can be provided on a regular grid as requested
by the SP3 format and illustrated in Fig. 2.6, which shows an extract of a 10s
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Fig. 2.6 Extract of reduced-dynamic GOCE positions at begin of 2 Nov, 2009

ephemerides ofGOCEreduced-dynamic positions andvelocities (expressed in dm/s).
Opposed to a purely dynamic orbit, the reduced-dynamic solution ismore data-driven
due to the empirical parameters and to a certain extent allowed to follow ‘excur-
sions’ which otherwise are not described by the force models. Consequently, the
highly accurate tracking data may be better fitted and reduced-dynamic approaches
are therefore potentially well suited to compute LEO orbits of highest quality also
in the presence of deficient force models. The empirical parameters may compen-
sate unmodeled non-gravitational forces and even cope with rapidly changing accel-
erations as subsequently illustrated. Depending on the actual parametrization, the
orbital trajectories nevertheless still heavily depend of the underlying force mod-
els. Reduced-dynamic positions are therefore not recommended to, e.g., serve as
pseudo-observations for a subsequent and independent recovery of the Earth’s grav-
ity field [65].

Figure2.7 shows the estimated empirical parameters of a reduced-dynamic orbit
determination of theGOCE satellite in the commissioning phase on 7May, 2009. The
empirical parameters are set up as piecewise constant accelerations over 6 min (see
Sect. 2.3.2.2) and mainly compensate the not explicitly modeled atmospheric drag
experienced by the satellite. The changes in the signature of the estimated along-track
accelerations in the middle of the day are related to the commissioning of the ion
propulsion assembly of the GOCE satellite. Due to the unexpectedly low drag during
the commissioning phase in spring 2009, GOCEwas switched into the science mode
on this day. Two thrust biases of 4mN at maximum and follow-up biases of about
2–2.5mN brought the satellite into the first drag-free flight ever. Figure2.7 (middle)
illustrates that the along-track drag is compensated to a large extent during this first
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Fig. 2.7 Piecewise constant accelerations of a reduced-dynamic GOCE trajectory during the com-
missioning phase. Figure from [68]

drag-free flight. Remaining variations were reduced to a magnitude similar to the
accelerations experienced in the radial direction. However, due to the extremely low
atmospheric density at that time and altitude, a closed-loop drag-free flight was not
yet feasible for a longer period than a couple of days. A next, slightly longer test was
again started 26 May, 2009, at an altitude of about 272.5km, but only after having
reached the final orbital altitude of 259.56km (mean spherical altitude, 254.9km
when referring to the mean semi-major axis), the GOCE satellite was eventually
brought in the closed-loop drag-free flight on 14 September, 2009, e.g., [68].

2.2.4 Orbit Comparison

The characteristics of kinematic and reduced-dynamic orbits may be further illus-
trated by forming differences between them. This is a widely used technique to
internally assess the consistency between the two types of orbits, e.g., [18, 145].
Although the differences do not give direct information about the orbit accuracy,
they are a good indicator for the GPS data quality, e.g., in terms of noise and data
outages, because kinematic positions are particularly sensitive to these issues.

Figure2.8 shows the differences between GOCE kinematic positions and a
reduced-dynamic GOCE ephemerides for a 30h arc in the early phase of the mission
as an example. The differences can only be computed at the discrete epochs of the
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Fig. 2.8 Differences of GOCE kinematic positions with respect to a reduced-dynamic trajectory

kinematic positions, and are then transformed into the radial, along-track and cross-
track directions as derived from the reduced-dynamic trajectory. Figure2.8 shows
that the two GOCE orbits agree on a level of a few centimeters. The scatter in the
differences is due to the kinematic positions, which are derived without any smooth-
ing or constraints between subsequent epochs. The high-frequency position noise is
thus mainly given by the GPS carrier phase noise. It is largest in the radial (‘height’)
direction due to the simultaneous estimation of kinematic positions and receiver
clock corrections at every measurement epoch. The low-frequency variations seen
in Fig. 2.8 may be caused by both types of orbits. Possible reasons are systematic
carrier phase errors, e.g., receiver antenna phase center variations (PCVs), which
are affecting kinematic and reduced-dynamic orbits differently [66], dynamic model
errors whichmay not be fully compensated by the adopted empirical parametrization
of the reduced-dynamic orbit [48], or colored noise of the kinematic positions [70].
The mean offsets between the kinematic and reduced-dynamic orbits are very small,
which is due to the particular parametrization adopted to the reduced-dynamic orbit,
where constant empirical accelerations acting over the entire orbital arc are esti-
mated [66].

It should be emphasized that each additional (empirical) parameter introduced
into the reduced-dynamic orbit determination weakens the solution for the other
(non-empirical) parameters. Thanks to continuously improving models describing
the gravitational, but in particular also the non-gravitational forces acting on LEO
satellites, e.g., due to better descriptions via macro-models or direct measurements
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of the surface forces by onboard accelerometers, purely empirical parameters can be
estimated with tighter constraints (see Sect. 2.3.3) to yield a better dynamic stiffness
of the reduced-dynamic trajectories while still providing high quality orbits [41,
49, 146]. In the case of the GOCE mission, the excellent quality of the onboard
accelerometers even allowed to completely avoid any empirical parameters and to
perform purely dynamic orbit determination on a very good quality level [148].

2.3 Orbit Determination

Kinematic positioning can be used for a wide range of applications because no con-
ditions are imposed on the receiver motion. Kinematic positions are, however, very
sensitive to bad measurements, unfavorable viewing geometry, and data outages.
Kinematic positioning is therefore essentially restricted to LEO orbit determination
based on spaceborne GNSS tracking data, or to GNSS orbit determination using
tracking data of the terrestrial IGS ground network [151]. Dynamic and reduced-
dynamic orbit determination, in contrast, make use of physical models of the satellite
motion. The underlying orbit determination techniques are therefore also applicable
to tracking systems which only sparsely cover an orbital arc with measurements,
e.g., as in case of SLR [138]. In the case of GNSS-based LEO orbit determination
the dynamic and reduced-dynamic approaches allow for some kind of ‘averaging’
the large number of measurements from different epochs, which makes the resulting
position estimates much less prone to bad measurements and data outages. Satellite
trajectories can therefore be reasonably well propagated across data gaps, especially
if good dynamic models are available. This section has the focus on technical aspects
of dynamic and reduced-dynamic orbit determination, introduces the primary equa-
tions, the variational equations, and the parameter estimation methods needed for
the mathematical description of dynamic and reduced-dynamic orbit determination.

2.3.1 Primary Equations

According to Sects. 2.2.2 and 2.2.3 satellite motion is described as a particular solu-
tion of an equation of motion when using a dynamic or reduced-dynamic orbit repre-
sentation. Equations (2.12) and (2.14) are often referred to as the primary equations
of the underlying orbit determination problem. The acceleration f p encompasses
all gravitational and non-gravitational perturbations. Often, the perturbation model
consists of a known part with accelerations given by analytical models, and of a part
which includes force model parameters to be adjusted in the course of orbit deter-
mination. An overview of models typically taken into account for high-precision
dynamic orbit determination is given in [8].
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Fig. 2.9 Subdivision of the
integration interval Ik for
collocation algorithm. Figure
from [7]

2.3.1.1 Numerical Integration

The high accuracy required for precise orbit determination may only be achieved
by using numerical integration methods for the solutions of the primary (and the
variational) equations. A variety of methods exists, among them well known meth-
ods such as Runge-Kutta, multi-step, and extrapolation methods, which have been
successfully applied to orbit determination problems. For a detailed overview, we
refer to original textbooks and articles published on the subject, e.g., [24, 132], or on
textbooks providing overviews and detailed comparisons of methods, e.g., [7, 104].

In this sectionwe give a short overview of the collocationmethods as they are used
in the Bernese GNSS Software [29] for the numerical integration of satellite orbits
[7]. They approximate the initial value problems (2.12) and (2.14) by a polynomial
of degree q, which is substantially higher than the order n = 2 of the underlying
differential equation systems (for q = n the method reduces to the algorithm already
developed by Leonhard Euler in 1768, often referred to as the Euler method). The
polynomial degree q is called the order of the method. Orders up to about 10 to 14
typically make sense in a double precision floating point environment. The interval
subdivision (see Fig. 2.9) and the definition of the initial value problems at the left
interval boundaries are the same as in the Euler method, except that the collocation
method of order q of the previous interval is used to define the new initial values.

The initial value problem referring to the interval Ik , k = 0, ..., N − 1 may be
written as

r̈k = f(t, rk, ṙk) (2.15)

with the initial conditions

rk(tk)
.= rk0 and ṙk(tk)

.= ṙk0 , (2.16)

where the initial values are defined for i = 0, 1 as

r(i)
k0 =

{

r(i)
0 ; k = 0

r(i)
k−1(tk) ; k > 0

. (2.17)

The collocation algorithm of order q approximates the initial value problem (2.15)
in the interval Ik = [tk, tk+1] by a polynomial of degree q as
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rk(t)
.=

q
∑

l=0

1

l! (t − tk)
l r(l)

k0 , (2.18)

where the coefficients r(l)
k0 , l = 0, ..., q are obtained by requesting that the numerical

solution assumes the initial values (2.17) and that the numerical solution solves the
differential equation system at exactly q − 1 different epochs tk j , j = 1, ..., q − 1,
within the interval Ik (see Fig. 2.9 for n = 2).

Whereas the first conditions are automatically met by the definition of Eq. (2.18),
the second conditions are obtained by replacing rk(t) (and its time derivatives) in the
differential equation system (2.15) by Eq. (2.18) for the epochs tk j , which yields

q
∑

l=2

(tk j − tk)l−2

(l − 2)! r(l)
k0 = f(tk j , rk(tk j ), ṙk(tk j )) , j = 1, ..., q − 1 . (2.19)

The above mentioned condition equations are algebraic and in general non-linear in
the unknowns r(l)

k0 , l = 2, ..., q, because they also implicitly show-up on the right-
hand sides of Eq. (2.19), where the terms r(i)

k (tk j ) must be replaced by the right-hand
sides of Eq. (2.18). The number of unknowns is equal to the number of condition
equations. An efficient solution strategy based on an iterative approach may be found
in [7].

Whereas the above mentioned integration technique may be used without any dif-
ficulty to represent orbital arcs withmuch better precision than required by ‘classical’
tracking data such as GPS carrier phase measurements or SLR data, it is not trivial
to generate solutions of the initial value problem (2.15) from which inter-satellite
distances may be derived with an accuracy of about 1µm for arcs as long as one day.
In order to guarantee accuracies of better than 1µm for inter-satellite distances as
requested for K-band inter-satellite ranging, the collocation procedures need to be
modified to represent the initial state vectors associated with the subintervals with
better than double precision when keeping the arclength of one day. For details the
reader is referred to [11].

In view of the prospect that the micrometer-precise K-band ranging instrument
onboard the futureGRACEFollow-Onmissionwill be supplemented by a 50–100nm
precise precise laser interferometer [133], it is clear that future gravity missions rely-
ing on ultra-precise inter-satellite ranging observableswill pose even higher demands
on the numerical integration techniques used to represent the satellite trajectories. A
recent study based on a full-scale closed-loop simulation for a GRACE Follow-On
type pair of satellites using inter-satellite laser ranging underlined that a standard
processing with double precision may indeed be a limiting factor for exploiting the
nm precision of a laser interferometer to its full extent and proposed a scheme with
enhanced precision that uses both double and quadruple precision in different parts
of the processing chain [31].
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2.3.1.2 Orbit Improvement

Let us assume that an a priori orbit r0(t) is available, which is represented by the (a
priori) parameter values P0,i . Such an orbit may be realized, e.g., by a dynamical fit
of LEO positions obtained from a kinematic solution using GPS codemeasurements,
or from an extrapolation of an orbit trajectory covering the previous day. Orbit deter-
mination discussed in this chapter is therefore understood as an orbit improvement
process, where the actual orbit r(t) is expressed as a truncated Taylor series with
respect to the unknown orbit parameters Pi about the a priori orbit as

r(t) = r0(t) +
n

∑

i=1

∂r0
∂Pi

(t) · (Pi − P0,i ) , (2.20)

where n = 6 + d denotes the total number of orbit parameters and ∂r0
∂Pi

(t) describes
the orbital change due to a change in the parameter Pi . Provided that the orbit para-
meter corrections pi = Pi − P0,i , e.g., derived from a least-squares adjustment of
spacecraft tracking data as discussed in Sect. 2.3.3, and the partial derivatives of the
a priori orbit with respect to the orbit parameters are known, Eq. (2.20) allows it
to improve the a priori orbit. The trajectory (2.20) should be called the ‘linearized’
solution of the original (non-linear) orbit determination problem. Alternatively, it is
possible to use the dynamic models together with the improved dynamical parame-
ters to propagate the improved initial state vector by numerical integration. Strictly
speaking, however, the latter approach is not fully consistent to the improved orbit
parameters.

2.3.2 Variational Equations

Knowledge of the partial derivatives of the a priori orbit with respect to the estimated
parameters as a function of time is required for orbit improvement. Let us assume
that Pi is one of the parameters defining the initial conditions or the dynamics in the
equation of motion (2.12), and that the partial derivative of the a priori orbit r0(t)
with respect to this parameter is designated by the function

zPi (t)
.= ∂r0

∂Pi
(t) . (2.21)

The initial value problem associated with the partial derivatives (2.21) is obtained
by taking the partial derivative of the equation of motion (2.12). The result is subse-
quently referred to as the variational equation of parameter Pi , which is obtained by
adopting the ‘chain rule’ and reads as
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z̈Pi = A0 · zPi + A1 · żPi + ∂f p
∂Pi

, (2.22)

with the 3 × 3 (Jacobian) matrices defined by

A0[i;k]
.= ∂ fi

∂r0,k
and A1[i;k]

.= ∂ fi
∂ ṙ0,k

, (2.23)

where fi denotes the component i of the total acceleration f from (2.12) and r0,k
denotes the component k of the geocentric position from (2.12).

For Pi ∈ {a, e, i,Ω,ω, u0} the variational equations (2.22) are a linear, homo-
geneous differential equation system of second order in time with initial values
zPi (t0) �= 0 and żPi (t0) �= 0. For Pi ∈ {Q1, ..., Qd} (2.22) are inhomogeneous, but
have zero initial values because the initial satellite state does not depend on the force
model parameters. It is important that the homogeneous part of (2.22) is the same
for dynamical parameters and for parameters defining the initial conditions, which
allows for an efficient solution process.

2.3.2.1 General Solution

Let us assume that the functions zOj (t), j = 1, ..., 6 are the partial derivatives of the a
priori orbit r0(t)with respect to the six parameters Oj , j = 1, ..., 6 defining the initial
conditions at time t0. The ensemble of these six functions forms one complete system
of solutions of the homogeneous part of the variational equation (2.22), which allows
us to obtain the solution of the inhomogeneous system by the method of ‘variation of
constants’. The solution and its first time derivative may thus be written as a function
of the homogeneous solutions zOj (t) as

z(k)
Pi

(t) =
6

∑

j=1

αOj Pi (t) · z(k)
Oj

(t) ; k = 0, 1 , (2.24)

with the coefficient functions defined by

αPi (t)
.=

∫ t

t0

Z−1(t ′) · hPi (t
′) · dt ′ , (2.25)

where αPi denotes the column array (αO1Pi , ..., αO6Pi )
T , Z denotes the 6 × 6 matrix

defined by Z[1,...,3; j]
.= zOj , Z[4,...,6; j]

.= żOj , and hPi denotes the column array
(0T , ∂fTp/∂Pi )

T .
The solution zPi (t) of the variational equation (2.22) and its first time derivative

may be expressed with the same functions αOj Pi (t) as a linear combination with the
homogeneous solutions zOj (t) and żOj (t), respectively. Due to this representation,
only the six initial value problems associated with the initial conditions have to be
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actually treated as differential equation systems. All variational equations related to
dynamical orbit parameters, however, may be reduced to definite integrals, which
can be efficiently solved numerically, e.g., with a Gaussian quadrature technique [7].

2.3.2.2 Piecewise Constant Accelerations

Let us now develop the mathematical background for estimating m constant accel-
erations Ai in the predetermined direction e(t) for ti−1 ≤ t < ti , i = 1, ...,m. The
contribution of this parameter Pi = Ai to f p in (2.14) is of the form Ai · e(t) for
ti−1 ≤ t < ti . The corresponding variational equation reads as

z̈Ai = A0 · zAi + A1 · żAi +
{

e(t) ; ti−1 ≤ t < ti
0 ; otherwise

. (2.26)

The variational equation (2.26) may be easily solved thanks to the general mathe-
matical properties of variational equations as developed in Sect. 2.3.2.1. Equation
(2.25) reads for the special case of a piecewise constant acceleration as

αAi (t)
.=

∫ t

t0

Z−1(t ′) · hAi (t
′) · dt ′ =

∫ t∗

ti−1

Z−1(t ′) · hAi (t
′) · dt ′ , (2.27)

where the upper integration limit is given by

t∗ .=
⎧

⎨

⎩

ti−1 ; t < ti−1

t ; ti−1 ≤ t < ti
ti ; t ≥ ti

. (2.28)

The solution zAi (t) and its first time derivative for the parameter Ai follow from
(2.24), and may be written as

z(k)
Ai

(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 ; t < ti−1
6

∑

j=1
αOj Ai (t) · z(k)

Oj
(t) ; ti−1 ≤ t < ti

6
∑

j=1
αOj Ai (ti ) · z(k)

Oj
(t) ; t ≥ ti

. (2.29)

Note that zAi (t) is a once (continuously) differentiable function of time for the entire
arc. The non-zero coefficients αOj Ai (t) are constant in time for the case t ≥ ti . This
implies that a change in the parameter Ai does not only affect the orbit in the interval
[ti−1, ti ) where it is active, but it affects all positions (and velocities) for t ≥ ti−1 as
well. For a detailed discussion of an efficient solution strategy, the reader is referred
to [64].
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2.3.2.3 Pulses

Let us brieflymention the special case of instantaneous velocity changes Vi at times ti
in predetermined directions e(ti ), and outline how it fits into the formalism presented
so far. The contribution of this parameter Pi = Vi to f p in (2.14) may formally
be written as Vi · δ(t − ti ) · e(t), where δ(t) represents Dirac’s delta function. The
corresponding variational equation reads as

z̈Vi = A0 · zVi + A1 · żVi + δ(t − ti ) · e(t) . (2.30)

Using the notation from Sect. 2.3.2.1, but identifying hVi with hAi in (2.27), the
definite integral (2.27) may be simplified for t ≥ ti as

αVi (t)
.=

∫ t

t0

δ(t ′ − ti ) · Z−1(t ′) · hVi (t
′) · dt ′ = Z−1(ti ) · hVi (ti )

.= βVi
. (2.31)

Obviously, αOj Vi (t) is zero for t < ti and non-zero but constant for t ≥ ti . Therefore,
the partial derivatives zVi (t) may be written as a linear combination of only the six
partial derivatives zOj (t) of the a priori orbit w.r.t. the parameters defining the initial
conditions at time t0. The parametrization yields a continuous position vector r(t)
but, as opposed to the parametrization from Sect. 2.3.2.2, a discontinuous velocity
vector ṙ(t) of the improved orbit at the pulse epoch ti . This parametrization may be
viewed as a special case of the short-arc representation (see Sect. 2.3.2.5) of the entire
arc, where the individual short-arcs are forced to be continuous at the arc boundaries.

2.3.2.4 Comparison Between Different Empirical Parametrizations

Fig. 2.10 shows a zoom of along-track differences between a 6min pulse-based orbit
with respect to an orbit which is based on 6min piecewise constant accelerations. In

Fig. 2.10 Along-track
differences between a
CHAMP orbit based on
piecewise constant
accelerations and orbits
based on pulses and
piecewise linear
accelerations, respectively.
Figure from [64]
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addition, the differences between an orbit based on 6min piecewise linear acceler-
ations and the orbit based on 6min piecewise constant accelerations is shown. The
scale of Fig. 2.10 indicates that the differences induced by the different kinds of
pseudo-stochastic orbit models are very small, provided that the subinterval length
of the underlying parameters are not too long and that the a priori standard devia-
tions are chosen appropriately. Figure2.10 illustrates that from the point of view of
orbit (position) modeling there is no significant gain to be expected when using more
refined pseudo-stochastic parameters, e.g., piecewise linear accelerations instead of
piecewise constant accelerations. Even the differences between the pulse and the
acceleration solution are very small, although the effect of the instantaneous veloc-
ity changes can be well observed as sharp peaks at the pulse epochs every 6min.
Figure2.10 gives one important reason for selecting piecewise constant accelera-
tions as empirical parameters: they avoid obviously ‘unphysical’ phenomena in the
orbits, but are easier to use than more sophisticated parametrizations such as piece-
wise linear accelerations.

2.3.2.5 Relation to Alternative Parametrizations

The short-arc parametrization represents the solution within each subinterval by a
new set of six initial osculating elements, or, alternatively, by two boundary-value
positions [97]. The resulting trajectory is thus characterized by a discontinuous veloc-
ity vector and a discontinuous position vector as well. It is not only possible to obtain
such a trajectory by splitting the original orbital arc into several short-arcs by setting
up new initial conditions at the beginning of each short-arc, but in the context of
the methods discussed here to solve for one set of initial osculating elements and
for instantaneous velocity changes Vi (see Sect. 2.3.2.3) in conjunction with instan-
taneous position changes Xi at times ti in predetermined directions e(ti ). Using the
notation from Sect. 2.3.2.2, but identifying hXi with (eT (ti ), 0T ), the coefficients of
the partial derivatives zXi (t) may be obtained in close analogy to Sect. 2.3.2.3 by

αXi (t)
.=

∫ t

t0

δ(t ′ − ti ) · Z−1(t ′) · hXi (t
′) · dt ′ = Z−1(ti ) · hXi (ti )

.= βXi
(2.32)

for t ≥ ti .
For the sake of completeness and clarity, the two linear systems of algebraic equa-

tions to be solved for the coefficients αOj Xi (ti ) and αOj Vi (ti ) of the partial derivatives
zXi (t) and zVi (t), respectively, may be explicitly written as
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6
∑

j=1
βOj Xi · zOj (ti ) = e(ti )

6
∑

j=1
βOj Xi · żOj (ti ) = 0

6
∑

j=1
βOj Vi · zOj (ti ) = 0

6
∑

j=1
βOj Vi · żOj (ti ) = e(ti )

, (2.33)

which shows that the parameter Xi is ‘allowed’ to change only the orbital position at
time ti in direction e(ti ), but not the orbital velocity at time ti . The opposite statement
is valid for the parameter Vi .

The advantage of this alternative formulation is that the original arclength remains
formally unchanged, i.e., it is easily possible to solve for deterministic orbit para-
meters still referring to the original arclength. This might matter if the deterministic
orbit parameters are identified with geopotential coefficients. Instead of saving many
(large) normal equation systems referring to the short arclength, a reduced number of
normal equation systems may be generated, e.g., on a daily basis. For a discussion of
further generalizations, e.g., to piecewise once-per-revolution periodic accelerations
as they are also widely used for orbit determination, e.g., in the context of the lunar
gravity mission GRAIL [92], we refer to [64].

2.3.3 Parameter Estimation

Classical least-squares adjustment (batch least-squares adjustment) is the mathemat-
ical method used in this chapter to outline precise orbit determination using precise
satellite tracking data. A short overview of the most important formulas is therefore
provided in the following subsection. We refer to Chap.1 for a detailed introduction
to parameter estimation techniques. For a discussion of other parameter estimation
algorithms in the context of orbit determination, e.g., sequential estimators, we refer
to, e.g., [141].

2.3.3.1 Recapitulation of Least-Squares Adjustment

Let us assume that each observationmay be expressed as a function of the parameters
of a given mathematical model. Based on the model function F, we may write the
system of observation equations in the presence of observation errors as

L′ + ε = F(X) . (2.34)

http://dx.doi.org/10.1007/978-3-319-49941-3_1
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If F is a non-linear function of the parameters, it is linearized by

L′ + ε = F(X0) + A x , (2.35)

with the column arrays L′ of the actual observations, ε of the observation corrections
(or residuals). L̄ = L′ + ε is the array of the adjusted observations, X = X0 + x the
array of the adjusted model parameters, X0 the array of the approximate (or a priori)
model parameters, x the array of the model parameter corrections w.r.t. X0 (solution
vector), and A, which denotes the first design (or Jacobian) matrix. The first design
matrix is defined by

A .= ∂F(X)

∂X

∣

∣

∣

∣

X=X0

(2.36)

Rearranging the linearized observation equations yields

ε = A x − (

L′ − F(X0)
) = A x − l , (2.37)

where the term l .= L′ − F(X0) is often referred to as ‘observed-minus-computed’
(O–C).

The observation errors are characterized by a stochastic model, which in turn is
described by the weight matrix of the observations

P = Qll
−1 = σ 2

0 Cll
−1 , (2.38)

where Qll is the cofactor matrix of the observations, σ0 is the a priori standard
deviation of unit weight, and Cll is the covariance matrix of the observations. Note
that the weight matrix P is diagonal, if the observations are uncorrelated. In this case,
the diagonal elements are given by Pll = σ 2

0 /σ 2
l , where σ 2

l is the a priori variance of
the corresponding observation.

In least-squares adjustment the solution of the observation equations (2.37) is
obtained byminimizing the quadratic form εT P ε. The underlying variation problem
can be solved by Lagrange multipliers, which yield the normal equation system

(

AT P A
)

x − AT P l = N x − b = 0 , (2.39)

where N .= AT P A is the normal equation matrix and b .= AT P l is the right-hand
side of the normal equation system. N is by definition a quadratic and symmetric
matrix. If it is regular, the solution vector follows as

x = (

AT P A
)−1

AT P l = N−1 b , (2.40)

where N−1 is the inverse normal equation matrix. The estimated (a posteriori) stan-
dard deviation of unit weight is computed as
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m0 =
√

εT P ε

f
(2.41)

for f > 0,where f
.= n − u is the degree of freedomof the least-squares adjustment,

n is the number of observations, and u is the number of adjusted model parameters.
Note that the quadratic form (sumof theweighted residual squares)may be computed
either using (2.37), which makes it necessary to evaluate the first design matrix A,
or, alternatively, by the more efficient but numerically less stable formula

εT P ε = lT P l − xT b . (2.42)

The covariance matrix of the adjusted model parameters is given by

Cxx = m2
0 Qxx = m2

0 N−1 , (2.43)

where Qxx is the cofactor matrix of the adjusted model parameters. The (a posteriori)
standard deviations of the adjusted model parameters are given by

mx = √

Cxx = m0

√

Qxx , (2.44)

where Cxx and Qxx are diagonal elements of the covariance and cofactor matrices,
respectively.

Parameter Pre-elimination

The parameter pre-elimination technique is useful to handle a large number of model
parameters efficiently, e.g., epoch-specific receiver clock offsets in case ofGNSSdata
processing. Let us subdivide the system of normal equations (2.39) into two parts

[

N11 N12

N21 N22

]

·
[

x1

x2

]

=
[

b1

b2

]

(2.45)

and assume that we are not interested in the actual values of the solution sub-vector
x2. In this case, wemay reduce the normal equation system (2.45) by pre-eliminating
the model parameters x2, which yields the modified system of normal equations as

N∗
11 x1 = b∗

1 , (2.46)

whereN∗
11 = N11 − N12 N−1

22 N21 is the normal equationmatrix of themodel parame-
ters x1 and b∗

1 = b1 − N12 N−1
22 b2 is the corresponding right-hand side of the normal

equation system. The pre-eliminated model parameters x2 are correctly taken into
account in the normal equation system (2.46) although their estimates are (without
a dedicated back-substitution process) not available. One must be aware, however,
that the parameter pre-elimination step cannot be performed at any arbitrary time;
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it can be performed only if additional observations do no longer contribute directly
to the elements related to the solution sub-vector x2 of the normal equation system
(2.45).

Parameter Constraining

It is common practice to constrain selected model parameters to their a priori val-
ues (‘absolute constraints’) or to other parameters (‘relative constraints’). This may
be done to suppress large excursions of weakly determined model parameters from
their a priori values or from neighboring parameter values. The technique is often
applied to pseudo-stochastic orbit parameters in the context of LEO orbit determi-
nation. One must be aware, however, that a priori information is introduced into the
system of normal equations through this process, which may or may not be desired
for certain applications. Alternatively, parameters may be truly constrained to zero
also in an iterative least-squares adjustment, which requires a transformation of the a
priori parameter values. For an overview of advanced parameter modifications tech-
niques on the normal equation level, we refer to [21]. Here, we just mention absolute
constraining as the simplest and most often applied form of parameter constraining.

Parameter constraints may be introduced by artificial observations with a user-
specified variance σ 2

abs . These observations have to be appended to the system of
observation equations (2.35). If the change with respect to the a priori value is used
as the actual parameter in the artificial observation equation, the weight

W = σ 2
0

σ 2
abs

(2.47)

has to be only added to the corresponding diagonal element of the normal equation
matrix N , because the value O–C is zero in this special case. Observe that the degree
of freedom has to be incremented by 1, as well.

2.3.3.2 Partial Derivatives W.r.t. Orbit Parameters

In order to compute the partial derivatives (2.36) related to the r -th observation and
the orbit parameter Pi it is advantageous to express the elements of the first design
matrix (2.36) with the functions zPi defined by (2.21)

∂Fr (X)

∂Pi
= (∇Fr (X))T · zPi , (2.48)

where Fr denotes the r -th component of the model function F. Its gradient is given
by

(∇Fr (X))T =
(

∂Fr (X)

∂r0,1

∂Fr (X)

∂r0,2

∂Fr (X)

∂r0,3

)

. (2.49)
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Slightly more complicated relations (2.48) result if the observations depend not only
on the geocentric position vector, but also on the velocity vector, or if they refer
to more than one epoch. Equation (2.48) shows that only the gradient depends on
the type of the observations. The functions zPi , however, are independent of the
observation type, which nicely separates the observation-specific (geometric) part
from the dynamic part.

2.3.3.3 Structure of Normal Equations Related to Orbit Parameters

The structure of the orbit-related parts in the normal equation systemmaybe exploited
for setting-up an efficient solution strategy and to highlight the close relation of
pseudo-stochastic orbit modeling techniques with filter strategies. Subsequently we
derive the structure of a simplified orbit determination problemwith initial conditions
and pulses as the only parameters. More complicated scenarios are detailed in [64].

The observation equation (2.37) of observation number r of this orbit determina-
tion problem reads as

εr =
6

∑

k=1

∂Fr
∂Ok

· ok +
i

∑

m=1

3
∑

j=1

∂Fr
∂Vm, j

· vm, j − lr , (2.50)

where ok , k = 1, ..., 6 and vi, j , j = 1, ..., 3 denote the corrections to the six initial
conditions and the three pulses at each epoch ti , i = 1, ..., n − 1, respectively; it is
assumed that the observation time tl is part of the subinterval [ti , ti+1). The relations
(2.48) and (2.24) with the constant coefficients βOkVm, j for pulses yield

∂Fr
∂Vm, j

= (∇Fr )
T · zVm, j = (∇Fr )

T ·
6

∑

k=1

βOkVm, j · zOk (t) , (2.51)

which is why the observation equation (2.50) can be rearranged as follows:

εr =
6

∑

k=1

(∇Fr )
T · zOk ·

⎛

⎝ok +
i

∑

m=1

3
∑

j=1

βOkVm, j · vm, j

⎞

⎠ − lr . (2.52)

The term in parentheses has an importantmeaning. It does not represent the ‘initially’
solved for correction to the osculating element Ok at t0, which would fully charac-
terize the solution of this particular orbit determination problem in the subinterval
[t0, t1). Because a change in the initial osculating element Ok induced by a change
in the pulse Vi, j can be computed as

ΔOk = ∂Ok

∂Vi, j
· ΔVi, j = βOkVi, j · ΔVi, j , (2.53)
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the term in in Eq. (2.52) represents the correction oi,k to a different initial oscu-
lating element Oi,k at t0 which fully characterizes the solution in the subinterval
[ti , ti+1) after the occurrence of the first 3 i pulses. Equation (2.52) illustrates that
orbit determination based on pulses may also be understood as a special case of the
short-arc parametrization from Sect. 2.3.2.5 when asking for continuity at the short-
arc boundaries. The properties of the newly defined osculating elements Oi,k at t0
will be exploited in Sect. 2.3.3.4. As the pulse epochs divide the orbital arc into n
subintervals, it is advisable to write all noi observation equations of the subinterval
Ii = [ti , ti+1) in a matrix notation

εi = Ai o + Ai

i
∑

m=1

Bm vm − li , (2.54)

with the column arrays εi of the residuals of subinterval Ii , li of the terms O–C of
subinterval Ii , o of the corrections to the initial osculating elements, and vi of the
pulse corrections at epoch ti . The matrix Ai denotes the noi × 6 first design matrix
of the subinterval Ii related to the six initial osculating elements and Bm denotes the
6 × 3 coefficient matrix defined by Bm[k; j]

.= βOkVm, j .
Taking the observation equations of all subintervals Ii , i = 0, ..., n − 1 into

account, the complete system of normal equations (2.39) reads in the above matrix
notation as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N
n−1
∑

i=1
Ni B1 · · ·

n−1
∑

i=n−1
Ni Bn−1

. BT
1

n−1
∑

i=1
Ni B1 · · · BT

1

n−1
∑

i=n−1
Ni Bn−1

. .
. . .

...

. . . BT
n−1

n−1
∑

i=n−1
Ni Bn−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎣

o
v1
...

vn−1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

AT P l

BT
1

n−1
∑

i=1
AT

i Pi li

...

BT
n−1

n−1
∑

i=n−1
AT

i Pi li

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(2.55)
where Ni

.= AT
i Pi Ai is the part associated with the observation interval Ii of the

normal equation matrix related to the six initial osculating elements. In analogy,
AT

i Pi li is the contribution of the same subinterval to the right-hand side of the normal
equation system related to the six initial osculating elements. The abbreviations

N =
n−1
∑

i=0

AT
i Pi Ai and AT P l =

n−1
∑

i=0

AT
i Pi li (2.56)

are the normal equation matrix and the right-hand side of the normal equation system
of the deterministic problem without any pulses, respectively. Obviously, the contri-
butions Ni and AT

i Pi li , i = 0, ..., n − 1 do not only form the complete system of
normal equations for dynamic POD according to Eq. (2.56), they are together with
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the matrices Bi also the building blocks of the complete system of normal equations
(2.55) for reduced-dynamic POD based on pulses.

Equation (2.55) shows that the normal equation matrix has a simple structure.
Unfortunately, it is not possible to apply the parameter pre-elimination technique
(see Sect. 2.3.3.1) to any of the pseudo-stochastic parameters before the very last
observation is incorporated into the system of normal equations. This can be seen
from the upper summation limits in (2.55), which all include all subintervals up to
the very last one. An efficient solution strategy, which is closely related to filter
algorithms, may, however, be found and will be outlined in the next section.

2.3.3.4 Relation to Filter Solutions

Equation (2.52) implicitly introduced the transformation

oi
.= o +

i
∑

m=1

Bm vm (2.57)

between the ‘initially’ solved for corrections o to the a priori values of the initial
osculating elements O at t0 (subsequently denoted as o0) and the corrections oi to
the a priori values of the initial osculating elements Oi at t0 which define the solution
in the subinterval [ti , ti+1). For the following deliberations, it is convenient to define
the transformation (2.57) recursively, and in reverse order as

o0
.= o ; i = 0

oi−1
.= oi − Bi vi = (I6 −Bi ) ·

[

oi

vi

]

; i ≥ 1
, (2.58)

where I6 denotes the identity matrix of dimension 6.
First, we consider the system of normal equations in the presence of initial con-

ditions and pulses in its initial stages during the collection of the GPS observations.
Let us assume that we already have incorporated all observations for times tl ≤ ti
and that the system may be written in a reduced form as

Ni−1 oi−1 = bi−1 . (2.59)

The normal equationmatrixNi−1 and the right-hand side bi−1 of the normal equation
system (2.59)may be computed from the contributions to the normal equation system
of the deterministic problem for the observation times tl ≤ ti , i.e., from Nl and bl ,
l = 0, ..., i − 1, as
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N0
.= N0

b0
.= b0

Ni−1
.= N

∗
i−2 + Ni−1

bi−1
.= b

∗
i−2 + bi−1

;

;

i = 1

i ≥ 2

(2.60)

with N
∗
i−2 and b

∗
i−2 to be defined later by (2.63).

The normal equation system (2.59) may be expanded into a system in the
unknowns oi and vi by replacing oi−1 on the left-hand side with the transforma-
tion (2.58), and by multiplying both sides of the normal equation system (2.59) from
the left with the matrix (I6 − Bi )

T :

[

Ni−1 −Ni−1 Bi

−BT
i Ni−1 BT

i Ni−1 Bi

]

·
[

oi

vi

]

=
[

bi−1

−BT
i bi−1

]

. (2.61)

The system (2.61) is the key to a most efficient solution of the orbit determination
problem. According to the observation equation (2.52), the observations contained
in the subintervals Ii , Ii+1, ..., In−1 do not depend on the terms vi explicitly as their
influence is already taken into account by the osculating elementsoi . It is thus possible
to apply the parameter pre-elimination technique (see Sect. 2.3.3.1) to the pseudo-
stochastic parameters. The normal equation system reads after the pre-elimination
as

N
∗
i−1 oi = b

∗
i−1 (2.62)

with
N

∗
i−1

.= Ni−1 − Ni−1 Bi
(

BT
i Ni−1 Bi

)−1
BT
i Ni−1

b
∗
i−1

.= bi−1 − Ni−1 Bi
(

BT
i Ni−1 Bi

)−1
BT
i bi−1

. (2.63)

A priori weights of the pseudo-stochastic parameters (see Sect. 2.3.3.1), e.g., in the
form of absolute constraints given by an identical weight matrix

W = σ 2
0 Cvv

−1 (2.64)

for all pulse epochs, have to be added prior to the pre-elimination to the sub-matrix
BT
i Ni−1 Bi of the normal equation matrix in (2.61).
The procedure outlined by the Eqs. (2.59), (2.61), (2.62), and (2.60) has to be

repeated until the very last observation of the subinterval In−1 is incorporated into
the reduced normal equation system. After completion of data collection, we may
solve for the initial osculating element corrections on−1 of the last subinterval In−1

by

on−1 = N
−1
n−1 bn−1 = Qon−1on−1 bn−1 , (2.65)

where Qon−1on−1 is the cofactor matrix of the solved for corrections on−1. Details of
the algorithm, including the back-substitution process, are available in [64].
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Fig. 2.11 Along-track orbit
differences between filter
and least-squares
reduced-dynamic solutions
for CHAMP. Figure from
[64]
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The solution (2.65) shows that in principle there is no need to compute the ‘inter-
mediary’ corrections oi−1, i = 1, ..., n − 1 during data collection. They would actu-
ally represent the filter solutions based on all observations of the interval [t0, ti ) and
could be easily made available. It must be mentioned, however, that our definition
of a ‘filter’ solution differs slightly from the usual terminology in the literature: it
represents the least-squares solution of the considered orbit determination problem
based on all observations from the very first epoch to the actually processed epoch.
This implies that the orbit trajectory is still represented by pseudo-stochastic para-
meters, e.g., set up every n-th minute. A new filter solution is thus provided only
every n-th minute as well, and not after each newly incorporated observation epoch.
Only in the special case of pseudo-stochastic parameters set up at the observation
sampling rate, the above algorithmwill provide the same solutions as ‘classical’ filter
solutions, where stochastic parameters are set up at every measurement epoch and
the confidence in the dynamical modeling is controlled by process noise [105].

Figure2.11 shows the along-track orbit differences between the least-squares solu-
tion for an orbit determination based on piecewise constant accelerations estimated
over 15min and different filter solutions. The filter trajectories were computed when-
ever a batch of 15min of data had been collected, whereas the least-squares solu-
tion (last filter solution) was computed after data collection in the back-substitution
process. It can be seen that large differences occur for the first 15min which may be
attributed to a weak determination of the orbit parameters from 15min data only (fil-
ter initialization). The consistency between the individual filter solutions and the final
least-squares solutions dramatically improves if longer data batches are processed,
e.g., sub-millimeter differences at the beginning of the orbital arc are reached for a
batch of 8h. Figure2.11 also shows, however, that the orbit solution is not very well
constrained by the tracking data at the boundaries of the processed time span, which
can be seen in this experiment at the right-ends of the individual filter solutions. The
orbit consistency may be severely degraded by several centimeters. For this reason
longer arcs are often processed than actually needed. When generating the GOCE
precise science orbits in the frame of the GOCE High-level processing facility, 30h
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arcs of GPS carrier phase data were analyzed each day for orbit determination to
minimize a degraded orbit quality at the boundaries of the central 24h provided to
the user community [16].

2.3.4 Quality of GPS-Based LEO Orbit Determination

A large number of LEO satellites with stringent accuracy requirements on orbit
determination were equipped with high-quality dual-frequency GPS receivers in the
last two decades. Examples are the altimetry satellites TOPEX/Poseidon, Jason-1
and -2 [44, 91, 101], the gravity missions CHAMP, GRACE, and GOCE [37, 121,
142], the Synthetic Aperture Radar (SAR) satellites TerraSAR-X and TanDEM-X
[24, 88], the magnetic field mission Swarm [43], and the currently launched Sentinel
satellites serving various purposes of Earth observation. For all these missions high-
quality orbit solutions were/are generated by many research teams. Selected results
and the associated publications are highlighted in the subsequent sections. For an
overview of methodologies for orbit determination based on single-frequency GPS
data, we refer to, e.g., [14].

The core products from the IGS [36], such as highly accurate GPS ephemerides,
Earth rotation parameters, and GPS satellite clock corrections, are the backbone for
precise orbit determination of LEO satellites. Especially GPS satellite clock cor-
rections are indispensable for precise orbit determination when using undifferenced
GPS data. Alternatively, double differences may be formed between two space-
borne receivers of formation flying satellites, or between a spaceborne and terrestrial
receivers of the IGS ground tracking network to allow for a relative positioning of
the LEO satellites [64]. Subsequently, however, we highlight results from GRACE
and GOCE orbit determination which are based on undifferenced GPS data and the
orbit and clock products from the Center for Orbit Determination in Europe (CODE),
one of the global analysis centers of the IGS [28]. In view of the available sampling
rates of usually 0.1–1Hz of the GPS observations from spaceborne receivers, high-
rate clock corrections are of crucial importance to avoid the interpolation errors of
GPS satellite clock corrections over long intervals and to guarantee the best possible
results for orbit determination [15].

2.3.4.1 SLR Validation

For LEO satellites equipped with a laser retro reflector array, independent SLR
measurements collected by the tracking network of the International Laser Ranging
Service (ILRS, [114]) may be used to compare the observed SLR ranges to the
satellites with the computed ranges derived from the GPS-based reduced-dynamic
or kinematic ephemerides. This allows for an absolute validation of the line-of-sight
directions between the SLR tracking stations and the LEO satellites, i.e., it allows
to directly assess the one-dimensional orbit accuracies in these directions. For high
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Fig. 2.12 SLR validation of reduced-dynamic (top) and kinematic (bottom) GOCE precise science
orbits. Figure from [18]

elevation passes the line-of-sight direction mainly corresponds to the radial direction
of the co-rotating orbital frame. SLR data collected at low elevations, however, may
also be used to recover along-track and cross-track orbital errors if the satellites are
orbiting the Earth at sufficiently low altitudes. This became obvious for the extremely
low orbital altitude of theGOCE satellite, where systematic orbital shifts in the cross-
track direction, caused by unmodeled GPS antenna phase center variations, could
be directly confirmed by SLR [17, 68]. Recently, systematic cross-track biases were
quantified fromSLRresiduals data as a functionof high-fidelity dynamicorbitmodels
used for the TerraSAR-X satellite orbiting the Earth at a higher orbital altitude [48].
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Figure2.12 shows the SLR residuals of the reduced-dynamic and the kinematic
orbits of the GOCE precise science orbits over the entire mission [18]. In order not
to deteriorate the validation by single outliers, SLR residuals larger than 20cm are
excluded. The overall SLR RMS error of the reduced-dynamic orbits is 1.84cm and
impressively shows the quality of pseudo-stochastic orbit modeling techniques. A
slightly worse but still excellent validation is obtained for the kinematic orbits with
2.42cm. This is expected, because kinematic orbits are more sensitive to GPS data
problems.Due to the large number of 12 channels of theGOCEonboardGPS receiver,
the quality of the kinematic positions is outstanding. Current LEO satellites such as
those from the Swarm mission, which are all equipped with 8-channel receivers, do
not allow to generate kinematic orbits of the same quality [72]. Figure2.12 shows,
however, that the accuracy of both types of GOCE orbits is degrading towards the
end of the mission. This is unexpected and was found to be related to problems in
the GOCE GPS data [18, 71].

2.3.4.2 K-Band Validation

For the GRACE twin satellites which are following each other on the same orbit
in a distance of about 200km, an additional independent validation of the orbit
quality may be performed. K-band measurements may be used to compare the orbit-
derived distances between the twoGRACE satelliteswith the biased rangeswhich are
directly observed by the ultra-precise K-band ranging system [36]. Figure2.13 (left)
shows the daily K-band range standard deviation obtained from distances computed
every 5 s between reduced-dynamic GRACE-A and -B orbit positions derived from
zero-difference or double-difference GPS carrier phase data with empirical receiver
antenna phase center variations (PCVs) taken into account or not. Figure2.13 (left)
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shows that the relative orbit precision of GRACE reduced-dynamic orbit determina-
tion is about 1cm when using zero-difference GPS carrier phase observations and
about 1mmwhen using double-differenceGPS carrier phase observationswith ambi-
guities fixed to their integer values [64]. In both cases the reduction of systematic
carrier phase measurement errors, e.g., by empirical modeling of antenna phase cen-
ter variations, is of crucial relevance to derive trajectories of highest quality [66]. The
same statement holds for kinematic orbits, which are particularly sensitive to sys-
tematic carrier phase errors. Figure2.13 (right) shows that unmodeled receiver PCVs
may even propagate into gravity field solutions derived from kinematicGRACEposi-
tions in the frame of a generalized orbit determination problem (see next section).
Further systematic carrier phase errors were identified in the frame of the GOCE
and the Swarm missions and suspected to be related to the modeling of higher order
ionosphere correction terms [18, 145]. They propagate via orbits into the gravity
field estimation, as well [71, 72].

2.3.5 Generalized Orbit Determination

Based on a given a priori orbit r0(t) orbit improvement as introduced in Sect. 2.3.1.2
may be generalized by including a variety of different types of other than just arc-
specific orbit parameters. Gravity field recovery may in particular be understood
and treated as a generalized orbit improvement problem relying on the analysis of
a large number of orbital arcs. In analogy to Sect. 2.3.1.2 the actual orbit r(t) of an
involved satellite may be expressed for each orbital arc as a truncated Taylor series
with respect to the unknown orbit parameters Oi (arc-specific parameters) and, e.g.,
the unknown coefficients of the Earth’s gravity field Qi (global parameters) about
the a priori orbit, which is represented by the a priori parameter values O0i and Q0i :

r(t) = r0(t) +
nO
∑

i=1

∂r0(t)
∂Oi

· oi +
d

∑

i=1

∂r0(t)
∂Qi

· qi , (2.66)

where oi
.= Oi − O0,i denote the nO corrections to be estimated for the arc-specific

orbit parameters and qi
.= Qi − Q0,i the d corrections to the global coefficients of

the Earth’s gravity field.
Analogously, gravity field recovery from inter-satellite measurements, e.g., from

K-band ranging between the two GRACE satellites, may be understood and treated
as a generalized differential orbit improvement process, as well. The actual orbit
difference ra(t) − rb(t) may be expressed as a truncated Taylor series with respect
to the unknown parameters about the a priori orbit difference. The distinction needs
to be made between naO parameters Oai and nbO parameters Obi , which are specific
to the orbital arcs of GRACE-A and -B, respectively, and d global parameters Qi ,
which are common to both GRACE satellites such as the coefficients of the Earth’s
gravity field. The truncated Taylor series then reads as
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ra(t) − rb(t) = ra0(t) − rb0(t)

+
naO
∑

i=1

∂ra0(t)
∂Oai

· oai
−

nbO
∑

i=1

∂rb0(t)
∂Obi

· obi

+
d
∑

i=1

(

∂ra0(t)
∂Qi

− ∂rb0(t)
∂Qi

)

· qi

. (2.67)

The partial derivatives in Eqs. (2.66) and (2.67) are obtained by solving the corre-
sponding variational equations as outlined in Sect. 2.3.2.1. Note that Eqs. (2.24) and
(2.25) from Sect. 2.3.2.1 are valid for any orbit parameters, in particular for gravity
field coefficients. The solution of the variational equations corresponding to gravity
field parameters is thus reduced to numerical quadrature.

In order to set-up the observation equations, the partial derivatives of the a priori
orbits need to be related to the observables, e.g., according to Sect. 2.3.3.2 for GPS
data or by projecting the respective terms in Eq. (2.67) to the line-of-sight between
GRACE-A and -B in the case of K-Band biased range observations. Special care is
needed to not lose numerical precision related to orbit parameters in case of ultra-
precise biased range observations and the resulting, very similar partials for the close
formation of both satellites. The problem can be substantiallymitigated by transform-
ing the original orbital parameters of both satellites to the sum and the differences
of the original orbital parameters [11]. In case of GPS data or kinematic positions
used as pseudo-observations for a satellite trajectory, the observation equations may
be written in matrix notation as

ε = Ao o + Aq q − l , (2.68)

where o contains all parameters defining the initial conditions, all satellite- and arc-
specific dynamic parameters, and all pseudo-stochastic parameters, q contains all
common dynamic parameters such as the gravity field coefficients, and Ao and Aq

are the first designmatrices corresponding to the parameter arrays o andq. According
to Eq. (2.39) the system of normal equations reads as

[

Noo Noq

NT
oq Nqq

]

·
[

o
q

]

=
[

bo

bq

]

(2.69)

with Noo = AT
o P Ao, Noq = AT

o P Aq , Nqq = AT
q P Aq , and bo = AT

o P l, bq =
AT

q P l. Similar NEQs may be also set-up for other observables such as K-Band,
where orbital parameters of both satellites have to be included, however, in o. The
underlying normal equation matrices are therefore singular when trying to solve
them from K-band data alone without the normal equation contributions from GPS.
The normal equation contributions stemming from each observable may be super-
imposed for each orbital arc by adopting measurement-specific weight factors, see
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[10, 11]. Furthermore, the arc-specific parameters can be pre-eliminated according
to Eq. (2.46), which yields the reduced system

(Nqq − NT
oq N−1

oo Noq) q = bq − NT
oq (N−1

oo bo) (2.70)

The dimension of the resulting normal equation system is reduced by the number of
arc-specific parameters o, while the impact of these parameters is correctly taken into
account when solving for the gravity field coefficients. To solve for these coefficients
up to the desired resolution, normal equation systems stemming from a large number
of arcs have to be accumulated to achieve the needed spatial coverage before the
corrections to the a priori parameter values can be obtained by inversion of the
accumulated normal equation system according to Eq. (2.40).

2.3.5.1 Gravity Field Determination from Kinematic Positions

Figure2.14 shows the typical performance of static gravity field recoveries derived
from different sets of kinematic positions of LEO satellites used as pseudo-
observations to solve a generalized orbit determination problem as outlined above.
Shown are square-roots of the degree difference variances of the GPS-only gravity
field recoveries with respect to superior gravity field models based on dedicatedmea-
surements such as GRACE K-Band and GOCE gradiometer observations [98, 99].
The GPS-only solutions shown in Fig. 2.14 (left) are all based on different amounts
of data. Only the solutions based on GOCE and GRACE-B kinematic positions are
based on a rather similar time span such that a comparable quality may be expected
for the low degree SH coefficients. For the determination of the higher degree coeffi-
cients, however, GOCEGPS data is significantly better suited thanGRACEGPS data
due to the lower orbital altitude, which is reflected by the smallest slope in Fig. 2.14
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(left). The CHAMP solution is based on a significantly larger amount of data and
therefore superior to the other solutions. Figure2.14 (right) shows more recent and
better comparable recoveries based on one year of GRACE-A and -B and Swarm-A
and -Ckinematic positions, respectively.Again Swarm is equallywell suited to derive
the long wavelength part of the Earth’s gravity field as it is possible from GRACE
GPS data. This is of relevance to bridge a potential gap between the GRACEmission
and the GRACE Follow-On mission to continue the monitoring of the (long wave-
length part) of the Earth’s time-variable gravity field [40]. Encouraging results based
on CHAMP, GRACE, GOCE, and Swarm GPS data have been reported by [71, 72,
158, 163]. For degrees above 20 in Fig. 2.14 (right), however, the GRACE solution
outperforms the Swarm solution. This is only to a minor extent related to the higher
orbital altitude of the Swarm satellites, as indicated by only a slightly larger slope
of the Swarm formal errors, but mostly related to a more problematic quality of the
Swarm GPS data [72].

2.3.5.2 Separation of Orbit and Gravity Field Determination

For didactic reasons we abandon in this section the processing scheme described
in the previous section and fix the arc-specific parameters to previously determined
values, while estimating the corrections to the gravity field parameters. This may
be done by explicitly solving for the arc-specific parameters using the a priori force
model and by consequently deleting them from theNEQ-system, instead of following
the implicit and correct solution described by Eq. (2.70). This procedure implies that
the sub-system

Noo o′ = bo (2.71)

is solved independently from the remaining parts of Eq. (2.69) and that the parameters
o′ are introduced in the following gravity recovery step as known. The remaining
normal equation system

Nqq q′ = bq − NT
oq o′ = bg − NT

oq (N−1
oo bo) (2.72)

inevitably leads to solutions q′ for the gravity model parameters different from the
solutions q in Eq. (2.70). In the case of a separate solution of orbit and gravity
field coefficients the orbit parameters o′ fully depend on the a priori gravity model
and the correlations between orbit and gravity field parameters are ignored. As a
consequence the estimated gravity field parameters q′ are biased, as well, towards
the a priori gravity field. For details concerning the consequences of this approach,
we refer to [103], where the impact on gravity field recovery is studied and where
it is shown that the conditions Noq q = 0 used to separate orbit and gravity field
determination (compare Eqs. (2.70) and (2.72)) are actually equivalent to a special
regularization imposed on the gravity field coefficients resulting in recoveries biased
towards the a priori gravity field.
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2.3.5.3 Relation to the Acceleration Approach

Let us assume that the second derivatives of the position vector have been observed (in
practice derived by numerical differentiation from kinematic positions). The obser-
vation equations for the accelerations referring to one particular epoch tr follow from
Eq. (2.68) by identifying the observations with kinematic positions and by taking the
second time derivative as

εr =
n0

∑

k=1

∂ r̈(tr )
∂Ok

· ok +
d

∑

k=1

∂ r̈(tr )
∂Qk

· qk − Δr̈r , (2.73)

where Δr̈r represents the observed minus the computed acceleration. The partial
derivatives in the second sum may be replaced by the right-hand sides of the varia-
tional equations (2.22) as

∂ r̈(tr )
∂Qk

= ∂f(tr )
∂r(tr )

· ∂r(tr )
∂Qk

+ ∂f(tr )
∂ ṙ(tr )

· ∂ ṙ(tr )
∂Qk

+ ∂f(tr )
∂Qk

, (2.74)

where usewasmade of Eq. (2.23). The observation equations used in the acceleration
approach, e.g., [6], simply read as

εr =
d

∑

k=1

∂f(tr )
∂Qk

· qk − Δr̈r . (2.75)

From the point of view of orbit determination this implies that the following approx-
imation was made:

n0
∑

k=1

∂ r̈(tr )
∂Ok

· ok +
d

∑

k=1

(

∂f(tr )
∂r(tr )

· ∂r(tr )
∂Qk

+ ∂f(tr )
∂ ṙ(tr )

· ∂ ṙ(tr )
∂Qk

)

= 0 . (2.76)

The acceleration method thus assumes that the changes in the second derivatives of
the orbit caused by the estimated gravity field parameters qk are counterbalanced by
changes of the second derivatives of the orbit due to the changes in the arc-specific
parameters ok . The assumption is obviously met if the a priori orbit used to compute
Δr̈r in the acceleration approach equals the estimated a posteriori orbit resulting from
classical orbit determination. If this is not the case, the assumption cannot be met
precisely. For further discussions and comparisons of the outlined orbit determination
strategies with other approaches such as the short-arc approach, the reader is referred
to [11].
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2.4 Exercises

Data and files needed for the following exercises are available online at:
http://aiuws.unibe.ch/WEHeraeusAS2015/Chapter2-OrbitDetermination.zip

1: Orbit determination using a least-squares solution and a filter solution

In this exercise a true orbit in the two-body problem is used, from which a num-
ber of pseudo-observations is created. Your main task is then to perform an orbit
determination using a conventional least-squares solution and a filter solution. You
will perform the task by completing the MATLAB skeleton file ex1.m. In this file,
incomplete lines are commented out (by the character %) and marked with ‘TO BE
COMPLETED’. The following MATLAB functions are available and can be used:

• [x v] = ephem(GM,ele,tOsc,t): This function takes the gravity con-
stant GM, a 6-element array ele containing the six Keplerian orbital elements,

– ele(1): semi-major axis, a
– ele(2): numerical eccentricity, e
– ele(3): inclination, i
– ele(4): right ascension of ascending node, Ω
– ele(5): argument of perigee, ω
– ele(6): argument of latitude at osculating epoch, u0,

the osculating epoch tOsc (set to zero in all exercises), and an arbitrary epoch t.
It returns the vectors x and v, which contain the position and the velocity of the
satellite (in the geocentric inertial frame) at epoch t. The formulas of the two-body
problem are used for the orbit propagation.

• ele = xyzele(GM,x,v,tOsc,t): This function is the inverse of the func-
tionephem, i.e., it takesGM, an osculating epochtOsc (set to zero in all exercises),
an epoch t and the vectors x and v, containing position and velocity of the satellite
at epoch t, and returns the array ele with the above six orbital elements.

• [drdele dvdele] = rvpder(ini,GM,t,tOsc,ele): This function
computes the partial derivatives of positions and velocities of a Keplerian orbit
w.r.t. the Keplerian elements. It takes GM, the epoch t at which the partials shall
be computed, the osculating epoch tOsc (set to zero in all exercises) and the
Keplerian elements ele. The first argument ini is set to 1 in order to initialize
the computation (on first call). The function returns the 3 × 6 matrices drdele
and dvdele which contain the partial derivatives.

At the beginning of the MATLAB skeleton file ex1.m the six Keplerian elements
of an orbit of a two-body problem are defined (osculating epoch is 0):

• a = 6800km
• e = 0.05
• i = 89◦
• Ω = 130◦

http://aiuws.unibe.ch/WEHeraeusAS2015/Chapter2-OrbitDetermination.zip


2 Precise Orbit Determination 77

• ω = 30◦
• u0 = 30◦

These elements define the true orbit which shall be determined during this exercise.
Using the function ephem, every 30s the position vector of the satellite is computed
(for a full day). A normally distributed noise is added to the positions, which are then
stored in the matrix psdObs (rows: components, columns: epochs). These positions
serve as pseudo-observations for the following orbit determination.

(a) For a first crude initial orbit determination, take the first nObsIni = 10
observations of the day and fit a polynomial of degree polDeg = 4 through
each component separately by using the MATLAB command polyfit.1 Use
t − tAvg as time argument of the polynomials, where tAvg is the center of the
initial observation period. Use these polynomials to compute the position and
velocity vector of the satellite at time tAvg . Use the function xyzele to find the
corresponding orbital elements from these vectors. What are their values? These
elements shall serve as a priori orbital elements for the orbit determination.2

(b) Compute and plot the differences of the a priori orbit (obtained from the a priori
orbital elements computed in exercise 1a and the true orbit for all epochs of
the day in the geocentric (x,y,z) and in the local orbital (radial R, along-track S,
cross-track C) frame. In which component is the difference largest? Why?

(c) Performaconventional least-squares solutionof the orbit determinationproblem,
i.e., solve for the six orbital elements. Use the pseudo-observations in psdObs
with equal weighting and introduce the orbital elements computed in exercise
1a as a priori values. Perform the following steps:

• Loop over all epochs. For each epoch:
– Compute the satellite position using the function ephem and the a priori
orbital elements.

– Compute the ‘observed minus computed’ term.
– Compute the first design matrix using the function rvpder.
– Accumulate the normal equation system.

• Solve the normal equation system3 and compute the a posteriori standard
deviation of unit weight.

• Update the orbital elements.
What are the values of the updated orbital elements?

1Usage: p = polyfit(x,y,n), where p are the coefficients of a polynomial p(x) of degree n,
that is a best fit (in a least-squares sense) for the data in y. The coefficients in p are in descending
powers, and the length of the array p is n + 1.
2Please notice that this way of initial orbit determination is not what is usually done; there are much
more elaborate approaches which lead to more accurate initial orbits.
3You can solve the normal equation system by inverting the normal equation matrix (using the
MATLAB command inv) and multiplying by the right hand side of the normal equation sys-
tem. However, a faster and more robust way to solve a linear system is by using the command
mldivide (matrix left division): x = mldivide(A,b) solves the linear system A*x = b.
The abbreviation for mldivide is the backslash operator: x = A\b.
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(d) Compute the residuals in two ways:

• Consider the linearized problem of the least-squares adjustment and calculate
the residuals as they appear in the linearized observation equations.

• Take the updated orbital elements and propagate the orbit using the function
ephem. For each epoch compute the differences between the propagated orbit
and the observations.

Plot the z-component of the two kinds of residuals. Why are they different?
(e) Perform a filter solution of the orbit determination problem using the recursive

filter formulas (see the online data) for the inverted normal equations. Use the
pseudo-observations in psdObs with equal weighting and introduce the orbital
elements computed in exercise 1a as a priori values. Perform the following steps:

• Loop over the first two epochs and initialize the filter:
– Compute the satellite position using the function ephem and the a priori
orbital elements.

– Compute the ‘observed minus computed’ term.
– Compute the first design matrix using the function rvpder.
– Accumulate the normal equation system.

• Solve the normal equation system of the initialization.
• Loop over the remaining epochs and perform the filter steps:
– Compute the satellite position using the function ephem and the a priori
orbital elements.

– Compute the ‘observed minus computed’ term.
– Compute the first design matrix using the function rvpder.
– Compute the resubstitution term as shown in the lecture slides (see the
online data).

– Compute the gain matrix as shown in the lecture slides (see the online data).
– Update the solution vector. Store the solution vector at each filter step.

Plot the determined semi-major axis a for all filter steps.When does it converge?
Plot the x-component of the resubstitution term for each filter step.

(f) Implement the conventional least-squares adjustment into an iteration loop,
where, at each step, you use the updated orbital elements from the previous
step as a priori elements. Think about a reasonable stop criterion for the iteration
loop. Compute and plot the linearized and true residuals after the last iteration.

2: Orbit determination with pseudo-stochastic pulses

Here, we use a ‘true’ orbit which was obtained by not only using the equations of
motion of the two-body problem, but by additionally applying along-track (pertur-
bation) accelerations in a numerical integration. From this orbit a number of pseudo-
observations are created. Your main task is then to use these pseudo-observations to
perform the orbit determination in the frame of the two-body problem, but by addi-
tionally solving for pseudo-stochastic pulses, which shall compensate the perturbing
accelerations. You will again carry out a conventional least-squares adjustment and
a filter approach.
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You will perform the task by completing the MATLAB skeleton file ex2.m.
The same MATLAB functions as in exercise 1 are used. At the beginning of the
MATLAB skeleton file ex2.m the same six Keplerian elements as in exercise 1 are
defined. Starting from the initial conditions defined by these elements, a perturbed
orbit was created beforehand by numerical integration of the equations of motion by
taking the 10s piecewise constant along-track accelerations in the file GRCA.ACC
into account. The positions and velocities resulting from the numerical integration
were written in a 30s sampling into the file STOCH_ORB (column 1: time, columns
2-4: positions in geocentric inertial frame, columns 5-7: velocities). This file is read
(using the MATLAB command load). Using the function xyzele, for each 30s
epoch a set of osculating orbital elements is computed. Finally, a normally distributed
noise is added to the positions, which are then stored in the matrix psdObs. These
positions serve as pseudo-observations for the following orbit determination. You
will only process the first two hours of observations.

(a) Performaconventional least-squares solutionof the orbit determinationproblem.
Solve for the orbital elements and additionally for pulses in the velocity direction
at everymeasurement epoch.Use thepseudo-observations inpsdObswith equal
weighting and introduce the orbital elements of the unperturbed orbit (defined
at the beginning of ex2.m) as a priori elements. Perform the following steps:

• Loop over all epochs. For each epoch:
– Compute the satellite position of the a priori orbit using the function ephem
and the a priori orbital elements (propagation in the two-body problem).

– Compute the partial derivatives of the positions and velocities of the a priori
orbit w.r.t. the orbital elements (using the function rvpder).

– Compute the (constant) coefficientsβk, k = 1, ...., 6,which allow to express
the partial derivatives of the orbit w.r.t. the pulses as a linear combination
of the partials w.r.t. the six orbital elements.

– Compute the ‘observed minus computed’ term and the first design matrix.
• Set up the normal equation system.
• Add theweights on the normal equation system to constrain the pulses towards
zero.

• Solve the normal equation system.

Howmany parameters do you solve for? How big is the normal equation matrix?
What is the estimated value for the first pulse?

(b) Plot the estimated pulses when using different a priori standard deviations sig0
for the pseudo-observations (e.g., sig0 = 1 and sig0 = 10−7). Read in the
accelerations in the file GRCA.ACC and transform them into velocity changes.
Plot these togetherwith the estimated pulses.What changes if you changesig0?

(c) Compute and plot the orbit residuals and the differences of the improved orbit
w.r.t. the true orbit for all epochs in the geocentric (x,y,z) frame. Here you cannot
compute the ‘true’ residuals by taking the updated orbital elements and prop-
agating the new orbit (as you did in the second part of exercise 1d), since for
the propagation you would need a numerical integration that takes the acceler-
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ations in GRCA.ACC and the estimated pulses into account. Hence, compute
the residuals of the linearized problem. Likewise, for the orbit difference add
the (linearized) orbit corrections (computed by using the solution of exercise 2a
to the a priori orbit (obtained by propagating the elements eleTru using the
function ephem) and compare these positions with the true positions in the file
STOCH_ORBIT. Make again experiments with different values of sig0.

(d) At each epoch the pseudo-stochastic pulse induces a change in the initial con-
ditions (defined at the initial epoch). Compute and plot the difference of the
epoch-specific semi-major axis w.r.t. the a priori value. Compare this difference
with the difference of the true osculating semi-major axis w.r.t. the a priori value
(in difOsc). Do this for different values of sig0.

(e) Perform a filter solution of the orbit determination problem with only six
unknowns by pre-eliminating the pulses every epoch. Initially, this is is not
possible, since for each new epoch all pulses up to this epoch will contribute to
the observation equation. The pre-elimination becomes, however, possible when
conducting a parameter transformation discussed in Sects. 2.3.3.3 and 2.3.3.4.
Use the pseudo-observations in psdObs with equal weighting and introduce
the orbital elements in eleTru as a priori values. In a loop over all epochs,
perform the following steps:

• Compute the satellite position using the function ephem and the a priori
orbital elements.

• Compute the first design matrix using the function rvpder.
• Compute the ‘observed minus computed’ term.
• Update the normal equation system with the observation equations of the
current epoch.

• Perform the parameter transformation, add the pseudo-observation for the
pulse (with the corresponding weight) and pre-eliminate the pulse.

• Generate and save the solution for the orbital elements, the residuals and the
orbit difference w.r.t. the true orbit.

What are the estimated values of the orbital elements after the 5th filter step?
(f) Compute and plot the real-time semi-major axis, the orbit residuals and the

differences w.r.t. the true orbit in the geocentric (x,y,z) frame for each filter step.



Chapter 3
The Classical Variational Approach

Srinivas Bettadpur and Christopher McCullough

3.1 Differential Corrections

While the fundamental theory behind the differential correction process is more than
a century old, its cutting edge applications utilize high fidelity modeling, advanced
numerical techniques, and observations with unprecedented precision/accuracy. This
chapter will cover the basic mathematical formulation and then comment on the
specialization of the process to the estimation of gravity field parameters from the
Gravity Recovery and Climate Experiment (GRACE).

3.1.1 Orbital Motion

The equations of motion governing satellite orbits are given as,

r̈ = − μ

r2
êr + fp (r, ṙ,α)

= g (r, ṙ,μ,α) ,

r (t0) = r0,

ṙ (t0) = v0

(3.1)
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where,

r = 3×1 vector of the satellite’s position,
ṙ = 3×1 vector of the satellite’s velocity,
r̈ = 3×1 vector of the satellite’s acceleration,
μ = gravitational parameter of the central body,
r = satellite’s distance form the center of mass of the central body,
êr = a unit vector directed along the vector from the central body’s center of mass

to the center of mass of the satellite,
fp = perturbative accelerations,
α = parameters of the force model,
r0 = 3×1 vector of the satellite’s initial position,
v0 = 3×1 vector of the satellite’s initial velocity.

Formally integrating Eq. (3.1) yields,

ṙ (t) = ṙ0 +
∫ t

t0

g
(

r (τ ) , ṙ (τ ) ,μ, fp (τ )
)

dτ (3.2)

And integrating again yields,

r (t) = r0 + ṙ0 (t − t0) +
∫ t

t0

∫ s

t0

g
(

r (τ ) , ṙ (τ ) ,μ, fp (τ )
)

dτds (3.3)

Therefore, in order to arrive at the correct position with the correct velocity, we
have to

1. Start with the correct initial conditions (IC): r0, ṙ0.
2. And know the integrand (exact force model parameters) for all intermediate

points.

The solution for the position and velocity at any time is realized, in practice, by
numerical integration of the differential equations of motion, resulting in the satellite
ephemerides.

3.1.2 Observations

How do we know if the satellite ephemerides are wrong? If we have an instrument
system that gives us an observation (generally a nonlinear function) of satellite posi-
tion and velocity

Y = G (r (t) , ṙ (t) , . . .) (3.4)

and we have a mathematical model for that observation, then we see a non-zero
residual between the measurement Y0 and the predicted value of the measurement
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y (t) = Y0 − G (r (t) , ṙ (t) , . . .) (3.5)

How canwe use a sequence of these observations to “correct the orbit?”Unlike the
standard point Parameter Estimation problem, we attempt to correct the trajectory.
One option is to take the so-called kinematic approach, where the trajectory at obser-
vation epoch is independently corrected based on observations at that epoch, and a
sequence of such corrections are used to infer the corrections needed to the force
model. Alternatively, the force model parameter errors and initial condition errors
are estimated by mapping them to the epoch of the observations using variational
equations. We discuss only the latter approach in the following sections.

3.1.3 Formalism

Recall the equations of motion for a satellite,

r̈ = − μ

r2
êr + fp (r, ṙ,α) (3.6)

where α represents the parameterized force model (e.g. drag, gravity, etc.). The state
of the satellite may be defined as,

X (t) =
[

r (t)
ṙ (t)

]

(3.7)

Then,

Ẋ (t) =
[

ṙ (t)
r̈ (t)

]

=
[

ṙ (t)
fp (r, ṙ,α)

]

= F (X,α)

X (t0) =
[

r0
ṙ0

] (3.8)

Observations are typically somenon-linear functionof theorbital position/velocity
and other parameters.

Y (t) = G (r (t) , ṙ (t) ,β) (3.9)

where β is the set of observation model parameters. For example, the range from a
ground station to a satellite is given by,

ρ (t) = rSAT (t) − rSTA (t)

ρ (t) = ∥

∥rSAT (t) − rSTA (t)
∥

∥

(3.10)
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where,

ρ (t) = 3×1 vector of the relative distance between the ground station and the
satellite,

rSAT (t) = 3×1 vector of the satellite’s position,
rSTA (t) = 3×1 vector of the ground station’s position,
ρ (t) = scalar line of sight distance between the ground station and the satellite.

We can represent our best a priori knowledge of the initial condition and force
model parameters (in jargon, referred to as the “BackgroundModel”) by a superscript
“*” on r (t) and ṙ (t), so that

C = G
(

r∗ (t) , ṙ∗ (t) ,β∗) (3.11)

where,

r∗ (t) = best knowledge of the satellite’s position
ṙ∗ (t) = best knowledge of the satellite’s velocity,
β∗ = best known observational parameters, such as rSTA in Eq. (3.10),
G = mathematical observation model, such as that given by Eq. (3.10), which

is assumed “complete.”

So,
y (t) = O − C

O : O (r (t) , ṙ (t) ,β)
(3.12)

where the numerical value of O is the known observation; however, r (t), ṙ (t), and
β are unknown. How can we use y (t)?

y (t) = O (r (t) , ṙ (t) ,β) − C
(

r∗ (t) , ṙ∗ (t) ,β∗) (3.13)

Let,
r (t) = r∗ (t) + δr (t)

ṙ (t) = ṙ∗ (t) + δṙ (t)

β = β∗ + δβ

(3.14)

Then,

y (t) = G
(

r∗ (t) + δr (t) , ṙ∗ (t) + δṙ (t) ,β + δβ
) − G

(

r∗ (t) , ṙ∗ (t) ,β∗)

= ∂G

∂r
δr (t) + ∂G

∂ṙ
δṙ (t) + ∂G

∂β
δβ

(3.15)
where the partial derivatives are evaluated on the nominal, or ∗, values. So,
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y (t1) = H̃r∗
1
δr (t1) + H̃ṙ∗

1
δṙ (t1) + H̃β∗δβ∗

...

y (tk) = H̃r∗
k
δr (tk) + H̃ṙ∗

k
δṙ (tk) + H̃β∗δβ∗

...

y (tm) = H̃r∗
m
δr (tm) + H̃ṙ∗

m
δṙ (tm) + H̃β∗δβ∗

(3.16)

At this point, there are 2 things that must be addressed

1. Typically, dim (y) < dim (δr or δṙ or β). So we must reduce the sequence
{δr (tk) , δṙ (tk)}k = 1, . . . ,m} to fewer parameters.

2. We must make the dependence of the observations on α explicit.

To achieve these goals in the variational approach, we insist that δr (tk) and
δṙ (tk) are, for all tk , not arbitrary, but result in a dynamically consistent fashion
from variations in the parameters of the problem, that is, the initial conditions and
the force model parameters. Therefore,

δr (tk) = ∂r (tk)

∂r0
δr0 + r (tk)

δṙ0
δṙ0 + ∂r (tk)

∂α
δα

δṙ (tk) = ∂ṙ (tk)

∂r0
δr0 + ṙ (tk)

δ
ṙ0δṙ0 + ∂ṙ (tk)

∂α
δα

[

δr (tk)
δṙ (tk)

]

=
[

∂r(tk )
∂r0

∂r(tk )
ṙ0

∂r(tk )
∂α

∂ṙ(tk )
∂r0

∂ṙ(tk )
ṙ0

∂ṙ(tk )
∂α

]

⎡

⎣

δr0
δṙ0
δα

⎤

⎦

(3.17)

Equation (3.17) is the explicit form of the so-called State Transition Matrix Φ

(STM). If the state Ẋ of a system is governed by the equations of motion

Ẋ = F (X) (3.18)

then the variations x of X with

Ẋ∗ + ẋ = F
(

X∗ + x
) = F

(

X∗) + ∂F
∂X

∣

∣

∣

∣

X∗
x (t) + H.O.T . (3.19)

are governed by
ẋ (t) = A (t) x (t) (3.20)

where

A (t) = ∂F
∂X

∣

∣

∣

∣

X∗
(3.21)
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Combining Eqs. (3.17)–(3.20),

x (t) = Φ (t, t0) x (t0)

ẋ (t) = Φ̇ (t, t0) x (t0)

= A (t) x (t) = A (t)Φ (t, t0) x (t0)

Φ̇ (t, t0) = A (t)Φ (t, t0) , Φ (t0, t0) = I

(3.22)

Now, let us examine the components of the STM in detail.

∂r (t)

∂r0
= Φrr0

Φ̇rr0 (t, t0) = d

dt

[

∂r (t)

∂r0

]

= ∂

∂r0

d

dt
[r (t)]

= ∂ṙ (t)

∂r0
= Φvr0 (t, t0)

(3.23)

∂r (t)

∂v0
= Φrv0 (t, t0)

d

dt

[

∂r (t)

∂v0

]

= ∂

∂v0

[

dr
dt

]

= ∂v (t)

∂v0
= Φvv0

(3.24)

∂r (t)

∂α
= Φrα (t, t0)

d

dt

[

∂r (t)

∂α

]

= ∂

∂α

[

dr
dt

]

= ∂v (t)

∂α
= Φvα

(3.25)

ṙ (t)

∂r0
= Φvr0 (t, t0)

d

dt

[

∂ṙ (t)

∂r0

]

= ∂

∂r0

[

− μ

r2
êr + fp

]

= ∂

∂r0
[f (r, ṙ,α)]

= ∂f
∂r (t)

∂r (t)

∂r0
+ ∂f

∂v (t)
+ ∂v (t)

∂r0

= ∂f
∂r

Φrr0 + ∂f
∂v

Φvr0

(3.26)
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∂ṙ
∂ṙ0

= Φvv0

d

dt

[

∂ṙ
∂ṙ0

]

= ∂f
∂r

Φrv0 + ∂f
∂v

Φvv0

(3.27)

∂ṙ (t)

∂α
= Φvα (t, t0)

d

dt

[

∂ṙ (t)

∂α

]

= ∂

∂α

[

d ṙ
dt

]

= ∂f
∂α

= ∂f
∂r

Φrα + ∂f
∂v

Φvα + ∂f
∂α

(3.28)

Combining these all together yields,

d

dt

[

Φrr0 Φrv0 Φrα

Φvr0 Φvv0 Φvα

]

=
[

0 I
∂f
∂r

∂f
∂v

] [

Φrr0 Φrv0 Φrα

Φvr0 Φvv0 Φvα

]

+
[

0 0 0
0 0 ∂f

∂α

] (3.29)

3.1.4 Simple State Transition Matrix Example

Consider the Kepler ellipse, given by the orbital elements (a, e, I , ω, Ω , and M),
and a variation Δa0. In this case, only two coordinates are affected.

Δa (t) = Δa0

ΔM (t) = −3n∗

2a∗ Δa0, where n∗ =
√

μ

a∗3
(3.30)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa (t)
Δe (t)
ΔI (t)
Δω (t)
ΔΩ (t)
ΔM (t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

− 3n∗
2a∗ Δt 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δa0
Δe0
ΔI0
Δω0

ΔΩ0

ΔM0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.31)

3.1.5 Summary

1. The time-sequence of δr (tk) have a defined relationship (the variational equa-
tions) to the force parameters, α. Therefore, the observation residuals, yk , have
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a defined relationship to the force parameters. It is in this sense that we say that
“...the orbit is the observable...”.

2. Given any sequence of δr (tk) and δṙ (tk), one can set δα = 0 and find some
(δr0, δṙ0) that satisfy the variational equations. For each tk , the derived (δr0, δṙ0)
will be different. Lesser the duration between tk and t0, and lesser the error in
the force models or the initial conditions, the better this approximation becomes.
Conversely we can set (δr0, δṙ0) = 0 and correct only δα. This duality of similar
signal changes in δr due to errors in δr0, δṙ0 or δα (particularly at low frequen-
cies) can lead to difficulties in the orbit and gravity estimation problem. This
thread is further explored in the series of exercises.

3. The concept of an “arc”:

• An arc is defined as the duration over which a single set of initial conditions
are adjusted.

• Epoch of an arc can be anywhere—it need not be at the epoch of the first
observation.

3.2 Least Squares Adjustment and Spectrum
of Perturbations

Now we look at the details of the variational formulation for the specific needs of
estimation of the gravity field parameters using the GRACE mission data.

3.2.1 Modeling Satellite Motion

Recalling the mathematical model describing the motion of a satellite,

r̈ = − μ

r2
êr + fp (3.32)

where the perturbing acceleration, denoted by fp, is given by a combination of non-
gravitational forces, gravitational forces, and empirical accelerations.

3.2.1.1 Non-gravitational Forces

Thenon-gravitational forces aremeasuredusing an accelerometer. The accelerometer
provides a (possibly) biased and scaled value of the true non-gravitational accelera-
tions. Tabular acceleration inputs are therefore provided to the orbit propagator, in a
form that allows for the adjustment of the accelerometer bias and scale parameters.
While the user may not choose to estimate every bias/scale parameter together with
the orbit initial conditions and the gravity field model parameters, the model may be
represented as,
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f ACCNG = bx + sx f
ACC
x

+ by + sy f
ACC
y

+ bz + sz f
ACC
z

(3.33)

In this case, bi and si become components of α, which are dynamical parameters.

3.2.1.2 Gravitational Forces

The gravitational forces, in an Earth centered Earth fixed (ECEF) coordinate system
or an Earth centered inertial (ECI) coordinate system, can be modeled as

f ECEF
G = ∇U,

U =
NMAX
∑

l=2

(ae
r

)l l
∑

m=0

Plm (sin φ) [(〈Clm〉 + δClm (t)) cosmλ

+ (〈Slm〉 + δSlm (t)) sinmλ]

f EC I
G = MEC I

ECEF∇U

(3.34)

where 〈·〉 denotes time average. The only exception to this formulation are third body
and solidEarth tide accelerations,which are calculated fromLuni-Solar ephemerides.
In typical GRACE analyses, the background gravity model, represented as above,
reflects our current best knowledge of the Earth gravity field variations. The Earth
processes for which do not yet have good models—such as due to land water cycle
variations, ice-sheet variations, non-tidal ocean dynamics, etc., and that are to be esti-
mated from the GRACE data—are parametrized as piece-wise constant corrections
to δClm (t) and δSlm (t). However, the use of spherical harmonic formulation is not
a strict requirement as there are well developed theories for other parameterizations
of the gravitational accelerations.

3.2.1.3 Empirical Parameters

It has been known for a very long time that mean and 1-cpr (cycle per revolution)
accelerations have special effects on the orbit. We can illustrate this using a set of
non-singular coordinates defined in terms of the typical Keplerian orbital elements
[37, 38], with “i” the unit imaginary, and the argument of latitude u = ω + M

ΔU (t) = Δa

ā
+ i

(

Δu + ΔΩ cos Ī
)

ΔP (t) = (Δe − iΔω) e−i ω̄

ΔQ (t) = ΔI − iΔΩ sin Ī

(3.35)
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where quantities with a bar are averaged quantities. The averaged (longer than 1
orbital period) equations of motion are,

ΔU̇ + i

[

3n̄

2
− ˙̄μa

]

ΔUr − i ˙̄μIΔQr = 2

ān̄

(

T̄ − i R̄
)

ΔṖ + i ω̄ΔP = 2

ān̄

[(

Tc + 1

2
Rs

)

− i

(

Ts − 1

2
Rc

)]

ΔQ̇ − i ˙̄νiΔQr − i ˙̄νaΔUr = 1

2ān̄
[Nc − i Ns]

(3.36)

in case the perturbing accelerations are given by,

fr = R̄ + Rc cos ū + Rs sin ū

fτ = T̄ + Tc cos ū + Ts sin ū

fν = N̄ + Nc cos ū + Ns sin ū

(3.37)

with ˙̄μa , ˙̄μI , ˙̄νa , and ˙̄νI being coupling constants of the order J2, and subscript r
indicating the real part of the complex quantity [37, 38]. Also, note that the variations
in the radial (r ), transverse (τ ), and normal (ν) coordinates of the satellite are given
by,

Δz = Δr + iΔτ = āΔU + 1

2
ā

[

ΔPeiū − 3ΔP∗e−i ū
]

Δν = ā�{−iΔQeiū}
(3.38)

In orbit and gravity field adjustment process, it is common practice to estimate
themean accelerations, and/or the amplitudes of the once-per-revolution acceleration
amplitudes simultaneously with the initial conditions or the gravity field parametrs.
These equations help us understand the effect of the simultaneous estimation of these
so-called “empirical acceleration” parameters. The equations show, in summary, that,

R̄ adjusts to a mean offset in a and/or linear drift in ΔM ,
T̄ adjusts to a linear drift in a and/or quadratic drift along track,
RC , TC , RS, TS adjust to slow variations in (e,ω) or to once-per-revolution varia-

tions in the orbit plane (Δr,Δτ ),
NC , NS adjust to slow variations in (I,Ω) or to once-per-revolution vari-

ations in the normal direction Δν.

Commonly, several such piece-wise constant parameters will be solved within
one arc—a practice known in the jargon as “sub-arcing”. In all such cases, we are
able to fit slow variations in orbital elements by piecewise constants. So why does
all of this matter?

1. Every signal/noise with an influence on the orbit dynamics leads to slow/near-1
cpr perturbations, in addition to a perturbation at its natural time scale. This is
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mathematically explainable by the observation that the particular integral of the
variational differential equations include the homogeneous solutions.

2. The estimation process cannot discriminate whether these slow drifts arose from
the geophysical signals of interest, or from instrument or system effects when the
mission data is entering the orbit integration process, such as from the accelerom-
eter or the star camera.

3.2.1.4 Observation Empiricals

The environment on the spacecraft also changes as the satellites flies through the
near Earth environment, or as the solar illumination changes the energy input to the
system. These effects also potentially impose slow and 1-cpr data variations in the
measurements such as the inter-satellite ranging signal in GRACE. These effects are
inseparable, during the estimation process, from the effects of the geophysical signals
discussed above. Mitigation to some extent is attempted by introducing observation
empirical parameters in the form:

δρ̇ = A + Bt + Ct2 + E cos nt + F sin nt (3.39)

A − E or some subset thereof are included in the β parameters.

3.2.2 Reassembling the Variational Problem

Reassembling the variational problem for one arc yields,

⎡

⎢

⎢

⎢

⎣

y1
y2
...

ym

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

Hr1 Hṙ1 Hα Hβ

Hr2 Hṙ2 Hα Hβ

...
...

...
...

Hrm Hṙm Hα Hβ

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Δr0
Δṙ0
Δα
Δβ

⎤

⎥

⎥

⎦

(3.40)

where,
Hrk = H̃rkΦrr0 (tk, t0) , etc. (3.41)

Information equations from a collection of such arcs are assembled together to
solve simultaneously for initial conditions for each arc as well as the gravity field
parameters Δβ. The methods for solving such a system of equations are discussed
in other chapters.

Interested readers are also referred to [141] for more details.
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3.3 Exercises

Data and files needed for the following exercises are available online at:
http://www.geoq.uni-hannover.de/autumnschool-data
http://extras.springer.com

Important Note: The usage of all the functions is given by reading the comments at
the top of each function or typing, ‘help function_name’ in the MATLAB command
window.

1: Adjustment of Initial Conditions

Run the program Exercise_1. This program does a variety of things:

(a) Reads in 2 separately computed GRACE orbit solutions (each trajectory is read
by the get_traj subroutine). These trajectories are perturbed by gravitational
forces, third bodies, time variable gravity, non-gravitational forces, etc. One of
these trajectories is the red curve in the plots that arise when you run Exercise_1.

(b) For each trajectory, the osculating orbit (orbit forced only by the two-body,
central forcing term) can be computed at each step and numerically integrated
back in time to the initial epoch (for each arc). These are the black curves in the
plots that arise when you run Exercise_1. Note their scatter. The average initial
condition of the black curves is output from Homogenous IC.

(c) The difference in the initial conditions, computed from each GRACE orbit solu-
tion, provide an estimate (in the absence of a full orbit solution) for the error
between each trajectory, as the initial conditions are adjusted. This difference is
output in the MATLAB command window.

The case you ran in Exercise_1 adjusted the initial conditions once every day (arc
length of 86400.0). Repeat this for smaller arc lengths (say 6h and once per satellite
revolution 5660.0 s).

Note the change in the difference as the arc length is shortened. The error should
reduce with shorter arc length.

Implications: Trajectories can be fit with arbitrary forces, to some extent, by
adjusting the initial conditions more frequently. Therefore, if the initial conditions
are adjusted too frequently, they may have a detrimental effect on the gravity field.

2: Removal of the Homogeneous Solution (remodel)

Run the program Exercise_2. This program computes an inter-satellite range and
range-rate residual (O-C). The residual is formed as follows:

(a) The observed inter-satellite range/range-rate are computed by propagating
GRACE-like orbits under the influence of a two body, central forcing term and
a 200 gigatonne point mass placed along the ground track of satellites.

http://www.geoq.uni-hannover.de/autumnschool-data
http://extras.springer.com


3 The Classical Variational Approach 93

(b) The computed inter-satellite range/range-rate are computed by propagating
GRACE-like orbits under the influence of only a two body, central forcing term.

(c) The difference between these trajectories shows the effect of the point mass,
with contributions from the homogeneous portion of the solution (secular and 1
cycle per revolution effects) and the transient effect of the point mass flyovers.

The output from Exercise_2 displays 4 figures: the range residual, the range-rate
residual, the range residual after a poorly executed attempt to remove the homoge-
neous solution effects, and the range-rate residual after a poorly executed attempt
to remove the homogeneous solution effects. The homogeneous solution is removed
with the subroutine remodel. Typing, help remodel will show you a message describ-
ing what remodel does (it is designed to mimic the inter-satellite tracking empirical
parameters estimated during GRACE gravity field estimation).

Adjust the remodel parameters (lines 64 and 65 inExercise_2) to more adequately
remove the homogeneous portion of the residual and reveal the range-rate features
caused by the flyovers of the point mass. Note: the orbit period is 5668.0 seconds.

Once this is completed add white noise accelerations to the observed trajectory
(change the white noise sigma value-variable sig on line 11 of Exercise_2—a rea-
sonable level is around 2.0 × 1010m/s2 ). How does the white noise affect the output
from remodel? What happens as you increase the white noise?

Implications: The dominant affect of orbital perturbations come from the homo-
geneous solution of the differential equations (secular and 1 cycle per revolution
effects). These contaminate/hide the higher frequency effects that GRACE is sensi-
tive to. Their appropriate treatment is important to accurate gravity field recovery.
The addition of white noise adds additional signal at all frequencies, further conta-
minating the residual.

3: State Transition Matrix (STM)

Run the programExercise_3. This program numerically computes the state transition
matrix in order to map perturbations in the orbital elements (and other parameters) at
the initial epoch to later epochs. This allows for the efficient computation of arbitrary
perturbations from the nominal trajectory. In this case, the nominal trajectory is a
GRACE-like orbit under the influence of the two body, central forcing term, J2, a
simple drag model, and tangential/normal 1 cycle per revolution accelerations.

In the initial run of Exercise_3, the effect of a perturbation in semi-major axis is
shown. Similarly, you should individually add a perturbation to the other parameters
and observe their effect on the orbital elements. Note: The parameters in the STM
are ordered as follows:

• Semi-major axis (meters)—Suggested perturbation: 1 mm
• Eccentricity—Suggested perturbation: 1.0 × 10−4

• Inclination (radians)—Suggested perturbation: 1 arc minute
• Argument of perigee (radians)—Suggested perturbation: 1 arc minute
• Ascending node (radians)—Suggested perturbation: 1 arc minute
• Mean Anomaly (radians)—Suggested perturbation: 1 arc minute
• J2 (C20)—Suggested perturbation: 1.0 × 10−8
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• Ballistic coefficient (Scaled drag coefficient)—Suggested perturbation: 1.0 ×
10−3

• Empirical 1 cycle per revolution acceleration amplitudes—Suggested perturba-
tion: 1.0 × 10−7m/s2 —These include the last 4 parameters.

Run the program Exercise_3v2. This will show the effect of the predefined per-
turbations (shown in lines 75–86 of Exercise_3v2) under the influence of different
force models. Observe these figures and note the effect various force models have
on the orbital elements.

Implications: The STM allows the computation of the effect of arbitrary pertur-
bations at any point on the orbit. This is vital to the least squares solution process
because it allows for a simple mapping between the adjusted parameters (solution
from the least squares-initial conditions, gravity field coefficients, etc.) and their
effect on the orbit/observations. Finally, note the different effects of each forcemodel
in the presence of perturbations, when you run Exercise_3v2:

(a) Two body force—The orbital elements exhibit a constant offset equivalent to the
input perturbation. This is the definition of the two body problem.

(b) Two body force + J2—The orbital elements now have sinusoidal variations and
the well known secular trend in the ascending node due to the inclusion of the
Earth’s oblateness.

(c) Two body force + J2 + Drag—Note the downward trend in semi-major axis and
eccentricity, due to the reduction in altitude and circularization of the orbit due
to the inclusion of drag.

(d) Two body force + J2 + Drag + 1 cycle per revolution empirical accelerations—
Note the apparent trends in eccentricity and inclination, as well as an increased
secular drift in the ascending node, due to the inclusion of the 1 cpr empirical
accelerations.

4: Spatial Resolution (simplified to 1 dimension)

Run the program Exercise_4. In addition read the comments in the subroutine FitLe-
gendre to determine the function usage and outputs. This program computes a set of
Legendre polynomials up to the user specified degree nmax and creates a transient
spatial signal of user specified width. The scaling parameters, as shown below, are
then best fit to the transient signal.

y =
nmax
∑

n=0

ak Pn(x)

This simulates, in a very simplified sense, the effect of attempting to fit high-
resolution spatial features with a limited set of spherical harmonics.

Running Exercise_4 displays 3 figures:

(a) Signal Comparison—This figure shows the spatial extent of the highest degree
(highest spatial resolution) Legendre polynomial relative to the transient signal.
Note: the difference in spatial resolution.
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(b) Transient Signal versus Fit Signal—This figure shows the Legendre polynomial
fit and the transient signal. It is a visual representation of how well the Legendre
polynomials can fit the transient signal.

(c) Signal Residual—This figure shows the difference between the Legendre poly-
nomial fit and the transient signal. This is another visual representation of how
well the Legendre polynomials fit the transient signal.

Experiment with different sized spatial signals and observe howwell the Legendre
polynomial fit matches the transient signal.

Rerun the FitLegendre function for a variety of spatial sizes and plot the evolution
of the percentage peak error (per_err) versus transient signal size. Adjust the spatial
scale from 1.0◦–20.0◦ and note how well each fits the peak amplitude.

Implications: Note that these examples are highly simplified (only 1 dimensional
and the link between satellite observations at altitude to the Earth’s surface is miss-
ing), but they show some effects of representing high-resolution spatial features with
a truncated set of spherical harmonics.



Chapter 4
The Acceleration Approach

Matthias Weigelt

Abstract The Gravity Recovery and Climate Experiment (GRACE) mission is a
key instrument to monitor and understand variations in the mass distribution of the
Earth. The primary observable is the (biased) range between the two satellites which
is a geometric observation. The task is therefore to connect this kind of observation to
the physically meaningful gravity field of the Earth or in other words connecting the
kinematic observation to a force. Various approaches exist. Here, the focus is on the
so-called acceleration approach which conceptually tries to avoid the solution of the
variational equations by linking observed range accelerations to the gradient of the
gravitational potential. Practically, it requires the observation of range accelerations,
the attitude and their changes with matching precision in all three dimensions which
are currently not available for GRACE. Three possible solutions are presented: (1) an
approximate solution neglecting terms with low precision observations by reducing
the basic equation to residual quantities, (2) a stringent solution by considering the
term of low precision as unknown and solving it via the variational equations and
(3) an alternative description using rotational quantities. Only the second approach
yields solutions at the same level of precision as other approaches but offers no
conceptual or computational advantage due to the need for solving the variational
equations. The first kind of solution results primarily in a mis-modeling of long-
wavelength signal but may still serve well for local or regional solutions. The third
kind of solution is currently not feasible since the required precision in the attitude
information is far from being available. However, it offers interesting insight into
the observation system. It allows to describe GRACE as a two-dimensional observa-
tion system and explain mathematically the poor East-West sensitivity yielding the
striping artifact in today’s GRACE solutions.
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4.1 Introduction

TheGravity RecoveryAndClimate Experiment (GRACE)mission [140] enabled the
determination of the Earth’s gravity field and its temporal variations with unprece-
dented precision. The key instrument is the highly precise microwave-based K-Band
ranging system which constantly tracks the relative motion of the two satellites, i.e.
the distance between the spacecrafts (range) ρ in the direction of the line-of-sight
(LOS). Range rate ρ̇ and the range acceleration ρ̈ are numerically derived, c.f. [85],
and frequently used as the primary observation whereas correlations due to the dif-
ferentiation scheme are often neglected. For a successful recovery of the gravity
field these kinematic quantities need to be connected to the gravitational potential V
or any of their functionals, e.g. gravity (first derivatives of V ) or gravity gradients
(second derivatives of V ). The acceleration approach is one such method.

Generally, various approaches exist and have been implemented with varying
success. The most notable ones are based on the solution of the classical variational
equations [119, 140] and are implemented by the Center for Space Research (CSR)
at the University of Texas at Austin, the German Research Center for Geosciences
(GFZ) and the NASA’s Jet Propulsion Laboratory (JPL). They are used to produce
the official releases of monthly and static gravity fields. Variants of the variational
equation approach are the Celestial Mechanics Approach (CMA) [10, 11] developed
by the Astronomical Institute of the University Bern and the short-arc method by
[95].

Alternatively, there exist methods which may be summarized as in-situ obser-
vation approaches. These methods aim at avoiding an integration of the variational
equations by forming (pseudo-) observations and connecting these directly and point-
wise to a gravity field quantity. The energy integral approach links range-rate obser-
vations ρ̇ to potential differences [74]. The acceleration approach discussed here
utilizes range accelerations which are connected to the gradient of the gravitational
potential∇V (Sect. 4.2.1). Several variants of this approach exist, e.g. the differential
gravimetry approach [93] and the inter-satellite range interpolation approach [165].
One conceptually very interesting variant is known as the line-of-sight gradiometry
approach [82] which forms pseudo-observation by dividing the range-accelerations
through the range and relating them to the tensor components of the gravitational
potential Vi j projected on the LOS.

Both kind of approaches, i.e. those based on the variational equations and the
in-situ observations, have their particular advantages and disadvantages. From a
theoretical point of view, all approaches yield the same quality of solution as they
are all based on Newton’s equation of motion, see also Sect. 4.1.1. Differences occur
due to different error characteristics of the primary observation quantity or derived
pseudo-observations and thepropagationof these errors through theprocessing chain,
but it is beyond the scope of this section to compare their performance. Generally,
it can be stated that methods based on variational equations need sophisticated orbit
integration methods whereas in-situ observations need augmentation with additional
observations, e.g. GPS. This kind of combination often poses the main culprit in the
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derivation of gravity field solutions and therefore the approaches based on variational
equations seem to perform at the current stage slightly better.

After introducing basics about Newton’s equation of motion in Sect. 4.1.1 and
the difference of kinematic and dynamic quantities in Sect. 4.1.2, the geometry of
the GRACE system in Sect. 4.2 will form the basis for the rigorous solution of the
acceleration approach in Sect. 4.2.1. This type of solution still requires the solu-
tion of the variational equations which leads ultimately to the development of an
approximate solution valid under specific assumptions as the name already implies.
Section4.2.2 will discuss this often implemented solution and shows the limita-
tions of this approach. Last but not least an alternative approach is developed in
Sect. 4.2.3 which is based on rotational quantities, namely rotation-rates and changes
in rotation-rates. It forms a theoretical framework to better understand and exploit
low-low satellite-to-satellite tracking systems under the condition that the rotational
quantities can be observed with the precision required to match the inter-satellite
observations which is nowadays not the case.

4.1.1 Newton’s Equation of Motion

For the acceleration approach two fundamental equations are needed. First the New-
ton’s second law of motion:

F = m a, (4.1)

where F is the force, m the mass of a body and a the acceleration. Equation (4.1) is
already written in the form introduced by Leonard Euler. Newton wrote his version
originally in the form of impulses on the right-hand side [111]. It is important to
note the difference between the left-hand, i.e. the force, and the right-hand side (here
acceleration) of Eq. (4.1). The left-hand side contains dynamical quantities, whereas
the right-hand side denote kinematic quantities. Although the difference seems trivial
it is fundamental to space geodesy and the subsequent discussions. The difference in
the handling of these two quantities will become more evident in Sect. 4.1.2. Finally,
an equation of motion is formed by equalizing kinematic and dynamic quantities as
done in case of Eq. (4.1).

For satellite motions the second important equation is Newton’s universal law of
gravitation:

F12 = −G
m1 m2

r212
e12, (4.2)

where F12 is the force vector acting on the connecting line e12 between two bodies of
mass m1 and m2 separated by the distance r12. G is the gravitational constant which
happens to be the least well known fundamental physical constant ofmodern physics.
Equation (4.2) states that the force between two attracting bodies is proportional to the
individual masses and inversely proportional to the square ot the distance. Obviously
F12 = −F21 holds. Note that the law is only valid for point-masses or equivalently
homogeneous spheres or shells.
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For satellite applications it is convenient to work per unit mass, i.e. m1 = M and
m2 = 1 is assumed. Forming the equation of motion for satellite applications by
combining Eqs. (4.1) and (4.2) yields:

F12 = −GM

r312
r12 = a = r̈, (4.3)

which is the fundamental equation for the so-called two-body problem. Obviously
the acceleration is equal to the second derivative of the position vector r resulting in
a second-order differential equation. The solution can be either achieved analytically
or numerically. The analytical solution is best described by the Keplerian solution
and the six integration constants of the second-order differential equation are the
Keplerian elements. Generally, analytical solutions can only be derived for simple
cases whereas solutions for satellites evolving around inhomogeneous bodies like the
Earth are only achieved numerically. It is therefore better to denote the integration
constants initial conditions since they are normally expressed as the initial position
and initial velocity of the satellite. Practically, Eq. (4.3) in conjunction with some
given initial conditions allows to uniquely define the orbit of a satellite. Vice-versa
by observing the position of a satellite one can infer the initial conditions and the
underlying force(s). Both cases occur in practical applications depending if one is
interested in the position of a satellite or in the forces governing its motion. The
acceleration approach is an application of the latter case.

So far we only considered the force of a homogeneous point-mass. The super-
position principle allows to extend the left-hand side of Eq. (4.3) by considering all
kinds of forces acting on the satellite. Typically these forces are:

• the inhomogeneous part of the Earth’s gravity field fE,
• third-body attractions of the Sun fS and the Moon fM,
• tidal effects fT,
• atmospheric drag fD,
• solar radiation pressure fSP,
• Earth’s albedo fA,
• relativistic effects fR,
• third-body attractions of other planets and bodies fP,
• ...

For a detailed discussion on the strength and impact of these forces the reader is
referred to the extensive literature, e.g. [104] among many others.

4.1.2 Kinematic Versus Dynamic Quantities

Before being able to formulate the acceleration approach for the low-low satellite-
to-satellite tracking case the behavior of kinematic quantities (the right-hand side
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of Eq. (4.1)), in a moving frame needs to be reconsidered, especially in the point of
view of differentiation. Suppose we have the following relation given:

rI = RE
I rE. (4.4)

rI describes the position of a body or satellite in the inertial frame which is equal to a
position in a moving frame E rotated by the rotation matrix RE

I . For convenience and
an easier understanding the moving frame is here denoted by E following the Earth-
fixed frame but the derivations are valid for any moving frame related to the inertial
frame in the form of Eq. (4.4). For differentiation it has to be taken into account that
the rotation matrix is not time-invariant and thus the temporal derivative ṘE

I is not
zero. Applying the multiplication rule and solving for the velocity in the moving
frame yields:

ṙE = RI
EṙI − RI

E Ṙ
E
I rE (4.5)

Introducing the Cartan matrix Ω = RI
E Ṙ

E
I and the rotation vector ω Eq. (4.5) can be

rewritten as:
ṙE = RI

EṙI − ΩrE = RI
EṙI − ω × rE (4.6)

The derivation of acceleration in amoving frame results from another differentiation:

r̈E = RI
Er̈I − 2ω × ṙE − ω × (ω × rE) − ω̇ × rE, (4.7)

where the second term on the right-hand side is generally known as the Coriolis
acceleration, the third term as the centrifugal acceleration and the last term as the
Euler acceleration.

An equation ofmotion is then formed identically as in the case of inertial quantities
by equalizing kinematic and dynamic quantities, i.e.:

r̈E + 2ω × ṙE + ω × (ω × rE) + ω̇ × rE = RI
EFI (4.8)

Confer to Eq. (4.3) and note the different handling of kinematic and dynamical quan-
tities. Dynamics or forces only change their orientation according to the motion of
the body whereas for kinematic quantities the so-called apparent accelerations need
to be considered which in-turn depend on the motion of the frame.

4.2 Mathematical Description of the Acceleration
Approach

Before going into the detailed derivation of the approach it ismandatory to understand
the geometry of the GRACE system. Figure4.1 visualizes the general setup.
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Fig. 4.1 Geometry of the
GRACE system adapted
from [127]

A

B

The range ρ is observed which is the distance between two satellites A and B. It
is equivalent to the relative position xAB projected on the LOS expressed by the unit
vector eaAB along the connecting line from satellite A to B.

ρ = xAB · eaAB = (xB − xA) · eaAB. (4.9)

Similarly, the relative velocity vector ẋAB is formed by taking the difference between
the two velocity vectors ẋA and ẋB of the two satellites. This resulting vector is nearly
perpendicular to the LOS vector and thus the projection of the range-rate ρ̇ results
in relatively small numbers:

ρ̇ = ẋAB · eaAB = (ẋB − ẋA) · eaAB. (4.10)

From a theoretical point of view it would therefore be much better to fly two
satellites in a radial separation but obviously the satellites will drift apart due to their
different orbital velocity. This concept was actually discussed in [127] but practically
only an along-track separation is feasible.

For the derivation of the acceleration approach Eq. (4.9) is rearranged in order to
express the inertial relative position vector xAB as the (scalar) range times the LOS
unit vector. Applying differentiation twice yields expressions containing the relative
velocity vector ẋAB and the relative acceleration vector ẍAB on the left-hand side and
combinations of inter-satellite quantities on the right-hand side.

xAB = ρ eaAB (4.11a)

ẋAB = ρ̇ eaAB + ρ ėaAB (4.11b)

ẍAB = ρ̈ eaAB + 2 ρ̇ ėaAB + ρ ëaAB. (4.11c)

Equation (4.10) can be derived by multiplying both sides of (4.11b) with eaAB. Since
eaAB and ėaAB are perpendicular to each other the last term on the right-hand side of
Eq. (4.11b) will cancel. The LOS-vector eaAB is part of a right-handed reference frame
moving with the satellite system and is denoted here as the instantaneous relative
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reference frame (IRRF). One convenient choice to complete the reference frame is
calculated according to:

eaAB = xAB
|xAB| (4.12a)

evAB = ẋAB
|ẋAB| (4.12b)

ecAB = evAB × eaAB
|evAB × eaAB| (4.12c)

erAB = eaAB × ecAB
|eaAB × ecAB| (4.12d)

In Eq. (4.12) the unit vector formed by the relative velocity vector in Eq. (4.12b) is
an intermediate quantity which is aligned with the relative velocity vector but not
perpendicular to theLOS-vector.Nevertheless, eaAB and e

v
AB formaplane that contains

the desired unit vector perpendicular to the LOS-vector. This vector will form the
radial direction as it is in the orbital plane spanned by the two aforementioned unit
vectors and directed outward, i.e. away from the Earth’s surface. Note that this vector
is significantly different from the radial unit vectors of each individual satellite. For
its derivation the cross-track unit vector ecAB is first derived by forming the cross
product of eaAB and evAB which is pointing outside the plane formed by the LOS- and
the unit vector of the relative velocity. Using the cross product one more time and
applying it to the along-track and cross-track unit vectors eaAB and ecAB, respectively,
the searched-for radial unit vector erAB can be derived. The IRRF will also play an
important role if the acceleration approach is expressed with rotational quantities,
c.f. also Sect. 4.2.3.

Multiplying Eq. (4.11c) with these three unit vectors rotates the inertial relative
acceleration into the IRRF yielding after the consideration of orthogonalities:

ẍAB · eaAB = ρ̈ + 0 + ρ ëaAB · eaAB (4.13a)

ẍAB · ecAB = 0 + 0 + ρ ëaAB · ecAB (4.13b)

ẍAB · erAB = 0 + 2 ρ̇ |ėaAB| + ρ ëaAB · erAB. (4.13c)

For theGRACE scenario the applicable equation is (4.13a) but the reader should keep
inmind that the acceleration approach is generally a three-dimensional approach. The
full exploitation of the approach however requires the observation of the unit vector(s)
and its derivatives with the same precision as the inter-satellite observations which
is not possible with GPS. Only Eq. (4.13a) can be solved for the range acceleration
yielding an observation on the left-hand side which solely comes from the K-Band
system. For the last term in (4.13a) the following relations hold which make the
connection to the relative velocity vector and thus the influence by GPS clear:
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ρ ëaAB · eaAB = xAB · ëaAB = ẋAB · ėaAB
= −ρ |ėaAB|2 = − 1

ρ

(

ẋAB · ẋAB − ρ̇2
)

. (4.14)

The reader is advised to reproduce these relations in order to fully understand the
relation between the various components.

So far this section dealt only with the geometry and kinematic quantities. By con-
sidering Newton’s second law and forming the relation between the relative acceler-
ation vector and the relative gradient of the gravitational field

ẍAB = ẍB − ẍA = ∇VB − ∇VA = ∇VAB,

an equation of motion for the case of GRACE can be derived:

∇VAB · eaAB = ρ̈ − 1

ρ

(

ẋAB · ẋAB − ρ̇2
)

(4.15)

Equation (4.15) is known as the basic equation of the acceleration approach con-
necting the range acceleration to the gradient of the gravitational field. It is also
immediately evident that no integration is necessary if the relative velocity vector
ẋAB is observed. Obviously it has to be observed with a matching precision on the
level of the range acceleration in order to take full advantage of the highly-precise
inter-satellite observation. Practically this is not fulfilled in the case of GRACE.
The range-quantities are observed with the K-band microwave system with a preci-
sion of ≈1µm for the range, ≈0.1 µm/s for the range-rate or ≈10nm/s2 for the range
accelerations whereas the relative velocity vector can only be observed with GPS on
a precision level of ≈0.1mm/s .

Figure4.2 shows an example of the impact ofGPS errors on the gravity field recov-
ery for a GRACE scenario. The blue solution assumes the relative velocity vector to
be error-free and is only limited by errors in the range acceleration which have been
simulated as white noise with zero mean and a standard deviation of ≈10nm/s2 . In
case of the red solution the simulated GPS observations have also been contaminated
with white noise with zero mean and a standard deviation of ≈0.1mm/s . The quality
of the gravity field solution consequently reduces by approximately one order of
magnitude. For real data this corresponds to solutions based on CHAMP data which
are approximately one order of magnitude worse than state-of-the-art gravity field
solutions from GRACE. In order to take full advantage of the precision of the K-
band observations using the acceleration approach as is, the precision of the relative
velocity vector needs to be reduced by two to three orders of magnitude which is
unrealistic considering the current knowledge and limitations of GPS observations.
Therefore the relative velocity vector has to be considered as unknown which will
be discussed in the subsequent section and will be coined the rigorous solution. The
careful reader will realize that considering the relative velocity vector as unknown
will still require the solution of the variational equations as there is no linear relation
between any of the functionals of the gravitational field and the velocity of a satel-
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Fig. 4.2 Gravity field recovery from simulated GRACE observations till degree and order 30:
signal curve in black; K-band limited solution in blue; GPS-limited solution in red

lite. Strictly speaking the rigorous solution does therefore not belong to the class of
in-situ observations but to the class of solutions based on the variational equations.
Nevertheless it is important to first present the complete solution before simplifica-
tions and assumptions are introduced that allow the solution to be real in-situ. This
solution will be called the approximate solution and is introduced in Sect. 4.2.2.

4.2.1 Rigorous Solution

GRACE quantities like the relative velocity vector ẋAB cannot be observed with the
same precision as the K-band system-derived quantities and have to be considered
unknown. The mathematical model of the acceleration approach for the low-low
satellite-to-satellite tracking (ll-SST) case is therefore given as:

ρ̈ = ẍAB · eaAB + 1

ρ
ẋAB · ẋAB − ρ̇2

ρ

= (∇VB − ∇VA) · eaAB + 1

ρ
ẋAB · ẋAB − ρ̇2

ρ
(4.16)

= f + g1 + g2
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For convenience the abbreviations:

f = (∇VB − ∇VA) · eaAB,

g1 = 1

ρ
ẋAB · ẋAB and

g2 = − ρ̇2

ρ

are introduced. Note that f actually consists of two parts: (1) the relative gradient
and (2) the LOS-vector. The latter is dependent on the position of the satellites and
thus on the gravity field. Therefore it will be necessary to split f in Sect. 4.2.1.3 into
two components f1 and f2 as well. The solution of the variational equations requires
the linearisation of the mathematical model. The first step is therefore to introduce a
priori observations and reduce the equation system to residual quantities for which
a subsequent linearisation holds:

ρ̈ − ρ̈0 = (∇VB − ∇VA) · eaAB + 1

ρ

(

ẋAB · ẋAB − ρ̇2
)

− (∇V 0
B − ∇V 0

A

) · ea,0AB − 1

ρ0

(

ẋ0AB · ẋ0AB − (

ρ̇0
)2

)

(4.17)

Practically itmeans that somekindof ‘observed’ orbit is needed tofit and approximate
a dynamic orbit. ‘Observed’ in this context means that it is normally coming from
a kinematic or (reduced-)dynamic orbit determination. For GRACE, the GNV1B
product or one of the available kinematic orbits may be used. If such an orbit is
not available, an initial orbit determination process needs to be included which will
multiply the efforts. Linearisation of the right-hand side yields:

ρ̈ − ρ̈0 ≈
∑

i

∂ f

∂pi
Δpi +

∑

i

∂g1
∂pi

Δpi +
∑

i

∂g2
∂pi

Δpi (4.18)

with

(∇VB − ∇VA) · eaAB − (∇V 0
B − ∇V 0

A

) · ea,0AB =
∑

i

∂ f

∂pi
Δpi + �

2

1

ρ
ẋAB · ẋAB − 1

ρ0
ẋ0AB · ẋ0AB =

∑

i

∂g1
∂pi

Δpi + �
2

− ρ̇2

ρ
+

(

ρ̇0
)2

ρ0
=

∑

i

∂g2
∂pi

Δpi + �
2,
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where �
2 denotes neglected terms of second order or higher. The parameter pi rep-

resent all unknown parameters that are to be estimated in a least-squares adjustment.
These are specifically:

1. six initial conditions x (t0) . . . ż (t0) for each of the two satellites,
2. spherical harmonic coefficients Clm and Slm ,
3. accelerometer calibration parameters such as bias, drift and scaling,
4. empirical constant or linear accelerations and
5. any possible other parameter of interest ...

After linearisation the acceleration approach can be solved in its rigorous form by
solving the variational equations. Most frequently two approaches are used: (1) the
classical approach by setting up differential equations for each unknown and (2) the
variation of constant approach, e.g. [64]. The second approach is normally faster in
the implementation and is followed here.

4.2.1.1 Variational Equations for the Initial Conditions
(Homogeneous Solution)

The solution of the variational equations by themethod of the variation of constant is a
two-step approach. First a homogeneous solution is derivedwhich resembles here the
partial derivatives towards the initial conditions of the satellite and subsequently the
inhomogeneous solution includes all other parameters of interest. The homogeneous
solution yields the partial derivatives of the position x = (x, y, z) and the velocity
ẋ = (ẋ, ẏ, ż) towards the initial conditions x0 = (x0, y0, z0) and ẋ0 = (ẋ0, ẏ0, ż0)
which are determined by setting up a system of differential equations and solving
them simultaneously with the orbit approximation of the ‘observed’ orbit by a purely
dynamic orbit integration:

d

dt2
Φ = F(x, ẋ) · Φ, (4.19)

where F is the change in the force function. Theoretically, this tensor has to be
set up for all forces included in the orbit integration but practically it is normally
sufficient to only consider the gravitational tensor. Φ contains the partial derivative
of the position towards the initial conditions, i.e. for every time point the matrix has
the dimension [3 × 6]

d

dt2

⎡

⎢

⎣

∂x
∂x0

∂x
∂y0

. . . ∂x
∂ ẏ0

∂x
∂ ż0

∂y
∂x0

∂y
∂y0

. . .
∂y
∂ ẏ0

∂y
∂ ż0

∂z
∂x0

∂z
∂y0

. . . ∂z
∂ ẏ0

∂z
∂ ż0

⎤

⎥

⎦ =
⎡

⎢

⎣

∂2V
∂x2

∂2V
∂x∂y

∂2V
∂x∂z

∂2V
∂y∂x

∂2V
∂y2

∂2V
∂y∂z

∂2V
∂z∂x

∂2V
∂z∂y

∂2V
∂z2

⎤

⎥

⎦ ·
⎡

⎢

⎣

∂x
∂x0

∂x
∂y0

. . . ∂x
∂ ẏ0

∂x
∂ ż0

∂y
∂x0

∂y
∂y0

. . .
∂y
∂ ẏ0

∂y
∂ ż0

∂z
∂x0

∂z
∂y0

. . . ∂z
∂ ẏ0

∂z
∂ ż0

⎤

⎥

⎦

Instead of integrating the equation twice, every second order differential equation
can be rewritten as a set of first order differential equations:
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d

dt

(

Φ

Φ̇

)

=
(

Φ̇

F(x, ẋ) · Φ

)

(4.20)

The solution will then yield the partial derivatives of position and velocity:

d

dt

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂x
∂x0

∂x
∂y0

. . . ∂x
∂ ẏ0

∂x
∂ ż0

∂y
∂x0

∂y
∂y0

. . .
∂y
∂ ẏ0

∂y
∂ ż0

∂z
∂x0

∂z
∂y0

. . . ∂z
∂ ẏ0

∂z
∂ ż0

∂ ẋ
∂x0

∂ ẋ
∂y0

. . . ∂ ẋ
∂ ẏ0

∂ ẋ
∂ ż0

∂ ẏ
∂x0

∂ ẏ
∂y0

. . .
∂ ẏ
∂ ẏ0

∂ ẏ
∂ ż0

∂ ż
∂x0

∂ ż
∂y0

. . . ∂ ż
∂ ẏ0

∂ ż
∂ ż0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∂2V
∂x2

∂2V
∂x∂y

∂2V
∂x∂z 0 0 0

∂2V
∂y∂x

∂2V
∂y2

∂2V
∂y∂z 0 0 0

∂2V
∂z∂x

∂2V
∂z∂y

∂2V
∂z2 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂x
∂x0

∂x
∂y0

. . . ∂x
∂ ẏ0

∂x
∂ ż0

∂y
∂x0

∂y
∂y0

. . .
∂y
∂ ẏ0

∂y
∂ ż0

∂z
∂x0

∂z
∂y0

. . . ∂z
∂ ẏ0

∂z
∂ ż0

∂ ẋ
∂x0

∂x
∂y0

. . . ∂x
∂ ẏ0

∂x
∂ ż0

∂ ẏ
∂x0

∂y
∂y0

. . .
∂y
∂ ẏ0

∂y
∂ ż0

∂ ż
∂x0

∂z
∂y0

. . . ∂z
∂ ẏ0

∂z
∂ ż0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The equation is integrated along with orbit and yields a [6 × 6] matrix Φ(t) with
the partial derivatives of the position and velocity w.r.t. the initial conditions at each
time point t . For completeness the shape and structure of Φ is given:

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ ẋ0

∂x
∂ ẏ0

∂x
∂ ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ ẋ0

∂y
∂ ẏ0

∂y
∂ ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ ẋ0

∂z
∂ ẏ0

∂z
∂ ż0

∂ ẋ
∂x0

∂ ẋ
∂y0

∂ ẋ
∂z0

∂ ẋ
∂ ẋ0

∂ ẋ
∂ ẏ0

∂ ẋ
∂ ż0

∂ ẏ
∂x0

∂ ẏ
∂y0

∂ ẏ
∂z0

∂ ẏ
∂ ẋ0

∂ ẏ
∂ ẏ0

∂ ẏ
∂ ż0

∂ ż
∂x0

∂ ż
∂y0

∂ ż
∂z0

∂ ż
∂ ẋ0

∂ ż
∂ ẏ0

∂ ż
∂ ż0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

It is convenient to store the elements of the matrix in one single line for one particular
epoch. The initial epoch matrix is set equal to the unit matrix. One such matrix is
needed for each GRACE satellite.

4.2.1.2 Variation of Constants (Inhomogeneous Solution)

Once the homogeneous solution is derived, the inhomogeneous solution can be
derived by the method of the variation of constants where the inhomogeneous solu-
tion is formed by a linear combination of the homogeneous solution. The general
concept is given as:

α pi (t) =
t

∫

t0

Φ−1 (τ ) · ∂h (τ )

∂pi
dτ (4.21)

φ pi (t) =
6

∑

n=1

αn,pi (t) · Φn (t) . (4.22)
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For each unknown parameter, the partial derivative of the force function h towards
the unknown parameter pi is needed. Details for the considered parameters are listed
below. Here this vector is of dimension [3 × 1] and needs to be augmented by zeros
to comply with the shape of Φ, i.e. the partial derivative has the shape:

∂h (τ )

∂pi
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0

∂hx/∂pi
∂hy/∂pi
∂hz/∂pi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The vector is multiplied with the inverse of the matrix Φ at time τ and the vectorial
weighting factor α pi for a particular time point t is derived by integrating the product
to the time of interest t . t0 corresponds to the initial epoch, i.e. the time point when
the satellite has the coordinates x0 = (x0, y0, z0) and ẋ0 = (ẋ0, ẏ0, ż0). Finally, the
linear combination is formed by multiplying the columns of Φ with the weighting
factor α pi . For each time point t a [6 × 1] vector containing the partial derivatives of
position and velocity towards the desired unknown parameter pi is the result, i.e.:

φ pi = [

∂x/∂pi ∂y/∂pi ∂z/∂pi ∂ ẋ/∂pi ∂ ẏ/∂pi ∂ ż/∂pi
]T

,

or in other words φ pi describes the change of the orbit in response to a change in the
parameter pi . With the homogeneous solution and the concept for inhomogeneous
solution all necessary ingredients to derive the partial derivatives of f , g1 and g2 in
Sects. 4.2.1.3–4.2.1.5 are available. The last step within this section is to provide the
partial derivatives ∂h

∂pi
for spherical harmonic coefficients, accelerometer parameters

such as bias, drift and scaling factors and empirical constant or linear accelerations.
The derivation of other parameters of interest is left up to the reader.

Spherical Harmonic Coefficients

The force function due to the gravity field of the Earth is the gradient of the gravitation
potential V . The gradient of V at a specific location (λ, φ, r) is best calculated using
non-singular expressions, e.g. [95]:

∇V (λ, φ, r) =
⎡

⎣

∂V/∂xE
∂V/∂yE
∂V/∂zE

⎤

⎦ = (4.23)

GM

2R2

∞
∑

l=0

(

R

r

)l+2 √

2l + 1

2l + 3

l
∑

m=0

Clm

⎡

⎣

Rl+1,m−1 − Rl+1,m+1

−Ql+1,m−1 − Ql+1,m+1

− 2Rl+1,m

⎤

⎦+ (4.24)

Slm

⎡

⎣

Ql+1,m−1 − Ql+1,m+1

Rl+1,m−1 + Rl+1,m+1

− 2Ql+1,m

⎤

⎦
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with the following definitions:

Rl+1,m+1 = Pl+1,m+1 (sin φ) cos ((m + 1) λ)

√

(l + m + 1) (l + m + 2)
(

1 + δ0,m
)

Rl+1,m = Pl+1,m (sin φ) cos (mλ)
√

(l − m + 1) (l + m + 1)

Rl+1,m−1 = Pl+1,m−1 (sin φ) cos ((m − 1) λ)

√

(l − m + 1) (l − m + 2)
(

1 + δ1,m
)

= 0 ∀ m ≤ 0

Ql+1,m+1 = Pl+1,m+1 (sin φ) sin ((m + 1) λ)

√

(l + m + 1) (l + m + 2)
(

1 + δ0,m
)

Ql+1,m = Pl+1,m (sin φ) sin (mλ)
√

(l − m + 1) (l + m + 1)

= 0 ∀ m ≤ 0

Ql+1,m−1 = Pl+1,m−1 (sin φ) sin ((m − 1) λ)

√

(l − m + 1) (l − m + 2)
(

1 + δ1,m
)

= 0 ∀ m ≤ 1

Using these equations the resulting gradient is given in the Earth-fixed frame, i.e.
the equation system yields the partial derivatives of V towards Cartesian Earth-fixed
coordinates xE , yE and zE although λ, φ and r have been used for the calculation.
Taking the derivative towards Clm yields:

∂h (τ )

∂Clm
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0

∂hx/∂Clm
∂hy/∂Clm
∂hz/∂Clm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0

∂(∂V/∂x)/∂Clm
∂(∂V/∂y)/∂Clm
∂(∂V/∂z)/∂Clm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= (4.25)

= GM

2R2

(

R

r

)l+2 √

2l + 1

2l + 3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0

RE
I

⎛

⎝

Rl+1,m−1 − Rl+1,m+1
−Ql+1,m−1 − Ql+1,m+1

− 2Rl+1,m

⎞

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where RE
I is the rotationmatrix from theEarth-fixed to the inertial frame. The solution

according to Eqs. (4.21) and (4.22) yields

φClm
= [

∂x/∂Clm ∂y/∂Clm ∂z/∂Clm ∂ ẋ/∂Clm ∂ ẏ/∂Clm ∂ ż/∂Clm

]T

Analogously the derivative towards the Slm is derived:

∂h (τ )

∂Slm
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0

∂hx/∂Slm
∂hy/∂Slm
∂hz/∂Slm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0

∂(∂V/∂x)/∂Slm
∂(∂V/∂y)/∂Slm
∂(∂V/∂z)/∂Slm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= (4.26)
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= GM

2R2

(

R

r

)l+2 √

2l + 1

2l + 3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0

RE
I

⎛

⎝

Ql+1,m−1 − Ql+1,m+1
Rl+1,m−1 + Rl+1,m+1

− 2Ql+1,m

⎞

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

yielding

φSlm = [

∂x/∂Slm ∂y/∂Slm ∂z/∂Slm ∂ ẋ/∂Slm ∂ ẏ/∂Slm ∂ ż/∂Slm
]T

Accelerometer Calibration Parameters (Bias, Drift and Scaling)

The force model for the accelerometer calibration parameters is given as:

h (t) = RSBF
I (t)

(

Sfobs (t) + b + d (t − t0)
)

(4.27)

where RSBF
I is the rotation matrix from the space-body to the inertial frame, S a

diagonal matrix with scaling parameters, b bias parameters and d drift parameters.
In the following the element in the i th-row and j th-column of the rotation matrix will
be abbreviated as Ri j . The partial derivatives towards the unknown parameters are
then given as:

∂h
∂sx

=
⎡

⎣

R11 · f obsx
R21 · f obsy

R31 · f obsz

⎤

⎦
∂h
∂sy

=
⎡

⎣

R12 · f obsx
R22 · f obsy

R32 · f obsz

⎤

⎦
∂h
∂sz

=
⎡

⎣

R13 · f obsx
R23 · f obsy

R33 · f obsz

⎤

⎦

∂h
∂bx

=
⎡

⎣

R11

R21

R31

⎤

⎦
∂h
∂by

=
⎡

⎣

R12

R22

R32

⎤

⎦
∂h
∂bz

=
⎡

⎣

R13

R23

R33

⎤

⎦

∂h
∂dx

=
⎡

⎣

R11 (t − t0)
R21 (t − t0)
R31 (t − t0)

⎤

⎦
∂h
∂dy

=
⎡

⎣

R12 (t − t0)
R22 (t − t0)
R32 (t − t0)

⎤

⎦
∂h
∂dz

=
⎡

⎣

R13 (t − t0)
R23 (t − t0)
R33 (t − t0)

⎤

⎦

Solving by variation of the constant yields for each time point t :

φsx = [∂x/∂sx ∂y/∂sx ∂z/∂sx ∂ ẋ/∂sx ∂ ẏ/∂sx ∂ ż/∂sx ]T

φsy = [∂x/∂sy ∂y/∂sy ∂z/∂sy ∂ ẋ/∂sy ∂ ẏ/∂sy ∂ ż/∂sy ]T

φsz = [∂x/∂sz ∂y/∂sz ∂z/∂sz ∂ ẋ/∂sz ∂ ẏ/∂sy ∂ ż/∂sz ]T

φbx = [∂x/∂bx ∂y/∂bx ∂z/∂bx ∂ ẋ/∂bx ∂ ẏ/∂bx ∂ ż/∂bx ]T

φby = [∂x/∂by ∂y/∂by ∂z/∂by ∂ ẋ/∂by ∂ ẏ/∂by ∂ ż/∂by ]T

φbz = [∂x/∂bz ∂y/∂bz ∂z/∂bz ∂ ẋ/∂bz ∂ ẏ/∂by ∂ ż/∂bz ]T

φdx = [∂x/∂dx ∂y/∂dx ∂z/∂dx ∂ ẋ/∂dx ∂ ẏ/∂dx ∂ ż/∂dx ]T

φdy = [∂x/∂dy ∂y/∂dy ∂z/∂dy ∂ ẋ/∂dy ∂ ẏ/∂dy ∂ ż/∂dy ]T

φdz = [∂x/∂dz ∂y/∂dz ∂z/∂dz ∂ ẋ/∂dz ∂ ẏ/∂dy ∂ ż/∂dz ]T .
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Piecewise Constant Accelerations

For the orbit-fit empirical accelerations are needed as not all forces can be modeled
or observed well. One possible model is to apply piecewise constant accelerations
in the orbit frame defined by the three unit vectors:

er = x
|x| ec = x × ẋ

|x × ẋ| ea = ec × er
|ec × er| (4.28)

designating the radial, along- and cross-track direction. These unit vectors are given
in the inertial frame and thus no rotation matrix will be needed as in case of the
accelerometer calibration. Note that they differ from the unit vectors of the IRRF
as the unit vectors here are specific for each of the satellite whereas the IRRF unit
vectors are based on the LOS-vector. The force model is given as:

h (t) = ar · er (t) + ac · ec (t) + aa · ea (t) . (4.29)

The corresponding partial derivatives towards the unknown parameters ar , ac and aa
are then easily derived as:

∂h
∂ar

= er
∂h
∂ac

= ec
∂h
∂aa

= ea

For the practical implementation the A-matrix requires special treatment if several
piecewise constant accelerations in one direction are estimated per arc at the same
time. The last entryφsi (tend) for one particular acceleration needs to be repeated in all
subsequent rows, i.e. for all subsequently estimated accelerations the accelerations
of previous pieces remain constant. Solving by variation of the constant yields for
each piecewise linear arc:

φari
= [∂x/∂ari ∂y/∂ari ∂z/∂ari ∂ ẋ/∂ari ∂ ẏ/∂ari ∂ ż/∂ari ]

T

φaci
= [∂x/∂aci ∂y/∂aci ∂z/∂aci ∂ ẋ/∂aci ∂ ẏ/∂aci ∂ ż/∂aci ]

T

φaai
= [∂x/∂aai ∂y/∂aai ∂z/∂aai ∂ ẋ/∂aai ∂ ẏ/∂aai ∂ ż/∂aai ]

T

Piecewise linear accelerations

Piecewise constant accelerations can easily be extended to piecewise linear acceler-
ations by considering a trend in the force model.

h (t) = ari · t − ti−1

ti − ti−1
· er (t) + ari−1 · ti − t

ti − ti−1
· er (t)

+ aci · t − ti−1

ti − ti−1
· ec (t) + aci−1 · ti − t

ti − ti−1
· ec (t)

+ aai · t − ti−1

ti − ti−1
· ea (t) + aai−1 · ti − t

ti − ti−1
· ea (t) . (4.30)
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The corresponding partial derivatives towards the unknown parameters ar , ac and aa
are then easily derived as:

∂h
∂ari

= t − ti−1

ti − ti−1
· er ∂h

∂aci
= t − ti−1

ti − ti−1
· ec ∂h

∂aai
= t − ti−1

ti − ti−1
· ea

∂h
∂ari−1

= ti − t

ti − ti−1
· er ∂h

∂aci−1

= ti − t

ti − ti−1
· ec ∂h

∂aai−1

= ti − t

ti − ti−1
· ea

As aforementioned the last entry φsi (tend) for one particular acceleration needs to be
repeated in all subsequent rows if more than one empirical acceleration is estimated
per arc. Solving by the variation of the constant yields:

φari
= [∂x/∂ari ∂y/∂ari ∂z/∂ari ∂ ẋ/∂ari ∂ ẏ/∂ari ∂ ż/∂ari ]T

φaci
= [∂x/∂aci ∂y/∂aci ∂z/∂aci ∂ ẋ/∂aci ∂ ẏ/∂aci ∂ ż/∂aci ]

T

φaai
= [∂x/∂aai ∂y/∂aai ∂z/∂aai ∂ ẋ/∂aai ∂ ẏ/∂aai ∂ ż/∂aai ]

T .

After deriving the partial derivatives of the coordinates towards all parameters of
interest the final step is to connect these partial derivatives to the linearized mathe-
matical model in Eq. (4.18) by applying the chain-rule.

4.2.1.3 Partial Derivatives for f

The term f is the relative gravity vector (∇VB − ∇VA) projected on the LOS-vector
eaAB. As mentioned before the term needs to be split into two parts as both the relative
gravity vector as well as the LOS-vector depend on the gravity field.

f = (∇VB − ∇VA) · eaAB (4.31)

The line-of-sight vector eaAB is given as:

eaAB = xAB
|xAB| = 1

√

(xB − xA)
2 + (yB − yA)

2 + (zB − zA)
2

⎡

⎣

xB − xA
yB − yA
zB − zA

⎤

⎦ (4.32)

Applying the chain rule yields:

∂ f

∂pi
= ∂

∂pi
(∇VB − ∇VA) · eaAB + (∇VB − ∇VA) · ∂eaAB

∂pi
(4.33)

∂ f

∂pi
= ∂ f1

∂pi
+ ∂ f2

∂pi

For most of the unknown parameters of interest their partial derivatives derived in
Sects. 4.2.1.1 and 4.2.1.2 are linked via applying the chain-rule and substitution to
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Eq. (4.34). The partial derivatives of the relative gravity vector w.r.t. the spherical
harmonic coefficients are the only exception as they can be derived analytically.

Partial Derivatives Towards Clm and Slm

The partial derivatives of f towards the spherical harmonics consist of two terms:
(1) the derivative of the relative gravity vector and (2) the derivative of the line-of-
sight vector. Thus the chain rule needs to be applied. The relation is given as:

∂ f1
∂Clm

= ∂(∂VB/∂xE )

∂Clm
· e0AB,xE + ∂(∂VB/∂yE )

∂Clm
· e0AB,yE + ∂(∂VB/∂zE )

∂Clm
· e0AB,zE

(4.34)

− ∂(∂VA/∂xE )

∂Clm
· e0AB,xE − ∂(∂VA/∂yE )

∂Clm
· e0AB,yE − ∂(∂VA/∂zE )

∂Clm
· e0AB,zE

∂ f2
∂Clm

= 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
)2 − (

ρ0
)2

(

x0B − x0A
) (

y0B − y0A
)

(

x0B − x0A
) (

z0B − z0A
)

⎤

⎦ ·
(

∂xA
∂Clm

− ∂xB
∂Clm

)

(4.35)

+ 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
) (

y0B − y0A
)

(

y0B − y0A
)2 − (

ρ0
)2

(

y0B − y0A
) (

z0B − z0A
)

⎤

⎦ ·
(

∂yA
∂Clm

− ∂yB
∂Clm

)

+ 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
) (

z0B − z0A
)

(

y0B − y0A
) (

z0B − z0A
)

(

z0B − z0A
)2 − (

ρ0
)2

⎤

⎦ ·
(

∂zA
∂Clm

− ∂zB
∂Clm

)

The Taylor-point of the linearisation is the a priori orbit. For convenience the partial
derivatives of the relative gravity vector are best determined in the Earth-fixed frame
and the partial derivatives are given in Eq. (4.25). Being in the Earth-fixed frame, the
Earth-fixed LOS-vector needs to be derived by rotation. For partial derivatives related
to eaAB the gravity vector needs to be determined in the inertial frame. Remember
that the gravity vector is a force, i.e. dynamical quantity, and the Earth-fixed gravity
vector can therefore be rotated to the inertial frame by using the rotation matrix from
the Earth-fixed to the inertial frame RE

I , c.f. Sect. 4.1.2.
Analogously the derivative towards Slm can be determined.

∂ f1
∂Slm

= ∂(∂VB/∂xE )

∂Slm
· e0AB,xE + ∂(∂VB/∂yE )

∂Slm
· e0AB,yE + ∂(∂VB/∂zE )

∂Slm
· e0AB,zE

(4.36)

− ∂(∂VA/∂xE )

∂Slm
· e0AB,xE − ∂(∂VA/∂yE )

∂Slm
· e0AB,yE − ∂(∂VA/∂zE )

∂Slm
· e0AB,zE
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∂ f2
∂Slm

= 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
)2 − (

ρ0
)2

(

x0B − x0A
) (

y0B − y0A
)

(

x0B − x0A
) (

z0B − z0A
)

⎤

⎦ ·
(

∂xA
∂Slm

− ∂xB
∂Slm

)

(4.37)

+ 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
) (

y0B − y0A
)

(

y0B − y0A
)2 − (

ρ0
)2

(

y0B − y0A
) (

z0B − z0A
)

⎤

⎦ ·
(

∂yA
∂Slm

− ∂yB
∂Slm

)

+ 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
) (

z0B − z0A
)

(

y0B − y0A
) (

z0B − z0A
)

(

z0B − z0A
)2 − (

ρ0
)2

⎤

⎦ ·
(

∂zA
∂Slm

− ∂zB
∂Slm

)

Partial Derivatives Towards All Other Unknown Parameters

The partial derivatives of f towards all other parameters resemble the same structure.
Introducing the elements of the gravity tensor V i

j j in the inertial frame, rotating the
line-of-sight vector to the inertial frame eaAB and applying the chain rule yields for
GRACE A:

∂ f1
∂piA

= −
[

V i,0
xx,Ae

i,0
AB,x + V i,0

xy,Ae
i,0
AB,y + V i,0

xz,Ae
i,0
AB,z

]

· ∂xA
∂piA

(4.38)

−
[

V i,0
yx,Ae

i,0
AB,x + V i,0

yy,Ae
i,0
AB,y + V i,0

yz,Ae
i,0
AB,z

]

· ∂yA
∂piA

−
[

V i,0
zx,Ae

i,0
AB,x + V i,0

zy,Ae
i,0
AB,y + V i,0

zz,Ae
i,0
AB,z

]

· ∂zA
∂piA

∂ f2
∂piA

= 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
)2 − (

ρ0
)2

(

x0B − x0A
) (

y0B − y0A
)

(

x0B − x0A
) (

z0B − z0A
)

⎤

⎦ · ∂xA
∂piA

(4.39)

+ 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
) (

y0B − y0A
)

(

y0B − y0A
)2 − (

ρ0
)2

(

y0B − y0A
) (

z0B − z0A
)

⎤

⎦ · ∂yA
∂piA

+ 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
) (

z0B − z0A
)

(

y0B − y0A
) (

z0B − z0A
)

(

z0B − z0A
)2 − (

ρ0
)2

⎤

⎦ · ∂zA
∂piA

Analogously for GRACE B:
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∂ f1
∂piB

=
[

V i,0
xx,Be

i,0
AB,x + V i,0

xy,Be
i,0
AB,y + V i,0

xz,Be
i,0
AB,z

]

· ∂xB
∂piB

(4.40)

+
[

V i,0
yx,Be

i,0
AB,x + V i,0

yy,Be
i,0
AB,y + V i,0

yz,Be
i,0
AB,z

]

· ∂yB
∂piB

+
[

V i,0
zx,Be

i,0
AB,x + V i,0

zy,Be
i,0
AB,y + V i,0

zz,Be
i,0
AB,z

]

· ∂zB
∂piB

∂ f2
∂piB

= − 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
)2 − (

ρ0
)2

(

x0B − x0A
) (

y0B − y0A
)

(

x0B − x0A
) (

z0B − z0A
)

⎤

⎦ · ∂xB
∂piB

(4.41)

− 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
) (

y0B − y0A
)

(

y0B − y0A
)2 − (

ρ0
)2

(

y0B − y0A
) (

z0B − z0A
)

⎤

⎦ · ∂yB
∂piB

− 1
(

ρ0
)3 · (∇V 0

B − ∇V 0
A

) ·
⎡

⎣

(

x0B − x0A
) (

z0B − z0A
)

(

y0B − y0A
) (

z0B − z0A
)

(

z0B − z0A
)2 − (

ρ0
)2

⎤

⎦ · ∂zB
∂piB

piA and piB need to be replaced depending on the unknown of interest according to
the following scheme:

initial conditions: x0, y0, z0, ẋ0, ẏ0, ż0
accelerometer parameter: sx , sy , sz , bx , by , bz , dx , dy , dz
empirical accelerations: ar , ac, aa

4.2.1.4 Partial Derivatives for g1

The term g1 consists of the square of the length of the relative velocity vector divided
by the range:

g1 = 1

ρ
ẋAB · ẋAB (4.42)

with

ẋAB · ẋAB = (ẋB − ẋ A)
2 + (ẏB − ẏA)

2 + (ż B − ż A)
2

ρ =
√

(xB − xA)
2 + (yB − yA)

2 + (zB − zA)
2

Remember that the relative velocity vector can only be observed by GPS currently
and cannot be determined with sufficient precision in order to take full advantage of
the K-band observations. The range itself is observed but with an integer ambiguity
(phase observation) and can therefore also be seen as an unknown.
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The partial derivatives towards all unknowns (including the spherical harmonic
coefficients) are derived according to the same scheme by forming chains of partial
derivatives and linking them to the partial derivatives of the position and velocity of
each satellite.

GRACE A:

∂g1
∂piA

= x0B − x0A
(

ρ0
)3

(

ẋ0AB · ẋ0AB
) ∂xA

∂piA
+ y0B − y0A

(

ρ0
)3

(

ẋ0AB · ẋ0AB
) ∂yA

∂piA

+ z0B − z0A
(

ρ0
)3

(

ẋ0AB · ẋ0AB
) ∂zA

∂piA

− 2

ρ0

(

ẋ0B − ẋ0A
) ∂ ẋ A

∂piA
− 2

ρ0

(

ẏ0B − ẏ0A
) ∂ ẏA

∂piA
− 2

ρ0

(

ż0B − ż0A
) ∂ ż A

∂piA
(4.43)

GRACE B:

∂g1
∂piB

= − x0B − x0A
(

ρ0
)3

(

ẋ0AB · ẋ0AB
) ∂xB

∂piB
− y0B − y0A

(

ρ0
)3

(

ẋ0AB · ẋ0AB
) ∂yB

∂piB

− z0B − z0A
(

ρ0
)3

(

ẋ0AB · ẋ0AB
) ∂zB

∂piB

+ 2

ρ0

(

ẋ0B − ẋ0A
) ∂ ẋB

∂piB
+ 2

ρ0

(

ẏ0B − ẏ0A
) ∂ ẏB

∂piB
+ 2

ρ0

(

ż0B − ż0A
) ∂ ż B

∂piB
(4.44)

piA and piB need again to be replaced depending on the unknown of interest according
to the following scheme:

spherical harmonic coefficients: Clm , Slm
initial conditions: x0, y0, z0, ẋ0, ẏ0, ż0
accelerometer parameter: sx , sy , sz , bx , by , bz , dx , dy , dz
empirical accelerations: ar , ac, aa

4.2.1.5 Partial Derivatives for g2

The term g2 consists of the square of the range rate divided by the range:

g2 = − ρ̇2

ρ
= − [(ẋB − ẋ A) (xB − xA) + (ẏB − ẏA) (yB − yA) + (żB − ż A) (zB − zA)]2

[(xB − xA) + (yB − yA) + (zB − zA)]3/2
(4.45)

Again all partial derivatives are derived according to the same scheme, i.e. by forming
chains of partial derivatives and linking to the partial derivatives of the position and
velocity of each satellite towards the unknown of interest.
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GRACE A:

∂g2
∂piA

=
[

2
ρ̇0

(

ρ0
)5

(

ẋ0B − ẋ0A

)

− 3
(

ρ̇0
)2

2
(

ρ0
)3

]

∂xA
∂piA

(4.46)

+
[

2
ρ̇0

(

ρ0
)5

(

ẏ0B − ẏ0A

)

− 3
(

ρ̇0
)2

2
(

ρ0
)3

]

∂yA
∂piA

+
[

2
ρ̇0

(

ρ0
)5

(

ż0B − ż0A

)

− 3
(

ρ̇0
)2

2
(

ρ0
)3

]

∂zA
∂piA

+ 2
ρ̇0

(

ρ0
)2

(

x0B − x0A

) ∂ ẋ A
∂piA

+ 2
ρ̇0

(

ρ0
)2

(

y0B − y0A

) ∂ ẏA
∂piA

+ 2
ρ̇0

(

ρ0
)2

(

z0B − z0A

) ∂ ż A
∂siA

GRACE B:

∂g2
∂piB

= −
[

2
ρ̇0

(

ρ0
)5

(

ẋ0B − ẋ0A

)

− 3
(

ρ̇0
)2

2
(

ρ0
)3

]

∂xB
∂piB

(4.47)

−
[

2
ρ̇0

(

ρ0
)5

(

ẏ0B − ẏ0A

)

− 3
(

ρ̇0
)2

2
(

ρ0
)3

]

∂yB
∂piB

−
[

2
ρ̇0

(

ρ0
)5

(

ż0B − ż0A

)

− 3
(

ρ̇0
)2

2
(

ρ0
)3

]

∂zB
∂piB

− 2
ρ̇0

(

ρ0
)2

(

x0B − x0A

) ∂ ẋB
∂piB

− 2
ρ̇0

(

ρ0
)2

(

y0B − y0A

) ∂ ẏB
∂piB

− 2
ρ̇0

(

ρ0
)2

(

z0B − z0A

) ∂ żB
∂piB

siA and siB need again to be replaced depending on the unknown of interest according
to the following scheme:

spherical harmonic coefficients: Clm , Slm
initial conditions: x0, y0, z0, ẋ0, ẏ0, ż0
accelerometer parameter: sx , sy , sz , bx , by , bz , dx , dy , dz
empirical accelerations: ar , ac, aa

This summarizes the derivation of the rigorous solution. For the implementation the
sum of all parameters towards all unknowns of interest has to be developed which
is a cumbersome task. Moreover, the rigorous solution is another implementation
of the variational equations which in-fact is more tedious than considering range
or range-rate measurements as primary observation quantities due to the additional
terms g1 and g2.

4.2.2 The Approximate Solution

One of the primary goals of the acceleration approach is to derive a linear relation
between range-accelerations and the relative gradient of the gravitational potential.
This may be achieved by two steps:



4 The Acceleration Approach 119

degree l
0 10 20 30 40 50 60 70 80 90

un
itl

es
s

10-12

10-11

10-10

10-9

10-8
Difference degree RMS w.r.t. EGM2008 for January 2007

EGM 2008
AIUB Rel02
CSR Rel05
GFZ Rel05
GRGS Rel05
ITSG 2014
JPL Rel05
Acc. Appr.

Fig. 4.3 Difference degree RMS w.r.t. EGM2008 of monthly solutions for January 2007 provided
by different processing centers and in comparison the solution based on the acceleration approach
(Acc. Appr.)

1. reduction to residual quantities and
2. assuming that the residual terms g1 − g01 and g2 − g02 can be neglected.

The mathematical model of Eq. (4.17) reduces then to:

ρ̈ − ρ̈0 ≈ (∇VB − ∇VA) · eaAB − (∇V 0
B − ∇V 0

A

) · ea,0AB (4.48)

The relation is linear and no integration of the variational equations is necessary
anymore. This is the most used version of the acceleration approach as it is easy to
understand and implement. The only remaining difficulty lies in the determination
of an a priori orbit with sufficient precision.

The quality of the solution depends however directly on the aforementioned
assumptions. For early solutions, these assumptions were fulfilled but with nowadays
gradually increasing precision of gravity field solutions based on other approaches
the assumptions limit the quality of a solution based on the acceleration approach.

Figure4.3 shows difference degree RMS values for monthly solutions (January
2007) provided by several processing centers and in red a solution based on the
acceleration approach. Note that the solutions primarily show the deficiencies of
EGM2008 indicated by the lumping of all monthly solutions although it is known that
they are of different quality. Nevertheless it becomes obvious that the assumptions in
the acceleration approach degrades the solution to an extend larger than the difference
between the monthly solutions and EGM2008. Errors primarily occur at degree 2



120 M. Weigelt

epoch
0 500 1000 1500 2000 2500 3000 3500 4000

nm
/s

2

-15

-10

-5

0

5

10

15

expected signal
noise level

term f1
term g1

Frequency (cpr)
100 101 102

|Y
(f)

|

10-110-13

10-12

10-11

10-10

10-9

10-8

10-7
Single-Sided Amplitude Spectrum of y(t)

expected signal
noise level
term f1

term f2
term g1
term g2

Fig. 4.4 Left panel: time domain representation of simulated range-acceleration compared to the
expected signal and awhite noise level of 1nm/s2 ; right panel amplitude spectrumof the components
of the acceleration approach

and around degree 16 which is close to the number of revolutions per day of the
GRACE system (repeat period).

The approximation can be further visualized in the time and spectral domain using
simulated data. For the following test, the gravity field model GOCO05s [96] was
used to simulate the true world and the gravity field model EGM2008 [114] was used
to create a priori values. Both model have been developed to degree and order 100.
All quantities are subsequently reduced to residual level.

Figure4.4 shows on the left panel the expected signal in blue which is the differ-
ence between the two vectors projected on the LOS along the orbit. The red curve
represents a white-noise level of 1nm/s2 . The orange curve represents the term f1
of Eq. (4.34) which is equivalent to the approximation in Eq. (4.48). Obviously, a
significant part of the signal is missing. The signal lost due to the approximation is
represented mostly by the term g1 of Eq. (4.42). Both f1 and g1 will sum nearly to the
expected signal. The findings are confirmed in the spectral domain shown in the right
panel of Fig. 4.4. The curves for the terms f1 and g1 will sum to the expected signal.
More importantly, it becomes evident that g1 resembles a smooth signal and thus
primarily affects the low degrees of the gravity field solution as previously observed.
From approximately 10 cpr onwards g1 is quickly decaying, i.e. it does not signifi-
cantly contribute to approximately degree 10 and higher. Besides terms f1 and g1,
the terms f2 and g2 are also shown which play a minor role in the case of GRACE.
For future gravity field missions based on the concept of low-low satellite-to-satellite
tracking the noise level (red curve) will drop and they will become important in due
time.

In conclusion, the approximated solution is not applicable for global solutions
nowadays anymore. Due to the quick decay of the term g1 in the spectral domain,
the approximate solution of the acceleration approach is nevertheless very much
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suitable for local applications. The reader should keep in mind that for a consistent
local processing first a global solution needs to be recovered which can only be
achieved by the rigorous approach of Sect. 4.2.1. Using any other global gravity field
model may result in long-wavelength aliasing to the local solution.

4.2.3 A Derivation Based on Rotational Quantities

The lack of precision in the GPS observation currently prevents the direct implemen-
tation of the acceleration approach without further measures. Thus, an alternative to
GPS and the rigorous implementation is needed. SLR observations are of limited use
due to their availability and only slightly better precision. The only other observation
system on-board the satellites are the star cameras which are used to determine the
orientation of the satellites but may also be used to derive rotation rates. Therefore
the acceleration approach needs to be reformulated in terms of rotations.

4.2.3.1 General Representation in Terms of Rotations

The basis are again the three unit vectors eaAB, e
c
AB and e

r
AB forming the instantaneous

relative reference frame (IRRF). The name has already been introduced in Sect. 4.2
but here the definition and choice of this frame is discussed in more detail. The name
has been chosen because first it is based on the relative position of the two satellites
and secondly its orientation and its origin is constantly changing with the LOS-
vector, i.e. the frame is instantaneous and moving with the satellites. Consequently,
the observation equation needs to be reformulated for amoving frame and the rotation
rates around the three axes of the IRRF need to be derived. For this, the three unit
vectors are arranged into a rotation matrix RI

F which describes the rotation from the
inertial frame I to the IRRF denoted by F :

RI
F =

⎡

⎢

⎣

(

eaAB
)T

(

ecAB
)T

(

erAB
)T

⎤

⎥

⎦ . (4.49)

Themultiplication of thismatrix with the transpose of its derivative forms the Cartan-
Matrix Ω which contains the rotation rates ωi around the three axes formed by the
unit vector:

Ω = RI
F

(

ṘI
F

)T =
⎡

⎣

0 −ωr ωc

ωr 0 −ωa

−ωc ωa 0

⎤

⎦ . (4.50)

By means of the rotation rates, the inertial unit-vector related quantities of Eq. (4.13)
can be transformed:
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RI
Fe

a,c,r
AB = ea,c,rAB,F (4.51a)

RI
Fė

a
AB = ėaAB,F + ω × eaAB,F (4.51b)

RI
Fë

a
AB = ëaAB,F + 2ω × ėaAB,F + ω × (

ω × eaAB,F

) + ω̇ × eaAB,F (4.51c)

Equations (4.51b) and (4.51c) can be significantly simplified since the three unit
vectors in the IRRF have the form:

eaAB,F =
⎡

⎣

1
0
0

⎤

⎦ ecAB,F =
⎡

⎣

0
1
0

⎤

⎦ erAB,F =
⎡

⎣

0
0
1

⎤

⎦ , (4.52)

and their derivatives are consequently all zero:

RI
Fė

a
AB = ω × eaAB,F (4.53a)

RI
Fë

a
AB = ω × (

ω × eaAB,F

) + ω̇ × eaAB,F (4.53b)

Projecting Eq. (4.11c) to the axes of the IRRF and introducing the relations of
Eq. (4.53) yields:

ẍAB,F · eaAB,F = ρ̈ − ρ
(

(ωc)
2 + (ωr)

2
)

(4.54a)

ẍAB,F · ecAB,F = 2 ρ̇ ωr − ρ ωaωc + ρ ω̇r (4.54b)

ẍAB,F · erAB,F = −2 ρ̇ ωc + ρ ωaωr − ρ ω̇c (4.54c)

Considering again the equation of motion (4.1), Eq. (4.54) forms a set of three equa-
tions connecting the relative acceleration and thus the relative gradient of the gravi-
tational potential to the K-Band observations and rotation rates around the three axes
of the IRRF.

So far, the equations imply no restrictions on the choice of the IRRF although the
definitions of Sect. 4.2 have been used but the Eq. (4.54) are actually independent of
the orientation of the frame and may be used with any setup of low-low satellite-to-
satellite tracking. Equation (4.54a) represents again the case of GRACE, i.e. for a
successful implementation of the equation in its current formulation the rotation rate
around the cross-track as well as the rotation rate around the radial axis needs to be
observed with a matching precision. In the subsequent section it will become clear
why the choice made in Sect. 4.2 is convenient but it is emphasized that this choice
is not the only possible one and better choices may exist.

4.2.3.2 Choosing an IRRF and the Resulting Equation System

So far, the implementation of the IRRF given in Sect. 4.2 has not been discussed in
detail. The basis for the IRRF is the LOS-vector or alongtrack direction of the rela-
tive observation system which is obviously defined. The radial direction is however
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Fig. 4.5 Rotation rates based on the simulated SC7 data

ambiguous. Choices could be the radial direction of (a) GRACE A, (b) GRACE B,
(c) the midpoint of the two satellites or (d) any other direction which seems conve-
nient. The cross-track component will complete then the right-handed triad. Besides
the definition one may define other constraints on the choice such as e.g. the acces-
sibility, the precision or a physical meaning. At the same time, one may strive for a
simplification of Eq. (4.54) and/or to minimize the number of rotations rates to be
measured.

The choice of the unit vectors presented in Eq. (4.12) has various such desirable
properties: (1) the unit vectors can be derived with sufficient precision from the GPS
observations; (2) the rotation rate around the radial directionωr becomes zero and the
rotation rate around the alongtrack direction ωa is orders of magnitudes smaller than
the rotation rate of the cross-track direction ωc. The latter is resembling the rotation
of the LOS-vector which rotates once per revolution, i.e. its rate is approximately
the orbit frequency of the two satellites. Figure4.5 visualizes the findings using the
SC7 data set provided by theUniversity of Bonn (http://www.igg.uni-bonn.de/apmg/
index.php?id=satellitenmissionen) simulating a GRACE-like scenario.

Introducing ωr ≈ 0 into Eq. (4.54) yields a considerable simplification:

∇VAB,F · eaAB,F = ρ̈ − ρ (ωc)
2 (4.55a)

∇VAB,F · ecAB,F = − ρ ωaωc (4.55b)

∇VAB,F · erAB,F = − 2 ρ̇ ωc − ρ ω̇c. (4.55c)

The case of GRACE is represented by Eq. (4.55a). Only the cross-track component
of the rotation rate vector ωc needs to be measured with matching precision. A
second direction is within reach if the change of the rotation rate around the cross-
track component ω̇c is either observed or derived from the rotation rate ωc e.g. by
numerical differentiation. Further, the cross-track component of the gravity field
(Eq.4.55b) is nearly zero as the multiplication of the range with the rotation rates
around the along-track and the cross-track direction is orders of magnitude smaller
than the two other components. Since this cross-track direction is also approximately

http://www.igg.uni-bonn.de/apmg/index.php?id=satellitenmissionen
http://www.igg.uni-bonn.de/apmg/index.php?id=satellitenmissionen
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oriented in East-West direction of the Earth, Eq. (4.55b) is amathematical description
of the poor East-West observation capability of GRACE which causes the striping
effects in the final GRACE products.

The current choice of the IRRF thus has many desirable properties but still may
not be the best and future research may reveal a better choice. Note that any possible
device tomeasure the rotation ratewill not remove the necessity forGPSobservations
as they are needed for the left-hand side and the determination of the IRRF itself.
The last open question for the application to GRACE is if it is possible to derive
the rotation rates with sufficient precision but simple tests showed that besides the
insufficient precision of the current star-tracker system of GRACE the motion of the
LOS-vector also cannot be separated from the attitude variations of each individual
satellite.

4.3 Exercises

Data and files needed for the following exercises are available online at:
http://www.geoq.uni-hannover.de/autumnschool-data
http://extras.springer.com

1: Working with noise-free observations

(a) Create observations of two satellites
Create position, velocity and accelerations for the two satellites. You may use
the program orbitsim for this. The call for GRACE A is:

[time,A_ipos,A_ivel,A_iacc] = orbitsim(’GraceA’,’goco05s’)

The call integrates for one day an orbit for satelliteAusing the gravity fieldmodel
GOCO05s till degree and order 60. The output is the time in a two column format:
the first column denotes the modified Julian day, the second column the time of
the day. The position is given in the inertial frame and in (m). Likewise velocity
and acceleration is given in (m/s) and (m/s2). Repeat the calculation for GRACE
B using:

[time,B_ipos,B_ivel,B_iacc] = orbitsim(’GraceB’,’goco05s’)

(b) Create range, range-rate and range acceleration
Calculate (noise-free) range, range-rate and range-acceleration observations.
Determine maximum, minimum and the RMS of the quantities.

(c) A priori quantities
Assume that GOCO05s represents the true world. Repeat steps 1 and 2 for the
gravity fields EGM96 and GGM03s. They are used as approximation. Take the
difference between the range calculated with GOCO05s and the other two, plot

http://www.geoq.uni-hannover.de/autumnschool-data
http://extras.springer.com
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it and compare the maximum, minimum and the RMS. Repeat the steps for the
range-rate and the range-acceleration. What do you observe? Why is there a
difference? Which one of the two approximation would you prefer?

(d) Unit vectors
Derive the along-track, cross-track and radial unit vector. Project the relative
acceleration (which is in this special case identical to the force) onto the different
axes and plot the results. What do you observe? Why don’t we use the radial
instead of the along-track component then?
Also determine the derivative of the along-track unit vector analytically and
numerically (you may use diff or a central difference differentiator, see e.g.
Wikipedia). Compare the two solutions and discuss if it is feasible to derive the
unit vector numerically.

2: Working with noisy observations

(a) White noise
Add white noise (using randn) values to the range, the range-rate, the range-
acceleration and the position and velocities of the two satellite which have been
based on the orbit integration of GOCO05s. You will have to choose a ‘reason-
able’ scaling parameter for your noise. How could you define ‘reasonable’ here?
The resulting vectors and matrices represent now your (pseudo-) observations
for the following parts.

(b) Signal-to-noise ratio
Derive the residual pseudo-observations by subtracting the noise-free range and
range-rate of EGM96 and GGM03s. Compare the noisy residual range observa-
tions with the noise-free residual range using both EGM96 and GGM03s. The
difference represents the signal-to-noise ratio (SNR). Plot the difference and take
the maximum, minimum and RMS. Obviously the SNR is higher for the EGM96
because the approximation is poorer than for GGM03s. Can you observe signal
in GGM03s or is it all hidden in the noise already? Repeat the steps for the
range-rate and the range-acceleration.

(c) Unit vectors
Derive the along-track unit vector and its derivative from the noisy observations.
Compare the results with the noise-free version and interpret the consequences
for the approach. Reduce the noise level (=scaling) for the position and veloc-
ity of your observations but leave the range, range-rate and range-acceleration
level unchanged. Find the point where the noise-level of the range-quantities will
dominate the noise. This means that the noise level is low enough to take full
advantage of the range observations and the GPS-observations are not the limit-
ing factor anymore. Note the noise level and discuss if such a level is achievable.

(d) Approximation
Now we focus on the centrifugal/radial term. Test the approximation, i.e. the
difference between the noise-free GOCO05s and EGM96. This difference must
be as small as possible. Compare it to the noise level of the range acceleration.
Repeat the steps for the quantities based on GGM03s. What do you conclude?
You may also determine the spectrum using e.g. pwelch.
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(e) Least-squares adjustment
Solve for the gravity field using the approximate approach and your knowledge
from Chap.1. For testing purposes you can use the difference between the noise-
free observations but ultimately you should use the noisy observations as input.
You can compare your solution to the difference in the coefficient given in the
mat-files (variable klm).
Hint: solve only for degree 10 or 20 at most. This results in high-frequency
aliasing but you have no other choice since you have only one day of data
available. For degree 60 (input field of integration) you need at least 5–10 days
of data. You may repeat the exercise with an input field of degree 10 or 20 for
which you have to adapt the input fields.

http://dx.doi.org/10.1007/978-3-319-49941-3_1


Chapter 5
The Energy Balance Approach

Christopher Jekeli

Abstract The energy balance approach to geopotential modeling from satellite-to-
satellite tracking offers the advantage of emulating an in-situ measurement system,
analogous to satellite-borne gravity gradiometry, but in terms of differences in poten-
tial. Although the theoretical background is well known, based on the conservation
of energy in celestial mechanics, its application to geopotential determination from
satellite tracking had to await the capability for accurate, independent, kinematic
orbit determination. This is now possible with Global Navigation Satellite Systems
(GNSS), such as GPS. The precision tracking between two co-orbiting satellites
brings additional short-wavelength information to the in-situ measurement. These
tutorial notes derive the exact relationships between the gravitational potential and
the orbital state vectors from the energy balance perspective, both in the inertial
frame and in the Earth-fixed frame. Also derived are the equations that specifically
incorporate the range-rate between co-orbiting satellites. Particular attention is given
to the rotation potential and the temporal dependence of the potential due to various
sources, including tidal variations, Earth’s orientation and deformation, and terres-
trial mass fluxes. A detailed analysis of magnitudes then leads to possibly acceptable
approximations. It also shows for a satellite configuration such as GRACE (Gravity
Recovery and Climate Experiment) that the radial component of the relative velocity
between two co-orbiting satellites is as important in magnitude as the along-track
component. Thus, the measured inter-satellite range-rate, for example, cannot be
used alone to determine the potential difference. However, it is also shown that the
short-wavelength content of the potential resides more in the along-track component
than in the radial component, which demonstrates the significance of the range-rate
measurement. A simple error analysis of the system identifies the requirements for
state-vector accuracies (both for position and velocity) in relation to the range-rate
accuracy. The observational equations for satellite-to-satellite tracking are derived
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and related to both global and regional geopotential modeling. The discussion con-
cludes with a sample of published case studies that have demonstrated the energy
balance approach and achieved tangible results in large-scale hydrological mass flux
monitoring.

5.1 Introduction

5.1.1 Theoretical Perspectives

The duality in geodesy between Earth’s gravity field and its overall geometric shape
as defined by the geoid is well known. Fundamentally it derives from Newton’s
law of gravitation and leads eventually to Bruns’s equation that expresses the geoid
height as proportional to the disturbing potential. Conversely, geometric measure-
ments (distances) are needed to infer gravitational acceleration. Galileo’s law of
falling bodies is at the heart of absolute gravimetry, which, expressed in Newton’s
theory, also allows determination of the global gravity field by tracking satellites
orbiting (falling around) the Earth. Another example is the determination of the
geopotential difference between points on Earth’s surface according to a line inte-
gral of gravity, more commonly known as geometric leveling with gravity reduction.
Somewhat analogously, satellite-to-satellite tracking between two low co-orbiting
satellites also yields a potential difference, which is the topic of this lecture.

5.1.2 Background

Although satellite tracking since the early 1960 s has been fundamental to global
gravitational field modeling, one of the more limiting aspects was the irregular and
sparse distribution of tracking stations. This problem now is almost eliminated as
Global Navigation Satellite Systems (GNSS), such as the Global Positioning System
(GPS), provide continual and accurate tracking of any low-Earth-orbiting satellite.
Still, it is not the same as having an on-board instrument that senses the field directly
as the Earth rotates under the orbit. A significant seed toward such an ideal scenario
was OKeefe’s [113] proposal in 1957 to use measurements of a satellite’s velocity
to determine its kinetic energy that with the law of conservation of energy then leads
to a direct measurement of gravitational potential (up to a constant) in what may be
called the energy balance approach. This idea was an adaptation of Jacobi’s integral
[30] which solves a specialized three-body problem in celestial mechanics, namely
the motion of a small body of insignificant mass (a satellite in our case) near two
massive bodies that together by their mutual orbital motion represent a time-varying
gravitational field. Bjerhammar [12] elaborated on this idea, but the same problem
of irregular tracking remained.
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It was Wolff [160] who in 1969 proposed to use two satellites following in similar
orbits that by tracking each other and on the basis of the energy principles would cre-
ate a virtual in-situ measurement system of potential differences. Absolute tracking
was still needed but deemed secondary to the principal sensitivity to gravitational
variations between the satellites. The idea was adopted in the 1980s by NASA for its
program of a dedicated gravity mapping mission (GRAVSAT, Geopotential Research
Mission (GRM) [81]). Numerous simulations and analyses based on Wolff’s simpli-
fied relationship between the potential difference and satellite-to-satellite tracking
(Sect. 5.3) were conducted in preparation for GRAVSAT and GRM (e.g., [32, 77,
152]), and later for proposed high-low satellite-to-satellite tracking [78].
However, the ‘in-situ’ aspect was never the focus, neither of the simulations nor of
the implementation when such a dedicated mission was finally realized in 2001 as
GRACE (Gravity Recovery and Climate Experiment) [142]. Rather, the tried and
true orbit determination methodology augmented to take advantage of the additional
satellite-to-satellite tracking observation (K-band ranging, KBR) formed the basis
for global gravity mapping. A second look at Wolff’s proposal [74] and the demon-
strated kinematic methodology of orbit determination using GPS helped to elevate the
energy balance approach as a fundamental alternative that could yield a space-wise
distribution of gravitational potential data. Subsequently a series of investigations
was launched for both the CHAMP (Challenging Minisatellite Payload, [120] and
GRACE missions in terms of theory, simulation, and analysis [52, 54, 61, 117, 149,
157, 164, 155], as well as with successes in producing gravity models from actual data
[2, 46, 55, 56, 136]. Significant was the fact that regional solutions were advanced
(at least enabled) by the in situ nature of the data. A brief concluding review of these
is given in Sect. 5.6.

5.1.3 Summary of Lecture Notes

The main focus of these lecture notes is to derive and analyze the energy balance
approach to geopotential modeling. Exact equations are given for the potential in
terms of orbital state vectors, the range-rate between satellites, and all temporal
variations in the potential due to Earth’s rotation, the tidal potential, as well as con-
sequent and additional deformations of the Earth. An analysis of the magnitudes of
each term, based on simulations, then determines their significance in relation to the
desired geopotential accuracy. A straightforward error analysis identifies key con-
stituents that contribute to the overall error in the computed geopotential difference,
where the source of error in the principal terms comes from inaccuracy in the orbital
state vectors. Alternative geopotential modeling strategies are illustrated briefly as a
prelude to the concluding section that highlights the successes of the energy balance
approach to monitoring temporal variations in the geopotential field both globally
and regionally.
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5.2 Mathematical Formulations

This section derives the exact energy balance equations in detail from first principles
in both the inertial and Earth-fixed reference frames. Initial approximations are also
indicated, and analyzed and verified numerically in subsequent sections. It concludes
with the derivation of the energy balance equation for the potential difference between
two satellites that incorporates inter-satellite, range-rate tracking.
In a neoclassical sense, three laws of physics are invoked in the measurement of
gravitation. They also form the underpinnings of the relevant energy relations. The
first two are Newton’s second law of motion and his law of gravitation. Newton’s law
of motion states that the rate of change of linear momentum of a particle is equal to the
totality of forces,F, acting on it. Given more familiarly asmid2x/dt2 = F, it involves
the inertial mass,mi , of the particle. Conceptually, the forces,F, should be interpreted
in the first place as action forces, like propulsion or friction. On the other hand, the
gravitational field, which is part of the space we occupy and is due to the presence of
masses like the Earth, Sun, Moon and planets, induces a different kind of force, the
gravitational force. This force is proportional to gravitational acceleration, g, through
the gravitational mass, mg , according to the law of gravitation, abbreviated here as:
mgg = Fg . In the presence of a gravitational field, Newton’s law of motion must be
modified to include Fg separately; that is, mid2x/dt2 = F + Fg , where F is strictly
the sum of all the action forces. With the third fundamental law, Einstein’s equivalence
principle, which states that inertial and gravitational masses are indistinguishable,
one finally obtains

d2x
dt2

= a + g, (5.1)

where a is the specific force (F/mi ), or also the inertial acceleration, due to action
forces. This equation holds in a non-rotating, freely falling frame (that is, an inertial
frame) and variants of it can be derived in more complicated frames that rotate or
have their own dynamic motion. However, one can always assume the existence of
an inertial frame and proceed on that basis. Equation (5.1) is the foundation for all
of gravimetry and consequently for all geopotential measurements and modeling.

5.2.1 The Energy Balance Equations

It is easiest to obtain the energy balance equation for a body in motion in the inertial
(i-) frame; and, subsequent formulations in a rotating frame, such as an Earth-fixed
(e-) frame, may be obtained with appropriate position and velocity transformations.
It is assumed that the moving body, viz., the satellite, is rigid. The mechanical energy
of such a body is defined by the amount of work it is capable of doing. It is separated
into energy due to its motion (velocity), called kinetic energy, and energy due to its
location within the gravitational field, called potential energy (other fields, such as
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the electro-magnetic field, and rotational motion of the satellite are not considered
in the present derivations).
The kinetic energy of a body in translational motion (all parts of the body have the
same velocity) is defined as the amount of work needed to bring it from rest, xi0, to a
velocity, ẋi , using forces, Fi . The superscript on all vectors and coordinates refers to
the frame in which they are expressed, and the over-scripted dots mean differentiation
with respect to time in the indicated frame, ẋi .= dxi/dt , ẍi .= d2xi/dt2, etc. Since
work is defined as

W =
∫ xi

xi0

Fi · dxi , (5.2)

and noting from Newton’s second law of motion that

Fi · dxi = mẍi · dxi = mẋi · dẋi , (5.3)

the kinetic energy per unit mass becomes, with ẋi0 = 0,

T (ẋi , t) = 1

2
ẋi · ẋi , (5.4)

where the dependence on time is implicit on the right side.
The potential energy, on the other hand, is the amount of work needed to bring the
body from infinity to xi in the gravitational field. Per unit mass, it is thus simply the
(negative) gravitational potential at xi , −V (xi , t). The sign conforms to geodetic and
geophysical convention that defines the potential as positive, implying that the work
needed in this case is negative. It is noted that the geopotential in the inertial frame
is a function explicitly of time, particularly due to the rotation of the Earth, but also
because of the relative motions of the Moon, Sun, and other planets and because of
the dynamic character of the Earth’s mass. The corresponding gravitational force per
unit mass, or gravitational acceleration, is:

gi = ∇xi V, (5.5)

where ∇xi denotes the gradient operator with respect to components of xi . In general,
due to dissipative forces (such as atmospheric drag) the total mechanical energy of
the satellite varies in time,

E = T − V = E (0,i) +
∫ t

t0

dE

dt ′
dt ′, (5.6)

where E (0,i) is its energy in the inertial frame at the initial time, t0. Applying the
chain rule for differentiation,
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dE

dt ′
= ∂T

∂ẋi
· dẋ

i

dt ′
− ∂V

∂xi
· dx

i

dt ′
− ∂V

∂t ′

= ∇ẋ i T · ẍi − ∇xi V · ẋi − ∂V

∂t ′

(5.7)

where the dots now refer to derivatives with respect to t ′. From Eq. (5.4),

∇ẋ i T = ẋi , (5.8)

and from Eqs. (5.1) and (5.5),

∇xi V = gi = ẍi − ai . (5.9)

The partial derivative, ∂V/∂t ′, means differentiation explicitly with respect to time,
holding the position and velocity constant. Combining (5.6) through (5.9) results in

E = E (0,i) +
∫ t

t0

(

ẋi · ẍi − (

ẍi − ai
) · ẋi − ∂V

∂t ′

)

dt ′

= E (0,i) +
∫ t

t0

ai · ẋi dt ′ −
∫ t

t0

∂V

∂t ′
dt ′

(5.10)

With E = T − V and (5.4), Eq. (5.10) yields an expression for the gravitational
potential,

V (xi , t) = 1

2
|ẋi |2 −

∫ t

t0

ai · ẋi dt ′ +
∫ t

t0

∂V

∂t ′
dt ′ − E (0,i). (5.11)

This represents thebalance in energy in the most general case and in the inertial frame.
If the gravitational potential at a point is time-invariant, i.e., ∂V/∂t ′ = 0 (e.g., no
Earth rotation), and there are no action forces disturbing the satellite (ai = 0), then
E = E (0,i) for all t , which is a manifestation of the law of conservation of mechanical
energy. Note, however, even in this situation there is a trade-off within this constant
between the kinetic and potential energies as a function of time as the satellite falls
in the gravitational field.
The energy balance equation in a rotating frame, such as the terrestrial reference frame
fixed to the Earth’s crust, may be obtained from Eq. (5.11) with suitable transforma-
tions. Let xe = (xe1 xe2 xe3)

T denote a position vector of the satellite in the Earth-fixed
e-frame that is rotating with angular rate, ωe

ie = (ωe
1 ωe

2 ωe
3)

T , with respect to the
i-frame. By assumption, both frames share the same origin point. The Coriolis Law
[75] relates the velocities in the two frames,

Ce
i ẋ

i = ẋe + ωe
ie × xe, (5.12)

where Ce
i is the rotation matrix from the i-frame to the e-frame (e.g.; xe = Ce

i x
i ).

Again, the dot-notation refers to time-differentiation in the frame specifically des-
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ignated by the superscript. Noting the orthogonality of rotation matrices, Ci
e =

(Ce
i )

−1 = (Ce
i )

T , the substitution of (5.12) and of ai = Ci
ea

e into (5.11) yields

V (xe, t) =
1

2
|ẋe + ωe

ie × xe|2 −
∫ t

t0

Ci
ea

e · Ci
e(ẋ

e + ωe
ie × xe)dt ′ +

∫ t

t0

∂V i

∂t ′
dt ′ − E (0,i) =

1

2
|ẋe|2 + 1

2
|ωe

ie × xe|2 + ẋe · (ωe
ie × xe)−

∫ t

t0

ae · ẋedt ′ −
∫ t

t0

ae · (ωe
ie × xe)dt ′ +

∫ t

t0

∂V i

∂t ′
dt ′ − E (0,i)

(5.13)
It is easy to show, by one more time-differentiation of (5.12) and with [75, p. 21]

Ċi
e = Ci

e[ωe
ie×], (5.14)

that
ae = ẍe − ge + 2ωe

ie × ẋe + ωe
ie × (ωe

ie × xe) + ω̇e
ie × xe. (5.15)

In (5.14), [ωe
ie×] denotes a skew-symmetric matrix whose off-diagonal elements are

the components of ωe
ie according to

[ωe
ie×] =

⎡

⎣

0 −ωe
3 ωe

2
ωe

3 0 −ωe
1−ωe

2 ωe
1 0

⎤

⎦ . (5.16)

The second integral in (5.13) with (5.15) may be evaluated using some identities.
Specifically, since ωe

ie × (ωe
ie × xe) is orthogonal to ωe

ie × xe,

(ωe
ie × (ωe

ie × xe)) · (ωe
ie × xe) = 0; (5.17)

and similarly, (ωe
ie × ẋe) · ẋe = 0. Also,

d

dt ′
(ωe

ie × xe) = ω̇e
ie × xe + ωe

ie × ẋe. (5.18)

Hence, integrating the following integral by parts yields

∫ t

t0

(ωe
ie × xe) · ẍedt ′ = (ωe

ie × xe) · ẋe − E1 −
∫ t

t0

(ω̇e
ie × xe) · ẋedt ′. (5.19)

where E1 is an integration constant. Again, using (5.18), there is
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2
∫ t

t0

(ωe
ie × ẋe) · (ωe

ie × xe)dt ′ =
∫ t

t0

d

dt ′
|ωe

ie × xe|2dt ′ − 2
∫ t

t0

(ωe
ie × xe) · (ω̇e

ie × xe)dt ′ =

|ωe
ie × xe|2 − E2 − 2

∫ t

t0

(ωe
ie × xe) · (ω̇e

ie × xe)dt ′

(5.20)

Substituting (5.15), (5.17), (5.19) and (5.20) into the second integral of (5.13) yields

∫ t

t0

ae · (ωe
ie × xe)dt ′ = (ωe

ie × xe) · ẋe) + |ωe
ie × xe|2 − E1 − E2

−
∫ t

t0

(ω̇e
ie × xe) · ẋedt ′ −

∫ t

t0

(ge + ω̇e
ie × xe) · (ωe

ie × xe)dt ′
(5.21)

The gravitational potential in the e-frame, (5.13), then becomes

V (xe, t) = 1

2
|ẋe|2 − 1

2
|ωe

ie × xe|2 −
∫ t

t0

ae · ẋedt ′ +
∫ t

t0

(ω̇e
ie × xe) · ẋedt ′

+
∫ t

t0

(ωe
ie × xe) · (ge + ω̇e

ie × xe)dt ′ +
∫ t

t0

∂V (xe, t ′)
∂t ′

dt ′ − E (0,e)

(5.22)
where the constants are combined in E (0,e). The partial derivative of the potential
with respect to time in this expression still refers to the potential in the e-frame
according to

∂V (xe, t ′)
∂t ′

= ∂V (Ci
ex

i , t ′)
∂t ′

(5.23)

Simplifications of (5.22) ensue by noting that the last integral can be combined in
part with the integrals involving ge and ωe

ie, as shown in the next section.

5.2.2 Separation of the Temporal Variations

The primary temporal variation of the gravitational potential in the inertial frame is
due to Earth rotation, with a small secondary effect caused by its temporal variation
as modeled by the Earth orientation parameters, EOP, associated with precession,
nutation, and polar motion. These temporal variations are entirely due to the trans-
formation between the e- and i-frames. In addition, the total potential includes the
tidal potential that changes with the relative motion of the extraterrestrial bodies.
The tidal potential causes corresponding gravitational deformation of the non-rigid
Earth body, including ocean tides, Earth tides, and ocean loading on the solid Earth.
Even the potential variation due to polar motion changes gravity (by changing the
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centrifugal acceleration at the Earth’s surface), which causes a deformation of the
solid Earth, called the pole tide. Being of longer temporal wavelength, it is generally
assumed that polar motion does not affect the oceans. Any deformation in the Earth
naturally generates a change in the geopotential. Finally, any other terrestrial mass
redistributions, such as atmospheric variations, which also cause a barotropic ocean
response, hydrological (including ice mass) variations, and episodic events such as
major earthquakes and volcanic eruptions, can cause discernible changes in Earth’s
gravitational potential.
In view of the deformations and mass redistributions, it is more appropriate to model
the total geopotential in the e-frame. It is convenient to separate the various temporal
effects from the main, static, gravitational potential, V (E),

V = V (E) + V (δE), (5.24)

where the residual includes the tidal potential (TP) and effects due to all deformations
and mass redistributions,

V (δE) = V (T P) + V (de f orm) + V (δmass), (5.25)

with
V (de f orm) = V (ET ) + V (OT ) + V (OL) + V (PT ), (5.26)

which further identifies time-varying component potentials due to Earth tides (ET),
ocean tides (OT), and the deformations associated with ocean loading (OL) and the
pole tide (PT).
Regarding the potential in the i-frame, one may write V (xi , t) = V (Ci

ex
e, t), and

note that the explicit derivative with respect to time involves two terms,

∂V (xi , t)
∂t

= ∇xe V · ∂

∂t
(Ce

i x
i ) + ∂V (Ci

ex
e, t)

∂t
. (5.27)

The potential in the second term is written explicitly as a function of xe to indicate
that the time derivative is in the e-frame and then transformed to the i-frame. Since
V (E) at a point in the e-frame does not depend on time by definition, the second term
in (5.27) is zero for this part of the potential,

∂V (E)(Ci
ex

e, t)

∂t
= 0. (5.28)

The first term on the right of (5.27), however, is never zero because the transformation
matrix, Ci

e, depends on time. Since the position vector, xi , is held fixed, this term is
given by
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∇xe V · ∂

∂t
(Ce

i x
i ) = ∇xe V · Ċe

i x
i = ∇xe V · Ce

i [ωe
ei×]xi

= ge · Ce
i [ωe

ei×]Ci
eC

e
i x

i

= −ge · (ωe
ie × xe)

(5.29)

noting that ωe
ei = −ωe

ie, and where (5.14) was used in the first line. Hence

∂V (xi , t)
∂t

= ∂V (xe, t)
∂t

− ge · (ωe
ie × xe). (5.30)

Being the scalar product of two vectors (neither a derivative), the second term in
(5.30) is coordinate-frame invariant (rotating each vector using Ce

i does not change
the value of the product),

ge · (ωe
ie × xe) = gi · (ωi

ie × xi ); (5.31)

and thus, from (5.24) and (5.28), one also has the derivative of the potential in the
i-frame by co-ordinate transformation,

∂V (xi , t)
∂t

= ∂V (∂E)(Ci
ex

e, t)

∂t
− gi .(ωi

ie × xi ), (5.32)

where the partial derivative on the right side holds xi fixed. It is written for the
transformed position variable because the models for V (∂E) typically are given in the
e-frame. With (5.32), (5.9), (5.24) and (5.28) the energy balance equation (5.11) in
the i-frame becomes

V (xi , t) = 1

2
|ẋi |2 −

∫ t

t0

ai · ẋi dt ′ −
∫ t

t0

(ẍi − ai ) · (ωi
ie × xi )dt ′+

∫ t

t0

∂V (∂E)(Ci
ex

e, t ′)
∂t ′

dt ′ − E (0,i) =
1

2
|ẋi |2 −

∫ t

t0

ẍi · (ωi
ie × xi )dt ′ −

∫ t

t0

ai · (ẋi − ωi
ie × xi )dt ′+

∫ t

t0

∂V (∂E)(Ci
ex

e, t ′)
∂t ′

dt ′ − E (0,i)

(5.33)

Similar to (5.18),
d

dt ′
(ωi

ie × xi ) = ω̇i
ie × xi + ωi

ie × ẋi ; (5.34)

therefore, integrating the first integral in (5.33) by parts,
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∫ t

t0

ẍi · (ωi
ie × xi )dt ′ = ẋi · (ωi

ie × xi ) − E3 −
∫ t

t0

ẋi · (ω̇i
ie × xi + ωi

ie × ẋi )dt ′

= ẋ i · (ωi
ie × xi ) − E3 −

∫ t

t0

ẋi · (ω̇i
ie × xi )dt ′

(5.35)
by the orthogonality of ẋi and ωi

ie × ẋi , and where E3 is a constant. Thus,

V (xi , t) = 1

2
|ẋi |2 − ẋi · (ωi

ie × xi ) −
∫ t

t0

ai · (ẋi − ωi
ie × xi )dt ′

+
∫ t

t0

ẋi · (ω̇i
ie × ẋi )dt ′ +

∫ t

t0

∂V (∂E)(Ci
ex

e, t ′)
∂t ′

dt ′ − E (0,i)

(5.36)

where E (0,i) has absorbed the constant, E3. Similarly, for the e-frame formulation,
(5.22), substitution of (5.30) with (5.29) yields

V (xe, t) = 1

2
|ẋe|2 − 1

2
|ωe

ie × xe|2 −
∫ t

t0

ae · ẋedt ′ +
∫ t

t0

(ω̇e
ie × xe) · ẋedt ′

+
∫ t

t0

(ωe
ie × xe) · (ω̇e

ie × xe)dt ′ +
∫ t

t0

∂V (∂E)(xe, t ′)
∂t ′

dt ′ − E (0,i)

(5.37)

Equations (5.36) and (5.37) are the final, exact forms of the energy balance equations
in the i- and e-frames, respectively. Two important aspects of these equations should
be noted. First, the integrand, ∂V/∂t ′, in the last time-integrals in (5.36) and (5.37)
is integrated along the satellite orbit (that is how the integral in (5.6) is defined), but it
is the partial derivative of the potential with respect to time for fixed xe (respectively,
xi ). Second, the potential on the left side of each equation, of course, includes all
effects as defined in (5.24) through (5.26). To emphasize the latter and identify
the contributions on the right sides of the energy balance equations, one can write
generally for either frame,

V (E) + V (∂E) = V (K ) − V (R) − V (F) + V (T I ) − E (0), (5.38)

where the kinetic energy term is

V (K ,i,e) = 1

2
|ẋi,e|2; (5.39)

and, the rotation potential term is either

V (R,i) = ẋi · (ωi
ie × xi ) −

∫ t

t0

ẋi · (ω̇i
ie × xi )dt ′, (5.40)
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or

V (R,e) = 1

2
|ωe

ie × xe|2 −
∫ t

t0

ẋe · (ω̇e
ie × xe)dt ′ −

∫ t

t0

(ωe
ie × xe) · (ω̇e

ie × xe)dt ′.

(5.41)
All but the first terms on the right sides of (2.37) and (2.38) are shown in the next
section to be negligible since ω̇i

ie ≈ 0. The dissipative energy terms are

V (F,i) =
∫ t

t0

ai · (ẋi − ωi
ie × xi )dt ′, V (F,e) =

∫ t

t0

ae · ẋedt ′, (5.42)

where the second term in the integral for V (F,i) can be neglected since |ωi
ie × xi | �

|ẋi | for low Earth-orbiting satellites. Finally, the integral of the time-derivative of the
potentials that are not constant in the e-frame is denoted

V (T I,i) =
∫ t

t0

∂V (∂E)(Ci
ex

e, t ′)
∂t ′

dt ′, V (T I,e) =
∫ t

t0

∂V (∂E)(xe, t ′)
∂t ′

dt ′. (5.43)

5.2.3 Earth Orientation Effects

The need to consider Earth Orientation Parameters for the most part is a consequence
of the requirement to define reference coordinate systems, and since Earth’s spin
axis varies in both the i- and e-frames. The rotation rate vector, ωi

ie, is dominated
by the component along the third axis, represented by the unit vectors, ei,e3 , in either
reference frame, and one may write

ωi,e
ie = ωEe

i,e
3 + δωi,e

ie , (5.44)

where ωE = 7.292115 × 10−5 rad/s is the mean Earth rotation rate and where ωe
ie =

Ce
i ω

i
ie. The transformation between the terrestrial and celestial reference frames is

([116], Chap. 5)
Ce

i = WT (xp, yp)R3(θ)QT (X,Y ), (5.45)

where Q is the precession-nutation matrix in the modern formulation; R3 is the
cardinal rotation matrix for the third Cartesian axis depending on the Earth rotation
angle, θ; andW is the polar motion matrix. The arguments, X,Y , ofQ are coordinates
of the Celestial Intermediate Pole (CIP, approximately Earth’s spin axis) in the i-
frame, and those ofW are the coordinates, xp, yp, of the CIP in the e-frame (Fig. 5.1).
These EOP are functions of time and are determined accurately from VLBI (Very-
Long Baseline Interferometry) and other space techniques [131]. From (5.14) (and,
interchanging frames, i and e), the rotation rates in the e- and i-frames are given by

[ωe
ie×] = Ce

i Ċ
i
e, [ωi

ie×] = −Ci
eĊ

e
i . (5.46)

http://dx.doi.org/10.1007/978-3-319-49941-3_2
http://dx.doi.org/10.1007/978-3-319-49941-3_2
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Fig. 5.1 Definition of the polar motion coordinates, xp ,yp , of the Celestial Intermediate Pole (CIP)
relative to the terrestrial reference pole (TRP) and the precession/nutation coordinates, X, Y of the
CIP relative to the celestial reference pole (CRP). Σ0 and Ω0 are the origins in right ascension and
longitude, respectively, in the celestial and terrestrial reference systems. The Earth rotation angle,
θ = ωE t , formally is an angle about the CIP; it is approximately the angle indicated in the diagram

The residual rotation rate, δωi,e
ie , is analyzed in Sect. 5.3, where it is also evident that

the rate of ωi,e
ie , that is, ω̇i,e

ie , is exceedingly small and all corresponding terms in
the rotation potentials, (5.40) and (5.41), may be omitted without significant loss in
precision. The remaining first terms of the rotation potentials are separated according
to the dominant and residual rates,

V (R,i) = V (R0,i) + V (δR,i) = ẋi · (ωEe
i
3 × xi ) + ẋi · (δωi

ie × xi ), (5.47)

V (R,e) = V (R0,e) + V (δR,e) = 1

2
|ωEe

e
3 × xe|2 + (ωEe

e
3 × xe) · (δωe

ie × xe), (5.48)

where second-order terms have been neglected. The dominant terms have the fol-
lowing simplified forms,

V (R0,i) = ωE (xi1 ẋ
i
2 − xi2 ẋ

i
1), (5.49)

V (R0,e) = 1

2
ω2
E ((xe1)

2 + (xe2)
2). (5.50)

V (R0,e) is also recognized in physical geodesy as the centrifugal potential that is
responsible for the difference between gravity (measured on the rotating Earth) and
gravitation (the mass attraction). And, V (δR,e) is known as the pole tide potential,
which is due to changes in the Earth rotation vector (principally its direction; the
reference to ‘tide’ comes from the association with Earth rotation). Because the pole
tide potential varies in time at a fixed point in the e-frame, the corresponding change
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in gravity causes a deformation in the Earth, which further causes a change in the
mass-attraction potential; this is included in V (de f orm) in (5.26).

5.2.4 Models for the Potential

In a strict sense, (5.36) or (5.37) is a kind of integral equation for the time variable
potential, appearing on both sides of the equation. The left sides, of course, contain
all mass-attraction potentials as detailed in (5.24) through (5.26); and, the right sides
include the integral along the orbit of the explicit time derivative of the time-varying
part, V (δE). Separating the potentials for particular sources requires the development
of corresponding models, which then also facilitates the analysis of their significance
on the estimation of any particular component.
For present purposes, only the static and tidal potentials are given, being the most
significant. The static part, V (E), is expressed typically in the e-frame as an infinite
series of solid spherical harmonics using the usual spherical coordinates, r,φ,λ,

V (E)(r,φ,λ) = GM

a

∞
∑

n=0

n
∑

m=−n

(
a

r
)n+1C (E)

n,mȲn,m(φ,λ), (5.51)

where the coefficients, C (E)
n,m , are constants, and the surface spherical harmonics are

defined by

Ȳn,m(φ,λ) = P̄n,|m|(sinθ)

{

cosmλ,m ≥ 0
sin|m|λ,m < 0

(5.52)

where the P̄n,m are fully normalized associated Legendre functions [59].
The tidal potential, V (T P), is the potential of the extraterrestrial bodies of the solar
system that is associated with the residual gravitational acceleration due to these
bodies, relative to the acceleration at Earth’s center of mass. Thus, there are no zero-
and first-degree harmonics in V (T P) since their gradients would vanish or be constant
[144, 153]. Following the formulation of [90], the tidal potential in the e-frame due
to a body considered as a point mass, MB , located at (rB,φB,λB) is given by the
interior potential,

V (T P)
B (r,φ,λ, t) = GMB

rB(t)

nB
∑

n=2

1

2n + 1
(

r

rB(t)
)n

n
∑

m=0

P̄n,m(sin φ)P̄n,m(sin φB(t)) cos(mhB(t)),

(5.53)
where hB is the hour angle of the body, given in terms of the Earth rotation angle, θ,
between the reference meridians of the e- and i-frames (Fig. 5.1), the longitude, λ,
and the right ascension of the body, αB , by
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hB(t) = θ(t) + λ − αB(t). (5.54)

In view of the ratio, r/rB , the maximum degree typically is nB = 2 or nB = 3, and,
usually only the Sun and Moon are considered to generate a significant tidal potential;
however, see also [57]. The time argument, t , is international atomic time (which
may be converted easily to GPS time in the case of GRACE).
If the Earth were rigid (and without oceans), the only time-varying mass-attraction
potential would be the tidal potential, V (T P). Because of Earth’s non-rigidity,
the time-varying potential due to extra-terrestrial bodies creates indirect effects,
V (ET ),V (OT ), and V (OL), in the potential due to the consequent deformation of the
solid (elastic) terrestrial and oceanic masses, known as Earth and ocean tides (ET
and OT), and an additional deformation in the solid Earth due to ocean loading (OL).
Although the latter three potentials may be viewed as time-varying potentials due
to mass redistributions, they are distinguished as being a consequence of the tidal
potential (TP), which is well modeled.
Therefore, models for these secondary effects are also readily modeled on the basis
of assumed rheological properties of the Earth. For example, considered as a force
on the Earth, the tidal acceleration exerted by an extra-terrestrial body deforms the
Earth, which under the assumption of elasticity and in a first approximation, behaves
according to Hooke’s law. In this case, the ‘spring constants’, appropriately scaled
to be dimension-less, are called Love (and Shida) numbers. It is outside the present
scope to delve into the details of models for V (ET ), V (OT ) and V (OL) and deference
for these and models for the other components of V (δE) is given to more authoritative
texts (e.g., [116] Chaps. 6, 7; [47]); and references listed in [139]).

5.2.5 Energy Balance Equations for Satellite-to-Satellite
Tracking

For two satellites following each other in a similar orbit (Fig. 5.2), whose position
and velocity vectors are x1, x2, ẋ1, ẋ2, define the differences,

x12 = x2 − x1, ẋ12 = ẋ2 − ẋ1, V12 = V (x2) − V (x1). (5.55)

To simplify the notation, the time argument in the potential functions is omitted
henceforth, as is the frame designation in the state vectors; they are included only
when the formulation requires it. Indeed, the following details for the kinetic energy,
V (K ) = 1

2 |ẋ|2 (Eq. 5.39), is the same in either frame. In addition to generic tracking of
each satellite (ground-based and/or more prevalently GNSS-based), there is precise
satellite-to-satellite range tracking, where the range between the satellites is

ρ12 = |x12| =
√

xT12x12. (5.56)
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Fig. 5.2 Geometry of
low–low satellite-to-satellite
tracking
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The corresponding principal observable is given as the range-rate, ρ̇12. Since
ρ12ρ̇12 = xT12x12, it is the projection of the velocity difference onto the line-of sight
between the satellites,

ρ̇12 = ẋT12e12, (5.57)

where e12 is the unit vector from the first to the second satellite,

e12 = x2 − x1

|x2 − x1| . (5.58)

With some imprecision, it is called here for convenience the along-track unit vector.
From |ẋ2|2 − |ẋ1|2 = (ẋ2 − ẋ1)

T (ẋ2 + ẋ1), the kinetic energy part of the potential
difference is

V (K )
12 = 1

2
(|ẋ2|2 − |ẋ1|2) = 1

2
ẋT12(ẋ2 + ẋ1) (5.59)

Let en , er be unit vectors that together with e12 form a right-handed mutually orthog-
onal triad, and decompose ẋ12 into components along e12, en , and er ,

ẋ12 = (eT12ẋ12)e12 + (eTn ẋ12)en + (eTr ẋ12)er . (5.60)

For example, en and er may be computed from

en = x1 × x2

|x1 × x2| , er = e12 × en . (5.61)

The unit vector, en , is orthogonal to the plane defined by the instantaneous position
vectors of the two satellites; it is called here the cross-track unit vector. The third
vector, er , is called the radial unit vector, being roughly in that direction. Then, from
(5.57), one has
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V (K )
12 = 1

2
(ρ̇12eT12 + (eTn ẋ12)eTn + (eTr ẋ12)eTr )(ẋ1 + ẋ2), (5.62)

which separates the potential difference into a range-rate (along-track) component
and two differences, one of the squares of the cross-track velocities and one of the
squares of their radial velocities.

V (K )
12 = 1

2
ρ̇12(ẋ1 + ẋ2)

T e12 + 1

2
(|eTn ẋ2|2 − |eTn ẋ1|2) + 1

2
(|eTr ẋ2|2 − |eTr ẋ1|2).

(5.63)
As shown in Sect. 5.3 by simulations, the first term is generally the largest, but the
last, radial term is nearly as large (and opposite in phase), while the cross-track term
is almost negligible by comparison. Furthermore, Sect. 5.5 shows why including
the range-rate as an explicit observable enables the determination of high-accuracy
potential differences.
The other contributions to the potential difference, such as the rotation potential,
V (R), and the other time-varying potentials appearing in V (T I,i,e), may be formulated
simply as differences; for example,

V R
12 = V (R)

2 − V (R)
1 . (5.64)

The nominal part of the rotation potential difference in the i-frame may also be
written in terms of position and velocity differences,

V (R0)
12 = ωE (ẋ2 · (e3 × x2) − ẋ1.(e3 × x1))

= ωE (ẋ2 · (e3 × x2) − ẋ1 · (e3 × x1) − ẋ1 · (e3 × x2) + ẋ1 · (e3 × x2))

= ωE (ẋ12 · (e3 × x2) + x1 · (e3 × ẋ1) − x2 · (e3 × ẋ1))

= ωE (ẋ12 · (e3 × x2) − x12 · (e3 × ẋ1))

(5.65)

5.3 Magnitudes and Approximations

From purely schematic considerations, the dominant velocity components of the
GRACE satellites are along their orbits, hence cross-track (in the inertial frame) and
radial components are expected to be relatively small. One might argue that also the
differences of these components are small, leaving in (5.63) only the first term as
significant. Indeed, recognizing that ẋ1 ≈ ẋ2 and |ẋ| ≈ ẋT e12, the first-order part of
the kinetic energy difference might be roughly approximated as

V (K )
12 ≈ |ẋ1|ρ̇12. (5.66)

This was the model originally introduced by Wolff [160]. While this approximation
may serve general feasibility studies, practical applications demand a more precise
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Fig. 5.3 Simulated orbits in
the e-frame for GRACE-like
satellites during one day. The
background on the globe is
the geoid undulation with
maximum values indicated
by the color yellow and
minima by the color blue

formulation. On the other hand, the exact form of the energy balance equation given
in Sect. 5.2 also contains possibly still negligible terms. In this section, its various
components are analyzed to determine which may be neglected and which provide
the essential information on the gravitational potential at the resolution and accuracy
of interest.
Toward that end GRACE-like orbits are simulated on the basis of a high-resolution
geopotential model. Specifically, EGM2008 [114] may be used, but its full degree-
and-order complement of harmonics is not needed since current satellite gravitation-
mapping missions are limited in resolution by their velocity and system integration
time [76]. Here, the maximum degree (and order), nmax = 180 serves the purpose and
is already somewhat larger than the resolution of current GRACE-derived models. A
single day of orbits (roughly 15 revolutions of the satellites) also suffices to sample
the entire field of the rotating Earth, even though that sample is not uniform (Fig. 5.3).
The initial Kepler elements of these orbits are shown in Table 5.1. The orbital state
vectors of each satellite are generated by numerically integrating the equations of
motion, (5.1), with a = 0. No specific forces acting on the satellites nor time-varying
potentials are included in this simulation. Therefore, the corresponding potential
difference in the inertial frame is given by

V12 = V (K )
12 − V (R0,i)

12 − E (0,i)
12 . (5.67)

The error in the numerical integration of the equations of motion is determined
by comparing the potential difference for the points of the generated orbits with the
geopotential model that generated the orbits; the standard deviation of the difference,
5 × 10−7 m2

/s2 is attributable to computational round-off error.
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Table 5.1 Initial Keplerian elements for the GRACE-like simulated orbits

Leading satellite Trailing satellite

Semi−major axis 6808140 m 6808140 m alt ≈ 430 km

Eccentricity 0 0 near circular

Inclination 87◦ 87◦ near polar

Argument of perigee 0◦ 0◦

Longitude of node −83◦ −83◦

Time of first perigee 0 s 30 s ρ12 ≈ 230 km

5.3.1 Kinetic Energy Term

The values of the along-track, cross-track, and radial constituents of V (K )
12 in the

inertial frame, repeated here,

V (K )
12 = 1

2
ρ̇12(ẋ1 + ẋ2)

T e12 + 1
2
(|enT ẋ2|2 − |enT ẋ1|2)

+ 1
2
(|erT ẋ2|2 − |erT ẋ1|2) = V (ρ̇)

12 + V (n)
12 + V (r)

12

(5.68)

are shown in (Fig. 5.4), purposely drawn on a logarithmic scale to illustrate the dis-
parate magnitudes. Also included is the magnitude of the nominal rotation potential
term, V (R0,i)

12 . The difference of cross-track velocity projections are many orders
of magnitude smaller than the along-track difference; but, the difference of radial
projections is commensurate in magnitude. Figure 5.4 focuses on the first 1.5 revo-

lutions for the latter two constituents, V
˙(ρ)

12 and V (r)
12 , showing that they combine with

opposite phase to yield a smaller total geopotential difference.
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potential difference in the i-frame
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Fig. 5.6 Spectral analysis of the potential difference constituents in the kinetic energy difference,
as well as the principal rotation potential difference in the i-frame. The analysis is for the entire
1-day orbit and is displayed as the square root of the power spectral density, approximated by

the median-smoothed periodogram. The spectral peak in V
˙(ρ)

12 near 0.01cy/s corresponds to the
maximum degree of the reference model (i.e., theoretically, the residual has no power at lower
frequencies)

At first sight one might conclude that satellite-to-satellite tracking could not improve
geopotential modeling since, by definition (Eq. 5.61), it does not sense the important
radial component (Fig. 5.5). However, a spectral analysis of the components (Fig. 5.6)
shows that the radial component is primarily a long-wavelength signal compared to
the along-track component. Thus, a long-wavelength reference model would suffice
to supplement the SST that then fills in the high-resolution variation of the field.
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5.3.2 Earth Rotation Rate Terms

To understand the influence of the Earth Orientation Parameters (EOP) on satellite-
to-satellite tracking, one may consider just the first-order approximations of Q and
W in (5.45). Neglecting second-order terms, one has

W ≈ R1(yp)R2(xp), (5.69)

QT ≈ R1(−Y )R2(X). (5.70)

Substituting these into (5.46) and again neglecting all second-order terms, it can be
shown that the Earth rotation rate vector may written succinctly as

ωi,e
i,e = ωE (mi,e

1 ei,e1 + mi,e
2 ei,e2 + (1 + mi,e

3 )ei,e3 ), (5.71)

where ei,ej is a unit vector along the jth coordinate axis of the i- or e-frame, and themi,e
1

are functions of the (EOP), listed in Table 5.2 along with typical values. Comparing
(5.44) and (5.71), the residual rotation rate is

δωi,e
i,e = ωE (mi,e

1 ei,e1 + mi,e
2 ei,e2 + mi,e

3 ei,e3 ). (5.72)

With the nominal values of EOP given in the second column of Table 5.2, it is clear
that me

1,2 and mi
1,2 are dominated, respectively, by the polar motion and precession

coordinates (as noted in the third column); And, since ΔωE = O(10−12 rad/s ), the
third-axis component,mi,e

3 , is negligible by comparison. Thus, from (5.47) and (5.48),

Table 5.2 Components of the residual Earth rotation rate due to precession/nutation and polar
motion. Typical values are for July 2014

First-order approximation Typical values Further approx.

mi
1 = −X + Ẏ−ẋ p sin θ+ẏp cos θ

ωE
X = 1.4 × 10−3 rad,
Ẋ/ωE = 4 × 10−8

mi
1 = −X

mi
2 = −Y − Ẋ−ẏp sin θ−ẋ p cos θ

ωE
Y = −2 × 10−6 rad,
Ẏ/ωE = −1 × 10−10

mi
2 = −Y

mi
3 = ΔωE

ωE

a
mi

3 = −5 × 10−9 mi
3 = 0

me
1 = −xp + ẏp−Ẋ sin θ−Ẏ cos θ

ωE
xp = 9 × 10−7 rad,
ẋ p/ωE = 7 × 10−10

me
1 = −xp

me
2 = yp + ẋ p−Ẏ sin θ−Ẋ cos θ

ωE
yp = 2 × 10−6 rad,
ẏp/ωE = −1 × 10−9

me
2 = yp

me
3 = ΔωE

ωE
mi

3 = −5 × 10−9 me
3 = 0

aΔωE is length-of-day variation
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V (δR,i) = ωE ẋi · (Xei1 × xi + Y ei2 × xi )

= ωE (X (xi2 ẋ
i
3) − ẋ i2x

i
3) + Y (xi3 ẋ

i
1 − ẋ i3x

i
1))

(5.73)

V (δR,e) = ω2
E (ee3 × xe) · (xpee1 × xe − ype

e
2 × xe)

= ω2
E (ypx

e
2x

e
3 − xpx

e
1x

e
3)

(5.74)

These and the principal rotation potential terms, as well as the omitted terms in (5.47)
and (5.48), given by

V (ω̇,i)
12 =

∫ t

t0
(ẋi2 · (ω̇i

ie × xi2) − ẋi1 · (ω̇i
ie × xi1))dt

′, (5.75)

V (ω̇,e)
12 =

∫ t

t0

[(ω̇e
ie × xe2) · ẋe2 + (ωe

ie × xe2) · (ω̇e
ie × xe2)

−(ω̇e
ie × xe1) · ẋe1 − (ωe

ie × xe1) · (ω̇e
ie × xe1)]dt ′.

(5.76)

are shown in (Fig. 5.7). The omitted terms, indeed, are negligible, since

ω̇i
ie = ω̇Eei3 + δω̇i

ie ≈ ωEṁi
1e

i
1 = O(10−16 rad/s2 ), (5.77)
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Fig. 5.7 Rotation potential terms in the i-frame (top) and e-frame (bottom) based on orbits simulated
using EGM2008(nmax = 180)
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ω̇e
ie = O(10−18 rad/s2 ). (5.78)

However, the residual rotation rates, especially in the i-frame (V (δR,i)
12 = O(0.2m2

/s2 ))

and possibly in the e-frame (V (δR,e)
12 = O(0.01m2

/s2 ), are not negligible. It is also
noted that |V (R0,e)| 	 |V (R0,i)|; i.e., the nominal rotation potential is far greater in
magnitude when expressed in the e-frame.

5.3.3 Dissipative Energy Term

The term on the right side of the energy balance equation due to specific forces acting
on the satellite represents the dissipative energy, that which is lost due to friction with
the satellite’s environment (atmospheric drag, solar radiation pressure, and Earth’s
albedo radiation), or additive energy due to propulsion (needed to counter the orbit-
decaying friction). The environmental effects depend on the particular configuration
of the satellite as well as its altitude. For example, the drag is proportional to the
area-to-mass ratio of the satellite and to the square of its velocity relative to the drag
medium, as well as to the density of the medium [45]. The on-board accelerometers
that sense these forces, though precise over a given bandwidth, also suffer large bias
and scale factor errors. Thus, instead of simulating the dissipative energy, actual data
are shown here to illustrate its magnitude. From Han et al. [56], the term, V (F,i)

12 ,
is shown in (Fig. 5.8), as a result of careful calibration of systematic errors coming
from the inter-satellite microwave ranging system and the accelerometers. The term
is relatively small but not negligible.

Fig. 5.8 The dissipative energy term, V (F,i)
12 , derived from accelerometer data, orbital and inter-

satellite range-rate data, and an a priori geopotential model for a 1-day orbit of the GRACE satellites,
copied from [56]
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Fig. 5.9 V (T I )
12 for the tidal potential in comparison to the tidal potential difference, itself, derived

for actual GRACE orbits and the potentials of the Sun and Moon on 1 December 2008

5.3.4 Tidal and Other Model Approximations

All time-varying potentials including the tidal potential due to extraterrestrial bodies
and indirect deformation potentials resulting from Earth tides, ocean tides, and ocean
loading, as well other deformation potentials due to atmospheric effects and the pole
tide, enter on the right side of the energy balance equation only within the time-
integral of their explicit time derivative,

V (T I )
12 =

∫ t

t0

∂V (δE)
12 (xe, t′)

∂t ′
dt ′, (5.79)

where V (δE) is given by (5.24) and (5.25). This is illustrated for the tidal potential
by simulation and for some of the other effects by referring to published results.
The effect of the integrated time-derivative of the tidal potential is compared to the
tidal potential, itself (which enters only on the left side of the energy balance equa-
tion), in (Fig. 5.9). The tidal potential difference, V (T P)

12 , is determined by utilizing
(5.53) expressed in the i-frame, assuming that latitude and declination are identical
and that the hour angle is given in terms of the right ascension of a GRACE satellite
by

hB(t) = α − αB(t). (5.80)

The bodies are restricted to the Sun and Moon, whose ephemerides are available from
NASA (e.g., http://ssd.jpl.nasa.gov/horizons.cgi). The time-derivative is computed
numerically using a two point formula and assuming that the radial coordinate of
each body is constant. The integration subsequently is also performed numerically.
Similarly, the Earth tide, ocean tide, atmospheric effect, and pole tide are computed
using models described by Guo et al. [47], and shown in their Fig. 1 reproduced
here in Fig. 5.10. The time-integral effect is largest for the derivative of the ocean
tide potential difference, V (OT )

12 , while that of the pole tide deformation potential is
negligible.

http://ssd.jpl.nasa.gov/horizons.cgi


5 The Energy Balance Approach 151

Fig. 5.10 (copied from [47] with permission from Springer) A comparison of the contribution of
different sources to the potential rotation term. Random offsets have been added to distinguish the
curves. L2-EGM2008—The difference between the gravitational potential differences computed
using the EGM2008 and a GRACE level 2 solution randomly chosen (the GFZ L2 data of May,
2006), which represents the level of the ‘signal’ of gravitational potential variation to be recovered
using GRACE data. Earth—Contribution of Earths time-invariable gravitational potential VE, which
is scaled by the factor 5 × 10−3; Tidal potential—Contribution of the tidal generating potential;
Earth tides—Contribution of Earth tides; Ocean tides—Contribution of ocean tides; Pole tide—
Contribution of pole tide; AOD1B—Contribution of the GRACE AOD1B de-aliasing product.
Significance of a contribution should be considered with respect to the curve L2-EGM2008

5.4 Observational Equations

The parts of the potential difference in the inertial frame that depend exclusively on
the satellite state vectors, x1, ẋ1, x2, ẋ2, presumed to be ‘observables’ (e.g., derived
from kinematic orbit determination), and the observed range-rate, ρ̇12, are the kinetic
energy and the nominal rotation potential (Eqs. (5.63) and (5.49)),

Ṽ12 = V (K )
12 − V (R0)

12

= 1

2
ρ̇12(ẋ1 + ẋ2)

T e12 + 1

2
(|eTn ẋ2|2 − |eTn ẋ1|2) + 1

2
(|eTr ẋ2|2 − |eTr ẋ1|2)

− ẋ2 · (ωEe3 × x2) + ẋ1 · (ωEe3 × x1)

(5.81)
As a quantity of combined observations, Ṽ12 includes errors in the observations,
ΔV12, due to KBR and orbit error, as well as all other parts of the potential on both
sides of the energy balance equation,

Ṽ12 = V (E)
12 + V (δE)

12 + V (δR)
12 + V (T I )

12 + E (0)
12 + ΔV12 + Ṽ (F)

12 − ΔV (F)
12 , (5.82)
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where the observed specific-force energy difference, Ṽ (F)
12 , also has an error, ΔV (F)

12 .
The KBR and accelerometer errors, in particular, require careful calibration for sys-
tematic biases and drifts [56, 83, 84, 139]. Then, for example, the time-varying
potential due to the hydrological mass changes may be computed from (5.82) and
(5.25) by first removing all modelable and otherwise observable effects (if not neg-
ligible) according to

Ṽ (hydro)
12 = Ṽ12 − V (E)

12 − V (T P)
12 − V (ET )

12 − V (OT )
12 − V (AO)

12 − V (δR)
12 − V (PT )

12

− V (T I )
12 − Ṽ (F)

12

= V (hydro)
12 + E (0)

12 + ΔV12 − ΔV (F)
12

(5.83)
leaving only the system errors, ΔV12, ΔV (F)

12 , and constant, E (0)
12 . These are esti-

mated by empirical time-wise methods, such as fitting polynomials and periodic
error functions to the residuals, Ṽ (hydro)

12 , yielding estimates

V̂ (hydro)
12 = Ṽ (hydro)

12 − Ê (0)
12 − ΔV̂12 − ΔV̂ (F)

12 , (5.84)

where the latter three terms are the corresponding error estimates. Care must be
exercised to avoid removing hydrological signal in this calibration procedure.
Taking this example further to determine actual mass changes, the in situ potential
estimates, V̂ (hydro)

12 , may be processed either globally or regionally using space-wise
approaches. A global relationship between mass elements, expressed as equivalent
water heights, and the associated gravitational potential is given in terms of spherical
harmonic coefficients by [154],

C (hydro)
n,m = 3ρw

ρ̄

1 + kn
2n + 1

C (p)
n,m, (5.85)

where, on the right side, ρw is the density of water, ρ̄ is Earth’s mean density, the kn
are load Love numbers for harmonic degrees, n, and the C (p)

n,m are spherical harmonic
coefficients for a surface density function, ρ(φ,λ). The coefficients on the left side
of (5.85) express the potential, analogous to (5.51),

V̂ (hydro)(r,φ,λ) = GM

a

nmax
∑

n=0

n
∑

m=−n

(a

r

)n+1
C (hydro)
n,m Ȳn,m(φ,λ), (5.86)

up to a maximum resolution, nmax , that is consistent with the spatial sampling interval
created by the orbits during a particular time interval (such as one month). This

linear relationship between data, y =
[

V̂ (hydro)
12

]

, and parameters, ξ =
[

C (hydro)
n,m

]

,

may be inverted using standard least-squares procedures, where the irregularity of
the global data grid (varying slightly in radius, as well as latitude and longitude),
presents numerical challenges in the inversion of the normal matrix. These may be
overcome in various ways, e.g., using the iterative conjugate gradient methodology
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[52]. Monthly (e.g.) solutions then yield a history of the global density function,
ρ(φ,λ).
The in situ nature of the potential estimates, V̂ (hydro), lends itself to an alternative
estimation based on a regional distribution of mascons,m j = ρwh jδSj , j = 1, ..., J ,
representing equivalent water heights, h j , at surface elements, δSj . Newton’s law of
gravitation provides the relationship to the in situ potential difference,

V̂ (hydro)
12 (x1, x2) = G

J
∑

j=1

m j

(

1

l2, j
− 1

l1, j

)

= Gρw

J
∑

j=1

h jδSj

(

1

l2, j
− 1

l1, j

)

,

(5.87)
where l2, j , l1, j are distance from the mascon locations to the satellites. Again, the
linear relationship (5.87) may be inverted to solve for the mascons from the data,
however, requiring regularization of the instability of downward continuation and
the possibly ill-conditioned normal matrix. Section 5.6 briefly reviews the successes
of these global and regional estimations from in situ potential difference data.

5.5 Kinematic Orbit Error Analysis

The computation of potential differences according to the energy balance equation, as
in (5.81), is based on accurate range-rate measurements between the satellites, as well
as accurate three-dimensional orbit state vectors (position and derived velocity). This
section analyzes the accuracy requirements in the range-rate, and those of position
and velocity, to achieve a certain level of accuracy in the potential difference. Only
the principal components, namely, the kinetic energy and main rotation potential
terms, are considered since all others are sufficiently small that they do not influence
the accuracy requirements.
Linearization of the energy balance equation with respect to range-rate, position, and
velocity using differentials yields directly a formulation for the propagation of errors
that are presumed for present purposes to be random. Generically, the differential of
the potential difference may be written as

δV12 = a1δρ̇12 + a2 · δx1 + a3 · δx2 + a4 · δẋ1 + a5 · δẋ2, (5.88)

where the coefficient, a1, and vectors of coefficients, a j , j = 2, . . . , 5, represent
appropriate partial derivatives.
Considering only the i-frame and the simple kinetic energy term in which the range-
rate has not been separated from the velocity vectors,

V12 = 1

2
(|ẋ2|2 − |ẋ1|2) − ẋ2 · (ωEe3 × x2) + ẋ1.(ωEe3 × x1), (5.89)
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the coefficients in (5.88) are a1 = 0 and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a2 = −ωEe3 × ẋ1,

a3 = ωEe3 × ẋ2,

a4 = ωEe3 × x1 − ẋ1,

a5 = −ωEe3 × x2 + ẋ2.

(5.90)

The magnitudes of a4 and a5 are dominated by the orbital velocity in the case of low
Earth orbit satellites. For the sake of simplicity it is assumed that all position and
velocity component errors are independent and have respective identical variances,
σ2
x and σ2

ẋ . Then, the variance of the potential difference error is

σ2
V12

= (aT2 a2 + aT3 a3)σ
2
x + (aT4 a4 + aT5 a5)σ

2
ẋ . (5.91)

Nominal (maximal) values for the state vectors (see the subsequent more detailed
analysis) generate the linear relationships between σx , σẋ and σV12 shown in
(Fig. 5.11). For example, a position standard deviation, σx ≈ 10−1m, and a velocity
standard deviation, σẋ ≈ 10−5 m/s , each contribute about 0.1m2

/s2 to the total σV12 (in
the root-sum-square sense). The same analysis holds for the e-frame,where the coef-
ficients, a j , are transformed according to aej = Ce

i a
i
j ; that is, the variance/covariance

propagation is frame invariant.
The high accuracy requirement for velocity illustrated above is not achievable with
standard orbital tracking. However, it may be realized by shifting it to the much more
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Fig. 5.11 Linear relationships between σx , σẋ and σV12 based on nominal (maximal) values of
GRACE-like orbital state vectors
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precise range-rate observations, as shown in the following analysis. In this case, with
(5.63), the potential difference is given by (neglecting small terms),

V12 = 1

2
ρ̇12(ẋ1 + ẋ2)

T e12 + 1

2
(|eTn ẋ2|2 − |eTn ẋ1|2)+

1

2
(|eTr ẋ2|2 − |eTr ẋ1|2) − V (R0,i,e)

12 .

(5.92)

Leaving details to the reader, the coefficients in (5.88) are given for the i-frame by

a1 = 1

2
(ẋ1 + ẋ2)

T e12, (5.93)

a2 = −1

2

ρ̇12

|x12|E(ẋ1 + ẋ2) + S1(ẋ2ẋT2 − ẋ1ẋT1 )en+
T1(ẋ2ẋT2 − ẋ1ẋT1 )er − ωEe3 × ẋ1,

(5.94)

a3 = 1

2

ρ̇12

|x12|E(ẋ1 + ẋ2) + S2(ẋ2ẋT2 − ẋ1ẋT1 )en+
T2(ẋ2ẋT2 − ẋ1ẋT1 )er + ωEe3 × ẋ2,

(5.95)

a4 = 1

2
ρ̇12e12 − en ẋT1 en − er ẋT1 er + ωEe3 × x1, (5.96)

a5 = 1

2
ρ̇12e12 + en ẋT2 en + er ẋT2 er − ωEe3 × x2, (5.97)

where

E =
(

I − 1

|x12|2 x12xT12

)

, (5.98)

S1 = 1

|x1 × x2| ([x2×] − (x2 × en)eTn ), (5.99)

S2 = − 1

|x1 × x2| ([x1×] − (x1 × en)eTn ), (5.100)

T1 = −S1[e12×] − 1

|x12|E[en×], (5.101)

T2 = −S2[e12×] + 1

|x12|E[en×]. (5.102)

Equation (5.94) through (5.97) show that the coefficients, a j , j = 2, . . . , 5, have
elements that may be roughly associated with along-track, cross-track, and radial
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Fig. 5.12 Along-track elements (red), cross-track elements (blue), radial elements (green), and
Earth-rotation-rate elements (magenta) of the coefficient, a2 (the same as a3) on the left, and of the
coefficient, a4 (the same as a5) on the right

directions, as well as Earth rotation. Contributions to the potential difference error
from the corresponding position and velocity components are thus governed by their
relative magnitudes. For example, (Fig. 5.12) shows that the contribution of posi-
tion uncertainty, scaled by the coefficients, a2 and a3, is largely determined by the
radial components of velocity and least by their along-track components. Also, the
contribution of velocity uncertainty (coefficients, a4 and a5) depends mostly on the
combination of radial velocity and position scaled by Earth’s rotation rate. Thus, just
as the radial velocity is a major contributor to the potential difference value (Fig. 5.4),
so it is a critical component in the accuracy of the potential difference (assuming com-
mensurate state vector component accuracies). Based on the simulated EGM2008
orbits, the maximum square roots of the coefficients in

σ2
V12

= a2
1σ

2
˙ρ12

+ (aT2 a2 + aT3 a3)σ
2
x + (aT4 a4 + aT5 a5)σ

2
ẋ . (5.103)

are |a1| = 7660m2
/s2 per m/s ,

√

aT2 a2 + aT3 a3 = 12.2m2
/s2 per m,

√

aT4 a4 + aT5 a5 =
726m2

/s2 per m/s . The linear relationships between the observation standard devia-
tions and the potential difference standard deviation are displayed in (Fig. 5.13). The
accuracy requirement for the total velocity vectors is reduced by an order of magni-
tude, whereas, the position errors must be better by an order of magnitude compared
to the case without range-rate observations (Fig. 5.11).
The latter increase in accuracy requirement comes from the need to establish along-
track, cross-track, and radial directions. A simpler analysis combines this with the
velocity accuracy requirement in terms of along-track, cross-track, and radial velocity
components. The kinetic energy term in (5.92) then becomes

V (K )
12 = 1

2
ρ̇12(v1 + v2) + 1

2
(u2

2 − u2
1) + 1

2
(w2

2 − w2
1), (5.104)

where

ẋ1 = u1en + v1e12 + w1er , ẋ2 = u2en + v2e12 + w2er . (5.105)
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Fig. 5.13 Linear relationships between σx , σẋ , σρ̇12 and σV12 based on nominal (maximal) values
of GRACE-like orbital state vectors

Assuming the component velocity errors are independent and have identical variances
per component, the variance in the potential difference is

σ2
V (K )

12
= 1

4
(v1 + v2)

2σ2
ρ̇12

+ 1

2
ρ̇2

12σ
2
v + (u2

2 + u2
1)σ

2
u + (w2

2 + w2
1)σ

2
w. (5.106)

The maximum square-root values of the velocity coefficients for the EGM2008 sim-

ulated orbits are |ρ̇12|/
√

2 = 0.54m2
/s2 per m/s,

√

u2
1 + u2

2 = 0.24m2
/s2 per m/s, and

√

w2
1 + w2

2 = 185m2
/s2 per m/s. The radial component of velocity needs to be three

orders of magnitude more accurate than the other components in order to make the
same contribution to the kinetic energy difference error.

5.6 Summary

The energy balance approach to geopotential modeling from satellite-to-satellite
tracking has been analyzed through simulations and applied to actual satellite data by
a number of investigators. Various studies demonstrated its feasibility in recovering
the global field in terms of a spherical harmonic model from either the CHAMP or
GRACE missions [52, 164], or other satellite constellations [155]. The earlier studies
concentrated on the numerical issues of processing a large global grid of data that
involves the inversion of a full normal matrix, for example, by iterative conjugate-
gradient techniques. Visser et al. [149] also showed that the approach is particularly
sensitive to satellite velocity errors. The regional estimation of equivalent water
height mascons from in situ potential differences was investigated by Han [54] whose
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simulations validated the ability to obtain improved resolution and accuracy. Similar
studies by Ramillien et al. [117] extended the options for optimizing the estimation
procedures that must account for local downward continuation and normal matrix
stabilization.
Implementation of the energy balance equations using actual precision satellite track-
ing data were initially achieved by Gerlach et al. [46] for CHAMP (non-SST data),
whose spherical harmonic solution to maximum degree, nmax = 60, agreed in accu-
racy with the best standard satellite-derived global model available at the time. The
analysis by Han et al. [55] of GRACE data showed that a regional solution of equiva-
lent water height mascons over the Amazon River basin yields improved spatial and
temporal resolutions compared to the standard GRACE spherical harmonic solution.
Another analysis by Han et al. [56] proved that regional estimation from GRACE data
can add important constraints on the mass displacements associated with large earth-
quakes. Many other results similarly demonstrated the utility of the energy balance
approach, from early analyses of CHAMP data [2, 136] and its resolution capability
[157] to additional analyses of GRACE data that inferred tides under Antarctic ice
shelves [53] and estimated the Amazon hydrological cycle [139].
The principal advantage of the energy balance approach is the ability to obtain in
situ potential differences. That is, by kinematically tracking a satellite, yielding both
position and a derived velocity continually in a coordinate frame (either inertial or
Earth-fixed) without the need for a dynamic integration of tracking data, one accu-
mulates a spatial data set of potential differences as if the satellite were equipped with
a ‘potential-difference-meter’. These data can then be processed further to estimate
the global, or more importantly, the regional gravitational field. In particular, one
may take direct advantage of the increased data resolution at higher latitudes that is
associated with the convergence of polar orbits. The accuracy of the potential differ-
ences depends crucially, of course, on the kinematic orbit accuracy, both in velocity
and position. Precision low-low satellite-to-satellite tracking, such as with GRACE,
reduces the accuracy requirements on the absolute velocity by an order of magni-
tude. However, it should be noted that range-rates do not sense cross-track and radial
components of the absolute or inter-satellite velocity, where the radial component
of the latter makes a particularly significant contribution to the potential difference.
On the other hand, the radial-velocity contribution is primarily a long-wavelength
signal compared to the along-track component, and is thus amenable to strong noise
filtering without loss of high-frequency signal.

5.7 Exercises

Data and files needed for the following exercises are available online at:
www.geoq.uni-hannover.de/autumnschool-data
http://extras.springer.com

www.geoq.uni-hannover.de/autumnschool-data
http://extras.springer.com
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This exercise is designed to demonstrate that the energy balance formulation can be
used to solve for in-situ potential differences using range-rate and state vector data
from GRACE. The data are corresponding L1B products for 1 December 2008. The
provided data files are:
GNV1B_A.dat: t[s], xe1[m],σxe1 [m], ẋe1[m/s ],σẋ e1 [m/s ] for GRACE A (trailing)
GNV1B_B.dat: t[s], xe2[m],σxe2 [m], ẋe2[m/s ],σẋ e2 [m/s ] for GRACE B (leading)

KBR1B.dat: t[s], ρ̇12[m/s ], δρ̇(lighttime)
12 [m/s ], δρ̇(antennacenter)

12 [m/s ]
EGM_A.dat: t[s], xe1[m], V1[m2

/s2 ].
EGM_B.dat: t[s], xe2[m], V2[m2

/s2 ].
Remarks:
(a) All GRACE data are given in the Earth-fixed frame.
(b) The GRACE L1B state vector files are not pure kinematic orbits, but are consistent
to high accuracy with an a priori global gravitation model. Hence, this exercise is
more of a simulation than an actual geopotential determination.
(c) The data have been extracted from GRACE L1B products, where data records
have been synchronized in time across the files and extraneous data and metadata have
been omitted. The range-rate values require light-time and antenna center corrections:
ρ̇12 = ρ̇(raw)

12 + δρ̇
(lighttime)
12 + δρ̇(antennacenter)

12
(d) The gravitational potential values are obtained from the model, EGM2008
(Nmax = 180), for the points long each orbit.
(e) Specific force and time-integral terms, as well as the pole tide potential are
neglected in the tests of this exercise.

Tasks
1. Write the energy balance equations to be tested, both in terms of range-rate and
position/velocity observables, and without the range-rate observable. Define all nota-
tion.
2. Compute the right-hand side of both equations using the GRACE data given in
the files.
3. Compare on a plot the main range-rate term with the other terms in the energy
balance equation (formulated for the range-rate) for the first three hours of the orbits.
Why are the cross-track and rotation potential terms almost the same?
4. Compare the computed potential differences to the provided EGM2008 data. That
is, plot the differences, V (GRACE)

12 − V (EGM)
12 , with and without the range-rate observ-

able for the entire day’s worth of data, and compute the statistics of these differences
(mean, standard deviation). Why is the mean not close to zero? What is the cause of
the oscillation in these differences?
5. Based on the average of the formal standard errors in position and velocity, σx =
3.6 ∗ 10−3m, σẋ = 3.45 ∗ 10−6 m/s and assuming a range-rate accuracy of σρ̇12 =
0.1 ∗ 10−6 m/s , determine the contribution of each error type (position, velocity, and
range-rate) to the total error in the potential difference at a point (using the graphic
in the lecture notes). How does the total potential difference accuracy thus estimated
compare to the standard deviations computed above?
6. Compute the power spectral density (median-smoothed periodogram) of the dif-
ferences, V (GRACE)

12 − V (EGM)
12 , with and without the range-rate observable, for the
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1-day orbit and with respect to the temporal frequency. Plot both on the same log-log
graph. Can you interpret the results? (e.g., what causes the resonance peak at low
frequency? What could be the reason for the greater power at very high frequencies
when the range-rate observation is included?)
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