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Preface

In many application fields, artificial intelligence, data mining, pattern recognition
operations research, to name but a few, often problems arise that may be reduced at
their very essence to optimization problems.

Unfortunately, neither the objective function nor the solution search space dis-
play that nice properties that may be conveniently exploited by widespread familiar
numerical analysis tools. Though these latter offer powerful devices to cope with
a great deal of both theoretical and practical problems in so many disciplines, the
hypotheses on which they rely are far from being fulfilled within the frameworks
that so often constitute the background of the application fields we mentioned so far.
Here well behaved analytic functions and compact domains are not commonplace
and only raw hazardous simplifying assumptions may constrain so many classes of
problems in such a way they may be treated by means of comfortable numerical
procedures.

It may happen that too much simplification does not allow the actual problem to
be solved satisfactorily, that is we obtain useless though well grounded solutions.
Heuristic methods have been developed to yield reliable solutions to many partic-
ular problems, but only the development of general heuristics offered a theoretical
framework for dealing with a large class of problems.

One outstanding approach in this kind of methods proved to be evolutionary
computing. This rapidly growing research field came nowadays to a well established
discipline on its own enjoying solid theoretical foundations and large evidence of
effectiveness as far as complex non conventional optimization problems are con-
cerned. History dates back to the fifties and since then an enormous body of theory
has been developed which makes evolutionary computing a suitable framework for
building applied methodology while it is an active and thriving research field. Its
influence spread out through so many disciplines, from biology to informatics and
engineering and to economics and social sciences.

We shall try to make an account of the influence of evolutionary computing in
Statistics and close related fields. Evolutionary computation is particularly useful in
Statistics, in all cases when the statistician has to select, inside a very large discrete
set just one element, be it a method, a model, a parameter value, or such.
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vi Preface

Therefore a common application of evolutionary computation is to the selection
of variables, both in regression problems and in time series linear models. In time
series analysis it has been proposed also for building non linear models. For the
same reason, evolutionary computation may be employed in the problem of outlier
detection, and several papers were published both for the independent observations
case and for time series.

A recent, very promising application is in the design of experiments, where the
optimal choice of a combination of factors, and their levels, is needed, and cost
constraints are very strong.

Finally, a typical field of application of evolutionary computation to Statistics is
cluster analysis. Here, the use of an evolutionary algorithm provides a valid alter-
native when the number of units and variables is large, and the standard cluster
techniques allow only approximate solutions.

This book brings together most literature on the use of evolutionary computation
methods in statistical analysis, and contains also some unpublished material. It is
based on the over 15 years experience and research work of the authors in this field.

This book requires a basic knowledge of mathematics and statistics, and may be
useful to research students and professionals to appreciate the suitability for solving
complex statistical problems of evolutionary computation. We believe that these
algorithms will become a common standard in Statistics in a few years.

Much of the research work included in this book has been possible due to gen-
erous funding from Institutions that we are happy to acknowledge with thanks.
F. Battaglia and R. Baragona gratefully acknowledge funding from MIUR, Italy
(PRIN 2007) and European Commission through Marie Curie Research and Train-
ing Network COMISEF – Computational Methods in Statistics, Econometrics and
Finance (contract MRTN-CT-2006-034270). I. Poli also would like to acknowledge
the MIUR for the PRIN 2007 project, the European Commission for the PACE inte-
grated project (IST-FET, www.istpace.org), and the Fondazione di Venezia for the
DICE project. She also would like to thank the researchers at the European Centre
for Living Technology for the very fruitful collaboration at the development of the
evolutionary perspective in Statistics, in particular Davide de March, Debora Slanzi,
Laura Villanova, Matteo Borrotti, Michele Forlin.

We are willing to express our gratitude to many colleagues who commented on
large parts of the manuscript letting some obscurities and subtleties be disclosed. In
particular we need to mention Antonietta di Salvatore and Domenico Cucina who
patiently and carefully read all of the versions of the manuscript, and Debora Slanzi
who provided us with lot of computer programs and graphical displays, specially
as regards design of experiments. We are indebted for useful and animated discus-
sions to Matt Protopapas, specially concerned with issues related to non linear time
series, and to Sanghamitra Bandyopadhyay and Ujjwal Maulik who pointed out in
particular some important aspects related to multiobjective optimization and cluster
analysis. We have to thank the Springer Editors who successively took care of the
manuscript for their assiduous assistance and encouragement, Lilith Braun and Peter
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Niels Thomas. Also our thanks are deservedly due to the Desk Editor Alice Blanck
for her accurate preparation of the final version of the manuscript, and to Samuel
Roobesh, Project Manager at Integra Software Services Pvt. Ltd., for his attentive
care in handling the production of this book.

Rome, Italy Roberto Baragona
Rome, Italy Francesco Battaglia
Venice, Italy Irene Poli
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Chapter 1
Introduction

Abstract A new line of research has started since the fifties originated by a new
awareness in scientific community that natural and biological mechanisms could
provide not only the traditional object of study but suggest new disciplines theo-
ries and methods by themselves. We may cite the Rosenblatt’s perceptron, one of
the first examples of a learning machine, and the Box’s evolutionary approach to
industrial productivity, an early attempt to modeling a process using the concepts of
evolutionary behavior of living creatures. This short introduction aims at highlight-
ing the basic ideas that led to an unprecedented enlargement of the guidelines for
developing theoretical and applied research in a large body of scientific disciplines.
An outline of the present book as far as the impact of the new research technologies
on statistics and strictly related subjects is concerned is given with special emphasis
on methods inspired by natural biological evolution.

1.1 Bio-inspired Optimization Methods

Since the fifties a new idea has started its way in the real world and academic
problem solving domain. The core of this point of view resides in developing bio-
inspired methodologies for handling issues that received not entirely satisfactory
treatment by means of current to date procedures. Well known examples are the
Rosenblatt’s perceptron (Rosenblatt, 1958) and Box’s evolutionary approach to
industrial productivity (Box, 1957).

Box discussed the evolutionary approach as regards the improvement of the out-
put of a plant at minimum or no cost at all. This is well distinguished from the inno-
vation, that is a significant change in the production process, and quality control,
which aims at ensuring that the product properties satisfy pre-specified standard.
Evolutionary operation includes two features that outline a unique specific activity,
(i) variation, and (ii) selection. The process has to be monitored as usual without
the intervention of specialized plant personnel. Unlike laboratory experiments, the
process itself performs ordinary production and yields information to give hints for
improving the product. If unrecorded this information will be lost. By using the
evolutionary operation approach both input and output of the process have to be
recorded and a committee of three/four people may examine this information at

R. Baragona et al., Evolutionary Statistical Procedures, Statistics and Computing,
DOI 10.1007/978-3-642-16218-3_1, C© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

regular intervals, once a month, for instance, to discover the variant, if any, which
has been able to yield a better output. This way an evolution process may develop
which adopts the good variants and discards those that yielded material of inferior
quality.

The outstanding characteristic of such approach that an automatic activity may
evolve itself by learning from its own past performances is present in the perceptron
mechanism as well.

At the time of their appearance such proposals had to face on one hand the
limited computational resources and on the other hand the widespread confidence
in well established analytical tools. Nevertheless, complexity of real world called
soon for complex models founded on a solid theoretical background. As a matter of
fact, oversimplification does not help to get a really useful representation of many
phenomena. High complex models are needed to properly handle hard problems.
Unfortunately, these latter often result to be analytically intractable. An outstand-
ing example is meteorological forecasting. The relatively simple models developed
some decades ago were able to account for the overall dynamics of weather changes
for small areas and short time span. However, forecasts proved to be almost useless
as but a small improvement with respect to random guess. At present large high
complex models allow forecasts to be delivered reliable enough to short-medium
term. Such complicated models may be managed only by the nowadays high speed
parallel computers. Only the lack of computing power prevented using appropriate
models and providing people with useful forecasts. High complex models prompted
for using evolutionary computing and large computer resources allowed the evo-
lutionary algorithms to be developed. This does not mean that evolutionary com-
puting is to be considered the best available problem solver. There are instances
for which algorithms developed within a different framework may yield far better
results. Moreover, researchers and practitioners are aware that a general purpose
evolutionary algorithm will perform worse than any problem – oriented algorithm.
On the other hand, fine tuning may improve the performance of an evolutionary
algorithm so that it turns to be the best choice for some particular instance of a
problem. This circumstance offers the main motivation for introducing the so –
called hybrid methods. Hybridization may take place either between an evolutionary
algorithm and an algorithm founded on analytical premises or between an evolution-
ary algorithm and a meta – heuristic algorithm. In the former case, the evolutionary
algorithm is generally given the task of exploring the search space while the support
algorithm refines the solution. In the latter case, it is the searching mechanism itself
that is improved by features offered by the meta – heuristic. At present this seems
the most promising approach and a line of active research. It is interesting to note
that diffusion of evolutionary computing has been not quite uniform in applica-
tion fields. Evolutionary algorithms have become standard tools for solving some
classes of problems while there are domains where they are virtually unknown.
For example, the traveling salesman problem is maybe the first application of
evolutionary computing as favorite (or at least among the best choices) problem
solver.
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The problem is well known, in its simplest formulation it consists in finding
the shortest route to visit each and every location in a given set only once. Con-
straints may be added and more complicated problems of this kind may arise. If
labels {1, 2, . . . , n} identify the locations (towns, for instance) then the permutation
that satisfies the constraints and optimizes the objective function (cost, distance,
. . .) yields the solution. Permutations, however, are known to grow large fast. So
complete enumeration, exact/heuristic algorithms, meta heuristic methods have to
be used in this order as far as the computing devices available at the moment allow
their practical feasibility.

It is extremely difficult to predict if an evolutionary algorithm will succeed in
handling a given problem. In general, evolutionary computing is to be considered
either in the presence of several sub – optimal solutions close each other or if the
search space is large and discrete. In the first case gradient – based algorithms, for
instance, are likely to yield a sub – optimal solution if the starting point is close to
this sub – optimum. In the second case, derivatives are not defined and gradient –
based methods do not apply. However, strategies such as re – starting may avoid a
gradient – based algorithm to be trapped in a local optimum and, on the other hand,
other meta – heuristics may yield as equally good performance than evolutionary
algorithms in discrete search spaces. Evolutionary computing theory may serve to
give some insight into long run convergence of evolutionary algorithm. But rate
of convergence is an issue that deserves further research. In fact it may well be
the case that an evolutionary algorithm needs for exact convergence a number of
steps comparable with the number of all possible feasible solutions to the prob-
lem at hand. In practice the most useful guide that is available to decide if it is
worth the while using an evolutionary algorithm is experience. The capability of
evolutionary algorithms to handle problems in a particular class is demonstrated by
either applications or documented simulations. Again we have to stress the key role
that availability of ever more powerful and cheaper computers has been playing as
regards developments of evolutionary computing (and for so many new techniques
and methods). At present the impressive improvement of computer resources allows
calculations to be done that were simply impossible only few years ago.

At the same time the data storage facilities allow less and less expensive and
larger and larger data bases to be available with easy and fast access to information.

Not only high complex models may be built and made operational but devel-
opment of new tools is encouraged by the simple fact that software for practical
applications may easily run on computers owned by researchers and practitioners.
Another interesting circumstance resides in that methods developed in the past, that
have been abandoned because of computational difficulties, are now becoming of
practical usage. For example, neural networks have been studied since long time,
but renewed interest has been possible after computers powerful enough allowed
the calculations involved to be performed for real world scale problems. Though
several evolutionary algorithms have been developed for solving problems arising
in statistics, evolutionary computing is not to be considered a widespread tool in this
domain. Statistical model building is of great importance in many fields of applica-
tions and requires more and more expertise from various disciplines. Environmental
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investigations on seismic events, analysis of the interactions among macro – eco-
nomic variables, data mining and web mining are some examples of relevant prob-
lems where statistical models are essential part of the procedure solution. Even if a
phenomenon is well understood, yet an estimation step is almost always needed to
set up properly a number of problem – dependent details. Some numerical measures
are not known in advance and cannot be easily computed nor offered ready – made
from past experience. Namely, we have parameters to be estimated. Statistical esti-
mation techniques proceed by setting up a probabilistic model which is specified up
to a certain number of unknown parameters. Proper values are searched in a feasible
space of solutions. The search is driven by criteria that amount to maximization or
minimization of suitable functions derived by the probabilistic model. Evolutionary
computing may intervene in this respect, suggesting evolutionary algorithms to be
used as function optimizers. Non parametric approach may use evolutionary com-
puting in a similar manner. Evolutionary algorithms have to be designed according
to the appropriate optimality criteria. Of course, researchers and practitioners are
faced with the dilemma what is the best choice among several algorithms grounded
on different framework. As usual, algorithms that proved to work well for a partic-
ular problem should be retained until some shortcoming become apparent. Then we
may either resort to hybridization for improving the technique or turn to different
approaches, including evolutionary computing.

Finally, a connection has been pointed out recently between evolutionary com-
putation and random numbers generation according to a specified probability distri-
bution. This issue is object of current research.

1.2 Topics Organization

The book is composed of two parts. The first one is devoted to introduce evolution-
ary computing and the special techniques that are commonly included under this
label. To date, we may list evolutionary programming, genetic algorithms, evolution
strategies, genetic programming, estimation of distribution algorithms, evolutionary
behavior and differential evolution. Applications in statistics are concerned mostly
with genetic algorithms, so we will briefly illustrate the theoretical back ground
of genetic algorithms. Special consideration will be given to convergence issues
and fine tuning of algorithm parameters. Then we will describe the applications
of genetic algorithms that have been tried to date as regards statistical problems.
This will give some hints if and when the evolutionary computing approach may be
preferred to different competing techniques.



Chapter 2
Evolutionary Computation

Abstract The evolutionary computation methods are introduced by discussing their
origin inside the artificial intelligence framework, and the contributions of Darwin’s
theory of natural evolution and Genetics. We attempt to highlight the main features
of an evolutionary computation method, and describe briefly some of them: evolu-
tionary programming, evolution strategies, genetic algorithm, estimation of distri-
bution algorithms, differential evolution. The remainder of the chapter is devoted
to a closer illustration of genetic algorithms and more recent advancements, to the
problem of convergence and to the practical use of them. A final section on the rela-
tionship between genetic algorithms and random sampling techniques is included.

2.1 Introduction

2.1.1 Evolutionary Computation Between Artificial Intelligence
and Natural Evolution

Drawing an history of evolutionary computation is not an easy task nor within the
scope of this book. However, we shall spend some words to outline where and when
the framework, which has later become that of evolutionary computation, originated.

The term “evolutionary” started to be associated with concepts linked to comput-
ing and algorithms towards the beginning of the sixties, in the scientific community
concerned with developing and studying computing machines, and specifically in a
field which has been known as artificial intelligence. An excellent discussion may
be found in chapter 1 of Fogel (1998).

Though the term artificial intelligence (AI) is widely accepted for denoting a
specific research field, the definition of AI is controversial; proposals range from
manipulations of symbols for solving problems, to developing intelligent computer
programs, to mechanization of the human thought process, or even the study of
mental faculties by means of computational models.

The starting contribution may be considered Turing (1950), who addressed the
question: can a machine think? An essential requirement is that the process of
thinking may be exactly objectified and formalized, then one may try to transpose
that process into a digital machine program. In order to perform such a complex
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abstraction, scientists had been faced with enormous logical difficulties, and there-
fore they tried to limit their efforts, at least initially, to a narrower and well defined
field: therefore, they started to study simple situations generally linked to games.

Moreover, it was necessary to find games where the purpose be unambiguously
defined, and the measurement of the degree of attainment of that purpose be pos-
sible and not too hard; and finally, it was required that chance had no role at all
in the game, in order to make the analysis deterministic, therefore simpler. It is not
surprising that soon many researchers focused on the chess game, and in subsequent
years a great deal of effort was devoted by scientists both in academy and in com-
puter research centers, to derive software and more and more powerful machines
able to defeat a human chess top player (in 1997 IBM’s Deep Blue defeated the
world champion Garry Kasparov).

However, it was soon clear to many researchers that those computers exploited
their ability to evaluate very rapidly an enormous database of information, and com-
pare them to the specific instances when they have to decide a move, but no form of
learning automatically is involved.

But how to define that last requirement? A possible answer is that learning means
connecting together pieces of knowledge to create new knowledge. Such a (appar-
ently) simple idea led to the development of the so-called expert systems. In this
software, a set of entities (objects) are defined, and sets of relationships between
pairs (or more) of entities are enunciated (the knowledge base). A set of logical
rules (what is called the inference engine) allows to discover possible new rela-
tionships between two given entities by following chains of relations contained in
the knowledge base. Compared to chess programs, expert systems are also based
on a large information set, and exploit the computer ability of managing rapidly
its elements, but also attempt to connect them to create new knowledge. How-
ever, in the expert systems also, the difficulty of making explicit all the knowledge
related to but the simplest problems makes application to real problems extremely
complex.

An alternative framework which was soon explored, also starting from the middle
of twentieth century, is turning to a microscopic view rather than macroscopic, lead-
ing to the nowadays well established framework called (artificial) neural networks.
In the same fashion as the fundamental brain activity is governed by electrical
impulses that flow through the neural cells, a neural network is a set of entities (also
named neurons) which are connected to each other by ordered links. Each (artifi-
cial) neuron receives from each of its antecedents some numerical information, and
depending on the whole set of received signals transmits a numerical information
to each of their successors. The information flow is oriented, thus a neural network
has distinct input and output information. According to a given input the network
produces a specific output depending on its structure. If, for a given input, a target
output is defined, the network parameters may be tuned in order to achieve the
required output, and in all cases but the simplest this has to be done by iterative
approximation. This is known as the training activity of the network: a recursive
process that brings an entity to approach progressively the attainment of its goal.
Indeed, the distinctive feature of changing continuously the behavior in order to
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obtain benefits according to a given measure of satisfaction has been advocated as
an essential characteristic of intelligence, and provides the link between artificial
intelligence and evolutionary computation.

A similar link may be drawn in nature between intelligence and adaptation. In
effect, it is doubtless that intelligence arises when an organism reacts to the exter-
nal forces (say, the environment) and many reactions are possible, with different
consequences. Intelligence may be thought of as related to choosing reactions that
ensure best results and it in turn calls for a definition and a measure of reaching
goals, or satisfaction. Thus, the concept of intelligence requires, on one hand, that
different courses of action may be alternatively chosen, in other terms, is concerned
with decision maker entities, and, on the other hand, requires that each possible
action may be evaluated, in order that good and bad behaviors may be distinguished.
But the outcome of each action depends generally on the environment, therefore
intelligence requires that information from the environment may be recovered and
analyzed. Fogel et al. (1966) state: “intelligence is the capability of a system to
adapt its behavior to meet its goal in a range of environments”. In a word, though
extremizing: intelligence is evolution.

The last word, evolution, introduces the second framework which inspired the
development of evolutionary computation methods, and from which they inherited
the name itself, the terminology and the fundamental ideas: the theory of natural
evolution, named after Charles Darwin.

The main results obtained by Darwin in the middle of the nineteenth century
received confirmation later and further development from the progress of genetics,
and now a systematic theory of natural evolution has been formulated and its validity
recognized almost everywhere, known as neo-Darwinism.

Neo-Darwinism proposes to explain the dynamics of life through few interaction
mechanisms among individuals, and between individuals and the environment. Each
of such mechanisms is subject to random forces, and their outcome is stochastic.

The first process is reproduction, where each individual, or each pair if sexual
reproduction is considered, bears new individuals that have some features of their
parents, and can mix characters of their two parents in sexual reproduction. Mutation
is the second process, which arises also in the transition from parents to children,
and allows new characters to appear in the population. The competition mechanism
implies that individuals in the same population, owing to finite resources, are antag-
onists and compete to ensure sufficient (or satisfying) benefits, and implies also
that some individuals are successful while others are not and are, at various extent,
eliminated from the population. Finally, the selection process dictates that not all
individuals have the same reproduction ability, and such differences are related to
the capacity of the individual to adapt to the environment and survive to the com-
petitors and predators.

Given a population at a certain time (the initial generation), a new population (the
new generation) is formed, after all such processes have acted on each individual of
the initial population. Some individuals of the initial population survive to the new
population, and some new individuals are born. Modifications are random but the
essential feature is that individuals that are more adapted (fitted) to the environment
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tend to survive and reproduce to a larger extent than individuals that are less fitted,
therefore favorable characteristics tend to spread into populations, generation after
generation.

2.1.2 The Contribution of Genetics

The outstanding contribution of Charles Darwin, based on the principle of survival
of the fittest, has led to the theory of natural evolution which enables to explain
the biological history of species. Darwin’s theory was essentially observational,
because it was not possible at that time to explain and describe in detail how the
physical modifications of individuals take place, and which biological processes
lead to recombination and mutation. This is the subject of genetics and it was devel-
oped only later: reason is, on one hand, that substantial progress in knowledge of
biochemical processes was needed, and, on the other hand, that the mechanisms
involved are extremely complex.

Modern genetics allow to describe the evolution process at different levels of
detail, but a rather general description is sufficient for a mathematical formalization.

Living beings are constituted by cells with specialized tasks, but each cell con-
tains a fixed number of chromosomes (number varies according to the species)
which carry the genetic information of the whole individual. Each chromosome in
turn contains several information, each piece of elementary information is called a
gene. A gene may be conceptually thought of as a binary code, that may assume
two different states (for genes the words expressed and unexpressed are used). The
whole of information carried by genes of all chromosomes (the genotype) deter-
mines all characters of an individual (the phenotype). Chromosomes are ordered in
pairs, and when sexual reproduction takes place, children receive, for each pair, one
chromosome from each of their parents.

Reproduction is a complex process during which two phenomena may occur
(among others) which modify the overall information transmitted from parents to
children: mutation and recombination. Mutation happens when the single piece of
information carried by a single gene changes: this modification may arise due to
several complicated biochemical reasons, and may be assumed as a random event,
generally a rare event. Recombination involves a couple of different chromosomes,
and produces an exchange of genetic material so that part of the information carried
by one chromosome is exchanged with the corresponding information of the other
one. Recombination is also a random event, though more frequent in nature than
mutation.

Once the physical and chemical processes involved in natural evolution had been
discovered, it became possible to formalize them into a mathematical algorithm, but
obviously this may be done only through many simplifying assumptions, because
such processes are too complex.

The description of genetical evolution given above is very approximate and
imprecise and does not approach in any detail the physical and chemical processes
involved: really, we have not mentioned DNA at all. However, it is rich enough
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to be suitable for most purposes, and indeed the best mathematical metaphor of
the evolution process, the genetic algorithm, is based on an even more simplified
scheme.

In a genetic algorithm, each individual is assigned only one chromosome which
characterizes all its features (possibly including several distinct fragments), and
most often the information carried by each gene is simply binary. Moreover, there is
no sex distinction, thus any individual may mate with any other to bear an offspring;
finally, no growing up or ageing exist, and the fitness of each individual is constant
in time. In spite of its simplicity, the genetic algorithm proved a formidable, all
purposes optimizing tool; its simplicity explains also why an overwhelming number
of variants and generalizations have been proposed in the literature.

Genetic algorithms originate from the work of John Holland in the sixties, and
were developed by him and his students at the University of Michigan during several
years. The fundamental reference, where genetic algorithms are formally introduced
and thoroughly explored, is Holland’s book Adaptation in Natural and Artificial
Systems printed in 1975. As is clear from the title, Holland’s idea was to formalize
and describe a quantitative framework for studying the process of adaptation and
evolution of a biological population, and to learn from them rules and principles
which could allow artificial systems, in a similar fashion, to evolve. The latter are
often related to optimization problems, thus employing the genetic algorithm envi-
ronment for solving optimization problems has obvious advantages.

Each individual of the population is associated to a possible solution of the prob-
lem, and the function to be optimized assumes the meaning of fitness. Therefore, the
fittest individual in each generation represents the best solution reached thus far, and
evolution allows to discover a solution that gets better, as the generations evolve. In
this way, running a genetic algorithm allows to produce a sequence of solutions (the
best fitted individuals at each generation) which approach the optimum.

There has been considerable discussion on the role of genetic algorithms as func-
tion optimizers (see De Jong, 1993): it is clear that trying to optimize a function by
means of a genetic algorithm means following only the best fitted individual at each
generation, therefore focusing only on a particular aspect of the algorithm behavior;
we return to this topic at the end of the present chapter.

Genetic algorithms have been successfully employed for solving optimization
problems in many fields. Several are related with the design of complex systems
and their optimal control. Among them, we can cite filters in communications
and acoustics; neural networks; communication systems; wireless networks; com-
puter networks; and even nuclear reactors. Genetic algorithms proved their validity
in many classical operations research problems, such as the travelling salesman,
scheduling and task planning. Finally, notable applications of genetic algorithms
are found in several difficult applied problems, such as speech recognition and med-
ical diagnosis. An especially suitable field where genetic algorithms find increasing
applications is protein engineering. Hundredth of references may be found in any
good genetic algorithms textbook (to cite just a few: Goldberg, 1989a; Davis, 1991;
Man et al., 1999; Michalewicz, 1996a; Mitchell, 1996), and a review is beyond the
scope of this book.
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What all these problems have in common is complexity. In effect, there is no
point in trying to solve by means of a genetic algorithm a problem whose solu-
tion may be found by means of analytical methods (such as equating derivatives to
zero), or simple and well-behaved problems where classical numerical techniques
such as Newton’s method are generally adequate. Therefore genetic algorithms are
employed in problems for which, essentially, no method for determining the opti-
mum is known better than enumerating all the possible solutions. Such problems
are known in the computational complexity theory as NP-complete problems, as
discussed in the next section.

The last 30 years have seen an enormous development of the theory originated by
John Holland, bridges have been built between the several similar attempts linked
to the idea of evolution, and now a generally accepted framework called evolution-
ary computation has been established; however, genetic algorithms still appear the
most general and flexible tool for evolutionary computation, and often evolutionary
computing and genetic algorithms are used as synonymous.

2.2 Evolutionary Computation Methods

2.2.1 Essential Properties

Though we have observed that evolutionary computation is not only optimization,
most applications in Statistics are concerned, at least at present, with optimization
problems.

Schematically, an optimization problem may be defined as a pair ( f,Ω) where
f is a function from Ω to the set of real numbers R, and Ω is the set of possible
solutions. IfΩ is a subset of R

n but is not a subset of R
n−1, then n is the dimension

of the problem. The aim may be to maximize or minimize the value of the objective
function f . Solving the problem means finding the element(s) of Ω for which f
attains its maximum (minimum) value, if they exist.

In many lucky (or simplified) cases, f is a well-behaved mathematical function
of n real arguments, and Ω is a sufficiently regular subset of R

n so that the solution
is found simply by equating to zero the derivatives of f . But in the great majority
of cases this is not possible, the most relevant instance in Statistics is when Ω is a
discrete, though very large, set. In that case we speak of combinatorial optimization
problems.

Optimum problems may be classified according to their computational com-
plexity, as measured by the number of elementary operations (generally specified
as computer elementary arithmetical or logical instructions) needed to solve them.
Problems for which an algorithm requiring a number of operations of order equal to
a polynomial in n is known, are called P problems, while problems for which only
algorithms exist whose number of required operations grows faster with n than a
polynomial are called NP problems. Whether a given problem for which a polyno-
mial algorithm is not known, is P or NP, cannot generally be shown, and the question
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if a NP problem actually exists is still essentially formally open. However, a class
of problems may be defined, which are (at present) NP, but it may be shown that if
for one of them a polynomial algorithm may be found, then a polynomial algorithm
exists for any NP problem. Problems in that class are called NP-complete. Though
one cannot exclude that for a NP-complete problem an algorithm in polynomial
time will be discovered, this is most unlikely, and in this case it would be possible
to solve with the same complexity level all NP problems: it would essentially mean
that the class of P problems and that of NP problems coincide.

Therefore, in practice a NP-complete problem can be exactly solved only enu-
merating, and evaluating, all possible solutions (all elements of the set Ω) and
this becomes rapidly impossible as n increases. Thus, we have to be satisfied with
approximate solution methods, trying to build algorithms which enable to obtain
“sufficiently good” solutions in a reasonable time: such methods are called heuristic
algorithms.

An exact and widely shared definition of heuristic algorithm does not exist, but
a generally accepted idea is that a heuristic method searches for best solutions of a
problem at a reasonable computational cost, without ensuring to reach optimality,
and consists in an iterative sequence of moves inside the solution space towards
better points, trying to avoid evident errors. From a computational complexity point
of view, a heuristic is an approximate algorithm which provides nearly optimal solu-
tions to a NP problem in polynomial time.

Most heuristic methods are based on local search algorithms, in the sense that
they wander inside the solution space, and each move is determined by evaluating
neighboring candidates, and entering those which are considered more promising
according to pre-specified given criteria.

Since heuristics may profit of the particular and specific features of each single
problem, it is likely that ad-hoc techniques be suitable, and that a heuristic that
performs well on a kind of problem does not work so good in another. A series of
theorems (called no free lunch theorems) originated by the work of D. H. Wolpert
and W. G. Macready (1997) state, essentially, that, if averaged on sufficiently broad
classes of problems, any pair of heuristic algorithm give equivalent results. There-
fore, heuristic methods are often tailored to the specific problems they have to solve.

There are, however, some all-purposes stochastic search methods which rely on
basic ideas useful for any optimization problem, and for this reason are called meta-
heuristic.

A heuristic optimization algorithm may be essentially described as an iterative
method which defines a sequence of elements in the solution space, with the aim of
progressively improving the values of the objective function. It is based at least on
the following items:

(a) A set of possible solutions Ω
(b) A function f (·) defined on Ω and taking values on the set of real numbers (or

some subset), called the objective (or target, or score) function, and a scope:
maximization or minimization
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(c) A set of neighborhoods defined for each element of Ω , or a rule for describing
the neighboring elements of each point ω ∈ Ω , say {N (ω), ω ∈ Ω}.

(d) A set of moving rules, which determine, for each ω ∈ Ω , which element in
the neighborhood N (ω) is chosen as the next solution to be evaluated. Rules are
often random, in that case they specify a probability distribution on the elements
of the neighborhood N (ω).

(e) A starting point ω0 ∈ Ω
(f) A stopping rule for deciding when the iterative process should be terminated,

and the best-so-far found solution to be declared the result of optimization.

The heuristic is iterative: starting from ω0, it computes its neighborhood N (ω0)

according to (c), chooses a point ω1 ∈ N (ω0) according to (d), and turns from ω0
to ω1; then the elements of N (ω1) are examined and one of them, ω2, is selected;
then N (ω2) is computed and a new element ω3 in it is selected and so on. If the
stopping rule is met at iteration n, then ωn is assumed as the solution and f (ωn) as
the optimized value of the objective function.

If the decisions concerning items (c), (d), (e) and (f) do not depend on the particu-
lar behavior of the objective function f (·), but are specified in terms of mathematical
procedures defined on the formal objects f (·) and Ω , and may therefore applied to
any particularization of them, the algorithm is called a meta-heuristic.

Many different heuristic methods have been proposed and are employed in var-
ious fields, their differences are essentially in the way the neighborhoods, and,
more important, the moving rules, are selected, the most relevant alternatives
being between deterministic and stochastic procedures, and between monotonic –
f (ωk+1) always better than f (ωk) – or non-monotonic rules.

Relevant examples of meta-heuristic methods are the descent methods, threshold
accepting, simulated annealing, tabu search.

Evolutionary computation methods share the common features of meta-
heuristics, but in addition have specific characteristics:

1. Evolutionary computation methods are population-based algorithms. It means
that they consider at each stage an entire subset of possible solutions as the
individuals of a population, and at each iteration (in this framework called
generation) each member of the population changes (or only some of them);
furthermore, the number of individuals may also change iteration by iteration.
The essential feature, however, is that evolution originates from reciprocal inter-
actions among individuals, in other terms the choice of which individual will
become part of the population at generation n depends on the whole set of indi-
viduals in generation n − 1.

2. The moving rules are stochastic. Therefore, at each step, each individual is
assigned a neighborhood and a probability distribution on that, and the individual
is changed to a new one inside the neighborhood according to a random trial on
that probability distribution.
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In summary, and reconciling the naturally inspired terminology of Sect. 2.1.1 with
the more mathematical style of this Section, an evolutionary computation method
may be described as follows:

(a) The algorithm motivation is to search for the maximum value of a given function
f : Ω → R. Each element of the set Ω is called an individual, and the value of
f (·) measures the success of that individual in its environment, therefore f is
called the fitness function and the aim is to maximize it.

(b) The algorithm is iterative and at each stage n (called a generation) produces
a subset of Ω , called the population at generation n. A rule for choosing the
population at the initial stage (generation 0 population) is therefore needed, and
also a stopping rule for determining at which generation the iterations should
terminate, has to be selected.

(c) The composition of population at generation n is determined by the population
of the previous generation according to a stochastic procedure, which is inspired
by the natural evolution theory, and tries to translate into formal mathematical
operations the biological processes of reproduction, mutation, recombination.
Members of generation n − 1 are seen as parents, and those of generation
n as children. The number of individuals in the population may increase or
decrease at each iteration (according to the different evolutionary computation
algorithms), therefore the neighborhood usually includes the null element, and
a jump to that means the elimination of the individual.

The essential innovation of population based methods is that the “destiny” of each
individual at generation n depends on the whole set of individuals in the population
at that time; this means that for each individual ω ∈ Ω its neighborhood, defining
what it will become in the next generation, depends on the other individuals of
the contemporary population. Furthermore, different individuals in the same gener-
ations may have different types of neighborhood. Thus, the most common way of
analyzing and following the evolution across generations does not refer to neighbor-
hoods of each individual, but rather focuses on offsprings arising at each generation
from the population as a whole.

Since the transition from a generation to the next one has a complicate mecha-
nism, it may be generally decomposed into different successive phases. The first one
consists in selecting, from the individuals of the population at the current generation,
a set of candidates for bearing new offsprings (a stage often referred to as selection);
then, each of them (or more frequently each pair) undergoes a process consisting in
the successive application of some modification rules (the evolutionary “operators”,
frequently inspired by analogies with nature), ending up in the creation of one (or
sometimes two) new individual (the child). Finally, children may replace their par-
ents (totally or partly or not at all according to different replacement schemes), and
constitute the population for the next generation.

A classification of evolutionary computation method is not simple, and many dif-
ferent criteria have been proposed. However, at least on an historical ground, there
is a general agreement that three methods: evolutionary programming, evolution
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strategies and genetic algorithms, originated the family of evolutionary computa-
tion algorithms. We describe briefly these three frameworks in the next sections.
More recently, many new methods have been proposed and explored. Among them,
we shall address only a few methods which appear more suitable for applications
in Statistics: the estimation of distribution algorithm, the differential evolution and
some evolutionary behavior algorithms.

2.2.2 Evolutionary Programming

Evolutionary programming is the first methodology which relies on evolutionary
concepts and was invented by Lawrence Fogel at the beginning of the sixties. He
was concerned with artificial intelligence and developed the original idea that intel-
ligence is intimately related with the ability of predicting a dynamic environment,
in order to be able to increase self adaptation. In order to formalize such process, he
considered finite state machines.

A finite state machine is a black box system which transforms a sequence of
inputs in a sequence of outputs, given a finite alphabet of input and a finite alphabet
of output. The finite state machine may be in a (also finite) number of different
states, and the response depends on the state. The behavior of a machine is dynami-
cal: it starts in an initial state, and receives the first input symbol; according to this,
it outputs a symbol among the allowed alphabet, and changes state. Now, the second
input is received and analyzed, and according to the current state an output symbol
is chosen, and so on: each received input symbol produces an output and a state
transition.

The output symbol of a state machine has the meaning of an attempt to predict the
next input symbol (or some feature of it). Therefore an evaluation function (called
the payoff) on the pairs {output symbol, next input symbol} is defined. At each stage
of evolution, the entire sequence of input symbols is compared with the sequence of
outputs, and the fitness of the machine is evaluated by taking the sum of the payoff
values at each time.

As a very simple example, consider an average weekly forecast exercise. At
each stage (say on Monday) the average temperature of the last week is received
in input, while the current system state denotes the season: spring, summer, autumn
or winter. According to the input temperature, the state is updated, and the related
average seasonal temperature is output. This simple procedure may be formalized
through a four–state finite machine: states are denoted by Spring, sUmmer, Autumn,
W inter, input symbols may be f rozen, cold, mild, warm, hot, and output symbols
tS, tU , tA, tW , the four average seasonal temperature.

A possible behavior of this finite state machine is sketched in Table 2.1. If the
input temperature is more suitable for the next (in time) season rather than the cur-
rent one, the state is changed to the next, otherwise the state remains unchanged. For
example, if the current state is Winter and the input temperature is too high, the state
is changed to Spring. The transition table associates each pair (current state, input)
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Table 2.1 State transition of the finite state machine in the example
input
state f c m w h

Spring (S, tS) (S, tS) (S, tS) (U, tU ) (U, tU )
sUmmer (A, tA) (A, tA) (A, tA) (U, tU ) (U, tU )
Autumn (W, tW ) (W, tW ) (A, tA) (A, tA) (A, tA)
W inter (W, tW ) (W, tW ) (S, tS) (S, tS) (S, tS)

to the resulting pair (new state, output). The payoff values may be evaluated through
the absolute difference between the temperature in output and the input temperature
of the next week.

Evolutionary programming is a population based algorithm (and it was essen-
tially the first population based method in literature). An initial population of finite
state machines is generated at random, and exposed for a certain time to the envi-
ronment (receiving a sequence of input symbols), then a next generation is pro-
duced by mutation. Each parent finite state machine produces an offspring by ran-
domly changing one of the following characteristics: initial state, number of states,
a response to an input symbol, or a transition from a state to the following. Also, the
number of mutations undergone by a single offspring may be selected at random.
Once each finite state machine has produced an offspring, they are evaluated by
means of the payoff-based fitness. Then, on considering the whole set of parents
and children, only half of the machines, those which provide the largest fitness, are
retained and constitute the next generation population.

The brief account above refers to evolutionary programming as was originally
introduced by Lawrence Fogel and is formalized in the book Artificial Intelligence
through Simulated Evolution by Fogel et al. (1966). However, the procedure is of a
general nature and may be adapted to many different problems, since the representa-
tion of each individual as a finite state machine is very flexible. Indeed, evolutionary
programming has received a great deal of generalization and implementations in
different fields, specially in the last decade, where increasing similarities with evo-
lution strategies were enlightened. Most relevant extensions to the original scheme
include:

• definitions of individuals by means of data structures such as real vectors or
matrices

• the use of recombination operators which allow offsprings to be generated, that
inherit features of more than one individual

• choice of the method for selecting the best individuals to be retained in the gen-
eration by stochastic rather than deterministic rules

• parameters which drive reproduction may be evolved together with the
individuals

Evolutionary programming (as well as genetic algorithms) was also proposed as a
basis for evolving computer software, and it led to a new emerging discipline known
as genetic programming which is now developing rapidly, but lies beyond the scope
of the present book (for an account, see Koza, 1992).
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2.2.3 Evolution Strategies

A different approach which is also based on the idea of evolution was proposed in
the sixties by I. Rechenberg and H. P. Schwefel at Berlin Technical University. Here
the motivation comes from a process control problem in an engineering framework,
and was soon extended to optimization of general functions of multiple variables.
A detailed account may be found in Back (1996), and a more concise and recent
introduction in Beyer and Schwefel (2002).

Like evolutionary programming, evolution strategies have been extended and
widened in several directions, and at present these two evolutionary frameworks
are becoming more and more similar and integrating.

In its original formulation, an evolution strategies is an algorithm for optimizing a
real valued function of M real variables: f : RM → R. Evolution strategies also are
based on populations of individuals, which evolve through successive generations.
An individual is a possible solution to the problem, and therefore is identified by
a vector in R

M . The fitness evaluation is obviously made through the function to
be optimized f (thus proportional to f if the maximum is needed, and to − f , or
inversely proportional, if the minimum is required).

The algorithm is iterative and the population at the beginning is composed
by individuals chosen at random, uniformly, in the whole space of solutions. At
each generation, offsprings are generated by selecting a parent and perturbing it
by simply adding a random realization of a M−variate gaussian variable with
zero mean and a given (diagonal) dispersion matrix. Formally, from the individual
x = (x1, x2, . . . , xM )

′ the offspring y = (y1, y2, . . . , yM )
′ is obtained from

yi = xi + ziσi i = 1, 2, . . . ,M (2.1)

where (z1, z2, . . . , zM ) are independent realizations of a gaussian N(0,1) variable,
and (σ1, σ2, . . . , σM ) are pre-specified values.

Once all offspring are created, the population for the next generation is formed by
selecting only the fittest individuals, according to different strategies, called (μ+λ)
or (μ, λ), where μ is the (constant) number of individuals in the population, and λ
is the number of offsprings at each generation:

(μ+ λ)–ES μ parents are employed for creating λ children, then all (μ+ λ) indi-
viduals are ranked and the best μ are chosen to constitute the next generation
population

(μ, λ)–ES λ offsprings are generated by μ parents, λ > μ, and only the μ best
fitted out of the λ offsprings are returned for the next generation population:
therefore each individual disappears at the next generation.

A number of important extensions and generalizations were introduced in later
years, so that the actual evolution strategies employed in recent applications are
much more elaborated. Main evolutions of the original strategy concern self-
adaptation and recombination.
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Self-adaptation means that the parameters governing mutation are also evolved
together with individuals. Therefore each member of the population is charac-
terized not only by its numerical vector related to the solution, but also by the
vector of the standard errors of the perturbations: an individual is coded by
(y1, . . . , yM , σ1, . . . , σm). The standard deviation parameters σi are also inherited
by the offsprings, and are subject to mutation too. The mutation operator for σ is
often described by:

σnew = σold exp{τ z}

where z is a realization of a gaussian standard variable and τ is a fixed constant
(called the learning parameter).

Recombination was proposed in order to get offspring that share characteristics
of more than one parent solution. The corresponding evolution strategies, indicated
with (μ/ρ, λ)–ES or (μ/ρ+λ)–ES, rely on a fixed number ρ chosen in advance and
called the mixing number (ρ < μ) which defines the number of parents involved in
an offspring. For each offspring to be born, ρ parents are selected at random from the
population, let xi (k), i = 1, . . . ,M; k = 1, . . . , ρ be the solution coordinates of the
selected parents: then each coordinate yi of the offspring depends on the set of the
corresponding coordinates of its parents {xi (k), k = 1, . . . , ρ}, and two alternative
recombination operators may be adopted:

• discrete (or dominant) recombination: yi is selected at random with equal proba-
bilities out of {xi (1), xi (2), . . . , xi (ρ)}, for each (i = 1, 2, . . . ,M).

• intermediate recombination: yi is chosen equal to the arithmetic mean of the par-
ents coordinates:

yi = 1

ρ

ρ∑

k=1

xi (k)

Even more elaborated strategies have been proposed more recently. One of the
most interesting is covariance matrix adaptation ES, where the solution vectors are
mutated by perturbing through correlated gaussian variables, or equivalently (2.1)
is substituted by

y = x + σQz

where z = (z1, z2, . . . , zM )
′ is a vector of random observation of m independent

standard gaussian variates, and V = Q Q′ is the covariance matrix of the mutation
step. When self-adaptation is used, the parameter σ and the entries of the matrix Q
are evolved together with individuals.

Evolution strategies are more naturally employed when the space of the solutions
is R

M or at least a compact subset, but they have to be modified and generalized to
cope also with discrete spaces or even with mixed, or constrained spaces, though it
may impose several restrictions on the mutation and recombination operators.
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2.2.4 Genetic Algorithms

Among the evolutionary computation methods, genetic algorithms are those which
most rely on biological inspiration and try to develop farther a metaphor of the natu-
ral evolution of biological populations. The terminology itself bears many analogies
with genetics and biology.

A genetic algorithm is an iterative procedure that follows the evolution of a popu-
lation of individuals through successive generations . The features of each individual
are formalized in a vector of symbols from a given alphabet (usually a binary or
decimal digit) called the chromosome. Each entry of this vector is called a gene.
Not only the value of each gene, but also its position (the locus) in the chromosome
is relevant in defining the characteristics of the individual. The whole set of char-
acteristics of each individual determines its ability to survive and reproduce in the
environment, and this is supposed to be measurable by means of a single valued
real (often positive) number, called the fitness of the individual. Thus, a real-valued
function may be defined on the set of chromosomes, which measures the fitness and
is called the fitness function.

We shall denote by g the index of the generation, by i the index of the individual
in the population (i = 1, 2, . . . , N ) and by j the index of the gene in the chromo-
some ( j = 1, 2, . . . ,M). Therefore the individual i at generation g is associated to
the following chromosome :

x (g)i = (x (g)i,1 , x (g)i,2 , . . . , x (g)i,M )
′

and f [x (g)i ] will denote its fitness value.
Transition from a generation to the next consists in a reproduction process, of

a stochastic nature, articulated in the three stages of selection, recombination and
mutation.

The selection step results in choosing which individuals of the current popula-
tion are going to reproduce. Owing to the natural population similarity, we want that
most fitted individuals reproduce more frequently than less fitted ones, therefore, we
set up a random procedure where the probability of being selected for reproduction
is an increasing function of the fitness value. Most popular rules (or selection oper-
ators) are the roulette wheel, the stochastic universal sampling, and the tournament
selection.

The roulette wheel method simply selects an individual with probability propor-
tional to its fitness. Therefore, each choice of a candidate to reproduction is made by
a random trial with possible results {x (g)i , i = 1, . . . , N } and associated probability

P
[
x (g)i

]
= f

[
x (g)i

]/ N∑

k=1

f
[
x (g)k

]
.
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The roulette wheel rule may be also seen in terms of the fitness empirical dis-
tribution function Fg(y) = Freq {individuals with fitness < y at generation g},
and amounts simply to choosing independently N times a number r uniformly dis-
tributed between 0 and 1, and selecting the corresponding r -quantile of Fg (i.e., the
individual that has the largest value of Fg less than r ).

Stochastic universal sampling, on the contrary, is obtained by generating uni-
formly at random only one number � in (0, 1/N ), and choosing the individuals
corresponding to quantiles �, �+ 1/N , �+ 2/N , . . . , �+ (N − 1)/N of Fg .

Tournament selection is a method which tries to exploit further similarities with
natural populations, and is based on comparisons of individuals (a tournament)
where the best fitted wins. For each candidate to reproduction to be selected, a
group of individuals is chosen at random (but with different modalities according
to variants of this method), they are compared and the one with the largest fitness is
selected. The replacement actually takes place with probability ps (selection pres-
sure).

Once the selection stage has produced candidates for reproduction, the recombi-
nation stage considers randomly chosen pairs of individuals. They mate and produce
a pair of offsprings that may share genes of both parents. This process, also called
cross-over, is applied with a fixed probability (usually large than 0.5 but smaller than
one) to each pair. Several different types of cross-over are common, the simplest
is called one point cross-over. It consists in pairing the chromosomes of the two
individuals and choosing at random one locus: the genes which appear before that
locus remain unchanged, while the genes appearing after the cross-over point are
exchanged together. The process produces, from two parents, two children, each of
which inherits part of the gene sequence from one parent, and the remaining part
from the other parent. If cross-over does not take place, the two children remain
identical to their parents. A more elaborated cross-over type is called uniform cross-
over: each gene of the offspring is selected at random, from the corresponding genes
of the two parents, with equal probability. Note that in this way the number of off-
springs from a pair may be chosen to be one, two or even more.

Once offsprings are generated, they are subject to the mutation operator. Muta-
tion is needed to introduce innovation into the population (since selection and cross-
over only mix the existing genes), but is generally considered a rare event (like it
is in nature). Therefore, a small probability pm is selected, and each gene of each
individual’s chromosome is subject to mutation with that probability, independently
of all other genes. If the gene coding is binary, a mutation simply changes a 0 to a
1 or vice versa, while if the alphabet for a gene is richer, a mutation rule has to be
defined. Often a uniform random choice among all possible symbols (different from
that to be mutated) is preferred if the alphabet is finite, or a perturbation based on a
gaussian variable if the genes are coded as real numbers.

A final important topic is the way new offsprings replace their parents, also called
reproduction (sometimes replacement) strategy. We assume that the number of indi-
viduals in the population for each generation remains equal and fixed to N ; the
simplest rule is generating N offsprings and replacing entirely the population at
each generation. However, this way may eliminate the best fitted individual with
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non zero probability, therefore a common modification is as follows: if the best
fitted offspring is worse than the best fitted parent, this last is retained in the next
generation population, usually replacing the least fitted offspring. It is called the
elitist strategy. More generally, we may decide to replace at each generation only
a fraction (called the generation gap) of the population, or even to replace just one
individual (usually the worst) at each generation (a procedure called steady state or
incremental rule).

Many modifications of the genetic algorithm have been proposed in literature,
and several types of different procedures concerning mutation, recombination and
replacement have been introduced. Furthermore, some new operators have been
considered, for example inversion (which consists in reversing the order of the genes
in a chromosome) that are employed less frequently: some of them will be used for
specific purposes in later chapters.

Genetic algorithms start from an initial population (generation 0) whose indi-
viduals are usually selected at random uniformly in the solution space, or, some-
times, are chosen in a deterministic fashion in order to represent different subsets of
that space. As generations proceed, new individuals appear: owing to the selection
mechanism, their fitness is on the average larger than their parents; moreover, the
cross-over operator allows appearance of new individuals that may enjoy favorable
characteristics of both parents. Thus, it is likely that after many generations the best
chromosome that may be obtained by combining the genes of the initial population
is discovered and starts to replicate itself; however, this process would be unable
to experiment new genetic material. In other words, in case that all individuals at
generation 0 have say a gene code equal to 1 in the first locus of their chromosome,
this would be true for any offspring, indefinitely, and if the maximum fitness corre-
sponds to a chromosome whose first gene equals 0, this would never be discovered.
The solution to this drawback is obviously mutation: such operator ensures that
all possible gene sequences may be obtained in the chromosome of the offspring,
and therefore, in principle, we may be confident that running a genetic algorithm
for a sufficiently large number of generations the space of solutions is thoroughly
explored, and the best individual found. We shall return to this topic (the algorithm
convergence) in the next section.

2.2.5 Estimation of Distribution Algorithms

These algorithms are best explained, and were originally derived, in the case that
the chromosomes are real vectors x = (x1, x2, . . . , xM )

′, though they have been
extended to more general settings. In the real vector case, the problem may be
formulated as that of maximizing a fitness function f (x) where x is a real vector
x ∈ R

M .
The proposal originates from the attempt of explicitly taking into account the

correlation between genes of different loci (components of the vector x), that
may be seen in good solutions, assuming that such correlation structure could be
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different from that of the less fitted individuals. The key idea is to deliver an explicit
probability model and associate to each population (or a subset of it) a multivariate
probability distribution.

An initial version of the estimation of distribution algorithm was originally pro-
posed by Muhlenbein and Paas (1996), and then many further contributions devel-
oped, generalized and improved the implementation. A thorough account may be
found in Larrañaga and Lozano (2002) and in a second more recent book (Lozano
et al., 2006).

The estimation of distribution algorithm is a regular stochastic population based
evolutionary method, and therefore evolves populations through generations. The
typical evolution process from one generation to the next may be described as fol-
lows:

1. Generate an initial population P(0) = {x (0)i , i = 1, . . . , N } ; c = 0 .

2. If P(c) denotes the current population, select a subset of P(c): {x (c)j , j ∈ S(c)}
with |S(c)| = n < N individuals, according to a selection operator.

3. Consider the subset {x (c)j , j ∈ S(c)} as a random sample from a multivariate
random variable with absolutely continuous distribution and probability density
p(c)(x), and estimate p(c)(x) from the sample.

4. Generate a random sample of N individuals from p(c)(x): this is the population
at generation c + 1, P(c+1).

5. If a stopping rule is met, stop; otherwise c + 1 → c and return to 2.

The originally proposed selection operator was the truncation selection, in other
words only the n individuals with the largest fitness out of the N members of the
population are selected. Later, it was proposed that other common selection mecha-
nism such as the roulette wheel (proportional selection) or the tournament selection
(choice of the best fitted inside a group of k individuals chosen at random) can be
adopted.

Note that the most critical and difficult step is the third one: the aim is to sum-
marize the properties of the most fitted part of the population through a probability
distribution, and then to employ that distribution to generate new offsprings. Many
papers concentrated on the problem of “estimating” the distribution, meaning to
derive, from the finite set of individuals {x (c)j , j ∈ S(c)}, the probability density

function p(c)(x). It can be observed that this is not an uncommon problem in Statis-
tics, and many proposals (frequently based on non parametric density estimation)
appear in the statistics literature. However, the estimation of distribution algorithms
were proposed and developed in a different field, and methods for deriving p(c)(x)
were proposed which are somewhat unusual in Statistics.

The simplest way is called Univariate Marginal Distribution Algorithm (UMDA)
and assumes that p(c)(x) is a multivariate normal with independent components,
therefore its parameters (means and variances) are obtained by the usual estimators
on the marginal distributions of each gene in the subset S(c). Obviously, this is in
principle a very inefficient choice, which also contradicts the basic assumption of
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exploiting correlations among genes, though it has been reported that in some cases
it leads to successful algorithms.

A more elaborated solution takes into account the dependence between genes,
but to this aim a simplifying assumption is formulated, and is known as Factorial
Distribution Algorithm (FDA). The key assumption is that the fitness function may
be additively decomposed in terms, each depending only on a subset of genes. In
other words, if s1, s2, . . . , sk all are subsets of {1, 2, . . . ,M}, it is assumed that
there exist k functions f1, f2, . . . , fk , each of which depends on x only through the
coordinates corresponding to the subset s j , and the fitness f (x) may be written as
follows:

f (x) =
k∑

j=1

f j [x(s j )]

where x(s j ) = {xi , i ∈ s j }. If it is true, the multivariate probability distribution
p(c)(x) is factorized as a product of conditional distributions on smaller subsets,
and this simpler factorization helps to estimate the whole distribution. The choice
of the subsets may be done also using graphical models. To be more specific, let
us define, basing on the s j , the following sequences of subsets di (histories), bi

(residuals), ci (separators):

d0 = ∅ ; di = s1 ∪ s2 ∪ . . . ∪ si ; bi = si ∩ di−1 ; ci = si ∩ di−1 , i = 1, 2, . . . , k.

Then, if no bi is empty, and each ci is a subset of at least one sj with j < i , the
multivariate density may be written as a product of conditional distributions:

p(x) =
k∏

i=1

p[x(bi )|x(ci )].

Therefore the problem is reduced to estimating lower order distributions. In addi-
tion, to simplify the problem a gaussian form is often assumed.

More complicated ways of estimating the multivariate distribution have also been
proposed, based on Bayesian Networks.

As should be clear, the accent in estimation of distribution algorithms is essen-
tially on extracting the typical features of best fitted individuals, and reproducing
them in the next generation. Since the use of the complete multivariate probabil-
ity distributions accounts for relationships between genes, no recombination tool
(cross-over operator) is contemplated. Neither mutation operator are used: new
individuals (carrying never experienced gene values) may be generated by random
sampling the estimated multivariate probability distribution. In fact, since p(c)(x) is
a density, sampling may result in elements not belonging to S(c).

Finally, it may be observed that, strictly from the point of view of probability
theory, estimation of distribution algorithms are based on a very unusual and non
standard framework, because the critical step (step 3 in our pseudo-code) from a
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subset of individuals S(c) to a multivariate distribution p(c)(x) would need assump-
tions on the properties of S(c) as a random sample drawn from p(c)(x), and
these have not been precisely specified (and, regrettably, they cannot be easily
formulated).

2.2.6 Differential Evolution

Differential evolution is an algorithm arising in a pure optimization framework, and
is best explained by referring to a real function f of M real variables: f : RM → R

to be optimized. Though differential evolution papers refer generally to minimiza-
tion, we shall continue our biological populations similitude and consider f as a
fitness function to be maximized.

Differential evolution is a recent method, which was first proposed by Storn and
Price in the middle of nineties. A complete account may be found in Price et al.
(2005).

Differential evolution is also a population based method, and evolves populations
of solutions through successive generations. Each individual represents a possible
solution, and is codified by a real vector x = (x1, x2, . . . , xM )

′ ∈ R
M . Though

not frequently used in the present framework, we continue to denote x by the word
chromosome, and their components by the word gene.

The transition from one generation to the next is obtained by treating each indi-
vidual separately, and producing an offspring which replaces it in the next genera-
tion. This makes differential evolution particularly suitable for a parallel implemen-
tation.

The evolution mechanism is based on difference vectors (the difference between
two randomly selected chromosomes of the current population) which is the basic
perturbation type allowing new features to appear in the population. The word vector
is usually preferred to chromosome, because differential evolution has a convenient
geometrical interpretation, and individuals may be advantageously seen as points
(or vectors) in R

M .
The number of individuals in the population is held fixed throughout generations;

the initial population has a special importance, and the authors stress that good per-
formances of the differential evolution algorithms are critically influenced by the
initial population : “in order for differential evolution to work, the initial population
must be distributed throughout the problem space” (Price et al., 2005, p. 53). This
happens, as it will be soon clear, because the offsprings always lie in the convex
closure of the set of the points representing parents population. Therefore, the pop-
ulation at generation 0 should contain points which are as much as possible different
with each other, and anyway it should be reasonably ensured that the best solution
vector is a linear combination of the vectors forming the initial population. The
initial individuals are selected at random by defining a probability distribution on
the solutions space, the chosen distribution is usually uniform but different families
of distributions are obviously possible.

At each generation, each individual is subject to the process of differential evolu-
tion, which may be explained as follows. Let x denote the individual to be evolved.
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A completely different individual is formed as follows: select at random a vector in
the population, different from x , and called the base vector v0; also, select at random
two more individuals in the population, different both from x and v0, and different
each other: v1 and v2. Scale the difference between these two last vectors by a factor
F (the scale factor) obtaining F(v1−v2), and add this difference to the base vector,
to obtain a new individual u called the mutant:

u = v0 + F(v1 − v2) .

The scale factor F has a fixed value chosen by the implementer, usually between 0
and 1. The mutant vector u is then recombined with the initial individual vector x
to produce an offspring by means of uniform cross-over. It means that each gene of
the offspring will be selected at random to be equal to the corresponding gene of the
mutant u with a fixed probability pc, or equal to the original gene of the individual
x with probability (1 − pc). This random selection is performed independently on
all genes. Formally, if y = (y1, y2, . . . , yM )

′ denotes the offspring vector, then

yi = δi ui + (1− δi )xi , i = 1, . . . ,M

where {δi , i = 1, . . . ,M} are independent Bernoulli random variables with equal
parameter pc. The number of genes inherited from the mutant has therefore a bino-
mial distribution.

Finally, a replacement step is performed: the original individual x and the off-
spring y are compared, and only that with the best fitness is retained and entered in
the next generation population. The process of differential evolution is repeated for
each individual in the population.

It is apparent that the process induced by differential evolution is logically sim-
ple; though the evolution of each member takes place separately, it depends on the
whole population because the mutant which may contribute to generate the offspring
is obtained by a linear combination of three other individuals selected at random.

A number of different variants and modifications are possible, in various direc-
tions:

• The initial population may be selected according to particular probability distri-
butions on the solution space, or taking advantage of possible natural bounds on
the values of each gene.

• The choice of the base vector may be performed at random uniformly, or using a
selection rule based on the fitness.

• Decision about which base vector to assign to each individual may be based on
different rules, deterministic or random.

• The choice of the individuals originating the difference vector, v1 and v2, is sub-
ject to various decision rules.

• The scale factor F may be chosen a fixed constant: smaller values are related
to local search, while larger values of F correspond to a global search. The
scale factor F may also be selected at random (gaussian, lognormal or uniform
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distributions have been proposed); furthermore, one can use a different scale fac-
tor for each gene (i.e., for each coordinate of the vector).

• A cross-over operator different from uniform may be used for recombining the
individual and the mutant.

• Finally, the survivor between parent and offspring may be chosen not by pure
fitness but according to different criteria.

Like all other evolutionary computation methods, differential evolution is itera-
tive and the best individual in the population approaches the optimum as the gener-
ations flow; therefore, a stopping rule has to be selected. Owing to the geometrical
interpretation, it would appear natural to stop generations when the points repre-
senting all members of the population appear nearly undistinguishable, however this
problem is not specific to differential evolution, but has similar characteristics for
all evolutionary computation algorithms, and any stopping rule (which we discuss
briefly in a next section) is plausible.

2.2.7 Evolutionary Behavior Algorithms

Many more optimization algorithms inspired by nature have been proposed in recent
years. Among them, some methods are particularly interesting, also population
based, but suggested by analogies with the social behavior of the individuals rather
than biological reproduction features. Rather than concentrating on the evolution
of a population through generations, these methods consider each individual as an
agent searching iteratively for the solution of a given problem (equal for all of them).
At each stage, each individual proposes a solution, and the stages are iterated until
a stopping criterion is met. The crucial point is that the solution proposed at each
stage by each individual depends on the goodness score (or fitness) of the solutions
proposed in the previous stage by all (or some) other individuals in the popula-
tion. Therefore the solution proposed by each individual depends on the best results
reached by the community. These methods try to idealize and reproduce the social
behavior features of living communities, thus we have called them evolutionary
behavior algorithms.

The main contribution in this field are the ant colony optimization and the particle
swarm optimization.

Ant colony optimization was introduced by Dorigo in his ph. d. thesis in 1992
(Dorigo, 1992) and was developed by himself and his co-workers in the last 15
years (e.g., Dorigo and Gambardella, 1997; Dorigo and Stützle, 2004). The method
is inspired by the way ants search for food. Each ant initially wanders searching for
food, but upon finding it, the ant returns to its colony laying down, in the way back,
a substance called pheromone. Later on, ants tend to follow pheromone trails rather
than wander at random, therefore advantageous paths are characterized by a large
amount of pheromone, and are more attractive. However, pheromone evaporates in
time, so that paths to places where food has been exhausted lose their attractiveness
and are soon neglected.
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Ant colony optimization’s most natural application is to problems where any pos-
sible solution may be described by a path on a graph, like in the traveling salesman
problem, and it will described here in that framework, though these methods have
been applied also to different environments.

Let us consider a graph with n vertices denoted by 1, 2, . . . , n and edges
(i, j) ∈ E , and suppose that any possible solution is associated to a path, pos-
sibly with some constraints. Each edge has a known cost ci j (often proportional
to its length if applicable) and a pheromone loading τi j (initially set to zero). We
consider a population of m ants, and the algorithm is iterative: at each stage each
ant proposes a solution, by building an admissible path on the graph. Each ant starts
from a randomly selected vertex and chooses which vertex to reach by means of a
probabilistic rule: if the ant is in vertex i , it will select vertex j with probability pro-
portional to ταi j c

−β
i j , where α and β are positive constants. Depending on the nature

of the problem, constraints on the edge set E and on the single solution components,
and a rule for deciding when a solution is complete, have to be fulfilled (e.g., in the
traveling salesman problem each vertex has to be visited once and no more than
once).

When each ant k has completed its proposed solution sk (k = 1, 2, . . . ,m), these
are evaluated by means of a fitness function F(s), and the pheromone values of each
edge are updated:

τi j ← (1− ρ)τi j + ρ
∑

s∈S∗
F(s)

where ρ, between 0 and 1, controls the evaporation rate, and the sum over s is
extended to all solutions including the edge (i, j) contained in a subset of solutions
S∗ ; in the simplest implementation S∗ is the set of the solutions proposed by each
ant in the current stage, as in ant systems (Dorigo, 1992). Other ant colony optimiza-
tion algorithms differ essentially for the way S∗ is built, therefore the differences are
in the pheromone updating rule: one may add to S∗ the best so far found solution,
or on the contrary S∗ may contain only the best solution found so far, or just in the
current stage, or S∗ may contain only the solutions found by the most successful
ant at each stage. Finally, the pheromone values may be limited by a priori chosen
minimum and maximum values (max-min ant systems, Stützle and Hoos, 2000).
The fitness F(s) may also be chosen in various ways, the most common seems an
inverse proportionality to the sum of the costs of all edges in the solution.

Particle swarm optimization is a more recent set of algorithms which tend to
reproduce a sort of social optimization induced by interactions among individuals
with a common problem to solve, also known as swarm intelligence. Particle swarm
optimization was introduced by Kennedy and Eberhart (1995, 2001). In its simplest
form, a swarm is composed by many particles moving in a multidimensional con-
tinuous space, and the particle behavior is recorded at discrete times or stages. At
each stage, each particle has a position and a velocity. Suppose that there are m
particles moving in R

n , denote by xi ∈ R
n the position of the particle i , and by

vi ∈ R
n its velocity: then at the next stage the particle will move to xi + vi . Each
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point of the space may be evaluated, according to the problem, by means of a fitness
function F(x) defined on R

n . After each stage the particle velocities are updated,
allowing the particles change directions, and this is done by exploiting knowledge of
the best solution found so far by the particle (local best lbi ), the best solution found
so far by all particles (global best gb), and (possibly) the best solution found by a
set of neighboring particles (neighborhood best nbi ). In any case, particles tend to
be attracted towards the promising points found by the neighbors or the community.
The velocity updating equations are linear and of the following type:

vi ← ωvi + c1r1(lbi − xi )+ c2r2(gb − xi )+ c3r3(nbi − xi )

where ω is an inertial constant usually slightly less than 1, c1, c2, c3 are constants
representing the relative strength of personal, community and neighborhood influ-
ence, and r1, r2, r3 are random vectors, introducing a probabilistic perturbation.

Though especially suitable for optimization in R
n , discretized versions for

searching over discrete spaces have also been proposed.
Ant colony and particle swarm optimization methods have been rarely employed

in statistical analysis applications, but given their increasing development it is likely
that they will be soon found useful and appropriate for statistical problems too.

2.2.8 A Simple Example of Evolutionary Computation

It is now time to present a worked example of evolutionary computation. It relates
to time series modeling and it is a simplified version of the problems which will be
addressed in Chap. 4, and a genetic algorithm will be employed. First, only a full
iteration of a simple GA with selection, crossover and mutation will be analyzed,
then we shall outline what happens in successive generations.

We consider a time series, that is a stretch of observations taken at equally spaced
time intervals simulated from the random process

yt − φyt−1 = at − θat−1, (2.2)

where φ = 0.9 and θ = −0.5, and the sequence {at } is a zero mean unit vari-
ance (σ 2

a = 1.0) normal white noise, that is a sequence of independent identically
normally distributed random variables. Model (2.2) is known as a ARMA(1,1) ran-
dom process. The usual requirements of stationarity and invertibility are fulfilled
provided that −1 < φ < 1 and −1 < θ < 1 respectively.

By using a normal random number generation routine we generated 1100 artifi-
cial observations from the random process (2.2). The first 1000 observations have
been discarded to eliminate the influence of the starting values so that a time series
of n = 100 observations is available. As it is often the case, time series observations
are affected by abnormally large or small observations that do not fit the overall time
series behavior. So we contaminate the artificial time series y = (y1, y2, . . . , yn)

′
by adding 3.5 to the observation at time t = 17 and −3.5 to the observation at time
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Fig. 2.1 Artificial time series generated by a ARMA(1,1) random process (n = 100 observations).
Top panel: time series values (solid line) with outliers marked by circles. Bottom panel: Residu-
als computed by ordinary least square model estimate and lower and upper thresholds for outlier
identification

t = 44. It results the artificial time series y plotted in Fig. 2.1. The top panel displays
the artificial observations as a line where the outliers at t = 17, 44 are marked with
circles. The bottom panel displays the residuals computed by estimating the model
(2.2) parameters φ and θ by ordinary least squares. The straight lines represent the
thresholds 3σ̂a and −3σ̂a for outlier identification. The outliers at t = 17, 44 are
clearly outlined.

The residual variance σ̂ 2
a has been computed

σ̂ 2
a =

1

n

n∑

t=1

â2
t , (2.3)

where the residuals {ât } have been calculated recursively from model (2.2) by
replacing the parameters φ and θ with their ordinary least squares estimates φ̂ =
0.8820 and θ̂ = −0.2401. The estimate σ̂ 2

a = 1.7319 has been computed.
The ordinary least squares estimation method actually ignores the presence of the

outliers. As a result the parameter estimates are often severely biased toward zero
and the residual variance is larger than the white noise variance. We may proceed in



2.2 Evolutionary Computation Methods 29

two ways to take the presence of the outliers into account properly. We may iden-
tify the outliers, estimate their size and remove them before performing the model
parameters estimation. Alternatively if we do not want to perform such preliminary
step we may resort to a outlier resistant estimation method. We want to implement
this latter course of action and we shall use a version of the median of absolute
deviation (MAD) criterion as the objective function to minimize in order to obtain
the model parameter estimates. Let

ãt (φ, θ) = yt − φyt−1 + θat−1,

where we search for the values φ̃ and θ̃ such that

μa = median (|ã1|, |ã2|, . . . , |ãn|) (2.4)

is minimized. It is apparent that using the MAD criterion we avoid abnormally
large or small residuals to influence model (2.2) parameter estimates. A problem
arises, however, that is the objective function (2.4) is not differentiable and does
not share with the objective function of the ordinary least squares method any good
mathematical properties. As an illustration, Fig. 2.2 displays the likelihood function
computed for the time series y varying the model parameters φ and θ in the set of
admissible values, that is the square with vertices (±1,±1). The variance has been
computed as a function of each and every pair (φ, θ) by using formula (2.3). The
surface is smooth and searching for the maximum of such function is rather easy
for gradient-based methods as there is only a global maximum and no local maxima
are present. Figure 2.3 displays the likelihood function of y where the variance is
estimated by the squared MAD given by (2.4). In this case the likelihood surface
is not smooth and searching for the global maximum is rather difficult because of
the presence of several local maxima. If we want to use gradient-based methods
we have to resort to numerical derivatives because actually analytical derivatives do
not exist everywhere and good results are not to be expected. Also, heuristics such
as the grid search may easily get into trouble because the grid cannot be too much
detailed to avoid the need for lengthy computations and, as a consequence, the pair
that yields the global maximum may not be possibly included in the grid.

We shall use this maximization problem to describe in detail an iteration of the
GA. The necessary preliminary step consists in defining the solution space and the
code to represent each and every admissible solution. We have two real parameters
to estimate and we want to use the binary code. So our first choice will be how to
represent real numbers in the interval (−1, 1) by means of a binary string. Let x be
such binary string and let us choose its length equal to �. Choosing, for instance,
� = 8 means that we have a byte available to represent a real number between −1
and 1. Let m be the positive integer that represents the value of the binary string by
using the ordinary binary code. For instance, the 8-bit string 11110000 stands for
the integer 240. In general for a binary string of length � the integer m encodes the
real number r given by
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Fig. 2.2 Likelihood function of the observed time series y by assuming a ARMA(1,1) model with
parameters varying in the interval (−1, 1). The residual variance is estimated by the residual sum
of squares divided by the number of observations n

r = −1+ 2
m

2� − 1
. (2.5)

For instance, according to (3.1) and for given � = 8, m = 240 means the real
number r = 0.8824. As a solution is a pair of real numbers we may concatenate
two strings of length �1 and �2 respectively to obtain a complete solution as a binary
string of length � = �1 + �2. Let, for example, x = 0000100111110000 and let
�1 = �2 = 8 so that � = 16. Decoding x yields the integer pair (9, 240) and,
using (2.5), the real pair (−0.9294, 0.8824) that is the solution φ = −0.9294 and
θ = 0.8824. This mapping operates the other way round as well, that is for any given
pair (φ, θ) a binary string x may be computed. In this case, however, depending on
the given precision and due to rounding approximations, different pairs, if close
enough, may lead to the same binary string. Precision is as larger as greater the
binary string length �.

Another important preliminary choice is concerned with the fitness function.
The solution space for the problem of model (2.2) parameters estimation is X =
(−1, 1) × (−1, 1). Searching X aims at minimizing the criterion (2.4). The fitness
function has to be positive and has to be as larger as closer to the global optimum.
So we have to define the fitness function as a suitable transform of (2.4). The most
natural choice consists in assuming as objective function to be maximized the likeli-
hood function where the residual variance is replaced by the MAD as given by (2.4).
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Fig. 2.3 Likelihood function of the observed time series y by assuming a ARMA(1,1) model
with parameters varying in the interval (−1, 1). The residual variance is estimated by the squared
median of the absolute values of the residuals

Once we assume that σ 2
a is estimated by μ2

a , it may be shown that approximately
the logarithm of the likelihood L may be written

log L = −n

2
log(2π)− nlog(μa)− n

2
.

However, we obtain values too small that may cause underflows and are difficult to
deal with. So let us define the fitness function

f (x) = exp

(
log L

n

)
= exp

{
−1

2
(log(2π)+ 1)

}
(μa)

−1, (2.6)

where x is a binary string of length � that may be decoded to yield the model param-
eters.

We are now in the position of initializing a GA for searching for the binary string
x which encodes the pair (φ̃, θ̃ ) in the solution space X that maximizes the fitness
function f given by (2.6). For illustration purpose let us define a small population
size s = 5 and randomly generate the binary strings {x (1), x (2), x (3), x (4), x (5)}
displayed in Table 2.2. For clarity of exposition in each line, after the binary string,
the integer values, the real parameters, the MAD index μa and the fitness func-
tion value are displayed. The random number generation routine produces only the
binary strings, each bit may take the values 0 or 1 with equal probability. At this
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point we may recall the GAs terminology and each binary string is a chromosome
which is included in the initial population.

Now we are ready for starting the GA. For illustration we shall consider only one
iteration and the usual three steps selection, crossover and mutation.

2.2.8.1 Selection

For selection we choose the roulette wheel rule with the replacement of the entire
population. The fitness function values in the rightmost column of Table 2.2 may be
normalized to yield the sequence

0.3620 0.2424 0.1843 0.1204 0.0909

that represents the probabilities that the chromosomes in the initial population be
chosen to enter the population at the next iteration of the GA. Then we may compute
the cumulated normalized fitness function, that is the sequence

0.3620 0.6044 0.7887 0.9091 1.0000.

According to the roulette wheel rule we draw for 5 times a number between 0 and
1 and we select the chromosome 1 if such number is between 0 and 0.3620, the
chromosome 2 if it is between 0.3620 and 0.6044, the 3-rd one if the random number
belongs to the interval (0.6044, 0.7887), the 4th if it is in (0.7887, 0.9091) and
the 5th if it is in (0.9091, 1.0000). This procedure may be illustrated by drawing
a circle as in Fig. 2.4 and dividing it in spikes proportional to the fitness function
values. Then the selection by the roulette wheel rule may be performed by pointing
at random at the circle and selecting the chromosome associated to the spike which
has been hit.

We draw the following random number sequence in (0, 1)

0.0576 0.3676 0.6315 0.7176 0.6027

and, as a consequence, chromosomes 1, 2 and three copies of chromosome 3
are selected for the next iterations. The population after selection is displayed in
Table 2.3. The average fitness function increases from 0.1456 to 0.1685. Note
that unlike selection, that always yields an increase of the average function, both
crossover and mutation may cause the fitness function to decrease.

Table 2.2 GA example: initial population

Chromosome x Integer values Real values MAD f (x)

x (1) 11110001 10011001 241 153 0.8902 0.2000 0.9178 0.2636
x (2) 10011110 01100000 158 96 0.2392 −0.2471 1.3710 0.1765
x (3) 01110010 01000111 114 71 −0.1059 −0.4431 1.8033 0.1342
x (4) 00000111 00110111 7 55 −0.9451 −0.5686 2.7605 0.0877
x (5) 10010110 11000100 150 96 0.1765 0.5373 3.6539 0.0662
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Fig. 2.4 Roulette wheel: each spike is proportional to the probability that the associated chromo-
some be selected for the next iteration of the GA

Table 2.3 GA example: current population after selection

Chromosome x Integer values Real values MAD f (x)

x (1) 11110001 10011001 241 153 0.8902 0.2000 0.9178 0.2636
x (2) 10011110 01100000 158 96 0.2392 −0.2471 1.3710 0.1765
x (3) 01110010 01000111 114 71 −0.1059 −0.4431 1.8033 0.1342
x (4) 01110010 01000111 114 71 −0.1059 −0.4431 1.8033 0.1342
x (5) 01110010 01000111 114 71 −0.1059 −0.4431 1.8033 0.1342

2.2.8.2 Crossover

For crossover we have to choose in the current population chromosome pairs that
exchange bits according to some pre-specified rule. We adopt the simplest one, that
is the one-point crossover. Let the chromosome pair be (x (1), x (2)) and let a random
number c be generated in the interval (1, �− 1). Such number c is called the cutting
point. Then the chromosomes x (1) and x (2) exchange the bits from location c+ 1 to
location � to produce two new chromosomes that replace the old ones in the current
population. Crossover takes place with a given probability pc. We choose pc = 0.9
and let the chromosome pairs selected for crossover be (x (1), x (4)) and (x (2), x (3)).
Chromosome 5 is not selected and remains in the current population unchanged.
Let us consider now the crossover for the pair (x (1), x (4)) and assume that the
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randomly generated cutting point is c = 1. We may write the two chromosomes
on the following two lines and mark the cutting point with a vertical bar

1| 1110001 10011001
0|1110010 01000111

The exchange produces the two new chromosomes
1| 1110010 01000111
0| 1110001 10011001
where the first bit is unchanged but is followed by the bits from the other chro-

mosome. Likewise, the pair (x (2), x (3)) may be displayed, by assuming that c = 7
is the randomly generated cutting point,

1001111| 0 01100000
0111001| 0 01000111
The exchange produces the two new chromosomes
1001111| 0 01000111
0111001| 0 01100000
where the first 7 bits are unchanged but are followed by the bits from the other

chromosome.
The result of the crossover may be summarized in Table 2.4. The average fit-

ness function is equal to 0.1726 (greater than the previous average fitness function
0.1685).

Table 2.4 GA example: current population after crossover

Chromosome x Integer values Real values f (x)

x (1) 11110010 01000111 242 71 0.8980 −0.4431 0.3260
x (2) 01110001 10011001 113 153 −0.1137 0.2000 0.0838
x (3) 10011110 01000111 158 71 0.2392 −0.4431 0.2046
x (4) 01110010 01100000 114 96 −0.1059 −0.2471 0.1142
x (5) 01110010 01000111 114 71 −0.1059 −0.4431 0.1342

2.2.8.3 Mutation

Let pm be the probability of mutation and let pm = 0.1. As each and every bit
is allowed to mutate with probability pm this choice means that 10% on the aver-
age of the bits that form the chromosomes in the population may change its value
from zero to one or vice versa. As � = 16 and s = 5 the total number of bits in
the current population is equal to 80 and 8 are expected to mutate. In the present
case the randomly generated numbers make mutation to operate on 9 bits. The
mutation outcome is the population displayed in Table 2.5. The bits that have been
changed are reported in boldface. Except chromosome 2 all chromosomes have been
changed by mutation. The average fitness function still increases from 0.1726 to
0.1776. However in the current population there is a chromosome that has fitness
function less than the original chromosome in the population yielded by crossover.
At the end of the iteration the solution to be assumed is the pair (0.9608,−0.4431)
which corresponds to the largest fitness function 0.3281. This solution is an apparent
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Table 2.5 GA example: current population after crossover

Chromosome x Integer values Real values f (x)

x (1) 11111010 01000111 250 71 0.9608 −0.4431 0.3281
x (2) 01110001 10011001 113 153 −0.1137 0.2000 0.0838
x (3) 10111010 01000110 186 70 0.4588 −0.4510 0.2552
x (4) 01100010 01000000 98 64 −0.2314 −0.4980 0.1221
x (5) 01100010 01100110 98 102 −0.2314 −0.2000 0.0989

improvement with respect to the solution found in the initial population, that is the
pair (0.8902, 0.2000) with fitness function equal to 0.2636. In this latter case the
estimate of the parameter θ is severely biased while after one iteration of the GA we
have an estimate of θ with rather small bias.

2.2.8.4 Outcomes from Some Complete GA Runs

Estimating the parameters of model (2.2) by means of GAs-based methods requires
a large population to evolve for several iterations. We performed a small simulation
experiment to illustrate the performance of GAs in comparison with a grid search
heuristic and a gradient-based method. The variability of the estimates has been
taken into account by running each method (excepted the grid search which is an
exhaustive deterministic search) 10 times and computing the average and the stan-
dard deviation of the estimates. The first simulation experiment uses the square root
of the residual variance σ̂ 2

a , i.e. the root mean square error (RMSE), as objective
function to be minimized, and fitness function

f (x) = exp

{
−1

2
(log(2π)+ 1)

}
(σ̂ 2

a )
−1/2.

We adopt the GA with binary encoding that has been described in detail but the
population size has been s = 30 and the number of iterations is 100. In addition
a version of the GA which uses a floating-point encoding has been tried. The grid
search has been performed on a 100 × 100 lattice. Then a gradient-based method
has been used with a stopping rule that causes the algorithm to end as soon as the
change between the values of the objective function computed in two consecutive
iterations is less than 0.0001. The number of iterations does not exceed 100 any-
way. In comparison, the GAs perform 3000 fitness function evaluations and the grid
search performs 10000 objective function evaluations. The results are displayed in
Table 2.6. The estimates are all biased towards zero due to the presence of the out-
liers in t = 17, 44. The results yielded by the different methods are comparable and
close each other.

Let us perform the same simulation experiment but let us use as objective func-
tion the residuals MAD. The results are displayed in Table 2.7. The GAs yield less
biased estimates as we expect by using a outlier resistant objective function. The
other methods fail to take advantage by this circumstance because the optimization
problem has become more difficult and the two methods are not efficient in the
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Table 2.6 Estimates and standard errors by GAs, grid search and gradient methods with the RMSE
as objective function

Method φ̂a θ̂a RMSEa

Grid search 0.8800 −0.2400 1.3160
Gradient 0.8820 −0.2403 1.3160

(0.0001) (0.0003) (0.0000)
GA binary 0.8823 −0.2399 1.3160

(0.0008) (0.0008) (0.0000)
GA floating-point 0.8843 −0.2379 1.3162

(0.0046) (0.0152) (0.0003)
a Standard errors are enclosed in parentheses

presence of many local optima. This motivates using the GAs for solving this class
of optimization problems.

Table 2.7 Estimates and standard errors by GAs, grid search and gradient methods with the MAD
as objective function

Method φ̂a θ̂a MADa

Grid search 0.8600 −0.7200 0.6556
Gradient 0.8631 −0.3145 0.7016

(0.1524) (0.1855) (0.0415)
GA binary 0.8837 −0.4727 0.6494

(0.0131) (0.2035) (0.0008)
GA floating-point 0.8983 −0.3932 0.6509

(0.0238) (0.1658) (0.0044)
a Standard errors are enclosed in parentheses

2.3 Properties of Genetic Algorithms

2.3.1 Genetic Algorithms as a Paradigm of Evolutionary
Computation

The essential features of a genetic algorithm are typical in any evolutionary com-
putation method. Its main elements: coding, selection, mutation, recombination,
replacement, may be found to various extents, in all evolutionary algorithms, there-
fore by extending the meaning and the rules of those elements we may obtain a
sufficiently wide framework where most evolutionary methods may find their place.

For this reason, the remainder of this book will be devoted essentially to genetic
algorithms, but we shall address with the words genetic algorithm a somewhat wider
concept allowing for many variations of coding and of the selection, mutation,
cross-over and replacement mechanisms, so that they may describe a large variety
of optimization methods. On passing, we note that most heuristic and meta heuris-
tic algorithms may be seen as (degenerate) genetic algorithms, where the number
of individuals in the population is set to one, and/or the stochastic nature of the
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operators vanishes by setting the variance to zero; recombination is not used (or
equivalently the cross-over probability pc is taken to be zero) and the mutation
operator is somewhat specialized (e.g., for simulated annealing the mutation proba-
bility is changed in accordance to the ratio between the fitness value and the current
temperature).

Interpreting many evolutionary computation methods as genetic algorithms
requires allowing a complete freedom in redefining and extending the main steps
across generations, concerning coding, selection, mutation, recombination, replace-
ment: but this has been done implicitly, to a large extent, in the literature starting
from the seventies onward, when proposing adaptation of genetic algorithms to an
increasingly wide range of applied problems. We review some of these proposals
briefly.

Coding is probably the most difficult and uncertain element of genetic algo-
rithms, especially when they are employed for an optimization problem and each
individual corresponds to a possible solution. Though it is unanimously recognized
that the way a phenotype is coded into a genotype is crucially relevant to the result,
and may exert a striking influence on the success of the optimization process, the-
oretical support for helping the choice of coding schemes is very limited. There
are some problems whose solutions may be coded naturally in a binary string (for
example, arranging objects of a set in two alternative categories), and in these cases
binary is generally recognized as the best coding. However, for most problems it is
not sufficient: if we want our coding to have an intuitive and appealing immediate
meaning, each solution is generally associated to a string composed of integer or real
numbers. In this case a chromosome can be a vector where each gene is not binary
but an integer or real number. Obviously this requires that a range of admissible
values is defined. However, the assumption of continuously varying real values is
untenable, as usual, if computer arithmetics is employed, since the computer rep-
resentation of a real number is based on a finite though large number of different
states: therefore, distinction between integer and real genes is inessential.

Two possibilities arise. The first one is assuming the string of integer numbers
as the chromosome representation: this forces to redefine mutation rules for taking
into account the richer gene coding, and possibly also to reconsider cross-over and
other operators rules. The second alternative is substituting to any integer number
its binary representation, and obtaining this way a binary chromosome to which the
simple genetic algorithm may be directly applied. This second way appears much
simpler, but it has some drawbacks. First of all, the natural binary representation
of integer numbers (the ordered coefficients of the expansions in power of 2) does
not preserve topology: two similar integer numbers may correspond to binary rep-
resentations which are very different (for example, number 15 and 16 have natural
binary representations 01111 and 10000). This concept needs to be made precise
by defining a distance on each of the two spaces: if we consider the arithmetic
difference in modulus for the set of integers, and the Hamming distance (number of
different correspondent digits) in the set of binary representations, one may control
that two different integers with minimal distance (therefore consecutive numbers)
may be mapped to binary codings whose distance is not minimal.
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Table 2.8 Binary and Gray coding for integer numbers

Integer Natural binary Gray code

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

The property of maintaining such a distance ordering may however be obtained
through a different binary encoding, called Gray code (after Frank Gray, a researcher
in Bell Laboratories who first introduced it in 1947 calling it reflected binary code).
This method ensures that consecutive numbers have binary representations with
Hamming distance equal to one (see Table 2.8). There are, however, at least two
drawbacks: Gray coding is cyclical, therefore Gray code procedures are not unique;
and, further, the appealing interpretation of each digit as the coefficient of a power
of 2 is no longer valid for Gray codes.

The second disadvantage of a gene coding obtained by representing integer num-
bers in base two is concerned with the effect of genetic operators. Since each gene
has a different significance, the mutation of a single gene may produce very dif-
ferent impact on the integer that chromosome encodes; mutating the leftmost gene
produces a very large change, while mutation of the rightmost gene modifies the
integer only a little. In the same fashion, cross-over when applied with one ran-
domly selected point, will rarely involve leftmost digits, thus changes induced on
chromosomes will rarely be conspicuous. In summary, a natural binary encoding
may induce a reduced efficiency of genetic operators (and new, more complicated,
encoding rules have been proposed to avoid this effect).

Only few general principles may be given to help building a good encoding:
apart from the obvious precept of a one to one correspondence between individu-
als and chromosomes, one should try to avoid redundancy (possible chromosome
values are more than possible individuals) and choose the coding with the small-
est alphabet (number of different symbols). It is certainly much simpler if each
gene, independently of its locus, may assume the same values, so that the search
space is a cartesian product: but this poses problems of legitimacy (some values in
some genes may produce a chromosome which does not correspond to any solution)
and admissibility (a chromosome may correspond to a solution that violates some
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constraints of the problem). Such problems arise often in statistical applications, and
in the next chapters it will be discussed how to solve them.

Since few guidelines are available concerning encoding, any one-to-one mapping
from the space of solutions to a numerical vector space is reasonable in principle,
and comparison between different methods has often to be left to experience. Fur-
thermore, relatively simple problems sometimes advocate surprisingly complicate
or long encodings. In this case it has been found that simpler and intuitively more
appealing encodings may be obtained if we allow the length of the chromosome
itself (number of genes) be different from solution to solution. An example of
such variable-length chromosome encoding will be given when dealing with cluster
analysis. In this case, when the number of clusters is left free, one of the proposed
methods consists in coding the centroids of each cluster, therefore each gene denotes
one point in the space of observations, and the number of genes equals the number
of groups to be formed.

It should be stressed that when non binary codings are employed the mutation
operator has to be redefined, and sometimes the cross-over mechanism also needs
modification. Moreover, when variable-length chromosomes are adopted, some-
times cross-over (and possibly mutation) results in offsprings that are not meaning-
ful as individuals (violating legitimacy or length constraints), therefore a validation
stage has to be added to the reproduction process.

Mutation is extended to non-binary genes in a natural way, like adopted in evo-
lution strategies. Besides deciding the frequency of mutation, here the substantial
amount of mutation has to be selected; usually mutation consists in an additive
perturbation by means of a random trial from an assigned probability distribution,
which is applied to all genes, therefore pm = 1, and the features of the distribution
control the mutation effects. For genes encoding real numbers, bell-shaped symmet-
ric zero-mean distributions are often used, denoting a zero-drift mutation type where
negligible changes are most likely; the variance may be considered as an index of
overall mutation amount, and the kurtosis (being linked to the modal density peak)
may be interpreted as an index of frequency of significant mutations.

Cross-over involves no additional difficulty in non-binary coding if fixed-length
chromosomes are employed, but variable-length or some more specialized coding
require a corresponding more careful definition of cross-over ( for example the PMX
crossover, see Falkenauer, 1998).

The mutation and cross-over rates themselves may be subject to evolution rather
than being held fixed throughout generations: a possibility is encoding them directly
in the chromosome, and evaluating them in connection with the fitness results (we
have seen that this is done in evolution strategies and differential evolution, for a
treatment in the context of genetic algorithms see e.g. Davis, 1991).

Many extensions to the procedures used for selection have also been proposed,
in addition to those mentioned in the preceding sections; we consider briefly some
of the most relevant to our scopes: stochastic tournament and rank selection.

Stochastic tournament is an elaboration on the tournament selection method:
each individual is compared with a group of competitors, but it has a chance to be
selected even if it is not superior to each of them. If the tournament is lost, because
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a competitor has a largest fitness, however the individual is discarded only with
probability pR , and maintained in the population with probability 1− pR .

Rank selection consists in organizing selection not according to the actual fit-
ness value of each individual, but according only to the position it occupies in the
increasing ranking induced by fitness. In other words, the individuals are ordered
according to their fitness in increasing value, and let φ(xi ) denote the rank of the i-th
individual, thus φ has integer values between 1 and N . The function φ(·) replaces
the fitness f (·) in the selection mechanism (this is sometimes called ordered fitness).
For example, if roulette wheel is used, the probability of selecting individual x j is
computed as φ(x j )/{φ(x1) + φ(x2) + · · · + φ(xN )}. This has obvious advantages
if the range of the fitness function is not bounded, but with ranking selection we
lose any information concerning the fitness difference between pairs of individuals,
and this may be an advantage if we are not sure about the correctness of the fitness
measurement, but a drawback when meaningful information is discarded.

More in general, the probability of reproduction may be based, rather than
directly on the fitness function, on a transformation of the fitness, whose aim is to
distort the scale, and therefore the relative selection probabilities of the individuals
in the population, while maintaining their fitness ranking unchanged. This behavior
is known as fitness scaling and consists in choosing the probabilities of selecting
each individual as proportional to a scaled fitness s(x j ) = ψ[ f (x j )] where ψ
is monotone increasing, and often linear. Since this choice has a relevant impact
on algorithm performance, we examine it in more detail in the section devoted to
implementation. A related topic is penalized fitness, devised as a way of taking into
account problems of legitimacy and admissibility without the need of a validation
stage where each chromosome has to be examined. In fact, validation should be
repeated at each new generation and may therefore prove computationally expen-
sive. A measure of admissibility (or legitimacy) of each chromosome is incorporated
into its fitness value, by subtracting a penalty term. The penalized fitness is therefore
of the following type:

f ∗(x) = f (x)− c v(x)

where c > 0 and v(x) is a validity score for chromosome x , usually simply v(x) = 0
if x is admissible and v(x) = 1 if it is not. The penalized fitness approach works
implicitly, since bad individuals receive a very small fitness and therefore they are
much likely to disappear in the next generation. However, tuning the constant c
appropriately requires a knowledge, at least approximate, on bounds of the fitness
values in the solution space to avoid negative fitness and, on the other side, inef-
fective penalization. The penalization term may be made smoother by substituting
the impulse function v(x) with a more elaborate behavior, and a similar idea will
be in effect used in statistical application of genetic algorithms, specially in model
selection problems, where the penalized fitness approach has a stressing analogy
with automatic identification criteria.

A relevant extension is evaluating possible solutions by means of several contem-
poraneous criteria, using a vector-valued fitness function. This involves completely
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new additional problems, and evolutionary computation methods for solving multi-
objective optimization problems have been recently proposed ( evolutionary multi-
objective optimization); they will be addressed shortly in the chapter concerning
cluster analysis.

Finally, replacement strategies have also been extended and specialized. When
genes are not only binary, but encode a richer alphabet, replacement may be based
not only on fitness increase, but also on differences of the single genes of the off-
spring compared to the corresponding gene of its parents, or a subset of the current
population. A related technique is crowding (De Jong, 1975) which was originally
proposed for helping to maintain population diversity and for avoiding that sets
of very similar individuals are found in the same generation. Crowding works as
follows: for each new offspring, a set of randomly selected individuals in the cur-
rent population is considered, and the offspring replaces the individual which is
most similar according to the Hamming distance (crowding was proposed for binary
coding).

2.3.2 Evolution of Genetic Algorithms

The original structure of the genetic algorithm was enriched in 30 years by a large
number of extensions and modifications concerning all of its particular aspects.
Some of those proposals are particularly important and suited for statistical appli-
cations, and we concentrate here on two extensions which are critical for the use
we are going to do of genetic algorithms as a means of optimally solving statistical
problems: locus-dependent encoding and hybridization.

With locus-dependent encoding we mean simply that each gene may have its
own encoding method, therefore in a chromosome some genes may be binary, oth-
ers decimal integers, and still other genes may be encoded by letters of a different
alphabet. In this way, each locus may be associated with a particular feature of the
problem, and complicated optimization applications may be translated into rela-
tively intuitively appealing chromosomes, so that both the fitness definition, and the
immediate comprehension, are facilitated.

In principle, any alphabet may be used, and if a locus encodes a dimension of
the problem where k different modalities are possible, one can employ an alpha-
bet with k different symbols. It is true that the dilemma remains, when evolving
the population, if to translate all genes into binary coding and apply the standard
genetic operators, or to maintain the locus-dependent coding, and having to redefine
mutation and cross-over operators that have different effects on different loci. This
last choice seems to be often preferred in the literature, since it is believed that, in
spite of its harder difficulty, employing genetic operators that are exactly tailored to
their operands may ensure a better ability of finding optima, and a higher speed in
the search.

Locus-dependent coding is especially useful in some statistical applications
where the solution depends on many variables whose measurement scales are



42 2 Evolutionary Computation

different (numerical, or ordinal, or categorical), or the solution space may be natu-
rally partitioned into a finite number of disjoint sets. A relevant example is model
selection in regression. Part of the model building decision concerns which variables
to use as independent, and this part could be easily associated to a binary set of
genes, each denoting the presence or absence of a given variable. To complete the
definition of the model, we have to choose the regression parameters values, and the
most natural encoding is a real value (within a specified interval). A locus-dependent
encoding leading to chromosomes where, say, the first k genes are binary and define
what variables are active as independent, and the remaining part composed of real
numbers representing the regression parameters values, seems to provide the sim-
plest and most easily understandable way of describing a multiple regression prob-
lem.

This example enlightens a further feature of such an enlarged concept of coding:
since the number of regression parameters depends on the number of regressors,
the second part of the chromosome may have a variable length, determined by how
many ones are there in the first part.

Variable length chromosomes are often used in many applications and nearly
always the length is encoded, implicitly or explicitly, in the chromosome itself. The
variable length can involve difficulties in recombination operators, which are often
defined in a more accurate or complicated way. Sometimes it is possible to ignore
variable length, fixing the number of genes to the maximum allowable number, and
filling meaningless genes in excess with a neutral code (“don’t care”), but this rarely
avoids legitimacy problems, and a validation stage is generally required.

Hybridization means integrating a genetic algorithm with other optimization
methods, both heuristic or meta-heuristic, and analytical when possible. The result-
ing methods are called hybrid genetic algorithms or, more recently memetic algo-
rithms.

An integration between the genetic process and other optimization methods
is generally dependent on the specific problems and may occur at two levels:
genetic operators and fitness function. Mutation (sometimes also cross-over) may be
hybridized with meta-heuristic one point search methods such as simulated anneal-
ing, threshold accepting, or tabu search, by adopting specialized mutation mecha-
nisms that change a gene (sometimes a group of them) in the direction suggested by
the meta-heuristic search. Let us consider one specific chromosome, and suppose
for example that we are going to mutate the first gene: on considering the set of
chromosomes that have different codes at the first locus and the other genes equal,
we obtain a neighborhood of the starting point, inside which a search for a new
candidate may be performed in a typical simulated annealing way. Let x denote the
initial chromosome (to be subject to mutation) and y denote a chromosome selected
at random in the neighborhood of x specified above; then mutation is accepted surely
if the fitness of y is larger than f (x), while if y is less fitted than x , the mutation is
accepted with probability exp{−[ f (x)− f (y)]/T }, where T is a parameter (temper-
ature) generation dependent, which is decreased as long as the algorithm proceeds.

Hybridization of the fitness function, on the contrary, relies generally on analyti-
cal optimization methods, basing on exact methods (such as equating derivatives of
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some function to zero) or approximate numerical techniques (that are employed for
obtaining optima of complicated but well-behaved functions to an arbitrary assigned
precision). This type of hybrid algorithm is usually possible when the problem to be
solved admits a hierarchical decomposition, and at the lowest level the conditional
fitness has a relatively simple and well-behaved form, that may be optimized by
classical methods. A relevant example concerning Statistics (where, happily, fitness
hybridization is often possible) is again the variable selection problem in regression.

Given a dependent variable and a set of possible independent variables, we have
to build a linear regression equation by first selecting which variables appear in
the equation, and then by determining the appropriate regression coefficients. With-
out specifying exactly the fitness function, assume that it has a part depending on
the number of parameters, and a part inversely proportional to the sum of squared
regression errors. Then, once the decision concerning which independent variables
are selected (the identification of the regression model, corresponding to choosing
the gene values of the first part of the chromosome in our example above) is taken,
the values of the regression parameters (second part of the chromosome) yielding
the best solution may be obtained analytically by least squares. The result of the
optimizing action of the external method may be either incorporated in the chro-
mosome as in our example, where the second part genes encode the estimates of
the parameters, or remain implicit in the fitness, which could in our example be
redefined as “the best fitness for a regression with given independent variables”,
and in that case the chromosome could be limited to encode only the choice of the
independent variables, therefore shorter.

Hybridization was proposed initially to improve the typical ability of the simple
genetic algorithm to provide good solutions in complicate problems, but without
getting rapidly to the best solution in absolute, a behavior that was noted early,
starting from Holland, and became common sense. The first idea was to employ
local search methods, which could enable to refine the large-scale search performed
by the genetic algorithm. However, later implementation used many various opti-
mization techniques and hybridization proposals are now problem specific. In fact,
though bearing in mind the caveats of no free lunch theorems, if a genetic algo-
rithm is hybridized with the best known optimization method for a given problem,
it should perform no worse than that method, therefore hybridization, though more
computationally expensive, would provide an advantage anyway (see e.g. Davis,
1991).

Hybridizing a genetic algorithm has also an interesting interpretation in terms
of natural evolution, since the modifications induced on the chromosome by the
effects of the external optimization method may be assimilated to learning. Incor-
porating the effect of hybridization into the chromosome corresponds to admitting
that an individual may transmit genetically its learned behavior to offsprings, and is
known as Lamarckian hypothesis (after the naturalist Jean Baptiste Lamarck, who
hypothesized, well before Darwin, that favorable characters, such as the long neck of
giraffe, once acquired may be transmitted to descendants). Though the Lamarckian
hypothesis has been refused on a biological basis, it is commonsense that some
kind of favorable behavior may spread, in time, into animal populations: it is called
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the Baldwin effect, and may be explained by noting that the positive behavior may
increase natural fitness and ability to reproduce themselves.

There has been a large debate on hybridization. Whitley wrote in 1994: “Exper-
imental researchers and theoreticians are particularly divided on the issue of
hybridization”, the main criticism being that hybridization introduces in the chromo-
some some modifications that cannot be explained nor controlled in terms of genetic
operators, therefore the typical features and the long run behavior of a genetic algo-
rithm would not apply to a hybrid. However, Whitley adds: “despite the theoretical
objections, hybrid genetic algorithms typically do well at optimization tasks”.

In the last years, the application of the genetic algorithm framework to an
increasing range of applied problems has been uniformly successful partly because
of hybridizing with problem oriented strategies and optimization methods, and in
Statistics also hybrid genetic algorithms are nearly always preferred.

2.3.3 Convergence of Genetic Algorithms

The issue of characterizing the behavior of a genetic algorithm as the generations
flow is obviously an important one and has been addressed under various points
of view since the original proposal by Holland. A genetic algorithm is a stochas-
tic procedure, therefore in the long run the population could reach an equilibrium
behavior where each possible individual has a limiting probability to be present.
Moreover, if the genetic algorithm is employed as an optimization method, the
question if the best solution found so far approaches, or reaches, the optimum value
arises. If x (g)best is the chromosome of the fittest individual found at generation g, then

{ f [x (g)best], g = 1, 2, . . .} defines a sequence of random variables whose convergence
properties have to be studied.

The early approach by Holland (1975) is based on the concept of schema. In
perfect coherence with the current knowledge of Genetics, we may assume that
relevant features influencing the adaptation of an individual to the environment
are determined not only by the value assumed by a single gene, but rather by the
combination of the values presented by several genes simultaneously. Therefore we
may think that a well fitted individual corresponds to a chromosome where several
subsets of genes are found that have the “right” sequence of values. This is called the
building blocks hypothesis. This point of view was formalized by Holland through
the notion of schema. A schema may be defined as a subset of the chromosomes
space, composed of all chromosomes that have a given code at each of some speci-
fied loci.

Our discussion will be limited to binary encoding, as it was originally developed
by Holland (1975). A schema may be denoted by a sequence of digits of the same
length of the chromosome, but with a ternary alphabet: 0, 1, and ∗. A 0 means that
we are selecting chromosomes that have value 0 in that locus, a 1 has a similar
meaning, and a ∗ means that chromosomes belong to the schema regardless the
value assumed at that locus. For example, if the chromosome length is 5 say, the
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subset of all chromosomes with the first gene value equal to one is a schema, denoted
by the string 1 ∗ ∗ ∗ ∗ while the subset of all chromosomes that assume value zero
in genes located at loci 2 and 4 is a schema indicated by ∗ 0 ∗ 0 ∗, and so on.

A schema has fixed (or defined) loci, those filled by a 0 or 1, and free (or unde-
fined) loci, those filled with an asterisk. The order of a schema is the number of fixed
loci, while the defining length is the distance between the first and the last defined
position. For example, 0 ∗ ∗ 0 0 has order 3 and defining length 4, while 1 ∗ ∗ 0 ∗
has order 2 and defining length 3. A chromosome belonging to a schema is said an
instance of that schema. A schema may be evaluated by means of the average fitness
of its instances.

At a given generation, the current population (formed by N individuals) contains
instances of many schemas. In fact, any given chromosome composed of M genes
is an instance of all schemas that have, at each locus, the actual value of its gene
or an asterisk, their number being therefore 2M . Thus, any population of N individ-
uals contains instances of a large number of schemas, between 2M and N 2M, and
possibly several instances of the same schema. The point made by Holland is that
the genetic algorithm, while evaluating explicitly the fitness of N chromosomes,
at the same time evaluates implicitly, by an estimate of the average fitness, also the
schemas which are represented by instances in the population. This is called implicit
parallelism, and is motivated by an attempt to evaluate the evolution of the number
of instances of a given schema through generations, which leads to the so called
schema theorem.

Let us consider a given schema H (the letter H is nearly always used for schemas,
since they are geometrically interpreted as hyperplanes in the solution space) and
denote by m H (g) the number of instances of schema H in the population at gen-
eration g. What we are trying to derive is a characterization of m H (g) based on
a recursive equation in g: however, m H (g) is obviously a random variable which
depends on the population at the previous generation g − 1, and on the stochastic
result of the genetic operators. Therefore it is not possible to connect directly m H (g)
to m H (g− 1), while the probability distribution of m H (g) is completely defined by
the population at generation g − 1 and the genetic algorithm mechanism. Thus,
we can hope to derive some properties of that distribution: Holland addressed the
behavior of its mean, by considering separately the effect of selection, mutation and
cross-over.

Let us first take into account the effect of selection, assuming that we use pro-
portional selection (roulette wheel rule). We denote by {x (g)i , i = 1, 2, . . . , N } the
population at generation g, by f g the average fitness:

fg = 1

N

N∑

i=1

f [x (g)i ]

and by f H,g the average fitness of the instances of schema H contained in the same
population, that is the average fitness of the m H (g) chromosomes that belong to
schema H :
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f H,g =
1

m H (g)

∑

x (g)j ∈H

f [x (g)j ]

Since the probability of a chromosome x (g)i being selected is f [x (g)i ]/{N f g}, the
probability of selecting a chromosome belonging to schema H is

∑

x (g)i ∈H

f [x (g)i ]/{N f g}

and the average number of instances of H in generation g + 1 is N times that
probability:

E{m H (g + 1)} =
∑

x (g)i ∈H

f [x (g)i ]/ f g =
f H,g

f g

m H (g) . (2.7)

It follows that the ratio between the expected frequency of H in generation g + 1
and the frequency in generation g equals the ratio between the average fitness of
the schema H and that of the whole population at generation g. This result may be
interpreted in the sense that schemas enjoying a large fitness on the average tend to
be increasingly more frequent in the population as generations flow.

We must now consider the effects of both mutation and recombination, since
these operators may create, or eliminate, instances of H . The only process easy
to describe is disruption of a schema, thus we shall try to follow only these events,
deriving a lower bound to the probability that a given instance of schema H survives
to mutation. A schema is preserved after mutation if only loci that are free mutate,
while if mutation occurs in loci whose values are defined (fixed) then the resulting
chromosome is not an instance of H any more. Recall that the number of defined
loci is called the defining order, o(H). Then if the mutation probability is pm , and
it is applied independently to each gene of each chromosome, the probability that
a mutation does not change any of the o(H) defined gene values is simply (1 −
pm)

o(H). Therefore, we may modify (2.7) as follows:

E{m H (g + 1)} ≥ f H,g

f g

m H (g) (1− pM )
o(H) . (2.8)

Let us now turn to cross-over. In this case also, we can easily address only the
probability that a schema H is eliminated by cross-over, we take into account the
simple one-point cross-over. Moreover, only a bound can be easily derived: cross-
over will destroy the schema if the chromosome part to be swapped contains at least
one defined position. For example, if an instance of the schema 1 ∗ 0 ∗ 1 ∗ ∗
undergoes a cross-over with cutting point two, say, the resulting chromosome may
have a bit 0 in the fifth locus, and therefore the schema may be destroyed. Vice versa,
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if the cutting point is 5 or 6, the exchanged segment relates only to free loci, and the
schema survives. It is not difficult to realize that what is important is that the cutting
point falls within the defining length of the schema H , d(H) (the distance between
the first and the last defined position). Since the cutting point is chosen uniformly
at random among the M − 1 possible choices, the probability that it falls within
the defining length may be computed simply as d(H)/(M − 1), and multiplying
by the cross-over probability pc, we get: the probability that an instance of schema
H is destroyed by cross-over is no more than pc d(H)/(M − 1) (no more because
when cross-over takes place, the inherited genes could also be luckily equal to the
defined values, so that the schema survives). Thus, we may finally correct formula
(2.8) multiplying by the probability that the schema is not eliminated by cross-over:

E{m H (g + 1)} ≥ f H,g

f g

m H (g) (1− pM )
o(H)

{
1− pc

d(H)

M − 1

}
. (2.9)

The interpretation of (2.9) is not simple, and sometimes incorrect convergence prop-
erties have been deduced from it. The terms related to mutation and cross-over are
always less than one, therefore they reduce the right hand side. The reduction effect
is increased by increasing pm , o(H) and d(H), therefore for schemas whose defin-
ing length and order are small (short, low-order schemas) the effect of the third and
fourth factors of (2.9) may be negligible. The first term, as seen before, is the ratio
between an estimate of the average fitness of schema H and the average population
fitness. Thus, the schema theorem is usually interpreted as follows: short, low-order
schemas with average fitness above the mean tend to exponentially increase the
number of their instances in the population. There are some immediate objections
to that assertion:

• Formula (2.9) is an inequality, and does not take into account the probability that
instances of H are created by mutation or cross-over.

• The fitness ratio f H,g/ f g depends on an estimate of the average schema fitness,
computed only on the individuals in the population at generation g, therefore it
may be a seriously biased estimate.

• The value of m H (G) is bounded by N and cannot really increase exponentially
with g.

• Suppose that H is a very favorable schema with average fitness well above the
mean, then after several generations many individuals will belong to H , and f g

will be about equal to f H,g , in that case the right hand side of (2.9) becomes less
than m H (g).

But probably the most serious objection is that the schema theorem is based
on a conditional argument, therefore it relates the actual number of instances in
generation g, m H (g), to the average number of instances in generation g + 1,
E{m H (g + 1)}, but an evaluation of the variance of the distribution of m H (g + 1)
is not possible. The schema theorem cannot be interpreted to involve the ratio of the
number of instances of H in two successive generations: m H (g+1)/m H (g), nor the
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mean of that ratio, nor the ratio of the means E{m H (g + 1)}/E{m H (g)}. Despite
this, the work on schemas by Holland and later researchers was important as an
attempt to investigate the long run behavior of genetic algorithms, and contributed
to stimulate a great deal of study concerning the limiting properties of genetic algo-
rithms considered as stochastic processes.

It is by now generally acknowledged in the literature that the schema theorem
cannot contribute to a formal convergence analysis of a genetic algorithm. Only
at the beginning of the nineties rigorous results were obtained on this subject, by
adopting exact mathematical models of the genetic algorithm, and exploiting results
in probability and algebra. A comprehensive account may be found in Reeves and
Rowe (2003).

The key observation is that the population at generation g+1 is created according
to a stochastic mechanism whose probability distribution is completely determined
by the population at generation g, therefore the sequence of populations indexed
by generations may be seen as a Markov process. Then a genetic algorithm may be
thought of as a stochastic process in discrete time, g = 1, 2, . . ., whose realization
at each generation g is a population, coded by a set of N chromosomes, or N points
in the solution space; thus, the univariate marginal distributions have support equal
to the N th cartesian product of the solution space.

This poses some representation problems, and two different approaches have
been proposed: following the population as a whole, or the frequencies of different
individuals. We suppose that coding is binary, that each chromosome has M genes
and the population is composed by N individuals. Thus, on taking the individuals
in a given order, any possible population is associated to a string of M N binary
digits, with 2M N different possible states. However, not all states correspond to
different populations, since the same population correspond to all states obtained
by permutating the order of the M-digits sequences inside the M N digit string: the

actually different populations are
(N+2M−1

N

)
(combinations with repetition of the 2M

possible different individuals in sets of cardinality N ). Anyway, the number of states
of the process is finite, and it may be considered a finite Markov chain. Given an
arbitrary ordering of states, the transition probabilities form the matrix P and the
state probabilities at generation g will be denoted by wg , while w0 denotes a vector
with all entries equal to zero except that indicating the initial population, which is
set to 1. From Markov chains theory,

wg = Pwg−1 ; wg = Pgw0 .

The transition matrix would be very large, and difficult to derive. An alternative
representation, proposed by Vose (1999) with the aim of facilitating the study of
transition, consists in considering the frequency in the current population of each
of the possible 2M individuals. A state is identified by a vector of 2M rational
numbers pg = {pg(1), pg(2), . . . , pg(2M )}′ where pg(i) denotes the relative fre-
quency of individual i in the population at generation g. Obviously pg(i) ≥ 0 and
pg(1)+ pg(2)+· · ·+ pg(2M ) = 1. This achieves a great reduction in the dimension
of the representation because the states are in a one-to-one correspondence with
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the possible populations; also, the transition mechanism is no more described by a
matrix but a single vector is sufficient, which specifies the probability that a given
offspring will be generated at generation g + 1 : sg = {sg(1), sg(2), . . . , sg(2M )}′
where sg(i) ≥ 0 represents the probability that individual i is generated by the
population at time g, and sg(1)+ sg(2)+ · · · + sg(2M ) = 1. Each new offspring is
generated independently, and with a probability distribution which is multinomial
with parameters sg ; then, the transition mechanism may be entirely described in
terms of the probabilities sg by means of a transition operator G(·):

sg+1 = G(sg)

where G(·) incorporates all features of the algorithm. The link between sg and pg

may be expressed through distribution, since pg(i) is the relative frequency of a
realized event with probability sg(i), then

E{pg+1} = sg.

Therefore, conditional on the population at generation g, pg , we may write
E{pg+1} = G(pg). This suggests a way of studying the limiting behavior of the
population: admitting that the number of individuals N tends to infinity, the variance
of the distribution tends to zero and we get pg+1 = G(pg). The limiting behavior
of this recursive equation may be analyzed, concluding that as g →∞, pg tends to
the fixed point(s) of G(·) (Vose, 1999).

The difficult task is to compute the transition matrix P or operator G, in order to
derive the limiting properties of the Markov chain.

We shall not address such a problem here, but just quote some relevant results.
First, if the genetic algorithm has a mutation probability greater than zero, then any
population may be generated from any preceding one at each generation, therefore
the chain is ergodic. The limiting distribution w∞ has been characterized by Davis
and Principe (1993). If we denote by P the transition matrix, and by Pj the matrix
obtained from P by replacing the j th column with zeroes, then the kth element of
the limiting probability vector w∞ is

w∞(k) = |Pk − I |/
∑

j

|Pj − I | .

On the contrary if mutation is not allowed, using only selection and recombi-
nation induces closed sets of states in the chain. Moreover, from the point of view
of optimization, when the chain is ergodic each state has a strictly positive limiting
probability, therefore convergence to the optimum is not ensured with probability
one. An exception is when we employ the elitist strategy (the best-so-far found
chromosome is automatically copied to the next generation). In that case, suppose
that there is only an optimal individual, coded by chromosome y. Let j denote the
state corresponding to the population composed of all individuals equal to y : the
transition matrix P has a 1 in the diagonal at position j , it is an absorbing state



50 2 Evolutionary Computation

and convergence is certain. More precisely, it may be shown (Rudolph, 1997) that,
on denoting as before by x (g)best the best fitted chromosome at generation g, then the

sequence Δg = f (y) − f [x (g)best] is a non-negative supermartingale converging to
zero almost surely.

More elaborated results have been derived: essentially, if the elitist strategy is not
employed, it may be shown that the chain spends most of the time in the state (or
states) with maximum fitness. If, on the contrary mutation is not allowed, the set
of the optimal states is closed (therefore once entered it will never be abandoned),
therefore convergence depends essentially on the starting state, i.e., the initial pop-
ulation. In fact, with no mutation, if we start for example with an initial population
where all chromosomes have the gene in the first locus equal to one, all subsequent
offsprings will also have a one in the first position. Similarly, the set of populations
having a given digit at a specified locus form a closed set, and the further steps will
only improve the fitness by increasing the proportion of best fitted individuals inside
the closed set, driving in the limit to a uniform population composed of copies of
the best fitted individual compatible with that closed set (a formal proof may be
found in Schmitt et al., 1998). A similar behavior is usually exhibited, at least for
an initial time, also by a genetic algorithm with very small mutation probability, and
was called premature convergence.

In his book, Rudolph (1997) presents also a study of the properties of the random
variables “number of generations to reach the optimum”. Essentially, it is seen that
in reasonably simple problems the mean number is bounded by a polynomial func-
tion of the chromosome length, but such a bound does not hold in general for any
optimization problem.

A different approach, inspired by statistical mechanics, was proposed by Shapiro,
Prügel-Bennett, Rattray and Rogers (see, e.g., Shapiro, 2001). They consider a
genetic algorithm as a complex system described, at each generation, by the sta-
tistical distribution of a given variable measured on each individual, and propose
to follow the behavior through generations of some distribution summary like the
cumulants. The chosen variable is the fitness value. Thus, at generation g the sta-
tistical distribution { f [x (g)1 ], f [x (g)2 ], . . . , f [x (g)N ]} is considered and its cumulants
computed. It is possible to evaluate the effect of selection, mutation and cross-over
on the cumulants, and thus to follow their behavior in successive generations. Inter-
esting results have been obtained for binary chromosomes and the onemax fitness
(the number of genes equal to 1 in the chromosome), but an extension to more
general fitness functions is very complicate.

A final additional observation concerns the case of genetic algorithms in sta-
tistical applications. Most often the genetic algorithm will be run operating on a
sample with the aim of estimating parameters of the distribution, and the result
will depend on two sources of variability, that due to sampling and that due to the
stochastic nature of the algorithm. Suppose that a sample x is drawn from a distri-
bution belonging to the family {Fθ (·), θ ∈ Θ} and we want to make an inference
on θ by optimizing some function of x (a likelihood, for example); denote by θ∗(x)
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the best theoretical value. We run a genetic algorithm and obtain an estimate θ̂ (x),
therefore the bias is:

θ̂ (x) − θ = {θ∗(x)− θ} + {θ̂ (x)− θ∗(x)}

where the first term is due to the sampling variability and the possible bias implied
by the estimation method, which is controlled and studied by classical statistical
inference, while the second term is typical of the genetic algorithm and is what
we addressed in the present analysis of convergence. However, a statistician would
probably like that θ̂ (x)− θ converges to zero, implying that both terms on the right
hand side must degenerate,1 and this requires attention since the second term also
depends on the sample x . Such a problem is typical of statistical applications and
still needs to be addressed in literature.

2.3.4 Issues in the Implementation of Genetic Algorithms

When a genetic algorithm has to be employed in practice for solving a specific prob-
lem, a number of decisions have to be taken. Suppose we have chosen the encoding
type already, and the fitness function has also been defined. At least the following
points need to be clarified:

1. Choice of the number of individuals in the population.
2. Choice of the selection mechanism.
3. Choice of the mutation type and its probability.
4. Choice of cross-over operator and its probability.
5. Definition of the initial population at generation 0.
6. Decision on how many generations to reproduce, and when the algorithm should

stop.

Though the last question may also be deferred to a later time, when the genetic
algorithm is being run, the first five topics have to be addressed before we can start
the procedure. Few theoretical guidelines are available for this, and experience with
practical applications of the genetic algorithm is offered by a vast literature. The
most instructing conclusion is that (as one could expect) there is no uniformly best
choice of the parameters, but any particular problem may require different values,
as the no-free-lunch theorems suggest.

A preliminary step is however to make explicit what objectives we have in mind.
A distinction in this respect was proposed by De Jong (1975), whose work is one
of the main contributions in the literature on the present subject. De Jong proposes

1 Formally, convergence to zero could also arise from θ̂ (x) − θ∗(x) tending to assume the same
values of θ − θ∗(x), but this seems very artificial and unreasonable, thus we shall not admit this
possibility
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to distinguish between on-line and off-line applications. In the first ones, we want
that the genetic algorithms drive rapidly to a good solution, without pretending to
arrive to the optimum, while in off-line applications we are prepared to wait for
many generations, but we want to get as close as possible to the best solution. In the
first case, speed is more important than precision, while the contrary is true in the
second approach, and one can expect that a different parameter choice is needed. De
Jong, and later Grefenstette (1986), who tried to evolve the decision itself by means
of a genetic algorithm, experimented a large number of parameter combinations on
many typical fitness functions. De Jong’s indications are towards small values of the
mutation probability, around 0.001, and rather high cross-over probability, around
0.6, with a population of around 50 individuals. Grefenstette noted that according to
the on-line or off-line points of view the parameters give different results: if off-line
is more relevant, lower cross-over rates and larger population sizes produce better
results, while the contrary is true if on-line arguments are more important; he also
suggested a somewhat larger mutation probability, about 0.01.

As far as the population size is concerned, it is clear that it should be large enough
to enable a multiple search inside the solution space, but not too large for avoiding
heavy computational effort. Empirical studies indicate that values around 50 (or
even 30) are usually satisfying, while Alander (1992) suggested values between M
and 2M , where M is the chromosome length (number of genes). On the theoretical
ground, the choice of the population size has been addressed by several authors.
Notably, Goldberg (1989c) suggested an exponential function of the chromosome
length, and later studies by himself and co-authors (e.g. Goldberg et al., 1992), on
considering favorable building blocks and adopting sampling size strategies, sug-
gested rather a linear dependence. Recently, Gao (2003) derived a lower bound for
the population size, depending on the mutation probability, the effect on fitness of
each single gene, and the natural logarithm of the chromosome length.

In all cases, there is evidence that the performance of a genetic algorithm is a non
linear function of its parameter values.

As a consequence, one may conclude that a good choice may be obtained only
by experimenting a range of possible values on the same problem. Mutation is nec-
essary for exploring the solution space thoroughly, but a too large mutation rate
would drive the genetic algorithm towards a purely random search, with worse
results. On the contrary, cross-over has the positive effect of combining schemas
and makes the search for the optimum easier, therefore a substantial probability is
always suggested, though not too close to one for avoiding nearly certain disruption
of high order schemas. In fact, we already noted that schemas with a long defining
length are likely to be destroyed by cross-over, which preferentially preserves short
schemas; moreover, not all loci have the same chance to be involved in cross-over,
since the last genes of the chromosomes (end points) are always exchanged, while
the preceding genes are not (this is called positional bias). To avoid these features,
two-point cross-over is sometimes used: two cutting points are selected at random
between 1 and M − 1, and the internal segment is exchanged. Along the same
line, uniform cross-over has been proposed, where each gene of the chromosome
of the offspring is selected at random, with equal probability, between the two cor-
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respondent genes of the parents. Syswerda (1989) found that uniform cross-over
was definitely better than two-point cross-over (which in turn was found better than
one-point): it certainly avoids positional bias and end-point effects, but some authors
consider that it may be highly disruptive of any schema (Mitchell, 1996, p. 196).

Let us now turn to consider the selection mechanism. Holland introduced
the dichotomy between exploration and exploitation in describing adaptation of
systems: exploration means searching for new and useful characteristics, and is
obtained by genetic operators (mutation and cross-over), while exploitation means
propagation of the favorable characters found so far, and relates to selection. A
balance is needed for enhancing adaptation, therefore, given the genetic operators
probabilities, selection should not be too strong (for maintaining sufficient diver-
sity and allowing new phenotypes to appear) nor too weak (which would slow the
evolution). If we use fitness- proportionate selection, the probability of selecting an
individual is given by the ratio of its fitness to the sum of the fitness values of all
individuals in the population, and if this sum is large it may decrease the difference
between the selection probabilities of the different chromosomes. In other words, at
the initial generations the individuals are likely to be very different, and their selec-
tion probabilities will also be largely different, but in later generations the average
fitness will increase, and this implies generally that the fitness variability decreases,
therefore all individuals tend to receive selection probabilities with similar values.
Mitchell (1996) observes: “the rate of evolution depends on the variance of the fit-
nesses in the population”. A simple method for avoiding this is standardizing the
fitness distribution at each generation, dividing by its standard deviation: this is
called sigma scaling. Let

σ 2
g =

1

N

∑

i

{
f [x (g)i ] − f g

}2

denote the fitness variance at generation g, then we may consider the following
possible transformations of the fitness:

αg(x j ) = f (x j )/σg

βg(x j ) = { f (x j )−min
i

f (xi )}/σg

γg(x j ) = const+ { f (x j )− f g}/σg .

Some authors propose that selection should not be uniform, starting with a less
selective reproduction and later increasing pressure as generations flow, suggesting
an approach similar to simulated annealing by defining a sequence of temperatures
Tg ,varying with generations and gradually decreasing to zero. A consistent choice
of the transformed fitness would be:

sg(x j ) = exp{ f (x j )/Tg}/
∑

i

exp{ f (xi )/Tg}
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and is called the Boltzman selection. Obviously this leaves the problem of how to
select the initial temperature and the rate of its decrease. Finally, rank selection
also enables to avoid the selection pressure problem, since it is independent of the
fitness variance. Rank selection is usually successful in preserving diversity, though
it sometimes slows convergence, and it has always to be considered that with rank
selection all information concerning the absolute fitness differences between indi-
viduals is discarded. The elitist strategy (maintaining in the next generation the best
fitted individual) is considered advantageous by most authors, and is generally unan-
imously employed, in view also of the aforementioned theoretical results. The best
individual is added to the new population in case it did not survive, and is usually
substituted to the individual with the least fitness value, or to one selected at random.

A few words are also opportune concerning the choice of the initial popula-
tion. The most popular choice is selecting the initial individuals completely and
uniformly at random inside the solution space: each individual is selected indepen-
dently of the others, and usually also each gene value is selected independently of
the other genes. The method depends on the coding; for binary and k-ary alphabets
equal probabilities are assigned, while when a real encoding is employed, without
any bound, often a gaussian distribution is adopted. We have already noted that if
mutation is not used, all individuals will belong indefinitely to the convex closure of
the set of the initial population; thus, if the mutation probability is very small, it may
be a good idea starting from an initial population that is not selected (or not entirely)
at random, but contains the extremal or “corner” points of the solution space, in
order to ensure that a large part of that space may be reached also by cross-over and
not relying only on mutation. Moreover, any a priori information may be included
in the initial population, for example individuals which are known to be well-fitted
or with promising features.

A relevant problem when using genetic algorithms for optimization is the stop-
ping rule: how many generations should we wait before taking the best-so-far found
chromosome as the optimum solution? The best obtained fitness value can be mon-
itored against generations, and a typical behavior is a fast increase in the first gen-
erations, which later stabilizes with a decreasing rate of occasional improving, as in
Fig. 2.5.

Sometimes we know what is the optimum value of the fitness, therefore we
may safely decide when to stop, but it rarely happens in statistical applications.
The simplest solution is deciding in advance how many generations to evolve, but
this is possible only when preceding experience with similar problems may suggest
suitable values. An alternative is stopping the process when a sufficiently large num-
ber of generations have passed without any improvement in the best fitness value,
or when a population statistics reaches a pre-defined bound. Several indices have
been proposed, such as the variance or the range of the fitness distribution, or else
some diversity measures relating to the chromosomes rather than the fitness. An
example, with binary encoding is the maximum Hamming distance between two
chromosomes: evolution may be stopped when the maximum Hamming distance is
less than αM/100 (where M is the number of genes), which means that no more
than α percent genes are different in any pair of individuals.
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Fig. 2.5 An example of the best fitness value behavior against generations

Finally, it should be remembered that genetic algorithms are stochastic proce-
dures: thus, also starting from the same initial population and evolving the same
number of generations, repeating the process may lead to different solutions. Thus,
it is customary, and recommended, to repeat the genetic algorithm application for
several runs. This may be done choosing each time a different initial population at
random, or starting always from the same initial population (when there are reasons
to select a particular initial set of individuals) and proceeding with different ran-
dom numbers streams. Running a genetic algorithm several times on the same data
allows to control the variability of the results, which is implicitly a measure of their
reliability. A too large variability may suggest the need to increase the number of
generations to be evolved.

At the end of this section a concluding remark may be drawn, concerning the
computational complexity of the problems to be addressed by means of genetic
algorithms. Since in statistical applications the most hard computations are usually
found in calculating the fitness, an overall measure of the effort may be obtained
through the number of times the fitness is evaluated. On this respect, a substantial
advantage is attained by the simple device of storing the fitness values together
with each chromosome, as an additional artificial gene. Therefore, in a genetic algo-
rithm with a population of N individuals, at each new generation we must evaluate
the fitness only for the new offsprings, whose average number is approximately
MNpm + N pc, where pm is the mutation, and pc the cross-over, probability. There-
fore in G generations an average number of (MNpm+N pc)G fitness evaluations are
necessary. This number should be compared with the effort needed for a complete
enumeration of all possible individuals, and their fitness. With binary encoding,
and a cartesian product solution space, the different individuals are 2M . Therefore,
employing a genetic algorithm is plausible only if (MNpm+N pc)G is of a consider-
ably smaller order of magnitude than 2M , otherwise complete enumeration, which
obviously solves the optimization problem with certainty, is the best strategy. For
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example, with pm = 0.001, pc = 0.6, N = 50, 100 generations and a chromosome
with M = 40 genes, we have (MNpm+N pc)G = 3200 while 2M is as large as 1012.
The main point is the number of genes, since with the same parameter choice but
taking M = 20 the average number of fitness evaluations for the genetic algorithm is
about the same (3100), while 220 is only about one million. We can conclude that the
progress in computer speed will probably enable us to solve exactly by enumeration
problems which are now addressed by evolutionary computation; on the other hand,
such progress will make it possible to solve by genetic algorithms increasingly hard
problems.

2.3.5 Genetic Algorithms and Random Sampling
from a Probability Distribution

We discuss now some connections between evolutionary computation and methods
for generating random samples according to a given multivariate probability distri-
bution. Though we are dealing in effect with pseudo-random sampling, since we are
not drawing real samples, but using numbers generated by algorithms running on a
computer, we shall discard the prefix pseudo as usual in the statistical literature.

The problem of generating samples from an assigned distribution is an old one in
Statistics, but received a great deal of attention, essentially for the multivariate case,
in more recent years, when Bayesian researchers started addressing increasingly
complicated problems, where the posterior probabilities do not belong to standard
families, and the posterior mean – or other indices – are given by integrals whose
primitive is not known. These studies led to the MCMC (Markov Chain Monte
Carlo) methods, which have been a major research subject in Statistics in the last 20
years.

A detailed illustration of MCMC methods is beyond the scope of this book (and
may be found e.g. in Gilks et al., 1996). Let π(x), x ∈ R

p denote a multivariate
probability distribution whose direct simulation by standard random number gen-
erators is difficult. The MCMC techniques generate a vector sequence {xt } in R

p

that may be considered a random realization of a Markov chain with equilibrium
distribution equal to π(·). To this aim, a proposal distribution q : Rp×R

p → [0, 1]
is defined from which random numbers may easily be generated. At time t , given
the state xt , a random realization y from the distribution q(·|xt ) is generated. The
move is accepted, i.e., xt+1 is set equal to y, with probability given by

α(xt , y) = min

{
1,
π(y)q(xt |y)
π(xt )q(y|xt )

}
. (2.10)

If the move is not accepted, then xt+1 = xt . It may be shown that the chain generated
this way is ergodic, and its equilibrium distribution is π(·). As a consequence, after
an initial “burning-in” period, the generated data are recorded and assumed as a
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random sample from π(·), even though they, strictly speaking, are not obviously a
sequence of independent realizations.

This method (known as Metropolis-Hastings) has the main advantage that ran-
dom numbers generation is needed only from the proposal distribution q(y|x),
which may be chosen in such a way that generation is conveniently easy. Even if the
large dimensionality makes this task difficult, a dimensional reduction is possible by
using a scalar form of the algorithm, by considering the components of the vector xt

one at a time. Let xt,i denote the components of the vector (i = 1, 2, . . . , p) and let
xt (−i) denote the vector with all components except the i th. Then, the components
are sequentially updated by using different proposal densities qi [xt+1,i |xt (−i)]
combined with the conditional distributions induced by π(·), in a similar way as
(2.10). In this way each step of the procedure requires that random numbers be gen-
erated from univariate probability distributions. Different choices of the proposal
distribution q lead to different techniques: if q(y|x) = q(x |y), then q disappears in
(2.10), yielding the Metropolis algorithm. If q(y|x) = q(y) the algorithm is called
independence sampler, if q(y|x) = q(y− x) it is known as random walk Metropolis
algorithm. A relevant case is the scalar procedure where the proposal densities are
chosen equal to the univariate conditional distributions induced by π(·), and is called
the Gibbs sampler. In this case the probability α(xt , y) is always equal to one, and
the moves are always accepted.

It was noted that if π(·) is multimodal and with strongly correlated compo-
nents, the sequence generated by the chain may be easily get trapped in a local
maximum, and many modifications were proposed to avoid such a drawback. A
popular idea is to use many chains in parallel. Several proposals in the literature
are aimed at improving the “mixing” ability of the algorithm, i.e., its capability
of generating chains which are able to visit exhaustively the whole support (for
example, the Metropolis Coupled MCMC of Geyer, 1991, or the Simulated Tem-
pering of Marinari and Parisi, 1992). As soon as the practice of using N parallel
chains became popular (these algorithms were sometimes called Population Based
MCMC), the idea of exploiting interactions between the different chains arose, and
some authors proposed to use techniques similar to the genetic operators mutation
and cross-over to evolve the N contemporaneous states of the chains as they would
be a population. An important difference here is that one has to use operators that
do not destroy the convergence of the chains to the equilibrium distribution π . To
this aim the operator has to satisfy the property of reversibility. Reversibility may
be described as follows: for an operator ω which changes x to y with probability
pω(y|x), ω is reversible with respect to π(·) if π(x)pω(y|x) = π(y)pω(x |y) for
any x, y in R

p. For operators that change pairs of states into pairs of states (as in
cross-over), the reversibility property may easily be modified: if ω changes (xi , x j )

into (yi , y j ) with probability pω(yi , y j |xi , x j ) then ω is reversible w. r. to π if
π(xi )π(x j )pω(yi , y j |xi , x j ) = π(yi )π(y j )pω(xi , x j |yi , y j ) for any xi , x j , yi , y j

in R
p.

A MCMC procedure exploiting genetic operators, called Parallel Adaptive
Metropolis Sampler, was proposed by Holmes and Mallick (1998). Liang and Wong
(2000, 2001) introduced the Evolutionary Monte Carlo methods, combining also
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concepts from simulated annealing, and several other papers appeared in the litera-
ture, a review may be found in Drugan and Thierens (2004).

As far as the mutation operator is concerned, since coding is usually real, gener-
ally a small modification by adding a random normally distributed noise with zero
mean and moderate variance is adopted (like in evolution strategies). The proba-
bility of mutation, however, is not constant at pm as before, but is determined by
a Metropolis acceptance rule: if xt is the parent and x∗t = xt + ε is the candidate
offspring (the mutant), then the mutation is accepted with probability

min

{
1,
π(x∗t )
π(xt )

}
.

This ensures reversibility so that mutation does not destroy the chain ergodicity.
Note however that with this mechanism the mutation probability is usually rather
large compared with the small values of pm generally adopted in evolutionary com-
putation.

Cross-over operations may be realized through different operators, but always
considering that the ergodic character of the chain should be preserved, therefore
the cross-over results should leave the equilibrium distribution unchanged. In fact,
if two states xi and x j are generated according to π(·), the results of a standard cross-
over operation between xi and x j are not in general distributed exactly according to
π(·). Two solution have been proposed: one is subordinating cross-over results to
an acceptance rule of Metropolis-Hastings type, the other consists in modifying the
cross-over mechanism itself.

Let us consider the first solution. Suppose that two independently randomly cho-
sen states xi and x j are subject to a cross-over operator ω which generates offsprings
yi and y j with probability φ(yi , y j |xi , x j ). We accept the new pair of states yi , y j ,
substituting them to xi and x j , with probability

α(xi , x j , yi , y j ) = min

{
1,
π(yi )π(y j )φ(xi , x j |yi , y j )

π(xi )π(x j )φ(yi , y j |xi , x j )

}
.

Then, the probability distribution pω(yi , y j |xi , x j ) of the accepted changes (there-
fore of the cross-over results) may be easily computed as follows:

pω(yi , y j |xi , x j ) = α(xi , x j , yi , y j )φ(yi , y j |xi , x j )

+ I (xi = yi , x j = y j )

{
1−

∫ ∫
φ(z, w|xi , x j )α(xi , x j , z, w)dzdw

}

where I (·) is the indicator function. Now, α satisfies the detailed balance equation:

α(xi , x j , yi , y j )π(xi )π(x j )φ(yi , y j |xi , x j )

= α(yi , y j , xi , x j )π(yi )π(y j )φ(xi , x j |yi , y j )
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from which we obtain:

π(xi )π(x j )pω(yi , y j |xi , x j ) = π(yi )π(y j )pω(xi , x j |yi , y j ) .

Therefore this mechanism satisfies the reversibility property. It follows that if xi and
x j are independently distributed according to π(·), then the results of cross-over yi

and y j are also independent and distributed according to π(·). The only difficult task
could be determining the exchange distribution φ(yi , y j |xi , x j ). However, for most
common cross-over forms, such as fixed one-point and uniform, the distribution
satisfies

φ(yi , y j |xi , x j ) = φ(xi , x j |yi , y j )

thus it disappears in the acceptance probability, which is simply computed as:

min

{
1,
π(yi )π(y j )

π(xi )π(x j )

}
.

The alternative way of proceeding is taking as offsprings not directly yi and y j ,
but a suitable transformation which enables maintaining ergodicity. The most com-
mon solution of this type is called snooker cross-over (being inspired by the snooker
algorithm proposed by Roberts and Gilks (1994), in the MCMC framework). Let, as
before, xi and x j denote the parents, and yi and y j the results of a one-point cross-
over operator. The offsprings from xi , x j are selected as two new points belonging to
the lines joining xi to yi and x j to y j respectively. They are determined by random
trials from the conditional distributions induced by π(·) along the lines. Thus, if xc

i
and xc

j denote the results of the snooker cross-over, then

xc
i = xi + r1(yi − xi ) ; xc

j = x j + r2(y j − x j )

where r1 and r2 are generated at random from the probability distributions g1(·) and
g2(·) defined as follows:

g1(r) ∝ π [xi+r(yi−xi )]|1−r |M−1 ; g2(r) ∝ π [x j+r(y j−x j )]|1−r |M−1 , r ∈ R

the proof that the chain remains ergodic in this case is more difficult and will not be
given here (see, e.g., Goswami and Liu, 2007).

What precedes suggests a close relationship between MCMC methods and
genetic algorithms, and one may expect that the issue of random sample genera-
tion according to a given distribution might be developed in a complete genetic
algorithms framework. A proposal in this direction is in Battaglia (2001), where a
genetic algorithm is introduced for drawing random samples from a given multivari-
ate probability distribution.

The main difficulty seems to be that in MCMC procedures the selection operator
is completely missing. The behavior of the individuals does not depend on their
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adaptation to the environment, since a fitness function is not explicitly defined.
Evolution here has the aim of obtaining a population that represents adequately
the probability distribution π(·), so it would be natural to evaluate the adaptation to
the environment of the population as a whole, for example considering an index of
similarity between π(·) and the empirical distribution of the population. However,
such kind of fitness measurement, evaluating at each generation the population as a
whole, could not be employed for driving selection, because for defining the selec-
tion probabilities each chromosome has to be assigned its own adaptation value.
To overcome such difficulties, Battaglia (2001) proposes to consider a partition
{Pj , j = 1, . . . , n} of the support of π(·), and adopt the procedure introduced by
Smith et al. (1993) in modelling the immune systems. Let

π j =
∫

Pj

π(x)dx , j = 1, . . . , n

denote the probability of the set Pj , and s(g)j the absolute frequency of the chro-
mosomes belonging to Pj in generation g. Obviously, π1 + · · · + πn = 1,

s(g)1 + · · · + s(g)n = N (the number of individuals in the population), and the scope

of the genetic algorithm is generating a vector {s(g)1 , s(g)2 , . . . , s(g)n } converging to
{Nπ1, Nπ2, . . . , Nπn}.

In the work by Smith, Forrest and Perelson a finite number of different antigens
are considered, each of which having at least one specialized antibody. Each dif-
ferent chromosome corresponds to a different antibody, and its genes encode what
antigens it is able to contrast; the aim is to defend against all antigens, maintaining
diversity within the population. In order to define an individual adaptation score,
an effectiveness measure of each antibody on each antigen is first defined. Then,
an antigen is chosen at random with a given probability distribution, and a block
of r antibodies is selected at random too. The antibodies are examined to check
the effectiveness of each of them against the given antigen, and the most effective
antibody is assigned a positive score. By repeating such a procedure several times,
and taking the average results, each chromosome receives an adaptation score.

For the present case, the antigens are identified with the partitions Pj , the anti-

bodies with the chromosomes x (g)i . The effectiveness of x (g)i on the antigen Pj is set

to unity if x (g)i ∈ Pj and zero otherwise. By selecting antigens at random with the
equilibrium probabilities πj of the associated partitions, the mean adaptation score

of x (g)i may be computed as (Battaglia, 2001):

ϕr (x
(g)
i ) = N

π j

s(g)j

⎧
⎨

⎩1−
(N−s(g)j

r

)
(N

r

)

⎫
⎬

⎭

where j is the partition to which x (g)i belongs. These fitness scores depend on the
group width r adopted in the random assignment, larger values of r yield more
cooperative procedures, and for r = N we obtain:
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ϕ(x (g)i ) = N
π j

s(g)j

, x (g)i ∈ Pj .

If a fitness proportionate selection is used, the selection probability of a single chro-
mosome x (g)i is

p(x (g)i ) = π j

s(g)j

⎧
⎨

⎩
∑

k∈Jg

πk

⎫
⎬

⎭

−1

, x (g)i ∈ Pj

where the summation extends over the indices of partitions which are actually rep-
resented in generation g: Jg = { j : s(g)j > 0}. If in the population there is at least
one chromosome belonging to each partition, then the selection probabilities are in
accordance to the target distribution πj . The task of ensuring that each partition is
represented in the population is left to mutation and cross-over, as described above.

The procedure relies on the selected partition {Pj , j = 1, . . . , n} of the support,
and the computation of the probabilities πj of each set of the partition. An appropri-
ate choice of the partition may be crucial for ensuring good mixing properties, but no
simple guidelines are available, though for some problems symmetry properties may
suggest an intuitive partition in equal probability subsets. When the probabilities π j

are not exactly known, Battaglia (2001) proposes to start with approximate values
and use an adaptive procedure for updating them through generations:

π
(g)
j = βs(g)j /N + (1− β)π(g−1)

j .



Chapter 3
Evolving Regression Models

Abstract Regression models are well established tools in statistical analysis which
date back early to the eighteenth century. Nonetheless, problems involved in their
implementation and application in a wide number of fields are still the object of
active research. Preliminary to the regression model estimation there is an iden-
tification step which has to be performed for selecting the variables of interest,
detecting the relationships of interest among them, distinguishing dependent and
independent variables. On the other hand, generalized regression models often have
nonlinear and non convex log-likelihood, therefore maximum likelihood estimation
requires optimization of complicated functions. In this chapter evolutionary compu-
tation methods are presented that have been developed to either support or surrogate
analytic tools if the problem size and complexity limit their efficiency.

3.1 Introduction

The first and most natural topic where genetic algorithms may find an useful appli-
cation is the analysis of multivariate random samples. When analyzing dependence
among variables in a multivariate data set, two essential features may be distin-
guished: the functional form of the dependence, and the measurement of its strength.
In order to build a statistical dependence model among many variables, one has
therefore to make explicit both the mathematical form of the function, and the values
of its parameters. We shall refer to these two tasks as identification and estimation.

Genetic algorithms have been proposed for both tasks: in identification they are
useful for selection of variables, which is usually difficult because a choice has
to be done inside a very large discrete space of solutions. In estimation, genetic
algorithms are employed when the function to be optimized, often the likelihood, is
highly nonlinear, non convex and the optimum cannot be found using derivatives.

We shall review separately evolutionary computation proposals in identification
and estimation. For model identification, most relevant applications are found in
linear regression, generalized linear models and principal component and canonical
analysis. Parameter estimation by evolutionary computation has been proposed for
regression models and independent component analysis. Contributions concerning
mixture models will be considered in the chapter on cluster analysis.
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3.2 Identification

The choice of the independent variables to be entered in a regression model, when
many variables are available, is a difficult task that should balance accuracy and
parsimony. The popular methods of sequential selection: forward, backward or step-
wise, do not always ensure the optimal choice, therefore evolutionary computation
methods are a natural candidate, and have been proposed in literature for several
types of linear and generalized linear models.

3.2.1 Linear Regression

A typical issue in linear model identification is variable selection. A linear relation-
ship is postulated between a dependent variable y and a set of independent variables
{x1, x2, . . . , x p}. Let n observations be available so that we may write the usual
linear regression model

yi = β0 + β1x1i + β2x2i + . . .+ βpx pi + ui , i = 1, . . . , n,

where β = (β0, β1, . . . , βp)
′ is the parameter vector and u = (u1, . . . , un)

′ is
a sequence of independent and identically distributed random variables with zero
mean and unknown variance σ 2

u . Let y = (y1, . . . , yn)
′ and X = [1, x1, x2, . . . , x p]

where 1 denotes a column vector of ones. The linear regression model may be writ-
ten in matrix form

y = Xβ + u.

For the sake of simplicity let us assume that the matrix X is non random and has
full rank. Then the best linear unbiased estimates may be written

β̂ = (X ′X)−1 X ′y, σ̂ 2
u = û′û/(n − p − 1),

where û = y − X β̂. The variance-covariance matrix of the parameter estimates
β̂ may be computed σ̂ 2

u (X
′X)−1. With the further assumption that u is normally

distributed these are also the maximum likelihood estimates.
If p is large it is desirable to reduce the number of independent variables to the

set that includes only the variables really important to explain the variability of y
(Miller, 1990). Common available methods are the iterative forward, backward and
stepwise methods. The goodness-of-fit of each model is usually evaluated comput-
ing the sum of squares of residuals and using the two statistics R2 and F defined
by:

R2 = 1− û′û/y′y, F = R2/p

(1− R2)/(n − p − 1)
.
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We would be more confident about the final result if we could compare several
alternative subsets simultaneously, since we want to select the variables that really
matter in a linear regression.

The GAs are an easy-to-use tool for performing this comparison exactly: the
encoding is straightforward as it suffices to define a mapping from a binary string
of length p and the parameter sequence β1, . . . , βp. If the kth gene is 0, then the
parameter βk is constrained to zero. The constant term β0 is always included in the
regression.

Let us illustrate a GAs-based procedure for subset regression on an example of
n = 100 artificial data and a set of p = 15 variables. The independent variables are
sampled from a standard unit normal distribution. The y are generated by a model
with parameters

β = (0.01, 0.7,−0.8, 0.5, .01, .01, .01,−0.7, 0.6, 0.8, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01)′

and σ 2
u = 2.25. It is apparent that only the variables 1–3 and 7–9 impact y sig-

nificantly. This is shown by the plot in Fig. 3.1 where the confidence intervals of
the parameters β̂ at the 5% significance level are displayed. Only the intervals that
correspond to the variables 1–3 and 7–9 do not include zero.

A GA has been employed to search for this best subset model. The fitness func-
tion has been the F statistic. The chromosome is a binary string of length 15, for
instance

000110000011100

is decoded to a regression model that includes only the variables 4, 5, 11, 12, 13
as independent variables to explain y. The GA parameters have been chosen
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Fig. 3.1 Confidence intervals of 15 parameters in a linear regression model
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Fig. 3.2 Fitness function in the subset regression problem versus the number of iterations

NIND = 30 the number of chromosomes in the population (i.e. the population
size), MAXGEN = 100 the maximum number of generations, GAP = 0.9 the
generation gap (how many new chromosomes are created out of NIND), pc = 0.7
and pm = 1/15. Roulette wheel rule for selection, single cutting point crossover,
binary mutation and the elitist strategy are employed. The fitness function evolution
is displayed in Fig. 3.2. This is the typical fitness function behavior in the presence
of elitist strategy. While fitness function improves quickly in the first iterations, then
no better solutions are found and the elitist strategy prevents the best obtained fitness
from decreasing. The GA finds the best solution corresponding to F = 29.8941 and
variables 1− 3 and 7− 9 (R2 = 0.6945 and RMSE = 1.423).

The use of genetic algorithms for variable selection in regression was first sug-
gested by Chatterjee et al. (1996) who also noted that GA might also be used for
symbolic regression models, where, together with the variables, the mathematical
form of the regression function may be selected in a set of allowable functions.
Further contributions are by Minerva and Paterlini (2002) and by Balcombe (2005),
who discusses extension to the study of bivariate Granger causality and to detec-
tion of seasonal unit roots. Recently Kapetanios (2007) has considered employing
simulated annealing and genetic algorithms for variable selection in regression. He
compared, in an econometric framework, the evolutionary computation algorithms
with a method based on sequential selection, and a different technique related to
Bayesian model averaging, obtaining very promising results.
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An interesting contribution in this field is the omitted variable search by Ses-
sions and Stevans (2006). They assume that an indicator (0/1) variable is omitted
in a regression equation, and search in the space of all possible indicator variables
defined on the observations, by means of a GA, in order to maximize the coefficient
of determination R2. This choice is motivated by some real world instances, but their
simulations suggest that the method may also be useful for more general situations.
The same formal addition of a binary indicator variable may also be interpreted as
an outlier indicator, and employed for outlier detection in regression. Tolvi (2004)
suggested to perform simultaneously both variable selection and outlier identifica-
tion, on considering binary chromosomes with length p + 1 + n, where the first
p + 1 bits indicate selection of the regressors (including intercept) and the last n
digits indicate presence or absence of outlying observations.

3.2.2 Generalized Linear Models

When the linear model is inadequate, the wider class of generalized models may be
considered (see, e.g., McCullagh and Nelder, 1989). They are characterized by two
features:

1. What is explained as a linear function of the regressors is not the mean of the
observation E(y) but a transformation g[E(y)], where the link function g(·) is
invertible;

2. The probability distribution of the data belongs to the exponential family.

In this framework, genetic algorithm applications have been proposed for the iden-
tification of loglinear models and for mixed models in the analysis of variance.

Loglinear models are used for describing statistical dependence in a set of cate-
gorical variables, and are applied to contingency tables. If M categorical variables
are observed, and the number ni1,i2,...,iM denotes the frequency of simultaneous
occurrence of modality i1 of the first categorical variable, modality i2 of the second
character, . . ., modality iM of the M th character, then log ni1,i2,...,iM is described
as an additive analysis of variance model with main effects of the single variables,
and interactions of order 2, 3, . . . ,M . It is usual to restrict the model to dependence
only among some variables, the most popular restricted models are called hierarchi-
cal: they describe independence in subset of characters in an effective way, and the
maximum likelihood estimates are relatively easy to compute.

The selection of the independent and dependent variables subsets in a hierar-
chical loglinear model is not a simple task, Roverato and Poli (1998) proposed to
employ a genetic algorithm. They consider loglinear graphical models (Lauritzen,
1996), exploiting the property that there is a one-to-one correspondence between
them and the (undirected) graphs with M vertices. Thus, each chromosome is asso-
ciated with an M-points graph, and codifies, through

(M
2

)
binary digits, the presence

or absence of each of the possible edges.
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The cross-over operator is rather specialized, and is based on exchanging the
entire set of edges related to a randomly chosen subset of vertices, while the fitness
is based on the Akaike’s AIC criterion, and depends essentially on the model log-
likelihood minus the number of edges (equal to the sum of the gene values). In
a simulation study, the genetic algorithm provided better results than a stepwise
procedure.

A further application of genetic algorithms to this framework was proposed by
Bremer and Langevin (1993). They consider a 3-way mixed analysis of variance
model with the first factor fixed and the others random. Here the effect of factors
is described by a representation of the variance and covariance structure in terms
of main effects and interactions. The chromosome is based on integer coding and
describes which subsets of possible parameters are constrained to zero. This setting
requires specialized cross-over and mutation operators, while the fitness is based on
the Akaike’s criterion.

3.2.3 Principal Component Analysis

A few papers consider the possible use of genetic algorithms in principal component
analysis or other methods aimed at summarizing large multivariate data sets into few
variables. To give an idea of the possible applications we review here a recent paper
by Sabatier and Reynés (2008).

Sabatier and Reynés (2008) consider principal component analysis where the
loading coefficients are restricted to assume only integer values. This feature is
intended to help interpretation of the meaning of principal components. Instead of
using as a criterion only the variance of the extracted components, they also consider
the number of distinct integers in the loading coefficients vector, to be minimized.
On the other hand, they do not impose strict uncorrelation of successive components,
but only penalize correlation. The final criterion is a mixture of the three, and is used
for the fitness:

fitness = Fvariance + Fdistinct + Fcorrel .

Each of the F terms is restricted to assume values between 0 and 1. Fvariance is a lin-
ear transform of the extracted component variance, assuming value 1 for the (best)
unrestricted first principal component solution, while Fdistinct = (M − d)/(M − 1),
where d is the number of distinct loadings values, and M the number of variables.
Finally, for the i th extracted component, the sum of the absolute correlation coef-
ficients with the already extracted components, r∗ = |r1| + |r2| + · · · + |ri−1| is
computed, and Fcorrel = (i − 1− r∗)/(i − 1).

The genes encode directly the integer loading coefficients, cross-over is standard
and mutation takes place by adding or subtracting, at random with equal probabil-
ity, a one to the gene. Rank selection and elitist strategy are adopted. Sabatier and
Reynés experienced some applications, and conclude that genetic algorithms show



3.3 Parameter Estimation 69

a good accuracy in solving these problems. They also proposed a similar method for
building a linear discriminant function with integer coefficients.

Several contributions concerning the application of genetic algorithms to multi-
variate analysis are also found in the chemometrics literature, e.g., Kemsley (1998,
2001) on canonical variate analysis, and Guo et al. (2002) on selection of subsets of
variables via Procrustes analysis.

3.3 Parameter Estimation

Many models, even moderately complex, lead to a likelihood function which turns
out to be very complicated, non differentiable or with a difficult domain, and in such
cases evolutionary computation may be useful for determining the optimum value,
and hence the maximum likelihood estimators of parameters. For instance, Vitrano
and Baragona (2004) proposed a genetic algorithm for estimating the parameters
of a class of exponential power function distributions. In order to evaluate the vari-
ability of the estimators obtained from genetic algorithms, and since the classical
results based on the Fisher’s information matrix will be difficult to apply, Chatterjee
et al. (1996) proposed to evaluate the parameters estimators variance by means of
bootstrap.

Another case where evolutionary computation may be useful is when the model
is fitted by means of residuals-based criteria but different from least squares, that
may require optimizing a non convex and non differentiable function.

3.3.1 Regression Models

In the classical linear regression models the parameter estimates are usually derived
by least squares, but several different criteria have been proposed. In robustness,
robust estimators are obtained by considering functions of the residuals different
from the square. The simplest instance is the LAD (least absolute deviation) estima-
tion where we minimize the sum of the absolute values of residuals. This makes the
objective function non differentiable.

A still more complicated problem, that has been addressed by genetic algorithms,
arises when the observed data are censored, as it often happens, for example, in
lifetime studies. In a censored experiment each observation is registered exactly only
if it does not exceed a given (and known) maximum, otherwise it assumes a value
equal to that maximum. Thus, if the independent variable is y, we do not observe yi

values, but min{yi , Ti }. On assuming a linear regression for y: yi = x ′iβ + ui , the
fitted data may be written min{x ′iβ, Ti } and the least absolute deviation function to
be minimized with respect to β is:

∑

i

|min{yi , Ti } −min{x ′iβ, Ti }| .
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Zhou and Wang (2005) studied the properties of this function and employed a
genetic algorithm for finding the minimum. They use real-coded genes, mutation
consists of adding, with random sign, a random quantity approaching to zero as the
generations flow. The cross-over operator produces children genes that are convex
linear combinations of the parents’ genes, with random coefficients, in a similar
way as snooker cross-over (see Sect. 2.3.5), and the fitness is simply the opposite of
the function to be minimized. The generations cycle and selection are unusual: first
cross-over and mutation are applied to the existing population, then the most fitted
individuals, chosen from both parents and children (in a deterministic fashion) are
selected to form the next generation’s population.

Zhou and Wang (2005) obtained satisfying results in their simulations, where
they also compared genetic algorithms with threshold accepting (see Fitzenberger
and Winker, 1998) and found that GA required less computing time to get a similar
performance.

3.3.2 The Logistic Regression Model

Applications of evolutionary computation to logistic regression have also been
proposed. Logistic regression is a generalized linear model useful for analyzing
dependence of binary data on other quantitative or categorical variables. The binary
dependent variable is associated with the presence or absence of a given feature,
and its probability distribution is Bernoulli, so that its mean equals the probabil-
ity of finding that feature. The link function used in logistic regression is the logit
function logit(x) = log{x/(1 − x)}. The regression parameters may be estimated
by maximum likelihood, but the likelihood is not linear in the parameters, and the
normal equations system cannot be solved directly, therefore evolutionary computa-
tion algorithms might be conveniently employed. Genetic algorithms were proposed
by Chatterjee et al. (1996) and by Pasia et al. (2005), while Robles et al. (2008)
addressed the same problem by means of estimation of distribution algorithm.

We illustrate their contributions through a worked example, comparing also with
a more classical numerical optimization method.

Let y denote a binary dependent variable and {x1, x2, . . . , x p} a set of inde-
pendent variables. The logistic regression (Hosmer and Lemeshow, 1989) assumes
a non linear relationship between y, called in this context the response variable,
and the covariates x1, x2, . . . , x p. Let Y denote a binary random variable and
assume that y = (y1, . . . , yn)

′ is a sample from Y . Let π be the probability
P(Y = 1|x1, . . . , x p) = E(Y |x1, . . . , x p). The logistic regression model is defined
by using the logit transform

logit(π) = log
π

1− π = β0 + β1x1 + β2x2 + · · · + βpx p,

where β0, β1, . . . , βp are the parameters that have to be estimated from the observed
data y and x j = (x j1, x j2, . . . , x jn)

′, j = 1, . . . , p. It may be shown that the
logarithm of the likelihood function may be written
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L =
n∑

i=1

yi (β0+β1x1i+· · ·+βpx pi )−
n∑

i=1

log{1+exp(β0+β1x1i+· · ·+βpx pi )}.

The vector estimate β̂ has to be found that maximizes L . Equating the gradient of
L to zero yields a system of non linear equation that has not an analytical solu-
tion. Usually iterative methods are employed either to solve this set of non linear
equations or to directly deal with the maximization of L .

As an example, we fitted a logistic regression model to a real data set, namely
the coronary heart disease (CHD) data from Hosmer and Lemeshow (1989). We
used several algorithms to estimate the two parameters β0 and β1 of the logistic
regression model

logit(πi ) = β0 + β1xi , i = 1, 2, . . . , 100,

where yi = 1 if insurgence of coronary heart disease in the i th patient has been
recorded and yi = 0 otherwise and xi is the i th patient’s age (years). The iterative
re-weighted least squares (IRLS), the GAs and EDAs algorithms implemented for
maximizing the logarithm of the likelihood

L =
n∑

i=1

yi (β0 + β1xi )−
n∑

i=1

log{1+ exp(β0 + β1xi )}

are outlined as follows. Upper and lower bounds for the two parameters have been
chosen (−10, 10) for β0 and (−2, 2) for β1. The input matrix is defined X = [1, x]
where 1 denotes a column vector of ones.

• IRLS. This iterative algorithm implements the Newton method applied to the
problem of maximizing the likelihood of a response variable y given X . Let a
preliminary guess of the model parameter β̂(0) be available. Then the following
steps describe the move from β̂(k) to β̂(k+1) at iteration k.

1. Set, for i = 1, . . . , n,

π
(k)
i =

exp
(
β̂
(k)
0 + β̂(k)1 x1i + · · · + β̂(k)p x pi

)

1+ exp
(
β̂
(k)
0 + β̂(k)1 x1i + · · · + β̂(k)p x pi

) .

2. Define the weights matrix W (k) = diag(w(k)1 , . . . , w
(k)
n ) where w(k)i =

π
(k)
i (1− π(k)i ).

3. Compute z(k) = X β̂(k) + (W (k)
)−1

(y − π(k)).
4. Solve with respect to β̂(k+1) the weighted linear regression problem



72 3 Evolving Regression Models

(
X ′W (k)X

)
β̂(k+1) = X ′W (k)z(k)

5. Replace β̂(k) with β̂(k+1) and repeat from step 1 until some termination con-
dition is met.

• GA-1 (binary encoding). The potential solutions to the maximization problem
have been encoded as two binary strings of length 20 each. Let c denote a non
negative integer coded as a binary number by using the Gray code. Then a real
parameter x is encoded as a binary string of length � as follows

x = a + c(b − a)/(2� − 1). (3.1)

As c ranges from 0, the null string, to 2� − 1, the all ones string, the formula may
encode any real number in an interval (a, b) placed at equi-spaced intervals each
of which has length

(b − a)/(2� − 1).

Equation (3.1) has been used to obtain the value of each of the two parameters
given the integer c encoded as a binary string. The population size has been taken
equal to 30, the number of generations has been 300 and 30 bootstrap samples
have been generated to compute the estimates as the average estimates and the
standard errors. The stochastic universal sampling method has been used for
selection, then the single point crossover with pc = 0.7 and the binary mutation
with pm = 1/20 (see Sect. 2.2.4 for a definition of these evolutionary operators).

• GA-2 (real encoding). The potential solutions to the maximization problem have
been encoded as floating-point numbers. The population size has been taken equal
to 30, the number of generations has been 300 and 30 bootstrap samples have
been generated to compute the estimates as the average estimates and the standard
errors. The stochastic universal sampling method has been used for selection, then
the line recombination crossover with pc = 0.7 and the floating-point mutation
with pm = 1/20. Line recombination is a special crossover operator that may be
applied to real variables only. According to a real encoding, a pair of chromo-
somes c1 and c2 chosen at random are real vectors that we may assume for the
sake of simplicity to have the same dimension. Then a new chromosome c3 is
generated by the rule c3 = c1 + α(c2 − c1) where α is a uniform real random
number in a given interval (α1, α2). The interval bounds have to be chosen by
the user and in principle no constraints are imposed on such choice. For instance
negative values and values greater than one are both allowed. So line recombi-
nation may produce a new chromosome that is not constrained in the segment
between c1 and c2. Likewise a real chromosome c1 may use a special mutation
operator called floating-point mutation. The entry c(i)1 , i.e. the gene at locus i of

a chromosome c1, becomes c(i)2 = c(i)1 ± 2δc(i)1 if c(i)1 �= 0 or c(i)2 = ±2δ if

c(i)1 = 0. δ is a real number generated from a uniform distribution in the interval
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(0, 1) and the + or − sign may occur with equal probability. More details on
genetic operators designed for use in the presence of real encoding may be found
in Mühlenbein and Schlierkamp-Voosen (1993).

• GA-3 (Chatterjee et al., 1996). Equation (3.1) has been used to obtain the value of
each of the two parameters given the integers c0, c1 encoded as binary strings. The
chromosome is the binary string c = [c0, c1]. The population size has been taken
rather large, 1000 chromosomes, and the number of generations has been chosen
equal to 30. Tournament selection with ps = 0.7, single point crossover with
pc = 0.65, and binary mutation with pm = 0.1 have been used. An additional
operation, the inversion (Mitchell, 1996), has been applied with probability pi =
0.75 to each chromosome in each generation. Inversion consists in choosing two
points �1 and �2 at random in the chromosome and taking the bits from �1 to �2
in reverse order. The standard errors of the parameter estimates are computed by
applying the GA on 250 bootstrap samples of the data.

• GA-4 (Pasia et al., 2005). The potential solutions to the maximization problem
have been encoded as two pairs of numbers, a real number r ∈ (0, 1) the first
one and an integer in a given interval (Na, Nb) the second one. The parameter
estimates are obtained as β̂0 = r0 N0 and β̂1 = r1 N1. Binary encoding which
uses the Gray code has been employed. The population size has been taken equal
to 100, the number of generations has been 100 and 30 bootstrap samples have
been generated to compute standard errors of the parameter estimates. The binary
tournament has been used as selection process. Then special crossover (modified
uniform crossover) and mutation are suggested. For crossover, the chromosomes
are paired at random and the integer parts exchange. If the integer parts are equal,
then the exchange takes place as regards the real part of the chromosome. Only
the offspring with better fit is placed in the new generation. Mutation applies, with
probability pm = 0.1, only to the real parts of each chromosome. This part, r say,
is multiplied by a random number between 0.8 and 1.2, namely r is multiplied by
0.8 + 0.4u, where u is an uniform random number in (0, 1). If mutation yields a
number greater than 1 the first component is set to 1.

• EDA (Robles et al., 2008). The potential solutions to the maximization problem
are represented by s vectors of 2 real numbers, the parameters β0 and β1. The
initial population is generated at random. Then the s chromosomes are evaluated
according to the likelihood function and the better s∗ are retained. Other than
using the likelihood, also the AUC (Bradley, 1997) criterion is suggested as an
alternative fitness function. This is recommended when the logistic regression
model is used as a classifier and the AUC is the area under the receiver oper-
ating characteristic (ROC) curve, a graphical device to describe the predictive
behavior of a classifier. The s∗ best vectors found are used to estimate a bivariate
probability density function. From this latter distribution s new chromosomes are
generated and a new iteration starts. We adopted a bivariate normal distribution
so that only the mean vector and the variance-covariance matrix are needed to
estimate the distribution in each iteration. We assumed s = 50 and s∗ = 30, 300
generations and 30 bootstrap samples.
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Table 3.1 Parameter estimates for logistic regression fitted to the CHD data by using IRLS, 4 GAs
and an EDA-based algorithms

IRLS GA-1 GA-2 GA-3 GA-4 EDA

β̂0 −5.3195 −5.1771 −6.0010 −5.4360 −5.0915 −5.4985
(1.1337) (1.3775) (1.6355) (1.2580) (1.0066) (1.5062)

β̂1 0.1109 0.1070 0.1248 0.1130 0.1056 0.1147
(0.0241) (0.0290) (0.0331) (0.0270) (0.0208) (0.0301)

L −53.6774 −53.1873 −53.8577 −53.6886 −53.2021 −53.6907

The results are reported in Table 3.1 for the 6 algorithms. Estimates β̂0 and β̂1
are displayed with standard errors enclosed in parentheses. As a measure of adap-
tation the logarithm of the likelihood � computed on the average estimates is
reported.

According to the figures displayed in Table 3.1 the best algorithm is GA-1 as it
shows the largest log-likelihood. The second best is the algorithm GA-4. This latter
allows the smallest standard errors of the estimates to be attained. This result may be
surprising because the encoding method splits each parameter in two parts so that an
increase of the variability of the estimates would be expected. Moreover, the fitness
function is not linked to the parameters as directly as the other algorithms as there is
an intermediate step, i.e. the multiplication of the two parts of each parameter, that
separates the chromosomes decoding from the fitness function evaluation. In spite
of these considerations algorithm GA-4 takes advantage from the flexibility due to
the separate treatment of the order of magnitude (the integers N0, N1) and the accu-
rate definition of the decimal digits (the real numbers r0, r1). The other algorithms
lead to slightly smaller values of the log-likelihood and yield results similar to the
algorithms GA-1 and GA-4. The standard errors of the estimates β̂0 and β̂1 obtained
by algorithms IRLS, GA-1 and GA-3 are slightly larger than those recorded for the
algorithm GA-4. As an overall result it seems that binary encoding performs better
than the real one for evolutionary computing algorithms. For instance, we tried to
use in the algorithm GA-4 a real encoding by defining a chromosome as an array of
real numbers and obtained rather poor results.

3.4 Independent Component Analysis

Let {y1(t), . . . , ym(t)} be an observed data set that we may assume originated by
the linear combination of a set of unobservable variables {s1(t), . . . , sh(t)} that we
may call sources. The link between the data and the sources is as follows

yi (t) = ai1s1(t)+ ai2s2(t)+ . . .+ aihsh(t), i = 1, . . . ,m, (3.2)

for i = 1, . . . ,m and t = 1, . . . , n. If we define the arrays
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A =

⎛

⎜⎜⎜⎝

a11 a12 · · · a1h

a21 a22 · · · a2h
...

...
. . .

...

am1 am2 · · · amh

⎞

⎟⎟⎟⎠ ,

y(t) = (y1(t), . . . , ym(t))
′ ,

and

s(t) = (s1(t), . . . , sh(t))
′

then (3.2) may be written in compact form

y(t) = As(t)+ ε(t), t = 1, . . . , n, (3.3)

where the noise term ε(t) = (ε1(t), . . . , εm(t))′ may be possibly added. The
assumption h = m, i.e. A is a square matrix, though not strictly needed is often
introduced as simpler methods for solving (3.3) are available in this case. The
independent component analysis (ICA) is concerned with (3.3) under the following
hypotheses.

• The unobservable variables {s j (t)} are statistically independent.
• The variables y(t), s(t) (and possibly ε(t)) have nongaussian distributions not

necessarily known.

Given a set of observations {y(t)} these assumptions allow effective methods for
estimating the sources {s(t)} and the mixing matrix A to be developed up to a per-
mutation of the rows of (3.3), the sign and a multiplicative constant. Without loss
of generality it is assumed further that E{s j (t)} = 0 and E{yi (t)} = 0. Moreover
the assumption E{yi (t)2} = 1 is often held true to fix the order of magnitude of the
solutions.

The ICA methods and problems are accounted for by Hyvärinen et al. (2001).
Useful common applications are for instance the optimal visualization of high
dimensional data, dimensionality reduction, filtering, detection of interesting fea-
tures, e.g. structural changes and outliers. The ICA has been applied successfully
in several fields such as biomedicine, speech recognition, signals processing and
time series. For instance the blind source separation (BSS) problem is often tack-
led by ICA methods. However, the BSS does not necessarily imply the validity of
the assumptions of the ICA. The ICA may be regarded as a variant of the projec-
tion pursuit (Huber, 1985; Friedman, 1987). Convenient projections are investigated
for optimal data visualization, density estimation, regression models estimation, to
name but a few applications. Unlike the ICA, however, the projection pursuit meth-
ods are not necessarily based on special model assumptions or on the statistical inde-
pendence hypothesis, while the objective functions of most ICA algorithms may be
considered in a sense as indexes for projection pursuit. The differences between the
two approaches may be outlined for instance by comparing the methods suggested
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by Galeano et al. (2006) and by Baragona and Battaglia (2007) as far as the outlier
identification problem in time series is concerned.

3.4.1 ICA algorithms

Statistical independence and nongaussianity are the basic principles that support the
development of most ICA algorithms. Let f denote a probability density function.
The independence between the sources si and s j may be defined by the equality
f (si , s j ) = f (si ) f (s j ). This latter equality implies in turn that

E{hi (si )h j (s j )} = E{hi (si )}E{h j (s j )} (3.4)

where hi and h j are some suitable nonlinear functions. As a special case, if hi and h j

are the identity functions, (3.4) defines si and s j as uncorrelated variables. In general
(3.4) defines nonlinear decorrelation. Though it is only a necessary condition for
independence, often the nonlinear decorrelation is assumed as the objective function
for ICA algorithms and produces satisfactory solutions to the ICA problem.

The maximum nongaussianity is the other basic principle that allows effective
algorithms to be developed. In practice independent components cannot be com-
puted exactly and we may seek for approximated independence only. As sums of
nongaussian variables are closer to gaussian than the original ones, according to the
central limit theorem, the ICA problem may be formulated as the problem of finding
the local maxima of nongaussianity of a linear combination z j (t) = ∑

i wi j yi (t)
provided that the variance of z j (t) is constant. Clearly z j (t) will be maximally
nongaussian if it equals a source s ji possibly with opposite sign. The coefficients
wi j ’s will estimate some entries of some de-mixing matrix B which is supposed
to approximate the inverse of the mixing matrix A up to a permutation matrix. Two
examples of nongaussianity measures are the negentropy (Hyvarinen and Oja, 2000)
and the mutual information (Bell and Sejnowski, 1995).

3.4.1.1 Negentropy

The nongaussianity measure negentropy is defined

J (z) = Hϕ − H(z), (3.5)

where the function H(·) is the entropy

H(z) = −
∫

f (z)log f (z)dz. (3.6)

f denotes the probability density function of z and Hϕ is the entropy of a gaussian
variable. As the entropy of a gaussian variable is larger than the entropy of any
variable with the same variance, the index defined by (3.5) is always greater than or
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equal to zero. Moreover, z is as more different from a gaussian variable as smaller
its entropy, so that the index J (z) may be thought of as an objective function to be
maximized.

3.4.1.2 Mutual Information

This nongaussianity measure is defined as

I (z1, . . . , zh) =
h∑

i=1

H(zi )− H(z), (3.7)

where the function H(·) is the entropy (3.6). The index I as defined in (3.7) is always
greater than zero and it equals zero if and only if the variables zi ’s are statistically
independent. An algorithm that uses (3.7) as objective function has to minimize it.

Relationships between negentropy and mutual information are discussed in
Hyvärinen et al. (2001, chapter 10).

The stochastic gradient descent algorithm (Bell and Sejnowski, 1995) minimizes
an objective function which includes the general nonlinear relationship

J (w) = E(g(w, y)), (3.8)

where the dependence of the source estimate z from the unknown coefficients w is
made explicit and g is some suitable nonlinear function. Given an initial value w(0)
the basic step of the algorithm is the move from iteration t − 1 to iteration t which
may be summarized by the following updating formula

w(t) = w(t − 1)− α(t) ∂
∂w

E {g(w, y(t))}w=w(t−1) ,

where α(t) controls the step size. Usually a pre-processing step is performed before
the application of the optimization algorithm. This amounts in most cases to operate
the following transforms on the data.

• Centering the variables, i.e. the {y(t)} are replaced by ỹ(t) = y(t) − E{y(t)} so
that E{ỹ(t)} = 0.

• Whitening, that is the {y(t)} are replaced by ỹ(t) = D− 1
2 E ′y(t), where

E{y(t)y(t)′} = EDE′, so that E{ỹ(t)ỹ(t)′} = I , the identity matrix.
• Band-pass filtering, i.e. a linear filter is applied to {y(t)} to yield ỹ(t) which has

spectral density concentrated in the frequency band of interest.

3.4.2 Simple GAs for ICA

Numerical algorithms such as the stochastic gradient learning rule are widely used
for estimation of the independent sources. However these algorithms may produce
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sub-optimal solutions. This circumstance motivates the introduction of genetic algo-
rithms to seek for improved solutions.

A GAs-based procedure could be outlined as follows. Let us find the sources
{z(t)} and the de-mixing matrix B such that

z(t) = By(t) (3.9)

where {y(t)} is defined as in (3.2) and let (w1, w2, . . . , wh) denotes the generic
row of B such that

∑h
i=1w

2
i = 1. As a first step an appropriate encoding and

a suitable fitness function have to be defined. As for encoding, it is well known
that h − 1 angles suffice to completely and uniquely determine a point on the unit
h-dimensional sphere. Let 0 ≤ φ ≤ 2π and 0 ≤ θ j ≤ π , j = 1, . . . , h − 2. Then

w1 = sin(θ1)sin(θ2) . . . sin(θh−2)sin(φ)
w2 = sin(θ1)sin(θ2) . . . sin(θh−2)cos(φ)
w3 = sin(θ1)sin(θ2) . . . cos(θh−2)

w4 = sin(θ1)sin(θ2) . . . cos(θh−3)

. . .

wh = cos(θ1)

(3.10)

are the unit norm coefficients needed to transform the observed data {y(t)} into
the independent component z(t) = w′y(t), where w = (w1, . . . , wh)

′. Every fea-
sible solutions that the GA may take into account may be coded as a sequence
{θ1, θ2, . . . , θh−2, φ}. A set of sequences of this type forms the population to be
evolved through the pre-specified number of generations to reach the optimal solu-
tion. For instance we may consider optimality according to the simple nongaus-
sianity criterion of kurtosis maximization. The fitness function in this case may be
assumed

J (θ1, θ2, . . . , θh−2, φ) = μ4

var(zt )2
− 3,

where μ4 = E{zt −E(z(t))}4. The actual chromosomes are binary vectors of length
� obtained by standard binary coding of {θ1, θ2, . . . , θh−2, φ}.

As an alternative we may seek for a linear transform that produces a data set
with diagonal cross-cumulant matrices. Cardoso and Souloumiac (1993) suggested
the joint diagonalization of the cumulant matrices and Ziehe and Müller (1998) pro-
posed the simultaneous diagonalization of several time-delayed correlation matri-
ces. For illustration purpose we may define as objective function the sum of the
absolute value of the off-diagonal entries of the matrix of some cross cumulants of
order higher than 2 of the transformed data (3.9). A GAs-based algorithm may be
used to minimize an objective function of this type defined on the set of feasible
de-mixing matrices B.
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A matrix B may be encoded as a chromosome

θ
(1)
1 , . . . , θ

(1)
h−2, φ

(1)|θ(2)1 , . . . , θ
(2)
h−2, φ

(2)| . . . |θ(m)1 , . . . , θ
(m)
h−2, φ

(m), (3.11)

and decoding may be performed according to (3.10). The first h − 1 genes give the
first row (w

(1)
1 , . . . , w

(1)
h ) of the matrix B, the second sequence of h−1 genes gives

the second row (w
(2)
1 , . . . , w

(2)
h ) of B, then each sub-sequence of the chromosome

between a pair of vertical bars is scanned and decoded until the last row of B is
decoded as (w(m)1 , . . . , w

(m)
h ). Let s denote the population size. Then we may gen-

erate at random s chromosomes with structure (3.11) to initialize the GA algorithm
and the initial population evolves through a pre-specified number of generations N
by using the genetic operators selection, crossover and mutation. The exact defini-
tion of the genetic operators depends on the choice between the representation of the
genes of the chromosome (3.11) as binary sequences or floating-point numbers. The
population at each iteration includes the set of s matrices {B(1), B(2), . . . , B(s)} and
for each one the fitness function may be computed as the sum of absolute values of
some of the off-diagonal cross-moments matrices. The choice of number and orders
of such matrices may be left to the user or may be performed by using an auxiliary
GA as suggested by Sun et al. (2006).

As an example, let us consider a set of 5 time series of length 100 generated by
the following autoregressive recursive equations

si (t) = φ(i)si (t − 1)+ ai (t), i = 1, . . . , 5, t = 1, . . . , 100, (3.12)

where (φ(1), . . . , φ(5)) = (0.5,−0.7, 0.2, 0.7,−0.5), and {ai (t)} is a sequence of
independent identically distributed random variables with nongaussian probability
density function f . This latter has been chosen from the class of the exponential
power function distributions as a special generalization of the gaussian distribution

f (a) =
{

β

2αΓ (1/β)

}
exp

{
−|a − μ|

β

αβ

}
,

where Γ (·) denotes the gamma function, and μ, α (α > 0) and β (β > 0) are the
location, scale and shape parameters respectively. We assumed μ = 0 and α = √2,
and we set β = 4 so as to obtain a platykurtic distribution as a result. Methods for
generating random numbers from f (a) may be found in Chiodi (1986). The time
series data provided by (3.12) have been standardized and decorrelated to yield the
sources that have been mixed by using the matrix

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 −1 0 0 1

⎞

⎟⎟⎟⎟⎠

to produce the transformed time series data
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y(t) = As(t)

that are assumed as the observed signals. A GA has been used to find the de-mixing
matrix B such that the transformed time series data

z(t) = By(t)

approximate the set of sources {s(t)} as closer as possible. Let {ỹ(t)} denote the
uncorrelated zero mean and unit variance time series set obtained as ỹ(t) = Qy(t),
where the matrix Q is computed as described at the end of Sect. 3.4.1. Let z̃(t) =
B ỹ(t) and z(t) = (z1(t), . . . , z5(t))′. Then the objective function has been chosen

J (B) =
4∑

i=1

5∑

j=i+1

∣∣∣∣∣

100∑

t=1

z̃i (t)
2 z̃ j (t)

2/100− 1

∣∣∣∣∣ .

As a matter of fact, if zi (t) and z j (t) have to be independent then the necessary
condition (3.4) holds in particular if the hi ’s are chosen the square functions. Note
that the matrix B does not need to be orthonormal but the sum of the squared
entries in each of its rows is equal to 1, and yi (t) has unit variance, so that∑100

t=1 z̃i (t)2/100 = 1 for all i . In spite of its simplicity the objective function J (B)
has been found effective for driving the search towards a valuable approximation of
the true de-mixing matrix B = A−1. In the GAs context the fitness function has to
be maximized so that its exact definition has been taken as f = 1/J . For encoding
the entries of each proposal solution matrix B we assumed 20 bits to represent each
real parameter so that the length of each chromosome is � = 20×h(h−1). Then the
usual selection, crossover and mutation have been employed as in the simple GA.

As a final step the sources z(t) estimated by using the matrix B provided by
the GA have been further transformed by whitening. The estimated sources have
been assumed ŝ(t) = Rz(t) where the matrix R has been computed as described
at the end of Sect. 3.4.1. The estimated de-mixing matrix has been calculated by
taking into account all transforms that have been applied to the data, i.e. B̂ = RBQ.
However, the sources could be recovered exactly only if the permutation matrix and
signs would be known. For our simulated data we selected the rows permutation
and signs by comparing ŝ(t) to s(t) and B̂ to A−1. This is not possible when dealing
with real data.

We obtained B̂ and ŝ(t) from the simulated data y(t) by using the GA and by
using the stochastic gradient descent algorithm. For comparison the original sources
and the sources estimated by the GA are reported in Fig. 3.3. Likewise, the original
sources and the sources estimated by the stochastic gradient descent algorithm are
reported in Fig. 3.4. In both cases the original sources are recovered rather accu-
rately, the de-mixing procedures seem to yield poor results only for the second and
third time series as far as the GA is concerned and for the third and fourth for the
stochastic gradient descent algorithm. The inverse of the mixing matrix A and the
estimated de-mixing matrices are reported below.
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Fig. 3.3 Simulated nongaussian independent sources, original (solid line) and GA estimates (dot-
ted line)

A−1 =

⎛

⎜⎜⎜⎜⎝

2 −1 0 0 −1
1 0 0 0 −1
1 −1 1 0 −1
1 −1 0 1 −1
−1 1 0 0 1

⎞

⎟⎟⎟⎟⎠

BGA =

⎛

⎜⎜⎜⎜⎝

1.9 −1.3 0.5 −0.2 −1.0
0.1 0.6 0.3 −0.4 −0.1
0.9 0.0 0.7 −0.2 0.4
1.6 −1.2 0.4 0.8 −1.5
−1.1 0.7 −0.1 0.1 1.2

⎞

⎟⎟⎟⎟⎠

Bgradient =

⎛

⎜⎜⎜⎜⎝

1.6 −0.8 0.3 −0.3 −0.7
2.0 −1.0 0.1 0.5 −1.8
−0.3 0.2 0.7 −0.5 −0.1
−0.2 −0.1 0.4 0.5 0.1
−1.1 1.5 −0.5 −0.4 1.1

⎞

⎟⎟⎟⎟⎠

The three matrices are similar with the exception of few entries that are considerably
different from the corresponding entries of the matrix A−1.
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Fig. 3.4 Simulated nongaussian independent sources, original (solid line) and stochastic gradient
descent algorithm estimates (dotted line)

The fitness function recorded in each of 1000 iterations of the GA is displayed
in Fig. 3.5. The reciprocal of the final fitness function values is equal to 0.8329,
i.e. the average entry of the lower half matrix of the fourth order cumulants that
we considered in the definition of the fitness function is equal to 0.0833 which is
a figure rather small (the fourth moment has been computed about 2.5 for each of
the five estimated sources). The fitness function increases rather gradually unlike
in most application cases. The steady improvement of the fitness function does not
seem likely to be ascribed to mutation, as the rate of mutation pm = 0.0025 is
rather small. So we have to suggest that crossover is the most useful operator in
this case though the rate of crossover pc = 0.7 is not specially large. The crossover
exchanges between a pair of proposal de-mixing matrices some of the weights that
control the contribution of each observed time series data to the estimated sources
and this device seems effective to improve the solution.

Table 3.2 displays the correlations between each of the five original sources and
the corresponding ones estimated by the GA and by the stochastic gradient descent
algorithm. The accuracy of the estimates may be appreciated for each single time
series. For a synthetic comparison the average correlations may be computed equal
to 0.7904 for the latter and 0.7298 for the second algorithm with a slightly better
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Fig. 3.5 Fitness function behavior against the number of iterations for the problem of finding the
optimal de-mixing matrix in the ICA problem

performance of the GA. In this case the two approaches seem to produce comparable
results, an extensive simulation study would be needed to address the issue properly.

Table 3.2 Correlations between original and estimated sources using a genetic algorithm and the
stochastic gradient descent algorithm

series 1 series 2 series 3 series 4 series 5

GA 0.8173 0.7087 0.7261 0.8487 0.8513
gradient 0.8980 0.8149 0.7347 0.5138 0.6874

3.4.3 GAs for Nonlinear ICA

In Sect. 3.4.1 the general case has been considered of a set of observed data {y(t)}
produced by the unknown nonlinear mixture of independent sources {s(t)}. Tan
and Wang (2001) proposed a method that utilizes a GA to minimize an objective
function as specified by (3.8) where it is assumed that g is a highly nonlinear and
nonconvex cost function. Two special cost functions based on higher order statistics
are introduced to evaluate the degree of the statistical independence of the outputs
of the de-mixing system, i.e. the estimates of the unknown independent sources.
The appropriate objective function should rely on the probability criterion of inde-
pendence of random variables. Difficulties in estimating the probability density
functions of unknown random variables may be overcome by resorting to higher
order statistical moments. Then a first cost function may be built by considering
all joint cross-moments of the outputs constrained to zero. This corresponds to
fulfill a necessary condition for the independence of the outputs. A second cost
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function takes into account the mixed moments of any order weighted by a suitable
window function. Parameter estimates, i.e. the estimates of the coefficients of the
de-mixing matrix, are computed by a GA. Binary encoding, roulette wheel selec-
tion, multi-point crossover and binary mutation are found effective for achieving
the proper recovery of the unknown sources and mixing nonlinear operators. These
genetic operators characterize the simple GA excepted that the multi-point crossover
(Spears and De Jong, 1991) is used instead of the one point crossover. The multi-
point crossover generalizes the one point crossover allowing several cutting points
to be chosen so that several fragments of the chromosomes in a pair may exchange
instead of limiting the exchange only to the last genes of the chromosomes. The
elitist strategy is recommended to improve the rate of convergence.

The two cost functions are used to implement two different GAs. A simulation
experiment demonstrates that both GAs-based algorithms are able to provide accu-
rate and robust results regardless of the initial values and with a rate of convergence
superior to gradient-based approaches.

To improve further the performance of the GAs-based algorithms Gorriz et al.
(2005) suggested a guided GA which includes statistical information inherent to the
problem in the evolution process. In practice the GA is hybridized with gradient-
based techniques to refine the solutions and improve the rate of convergence at the
same time. Further improvements may be obtained by using an ICA algorithm in
conjunction with the GAs, where the GAs aim at finding the optimal nonlinear func-
tion g in (3.8) and the ICA algorithm accomplishes the task of finding the optimal
de-mixing matrix to be applied to the data transformed by the nonlinear function
g. The usual GA operators, selection, crossover and mutation are modified accord-
ingly. An example is discussed of an application to real data where the suggested
GAs-based methods display encouraging results.



Chapter 4
Time Series Linear and Nonlinear Models

Abstract Modeling time series includes the three steps of identification, param-
eter estimation and diagnostic checking. As far as linear models are concerned
model building has been extensively studied and well established both theory and
practice allow the user to proceed along reliable guidelines. Ergodicity, stationarity
and Gaussianity properties are generally assumed to ensure that the structure of a
stochastic process may be estimated safely enough from an observed time series.
We will limit in this chapter to discrete parameter stochastic processes, that is a
collection of random variables indexed by integers that are given the meaning of
time. Such stochastic process may be called time series though we shall denote a
finite single realization of it as a time series as well. Real time series data are often
found that do not conform to our hypotheses. Then we have to model non stationary
and non Gaussian time series that require special assumptions and procedures to
ensure that identification and estimation may be performed, and special statistics
for diagnostic checking. Several devices are available that allow such time series
to be handled and remain within the domain of linear models. However there are
features that prevent us from building linear models able to explain and predict the
behavior of a time series correctly. Examples are asymmetric limit cycles, jump
phenomena and dependence between amplitude and frequency that cannot be mod-
eled accurately by linear models. Nonlinear models may account for time series
irregular behavior by allowing the parameters of the model to vary with time. This
characteristic feature means by itself that the stochastic process is not stationary and
cannot be reduced to stationarity by any appropriate transform. As a consequence,
the observed time series data have to be used to fit a model with varying parameters.
These latter may influence either the mean or the variance of the time series and
according to their specification different classes of nonlinear models may be char-
acterized. Linear models are defined by a single structure while nonlinear models
may be specified by a multiplicity of different structures. So classes of nonlinear
models have been introduced each of which may be applied successfully to real
time series data sets that are commonly observed in well delimited application fields.
Contributions of evolutionary computing techniques will be reviewed in this chapter
for linear models, as regards identification stage and subset models, and to a rather
larger extent for some classes of nonlinear models, concerned with identification and
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parameter estimation. Beginning with the popular autoregressive moving-average
linear models, we shall outline the relevant applications of evolutionary computing
to the domains of threshold models, including piecewise linear, exponential and
autoregressive conditional heteroscedastic structures, bilinear models and artificial
neural networks.

4.1 Models of Time Series

Let {yt , integer t} denote a time series, that is a stochastic process indexed by a
discrete parameter which assumes the meaning of time. If no confusion is likely to
arise, according to the context, a finite realization will be denoted without further
specification by the array y = (y1, . . . , yn)

′, where n is the number of observations.
Let {et , integer t} denote a strictly white noise process, that is a sequence of inde-
pendent random variables. Under stationarity assumption the white noise process
has mean zero and variance σ 2 equal for all the et ’s. Following Priestley (1988), a
model of the time series is a relationship between its elements, which produces a
zero mean strictly white noise process:

h (. . . , yt−2, yt−1, yt , yt+1, yt+2, . . .) = et .

If {et } is a strictly white noise then all the dependence between values at different
time points of y is explained by the function h. However, for physical reasons we
shall assume that the series depends only on past values, and write the model in
non-anticipative form:

h (yt , yt−1, yt−2, . . .) = et . (4.1)

We shall assume the parametric approach, that is we want h(·) to depend on a finite
set of parameters so that knowledge of parameter values yields a full account of h(·).
In general the function h(·) is unknown and so are the parameter values. Moreover,
the time series full joint distribution is not available and we may rest only upon
the finite observed realization y. Then the model building procedure consists essen-
tially in iteratively performing the three steps of identifying a model, estimating the
parameters, checking the validity of (4.1). The procedure ends if (4.1) is fulfilled at
least with adequate approximation, else the procedure starts anew with another itera-
tion. Model identification is performed in general by choosing a mathematical spec-
ification of the function h(·|θ), where θ is the parameter vector, according to some
appropriate statistics. In an evolutionary computing framework we start with a set
of tentative functions {h1(·|θ), . . . , hs(·|θ)} and evolve such a population towards
closest approximation of (4.1). The parameter vector θ may either be included in
the evolutionary searching procedure or be estimated whenever possible by special
optimization algorithms. In this latter case we denote the evolutionary algorithm
as a hybrid algorithm which combines the evolutionary computing devices with
gradient-based optimization techniques, combinatorial optimization procedures and
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heuristic or meta-heuristic algorithms. The Gaussianity assumption on the white
noise process allows us to use the maximum likelihood approach for parameter esti-
mation. At this step we have to assume that the function h(·|θ) is fully specified but
for the vector parameter θ . The joint probability distribution of e = (e1, . . . , en)

′
allows us to write the likelihood function that we have to maximize depending on
the vector parameter value θ . Let f (e) denote the density of e. We may use (4.1)
and write the likelihood function L as follows

L(θ |h, y) = f {h(y|θ)}, (4.2)

where the form of the function h is assumed known and y is the observed time series.
This way the likelihood is a function of θ . The vector parameter θ may include either
parameters that take values in a continuous space or parameters that are defined in
some discrete set. Only in the former case gradient-based methods may be possibly
used while such methods do not apply in the latter case as we cannot even define
partial derivatives. Let θ = (θ1

′, θ2
′)′ where θ1 are continuous variables and θ2 are

discrete variable. According to (4.2) given h(·) and the observed data y the likeli-
hood function may be written as a function of the parameter θ and the optimization
problem consists in finding the estimate θ̂ defined as

θ̂ = arg maxθ {L(θ |h, y)} . (4.3)

If θ may be distinguished in the two arrays θ1 and θ2 then an iterative procedure
is convenient that alternates the two step of maximizing (4.2) with respect to θ1
given θ2 and with respect to θ2 given θ1. For instance an evolutionary computing
algorithm may be given the task of finding θ2 and a steepest ascent algorithm the
task of finding θ1. Such a procedure defines a hybrid algorithm as well. Further
more than two algorithms may be employed each of which may be devoted to solve
the problem (4.3) with respect on a subset of the parameter set and conditional on
the remaining parameters. For example (4.3) may be linear as far as some of the
parameters are concerned so that maximization conditional on the other parameters
is straightforward.

Such a procedure is very general but it may be very complicated too and
hardly feasible in practice. Priestley (1988, chapter 5) suggests a specification
for the function h which is both flexible enough to cover a wide range of func-
tional forms and tractable in the context of the statistical analysis. Indeed model
(4.1) is fairly intractable as an infinite dimensional model whilst the function h
may be given a finite dimensional form by letting h to depend on the finite set
{yt−1, . . . yt−p, et−1, . . . et−q} for integers p ≥ 0 and q ≥ 0, so that we may write:

yt = h
(
yt−1, yt−2, . . . yt−p, et−1, et−2 . . . et−q

)+ et .

By assuming further that a first order Taylor expansion for h exists, then the state
dependent model (SDM) for the time series {yt } takes the form
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yt = μ(zt−1)+
p∑

j=1

φ j (zt−1)yt− j + et −
q∑

j=1

ψ j (zt−1)et− j , (4.4)

where the array

zt−1 = (et−q , . . . , et−1, yt−p, . . . , yt−1)

is called the state vector at the time t − 1. Formally h(zt−1) may be interpreted as
the projection of yt on the σ -algebra generated by et−1, et−2, . . . and is therefore the
conditional expectation of yt given the whole past, while et plays the role of innova-
tions of the process. A large lot of models may be defined from (4.4) including the
linear autoregressive moving-average models and many popular nonlinear models.

• ARIMA models. If μ, the φ j ’s and the ψ j ’s are independent of zt−1 then they
are constant parameters and we obtain an ARIMA model. This is equivalent to
assume that the model function h(·) is linear. Some additional assumptions have
to hold, see, e.g., Box et al. (1994).

• AR threshold models. Assume that ψ j = 0 for all j and that the state vector zt−1

reduces to the single variable yt−1. Let μ(zt−1) = a(i)0 and φ j (zt−1) = a(i)j if
yt−1 ∈ Ri for j = 1, . . . , p and i = 1, . . . , k. The Ri ’s defined as Ri = (ri−1, ri ]
are k interval that partition the interval (r0, rk] on the real axis This is the (self-
exciting) autoregressive threshold (SETAR) model.

• Piecewise linear models. If we allow the parameters a(i)j to vary linearly with
yt−1 then we have the piecewise linear autoregressive threshold (PLTAR) model.

• Exponential autoregressive models. Assume that μ = 0 and ψ j = 0 for all j . If
φ j (zt−1) = a j + b j exp

(−γ y2
t−1

)
, j = 1, . . . , p, then we obtain the exponential

autoregressive (EXPAR) model.
• Bilinear models. If μ and the φ j ’s are constants independent of zt−1 and we let
ψ j (zt−1) = c j+∑�

i=1 bi j yt−i , j = 1, . . . , q, then model (4.4) is a bilinear (BIL)
model. The parameters ψ j (zt−1) are linear functions of {yt−1, . . . , yt−�}.

4.2 Autoregressive Moving Average Models

Models of the ARMA and ARIMA class are most popular in time series analysis
essentially for two reasons: first, they are a natural generalization of regression mod-
els, and may be easily interpreted using similar concepts as in regression analysis;
and, second, they may be seen as universal approximation for a wide class of well
behaved stationary stochastic processes.

Let {xt } denote a second-order stationary purely non-deterministic process, i.e.,
with spectral measure F(λ) everywhere differentiable with derivative f (λ) strictly
greater than zero for any λ. Assume also that the first and the second moments are
finite and let E(xt ) = μ. Then, the Wold’s decomposition theorem states that the
following equality holds in quadratic mean:
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xt = μ+
∞∑

j=0

h j ut− j . (4.5)

That is, there exists a strictly white noise process {ut }, with E(ut ) = 0 and E(u2
t ) =

σ 2, and a sequence of constants {h j }with h0 = 1,
∑

h2
j <∞, such that the squared

difference between the left hand side and the right hand side of (4.5) has mean zero.
The Wold decomposition (4.5) is a very interesting and convenient result for the-

oretical analysis of stochastic processes, but as a model for representation it has the
main drawback that it depends on an infinite number of parameters. By employing
the so called “backward operator” B, such that Bxt = xt−1 and Bk xt = xt−k , (4.5)
may be rewritten

xt = H(B)ut ; H(B) =
∞∑

j=0

h j B j .

An operational model may be obtained by deriving an approximation to (4.5) based
on a finite parameterization. The most obvious choice is truncating the infinite sum
to a finite number of terms (which produces the moving average model): it amounts
to substituting the power series H(B) by its partial sums. A more efficient approxi-
mation, in terms of number of required parameters, consists in replacing the power
series H(B) by a ratio of two finite degree polynomials:

H(B) � Θ(B)/Φ(B)

where

Θ(B) = 1− θ1 B − · · · − θq Bq ;Φ(B) = 1− φ1 B − · · · − φp B p .

The resulting approximation of the Wold decomposition (4.5) gives the ARMA
model:

xt−φ1xt−1−φ2xt−2−· · ·−φpxt−p = c+ut−θ1ut−1−θ2ut−2−· · ·−θqut−q (4.6)

where c = μ(1 − φ1 − · · · − φp). Equation (4.6) is called an ARMA(p, q) model
and p and q are known as the autoregressive and the moving average orders of the
model.

As it is probably already apparent, there is a general agreement in the literature
concerning the crucial requirement of parsimony, the ability of obtaining a good
approximation by employing the smallest possible number of parameters. The rea-
son is that each parameter is an unknown to be estimated from the data, therefore
any additional parameter may be the source of additional bias and sample variabil-
ity. Moreover, all parameters are estimated basing on the same data, therefore their
estimates might be correlated, and the bias could spread through the parameters.
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Parsimony is universally accepted as precept among time series analysts, so that
the ARMA model building problem may be seen as choosing the model with the
smallest number of parameters given an approximation level. An additional way of
reducing the number of parameters is considering incomplete models, where some
of the parameters φ1, . . . , φp, θ1, . . . , θq are constrained to zero. Such models are
usually referred to as subset ARMA models.

The canonical model building procedure runs iteratively through the following
three steps:

1. Identification. Selection of the orders p and q, and, if a subset model is con-
sidered, choice of which parameters are allowed to be non-zero. Such step is
based on a function, called identification criterion, which assigns a loss to each
possible choice of the orders and the parameters subset. Several different criteria
have been proposed, some of them will be considered in what follows.

2. Parameter estimation. Conditional on identification, the estimation of parameters
may be performed through classical statistical inference. In particular, a gaus-
sianity assumption allows to derive maximum likelihood estimates. Essentially,
it may be shown that, given the parameters (and some initial values), the data
vector {xt } and the innovations vector {ut } given by

ut = xt − φ1xt−1 − · · · − φpxt−p + θ1ut−1 + · · · + θqut−q = ut (φ, θ)

are in a one to one correspondence; furthermore, the Jacobian of the transforma-
tion is equal to one. Therefore the likelihood of the data equals the likelihood
of the innovations which, owing to normality and independence, depends essen-
tially on the sum of squares of the innovations:

S(φ, θ) =
∑

t

u2
t (φ, θ) .

Thus, the maximum likelihood estimates of the parameters (φ̂, θ̂ ) are defined by:

(φ̂, θ̂ ) = arg min
(φ,θ)

S(φ, θ)

a least squares problem. If the moving average order is q = 0, the least squares
problem may be solved by equating derivatives to zero and solving the related
linear system, while if there is a non zero moving average part the minimization
problem is non linear, but efficient numerical optimization methods are available.

3. Diagnostic checking. Once the model is completely specified and estimated, it
is customary to check whether it fits the data sufficiently well. This is generally
accomplished by computing the residuals, which may be interpreted as estima-
tors of the innovations: if the model fits good, the residuals should inherit the
most relevant properties of the innovation process: zero mean, constant variance
and, more important, whiteness. For this reason, the most widely used diagnostic
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checking tools take into account the residuals and test the null hypothesis of
whiteness on them. This may be performed both in the time domain (with test
statistics based on the sum of squared autocorrelations for some initial lags) and
in the frequency domain (checking the constancy of the estimated spectral den-
sity over frequency). If the model is not accepted as a satisfying representation
of the data, the identification stage should be repeated, taking into account which
kind of non whiteness has been found in the residuals.

4.2.1 Identification of ARMA Models by Genetic Algorithms

The most difficult step of the model building procedure is identification. The space
of possible solutions is discrete and usually very large, and there is not, in general,
any better way of comparing two of them than computing the identification crite-
rion values. For such reasons, the ARMA model identification has been considered
as a particularly suitable problem for meta-heuristic methods, and a few propos-
als employing genetic algorithms are found in literature. All papers are concerned
with subset models, some of them also consider more complicated models such
as multiplicative seasonal or multivariate models, and are addressed in the next
Section. These papers always introduce hybrid algorithms, where the estimation
is obtained through the least squares approach (maximum likelihood in the gaussian
case). Though in principle the choice of the parameter values could be obtained by a
purely genetic search, there is an unanimous agreement that the numerical optimiza-
tion techniques developed for the classical model building procedure (as sketched
previously) are more time-saving and computationally efficient. Some authors (see
Gaetan 2000; Ong et al. 2005) use a simplified procedure rather than minimizing
S(φ, θ) numerically on the entire space of admissible (φ, θ) values. Such procedure
is due to Hannan and Rissanen (Hannan and Rissanen, 1982) and consists in obtain-
ing a first estimate of the residuals by fitting a high-order autoregression to the data.
Then, conditional on the residual of that autoregression, the ARMA model (4.6)
becomes linear in the parameters φ1, . . . , φp, θ1, . . . , θq , which may be directly
estimated with least squares by simply solving the (linear) normal equations.

We turn now to consider the encoding methods proposed in the literature for
ARMA identification. Each solution must represent a particular model structure,
specifying the autoregressive order p, the moving average order q, and a set of lags
(integer between 1 and p or q) that identify the non zero parameters of the autore-
gressive and the moving average part. Two different codings have been proposed, in
either case a maximum search order has to be selected, both for the autoregressive
part (P say) and for the moving average part (Q). The simplest coding amounts to
reserving one gene to each possible lag, filling it with 1 if the parameter is free, and
with 0 if the parameter is constrained to zero. For example, if we take P = Q = 6,
the following subset model:

xt = φ1xt−1 + φ4xt−4 + φ5xt−5 + ut − θ2ut−2 − θ4ut−4 − θ6ut−6
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is coded by means of the following chromosome

1 0 0 1 1 0 0 1 0 1 0 1
(AR lags) (MA lags)

This coding system was adopted by most authors, and has the advantage of simplic-
ity and fixed-length chromosomes, but it is not particularly efficient.

An alternative coding based on variable-length chromosomes, was proposed by
Minerva and Poli (2001a). The chromosomes consist of two different gene subsets:
the first one is devoted to encode the autoregressive and moving average orders, by
specifying the number of relevant predictors, i.e., the number of non-zero parame-
ters, respectively for the autoregressive part, p∗, and for the moving average part, q∗.
This part consists of eight binary digits and encodes two integer numbers between 0
and 15 (therefore this coding allows for models that have up to 15 non-zero autore-
gressive parameters and 15 non-zero moving average parameters). The other genes
subset is devoted to specifying the lags which the non zero parameters correspond
to: it comprises 5(p∗+q∗) binary digits, and encodes, consecutively, p∗+q∗ integer
numbers between 1 and 32. Therefore, in the Minerva and Poli’s implementation,
P = Q = 32 and all models containing a maximum of 15 non zero parameters, both
for the AR and the MA structures, may be coded. For example. the chromosome
corresponding to the previous model is:

0011 0011 00001 00100 00101 00010 00100 00110 .

The first part of the chromosome contains 8 digits, while the second part has a
variable length from zero (white noise) to 150 binary digits. Encoding with the
same order limitations would require, in the fixed-length scheme introduced before,
64-digit chromosomes. It appears that the advantage of using the variable length
scheme might be sensible if we are searching for relatively sparse models, because
the average length depends directly on the number of non zero parameters (for
example, a coding admitting no more that 4 non zero parameters in each AR or
MA structure, with a maximum lag of 64, would require a fixed chromosome 128
long, and a variable length chromosome with 6–54 binary digits).

In any case, the structure of the genetic algorithm depends on the choice of a
maximum possible order: it may be based on a-priori considerations, or even on the
number of available observations. A more data-dependent choice of the maximum
admissible lag could also be based on an order selection criterion computed only
on complete models (with all parameters free) as proposed in Bozdogan Bearse
(2003): in this case a relatively “generous” criterion like AIC seems advisable to
avoid a too hard limitation of the solution space.

Since all proposed codings are binary, each proposal corresponds to usually
slight modifications of the canonical genetic algorithm. The selection procedure
is obtained by means of the roulette wheel methods, except for Bozdogan Bearse
(2003) who adopt rank selection. The mutation operator is employed in its standard
form, while for the cross-over operator some authors propose a random one cut
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point (Gaetan, 2000), others a random two point cross-over (Ong et al., 2005) or a
uniform cross-over (Bozdogan Bearse , 2003). All authors use generation gaps equal
to one, and slightly different elitist strategies: saving the best chromosome, or the
two best chromosomes, or even the 10 % best chromosomes in the population. When
dealing with the alternative coding based on subsets of genes that encode the AR
and MA order, Minerva and Poli (2001a) suggest that the cross-over operator should
be modified in order to apply on entire fields (representing the integer numbers
denoting order or lag) rather to the single binary digits. Mutation and cross-over
probabilities are generally in accordance with the literature on canonical genetic
algorithms, proposed values are between 0.01 and 0.1 for mutation, and from 0.6 to
0.9 for cross-over. Not many suggestions are offered concerning the population size,
and the chromosomes composing the initial generation (they are generally selected
at random in the solution space). It may be reasonably assumed that a good starting
point, with satisfying mixing properties, would require initial individuals which may
exploit the fitting ability of each single possible parameter. Therefore, advantageous
chromosomes in the initial population are those encoding models with just one non
zero parameter (i.e., in the first coding scheme, chromosomes with only one gene
equal to one). The minimum population size that allows to fully develop this idea is
obviously equal to the total number of possible parameters, or P + Q.

Much more relevant differences are found in the literature on ARMA models
building by means of genetic algorithms, as far as the fitness function is concerned.
Essentially, the fitness function is linked to some version of identification criterion
or penalized likelihood. A favorite choice is adopting one of the most popular iden-
tification criteria in time series, such as the AIC or the BIC (also called Schwarz)
criteria:

AIC(M) = N log{σ̂ 2
(M)} + 2p(M)

BIC(M) = N log{σ̂ 2
(M)} + p(M) log N

where N is the series length, σ̂ 2
(M) is the residual variance estimate for model M , and

p(M) is the number of free parameters of model M . Alternatively, Bozdogan (1988)
suggests the identification criterion called ICOMP. Rather than simply considering
the number of non zero parameters, ICOMP measures the model complexity through
a generalization of the entropic covariance complexity index of Van Emden (1971).
The criterion ICOMP is computed by estimating the Fisher’s information matrix
for the parameters and by adding to the likelihood- proportional term, N log σ̂ 2, the
quantity C(F̂−1):

ICOMP(M) = N log σ̂ 2
(M) + C(F̂−1)

where

C(X) = dim(X) log{trace(X)/ dim(X)} − log |X | .
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A further different approach is linked to the theory of stochastic complexity (Ris-
sanen, 1987, 2007) and is called minimum description length criterion. A model is
seen as a possible explanation of the data behavior, so that, given the model, the
complete description of the observed values requires less information than enumer-
ating them individually. Therefore, given an alphabet and a data set, each possible
model is associated to a code length MDL(M), which may be seen as the sum
of two parts: the first one is the code required for describing the model (and is
roughly a function of the free parameters of model M), and the second one is the
length required for describing the residuals, which is shown to be equivalent to
N log{σ̂ 2

(M)}. Therefore the minimum description length criterion, though derived
in a different framework, has a similar form to the preceding ones:

MDL(M) = N log{σ̂ 2
(M)} + q(M)

with the correction term q(M) computed as the code length of the model.
Finally, Minerva and Poli (2001a) use an AIC-like criterion where the residual

variance is replaced by a prediction error variance:

s2(�) ∝
∑

t

[xt+� − x̂t (�)]2

where x̂t (�) is the predictor based on the model. Obviously, for the forecast horizon
� = 1 there is no difference with AIC, Minerva and Poli (2001a) try their criterion
also for � = 2 and 3.

A common problem to all these implementations is that the proposed criteria are
to be minimized, thus they cannot be employed directly as fitness function (which
has, on the contrary, to be maximized). Two kinds solution have been proposed:
Bozdogan Bearse (2003) avoid the problem of defining a fitness proportionate
selection by adopting an ordered fitness selection rule: chromosomes are ordered
according to the decreasing values of the ICOMP criterion, and each chromosome
is selected with a probability proportional to its rank. An alternative is defining the
fitness function by a monotonically decreasing transformation of the identification
criterion. Most natural candidates are a simple linear transformation:

fitness(M) = W − criterion(M)

which is possible if an estimate of the worst possible value of the criterion, W , is
available (Gaetan (2000) suggests to compute W on the current population), or a
negative exponential transformation:

fitness(M) = exp{−criterion(M)/d}

where d is a scaling constant. A Boltzman selection procedure is proposed by Gae-
tan (2000) using the last expression for the fitness, but with a progressively decreas-
ing “temperature” dk = (0.95)k , where k is the generation number.
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The simulation studies presented in literature suggest satisfying results of each
implementation, with slight substantial differences, indicating that for univariate
time series with most encountered series lengths, the genetic algorithm yields good
models after just a few generations, and converges nearly always, though after many
more generations, to the true simulated model.

4.2.2 More General Models

Generalizations of ARMA models in several directions have been proposed, and
they are widely applied in several fields. Most of them may be identified by means
of genetic algorithms with minor modifications to the procedures outlined in the
previous Section.

Integrated (ARIMA) models are suitable for series with trends in mean, and are
very popular in econometrics. The essential difference to an ARMA model is that
the autoregressive polynomial Φ(B) is factorized in two terms:

Φ(B) = (1− B)d Π(B) (4.7)

whereΠ(B) has all its zeroes outside the complex unit circle, and d is a non negative
integer, usually not larger than two. Identification may be obtained following the
same guidelines as ARMA models, but adding a pair of binary genes to encode the
integer d.

Similarly, long-memory fractionally integrated ARMA models (usually
ARFIMA) are also defined by an autoregressive polynomial factorized as in (4.7),
but with d a real number greater than zero and not larger than 0.5. In that case also,
the chromosome should be augmented by some binary genes in order to encode the
fractional order d with sufficient precision.

Generalized models which are useful for seasonal data are the multiplicative
seasonal ARMA models, where each of the two polynomials Φ(B) and Θ(B) are
obtained as the product of two factor polynomials, in order to distinguish and com-
bine the seasonal dependence (linking each observations to those which are in the
same seasonal position at the previous years) and the usual dependence at smaller
lags. A genetic algorithm for identifying seasonal ARMA models has been proposed
by Ong et al. (2005). They consider subset models in all the components (AR, sea-
sonal AR, MA and seasonal MA); suppose that maximum values for each of the four
orders (maximum lag), p, P, q, Q, say, are selected, then the chromosome is made
up of p+ P + q + Q binary genes, that sequentially indicate which parameters are
allowed to be non zero. They use classical mutation, two random cut-point cross-
over, fitness-proportionate selection by means of roulette wheel, and elitist strategy
saving the best chromosome. Parameters are estimated via the Hannan and Rissanen
procedure, and the fitness function is based on the BIC criterion (what reversing
transformation is used, is not explained in the paper). The experience reported by
Ong et al. (2005) on simulated and real data sets shows that the genetic algorithm
leads to satisfying models in a very small number of generations.



96 4 Time Series Linear and Nonlinear Models

Finally, an important generalization of ARMA models is to multivariate time
series (the so-called vector VAR or VARMA models). Such multivariate models
may also be identified by means of genetic algorithms, and in this case the advantage
over traditional identification strategies may be even larger, because of the strongly
increasing number of involved parameters, and therefore much wider solution space.

Bozdogan Bearse (2003) consider the identification of subset vector autoregres-
sive models by means of genetic algorithms, using a fitness function based on the
ICOMP criterion. If x(t) = [x1(t), . . . , xm(t)]′, t = 1, . . . , , N denotes a multivari-
ate time series with m components, a VAR model of order p is defined by:

x(t) = c + A1x(t − 1)+ A2x(t − 2)+ . . .+ Apx(t − p)+ ut (4.8)

where {ut } is a multivariate m-component white noise, and A1, A2, . . . , Ap are
m × m matrices of parameters, and c is a m-vector of constant intercepts. Subset
models are obviously specified by fixing what entries of each matrix are allowed
to be non zero. Thus, a careful attention has to be reserved to encoding. Once a
maximum autoregressive order P is selected, the number of possible parameters is
Pm2 + m and several alternative codings are plausible. Bozdogan Bearse (2003)
propose to consider sequentially the m separate equations of the model (4.8), each
equation corresponding to a sub-string of 1 + Pm binary genes. In each sub-string
the first position specifies if the intercept is present (gene = 1) or absent (gene = 0) in
the equation: the following m portions, of P binary genes each, specify what param-
eters linking the variable to any fixed regressor are free (gene = 1) or constrained to
zero (gene = 0). In other words, the inner loop scans the lags 1, 2, . . . , P , while the
outer loop scans the position (row, column) of the parameters in the matrices Ai .

In their genetic algorithm implementation, Bozdogan Bearse (2003) adopted a
rank selection based on the ICOMP criterion, with elitist strategy, standard muta-
tion and uniform cross-over. They also employed the resulting models for detecting
influential observations.

More recently, Chiogna et al. (2008) have addressed the identification of transfer
function models by genetic algorithm. A transfer function model relates an output
series to several input series through linear delayed dependence, where the output
series follows an ARMA model:

Φ(B)y(t) =
k∑

i=1

ωi (B)xi (t)+Θ(B)et

where {et } is a white noise process, {xi (t)} are given inputs and ωi (B) are poly-
nomial in the backwards operator B, with different degrees. Chiogna et al. (2008)
propose a genetic algorithm for simultaneously identifying the orders of the autore-
gressive and moving average parts Φ(B) and Θ(B) and those of the transfer func-
tion parts ωi (B), also in the case when multiplicative seasonal behavior is allowed.

In the framework of meta-heuristics, the identification of subset vector autore-
gressive models was addressed by means of different optimization methods:
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Baragona (2003b) used a hybrid simulated annealing, and Winker (2001) used the
threshold accepting (see also Winker and Gilli, 2004).

4.3 Nonlinear Models

In this section parameter estimation of non linear time series models will be consid-
ered. There have been proposed many time series models that aim at dealing with
some specific kind of non linearity. It is virtually impossible to take each and every
model into account, so we shall limit ourselves to the most popular non linear time
series models in statistical methods and applications and concentrate on models for
which heuristic algorithms for computing parameter estimates have been used.

4.3.1 Threshold AR and Double Threshold GARCH Models

Threshold models are suitable for series whose behavior alternates among different
types (the regimes) according to a condition originated by the series itself. The most
popular of these models, the self-exciting threshold autoregressive (SETAR, see.
e.g. Tong, 1990) is based on the assumption that the series is generated by several
alternative AR models according to the values assumed by a past observation. The
sample space is split into disjoint regions delimited by assigned borders, or thresh-
olds, and each region is associated to an AR model. Then, if the past observation is
included in the i th region, the i th AR model generates the next time series value.

In this section we consider GAs-based algorithms for building threshold mod-
els. The GAs are designed to determine the appropriate number of regimes and
select the threshold parameters. These tasks are recognized to be the most important
and most difficult steps in threshold models building procedures. If, for instance, a
SETAR model is known to have only two regimes, then there is only one threshold to
select among n candidate thresholds (we assume here, as usual in the literature, that
thresholds may be searched among the observed time series values). In this case a
grid search allows all possible thresholds be tried and the objective function may be
computed for each of the n choices. If the number of regimes is unknown, and the
only available information that may be supplied is concerned with the maximum
number of regimes K , the thresholds are to be searched among a large number
of alternatives (approximately, this number is O[n(K−1)]). If the double threshold
autoregressive heteroscedastic (DTARCH) model is considered (Li and Li, 1996), K
and H regimes may be postulated for the average returns and variance respectively.
The space of solutions may include O[n(K+H−2)] candidate thresholds. The size
is so large, even for short time series, that using GA for threshold models building
seems a well motivated choice. Pittman and Murthy (2000) and Wu and Chang
(2002) proposed a GA to identify and estimate two – regimes SETAR models.
Recently Davis et al. (2006, 2008) employed threshold autoregressive processes
for modeling structural breaks, and used a GA for identifying the model. More
general approaches based on GA have been developed by Baragona et al. (2004a)
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for SETARMA and subset SETARMA models and Baragona and Cucina (2008) for
DTARCH models. The GA has been found quite effective through both simulation
experiments and applications to real time series.

Let, for k and p given, the SETAR(p) model be assumed with the state vector
zt−1 = yt−d for some integer d ∈ [1, p] which is called the delay parameter

yt =∑p
j=1 c(i)j yt− j + et if ri−1 < yt−d ≤ ri , i = 1, . . . , k. (4.9)

We have observed already that comparing the equations (4.9) and (4.4) the functions
φ j (·) are assumed constant and equal to c(i)j in each of the intervals (ri−1, ri ]. Each
coefficient φ j (·) exhibits a jump in each of the extremal points of the intervals. If
we allow the variance of the SETAR model (4.9) to vary, then a convenient way for
modeling the innovation variance is to define the conditional variance ht given the
past observations of the time series by the autoregressive heteroscedastic (ARCH)
model

ht =
q∑

j=1

α j e
2
t− j . (4.10)

The parameters α1, . . . , αq have to be non negative and their sum has to be less than
1. Other assumptions have to be imposed on the α j ’s to ensure higher moments to
exist. A threshold structure may be postulated for the ARCH model (4.10) as well.
A time series generated by a DTARCH model may be written

yt = c(i) +∑p
j=1 φ

(i)
j yt− j + et if ri−1 < yt−d ≤ ri , i = 1, . . . , k

ht =∑q
j=1 α

(i)
j e2

t− j if ui−1 < et−c ≤ ui , i = 1, . . . , h
(4.11)

where {u0, u1, . . . , uh−1, uh} are the ARCH threshold parameters, u0 = −∞ and
uh = ∞, h is the number of regimes and c is the delay parameter. More restrictive
assumptions are sometimes formulated for the threshold ARCH model, namely that
the regimes depend on the time series {yt }. In this case, a change in the regime of yt

implies a contemporaneous change in the regime of ht .
The GA that is proposed here addresses the search for the regimes and threshold

parameters. In general two vectors of threshold parameters have to be determined
for the DTARCH model excepted if the change in the regime in the ARCH model is
assumed to depend on the change in the regime of the SETAR model (4.9). Basically
the algorithm structure remains the same, but searching for thresholds in the first
line of (4.11) has to proceed in parallel with the searching for thresholds in the
second line. Let n observations {y1, . . . , yn} be available and let n innovations be
estimated by fitting a high order AR model to the data. Choose a minimum number
m of observations in each regime. Then, arrange the observed data {y1, y2, . . . , yn}
in ascending order to obtain the sequence {y(1), y(2), . . . , y(n)}. Let us consider only
the subsequence {y(m+1), y(m+2), . . . , y(n−m−1), y(n−m)}. As a matter of fact, the
first and last m observations in the ascending sequence may be dropped because at
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least m observations in each regime are required. Let � = n− 2m and w be a binary
vector of length �

w = (w1, w2, . . . , w�)
′

and define the mapping wi → y(i+m), i = 1, . . . , �. If wi = 1, then y(i+m) is a
threshold parameter, and wi = 0 otherwise. The number of regimes in the SETAR
model is given by w1+w2+· · ·+w�+1. Another binary vector v has to be defined
which is mapped into the subsequence {e(m+1), e(m+2), . . . , e(n−m−1), e(n−m)} of
the innovations arranged in ascending order. The requirement that at least m obser-
vations have to belong to each regime obviously imposes a constraint on the num-
ber of regimes. It is more convenient, however, to define explicitly a maximum
number K of regimes, so that 1 ≤ k ≤ K . This simplifies somewhat the GA
implementation. In the GA framework, given an integer s greater than 1, a set of
vectors {w(1), w(2), . . . , w(s)} and a set of vectors {v(1), v(2), . . . , v(s)} form the
population, in general a small subset of the set of all feasible threshold parame-
ters sequences. The GA starts with an initial population, then proceeds through a
pre-specified number of iterations, I , say. In each iteration the vectors in the current
population are evaluated, namely the fitness function is computed for the vectors
w(i), v(i) and its value is associated to w(i), v(i). The fitness function computation
involves the estimation of the DTARCH model by assuming the number of regimes
and threshold parameters as encoded inw(i), v(i). We are using a hybrid GA because
all parameters other than the regimes and thresholds may be estimated using another
optimization algorithm. In addition, the AR order is found by trying several values
p in a pre-specified range [1, P] and choosing the one which minimizes the AIC
criterion. Moreover, the estimation is performed for each values of the delay param-
eter d in the range [1, p]. Computations are quite demanding, so it is important that
the space of solutions be explored efficiently. The GA design aims at optimize the
searching procedure. Basically the simple GA is used, but some special features are
introduced to exploit the peculiarity of the present problem. The population in each
iteration is processed by means of the usual genetic operators selection, crossover
and mutation. A description of each of the three operators follows.

Selection. The well known roulette wheel rule is used. Each vector in the current
population is assigned probability of survival proportional to its fitness function.
Any vector in the population may be selected, even more than once, and placed
in the population that will be processed in the next iteration. It may happen, how-
ever, that a vector is not selected, that is it does not survive and it is discarded.
To avoid discarding best fitted solutions, the elitist strategy is adopted to amend
the pure stochastic selection. A vector that has been discarded is reinserted in the
new population if its fitness function is greater than the fitness function of each
of the selected vectors. In this case, this best vector replaces the vector that in the
new population has the worst fitness. This way the size s of the population remains
unchanged through the iterations.

Crossover. Unlike selection, that implements the roulette wheel rule and the
elitist strategy as commonly defined in canonical GA, the crossover is designed
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oriented to the present framework. A probability of crossover pc has to be pre –
specified. Then, in the current population, [pcs/2] vector pairs are selected at ran-
dom. A vector may be selected more than once to enter a pair. The selected pairs are
processed one at the time, and both vectors are updated soon after each crossover.
Let w(1) and w(2) denote the two vectors in the pair. All bits of the two vectors are
examined, and the indexes where the first one, or the second one, or both, have bit
value equal to 1 are recorded. If there are no bits equal to 1 the crossover does not
take place. Otherwise, let {i1, . . . , iμ} denote the indexes of the bits equal to 1. An
index is selected at random in this set, and let us denote the selected bit index iα .
Then, two cases are to be considered: (1) Either w(1)iα

= 1 or w(2)iα
= 1, but not

both. If, for instance, w(1)iα
= 0 and w(2)iα

= 1, then we set w(1)iα
= 1 and w(2)iα

= 0.
The number of regimes encoded in the second vector decreases by one, whilst a
new regime adds to the number of regimes encoded in the first vector. (2) Both
w
(1)
iα
= 1 and w(2)iα

= 1. In this case, the crossover does not take place. Note that the
crossover may yield only one change of regime at most in each of the two vectors,
either adding one, or deleting one. The proposed implementation seems convenient
to avoid excessive change in the vectors that undergo the crossover. As a matter of
fact, it obeys to a general rule that the vectors yielded by the crossover do not have
to differ completely from the original vectors. The usual one – point crossover, for
instance, has been found often to upset the vectors’ structure and yield a vector with
a number of regimes that exceeded the maximum K and the other one with only
one regime. As a consequence, the first vector had to be discarded, while the other
was likely to yield poor fitting. This circumstance is very unlikely to appear in the
present crossover setting.

Mutation. As for crossover, for mutation too a peculiar implementation is
designed that fits the problem better than the usual mutation operator. A probability
of mutation pm , usually quite small, less than 0.1, has to be pre – specified. A vector
in the current population undergoes mutation with probability pm . Let mutation have
to occur for the vector w(i). A bit of this vector is chosen at random, w(i)j , say, and

flips, that is w(i)j is replaced by 1− w(i)j . If w(i)j = 0 then, after mutation, w(i)j = 1

and a new regime is added. If otherwise w(i)j = 1 then, after mutation, w(i)j = 0 and
an existing regime is deleted. If we adopted the usual mutation operator, any bit of
any vector would be allowed to flip with probability pm . Due to the constraint on
the number of regimes, this mutation operator is likely to yield new regimes while it
is unlikely to delete some regimes. As a vector with more than K − 1 bits equal to 1
has to be discarded, the usual mutation in most cases would be an useless operator.

4.3.2 Exponential Models

The EXPAR(p) model may explicitly be written

yt = {φ1+π1exp(−γ y2
t−1)}yt−1+· · ·+{φp+πpexp(−γ y2

t−1)}yt−p+ et . (4.12)
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The series generated according to this model alternates smoothly between two
regimes, since for large values of y2

t−1 it behaves essentially like an AR(p) model
with parameters φ j , and for small y2

t−1 like an AR(p)model with parameters (φ j +
π j ) (see Haggan and Ozaki, 1981). Unlike linear models, a change of the error
variance σ 2

e by multiplying the {et } by a constant k, say, does not imply that the {yt }
turn into {kyt }. The order of magnitude of {yt } in (4.12) depends on γ too, in the
sense that we may obtain the time series {kyt } by both multiplying σ 2

e by k2 and
dividing γ by k2.

The ability of the EXPAR to account for limit cycles depends whether some
conditions on the parameters in (4.12) be fulfilled. If the time series is believed to
exhibit limit cycles behavior, then the estimation procedure needs to be constrained
in some way.

A brief description of the basic parameter estimation procedure proposed by Hag-
gan and Ozaki (1981) for the estimation of (4.12) follows. It may be considered as
a natural benchmark for competitive alternatives because it is quite straightforward
and unlike to fail to yield a solution. It does not ensure, however, that the limit cycles
conditions be fulfilled.

The algorithm requires that an interval (a, b), a ≥ 0, be pre-specified for the γ
values in (4.12). This interval is split in N sub-interval, so that a grid of candidate
γ values is built. Let s = (b − a)/N and γ = a. Then, for N times, the following
steps are performed.

1. Set γ = γ + s
2. Estimate φ j eπ j by ordinary least squares regression of yt on yt−1,

yt−1exp(−γ y2
t−1)}, yt−2, yt−2exp(−γ y2

t−1)}, . . ..
3. Compute the AIC criterion and repeat step 2 for p = 1, . . . , P , where P is a

pre-specified integer greater than 1.

Final estimated parameters are taken that minimize the AIC.
For the existence of limit cycles, the following conditions (see Priestley 1988,

p. 88) are required to hold

(1) all the roots of

z p − φ1z p−1 . . .− φp = 0

lie inside the unit circle
(2) some of the roots of

z p − (φ1 + π1)z
p−1 . . .− (φp + πp) = 0

lie outside the unit circle
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(3)

1−
p∑

j=1
φ j

p∑
j=1

π j

> 1 or < 0.

The GAs may be used as well to cope with this estimation problem. A brief
account of the genetic algorithm for model (4.12) parameters estimation will be
given along the guidelines provided by Chatterjee and Laudato (1997). Note that
any real parameter x is represented by a binary string c according to the formula

x = a + c(b − a)/(2� − 1),

where x is assumed to belong to the interval (a, b) and � is the pre-specified length
of the binary string c. So, v parameters are represented by a sequence of v binary
strings of length � each. The steps of the genetic algorithm may be summarized as
follows.

1. A positive integer s is chosen that represents the size of the population. The
initial population is randomly generated to include s candidate solutions.

2. (tournament selection) The chromosomes are paired, and, in each couple, the
one which possess the larger fitness function is copied into the other with a pre-
specified probability ps .

3. (cross-over) The chromosomes which survived the previous step may exchange
some of their bits by means of the crossover operator. A probability pc is pre-
specified, so that spc/2 pairs are randomly chosen. For each pair, a cutting point
k, say, is randomly chosen in the interval (1, �− 1). The bits from k + 1 to � of
the first chromosome in the couple replace the corresponding ones in the second
chromosome, and vice versa.

4. (inversion) For each chromosome in the population inversion may take place
with pre-specified probability pi as follows. Two cutting points are randomly
chosen in (1, �), k1 and k2, say, where k1 ≤ k2. The bits between the two cutting
points are taken in reverse order.

5. (mutation) The last operator is mutation, and may occur with pre-specified prob-
ability pm per bit. The bit changes from 1 to 0 or vice versa.

6. The steps from 2 to 6 are repeated, independently for each model parameter, until
some pre-specified criterion is met or the maximum number of generations N is
attained.

The generalized exponential model (Chen and Tsay, 1993) is a further extension
of model (4.12) where the γ coefficient is allowed to take different values in each
term. The order p model may be written

yt = {φ1+π1exp(−γ1 y2
t−d)}yt−1+· · ·+{φp+πpexp(−γp y2

t−d)}yt−p+et . (4.13)
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In Baragona et al. (2002) it is argued that, using model (4.13), some parsimony may
be gained as far as the number of parameters is concerned, and the GA procedure is
extended to identify such models.

4.3.3 Piecewise Linear Models

We consider that the functions θ j (·) are all zero while the functions φ j (·) may be
written

φ j (zt−1) = φ j (yt−d) = α(i)j + β(i)j yt−d if ri−1 ≤ yt−d < ri , i = 1, . . . , k.
(4.14)

The disjoint intervals (ri−1, ri ) partition the real axis, as we assume that r0 = −∞
and rk = +∞. The resulting non linear model is called piecewise linear autore-
gressive (PLTAR). This model (see Baragona et al., 2004b) is an extension of the
self-exciting threshold model, where we allow each parameter in each regime to be
linearly varying with yt−d rather than constant; it is also assumed that each param-
eter, as a function of yt−d , is continuous everywhere.

If the parameters α(i)j and β(i)j were not constrained in the proper way, the func-
tions φ j (yt−d), in general, would not be continuous. In order that the functions φ j (·)
be continuous, the k − 1 following conditions

α
(1)
j + β(1)j r1 = α

(2)
j + β(2)j r1

α
(2)
j + β(2)j r2 = α

(3)
j + β(3)j r2

...

α
(k−2)
j + β(k−2)

j rk−2 = α
(k−1)
j + β(k−1)

j rk−2

α
(k−1)
j + β(k−1)

j rk−1 = α
(k)
j + β(k)j rk−1

(4.15)

must hold.
In the equation system (4.15), by assuming r1, . . . , rk−1 known real constants,

there are 2k unknowns and only k−1 equations. So, computing the solutions would
require that k + 1 unknowns be given arbitrary values. Unfortunately, such a proce-
dure would not ensure that the equation system (4.15) admit a unique solution. This
latter, also, would seem rather meaningless, even if it exists.

In order to allow the parameter φ j (·) to increase or decrease linearly to join its
next value, we introduced the following specification based on spline functions

φ j (yt−d) = λ j +
k∑

i=1

ν
(i)
j Si (yt−d) (4.16)

where
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S1(u) = u

Si (u) =
{

0 u ≤ ri−1
u − ri−1 u > ri−1

, i = 2, . . . , k.

The original PLTAR model parameters are easily recovered by using the formulas

α
(i)
j = λ j −

i∑

s=1

ν
(s)
j rs−1 β

(i)
j =

i∑

s=1

ν
(s)
j

that may be easily shown to fulfill conditions (4.15). Equation (4.14) outlines the
functional coefficients specification

yt =
p∑

j=1

{
k∑

i=1

(α
(i)
j + β(i)j yt−d)Iyt−d∈(ri−1,ri ]

}
yt− j + εt ,

while formula (4.16) shows that the model includes a linear AR and a nonlinear
scheme

yt =
p∑

j=1

λ j yt− j +
p∑

j=1

k∑

i=1

ν
(i)
j Si (yt−d)yt− j + εt .

In Baragona et al. (2004b) the following procedure is presented that implement a
hybrid version of the GA. A set of positive integers has to be chosen as potential
delay parameters. Let the set D = {d1, d2, . . . , dD} be available where the elements
of D are arranged in ascending order and, in general, dD does not exceed the max-
imum order of the AR coefficients. Then for each and every d ∈ D the following
steps are performed.

1. Generate at random s sequences of threshold parameters (initial population).
2. Run an N -generations genetic algorithm.
3. Each and every chromosome evaluation includes automatic AR orders identi-

fication and maximum likelihood estimation of the autoregressive coefficients
(hybrid algorithm).

4. Choose as final solution the parameter set that minimizes the overall AIC
criterion.

Step 2 involves a GA where the chromosomes are threshold sequences. The usual
operators selection (roulette wheel rule), crossover (single cutting point) and muta-
tion are adopted.

As far as chromosome encoding and fitness function computation are concerned
some details have to be added.

Chromosome encoding
In this context a chromosome encodes a set of threshold parameters, that is a

sequence of real numbers arranged in ascending order for convenience. We could
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encode the threshold parameters r1, . . . , rk−1 directly either as real numbers, using
a floating-point code (that is, each gene would be represented by a real number)
or as binary strings, using the usual mapping from binary strings to real numbers.
However, problems may arise because the solutions space becomes unnecessary
large and the number of regimes is required to be pre-specified. The encoding used
by Baragona et al. (2004b) consists in ordering the time series observations and
defining the map

(y(1), y(2), . . . , y(n))⇔ (b1, b2, . . . , bn),

where b is a binary string and bi = 1 if y(i) is a threshold parameter and bi = 0
otherwise. The number of regimes may be computed k = b1+b2+. . .+bn+1. This
encoding has the advantage that the solutions space is much smaller without loss of
generality. As a matter of fact, if we consider only the in-sample observations then
a threshold between y(t) and y(t+1) could be any value less than or equal to y(t+1).

Fitness function computation
In every fitness function evaluation the structural parameters d, k, r1, . . . , rk−1

are assumed known though actually they are tentative thresholds provided by the
GA and a delay parameter from the set D. Let pmax be the maximum AR order. The
AIC is computed for p = 1, . . . , pmax and the order p that minimizes the AIC is
assumed

AIC(p, d, k, r1, . . . , rk−1) = {n − p(k + 1)}logσ 2
ε + 2p(k + 1).

Once the appropriate order p is found the fitness function is set to

f (r1, . . . , rk−1|d) = exp(−AIC(p)/c)

Note that the parameters λ j and ν(i)j are estimated by minimizing the residual sum
of squares since the model is linear in those coefficients:

SSQ =
⎧
⎨

⎩yt −
p∑

j=1

λ j yt− j −
p∑

j=1

k∑

i=1

ν
(i)
j Si (yt−d)yt− j

⎫
⎬

⎭

2

.

Results from a simulation experiment reported by Baragona et al. (2004b)
demonstrate that the GAs-based PLTAR building procedure is able to identify and
estimate the parameters of a time series generated according to a PLTAR model.
Standard errors of the estimates are computed as well.

4.3.3.1 Piecewise Linear Approximation to Multiregime Models

Threshold models reported in Sect. 4.3.1 and the EXPAR model reported in
Sect. 4.3.2 both are autoregressive models of the time series y whose parameters
are allowed to vary depending on yt−d . This latter is assumed as the state variable
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z = zt−1. In the former case the functions φ(z) are not continuous as they have
a jump in each and every threshold while in the latter case they are continuous
functions of the state variable. The EXPAR models belong to the wide class of
the smooth transition autoregressive (STAR) models. The AR parameters φ(z) of
a STAR model are requested to be smooth functions of z, that is continuous with
continuous derivative. Halfway between TAR and STAR models the PLTAR models
require less demanding assumptions about the parameter function φ(z) that retains
continuity but not necessarily differentiability and notwithstanding it may offer a
useful approximation to both classes.

Model parameters estimation will be performed by minimizing the root mean
square error (RMSE) of the residuals. These latter are computed as usual as the
difference between yt and the value predicted by the model for any given choice of
model parameters. In the sequel for estimating PLTAR and TAR models we shall
use GAs because the residual RMSE will be a non differentiable function of some
of the parameters. In case of TAR models not only derivatives cannot be computed
but the RMSE will not be a continuous function of some of the parameters. On
the contrary, for STAR models, and EXPAR models in particular, we shall use a
quasi-Newton method with numerical evaluation of the derivatives of the objective
function. In fact, in general the RMSE computed from models in this class will be
differentiable though derivatives for some parameters are difficult to compute. For
the GAs parameters we shall assume population size s = 10, number of iteration
N = 30. For threshold time points identification we shall use a binary array of
length � = n, where n is the number of observations of the time series y. For real
parameters the precision will be assumed � = 20, that is a binary string of length
20 will be used to represent real numbers. For a given interval (a, b) this choice
will allow numbers far apart more than (b − a)/(2� − 1) to be distinguishable.
For instance, in (0, 1) a precision 20 implies that numbers in the interval will be
from zero to one with step 1/(210 − 1), i.e. 6 significant (decimal) digits. The
generational gap is assumed G = 0.9, the probability of crossover pc = 0.7 and
mutation probability pm = 0.7/n. In spite of the small genetic pool and short gen-
erations evolution, we shall see that the GAs are able to yield more than satisfactory
results.

Our starting point is the consideration that a continuous piecewise linear function
may in practice approximate analytic functions to any degree of accuracy. As a first
example, consider the logistic STAR (LSTAR) model (see Teräsvirta, 1994)

yt =
p∑

j=1

φ
(1)
j yt− j + G(yt−d)

p∑

j=1

φ
(2)
j yt− j + et (4.17)

where

G(yt−d) = (1+ exp(−γ (yt−d − c)))−1
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and {et } is a sequence of independent identically distributed random variables with
mean zero and variance σ 2. Let us compare models (4.14) and (4.17) by simulating
an artificial time series generated by the LSTAR model (4.17), see Fig. 4.1. We
assumed the number of observations n = 100, σ 2 = 1, d = 1, p = 1, the
AR parameters φ(1)1 = 0.7 and φ(2)1 = −1.2, γ = 2 and c = 0. Variance and
standard deviation of the simulated time series may be computed equal to 1.6652
and 1.2904 respectively. Assuming d and p known, the LSTAR model parameters
φ
(1)
1 , φ(2)1 , γ and c have been estimated by using the quasi-Newton BFGS method.

Then, assuming d = 1 and p = 1, a PLTAR has been estimated by using the
GAs-based procedure. Results are displayed in Table 4.1. The LSTAR estimates
are rather accurate as far as the autoregressive parameters are concerned, but are
biased as regards the coefficients of the logistic function. In fact, the LSTAR model
is linear in the former parameters while is non linear in the latter ones, so that the
derivative numerical computation is relatively easy in the former and difficult in the
latter case. The estimated PLTAR model includes k = 3 regimes in each of which a
first order polynomial represents the behavior of the AR parameter as a function of
the state variable yt−1. In Fig. 4.2 the variable AR parameter of the LSTAR model
(4.17) is plotted along with the piecewise linear AR parameter of the PLTAR model
(4.14). The approximation provided by the PLTAR parameter seems adequate to
match the logistic curve of the LSTAR parameter or at least comparable with the
estimated LSTAR parameter curve. Moreover, the one-step-ahead forecasts have
been computed from the LSTAR and the PLTAR models and plotted in Fig. 4.1
along with the original time series. There is evidence that there is a close agreement
between the two predicted time series, and both seem able to reproduce fairly well
the observations generated from model (4.17). The root mean square errors (RMSE)
are 0.9464 and 0.9254 for LSTAR and PLTAR models respectively (Table 4.1). The
performance of the two models may be considered similar. Note that the RMSE
computed from the estimated PLTAR model is less than that computed from the
LSTAR model at the expense of a slight increase of the number of parameters. As
a matter of fact, the LSTAR model has 4 estimated parameters while the estimated
parameters of the PLTAR model are actually 6, not 8, because 2 model parameters
are constrained by (4.15). Estimated parameters, according to (4.16) are the two
thresholds r̂1, r̂2, and the coefficients λ1 and ν(1)1 , ν(2)1 and ν(3)1 . The further and
remarkable advantage in using the PLTAR model resides in that there is non need to
specify in advance any special functional form for the AR parameters.

An example of modeling a time series generated from an EXPAR model by fit-
ting a PLTAR model may be considered as well. An artificial time series y of 100
observations has been simulated from model (4.12) by assuming an EXPAR(2), i.e.
p = 2, with delay parameter d = 1, γ = 2, the variance of the white noise σ 2 = 1
and autoregressive coefficients φ1 = −1.1, φ2 = 2, and π1 = −0.9, π2 = −0.1.
These latter have been chosen so as to meet conditions 1–3 in Sect. 4.3.2. The simu-
lated time series y has variance equal to 4.6504 and standard deviation 2.1565 (see
Fig. 4.3). An EXPAR(2) model has been fitted to y by using the BFGS algorithm.
Estimates are reported in Table 4.2. Two estimated parameters are severely biased,
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Fig. 4.1 Top panel: artificial time series generated by a LSTAR model (solid line) and one-step-
ahead forecasts yielded by an LSTAR model (dashed line) and a PLTAR model (dotted line) –
Bottom panel: residuals computed from the LSTAR model (dashed line) and from the PLTAR
model (dotted line)

Table 4.1 Model estimates comparison from a order 1 LSTAR and a PLTAR fitted to 100 artificial
time series data generated from a LSTAR model

Model Parameters RMSE

LSTAR(1),
true values

φ
(1)
1 = 0.7000 φ

(2)
1 = −1.2000 γ = 2.0000 c = 0.0000 1.0000

LSTAR(1),
estimates

φ̂
(1)
1 = 0.7361 φ̂

(2)
1 = −1.2087 γ̂ = 2.7567 ĉ = 1.0 0.9464

PLTAR(1), α̂
(1)
1 = 1.3047 β̂

(1)
1 = 0.2463 r̂1 = −1.5308 0.9254

estimates α̂
(2)
1 = −0.7423 β̂

(2)
1 = −1.0909 r̂2 = 0.1260

α̂
(3)
1 = −0.9235 β̂

(3)
1 = 0.3471

namely π̂1 and γ̂ while the remaining estimates are rather accurate. The one-step-
ahead forecasts closely reproduce the behavior of the time series y and we obtained
the residual RMSE equal to 1.0450. Then a PLTAR of order 2 and delay parameter 1
has been fitted to the same data by using the GAs. Results are reported in Table 4.2
as well. The estimated PLTAR model has 4 regimes and the RMSE equals 1.0179.
The RMSE from the PLTAR model is smaller than that from the EXPAR model.
The artificial time series is displayed in the top panel of Fig. 4.3 along with the
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Fig. 4.2 First order AR parameter for a LSTAR model (true value, solid line, and estimate, dashed
line) and a PLTAR model estimate (dotted line) plotted against the state variable

Table 4.2 Model estimates comparison from an order 2 EXPAR and an order 2 PLTAR fitted to
100 artificial time series data generated from a EXPAR(2) model

Model Parameters RMSE

EXPAR(2), φ1 = −1.1000 π1 = 2.0000 γ = 2.0 1.0000
true values φ2 = −0.9000 π2 = −0.1000
EXPAR(2), φ̂1 = −1.0009 π̂1 = 1.0000 γ̂ = 1.6768 1.0450
estimates φ̂2 = −0.7637 π̂2 = −0.0879
PLTAR(2), α̂

(1)
1 = −0.8081 β̂

(1)
1 = 0.0712 r̂1 = −0.9609 1.0179

estimates α̂
(1)
2 = −0.5823 β̂

(1)
2 = 0.0997

α̂
(2)
1 = −0.0887 β̂

(2)
1 = 0.8199 r̂2 = 0.4135

α̂
(2)
2 = −0.8352 β̂

(2)
2 = −0.1634

α̂
(3)
1 = 0.7927 β̂

(3)
1 = −1.3117 r̂3 = 1.4055

α̂
(3)
2 = −1.0248 β̂

(3)
2 = 0.2953

α̂
(4)
1 = −1.0276 β̂

(4)
1 = −0.0165

α̂
(4)
2 = −0.4576 β̂

(4)
2 = −0.1083

one-step-ahead forecasts computed from the EXPAR and PLTAR models. The time
series values predicted by the PLTAR model are in good agreement with both the
predicted values from the EXPAR model and the original time series. The residuals
from the two models shown in the bottom panel of Fig. 4.3 are rather close each
other. Figures 4.4 and 4.5 display the behavior of the autoregressive parameters
of order 1 and 2 respectively computed by using the true values and estimates for
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Fig. 4.3 Top panel: artificial time series generated by an EXPAR model (solid line) and one-step-
ahead forecasts yielded by estimated EXPAR (dashed line) and PLTAR (dotted line) models –
Bottom panel: residuals computed from the EXPAR model (dashed line) and from the PLTAR
model (dotted line)

models PLTAR and EXPAR. Both the PLTAR and the EXPAR estimated coefficients
are closer to each other than to the true coefficient but the overall shape is very sim-
ilar. The first order parameter estimates seem to constitute a better approximation
than the second order ones. Though the bias is rather large for π̂1 the curve is in close
agreement with the true parameter behavior. However, the bias is not negligible if
the state variable is near zero.

Note that the estimated EXPAR(2) model has 5 parameters while the estimated
PLTAR(2) model totalizes 13 parameters to be estimated, i.e. 3 thresholds, 2 coef-
ficients λ̂ j ( j = 1, 2) and 2 coefficients ν̂(i)j ( j = 1, 2 and i = 1, . . . , 4). The
large number of parameters makes the PLTAR model to have a residual RMSE
smaller than the residual RMSE computed for the EXPAR(2) model. So a PLTAR
model should be preferred possibly by reason that a special functional form has to
be pre-specified before a LSTAR or EXPAR model could be estimated while this
identification step is avoided if we want to fit a PLTAR model. As a matter of fact,
prior knowledge needed to choose between a LSTAR or EXPAR model properly
may not be available while a PLTAR model may fit time series generated by several
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Fig. 4.4 First order AR parameter of an EXPAR model (true value, solid line, and estimate, dashed
line) and its PLTAR estimate (dotted line) plotted against the state variable
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Fig. 4.5 Second order AR parameter of an EXPAR model (true value, solid line, and estimate,
dashed line) and its PLTAR estimate (dotted line) plotted against the state variable
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different random processes. Using PLTAR modeling could prevent us from using
the wrong model and this advantage has to be taken into account.

A comparison between a TAR and a PLTAR model may support the use of the
latter to fit time series that are actually generated by the former model. In this case it
may seem unlikely that a PLTAR model could be able to provide a good approxima-
tion to a step model, but the following example shows that such an approximation
may be both accurate and useful. Let n = 100 observations be generated by a two-
regimes TAR model that follows an AR(1) for both regimes with autoregressive
coefficients c(1)1 = 0.8 if yt−1 ≤ 0 and c(2)1 = −0.8 if yt−1 > 0. A zero mean
unit variance white noise drives such random process. The artificial time series y
has variance and standard deviation equal to 2.1978 and 1.4825 respectively (see
Fig. 4.6). We fit a TAR model to the data by assuming that d = 1, p = 1 and
k = 2 are known and by estimating the autoregressive coefficients and the threshold
parameter. We do not use a gradient-based optimization algorithm as the objective
function is not continuous. Instead we use a GA to estimate all three unknown
parameters. Then we estimate by another GA the parameters of a PLTAR where
we assume that d = 1 and p = 1 are known but all remaining parameters, including
the number of regimes k, have to be estimated. Results are reported in Table 4.3. The
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Fig. 4.6 Top panel: artificial time series generated by a TAR model (solid line) and one-step-ahead
forecasts yielded by a TAR model (dashed line) and a PLTAR model (dotted line) – Bottom panel:
residuals computed from the TAR model (dashed line) and from the PLTAR model (dotted line)
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Table 4.3 Model estimates comparison from a order 1 TAR and a PLTAR fitted to 100 artificial
time series data generated from a TAR model

Model Parameters RMSE

LSTAR(1), c(1)1 = 0.8000 r1 = 0.0000 1.0000
true values c(2)1 = −0.8000
LSTAR(1), ĉ(1)1 = 0.7388 r̂1 = −0.3206 0.8965
estimates ĉ(2)1 = −1.4400
PLTAR(1), α̂

(1)
1 = 0.7442 β̂

(1)
1 = −0.0071 r̂1 = −0.9860 0.8978

estimates α̂
(2)
1 = −1.7406 β̂

(2)
1 = −2.5273 r̂2 = −0.0312

α̂
(3)
1 = −1.6538 β̂

(3)
1 = 0.2550

PLTAR approximate the TAR structure with a continuous piecewise linear function
that changes its slope in three intervals of the state variable. The RMSE computed
from the estimated PLTAR model compares favorably with the RMSE computed
from the estimated TAR model. In this latter case we have 3 parameters while in
the former one there are 6 estimated parameters. The increase in the number of
parameters is compensated in this case by a decrease of the RMSE. In addition, we
do not need to know that the functional form of the model is a step function because
the PLTAR model allows us to obtain an adequate fit of time series generated from
a wide class of models. In Fig. 4.7 the agreement between the true and estimated
TAR autoregressive coefficient and the estimated PLTAR coefficient is displayed. It
is apparent that for a piecewise linear coefficient to approximate a step coefficient 3
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Fig. 4.7 First order AR parameter for a TAR model (true value, solid line, and estimate, dashed
line) and a PLTAR model estimate (dotted line) plotted against the state variable
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regimes at least are necessarily needed. Both estimated models are able to provide
close one-step-ahead predictions of the original time series values. In Fig. 4.6 the
predicted and original time series are displayed in the top panel. In the bottom panel
the residuals from TAR and PLTAR models are displayed.

Many other complicated non linear models may be approximated by a PLTAR
model satisfactorily. We may mention only one further example, the polynomial
exponential. The polynomial exponential model of order 2 may be written

yt = a1(yt−d)yt−1 + a2(yt−d)yt−2 + et , (4.18)

where

a1(yt−d) = α(1)0 + (α(1)1 + α(1)2 yt−d) exp(−γ y2
t−d),

a2(yt−d) = α(2)0 + (α(2)1 + α(2)2 yt−d) exp(−γ y2
t−d),

and {et } is a sequence of independent identically distributed random variables with
mean zero and variance σ 2

e . Model (4.18) has been originally suggested by Ozaki
(1982) to fit the well known Canadian lynx data and has been used for simula-
tion purpose in Cai et al. (2000). Results from a simulation experiment reported in
Baragona et al. (2004b) support the use of PLTAR models to fit time series generated
by a polynomial exponential model.

4.3.4 Bilinear Models

The bilinear model obtained from the SDM model form (4.4) by assuming that the
parameters ψ j (zt−1) are linear in {yt−1, yt−2, . . . , yt−�} is as follows:

yt = μ+
p∑

j=1

φ j yt− j −
q∑

j=0

c j et− j −
�∑

i=1

q∑

j=0

bi j yt−i et− j (4.19)

(with c0 = 1). It is apparent that (4.19) is a generalization of the usual ARMA
model obtained by adding the last term in the right hand side of the equation, which
is bilinear in (y, e). This simple additional term allows the model to reproduce some
typical non linear behavior such as sudden changes and “bursts”.

Bilinear models for time series were introduced by Granger and Andresen
(1978), and the analysis was extended by Subba Rao (1981) who derived also
stationarity and invertibility conditions, and expression for the covariances. The
estimation of the parameters in (4.19) may be obtained, assuming normality, by
numerical maximization of the likelihood; a simpler method (similar to the Hannan-
Rissanen procedure) consists in estimating first the innovations {et } by fitting a high
order autoregression to the data, and then substituting the estimated innovations into
(4.19), which becomes linear in the unknown parameters so that they may be simply
estimated by least squares. On the other hand, the identification of a bilinear model
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involves similar difficulties as ARMA models, and may be addressed by genetic
algorithms, especially when we allow subset models.

Chen et al. (2001) proposed a GA approach for building subset bilinear time
series models. Their model is slightly more general than (4.19) since the bilinear
term and the term linear in et− j are allowed to have a different order:

yt = μ+
p∑

j=1

φ j yt− j −
q∑

j=0

ci et− j −
�∑

i=1

r∑

j=0

bi j yt−i et− j (4.20)

and some parameters may be constrained to zero. A maximum value for each order
p, q, �, r is assumed, and the model is identified by choosing which lag corresponds
to non zero parameters in the first, second, third and fourth summation in (4.20).

If the maximum orders are chosen equal to P, Q, L , R respectively, any such
structure may be described by P + Q+ L + R bits denoting whether at each lag the
associated parameters are zero or not. For example, if P = Q = 5 and L = R = 3
(and with an additional first bit for the constant μ), we have a vector with 17 bits,
logically split into five segments: the first bit relates to the mean, the next five bits
to the AR part, the next five to the MA part, and the last two 3-bit segments relate
respectively to the lagged observations and the lagged innovations appearing in the
bilinear term. For instance, the vector

1 : 1 0 0 0 0 : 0 1 0 0 0 : 0 1 0 : 1 0 0

identifies a model with μ, a linear term in yt−1, a linear term in et−2 and only a
bilinear term with lag 2 in the data and lag 1 in the innovations, or:

yt = μ+ φ1 yt−1 + et − c2et−2 − b21 yt−2et−1

and the vector

0 : 0 1 1 0 0 : 1 0 0 1 0 : 1 1 0 : 0 1 0

identifies the model

yt = φ2 yt−2 + φ3 yt−3 + et − c1et−1 − c4et−4 − b12 yt−1et−2 − b22 yt−2et−2.

This coding system is assumed by Chen et al. (2001) for the chromosomes, whose
length is therefore 1+ P+Q+ L+ R. Note that, differently from the linear models,
the number of bits equal to 1 in the chromosome is not equal to the number of
parameters to be estimated, because the bi j appear in a double summation: thus, the
number of bi j parameters is the product of the number of 1’s in the fourth segment
times the number of 1’s in the fifth segment.

Chen et al. (2001) use the uniform crossover of Syswerda (1989), and regular
mutation operator. For the fitness function, they adopt identification criteria such
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as AIC or BIC, and use rank selection. Therefore, the chromosomes are sorted in
decreasing order of AIC, and their rank is used for computing the selection proba-
bilities.

A simulation study suggested that the method performs well in specifying the
bilinear parts, while the true order of the linear AR and MA parts are sometimes
underestimated; Chen et al. (2001) conclude recommending genetic algorithms for
bilinear subset model selection.

4.3.5 Real Data Applications

We present applications of some of the non linear models described in the preceding
sections to two well known real time series data, i.e. the Canadian lynx data and
the sunspot numbers. These data sets have been widely studied and many different
models have been tried for fitting and forecasting purpose. We shall display sev-
eral comparisons among results reported in the literature and results that have been
obtained by using the GAs for estimating non linear time series models.

4.3.5.1 The Canadian Lynx Data

The Canadian lynx data consists of the annual records of the number of lynx trapped
in the Mckenzie River district of North-west Canada from 1821 to 1934. The num-
ber of observations is n = 114. We downloaded the data from Hyndman, R.J.
(n.d.) Time Series Data Library, http://robjhyndman.com/TSDL. Accessed on 15
November 2010. This time series has been extensively studied (see, for instance,
Tong (1990), pp. 380–381, table 7.5). The data are transformed as log10(number
recorded as trapped in year 1820+t), t = 1, . . . , 114. We used the first 100 obser-
vations, from 1821 to 1920, for estimating the parameters and then we computed
the multi-step forecasts from 1921 to 1934, that is the time origin was assumed the
year 1920, and lead times were 1, 2, . . . , 14.

In Table 4.4 EXPAR, generalized EXPAR models of order 2, 6 and 11 and the
best PLTAR obtained with delay 1 (3 regimes, order 2) are compared with respect
to the in-sample residual variance, the AIC criterion and the MSE of multi-step
forecasts. In Fig. 4.8 forecasts from EXPAR(6) models with a single γ and with

Table 4.4 Canadian lynx data: comparison between EXPAR, generalized EXPAR and PLTAR

Residual AIC Multi-step
Model variance criterion forecasts MSE

EXPAR(2) one γ 0.0498 −289.97 0.0437
EXPAR(2) 2 γ ’s 0.0479 −291.86 0.0419

EXPAR(6) one γ 0.0416 −286.36 0.0857
EXPAR(6) 6 γ ’s 0.0399 −284.89 0.0412

EXPAR(11) one γ 0.0296 −306.00 0.0597
EXPAR(11) 11 γ ’s 0.0267 −296.31 0.0719

PLTAR(3, 2) 0.0433 −260.63 0.0224
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Fig. 4.8 Canadian lynx data forecasts. Solid line: original data. Dotted line: forecasts from
the EXPAR(6) model with a single γ parameter. Dashed line: forecasts from the generalized
EXPAR(6) model with 6 γ ’s

6 γ ’s are compared. Allowing for more γ ’s obviously makes the residual variance
to decrease. The residual variance is decreasing as well if we consider the models
in increasing orders. The forecast MSE, however, does not exhibit this behavior,
and best forecasts are yielded by the EXPAR(6) model with 6 γ ’s, though the
EXPAR(2) model with two γ ’s is only slightly worse. This circumstance seems
to suggest that the adherence of the model to the sample data does not ensure more
accurate multi-step forecasts. Note that we considered out-of-sample forecasts, so
that the parameter estimates did not take into account the last 14 observations. These
latter are better predicted by the EXPAR(6)model, in spite of the fact that the small-
est residual variance is yielded by the EXPAR(11) model with 11 γ ’s. The former
model forecasting ability is possibly due to the fact that it describes well the overall
behavior of the time series. Finally, the PLTAR model has a larger residual variance,
but the forecast MSE is considerably smaller.

4.3.5.2 The Sunspot Numbers

The sunspot numbers (see Tong, 1990, chapter 7, pp. 419–429) have been investi-
gated as well by using several models and estimation methods. We made out com-
putations on the mean-deleted transformed data 2{(1 + yt )

1/2 − 1} as suggested in
Tong (1990), p. 420. We considered the AR(9) model reported by Tong (1990), p.
423, and the self-excited threshold autoregressive SETAR(2; 11, 3)model proposed
by Ghaddar and Tong (1981), p. 247. Then, we took into account the EXPAR(2),
the EXPAR(6) and the EXPAR(9) models with one γ and with 2, 6 and 9 γ ’s
respectively. For estimating the parameters of each model we used the observations
from 1700 to 1979, while the observations from 1980 to 1995 were reserved for the
multi-step forecasts. The data were taken from the web site http://sidc.oma.be (RWC
Belgium World Data Center for the Sunspot Index). The results are displayed in
Table 4.5. Models are compared by means of the residual variance and the forecasts
MSE. Time origins are 1979, 1984, 1987 and lead times 1, 2, . . . , 8. Some forecasts
from 1980 to 1992 are plotted in Fig. 4.9.

The best forecasts not always are obtained by using models that have the least
residual variance. The EXPAR(9) model with 9 γ ’s, for instance, yields the small-
est residual variance, but the SETAR(2; 11, 3) model provides the best multi-step
forecasts for the years 1980–1987. The results change, however, if different time
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Table 4.5 Sunspot numbers: comparison among AR, SETAR, EXPAR and generalized EXPAR

Residual mse mse mse mse
Model variance 1980–1987 1985–1992 1988–1995 1980–1992

AR(9) 4.05 3.60 16.5 9.01 16.19

SETAR(2; 11, 3) 3.73 1.82 33.51 17.34 22.27

EXPAR(2) one γ 4.90 7.08 65.28 31.39 32.97
EXPAR(2) 2 γ ’s 4.83 3.77 85.33 29.32 38.46

EXPAR(6) one γ 4.47 7.64 54.74 19.46 21.11
EXPAR(6) 6 γ ’s 4.34 11.85 42.01 20.62 21.89

EXPAR(9) one γ 3.66 4.99 20.43 8.21 13.02
EXPAR(9) 9 γ ’s 3.57 2.62 16.34 10.65 10.27

0

10

20

30

1980 1983 1986 1989 1992

Fig. 4.9 Sunspot numbers forecasts 1980–1992. Original data: solid line. Forecasts: AR(9) dotted
line; SETAR(2;11,3) dash Űdotted line; EXPAR(9), 9 γ ’s, dashed line

intervals are considered. Thus, the least mean square forecasts error is observed
for the EXPAR(9) with 9 γ ’s in 1985–1992, for the EXPAR(9) with a single γ in
1988–1995. In the wider time span 1980–1992, the EXPAR(9) with 9 γ ’s is able
to produce the best multi-step forecasts. The cyclical behavior of this time series
is changing over time, and our models may describe it better in certain years than
others. It seems that the EXPAR(9) model with 9 γ ’s almost always yields the most
accurate forecasting performance.

4.3.6 Artificial Neural Networks

A different specialization of the general non linear autoregressive time series model

yt = f (yt−1, yt−2, . . .)+ et (4.21)

is offered by the artificial neural networks (ANN). These devices have been devel-
oped in fields different than statistics, such as artificial intelligence, machine vision,
pattern recognition, classification of medical images, decision making and forecast-
ing. Notwithstanding the special terminology which strictly refers to the chief appli-
cations and the analogy somewhat loose with models of the human brain or nervous
system, in the recent past the ANNs have been added to the statistical methods
available for discriminant analysis, non linear regression, time series modeling and
forecasting (see, for instance, Hornik and Leisch (2001) and Sarle (1994)).
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Let us define the residual sum of squares (SSQ) for model (4.21) as

SSQ =
n∑

t=p+1

(
yt − f (yt−1, . . . , yt−p)

)2
,

where the observed time series values y = (y1, . . . , yn)
′ are available and the posi-

tive integer p denotes the model order. A common measure of model performance
is the mean square error (MSE)

σ̂ 2
e =

1

n − p
SSQ. (4.22)

Note that SSQ is a decreasing function of the number of lagged variables used in
model (4.21), so that it would be possible to obtain smaller values of the MSE (4.22)
by increasing the model order p. So usually model comparison is done according to
the parsimony principle, i.e. best optimal results have to be obtained by minimizing
the number of lagged variables and restricting to those that are strictly needed for
significant model improvement.

4.3.6.1 Multilayer Perceptron Backpropagation Model

The basic elements of an ANN are the processing units called neurons. A neuron is
a device which transform a combination of inputs to an output by means of a non
linear function. Early processing units have been introduced by McCulloch and Pitts
(1943) and Rosenblatt (1958) as

x �→ g(α′x + δ), (4.23)

where x denotes the input vector, the array α and the threshold δ are in general
unknown parameters and g is the activation function. Function g does not need
to be differentiable and it may yield a binary output, for instance. Equation (4.23)
has been presented as a simple model for classification or for implementing Boolean
functions. A comprehensive method for assembling neurons to build flexible models
useful in many applications has been introduced by Rumelhart et al. (1986) who
provided guidelines for combining units (4.23) to form a neural network and an
algorithm to estimate the unknown parameters. The multilayer perceptron is the
neural network basic system including an input x , a hidden layer of neurons and an
output y. The activation functions in the hidden layer are non linear differentiable
and the resulting model is genuinely non linear, i.e. non linear in the parameters. An
ANN based on a single hidden layer may be written as the non linear model

y∗ = f (x, w) =
h∑

j=1

β j g(α j
′x + δ j ), (4.24)
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where h is the number of hidden units (neurons), the parameter vector w includes
all unknown parameters

w = [β1, . . . , βh, α1, . . . , αh, δ1, . . . , δh], (4.25)

and the function g may be chosen among several proposal functions of sigmoid type,
for instance the logistic function. For example, the ANN displayed in Fig. 4.10 is the
graphical display of model (4.24) with p = 2, i.e. two inputs here represented by the
lagged observed time series data yt−1 and yt−2, a hidden layer with h = 3 neurons
and a single output. This latter is to be compared to the target yt , that is the observed
time series data at the current time t . The activation functions are of identical logistic
shape in each neuron and non linearly transform a linear combination of the inputs
plus a threshold constant. A linear combination of the values yielded by the hidden
layer computing devices produces the single valued output.

The backpropagation algorithm is based on the gradient descent algorithm which
aims at minimizing a function of the difference between the output y∗ obtained
by propagating the input throughout the neural network and the target (observed)
output y. This difference is called the residual and as the residual depends on the
parameters w we may denote E = E(w) the objective function. Let w(i) denote a
tentative value of the vector parameter w, then from the input x the output y∗ may
be computed throughout (4.24) and compared to the target value y. The parameters
w are updated according to the rule

w(i+1) = w(i) − η∂E

∂w
,

Fig. 4.10 Graphical display of an ANN for non linear modeling of time series data
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where ∂E
∂w

is the gradient of E and η is a proportionality constant called learning
rate. The procedure is iterated until a maximum pre-specified number of iterations is
attained or if some stopping rule is met. Usually the data are split into a training set,
a test set and a validation set. Estimation is performed on the training set only, while
the test set is used for model selection and the validation set is used for evaluating
the out-of-sample performance of the estimated model.

An ANN for modeling the non linear time series (4.21) may include a sequence
of vector zt−1 = {yt−1, . . . , yt−p} as input (t = p + 1, . . . , n) and the observed
time series y = (yp+1, . . . , yn)

′ as target, where n is the number of observations
and p is the model order. For a single hidden layer with h neurons, (4.24) becomes

y∗t =
h∑

j=1

β j g(α j
′zt−1 + δ j ), t = p + 1, . . . , n,

and the usual objective function is the MSE (4.22)

E(w) = 1

n − p

n∑

t=p+1

(
yt − y∗t

)2
.

The approximation property of the multilayer perceptron model has been shown
to hold by Hornik (1993) provided that some mild assumptions on the activation
functions g are fulfilled. This is always the case with the most common activa-
tion functions used in the applications. Usually the activation function g (as, for
instance, the logistic one) is a sigmoidal shaped function that allows the input unit
to impact the output unit significantly if the combination of the inputs exceeds the
given threshold.

In Hornik and Leisch (2001) a comparison between some AR and ANN models
to fit the sunspot numbers time series is reported. Sunspots in the years 1700–1988
have been used, so that the available observations are n = 289. For estimating the
parameters 200 observations have been used, while 50 have been used as test set
and the remaining 39 as validation set. According to the results displayed by Hornik
and Leisch (2001) the ANNs compare favorably with respect to the AR models. The
computed MSEs are smaller for the ANNs than the AR using several model orders
and, for the ANNs, different numbers of hidden units. The best result is obtained for
an ANN with 6 inputs, an hidden layer with 2 neurons and a single output. For this
latter ANN the MSE computed on the validation set is equal to 387 while the MSE
computed on the validation set for an AR(9) model is equal to 653. In evaluating
these results, however, two circumstances have to be taken into account.

• The ANN models include a much larger parameter set that an AR model so that
estimation problems are likely to occur unless a large data set is available.

• Unlike statistical time series models such as the autoregressive ones, the inter-
pretation of model structure and parameters of an ANN model yields information
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of limited value excepted at most consideration about the number of lags of the
inputs.

So a good motivation for using ANNs resides in that this class of models is able to
yield accurate out-of-sample forecasts.

Many extensions and improvements of the basic multilayer perceptron model
have been proposed in the literature (Mandic and Chambers, 2001). For computing
the parameter vector w numerical optimization methods such as the quasi-Newton
algorithms have been proposed in place of the gradient descent method. However, a
great deal of research has been involved to introduce different neural network struc-
tures to allow for more flexibility and to cope with specific practical issues. Shortcuts
and feedback connections seem the most innovative features of more complicated
neural networks.

• Shortcuts connections between inputs and outputs allow linear relationships to be
added to the non linear model structure. This is motivated in time series models,
for instance, because most non linear models include a linear structure as well.

• Recurrent neural network models allow feedback connections among units. This
is not permitted in the conventional feed-forward structure where input, hidden
layers and output influence each other only along the direction from input to
output. In robotics and language recognition, for instance, often recurrent neural
networks are found useful.

For whatever extension of the multilayer perceptron the most common method
for estimating the parameter vector is the backpropagation algorithm. However
some drawbacks are known that have to be taken into account in deciding for adop-
tion of the method and in evaluating the estimates. As a gradient descent algorithm
the backpropagation algorithm typically has a slow rate of convergence so that a
large number of iterations have to be performed to obtain an accurate estimate.
Moreover, the estimates depend on the starting points and it is advisable to run the
algorithm several times with different initial values. This device obviously further
increases the computation time. Finally there are no definite rules on how many hid-
den layers and processing units in each layer have to be chosen for optimal results.

4.3.6.2 Neural Networks and Genetic Algorithms

Methods based on a mixture of ANN and GAs have been proposed and found effec-
tive in a wide range of applications, from hydrological systems to financial data
(Delgado and Prat, 1997; Minerva and Poli, 2001b; Versace et al., 2004; Kim and
Shin, 2007). The most attractive feature of GAs as processing tools for the ANN
structure is the availability of automatic searching for optimal ANN structure. In
general, the ANN structure requires the number of hidden layer to be pre-specified
and, for each hidden layer, the number of neurons has to be decided. In particular, for
a non linear time series model the order p is the most important parameter that has to
be chosen to define the number of input units, i.e. how many lagged variables have to
be used to minimize the SSQ and at the same time to fulfill the parsimony principle.
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Though several other choices have to be performed for an ANN to be completely
identified, e.g. the activation function, the connection type and the combination that
yields the output, we shall confine the discussion to the model order p and to the
number of neurons h in a single layer perceptron environment to illustrate the GAs-
based ANNs modeling. In this framework the GAs-based methods for parameters
estimation will be considered as well.

The GAs for searching for optimal ANNs structure include in general the follow-
ing issues.

• The network structure and parameters have to be encoded in a chromosome that
represents a potential solution to the modeling problem. Given the assumptions, a
chromosome encodes a completely specified ANN and the population, that is the
current set of chromosomes, is a set of proposal ANNs.

• The evolution process has to be designed as far as the genetic operators selection,
crossover and mutation are concerned. At each step of such iterative process the
ANNs that form the past generation may change to originate the set of ANNs that
form the new generation.

• The evolutionary dynamics is driven by the fitness function which associates a
numerical positive value to each ANN in the current population. The fitness func-
tion value has to be as greater as better the proposal ANN is able to fit the data.

• A convergence criterion has to be specified, for instance the iterations may stop
if the diversity in the population is practically negligible or if the improvement
of the maximum of the fitness function values is smaller than a given threshold.
A common alternative device in the GAs framework consists in avoiding specifi-
cation of any convergence criterion and choosing a number of iterations instead
that have to be performed irrespective of the fitness distribution in the current
population.

For instance, the multilayer perceptron displayed in Fig. 4.10 may be encoded by
the following binary chromosome

010 011 0001 0100 0101 1010 1000 0111 1001 1110 1010 1010 1110 1100
We reserve 3 digits for both the number of inputs and the number of neurons

in the hidden layer. In this way we assume implicitly 8 as the maximum number
of inputs and neurons, decoding conventionally the all-zero string as 8 to avoid
potential solutions with neither inputs nor neurons. The digits that follow the first
6 encode, with 4 binary digits precision, each tentative estimates of the coefficients
included in vector w as specified in (4.25). So the first 3 digits encode a number of
inputs equal to 2 and the digits 4–6 a number of neurons equal to 3. Then, assuming
coefficients α’s and β’s in the interval (−1, 1) and threshold constants δ’s in (0, 1)
tentative estimates may be decoded as α1 = (−0.87,−0.47) and δ1 = 0.33, α2 =
(0.33, 0.07) and δ2 = 0.47 , α3 = (0.2, 0.87) and δ3 = 0.67. Finally the output
is given by the linear combination of the 3 values yielded by the hidden layer with
coefficients β1 = 0.33, β2 = 0.87 and β3 = 0.6.

The GAs-based approach implies that ANNs with different number of neurons
in the hidden layer have to be compared. In this respect the MSE does not allow an
equal comparison and the fitness function had better chosen as a model selection
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criterion, for example the Asymptotic Information Criterion (AIC), the Information
Complexity criterion (ICOMP), the Minimum Description Length (MDL) or one
of the several variants of these and other methods (Wong and Li, 1998; Bozdogan
Bearse , 2003; Rissanen, 2007). If, for instance, the usual AIC is used, the fitness
function may be assumed

f (w) = exp
{
−
(

nlog(σ̂ 2
e )+ 2(p + 2)h

)}
,

where σ̂ 2
e is the MSE as defined by (4.22) and (p + 2)h is the number of unknown

parameters in (4.24), i.e. h arrays α’s of p entries each, h thresholds δ’s and h
coefficients β’s. All parameters are included in the array w as defined in (4.25)
which assumes the meaning of chromosome in a GAs context. Note that w is a
variable length chromosome because the GA population includes ANNs that may
differ as regards the model order p and the number of neurons h. GAs with variable
length chromosomes have been often considered in the literature (Minerva and Poli,
2001a, among others) and specialized genetic operators are widely available.

An extensive simulation experiment is reported in Delgado and Prat (1997) that
compares the performance of ARIMA and seasonal ARIMA models and GAs-based
ANNs in fitting several artificial time series generated by ARIMA and seasonal
ARIMA models. Comparable results are displayed according to the MLD criterion
as performance evaluation index and fitness function. In the ANN implementation
neurons specialized for autoregressive representation and neurons specialized for
the moving-average part are included to support the interpretation task and to allow
a close comparison between estimates obtained by the ARIMA and the GAs-based
ANNs modeling. As an application to a real data set the sunspot numbers time series
is considered from 1700 to 1935 (n = 236 observations). Two ARIMA models , that
is a subset AR model with three parameters at lags 1, 2 and 9, and a subset ARIMA
models with AR lags 1, 2, 3, 4 and 8, 9, difference of order 11 and an MA parameter
at lag 11, are compared with an ANN with 12 inputs, an hidden layer of 4 neurons
and a single output. The variances of the residuals are reported 206, 195 and 184 but
such small variances are obtained at the expense of a large number of parameters
specially as far as the two latter models are concerned.

Modifications and considerations of further detail, such as subset lag choice, that
may improve the model structure and contribute to reduce the number of parame-
ters may be included in the GAs along similar guidelines without requiring major
revision of the code and of the genetic operators.



Chapter 5
Design of Experiments

Abstract In several research areas, such as biology, chemistry, or material science,
experimentation is complex, very expensive and time consuming, so an efficient
plan of experimentation is essential to achieve good results and avoid unnecessary
waste of resources. An accurate statistical design of the experiments is important
also to tackle the uncertainty in the experimental results derived from systematic and
random errors that frequently obscure the effects under investigation. In this chapter
we will first present the essentials of designing experiments and then describe the
evolutionary approach to design in high dimensional settings.

5.1 Introduction

In developing a scientific theory, testing a research hypothesis or getting insights
into the process underlying an observable phenomenon, several questions may be
addressed by experimental research. In conducting experiments, most of the sys-
tem elements are supposed to be under the control of the investigator, who can
then strongly affect the accuracy of the experimental result. The investigator plans
(designs) the experiments, and then takes decisions on what has to be experimentally
evaluated and how the experiments should be conducted. These decisions frequently
are not easy and are certainly not innocuous. The validity of the interpretation of
the experimental results strongly depends on the elements selected for the analysis
and on the laboratory protocols chosen to conduct the experimentation. In several
research areas, experimentation is complex, expensive and time consuming, so an
efficient plan of experimentation is necessary to reach reliable results and avoid
unnecessary waste of resources. An statistical design of the experiments is essential
also to tackle the uncertainty in the experimental results derived from systematic
and random errors that may obscure the effects under investigation. In this chapter
we will first present the essentials of designing experiments and then describe the
evolutionary approach to design in high dimensional settings. High dimensionality
occurs when a large number of variables may affect the result of the experiments,
and the available knowledge about the system does not allow a clear a priori choice
of a small number of critical variables. High dimensionality is becoming a common
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and crucial problem in scientific and technological research, and conventional sta-
tistical procedures to design and analyze experiments do not address adequately
the problem. In this chapter, we will describe a way to design experiments based
on the Darwinian paradigm of evolution: the design is not chosen a priori, but is
evolved through a number of “generations”, using genetic operators modeled on
biological counterparts. In this approach, the design, consisting of a collection of
experimental points with different structure compositions, is regarded as a popu-
lation that can evolve: a population of experimental points that changes through
generations according to the evolutionary paradigm and the target defined by the
investigator. This population is very small with respect to the size of the space of
possible designs, but it changes through generations, “learning” from one generation
to the next and thus exploring in an intelligent way the search space. We will present
the basic structure of the Evolutionary Design of Experiments (EDoE), and describe
how to use EDoE in high dimensional problems. Statistical models will then be
invoked to identify the information obtained at each generation and to determine its
significance. Incorporating this additional information from models in the evolution-
ary procedure makes the search much more efficient and effective. We will consider
three variants of the general EDoE procedure: the Evolutionary Neural Network
design (ENN-design), the Model-based Genetic Algorithm design (MGA-design),
and the Evolutionary Bayesian Network design (EBN-design). In describing these
approaches, our main concern will be biochemical experimentation, where the space
of the variables involved is generally large, where the initial knowledge is frequently
poor, and where a complex network of interactions among components characterize
the system under study.

5.2 Experiments and Design of Experiments

An experiment is an empirical investigation of a particular system, whereby the
investigator has the control on most of the elements and conditions that may affect
the result of the experimentation. Objectives for conducting an experiment may be
the comparison of different treatments or compositions (in medical or agriculture
experiments), the study of the emergence of new entities or functionalities (in bio-
chemical or material science experiments), or the optimization with respect to a
defined target of the experimental unit compositions and laboratory protocols. An
experimental design represents a strategy adopted by the investigator to conduct
experiments and infer from the observed results accurate and useful information to
reach the defined objectives. If the design, or the logical structure of the experiments
is complete (accounting in an appropriate way for all the relevant elements affecting
the results) valid inferences could be drawn from the results but if the design is faulty
the interpretations on the results are also faulty (Fisher, 1935). Design of experi-
ments (DoE) is nowadays a rich area of statistical research, employed in a variety
of fields including medicine, agriculture, pharmacology, biochemistry, and material
science (Cox, 1953; Cox and Reid, 2000; Fan et al., 2000; Wu and Hamad, 2000;
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Lazic, 2004; Montgomery, 2009; Atkinson et al., 2007; Bailey, 2008). A scientific
approach to experimentation involves both the design of each single experiment, and
the analysis and modeling of the observed results. More specifically, an experimen-
tal design can be described as a selected set of experimental points (also named tests,
trials, or just experiments) where different compositions and different laboratory
conditions are compared to understand the results and frequently to optimize these
results with respect to a particular target. Formally, an experimental design can be
written as an n-dimensional vector

X = (x1, . . . , xn)
′

where n is the number of selected experimental points and each element xi is a
p-vector

xi = (xi1, . . . , xip) with i = 1, . . . , n

describing the particular combination of p factors that under defined conditions may
yield the experimental results

y = (yi ), with i = 1, . . . , n.

Further, each factor xk , k = 1, . . . , p may assume different levels that can vary
among factors both in number and domain.

In a common and schematic way the system under study may be represented as
follows:

Fig. 5.1 General representation of a system

where the x vectors describe the set of variables selected as the relevant factors that
independently or in relations among them (interactions) can affect the result of the
experimentation. In this scheme the factors zu , u = 1, . . . , v, represent variables
that can affect the results of the experimentation but are not under the control of
the investigator, and the elements ei , i = 1, . . . , n, describe the experimental errors.
Finally the results, or responses of the experimentation, are denoted by y1, . . . , yn .
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In designing the experiment the investigator is asked to determine the number
of experimental points (n) to test for achieving reliable results; how many factors
should be considered (p); which factors should be selected in a larger set of possible
affecting factors; which and how many factors levels should be considered; and
also which factor interactions should be investigated. In analyzing and modeling
the resulting data the investigator is further asked to infer which factor and factor
interactions are the most influential on the responses; which combination can opti-
mize the response (uni or multi objectives optimization); which combination gives
the smallest variability in the response; and finally, given the systematic and random
errors in the experimentation, which level of uncertainty characterizes the estimation
of relevant parameters and overall interpretation of the results.

Design and analysis are consequently strictly connected: statistical methods and
models to analyze data and formulate interpretations on the underlying process
depend on the design chosen, but the design depends on the questions of the inves-
tigator, on the structure of the problem, and on the possible settings of the process.

5.2.1 Randomization, Replication and Blocking

In designing experiments some basic and general principles have been introduced
into the literature to increase the accuracy of the response; in particular the principles
of randomization, replication, and blocking.

Randomization. In order to avoid bias or systematic errors the allocation of each
factor level combinations to the experimental units and the order in which the indi-
vidual experiment units are performed are randomly determined. Methods of alloca-
tion of factor combinations to units that involve arbitrary choice of the investigator
are frequently subject to bias. A random allocation instead, prior to the start of
the experiments, ensures that selections less plausible may be considered and the
favored selections are not over-represented because of a systematic selection. Ran-
domization can be achieved in different ways, but the most frequently adopted uses
the random number generator, a computer program that produces strings of digits
with no discernible tendency to produce systematic patterns.

In an increasing number of research fields randomization is now realized through
a technology that using robot machines can allocate combinations to units in a ran-
dom way. Typically in biochemistry research the high-throughput experimentation
is conducted with microwell technology where a robotic device dispenses in a ran-
dom way the different combinations to the different test tubes. Randomization is
also required by most statistical methods of analysis that treat the observations as
independently distributed random variables.

Replication. With the aim of determining an estimate of the experimental error
and obtaining more precise estimates of the parameters of the chosen model, exper-
imentation on each factor level combination is repeated a number of times (replica-
tions) in an independent and identical way.

It is worth noticing that replication is different from repetition of the measure-
ment. In this last case different measurements are taken on the same experimental
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units, but these observations are not independent. Repeated measurements inform
on the variability of the measurement systems, and replicated experiments inform
on the variability between units and within units.

Blocking is a procedure to avoid haphazard errors that can occur during the
development of the investigation. Haphazard errors may represent known intrinsic
variations of the experimental units, variations in the elements (materials) of the
compositions, variations in the development of the investigation, errors in measuring
the response. For improving precision it may be possible to consider more uniform
experimental conditions and materials, improving measuring procedures, or block-
ing the experiment. Blocking an experiment consists in dividing the experimental
units into blocks, in such a way that the units in each block present similar experi-
mental conditions. Frequently these divisions are already present in the structure of
the problem: age and sex are natural blocks in experiments on people or animals;
different batches of chemicals, possibly even from different providers, are blocks
in chemical experimentation; plots of land different in fertility, composition, or sun
exposition, are blocks in agricultural experiments. As a general rule blocks should
all have the same size and be large enough to consider at least once each factors
level combination.

These three basic principles should always be considered for whatever design the
experimenter decide to construct.

5.2.2 Factorial Designs and Response Surface Methodology

We frequently encounter the problem of designing an experiment where several
different factors can affect the response of the experiment, and we are interested
in measuring their influence on the response and assessing the network of factors
interactions relevant in determining this response. The design of these experiments,
consisting of all possible combinations of the levels of the factors, with an equal
number of replications, is generally named factorial design (Cox and Reid, 2000).
In this structure each factor is characterized by a number of levels that may be qual-
itative, as for medical procedures, or quantitative, as for concentration, temperature,
reaction time. If the number of factors and levels of each factor is high, the number
of experimental units to investigate can be very high. For instance, selecting just 3
explanatory factors with 5 levels each, we should investigate 125 (53) experimental
units in order to evaluate each combination, and 375 experimental units if we decide
to replicate the evaluation three times.

Designing factorial experiments we may be interested in estimating the main fac-
tor effects, which are the averaged effects of each factor over all the units. Formally
we can describe any experimental observation by an additive model. In a 3 factors
problem, for instance, we can represent the observed response as

Yijk,s = μ+ αi + β j + γk + εijk,s i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c,
s = 1, . . . ,m
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where we assume that the factors, denoted A, B, C , at level i of A, j of B and k of
C , affect the response Yijk,s in the s replicate, with s = 1, . . . ,m, and in an additive
way. The main factor effects on the response, represented by αi , β j , γk , describe the
positive or negative deviation of the response from the constant μ when the factor
is present. They are named main effects because they are regarded as the primary
factors of interest in the experiment (Montgomery, 2009). In this representation the
element εijk,s describes the random error component (unconsidered variables, exper-
imental noise) and is generally assumed to have a Normal probability distribution
with the form εijk,s ∼ N (0, σ 2).

Factors may interact and these interactions can play a key role in affecting the
behavior of the response of the experiment. We may in fact notice that the difference
in response between the levels of one factor is not the same at all levels of other fac-
tors. This phenomenon is very common in pharmaceutical or biochemistry exper-
iments, where compound reactions may produce abrupt changes in the response
caused by variations in the factor level combination. The observed response Yijk,s ,
in a 3 factors problem, may be modeled as

Yijk,s = μ+ αi + β j + γk + (αβ)i j + (αγ )ik + (βγ ) jk + (αβγ )ijk + εijk,s

where two and three level interactions are introduced in the dependence relation.
When the problem involves quantitative factors we can describe each experimen-

tal observation with a regression model

Yijk,s = β0 + β1x1i + β2x2 j + β3x3k + β12x1i x2 j + β13x1i x3k + β23x2 j x3k

+β123x1i x2 j x3k + εijk,s .

The estimate of the parameters is generally derived with the least square method
(Dean and Voss, 1999; Montgomery, 2009), and the analysis of variance (ANOVA)
involving comparisons of measures of variations is also conducted to confront dif-
ferent levels and forms of variability. In the model above presented the sources of
variations are the 3 factors chosen by the modeler to affect the response of the sys-
tem. Tests of hypothesis to assess the relevance of factors or combinations of factors
in influencing the response are also conducted (for a detailed analysis see, among
others, Dean and Voss (1999) and Bailey (2008)).

When the main objective of experimentation is to optimize the response of the
system, the response surface methodology is commonly adopted. This methodology
explores the shape of the dependence relation of the response on a set of quantitative
factors and uncovers the particular combination of factors levels that yields the max-
imum or minimum response. Suppose for instance, that two kind of molecules, x1
and x2, taken at different levels of concentration, x1i with i = 1, . . . , a, and x2 j with
j = 1, . . . , b, can give rise to a particular biological functionality. This functionality
represents the response of the system (the target of the experimentation) and it is
measured by an identified variable y. The dependence relation between the factors
and the response can be described by
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Fig. 5.2 A response surface for two factor design

y = f (x1, x2)+ ε

where f may be a smooth function of x1 and x2 , and ε represents a random noise in
the observable response. The expected response function E(y) = f (x1, x2) is called
response surface, and may have a graphical representation as in Fig. 5.2 where E(y)
is plotted on the two factors x1 and x2.

To determine the factor level combination that yields the maximum (or minimum,
depending on the problem) one should adopt an experimental design that includes
all possible factor level combinations and then achieve an experimental result for
each location of the surface grid. This would involve a complete exploration of the
chosen experimental space.

This design, involving all possible combinations, may be difficult to adopt when
the number of experimental units to test is high. To estimate the response surface
and determine the combination that give rise to the system optimum in such cases,
a number of approaches have been proposed in the literature (Myers et al., 2004;
Baldi Antognini et al., 2009). The most common way is to explore the space approx-
imating the function with a first-order polynomial model,

y = β0 + β1x1 + β2x2 + . . .+ βpx p + ε (5.1)

where p factors are supposed to affect the response in a linear way without interac-
tions; for each k, k = 1, . . . , p, the parameter βk measures the influence of factor k
on y, and the error variable is assumed to be N (0, σ 2).

When the surface shape is supposed to have curvature a second-order model may
be more appropriate:
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y = β0 +
∑

i=1,...,p

βi xi +
∑

i=1,...,p

βi i x2
i +

∑∑

i< j

βi j xi x j + ε.

The approach of least squares estimates for the β parameters is then generally used
and the adequacy of the fitted surface is evaluated with the ANOVA methodology.

However it is not generally the case that a polynomial model can approximate in
an accurate way the response function on the entire experimental space. A common
way to proceed is then to explore just a small area of the space, usually suggested
by the experimenter, and approximate the dependence function with a first-order
polynomial model (as in (5.1)). This model structure is usually appropriate for a
small region of the factor space. In order to move from this region and reach the set
of values where the optimum is located the method of steepest ascent is generally
adopted when the optimum is the maximum value of the estimated response surface,
or the method of steepest descent when the optimum is the minimum value of the
surface.

The method of steepest ascent consists in selecting the direction in the space
where the estimated response, namely ŷ = β̂0 + ∑

i=1,...,k β̂i xi , increases more
rapidly, with steps along the path towards the maximum that are proportional to the
regression coefficients (Montgomery, 2009) . At any step the adequacy of the first
order polynomial model is investigated with hypothesis tests both on the parameters
and the variations through the analysis of variance. The procedure, which can be
considered as “climbing a hill”, continues in the path of steepest ascent until a lack
of fit of the first order model is encountered. This is considered as a hint that one is
in the region of the maximum, so a second order polynomial model, incorporating
curvatures, is chosen to approximate the response surface in this region. The iden-
tification of the set of factors levels (x1i , x2 j , . . . , xkr ) that optimize the estimated
response, is then achieved through calculus: the estimated response of the stationary
point (the k-dimensional point for which the partial derivatives of the estimated
response ∂ ŷ

∂ x̂i
is zero) will provide the optimum value.

The selection of the designs to approximate the polynomial models can be chosen
in a variety of ways. For a first order model a common procedure consists in select-
ing the class of designs that minimizes the variances of the regression coefficients;
these are called the orthogonal first-order designs. For a second order model, the
most popular choice is the class of central composite designs which consist of the
first order design points augmented by a number of points selected at a specified
distance from the design center in each factor direction.

5.3 The Evolutionary Design of Experiments

5.3.1 High-Dimensionality Search Space

Many areas of experimental research are characterized by large sets of parameters
that can affect the result of the experimentation. Examples are expression pro-
files microarray studies, chemical microwell plate investigations, and biological
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organization analysis. In these fields the huge libraries of biological or chemical
compounds now available, the different ways one can create compositions, and the
great variety of laboratory protocols have produced a dramatic expansion of the
number of parameters that scientists can control in developing their experiments;
and the outcomes of their experiments, like discovering new drugs, new materials
or new biological functionalities, may depend on not imposing a priori restrictions,
to the dimensionality of the spaces through which their experiments must search
(Minervini et al., 2009).

Conventional experimental approaches adapt with difficulties to this new setting
of experimentation (Cawse, 2003): a classical factorial design for 10 factors and 5
levels for each factor prescribes a set of 9765625 (510) different experimental points
to test, compare, and evaluate, and adding replications this number would at least
triple. When experiments are costly and time consuming classical designs do not
seem an appropriate way to plan experimentation. Fractional factorial experimen-
tal designs, denoted l p− j , where the number of variables is reduced to (p − j),
have been proposed as a practical way to address this problem: the search space is
reduced a priori, under the assumption that just a small group of variables and a
small number of level interactions influence the response. However the selection of
these variables and interactions before conducting any experiments may be difficult
and misleading. Moreover in estimating main factors and interaction effects, alias
effects may emerge generating ambiguities in interpretations that require difficult
and quite complex analysis to resolve.

The high dimensionality problem is also encountered in the analysis of observed
large data sets, and the conventional procedures for variable selection and feature
extraction based on criteria such as Cp, AIC or BIC meet with difficulties because
of the high computational time they required, which increases exponentially with
the dimensionality. More recent approaches based on penalized likelihood meth-
ods (Greenshtein, 2006; Greenshtein and Ritov, 2004; Meinshausen and Bühlmann,
2006; Fan and Li, 2006), on wavelet decomposition (Donoho and Johnston, 1994)
and on algebraic statistics (Pistone et al., 2000), have been recently proposed. These
new approaches for variable selection and feature extraction have been so far applied
to high dimensional data analysis, but they may find applications in the future in
experimental design as well.

An alternative approach for experimental design in high dimensional spaces,
already under active development is the subject of this chapter: the evolutionary
approach (Forlin et al., 2008; De March et al., 2009a,b; Pepelyshev et al., 2009;
Pizzi et al., 2009; Slanzi et al., 2009a,b; Slanzi and Poli, 2009; Borrotti et al.,
2009) where the Darwinian evolutionary paradigm is used to formulate simple and
efficient experimental design strategies.

5.3.2 The Evolutionary Approach to Design Experiments

Addressing the process of planning experiments in order to confirm a scientific
hypothesis or compare different compositions the experimenter is asked to take a
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decision on a set of parameters that can affect the experimentation. As described in
Section 5.2, the decision may concern a large set of parameters: how many and which
factors should be considered in the investigation, given a known set of possible can-
didates; how many and which levels for each factor; which interactions among fac-
tors; and which experimental technology and laboratory protocols to employ. When
the number of all these elements is high, the experimenter will not be able to proceed
with the statistical designs involving all (or most of) the possible combinations of
elements, and will make a selection of a small number of experimental units to
test based generally on experience, previous knowledge or pilot experiments. This
decision may or not lead to reliable and good results.

One way to address high dimensional search is to adopt the evolutionary
paradigm. According to this approach the investigator can select an initial design
consisting of a very small set of experimental points and test a selection of param-
eters (factors levels, laboratory protocols) chosen in a random way. Randomness
(instead of just prior knowledge) allows the exploration of the space in areas not
anticipated by prior knowledge but where interesting new effects may possibly
reside. This initial design, or the first generation of experimentation, will then be
conducted and their response observed. Following the principles of the evolution of
living systems a second generation of tests is proposed with the factor and levels
structure constructed according to a set of genetic operators that emulating natural
systems behavior transform and evolve the design according to a defined target. The
design is then achieved in a sequence of generations of experimentation where the
information collected in one generation can feed the construction of the subsequent
generation in order to achieve more and more valuable information with respect to
a defined target.

The evolutionary approach represents an interactive process where the dialogue
between design and laboratory experimentation at each generation creates a path
in the combinatorial search space that may lead toward a region of optimality. This
approach to experimental design has several nice features. Generation by generation,
the evolving design requires a very small number of experimental points to test,
and consequently a very small investment in resources. The small number of tests
make very fast each phase of experimentation and it is always possible to monitor
how much improvement there is from generation to generation. As this improve-
ment slows, the entire procedure may be brought to a halt. Experience suggests
that the procedure frequently reaches the optimality region in a surprisingly small
number of generations. So it is an easy, fast, low-cost and effective way to design
experiments.

In the following we will present different procedures in which the evolutionary
approach has been developed. In particular, in this section, we consider the Genetic
Algorithm design (GA-Design) and in the next section we will introduce the evolu-
tionary model based design for which the evolutionary paradigm is combined with
the statistical modeling, which can direct the search towards the most informative
experimental points with respect to the specified target. On evolutionary design
of experiments, we refer in particular to Poli (2006); Forlin (2009); Zemella and
De March (2009).
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5.3.3 The Genetic Algorithm Design (GA-Design)

For most optimization problems, experiments are designed to uncover the best
factor level combinations that achieve a goal of interest. The design, as a set
of combinations to be tested, can be regarded as a population of possible solu-
tions to the problem. Each individual of this population is in fact an experimental
point, or test, with a particular factor level combination that yields an experimental
response.

A population-based design can be formulated in the following way.
Let X = {x1, . . . , x p} be the set of experimental factors, with xk ∈ Lk , where

Lk is the set of the factor levels for factor k, k = 1, . . . , p. The experimental space,
represented byΩ , is the product set L1×L2, . . . ,×L p. Each element ofΩ , namely
ωr , r = 1, . . . , N , is a candidate solution, and the experimenter is asked to find
the best combination, ωτ say, i.e. the combination with the maximum (minimum)
response value.

Addressing the problem of finding ωτ , the evolutionary approach can be adopted
and a genetic algorithm can be constructed to design the experiments. Genetic Algo-
rithms (GAs) (see Chap. 2, this volume; Blum and Roli, 2003; Heredia-Langner
et al., 2003; De Jong, 2006; Schneider and Kirkpatrick, 2006) are iterative proce-
dures inspired by nature capability to evolve living systems that learn and adapt to
their environment. The GA in this case evolves populations of experiments through
successive generations, adopting genetic operators that emulate nature in generating
new solutions.

Building a GA an initial population at time 1, namely the design D1, is created
generally in a random way: each element m of this population in the generation is
described as a vector of symbols from a given alphabet (binary or decimal or other),
and represents a candidate combination to be tested in this first population P1,

Y1 = {x1
m} = (x1

m1i , . . . , x1
mpr) with m = 1, . . . , n1

and i, r as levels of the chosen factors.
In binary code this solution can be represented as a sequence of 0,1 digits, where

0, 1, expresses the absence or presence of a particular factor.
Using the terminology of biology, each experimental point is represented as a

chromosome and each level of a particular factor is represented as a gene.
The size n of this population is generally taken to be very small with respect to

the whole number of candidate solutions of the space Ω . Initially it is a randomly
selected population because the algorithm should be able to explore the whole space
and not be constrained in some areas of it (often the favorite areas of the experi-
menter).

Each element of this population (m = 1, . . . , n1), regarded as a candidate solu-
tion, is then evaluated in terms of its capacity to solve the problem: this evaluation
is supposed to be measurable and represents the value of a fitness function f . Fre-
quently the fitness function is the response of the test at the experimental point or a
transformation of this measure. This first design P1 is expected to give some basic
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information to provide the construction of successive designs. The transition to the
next generation (next population of experimental points) is in fact realized through
a set of genetic operators that learn from the achieved information and process this
information to obtain better solutions. Although a number of different operators
have been suggested to realize the evolution the operators of selection, recombi-
nation and mutation are generally the most frequently employed. The selection
operator chooses the experiments for next generation with respect to their fitness
function: best experiments should have in fact high probability to be considered in
the next generation (at the expense of the worst that do not seem to have a promising
composition to reach the target). This operator corresponds to the principle of sur-
vival of the fittest living organisms in natural evolution. The proportional selection
(or roulette wheel) is the most applied procedure and consists in selecting a member
of the population with probability proportional to its fitness: the probability p1

m , of
the combination x1

m is then assessed as

p1
m =

f (x1
m)∑

m f (x1
m)

This procedure does not preclude low-fitness combinations to be part of the next
generation, it just assigns them a very low probability to be selected. The reason for
not simply selecting the combinations with highest values is that in each combina-
tion there may be some components which can become relevant in the future for
their interaction with other components that arise in other generations.

Once selection has been completed, the recombination operator (or cross−over
operator) can be applied. This operator recombines pieces of information present in
different tests with the assumption that their interaction in a new test can give differ-
ent (higher) fitness function values. The recombination operator randomly selects
two members (parents) of the selected population and then breaks them at the same
randomly chosen position. Afterwards it recombines the first part of one parent with
the second part of the other, building in this way two offspring with different fit-
ness values. The recombination can be realized also with two or more points of
exchange according to the target of interest. In building a new population of test
points, recombination can be very important to discover relevant interactions of
components that at some specific unknown levels may produce great variation in the
experimental response. This operator is generally applied with high probability and
can deeply change the structure of the population and its associated fitness function
values.

Selection and recombination operate on the existing compositions achieved and
transformed from a previous population. In order to explore other areas of the exper-
imental space the mutation operator can be applied. Mutation changes the factors
and their levels in some members of the population: the operator randomly selects a
few elements in the vector representation of each experimental composition (genes
in the chromosome representation) and changes their values with different ones.
This operator then assigns a positive probability to any candidate factor and respec-
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tive level to be considered in a composition of the design. The main motivation of
this operator is to introduce randomly some new components not yet selected or
achieved in the previous process to become part of the design. As an example in a
binary coding the mutation will transform the value 0 to a 1 or vice versa. Different
coding will require a different transformation. If no other operator is applied then
the new population of experimental points is ready to be conducted and evaluated,
and the response of each element (the fitness function value) will be then used as
the driving force for the evolutionary process.

The GA-design can be represented in the following way:

D1 ← Randomly select an initial design from Ω

Conduct the experimentation testing each member of D1

and derive its fitness function value
while termination conditions not met do

D1
1 ← Select( D1)

D1
2 ← Recombine( D1

1)

D1
3 ←Mutate( D1

2)
D2 ← Conduct the experimentation testing each member of D1

3
endwhile

The convergence rate of the algorithm mainly depends on the code chosen for
representing the factors level combinations and the probability of each genetic
operator.

This iterative recursive procedure where the design identifies the experimental
compositions to be tested and the evolution processes the test results to achieve the
subsequent design, is the key concept to explore in a successful and easy way large
experimental spaces.

It is worth noticing that the very positive feature of the GA-design is that the
experimenter can avoid to reduce dimensionality by ad hoc procedures, which may
mislead the search and hide fundamental components or interactions, and move in
the entire search space along a path of improvement toward the optimality region.
Randomness and evolution trace the path.

Example

As an example, we report an experimental study conducted in the biochemistry
area (Bedau et al., 2005; Theis et al., 2008). This study aimed to find a molecular
composition that can best generate vesicles: small and enclosed compartments that
store or transport substances within a cell. Getting insight into this process is of
scientific interest and can lead to important technological applications in several
fields, including medicine and pharmacology.
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From the literature it is known that certain amphiphilic molecules in particu-
lar environments may self-assemble and construct a variety of molecular aggrega-
tions such as vesicles, micelles or oil droplets. To study the emergence of vesicles
the experimenter must select a set of candidate molecules from a large library of
molecules, choose their level of concentration, and finally determine the laboratory
protocol to conduct the experiments. These choices produce a very high dimensional
search space.

A single experimental test consists in mixing a set of molecules taken at cer-
tain levels of concentration, under specified structural and process conditions. The
response is recorded as a turbidity measure read by a fluorescent microscope, since
turbidity is highly correlated to the vesicle volume.

From a library of amphiphilic molecules the experimenter selects 16 molecules,
denoted and labeled as follows:

– Cholesterol, CHOL: X1;
– 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine, DOPC: X2;
– 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine, DPPC: X3;
– 16:0PG or 1,2-Dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1- glycerol)](Sodium

Salt), DPPG: X4;
– L-a-Phosphatidylcholine, Soy, PC: X5;
– 1,2-Di-O-Octadecenyl-sn-Glycero-3-Phosphocholine, DIPC: X6;
– Phytosphingosine (Saccharomyces cerevisiae) 4-Hydroxy- sphinganine,

YPHY: X7;
– 1,2-Dioleoyl-sn-Glycero-3-Phosphate (Monosodium Salt), PA: X8;
– 1,2-Dioleoyl-sn-Glycero-3-Phosphopropanol (Sodium Salt), PPRO: X9;
– 1-Oleoyl-2-Hydroxy-sn-Glycero-3-Phosphocholine, LPC: X10;
– 1,2-Diphytanoyl-sn-Glycero-3-Phosphocholine, MEPC: X11;
– 1,1’,2,2’-Tetramyristoyl Cardiolipin(SodiumSalt), CARD: X12;
– 1,2,3-Trioleoylglycerol (Triolein), TRIO: X13;
– 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycer- ol)](Sodium Salt),

POPG: X14;
– L-all-rac-α-Tocopherol (≥ 97%), VITE: X15;
– (2S,3R,4E)-2-acylaminooctadec-4-ene-3-hydroxy-1-Phos- phocholine(Egg,

Chicken), SPM: X16.

The experimentation have been conducted at Protolife Laboratory (Venice).
The vector (X1, X2, . . . , X16) represents the set of factors that the experimenter

assumes will affect the response of the experiment. For their structure these experi-
ments are known in the literature as mixture experiments (Cornell, 2002) since their
factor levels (x1i , x2 j , . . . , x pr ) are chosen under the constraints 0 ≤ xuv ≤ 1 and∑

uv xuv = 1, with u = 1, . . . , p and v as an indicator of factor levels. According
to the experimenter it is in fact the proportion of each factor in the mixture that
affects the result, and not the total amount of the mixture. In this representation
each element xuv represents the number of the volume units of the molecule xu .
For technical reasons the experimenter introduced the constraint that each test can
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contain at most 5 different amphiphilic molecules. To design the experiment the
natural questions are then:

• which amphiphilic molecules should be considered in the experiments?
• at which level will each be?
• which interactions among different amphophilic molecules will be relevant in

generating vesicles?

To answer these questions, the experimenter could follow the classical Simplex
Lattice Design (Cornell, 2002; Montgomery, 2009); but this design requires testing
15504 different combinations, which was not feasible for several reasons, including
cost and time. Adopting instead the evolutionary approach a very small number of
tests could be suggested and evaluated, and the results could be achieved in a quick
and easy way.

In this research the evolutionary design was derived building a GA. This algo-
rithm randomly selects a first population of 30 different mixture compositions.
These mixtures have been tested in the laboratory, and three replicates per mixture
have been conducted, in order to obtain information on the experimental noise.
The size of the design, 30 tests replicated three times, derives from the struc-
ture of the technology used, a 96-microwells plate. As an example, the vector
(x5i = 0.20; x7 j = 0.20; x11k = 0.40; x15l = 0.20) represented in the sequence

0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0

is a mixture of this initial design. Once the experimentation has been completed
the response of each mixture is recorded. The response values, regarded as fitness
values, drive the evolutionary process.

In this experiment selection, recombination and mutation operators have been
applied.

The selection has been realized with the proportional probability criterion and
mixtures with higher fitness result more represented in the new generation, at the
expense of the ones with lower fitness. This operator raises the average fitness value
of the new generation of mixtures, increasing the number of the good solutions but
leaving their structure unchanged. The next operators work instead transforming the
structure of some mixtures.

The recombination operator broke some selected mixtures in two or more parts
to create new ones by recombining these in different ways. In this research, the
constraint of being mixture experiments (the sum of the factors levels concentration
is equal to one) leads to the following procedure: randomly select two mixtures and a
number of volume units, say z in the interval [1–4] from one of them; then randomly
select z volume units from the first mixture and v, with v = 5 − z, volume unit
from the second mixture and recombine these elements to achieve a new mixture.
The remaining elements from the two initial mixtures also recombine and form the
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second new mixture (in the terminology of the GA two children replace the two
parents). The rate of the recombination used was 0.40.

The mutation operator moved one volume unit from a position of a mixture com-
position to another randomly chosen position of the same composition with the rate
0.40.

In addition to these standard operators, the experimenter also employed an
innovation operator, which randomly generated new mixtures, with innovation rate
0.20.

This algorithm derived 5 generations of experimentation, testing 150 different
mixtures (no mixture could occur more than once in all the generations). The total
number of conducted tests represents then less than 1% of the whole space (0.96%).
In spite of this extremely small number of tests, compared to the whole set of can-
didate combinations, the GA-design displays a good performance: the value of the
average fitness increases from 0.161 of the first generation to 0.270 of the fifth
generation and the highest fitness value in the generation (the response value of the
best combination) increases from 0.477 to 0.748. The following Fig. 5.3 exhibits
the responses of all the tests conducted.

With the GA-design it was possible to uncover populations of factor levels com-
binations with higher and higher performance, analyzing just a very small number
of experimental points.

Modeling the relation between the response of the tests and the factors levels
combinations the following polynomial interaction model have been derived (on the
construction of the model see Forlin et al. (2008)),
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Fig. 5.3 Responses of the conducted tests



5.3 The Evolutionary Design of Experiments 141

Ym =∑16
i=1 βi xim +∑16

i=1
∑

k,i<k βik xim xkm +∑15
i=1

∑
k,i<k βik4xim xkm x4m

+∑15
i=1

∑
k,i<k βik8xim xkm x8m +∑15

i=1
∑

k,i<k βik13xim xkm x13m + εm

where Ym denotes the system response in the m mixture, xim is the number of
volume units of the i th amphiphilic molecule in the mth mixture, βi describes the
response to pure factor i , the remaining coefficients β describe the response to either
the synergistic or antagonist blending and finally ε is a Gaussian noise component to
represent the experimental error. The model is fit under the constraint

∑
xi = 1 on

the component proportions, and the problem of identifiability of the parameters βi

and βi j , introduced by the constraint on the sum of the xi terms, has been addressed
by omitting the intercept term, as suggested by Cornell (2002).

To infer the model parameters from the data a combined forward and backward
stepwise regression has been used and evaluated with the ANOVA procedure. The
main achievement from the estimated model has been to discover that some partic-
ular molecules, at some concentration levels and interacting with other molecules
are present in mixtures with high response levels, as x4, x7, x8, x13. Deriving the
contours plots it has been possible also observe in easy way the change of interaction
effect through generations. Selecting the factors interaction x4, x8, x13, the contour
plots in Fig. 5.4 show the increase of the effect of the interaction from the second to
the fifth generation.

To get more insights on the evolutionary process of the design and know if and
how this procedure gets close to the optimal response, a simulation platform has
been created adopting a data generating model with the same structure obtained in
modeling the experimental results.

Conducting the simulation (Forlin et al., 2008) an initial random population of
30 mixtures was selected, and a fitness function value, derived from the estimated

Fig. 5.4 Contour plots of the factors interaction x4, x8, x13 at the second generation (a) and at the
fifth generation (b)
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Fig. 5.5 The average response value at each generation achieved with the GA-Design

regression model, is assigned to each mixture. On this population the algorithm
develops the iterative process, which involves selection, recombination, and muta-
tion according to the same structure proposed for the real experimentation. The
evolution is developed for 10 generations, and concerns 500 simulations.

The most interesting results from this simulation study are the behaviors of
the average response and the best response through generations. As represented in
Fig. 5.5, the average simulated response increases in a monotonic way from the first
to the tenth generation, and the box-plots at each generation shows a very small
variability of the average values.

The behavior of the average of the best response at each generation is also
increasing, reaching the highest value in the 9th generation (no mixture is in fact
allowed to be considered more than one time in the study) with very small variabil-
ity, as described in Fig. 5.6.

Finally, to evaluate how the GA-design is able to uncover the best tests of the
whole simulated space a frequency distributions of the responses is obtained and
the 99th quantile is derived. This quantile is the left bound value of the 1% best
experiments interval. The GA-design is able to enter in this interval in the sec-
ond generation and then it continues to uncover an increasing number of the best
experiments, reaching 12.4% in 10 generations. This search is illustrated in the
Fig. 5.7.

Thus, as this example shows, the evolutionary design derived with a simple
genetic algorithm can reach good results testing just a small number of experimental
points. The procedure is fast, easy and reduces greatly the cost and time required to
explore high dimensional experimental spaces, in comparison with classical designs.
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Fig. 5.6 The best response value at each generation achieved with the GA-Design
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5.4 The Evolutionary Model-Based Experimental Design: The
Statistical Models in the Evolution

At any generation the evolutionary design supplies the experimenter with a data
set that consists of the structure and the laboratory response of each single test
belonging to the population of that generation. This data set leads the evolution
of the design, since at any generation test structures and responses are processed to
build the next test generation. The information in one data generation can then affect
deeply the composition of the next generation.

However, the relevant information that is contained in these data sets is much
more than what is generally considered in an evolutionary procedure: the special
role played by some factors and some particular levels, or the effect of different
order factor interactions, should not be ignored, but identified and used to construct
the next generation design. Modeling is the best way to extract this information
from data. Models can in fact uncover and estimate the main relevant factors, detect
and weigh the main interactions, measure the reliability of noisy results, and make
predictions about unexplored regions of the search space. Therefore models can
supplement the result data bases to make the evolutionary process more efficient
and effective, discovering and communicating information between successive pop-
ulations of experiments.

In the following sections we will describe and discuss some evolutionary model-
based procedures. In particular we will present the Evolutionary Neural Nets design
(ENN-design), the Model-based Genetic Algorithm design (MGA-design), and the
Evolutionary Bayesian Networks design (EBN-design).

5.4.1 The Evolutionary Neural Network Design (ENN-Design)

The concept of evolution driven by neural network modeling inspires the Evolution-
ary Neural Network design (ENN-design), introduced by De March et al. (2009a).
Neural networks models are known to be a powerful way to address complex and
high dimensional systems. Neural network models have also been shown to be
excellent tools for prediction (Apolloni et al., 2009; Poli and Jones, 1994) given their
approximating properties and their capacity to deal with nonlinear relationships.
The evolutionary design of experiments can be derived by exploiting the capacity of
these models to predict the behavior of complex processes and by incorporating the
achieved information in an iterative procedure.

Initially the predictive neural network design selects in a random way a popula-
tion of experimental points and candidate sets of parameters (factors, levels, process
conditions, . . .) determining the structure of the first test population. These tests
are carried out, and a response is measured for each of them. On the data set that
includes both the experimental structures and the results, a neural network model
is then constructed. A simple three layers architecture network with a feed-forward
dynamics is used (De March et al., 2009a). The connection strengths of the network
are evaluated on a subset of the population, identified as a training set, and the model
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is selected on a different set of data, the validation set. The predictive capacity of
the model is finally tested and the accuracy of the predictions selects the best model.
This model is then adopted to explore the whole unknown space of candidate tests,
and for each of them derives a predicted response. A small set of those tests with the
best predicted responses is then added to the initial population creating the second
generation of tests to be conducted and from which to achieve the response (sec-
ond design). A data set for this generation is now available: it includes the initial
population of tests and the best predicted tests. On this second larger data set a
predictive neural network model is then estimated and adopted to uncover the best
predicted structures in the experimental space; the set of these best structures will
then be added to the second generation. The procedure continues for a number of
generations until a stopping rule criterion is reached. This is an evolutionary and
adaptive design: a small set of experiments is evolved through a sequence of gener-
ations with a neural net model that, learning from data and predicting the unexplored
experimental space, can achieve the relevant information to improve the design and
intelligently adjust the way to reach the optimality region.

Example

The predictive neural network design has been applied in a simulation study to eval-
uate its performance and develop comparisons with other competitive approaches
(De March et al., 2009b; Forlin et al., 2007). The problem that has been considered
and examined in the previous Section involves experiments with a mixture struc-
ture, as described in Theis et al. (2008). Each experimental test is a composition
of 16 candidate factors that can assume 6 different levels, xi = (xi1, . . . , xi16),
i = 1, . . . , 6, and involves an experimental search space that under a factorial (full
or fractional) design consists of a huge number of combinations to be tested. The
goal of the experiment is to find the combination that yields the highest response
value. The ENN-design initiates the search selecting in a random way a first gen-
eration of 30 compositions to represent the first design in the evolution. Each com-
position receives a response from a stochastic generating process derived by Forlin
et al. (2008), (the stochastic generator process play the role of the laboratory exper-
imentation in providing the response). On this data set, that includes experimental
test structures and responses, a three-layer neural network model is proposed and
its connections estimated on a training set (80% of the data set). The network with
the minimum predictive error computed in the validation set is then considered as
the best predictive net and adopted to predict the response of all the possible tests of
the experimental space. The best 30 predicted experiments are further selected and
added to the first random population. The iterative procedure then restarts consider-
ing this new generation of experiments, that includes the initial set and the best pre-
dicted set achieved with the neural network model. Each generation of experiments
is supposed to contain more information with respect to the previous one, and the
model from these data is supposed to give more and more accurate predictions. This
simulation study has been developed in 10 generations and 500 simulations. The
main results are summarized in the following figures. The behavior of the average
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Fig. 5.8 The average response value at each generation achieved with the ENN-Design

response value, as described in Fig. 5.8, show a very strong increase at the second
generation and after that a monotonic decrease: the ENN-design seems to uncover
the best compositions in the second generation, and since no composition is allowed
to be considered more than one time, the average values decrease.

The behavior of the best composition, as described in Fig. 5.9, confirms the pre-
vious comments: the neural net model selects the best solution at the second gener-
ation, afterwards the successive generation best solutions present lower values. No
solution better than the one found in the second generation emerges in the following
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Fig. 5.9 The best response value at each generation achieved with the ENN-Design
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Fig. 5.10 The proportion of the best tests uncovered by the ENN-design in 0.01 right tail area of
the distribution

ones. The dashed line gives the value of the 99th quantile of the distribution of the
experiments, and shows that the best solution found by the evolutionary procedure
is always grater than this value, which is by definition an extremely high value.

In evaluating the performance of the design it is also important to derive the
proportion of the experiments passing the threshold of the 99th quantile of the dis-
tribution, that is the set of excellent experiments that have been discovered by the
procedure. In Fig. 5.10, the behavior of this proportion shows that at the tenth gen-
eration the procedure discovers 61.8% of the best tests (the 1% best combinations
of the whole experimental space). This is an excellent result, given the extremely
small size of the design.

5.4.2 The Model Based Genetic Algorithm Design (MGA-Design)

The evolutionary design derived with genetic algorithms, as described in Sect. 5.3.3,
can address the search problem in high dimensional spaces using few resources
and achieving good results. In this design the evolution of test populations through
generations is led by the responses of each tests and a set of genetic operators.
However, more information could be obtained at each generation by modeling the
data sets of experimental test compositions and responses, and then embedding this
information in the genetic evolutionary process. The Model-based Genetic Algo-
rithm design (MGA-Design) is constructed according to this principle (Forlin et al.,
2007; De March et al., 2009a,b). Modeling the data set at any generation of the algo-
rithm provides supplementary information that can guide the action of the genetic
operators creating a more intelligent evolutionary dynamics.
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The MGA-Design starts by selecting an initial population of tests. This popu-
lation is chosen randomly and its size, n, is very small compared to the size of the
whole experimental space. The tests of this first design, coded as a sequence of digits
(as described in Sect. 5.3.3) are then conducted in the laboratory and the response of
each experiment is recorded. On the obtained data set, that includes the composition
and response of each test, a model is selected and estimated to make predictions.
Polynomial models, nonlinear regression models, or other nonlinear models may
be used to represent the relation and formulate predictions. The selection operator
is then applied to the population according to the proportional probability criterion
(other selection criteria might be chosen instead). From this selected population
two compositions, regarded as parent compositions, are chosen and broken in two
pieces at the same cut point and for all possible cut points of the sequence. For each
cut point the first piece of the first composition is then recombined with the second
piece of the second composition giving rise to a new composition (child) for the next
generation; recombination is then applied to the remaining parts of the two parents
giving rise to another composition (child). Thus, each cut point yields two different
children, and so each pair of compositions can generate 2× (M − 1) new composi-
tions (where M is the compositions length). We illustrate the operator in Fig. 5.11.

Fig. 5.11 The cross-over operator of the MGA-Design
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Therefore, from the selected pair of compositions a population consisting of
all the possible different combinations of sub-sequences is derived, namely all
the possible different children that the couple can originate with these opera-
tors. In order to choose the best two new compositions for the next genera-
tion the estimated model is adopted to predict their responses (instead of con-
ducting these populations of tests in the laboratory). For each parent pair, the
two children with best responses are selected as candidates to replace their par-
ents in the next generation. This procedure is repeated for n selected pairs, and
the resulting “best children” comprise the next population (Forlin et al., 2007).
Further genetic operators, such as mutation, could also be employed on this
set of compositions before obtaining the “final” population to perform in lab-
oratory. The foregoing procedure then iterates until a stopping rule criterion is
satisfied.

The evolutionary procedure of the MGA-design is represented in Fig. 5.12. Mak-
ing faster and more intelligent the evolution of the GA-Design, statistical models
can be estimated on the resulting data to derive the next generation of experiments.
Modeling these experiments we can in fact develop a sequential learning procedure
which can lead the evolution process.

Fig. 5.12 The evolutionary procedure of the MGA-Design
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Example

A simulation study has been conducted to evaluate the performance of the MGA-
design for high dimensional experimental problems (Forlin et al., 2007). In order to
develop a comparison with the simple GA-design the same structure of experimen-
tation that has been considered in the example of Sect. 5.3.3 is proposed, namely
16 factors that can assume 6 different levels. The goal of the experimentation is
to uncover the particular composition that obtains the highest response value. In
the simulation analysis a first population of 30 random mixtures is selected, with
representation (X1) matrix with size (30×16). A stochastic generator process is then
used to assign a response (Y 1) to each row of X (the stochastic generator process
plays again the role of the laboratory experimentation in providing the response).
On this data set (X1,Y 1) a model in the form of a third order polynomial regres-
sion model is chosen and estimated in order to formulate accurate predictions. The
selection operator is then applied with a proportional probability, and a generation
of compositions is achieved for recombination. The recombination operator, acting
with a probability pr = 0.90, selects two compositions, breaks them in two parts
a number of times as the number of any possible cut-points (as above described)
and then recombines each first part of a composition with the second part of the
other composition. The result is the “children-population” achieved by a couple of
compositions acting as “parents”. The procedure continues deriving the response of
all these compositions by predicting them with the model selected on the previous
population. The two best predicted children-compositions are then chosen to be
part of the new generation. The recombination is repeated for all the couples of
compositions (parent compositions) and the resulting generation (30 compositions)
is tested recording the responses. This iteration is repeated for 10 generations, with
500 simulations. The main results of this design are represented in their evolution in
the following Figs. 5.13, 5.14, and 5.15. The average behavior of the experimental
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Fig. 5.13 The average response values at each generation achieved with the GA-Design and
MGA-Design
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Fig. 5.14 The best response values at each generation achieved with the GA-Design and the
MGA-Design

Generation

%
 o

f t
he

 b
es

t t
es

ts

12.4 % 

1 2 3 4 5 6 7 8 9 10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

47.5 % 

Fig. 5.15 The proportion of the best tests uncovered by the MGA-design in 0.01 right tail area
of the response distribution (MGA, dashed line) compared with the proportion of the GA-Design
(solid line)

response in the MGA-Design exhibits a strong increase from the first to the third
generation and a constant behavior or a slow decrease after the fourth. The design
finds the best solutions in the fourth generation and, since no composition can be
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considered more than once in all the generations, the average behavior starts to
decrease. Therefore in this study the evolutionary design can find the best com-
positions in 4 generations, testing a very small number of experiments. This very
good behavior of the MGA-design emerges also in comparison with the simple
GA-Design reported in the Fig. 5.13. The performance of MGA with respect to
GA is much higher, reaching the best compositions in very few generations.

Also the behavior of the best test in each generation exhibits a strong increase
until the fourth generation, followed by a very slow decrease. The best composition
in each generation is then uncovered at the fourth generation and takes a value much
higher than the best composition found with the simple GA-design (see Fig. 5.14).
Finally deriving the 99th quantile of the responses distribution, we observe a great
increase of the proportion of the best compositions in the 1% right tail area of the
distribution.

These results show that modeling can play a fundamental role in the evo-
lutionary process making the search in high dimensional spaces much more
efficient.

5.4.3 The Evolutionary Bayesian Network Design (EBN-Design)

In designing experiments the interaction network among the different factors should
be identified and analyzed, since it might play an important role in affecting the
response of the experimentation. This interaction network might be in fact the
most, if not the only, relevant effect on the response. Getting insights into these
networks, and uncovering their architecture and dynamics, can then be very valu-
able for designing experiments. A way to study these networks from data consists
in modeling the dependence relationships among the experimental factors with the
class of Bayesian networks (Lauritzen, 1996; Poli and Roverato, 1998; Cowell et al.,
1999; Jensen, 2001; Borgelt and Kruse, 2002; Pelikan, 2005; Slanzi et al., 2008;
Darwiche, 2009).

A Bayesian network consists of a set of nodes, which identify random variables
(Xi , i = 1, . . . , n) with a finite set of states, and arcs, which identify the direct
dependence relations between the variables. The dependence relation is described
by the conditional probability values P(Xi |X j ), i, j = 1, . . . , n, i �= j , while the
absence of a dependence relation between variables is described by the lack of a
directed arc between nodes. The network is then described as a probabilistic graph-
ical model that, using the combined capabilities of graph theory and probability
theory, can describe and measure complex interaction structures.

For example, the variable set (X1, . . . , X10,Y ) may be characterized by the
dependence relation structure as presented in Fig. 5.16.

In this network the variables X1, X2, X4 directly depend on X5; X6, X9, X10
on X2; X3 and X7 on X1; X8 on X3 and the variable Y on X6, X9. Also, given
the information in X6 and in X9, the variable Y is conditional independent of all
the remaining variables of the system. The entire structure of the conditional depen-
dence and independence relations can then be read from the topology of the network,
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Fig. 5.16 Example of a Bayesian network

and can be represented by the joint probability distribution of the set of variables that
define the problem. By using the probability multiplication law, the joint probability
distribution of the variables can be decomposed as a product of n − 1 conditional
distributions and a marginal distribution, as follows:

P(X) = P(X1, . . . , Xn) =
[

n∏

i=2

P(Xi |X1, . . . , Xi−1)

]
P(X1).

In this framework the variable X j may be said to be a descendant of the variable
Xi if there is a path between X j and Xi , otherwise X j is said to be a non-descendant
of Xi . The expression pa(Xi ) is used to represent the parent set of Xi , namely the set
of variables on which Xi directly depends. Moreover, each variable Xi is condition-
ally independent of all its non-descendants in the graph given the set of its parents.
This statement holds in any Bayesian network (BN) and it constitutes a fundamental
property, also known in the literature as the Markov property. The network can then
be factorized as the product of the variables probabilities conditional on their parents
only:

P(X) = P(X1, . . . , Xn) =
n∏

i=1

P(Xi |pa(Xi )).

The joint probability distribution, representing the interaction structure of the net-
work in the Fig. 5.16 can then be factorized as
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P(X1, . . . , X10,Y ) = P(X1|X5) · P(X2|X5) · P(X3|X1) · P(X4|X5) · P(X5)

·P(X6|X2) · P(X7|X1) · P(X8|X3) · P(X9|X2) ·P(X10|X2)

·P(Y |X6, X9).

In selecting a model to derive an experimental design, the BN can then be a useful
way to estimate from data the dependence/independence relations between factors
and their influence on the response of the experiment. Also, this estimated structure
of dependence can be incorporated in the evolutionary approach and leads to the
Evolutionary Bayesian Network design, EBN-Design (Slanzi et al., 2009a,b; Slanzi
and Poli, 2009). In this approach, the experimental design is achieved according to
the rules of the evolutionary paradigm, enriched by the information obtained by the
estimated BN model. To build the EBN Design a first set of possible factor combi-
nations is generated in a random way and the corresponding response Y is derived
by conducting the experiments. A selection operator is then applied and according
to the response Y a new set of factor combinations is chosen to build the next gener-
ation. On this first set of data a Bayesian network is then estimated by assessing and
maximizing the posterior probability of the network. A well-known estimation pro-
cedure consists in deriving the “Bayesian score function” (Heckerman et al., 1995).

From this posterior probability distribution, a new set of factor compositions is
then derived and a small set of the best compositions (the compositions with the
highest values of Y ), is selected and regarded as the second generation of experi-
ments to be evaluated. The procedure continues through generations until a stopping
rule is satisfied.

Example

In order to evaluate the performance of the EBN-Design, and make comparisons
among different evolutionary algorithms, a simulation study has been conducted
(Slanzi et al., 2009a,b; Slanzi and Poli, 2009). To facilitate the comparison, the
same experimental problem described in Sect. 5.3.3, concerning biochemical mix-
ture experiments is considered (De March et al., 2009a,b; Forlin et al., 2008, 2007).
The EBN-Design starts with a population of 30 mixtures chosen in a random way in
the experimental space. To each of these mixtures is assigned a response achieved
by the same stochastic generator process used in the previous examples. Following
the evolutionary process the selection operator is then applied to derive the next
generation of mixtures, and on this data set a Bayesian network is estimated by
maximizing the posterior probability distribution of the factors X and the response
Y . Adopting this probability distribution a new set of mixtures is then generated
and the best 30 factor compositions are selected and added to the previous set of
mixtures. From this larger set the best 30 mixtures are then selected and adopted
as a new generation to be tested. This evolutionary algorithm is repeated for 10
generations, and 500 simulations are conducted.

The main results of this study concern the average of the experimental response
and the best value achieved in each generation. In the Fig. 5.17, we can notice that
the behavior of the average is increasing monotonically until the 7th generation
when the best compositions are achieved.
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Fig. 5.17 The average response value at each generation achieved with the EBN-Design

This behavior of the EBN-design compares very favorably with the simple GA-
design reported in the Fig. 5.5. Furthermore, the performance of the approach is very
similar to the performance of the MGA-design reported in Fig. 5.13. The behavior
of the best test in each generation (Fig. 5.18) exhibits a strong increase until the 8th
generation, followed by a very slow decrease.
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Fig. 5.18 The best response value at each generation achieved with the EBN-Design
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Fig. 5.19 The proportion of the best tests uncovered by the EBN-Design in 0.01 right tail area of
the response distribution

Fig. 5.20 The evolution through the generations of the EBN-design
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Finally deriving the 99th quantile of the response distribution, we observe a great
increase of the proportion of the best compositions in the 1% right tail area of the
distribution (Fig. 5.19).

The main characteristic of the EBN-Design is the evolution of the dependence
relationships among the factors of the compositions, i.e. the structure of the network.
This evolution through the generations is reported in Fig. 5.20. At the beginning of
the process, a random selection of the factor combinations is considered, so that
no specific set of relevant interactions affecting the response is achieved. When the
number of generation increases, the process starts to evolve the Bayesian network,
and it detects the set of relevant factor interactions leading to the fitness increase.
Finally, the EBN-Design finds the best set of solutions and the process defines the
dependence structure among the variables. The EBN-Design can be considered as
an efficient tool to derive an experimental design in high dimensional settings: by
evaluating only a small percentage of the whole experimental space, the process
is able to identify the factor components of the optimizing experimental mixture.
Moreover the probabilistic model that guides the search for the optimum is expres-
sive and easy to visualize and understand, leading to a minimal structure which
explains the joint action of the factor components affecting the response.



Chapter 6
Outliers

Abstract Outliers, that is outlying observations, sometimes also known as aberrant
observations, are being often studied in the literature closely related to missing
data treatment and validation procedures. An interesting issue is concerned with the
influence of outliers on the estimates of moments of the data distribution or indexes
relevant for further data analysis and model building. The approach of robust statis-
tics is oriented in such direction to ensure that good reliable estimates may be
obtained even in the presence of gross errors or unusual measures originated by
unexpected events. The approach we shall cope with here aims instead at discover-
ing such outliers and either setting them apart or correcting them according to some
properly fitted data model. The very complexity of such a problem prompted soon
for employing general heuristic methods for outlier detection and size estimation
for independent sample data. Owing to the dependence structure outlier analysis in
time series proved to be much more difficult as observations have to be checked not
only as regards their distance from the mean but as far as relationships among neigh-
boring observations and correlation function are concerned. For this reason we shall
give a brief account of evolutionary computing applications within independent data
analysis framework while more detailed discussion will be devoted to outliers and
influential observations in time series analysis.

6.1 Outliers in Independent Data

The analysis of a data set usually requires a preliminary step devoted to data cleaning
from gross errors and data validation. It is well known that practically every data
analysis technique often may lead to erroneous conclusions in the presence of even
a single aberrant observation. This term (aberrant) applies to outlying observations,
that is observations that markedly differ from the other ones. In some cases aberrant
observations prove to be not strong enough to distort the analysis and conclusions
significantly. Unfortunately more often aberrant observations are influential obser-
vations as well, that is they may impact the computed statistics and yield misleading
results. A comprehensive review of statistical methods for the treatment of outliers
in data sets is Barnett and Lewis (1994). In the next two sections we shall give some
account of situations where data analysis is performed in the presence of aberrant
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observations and which results may be expected if this circumstance is overlooked.
Robust statistics and outlier diagnostics are alternative approaches to the problem
of obtaining reliable and accurate statistics from data sets that include aberrant
observations. We concentrate on outlier diagnostics. For an introduction to robust
statistics see, for instance, Huber (1981). In the sequel we shall refrain from calling
aberrant the outlying observations and shall call them outliers. We assume that data
analysis is to be performed on a sample set D randomly and independently drawn
from a random variable Y associated to a probability space (Ω,A, P) with gener-
ally unknown cumulative probability distribution function F . As a consequence, the
sample data are identically and independently distributed and outliers, if any, have
to be searched for amongst the subsets that according to some appropriate measure
have an unusual large distance from the distribution center.

We have to notice at this point that for any given sample data subset we may
assume that an appropriate distance measure may always be computed that allows
us to decide if the subset either include multiple outliers or it is outlier free. Unless
a rule to choose candidate outlier subsets may be defined in some obvious manner,
trying all subsets is needed if we want multiple outliers to be discovered for certain.
This circumstance implies that the multiple outliers diagnostics is a combinatorial
problem which in general has

N =
�n/2�∑

i=1

(
n

i

)

solutions, where n is the number of observations in the sample. This approach is the
exhaustive solution enumeration. We try all subsets including a single observation,
2 observations, . . . , �n/2� observations. This course of action leads naturally to the
ultimate solution though it is computationally expensive and practically unfeasible
unless n is smallest. So methods have been developed based on either simple ad hoc
heuristic and distance measures or meta-heuristics and distance measures.

6.1.1 Exploratory Data Analysis for Multiple Outliers Detection

Barnett and Lewis (1994, p. 7) offer the definition of outlier as follows: We shall
define an outlier in a set of data to be an observation (or subset of observations)
which appears to be inconsistent with the remainder of that set of data. If, for
instance, the random sample {y1, y2, . . . , yn} is drawn from the random variable Y
distributed according to F , let us consider the ordered sample (in ascending order)
{y(1), y(2), . . . , y(n)}. The sample extremes are y(1) the lower one and y(n) the upper
one. The extremes may or may not be outliers. Nevertheless, outliers have to be
extreme values. This circumstance includes the case when some of the largest (or
smallest) may be assumed as outlying observations as well. It may be the case, for
instance, that for some positive integer k << n {y(n−k), y(n−k+1), . . . , y(n)} had to
be considered a multiple outlier set.
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The most obvious interpretation of outliers is to consider that a gross error hap-
pened in recording either manually or automatically by some malfunctioning of the
recording machine. Another source of error in the data are unexpected events that
may cause occasional fluctuations in data, for instance earthquakes, lightning, or
unusual heavy rain. However, we do not know if and when such an error happened,
so that we are forced to study every observation under the assumption that the data
are distributed according to F . As a matter of fact any extreme value is to be judged
too large (or too small) if the probability of larger (smaller) values under F is smaller
than a pre-specified critical value. Just as a simple example, we generated 1000
independently identically distributed normal standard unit observations. The first
one was modified by shifting the decimal point in such a way 6.353 was recorded
instead of 0.6353. In Fig. 6.1 the histogram of the data is displayed and the stan-
dard unit normal probability density function was superimposed (dashed line). The
outlier is apparent on the right side of the plot. However, it is not so apparent as an
outlier if we assume the Cauchy distribution (solid line) as our hypothesized F . We
may compute the p-values to assess a measure of distance of the potential outlying
observation from the rest of the data set. In the former case the p-value is equal to
1.0558 × 10−10 and we may declare that the first observation is an outlier while in
the latter case the p-value is equal to 0.0497 so that we may doubt about such a
conclusion.
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Fig. 6.1 Histogram of 1000 artificial data generated from a standard unit distribution (dashed line)
with a gross error (right hand side). This appears as a contaminant if it is assumed as generated
from a different (Cauchy for instance) distribution (solid line)
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Sometimes a distinction is made between outliers and contaminants. The former
ones are sample observations unexpectedly large or small but generated anyway
from the distribution F . Contaminants are outliers which are actually drawn from a
distribution F1 different from F that in this case is assuming the meaning of a null
hypothesis. Distinguishing the two types is a highly uncertain task and we shall not
investigate this matter further. For instance, in the example displayed in Fig. 6.1 we
could assume the outlier as a contaminant only if we consider our null hypothesis F
the unit standard distribution.

In any case, the detection of outlier is related to a statistical model, which may
be implicit or explicit, suggested by the data themselves or by prior knowledge and
assumptions. If the model relates the data to other variables (as in regression models)
the outlier evaluation is usually based on the residuals.

The deletion approach has been often suggested for dealing with outliers in a
data set (see Cook and Weisberg, 1982, for instance). These methods start from a
model which is fitted to all available data. Then computations are performed leav-
ing out one observation at a time and recording the impact on some appropriate
index chosen according to the context, for instance the residuals sum of square in
regression analysis. However, if the data set include multiple outliers, then parame-
ter estimates will be in general severely biased. As an alternative the forward search
(FS) has been suggested for detecting multiple outliers in regression and general
linear models (Atkinson and Riani, 2000, 2002). The FS uses robust methods, for
example the least median of squares, to select an initial small outlier free subset of
the data. The parameter estimates at the initial stages are not biased by the presence
of outliers. Then an iterative procedure starts and proceeds iteratively by increasing
in size the initial subset to include one by one the other observations. A criterion for
progressing in the search is adopted that allows the potential outliers to be included
only at the last steps. During the search several analytic and graphical diagnostic
tools are used for monitoring the development of the iterative procedure. Basically
the Mahalanobis distance is used under multivariate normality assumption, to be
achieved possibly by preprocessing the data set according to a suitable Box-Cox-
type transformation.

6.1.2 Genetic Algorithms for Detecting Outliers in an i.i.d. Data Set

Multidimensional data sets require complicated procedures to search for outliers.
For the 1-dimensional, 2-dimensional and even the 3-dimensional case the data may
be plotted and visual inspection helps in locating the set of outlying observations.
Visual analysis is much more complicated for high dimensional data and dimen-
sionality reduction techniques may be misleading because computations may be
affected by the presence of the outliers themselves. So we have to deal with the
combinatorial optimization problem outlined above.

An efficient search of such a large search space by evolutionary computing has
been suggested by Crawford and Wainwright (1995). Ordered genetic algorithms
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are used for generating subsets of potential outlying observations. Some preliminary
operations are to be performed necessarily for the algorithm to proceed properly.

1. Arrange the data set to be searched for outliers in the usual data matrix, that is
observation × variables form. Let n be the number of observations and p the
number of variables, that is the data are p-dimensional

2. Label each observations by simple enumeration, that is 1, 2, . . . , n. At this stage
order does not matter

3. Define the solution encoding as a sequence of labels. In this case the order mat-
ters, as we assume that the first k labels define the potential outliers set. Each
chromosome is a permutation of the labels {1, 2, . . . , n} and its length is � = n.
For large data set, however, the chromosome length may be bounded by choosing
a value � such that � < n

4. Choose the GAs parameters, population size N , probability of mutation and
crossover pm and pc, number of iterations I . Optionally, specify elitist strategy
and a generational gap G, 0 < G < 1

5. Choose an appropriate real positive measure to serve as fitness function
6. Build an initial population of order – based chromosomes. Each one of the N

chromosomes in the population is a permutation of the observations integer
labels {1, 2, . . . , n} possibly truncated to the first � elements

Once the initialization has been performed, then the algorithm may start. The
algorithm is iterative and proceeds through the following steps.

1. Evolve the initial population by applying the three genetic operators selection,
mutation and crossover. Specialized operators are needed for order – based
genetic algorithms

2. The new generation replaces the old population, then iterate steps 1 and 2 until
the maximum number of iterations I is attained.

The data set Y includes n p-dimensional vectors {y1, y2, . . . , yn} each numbered
from 1 to n. The population size N is the number of permutations of the integer
numbers {1, 2, . . . , n} (these permutations define ordered sets of vectors belonging
to Y ) we examine at each iteration. The ultimate goal of the iterative procedure is to
get within I iteration a population that includes a permutation with the label of the
k outlying observations in the first k places. Let {x1, x2, . . . , xN } be the population
at a given iteration i < I . Each of the x j ’s is a (possibly truncated) permutation of
length � ≤ n. Each x j is a solution in the sense that its first k entries are assumed to
be the labels of the potential outlying observations.

The selected chromosomes are the next generation and are eligible to be included
in the updated population. If neither elitist strategy nor generational gap are adopted,
the new population replaces the old one completely and a new iteration may start.
If the elitist strategy is assumed, complete replacement is conditioned to the appear-
ance in the new generation of a chromosome whose fitness function is not less than
the best fitness found in the past population. If this is not the case, then the chromo-
some with largest fitness function at iteration i−1 is included in the new generation
at iteration i even if it was not selected and at the same time the worst chromosome
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in the new generation is deleted. A generational gap G is a number between 0 and
1 that specifies the number of times the selection is performed in each iteration as
N∗ = G × N . This implies that N × (1− G) chromosomes are allowed to survive
from iteration i − 1 to iteration i . Notice, however, that genetic algorithms do not
necessarily have the same population size in all generations and we may use devices
that manage an increasing population size. We shall not consider here this feature
further and assume a fixed population size.

It is assumed that the outliers correspond to the first labels in each permutation.
In case of multiple outliers, their number is to be specified in some way. If k outliers
are assumed, then the observations labeled by the k integer that come first in the
permutation are taken as potential outliers. This kind of ordered chromosome encod-
ing requires order crossover operators. Many have been proposed, for instance the
partially-mapped (PMX), the order (OX), and cycle (CX) crossovers (Michalewicz,
1996b). We want to describe here the uniform order crossover (Kargupta et al., 1992,
p. 50, section 3.2). The chromosomes are paired at random, and denote x1 the first
parent and x2 the second one. The chromosomes x1 and x2 undergo the crossover
with probability pc. If so, the following steps are performed.

1. Generate uniformly randomly a binary mask of length equal to the chromosome
length �

2. For each 1 copy the allele value of the first parent to the first child in the same
locus

3. Fill the rest of the first child loci by the genes of the first parent re-ordered as
they appear in the second parent

4. Generate the second child by exchanging the roles of the first and second parents

In Table 6.1 a simple example is displayed to illustrate the procedure. In correspon-
dence of the 1’s the children inherit the parents allele exactly, in correspondence of
the 0’s the children inherit their respective parents alleles but ordered according to
the other parent.

As an example of fitness function we may assume the following one. Let ȳ be
the p-dimensional mean of the data set Y and consider the population at some step
i < I . Let dm be the Euclidean norm of the vectors ym − ȳ, m = 1, . . . , n. Each
chromosome x j allows us to divide the set {1, 2, . . . , n} in two subsets, the subset
A that includes the labels x j1 , . . . , x jk of the potential outlying observations and the
subset B which includes the remaining labels. The pooled Euclidean distance of the

Table 6.1 A simple example of uniform order crossover

Labels permutations

1st parent 3 2 5 4 1
2nd parent 1 2 3 4 5
mask 0 1 0 0 1
1st child 3 2 4 5 1
2nd child 3 2 4 1 5
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observations in the outlier free subset is the smallest pooled distance that may be
computed from n − k observations.

In this case the fitness function may be defined

f (x j ) = exp

(
−
∑

m∈B

‖ym − ȳ‖/c
)
, j = 1, . . . , N ,

where c is a positive constant which scales the fitness and avoids overflows/
underflows.

The selection operator may be assumed the widely used roulette wheel rule. Let

F =
N∑

j=1

f (x j ).

A circle is divided in N spikes whose width is proportional to f (x j )/F , j = 1,
. . . , N . So there are as many spikes as permutations. This kind of selection is called
roulette wheel rule because in practice an uniform random number is generated each
time we want to select a chromosome. The random number u points at a sector of a
wheel because the angle of u×360◦ may be computed and the sector which includes
this angle may be easily located. In practice we select with replacement one of the
chromosomes x j ’s with probability f (x j )/F .

A simple numerical example may help to clarify the method. Let Y denote a data
set with 7 6-dimensional observations (n = 7, p = 6)

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 4 2 3 4
4 3 2 7 6 9
7 3 2 4 5 2
5 7 8 2 1 4
4 6 2 3 4 7
9 3 4 5 6 2
4 3 −10 3 3 −10

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each row vector is an observation whose label is the line number. For the sake
of simplicity let us assume k = 1, that is there is only one outlier in the data set. Let
N = 5, so that the population at some iteration i < I includes 5 permutations of the
integers {1, 2, 3, 4, 5, 6, 7}, for instance

Pi =

⎛

⎜⎜⎜⎜⎝

7 6 5 4 3 2 1
6 5 4 3 2 1 7
5 4 3 2 1 6 7
4 3 2 1 5 6 7
3 2 1 4 5 6 7

⎞

⎟⎟⎟⎟⎠
,
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where each line is a chromosome, that is a potential solution. Solutions actually
included in population Pi are the observations whose label comes first in each
of the lines of Pi , that is y7 = (4, 3,−10, 3, 3,−10), y6 = (9, 3, 4, 5, 6, 2),
y5 = (4, 6, 2, 3, 4, 7), y4 = (5, 7, 8, 2, 1, 4), and y3 = (7, 3, 2, 4, 5, 2).

Let us compute the fitness function for each of the chromosomes in Pi . We have

fi = (0.4501, 0.1375, 0.1318, 0.1763, 0.1044) ,

where the normalizing constant c = 10 has been used. The largest fitness corre-
sponds to the first chromosome within the population. Such a chromosome encodes
the observation y7 as a solution, that is, at iteration i , the outlier we are searching for
has to be assumed the observation y7. In Fig. 6.2 the wheel is divided in sectors, one
for each chromosome, with width proportional to the normalized fitness function.
The largest fitness is assigned to the sector which is exploded in the plot and actually
corresponds to the outlier y7.

For the fitness function that we have employed in the numerical example the
mean has been assumed the multivariate mean. This is maybe the simplest choice.
In practice, much more complicated problems may arise and different computations
of the fitness function are required. For instance, outlier diagnostics in regression
have been studied by Crawford et al. (1995) by using genetic algorithms. In this case
the conditional mean computed from a regression model has been found appropriate
as a basis for the fitness function computation. If a chromosome encodes a subset

45%

14%

13%

18%

10%

Fig. 6.2 Roulette wheel used for selection of chromosomes within a population of size N = 5.
Each relative fitness is reported as percentage
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A of observations as outliers, then computations are performed on the remaining
subset B. Several formulas have been proposed to define a suitable fitness function,
for instance the regression residual sum of squares, the Cook’s squared distance for
multiple-case diagnostics (Cook and Weisberg, 1982) and the determinantal ratio
det(YB

′YB)/ det(Y ′Y ), where YB is the data set with the observations in A removed
(Andrews and Pregibon, 1978). The GAs were designed so as to maximize the
aforementioned criteria and each criterion was the basis for a particular version of
the algorithm. To determine the optimal number of outliers the GAs may be iterated
by assuming several values of k up to k = � n

2 �. To determine the optimal number
of outliers, Crawford et al. (1995) propose to run the GA for any value of k up to
� n

2 � and evaluate the reduction in the sum of squared residuals moving from k to
k + 1 since we expect that such a reduction be inessential once the correct number
of outliers has been reached. Simultaneous variable selection and outlier detection
in regression models has been investigated by using GAs by Tolvi (2004).

6.2 Outliers in Time Series

In a time series some observations may be regarded as outlying ones if they are, in a
sense, markedly different from the rest. The presence of such outlying observations
may result from sampling errors or from the perturbed behavior of the observed
phenomenon. If we hypothesize, for instance, that the data are generated by an
autoregressive integrated moving-average (ARIMA) model, then we may assume
as an outlier any observation that is unusually different from the value predicted by
the model.

In the literature outliers are often studied in connection with the missing data
problem and validation procedures. Another important interesting link has been
found with the influential observations, that is observations that most impact the
estimates of statistics of interest or model parameters. The study of influential obser-
vations has been usually performed in the framework of robust statistics. However
outlier detection and size estimation is often chiefly of interest because we are not
only able to correct the observed data but we may either compute some measure
of their influence on the estimates or investigate the events that originated their
occurrence and highlight interesting features of the phenomenon itself.

The main problem in this framework consists in supplying a clear unambiguous
definition of outlier in time series. As a matter of fact observations are not indepen-
dent. As a consequence an observation has to be examined not only as far as its value
is concerned but as regards its date as well. A definition to be appropriate has to take
into account the data that precede and follow the observation which may be possibly
considered as an outlying one. Unlike independent data, time series outliers may not
be searched for among the extreme values only. Indeed even an observation close to
the mean of the series may actually be an outlying one if it is inconsistent with the
neighboring observations. Moreover, two peculiar features of outliers, namely the



168 6 Outliers

masking and smearing effects (see, for instance, Bruce and Martin, 1989), make
outlier detection often difficult in time series.

• Masking effect→ The occurrence of large outliers may prevent diagnostics from
detecting other close outlying observations.

• Smearing effect → The presence of some outliers may bias the diagnostics so as
false identifications may occur.

Such special problems motivated the development of specifically oriented methods
to cope with time series data.

Since the introductory paper by Fox (1972) outliers in time series have been an
active research field and many approaches have been entertained and methods and
procedures suggested. A brief account may be found in Barnett and Lewis (1994,
chapter 10) and Box et al. (1994, chapter 12). A raw distinction may be done among
three classes of techniques, ARIMA model building (Chang et al., 1988; Tsay, 1986,
1988), bilateral models based on the linear interpolator (Battaglia, 1988a; Maravall
and Peña, 1989) and leave-k-out diagnostics (Bruce and Martin, 1989). The time
series data set investigation is twofold, aimed at evaluating the outlier date and size
and on the other hand at giving some appropriate measure of the outlier influence
on the time series mean and correlation function and on model identification and
parameter estimation procedures. Though this latter point is closely related to robust
techniques, which attempt to minimize the effect of outliers, we focus on outlier
diagnostics only.

Several difficulties are of course inherent to methods for outlier detection. If
we resort to the fitting of either ARIMA, including the state – space formulation
(Kohn and Ansley, 1983, for instance), or bilateral models to the data, outlying
observations are anyway identified as those markedly different from their predicted
value. Nevertheless both the appropriateness and the goodness-of-fit of the model
impact the statistics that we may devise to assess the difference between observed
and predicted values. The leave-k-out diagnostics are less affected by the model
identification and estimation stages though it is likely that the correlation structure of
the time series may be disrupted at such a degree that poor results may be expected.
In order to avoid such drawbacks, methods for detecting outliers in time series using
genetic algorithms have been developed (see Baragona et al., 2001a). The extension
of forward search for detecting outliers in time series has been suggested by Riani
(2004) with special attention to deal with the masking effect.

In what follows the contribution of evolutionary computing in overcoming the
disadvantages of either approaches will be described. Notice that we confine our-
selves to linear models, that is we are making the implicit assumption that time
series data are generated by some linear structure. Outliers in non – linear time series
are being currently studied though well established tools are not yet available and
evolutionary computing applications are at their tentative proposals stage. Detection
of outliers in univariate time series generated by a general state-dependent model
(see Priestley, 1988) is considered by Battaglia and Orfei (2005) who propose iden-
tification and estimation methods for a single outlier in bilinear, self-exciting thresh-
old autoregressive, and exponential autoregressive models. A similar development
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for outlier analysis in functional autoregressive models is introduced by Battaglia
(2005). Chen (1997) considered detection of additive outliers in bilinear models.
Finally, analogues to ARMA model based detection methods have been employed
for discovering volatility outliers in ARCH and GARCH models. A review may be
found in Gounder et al. (2007).

6.2.1 Univariate ARIMA Models

The ARIMA – based approach for studying outliers in time series assumes that
the observed time series data are generated by an ARIMA model. The familiar
procedure organized through the identification, estimation and diagnostic checking
stages has been commonly applied since the paper by Chang et al. (1988) for multi-
ple outlier detection and size estimation. The difference between the data and their
predicted values provides us with the basic measure for deciding if an observation
is an outlying one or not. Once a date is identified as an outlier occurrence its size
is estimated by a function of the model parameters. Several outlier types are usually
distinguished and we limit ourselves to those that are commonly considered in the
literature, that is the additive outlier (AO), the innovation outlier (IO), the level shift
(LS) and the transient change (TC) (see, for instance, Chen and Liu, 1993). The AO
impact is limited to its occurrence time, while the IO and TC cause a perturbation in
the observed time series which lasts for some time and may be assumed negligible
afterwards. The LS corresponds to a permanent change in the mean of the time
series.

Let {xt , integer t} be an outlier-free time series generated by an ARMA(p, q)
model

φ(B)xt = θ(B)at , (6.1)

where φ(B) = 1−φ1 B−· · ·−φp B p, θ(B) = 1−θ1 B−· · ·−θq Bq , Bh xt = xt−h ,
any integer h, E(xt ) = 0, any t . Let {at , integer t} be a white noise process with
zero mean and constant variance σ 2

a . Further let us assume that the roots of the
polynomials φ(B) and θ(B) be all outside the unit circle, so that the process {xt }
turns out to be stationary and invertible.

The model for the AO (also known as type I) at time t = T is

yt = xt + δt−Tω0, (6.2)

where {yt , t = 1, . . . , n} is the observed time series, ω0 the outlier size and δ is
the Kronecker’s delta, that is δt−T = 1 if t = T and equals zero otherwise. Only
the observation at t = T is affected by the outlier. This may happen, for instance,
because of a gross error originated by an occasional malfunctioning of the recording
device.

The model for the IO (also known as type II) at time t = T is
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yt = θ(B)

φ(B)
(at + δt−Tω0). (6.3)

In Model (6.3) the observation yt is affected by an outlier at t = T . The outlier does
not run out of influencing the observed time series as all subsequent observations
are affected through the transfer function ψ(B) = φ(B)−1θ(B). The outlier size is
ω0 at t = T while is equal to ψτω0 at t = T + τ for τ = 1, 2, . . .. The impact
of the outlier on the observed time series does not vanish, in general, though its
absolute value decreases and is to be considered negligible in practice when τ > τ0,
for some positive integer τ0. The only exception is the pure MA model. In this case,
the outlier impact is non-zero only in the finite interval [T, T + q], where q is the
MA order. An IO may occur, for instance, from an occasional isolated shock that
impacts the white noise process.

Model (6.1) under the aforementioned assumptions may be written in the follow-
ing autoregressive form

π(B)xt = φ(B)

θ(B)
xt = at , (6.4)

where π0 = 1 and the sequence {π1, π2, . . .} is quadratically convergent. Model
(6.4) may be generalized to the ARIMA(p, d, q) model by substituting φ(B) with
the generalized autoregressive operator φ(B)(1 − B)d , integer d. The time series
{xt } is no longer assumed stationary, while a minimum positive integer d exists
such that (1 − B)d xt is stationary (that is, xt is integrated of order d). It should be
noted, however, that for integrated series the meaning and effects of innovational
outliers are different from the stationary case, because the shocks are permanently
incorporated into the series. For example, if d = 1, an IO produces ultimately a
level shift (see Chen and Liu, 1993).

Let (6.2) hold. Then the size of an isolated AO in t = T may be estimated by
either least square or maximum likelihood methods. If the innovations are normally
distributed, the two methods both yield the estimate

ω̂A = ρ2π(F)π(B)yT , (6.5)

where ρ2 = (1+ π2
1 + π2

2 + . . .)−1 and Fh xt = xt+h . The estimate ω̂A is unbiased
and its variance is equal to σ 2

a ρ
2.

The size of an isolated IO at t = T may be estimated by computing the pseudo –
residuals

et = π(B)yt . (6.6)

If the coefficients {π1, π2, . . .} are assumed known, then using (6.6) Model (6.3)
may be written

et = δt−Tω0 + at ,
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and both the least squares and, under the normality assumption, the maximum like-
lihood methods yield the estimate

ω̂I = eT , (6.7)

that is the estimate of the size of an outlier of type II occurring at t = T equals the
pseudo – residual at t = T . The estimate ω̂I is unbiased and its variance is equal to
σ 2

a .
The likelihood ratio criterion, under the normality assumption, provides us with

suitable statistical tests to check the null hypothesis (H0: the observation at t = T
is outlier-free) against the alternative hypotheses that the observation is affected by
either an IO (H1) or an AO (H2) at t = T . We may obtain the following test statistics
(see Chang et al., 1988)

• H0 vs H1, λ1(T ) = ω̂I /σa ,
• H0 vs H2, λ2(T ) = ω̂A/(ρσa),

• H1 vs H2, λ1.2(T ) = ρ−2ω̂2
A−ω̂2

I
2σ 2

a (1−ρ2)1/2
.

Under H0 and assuming that the ARIMA model parameters are known, both test
statistics λ1(T ) and λ2(T ) are normally distributed while λ1.2(T ) is a product of
two independent normal random variables. Detection of an outlier of either type
depends on the comparison between the maxima of the absolute values of the test
statistics λ1(t) and λ2(t) with a given threshold value c. The choice of c is chiefly
based on simulation studies. As a practical rule, for time series of length n < 200
appropriate choices are c = 3 for high sensitivity and c = 4 for low sensitivity to
the presence of outliers. Fox (1972) suggested distinguishing the outlier type, either
IO or AO, whether the absolute value of λ1(T ) or λ2(T ) is the largest one provided
that it exceeds the threshold c at the given time t = T . This may be used as an
alternative procedure simpler than performing the test λ1.2(T ).

An iterative procedure may be devised for multiple outlier detection by comput-
ing the test statistics at each time t in the interval [t0+1, n]. The first t0 observations
are needed for initialization of the estimation algorithms. All dates t where either
|λ1(t)| or |λ2(t)| or both exceed c are recorded and stored in a set H . We assume
the presence of an AO in t = T if |λ1(T )| = maxt∈H |λ1(t)| and |λ1(T )| >
|λ2(T )|. Likewise, an IO is assumed in t = T if |λ2(T )| = maxt∈H |λ2(t)| and
|λ2(T )| > |λ1(T )|. The outlier size is estimated by either (6.7) or (6.5) and the
outlying observation is corrected accordingly. Then the adjusted time series is ready
for the next iteration. The procedure ends if either no more outliers are detected or
a pre-specified number of iterations have been performed.

In practice the autoregressive parameters have to be estimated from the data,
and the presence of outliers may produce a bias which in turn will bias the outlier
magnitude estimates. Such a problem has been addressed by Battaglia (2006) who
shows that the bias is of order 1/n and proposes simple bias-corrected estimates for
both AO and IO outliers. In order to solve the same problem Chen and Liu (1993)
proposed to modify the iterative procedure by re-estimating the model parameters
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at each stage and considering a final joint maximum likelihood estimation of model
parameters and outliers magnitudes.

Equalities similar to (6.2) and (6.3) may be used to define the level shift and the
transient change outlier models. In general, the presence of an outlier at time t = T
may be modeled as

yt = xt + α(B)δt−Tω0,

where different specifications are given to α(B) according to the outlier type (see
Chen and Liu, 1993)

AO α(B) = 1,

IO α(B) = ψ(B), (6.8)

LS α(B) = 1

1− B
,

TC α(B) = 1

1− δB
.

In the definition of the IO the ψ(B) polynomial is equal to φ(B)−1θ(B) where the
φ(B) polynomial has all roots on or outside the unit circle. As regards the TC, δ
is assumed a real number to be chosen in the interval (0, 1). Chen and Liu (1993,
p. 285) recommend δ = 0.7. The model for multiple outliers may be written using
equalities (6.8)

yt = xt +
k∑

j=1

α j (B)δt−t jω j ,

where we assume that k outliers of size ω1, . . . , ωk occur at times t1, . . . , tk respec-
tively, provided that all dates are different.

As an example, let us consider Series A from Box and Jenkins (1976, p. 525).
This time series includes 197 observations recorded every two hours of a charac-
teristic quantity of a chemical process. The data are displayed in Fig. 6.3, upper
plot. Two models are suggested in Box and Jenkins (1976, p. 239). We may use for
instance the first one, that is

(1− B)xt = (1− θB)at .

We estimated this model by using the SCA package (Liu and Hudak, 1992, para-
graphs UTSMODEL pp. 3.23–3.26 and UESTIM pp. 3.32–3.34) and obtained
θ̂ = 0.7015 (standard error 0.0511). The paragraph OUTLIER of the package SCA
itself for multiple outliers detection and estimation yields a type II outlier in t = 64
(ω̂I = 1.13, standard error 0.30) and a type I in t = 43 (ω̂A = −0.98, standard
error 0.27). The likelihood ratio statistics have been compared to the critical value
c = 3.5 and only the statistics in t = 64 and t = 43 (absolute values) have been
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Fig. 6.3 Series A original data (upper plot) and linear interpolator errors (lower plot). In this latter
plot upper and lower bounds denote the standard normal distribution 99% confidence interval

found to exceed this bound. The statistics for type II and type I were the largest ones
respectively.

6.2.1.1 The Linear Interpolator

In time series framework linear interpolators have been defined and studied in con-
nection with the problem of estimating a missing observation by means of a linear
combination of neighboring data. Computation is done with the objective of min-
imizing the mean square error. The link between the outliers of additive type and
the linear interpolator has been highlighted by Peña (1990). It may be shown that a
missing data may be replaced by an arbitrary figure, the average of time series values
for instance, and the least square error missing data estimate equals the estimated
AO size. So introducing the linear interpolators is of interest not only as a mean for
treating outlying observations but to deal with missing data as well.

Let {Xt , integer t} denote a random process stationary up to order two with mean
zero and autocovariance function R(h) = E(Xt Xt+h) independent of t , and spec-
tral density function f (λ), −π < λ ≤ π , such that the integral of its reciprocal
1/ f (λ) exists finite. The inverse autocovariance function Ri(h) has been introduced
by Cleveland (1972) as
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Ri(h) = (2π)−2
∫ π

−π
{1/ f (λ)} exp(iλh)dλ.

Let r(h) = R(h)/R(0) and ri(h) = Ri(h)/Ri(0) denote the ordinary and inverse
autocorrelation functions respectively. The inverse autocorrelation function owns
the same properties of ordinary autocorrelation, i.e. it is definite positive, symmetric
and |ri(h)| ≤ ri(0) = 1.

It is well known (Grenander and Rosenblatt, 1957) that the inverse autocorrela-
tions solve the following minimization problem with respect to the unknown real
variables cu, u �= 0

min E

⎛

⎝Xt −
∑

u �=0

cu Xt−u

⎞

⎠
2

,

that is cu = −ri(u), u �= 0. The optimal linear filter

I X
t = −

∑

u �=0

ri(u)Xt−u

is a random process known as the linear interpolator of Xt . The difference

eX
t = Xt − I X

t

is the interpolation error. The process {et } has mean zero, variance σ 2
e = 1

Ri(0) and
its autocorrelation function coincides with the inverse autocorrelation function ri(h)
of the process {Xt }.

For all non-negative integer pairs (m, s) we may consider the linear combination
of the random variables

Xt−m, Xt−m+1, . . . , Xt−1, Xt+1, . . . , Xt+s

such that its difference I X
t (m, s) from Xt is smallest in quadratic mean. We have

I X
t (m, s) =

−1∑

u=−m

ku(m, s)Xt+u +
s∑

u=1

ku(m, s)Xt+u

where the first (second) summation vanishes if m = 0 (s = 0). We call I X
t (m, s)

the finite linear interpolator of Xt with horizon (m, s). As the random process Xt

is assumed second order stationary then the coefficients ku(m, s) depend on m and
s but do not depend on t . It may be shown (Bhansali, 1990) that the coefficients
ku(m, s) may be written as a function of the inverse of the (m + s + 1)-dimensional
variance-covariance matrix of the random process Xt . Moreover, if m = s, the
difference between −ku(m,m) and ri(u) converges to zero for any u as m →∞.
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We may extend the definition of linear interpolator to include the case when the
random process is covariance stationary but its mean is non-zero and time varying.
Let {Yt , integer t} be defined as

Yt = Xt + ωt ,

where the ωt ’s are some real constants and {Xt , integer t} is the random pro-
cess introduced so far. It is straightforward to show that E(Yt ) = ωt while
cov (Yt Yt+h) = R(h) independent of t . We may define I Y

t the linear interpolator
of Yt as the linear combination of Yt−u , u �= 0 and ωt−u , any u, in such a way that
we may approximate the random process {Yt } in mean square. Let

I Y
t =

∑

u �=0

guYt−u +
∞∑

u=−∞
puωt−u

and

I Y
t = I X

t +Δt .

Under the assumption that the sequence {Δt } minimizes the mean square error

E
(
Yt − I Y

t

)2
it follows that the equality Δt = ωt holds with probability 1. So we

obtain the result

I Y
t = I X

t + ωt

and the interpolation error for Yt may be written as

eY
t = Yt − I Y

t .

So we are allowed to exploit the linear interpolator and its finite counterpart proper-
ties even if the random process is not mean stationary. This circumstance makes the
linear interpolator an useful device for outlier identification in time series.

Let y = (y1, . . . , yn)
′ denote the observed time series, that is a finite realization

of a random process {Yt }. If we want to check the presence of outliers in y by means
of linear interpolators the first step is to estimate the inverse correlations. Various
methods are possible (see e.g. Battaglia, 1988b). Note that linear interpolators and
inverse correlations may be defined and easily estimated also for non stationary
integrated series (see Baragona and Battaglia, 1995). Once the inverse correlation
estimates r̂ i(u) are obtained, for a fixed m � n, the linear interpolator may be
computed

it = −
m∑

u=1

r̂ i(u)(yt−u + yt+u).
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An outlier is assumed at time t = q if

|yq − iq | > g{R̂i(0)}−1/2,

where R̂i(0) is the interpolation error variance that may be conveniently estimated
by the inverse variance. As the outlier detection depends on the pre-specified con-
stant g, we may call yq a g-outlying observation. The interpolation error eq = yq−iq

may be shown to be equal to the estimate of an AO at time t = q. Moreover,
in the ARIMA framework, estimates of the linear interpolator coefficients may be
computed as functions of the ARIMA model parameter estimates. If the ARIMA
model parameters are known, then the linear interpolator error exactly matches the
AO estimate. This is a simple procedure to identify potential outliers. If the data
are generated by a Gaussian stochastic process, then the interpolation errors are
also Gaussian distributed and the Gaussian percentiles may be used for the constant
g. However, seldom information about the random process probability distribution
are available and the choice of g is usually done according to low, medium and
high sensitivity whether the selected g-value is small, medium or large. The usual
choices range from 2 to 4. An alternative would be using the Chebyshev inequality
though often the g values turn out to be too large in practice. For instance, one has
to select g = 5 to ensure a probability less than 4% that an interpolation error be so
large only by chance.

In Fig. 6.3, lower plot, for instance, choosing g = 2.58 allows us to correctly
identify q = 43 and q = 64 as potential outlier dates as the respective interpolation
errors exceed the linear interpolator normal 99% bounds m ± 2.58s, where m and s
respectively are the mean and standard error of the residual series.

6.2.1.2 Sequences of Consecutive Outliers

The procedure described in Sect. 6.2.1 is known to be effective in the presence of
isolated outliers. In case of level changes, that is the case when the mean value of
the time series changes after some time point t0, special approaches are needed. For
example, a change in the level of the given time series may be dealt with by using
multi-regime models in the class of the non-linear time series models. If non-linear
models of this kind are not considered appropriate and it seems preferable to remain
in the domain of linear models, then we may study the differenced series, that is
yt = xt − xt−1. A simple computation shows that a single level change in the orig-
inal time series {xt } produces a isolated outlier in the differenced time series {yt }.
This latter time series may be investigated with the methods appropriate for isolated
outliers in linear models. Nevertheless, it is often the case that outliers do not come
neither in isolation nor in the form of a change in the level, but form a sequence
occurring in consecutive dates without any interval of non outlying observations.
The statistics computed for checking the outlier significance, such as the likelihood
ratio statistics, are biased by the masking effect. The outliers which occur in the
middle of the stretch of outlying observations are almost always unnoticed because
they are often perfectly coherent with the neighboring observations. A sequence of
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consecutive outliers is called an outlier patch. It may happen that the sizes of the out-
lying observations in the patch are markedly different each other. Nevertheless still
is present a masking effect that prevents the test statistics from correctly identifying
some outliers in the patch.

As an example, we simulated 100 observations of an artificial time series {xt }
generated by an AR(1) model with parameter φ = 0.6 and standard unit white
noise. The simulated time series has been contaminated by adding 3.75 to each and
every observation xt , t = 51, . . . , 55 to yield the sequence y = (y1, y2, . . . , yn)

′.
The time series y is displayed in Fig. 6.4, upper plot. The circles mark the sequence
of additive outliers. We assumed the correct identification and estimated φ̂ = 0.7042
(standard error 0.1209) the autoregressive parameter and constant term 0.0523 (stan-
dard error 0.0715). The lower plot shows the linear interpolation error. It is apparent
that the difference between the observations y50 and y51 produces a jump in the
interpolation error series and so does the difference between the observations y55
and y56. The paragraph OUTLIER from the package SCA detects a type II outlier
at t = 51 (ω̂I = 4.2819, standard error 1.2) and an outlier of the type I at t = 56
(ω̂A = −2.7088, standard error 0.87). This outcome may be easily explained. The
likelihood ratio test is found significant for the observation at t = 51 which is
markedly incoherent in comparison with most of the observations in the time series.
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Fig. 6.4 Artificial time series generated by an AR(1) model with a patch added at the time interval
[51, 55] (upper plot) and its linear interpolation error sequence (lower plot). The latter plot includes
(dashed lines) the normal upper and lower bounds at 1% significance level
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The observations after t = 51 are markedly different from the remaining ones as
well and this behavior is assumed typical of an innovation (type II) outlier. On the
other hand, the observation at t = 56 does not conform to the preceding ones, but
it is not followed by any other outlying observations, so that the likelihood ratio
test finds the appropriate classification as an outlier of the additive type (type I).
Summing up, the procedure detects the correct location but the wrong type of the
outlier in t = 51, the observations from t = 52 to t = 55 are not identified though
actually they are type I outliers, and a wrong detection is performed as regards the
observation at t = 56.

A procedure specially designed for the detection of sequences of consecutive out-
liers has been proposed by Bruce and Martin (1989) based on a deletion approach.
Several sequences of observations are tentatively assumed as potential patches and
an ARIMA model is identified and estimated by treating such patches as missing
data.

Let y = (y1, . . . , yn)
′ denote the observed time series where the presence of

an outlier patch is suspected at some dates. An ARIMA model is preliminary
identified and estimated using all available observations y. Let σ 2

a be the com-
puted residual variance. Let a potential patch be assumed with t as starting time
and k as its length. The positive integers t and k suffice to uniquely identify a
patch, that is we tentatively assume the presence of the set of outlying observa-
tions {yt , yt+1, . . . , yt+k−1}. By treating the dates in the interval [t, t + k − 1] as
missing data locations an ARIMA model may be estimated and let σ 2

a (t, k) be the
leave-k-out residual variance. Then under mild assumptions the statistic

DV (t, k) = n

2

σ 2
a

σ 2
a (t, k)

may be shown to be distributed as a χ2
1 if no outlier is present. Given a signifi-

cance level α the null hypothesis that the sequence {yt , . . . , yt+k−1} includes reg-
ular observations is to be rejected if DV(t, k) > zα where zα is the (1 − α)100th
percentile of the χ2

1 distribution.
The test based on the leave-k-out statistic DV(t, k) may be used iteratively to

detect the presence of a patch and to assess its initial time t and its length k. For
k = 1, 2, . . . a window of length k is applied n−k+1 times to the time series y and
each time the observations {yt , . . . , yt+k−1} are deleted and DV(t, k) is computed.
The initial times are t = 1 at the first step, t = 2 at the second one, and t = n−k+1
at the last one. The presence of a patch starting at t and of length k is accepted if
DV(t, k) is the largest statistic value which exceeds the critical value at the pre-
specified significance level α.

Complications may arise, of course, namely

1. Two patches are near each other, or an isolated outlier is present in the neigh-
bor of a patch so that the masking effect may lead to overlook one of the two
disturbances
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2. The statistics DV(t, 1) and DV(t, k) are often similar so that an isolated outlier
in t may happen to be identified whilst there is actually a patch which starts at
time t and ends at time t + k − 1.

Such drawbacks call for trying iteratively simultaneously both t and k. The out-
lier or the sequence with largest test statistic over the complete set of pairs (t, k) is
assumed as an outlier and the time series y is adjusted accordingly. The procedure
is replicated until no more outliers are found.

The time series y (number of observations n = 100) displayed in Fig. 6.4, upper
plot, may be useful to illustrate the leave-k-out procedure. We may hypothesize
the possible largest patch length equal to 6. Then the statistic DV (t, k) has been
computed for k = 1, . . . , 6 and t = 1, . . . , 100 − k + 1. From the complete time
series y the following model has been estimated

yt = 0.0523+ 0.7042yt−1 + at , σ 2
a = 1.435.

In Fig. 6.5 the values computed for the statistic DV(t,k) are displayed for some
selected values of k of special interest. These latter are those at the edges of the
patch, because values in the middle produce small values of the test statistic by
the masking effect. The largest value is obtained by assuming that the time series is
perturbed by a patch with starting time t = 51 and length k = 5. Comparable values
are obtained only by assuming the hypothesis of either an isolated outlier in t = 51
or a patch of length k = 4 or k = 6 starting in t = 51.

0 10 20 30 40 50 60 70 80 90 100
40

45

50

55

60

65

Fig. 6.5 Statistics DV (t, k) varying t and assuming k = 1 (dotted line), k = 5 (solid line), and
k = 6 (dashed line)
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Table 6.2 Statistics DV(t, k) at time when the patch actually starts (t = 51) and at another loca-
tions (t = 49, 91) where the diagnostic statistics are found large

k 1 2 3 4 5 6

DV (49, k) 50.8680 53.3669 55.1679 48.5711 51.5734 57.8988
DV (51, k) 54.8340 48.4048 51.4162 57.7022 62.0878 60.3998
DV (91, k) 53.0947 53.7992 54.1227 54.4375 55.5151 55.1645

In Table 6.2 the statistics DV (t, k) are displayed only for the dates t where largest
values were obtained for at least one value of k. As far as the true outlier timing
t = 51 is concerned, the maxima of DV (t, k) varying k have been attained almost
always. Exceptions are k = 2 where the largest value is obtained for t = 91 and
k = 3 where the largest value corresponds to t = 49. In this example both masking
and smearing effects are apparent. The statistic DV (t, k) is small at t = 52, 53
because of the masking effects due to the neighboring observations. On the other
hand the smearing effect causes the large value of the test statistic at t = 56. The
cleaned times series shows no more outliers but a disturbance at t = 91 which may
be either an isolated outlier or a patch of length k = 5.

An alternative method for patch detection which requires less computational
effort may be based on finite linear interpolators. Let it (m, s), m, s non-negative
integers much less than n, denote the finite linear interpolator with horizon (m, s)
computed from the observed time series y.

For all pairs (m, s) the finite interpolator errors

et (m, s) = yt − it (m, s)

are defined. However, only the interpolators for the pairs (m,m), (0,m) and (m, 0)
have to be computed. The detection of a patch may proceed as follows. A constant g
is chosen and each and every date t is checked to decide the presence/absence of an
outlying observation. The interpolator it (m,m) is known to have smaller variance
than both it (0,m) and it (m, 0), so that it is likely to be more sensible to detect
potential outliers. If a detection occurs far apart any other one we may assume the
presence of an isolated outlier. If there are several detections in a close neighbor,
that is within a small time span, then the presence of a patch may be suspected.
The interpolator it (m, 0) is an AR(m) model and is able to locate the starting date
of a sequence of potential outliers. On the other hand, the interpolator it (0,m) is
a forward AR(m) model (the backshift operator B is replaced by F , where Fyt =
yt+1) and is able to locate the end of a potential patch. More details may be found
in Battaglia and Baragona (1992).

The time series displayed in Fig. 6.4 may serve as an example. The lower plot is
the linear interpolation error which exceeds the upper bounds for g = 2.58 at t = 51
and t = 56. The two potential outliers are close together and call for checking
the presence of a sequence of outlying observations. The backward and forward
interpolation errors are displayed in Fig. 6.6. The backward one et (2, 0) = yt − it

(2, 0) exceeds the upper bound at t = 51 and may locate the starting of a patch.
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Fig. 6.6 Residual error sequence (upper plot) from a linear interpolator it (2, 0) to mark the starting
of the patch at t = 51 and residual error sequence from a linear interpolator it (0, 2) (lower plot) to
mark the ending of the patch at t = 55 for the artificial time series generated by an AR(1) model.
Dashed lines are normal bounds at 1% significance level

The end of the patch may then be located at t = 55 where the forward interpolation
error et (0, 2) = yt − it (0, 2) exceeds the upper bound. Notice that the bilateral
interpolation error sequence alone fails to locate the patch and may lead to erroneous
detection as

1. Though the outlier at t = 51 is correctly detected, it is not recognized as the first
of an outlier sequence

2. The patch is completely overlooked
3. A false detection occurs as regards the observation at t = 56.

The consideration of the three linear interpolators it (2, 2), it (2, 0) and it (0, 2)
allows instead the patch to be detected exactly.

6.2.2 Multivariate Time Series Outlier Models

Let zt = [z1t , ..., zst ]′ be a discrete parameter s components vector second order
stationary time series, with mean zero for each component and covariance matrix
Γu , for integer lag u. We assume as usual in this Section that {zt } is generated by a
linear process
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zt = Ψ (B)at (6.9)

where (Reinsel, 1993) Ψ (B) = I +∑∞
j=1 Ψ j B j , and at = [a1t , ..., ast ]′ is a zero

mean Gaussian white noise with covariance matrix Σ . The process (6.9) is said to
be invertible if det (Ψ (z)) �= 0 if |z| < 1. In this case let Π(B) = Ψ (B)−1 so that
(6.9) may be written

Π(B)zt = at , (6.10)

where Π(B) = −∑∞
j=0Π j B j , Π0 = −I . Then it may be shown that the optimum

vector linear interpolator is

It =
∑

u �=0

(−Γ i−1
0 Γ iu)zt−u,

where Γ iu is the lag u inverse covariance matrix. Let et = [e1t , ..., est ]′ denote the
interpolation error, that is the difference between zt and the optimum vector linear
interpolator

et = zt − It .

The following orthogonality relationship may be shown to hold

∞∑

u=−∞
ΓuΓ i ′u+ j = δ j I, (6.11)

where δ j denotes the Kronecker’s delta and I the s × s identity matrix. Properties
and detailed assumptions may be found in Bhansali (1990).

If k disturbances ωt = [ω1t , ..., ωst ]′ happen to be located at time points
t = t1, ..., tk , then the mean value of zt will be different from zero, at least for
some components. Given n observations {z1, ..., zn}, the outlier configuration may
be described by means of the pattern design matrix X . For the sake of simplicity we
introduce X under the assumption that all outliers are of the additive type. Details
for other outlier types will be given later. Let i j be the number of the contaminated
component series at time t j , j = 1, ..., k, and let h = i1 + ... + ik . The integer h
represents the number of the scalar outliers, and h = ks at most, if all outliers were
global. For any pair (t, r), t = 1, ..., n, r = 1, ..., s, consider the row (t − 1)s + r
of X . All entries in such row are zero unless an outlier is present at time t for the
component series of index r . In this case, if i denotes such scalar outlier, the entry
in column i and row (t − 1)s + r will be unity. The n × hs matrix X contains, in
binary form, all information about the given (additive) outlier pattern.

Let z = [z′1, ..., z′n]′ be the vector obtained by stacking the s component obser-
vations at each time point, and let Γ denote the ns × ns block Toeplitz matrix with
Γi− j as the (i, j)th block. Assume, at this moment, that both Γ and X are known.
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Then, on assuming Gaussianity, the natural logarithm of the likelihood for z may be
written, by omitting all constant terms,

� = −1

2
(z − Xω)′Γ −1(z − Xω). (6.12)

Maximization of (6.12) with respect to ω yields

ω̂ = (X ′Γ −1 X)−1 X ′Γ −1z. (6.13)

The approximation Γ −1 ≈ Γ i may be derived from (6.11), where Γ i denotes the
ns× ns block Toeplitz matrix with Γ i i− j as the (i, j)th block. Then, the maximum
likelihood estimate (6.13) of ω takes the form

ω̂ = (X ′Γ i X)−1 X ′(I ⊗ Γ i0)e, (6.14)

where e = [e′1, ..., e′n]′ are the interpolation errors and ⊗ denotes the Kronecker’s
product. Equality (6.14) establishes in the multivariate framework the relationship
between the additive outlier and the linear interpolator. For a fixed pre-specified
truncation point m, the formula suggested by Battaglia (1984) may be used for the
computation of the inverse covariance matrices

Γ iu =
m−u∑

j=0

Π ′
jΣ

−1Πu+ j , 0 ≤ u ≤ m, (6.15)

where the truncated version of (6.10) is assumed for the definition of the matri-
ces Π j . For negative lag integer values, the relationship Γ iu = Γ i ′−u should be
used. The natural logarithm of the maximized likelihood is obtained, by replacing,
in (6.12), ω with (6.14) and Γ −1 with Γ i

� = 1

2
{X ′(I ⊗ Γ i0)e}′(X ′Γ i X)−1 X ′(I ⊗ Γ i0)e, (6.16)

where all constant terms are omitted.
In practice inverse covariance matrices Γ iu have to be estimated. This may be

done by first estimating the matricesΠ andΣ fitting a vector autoregressive model,
or alternatively by estimating first the ordinary autocovariance matrices Γu and then
using the orthogonality relationship (6.11).

An extension of the univariate ARIMA based outlier detection procedure to mul-
tivariate series was proposed by Tsay et al. (2000). A vector ARIMA model is fitted
to the observed time series, the maximum likelihood vector estimates of ω̂ (in the
Gaussian case) are computed for the four outlier types AO, IO, LS and TC, and
the significance of such estimates is evaluated through finite sample critical val-
ues generated by simulation. The algorithm proceeds iteratively as in the univariate
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case. If an outlier is detected at time q, all components of the series are assumed as
perturbed at that time.

More recently, new methods for multivariate outlier detection have been pro-
posed, based on the computation of univariate linear combinations of the multi-
variate series, and application of the univariate outlier detection techniques. The
coefficients of the linear combination may be selected according to the projection
pursuit techniques, in order to maximize the kurtosis (Galeano et al., 2006) or by
independent component analysis (Baragona and Battaglia, 2007).

6.3 Genetic Algorithms for Multiple Outlier Detection

The iterative procedure for multiple outlier detection and estimation in time series
does not guarantee that all outliers are properly identified as no objective function is
specified that has to be globally optimized. Furthermore if an observation is detected
incorrectly as an outlying one at some iteration no reverse action may be entertained
and such an error is likely to completely bias the next iterations. The best course
of action could consist in examining all possible subsets of the integers in [t0 +
1, n] and computing the likelihood function of the time series data taking each one
into account. This is an unfeasible procedure even for moderate n as the number
of subsets grows largest soon. Furthermore computations are cumbersome because
the data are not independent and the full covariance matrix enters the likelihood
function.

As for independent data, general heuristics allow us to evaluate only a limited
number of subsets as potential outliers. The temporal dependence, however, prevents
us from using the ordered GAs so that a different encoding has to be adopted.

We assume that there exists a maximum number of outliers K , say, as outliers
are to be considered rare events and only a limited number, 5% of observations, for
instance, may occur. The number of subsets is large, but it becomes even larger if
we want to distinguish the outlier type as well. By assuming m outlier types then
the number of subsets of potential outlier configurations is equal to

mn + m2
(

n

2

)
+ m3

(
n

3

)
+ . . .+ mK

(
n

K

)
.

We may define some GAs for searching such a large solution space to provide us
with the optimal (or at least near optimal) solution. As ordered encoding does not
seem appropriate, we may use a binary encoding, that is we may define a binary
string of length � = n − t0 and assume 1 if there is an outlying observation and 0
otherwise. Each bit is associated a time point t . If, in addition, we want to distinguish
outlier type as well, we may use m binary string, each string for each type, under
the constraint that in any time point there is only a single 1.

Let, for instance, the time series y=(y1, y2, . . . , yn)
′ have n = 30 observations,

and let outliers (any type) be located at t = 9, 20, 21, 22. Then, the binary encoding
may look as follows
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000000001000000000011100000000

Consider instead the case where we want to distinguish between the AO and IO
types. If there is a IO at t = 9 and there are AO at t = 20, 21, 22, then we may use
the binary encoding in two lines

000000000000000000011100000000
000000001000000000000000000000

For meta heuristics to work in a reasonable time, the objective function has to
be chosen so that it may be properly and quickly computed. We may attempt to
minimize the residual sum of squares computed from some autoregressive moving
average model fitted to the data as an approximation to the likelihood function. An
identification stage, in necessarily automatic way, has to be performed, however,
which requires in most cases a considerable computational effort. Then, a valid
course of action consists in exploiting the relationship between the linear interpo-
lator and the AO (see Peña, 1990, p. 237). Similar guidelines with extension to IO
were suggested by Choy (2001). Only the inverse covariance function (Cleveland,
1972) is needed which may be easily estimated from the data. Let us consider, for
the sake of simplicity, only the AO type. Let k outliers be located at t = t1, . . . , tk .
Let us define the n× k “design matrix” X , where X j,h = 1 if j = th (that is, the hth
outlying observation is located at time t = j) and 0 otherwise. Let y=(y1, . . . , yn)

′
be the observed time series and x the unobserved outlier – free realization. Then,
the relationship

y = x + Xω

holds, where ω = (ω1, . . . , ωk)
′ is the outlier size array. The likelihood to be maxi-

mized is approximately, under Gaussianity assumption,

� (X, ω; y) = (2π)− n
2
√

det(Γ i)exp

{
−1

2
(y − Xω)′ Γ i (y − Xω)

}
. (6.17)

The matrix Γ i of the inverse autocovariances may be estimated from the data by
using robust techniques (see Glendinning, 2000). Holding Γ i fixed speeds the com-
putation, but robustness of the estimates may be inadequate in some circumstances.
However, Baragona et al. (2001a) considered the case when the estimate of Γ i is
iteratively adjusted. The Toeplitz property of the matrix Γ i is exploited in order
to make the computation to become not too demanding. In addition, the procedure
is extended to cover the case where IO may occur as well. Some adjustment on
the GAs parameters may allow the number of iterations to be reduced (see Aytug
and Koehler, 2000, for instance). The probability of mutation and the size of the
population seem to be the most important parameters to take under control if we
want to obtain at least a near optimal solution in the shortest time.
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6.3.1 Detecting Multiple Outliers in Univariate Time Series

Let ξ = (ξ1, . . . , ξ�)
′ denote a chromosome, that is a string of characters of assigned

length � that can be evaluated by some suitable fitness function. A natural choice
consists in setting the length � of the chromosome equal to n, where n is the number
of observations of the time series. This choice allows us to interpret each locus
as a time point where an outlier may occur. Assignment of allelic values is to be
made as simpler as possible, though obviously other choices may be done. A gene
ξ j takes the value zero, if the locus is an outlier-free time point, the value 1 if the
observation at this time point is an outlier of the additive type, and the value 2 if it
is an innovation outlier.

However, it is customary to assume that a maximum number of outliers hmax � n
may be found in the series. This poses a problem of chromosome legality, because
all chromosomes which have less than n−hmax genes equal to zero are not legal, and
a validation stage has to be performed at each new generation. Alternative encod-
ings, which avoid such a problem, may be considered. For example, a chromosome
may be formed by hmax genes each of which is an integer ranging from 1 to n
and denotes the position of an outlier. If the gene values are not all different, the
resulting configuration has less than hmax outliers. For example, a chromosome with
all genes equal to 20 corresponds to a series with only one outlier at time 20. How-
ever, in that case the one to one correspondence is lost, since many chromosomes
encode the same outlier configuration. Both encoding systems are able to represent
the whole set of possible outlier arrangements, but in the binary encoding case the
total number of different chromosomes is 2n , while in the integer encoding is nhmax .
The comparison between these two numbers may suggest which encoding system is
more efficient.

Particular care is needed in the choice of the fitness function. A suitable fitness
function to be used for detecting outliers in multivariate time series in a GAs frame-
work may be built on the log-likelihood (6.17). Two problems have to be solved,
however.

1. The function (6.17) increases as the number of outliers increases, so that it cannot
be optimized with respect to the number of outliers.

2. In general (6.17) is not a positive function, whilst this is a property required to
properly define a fitness function.

The first problem may be fixed for example by adopting the asymptotic information
criterion (AIC) (Akaike, 1977). So, the function which has actually to be mini-
mized is

�∗ = −2�+ 2h, (6.18)

where h denotes the numbers of outliers. Positive values may be obtained by using a
monotone transform of (6.18) which yields only real positive values and is as larger
as closer to the optimal solution, for instance
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�∗ = exp {(2�− 2h)/c}. (6.19)

The positive constant c is introduced to scale the fitness and to avoid the occurrence
of overflow during computation. Criteria other than the AIC may be adopted, and so
other transforms that are believed to be more appropriate may be chosen. A slightly
more general choice is using a penalized likelihood function instead of the AIC:

�∗α = exp {(2�− αh)/c}, (6.20)

where α is an arbitrarily selected constant. We stress that on changing α the optimum
outlier configuration may change, therefore the choice of α may crucially modify
the results of the GA application. Baragona et al. (2001a) suggest a way of choos-
ing α using a Bayesian argument in terms of the a priori probability of outlying
observations.

Finally, it may be observed that the proposed method is a hybrid genetic algo-
rithm, because the fitness function is obtained through maximum likelihood. There-
fore this method integrates the random search in the space of solutions with an
analytical derivation of the optimal outlier magnitudes.

6.3.2 Genetic Algorithms for Detecting Multiple Outliers
in Multivariate Time Series

For the multivariate case the fitness definition may follow the same guidelines as for
univariate series, adopting a penalized likelihood form (6.20) where � is given by
the maximized multivariate likelihood (6.16). The function �∗α as defined by (6.20)
depends on both the integer h and the matrix X which appears in (6.16) explicitly.
The integer parameter h varies from 0 to the maximum pre-specified allowed num-
ber of scalar outlying observations hmax. Let ky denote the number of outlier types.

The matrix X takes values on a discrete set, H say. The set H has 1+∑hmax
i=1

(ns
i

)
ki

y
elements, the no-outlier case included, so that it is very large, unless either n or hmax
are quite small. As H is a discrete set, the optimization techniques which require
that the function to be maximized fulfills some regularity conditions, continuity,
differentiability, and convexity, for instance, do not apply. On the other hand, H is
often such a large set that the complete enumeration of its elements is not feasible,
and most available searching algorithms are likely to yield some local optimum as a
result. So simple GAs seem a suitable choice for finding the maximum of (6.20) as
a stochastic searching technique which does not require any particular assumption
about the function to optimize.

The function �∗α in (6.20) is assumed, in the present framework, to depend only
on the matrix X . In fact, the integer h is straightly determined from X . The other
parameters in (6.16) are to be considered fixed, so that their computation has to be
done only once. The method described in Chan and Wei (1992) is employed which
yields robust trimmed estimates of the covariance matrices. Then, the matrices Π j
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are estimated by using the Yule-Walker equations, and (6.15) provides the estimate
of the inverse covariance matrices.

The definition of the outlier pattern design matrix X may be extended to cover
other types of disturbance than the AO. For example, an IO in the component series
r at time t is coded into the matrix X as follows. Let such IO be the i th scalar
outlier. The coefficients of the pure MA representation of the vector time series zt

are needed which may be computed from the recursive matrix equation (see Reinsel,
1993, p. 27)

Ψu = Πu +
u−1∑

j=1

Π jΨu− j , u = 1, 2, . . . ,

where the summation vanishes if u ≤ 1. The coefficient Ψu is an s×s matrix and let

Ψu =

⎛

⎜⎜⎜⎜⎝

ψ
(u)
11 ψ

(u)
12 · · · ψ(u)1s

ψ
(u)
21 ψ

(u)
22 · · · ψ(u)2s

...
...

. . .
...

ψ
(u)
s1 ψ

(u)
s2 · · · ψ(u)ss

⎞

⎟⎟⎟⎟⎠
.

As n data are available, and assuming an IO at time t , the coefficient matrices
Ψ1, . . . , Ψn−t only are of practical use. Moreover, if the entries in matrices Ψu’s
are decreasing in absolute value, we may want to use only matrices Ψ1, . . . , Ψq for
a suitable truncation point q. Let the positive integer q ≥ 0 be either user-defined
or set to n − t . Then, in the column i of X , after the unity has been inserted in row
(t − 1)s + r , the entries in column i and rows ts + 1, . . . , (t + q)s are to be filled
with the coefficients ψ(u)jr , j = 1, . . . , s, u = 1, . . . , q, according to the ordering

(
ψ
(1)
1r , . . . , ψ

(1)
sr , ψ

(2)
1r , . . . , ψ

(2)
sr , . . . , ψ

(q)
1r , . . . , ψ

(q)
sr

)′
.

In a similar way other disturbance types may be further defined by extending to the
multivariate case the definitions (6.8) (Tsay et al., 2000). If the i th scalar outlier
occurs as a LS at time t for the component series r , then the entries in column i and
rows (t − 1)s + r , ts + r , (t + 1)s + r , . . . of X are set to 1. For a TC at time t , the
column i of X contain, in the rows (t − 1)s + r , ts + r , (t + 1)s + r , . . ., the values
δ j , j = 0, 1, 2 . . ., where 0 < δ < 1. The figure δ = 0.7 has been suggested (Chen
and Liu, 1993).

In what follows a simple genetic algorithm is described that is able to handle
the search for multiple outliers and determining their type simultaneously. A binary
encoding is used as it seems both natural and simple, though the chromosome length
may grow largest in the presence of a large number of observations. Different encod-
ing, integer for instance, may be used that allow smaller chromosomes to be handled,
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but in the multivariate case the definition of suitable genetic operators would be
more difficult.

6.3.2.1 Encoding

The encoding establishes a one-to-one correspondence between any matrix X ∈ H
and a binary chromosome. This latter may be represented as a stack of kys binary
sequences, each of length n, the number of observations of the vector time series. So,
the chromosome is actually assumed as a binary matrix where each row is concerned
with an outlier type in a component series, and each column represents a time point.
For any given component series, an obvious constraint is that, at each time point, no
more than a single 1 has to be present through the ky rows.

Consider, for instance, a bivariate time series of length n = 40, let ky = 4, and
suppose that the proposal outlier pattern includes a global (so as to say, in each
component series) AO at time t = 30, a partial IO for the second component only
at time t = 20, and, in addition, a global level shift (LS) at time 10, and a partial
transient change (TC) for the first component at time t = 25. Then, as the order is
assumed AO, IO, LS, and TC, the chromosome is as follows

1st AO 0000000000000000000000000000010000000000
component IO 0000000000000000000000000000000000000000

series LS 0000000001000000000000000000000000000000
TC 0000000000000000000000001000000000000000

2nd AO 0000000000000000000000000000010000000000
component IO 0000000000000000000100000000000000000000

series LS 0000000001000000000000000000000000000000
TC 0000000000000000000000000000000000000000

If one wants to consider, as it may found in many applications, only the AO and
IO outlier types, then it suffices to drop the last two rows concerned with every
component series in each chromosome. In this case, each chromosome has 2s rows
instead of 4s. Note that in this way it is possible to restrict the effect of each outlier
to selected components. This would be impossible at the identification stage with
the vector ARIMA based methods.

An alternative could be concatenating the kys binary strings of each individual
so that a chromosome with kysn binary digits is considered. This, however, does
not reduce the complexity of the problem, and does not allow the four outlier types
to be treated independently, specially as far as the crossover operator is concerned.
With this encoding also a validation stage at each new generation is required, since
only one outlier type at the time for each component is allowed, and no more than
hmax genes equal to one in each component are legal.
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6.3.2.2 Selection

The population includes ν individuals, each of which may be decoded in such a
way that the fitness function may be computed. We noted already that (6.20) meets
the requirements for a properly defined fitness function. The “roulette wheel” rule
generates ν individuals by selecting, ν times with replacement, an individual from
the current population with probability proportional to its fitness function. If the
fitness function values were calculated as f1, f2, . . . , fν , then the probability for the
individual i to be selected equals fi/( f1 + f2 + · · · + fν). The chromosome of the
selected individual is copied into that of a newly created one. These new individuals
replace the old ones completely, according to the choice G = 1 for the generation
gap. The only exception to this total replacement is concerned with using the “elitist
strategy.” In this case, the replacement involves the whole population if the best
individual is selected by the “roulette wheel.” The total replacement involves only
ν − 1 individuals of the past population if the best individual happens not to be
selected. Then, the last individual of the next population is given the chromosome
of such best individual.

6.3.2.3 Crossover

Given a pre-specified crossover probability pc, the pairs that may be considered for
applying this operator are n p = [pcν/2]. For n p times, two different individuals are
chosen uniformly randomly in the population, and their chromosomes are compared
row by row. An integer �t is selected from the uniform distribution over the integers
from 1 to �− 1. The first row of the first chromosome, from the gene in t = �t + 1
through the last one, in t = �, is exchanged with the genes from �t + 1 to � of
the first row of the chromosome of the other individual in the pair. This operation
is repeated for each row, and the “cutting point” may vary from a row to another.
Then, ky new chromosomes result, that substitute the original chromosomes of the
two individuals in the pair.

For example, let only the AO and IO outlier types (ky = 2) be considered. The
chromosomes of two individuals chosen at random are supposed to be as follows

individual 1st AO 00000000000000000000|00000000010000000000
1 series IO 0000000001|000000000000000000000000000000

2nd AO 000000000000000000000000000001|0000000000
series IO 0000000000000000000000000|000000000000000

individual 1st AO 00000000010000000000|00000000000000000000
2 series IO 0000000000|000000000000001000000000000000

2nd AO 000000000000000000000000000000|1000000000
series IO 0000000001000000000000000|000000000000000

The first individual encodes in its chromosome a global AO in t = 30 and an IO only
in the first component in t = 10. The second individual encodes in its chromosome
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only partial outliers. In the first component, an AO in t = 10 and an IO in t = 25.
In the second component, there are an AO in t = 31 and an IO in t = 10.

Let the “cutting points” be 20, 10, 30, 25 for each of the four rows respectively.
Note that the “cutting point” are the same for both individuals in the corresponding
rows. A vertical line indicates these values in the binary strings for the first and the
second individual. The crossover changes the chromosomes of the two individuals
to obtain the new chromosomes

individual 1st AO 00000000000000000000|00000000000000000000
1 series IO 0000000001|000000000000001000000000000000

2nd AO 000000000000000000000000000001|1000000000
series IO 0000000000000000000000000|000000000000000

individual 1st AO 00000000010000000000|00000000010000000000
2 series IO 0000000000|000000000000000000000000000000

2nd AO 000000000000000000000000000000|0000000000
series IO 0000000001000000000000000|000000000000000

Now the first individual has two IO in the first component only, whilst the second
component has two consecutive AO. The second individual has two AO, well far
apart, in the first component, and a single IO in the second component. The global
outlier disappears, whilst there are now two partial AO close together. This latter
pattern may often occur in practice, and is likely to be produced by crossover.

6.3.2.4 Mutation

Each individual is examined, and each gene of its chromosome is given a probabil-
ity pm to change its value from 0 to 1 or vice versa. For example, let the second
individual considered in the preceding subsection undergoes a unique mutation in
the first row of the second component at t = 30. Its chromosome becomes

individual 1st AO 0000000001000000000000000000010000000000
2 series IO 0000000000000000000000000000000000000000

2nd AO 0000000000000000000000000000010000000000
series IO 0000000001000000000000000000000000000000

so as to recover the global AO in t = 30.

6.3.3 An Example of Application to Real Data

The well-known gas furnace data (Box and Jenkins, 1976) were examined for out-
liers using the GA procedure. The plot of the time series is displayed in Fig. 6.7. The
first component of this bivariate time series is the gas rate in cubic feet per minute,
the second one the percentage of CO2 in outlet gas, measured in 9-s time intervals.
There are n = 296 observations.
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Fig. 6.7 The gas furnace data, Series J from Box and Jenkins (1976)

The VARIMA-based procedure for outlier detection and estimation differs from
the GAs-based approach essentially in two ways. Firstly, in this latter approach the
implicit assumption is made that the time series model is the “truncated” vector
linear interpolator (Battaglia, 1984; Bhansali, 1990).

zt =
m∑

u=−m

(−Γ i−1
0 Γ iu)zt−u + et .

Tsay, Peña and Pankratz assume, instead, a VARIMA model to represent the time
series data. Secondly, in the GAs framework, the candidate outliers are never exam-
ined separately, but comparison is made amongst different complete outlier patterns.
The one which yields the maximum of the fitness function in the last iteration is
taken as the final solution. The Tsay, Peña and Pankratz’s identification procedure
considers, instead, every single time location t in turn, and several tests, against the
null hypothesis that the observation at time t is not an outlying one, are performed.
These tests may indicate the outlier type as well by comparing the p-values of the
test statistics and choosing the type that corresponds to the smallest p-value. Once
an outlier is identified, its magnitude is estimated and is removed from the time
series. The adjusted time series is considered as a new one, and the identification
procedure is iterated.
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Fig. 6.8 Residuals computed from the gas furnace data by using a transfer function model (solid
lines). The dashed lines are the normal bounds at 1% significance level

We also took into account the transfer function model reported in Tsay, Peña
and Pankratz and obtained by using the joint estimation and detection procedure of
Chen and Liu (1993). The residuals are displayed in Fig. 6.8. The normal bounds at
1% significance level are plotted for comparison and outline the presence of several
outliers in both components at the dates where the model residuals are either larger
than the upper bound or smaller the the lower bound. This circumstance is to be
assumed only as a preliminary diagnostic for deciding if more detailed investigation
of outliers in the time series has to be performed.

Likewise, the residuals computed from a vector autoregressive model of order
6 and the linear interpolation errors from a linear interpolator with m = 4 com-
puted for the series J are displayed in Figs. 6.9 and 6.10 respectively. The bounds
computed as for Fig. 6.10 are plotted as dashed lines to show the locations of large
residual absolute values.

In Table 6.3 the time points are reported where graphical inspection of residu-
als in Figs. 6.8, 6.9, and 6.10 shows large residual absolute values. Thresholds are
assumed m±2.58s for each series, corresponding to the dashed straight lines, where
m and s stand for the mean value and residual variance respectively. It seems natural
to search for potential outliers referring to the normal probability distribution as a
first approximation. The significance 1% level has been considered.
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Fig. 6.9 Residuals computed from the gas furnace data by using a vector autoregression of order
6 (solid lines). The dashed lines are the normal bounds at 1% significance level

Table 6.3 Preliminary identification of dates when potential outliers may be located with compar-
ison to the 1% unit standard normal distribution lower and upper bounds, that is 0.005 on left tail
and 0.995 on right tail percentiles

Model Series Dates when model residuals exceed normal 99% lower/upper bounds

Transfer 1st 43 44 45 55 56 113 114 198 262
Function 2nd 199 236 265 266 268 269 288 290
VAR(6) 1st 43 44 55 56 113 198 262

2nd 199 236 265 266 269 287 290 291
Lin.Int. 1st 42 43 54 55 112 113 261
m = 4 2nd 198 199 234 235 263 264 288

Large absolute values residuals common to all three models are reported in
boldface in Table 6.3. These are locations that are to be carefully investigated to
check the occurrence of outlying observations. The potential outliers occur within
the first half of the time series time span in the first component series whilst in
the second component series potential outliers are present in the second half of the
data. As noted already by Tsay, Peña and Pankratz the transfer function model and
the multivariate model share a similar structure and as a consequence the residual
variances are close. The residual linear interpolator error variance is less than that
computed from the other two models as it is expected when comparing one-sided
and bilateral models. According to the outlier estimates of innovative and additive



6.3 Genetic Algorithms for Multiple Outlier Detection 195

0 50 100 150 200 250 300
−0.5

0

0.5

0 50 100 150 200 250 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 6.10 Interpolation errors computed from the gas furnace data by using a linear interpolator
with m = 4 (solid lines) and the normal bounds at 1% significance level

type, the VAR(6) model is to be assumed to give evidence to IO’s while the linear
interpolator points at dates where possibly AO’s will be found. The transfer function
model shows a greater number of potential outliers than the multivariate models.
This circumstance too has to be expected because some of the outlying observations
may be better explained by the dynamic multivariate structure.

It is of interest to compare the results obtained from GAs application with those
presented, for this same data set, in Tsay et al. (2000). Computations for the GAs-
based procedure has been done by assuming

• 5% the percentage of the data excluded for trimmed mean and covariance calcu-
lation (Chan and Wei, 1992, pp. 152–153), that is the 2.5% of the smallest and
the 2.5% of the largest observations do not enter computations,

• m = 18 the truncation point of the linear interpolator,
• q = 18 the number of matrix weights in the truncated linear model (6.9)
• 20 the maximum allowable number of outlier time locations,
• pc = 0.9 and pm = 0.01 the crossover and mutation probabilities respectively,
• 101 the population size, that is a single generation in a GA iteration includes 101

potential solutions,
• 1000 GAs generations.
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Table 6.4 Outliers in series J. Identification and estimation results from iterative VARIMA-based
and GAs-based procedures (standard errors of the estimates are enclosed in parentheses)

VARIMA-based procedure GAs-based procedure

Time Component Outlier type Size estimate Time Component Outlier type Size estimate

43 1st TC 0.4732 12 1st LS −0.1495
(0.1696) (0.0666)

43 2nd TC −0.0520 12 2nd LS 0.3202
(0.3223) (0.2220)

55 1st TC −0.6261 43 1st AO 0.3675
(0.1690) (0.1491)

55 2nd TC −0.4868 54 1st AO 0.5673
(0.3236) (0.1491)

82 1st LS −0.0562 74 1st IO −0.5254
(0.3236) (0.2528)

91 1st TC 0.3136 95 1st IO 0.5103
(0.1696) (0.2528)

113 1st TC −0.5071 112 1st IO −0.5739
(0.1699) (0.2527)

113 2nd TC 0.0018 201 2nd LS 0.5391
(0.3226) (0.2107)

197 1st TC 0.1738 218 2nd LS −0.4648
(0.1699) (0.2245)

199 1st LS −0.3440 268 2nd TC 0.7906
(0.0866) (0.3228)

199 2nd LS 1.1956 285 2nd LS 0.6050
(0.2605) (0.3248)

236 1st LS 0.0549 288 1st LS 0.2192
(0.0904) (0.1148)

236 2nd LS −0.1507 289 2nd AO 0.7291
(0.2740) (0.3461)

262 1st IO −0.0143 290 2nd LS 1.8661
(0.2541) (0.4523)

265 1st IO 0.1538 291 2nd IO 0.6666
(0.2557) (0.3921)

265 2nd IO 0.9663 293 2nd TC 0.8771
(0.3780) (0.3635)

287 1st LS 0.2843 294 2nd IO 0.5892
(0.1635) (0.4169)

287 2nd LS 1.0422
(0.3074)

288 1st LS 0.1515
(0.1634)

288 2nd LS 1.1609
(0.3036)
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The best solution found in the final population, that is the chromosome for
which the largest fitness function has been computed, yielded both the identified
outliers and their size estimates. The fitness function (6.19) has been computed
with c = 100. As the VARIMA-based method is concerned, for an equal com-
parison we assumed the outlier identification reported by Tsay, Peña and Pankratz,
but estimates have been computed in both cases using the same algorithm based
on the inverse correlations. Difference in the estimated values are rather small,
however, according to the relationships that allows the vector time series inverse
covariances to be expressed as a function of a VARIMA model parameters (see
Battaglia, 1984). The AIC for both models after accommodation for outliers has
been obtained AIC = −166.6653 for the VARIMA-based and AIC = −167.6176
for the GAs-based procedure. This slight improvement is entirely due to parsimony
in outlier identification, as in the former case 20 scalar outliers are detected while
in the latter case the procedure identifies 17 scalar outliers (an outlier in both com-
ponents counts as 2 scalar outliers). As a matter of fact, the log-likelihoods equal
103.3325 and 100.8088 respectively but in the presence of a different number of out-
lying observations detected. In Table 6.4 estimated outlier size and standard errors
are displayed computed from the VARIMA-based and GAs-based procedures.

The two approaches yield rather different dates for identified outliers. The only
matching regards the LS outlier at t = 288 but the GAs-based procedure identifies
a partial outlier in the first component only, while the VARIMA-based procedure
identifies a global outlier in both components. In other cases outliers are detected
at different but close dates. The Tsay, Peña and Pankratz’s procedure, for instance,
is reported to find a TC at t = 55, significant for the first component. The GA
procedure find an IO in t = 54 for the first component only. In this case, confusion
may arise from the fact that the IO and the TC exhibit similar behavior. Another
example is the TC detected by the VARIMA-based procedure at time t = 113,
significant for the first component. The GA procedure found an IO in t = 112
for the first component. In the latter case, the timing and type choice was influ-
enced by the difference between the two consecutive observations, in t = 112 and
t = 113, whilst, in the former one, the behavior of the perturbation after t = 113
was emphasized.



Chapter 7
Cluster Analysis

Abstract Meta heuristic methods have been often applied to partitioning problems.
On one hand this proceeded from the fact that heuristic methods have always been
applied to such problems since their earliest formulations. On the other hand, meta
heuristic found a promising field of application because cluster analysis has two
characteristic features that make it specially suitable for designing algorithms in this
framework. The solution space is large, and grows fast with the problem dimension.
The solutions form a discrete set that cannot be explored by the gradient – based
methods or whatever method that is grounded on the exploitation of the properties
of analytic functions. A large lot of algorithms based on genetic evolutionary com-
putation have been proposed and have been found excellent solvers of partitioning
problems. In this chapter we shall recall the usual classification of cluster algo-
rithms and explain which class may be successfully handled by genetic evolutionary
computation techniques. While most chapter is devoted to crisp partition problem,
the fuzzy partition problem will be discussed as well. Then, the theoretical frame-
work offered by the mixture distributions will be examined related to evolutionary
computing estimation techniques. Also we will account for the genetic algorithms-
based approach to the CART technique for classification. Applications of genetic
algorithms for clustering time series will be described. Finally, the multiobjective
clustering and implementation in the genetic algorithms framework will be outlined.
Some examples and comparisons will illustrate the evolutionary computing methods
for cluster analysis.

7.1 The Partitioning Problem

Let n objects be given each of which is characterized, and, as far as we are concerned
here, coincides with p attributes that may be conveniently defined by real numbers.
That is, we have the usual n× p data matrix where each line may be called an obser-
vation related to one of the n objects and each column corresponds to a variable. We
assume that such a data set has a structure so that objects may be grouped into clus-
ters. The objects that belong to a cluster are to be considered similar, while objects
that belong to different clusters are to be considered dissimilar. Further, we assume
that a similarity (or dissimilarity) measure between each and every pair of objects
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may be computed from their variable values. Furthermore, an optimality criterion is
intended to be devised such that in accordance with the chosen similarity measure
its optimum value is achieved if the internal cluster cohesion and the external cluster
dissimilarity are both maximized.

Then, the partitioning problem consists in grouping the objects so that the result-
ing cluster structure satisfies the chosen optimality criterion. Every object belongs
to a cluster and if none is similar it is assumed to form a cluster on its own.

If the number of clusters g is assumed known the number of partitions of n
objects may be computed (Liu, 1968)

N (n, g) = 1

g!
g∑

j=1

(−1)g− j
(

g

j

)
jn,

while if the number of clusters is unknown, and g is only a pre – specified upper
bound, then the number of possible solutions is equal to

N (n, [1, g]) =
g∑

s=1

1

s!
s∑

j=1

(−1)s− j
(

s

j

)
jn .

This number grows fast with n. Unless n is very small the exhaustive search based
on the enumeration of all partitions to choose the best one, according to some opti-
mality criterion, is unfeasible. For moderate n algorithms are available that ensure
finding the optimal partition in practice. If n is large most algorithms are likely to
find a partition that is sub – optimal but may be quite poor sometimes. This circum-
stance explains on one hand the so many proposal algorithms for finding an optimal
partition and on the other hand the need of meta heuristic stochastic algorithms that
are able to search efficiently so large a discrete solution space.

If an object may belong to only one cluster, then we are performing a hard (or
crisp) partition. Otherwise, if an object is allowed to belong to more than one cluster,
possibly by defining some degree of belonging, we usually say that we are seeking
for a fuzzy partition.

Methods for cluster analysis are the object of a large literature and are an active
research field specially in connection with data mining techniques. General refer-
ences are for instance Kaufman and Rousseeuw (2005) and Berkhin (2002), this
latter for a review of the many clustering techniques that have found applications in
data mining.

7.1.1 Classification

For the moment we may assume that, as it is often the case, clusters are defined
and their number is given. We may call classes such ready-made clusters and each
and every objects in a set O is assigned to its class without ambiguity. Let g denote
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the number of clusters, and let Cs be the set of objects that belong to cluster s,
s = 1, . . . , g. With the convention that an object is identified by its variable values,
we may let the p × 1 column vector xi denote the object i , where

xi =

⎛

⎜⎜⎜⎝

xi1
xi2
...

xip

⎞

⎟⎟⎟⎠ , (7.1)

and xi j denote the observed value of variable j on object i , j = 1, . . . , p and
i = 1, . . . , n. The observed values, that is the observations, are usually arranged in
the data matrix with n rows (each row is an observation taken on an object) and p
columns (each column is a variable)

X =

⎛

⎜⎜⎜⎝

(x1)
′

(x2)
′

...

(xn)
′

⎞

⎟⎟⎟⎠ . (7.2)

A class is often defined by assuming that the variables have to take certain values,
or values for each variables have to belong to some given interval. A convenient
way for defining classes often consists in assuming a set of class identifiers, that is
g p × 1 column vectors

x̄ (h) =

⎛

⎜⎜⎜⎝

x̄h1
x̄h2
...

x̄hp

⎞

⎟⎟⎟⎠ h = 1, . . . , g, (7.3)

that may or may not coincide with p-dimensional observations taken on objects in
the set O. The dissimilarity between xi and x̄ (h) will be denoted by dih̄ . Then, the
object xi belongs to the class Ch if

dih̄ < d̄ (7.4)

for some given positive real constant d̄. For a given classification, it naturally arises
the problem of allocating a new observation to a class. The discriminant analysis
offers methods for designing suitable rules to allow an object to be properly assigned
to a given class. Such methods often are comprised in the domain of supervised
classification.

If classes are not available that may identify clusters, then we have to handle the
unsupervised classification problem. Cluster analysis is often used as a synonymous
for unsupervised classification. In this case we assume that the cluster structure, if
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any, has to be estimated from the data. Almost always the data matrix X offers all
the information needed to compute the n × n dissimilarity matrix,

D =

⎛

⎜⎜⎜⎝

d11 d12 · · · d1n

d21 d22 · · · d2n
...

...
. . .

...

dn1 dn2 · · · dnn

⎞

⎟⎟⎟⎠ , (7.5)

where

di j = d(xi , x j ) (7.6)

for some suitable real valued positive function d. The function d is defined in such
a way d(xi , xi ) = 0 ∀i .

A special class of dissimilarity measures, called dissimilarity coefficients (Gor-
don, 1981, p. 14), are often a convenient choice as they satisfy the following useful
properties

1. di j ≥ 0 ∀(xi , x j ) ∈ O
2. dii = 0 ∀xi ∈ O
3. di j = d ji ∀(xi , x j ) ∈ O.

Some dissimilarity coefficients have the metric property that

di j + dih ≥ d jh ∀(xi , x j , xh) ∈ O.

The dissimilarity coefficients that own the metric property are generally known as
distance measures. The Euclidean distance is a well known example of a dissimilar-
ity coefficient that satisfies the metric property. It is a special case of the Minkowski
metrics

d(λ)i j =
{ p∑

h=1

|xih − x jh |λ
}1/λ

λ > 0, (xi , x j ) ∈ O

by taking λ = 2.
If we are seeking for a hard partition, then a number of clusters g and g subsets

C1, . . . ,Cg of O have to be found such that both

O = C1 ∪ . . . ∪ Cg (7.7)

and

Cs ∩ Cr = ∅, s, r = 1, . . . , n, r �= s (7.8)
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hold. In this section we shall confine ourselves to hard partitioning for unsupervised
classification.

Example 7.1.1 Iris Plants data base

The data have been downloaded from Asuncion and Newman (2007). The data set
refers to n = 150 iris specimens (the objects) from the three classes setosa, ver-
sicolor and virginica. Each class includes 50 objects. Measurements are p = 4,
namely sepal length in cm, sepal width in cm, petal length in cm and petal width
in cm. The number of partitions that may be formed assuming g = 3 clusters is
N (150, 3) = 6.1665×1070. The class setosa is known to be linearly separable from
the other two while these latter are not linearly separable.

For illustrating the distance matrix computation (7.5) we use only the following
sample of 9 objects, 3 for each class. Data are displayed in Table 7.1.

Table 7.1 The 4 measurements for some of the objects in the iris data set

Class Label Sepal length Sepal width Petal length Petal width

Setosa 48 5.1000 3.5000 1.4000 0.2000
Setosa 49 4.9000 3.0000 1.4000 0.2000
Setosa 50 4.7000 3.2000 1.3000 0.2000
Versicolor 98 7.0000 3.2000 4.7000 1.4000
Versicolor 99 6.4000 3.2000 4.5000 1.5000
Versicolor 100 6.9000 3.1000 4.9000 1.5000
Virginica 148 6.3000 3.3000 6.0000 2.5000
Virginica 149 5.8000 2.7000 5.1000 1.9000
Virginica 150 7.1000 3.0000 5.9000 2.1000

The Euclidean distance has been computed for each pair of objects. The distance
matrix is a 9-dimensional square matrix. Only the lower half of the matrix D is
reported because the matrix is symmetric. Notice that all diagonal entries are equal
to zero.

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0.5385 0
0.5099 0.3000 0
4.0037 4.0963 4.2767 0
3.6166 3.6865 3.8497 0.6403 0
4.1641 4.2367 4.4159 0.2646 0.6481 0
5.2849 5.3385 5.4727 1.8439 1.8083 1.6155 0
4.2083 4.1809 4.3347 1.4491 1.0630 1.2530 1.3342 0
5.3019 5.3572 5.5290 1.4071 1.6882 1.1874 0.9487 1.5684 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In general the distances between objects in the same class are markedly smaller than
those between objects in different classes.



204 7 Cluster Analysis

7.1.2 Algorithms for Clustering Data

Cluster analysis algorithms in general may be distinguished according to a useful
classification in hierarchical and non-hierarchical algorithms. The first ones detect
cluster sets ordered according to different levels. Ordering may be either descend-
ing or ascending according to the number of clusters that are present in each level.
Agglomerative and divisive methods are to be distinguished. The former ones pro-
ceed along a bottom-up direction, that is the first level consists in assuming that each
and every object forms a cluster on its own, then in subsequent levels an increasing
number of objects are included in the same cluster until, at the final level, all items
form a single cluster. The latter methods proceed top-down. At the beginning it is
assumed that a single cluster exists which includes all objects. Intermediate levels
are iteratively operated in such a way clusters split to yield an increasing number
of clusters. At the final level each and every object forms a cluster on its own. It
is commonplace to illustrate the hierarchical procedures by means of a graphical
device called dendrogram where aggregating or splitting corresponds to merging or
branching off the branches of a tree. The second class, non-hierarchical algorithms,
are required to produce a unique partition of objects that either maximize or min-
imize a numerical criterion. The non-hierarchical algorithms are often referred to
as optimization techniques that not necessarily form a hierarchical classification of
the data. Most algorithms in this class assume that the number of clusters is known.
However several optimization criteria are available which include the number of
clusters within the set of variables that enter the optimization criterion. A useful ref-
erence as regards clustering algorithms is Hartigan (1975). See also Berkhin (2002)
and references therein.

7.1.2.1 A Basic Relationship for the Dispersion Matrix of the Data

Let X be the matrix of the data (7.2), each row characterizing and corresponding
to one of n objects that form the set O. Assume g clusters and let {C1, . . . ,Cg} be
a known partition of the set O such that (7.7) and (7.8) hold. For the whole set O
the p × p total dispersion matrix T may be computed with entry in each row i and
column j

Ti j =
n∑

h=1

(xhi − x̄i )
(
xhj − x̄ j

)
, (7.9)

where

x̄i = 1

n

n∑

h=1

xhi , i = 1, . . . , p,

is the i th variable average. In matrix form, (7.9) reads
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T =
n∑

h=1

(xh − x̄) (xh − x̄)′ , (7.10)

where x̄ = (x̄1, . . . , x̄ p)
′. Likewise, let x̄ (h) in (7.3) be the vector of the within-

cluster variable averages with entries

x̄h j = 1

nh

∑

xs∈Ch

xs j , j = 1, . . . , p,

where

nh = |Ch |, h = 1, . . . , g

is the number of objects in cluster Ch . The p × p dispersion matrix Wh within any
cluster Ch has entries

W (h)
i j =

∑

xs∈Ch

(xsi − x̄hi )
(
xs j − x̄h j

)
, i, j = 1, . . . , p.

In matrix form,

Wh =
∑

xs∈Ch

(
xs − x̄ (h)

) (
xs − x̄ (h)

)′
. (7.11)

We may consider the pooled within-group dispersion by summing matrices (7.11)
across all clusters and obtain the within-group dispersion matrix

W =
g∑

h=1

Wh . (7.12)

The matrix W accounts for the variability internal to the g clusters. Then consider
the inter-cluster variability defined as the p × p between-group dispersion matrix

B =
g∑

h=1

nh

(
x̄ (h) − x̄

) (
x̄ (h) − x̄

)′
, (7.13)

where nh is the number of objects that belong to cluster Ch . According to the cluster
definition, internal cohesion is larger as smaller the diagonal entries of W , while
external dissimilarity is larger as larger the diagonal entries of B. Other measures
based on (7.12) and (7.13) may be defined. It may be proven that the following basic
relationship

T = W + B (7.14)
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holds. Many clustering criteria are based on (7.14). Moreover, as T is fixed given
the data matrix X , most criteria may be established only in terms of either W or B
because minimization of a monotone non-decreasing function of W is often equiva-
lent to maximization of the same function of B. Well known criteria are, for instance,

• minimizing trace(W ) (it is equivalent to maximizing trace(B)),
• minimizing det(W ) (it is equivalent to maximizing det(T )/det(W )),
• maximizing trace(BW−1) (Friedman and Rubin, 1967),
• maximizing the variance ratio criterion trace(B)

g−1 �
trace(W )

n−g (Calinski and Harabasz,
1974).

This latter criterion includes the number of cluster g as a parameter and it is a pos-
sible choice as an objective function if the number of cluster is unknown.

Example 7.1.2.1 Cars data

The cars data are concerned with 38 1978–1979 model cars and originally have been
collected from Consumer Reports. Each car (the object) is identified by the national-
ity of manufacturer and the car name. For each object 6 measurements are included
in the data set. The gas mileage in miles per gallon (MPG) is reported as measured
by Consumers’ Union on a test track. Other measurements about each car in this data
set are weight, drive ratio, horsepower, displacement of the car (in cubic inches) and
the number of cylinders, and all these were reported by the manufacturer. The data
set used for this example has been downloaded from Statlib (2008). A cluster analy-
sis of MPG, Weight, and Drive Ratio for cars reveals three main clusters, which we
might identify as large sedans (Ford LTD, Chevrolet Caprice Classic, etc.), compact
cars (Datsun 210, Chevrolet Chevette, etc.), and upscale, but smaller, sedans (BMW
320i, Audi 5000, etc.). We retained the three measurements MPG, Weight and Drive
ratio only to give a practical example of (7.14). We assumed g = 3 clusters accord-
ing to the aforementioned partition. The total number of partitions in three clusters
are 2.2514 × 1017. The cluster sizes are 12, 19 and 7 respectively. As we assumed
p = 3 measurements the matrices T , W and B are 3-dimensional square matrices.
The total dispersion matrix, the pooled within-group and between-group dispersion
matrices may be computed as

T =
⎛

⎝
1586.0908 −154.6417 52.3211
−154.6417 18.4876 −9.3131
52.3211 −9.3131 9.9149

⎞

⎠ ,

W =
⎛

⎝
191.1579 −11.8022 4.4025
−11.8022 2.9753 −3.1395
4.4025 −3.1395 6.4567

⎞

⎠ ,

B =
⎛

⎝
1394.9329 −142.8395 47.9186
−142.8395 15.5123 −6.1737
47.9186 −6.1737 3.4581

⎞

⎠ ,

and it may be checked readily that (7.14) is fulfilled.
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Table 7.2 Trace and determinant of total and within-group dispersion matrices of the cars data

W1 W2 W3 W T

Trace 16.8721 179.4628 4.255 200.5899 1614.5
Determinant 16.378 137.2584 0.2135 1157.4 16156

Table 7.2 displays the trace and determinant of total and within-class scatter
matrices. Both trace and determinant of a dispersion matrix may be interpreted as
generalized variance measures. The trace accounts for the dispersion of the mea-
surements (the variables) by summing the dispersions computed for each variable
separately, while the determinant includes also the interactions among the variables.
This latter however involves a much larger computational burden. The basic rela-
tionship (7.14) is reproduced as far as the trace is concerned while the determinant
is not a linear function of matrix entries so that in general det(T ) is not the sum
of det(W ) and det(B). We may note that both trace and determinant of the pooled
within-class scatter matrix is a small percentage of trace and determinant of the
total dispersion matrix, namely 12.42 and 7.16% respectively. This result supports
the validity of the partition in the three clusters. We may notice that the smallest
trace and determinant of the within-scatter matrices has been computed for cluster 3,
while we have obtained larger figures for cluster 1 and even larger for cluster 2. This
latter is to be considered less compact than the other two, namely the measurements
for cluster 2 though close yet are rather far apart. The objects in cluster 1 are more
similar each other and so are the objects in cluster 3.

The criteria that combine the matrices T , W and B yield

• det(T )/det(W ) = 13.9592,
• trace(BW−1) = 9.5779,
• VRC = 123.3527.

These criteria may be regarded as examples of indexes of internal validity. We
shall give more details about the indexes of internal validity in Sect. 7.1.3.1. Such
criteria may serve to decide among several partitions which is to be considered
the best one. Nonetheless, in their own these indexes cannot lead to a meaningful
interpretation. An attempt may be done to compare the criteria computed for the
known partition with the corresponding figures computed for a random partition.
This latter may provide us with a baseline to evaluate the effectiveness of the chosen
measurements or of the clustering criterion. We may consider the partition in 3 clus-
ters obtained from the data set by assuming the same cluster sizes and choosing the
group membership at random. This experiment yielded det(T )/det(W ) = 1.0633,
trace(BW−1) = 0.0628, and VRC = 0.8588. Comparison of these latter figures
with those obtained from the current partition may suggest that the measurements
are to be considered truly useful to define a clustering structure and that maximizing
det(T )/det(W ), trace(BW−1) or the VRC may serve as a valid criterion to find a
proper partition.
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7.1.2.2 Agglomerative Methods

The basic algorithm for implementing agglomerative methods requires that a dis-
tance be defined which is meaningful between both clusters and objects. The algo-
rithm starts by assuming that each and every object is the unique element of a cluster,
that is g = n, xi ∈ C (1)

i and |C (1)
i | = 1, i = 1, . . . , n. The superscript is used to

specify the level of the set of clusters formed by the algorithm. The next step consists
in choosing the closest pair of clusters and merging them to obtain a new cluster,
that is C (2)

r = C (1)
i ∪ C (1)

j . Lance and Williams (1967) define a recurrence formula
which is useful to evaluate the distance between a new proposal cluster Ci ∪C j and
an existing one Cr and synthesize several distances that have been suggested in the
literature. We have

d(Ci∪C j ,Cr ) = αi d(Ci ,Cr )+α j d(C j ,Cr )+βd(Ci ,C j )+γ |d(Ci ,Cr )−d(C j ,Cr )|,

where αi , α j , β, γ are parameters that may be specified according to the methods
we want to implement. For example the well known single linkage technique also
known as nearest neighbor (see e.g. Gower and Ross, 1969) is obtained by setting
αi = α j = 1/2, β = 0 and γ = −1/2. The algorithm ends as soon as all objects
are included in a single cluster, that is g = 1 and C1 = O. It is of interest choosing
a partition in a level that is optimal according to some criterion. This choice often
relies on the analyst’s judgement though several rules have been suggested to choose
in automatic way or to give reliable guidelines in order to help to make the most
convenient choice.

Example 7.1.2.2 Single linkage cluster of the Cars data

Let us consider the data illustrated in Sect. 7.1.2.1 and use the single linkage
agglomerative method to cluster the data. We have n = 38 objects with p = 3
measurements each, namely MPG, Weight, and Drive Ratio. We obtain the partition
displayed as the dendrogram in Fig. 7.1. It is apparent that the data split in two
clusters that merge at a very large distance. In top-down direction, the first cluster
includes 7 upscale, but smaller, sedans, including BMW 320i (37) and Audi 5000
(9), and 12 large sedans, including Ford LTD (18) and Chevrolet Caprice Classic
(17), and the second cluster includes 19 compact cars, including Datsun 210 (33)
and Chevrolet Chevette (5).

7.1.2.3 Divisive Methods

The basic algorithm that characterizes this class of methods proceeds along the top-
down direction. In the first level all objects are included in a single cluster. In the
second level the algorithm seeks for a partition using the distance matrix D (7.5)
under some conditions such as (7.4). The procedure is replicated in each and every
second-level partition so that, in the third level, partitions are present that result from
further division of the partitions found in the second level. The algorithm ends as
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Fig. 7.1 Dendrogram of the cars data according to the single linkage method

soon as each and every object forms a one-element partition. At each step i − 1
the set C (i−1)

j is split into r subsets {C (i)
j1
, . . . ,C (i)

jr
} to optimize some pre-speci-

fied crierion. For example, the method of Edwards and Cavalli-Sforza (1965)
assumes r = 2 at each level, that is all clusters that form the partition at each
level are split in two. The objects that enter the two new partitions are chosen in
such a way that trace(W ) is minimized, where the matrix W is computed from the
objects included in the parent partition only. The method requires a considerable
computational burden even at the first level because the possible partitions of n
objects into two clusters are 2n−1−1, a large number even for moderate n. Bisection
by hyperplanes computed by the singular value decomposition has been suggested
in applications such as document collections (Boley, 1998). Other devices may be
useful to reduce the computation time. Application of GAs to implement the divisive
method will be presented later.

Example 7.1.2.3 Italian regions activity rate and value-added pro-capite

Figures of working people compared to the resident population are referred to as
activity rate. For the 20 regions in Italy the activity rate and the pro-capite value-
added in 2005 have been used as measurements for classification purpose. The data
have been downloaded from ISTAT (2008). With only n = 20 objects the binary
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divisive method is viable. In the first step all 219 − 1 = 524287 partitions in two
clusters have been considered and for each one trace(W ) has been computed. The
best partition has been assumed that with the smallest trace(W ). Then a second step
has been performed to split in two clusters each one of the two clusters obtained in
the first step. In this second step the number of partitions for which trace(W ) had
to be computed has been considerably smaller than in the first step. In fact, the best
partition yielded by the first step of the procedure included a cluster with 12 objects
and a cluster with 8 objects, so that the further binary partitions were 211−1 = 2047
in the first case and 27−1 = 127 in the second one. The dendrogram is displayed in
Fig. 7.2. The first partition in two clusters splits the Italy regions in 12 northern and
8 southern regions, approximately north and south of Rome. The wealthier northern
regions are split in two further and the regions in the north-east that are character-
ized by larger activity rate and value-added cluster together. The two clusters of the
southern regions are rather mixed and do not offer easy interpretation. Obviously
trace(W ) decreases from 208.0759 in the first step to 62.0798 in the second one.
Notice however that the partition in 4 clusters should be preferred according to the
VRC criterion as for 2 clusters we have VRC = 99.2393 while for the partition in 4
clusters we obtain the slight larger figure 111.0983.
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Fig. 7.2 Dendrogram of the Italy regions data according to the binary divisive method
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7.1.2.4 Non-hierarchical Methods

Non-hierarchical methods seek for a unique partition that optimizes a pre-specified
criterion. Unlike the hierarchical methods, the partitions found in each iteration
have little value in their own and are to be considered only approximations of
the final partition. Usually the number of clusters is assumed known. However,
several algorithms that implement non-hierarchical methods assume the number
of clusters as an unknown parameter to be included in the objective function
specification.

The k-means algorithm (see e.g. Hartigan and Wong, 1979) constitutes maybe
the most employed implementation of non-hierarchical methods. For any given k >
1 each of k clusters of n objects is represented by the mean of its objects. The
algorithm starts with k vectors {x (1)0 , . . . , x (k)0 }, called centers or centroids, and a
preliminary partition is obtained by grouping together the objects according to their
distance from the vectors x ( j)

0 ’s. If d(xi , x (s)0 ) is the smallest among the distances

d(xi , x ( j)
0 ), j = 1, . . . , k, then xi is assumed to be included in cluster Cs . This

computation is replicated for each and every object, that is for i = 1, . . . , n. This
step initializes the algorithm. Then iterations follow and from iteration t to iteration
t + 1 two steps are performed.

• A set of k centroids {x (1)t , x (2)t , . . . , x (k)t } is available. A partition of the objects in
k clusters is computed by assigning each and every object to the nearest centroid.

• The cluster means {x̄1, . . . , x̄k} are computed and the centroids are updated by
setting x (1)t+1 = x̄1, x (2)t+1 = x̄2, . . ., x (k)t+1 = x̄k .

Iterations stop as soon as stable clusters are obtained.
The k-means algorithm requires that the number of clusters be pre-specified.

If the number of clusters is unknown, then the algorithm has to be applied for
k = 1, . . . , g, where it is believed that the set O may be reasonably partitioned
in at most g clusters.

A distance (7.6) and an optimality criterion have to be specified. The method
in general depends on the initial centers and different initial choices may lead to
different partitions and different values of the objective function. This means that
the k-means algorithm is likely to yield sub-optimal partitions whilst the global
optimum will be left essentially unknown, unless either n or g or both are very
small. Several variants of the basic algorithm have been suggested to overcome
critical drawbacks. The GAs-based algorithm will be discussed later.

Some methods employ k-medoid algorithms instead of k-means, that is a clus-
ter is represented by one of its point. The main advantages of these methods
consist in that any object type is allowed, not only those that may be repre-
sented by numerical variables, and outliers have only limited impact on compu-
tations. Moreover, such methods have been used for clustering sets of spatial data
(Ng and Han, 1994).
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Example 7.2.4.1 Diabetes data

For this example we shall use the Diabetes data set downloaded from SI (2008). The
Diabetes data consists of p = 3 measurements: the area under a plasma glucose
curve (degree of glucose intolerance), the area under a plasma insulin curve (insulin
response to oral glucose), and steady-state plasma glucose response (SSPG, insulin
resistance) for n = 145 subjects. The subjects are clinically classified into g = 3
groups, chemical diabetes, overt diabetes and normal. The shape of the data set in
three dimensions is that of a “boomerang with two wings and a fat middle.” The
parts differ in that one of the “wings” is almost planar, the other is linear with some
curvature, the “fat middle” is nearly spherical. We have used the k-means algorithm
assuming 3 clusters and the following options.

• Squared Euclidean distances.
• To initialize the algorithm k observations have been chosen at random from the

data set.

Several runs of the k-means algorithm showed that two different solutions are
yielded depending on the centroid set used for initialization. The existence of a
global maximum and a local one of the objective function is the natural explanation.
We report in Table 7.3 the initial and final centroid coordinates in two runs of the
algorithm. The same final coordinates are obtained from many other samples of
initial centroid sets.

Table 7.3 Initial and final centroids in two runs of the k-means algorithm for the diabetes data

Initial centroid Final centroid

Run Centroid Glucose Insulin SSPG Glucose Insulin SSPG

1 1 93 472 285 241.7 1152.9 75.7
2 83 351 81 91.4 359.3 166.7
3 100 367 182 107.4 531.5 323.7

2 1 105 319 143 93.4 375.5 166.2
2 93 391 221 241.7 1152.9 75.7
3 90 327 192 105 525.6 376

The final centroid coordinates obtained in the two runs are very close and for a
cluster the centers are coincident. The initial coordinates are similar as well, though
not so close as the final ones. However, the solution yielded by the algorithm in
the first run may be considered better than that obtained in the second run, as the
misclassification rate has been 15.86% in the former case and 17.93% in the latter.

7.1.3 Indexes of Cluster Validity

A partition may be evaluated according to several criteria. For problems that involve
low dimensional data the graphical display of objects and clusters provides us with a
meaningful insight into the structure of the data. For high dimensional data still two



7.1 The Partitioning Problem 213

or three dimensional plots may be used by resorting to methods for dimensionality
reduction, multidimensional scaling for instance. Though some information will be
lost the visual inspection of the graphical display may turn very useful as regards
the evaluation of the quality of the clustering procedure.

Nevertheless, the need of a single index to assess the cluster validity is apparent
if we have to provide a clustering algorithm with an objective function to guide the
search for some optimal partition. Indexes that serve this purpose are the indexes for
internal cluster validity. Further, we may need to compare two partitions in order to
judge if they are similar. In simulation experiments the true partition, that is the par-
tition that has been assumed to generate the data set, is available, and the quality of a
clustering algorithm may be conveniently summarized by a table of correspondence
or by a single index. In this case we may compute indexes of external validity. Many
such indexes, both for internal and external validation, are available in the literature.
We shall describe here two such indexes that have been commonly employed both
in theoretical studies and practical applications and proved to be reliable and effec-
tive for cluster evaluation. The index of internal validity we shall describe is the
Davies–Bouldin (DB) index, of external validity the corrected Rand index.

7.1.3.1 The Davies–Bouldin index

The objective function for a partitioning problem should preferably include the num-
ber of clusters as an additional parameter to be estimated within the optimization
procedure. An useful measure of cluster validity which incorporates this feature
is the Davies–Bouldin (DB) index (Davies and Bouldin, 1979). A comprehensive
account of the DB index and comparison with several cluster validation indexes
may be found in Bezdek and Pal (1998).

Let the matrix X , as defined by (7.2), denote the observed data. The DB index is
a function of the ratio of the total within – class scatter measure T W SM to the total
inter – class separation measure T I SM . Let k clusters, k > 1, be available and, for
i = 1, . . . , k, let the within i th cluster scatter be defined

Si,q =
⎛

⎝ 1

|Ci |
∑

xh∈Ci

‖xh − x̄ (i)‖q
2

⎞

⎠
1/q

,

where

‖xh − x̄ (i)‖2 =
√√√√

p∑

j=1

(xhj − x̄i j )2,

and q is a pre-specified positive integer. Let the distance between cluster Ci and C j ,
i, j = 1, . . . , k, be defined
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di j,t =
{ p∑

r=1

|x̄ir − x̄ jr |t
}1/t

= ‖x̄ (i) − x̄ ( j)‖t ,

where t is a positive integer that may be selected independently of q.
The Minkowski distance of order q and t generalizes the Euclidean distance

which is used in the definitions of TWSM and TISM though retaining the essential of
the principle behind the objective of obtaining simultaneously maximum cohesion
within cluster and maximum intra-cluster separation. Accordingly, we are search-
ing for a cluster partition such that the Si,q ’s are minimized while the di j,t ’s are
maximized. For each cluster i , let

Ri,qt = max
j, j �= i

{
Si,q + S j,q

di j,t

}
.

Then, the DB index (to be minimized) is defined

DB = 1

k

k∑

i=1

Ri,qt .

The assumption k > 1 ensures that DB is well defined. In general, provided that the
partition that is being considered includes neatly separated clusters, the minimum of
the DB index is achieved in correspondence of the correct number of clusters k = g.
The DB index may be included within an automatic detection procedure easily and
it has been suggested as a valid choice for genetic algorithms – based procedures.
It has to be noticed that if the DB index is assumed as objective function, then
its reciprocal 1/DB has to be assumed as fitness function as the optimal partition
corresponds to the smallest DB value.

Example 7.1.3.1 Indexes of cluster validity of Iris Plants partitions

Let us consider the data set Iris Plants introduced in Sect. 7.1.1. The k-means algo-
rithm has been used to obtain a partition of the data set for each given number of
cluster g, g = 2, . . . , 8. For each given g the algorithm has been run 30 times to take
into account the dependence of the results yielded by the k-means algorithm from
the initial values which have been chosen at random within the observed objects.
The most frequent partition has been assumed as final result for each given g. Then
for each one of the chosen partitions we computed the misclassification rate and 4
internal indexes of cluster validity, namely the DB index, the Dunn’s index (Dunn,
1974) and the VRC and det(W ) criteria introduced in Sect. 7.1.2.1. This latter has
been used according to the modified version suggested by Marriott (1982), that is
the optimal partition is to be considered the one for which g2det(W ) attains its
minimum. In fact, the comparison among the internal indexes of cluster validity has
to take into account primarily the ability of the criterion in choosing the correct
number of clusters as it does not make sense any comparison between values from
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Fig. 7.3 Internal indexes of cluster validity for the partitions computed by the k-means algorithm
varying the pre-specified number of cluster. Circles indicate the number of clusters to choose

different indexes. In Fig. 7.3 the misclassification rate and the internal indexes of
cluster validity are plotted against the number of clusters. The misclassification rate
attains its minimum 10.67% for the partition in 3 clusters as expected. More objects
are misclassified if the wrong number of clusters is assumed. We expect that the
internal indexes attain their optimal value for g = 3. The optimal value may be
either the maximum or the minimum of the computed index values according to the
definition of each index, namely

• VRC: maximize,
• g2det(W ) (M): minimize,
• DB: minimize,
• Dunn’s index (DI): maximize.

Both VRC and DB indexes attain correctly their optimal value (the maximum
and minimum respectively) at g = 3. The other two indexes both display a trough
in correspondence of g = 3 and the parsimony principle could suggest this latter as
the chosen number of clusters. Nevertheless for these two latter indexes the overall
minimum and maximum are attained g = 8 and g = 6 respectively. The misclas-
sification rate is equal to 50% in the latter and 48.67% in the former case so such
solutions seem very poor ones. Notice, however, that no index of cluster validity is
able to give the best performance in all situations so that we simply assume that the
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indexes VRC and DB are appropriate for the Iris Plants data set while the indexes
M and DI may lead to the wrong choice in this context.

7.1.3.2 The Corrected Rand Index

The Rand index (Rand, 1971) is a popular device for comparing partitions. It is
useful as well if we want to check the effectiveness of a clustering procedure by
comparing the actual partition with the estimated partition. A simulation study by
Milligan and Cooper (1986) supports the usage of the Rand index.

Given partitions U and V of the same set O of objects, let a be the number of
pairs of elements that are placed in the same cluster in U and in the same cluster
in V , b the number of pairs of elements that are in different clusters in U and in
different clusters in V , c the number of pairs of elements that are placed in the same
cluster in U and in different clusters in V , and d the number of pairs of elements
that are in different clusters in U and in the same cluster in V . For n elements, the
total number of pairs is

(n
2

)
. We have

a + b + c + d =
(

n

2

)
.

The number of agreements may be assumed equal to a + b, while the number
of disagreements equals c + d. An useful device to compare the two partitions is
Table 7.4 where we assume that U consists in g(U ) clusters {C (U )

1 , . . . ,C (U )
g(U )
} and

V consists in g(V ) clusters {C (V )
1 , . . . ,C (V )

g(V )
}. Let the cluster labels {1, . . . , g(U )}

identify the columns and the cluster labels {1, . . . , g(V )} identify the rows of the
table. Then the cell (i, j) contains the number of objects in O that belong to cluster
C (U )

j according to partition U while belong to C (V )
i according to partition V . The

number of agreements and disagreements between partitions U and V may be easily
computed from Table 7.4.

The Rand index is R = (a + b)/(a + b+ c+ d), and takes values in the interval
(0, 1). The index equals 1 if the two partitions U and V are identical, zero if U
and V disagree on any pair of elements. A more appropriate descriptive measure
should include some correction for chance as the Rand index does not necessarily

Table 7.4 Comparison of partitions U (clusters in columns) and V (clusters in rows), the cells
contain the number of objects classified according to either partitions

V \ U 1 · · · j · · · g(U )

1 n11 · · · n1 j · · · n1g(U )

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

i ni1 · · · ni j · · · nig(U )

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

g(V ) ng(V )1 · · · ng(V ) j · · · ng(V )g(U )
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equal zero if both partitions U and V are purely random. The Hubert and Arabie
(1985) adjusted Rand index assumes the generalized hypergeometric distribution
as the (null) model for randomness. The corrected Rand index is normalized by
subtracting its expected value and dividing by the difference between its maximum
value and its expected value. The index again takes values in the interval (0, 1), and
partitions may be considered in agreement if the index approaches 1, while if the
two partitions disagree the index will be close to zero. In some cases the index may
take small negative values, in general if the two partitions are very different. Let ni j

denote the entry in row i and column j within Table 7.4, and let ni. and n. j denote
the row-wise and column-wise sums respectively. Then, the corrected Rand index
R∗ may be written

R∗ =
∑

i, j

(ni j
2

)− E

{∑
i, j

(ni j
2

)}

1
2

{∑
i

(ni.
2

)+∑ j

(n. j
2

)}− E

{∑
i, j

(ni j
2

)} ,

where E means expectation and

E

⎧
⎨

⎩
∑

i, j

(
ni j

2

)⎫⎬

⎭ =
{∑

i

(ni.
2

)∑
j

(n. j
2

)}

(n
2

) .

The following equalities hold

a =
∑

i, j

(
ni j

2

)
,

b =
∑

i

(
ni.

2

)
−
∑

i, j

(
ni j

2

)
,

c =
∑

j

(
n. j
2

)
−
∑

i, j

(
ni j

2

)
,

and

d =
(

n

2

)
− c − b − a.

It is known that the index R overestimates the agreement measure between the two
partitions, while the index R∗ includes a correct baseline.

Example 7.1.3.2 The European Jobs data

The data are the percentage employed in different industries in Europe countries dur-
ing 1979. The job categories are agriculture, mining, manufacturing, power supplies,
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construction, service industries, finance, social and personal services, and transport
and communications. It is important to note that these data were collected during the
Cold War. Thus it seems natural to expect the data to split into two main clusters i.e.
countries of the communist East Bloc and countries of capitalist Western Europe.
Nonetheless, Yugoslavia and Turkey are expected to stand alone in a singleton
each because both display peculiar though different characteristics. The former was
unaligned and shared some characteristics of both main groups while the latter is
probably more properly classified as an Asian nation since only a small percentage
of its land area lies on the European continent. The data have been downloaded
from Statlib (2008). The data set has n = 26 objects and p = 9 measurements
each. We considered two reference partitions, the first one with g = 3 clusters with
Yugoslavia and Turkey both in the third cluster, the second one with g = 4 and
Yugoslavia and Turkey in separate singletons. In the former case the number of
partitions is N (26, 3) = 4.2361× 1011, in the latter N (26, 4) = 1.8723× 1014.

We used four hierarchical agglomerative methods, namely the single linkage,
complete linkage, average linkage and Ward’s method, and a non-hierarchical
method, that is the k-means algorithm. In Table 7.5 results are reported for g = 3
and g = 4 concerned with the agreement between the reference partition and the
partitions yielded by the 5 methods. The external indexes of cluster validity have
been the misclassification rate (MR), the corrected Rand index (R) and the Jaccard’s
(Jaccard, 1901) index (J). Unlike the preceding sections, the MR is displayed as the
ratio of the misclassified objects to the number of objects and no percentage figures
are computed. The R and J indexes both are greater than zero and less than unity,
where zero stands for complete disagreement and one for complete agreement. The
Ward’s method yields the best partition when compared with the reference partition
in 3 clusters. Unlike the reference partition, the estimated partition is composed of
a small cluster of 3 objects, as Greece joins Yugoslavia and Turkey in the classifi-
cation. There are differences concerned with the two main clusters as well. Portugal
and Spain join the countries in the East Bloc while East Germany joins the Western
Europe countries. Similar results are given by both the complete linkage method
and the k-means algorithm. In this case, however, Ireland too joins the East Bloc.
The reference partition with 4 clusters finds the best agreement with the partition
estimated by the average linkage method. According to such estimated 4 clusters
partition, Turkey forms a singleton while Greece and Yugoslavia are assigned to

Table 7.5 Comparison between reference partition and estimated partition for the European jobs
data

Index\method Single Complete Average Ward k-means

g = 3 MR 0.3462 0.1923 0.3462 0.1538 0.1923
R 0.2123 0.4183 0.2123 0.5178 0.4183
J 0.5203 0.5079 0.5203 0.5806 0.5079

g = 4 MR 0.1923a 0.4615 0.2308 0.4615 0.5000
R 0.4535a 0.1784 0.4181 0.1763 0.1569
J 0.5165a 0.2722 0.5053 0.2471 0.2299

a For the estimated partition g has been set to 6



7.2 Genetic Clustering Algorithms 219

the same cluster. As regards the larger clusters, again East Germany is assigned
to the cluster that includes the Western Europe countries excepted Ireland, Portu-
gal and Spain that join the East Bloc countries. The single linkage method yields
appreciable results only if 6 clusters are allowed. In this case Greece, Spain, Turkey
and Yugoslavia form 4 singletons while the two main clusters include most of the
East Bloc and Western Europe countries respectively excepted East Germany that
is found in the Western Europe cluster and Ireland and Portugal that are included in
the East Bloc countries.

7.2 Genetic Clustering Algorithms

A large amount of GAs-based procedures has been developed to solve cluster anal-
ysis problems incorporating several different features, for instance large data sets,
cluster constraints and special data structures (Murthy and Chowdhury, 1996, for
instance). Genetic algorithms may be viewed in this context as function optimizers
in the sense that they perform a search for the optimal solution in whatever space a
positive real valued function may be defined. The set of candidate solutions has to be
allowed to include at any step any feasible solution and no constraint is usually intro-
duced to leave parts of the solution fixed once and for all. Multi-objective clustering
has been suggested by Ferligoj and Batagelj (1992) and GAs-based multi-objective
cluster analysis has been introduced by Bandyopadhyay et al. (2007). In principle
the hierarchical algorithms framework does not fit the requirement typical of genetic
algorithms, as of almost all meta heuristics, to move freely around the solutions
space. For this reason genetic clustering has been developed essentially in the non
hierarchical framework. However, the GAs-based implementation of a hierarchical
divisive method will be considered. As regards non hierarchical methods, we shall
consider in detail the two common alternatives. The first one exploits the idea which
supports the quick cluster algorithm, the second one develops along the guidelines
of the k-means algorithm and its variants.

7.2.1 A Genetic Divisive Algorithm

GAs seem specially useful for handling divisive clustering iterative algorithm which
are designed in such a way at each iteration each cluster that includes more than 2
objects is to be split into two new clusters. This case is attractive because a simple
binary coding which is both natural and easy to interpret may be used for each
splitting task. Let a data matrix X be available defined as in (7.2). An observation is
a row of X which identifies an object in a given set O. A row of X is the transpose of
the p-dimensional vector (7.1). Let the algorithm start with all observations included
in a single cluster C (0)

1 and let g(0) = 1 be the initial number of clusters. In the
generic iteration t there will be g(t) clusters with cluster labels the positive integers



220 7 Cluster Analysis

{1, . . . , g(t)}. A cluster will be denoted C (t)
k where the superscript identifies the

iteration and the subscript the cluster label.
Let s be the population size, N the number of iterations, pc and pm the probabil-

ities of crossover and mutation respectively and let f = trace(B) denote the fitness
function, where the matrix B is the between-cluster scatter (7.13). The first step of
the algorithm consists in splitting C (0)

1 into the two clusters C (1)
1 and C (1)

2 in such a
way f is maximized. The genetic algorithm we use for this task may be described
as follows.

• Encoding. Let n(0)1 denote the number of objects in C (0)
1 . Then a binary chromo-

some of length n(0)1 is generated where the i th gene is either 0 or 1 whether we

want the i th object to be assigned to the cluster C (1)
1 or C (1)

2 respectively.
• Initial population. We generate uniformly randomly s binary strings. The all-zero

and all-unity strings are discarded and new strings are generated for replacement.
Each binary string represents a chromosome that may be decoded to identify two
new clusters.

• Genetic algorithm. The three usual step of the GA are performed N times.

1. Selection. The fitness function of each chromosome is computed and the
next population is formed by sampling with replacement from the current
population. According to the roulette wheel rule the selection probability
for a chromosome is proportional to its fitness value. The elitist strategy is
applied, that is the best chromosome in the current population is included
in the next population if no better one is selected. In this latter case the
worst chromosome in the next population is deleted to keep unchanged the
population size s.

2. Crossover. �s/2� chromosome pairs are chosen and the paired chromo-
somes may exchange part of their genes with probability pc. The single
point crossover may be used. The offsprings replace their parents provided
that neither is the all-zero or the all-one string. In this latter case the parents
pass to the next generation unchanged.

3. Mutation. Any bit of any binary string may flip with probability pm . If a
mutation yields the all-one or the all-zero string then the chromosome pass
unchanged to the next population.

Note that in this context a chromosome is a binary string and a chromosome gene
is a bit. Moreover the binary string that defines the chromosome does not encode
any integer or real number as its meaning is completely different from usual binary
encoding. In the present case the chromosome meaning stems from the one-to-one
mapping between the observations labels and the gene locations.

The iteration of the divisive genetic algorithm may be described as the passage
from step t to step t + 1 as follows.

• Set g(t+1) = g(t),
• For k = 1 : g(t)
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– If the set C (t)
k includes less than 2 objects, next k,

– Else perform the divisive GA on the set C (t)
k to obtain C (t+1)

k1
and C (t+1)

k2
, and

set g(t+1) = g(t+1) + 1

• Next k.

Then algorithm stops as soon as there are no more clusters to split, that is when
the partition of the set O in n clusters each including a single observation is attained.
The we may examine the partitions obtained at each step t and choose the one that
fulfils some appropriate criterion, for instance a desired number of clusters.

Example 7.2.1.1 Genetic divisive algorithm for Italian regions data

In Sect. 7.1.2.3 a hierarchical divisive method has been applied where the optimal
cluster structure has been found by the complete enumeration of all possible parti-
tions into two clusters. Finding the best split in two clusters requires 524287 eval-
uations of the within-cluster scatter matrix W . Such computational burden ensures
that the optimal partition is found that corresponds to the minimum of trace(W ).
The GAs may allow us to obtain the optimal partition by performing only a limited
number of evaluations of trace(W ). We run the divisive GA 5 times and obtained
the optimal partition with less than 200 iterations in 3 cases and with less than 5000
iterations in the remaining two cases. We used a population size s = 40 so that
the number of evaluations of trace(W ) required to attain the optimal partition has
been 200,000 at most and no more than 8000 in three cases. In Fig. 7.4 the fitness
function evolution in 5 runs is plotted against the number of iterations. The fitness
function is computed as trace(T ) − trace(W ) so that the GA has to maximize the
fitness function to attain the optimal partition. For the present example the mini-
mum of trace(W ) is equal to 208.0759 while the trace of the total scatter matrix
T is trace(T ) = 1355.3. So the maximum of the fitness function is 1147.2241.
This latter figure is the maximum value of trace(B) where B is the between-cluster
scatter matrix. We may notice that in 3 cases the convergence is very quick and the
fitness function exhibits a steep ascent behavior. If such quick convergence does not
occur the fitness function increases rather slowly.

7.2.2 Quick Partition Genetic Algorithms

The quick partition algorithm (Hartigan, 1975) starts with the list of n objects. Com-
putations are performed on the dissimilarity matrix D. If there are storage problems,
that is if n is very large, the data matrix X may be used conveniently as input to the
algorithm while dissimilarities may be computed any time they are needed with
obvious additional computation cost. The skeleton of the algorithm is as follows.

1. Let i = 1, s = 1 and xi ∈ Cs

2. While i < n let i = i + 1, otherwise stop

• For j = 1 : s,
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Fig. 7.4 Fitness function for the genetic divisive algorithm in 5 different runs. The dotted lines
correspond to the cases of fast convergence to the maximum while the solid and dashed lines refer
to the cases where the evolution towards the maximum is slower

• If, for each r : xr ∈ C j , di,r < d̄ then xi ∈ C j , |C j | = |C j | + 1 and exit,
otherwise next j

3. If xi is not assigned to any existing cluster, then s = s + 1 and a new cluster Cs

is initialized with xi ∈ Cs .

This algorithm is very fast but depends heavily on the order of objects. A solution
could be to consider all permutations, but this would involve too much computation,
practically unfeasible even for small size problems. Some devices may be useful,
such as several restarting of the algorithm by using random permutations. This
device may be conveniently handled by ordered genetic algorithms. Let us briefly
explain how these kind of GAs work. Let 1, . . . , n be the labels of the objects in the
given set O. In this context a permutation is itself a potential solution of the problem,
because the quick partition algorithm generates a unique partition given the initial
permutation and the problem-dependent constant d̄. Then, the initial population is
a subset of the set of all permutations of the natural numbers 1, . . . , n. Given the
size N of the population, the chromosomes in the population are N permutations.
Usually they are randomly generated and it seems convenient to impose that all
permutations are different each other.

The decoding of the chromosomes is performed by the quick partition algorithm.
For each chromosome the number of clusters and the assignment of objects to clus-



7.2 Genetic Clustering Algorithms 223

ters are well defined after decoding. The partition that is obtained as a result has to
be evaluated by an index of internal cluster validity. A transform of the index may
be used to meet the requirements for it to represent a suitable fitness function. The
initial population is assumed as the current one, and, through a pre-specified number
of iterations N , the following steps are executed.

7.2.2.1 Selection

The well known roulette wheel rule may be used for selecting the chromosomes
that in the next generation are to be maintained in the population. The probability
for a chromosome to remain in the population is proportional to its fitness function.
A chromosome may well be selected more than once, while other chromosomes
may disappear, if we want the size s of the population to be constant. The elitist
strategy has to be adopted to prevent the possible loss of the best chromosome in
the past population. This latter circumstance has to be avoided if each and every
chromosome selected for the next generation has a fitness function smaller than the
best chromosome in the past generation. If this latter is not selected, yet it is taken
to replace the chromosome with smallest fitness. Such reproduction strategy implies
complete replacement (or generational gap 1), that is all the s selected chromosomes
replace the old chromosomes

7.2.2.2 Crossover

Let pc denote the crossover rate, that is the probability that a couple of chromosomes
undergo the crossover procedure. In the applications, for ordered GAs, pc usually
ranges in the interval [0.6, 0.9]. We may choose among several mating strategies.
Selecting pairs of chromosomes at random may imply that a chromosome is allowed
to enter more than a couple for possible crossover. If we want each and every chro-
mosome to undergo crossover, then the alternative strategy may be chosen that con-
sists in splitting the population in two, so having two sets of chromosomes of size
s/2. Obvious corrections apply if s is odd. Then chromosomes of first and second
set are paired at random.

For ordered GAs problems may occur if the usual crossover devices, such as the
one cutting point crossover, are adopted, because these crossover devices do not
guarantee that the offsprings are permutations as their parents are. Several crossover
devices have been proposed for the special purpose of obtaining permutations as
offsprings from pairs of permutations. Instances are the ordering crossover (OX)
(Davis, 1985) and the partially matched crossover (PMX) (Goldberg and Lingle,
1985). We shall describe the PMX. Comparisons with OX and other reordering
operators and some theoretical issues are addressed in Goldberg (1989b) and Jones
and Beltramo (1991).

To perform the PMX, two chromosomes are randomly selected within the current
population. Moreover, two crossing sites, where the two chromosome strings will be
cut, are randomly chosen in the range from 1 to n. Then, the object labels included
between these two cut points are exchanged. This procedure cannot be expected to
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yield two new permutations necessarily. For instance, it may happen that the new
chromosomes contain some labels twice while some other labels may be missing.
To solve this problem, the mapping defined by the exchange itself turns out useful.
If a label occurs twice, the one outside the sub-string between the crossing sites is
replaced by its image given by the correspondence induced by the map. For example,
let n = 9 and the cutting points for the two permutations that are undergoing the
crossover be selected 4 and 7 (let the cut points be denoted with “|”)

123|4567|89

452|1876|93

The exchange of the labels between the two cut points will give

123|1876|89

452|4567|93

but, in the first chromosome, labels 1 and 8 are each included twice, and so are labels
4 and 5 in the second one. The mapping {1, 4} and {8, 5} allows the problem to be
solved, so yielding the following two chromosomes, that are “legal” permutations,

423|1876|59

182|4567|93

It has to be noted that such a procedure has to be iterated if the situation is more
complicated. Consider, for instance, the chromosomes

123|4567|89

472|1856|39

that, after the crossover, become

123|1856|89

472|4567|39

The mapping, when applied as before, yields the two chromosomes

423|1856|59

162|4567|39

that are not yet legal permutations. The mapping, however, may be used again. The
iteration gives
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423|1856|69

152|4567|39

and finally yields

423|1856|79

182|4567|39

It is very unlikely that this kind of iterative mapping application be unable to deliver
a pair of ‘legal’ offsprings.

7.2.2.3 Mutation

The third step of the GAs is mutation, for which the selection of a mutation rate
pm , usually small, is required. The figures found in the applications usually vary
from 0.001 to 0.1. Mutation is allowed to occur at rate pm per gene. This operator
ensures that the population maintains some diversity, as any gene may mutate at any
iteration. As a matter of fact, selection and crossover do not create new genes, so it
may happen that if a gene in a locus comes to assume the same value for all chro-
mosomes it will not change anymore in next generations. The smallest change that
may intervene in ordered GAs consists in the exchange of two genes. So, each label
in each chromosome is considered in turn, and, with probability pm , the mutation is
performed by swapping the current label with another one selected at random. For
example, let k = 9, and consider the chromosome

1234|5|6789.

If, for the gene 5, an uniform random number u in the interval (0, 1) is generated
such that u < pm , then 5 mutates. One of the remaining labels is selected at random,
say 8. It results the new permutation

1234|8|67|5|9,

which replaces the previous one.

Example 7.2.2.1 Protein Localization Sites data

This is the E.coli data set that may be downloaded from Asuncion and Newman
(2007). The number of instances is n = 336 and the number of (predictive) attributes
is p = 7. The predicted attribute is the localization site of protein and is used as the
class label. The predictive attributes are as follows.

• mcg: McGeoch’s method for signal sequence recognition.
• gvh: von Heijne’s method for signal sequence recognition.
• lip: von Heijne’s Signal Peptidase II consensus sequence score. Binary attribute.



226 7 Cluster Analysis

• chg: Presence of charge on N-terminus of predicted lipoproteins. Binary attribute.
• aac: score of discriminant analysis of the amino acid content of outer membrane

and periplasmic proteins.
• alm1: score of the ALOM membrane spanning region prediction program.
• alm2: score of ALOM program after excluding putative cleavable signal regions

from the sequence.

The class is the localization site. We list the 8 known clusters and the number of
objects that belong to each one.

cp (cytoplasm) 143
im (inner membrane without signal sequence) 77
pp (perisplasm) 52
imU (inner membrane, uncleavable signal sequence) 35
om (outer membrane) 20
omL (outer membrane lipoprotein) 5
imL (inner membrane lipoprotein) 2
imS (inner membrane, cleavable signal sequence) 2

The number of partitions in g = 8 clusters is very large as N (336, 8) = 6.8032×
10298. We used the genetic quick partition algorithm described in Sect. 7.2.2 to
recover the data set known partition. Usually GAs maximize a real positive valued
fitness function, so we define for convenience for the object pair (xi , x j ) a similarity
index vi j = 1/di j , i �= j , where di j is the squared Euclidean distance. Then the
fitness function may be defined as the k-min cluster criterion (Sahni and Gonzalez,
1976)

f (C1,C2, . . . ,Cg; g) =
g∑

ω=1

∑

i, j∈Cω,i �= j

vi j ,

where g is the number of clusters and {C1,C2, . . . ,Cg} denotes the partition that
may be decoded from the current chromosome. Application of this criterion to clus-
ter of time series will be discussed in Sect. 7.6.1. The GA parameters have been
chosen as follows.

• Population size s = 10,
• Crossover probability pc = 0.8,
• Mutation probability pm = 0.01,
• Maximum number of GA iterations 100,
• Threshold 2.

The last parameter is specially important in this algorithm because the threshold
controls the aggregation of the objects. If the threshold is large then it will be more
difficult for two objects to belong to the same cluster. The value appropriate for
the threshold depends on the definition of the distance and on the average of the
computed similarities. The similarity sequence computed for each and every pair
of objects has mean value equal to 8.3091. This latter may give only a guideline
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Table 7.6 Comparison between known and estimated partitions for the E.coli data. Estimated
group labels are listed in the first column and the known group labels in the first row

Cluster 1 2 3 4 5 6 7 8 Total

1 0 1 1 1 0 0 0 0 3
2 137 4 7 0 0 0 0 0 148
3 3 1 42 0 19 0 0 1 66
4 0 65 1 33 0 0 0 1 100
5 1 6 0 0 0 0 0 0 7
6 0 0 0 0 0 5 1 0 6
7 0 0 0 1 1 0 1 0 3
8 2 0 0 0 0 0 0 0 2
9 0 0 1 0 0 0 0 0 1
Total 143 77 52 35 20 5 2 2 336

for a first approximation and running the algorithm with some trial thresholds is
advisable as the distribution is rather disperse (standard deviation 20.5185).

The largest fitness function value has been obtained at iteration 41. The best
estimated partition has g = 9 clusters. Table 7.6 allows the known and estimated
partitions to be compared. The largest cluster is recovered almost entirely while the
pairs of clusters (3, 5) and (2, 4) of moderate size are not discriminated. Notwith-
standing, the corrected Rand index is rather large and equal to 0.6937. Using alter-
native dissimilarity indexes (city block, Mahalanobis distance, correlation) does not
improve this result.

7.2.3 Centroid Evolution Algorithms

The k-means algorithm yields reliable and accurate solutions to most partitioning
problems and in general it is as fast as the quick partition algorithm. However, it
suffers of a similar problem as the quick partition algorithm. This latter depends
heavily on the choice of the initial permutation of the objects in the set, while the
k-means algorithm depends heavily on the choice of the starting centers that repre-
sent each and every cluster in the initial partition. Further, the number of clusters
has to be set in advance. In the quick partition algorithm the number of clusters
may well be left unknown, but the key-constant d̄ has to be chosen anyway which
is essential as regards the determination of the number of clusters. As for quick
partition algorithm, random restart may soften the dependence of the final optimal
partition by the initial settings. Evolutionary algorithms may simultaneously seek
for number of clusters and cluster centers so that some suitable objective function
be optimized.

We shall describe the algorithm Genetic Clustering for Unknown K (GCUK)
(Bandyopadhyay and Maulik, 2002) which exemplifies well this class of evolution-
ary clustering algorithms. GCUK refers directly to the k-means algorithm, though a
number of features are added and special devices are adopted to allow the number
of groups to vary. A suitable interval [gmin, gmax], where gmin > 1 and gmax ≤ n
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has to be pre-specified. The chromosome has fixed length gmax. The characteristic
features of GCUK may be summarized as follows:

• Encoding. Any solution is coded as a string of gmax symbols. These latter may
be either center coordinates or the character # that in this context reads “don’t
care”. The genes of the first type are vectors of p floating-point numbers each
of which represents a cluster. The genes of the second type account for empty
clusters. Their introduction is essential to ensure the algorithm to search for both
the number of clusters and the assignment of objects to clusters at the same time.
As g > 1 the number of symbols # cannot be greater than gmax − 2. However,
chromosomes possibly may not include any “don’t care” symbol at all. In gen-
eral, the chromosome will contain, arranged in any order, g centers and gmax − g
symbols #.

• Fitness function. Each chromosome is associated, as a measure of adaptation to
the environment, the Davies-Bouldin index (DB). DB is a function of the ratio of
the sum of the internal cluster dispersion and the cluster separation and depends
on the number of clusters. So DB is a suitable objective function for the case of
unknown number of clusters. The algorithm yields as optimal partition that which
corresponds to the minimum DB. As evolutionary algorithms usually maximize
the fitness function, this latter is defined equal to 1/DB.

• Initial population. The size s of the population has to be pre-specified. Then, in
the initial population for i = 1, 2, . . . , s an integer gi is generated uniformly
randomly in [gmin, gmax]. In the data set O gi objects are chosen at random.
Each one of these gi objects are assigned to a gene selected at random within
the chromosome. The genes that are left unassigned are set to the symbol #.

The genetic operators implemented by GCUK are the roulette wheel parent selec-
tion, the single point crossover and mutation.

• Selection. Each chromosome is examined and its fitness function is evaluated.
The probability that any chromosome will be inserted in the new generation is
proportional to its fitness (roulette wheel parent selection). The old population is
entirely replaced by the chromosomes selected to form the new one.

• Crossover. With a fixed probability pc, two parent chromosomes are selected for
generating two children chromosomes. A positive integer number is randomly
chosen in [1, gmax]. Then, the genes from the right side of the chosen number are
exchanged between the parent chromosomes. Notice that in this context a gene is
either an array of real numbers (the coordinates of a centroid) or a symbol #.

• Mutation. Each and every centroid coordinate mutates with probability pm . Let
ν denote a coordinate. Then, if a mutation occurs, ν becomes either ν ± 2δν if
ν �= 0 or ±2δ if ν = 0. δ is a number generated from the uniform distribution in
[0, 1]. The + or − sign occurs with equal probability.
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Example 7.2.3.1 The Wisconsin breast cancer data

This breast cancer database was obtained from the University of Wisconsin Hospi-
tals, Madison from Dr. William H. Wolberg. There are 699 cases classified 458 as
benign and 241 as malignant (g = 2). The number of variables is p = 9 and in 16
cases some values are missing. Using list-wise deletion makes a data set of n = 683
cases be available, 444 benign and 239 malignant. The number of possible partitions
in two clusters is N (699, 2) = 1.315× 10210. The 9 variables are as follows.

1. Clump Thickness
2. Uniformity of Cell Size
3. Uniformity of Cell Shape
4. Marginal Adhesion
5. Single Epithelial Cell Size
6. Bare Nuclei
7. Bland Chromatin
8. Normal Nucleoli
9. Mitoses

The data may be downloaded from the URL http://www.ailab.si/orange/ (Demsar
et al., 2004).

We run the GCUK-clustering algorithm using the following GA parameters.

• 50 population size
• 100 number of iterations
• 2 and 10 the minimum and maximum number of clusters
• 0.8 crossover probability
• 0.001 mutation probability

For computing the Davies-Bouldin index we set q = 1 and t = 1 for the sake of
simplicity.

The GA estimate of the number of clusters has been g = 2. Estimated partition
conformity to the known partition is summarized in Table 7.7. Only 28 cases out
of 683 are misclassified. The recovery of the known clusters is satisfactory as sug-
gested as well by the large values of the Rand and Jaccard indexes of external cluster
validity.

Table 7.7 Results obtained from the GCUK algorithm using the Davies-Bouldin index (DB). Esti-
mated partition is evaluated by the misclassification rate, the corrected Rand index and the Jaccard
coefficient
DB Fitness function Misscl.rate Rand Jaccard

0.2689 3.7187 4.1% 0.8409 0.8664
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7.2.4 The Grouping Genetic Algorithm

The grouping genetic algorithm proposed by Falkenauer (1998) forms the basis of
the algorithm GGA developed by Baragona et al. (2001b). The fitness function is
provided by the Calinski and Harabasz (1974) variance ratio criterion displayed
at the end of Sect. 7.1.2.1. Let X be the n × p data matrix (7.2) where each
row corresponds to an observations. The chromosome for encoding a candidate
solution is a string of integer values of length n + g where n is the number of
observations and g is the number of clusters. Two distinct substrings have to be
distinguished in each chromosome, the first one of length n and the second one of
variable length g. In the former each gene, which may take an integer value between
1 and g, relates to a specific object and denotes the cluster to which the object itself
belongs. The latter encodes the clusters labels as a sequence of g integer numbers.
The population is evolved by applying the genetic operators selection, crossover,
mutation and inversion. This latter operator has been introduced by Holland (1975)
and several implementations have been suggested by Goldberg (1989b) specially
in ordered genetic algorithms. The variable length chromosome encoding requires
that a specialized crossover operator has to be implemented. The genetic operators,
except mutation, are applied only to the last substring of a chromosome, that is
the group-part substring. The parameters to be pre-specified are the population size
s, the probabilities of crossover pc, mutation pm and inversion pi , the maximum
number of clusters gmax and the maximum number of iterations N . The population
is initialized by generating a number g from a uniform distribution in [1, gmax] for
each chromosome. Then each object is assigned to a group by generating at random
a number from a uniform distribution in [1, g].

The GGA operators are defined as follows.

1. Selection. The selection is performed by using the roulette wheel rule and the
new population entirely replaces the past one. To improve the genetic algorithm
performance and ensure asymptotic convergence the elitist strategy is applied. If
the best chromosome in the past generation has been neither selected nor pro-
duced by the evolutionary operators and no better chromosome is included in the
next generation, then such best chromosome replaces the worst chromosome in
the next generation so that the population size remains fixed.

2. Crossover. The Bin Packing Crossover (BPX) proposed by Falkenauer (1998)
is adapted to the fitness function in order to accelerate the convergence towards
the solution. The objects occurring twice are put aside and each is re-assigned
to the group whose centroid is the nearest one in terms of the squared
Euclidean distance. The BPX is performed on each pair of chromosomes with
probability pc.

3. Mutation. A mutation occurs when an object moves from one cluster to another.
Therefore, in practice, any gene of the first substring of each chromosome under-
goes mutation with probability pm by changing its value to another one chosen
randomly among values within the second substring.
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4. Inversion. For each chromosome in the population, inversion may take place with
pre-specified probability pi as follows. Two cutting points are randomly chosen
in [1, g], c1 and c2, say, where c1 ≤ c2. The genes between the two cutting points
are taken in reverse order.

Example 7.2.4.1 Thyroid gland data

Five laboratory tests are used to try to predict whether a patient’s thyroid is to be
classified ’normal’, hypo and hyper functioning. The diagnosis (the class label) was
based on a complete medical record, including anamnesis, scan etc. There are a
total of n = 215 observations and the number of variables is p = 5. The number
of known clusters is g = 3 (1 = normal, 2 = hyper, 3 = hypo). We have to search
among N (215, 5) = 1.5826×10148 partitions. We downloaded the data set from the
URL http://mlearn.ics.uci.edu/databases/thyroid-disease (Hettich and Bay, 1999).
The variables correspond to the following measurements.

1. T3-resin uptake test. (A percentage)
2. Total Serum thyroxin as measured by the isotopic displacement method.
3. Total serum triiodothyronine as measured by radioimmuno assay.
4. basal thyroid-stimulating hormone (TSH) as measured by radioimmuno assay.
5. Maximal absolute difference of TSH value after injection of 200 micro grams of

thyrotropin-releasing hormone as compared to the basal value.

The GGA has been run on this data set using the following parameters.

• Population size s = 40,
• maximum number of iterations N = 2000,
• probability of crossover pc = 0.8,
• probability of mutation pm = 0.01,
• probability of inversion pi = 0.01,
• elitist strategy,
• generational gap 1.

Four fitness functions have been used and results recorded for each one. The
Calinski and Harabasz’s variance ratio criterion (VRC) (Calinski and Harabasz,
1974) has been introduced already in Sect. 7.1.2.1. Then a version of the index
suggested by Marriott (1982) has been used defined as

M = g−2 det(T )/det(W )

which is intended to be maximized. Two other indexes have been considered, the
first one suggested by Banfield and Raftery (1993, p. 805) defined as

S∗ =
g∑

k=1

nk log (Sk/nk) ,
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where (for k = 1, . . . , g) Sk = trace(A−1Ωk), A is a known matrix and Ωk is
the diagonal matrix of the eigenvalues of the within-cluster scatter matrix Wk . Here
we chose to set A = diag(α1, . . . , αp) where αi = λi/λ1, (λ1, . . . , λp) are the
eigenvalues of W/n arranged in descending order and W is the pooled within-
cluster scatter matrix. The second index has been considered the criterion given in
Symons (1981, equation (12) p. 37). This index (let us call it S(g, p)) includes the
term

∑g
k=1 nk log{det(Wk/nk)} and further terms which take into account the data

dimension p. These latter two criteria have to be minimized, so the fitness function
has been set to exp(−S∗) and exp{−S(g, p)}.

The behavior of the four fitness functions is displayed in Fig. 7.5. We may note
the usual shape of an increasing step function with frequent large jumps at the first
iterations and rare smaller jumps at later iterations. An exception is the S∗ crite-
rion that increases almost continuously almost until the last iteration. The differ-
ence resides in that S∗ is a function of the eigenvalues while the other criteria are
functions either of the trace or the determinant of the within-cluster scatter matrices.

The GGA estimate for the number of clusters is 3 regardless of the fitness func-
tion used. In Table 7.8 the partitions obtained by the GGA using each of the four
fitness functions are evaluated by two external indexes of cluster validity, the mis-
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Fig. 7.5 Evolution of four fitness function used in the GGA algorithm applied to the Thyroid data.
Symons index (Solid line), variance ratio criterion (dashed line), Marriott’s criterion (dotted line)
and Banfield and Raftery’s S∗ index (dashed dotted line) are displayed. Each of the GAs run 2000
iterations
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Table 7.8 Results obtained from the GGA algorithm using 4 fitness function specifications evalu-
ated by the misclassification rate and the corrected Rand index

Fitness function VRC M S∗ S(g, p)

Misclass.rate (%) 18.60 22.79 23.72 4.19
Rand index 0.5791 0.3501 0.3966 0.8603

classification rate and the corrected Rand index. The indexes yield the same ranking
but differences among the results become more or less apparent. The best result
is obtained by using the fitness function based on the S(g, p) criterion, with the
corrected Rand index equal to 0.8603 and 9 cases misclassified out of 215 (4.19%).
Then the VRC yields a rather satisfactory result while the remaining two criteria
seem to have less discriminant power. According to the misclassification rate, the
differences among the three fitness functions that give inferior results are not too
much apparent because there are between 40 and 50 misclassified cases. The per-
formance of the S(g, p)-based fitness function may be explained by following the
discussion in Banfield and Raftery (1993). The clusters in the data set are ellipsoidal
and differ for orientation, size and shape so that the criterion S(g, p) may give the
best performance because it does not impose constraints on clusters. The index S∗
assumes that the clusters have the same shape, and the other two criteria, based on
trace and determinant of the pooled within-cluster scatter matrix, assume the same
size and shape.

7.2.5 Genetic Clustering of Large Data Sets

The clustering algorithm of Tseng and Yang (2001) is oriented to the cluster analysis
of very large databases. The algorithm proceeds in two steps, the first one for prelim-
inary aggregation of objects in “first level” clusters, called connected components,
the second one to further aggregate the connected components obtained in the first
step to yield the final objects partition. A suitable threshold d̄ is computed from
the data and objects are considered one at the time in arbitrary order. The first one
constitutes the first connected component, the second one enters the same compo-
nent if its distance is less than d̄ , otherwise it starts a new connected component,
and so on. If an object may belong to two connected components or more, the one
such that its first element has smallest distance is chosen. This first step reduces the
number of objects from n to m, where it is hoped that m � n. In the second step
a fitness function is defined and computed basing on the information obtained in
the first step. Then a population of s binary string of length m is generated at ran-
dom. A one-to-one mapping is defined between the characters of a binary string and
the connected components. If the connected component corresponds to 1 then it is
considered an “aggregation point” while any connected component that corresponds
to “0” is aggregated to the nearest aggregation point. The binary string population
is evolved by a GA that uses standard genetic operators for binary chromosomes.
Usually a good partition is achieved corresponding to a large value of the fitness
function.
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7.3 Fuzzy Partition

Fuzzy partition (see, for instance, Hoppner et al., 1999) may be thought of as a
generalization of hard partition in that, given n objects {x1, . . . , xn} = O ⊆ R

p,
membership of an object xi to a cluster Ch , h = 1, . . . , c, is not exclusive. Notice
that we use the convention usual in fuzzy partition to denote c the number of clusters
instead of g. Property (7.7) still has to hold while the validity of property (7.8) is no
longer required. A certain amount of overlapping among subsets {C1, . . . ,Cc} ⊂ O
is allowed. The n×c fuzzy partition matrix U defines the degree of membership μik

of the object xi in the group Ck provided that the following conditions are fulfilled

μik ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ k ≤ c,
c∑

k=1

μik = 1, 1 ≤ i ≤ n, (7.15)

0 <
n∑

i=1

μik < n, 1 ≤ k ≤ c.

Knowledge of the matrix U allows a fuzzy partition to be uniquely identified. Notice
that a hard partition could be defined in exactly the same way but the μik’s would
have to assume only the values 0 and 1.

7.3.1 The Fuzzy c-Means Algorithm

The most popular algorithm to obtain an optimal fuzzy partition according to a
suitable criterion is the fuzzy c-means (FCM) algorithm (Bezdek, 1981). The FCM
is an iterative method which yields the fuzzy partition that minimize the Dunn’s
criterion (Dunn, 1974), essentially the weighted within-group sum of squared errors
with respect to the degrees of membership μik’s and a set of p-dimensional cluster
centers (centroids or in general medoids) V = {v1, . . . , vc}. Given the data matrix
(7.2) such objective function may be written

Jq(U, V ) =
c∑

k=1

n∑

i=1

μ
q
ik‖xi − vk‖2

D, (7.16)

where q is a weighting exponent on each fuzzy membership and

‖xi − vk‖2
D = (xi − vk)

′D(xi − vk)

is the squared Mahalanobis-type distance

d(x j , xr ) =
√{
(x j − xr )′D(x j − xr )

}
, (7.17)
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where D is a p-dimensional positive definite square matrix. If, for instance, D =
I , then (7.17) is the Euclidean distance between x j and xr . A Mahalanobis-like
distance may be defined as well by taking D = T−1, where T is now the variance-
covariance matrix of X , that is (7.10) divided by n. Other objective functions may
be built by replacing the difference norm in (7.16) by any distance measure (7.6)
between the object xi and the center vk that we may denote d(xi , vk). We have
to choose a maximum number of iterations N and possibly a small positive real
number ε that may serve to stop the iterations before N if appreciable improvement
of the objective function is not likely to be obtained further. The skeleton of the
FCM algorithm is as follows.

1. Assign proper values to the number of clusters c and to weighting exponent q,
and initialize the fuzzy partition matrix U ,

2. Calculate the p-dimensional cluster centers

vk = 1
∑n

i=1 μ
q
ik

n∑

i=1

μ
q
ik xi , k = 1, . . . , c,

3. Update the fuzzy group membership weights

μ∗ik =
1

∑c
j=1

(‖xi − vk‖2
D/‖xi − v j‖2

D

)2/(q−1)
, i = 1, . . . , n, k = 1, . . . , c,

4. If either the number of iterations exceeds N or ‖μik − μ∗ik‖ < ε stop, otherwise
set μik = μ∗ik and go to step 2.

Note that if for object xi we have ‖xi − v j‖2
D = 0 for some j ∈ [1, c] then in step 3

we have to set μ∗ik = 0 if k �= j and μ∗i j = 1.
It may be shown (see,e.g., Bezdek, 1981) that, given starting points μik’s, the

FCM algorithm always converges to some local minimum of the objective func-
tion (7.16). In general different choices of the initial degrees of membership yield
different local minima.

Example 7.3.1.1 Wine data

These data are the results of a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. The analysis determined the quan-
tities of 13 constituents found in each of the three types of wines. There are n = 178
observations in the data set. The number of possible partitions in g = 3 clusters is
N (178, 3) = 1.4107× 1084. The p = 13 variables are as follows.

1. Alcohol
2. Malic acid
3. Ash
4. Alcalinity of ash
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5. Magnesium
6. Total phenols
7. Flavanoids
8. Nonflavanoid phenols
9. Proanthocyanins

10. Color intensity
11. Hue
12. OD280/OD315 of diluted wines
13. Proline

The known classification includes g = 3 clusters the first one with 59, the second
one with 71 and the third one with 48 observations. The data have been down-
loaded from the URL http://archive.ics.uci.edu/ml (Asuncion and Newman, 2007).
We run the fuzzy c-means algorithm described in Sect. 7.3.1. The Matlab toolbox
FUZZCLUST (Abonyi et al., 2005) has been used for computation. We chose the
Dunn’s index as internal index of cluster validity and obtained the optimal partition
corresponding to the value 0.1423 for this index. This solution may be considered a
rather satisfactorily result. The misclassification rate is equal to 5.06% and the Rand
and Jaccard external indexes of cluster validity equal 0.8498 and 0.8183 respec-
tively. A principal component analysis provided the first two components displayed
in Fig. 7.6. The three clusters obtained from the fuzzy c-means algorithm are well
visualized with their centers.

7.3.2 Genetic Fuzzy Partition Algorithms

Genetic algorithms-based fuzzy clustering methods have been suggested to deal
with two limitations of FCM, namely the number of clusters c has to be pre-
specified, and the initial values needed to start the algorithm may lead to a sub-
optimal solution (Maulik and Bandyopadhyay, 2003). Other applications of GAs
have been proposed to solve special problems in the fuzzy partition framework, for
instance discretization of continuous data in partially overlapping intervals (Choi
and Moon, 2007).

The variable string length genetic algorithm (VGA) proposed by Maulik and
Bandyopadhyay (2003) will be described that does not require prior knowledge
of the number of clusters c. This latter is considered an additional parameter that
is implicit in the objective function definition. Moreover, in the GAs framework,
searching for the optimal solution is performed usually by maximizing an objective
function which is positive real-valued (fitness function). A feasible choice is the
Xie-Beni (XB) index (Xie and Beni, 1991) which is positive and, unlike the Dunn’s
index, depends on c. However, as the optimal solutions are to be found among the
partitions that minimize XB, the fitness function will be defined f = 1/X B.

Let U and V denote as in Sect. 7.3.1 the fuzzy partition matrix with entries
the degrees of membership μik’s and the center coordinates matrix with entries
the p-dimensional arrays vk’s respectively. Furthermore, let X be the n × p data
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Fig. 7.6 Scatter diagram of the first two principal components of the wine data with the cluster
centers (circles) computed by using the fuzzy c-means algorithm

matrix (7.2) defined in Sect. 7.1.1. The XB index is a function of the ratio of the
total variation σ(U, V ; X) to the minimum separation sep(U, V ; X) of the clusters,
where the dependence of both σ and sep on U , V and X is emphasized. Note that
X is fixed while we are searching for optimal U and V parameters. Let

σ(U, V ; X) =
c∑

k=1

n∑

i=1

μ2
ik‖xi − vk‖2

and

sep(V ) = min
k �= j

‖vk − v j‖2,

where ‖ · ‖ is now the Euclidean norm. The XB index may be written

XB(U, V ; X) = σ(U, V ; X)

nsep(V )
, (7.18)

and the fitness function is
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fXB(U, V ; X) = 1

XB(U, V ; X)
. (7.19)

The set of the potential solutions has the cluster centers as elements. Let s
denote the population size, and let the hth individual element be the chromosome

ξ (h) =
(
v
(h)
1 , . . . , v

(h)
ch

)
. The chromosome has variable length as each chromosome

may encode ch centers, h = 1, . . . , s. The genes are p-dimensional vectors each of
which is a center representative of a cluster. A gene cannot be split into its coordi-
nates though these latter are allowed to mutate according to a random mechanism
that produces small changes with small probability. We assume that the constraint
2 ≤ ch ≤ cmax holds for each chromosome in each generation for some maximum
pre-specified number of clusters cmax.

Before the starting of the VGA we have to choose, as usual in GAs, a maxi-
mum number of iterations N and the crossover and mutation probability pc and pm

respectively. Then the following steps are executed.

1. Selection. For h = 1, . . . , s the set of centers {v(h)1 , . . . , v
(h)
ch } are extracted from

the chromosome ξ (h) and a set of weights μ∗ik is computed by using equation in
step 3 of the FCM algorithm in Sect. 7.3.1. Then (7.18) and (7.19) are computed
and proportional selection is applied on the population according to the roulette
wheel rule. Moreover, the elitist strategy is adopted to ensure that the fitness
function of the best chromosome never decreases throughout generations.

2. Crossover. A special crossover is needed as the chromosomes have no fixed
length. Moreover, the constraint on the number of clusters has to be fulfilled.
Let ξ (1) and ξ (2) denote the parent chromosomes and let c1 and c2 be the respec-
tive number of clusters. Generate for the first chromosome a crossover point τ1
uniformly randomly in the interval [1, c1]. The crossover point τ2 for the second
chromosome is generated uniformly randomly in the interval [LB(τ2),UB(τ2)].
The genes in locations τ1, . . . , c1 of chromosome ξ (1) are replaced by the genes
sequence τ2, . . . , c2 from chromosome ξ (2). Likewise, the genes in locations
τ2, . . . , c2 of chromosome ξ (2) are replaced by the genes sequence τ1, . . . , c1
from chromosome ξ (1). So the two new chromosomes have τ1 + c2 − τ2 and
τ2+ c1− τ1 genes respectively. As the chromosome length is required to exceed
2 and to be less than cmax the lower and upper bounds [LB(τ2),UB(τ2)] are
constrained to the inequalities

LB(τ2) ≥ max{2− c1 + τ1, τ1 + c2 − cmax}
UB(τ2) ≤ min{τ1 + c2 − 2, cmax − c1 + τ1}.

3. Mutation. For each h = 1, . . . , s and each j = 1, . . . , ch , with probability pm

the value v(h)j becomes (1± 2δ)v(h)j if v(h)j �= 0 and ±2δ if v(h)j = 0 where δ is a
number generated from the uniform distribution in the interval [0, 1]. The + or
− sign occurs with equal probability.



7.4 Multivariate Mixture Models Estimation by Evolutionary Computing 239

7.4 Multivariate Mixture Models Estimation by Evolutionary
Computing

Multivariate mixture models constitute a convenient framework to make inference
on grouped data (see McLachlan and Peel, 2000, for a comprehensive review).
Assume that each row (x j )

′ (7.1) of the observed data X in (7.2), for j = 1, . . . , n,
be a realization of a random variable distributed as a multivariate mixture density
with g components fi (x j ), i = 1, . . . , g, defined by

f (x j ) =
g∑

i=1

πi fi (x j ), (7.20)

where 0 ≤ πi ≤ 1, and
∑g

i=1 πi = 1. The weights π1, . . . , πg are the mixing
proportions, while the fi (x j ) are the multivariate mixture component densities. The
density function (7.20) is a g-component finite mixture density. We assume that g
is some fixed positive integer, g > 1 and g � n. If g = 1 obviously (7.20) is still
a density but not a mixture anymore. In order to check the existence of different
models that generated the data a preliminary cluster analysis may be performed or
the split and recombine (SAR) procedure introduced by Peña and Tiao (2003) may
be used.

If the component densities are multivariate normal, we have

fi (x j |μi ,Σi ) = (2π)− p
2 |Σi |− 1

2 exp

{
−1

2
(x j − μi )

′Σ−1
i (x j − μi )

}
.

The likelihood function for given X reads

L(θ |X) =
n∏

j=1

f (x j ), (7.21)

where, under Gaussianity assumption, the parameter array θ includes the weights
πi ’s, the averages μi ’s and the variance-covariance matrices Σi ’s. According to the
likelihood approach, estimating the multivariate mixture parameter vector is done
by maximizing (7.21) with respect to θ . As the weights are constrained to be non-
negative and sum to unity, and by the symmetry property of the variance-covariance
matrices, the array θ has g−1+gp+gp(p+1)/2 essentially independent elements.

The likelihood approach for parameters estimation has been extensively studied
and several methods are available. The favorite device is maybe the EM-algorithm,
and its variants, as in general the maximization of (7.21) with these methods is
easier than using other estimation techniques such as the quasi-Newton methods,
for instance (McLachlan and Krishnan, 1997). Bayesian approaches used in con-
junction with Markov chain Monte Carlo methods have been experienced as well
(see, for instance Bensmail et al., 1997). Estimating the parameter vector θ is in
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general a difficult task, and it is worth the while to explore either alternative or
complementary approaches. Some GAs-based procedures have been introduced by
Baragona and Battaglia (2003). We shall describe in the next sections an estimation
procedure that entirely relies on GAs and an hybrid algorithm that combines GAs
and the EM-algorithm. Hybridization techniques are also suggested to deal with the
case where the number of density mixtures is unknown.

7.4.1 Genetic Multivariate Mixture Model Estimates

Let n p-dimensional observations be available and form the array X . In order to
fit a multivariate normal mixture model to the data, we define first the component
indicator array Z with g rows and n columns. We may give Z one of the following
definitions.

Z(i, j) = { 1 if the component of origin of x j in the mixture is i
0 otherwise

(7.22)

where the constraints

g∑

i=1

Z(i, j) = 1, j = 1, . . . , n,

are assumed to hold, that is each observation originates from one and only one
component.

Z(i, j) = { 1 if the component of origin of x j in the mixture is (possibly) i
0 otherwise

(7.23)
where no constraints are imposed. So, some uncertainty is allowed whether which
the component of origin of x j may be.

Z(i, j) = { v if the component of origin of x j in the mixture is (possibly) i
0 otherwise

(7.24)
where v is a nonnegative integer in a pre-specified interval [0, q]. The integer v may
be regarded as a score assigned to the confidence that the observation x j originates
from the component i . Either of the three definitions (7.22), (7.23) or (7.24) may be
employed in the GAs-based estimation procedure but they differ as to the requested
amount of a priori knowledge on the objects grouping structure.

The probability that the component of origin of x j in the mixture is i may be
estimated

z(i, j) = Z(i, j)
∑g

i=1 Z(i, j)
, i = 1, . . . , g, j = 1, . . . , n. (7.25)
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Then, the mixing proportions are computed

πi =
∑n

j=1 z(i, j)

n
, i = 1, . . . , g. (7.26)

Finally, the p-dimensional mean vectorsμi and the variance-covariance p×p matri-
ces may be computed

μi =
n∑

j=1

z(i, j)∑n
h=1 z(i, h)

x j , i = 1, . . . , g, (7.27)

and

Σi =
n∑

j=1

z(i, j)∑n
h=1 z(i, h)

(x j − μi )(x j − μi )
′, i = 1, . . . , g. (7.28)

The preceding equations (7.22) through (7.28) outline the procedure that we may
embed into a genetic algorithm. Different encodings have to be adopted whether
definition (7.22), or (7.23), or (7.24) is chosen. Binary encoding is well suited for
the former two while the integer encoding has to be preferred for the latter. We
have to notice, however, that any matrix Z yields a solution to the optimization
problem because, given Z , it is straightforward to compute the parameter estimates
by using equations (7.25), (7.26), (7.27) and (7.28). Moreover, the likelihood (7.21)
is a positive valued function that has to be maximized and may be computed by
substituting such estimates into its expression. So we are allowed to assume Z as a
chromosome and (7.21) as the fitness function. Both for convenience and to adhere
to the usual representation we may transform the matrix Z by stacking either its
columns or its rows into a vector ζ that we may assume as a chromosome of length
� = gn.

Let s be the population size and N the number of iterations. The gene placed in
locus u which is included in the chromosome ζ of the kth element of the population
in generation t may be denoted ζu(k, t), k = 1, . . . , s, t = 1, . . . , N . The term indi-
vidual will be often used as synonym of element according to the word population
which is used to denote the set of potential solutions at each iteration. A detailed
explanation concerned with building the initial population and implementing the
selection, crossover and mutation operators follows.

• Initial population. To start the genetic algorithm, s strings ζ have to be supplied.
This may be done either at random or by exploiting the information contained
in the data. If we want to choose the component indicator (7.22), then, for each
column j of Z , a location between 1 and g has to be selected uniformly randomly
and set equal to unity. All other entries in the column j are zero. In case (7.23),
all entries in Z are filled with either 1 or 0 with equal probability. So, we may
consider that the observation x j originates from any component that shows unity
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in the corresponding j th column. In case (7.24), each entry in the column j of
Z may be zero or greater than zero with equal probability. If greater than zero,
then another integer random number v between 1 and q has to be generated.
The integer v denotes the confidence that the component of origin of x j in the
mixture is i . This procedure for building the initial population is rather blind. Its
advantage resides in that it assumes that we have no knowledge about the data
structure, so that we do not impose any prior (maybe misleading) belief. On the
other hand, convergence may be rather slow and time consuming and may require
a large number of iterations. We may suggest an alternative procedure, which
does not seem too much demanding, that takes into account the distance between
observations. For each individual k, a binary string n bits long is generated, where
g 1’s are randomly placed, and the other characters are set equal to zero. The 1’s
indicate g observations which we consider merely aggregation centers. If, for
instance, the r th location in the binary string is equal to 1, then compute the
Mahalanobis-like distance d(x j , xr ) according to equation (7.17). Computation
has to be repeated for each and every 1 in the binary string. If r∗ is the index for
which the smallest distance is computed, then the r∗th entry in column j of Z
is set to unity, and other entries are set to zero. If we want possibly more than a
single 1 in each column, as in (7.23), then the next index r in the ascending order
of the distances may be taken as the location for another unity. The number of 1’s
in each column may be selected at random. In case (7.24), the integers v in each
column may be given values inversely proportional to the distance (7.17) rounded
to the nearest integer.

• Selection. The roulette wheel rule may be used, that is each individual chromo-
some in the current population is copied into a individual chromosome in the next
generation with probability proportional to its fitness function value. The new
generation entirely replaces the current population excepted possibly the single
individual concerned with the application of the elitist strategy.

• Crossover. Let pc be the pre-specified probability for a couple of individuals to
undergo the crossover. So we may select at random [spc/2] individual pairs in
the current generation t . Simple crossover performs as follows. Let us randomly
select the individuals k1 and k2, and let ζ(k1, t) and ζ(k2, t) be their chromo-
somes. Let c be an integer chosen uniformly randomly between 1 and �− 1. The
integer c is called cutting point. The genes from locus c + 1 to � are exchanged
between the two chromosomes. The offsprings are the chromosomes of two new
individuals that replace the old ones. In the present context, however, the simple
crossover seems too disruptive because it does not take into account the structure
of the matrix Z . In fact, the cutting point may split a column of the matrix Z , and
a problem may arise in case (7.24). For instance, let g = 3 and let the cutting
point divide the columns 111 of the first chromosome and 999 of the second one
in such a way the offsprings 119 and 991 are generated. The probability for the
observation to belong to the third component becomes large in the first chromo-
some and small in the second one in spite of the fact that the probabilities in each
of the parent string are equal. We suggest to implement the crossover operator in
two ways, either for observations or for components. If the former alternative is
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chosen, then ζ has better be built by stacking the columns of Z . Let us choose
uniformly randomly an integer c between 1 and n−1. The new individuals have to
exchange their genes from locus (g− 1)c+ 1 to gn = �. In practice, we consider
the columns of Z as blocks g characters long which are not allowed to split. On
the other hand, we may stack the rows of the matrix Z and consider any row
separately. Note that each row i describes a component, that is it indicates which
observations originate from the component i . Then, for each row, let us choose
uniformly randomly an integer c between 1 and g − 1. The new individuals have
to exchange their genes from locus (n − 1)c + 1 to ng = �. This latter crossover
procedure is more flexible, but it is not suitable in case (7.24) obviously because
it does not ensure that the constraints required in this case will be fulfilled.

• Mutation. For binary chromosomes (7.22) and (7.23) each gene may change its
value from 0 to 1 or vice versa with probability pm . In case (7.24), if the value
of the gene is greater than zero, then it may become zero with probability pm . If
the gene value is zero, then it may change with probability pm . Its new value is
chosen uniformly randomly between 1 and q.

Example 7.4.1.1 Mixture models for Iris Plants and Diabetes data (g known)

We illustrate the estimation of mixture models with the number of groups g known
by using the method described in this Sect. 7.4.1 on the data sets Iris Plants and
Diabetes. Let us call GA11 the version of the algorithm that uses the binary encoding
(7.23) and GA21 the version that uses the integer encoding (7.24). For comparison
we developed algorithms GA12 and GA13 that use the binary encoding (7.23) while
the crossover is performed on observations and on components respectively and the
initial population is formed by taking the distances into account. Two further ver-
sions, GA22 and GA23, use the integer encoding (7.24) with the same modifications
as GA12 and GA13 respectively.

We run the six algorithms for each of the two sets by assuming the number of
mixture components g = 3 and using the following GA parameters.

• Population size s = 50,
• Number of generations N = 100000,
• Crossover probability pc = 0.8,
• Mutation probability pm = 0.005.

The results given in Table 7.9 include the logarithm of the likelihood function
computed from the best chromosome in the final population and the GA iteration
where the last increase of the fitness function has been recorded. Comparison may
be based on the log-likelihood because the number of parameters is always the same
for all algorithms. Note that if the known partition is assumed then the logarithm of
the likelihood is equal to −182.92 for the Iris data and −2329 for the Diabetes
data so that we may consider that all algorithm perform rather satisfactorily. For
the binary encoding the algorithm GA13 yields the largest log-likelihood for both
data sets and in the smallest number of iterations. It has to be noticed, however, that
for Diabetes data all algorithm end with the identical log-likelihood value. For the
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Table 7.9 Results of GAs-based multivariate normal mixture models estimation on the Iris data
and Diabetes data. The number of components is assumed known

Iris data Diabetes data

Genetic algorithm
version

Largest
log-likelihood

Obtained at
generation

Largest
log-likelihood

Obtained at
generation

GA11 −189.38 74406 −2304 52576
GA12 −180.25 95744 −2304 56437
GA13 −180.23 19721 −2304 43184
GA21 −297.85 93230 −2371 94824
GA22 −180.21 24566 −2304 97625
GA23 −180.20 99319 −2304 61407

integer encoding the algorithm GA23 again yields the best results but the number of
iterations is considerably larger. However, the algorithm GA22 yields results slightly
worse (Iris data) or identical (Diabetes data) and takes a number of iterations much
less than GA23 for the Iris data.

7.4.2 Hybrid Genetic Algorithms and the EM Algorithm

The version of the genetic algorithm that we will describe in this section may be used
to provide another local search algorithm, the EM algorithm, for instance, with suit-
able starting points. Similar procedures are often found in practical applications. For
example, a model-based approach to clustering has been suggested by Banfield and
Raftery (1993). Dasgupta and Raftery (1998) used a hierarchical clustering algo-
rithm to find an initial proposal solution and assumed such a solution to initialize the
EM algorithm to estimate the parameters of a mixture model. A similar device has
been proposed by Brooks and Morgan (1995) for simulated annealing. Likewise, the
genetic algorithm may be used conveniently to explore the solution space to locate
the subsets that are likely to include the global maximum. Then, confining to these
subsets only, some specific maximization algorithm may be used for refining the
search to obtain the global maximum, or a close approximation at least. The genetic
algorithm to be used within this hybrid approach may be better developed along the
guidelines provided in Chatterjee et al. (1996); Chatterjee and Laudato (1997). Their
procedure addresses the maximization of the likelihood function by direct encoding
of the full parameter vector into a chromosome. The floating-point encoding may be
used, that is each gene is a real number. If we want to maintain the binary encoding
instead, then a one-to-one correspondence between the real parameter θ and the
binary string ξ may be established according to the formula

θ = a + ξ(b − a)/(2� − 1), (7.29)

where θ belongs to the interval (a, b) and � is the pre-specified length of the binary
string ξ . For calculations ξ in (7.29) is assumed the corresponding non negative
integer.
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Under Gaussianity assumption we have to estimate the parameter vector θ of the
multivariate mixture model (7.21) which contains h = g − 1 + gp + gp(p + 1)
/2 entries, that is h distinct scalar parameters. These parameters are represented
by a sequence of either h real numbers or h binary strings of length � each. The
fitness function is assumed equal to the likelihood function (7.21) as before. The GA
may be implemented by specifying the number of generations N and the population
size s and defining each and every chromosome in the initial population (often we
shall refer to a chromosome as an individual) and the genetic operators selection,
crossover and mutation.

• Initial population. The initial population is randomly generated to include s chro-
mosomes each of which is a sequence of parameters as follows. For the mixing
proportions, g values are generated at random and re-scaled to sum to unity.
The effective number of parameters is g − 1. To generate the mean vector μi ,
i = 1, . . . , g, for each of the p variable the interval (a, b) is taken with a equal
to the minimum and b equal to the maximum computed on all observations. The
same has been done for the variances, for each variable in each component. Let
σ 2

i, j denote the variance of the j th variable in the i th component. Its value is
determined by choosing a string ξ � bits long uniformly randomly, and using
(7.29) with a equal to zero and b equal to a fraction of the variance computed for
that variable by using all observations. The off-diagonal entry of the matrixΣi in
row k and column j , k > j , are randomly generated, according to (7.29), in the
interval (−σi,kσi, j , σi,kσi, j ).

• Selection. (Tournament selection) The fitness evaluation is performed for each
chromosome in the current population by using the encoded solution as the start-
ing point to initialize the EM algorithm. This latter yields the chromosome fitness
function. Then the chromosomes are paired, and, in each couple, the one which
possesses the larger fitness function is copied into the other with probability ps .
This probability is the selection pressure, with obvious meaning, and has to be
pre-specified.

• Crossover. The probability pc is pre-specified, and spc/2 pairs are randomly
chosen. For each pair, a cutting point c, say, is randomly chosen in the interval
(1, �− 1). The bits from c+ 1 to � of the first chromosome in the couple replace
the corresponding ones in the second chromosome, and vice versa. Even in case
of binary encoding the real numbers are not to be split.

• Mutation. Mutation may occur with pre-specified probability pm per bit. The bit
changes from 1 to 0 or vice versa. If floating-point encoding is used, then each
gene ν becomes either ν ± 2δν if ν �= 0 or ±2δ if ν = 0. δ is a number generated
from the uniform distribution in [0, 1] and the + or − sign occurs with equal
probability.

The steps of the genetic algorithm described above are much alike that of the sim-
ple genetic algorithm. Nonetheless, there are reasons to prefer the tournament selec-
tion instead of the roulette wheel rule for selection because the former implements
the elitist strategy at no additional computation cost. This is important because the
hybrid algorithm needs fast execution of the genetic algorithm to counterbalance the
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computing time needed by the local optimization algorithm to perform its supple-
mentary search. The drawback, however, consists in that in tournament selection a
smaller number of copies of the fittest individuals are expected to pass to the next
generations. This circumstance may slow the GAs convergence but in hybrid GAs
the co-operating algorithm improves the convergence rate considerably so that this
effect is less serious.

7.4.3 Multivariate Mixture Model Estimates with Unknown
Number of Mixtures

The GAs-based procedure in Sect. 7.4.1 and the hybrid algorithm described in
Sect. 7.4.2 could be extended to the case of unknown number of clusters provided
that the fitness function depends on the number of mixtures g. The likelihood func-
tion (7.21) is not suited for the purpose of estimating both the number of mixtures
and the mixture model parameters as g is assumed as a fixed parameter. A suitable
objective function may be obtained by using the asymptotic information criterion
(AIC) (Akaike, 1974) or the Schwarz’s information criterion (SIC) (Schwarz, 1978).
A comparison of the two criteria is discussed in Koehler and Murphree (1988).
Estimates of the number of clusters g and the mixture model parameter vector θ
may be obtained by minimizing either AIC or SIC. We have

AIC = −2logL(θ, g|X)+ 2h, (7.30)

SIC = −2logL(θ, g|X)+ log(n)h,

where h denote the total number of parameters, that is h = (g − 1)+ gp+ gp(p+
1)/2 + 1, and n is the number of observations. A transform of (7.30) has to be
applied to obtain the fitness function. For instance, the transform

f (g, θ) = exp (−AIC/c) (7.31)

provides us with a real positive objective function to be maximized. The positive
real constant c may be included to scale the function values and avoid the possible
occurrence of overflows during the calculations.

Genetic algorithms for cluster analysis with unknown number of groups have
been introduced in Sects. 7.2.3 (the GCUK algorithm) and 7.2.4 (the GGA algo-
rithm). These GAs aim at estimating simultaneously the number of groups and the
group membership. Usually, such algorithms seek for a partition of the observations
into a variable number g of groups, and we are allowed to apply genetic algorithms
to estimate the parameter vector of the multivariate mixture model when the number
of components g is unknown. It suffices to include in the chromosome ζ a sub-string
which encodes possible values for the number of clusters by either binary or integer
code. Equation (7.31) provides the genetic algorithm with an appropriate fitness
function. The problem, however, is rather difficult to handle and we expect to obtain
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only an approximate solution unless the number of generations N is very large.
An alternative is to resort to the hybrid algorithm introduced in Sect. 7.4.2. The
performance of the algorithm could be improved further by exploiting not only
the individual with the largest fitness function but a subset of the population. For
example, from the first 10 best individuals in the final population we may decode
10 estimated parameter vectors to be used as initial values to start some steps of the
EM algorithm. This procedure is likely to yield more accurate solutions than using
either the genetic algorithm or the EM algorithm alone.

Example 7.4.1.1 Mixture models for Iris Plants and Diabetes data (g unknown)

We consider the Iris plants and Diabetes data sets for checking the capability of
hybrid GAs at estimating mixture models if the number of components is unknown.
In Table 7.10 the performances of GCUK and GGA when the number of compo-
nents g is unknown are displayed. The SIC criterion (7.30) has been chosen as
objective function rather than the AIC criterion because this latter leads to over-
estimate the number of components for the two data sets. The GAs yield a solution
that maximizes the fitness function whilst we found that not always the number
of components and the starting points provided by such best solution allow the
EM algorithm to attain the maximum of the objective function. In some cases the
second best GAs solution provided the EM algorithm with starting values that pro-
duced a superior performance. For the Iris data, the GGA performs better than the
GCUK, which in some instances tends to explore solutions with the wrong number
of components. In all cases the best solution provided by the GAs corresponds to
the best solution provided by the EM algorithm. For the Diabetes data, the two GAs
performs nearly the same. The best solution provided by the GCUK algorithm, if
used to initialize the EM algorithm, allows this latter to yield the overall optimal
solution. On the contrary, the second best solution from the GGA algorithm is able
to provide the EM algorithm with initial values such that the overall optimal solution
is attained.

Table 7.10 Mixture models estimation for the Iris and the Diabetes data. The number of compo-
nents g is unknown. The SIC criterion is assumed as the objective function to be minimized. The
GAs, either GCUK or GGA, find proposal g values in the interval 2 ≤ g ≤ 30 and provide the EM
algorithm with starting points

Iris data Diabetes data

Algorithm # groups SIC # groups SIC

GCUK (best) 2 600 3 4790
+EM 574 4774
GCUK (2nd best) 3 643 3 4815
+EM 585 4751
GGA (best) 4 564 3 4782
+EM 521 4774
GGA (2nd best) 3 513 3 4809
+EM 506 4751



248 7 Cluster Analysis

7.5 Genetic Algorithms in Classification and Regression Trees
Models

Classification and regression tree (CART) models have been introduced by Breiman
et al. (1984) as a method for predicting continuous dependent variables and categor-
ical predictor variables. The former task refers to the regression framework while
the latter regards classification. A Bayesian approach for finding CART models has
been suggested by Chipman et al. (1998). The CART method aims at building a
binary decision tree by splitting the data set according to the variables that lead
to minimization of a heterogeneity criterion. Algorithms that implement the CART
method typically generate a sequence of trees, each of which is an extension of
the previous tree. To avoid over-fitting due to the presence of large trees a pruning
process is adopted for grouping nodes that have been split in previous steps. Such
algorithms are expected to produce valuable results with low computational cost if a
single variable may explain most of the heterogeneity in the data set. Many variables
and large data sets may require instead a heavy computational burden specially if a
single variable cannot be found which determines the heterogeneity in the data.

Genetic algorithms have been suggested to deal with the issues related with time
consuming computations (Mola and Miele, 2006). Let X be the n × p data matrix
where n observations taken on p variables are stored row-wise and let k denote the
number of values for each variable. Then it may be checked easily that the number
of possible splits is 2k−1− 1, a large number even for moderate k. Another problem
stems from the fact that past splitting may need revision in the view of an attempt to
attain the global optimality of the solution.

We shall summarize the GAs-based procedure for finding the best split for each
node of the tree at a given step. Let s be the population size and define s binary
chromosomes of length � = kp. Each chromosome is composed of p fragments of
length k and a GA has to be used to locate the point where the variable values inter-
val has to be split according to an optimality criterion. This latter may be assumed
in straightforward manner the impurity decrease proposed by Breiman et al. (1984).
The genetic operators may be assumed as follows.

• Selection. Roulette wheel rule with elitist strategy,
• Crossover. Single cutting point crossover,
• Mutation. Any bit may flip with pre-specified probability.

This algorithm is to be used as an auxiliary algorithm that operates within a main
algorithm that drives the whole procedure for building the sequence of trees.

7.6 Clusters of Time Series and Directional Data

Grouping a set of time series in smaller subsets may provide us with interesting
information about the time series structure. Wide application fields and close con-
nection to data mining problems and techniques contributed to the increasing inter-
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est on this subject matter. Methods for clustering time series have been developed
based on many different time series properties and on several clustering algorithms.
Comprehensive accounts may be found in Keogh and Kasetty (2003) and Liao
(2005). Wang et al. (2005) made an attempt to select all time series characteristics
that are believed to be really important for a reliable and accurate clustering pro-
cedure. Meta-heuristic methods for clustering time series have been suggested by
Baragona (2001). The time series may be taken to belong to the same subset (cluster)
either if they follow similar models, or if they are strongly correlated in some sense.
Several measures of similarity (or dissimilarity) have been proposed. For grouping
according to similarity in the model, the comparison between model parameters is
the most obvious basis for a suitable procedure. If measures of correlation are to be
taken into account, then the cross correlation coefficients, possibly computed from
the time series model residuals after pre-whitening (see Box et al., 1994) are the
most useful tool. It is often useful grouping time series according to time delay or
phase difference to check, for instance, if time series are in-phase or out-of-phase
with respect to one or more reference series. In this latter case clustering directional
data methods have to be considered (Lund, 1999).

7.6.1 GAs-Based Methods for Clustering Time Series Data

Let n time series be available for clustering purpose and let p denote the number
of features of interest. Feature extraction may be performed to provide us with the
n × p matrix X where there is a row-wise correspondence to the time series data
set. The columns are in correspondence with the extracted features. Then any of
the techniques described in Sect. 7.2 may be of use for genetic cluster analysis. For
instance, let the model structure similarity be of interest as a criterion for grouping
the time series data into clusters. Then for any pair of time series {xit , x jt } in a given
data set (t = 1, . . . , T ) we consider the squared autoregressive distance

d̂2
i j =

m∑

k=1

(
π̂ik − π̂ jk

)2
,

where {π̂ik, π̂ jk} denote the least squares estimates of the parameters of the
autoregressive models of order m (Piccolo, 1990). The model order m has to be
pre-specified large enough to take the model dependence structure into account
properly.

Finding a partition of a set of time series according to their cross correlations
computed after pre-whitening requires a different approach. Such a partition may
be useful if we want each cluster to group together time series that may be joint
modeled, or share properties of interest, for example correlation with some compos-
ite indicator. In this context, we shall define a cluster as a set (group) of time series
that satisfy the following condition (Zani, 1983). Given a set of k stationary time
series {x1, . . . , xk}, where xi =

(
xi,1, . . . , xi,T

)
, i = 1, . . . , k, a subset C which
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includes k′ series (k′ < k) is said to form a group if, for each of the k′(k′ − 1)/2
cross-correlations ρi, j (τ ), we have

|ρi, j (τ )| > c(α) (7.32)

for at least a lag τ between−m and m, and i, j ∈ C, i �= j . A positive integer m has
to be pre-specified which denotes the maximum lag. The cross-correlations ρi, j (τ )

have to be computed from the pre-whitened time series (see, for instance, Brockwell
and Davis, 1996, p. 232). If all time series have T as a common number of obser-
vations, then choosing, for instance, the significance level α = 0.05 gives the figure
c(α) = 1.96/

√
T in (7.32). The previously stated definition does not exclude that a

time series may belong to more than a single group. Then there are possibly several
allowable partitions to consider, and their number may be very large. This circum-
stance suggests that the quick partition clustering procedure described in Sect. 7.2.2
could be used. The only features to account for are the definition of a distance and
the choice of a suitable fitness function. For any pair of time series (xi , x j ) let us
define the distance di, j as follows (Bohte et al., 1980)

di, j =
√√√√{1− ρ2

i, j (0)}/
m∑

τ=1

ρ2
i, j (τ ). (7.33)

We may adopt as objective function to minimize for a good clustering the k-min
cluster criterion (Sahni and Gonzalez, 1976)

f (C1,C2, . . . ,Cg) =
g∑

ω=1

∑

i, j∈Cω,i �= j

di, j . (7.34)

In this case, the number of clusters g must be supplied for, otherwise, any algorithm
which uses (7.34) as objective function is likely to assign each time series a separate
cluster, by letting g = k at the end. On the other hand, if g is specified as the
maximum allowable number of clusters, then the solution will display exactly g
clusters. In order to let the procedure itself determine the number of clusters g, the
following objective function may be employed to be maximized

f +(C1,C2, . . . ,Cg; g) =
g∑

ω=1

∑

i, j∈Cω,i �= j

d+i, j , (7.35)

where d+i, j = exp(−di, j ) and g is assumed unknown. When using (7.35) each clus-
ter has to be a group, according to (7.32), for, otherwise, any algorithm, unless
prematurely ended, will put together all time series into a single cluster.
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Example 7.3.1.1 The Seven-country data set

Let us consider the seven-country data set referenced in Stock and Watson (2004).
The data consist in several quarterly macroeconomic time series from 1969 to 1999
and have been used to compute combination forecasts of output growth. We use
here only a part of this data set which covers France, Germany and Italy and only
the time series marked ’a’ in table Ib in Stock and Watson (2004). The largest time
span for which as many as possible time series data are available ranges from the
second quarter of 1960 to the fourth quarter of 1999. We transformed the data as
suggested in Stock and Watson (2004) and due to this transforms the first data are
lost. The remaining data set that we shall examine has starting and ending times
the third quarter of 1960 (III/60) and the fourth of 1999 (IV/1999) respectively. As
a result the time series in the data set that we shall consider here are n = 27 and
have T = 254 observations each. In Table 7.11 for each time series a label and a
short explanation are given, the applied transforms are specified and the countries
for which data are available are displayed.

Each time series may be identified by the macroeconomic variable and coun-
try. For instance, RBNDL(G) will identify the Germany interest rate of long-term
government bonds. There is no known classification for the time series in this data
set.

We performed the cluster of this set of time series by using three different meth-
ods based on GAs. The first one is the method based on the cross-correlations
described in detail in this Sect. 7.6.1. The second one consists in fitting an autore-
gressive (AR) model of order p to each transformed series and then using the autore-
gressive coefficients as the features set for each time series (the π -weights). The
cluster of time series is performed by clustering the n × p features data set X . The
third method is similar to the second one as for each time series a set of features is
extracted on which the clustering procedure is performed. The time delays computed
for each time series with respect to a time series in the set considered as a reference
series may be used as extracted features (details may be found in Baragona and
Carlucci (1997)).

Table 7.11 The quarterly macroeconomic time series labels and preliminary transformations and
countries for which data are available (France = F, Germany = G and Italy = I)

Label Description Transform Countries

CPI Consumer price index Δ2 ln F G I
IP Index of industrial production Δ ln F G I
PGDP Gross domestic product deflator Δ2 ln G I
RBNDL Interest rate of long-term government bonds Δ F G I
RBNDM Interest rate of medium-term government bonds Δ I
RCOMMOD Real commodity price index Δ ln F G I
RGDP Real gross domestic product Δ ln G I
ROIL Real oil prices Δ ln F G I
RGOLD Real gold prices Δ ln F G I
RSTOCK Real stock price index Δ ln F G I
UNEMP Unemployment rate Δ I
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For all methods the GA parameters have been chosen as follows.

• Population size s = 50
• Maximum number of GA iterations N = 1000
• Crossover probability pc = 0.8
• Mutation probability pm = 0.1.

The AR order has been p = 9 and the correlations have been computed at lags
0, 1, . . . , 36 (cross-correlations include negative lags as well).

Cross-correlation-based method. In this case we need a threshold to be pre-
specified according to (7.32). As T = 154 the threshold to be compared with
each cross-correlation absolute value may be computed equal to c(0.05) = 0.1579,
namely a pair of time series may join the same cluster only if their cross-correlation
absolute value exceeds this threshold. The algorithm attains the largest fitness func-
tion at iteration 204. g = 7 clusters are found. The group membership is displayed in
Table 7.12. We may note that the time series form clusters according to the macroe-
conomic variables rather than countries. This circumstance may suggest that since
1960 the economies of France, Germany and Italy have been interdependent each
other. For instance, the consumer price indexes form a single cluster, namely this
index is contemporaneously correlated (zero lag) across the three countries. Cluster
2 includes the interest rate of long-term (and in addition medium-term for Italy)
government bonds and the real oil prices for the three countries. So these indexes are
not only correlated across countries but there is an appreciable correlation between
the two macroeconomic variables with a lag of some quarters, the real oil prices
leading the interest rate of government bonds. Cluster 3 includes the index of indus-
trial production and the real gross domestic product with largest cross-correlations
at lags 0 and 1. This correlation is rather natural and has been detected for the three
countries together. The remaining large cluster is cluster 6 that includes the real
gold prices and the real stock price indexes whilst this latter variable for France
is included in cluster 2. The real gold price lags the real stock price index for
about 1 year. The remaining three clusters are small clusters including two time
series each.

Table 7.12 Group membership for clusters found by the cross-correlation-based method

.

Cluster # Time series Time series included in the cluster

1 3 RCOMMOD(F), RCOMMOD(G), RCOMMOD(I)
2 8 RBNDL(F), RBNDL(G),RBNDL(I), RBNDM(I),

ROIL(F), ROIL(G), ROIL(I),
RSTOCK(F)

3 5 IP(F), IP(G), IP(I), RGDP(G), RGDP(I)
4 2 CPI(G), UNEMP(I)
5 2 CPI(F), CPI(I)
6 5 RGOLD(F), RGOLD(G), RGOLD(I)

RSTOCK(G), RSTOCK(I)
7 2 PGDP(G), PGDP(I)
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Table 7.13 Group membership for clusters found by the π -weights-based method

Cluster # Time series Time series included in the cluster

1 8 CPI(G), IP(G), PGDP(G), RGDP(G), RSTOCK(G)
CPI(I), PGDP(I), RGDP(I)

2 12 CPI(F), IP(F), RBNDL(F), RSTOCK(F),
RBNDL(G), RGOLD(G),
IP(I), RBNDL(I), RBNDM(I), RCOMMOD(I), ROIL(I), RSTOCK(I)

3 7 RCOMMOD(F), ROIL(F), RGOLD(F),
RCOMMOD(G), ROIL(G),
RGOLD(I), UNEMP(I)

π -weights-based method. The clustering performed using the autoregressive
coefficients as features representing the time series in the data set yields an opti-
mal partition in g = 3 clusters. The time series in the same cluster are supposed
to share the behavior and the underlying model structure and are not necessarily
highly correlated. In this framework the country seems to have some importance
though some time series that correspond to the same macroeconomic variable are
included in the same cluster for all countries. The group membership is displayed
in Table 7.13. For instance cluster 1 is chiefly composed of time series concerned
with Germany. On the other hand, the interest rate of log-term and medium-term
government bonds time series are included in the same cluster for all countries in
this partition too. Only the real oil price in Italy is included in this cluster, whilst
this same macroeconomic variable for France and Germany has a different behavior
through time and both are included in the third cluster. The gross domestic product
deflator and the real gross domestic product for Germany and Italy are included in
the same cluster as for the cross-correlation-based method, but note that the gross
domestic product deflator for France is not available.

Time delay-based method. According to this method the features extracted are
the time delays of each time series with respect to a reference series. The time
delay is a measure in time units (quarters in the present context) of a leading or
lagging relationship between two time series. The cross-spectrum is the statistics
that has to be estimated to compute the phase and the time delay. If time series
x j leads xi by 4 time units we may expect for instance that an increase of x j at
time t will be followed by an increase (or decrease, in case of inverse relationship)
of xi at time t + 4. The relationship is approximate because we may compute a
time delay at each frequency in the interval (0, π) and we cannot expect in general
that the same time delay will be computed at each frequency. If we assume m the
maximum lag, then we may compute the time delay at the discrete set of angular
frequencies {π/m, 2π/m, . . . , (m − 1)π/m} (unit of radians). A frequency may be
better understood if it is translated to the corresponding period. This latter is easier
to interpret because it is expressed in time units. The relationship is P = 2π/ω,
where P is the period in time units and ω the frequency in radians. We may consider
some frequencies of special interest only. For this time series data set we assumed
m = 36 and considered the frequencies 2π/36, 6π/36 and 18π/36, i.e. periods
36, 12 and 4 quarters. We chose these frequencies because the periods are 9 years,
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Table 7.14 Group membership for clusters found by the time delay-based method

Cluster # Time series Time series included in the cluster

1 13 CPI(F), RSTOCK(F),
CPI(G), PGDP(G), RBNDL(G), RGDP(G), RSTOCK(G),
IP(I), PGDP(I), RBNDL(I), RCOMMOD(I), RGDP(I), UNEMP(I)

2 7 IP(F), RBNDL(F), RCOMMOD(F), RGOLD(F),
RGOLD(G), CPI(I), RGOLD(I)

3 7 ROIL(F), IP(G), RCOMMOD(G), ROIL(G),
RBNDM(I), ROIL(I), RSTOCK(I)

3 years and 1 year, to be assumed as long term, medium term and short term. The
clustering algorithm has been applied to a data set of n = 27 cases (time series) and
p = 3 variables. The reference series has been computed the interest rate of long-
term government bonds for Germany. We obtained the partition in g = 3 clusters
displayed in Table 7.14. In this case a leading time series may be used to predict the
time series in the same cluster or a set of leading time series may be assumed as the
basis to define a leading composite index. The cluster 1 includes the reference series
and it is supposed to include the time series that leads or lags the reference series
within a short time. In cluster 1 the interest rate of long-term government bonds
are included for Germany and Italy only, and so the gross domestic product deflator
and the real gross domestic product for Germany and Italy. Only two time series
for France are present, the consumer price index and the real stock price index,
and both are present for Germany too. Cluster 2 includes the real gold prices for all
three countries which is found to lead for 7 quarters the reference series at the lowest
frequency whilst it is lagging at higher frequencies. In cluster 3 there are the real oil
prices for the three countries. In this case too this variable leads at low frequencies
while lags at high frequencies the reference series.

In Fig. 7.7 the interest rate of long-term government bonds for the three countries
(plus the interest rate of medium-term government bonds for Italy), the consumer
price index and the index of industrial production are plotted. The plot shows that
the government bonds are strictly related though some lead and lag relationships
may occur. The other time series have been found in different clusters using the
three methods. The consumer price index shows a peculiar behavior with marked
oscillations in the eighties for Italy and in the nineties for France. The index of
industrial production for Italy shows marked oscillation at the beginning and at the
end of the seventies. This may suggest an explanation for the reason why these time
series have been included almost always in different clusters.

7.6.2 GAs-Based Methods for Clustering Directional Data

Let {θ1, θ2, . . . , θn} be a set of angular measurements in [0, 2π), and g the num-
ber of clusters. Such directional (or circular) data may be partitioned so that the
objective function (Lund, 1999)
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Fig. 7.7 Interest rate of long-term government bonds (top panel), consumer price index (middle
panel) and index of industrial production (bottom panel) for France (solid line), Germany (dashed
line) and Italy (dotted line, dash dotted for the interest rate of long-term government bonds)

S(g) =
g∑

j=1

(r j − p j ) (7.36)

is maximized, where

r j =
√

S2
j + C2

j

|J | , S j =
∑

i∈J

sin θi ,C j =
∑

i∈J

cos θi .

r j ∈ [0, 1] is the mean resultant length of cluster j and decreases as soon as the
dispersion of the angular measurements increases. J denotes the set of all indexes
of the objects that belong to the cluster j . The p j ’s are penalties that have to be
introduced as the sum of the r j ’s increases with g. Clusters of the θ j ’s are defined
by placing on the unit circle a set of g points that separate the adjacent clusters.
Let m1,m2, . . .mg , 0 < m j < 2π , denote such cut-points. The penalties p j ’s are
computed

p j = sin(‖m j ,m j+1‖/2)
‖m j ,m j+1‖/2 ,
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where ‖m j ,m j+1‖ = m j+1 − m j (mod 2π) is the amplitude, measured in radians,
of the j th cluster. By definition, mg+1 = m1.

We shall summarize the GAs-based procedure outlined in Baragona (2003a).
Two distinctive features are needed to deal with directional data.

• The cut-points are searched for instead of the cluster centers,
• The statistic (7.36) replaces the Euclidean metric-based fitness function.

The GA-clustering genetic algorithm for directional data performs as follows. Let
s denote the population size, pc and pm the crossover and mutation probabilities
respectively, N the number of iterations and gmax the maximum number of clusters.
Let g be a fixed positive integer in the interval [1, gmax]. For i = 1, . . . , s, g cut-
points are selected in [0, 2π). The first cut-point is selected uniformly randomly,
while the remaining g − 1 are taken equispaced on the unit circle. The s sets of
cut-points form the initial population. In each of N iterations the genetic operators
selection, crossover and mutation are defined as follows.

• Selection. The roulette wheel rule is used for selection with complete replacement
of the past population and the correction given by the elitist strategy.

• Crossover. The single point crossover is implemented. �s/2� pairs of cut-point
sets are formed at random. A pair undergoes the crossover with probability pc.
A positive integer � is generated from the uniform distribution on the interval
[1, g−1]. The cut-points from �+1 to g of the first set replace the corresponding
cut-points of the second set and vice versa to yield two new cut-point sets.

• Mutation. Any cut-point v in any set is allowed to mutate with probability pm .
A value v �= 0 changes to v ± 2δv while v = 0 becomes ±2δ. The “+” or “−”
sign occurs with equal probability and the real number δ is a fixed pre-specified
positive constant which is to be chosen in [0, 1].

This procedure is similar to the procedures described in Sect. 7.2.3. The optimum
number of clusters is chosen by replicating the procedure for g = 1, . . . , gmax and
retaining the solution which yields the largest fitness function.

Example 7.6.2.1 Phase-based cluster of the Seven-country data

The procedure described in this Sect. 7.6.2 has been applied to the Seven-country
data set. The phase spectrum has been computed for the frequency 2π/36 that corre-
sponds to 9 years. The phase is in radians in the interval (−π, π) and is an example
of directional data. The GA has been used with the following parameters.

• Population size 30
• Maximum number of iterations 1000
• Chromosome length 360
• Probability of crossover 0.08
• Probability of mutation 0.001
• Elitist strategy
• Generational gap 1
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Fig. 7.8 Fitness function for the directional data clustering against the number of iterations

The fitness function values at each iteration are plotted in Fig. 7.8. The usual
behavior is displayed, i.e. a steep increase in the first iterations and some improve-
ments in late iterations. The largest fitness function value is attained at iteration 661.
The initial value is 0.4240 the largest one 0.5590. The results concerned with the
final partition are displayed in Table 7.15. The algorithm finds 4 clusters but two
include a time series each while the other time series are included in the remain-
ing two clusters. The largest cluster ranges from 308 to 179◦ counterclockwise and
includes the reference series “interest rate of long-term government bonds” for Ger-
many. The time series included in each of the four clusters are listed in Table 7.16.
Most time series are in the same cluster with the reference series. The industrial pro-
duction index and the real gross domestic product are in-phase for all countries and
form the other relevant cluster. The real stock price index is the only variable such

Table 7.15 Cluster structure of the final partition found by the GAs-based algorithm on the phase
spectrum computed for the Seven-country data set

Cluster # Time series
Midpoints
(degrees) Average phase (radians) Mean resultant (length) Penalty

1 1 (179, 181) −3.1343 1.0000 0.9999
2 7 (181, 306) −1.5282 0.9529 0.8132
3 1 (306, 308) −.9285 1.0000 0.9999
4 18 (308, 360) 0.5257 0.8669 0.4477

+(0, 179)
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Table 7.16 Group membership for clusters found by the phase-based method

Cluster # Time series Time series included in the cluster

1 1 RSTOCK(G)
2 7 IP(F), IP(G), IP(I), RGDP(G), RGDP(I),

RSTOCK(F), UNEMP(I)
3 1 RSTOCK(I)
4 18 CPI(F), CPI(I), CPI(G),

PGDP(G), PGDP(I),
RBNDL(F), RBNDL(G), RBNDL(I), RBNDM(I),
RCOMMOD(F), RCOMMOD(G), RCOMMOD(I),
ROIL(F), ROIL(G), ROIL(I),
RGOLD(F), RGOLD(G), RGOLD(I)

that the corresponding time series are not in-phase across the three countries. The
real stock price index for France is in the same cluster with the industrial production
index and the real gross domestic product of the three countries while the real stock
price index for Germany and Italy each forms a separate cluster.

7.7 Multiobjective Genetic Clustering

We have considered in general clusters of objects as the result of some optimization
algorithm. Several indexes of internal cluster validity are available to provide the
algorithm with a convenient objective function. Though sometimes the results do
not depend on the particular criterion, more often different criteria lead to different
partitions. As a matter of fact, any criterion produces an optimal partition according
to some special cluster property, for instance compactness, connectedness or spa-
tial separation. The multiobjective clustering encompasses the limitation inherent
to the single objective optimization algorithms by using many optimality criteria
simultaneously. The GAs are so often used as the underlying search technique in
multiobjective clustering chiefly because in a single iteration a population of par-
titions is considered instead of a single one. This circumstance allows the concept
of Pareto optimality to be fully exploited in a multiobjective clustering algorithm
design. Deb (2001), Coello Coello et al. (2002) and Handl and Knowles (2007)
developed multiobjective clustering methods while utilizing the search capability of
GAs. A new model of multiobjective simulated annealing algorithm called AMOSA
(Bandyopadhyay et al., 2008) has been developed as well. Also fuzzy clusters have
been considered in the multiobjective optimization framework (Deb, 2001). An
algorithm that performs the multiobjective genetic fuzzy clustering for a special
application may be found in Bandyopadhyay et al. (2007).

7.7.1 Pareto Optimality

The multiobjective optimization problem in a clustering context consists in finding a
partition C = {C1, . . . ,Cg} that simultaneously optimizes the m objective functions

{ f1(C), f2(C), . . . , fm(C)}.
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Constraints may be possibly imposed on the partitions set which define the fea-
sible region F which contains all the admissible solutions. Any solution outside
this region is inadmissible since it violates one or more constraints. C denotes an
optimal solution in F . In this framework a convenient definition of optimality is
difficult to be delivered since it happens seldom that a unique partition C represents
the optimum solution to all the m objective functions.

Most multiobjective optimization techniques use the concepts of dominance rela-
tion and Pareto optimality. Let all objective functions have to be maximized. Then
a solution C (i) is said to dominate C ( j) if

∀k ∈ {1, 2, . . . ,m} fk(C
(i)) ≥ fk(C

( j))

and

∃k ∈ {1, 2, . . . ,m} such that fk(C
(i)) > fk(C

( j)).

Among a set of solutions P , the non-dominated set of solutions P ′ are those
that are not dominated by any member of the set P . A solution C is said to be
non-dominated in P if there exist no solution C∗ which dominates C . The non-
dominated set of the entire search space F is the globally Pareto optimal set. The
globally Pareto optimal set is often simply referred to as the Pareto optimal set.
The image of the globally Pareto optimal set in the objective space is known as the
Pareto front.

7.7.2 Multiobjective Genetic Clustering Outline

We present a genetic algorithm that produces a partition optimal with respect to
m objective functions. For example we may assume the DB index and the VRC
criterion as two objective functions to be optimized simultaneously. The algorithm
encodes the partitions in the chromosome ξ as cluster centers. The different steps of
the algorithm are as follows.

1. The population P at each generation is split into a set of non-dominated solutions
P ′ and a set of dominated solutions P ′′. The former (P ′) are set apart and are
evaluated for entering the new generation as in the ordinary elitist strategy.

2. At the end of the iterative procedure the best solution is searched for only within
the current set P ′.

3. The assignment of objects to clusters is done by taking the m criteria into account
simultaneously. A ‘voting’ mechanism may be adopted that assigns an item to the
cluster to which it is assigned by the majority of the criteria. As an alternative,
an ‘amount of dominance’ may be defined by assuming an overall fitness as
the sum of the fitnesses computed for each objective. In this latter case the m
fitness functions are conveniently normalized in such a way that this comparison
is meaningful.

The algorithm replicates these steps for a pre-specified number N of iterations.
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7.7.2.1 String Representation and Population Initialization

We assume that the number of clusters is known a priori and is equal to g. Each
chromosome ξ in the population represents a collection of the centers to which the
objects are to be aggregated to form each cluster.

Let s denote the population size and assume that p measurements are available
for each object. We use the real encoding, so a chromosome ξ j , j ∈ {1, 2, . . . , s}, is
a row vector of length � = p × g. The first g entries are the coordinates of the first
center, the entries from g+1 to 2g are the coordinates of the second center and so on.
Then m initial populations are generated at random, one for each criterion. Consider
the criterion i , i ∈ {1, 2, . . . ,m}. Within each population the fitness function is
evaluated so that the values { fi, j }, i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , s}, may be
computed.

7.7.2.2 Genetic Operators

The genetic operators may be described as follows.

1. Selection. According to the fitness function values the set of non-dominated solu-
tions P ′ is set apart while the roulette wheel selection is performed as usual
within the whole population P . If a generational gap G (0 < G < 1) is assumed,
G × s chromosomes are replaced in P by the selected solutions, otherwise P is
entirely replaced by the selected chromosomes.

2. Pareto optimality elitist strategy. The new set P is augmented with the set P ′ of
non-dominated solutions found in the past generation and non-dominated solu-
tions are selected within the set P ∪ P ′. If the selected solutions exceed s, then
the best s form the next generation, otherwise non-dominated solutions are added
to yield all s chromosomes needed for complete replacement.

3. Crossover. The single point crossover may be used with a pre-specified crossover
probability pc. The cutting point t is selected in the interval [1, � − 1] in such
a way that the exchange regards only complete sets of center coordinates. In
practice a uniform random number u is chosen in [1, g−1] and the cutting point
is t = u × p. The genes from t + 1 to � of the first chromosome are replaced by
the corresponding genes of the second one, and vice versa.

4. Mutation. Any gene may mutate with pre-specified probability pm . The floating
point mutation has to be used. A uniform random number δ is generated. Let v
denote the value of a gene. After mutation the gene value becomes v = v ± 2δv
if v �= 0 and v = v±2δ if v = 0. The positive or negative sign occurs with equal
probability.

The assignment of objects to clusters is finally done along the guidelines pre-
viously outlined. Note that though the number of clusters g is pre-specified, the
assignment process may leave some cluster empty. In this case the overall solution
includes less than g clusters.
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Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error prop-

agation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing. MIT Press,
Cambridge, MA, pp 318–362

Sabatier R, Reynés C (2008) Extensions of simple component analysis and simple linear discrimi-
nant analysis using genetic algorithms. Comput Stat Data Anal 52:4779–4789

Sahni S, Gonzalez T (1976) P-complete approximation problems. J Assoc Comput Mach 23:555–
565

Sarle WS (1994) Neural networks and statistical models. In: Proceedings of the 19th annual SAS
users group international conference. SAS Institute, Cary, NC, pp 1538–1550

Schmitt LM, Nehainv CL, Fujii RH (1998) Linear analysis of genetic algorithms. Theor comput
sci 200:101–134

Schneider J, Kirkpatrick S (2006) Stochastic optimization. Springer, Berlin Heidelberg
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464
Sessions D, Stevans L (2006) Investigating omitted variable bias in regression parameter estima-

tion: a genetic algorithm approach. Comput Stat Data Anal 50:2835–2854
Shapiro J (2001) Statistical mechanics theory of genetic algorithms. In: Kallel L, Naudts B, Rogers

A (eds) Theoretical aspects of genetic algorithms. Springer, Berlin, pp 87–108
SI (2008) Statistical innovations, http://www.statisticalinnovations.com /products /DemoData /dia-

betes.dat
Slanzi D, De March D, Poli I (2009a) Evolutionary probabilistic graphical models in high dimen-

sional data analysis. In: Mola F, Conversano C, Vinzi V, Fisher N (eds) European regional meet-
ing of the international society for business and industrial statistics, Cagliari, Italy, TAPILA
editore, pp 124–125

Slanzi D, De March D, Poli I (2009b) Probabilistic graphical models in high dimensional systems.
In: Ermakov S, Melas V, Pepelyshev A (eds) Simulation. St. Petersburg VVM com., pp 557–
561, Saint Petersburg, Russia

Slanzi D, Poli I (2009) Evolutionary bayesian networks for high-dimensional stochastic optimiza-
tion. Working paper 26, European centre for living technology, Venice, 2nd Workshop of the
ERCIM working group on computing & statistics, Cyprus

Slanzi D, Poli I, De March D, Forlin M (2008) Bayesian networks for high dimensional exper-
iments. Working paper 20, European centre for living technology, Venice, workshop on
Bayesian analysis of high dimensional data, 14–16 Apr 2008, Warwick, UK

Smith RE, Forrest S, Perelson AS (1993) Population diversity in an immune system model: impli-
cations for genetic search. In: Whitley DL (ed) Foundations of genetic algorithms 2. Morgan
Kaufmann, San Mateo, CA, pp 153–165



References 271

Spears WM, De Jong KA (1991) An analysis of multi-point crossover. In: Rawlins GJE (ed) Foun-
dations of genetic algorithms. Morgan Kaufmann, San Mateo, CA, pp 301–315

Statlib (2008) The data and story library (DASL). http://lib.stat.cmu.edu/DASL
Stock JH, Watson MW (2004) Combination forecasts of output growth in a seven-country data set.

J Forecast 23:405–430
Storn R, Price K (March 1995) Differential evolution – a simple and efficient adaptive

scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI.
ftp.icsi.berkeley.edu

Stützle T, Hoos HH (2000) Max–min ant systems. Future Gen Comput Syst 16(8):889–914
Subba Rao T (1981) On the theory of bilinear time series models. J R Stat Soc B 43:244–255
Sun ZL, Huang DS, Zheng CH, Shang L (2006) Optimal selection of time lags for TDSEP based

on genetic algorithm. Neurocomputing 69:884–887
Symons MJ (1981) Clustering criteria and multivariate normal mixtures. Biometrics 37:35–43
Syswerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer JD (ed) Proceedings

of the 3rd international conference on genetic algorithms. Morgan Kaufmann, Los Altos, CA,
pp 2–9

Tan Y, Wang J (2001) Nonlinear blind source separation using higher order statistics and a genetic
algorithm. IEEE Trans Evol Comput 5:600–612

Teräsvirta T (1994) Specification, estimation and evaluation of smooth transition autoregressive
models. J Am Stat Assoc 89:208–218

Theis M, Gazzola G, Forlin M, Poli I, Hanczyc M, Packard N, Bedau M (2008) Optimal formula-
tion of complex chemical systems with a genetic algorithm. Working paper 19, European centre
for living technology, Venice

Tolvi J (2004) Genetic algorithms for outlier detection and variable selection in linear regression
models. Soft Comput 8:527–533

Tong H (1990) Non linear time series: a dynamical system approach. Oxford University Press,
Oxford

Tsay RS (1986) Time series model specification in the presence of outliers. J Am Stat Assoc
81:132–141

Tsay RS (1988) Outliers, level shifts and variance changes in time series. J Forecast 7:1–20
Tsay RS, Peña D, Pankratz AE (2000) Outliers in multivariate time series. Biometrika 87:789–804
Tseng LY, Yang SB (2001) A genetic approach to the automatic clustering problem. Pattern Recog-

nit 34:415–424
Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460
Van Emden MH (1971) An analysis of complexity. Mathematical Centre Tracts, Amsterdam
Versace M, Bhatt R, Hinds O, Shiffer M (2004) Predicting the exchange traded fund DIA with a

combination of genetic algorithms and neural networks. Expert Syst Appl 27:417–425
Vitrano S, Baragona R (2004) The genetic algorithm estimates for the parameters of order p normal

distributions. In: Bock HH, Chiodi M, Mineo A (eds) Advances in multivariate data analysis.
Springer, Berlin Heidelberg, pp 133–143

Vose MD (1999) The simple genetic algorithm: foundations and theory. The MIT Press, Cam-
bridge, MA

Wang X, Smith KA, Hyndman RJ (2005) Characteristic-based clustering for time series data. Data
Min Knowl Discov 13:335–364

Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4:65–85
Winker P (2001) Optimization heuristics in econometrics: applications of threshold accepting.

Wiley, Chichester
Winker P, Gilli M (2004) Applications of optimization heuristics to estimation and modelling prob-

lems. Computat Stat Data Anal 47:211–223
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol

Comput 1:67–82
Wong CS, Li WK (1998) A note on the corrected akaike information criterion for threshold autore-

gressive models. J Time Ser Anal 19:113–124



272 References

Wu B, Chang CL (2002) Using genetic algorithms to parameters (d,r) estimation for threshold
autoregressive models. Comput Stat Data Anal 38:315–330

Wu C, Hamad M (2000) Experiments. Wiley, New York, NY
Xie XS, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach

Intell 13:841–847
Zani S (1983) Osservazioni sulle serie storiche multiple e l’analisi dei gruppi. In: Piccolo D (ed)

Analisi moderna delle serie storiche. Franco Angeli, Milano, pp 263–274
Zemella G, De March D (2009) The optimisation of building envelopes with evolutionary proce-

dure. Working paper 27, European Centre for Living Technology, Venice, 2nd workshop of the
ERCIM working group on Computing & Statistics, Limassol, Cyprus

Zhou X, Wang J (2005) A genetic method of LAD estimation for models with censored data.
Comput Stat Data Anal 48:451–466

Ziehe A, Müller KR (1998) Tdsep – and efficient algorithm for blind separation using time struc-
ture. In: Proceedings of the international conference on ICANN, perspectives in neural com-
puting. Springer, Berlin, pp 675–680



Index

A
Activation, 119–120
AIC (asymptotic information criterion), 68,

92–94, 105, 186–187, 197, 246
ANN (artificial neural networks), 118–124
Ant colony, 25–27
Antigens, 60
ARCH, 98, 169
ARIMA, 88, 95, 124, 167–181, 183, 189
AUC, 73

B
Backpropagation, 119–122
Backward operator, 89
BIC, 93, 95, 116, 133
Bilateral models, 168, 194
Bilinear, 88, 114–116, 168–169
Bin Packing Crossover, 230
Blocks design, 44, 52, 129, 243
Boltzman selection, 54, 94
Box-Cox-type transformation, 162
BSS, 75

C
Canadian lynx, 114, 116–117
Censored experiment, 69
Chromosomes, 8, 42, 102, 164

chromosome legality, 186
order – based chromosomes, 163

Classification, 13, 200–203, 248
supervised, 201
unsupervised, 201, 203

Clustering, 204, 219, 233, 249–254
hierarchical, 244
non-hierarchical, 204

Coding, 37–39, 92
Complete enumeration, 3, 55, 187, 221

Complexity, 10–11, 93
Conditional expectation, 88
Correlation, 68, 83, 249–250

autocorrelation, 91, 174
inverse autocorrelation, 174
inverse correlations, 175, 197

Covariance
autocovariance, 173, 183, 185
inverse autocovariance, 173, 185
inverse covariance, 182–183, 185

Cross-cumulant, 78
Crossover, 19, 27, 32–34, 82, 99–100,

163–164, 190–191, 220, 223–225, 228,
230, 238, 242, 245, 256, 260

Crowding, 41

D
Darwin, Charles, 7–8, 43
Deletion approach, 162, 178
De-mixing matrix, 76, 78, 80, 83–84
Design of experiments, 125–157
Diagnostic checking, 90–91, 169
Difference vectors, 23
Discriminant analysis, 118, 201, 226
Dispersion matrix, 16, 204–207
Dissimilarity, 199–202

coefficients, 202
matrix, 202, 221

Distance measure
Cook’s squared distance, 167
determinantal ratio, 167
Euclidean distance, 164, 202–203, 212,

214, 226, 230, 235
Mahalanobis distance, 162, 227
Minkowski distance, 214

DTARCH, 97–99

273



274 Index

E
Elitist strategy, 20, 49–50, 66, 68, 84, 95–96,

99, 163, 190, 220, 223, 230, 238,
259–260

Encoding, 35, 38, 41–42, 54–55, 72–74, 78,
84, 92–93, 104–105, 184–185, 189,
220, 228

Environment, 7, 9, 60
Evolutionary algorithm, 2–4, 36, 86, 227

convergence of, 3
evolutionary approach to industrial

productivity, 1
Evolutionary Bayesian network design, 126,

152–157
dependence relation, 130, 152
nodes, 152, 248

Evolutionary computation, 5–61, 63–64,
69–70

differential evolution, 23–25
estimation of distribution algorithms,

20–23
evolutionary behavior algorithms, 25–27
evolutionary computing, 2–4, 85–87, 168,

239–247
evolutionary programming, 14–15
evolution strategies, 15–17
genetic algorithms, 4–5, 9–10, 18–20,

36–41
genetic programming, 15

Evolutionary design, 126, 132–143, 152
Evolutionary model based experimental

design, 144–157
Evolutionary neural network design, 144

neural networks, 144
predictive neural networks, 145

Evolutionary operator, 72, 230
Evolutionary paradigm, 126, 133–134
Exhaustive solution enumeration, 160
EXPAR, 88, 100–101, 106–107, 109–111,

117–118
Experiment, 125–157

experimental errors, 127
experimental points, 126–128, 133–134,

144
factor levels, 135, 138
factors, 129–132, 135, 152
response, 135–136, 151, 154
treatments, 126

Exploitation, 53
Exploration, 53, 134
External validity, 213
Extremes, 160
Extreme values, 160, 167

F
Factorial experiments, 129–132

interactions, 130
main factor effects, 129–130

FDA, 22
Feedback, 122
Fitness, 18–19, 26–27, 40, 45–47, 50–56, 68,

94–95, 164–166, 190, 222, 228
Fitness scaling, 40
Fixed point, 49
Floating-point encoding, 35, 244–245
Forecasts, 2, 107–108, 117–118
Forward search, 162, 168
Functional autoregressive models, 169
Function optimizers, 4, 9, 219
Fuzzy partition, 234–238

G
Gene, 8, 18, 42–46
Generation, 12–13, 18–20, 48–51, 134–136
Generational gap, 106, 163
Genetic algorithm design, 126, 135–143
Genetic Clustering for Unknown K (GCUK),

227
Goodness of fit, 64, 168
Gradient descent, 77, 80, 82, 122
Graphical model, 67, 152
Gray code, 38

H
Hamming distance, 38, 41, 54
Hard (or crisp) partition, 200
Heuristic, 3, 11–12
Heuristic optimization, 11
Hidden units, 120–121
Hierarchical, 67
High dimensionality, 125–126, 132–133
Hybridization, 2, 42–44, 240
Hybrid methods, 2

I
ICA (independent component analysis), 76–84
ICOMP, 93–94, 96
Identification, 64–69
Influential observations, 159, 167
Integer loading, 68
Internal validity, 207, 213
Intra-cluster separation, 214
Inversion, 20, 73, 102, 231
IRLS, 71

K
k-means algorithm, 211–212, 214–215,

218–219, 227
Kurtosis, 39, 78, 184



Index 275

L
LAD (least absolute deviation), 69
Lamarck, 43
Large databases, 233
Learning, 6, 126
Leave-k-out, 168, 178–179
Likelihood, 29–31, 70–71, 87, 90, 171,

183–184, 186–187, 239
Limit cycles, 101
Linear interpolator, 168, 173–176, 180,

182–183, 192–195
Link function, 67, 70
Locus-dependent coding, 41–42
Logit, 70–71
Long-memory, 95

M
MAD (median of absolute deviation), 29, 31,

35–36
Markov chain, 48–49
Masking, 168
MCMC (Markov Chain Monte Carlo), 56–57,

59
Memetic algorithms, 42
Meta-heuristics, 96, 160
Metric property, 202
Minimum description length, 94, 124
Missing data, 167, 173, 178
Mixing matrix, 75, 80
Model based Genetic Algorithm design, 126,

144, 147
Model identification, 86, 168
Multi-point crossover, 84
Mutant, 24–25
Mutation, 7–8, 17, 19–20, 34–35, 42, 45–46,

58, 93, 100, 136–137, 140
Mutual information, 77

N
Nearest neighbor, 208
Negentropy, 76–77
Neo-Darwinism, 7
No free lunch, 11, 43, 51
Number of partitions, 200, 203, 210, 226

O
Offspring, 15–17, 19–20
Omitted variable, 67
Optimization, 1–4, 9–12, 25–27, 41–44
Order crossover operators, 164
Ordering crossover, 223
Order selection, 92
Orthogonality relationship, 182–183
Outlier diagnostics, 160

Outliers, 28–29, 159–197
aberrant observation, 159–160
additive, 169, 177, 182–183
contaminants, 162
global outlier, 191, 197
gross error, 159, 161, 169
innovation, 169–170, 178, 186
level change, 176
level shift, 169–170
multiple outliers, 160–162, 172, 186–191
outlier patch, 177–178
outlying observations, 159–160, 162–164,

167–168, 173, 176–178, 187
partial outlier, 191, 197
volatility outliers, 169

P
Parameter estimation, 63, 69–74, 90
Pareto optimality elitist strategy, 260
Parsimony, 89–90
Partially matched crossover, 223
Particle swarm, 25–27
Pattern design matrix, 182, 188
Penalized fitness, 40
Penalized likelihood, 93, 133, 187
Perceptron, 2, 119–123, 125
Permutation, 3, 75–76, 80, 163–165, 222–225
Pheromone, 25–26
PLTAR, 88, 103–114
Polynomial models, 148

first order polynomial model, 131–132
second order polynomial model, 132

Population, 12–13, 16–20, 23–24, 48, 252, 260
Populations of experiments, 135, 144
Projection pursuit, 75

Q
Quick partition algorithm, 221–222, 227

R
Randomization, 128–129
Random numbers generation, 57
Rank selection, 39–40, 54, 68
Recombination, 8, 16–17, 136, 139
Regression residual sum of squares, 167
Replication, 128–129
Reproduction, 7–8, 18–19
Response function, 131–132
Response surface methodology, 129–132

method of steepest ascent, 132
method of steepest descent, 132

RMSE, 35–36, 106–110, 113



276 Index

Robust statistics, 160
ROC (receiver operating characteristic), 73
Roulette wheel, 33, 66, 166, 248

S
Schema, 44–47
Schwarz criteria, 93
SDM (state dependent model), 87, 114
Search space, 2, 38, 132–133
Seasonal, 14, 95
Selection, 13, 18, 32–33, 245
Selection of variables, 63
Self-adaptation, 17
SETAR, 88, 97–99, 117–118
Sigmoid, 120–121
Similarity, 199–200, 226
Simulated annealing, 42, 66
Single linkage, 208
Smearing, 168
Snooker, 59
STAR, 106
State-dependent model, 168
State – space, 168
Stationarity, 85–86
Statistical mechanics, 50
Subset ARMA, 90
Subset regression, 65–66
Sunspot, 117–118
Supermartingale, 50

T
Test set, 121
Threshold accepting, 12, 42, 70, 97
Time delay, 251, 253
Tournament, 19, 73, 102, 245
Training set, 121, 144–145
Transfer function, 96, 195
Traveling salesman problem, 2, 26
Trimmed estimates of the covariance matrices,

187
Trimmed mean, 195
Truncation point, 183, 188, 195

U
UMDA (Univariate Marginal Distribution

Algorithm), 21
Uniform order crossover, 164

V
Validation, 39–40, 121
VAR, 96, 194
Variable string length genetic algorithm, 236
VARIMA, 192, 197

W
White noise, 27–29, 86–87, 92, 96
Within – class scatter, 213
Wold decomposition, 89


	Preface
	Contents
	1  Introduction 
	1.1  Bio-inspired Optimization Methods
	1.2  Topics Organization

	2  Evolutionary Computation 
	2.1  Introduction
	2.1.1  Evolutionary Computation Between Artificial Intelligence and Natural Evolution
	2.1.2  The Contribution of Genetics

	2.2  Evolutionary Computation Methods
	2.2.1  Essential Properties
	2.2.2  Evolutionary Programming
	2.2.3  Evolution Strategies
	2.2.4  Genetic Algorithms
	2.2.5  Estimation of Distribution Algorithms
	2.2.6  Differential Evolution
	2.2.7  Evolutionary Behavior Algorithms
	2.2.8  A Simple Example of Evolutionary Computation

	2.3  Properties of Genetic Algorithms
	2.3.1  Genetic Algorithms as a Paradigm of Evolutionary Computation
	2.3.2  Evolution of Genetic Algorithms
	2.3.3  Convergence of Genetic Algorithms
	2.3.4  Issues in the Implementation of Genetic Algorithms
	2.3.5  Genetic Algorithms and Random Samplingfrom a Probability Distribution


	3  Evolving Regression Models 
	3.1  Introduction
	3.2  Identification
	3.2.1  Linear Regression
	3.2.2  Generalized Linear Models
	3.2.3  Principal Component Analysis

	3.3  Parameter Estimation
	3.3.1  Regression Models
	3.3.2  The Logistic Regression Model

	3.4  Independent Component Analysis
	3.4.1  ICA algorithms
	3.4.2  Simple GAs for ICA
	3.4.3  GAs for Nonlinear ICA


	4  Time Series Linear and Nonlinear Models 
	4.1  Models of Time Series
	4.2  Autoregressive Moving Average Models
	4.2.1  Identification of ARMA Models by Genetic Algorithms
	4.2.2  More General Models

	4.3  Nonlinear Models
	4.3.1  Threshold AR and Double Threshold GARCH Models
	4.3.2  Exponential Models
	4.3.3  Piecewise Linear Models
	4.3.4  Bilinear Models
	4.3.5  Real Data Applications
	4.3.6  Artificial Neural Networks


	5  Design of Experiments 
	5.1  Introduction
	5.2  Experiments and Design of Experiments
	5.2.1  Randomization, Replication and Blocking
	5.2.2  Factorial Designs and Response Surface Methodology

	5.3  The Evolutionary Design of Experiments
	5.3.1  High-Dimensionality Search Space
	5.3.2  The Evolutionary Approach to Design Experiments
	5.3.3  The Genetic Algorithm Design (GA-Design)

	5.4  The Evolutionary Model-Based Experimental Design: The Statistical Models in the Evolution
	5.4.1  The Evolutionary Neural Network Design (ENN-Design)
	5.4.2  The Model Based Genetic Algorithm Design (MGA-Design)
	5.4.3  The Evolutionary Bayesian Network Design(EBN-Design)


	6  Outliers 
	6.1  Outliers in Independent Data
	6.1.1  Exploratory Data Analysis for Multiple Outliers Detection
	6.1.2  Genetic Algorithms for Detecting Outliers in an i.i.d.Data Set

	6.2  Outliers in Time Series
	6.2.1  Univariate ARIMA Models
	6.2.2  Multivariate Time Series Outlier Models

	6.3  Genetic Algorithms for Multiple Outlier Detection
	6.3.1  Detecting Multiple Outliers in Univariate Time Series
	6.3.2  Genetic Algorithms for Detecting Multiple Outliers in Multivariate Time Series
	6.3.3  An Example of Application to Real Data


	7  Cluster Analysis 
	7.1  The Partitioning Problem
	7.1.1  Classification
	7.1.2  Algorithms for Clustering Data
	7.1.3  Indexes of Cluster Validity

	7.2  Genetic Clustering Algorithms
	7.2.1  A Genetic Divisive Algorithm
	7.2.2  Quick Partition Genetic Algorithms
	7.2.3  Centroid Evolution Algorithms
	7.2.4  The Grouping Genetic Algorithm
	7.2.5  Genetic Clustering of Large Data Sets

	7.3  Fuzzy Partition
	7.3.1  The Fuzzy c-Means Algorithm
	7.3.2  Genetic Fuzzy Partition Algorithms

	7.4  Multivariate Mixture Models Estimation by Evolutionary Computing
	7.4.1  Genetic Multivariate Mixture Model Estimates
	7.4.2  Hybrid Genetic Algorithms and the EM Algorithm
	7.4.3  Multivariate Mixture Model Estimates with Unknown Number of Mixtures

	7.5  Genetic Algorithms in Classification and Regression Trees Models
	7.6  Clusters of Time Series and Directional Data
	7.6.1  GAs-Based Methods for Clustering Time Series Data
	7.6.2  GAs-Based Methods for Clustering Directional Data

	7.7  Multiobjective Genetic Clustering
	7.7.1  Pareto Optimality
	7.7.2  Multiobjective Genetic Clustering Outline


	References
	Index
	Online.pdf
	Index



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




