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Preface

Discrete familial data consist of count or binary responses along with suitable co-
variates from the members of a large number of independent families, whereas dis-
crete longitudinal data consist of similar responses and covariates collected repeat-
edly over a small period of time from a large number of independent individuals.
As the statistical modelling of correlation structures especially for the discrete lon-
gitudinal data has not been easy, many researchers over the last two decades have
used either certain ‘working’ models or mixed (familial) models for the analysis of
discrete longitudinal data. Many books are also written reflecting these ‘working’ or
mixed models based research. This book, however, presents a clear difference be-
tween the modelling of familial and longitudinal data. Parametric or semiparametric
mixed models are used to analyze familial data, whereas parametric dynamic models
are exploited to analyze the longitudinal data. Consequently, dynamic mixed mod-
els are used to analyze combined familial longitudinal data. Basic properties of the
models are discussed in detail. As far as the inferences are concerned, various types
of consistent estimators are considered, including simple ones based on method of
moments, quasi-likelihood, and weighted least squares, and more efficient ones such
as generalized quasi-likelihood estimators which account for the underlying famil-
ial and/or longitudinal correlation structure of the data. Special care is given to the
mathematical derivation of the estimating equations.

The book is written for readers with a background knowledge of mathematics and
statistics at the advanced undergraduate level. As a whole, the book contains eleven
chapters including Chapters 2 and 3 on linear fixed and mixed models (for continu-
ous data) with autocorrelated errors. The remaining chapters are also presented in a
systematic fashion covering mixed models, longitudinal models, longitudinal mixed
models, and familial longitudinal models, both for count and binary data. Further-
more, in almost every chapter, the inference methodologies have been illustrated by
analyzing biomedical or econometric data from real life. Thus, the book is compre-
hensive in scope and treatment, suitable for a graduate course and further theoretical
and/or applied research involving familial and longitudinal data.

Familial models for discrete count or binary data are generally known as the gen-
eralized linear mixed models (GLMMs). There is a long history on inferences in
GLMMs with single or multiple random effects. In this GLMMs setup, the correla-
tions among the responses under a family are clearly generated through the common
random effects shared by the family members. However, as opposed to the GLMMs
setup, it has not been easy to model the longitudinal correlations in generalized
linear longitudinal models (GLLMs) setup. Chapter 1 provides an overview on dif-
ficulties and remedies with regard to (1) the consistent and efficient estimation in the
GLMMs setup, and (2) the modelling of longitudinal correlations and subsequently
efficient estimation of the parameters in GLLMs.

The primary purpose of this book is to present ideas for developing correlation
models for discrete familial and/or longitudinal data, and obtaining consistent and
efficient estimates for the parameters of such models. Nevertheless, in Chapter 2,
we consider a clustered linear regression model with autocorrelated errors. There are
two main reasons to deal with such linear models with autocorrelated errors. First, in

vii



viii

practice, one may also need to analyze the continuous longitudinal data. Secondly,
the knowledge of autocorrelation models for continuous repeated data should be
helpful to distinguish them from similar autocorrelation models for discrete repeated
data. Several estimation techniques, namely the method of moments (MM), ordinary
least squares (OLS), and generalized least squares (GLS) methods are discussed.
An overview on the relative efficiency performances of these approaches is also
presented.

In Chapter 3, a linear mixed effects model with autocorrelated errors is consid-
ered for the analysis of clustered correlated continuous data, where the repeated
responses in a cluster are also assumed to be influenced by a random cluster effect.
A generalized quasi-likelihood (GQL) method, similar to but different from the GLS
method, is used for the inferences in such a mixed effects model. The relative per-
formance of this GQL approach to the so-called generalized method of moments
(GMM), used mainly in the econometrics literature, is also discussed in the same
chapter.

When the responses from the members of a given family are counts, and they are
influenced by the same random family effect in addition to the covariates, they are
routinely analyzed by fitting a familial model (i.e., GLMM) for count data. In this
setup, the familial correlations among the responses of the members of the same
family become the function of the regression parameters (effects of the covariates
on the count responses) as well as the variance of the random effects. However, ob-
taining consistent and efficient estimates especially for the variance of the random
effects has been proven to be difficult. With regard to this estimation issue, Chap-
ter 4 discusses the advantages and the drawbacks of the existing highly competitive
approaches, namely the method of moments, penalized quasi-likelihood (PQL), hi-
erarchical likelihood (HL), and a generalized quasi-likelihood. The relatively new
GQL approach appears to perform the best among these approaches, in obtaining
consistent and efficient estimates for both regression parameters and the variance of
the random effects (also known as the overdispersion parameter). This is demon-
strated for the GLMMs for Poisson distribution based count data, first with single−
and then with two-dimensional random effects in the linear predictor of the famil-
ial model. The aforementioned estimation approaches are discussed in detail in the
parametric setup under the assumption that the random effects follow a Gaussian
distribution. The estimation in the semiparametric and nonparametric set up is also
discussed in brief.

Chapter 5 deals with familial models for binary data. These models are similar
but different from those for count data discussed in Chapter 4. The difference lies
in the fact that conditional on the random family effect, the distribution of the re-
sponse of a member is assumed to follow the log-linear based Poisson distribution
in the count data setup, whereas in the familial models for binary data, the response
of a member is assumed to follow the so-called linear logistic model based binary
distribution. This makes the computation of the unconditional likelihood and mo-
ments of the data more complicated under the binary set up as compared to the count
data setup. A binomial approximation as well as a simulation approach is discussed
to tackle this difficulty of integration over the distribution of the random effect to
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obtain unconditional likelihood or moments of the binary responses under a given
family. Formulas for unconditional moments up to order four are clearly outlined
for the purpose of obtaining the MM and GQL estimates for both regression and the
overdispersion parameters.

In the longitudinal setup, the repeated responses collected from the same indi-
vidual over a small period of time become correlated due to the influence of time
itself. Thus, it is not reasonable to model these correlations through the common
random effect of the individual. This becomes much clearer when it is understood
that in some situations, conditional on the random effect, the repeated responses
can be correlated. It has not, however, been easy to model the correlations of the
repeated discrete such as count or binary responses. One of the main reasons for
this is that unlike in the linear regression setup (Chapters 2 and 3), the correlations
for the discrete data depend on the time-dependent covariates associated with the
repeated responses. In fact, the modelling of the correlations for discrete data, even
if the covariates are time independent, has also not been easy. Over the last two
decades, many existing studies, consequently, have used arbitrary ‘working’ corre-
lations structure to obtain efficient regression estimates as compared to the moment
or least squares estimates. This is, however, known by now that this type of ‘work-
ing’ correlations model based estimates [usually referred to as the generalized es-
timating equations (GEE) based estimates] may be less efficient than the simpler
moment or least squares estimates. Chapter 6 deals with a class of autocorrelation
models constructed based on certain dynamic relationships among repeated count
responses. When covariates are time independent, in this approach, it is not neces-
sary to identify the true correlation structure for the purpose of estimation of the
regression coefficients. A GQL approach is used which always produces consistent
and highly efficient regression estimates, especially as compared to the moment
or independence assumption based estimates. The modelling for correlations when
covariates are time dependent is also discussed in detail. In order to use the GQL
estimation approach, this chapter also demonstrates how to identify the true corre-
lation structure of the data when it is assumed that the true model belongs to an
autocorrelations class.

Similar to Chapter 6, Chapter 7 deals with dynamic models and various infer-
ence techniques including the GQL approach for the analysis of repeated binary
data collected from a large number of independent individuals. Note that the corre-
lated binary models based on linear dynamic conditional probabilities (LDCP) are
quite different from those dynamic models discussed in Chapter 6 for the repeated
count data. Furthermore, for the cases where it is appropriate to consider that the
means and variances of repeated binary responses over time may maintain a recur-
sive relationship, Chapter 7 provides a discussion on the inferences for such data by
fitting a binary dynamic logit (BDL) model.

Chapter 8 develops a longitudinal mixed model for count data as a generalization
of the longitudinal fixed effects model for count data discussed in Chapter 6. This
generalization arises in practice because of the fact that if the response of an indi-
vidual at a given time is influenced by the associated covariates as well as a random
effect of the individual, then this random effect will remain the same throughout
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the data collection period over time. In such a situation, conditional on the random
effect, the repeated responses will be influenced by the associated time dependent
covariates as well as by time as a stochastic factor. Thus, conditional on the random
effect, the repeated count responses will follow a dynamic model for count data as
in Chapter 6. Note that unconditional correlations, consequently, will be affected by
both the variance of the random effects as well as the correlation index parameter
from the dynamic model. This extended correlation structure has been exploited to
obtain the consistent and efficient GQL estimates for the regression parameters, as
well as a consistent GQL estimate for the variance of the random effects.

By the same token as that of Chapter 8, Chapter 9 deals with various longitudinal
mixed models for binary data. These models are developed based on the assumption
that conditional on the individual’s random effect, the repeated binary responses
either follow the LDCP or BDL models as in Chapter 7. Conditional on the random
effects, a binary dynamic probit (BDP) model is also considered. This generalized
model is referred to as the binary dynamic mixed probit (BDMP) model. In general,
the GQL estimation approach is used for the inferences. The GMM and maximum
likelihood (ML) estimation approaches are also discussed.

Chapter 10 is devoted to the inferences in familial longitudinal models for count
data. These models are developed by combining the familial models for count data
discussed in Chapter 4 and the longitudinal models (GLLMs) for count data dis-
cussed in Chapter 6. The combined model has been referred to as the GLLMM
(generalized linear longitudinal mixed model). In this setup, the count responses are
two-way correlated, familial correlations occur due to the same random family ef-
fect shared by the members of a given family, and the longitudinal correlations arise
due to the possible dynamic relationship among the repeated responses of a given
member of the family. These two-way correlations are taken into account to develop
the GQL estimating equations for the regression effects and variance component for
the random family effects, and the moment estimating equation for the longitudinal
correlation index parameter.

Chapter 11 discusses the inferences in GLLMMs for binary data. A variety of
longitudinal correlation models is considered, whereas the familial correlations are
developed through the introduction of the random family effects only. The GQL
approach is discussed in detail for the estimation of the parameters of the mod-
els. Because the likelihood estimation is manageable when longitudinal correlations
are introduced through dynamic logit models, this chapter, similar to Chapter 9,
discusses the ML estimation as well. As a further generalization, two-dimensional
random family effects are also considered in the dynamic logit relationship based
familial longitudinal models. Both GQL and ML approaches are given for the es-
timation of the parameters of such multidimensional random effects based familial
longitudinal models.

Preface



Acknowledgements

Apart from my own research with familial and longitudinal data over the last fif-
teen years, this book has benefitted tremendously from my joint research with Drs.
Kalyan Das, R. Prabhakar Rao, Vandna Jowaheer, Gary Sneddon, Pranesh Kumar,
and Patrick Farrell, among others. I fondly remember their individual research jour-
ney with me and thankfully acknowledge their contributions that helped me to reach
a stage that I thought appropriate to initiate the writing of this book.

The presentation of the materials to cover the wide field of inferences for familial
and longitudinal discrete data has not been easy. This presentation task has benefit-
ted from my experience in teaching and guiding graduate students in this area over
the last ten years. I am thankful to those students who made me think about the
necessity of a book at their level in this familial and longitudinal setup.

I wish to sincerely thank my colleague Dr. Gary Sneddon for his comments on
some of the chapters of the book, and my collaborator Dr. Vandna Jowaheer from the
University of Mauritius, for reading almost the entire book with love and patience,
and providing valuable remarks and suggestions. I also thankfully acknowledge the
inspirational comments and suggestions from five anonymous referees at different
stages during the preparation of the book.

It has been a pleasure to work with John Kimmel, Marc Strauss, and Matthew
Amboy of Springer-Verlag. I also wish to thank the copy-editor, Ms. Valerie T.
Greco, for her attention to detail and superb accuracy on the copy-edit.

The writing of this book would not have been possible without the support of
my family. I would like to thank my wife Malina Sutradhar for her inspiration and
endless care, and my daughter Rinku and son Subir for their constant encouragement
during the preparation of this book. I would also like to give many thanks to my
adorable granddaughter Riya and her parents Rinku and Meghal for the countless
number of pleasant breaks over Skype video calls, which allowed me to re-energize
and continue writing the book enthusiastically during the last year.

xi



  



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background of Familial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background of Longitudinal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Overview of Linear Fixed Models for Longitudinal Data . . . . . . . . . . . . 9
2.1 Estimation of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Method of Moments (MM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Ordinary Least Squares (OLS) Method . . . . . . . . . . . . . . . . . . 11
2.1.3 OLS Versus GLS Estimation Performance . . . . . . . . . . . . . . . 13

2.2 Estimation of β Under Stationary General Autocorrelation Structure 14
2.2.1 A Class of Autocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Estimation of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 A Rat Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Alternative Modelling for Time Effects . . . . . . . . . . . . . . . . . . . . . . . . 23
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Overview of Linear Mixed Models for Longitudinal Data . . . . . . . . . . . 29
3.1 Linear Longitudinal Mixed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 GLS Estimation of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Moment Estimating Equations for σ2

γ and ρ` . . . . . . . . . . . . . 32
3.1.3 Linear Mixed Models for Rat Data . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Linear Dynamic Mixed Models for Balanced Longitudinal Data . . . 36
3.2.1 Basic Properties of the Dynamic Dependence Mixed

Model (3.21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Estimation of the Parameters of the Dynamic Mixed

Model (3.21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Further Estimation for the Parameters of the Dynamic Mixed Model 42

3.3.1 GMM/IMM Estimation Approach . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 GQL Estimation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xiii



xiv Contents

3.3.3 Asymptotic Efficiency Comparison . . . . . . . . . . . . . . . . . . . . . 52
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Familial Models for Count Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Poisson Mixed Models and Basic Properties . . . . . . . . . . . . . . . . . . . . 60
4.2 Estimation for Single Random Effect Based Parametric Mixed

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1 Exact Likelihood Estimation and Drawbacks . . . . . . . . . . . . . 63
4.2.2 Penalized Quasi-Likelihood Approach . . . . . . . . . . . . . . . . . . 65
4.2.3 Small Variance Asymptotic Approach: A Likelihood

Approximation (LA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Hierarchical Likelihood (HL) Approach . . . . . . . . . . . . . . . . . 75
4.2.5 Method of Moments (MM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.6 Generalized Quasi-Likelihood (GQL) Approach . . . . . . . . . . 78
4.2.7 Efficiency Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.8 A Health Care Data Utilization Example . . . . . . . . . . . . . . . . . 91

4.3 Estimation for Multiple Random Effects Based Parametric Mixed
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.1 Random Effects in a Two-Way Factorial Design Setup . . . . . 94
4.3.2 One-Way Heteroscedastic Random Effects . . . . . . . . . . . . . . . 94
4.3.3 Multiple Independent Random Effects . . . . . . . . . . . . . . . . . . . 95

4.4 Semiparametric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Computations for µi, λi, Σi, and Ωi . . . . . . . . . . . . . . . . . . . . 107
4.4.2 Construction of the Estimating Equation for β When σ2

γ Is
Known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Monte Carlo Based Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . 111
4.5.1 MCEM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5.2 MCNR Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Familial Models for Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1 Binary Mixed Models and Basic Properties . . . . . . . . . . . . . . . . . . . . . 120

5.1.1 Computational Formulas for Binary Moments . . . . . . . . . . . . 123
5.2 Estimation for Single Random Effect Based Parametric Mixed

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.1 Method of Moments (MM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.2 An Improved Method of Moments (IMM) . . . . . . . . . . . . . . . 126
5.2.3 Generalized Quasi-Likelihood (GQL) Approach . . . . . . . . . . 131
5.2.4 Maximum Likelihood (ML) Estimation . . . . . . . . . . . . . . . . . . 135
5.2.5 Asymptotic Efficiency Comparison . . . . . . . . . . . . . . . . . . . . . 138
5.2.6 COPD Data Analysis: A Numerical Illustration . . . . . . . . . . . 143

5.3 Binary Mixed Models with Multidimensional Random Effects . . . . . 146



Contents xv

5.3.1 Models in Two-Way Factorial Design Setup and Basic
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3.2 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3.3 Salamander Mating Data Analysis . . . . . . . . . . . . . . . . . . . . . . 160

5.4 Semiparametric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.4.1 GQL Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.4.2 A Marginal Quasi-Likelihood (MQL) Approach . . . . . . . . . . 166
5.4.3 Asymptotic Efficiency Comparison: An Empirical Study . . . 167

5.5 Monte Carlo Based Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . 169
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6 Longitudinal Models for Count Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.1 Marginal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.2 Marginal Model Based Estimation of Regression Effects . . . . . . . . . . 183
6.3 Correlation Models for Stationary Count Data . . . . . . . . . . . . . . . . . . . 185

6.3.1 Poisson AR(1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.3.2 Poisson MA(1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.3.3 Poisson Equicorrelation Model . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.4 Inferences for Stationary Correlation Models . . . . . . . . . . . . . . . . . . . 188
6.4.1 Likelihood Approach and Complexity . . . . . . . . . . . . . . . . . . . 188
6.4.2 GQL Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.4.3 GEE Approach and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 196

6.5 Nonstationary Correlation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.5.1 Nonstationary Correlation Models with the Same

Specified Marginal Mean and Variance Functions . . . . . . . . . 202
6.5.2 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.5.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.6 More Nonstationary Correlation Models . . . . . . . . . . . . . . . . . . . . . . . 209
6.6.1 Models with Variable Marginal Means and Variances . . . . . . 209
6.6.2 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.6.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.6.4 Estimation and Model Selection: A Simulation Example . . . 215

6.7 A Data Example: Analyzing Health Care Utilization Count Data . . . 217
6.8 Models for Count Data from Longitudinal Adaptive Clinical Trials . 219

6.8.1 Adaptive Longitudinal Designs . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.8.2 Performance of the SLPW and BRW Designs For

Treatment Selection: A Simulation Study . . . . . . . . . . . . . . . . 224
6.8.3 Weighted GQL Estimation for Treatment Effects and

Other Regression Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236



xvi Contents

7 Longitudinal Models for Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
7.1 Marginal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.1.1 Marginal Model Based Estimation for Regression Effects . . 244
7.2 Some Selected Correlation Models for Longitudinal Binary Data . . . 245

7.2.1 Bahadur Multivariate Binary Density (MBD) Based Model . 246
7.2.2 Kanter Observation-Driven Dynamic (ODD) Model . . . . . . . 249
7.2.3 A Linear Dynamic Conditional Probability (LDCP) Model . 252
7.2.4 A Numerical Comparison of Range Restrictions for

Correlation Index Parameter Under Stationary Binary
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.3 Low-Order Autocorrelation Models for Stationary Binary Data . . . . 256
7.3.1 Binary AR(1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.3.2 Binary MA(1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.3.3 Binary Equicorrelation (EQC) Model . . . . . . . . . . . . . . . . . . . 259
7.3.4 Complexity in Likelihood Inferences Under Stationary

Binary Correlation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.3.5 GQL Estimation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.3.6 GEE Approach and Its Limitations for Binary Data . . . . . . . . 264

7.4 Inferences in Nonstationary Correlation Models for Repeated
Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.4.1 Nonstationary AR(1) Correlation Model . . . . . . . . . . . . . . . . . 266
7.4.2 Nonstationary MA(1) Correlation Model . . . . . . . . . . . . . . . . 268
7.4.3 Nonstationary EQC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
7.4.4 Nonstationary Correlations Based GQL Estimation . . . . . . . . 270
7.4.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.5 SLID Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.5.1 Introduction to the SLID Data . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.5.2 Analysis of the SLID Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.6 Application to an Adaptive Clinical Trial Setup . . . . . . . . . . . . . . . . . 278
7.6.1 Binary Response Based Adaptive Longitudinal Design . . . . . 278
7.6.2 Construction of the Adaptive Design Weights Based

Weighted GQL Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.7 More Nonstationary Binary Correlation Models . . . . . . . . . . . . . . . . . 290

7.7.1 Linear Binary Dynamic Regression (LBDR) Model . . . . . . . 290
7.7.2 A Binary Dynamic Logit (BDL) Model . . . . . . . . . . . . . . . . . . 295
7.7.3 Application of the Binary Dynamic Logit (BDL) Model in

an Adaptive Clinical Trial Setup . . . . . . . . . . . . . . . . . . . . . . . . 307
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

8 Longitudinal Mixed Models for Count Data . . . . . . . . . . . . . . . . . . . . . . . 321
8.1 A Conditional Serially Correlated Model . . . . . . . . . . . . . . . . . . . . . . . 321
8.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

8.2.1 Estimation of the Regression Effects β . . . . . . . . . . . . . . . . . . 324



Contents xvii

8.2.2 Estimation of the Random Effects Variance σ2
γ : . . . . . . . . . . . 332

8.2.3 Estimation of the Longitudinal Correlation Parameter ρ . . . . 337
8.2.4 A Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
8.2.5 An Illustration: Analyzing Health Care Utilization Count

Data by Using Longitudinal Fixed and Mixed Models . . . . . . 346
8.3 A Mean Deflated Conditional Serially Correlated Model . . . . . . . . . . 348
8.4 Longitudinal Negative Binomial Fixed Model and Estimation of

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
8.4.1 Inferences in Stationary Negative Binomial Correlation

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
8.4.2 A Data Example: Analyzing Epileptic Count Data by

Using Poisson and Negative Binomial Longitudinal Models 367
8.4.3 Nonstationary Negative Binomial Correlation Models and

Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

9 Longitudinal Mixed Models for Binary Data . . . . . . . . . . . . . . . . . . . . . . 389
9.1 A Conditional Serially Correlated Model . . . . . . . . . . . . . . . . . . . . . . . 390

9.1.1 Basic Properties of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . 390
9.1.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

9.2 Binary Dynamic Mixed Logit (BDML) Model . . . . . . . . . . . . . . . . . . 396
9.2.1 GMM/IMM Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
9.2.2 GQL Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
9.2.3 Efficiency Comparison: GMM Versus GQL . . . . . . . . . . . . . . 405
9.2.4 Fitting the Binary Dynamic Mixed Logit Model to the

SLID data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
9.2.5 GQL Versus Maximum Likelihood (ML) Estimation for

BDML Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.3 A Binary Dynamic Mixed Probit (BDMP) Model . . . . . . . . . . . . . . . . 415

9.3.1 GQL Estimation for BDMP Model . . . . . . . . . . . . . . . . . . . . . 416
9.3.2 GQL Estimation Performance for BDMP Model: A

Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

10 Familial Longitudinal Models for Count Data . . . . . . . . . . . . . . . . . . . . . 423
10.1 An Autocorrelation Class of Familial Longitudinal Models . . . . . . . . 423

10.1.1 Marginal Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 424
10.1.2 Nonstationary Autocorrelation Models . . . . . . . . . . . . . . . . . . 425

10.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
10.2.1 Estimation of Parameters Under Conditional AR(1) Model . 430
10.2.2 Performance of the GQL Approach: A Simulation Study . . . 439

10.3 Analyzing Health Care Utilization Data by Using GLLMM . . . . . . . 446



xviii Contents

10.4 Some Remarks on Model Identification . . . . . . . . . . . . . . . . . . . . . . . . 449
10.4.1 An Exploratory Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 450
10.4.2 A Further Improved Identification . . . . . . . . . . . . . . . . . . . . . . 451

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

11 Familial Longitudinal Models for Binary Data . . . . . . . . . . . . . . . . . . . . . 455
11.1 LDCCP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

11.1.1 Conditional-Conditional (CC) AR(1) Model . . . . . . . . . . . . . . 456
11.1.2 CC MA(1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
11.1.3 CC EQC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
11.1.4 Estimation of the AR(1) Model Parameters . . . . . . . . . . . . . . . 460

11.2 Application to Waterloo Smoking Prevention Data . . . . . . . . . . . . . . . 468
11.3 Family Based BDML Models for Binary Data . . . . . . . . . . . . . . . . . . 471

11.3.1 FBDML Model and Basic Properties . . . . . . . . . . . . . . . . . . . . 472
11.3.2 Quasi-Likelihood Estimation in the Familial Longitudinal

Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
11.3.3 Likelihood Based Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489



Chapter 1
Introduction

Discrete data analysis such as count or binary clustered data analysis has been an
important research topic over the last three decades. In general, two types of clus-
ters are frequently encountered. First, a cluster may be formed with the responses
along with associated covariates from the members of a group/family. These clus-
tered responses are supposed to be correlated as the members of the cluster share
a common random group/family effect. In this book, we refer to this type of corre-
lation among the responses of members of same family as the familial correlation.
Second, a cluster may be formed with the repeated responses along with associated
covariates collected from an individual. These repeated responses from the same in-
dividual are also supposed to be correlated as there may be a dynamic relationship
between the present and past responses. In this book, we refer to these correlations
among the repeated responses collected from the same individual as the longitudinal
correlations. It is of interest to fit a suitable parametric or semi-parametric familial
and/or longitudinal correlation model primarily to analyze the means and variances
of the data. Note that the familial and longitudinal correlations, however, play an
important role in a respective setup to analyze the means and variances of the data
efficiently.

1.1 Background of Familial Models

There is a long history of count and binary data analysis in the familial setup. It
is standard to consider that a count response may be generated by a Poisson dis-
tribution based log linear model [Nelder (1974), Haberman (1974), and Plackett
(1981)]. Similarly, a binary response may be generated following a linear logistic
model [Berkson (1944, 1951), Dyke and Patterson (1952), and Armitage (1971)].
Because both Poisson and binary distributions belong to a one-parameter exponen-
tial family, both log linear and linear logistic models belong to the exponential fam-
ily based generalized linear models (GLMs) [McCullagh and Nelder (Section 2,
1983)]. Consequently, when the count or binary responses from the members of a
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2 1 Introduction

family form a cluster, a generalized linear mixed model (GLMM) is used to analyze
such family based cluster data, where GLMMs are generated from the GLMs by
adding random effects to the so-called linear predictor. Under the assumption that
these random effects follow the Gaussian distribution, many authors such as Schall
(1991), Breslow and Clayton (1993), Waclawiw and Liang (1993), Breslow and Lin
(1995), Kuk (1995), Lee and Nelder (1996) [see also Lee and Nelder (2001)], Su-
tradhar and Qu (1998), Jiang (1998), Jiang and Zhang (2001), Sutradhar and Rao
(2003), Sutradhar (2004), Sutradhar and Mukerjee (2005), Jowaheer, Sutradhar, and
Sneddon (2009), and Chowdhury and Sutradhar (2009) have studied the inferences
in GLMMs mainly for the consistent estimation of both regression effects of the
covariates on the responses and the variance of the random effects. Note that in
the familial, i.e., in GLMM set up, the variance of the random effects is in fact the
familial correlation index parameter, which is not so easy to estimate consistently.

Schall (1991) and Breslow and Clayton (1993), among others, have used a best
linear unbiased prediction (BLUP) analogue estimation approach, where random
family effects are treated to be the fixed effects [Henderson (1963)] and the regres-
sion and variance components of the GLMMs are estimated based on the so-called
estimates of the random effects. Waclawiw and Liang (1993) have developed an es-
timating function based approach to component estimation in the GLMMs. In their
approach they utilize the so-called Stein-type estimating functions (SEF) to esti-
mate both the random effects and their variance components. In connection with
a Poisson mixed model with a single component of dispersion, Sutradhar and Qu
(1998) have, however, shown that the so-called SEF approach of Waclawiw and
Liang (1993) never produces consistent estimates for the variance component of
the random effects, whereas the BLUP analogue approach of Breslow and Clayton
(1993) may or may not yield a consistent estimate for the variance of the random
effects (also known as the overdispersion parameter), which depends on the clus-
ter size and the associated design matrix. In order to remove biases in the estimates,
Kuk (1995) and Lin and Breslow (1996), among others, provided certain asymptotic
bias corrections both for the regression and the variance component estimates. But,
as Breslow and Lin (1995, p. 90) have shown in the context of binary GLMM with
a single component of dispersion that the bias corrections appear to improve the
asymptotic performance of the uncorrected quantities only when the true variance
component is small, more specifically, less than or equal to 0.25.

As opposed to the BLUP analogue approach of Breslow and Clayton (1993) (also
known as the so-called penalized quasi-likelihood (PQL) approach), Jiang (1998)
proposed a simulated moment approach that always yields consistent estimators for
the parameters of the mixed model. The moment estimators may, however, be ineffi-
cient. In the context of the binary mixed model, Sutradhar and Mukerjee (2005) have
introduced a simulated likelihood approach which produces more efficient estimates
than the simulated moment approach of Jiang (1998). To overcome the inefficiency
of the moment approach, Jiang and Zhang (2001) have suggested an improvement
over the method of moments. It, however, follows from Sutradar (2004) that the
estimators obtained based on the improved method of moments (IMM) may also
be highly inefficient as compared to the estimators obtained based on a generalized



1.2 Background of Longitudinal Models 3

quasi-likelihood (GQL) approach. The GQL estimators are consistent and highly
efficient, the exact maximum likelihood estimators being fully efficient (i.e., opti-
mal) which are, however, known to be cumbersome to compute. In particular, the
estimation of the variances of the estimators by the maximum likelihood approach
may be extremely difficult (Sutradhar and Qu (1998)).

Lee and Nelder (1996) have suggested hierarchical likelihood (HL) inferences
for the parameters in GLMMs. This HL approach is similar to but different from
the PQL approach of Breslow and Clayton (1993). They are similar as in both ap-
proaches the estimation of the regression effects and the variance of the random
effects is done through the prediction of the random effects by pretending that the
random effects are fixed parameters even though they are truly unobservable ran-
dom effects. To be specific, in the first step, both PQL and HL approaches estimate
the regression parameters and the random effects. The difference between the two
approaches is that the PQL approach estimates them by maximizing a penalized
quasi-likelihood function, whereas the HL approach maximizes a hierarchical like-
lihood function. In the second step, in estimating the variance of the random ef-
fects, the PQL approach maximizes a profile quasi-likelihood function, whereas the
HL approach maximizes an adjusted profile hierarchical likelihood function. Conse-
quently, the HL approach may also suffer from similar inconsistency problems due
to similar reasons that cause inconsistency in the PQL approach. This is also evident
from Chowdhury and Sutradhar (2009) where it is shown in the context of a Poisson
mixed model with a single random effect that the HL approach appears to produce
highly biased estimates for the regression parameters, especially when the variance
of the random family effects is large. The biases of the HL estimates also appear to
vary depending on the cluster/family sizes. These authors have further demonstrated
that the GQL approach [Sutradhar (2004)] produces almost unbiased and consistent
estimates for all parameters of the Poisson mixed model irrespective of the clus-
ter size and the magnitude of the variance of the random effects. In the context
of Poisson mixed models with two variance components, Jowaheer, Sutradhar, and
Sneddon (2009) have shown that the GQL approach performs very well in estimat-
ing the parameters of this larger mixed model. In this book, among other estimation
approaches, we exploit this GQL approach for the estimation of the parameters both
in count and binary mixed models. The GQL approach produces consistent as well
as highly efficient estimates as compared to other competitive approaches such as
moment, PQL, and HL estimation approaches.

1.2 Background of Longitudinal Models

In the longitudinal setup, a small number of repeated responses along with a set of
covariates are collected from a large number of independent individuals over the
same time points within a small period of time. Note that irrespective of the situa-
tions whether one deals with count or binary data, it is most likely that the repeated
responses will be autocorrelated. Furthermore, these autocorrelations will exhibit
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stationary pattern [Sutradhar (2003,2010)] when the covariates collected over time
from an individual are time independent. If the covariates are, however, time depen-
dent, then the correlations will exhibit a nonstationary pattern [Sutradhar (2010)].
But it is not easy to write either a probability model or a correlation model for the
repeated count and binary responses, even if the covariates are time independent
(stationary correlations case). For the nonstationary cases, the construction of the
probability or correlation models will be much more complicated.

Many authors including Liang and Zeger (1986) have used a ‘working’ station-
ary correlation structure based generalized estimating equation (GEE) approach for
the estimation of the regression effects, even though the repeated data are sup-
posed to follow a nonstationary correlation structure due to time-dependent co-
variates. This GEE approach, directly or indirectly, has also been incorporated in
many research monographs or textbooks. For example, one may refer to Diggle
et al (2002), and Molenberghs and Verbeke (2005). However, as demonstrated by
Crowder (1995), because of the uncertainty of definition of the working correlation
matrix, the Liang−Zeger approach may in some cases lead to a complete break-
down of the estimation of the regression parameters. Furthermore, Sutradhar and
Das (1999) have demonstrated that even though the GEE approach in many situa-
tions yields consistent estimators for the regression parameters, this GEE approach
may, however, produce less efficient estimates than the independence assumption
based quasi-likelihood (QL) or moment estimates. These latter QL or moment es-
timates are also ‘working’ independence assumption based GEE estimates. Note
that for the purpose of a demonstration on efficiency loss by the GEE approach,
Sutradhar and Das (1999), similar to Liang and Zeger (1986), have considered the
stationary correlation structure in the context of longitudinal binary data analysis
even though the covariates were time dependent. In fact the use of a ‘working’ sta-
tionary correlation matrix in place of the true stationary correlation matrix may also
produce less efficient estimates than the ‘working’ independence assumption based
GEE or QL or moment estimates. This latter situation is demonstrated by Sutrad-
har (2010, Section 3.1) through an asymptotic efficiency comparison for stationary
repeated count data. These studies by Crowder (1995), Sutradhar and Das (1999),
Sutradhar (2003), and Sutradhar (2010) reveal that the GEE approach cannot be
trusted for the regression estimation for the discrete such as longitudinal binary or
count data.

Fitzmaurice, Laird and Rotnitzky [1993, eqns (2)–(4)] discuss a GEE approach
following Liang and Zeger (1986) but estimate the ‘working’ correlations through
a second set of estimating equations which is quite similar to the set of estimating
equations for the regression parameters. Note that in this approach, the construc-
tion of the estimating equations for the ‘working’ correlation parameters requires
another ‘working’ correlation matrix consisting of the third− and fourth-order mo-
ments of the responses, although Fitzmaurice et al (1993) use a ‘working’ indepen-
dence approach to construct such higher-order moments based estimating equations.
Similar to Fitzmaurice et al (1993), Hall and Severini (1998) also estimate the re-
gression and the ‘working’ correlation parameters simultaneously. Hall and Severini
(1998) referred to their approach as the extended generalized estimating equations
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(EGEE) approach. This EGEE approach, unlike the approach of Fitzmaurice, Laird
and Rotnitzky (1993) does not require any third− and fourth-order moments based
estimating equations for the ‘working’ correlation parameters. It rather uses a set
of second-order moments based estimating equations for the ‘working’ correlation
parameters. Note however that these GEE based approaches of Fitzmaurice, Laird
and Rotnitzky (1993) and Hall and Severini (1998) also cannot be trusted for the
same reasons that the GEE cannot be trusted. We refer to Sutradhar (2003) and Su-
tradhar and Kumar (2001) for details on the inefficiency problems encountered by
the aforementioned extended GEE approaches.

As a resolution to this inference problem for consistent and efficient estimation of
the regression effects in the longitudinal setup, Sutradhar (2003, Section 3) has sug-
gested an efficient GQL approach, which does not require the identification of the
underlying autocorrelation structure, provided the covariates are time independent.
This GQL approach for the discrete correlated data is in fact an extension of the QL
approach (or weighted least squares approach) for the independent data introduced
by Wedderburn (1974), among others. Sutradhar (2010) has introduced nonstation-
ary autocorrelation structures for the cases when covariates are time dependent, and
applied the GQL approach for consistent and efficient estimation of the regression
effects. Sutradhar (2010) has also provided an identification of the autocorrelation
technique for the purpose of the construction of an appropriate GQL estimating
equation. In this book, we have exploited this GQL approach for the estimation of
the parameters both in a longitudinal and familial setup.

Zhao and Prentice (1990), Prentice and Zhao (1991), and Zhao, Prentice, and
Self (1992) have described extensions of the GEE methodology to allow for joint
estimation of the regression and the true longitudinal correlation parameters in a
binary longitudinal model. More specifically, Zhao and Prentice (1990) propose a
joint probability model that is based on the ‘quadratic exponential family,’ with the
three− and higher-way association parameters equal to zero. The ‘quadratic expo-
nential family’ based association parameters are then estimated by using the like-
lihood estimating or equivalently, the generalized estimating equations approach.
Similarly, a partly exponential model is introduced by Zhao, Prentice, and Self
(1992) which accommodates the association between the responses, and the like-
lihood or equivalently the GEE approach was used to estimate the mean and the
association parameters of the model. These GEE based methods for the joint esti-
mation are referred to as the GEE2 approaches. Some of these GEE2 approaches,
however, encounter convergence problems especially for the estimation of the lon-
gitudinal correlations [Sutradhar (2003)].

For continuous longitudinal data, some authors, for example, Pearson et al.
(1994), Verbeke and Molenberghs (2000, Chapter 3), and Verbeke and Lesaffre
(1999), modelled the means of the repeated responses as a linear or quadratic func-
tion over time. In this approach, time is considered to be a deterministic factor and
hence times do not play any role to correlate the responses. Diggle, Liang, and Zeger
(1994) [see also Diggle et al (2002), Verbeke and Molenberghs (2000, Chapter 3)]
argue that the effect of serial (lag) correlations is very often dominated by suitable
random effects and hence they modelled the longitudinal correlations through the
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introduction of the random effects. However, contrary to the above argument, it fol-
lows, for example, from Sneddon and Sutradhar (2004) that even though the random
effects generate an equicorrelation structure for the repeated responses, they do not
appear to address the time effects. This is because these individual specific random
effects may remain the same throughout the data collection period and hence cannot
represent any time effects. For this reason, Sneddon and Sutradhar (2004) modelled
the longitudinal correlations of the responses through the autocorrelation structure
of the errors involved in a linear model.

Similar to the continuous longitudinal setup, some authors have modelled the cor-
relations of the repeated discrete data through the introduction of the time-specific
random effects in the conditional mean functions of the data. For example, similar
to GLMMs, Thall and Vail (1990) [see also Heagerty (1999) and Neuhaus (1993)]
modelled the correlations of the repeated count data with overdispersion through the
introduction of the random effects. However, one of the problems with this type of
approach is that the lag correlations of the repeated responses in a cluster may be-
come complicated. Furthermore, as argued by Jowaheer and Sutradhar (2002), this
approach is unable to generate any pattern such as Gaussian type autocorrelation
structure among responses as alluded in Liang and Zeger (1986), for example. In
this book, following Sutradhar (2003, 2010), we have emphasized a class of Gaus-
sian type autocorrelation structures to model the longitudinal correlations for both
count and binary data. The random effects are used to model the overdispersion
and/or familial correlations.
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Chapter 2
Overview of Linear Fixed Models for
Longitudinal Data

In a longitudinal setup, a small number of repeated responses along with certain
multidimensional covariates are collected from a large number of independent indi-
viduals. Let yi1, . . . ,yit , . . . ,yiTi be Ti ≥ 2 repeated responses collected from the ith in-
dividual, for i = 1, . . . ,K, where K →∞. Furthermore, let xit = (xit1, . . . ,xit p)′ be the
p-dimensional covariate vector corresponding to yit , and β denote the effects of the
components of xit on yit . For example, in a biomedical study, to examine the effects
of two treatments and other possible covariates on blood pressure, the physician
may collect blood pressure for Ti = T = 10 times from K = 200 independent sub-
jects. Here the treatment covariate may be denoted by xit1 = 1, if the ith individual
is treated by say treatment A, and xit1 = 0, if the individual is treated by the second
treatment B. Let xit2, xit3, xit4, and xit5, respectively, denote the gender, age, smok-
ing, and drinking habits of the ith individual. Thus, p = 5, and β denote the five-
dimensional vector of regression parameters. Note that because yi1, . . . ,yit , . . . ,yiTi

are Ti repeated blood pressure collected from the same ith individual, it is likely
that they will be correlated. Let Σi = (σiut) denote the Ti×Ti possibly unknown co-
variance matrix of these repeated responses. This type of correlated data is usually
modelled by using the linear relationship

yi = Xiβ + εi, (2.1)

where
yi = (yi1, . . . ,yit , . . . ,yiTi)

′

is the vector of repeated responses,

X ′
i = [xi1, . . . ,xiTi ]

is the p×Ti matrix of covariates for the ith individual, and

εi = [εi1, . . . ,εit , . . . ,εiTi ]
′
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10 2 Overview of Linear Fixed Models for Longitudinal Data

is the Ti-dimensional residual vector such that for all i = 1, . . . ,K, εi are indepen-
dently distributed (id) with 0 mean vector and covariance matrix Σi. That is,

εi
id∼ (0,Σi).

It is of scientific interest to estimate β consistently and as efficiently as possible.
Note that even if the covariates are time dependent, in the present linear model

setup, the residual vector εi is likely to have a stationary covariance structure. But,
it is most likely that this structure belongs to a suitable class of stationary autocorre-
lation models such as autoregressive moving average models of order q = 0,1,2, . . .
and r = 0,1,2, . . . [ARMA(q,r)] [Box and Jenkins (1970, Chapter 3)] or perhaps
completely unknown. Further note that even though the residual covariance ma-
trices for all i = 1, . . . ,K are likely to have a common structure, their dimension
will, however, be different for the unbalanced data. For this reason, one may de-
note the common covariance matrix by Σ , that is, Σi = Σ , only when Ti = T, for
all i = 1, . . . ,K. In the longitudinal setup, it is convenient in general to express the
covariance matrix Σi as

Σi = (σiut)

= A1/2
i CiA

1/2
i , (2.2)

where Ai = diag[σi11, . . . ,σitt , . . . ,σiTiTi ] and Ci is the Ti × Ti correlation matrix of
yi = [yi1, . . . ,yit , . . . ,yiTi ]

′. Note that, if σitt = var(Yit) = σ2 for all t = 1, . . . ,Ti and
the repeated responses are assumed to be independent (which is unlikely to hold in
practice) i.e., Ci = ITi , a Ti×Ti identity matrix, then Σi reduces to

Σi = σ
2ITi . (2.3)

2.1 Estimation of β

2.1.1 Method of Moments (MM)

Irrespective of the cases whether the repeated responses yi1, . . . ,yit , . . . ,yiTi are inde-
pendent or correlated, one may always obtain the moment estimate of β by solving
the moment equation

K

∑
i=1

[X ′
i (yi−Xiβ )] = 0. (2.4)

Let the moment estimator of β , the root of the moment equation (2.4), be denoted
by β̂M. It is clear that β̂M is easily obtained as
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β̂M =

[
K

∑
i=1

X ′
i Xi

]−1[ K

∑
i=1

X ′
i yi

]
. (2.5)

Because E[Yi] = Xiβ by (2.1), for a small or large K, it follows that β̂M is unbiased
for β , that is, E[β̂M] = β , with its covariance matrix given by

cov[β̂M] = VM

=

[
K

∑
i=1

X ′
i Xi

]−1[ K

∑
i=1

X ′
i ΣiXi

][
K

∑
i=1

X ′
i Xi

]−1

, (2.6)

where Σi is the covariance matrix of yi, which may be unknown.
Note that when K is sufficiently large, it follows from (2.5) by using the multi-

variate central limit theorem [see Mardia, Kent and Bibby (1979, p. 51), for exam-
ple] that β̂M has asymptotically (K → ∞) a multivariate Gaussian distribution with
zero mean vector and covariance matrix VM as in (2.6). Note that in this large sample
case, the covariance matrix VM may be estimated consistently by using the sandwich
type estimator

V̂M = limitK→∞

[
K

∑
i=1

X ′
i Xi

]−1[ K

∑
i=1

X ′
i (yi−µi)(yi−µi)′Xi

][
K

∑
i=1

X ′
i Xi

]−1

, (2.7)

where µi = Xiβ is known by using β = β̂M from (2.5).

2.1.2 Ordinary Least Squares (OLS) Method

In this approach, the correlations among the repeated responses yi1, . . . ,yit , . . . ,yiTi ,

are ignored, and the ordinary least squares (OLS) estimator, say β̂OLS, of the regres-
sion parameter β in (2.1) is obtained by minimizing the sum of squared residuals

S(β ) =
K

∑
i=1

[(yi−Xiβ )′(yi−Xiβ )]

=
K

∑
i=1

[y′iyi−2y′iXiβ +β
′X ′

i Xiβ ] (2.8)

for all individuals. Now by equating the derivatives of S(β ) with respect to β to 0,
that is,

∂S
∂β

=−2
K

∑
i=1

[X ′
i yi−X ′

i Xiβ ] = 0, (2.9)
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one obtains the OLS estimator of β as

β̂OLS =

[
K

∑
i=1

X ′
i Xi

]−1[ K

∑
i=1

X ′
i yi

]
, (2.10)

which is the same as the moment estimator β̂M of β given by (2.5). Consequently,
β̂OLS is unbiased for β with its covariance matrix as VOLS = VM given by (2.6).
Furthermore, asymptotically (K → ∞), VOLS may be consistently estimated as
V̂OLS = V̂M by (2.7).

2.1.2.1 Generalized Least Squares (GLS) Method

In this approach, one takes the correlations of the data into account and minimizes
the so-called generalized sum of squares

S∗(β ) =
K

∑
i=1

[(yi−Xiβ )′Σ−1
i (yi−Xiβ )]

=
K

∑
i=1

[y′iΣ
−1
i yi−2y′iΣ

−1
i Xiβ +β

′X ′
i Σ

−1
i Xiβ ] (2.11)

to obtain the GLS estimator of β . More specifically, equating the derivatives of
S∗(β ) with respect to β to 0, that is,

∂S∗

∂β
=−2

K

∑
i=1

[X ′
i Σ

−1
i yi−X ′

i Σ
−1
i Xiβ ] = 0, (2.12)

one obtains the GLS estimator of β as

β̂GLS =

[
K

∑
i=1

X ′
i Σ

−1
i Xi

]−1[ K

∑
i=1

X ′
i Σ

−1
i yi

]
. (2.13)

Because E[Yi] = Xiβ , it follows from (2.13) that E[β̂GLS] = β . Thus, β̂GLS is an
unbiased estimator of β , with its covariance given by

cov[β̂GLS] = VGLS

=

[
K

∑
i=1

X ′
i Σ

−1
i Xi

]−1

, (2.14)

which, for unknown Σi = Σ , may be consistently estimated by
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V̂GLS = limitK→∞

[
K

∑
i=1

X ′
i Σ̂

−1Xi

]−1

, (2.15)

with Σ̂ = K−1 ∑K
i=1[(yi−Xiβ̂GLS)(yi−Xiβ̂GLS)′]. Note that if Σi 6= Σ for i = 1, . . . ,K,

the consistent estimation of Σi by using only Ti responses for the ith individual may
or may not be easy. For example, if Σi is defined through a small number of common
scale and/or correlation parameters those can be consistently estimated by using all
{yi,Xi} for i = 1, . . . ,K; one may then easily obtain its consistent estimator. In other
situations, the consistent estimation for Σi may not be so easy.

2.1.3 OLS Versus GLS Estimation Performance

Because both β̂OLS (2.10) and β̂GLS (2.13) are unbiased for β , they are consistent
estimators. It follows, however, from (2.6) and (2.14) that their covariance matrices
are not the same. Thus the variances of the two estimators given in the leading diag-
onals of the respective covariance matrices are likely to be different. Furthermore,
it is known by the following theorem [see also Amemiya (1985, Section 6.1.3) and
Rao (1973, Section 4a.2)] that the variances of the components of GLS estimator
β̂GLS are always smaller than the variances of the corresponding components of the
OLS estimator β̂OLS. This makes β̂GLS a more efficient estimator than the OLS esti-
mator β̂OLS.

Theorem 2.1 For u = 1, . . . , p, let β̂u,OLS and β̂u,GLS be the uth element of the OLS
estimator β̂OLS (2.10) and the GLS estimator β̂GLS, respectively. It then follows that

var[β̂u,GLS]≤ var[β̂u,OLS], (2.16)

for all u = 1, . . . , p, where ‘var[·]′ represents the variance of the estimator in the
square bracket.

Proof: Let Pi = Σ
−1
i Xi, A =

[
∑K

i=1 X ′
i Xi
]−1

, and B =
[
∑K

i=1 X ′
i Σ

−1
i Xi

]−1
. Then by

(2.10) and (2.13), write

cov[β̂OLS] = cov

[
A

(
K

∑
i=1

X ′
i Yi

)
−B

(
K

∑
i=1

P′i Yi

)
+B

(
K

∑
i=1

P′i Yi

)]

= cov

[
A

(
K

∑
i=1

X ′
i Yi

)
−B

(
K

∑
i=1

P′i Yi

)]
+ cov

[
β̂GLS

]
, (2.17)

by using the fact that

cov

[{
A

(
K

∑
i=1

X ′
i Yi

)
−B

(
K

∑
i=1

P′i Yi

)}
,

{
B

(
K

∑
i=1

P′i Yi

)}]
= 0. (2.18)
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It then follows from (2.17) that var[β̂u,OLS] ≥ var[β̂u,GLS], as in the theorem. We
still need to show that (2.18) holds. We examine this directly as follows. Because
cov(Yi) = Σi, and because all individuals are independent in the longitudinal setup,
that is, cov(Yi,Yj) = 0 for all i 6= j, i, j = 1, . . . ,K, we can write

cov

[{
A

(
K

∑
i=1

X ′
i Yi

)
−B

(
K

∑
i=1

P′i Yi

)}
,

{
B

(
K

∑
i=1

P′i Yi

)}]

= A

(
K

∑
i=1

X ′
i ΣiPi

)
B′ −B

(
K

∑
i=1

P′i ΣiPi

)
B′

= AA−1B′ −BB−1B′ = 0,

(2.19)

by using Pi = Σ
−1
i Xi.

2.2 Estimation of β Under Stationary General Autocorrelation
Structure

2.2.1 A Class of Autocorrelations

Recall from (2.2) that the Ti×Ti longitudinal covariance matrix for the ith individual
is given by

Σi = A1/2
i CiA

1/2
i ,

where Ci is a Ti×Ti unknown correlation matrix. For convenience, one may express
this correlation matrix as

Ci = (ρi,ut), u, t = 1, . . . ,Ti, (2.20)

with ρi,tt = 1.0. Note that in the linear longitudinal model setup, it is reasonable to
assume that ρi,ut = ρut for all individuals i = 1, . . . ,K. The correlation matrix (2.20)
may then be expressed as

Ci = (ρut), u, t = 1, . . . ,Ti, (2.21)

which is a submatrix of a larger T ×T correlation matrix

C = (ρut), u, t = 1, . . . ,T, (2.22)

where T = max1≤i≤KTi. Note that once the C matrix is computed, Ci can be copied
from C based on its dimension.



2.2 Estimation of β Under Stationary General Autocorrelation Structure 15

Further note that in the longitudinal set up, it is also quite reasonable to assume
that the repeated responses follow a dynamic dependence model such as autoregres-
sive moving average of order (q,r)(ARMA(q,r)) [Box and Jenkins (1976, Chapter
3)]. We note that ARMA(q,r) is a large class of autocorrelation structures used in
general to explain the time effects in time series as well as in spatial data, among
others. Under this large class of autocorrelations, the correlation structure in (2.21)
may be expressed as

Ci(ρ) =


1 ρ1 ρ2 · · · ρTi−1

ρ1 1 ρ1 · · · ρTi−2
...

...
...

...
ρTi−1 ρTi−2 ρTi−3 · · · 1

 , (2.23)

where for ` = 1, . . . ,Ti, ρ` is known to be the `th lag autocorrelation. Note that if the
ARMA model is known for the repeated data, then these lag correlations in (2.23)
may easily be computed. To understand this, consider the following examples.

Example 1: Autoregressive Order 1 (AR(1)) Structure

For t = 1, . . . ,Ti, re-write the tth equation for the ith individual from (2.1) as

yit = x′itβ + εit , (2.24)

and assume that
εit = ρεi,t−1 +ait , (2.25)

with |ρ|< 1 and ait
iid∼ (0,σ2

a ). For a suitable integer r, one may exploit the recursive
relation (2.25) and re-express εit as

εit = ρ
r
εi,t−r +

r−1

∑
j=0

ρ
jai,t− j. (2.26)

Note that when the errors are assumed to be stationary, the joint distribution of

εi,1−r, . . . ,εi,t−r, . . . ,εi,Ti−r

remains the same for any r = 0,±1,±2, . . . ,±∞. This is known as a strong station-
arity condition. This strong condition is, however, not needed to find the stationary
covariance matrix of the error vector εi. The relationship in (2.25) holds for any t in
the stationary case, thus (2.26) may be written as

εit =
∞

∑
j=0

ρ
jai,t− j. (2.27)
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It then follows that

E[εit ] = 0 and var[εit ] =
σ2

a

1−ρ2 , (2.28)

for any t = 1, . . . ,Ti. Similarly, for u < t = 2, . . . ,Ti, by using the relationships

εiu =
∞

∑
j=0

ρ
jai,u− j and εit =

t−u−1

∑
j=0

ρ
jai,t− j +ρ

t−u[
∞

∑
j=0

ρ
jai,u− j], (2.29)

one obtains the stationary covariance between εiu and εit as

cov[εiu, εit ] = σ
2
a

ρ t−u

1−ρ2 . (2.30)

It then follows from (2.28) and (2.30) that when the repeated responses

yi1, . . . ,yit , . . . ,yiTi

follow the AR(1) model (2.24)−(2.25), their means and variances are given by

E[Yit ] = x′itβ , var[Yit ] = σ
2
a [1−ρ

2]−1, (2.31)

and their lag |t−u| correlation ρ|t−u| (say) has the formula

ρ|t−u| = corr[Yiu,Yit ] = ρ
|t−u|, for u 6= t, u, t = 1, . . . ,Ti, (2.32)

where ρ is the model (2.25) parameter or may be referred to as the correlation index
parameter. Here |ρ|< 1.

Note that the correlations in (2.32) satisfy the autocorrelation structure (2.23).
Now, if the data were known to follow the AR(1) correlation model (2.24)−(2.25),
one would then estimate the correlation structure in (2.23) by simply estimating
ρ1 = ρ as this parameter determines all lag correlations as shown in (2.32). However,
it may not be practical to assume that the data follow a specific structure such as
AR(1), MA(1), or equicorrelation. Thus for more generality, we assume that the
longitudinal data follow a general correlation structure (2.23) and estimate all lag
correlations consistently by a suitable method of estimation. This is discussed in
Section 2.2.

Example 2: Moving Average Order 1 (MA(1)) Structure

Suppose that as opposed to (2.25), the εit in (2.24) follows the model

εit = ρai,t−1 +ait , (2.33)

where ρ is a suitable scale parameter that does not necessarily have to satisfy |ρ|<
1, and ait are white noise as in (2.25), that is, ait

iid∼ (0,σ2
a ). It is clear from (2.24)
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and (2.33) that the mean and the variance of yit for all t = 1, . . . ,Ti have the formulas

E[Yit ] = x′itβ , var[Yit ] = σ
2
a (1+ρ

2), (2.34)

and the lag |t−u| correlations of the repeated responses have the formulas

ρ|t−u| = corr(Yiu,Yit) =
{

ρ/(1+ρ) for |t−u|= 1
0 otherwise.

(2.35)

The correlations in (2.35) also satisfy the autocorrelation structure (2.23).
Note that similar to the AR(1) and MA(1) models, the lag correlations for any

higher order ARMA models such as ARMA(1,1) and ARMA(3,2) will also satisfy
the autocorrelation structure (2.23). For the purpose of estimation, even if the data
follow the MA(1) structure, we do not estimate the correlation structure by estimat-
ing the ρ in (2.35), rather, we estimate the general autocorrelation structure (2.23)
which accommodates the correlation structure (2.35) as a special case.

Further note that there may be other correlation models yielding the autocorrela-
tions as in (2.23). Consider the following model as an example.

Example 3: Equi-correlations (EQC) Structure

As a special case of the MA(1) model (2.33), we write

εit = ρai0 +ait , t = 1, . . . ,Ti, (2.36)

where ai0 is considered to be an error value occurred at an initial time, and ρ is a
suitable scale parameter. Assume that

ait
iid∼ (0,σ2

a ),and also ai0 ∼ (0,σ2
a ),

and ait and ai0 are independent for all t. It then follows from (2.24) and (2.36) that
the mean and the variance of yit are given by

E[Yit ] = x′itβ , var[Yit ] = σ
2
a (1+ρ

2),

as in (2.34), but the lag correlations have the formulas

ρ|t−u| = corr(Yiu,Yit) = ρ
2/(1+ρ

2), (2.37)

for all lags |t − u| = 1, . . . ,Ti − 1. This equicorrelation structure (2.37) is also ac-
commodated by the general autocorrelation structure (2.23).
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2.2.2 Estimation of β

The β̂GLS in (2.13) is the best among linear unbiased estimators for β , therefore we
may still use the formula

β̂GLS =

[
K

∑
i=1

X ′
i Σ

−1
i Xi

]−1[ K

∑
i=1

X ′
i Σ

−1
i yi

]
, (2.38)

but under the current special autocorrelation class, we estimate Σi as

Σ̂i = A1/2
i Ci(ρ̂)A1/2

i , (2.39)

where the Ci(ρ̂) matrix is computed by (2.23) by replacing ρ` with an approximate
unbiased moment estimator ρ̂` (say).

Now to compute the Ci(ρ̂) matrix in (2.39), in light of (2.22), we first compute the
larger C(ρ̂) matrix for ` = 1, . . . ,T −1, where T = max1≤i≤KTi for Ti ≥ 2. Suppose
that δit is an indicator variable such that

δit =
{

1 if t ≤ Ti

0 if Ti < t ≤ T.

for all t = 1, . . . ,T. For known β and σitt , the `th lag correlation estimate ρ̂` for the
larger C(ρ̂) matrix may be computed as

ρ̂` =
∑K

i=1 ∑T−`
t=1 δitδi,t+`[

(
yit−x′it β

σitt

)(
yi,t+`−x′it,t+`β

σi,t+`,t+`

)
]/∑K

i=1 ∑T−`
t=1 δitδi,t+`

∑K
i=1 ∑T

t=1 δit [
yit−x′it β

σitt
]2/∑K

i=1 δit

, (2.40)

[cf. Sneddon and Sutradhar (2004, eqn. (16)) in a more general linear longitudinal
setup] for ` = 1, . . . ,T −1. Note that as this estimator contains β̂GLS, both (2.38) and
(2.40) have to be computed iteratively until convergence.

Further note that ρ̂` in (2.40) is an approximately unbiased estimator of ρ`. This is
because irrespective of the autocorrelation structure for the repeated data, it follows
that

E[ρ̂`] '
∑K

i=1 ∑T−`
t=1 δitδi,t+`E[

(
yit−x′it β

σitt

)(
yi,t+`−x′it,t+`β

σi,t+`,t+`

)
]/∑K

i=1 ∑T−`
t=1 δitδi,t+`

∑K
i=1 ∑T

t=1 δitE[ yit−x′it β
σitt

]2/∑K
i=1 δit

=
∑K

i=1 ∑T−`
t=1 δitδi,t+`[ρ`]/∑K

i=1 ∑T−`
t=1 δitδi,t+`

∑K
i=1 ∑T

t=1 δit/∑K
i=1 δit

= ρ` (2.41)
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It then also follows that ρ̂` in (2.40) is a consistent (K →∞) estimator for ρ` and its
use in (2.38) does not alter the efficiency property of β̂GLS when computed assuming
that ρ is known. In practice, β̂GLS from (2.38) is used for β in (2.40). Furthermore,
in a linear model, it is likely that σitt are independent of i and may be written as
σ2

t ≡ σitt for all i = 1, . . . ,K. Now for the estimation of σ2
t , or in general, for the

estimation of the Ai = diagonal [σ2
1 , . . . ,σ2

Ti
] in (2.39), we may obtain the estimate

of σ2
t for all t = 1, . . . ,T, by the method of moments using the formula

σ̂
2
t =

K

∑
i=1

δi[yit − x′it β̂GLS]2/
K

∑
i=1

δi, (2.42)

where

δi =
{

1 if δi j = 1 for all 1≤ j ≤ t
0 otherwise,

with δi j defined as in (2.40).
Note that the computation of the inverse matrix Σ

−1
i in (2.38) requires the in-

version of the general lag correlation matrix Ci = (ρ|u−t|). This may be easily done
by using any standard software such as FORTRAN-90, R, or S-PLUS. For specific
AR(1) (2.32), MA(1) (2.35), and EQC (2.37) structures, C−1

i may, however, be cal-
culated directly by using the formulas given in Exercises 5, 6, and 7, respectively.

2.3 A Rat Data Example

As an illustration for the application of the linear longitudinal fixed model (LLFM)
described through (2.1)− (2.2) with general autocorrelation matrix Ci(ρ) as in
(2.23), we consider the biological longitudinal experimental data, originally ob-
tained by the Department of Nutrition, University of Guelph, and subsequently an-
alyzed by other researchers such as Srivastava and Carter (1983, pp. 146− 150).
For convenience we reproduce this data as shown in Tables 2A and 2B in the Ap-
pendix. This dataset contains the longitudinal food habits of 32 rats over a period
of six days under two different situations. First, for six days all 32 rats were given
a control diet. Next, these 32 rats were divided equally into four groups and four
different treatment diets (containing four different amounts of phosphorous) were
given, and the amount of food eaten by eight rats in each group was recorded over
another six days. As far as the covariates are concerned, the initial weight for each
of the 32 rats was recorded and it was of interest to see the effect of these initial
weights on food habits for six days. We give some summary statistics for these data
in Table 2.1 below.

Note that to understand the effect of initial weight on the longitudinal food habits,
one has more information here for the control group as compared to any of the
individual treatment groups. This is because all 32 rats were given the control diet
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Table 2.1 Summary statistics for food amount eaten by the rats under the control and treatment
diets.

Day
Group Statistic 1 2 3 4 5 6

Control (0.1% P) Average amount 11.19 10.50 8.17 7.95 7.93 8.46
Standard deviation 2.97 4.25 3.61 3.35 3.72 3.73

TrG1 (0.25% P) Average amount 6.93 6.84 5.72 9.26 8.65 8.28
Standard deviation 4.01 2.68 3.56 2.90 2.20 2.36

TrG2 (0.65% P) Average amount 6.89 9.69 8.92 9.70 10.88 9.52
Standard deviation 3.33 2.00 3.18 3.57 3.81 2.40

TrG3 (1.3% P) Average amount 7.56 8.89 6.40 6.05 6.46 7.70
Standard deviation 2.91 5.42 4.79 3.04 3.40 3.71

TrG4 (1.71% P) Average amount 6.54 5.49 4.11 4.54 5.73 3.66
Standard deviation 3.00 4.10 2.17 2.28 2.35 1.89

based food for six days, and each treatment group had 8 rats to feed over six days.
Under the circumstances, it is appropriate to fit two linear longitudinal models, one
for the control group and the other for the treatment groups.

For the control group, following (2.1), we fit the model

yit = βc,0 + xi,INW βc,1 + εit , for t = 1, . . . ,6; i = 1, . . . ,32, (2.43)

where yit is the amount of control diet based food eaten by the ith rat on the tth
day, xi,INW denote the initial weight of the ith rat which is independent of time, and
εit is the corresponding error. Note that for convenience, we have defined the initial
weight xi,INW as a standardized quantity. That is,

xi,INW =
T IWi−MIW

ST DIW
=

T IWi−290.25
6.98

,

where T IWi is the true initial weight of the ith (i = 1, . . . ,32) rat, MIW and ST DIW
are the mean and the standard deviation of the initial weights of the 32 rats. Further-
more, in (2.43), βc,0 and βc,1 denote the regression effects under the control group.
Because the food eaten by the same rat over T = 6 days must be correlated, fol-
lowing (2.23) we assume that εi1, . . . ,εiT follow an autocorrelation class with T ×T
constant correlation matrix for all i = 1, . . . ,32, given by

Ci(ρ)≡C =


1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2
...

...
...

...
ρT−1 ρT−2 ρT−3 · · · 1

 , (2.44)

ρ` being the `th lag autocorrelation, for ` = 1, . . . ,T −1. For the control group, the
moment estimates for the lag correlations were found to be
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ρ̂1 = 0.55, ρ̂2 = 0.31, ρ̂3 = 0.22, ρ̂4 = 0.17, ρ̂5 =−0.01,

and the GLS estimate of βc,0 and βc,1 with their standard errors (s.e.) were found to
be

β̂c,0 = 9.34, β̂c,1 = 0.40,

and
s.e.(β̂c,0) = 0.42, s.e.(β̂c,1) = 0.42,

respectively. The estimates for the lag correlations show an exponential decay. As
expected, the correlations tend to decrease as the lag increases. Thus, the food
amount eaten on day 3, for example, is more highly correlated with the day 2 amount
as compared to the day 1 amount. This explains the nature of the time effects on the
food habits of the rats when they are given control diet based food.

Note that to compute β̂GLS by (2.38) and ρ̂` by (2.40), we have used σitt = σ2
t ,

which in turn was estimated by (2.42). For the control group data, these estimates
for t = 1, . . . ,6, were found to be

σ̂
2
1 = 12.01, σ̂

2
2 = 18.84, σ̂

2
3 = 14.13, σ̂

2
4 = 13.37, σ̂

2
5 = 15.89, σ̂

2
6 = 14.39.

We now interpret the effect of the initial weight of a rat on the food habit under
the control group. The initial weight has a regression effect of 0.40 on the amount of
food eaten by a rat. This value along with the intercept estimate 9.34 indicates that
a rat with initial weight between 276.29 and 304.21 units, for example, has eaten
at a given day an amount of food that ranges between 9.34− 2× 0.40 = 8.54 and
9.34 + 2× 0.40 = 10.14 units. Note that under the control group, the first row in
the summary statistics in Table 2.1 shows that a rat on the average has eaten food
ranging from 7.93 to 10.50 units over five days with an exception of 11.19 units of
food eaten on the first day. Thus, in general the estimated food amount yielded by
the model (2.43)− (2.44) appears to agree with the summary statistics under the
control group.

In order to write a linear longitudinal model for the treatment group, we first
consider three indicator covariates to represent four treatment groups. For i =
1, . . . ,32, let xi1,Tr, xi2,Tr and xi3,Tr be the three indicator covariates such that
xi1,Tr = 0, xi2,Tr = 0, xi3,Tr = 0 indicate that the ith individual is assigned to treat-
ment group 1 (TrG1). Similarly, the ith individual rat belongs to

TrG2 when xi1,Tr = 1, xi2,Tr = 0, xi3,Tr = 0; or,

TrG3 when xi1,Tr = 0, xi2,Tr = 1, xi3,Tr = 0; or,

TrG4 when xi1,Tr = 0, xi2,Tr = 0, xi3,Tr = 1.

Now, the model under the treatment group, as opposed to (2.43) for the control
group, may be written as

yit = βTr,0 + xi,INW βTr,1 + xi1,TrβTr,2 + xi2,TrβTr,3
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+xi3,TrβTr,4 + εit , for t = 1, . . . ,8; i = 1, . . . ,32, (2.45)

We now apply the model (2.45) to the rat data in Tables 2A and 2B in the
appendix and obtain the regression effects including the treatment group effects
by using the formulas (2.38) and (2.39) with Ci(ρ) = C as in (2.44), and Ai =
diagonal [σ2

1 , . . . ,σ2
6 ]. The lag correlations necessary to compute the regression ef-

fects were estimated by using the moment estimating equation (2.40). These esti-
mates for the lag correlations are:

ρ̂1 = 0.39, ρ̂2 = 0.14, ρ̂3 = 0.27, ρ̂4 = 0.05, ρ̂5 =−0.18.

Note that as compared to the control group, the lag correlations are relatively smaller
in the treatment group. Also, unlike the control group, there appears to be a spike for
the lag 3 correlations even though there is a general tendency of decay in correlations
as lag increases. Thus, the time effects in the control and treatment groups appear to
be generally different on the food habits of the rats.

The GLS estimates of the regression effects including the treatment group effects
and their standard errors were found to be

β̂Tr,0 = 8.05, β̂Tr,1 = 0.72, β̂Tr,2 = 0.95, β̂Tr,3 =−0.89, β̂Tr,4 =−3.12,

and
s.e.(β̂Tr,0) = 0.63, s.e.(β̂Tr,1) = 0.32, s.e.(β̂Tr,2) = 0.89,

s.e.(β̂Tr,3) = 0.91, s.e.(β̂Tr,4) = 0.90,

respectively. Note that under the treatment group, the initial weight has a larger
regression effect of 0.72 on the amount of food eaten by a rat, as compared to 0.40
in the control group. Because xi1,Tr = 0, xi2,Tr = 0, xi3,Tr = 0, for the treatment
group 1 (TrG1), the initial weight effect 0.72 along with the intercept estimate 8.04
indicates that a rat in the TrG1 with initial weight between 276.29 and 304.21 units,
for example, has eaten at a given day an amount of food ranging between 8.05−
2× 0.72 = 6.61 and 8.05 + 2× 0.72 = 9.49 units. These estimated food amounts
are smaller than the estimated food amounts found under the control group. The
food amount eaten by the rats under the TrG1 in row 3 of Table 2.1 are in general
less than those under the control group shown in row 1, thus the linear longitudinal
models (2.43) and (2.45) appear to explain the data well for the control and treatment
groups, respectively. Further note that Table 2.1 shows that the amount of food eaten
by the rats under the TrG2 (row 5) over the six days are in general larger than those
eaten by the rats in TrG1 (row 3). But, the amount of food eaten by the rats under
the TrG3 (row 7) and TrG4 (row 9) over the six days tends to be smaller than that
eaten by the rats in TrG1 (row 3). The positive value of the TrG2 effect β̂Tr,2 = 0.95,

and the negative values of the TrG3 and TrG4 effects, that is, β̂Tr,3 = −0.89, and
β̂Tr,4 =−3.12, respectively, fully support the longitudinal food habits of the rats in
TrG2, TrG3, and TrG4, as compared to those in TrG1.
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The estimates for the variance components for the treatment group were found
to be

σ̂
2
1 = 12.35, σ̂

2
2 = 16.00, σ̂

2
3 = 14.26, σ̂

2
4 = 8.90, σ̂

2
5 = 10.20, σ̂

2
6 = 7.38.

2.4 Alternative Modelling for Time Effects

Note that in the last section time effects on the repeated responses are explained
through the lag correlations of these responses. Some authors, for example, Pearson
et al. (1994), Verbeke and Molenberghs (2000, Chapter 3), and Verbeke and Lesaf-
fre (1999), modelled the repeated responses in a mixed model setup as a linear or
quadratic function over time. In the present fixed model (2.1) set up, these models
may be expressed as

yit = [x′iα]t +[x′iβ ]t2 + εit , (2.46)

[cf. Verbeke and Molenberghs (2000, Chapter 3, eqn. (3.5))] where xi is the p-
dimensional time-independent covariate vector, and α and β are the effects of txi

and t2xi on the response yit , and εit
iid∼ (0,σ2). It is clear from (2.46) that time

is considered here as a deterministic factor and hence one is unable to model the
correlations among the repeated responses. Diggle, Liang, and Zeger (1994) [see
also Verbeke and Molenberghs (2000, Chapter 3, eqn. (3.5))] argue that the effect
of serial (lag) correlations is very often dominated by suitable random effects and
consequently model the correlations of the repeated data through the introduction
of random effects. This may be done by modifying the model in (2.46) as

yit = [x′iα + γi1]t +[x′iβ + γi2]t2 + εit , (2.47)

[cf. Verbeke and Molenberghs (2000, Chapter 3, eqn. (3.10))] or as

yit = x′itβ + zi1γi1 + zi2γi2 + εit , (2.48)

[cf. Verbeke and Molenberghs (2000, Chapter 3, eqn. (3.11))] where zi1 and zi2

are suitable covariates, and the random effects γi1 and γi2 may be independent or
correlated with marginal properties

γi1
iid∼ (0,σ2

γ1
) and γi2

iid∼ (0,σ2
γ2

).

But, as follows from Sneddon and Sutradhar (2004), even though the random effects
γi1 and γi2 in (2.47) and (2.48) generate an equicorrelation structure for the repeated
responses, they do not appear to address the time effects. This is because these
individual specific random effects remain the same throughout the data collection
period and hence cannot represent any time effects. Nevertheless, the mixed model
(2.48) is interesting in its own right and we discuss this model in the next chapter in
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a wider setup under the assumption that εi1, . . . ,εit , . . . ,εiTi follow a class of general
autocorrelation structures as introduced in Section 2.2.1.

Exercises

2.1. (Section 2.1.2) [Best linear unbiased estimator]

Consider the model yi = Xiβ +εi (2.1) but with the assumption that εi
iid∼ (0,σ2ITi).

Now consider all linear unbiased estimators of β in the form β ∗ = ∑K
i=1 Q′

iyi satisfy-
ing ∑K

i=1 Q′
iXi = Ip, with Qi as the Ti× p constant matrix and Ip as the p× p identity

matrix. Show that β̂OLS =
[
∑K

i=1 X ′
i Xi
]−1 [

∑K
i=1 X ′

i yi
]

in (2.10) belongs to this class

and is better than β ∗; that is var[β̂OLS]≤ var[β ∗].

2.2. (Section 2.1.3)
Similar to that of Exercise 2.1, argue that β̂GLS =

[
∑K

i=1 X ′
i Σ

−1
i Xi

]−1 [
∑K

i=1 X ′
i Σ

−1
i yi

]
in (2.13) also belongs to the class of linear unbiased estimators and show that β̂GLS

is the best linear unbiased estimator in this class for correlated data satisfying the

assumption that εi
id∼ (0,Σi) as in model (2.1) instead of εi

iid∼ (0,σ2ITi) as imposed
in Exercise 2.1.

2.3. (Section 2.1.4) [An alternative indirect proof for Theorem 2.1]
Suppose that the data following the model (2.1) are correlated. It then follows from
Exercise 2.2 that β̂GLS given by (2.13) is the best linear unbiased estimator of β .
Use this result and argue that β̂GLS is better than the independence assumption based
OLS estimator β̂OLS (2.10).

2.4. (Section 2.2.1) [Alternative proofs under the AR(1) process]
When the errors in the AR(1) process (2.24) are stationary, it follows that E[ε2

it ] =
E[ε2

i,t−1] = σ2, for all t. Use this result and show by (2.24) that

var[εit ] = σ
2 =

σ2
a

1−ρ2 and cov[εiu,εit ] = σ
2
a

ρ |t−u|

1−ρ2 .

2.5. (Section 2.2.1) [Inversion of the AR(1) process based correlation matrix (2.32)]
The inversion of the AR(1) correlation matrix

Ci(ρ|t−u|) = (ρ |t−u|), for u 6= t, u, t = 1, . . . ,Ti,

has the form
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C−1
i (ρ) =

1
1−ρ2



1 −ρ 0 0 · · · 0 0

−ρ 1+ρ2 −ρ 0 · · · 0 0
0 −ρ 1+ρ2 −ρ · · · 0 0
...

...
...

...
0 0 0 0 · · · 1+ρ2 −ρ

0 0 0 0 · · · −ρ 1


,

[Kendall, Stuart, and Ord (1983, p. 614)].

2.6. (Section 2.2.1) [Inversion of the MA(1) process based correlation matrix (2.35)]
Suppose that for θ1 = −θ/(1 + θ 2), the Ti × Ti correlation matrix for the MA(1)
process is written as

Ci(θ) =



1 θ1 0 0 · · · 0 0

θ1 1 θ1 0 · · · 0 0
0 θ1 1 θ1 · · · 0 0
...

...
...

...
0 0 0 0 · · · 1 θ1

0 0 0 0 · · · θ1 1


.

For u, t = 1, . . . ,Ti, the (u, t)th element of the C−1
i (θ) matrix is given by

1+θ 2

1−θ 2

[{
θ
|u−t| −θ

2(Ti+2)−u−t−2
}

− θ u+t

1−θ 2(Ti+2)−2

{
(1−θ

2(Ti+2)−2u−2)(1−θ
2(Ti+2)−2t−2)

}]
,

[Sutradhar and Kumar (2003, Section 2)]. The inverse of the Ci(ρ) matrix in (2.35)
may then easily be computed by using θ in terms of ρ derived from the relationship
−θ/(1+θ 2) = ρ/(1+ρ).

2.7. (Section 2.2.1) [Inversion of the EQC process based correlation matrix (2.37)]
The inversion of the Ti×Ti EQC matrix

Ci(θ) = (1−θ)ITi +θUTi

with ITi and UTi as the identity and unit matrices, respectively, has the form given by

C−1
i (θ) = (a−b)ITi +bUTi ,

[Seber (1984, p. 520)] where

a =
1+(Ti−2)θ

(1−θ){1+(Ti−1)θ}
and b =− θ

(1−θ){1+(Ti−1)θ}
.
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The inverse of the Ci(ρ) matrix in (2.37) may then be computed by using θ =
ρ2/(1+ρ2).

References

1. Amemiya, T. (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press.
2. Box, G. E. P. & Jenkins, G. M. (1970). Time Series Analysis Forecasting and Control. San

Francisco: Holden-Day.
3. Diggle, P. J., Liang, K.-Y., & Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford Sci-

ence. Oxford: Clarendon Press.
4. Kendall, M., Stuart, A., & Ord, J. K. (1983). The Advanced Theory of Statistics, Vol. 3, London:

Charles Griffin.
5. Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979). Multivariate Analysis. London: Academic

Press.
6. Pearson, J. D., Morrell, C. H., Landis, P. K., Carter, H. B., & Brant, L. J. (1994). Mixed-

effects regression models for studying the natural history of prostate disease. Statist. Med., 13,
587−601.

7. Rao, C. R. (1973). Linear Statistical Inference and Its Applications. New York: John Wiley &
Sons.

8. Seber, G. A. F. (1984). Multivariate Observations. New York: John Wiley & Sons.
9. Sneddon, G. & Sutradhar, B. C. (2004). On semi-parametric familial-longitudinal models.

Statist. Probab. Lett., 69, 369−379.
10. Srivastava, M. S. & Carter, E. M. (1983). An Introduction to Applied Multivariate Statistics.

New York: North-Holland.
11. Sutradhar, B. C. & Kumar, P. (2003). The inversion of the correlation matrix for MA(1) pro-

cess. Appl. Math. Lett., 16, 317−321.
12. Verbeke, G. & Lesaffre, E. (1999). The effect of drop-out on the efficiency of longitudinal

experiments. Appl. Statist., 48, 363−375.
13. Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New

York: Springer.



Appendix 27

Appendix

Table 2A: Rat Data with Control Diet

Initial Days
Group Weight 1 2 3 4 5 6

Control 254 12.7 10.4 5.1 8.6 7.1 9.7
262 7.2 8.4 8.5 6.8 6.3 4.5
301 14.8 13.9 8.4 7.3 8.0 10.4
311 5.6 10.2 7.8 6.1 6.4 16.5
290 13.9 12.1 8.8 8.8 8.1 7.8
300 10.4 11.2 12.5 7.0 6.9 6.9
306 16.6 17.8 14.0 6.8 5.9 5.3
286 13.9 14.3 5.9 7.7 9.2 5.7

Control 275 11.9 7.0 5.9 6.1 0.8 5.1
282 10.7 11.3 4.4 3.9 4.7 5.3
256 10.1 6.9 7.8 6.4 9.5 7.9
276 10.8 5.2 1.3 1.3 2.1 6.3
337 14.7 14.4 11.6 7.4 7.8 14.8
296 9.7 12.1 5.2 9.1 9.7 5.2
309 5.5 7.1 7.8 3.1 1.5 8.4
296 13.1 6.5 1.3 0.9 0.8 0.5

Control 275 8.8 17.7 11.5 6.6 5.4 12.0
292 8.3 3.2 5.2 8.9 4.3 4.4
338 16.2 11.9 10.2 15.6 15.3 13.9
248 7.7 4.9 11.7 12.7 13.2 10.7
315 14.5 14.0 16.9 8.4 13.1 9.8
295 11.6 2.5 5.5 4.5 5.8 8.6
312 5.3 6.1 1.5 4.1 6.2 2.1
286 11.2 11.0 5.7 8.1 10.0 8.1

Control 275 13.5 9.7 12.3 13.4 14.0 6.1
270 11.6 2.4 9.7 14.0 10.8 10.3
290 10.0 14.8 9.1 9.6 8.2 9.3
260 12.3 16.2 6.6 9.2 8.3 12.6
302 13.6 14.9 9.3 10.2 11.5 15.8
284 12.8 13.2 11.6 11.5 11.1 10.5
280 10.9 14.3 10.8 9.6 13.2 10.0
329 8.3 10.5 7.5 10.6 8.5 6.2
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Table 2B: Rat Data with Treatment Diet

Initial Days
Group Weight 1 2 3 4 5 6

TrG1 254 3.0 4.9 3.8 5.5 6.3 5.3
262 7.9 7.0 7.7 8.7 7.1 11.4
301 6.0 7.4 7.2 10.5 12.7 8.9
311 16.7 12.8 11.6 15.9 10.6 4.5
290 4.8 6.5 4.1 7.1 7.0 7.6
300 6.0 7.3 1.2 9.0 10.8 8.1
306 3.7 2.7 1.0 7.7 7.4 11.5
286 7.3 6.1 9.2 9.7 7.3 9.0

TrG2 275 4.2 9.7 10.1 7.7 15.3 10.9
282 6.6 8.1 9.9 8.8 11.4 10.1
256 5.7 9.8 4.7 5.9 4.5 7.6
276 6.6 8.9 12.9 15.0 13.0 8.6
337 9.7 9.9 8.9 15.5 11.0 5.0
296 8.8 6.5 7.3 5.7 6.0 12.2
309 12.6 13.9 4.2 11.1 16.0 8.9
296 0.9 10.7 13.4 7.9 9.8 12.9

TrG3 275 2.3 0.6 1.0 7.0 9.8 4.8
292 8.1 11.8 7.3 7.0 10.3 9.5
338 5.6 2.0 0.0 0.8 3.6 8.9
248 9.0 7.5 0.7 1.4 0.4 0.3
315 6.6 6.0 9.7 9.8 5.1 6.0
295 6.0 16.4 9.9 8.8 9.4 8.4
312 11.7 14.7 13.4 7.0 4.2 13.3
286 11.2 12.1 9.2 6.6 8.9 10.4

TrG4 275 3.3 1.2 1.9 1.3 2.8 5.8
270 5.7 15.5 3.8 1.8 6.3 1.5
290 7.2 4.1 7.0 3.4 6.5 1.3
260 8.1 4.8 7.9 8.2 9.9 5.2
302 2.7 5.6 2.7 4.3 3.0 1.3
284 6.2 6.4 2.5 4.1 4.9 4.0
280 6.0 2.2 2.0 7.0 4.1 4.2
329 13.1 4.1 5.1 6.2 8.3 6.0



Chapter 3
Overview of Linear Mixed Models for
Longitudinal Data

Recall from the last chapter [eqn. (2.48)] that there exists [Verbeke and Molenberghs
(2000, Chapter 3, eqn. (3.11)); Diggle, Liang, and Zeger (1994)] a random effects
based longitudinal mixed model given by

yit = x′itβ + ziγi + εit , (3.1)

where the εit are independent errors for all t = 1, . . . ,Ti for the ith (i = 1, . . . ,K) indi-
vidual. This model (3.1) introduces the lag correlations through the random effects
γi. For example, for

γi
iid∼ (0,σ2

γ ) and εit
iid∼ (0,σ2

ε ) (3.2)

and when it is assumed that γi and εit are independent, it may be shown that all lag
correlations under the model (3.1)− (3.2) are given by

corr(Yit ,Yit ′) = ρ|t−t ′| =
z2

i σ2
γ

σ2
ε + z2

i σ2
γ

, (3.3)

yielding equal correlations between any two responses of the ith individual. Note
that it is not only that the model (3.1) is limited to the equicorrelation structure,
but these correlations also do not appear to accommodate the time effects in the
longitudinal responses. This is because the random effect γi under the model (3.1)
remains the same during the collection of the repeated data yi1, . . . ,yiTi , indicating
that γi cannot represent the time effects.

Note, however, that there is a long history of using the random effects model
(3.1) in the statistics and econometrics literature. See, for example, Searle (1971,
Chapter 9) and the references therein. See also Amemiya (1985, Section 6.6.2). To
be specific, the random effects model (3.1) is considered to be a variance component
model in the linear model setup, and this is used mainly to analyze clustered or fa-
milial data such as (1) the independent responses collected from the members of the
same family, and (2) the independent responses collected from a group of individ-
uals exposed to the same treatment. As far as the inferences for the variance com-
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ponents of the random random effects model (3.1) are concerned, there exist many
techniques such as (a) ANOVA (analysis of variance) or moment estimation [Searle
(1971)], (b) quadratic estimator for the balanced (Ti = T ) cases [LaMotte (1973);
Mathew, Sinha and Sutradhar (1992)], and (c) non-quadratic estimation [Chow and
Shao (1988); Sutradhar (1997)]. There also exists restricted maximum likelihood
estimation [Herbach (1959); Thompson (1962)] for the nonnegative estimation of
the variance components provided it is known that the random effects γi and the
errors εit follow a known distribution such as the normal distribution.

Turning back to the introduction of the time effects in a linear mixed model, one
may attempt to use the time-dependent random effects and rewrite the model (3.1)
as

yit = x′itβ + ziγit + εit , (3.4)

where γi1, . . . ,γiTi may be assumed to have a Ti × Ti suitable covariance structure.
Note, however, that this model (3.4) encounters several technical difficulties. For
example, for the case zi = 1, γit + εit may be considered as a new error and it may
not be possible to identify the individual contribution of γit and εit to the variance of
the data yit . Furthermore, it is not practical to assume that the individual effect gets
changed with respect to time especially when longitudinal data are collected for a
short period from the same individual.

3.1 Linear Longitudinal Mixed Model

As opposed to the model (3.4), we now write a suitable linear mixed model in such a
way that the individual random effect remains unchanged during the data collection
period but the responses are still longitudinally correlated. This type of correlation
model conditional on the random effects may be constructed by using a suitable au-
tocorrelation structure for the error components εit in (3.1)− (3.2) for t = 1, . . . ,Ti.
For the purpose, we first re-express the model (3.1)− (3.2) as

yi = Xiβ +1Tiziγi + εi, (3.5)

where
yi = [yi1, . . . ,yiTi ]

′, X ′
i = [xi1, . . . ,xiTi ], εi = [εi1, . . . ,εiTi ]

′,

and 1Ti is the Ti-dimensional unit vector. Note, however, that because in practice
the covariates zi associated with the random effects γi may not be available, it is
customary to use zi = 1. Thus, we consider the linear mixed model

yi = Xiβ +1Tiγi + εi, (3.6)

where the random effects γi follow the same assumption as in (3.2), but unlike (3.2)
the error components {εit} for the given individual i are assumed to have an auto-
correlation structure as in (2.23). That is,
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εi ∼ (0,A1/2
i CiA

1/2
i ),

Ci being the Ti×Ti autocorrelation matrix as defined in (2.23). Furthermore, because
var(εit) = σ2

ε , for all i = 1, . . . ,K, and t = 1, . . . ,Ti, one may then write

εi ∼ (0,σ2
ε Ci). (3.7)

It then follows from (3.6)− (3.7) that

E[Yit ] = x′itβ

var[Yit ] = σ
2
γ +σ

2
ε = σ

2 (say)

cov[Yiu,Yit ] = σ
2
γ +σ

2
ε ρ|u−t|, (3.8)

yielding the mean and the covariance matrix of the response vector yi =(yi1, . . . ,yiTi)
′

as
E[Yi] = Xiβ , cov[Yi] = Σi = σ

2
γ 1Ti1

′
Ti

+σ
2
ε Ci. (3.9)

3.1.1 GLS Estimation of β

The β parameter is involved in the expectation of yi in (3.9), therefore for known
values of σ2

γ , σ2
ε , and ρ` (` = 1, . . . ,Ti), one may obtain the GLS estimate of β by

using the formula

β̂GLS =

[
K

∑
i=1

X ′
i Σ

−1
i Xi

]−1[ K

∑
i=1

X ′
i Σ

−1
i yi

]
, (3.10)

which is similar to the formula (2.13) for the GLS estimator of β under the linear
fixed longitudinal model. The difference between (3.10) and (2.13) is that Σi in
(2.13) has the form Σi = σ2

ε Ci = σ2Ci, whereas Σi = σ2
γ 1Ti1

′
Ti

+σ2
ε Ci in (3.10) with

σ2
γ +σ2

ε = σ2. Note that Σ
−1
i in (3.10) has the formula

Σ
−1
i =

1
σ2

ε

C−1
i −

σ2
γ

σ4
ε

 C−1
i 1Ti1

′
Ti

C−1
i

1+ σ2
γ

σ4
ε

1′Ti
C−1

i 1Ti

 , (3.11)

which may be easily calculated once the inverse of the error correlation matrix Ci is
known. Note that when the errors {εit} in the mixed model (3.6) follow the general
autocorrelation structure as in (2.23), one may easily obtain the C−1

i matrix using
any standard software such as FORTRAN-90, R, or S-PLUS. As discussed in Chapter
2, for specific AR(1) (2.32), MA(1) (2.35), and EQC (2.37) structures, C−1

i may be
calculated directly using the formulas given in Exercises 5, 6, and 7 of Chapter 2.
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3.1.2 Moment Estimating Equations for σ2
γ and ρ`

For convenience we estimate

φ =
σ2

γ

σ2
γ +σ2

ε

=
σ2

γ

σ2 , σ
2, and ρ` (` = 1, . . . ,Ti). (3.12)

It is clear from (3.6) that

E[
K

∑
i=1

ε
′
i ε] = E[

K

∑
i=1

(yi−Xiβ )′(yi−Xiβ )] = σ
2

K

∑
i=1

Ti,

where σ2 = σ2
γ +σ2

ε . Thus, we obtain a moment estimator for σ2 as

σ̂
2 = ∑K

i=1(yi−Xiβ̂GLS)′(yi−Xiβ̂GLS)
∑K

i=1 Ti
, (3.13)

where β̂GLS is given by (3.10). Note that the moment estimator σ̂2 in (3.13) is a
consistent estimator for σ2 as it is obtained from an unbiased moment estimating
equation.

Next, we develop a moment estimating equation for φ = σ2
γ /σ2 as follows. Sim-

ilar to (2.40), suppose that δit is an indicator variable such that

δit =
{

1 if t ≤ Ti

0 if Ti < t ≤ T.

for all t = 1, . . . ,T. Also, suppose that di = (yi−Xiβ̂GLS) and dit denote the element
of di corresponding to the tth (t = 1, . . . ,Ti) element of the ith (i = 1, . . . ,K) individ-
ual/cluster. By pooling the sample sum of squares and sum of products and equating
to its population counterpart we obtain

K

∑
i=1

T

∑
u,t=1

δiuδitdiudit/σ
2 = φ

K

∑
i=1

T

∑
u,t=1

δiuδit

+ (1−φ)
K

∑
i=1

[Ti +2{(Ti−1)ρ1 + . . .+2ρTi−2 +ρTi−1}], (3.14)

where ρ|t−u| is the |t − u|th lag autocorrelation used to define the general auto-
correlation matrix Ci in (2.23). To solve (3.14) for φ and ρ` (`th lag autocorrelation),
one may first write φ̂ as a function of ρ` as

φ̂ =
s−∑K

i=1[Ti +2{(Ti−1)ρ1 + . . .+2ρTi−2 +ρTi−1}]
∑K

i=1 ∑T
u,t=1 δiuδit −∑K

i=1[Ti +2{(Ti−1)ρ1 + . . .+2ρTi−2 +ρTi−1}]
, (3.15)
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where we write

s =

[
K

∑
i=1

T

∑
u,t=1

δiuδitdiudit

][
K

∑
i=1

T

∑
t=1

δitd
2
it/

K

∑
i=1

Ti

]−1

. (3.16)

As the ρ` values are involved in the covariance matrix Σi defined in (3.9), for an
initial value of φ̂ , say φ̂0, we compute ρ̂` as

ρ̂` =
1

1− φ̂0

[
∑K

i=1 ∑T−`
t=1 δitδi,t+`ditdi,t+`/{∑K

i=1 ∑T−`
t=1 δitδi,t+`}

∑K
i=1 ∑T

t=1 δitd2
it/∑K

i=1 Ti
− φ̂0

]
(3.17)

[cf. Sneddon and Sutradhar (2004, eqn. (16)) in a more general linear familial lon-
gitudinal setup] for ` = 1, . . . ,Ti−1. Note that the initial value φ̂0 in (3.17) may be
computed by pretending ρ` = 0 and then exploiting the off-diagonal elements of Σi.
Thus, the formula for φ̂0 is given by

φ̂0 =
∑K

i=1 ∑T
u6=t δiuδitdiudit/∑K

i=1 ∑T
u6=t δiuδit

∑K
i=1 ∑T

t=1 δitd2
it/∑K

i=1 Ti
. (3.18)

Note the estimates of φ from (3.15) and of ρ` from (3.17) are then used to ob-
tain improved estimates of β and σ2 by (3.10) and (3.13), respectively. Next the
improved estimates of β and σ2 are used to obtain improved estimates of φ and ρ`.
This constitutes a cycle of iterations which continues until convergence.

3.1.3 Linear Mixed Models for Rat Data

We reanalyze the rat data by using the linear longitudinal mixed model (3.6),
whereas a longitudinal fixed model was used in Section 2.3 to analyze this rat
dataset. In addition to the assumptions used for the fixed model, it has been assumed
under the present mixed model that all 32 rats may have their own individual ran-
dom effects γi (i = 1, . . . ,32) with mean zero and variance σ2

γ . Thus, if σ2
γ is found

to be zero, then the mixed model would reduce to the fixed model. We now compute
this variance of the random effects (σ2

γ ) along with the regression effects β in (3.6).
We also compute the error variance σ2

ε and the lag correlations ρ` (` = 1, . . . ,T −1)
of the components of the error vector εi. Here T = 6. These estimates, by (3.8),
provide the mean, variance, and correlations of the rat food data; that is,

E[Yit ] = x′itβ , var(Yit) = σ
2
γ +σ

2
ε , and corr(Yit ,Yi,t+`) =

σ2
γ +σ2

ε ρ`

σ2
γ +σ2

ε

,

respectively. For convenience we estimate β by (3.10), σ2 = σ2
γ + σ2

ε by (3.13),
φ = σ2

γ /σ2 by (3.15), and ρ` by (3.17), so that the estimates of σ2
γ and σ2

ε would be
computed as
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σ̂
2
γ = φ̂ σ̂

2 and σ̂
2
ε = (1− φ̂)σ̂2.

Applying Mixed Model to the Control Group Data

For the control group, the regression effects were found to be

β̂c,0 = 9.05, β̂c,1 = 0.42,

with respective standard errors

s.e.(β̂c,0) = 0.45, s.e.(β̂c,1) = 0.45.

The estimates of φ and σ2 were found to be φ̂ = 0.3275 and σ̂2 = 14.679, leading
to the estimates of σ2

γ and σ2
ε as

σ̂
2
γ = 4.808 and σ̂

2
ε = 9.87,

respectively. Note that under the fixed model analysis, the variances for the data
at different time points (t = 1, . . . ,6) were found to range from 12.01 to 18.84.
The estimate of the common variance under the mixed model, that is, σ̂ 2 = 14.679
appears to agree quite well with the variances computed under the fixed model setup.
This in turn shows that the individual random effects variance estimate σ̂2

γ = 4.808
is quite reasonable, and its large value indicates that the individual latent effects of
the 32 rats are quite different. Thus, it may be much more reasonable to fit the mixed
effects model to this dataset as compared to the use of the results obtained under the
fixed model. The lag correlations for the errors were estimated as

ρ̂1 = 0.32, ρ̂2 =−0.06, ρ̂3 =−0.17, ρ̂4 =−0.20, ρ̂5 =−0.46.

To understand the lag correlations for the food eaten by the rats, we use the formula

corr(Yit ,Yi,t+`) = ρ`(y) =
σ2

γ +σ2
ε ρ`(ε)

σ2
γ +σ2

ε

,

and obtain them as

ρ̂1 = 0.54, ρ̂2 = 0.29, ρ̂3 = 0.21, ρ̂4 = 0.19, ρ̂5 = 0.02,

which are in extremely good agreement with those computed under the fixed model,
namely,

ρ̂1 = 0.55, ρ̂2 = 0.31, ρ̂3 = 0.22, ρ̂4 = 0.17, ρ̂5 =−0.01

(see Section 2.3).
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Applying Mixed Model to the Treatment Groups Data

We now apply the longitudinal mixed model (3.6) to the treatment based amount of
food eaten by 32 rats, and find the regression effects as

β̂Tr,0 = 7.6552, β̂Tr,1 = 0.6018, β̂Tr,2 = 1.5728,

β̂Tr,3 =−0.5959, β̂Tr,4 =−2.5328,

with respective standard errors

s.e.(β̂Tr,0) = 0.7085, s.e.(β̂Tr,1) = 0.3579, s.e.(β̂Tr,2) = 1.0020,

s.e.(β̂Tr,3) = 1.0065, s.e.(β̂Tr,4) = 1.0022.

Note that these values differ slightly from the corresponding regression estimates in
Chapter 2 found under the fixed model.

Next, the estimates of φ and σ2 for the treatment group data are found to be
φ̂ = 0.2212 and σ̂2 = 11.432, leading to the estimates of σ2

γ and σ2
ε as

σ̂
2
γ = 2.529 and σ̂

2
ε = 8.903,

respectively. Note that under the fixed model analysis for the treatment based data,
the variances for the data at different time points (t = 1, . . . ,6) were found to range
from 7.38 to 14.26. The estimate of the common variance under the mixed model
for the treatment based data, that is, σ̂2 = 11.43 appears to agree quite well with the
variances computed under the fixed model setup. Note that as the random effects
variance estimate σ̂2

γ = 2.529 is far away from zero (even though it is smaller than
the control data based value), it indicates that the individual latent effects of the 32
rats are quite different.

The lag correlations for the errors for the treatment based data were estimated as

ρ̂1 = 0.22, ρ̂2 =−0.08, ρ̂3 = 0.04, ρ̂4 =−0.23, ρ̂5 =−0.46.

By using the formula

corr(Yit ,Yi,t+`) = ρ`(y) =
σ2

γ +σ2
ε ρ`(ε)

σ2
γ +σ2

ε

,

the lag correlations for the responses are found to be

ρ̂1 = 0.40, ρ̂2 = 0.16, ρ̂3 = 0.26, ρ̂4 = 0.20, ρ̂5 =−0.14,

respectively, which are in good agreement with the lag correlations found under the
fixed model applied to the treatment based data.
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3.2 Linear Dynamic Mixed Models for Balanced Longitudinal
Data

In the econometrics literature [see, e.g., Amemiya (1985, Section 6.6.3); Hsiao
(2003)], many authors have modelled the longitudinal dependence through an AR(1)
type dynamic relationship between two lag 1 responses. Balestra and Nerlove (1966)
used this type of dynamic model to analyze the demand for natural gas in 36 U.S.A.
states in the period from 1950 to 1962. Bun and Carree (2005) also have used this
type of first-order dynamic panel data to analyze unemployment rate data for ten
years collected from 51 U.S.A. states. For simplicity, similar to these authors, we
consider a balanced dynamic mixed model with Ti = T for all i = 1, . . . ,K. This
model is given by

yit = x′itβ +θyi,t−1 + γi + εit , (3.19)

where γi and εit satisfy the same assumptions

γi
iid∼ (0,σ2

γ ) and εit
iid∼ (0,σ2

ε )

as for the mixed model (3.1). Thus, unlike the model (3.6), εi = [εi1, . . . ,εit , . . . ,εiT ]′

in (3.19) now satisfies
εi ∼ (01T ,σ2

ε I).

Note that in (3.19), θ represents the lag 1 dynamic dependence causing longitudinal
correlations among the repeated responses. If the value of the initial response yi1 is
known, then the mean of the response at time t depends on the covariate history as
well as yi1. To be specific, the mean under the model (3.19) has the form

E[Yit ] =
t−2

∑
j=0

θ
jx′i,t− jβ +θ

t−1yi1, (3.20)

whereas the mean at time point t under the model (3.1) or (3.6) has the formula
E[Yit ] = x′itβ , which depends on the covariate information for the time point t only.
Recently, Rao, Sutradhar and Pandit (2009) have considered the dynamic depen-
dence model given by

yi1 = x′i1β + γi + εi1

yit = x′itβ +θ(yi,t−1− x′i,t−1β )+ γi + εit , for t = 2, . . . ,T, (3.21)

which produces the same mean, E[Yit ] = x′itβ , as that of the model (3.6). Note that
in (3.21), the initial observation yi1 is assumed to be available through a random
process similar to the rest of the observations. This assumption is more practical
than assuming yi1 as fixed and given. See Hsiao (2003, Section 4.3.2, p. 76), for
example, for this and other assumptions on the availability of the initial observation
yi1. We now provide below the basic mean, variance, and correlation properties of
the model (3.21).
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3.2.1 Basic Properties of the Dynamic Dependence Mixed Model
(3.21)

We provide the first− and second-order moments based basic properties of the
model (3.21) as in the following theorem.

Theorem 3.1. Under the dynamic mixed model (3.21), the mean and the variance
of yit (t = 1, . . . ,T ) are given by

E[Yit ] = µit = x′itβ , and (3.22)

var[Yit ] = σitt = σ
2
γ

{
t−1

∑
j=0

θ
j

}2

+σ
2
ε

t−1

∑
j=0

θ
2 j, (3.23)

respectively, and the autocovariance at lag t−u for u < t, is given by

cov[Yiu,Yit ] = σ
2
γ

t−1

∑
j=0

θ
j

u−1

∑
k=0

θ
k +σ

2
ε

u−1

∑
j=0

θ
t−u+2 j. (3.24)

Proof: For all t = 1, . . . ,T, we first write

yit − x′itβ =
t−1

∑
j=0

θ
j(σγ γ

∗
i + εi,t− j), (3.25)

where γ∗i = γi/σγ . so that γ
∗
i

iid∼(0,1). It then follows that

E(Yit − x′itβ ) = Eγ∗i
E[(Yit − x′itβ )|γ∗i ] = 0, (3.26)

and

E(yit − x′itβ )2 = Eγ∗i
E

{σγ γ
∗
i

t−1

∑
j=0

θ
j +Σθ

j
εi,t− j

}2

|γ∗i



= σ
2
γ

[
t−1

∑
j=0

θ
j

]2

+σ
2
ε

t−1

∑
j=0

θ
2 j, (3.27)

yielding the mean and the variance of yit as in the theorem. Next for u < t, it follows
from (3.25) that the covariance between yiu and yit is given by

σiut = cov(Yiu,Yit)

= E(Yiu− x′iuβ )(Yit − x′itβ )
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= Eγ∗i
[E{(Yiu− x′iuβ )(Yit − x′itβ )}|γ∗i ]

= Eγ∗i

[
E

{
u−1

∑
j=0

θ
j(σγ γ

∗
i + εi,u− j)

t−1

∑
j=0

θ
j(σγ γ

∗
i + εi,t− j)

}
|γ∗i

]

= σ
2
γ

t−1

∑
j=0

θ
j

u−1

∑
k=0

θ
k +σ

2
ε

u−1

∑
j=0

θ
t−u+2 j, (3.28)

which is the same as equation (3.24).
Note that for the estimation of θ by the method of moments, it is sufficient to ex-

ploit all lag 1 pairwise products. This prompts us to write the lag 1 autocovariance
under the model (3.21) as in the following corollary.

Corollary 3.1. For t−u = 1, the lag 1 autocovariance is given by

cov[Yit ,Yi,t+1] = σit,t+1 = θ

[
σ

2
γ {

t−1

∑
j=0

θ
j}2 +σ

2
ε

t−1

∑
j=0

θ
2 j

]

= θσitt . (3.29)

3.2.2 Estimation of the Parameters of the Dynamic Mixed Model
(3.21)

a. Least Square Dummy Variable (LSDV) Estimator

LSDV Estimation of θ and β

Rewrite the model (3.21) as

yi1 = x′i1β + γi + εi1,

yit = θyi,t−1 +(xit − xi,t−1)′β + γi + εit

= θyi,t−1 +w′
itβ + γi + εit , for t = 2, . . . ,T. (3.30)

Define

ȳi =
1

T −1

T

∑
t=2

yit , ȳi,−1 =
1

T −1

T

∑
t=2

yi,t−1, x̄i =
1

T −1

T

∑
t=2

xit ,

x̄i,−1 =
1

T −1

T

∑
t=2

xi,t−1, w̄i = x̄i− x̄i−1, ε̄i =
1

T −1

T

∑
t=2

εit ,
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and

ỹit = yit − ȳi, ỹi,t−1 = yi,t−1− ȳi,−1, w̃it = wit − w̄i, ε̃it = εit − ε̄i,

and rewrite the model (3.30) as

ỹit = θ ỹi,t−1 + w̃′
itβ + ε̃it , for t = 2, . . . ,T, (3.31)

which is free from γi. The LSDV estimators of θ and β are obtained by applying the
OLS (ordinary least squares) method to (3.31) [Bun and Carree (2005, Section 2);
see also Hsiao (2003, Section 4.2)]. Let θ̂lsdv and β̂lsdv denote the LSDV estimators
of θ and β , respectively. By writing x∗it = (ỹi,t−1, w̃′

it)
′, and using the notation

ỹi = [ỹi2, . . . , ỹiT ]′ : (T −1)×1, and X∗
i = [x∗i2, . . . ,x

∗
it , . . . ,x

∗
iT ]′ : (T −1)× (p+1),

where p is the dimension of the β vector, the LSDV estimators have the formula
given by  θ̂lsdv

β̂lsdv

=

[
K

∑
i=1

X∗′
iX

∗
i

]−1[ K

∑
i=1

X∗′
iỹi

]
. (3.32)

These LSDV estimators are known to be biased and hence inconsistent for the re-
spective true parameters. Bun and Carree (2005) have discussed a bias correction
approach for a dynamic mixed model with scalar β (p = 1) and provided the bias-
corrected LSDV (BCLSDV) estimator of θ and β as

θ̂bclsdv = θ̂lsdv +
σ̂2

ε h(θ̂bclsdv,T −1)
(1− ρ̂2

wy−1
)σ̂2

y−1

, β̂bclsdv = β̂lsdv + ξ̂ (θ̂lsdv− θ̂bclsdv), (3.33)

[Bun and Carree (2005, eqn. (13), p. 13)] where

h(θ ,T −1) =
(T −2)− (T −1)θ +θ T−1

(T −1)(T −2)(1−θ)2

ρ̂wy−1 =
σ̂wy−1

σ̂wσ̂y−1

ξ̂ =
σ̂wy−1

σ̂2
w

, (3.34)

with

σ̂
2
y−1

=
1

K(T −2)

K

∑
i=1

T

∑
t=2

ỹ2
i,t−1, σ̂

2
w =

1
K(T −2)

K

∑
i=1

T

∑
t=2

w̃2
it

σ̂wy−1 =
1

K(T −2)

K

∑
i=1

T

∑
t=2

w̃it ỹi,t−1, (3.35)
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where K is assumed to be large. Note that for the bias-correction estimation, it is
required to have T ≥ 3.

b. Instrumental Variable (IV) Estimator

IV Estimation of θ and β

Note that the model (3.31) derived from (3.30) is free of γi. To avoid the estimation
of γi or say σ2

γ in (3.30), many econometricians have considered an alternative dy-
namic model utilizing the first difference of the responses [e.g. Hsiao (2003, Section
4.3.3.c)] as

yit − yi,t−1 = θ(yi,t−1− yi,t−2)+(wit −wi,t−1)′β +(εit − εi,t−1), for t = 3, . . . ,T,
(3.36)

yi1 being the initial response. Now any variable such as

[yi,t−2− j − yi,t−3− j] for j = 0,1, . . .

is referred to as an instrumental variable for [yi,t−1− yi,t−2] provided

E[(Yi,t−1−Yi,t−2)(Yi,t−2− j −Yi,t−3− j)] 6= 0,

but
E[(εit − εi,t−1)(Yi,t−2− j −Yi,t−3− j)] = 0.

Suppose that for simplicity we consider only one instrumental variable yi,t−2− j−
yi,t−3− j with j = 0 and estimate θ and β for the model (3.36). Write x∗it = ((yi,t−1−
yi,t−2),(wit −wi,t−1)′)′ and define

X∗
i = [x∗i4, . . . ,x

∗
it , . . . ,x

∗
iT ]′ : (T −3)× (p+1),

where p is the dimension of the β vector. Now by using the instrumental variable,
write s∗it = ((yi,t−2− yi,t−3),(wit −wi,t−1)′)′ and define

S∗i = [s∗i4, . . . ,s
∗
it , . . . ,s

∗
iT ]′ : (T −3)× (p+1).

Further define

y∗i = [yi4− yi3, . . . ,yiT − yi,T−1]′ : (T −3)×1.

One then obtains the IV estimates of θ and β by using the formula θ̂iv

β̂iv

=

[
K

∑
i=1

S∗′iX
∗
i

]−1[ K

∑
i=1

S∗′iy
∗
i

]
, (3.37)
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[Amemiya (1985, p. 11− 12)]. Note that in this approach it is required to have
T ≥ 4, which can be a major limitation. This is because, in practice, in the longitu-
dinal/panel data setup, T may be as small as 2.

c. IV Based Generalized Method of Moments (GMM) Estimators

IV Based GMM Estimation of θ and β

Note that yi,t−2− j for j = 0,1, . . . , t − 3 are also instrumental variables for [yi,t−1−
yi,t−2] as

E[(Yi,t−1−Yi,t−2)Yi,t−2− j] 6= 0, but E[(εit − εi,t−1)Yi,t−2− j] = 0.

Define
qit = [yi1, . . . ,yi,t−2,w

′
i]
′, where w′

i = [w′
i2, . . . ,w

′
iT ]′.

The following moment conditions are satisfied:

E[qituit ] = 0, for t = 3, . . . ,T, (3.38)

where uit = εit −εi,t−1 = (yit −yi,t−1)−θ(yi,t−1−yi,t−2)−(wit −wi,t−1)′β . Let ui =
[ui3, . . . ,uiT ]′ be the (T −2)×1 vector of the first difference of errors. All possible
moment conditions in (3.38) may be then represented by

E[Qiui] = 0, (3.39)

where Qi is the s× (T −2) diagonal matrix given by

Qi =


qi3 0 0 · · · 0

0 qi4 0 · · · 0
...

...
...

...
0 0 0 · · · qiT

 . (3.40)

The GMM estimator of α = (θ ,β ′)′ proposed by Arellano and Bond (1991) [see
also Hansen (1982)] is obtained by minimizing[

1
K

K

∑
i=1

u′iQ
′
i

]
Ψ
−1

[
1
K

K

∑
i=1

Qiui

]
, (3.41)

where

Ψ = E

[
1

K2

K

∑
i=1

Qiuiu
′
iQ

′
i

]
.

Thus, the IV based GMM estimating equation for α is given by
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1
K

K

∑
i=1

∂u′i
∂α

Q′
i

]
Ψ
−1

[
1
K

K

∑
i=1

Qiui

]
= 0. (3.42)

d. Some Remarks on Moment Estimation of σ2
ε and σ2

γ

Note that all three estimation methods, namely LSDV, IV, and IV based GMM meth-
ods are developed in such a way that one can estimate the regression effects β and
the dynamic dependence parameter θ without estimating σ 2

ε and γi that lead to the
estimate of σ2

γ . In many situations in practice, the estimation of the variance compo-
nents σ2

γ and σ2
ε may also be of interest. For example, to develop the bias-corrected

LSDV estimators of β and θ , one needs the estimate of σ2
ε [see Exercise 3.3; see

also Bun and Carree (2005)]. As far as the variance parameter σ2
γ is concerned, it is

sometimes of direct interest to explain the variation that may be present among the
individuals or individual firms. However, it may not be easy to estimate these param-
eters, especially σ2

γ , consistently. Some authors have used the well-known ordinary
method of moments [see Hsiao (2003, eqns. (4.3.35) and (4.3.36)), e.g.) to achieve
this goal, but problems arise when T is small (e.g., T = 2,3) which is in fact a more
realistic case in the panel and/or longitudinal data setup. Because the LSDV, IV, and
IV based GMM approaches are developed based on the first difference variables (or
variables deviated from the mean of the individual group), their unbiasedness and
consistency for the estimation of β and θ are also affected in cases when T is small.

For the sake of completeness, we provide the so-called moment estimators for
the σ 2

ε and σ2
γ [Hsiao (2003, eqns. (4.3.35) and (4.3.36))] as

σ̂
2
ε =

∑K
i=1 ∑T

t=3[(yit − yi,t−1)− θ̂(yi,t−1− yi,t−2)− β̂ ′(wit −wi,t−1)]2

2K(T −2)
, (3.43)

σ̂
2
γ =

∑K
i=1[ȳi− θ̂ ȳi,−1− β̂ ′w̄i]2

K
− 1

T −1
σ̂

2
ε , (3.44)

where ȳi, ȳi,−1, and w̄i are given in (3.31), and β̂ and θ̂ represent any of the LSDV,
IV, or IV based GMM estimates.

3.3 Further Estimation for the Parameters of the Dynamic
Mixed Model

In this section, we provide two new estimation procedures, following Rao, Sutrad-
har, and Pandit (2010). The first procedure is an improvement over the well-known
MM (method of moments) and may be referred to as the improved MM (IMM) ap-
proach. See, for example, Sutradhar (2004) and Jiang and Zhang (2001), for such
an IMM approach in the context of nonlinear, namely binary and count data analy-
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sis. Alternatively, similar to Rao, Sutradhar, and Pandit (2010), this IMM approach
may also be referred to as the GMM approach, which, however, unlike the IV based
GMM approach discussed in the econometrics literature (see previous section), uses
the IV concept indirectly. As far as the properties of the IMM/GMM and MM ap-
proaches are concerned, both IMM/GMM and MM approaches produce consistent
estimates for the parameters of the model, but MM estimates are less efficient than
the IMM/GMM estimates. The new GMM approach (as compared to the IV based
GMM approach) is given in the following subsection. In Section 3.3.2, we provide
the second procedure, namely a generalized quasi-likelihood (GQL) approach that
produces even more efficient estimates than the GMM/IMM approach.

Note that we discuss both GMM/IMM and GQL estimation procedures for a
wider model than (3.21). Suppose that an additional fixed covariate zi corresponding
to the random effect γi is available from the ith (i = 1, . . . ,K) individual. We then
rewrite the model (3.21) as

yi1 = x′i1β + ziγi + εi1

yit = x′itβ +θ(yi,t−1− x′i,t−1β )+ ziγi + εit , for t = 2, . . . ,T, (3.45)

just by inserting zi as the coefficient of γi. The definition and the assumptions for
other variables and parameters remain the same as in (3.21). Thus, if zi = 1 for
all i = 1, . . . ,K, then the linear dynamic mixed model (3.45) reduces to the model
(3.21).

3.3.1 GMM/IMM Estimation Approach

Theorem 3.2. Under the dynamic mixed model (3.45), the mean and variance of yit

(t = 1, . . . ,T ) are given by

E[Yit ] = µit = x′itβ , and (3.46)

var[Yit ] = σitt = z2
i σ

2
γ

{
t−1

∑
j=0

θ
j

}2

+σ
2
ε

t−1

∑
j=0

θ
2 j, (3.47)

respectively, and the autocovariance at lag t−u for u < t, is given by

cov[Yiu,Yit ] = σiut = z2
i σ

2
γ

t−1

∑
j=0

θ
j

u−1

∑
k=0

θ
k +σ

2
ε

u−1

∑
j=0

θ
t−u+2 j. (3.48)

Proof: The proof is similar to that of Theorem 3.1.
It is of interest to estimate all parameters of the model (3.45), namely,

β , θ , σ
2
γ , and σ

2
ε .
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In estimating these parameters by the MM, we may construct four suitable distance
functions by taking the difference between appropriate sample quantities and their
corresponding population counterparts from (3.46)− (3.48). We write these dis-
tance functions as

For β : ψ1 =
I

∑
i=1

T

∑
t=1

xit [yit − x′itβ ] (3.49)

For θ : ψ2 =
I

∑
i=1

T−1

∑
t=1

[{(yit − x′itβ )(yi,t+1− x′i,t+1β )}−σit,t+1] (3.50)

For σ
2
γ : ψ3 =

I

∑
i=1

T

∑
u<t

[{(yiu− x′iuβ )(yit − x′itβ )}−σiut ] (3.51)

For σ
2
ε : ψ4 =

I

∑
i=1

T

∑
t=1

[{yit − x′itβ}2−σitt ]/IT

−2
I

∑
i=1

T

∑
u<t

[{(yiu− x′iuβ )(yit − x′itβ )}−σiut ]/IT (T −1). (3.52)

Because E(ψ) = E[ψ ′
1, ψ2, ψ3, ψ4]′ = [01′p,0,0,0]′, in the MM approach, one

would have solved the four MM equations

ψ
′
1 = 0, ψ2 = 0, ψ3 = 0, ψ4 = 0,

to obtain the MM estimates for β , θ , σ 2
γ , and σ2

ε .
Now by following the suggestion of Hansen (1982) [see also Jiang and Zhang

(2001)], one may obtain the so-called GMM/IMM estimate for α = [β ′, θ , σ2
γ , σ2

ε ]′

by minimizing the quadratic form

Q = ψ
′V ψ (3.53)

for a suitable (p+3)×(p+3), positive definite matrix V , with V = [cov(ψ)]−1 as an
optimal choice. Note, however, that because the computation of the cov(ψ) matrix
requires the formulas for the third− and fourth-order moments as well, one cannot
compute such a covariance matrix provided the error distributions for the model
(3.45) are known. Furthermore, as the consistency of the estimators is not affected
by the choice of the weight matrix, a possible resolution is to use a normality based
matrix VN , and solve the estimating equation

∂ψ ′

∂α
VNψ = 0. (3.54)

This estimating equation may be solved by using the Gauss−Newton iterative equa-
tion
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α̂GMM(r +1) = α̂GMM(r)+
[

∂ψ ′

∂α
VN

∂ψ

∂α ′

]−1

r

[
∂ψ ′

∂α
VNψ

]
r
, (3.55)

where [ ]r denotes that the expression within the square bracket is evaluated at α =
α̂GMM(r), the estimate obtained for the rth iteration. Let the final solution obtained
from (3.55) be denoted by α̂GMM . Under some mild regularity condition it may be
shown that as K → ∞,

K
1
2 (α̂GMM −α) ∼ N

[
0,K

{
∂ψ ′

∂α
VN

∂ψ

∂α

}−1(
∂ψ ′

∂α
VNV−1VN

∂ψ

∂α ′

)

×
{

∂ψ ′

∂α
VN

∂ψ

∂α ′

}−1
]

, (3.56)

where V−1 = cov(ψ) is the true covariance matrix for ψ based on the true data such
as Gaussian or elliptic or any other symmetric continuous data. Note that if the true
distributions of the errors are normal, then V = VN . This leads to the covariance
matrix of α̂GMM as

cov(α̂GMM) =
{

∂ψ ′

∂α
VN

∂ψ

∂α ′

}−1

. (3.57)

Computation of ∂ψ ′/∂α in (3.54)

In order to compute the derivatives of the elements of ψ with respect to the ele-
ments of α for (3.54), we treat the β parameter in ψ1 as unknown but it is known
in ψ2, ψ3, and ψ4. This is a reasonable treatment as the estimation is done by
iteration. Now, the derivatives in (3.54) are easily obtained by using the formu-
las for the derivatives of µit = x′itβ , σitt , and σiut with respect to the elements of
α = [β ′,θ ,σ2

γ ,σ2
ε ]′. These formulas are:

∂ µit

∂β
= xit ,

∂ µit

∂θ
=

∂ µit

∂σ2
γ

=
∂ µit

∂σ2
ε

= 0, (3.58)

∂σitt

∂β
=

∂σiut

∂β
= 0, (3.59)

∂σitt

∂θ
= 2z2

i σ
2
γ

t−1

∑
j=0

θ
j

t−1

∑
j=1

jθ j−1 +2σ
2
ε

t−1

∑
j=1

jθ 2 j−1, (3.60)

∂σiut

∂θ
= z2

i σ
2
γ

[
t−1

∑
j=0

θ
j

u−1

∑
k=1

kθ
k−1 +

t−1

∑
j=1

jθ j−1
u−1

∑
k=0

θ
k

]
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+σ
2
ε

u−1

∑
j=0

(t−u+2 j)θ t−u+2 j−1, (3.61)

∂σitt

∂σ2
γ

= z2
i

{
t−1

∑
j=0

θ
j

}2

,
∂σiut

∂σ2
γ

= z2
i

t−1

∑
j=0

θ
j

u−1

∑
k=0

θ
k, (3.62)

and
∂σitt

∂σ2
ε

=
t−1

∑
j=0

θ
2 j,

∂σiut

∂σ2
ε

=
u−1

∑
j=0

θ
t−u+2 j. (3.63)

Construction of VN , the ‘Working’ Weight Matrix Under Normality

Note that V = [cov(ψ)]−1, where

cov(ψ) =



var(ψ1) cov(ψ1,ψ2) cov(ψ1,ψ3) cov(ψ1,ψ4)

var(ψ2) cov(ψ2,ψ3) cov(ψ2,ψ4)

var(ψ3) cov(ψ3,ψ4)

var(ψ4)

 , (3.64)

where ψ1, ψ2, ψ3, and ψ4 are given by (3.49), (3.50), (3.51), and (3.52), respec-
tively. Further note that because the errors in the underlying model (3.45) do not
have any specific distributions, it is in general not possible to compute the covari-
ance matrix cov(ψ) as its computation requires the formulas for the third− and
fourth-order moments of the data. The use of a suitable weight matrix may increase
the efficiency of the estimator of α without affecting its consistency, thus Rao, Su-
tradhar, and Pandit (2010) used a ‘working’ normality based V matrix which we
denote here by VN . We remark that in constructing VN , the true first− and second-
order moments of the data will be used. Thus, this pretense of the normal distribution
helps to compute the third− and fourth-order moments by using the true first− and
second-order moments. Recall these first− and second-order moments from Theo-
rem 3.2 and write the true covariance matrix of the data following the model (3.45)
as

Σi = (σiut) = (σitu), (3.65)

where the formulas for σiut are given in (3.47)− (3.48).
Now, under the ‘working’ normality pretention, the response vector

yi = (yi1, . . . ,yit , . . . ,yiT )′

follows a T -dimensional multinormal distribution with true mean vector µi =
(µi1, . . . ,µit , . . . ,µiT )′, and the T × T true covariance matrix Σi = (σiut), where
µit = x′itβ as in (3.46) and Σi is given by (3.65) [see also (3.47)− (3.48)]. Note
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that because of this ‘working’ normality assumption, we may obtain the third− and
the fourth-order moments of the responses using the following two lemmas.

Lemma 3.1. Under normality, the third-order moments are given as

δiu`t = E [(Yiu−µiu)(Yi`−µi`)(Yit −µit)] = 0. (3.66)

Lemma 3.2. Under normality, the fourth-order moments have the formulas

φiu`mt = E [(Yiu−µiu)(Yi`−µi`)(Yim−µim)(Yit −µit)]

= σiu`σimt +σiumσi`t +σiutσi`m, (3.67)

where σiut are the true covariances given by (3.65).
By using (3.65) and (3.66), one obtains the variance of ψ1, and its covariances

with ψ2, ψ3, and ψ4 as

varN(ψ1) =
I

∑
i=1

T

∑
u=1

T

∑
t=1

σiutxiux′it

covN(ψ1,ψ2) = covN(ψ1,ψ3) = covN(ψ1,ψ4) = 0. (3.68)

Next by using (3.65)−(3.67), we obtain the variance of ψ2 and its covariances with
ψ3 and ψ4 as

varN(ψ2) =
I

∑
i=1

T−1

∑
u=1

T−1

∑
t=1

[
φiu(u+1)t(t+1)−σiu(u+1)σit(t+1)

]

covN(ψ2,ψ3) =
I

∑
i=1

T−1

∑
u=1

T

∑
m<t

[φiu,u+1,mt −σiu,u+1σimt ]

covN(ψ2,ψ4) = (IT )−1
I

∑
i=1

T−1

∑
u=1

T

∑
t=1

[
φiu(u+1)tt −σiu(u+1)σitt

]

−2{IT (T −1)}−1
I

∑
i=1

T−1

∑
u=1

T

∑
m<t

[
φiu(u+1)mt −σiu(u+1)σimt

]
(3.69)

Similarly, the variance of ψ3 and the covariance between ψ3 and ψ4 are given by

varN(ψ3) =
I

∑
i=1

T

∑
u<`

T

∑
m<t

[φiu`mt −σiu`σimt ] ,

(3.70)
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and

covN(ψ3,ψ4) = (IT )−1
I

∑
i=1

T

∑
u=1

T

∑
m<t

[φiuumt −σiuuσimt ]

−2{IT (T −1)}−1
I

∑
i=1

T

∑
u<`

T

∑
m<t

[φiu`mt −σiu`σimt ] , (3.71)

respectively, and the variance of ψ4 has the formula

varN(ψ4) = (IT )−2
I

∑
i=1

T

∑
u=1

T

∑
t=1

[φiuutt −σiuuσitt ]

−2(IT )−1(IT (T −1))−1
I

∑
i=1

T

∑
u=1

T

∑
m<t

[φiuumt −σiuuσimt ]

+4(IT (T −1))−2
I

∑
i=1

T

∑
u<`

T

∑
m<t

[φiu`mt −σiu`σimt ] . (3.72)

This completes the construction of the VN matrix.

3.3.2 GQL Estimation Approach

Note that in an independence setup when the responses follow an exponential fam-
ily of distributions such as normal, binary and Poisson, Wedderburn (1974) [see
also McCullagh (1983)] proposed a quasi-likelihood approach for independent data
which exploits both the mean and variance in estimating the parameters such as β

involved in the means of the responses. Thus, if the responses were following an
independent model, say with θ = 0, and all γi = 0 in (3.45), then the QL estimate
for β involved in the means would be the solution of

K

∑
i=1

∂ µ ′
i

∂β
[diag{var(εi1), . . . ,var(εit), . . . ,var(εiT )}]−1(yi−µi) = 0, (3.73)

where yi = (yi1, . . . ,yiT )′ is the T × 1 vector of first order responses for the ith in-
dividual, and µi = E(Yi) = [µi1, . . . ,µit , . . . ,µiT ]′ is the mean vector with µit = x′itβ ,
as given by the model (3.45). Because var(εit) = σ2

ε for all t = 1, . . . ,T, the QL
equation (3.73) reduces to

1
σ2

ε

K

∑
i=1

∂ µ ′
i

∂β
IT (yi−µi) = 0,
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which is in fact the ordinary least squares estimating equation yielding the indepen-
dence based QL (QL(I)) or OLS estimator of β given by

β̂QL(I) = β̂OLS = [
K

∑
i=1

X ′
i Xi]−1

K

∑
i=1

X ′
i yi,

[see also eqn. (2.10)] where Xi is the p×T covariate matrix.

a. GQL/GLS Estimating Equation for β

Sutradhar (2003) generalized the QL estimation for the independence data to the
correlated data setup for complex discrete data such as binary and count data. This
still can be applied to the linear mixed model (3.45) and the generalized quasi-
likelihood (GQL) estimating equation is given by

K

∑
i=1

∂ µ ′
i

∂β
Σi
−1(yi−µi) = 0, (3.74)

where Σi is the covariance matrix of yi which contains all scale parameters, namely
θ , σ2

γ , and σ2
ε , as shown in (3.47) and (3.48). In fact for known θ , σ2

γ , and σ2
ε ,

the GQL estimating equation (3.74) in this linear model case yields the generalized
least squares (GLS) estimator given by

β̂GQL ≡ β̂GLS = [
K

∑
i=1

X ′
i Σ

−1
i (θ ,σ2

γ ,σ2
ε )Xi]−1

K

∑
i=1

X ′
i Σ

−1
i (θ ,σ2

γ ,σ2
ε )yi, (3.75)

[see also (2.13)].
Note, however, that the consistent and efficient estimation of the scale parameters

θ , σ2
γ , and σ 2

ε is not easy. Following Sutradhar (2004), we provide a second-order
response based GQL estimating equation for these parameters and demonstrate that
such GQL estimates are more efficient than the GMM based estimates discussed
in Section 3.3.1. Also note that the IV based GMM approach [eqn. (3.42)] exploits
the first-order response for the estimation of the correlation type scale parameter θ

which produces a biased and inefficient estimate. See, for example, Sutradhar and
Farrell (2007) for the effect of using first-order responses as opposed to second-order
responses in estimating a similar (to θ ) dynamic dependence parameter in the binary
case. Further note that both the GMM and GQL exploit the moments of the data up
to order four to construct the estimating equations for the scale parameters, but the
ways of construction are completely different. This is because in the GMM approach
moment functions for the first− and second-order responses are pooled together for
all K independent individuals ignoring their variance and covariances, whereas in
the GQL approach variance−covariance matrix based quasi-likelihood functions for
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each of the K independent individuals will be pooled together to construct the final
GQL estimating equation.

Note that because K individuals are independent, it follows by applying the stan-
dard central limit theorem that the GQL/GLS estimator of β obtained from (3.75)
asymptotically (K → ∞) follows the multivariate normal distribution given as

√
K(β̂GQL−β )∼ N

0,K

[
K

∑
i=1

X ′
i Σ

−1
i (θ ,σ2

γ ,σ2
ε )Xi

]−1
 . (3.76)

b. GQL Estimation for ξ = (θ ,σ2
γ ,σ2

ε )′

Note that under the present model (3.45), θ and σ2
γ are known to be dependence

parameters, whereas σ2
ε is the variance of the error components of the model. By

(3.47) and (3.48), these parameters, i.e., ξ = (θ ,σ2
γ ,σ2

ε )′ are seen to be involved in
the variances and covariances of the panel data. Thus, assuming that µit are known,
we write an elementary sufficient statistic vector consisting of the corrected squares
and the pairwise products of the responses, given by

si = [(yi1−µi1)2, . . . ,(yit −µit)2, . . . ,(yiT −µiT )2,

(yi1−µi1)(yi2−µi2), . . . ,(yiu−µiu)(yit −µit),

. . . ,(yi,T−1−µi,T−1)(yiT −µiT )]′ (3.77)

in order to construct a GQL estimating equation for ξ = (θ ,σ2
γ ,σ2

ε )′. Following
Sutradhar (2004), this GQL estimating equation has the form

I

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is (si−σi) = 0, (3.78)

where σi = (σi11, . . . ,σitt , . . . ,σiT T ,σi12, . . . ,σiut , . . . ,σi,T−1,T )′ = E(si), and Ωis =
cov(si).

Recall from (3.47) and (3.48) that

σitt = z2
i σ

2
γ

[
t−1

∑
j=0

θ
j

]2

+σ
2
ε

t−1

∑
j=0

θ
2 j,

and

σiut = z2
i σ

2
γ

t−1

∑
j=0

θ
j

u−1

∑
k=0

θ
k +σ

2
ε

u−1

∑
j=0

θ
t−u+2 j.

Furthermore the derivatives of σitt and σiut , with respect to θ , σ 2
γ , and σ 2

ε are given
in the equations from (3.60) to (3.63). Thus, ∂σ ′

i /∂ξ for (3.78) is known. It is then
clear that one may now solve (3.78) for ξ = (θ ,σ2

γ ,σ2
∈)′, provided the covariance
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matrix of si, that is, Ωis = cov(si) is known. Note, however, that as the distribution
of yi = (yi1, . . . ,yit , . . . ,yiT )′ may not be known, it is then not possible to derive the
true covariance matrix of si (3.77). But, as the consistency of the ξ parameter will
not be affected by the choice of a ‘working’ matrix say Ωis,w in place of Ωis, we,
for convenience, use a normal yi based cov(si) = Ωis,N , say, and solve the ‘working’
GQL estimating equation

I

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,N(si−σi) = 0 (3.79)

instead of (3.78).
Note that µi and Σi are the true mean vector and covariance matrix of the yi,

where yi may or may not follow normal distribution. We now compute Ωis,N =
cov(si) under the ‘working’ assumption that

yi ∼ N(µi,Σi). (3.80)

As si contains corrected squares and pairwise products of the responses, the normal-
ity based fourth-order moments matrix Ωis,N may be computed by using the general
fourth-order moments given in (3.67), that is,

E[(Yi`−µi`)(Yim−µim)(Yiu−µiu)(Yit −µit)] = σi`mσiut +σi`uσimt +σimuσi`t ,

where σitt and σiut are the true variance and covariances and their formulas are given
by (3.47) and (3.48), respectively.

Let ξ̂GQL = (θ̂GQL, σ̂2
γ,GQL, σ̂2

ε,GQL)′ be the solution of (3.79). Under some mild
regularity conditions, it may be shown that asymptotically (K → ∞)

K1/2(ξ̂GQL−ξ )∼ N(0,KV ∗
GQL), (3.81)

where V ∗
GQL is given by

V ∗
GQL =

[
K

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,N

∂σi

∂ξ

]−1[ K

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,NΩiΩ

−1
is,N

∂σ ′
i

∂ξ

]

×

[
K

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,N

∂σi

∂ξ

]−1

, (3.82)

with Ωis as the true covariance matrix of si, as in (3.78). Note that the asymptotic
covariance matrix in (3.80) may be consistently estimated as

V̂ ∗
GQL =

[
K

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,N

∂σi

∂ξ

]−1[ K

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,N(si−σi)(si−σi)Ω−1

is,N
∂σ ′

i

∂ξ

]



52 3 Overview of Linear Mixed Models for Longitudinal Data

×

[
K

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,N

∂σi

∂ξ

]−1

. (3.83)

Further note that if the true distributions of the model (3.45) errors are normal, then
the asymptotic covariance matrix V ∗

GQL in (3.82) reduces to

V ∗
GQL =

[
K

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,N

∂σi

∂ξ

]−1

. (3.84)

3.3.3 Asymptotic Efficiency Comparison

In this section, we compare the relative efficiency of the GQL approach to the GMM
approach under normal errors. For this purpose, we compute the asymptotic vari-
ances of the GMM estimators of α = (β ′,θ ,σ2

γ ,σ2
ε )′ by

cov(α̂GMM) =
{

∂ψ ′

∂α
CN

∂ψ

∂α ′

}−1

(3.85)

[see eqn. (3.57)], and those of the GQL estimator of β and of ξ = [θ , σ 2
γ , σ2

ε ]′ by

cov(β̂GQL) =

[
K

∑
i=1

X ′
i Σ

−1
i Xi

]−1

, and cov(ξ̂GQL) =

[
K

∑
i=1

∂σ ′
i

∂ξ
Ω
−1
is,N

∂σi

∂ξ

]−1

(3.86)

[see (3.76) and (3.84)], respectively.
Now to reflect the asymptotic case, we consider K = 500 for the dynamic model

(3.45). Furthermore, the panel data are usually collected over a small period of time,
therefore we consider T = 4, for example. As far as the covariates are concerned,
we choose two time-dependent covariates. The first covariate is considered to be:

xit1 =


0 for i = 1, . . . ,K/2; t = 1,2

1 for i = 1, . . . ,K/2; t = 3,4

1 for i = K/2+1, . . . ,K; t = 1, . . . ,4,

.

whereas the second covariate is chosen to be
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xit2 =



1 for i = 1, . . . ,K/2; t = 1,2

1.5 for i = 1, . . . ,K/2; t = 3,4

0 for i = K/2+1, . . . ,K; t = 1,2

1 fori = K/2+1, . . . ,K; t = 3,4.

.

Next, we choose β1 = β2 = 1.0; θ = 0.3 and 0.8, σ2
γ = 0.5, 0.8, and 1.2, and σ2

ε =
1.0. The diagonal elements (variances) of the covariance matrices from (3.85) and
(3.86) are presented in Table 3.1 for the case when (a) zi = 1, and in Table 3.2 when

(b) zi
iid∼ N(0,1), for i = 1, . . . ,500.

Table 3.1 Comparison of asymptotic variances of the GQL and GMM estimators for the estima-
tion of the regression parameters (β1 and β2), dynamic dependence parameter θ , and the variance
components (σ2

γ and σ2
ε ), of a longitudinal mixed model for the normal panel data, with T = 4 and

K = 500, β1 = β2 = 1.0, and σ2
ε = 1.0, and zi = 1.

Asymptotic Variances
zi(i = 1, . . . ,500) θ Method Quantity σ2

γ = 0.5 0.8 1.2

1 0.3 GQL Var(β̂1) 2.11 ×10.0−3 2.18 ×10.0−3 2.21 ×10.0−3

Var(β̂2) 1.57 ×10.0−3 1.67 ×10.0−3 1.74 ×10.0−3

Var(θ̂) 7.02 ×10.0−4 3.78 ×10.0−4 2.03 ×10.0−4

Var(σ̂2
γ ) 2.31 ×10.0−2 2.56 ×10.0−2 2.90 ×10.0−2

Var(σ̂2
ε ) 1.11 ×10.0−3 1.20 ×10.0−3 1.30 ×10.0−3

GMM Var(β̂1) 1.93 ×10.0−3 1.93 ×10.0−3 1.94 ×10.0−3

Var(β̂2) 1.38 ×10.0−3 1.38 ×10.0−3 1.38 ×10.0−3

Var(θ̂) 2.40 ×10.0−3 2.41 ×10.0−3 2.41 ×10.0−3

Var(σ̂2
γ ) 3450 3458 3471

Var(σ̂2
ε ) 3.04 ×10.0−3 3.04 ×10.0−3 3.05 ×10.0−3

0.8 GQL Var(β̂1) 1.86 ×10.0−3 1.43 ×10.0−3 6.19 ×10.0−4

Var(β̂2) 1.77 ×10.0−3 1.47 ×10.0−3 7.28 ×10.0−4

Var(θ̂) 1.20 ×10.0−4 3.72 ×10.0−5 6.96 ×10.0−6

Var(σ̂2
γ ) 3.35 ×10.0−3 4.38 ×10.0−3 4.34 ×10.0−3

Var(σ̂2
ε ) 1.76 ×10.0−3 2.13 ×10.0−3 2.20 ×10.0−3

GMM Var(β̂1) 4.08 ×10.0−3 4.09 ×10.0−3 4.10 ×10.0−3

Var(β̂2) 3.09 ×10.0−3 3.09 ×10.0−3 3.09 ×10.0−3

Var(θ̂) 0.132 0.133 0.135
Var(σ̂2

γ ) 31,457 31,762 32,250
Var(σ̂2

ε ) 1.93 ×10.0−2 1.98 ×10.0−2 2.04 ×10.0−2

Note that when zi = 1 in (3.45), this reduces to the standard dynamic mixed
model. For this standard case, it is clear from Table 3.1 that the GMM approach
produces regression estimates with variances the same as, or smaller than the GQL
approach only when the dynamic dependence parameter is small (θ = 0.3). With
regard to the estimation of the other parameters including the estimation of the dy-
namic dependence parameter, the GQL approach produces estimates with smaller
variances than the GMM estimates. In fact, the GMM approach cannot be trusted
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Table 3.2 Comparison of asymptotic variances of the GQL and GMM estimators for the estima-
tion of the regression parameters (β1 and β2), dynamic dependence parameter θ , and the variance
components (σ2

γ and σ2
ε ), of a longitudinal mixed model for the normal panel data, with T = 4 and

K = 500, β1 = β2 = 1.0, and σ2
ε = 1.0, and zi

iid∼ N(0,1).

Asymptotic Variances
zi(i = 1, . . . ,500) θ Method Quantity σ2

γ = 0.5 0.8 1.2

N(0,1) 0.3 GQL Var(β̂1) 1.85 ×10.0−3 1.77 ×10.0−3 1.97 ×10.0−3

Var(β̂2) 1.38 ×10.0−3 1.34 ×10.0−3 1.49 ×10.0−3

Var(θ̂) 1.27 ×10.0−4 7.50 ×10.0−5 4.84 ×10.0−5

Var(σ̂2
γ ) 5.62 ×10.0−4 1.29 ×10.0−3 2.57 ×10.0−3

Var(σ̂2
ε ) 1.05 ×10.0−3 1.07 ×10.0−3 1.10 ×10.0−3

GMM Var(β̂1) 2.52 ×10.0−3 2.88 ×10.0−3 3.36 ×10.0−3

Var(β̂2) 1.85 ×10.0−3 2.14 ×10.0−3 2.53 ×10.0−3

Var(θ̂) 2.53 ×10.0−3 2.68 ×10.0−3 2.96 ×10.0−3

Var(σ̂2
γ ) 5.27 ×10.0−2 8.82 ×10.0−2 0.156

Var(σ̂2
ε ) 9.75 ×10.0−3 1.99 ×10.0−2 4.28 ×10.0−2

0.8 GQL Var(β̂1) 2.44 ×10.0−3 1.69 ×10.0−3 2.87 ×10.0−3

Var(β̂2) 4.28 ×10.0−3 3.61 ×10.0−3 2.03 ×10.0−3

Var(θ̂) 5.62 ×10.0−7 3.63 ×10.0−8 8.17 ×10.0−7

Var(σ̂2
γ ) 2.66 ×10.0−4 6.49 ×10.0−4 1.46 ×10.0−3

Var(σ̂2
ε ) 1.00 ×10.0−3 1.00 ×10.0−3 1.00 ×10.0−3

GMM Var(β̂1) 6.82 ×10.0−3 8.48 ×10.0−3 1.07 ×10.0−2

Var(β̂2) 5.53 ×10.0−3 6.99 ×10.0−3 8.94 ×10.0−3

Var(θ̂) 0.799 0.305 0.192
Var(σ̂2

γ ) 1.108 0.521 0.422
Var(σ̂2

ε ) 9.602 8.567 11.421

for the estimation of the variance component (σ2
γ ) of the random effects. This is be-

cause this approach produces σ2
γ estimates with huge variances such as 3450 when

the true σ2
γ = 0.5, whereas the corresponding variance under the GQL approach

is only 0.0231. For large dependence parameter θ = 0.8, the GQL approach uni-
formly produces estimates for all parameters including the regression effects with
smaller variances than the GMM approach. This asymptotic comparison between
the GQL and GMM approaches indicates that in general the GQL approach is much
more efficient than the GMM approach in estimating the parameters of the dynamic
dependence model (3.45).

We have further considered a less realistic situation where the model (3.45) now
allows individual fixed covariates zi with random influence γi. For example, in this
asymptotic empirical study, we generated the 500 values of zi from N(0,1). The
asymptotic variances of the estimators for all five parameters β1, β2, θ , σ 2

γ , and σ2
ε ,

under the GMM and GQL approaches are now reported in Table 3.2. When com-
pared with Table 3.1, it is clear that in this nonstandard case, the GMM approach
improves in estimating the variance component σ 2

γ . The GQL approach, however, is
uniformly better than the GMM approach in estimating all parameters including the
regression effects, irrespective of the situations whether the panel data have small
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or large dynamic dependence. For example, when θ = 0.3 and σ2
γ = 0.8, the GQL

estimates of β1 and β2 are, respectively,

2.88×10.0−3

1.77×10.0−3 = 1.63 and
2.14×10.0−3

1.34×10.0−3 = 1.60

times more efficient than the corresponding GMM estimates. For the estimation of
θ , σ2

γ , and σ2
ε , the GQL approach appears to outperform the GMM approach. For

example, for the same set of parameter values, the GQL estimates of θ , σ2
γ , and σ2

ε

are, respectively,

2.68×10.0−3

7.50×10.0−5 = 35.73,
0.0882

1.29×10.0−3 = 68.37, and
0.0199

1.07×10.0−3 = 18.60

times more efficient than the corresponding GMM estimates. For the larger dy-
namic dependence parameter θ = 0.8, the GMM performs much worse as compared
to the GQL approach. In summary, the GQL approach performs much better than
the GMM approach in estimating all five parameters, its performance being extra-
ordinarily better in estimating the dynamic dependence parameter θ , and variance
components σ2

γ and σ2
ε .

Exercises

3.1. (Section 3.1.1) [Inverse of the covariance matrix under linear mixed model]
Let C be a nonsingular matrix of dimension T × T , and U and S be two T -
dimensional column vectors. Then

[C +US′]−1 = C−1− 1
1+S′C−1U

(C−1U)(S′C−1).

This result immediately gives the inverse of Σi = σ2
ε Ci +σ2

γ 1Ti1
′
Ti

as in (3.11).

3.2. (Section 3.2.2. a) [LSDV estimators for a simpler linear dynamic mixed model]
For scalar β , the formulas for the LSDV estimators of θ and β given by (3.32) may
be simplified as

θ̂lsdv =
∑K

i=1 ∑T
t=2 w̃2

it ∑K
i=1 ∑T

t=2 ỹit ỹi,t−1−∑K
i=1 ∑T

t=2 w̃it ỹi,t−1 ∑K
i=1 ∑T

t=2 w̃it ỹit

∑K
i=1 ∑T

t=2 w̃2
it ∑K

i=1 ∑T
t=2 ỹ2

i,t−1− [∑K
i=1 ∑T

t=2 w̃it ỹi,t−1]2

and

β̂lsdv =
−∑K

i=1 ∑T
t=2 w̃it ỹi,t−1 ∑K

i=1 ∑T
t=2 ỹit ỹi,t−1 +∑K

i=1 ∑T
t=2 ỹ2

i,t−1 ∑K
i=1 ∑T

t=2 w̃it ỹit

∑K
i=1 ∑T

t=2 w̃2
it ∑K

i=1 ∑T
t=2 ỹ2

i,t−1− [∑K
i=1 ∑T

t=2 w̃it ỹi,t−1]2
,

[Bun and Carree (2005, eqns. (3) and (4))] respectively.
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3.3. (Section 3.2.2. a) [Bias-corrected LSDV estimators for special cases]
For scalar β , the BCLSDV estimator for β has the same formula

β̂bclsdv = β̂lsdv + ξ̂ (θ̂lsdv− θ̂bclsdv)

as in (3.33), whereas for T = 3 and 4, the BCLSDV estimator of θ has explicit
formulas given by

θ̂bclsdv = θ̂lsdv +
σ̂2

ε

2(1− ρ̂2
wy−1

)σ̂2
y−1

and

θ̂bclsdv =
6θ̂lsdv +2σ̂2

ε /[(1− ρ̂2
wy−1

)σ̂2
y−1

]
6− σ̂2

ε /[(1− ρ̂2
wy−1

)σ̂2
y−1

]

[Bun and Carree (2005, eqns. (14) and (15))] respectively.

3.4. (Section 3.2.2. b) [Instrumental variable estimators]
Demonstrate that the formula for the IV estimators for θ and β given by (3.37) is
the same [see also Hsiao (2003, eqn. (4.3.32))] as θ̂iv

β̂iv

 =

 K

∑
i=1

T

∑
t=4

 (y∗i,t−2)(y
∗
i,t−1) (y∗i,t−2)(wit −wi,t−1)′

(wit −wi,t−1)(y∗i,t−1) (wit −wi,t−1)(wit −wi,t−1)′

−1

×

[
K

∑
i=1

T

∑
t=4

(
y∗i,t−2

wit −wi,t−1

)
(y∗it)

]
,

(3.87)

where y∗i,t−1 = (yi,t−1− yi,t−2), for example.

3.5. (Sections 3.3.1-3.3.2) [GMM and GQL approaches with independent t error
distributions]
Suppose that the errors εit in the model (3.45) are now independently distributed
(id) [as opposed to independently and identically distributed (iid)] as

εit
id∼ (0,λ 2

t σ
2
ε ),

where λ1, . . . ,λt , . . . ,λT are random and independent scales each with a one-parameter
(ν) based inverted gamma distribution given as

g(λt) =
2(ν/2)−1/2

Γ (ν/2)
exp

{
−1

2
(ν/λ

2
t )
}[

ν

2λ 2
t

](ν+1)/2

, λt > 0,

yielding the t-distribution for εit as
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f (εit) =
Γ ( ν+1

2 )
π1/2ν1/2Γ ( ν

2 )
σ
−1
ε

[
1+

{εit/σε}2

ν

]−(ν+1)/2

,

[see Sutradhar (1988, p. 176), e.g.] with ν > 0 degrees of freedom.
(a) Use the density function of λt and show that E[λ 2

t ] = ν/(ν−2). Then show that
the unconditional variance of εit ; that is,

var[εit ] = Eλt var[εit |λt ]+varλt E[εit |λt ] =
ν

ν −2
σ

2
ε .

(b) By using the t-density of εit , it may also be shown directly that var[εit ] =
[ν/(ν −2)]σ2

ε .
(c) Now demonstrate that for known ν > 2, the ‘working’ normality (N) based
GMM and GQL estimation given in Sections 3.3.1 and 3.3.2 can be carried out sim-
ply by replacing the formulas for the variances (σitt) (3.47) and covariances (σiut)
(3.48) with

var[Yit ] = σitt = z2
i σ

2
γ

{
t−1

∑
j=0

θ
j

}2

+
ν

ν −2
σ

2
ε

t−1

∑
j=0

θ
2 j, (3.88)

and

cov[Yiu,Yit ] = σiut = z2
i σ

2
γ

t−1

∑
j=0

θ
j

u−1

∑
k=0

θ
k +

ν

ν −2
σ

2
ε

u−1

∑
j=0

θ
t−u+2 j, (3.89)

respectively.
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Chapter 4
Familial Models for Count Data

Familial models for count data are also known as Poisson mixed models for count
data. In this setup, count responses along with a set of multidimensional covariates
are collected from the members of a large number of independent families. Let yi j

denote the count response for the jth ( j = 1, . . . ,ni) member on the ith (i = 1, . . . ,K)
family/cluster. Also, let xi j = (xi j1, . . . ,xi jp)′ denote the p covariates associated with
the count response yi j. For example, in a health economics study, a state government
may be interested to know the effects of certain socioeconomic and epidemiological
covariates such as gender, education level, and age on the number of visits by a
family member to the house physician in a particular year. Note that in this problem
it is also likely that the count responses of the members of a family are influenced by
a common random family effect, say γi. This makes the count responses of any two
members of the same family correlated, and this correlation is usually referred to as
the familial correlation. It is of scientific interest to find the effects of the covariates
on the count responses of an individual member after taking the familial correlations
into account.

In Section 4.1, we provide the marginal (unconditional) distributional proper-
ties of the count response variable yi j as well as the unconditional familial cor-
relation structure under suitable distributional assumptions for the random effects.
Frequently, it is assumed that the random effects follow normal distributions [Bres-
low and Clayton (1993); Lee and Nelder (1996)]. One of the main reasons for this
assumption is that the familial Poisson mixed models or generalized linear mixed
models (GLMMs) in general are generated from the well-known generalized linear
models (GLMs) [McCullagh and Nelder (1989)] by adding random effects to the
linear predictor. Under this normality assumption for the random effects, in Section
4.2, various inference techniques such as the method of moments, likelihood ap-
proximations, and quasi-likelihood approaches are discussed for the estimation of
the effects of the covariates and the familial correlation index parameter.

Note that in some situations, the responses of the family members may be influ-
enced by more than one common random family effect. If this happens, it is also
important to recognize that these multidimensional random effects may play differ-
ent roles in different setup. For example, in case of two random effects, some authors
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such as Lin (1997), Jiang (1998), and Sutradhar and Rao (2003) have assumed that
these random effects follow a two-factor factorial design or a nested design. There
are, however, other situations in practice, where each of the count responses for a
given family is influenced by two distinct random effects with two different compo-
nents of dispersion. See, for example, Jowaheer, Sutradhar, and Sneddon (2009). In
Section 4.3, we accommodate the different natures of the random effects and discuss
in detail the inferences in Poisson mixed models with two variance components. As
far as the distributional assumptions are concerned, similar to Section 4.2, it is as-
sumed that the random effects follow a normal distribution. A Poisson mixed model
with more than two random effects may similarly be studied, but the inferences for
this type of complex model are not discussed in detail as they rarely arise in practice.

In Section 4.4, this distributional assumption is relaxed and an alternative infer-
ence technique, namely a semiparametric approach is discussed. In Section 4.5, a
Monte Carlo (MC) based likelihood estimation approach is outlined. The drawbacks
of these general approaches are also pointed out.

4.1 Poisson Mixed Models and Basic Properties

Let yi = (yi1, . . . ,yi j, . . . ,yini)
′ be the ni×1 vector of count responses from ni mem-

bers of the ith (i = 1, . . . ,K) family. Let β be a p×1 vector of unknown fixed effects
of xi j on yi j, xi j being the p-dimensional covariate vector for the jth ( j = 1, . . . ,ni)
member of the ith family. Suppose that conditional on the random family effect γi, ni

counts due to the ith family are independent. The data of this type can be modelled
as

f (yi|γi) =
1

Π
ni
j=1yi j!

exp

(
ni

∑
j=1

yi jηi j −
ni

∑
j=1

exp(ηi j)

)
, (4.1)

where f (yi|γi) denotes the conditional probability density of yi for a given γi, and
where ηi j is a linear predictor defined as ηi j = x′i jβ + γi. Further suppose that γi has
an unspecified distribution with mean 0 and variance σ2

γ and γi are independent, that

is, γi
iid∼ (0,σ2

γ ). For γ∗i = γi/σγ , the linear predictor in (4.1) may then be expressed
as

ηi j(γi) = x′i jβ + γi = x′i jβ +σγ γ
∗
i , (4.2)

where γ∗i
iid∼ (0,1). Note that as shown in the following lemma, the variance compo-

nent of the random effects (σ2
γ ) indicates the possible overdispersion in the Poisson

count data. This is why this scale parameter is often referred to as an overdispersion
index parameter. Lemma 4.1 also shows that σ2

γ plays a role of a familial correlation
parameter. This is because when σ2

γ = 0 the count responses of the family members
become independent. For this reason, one may refer to this σ2

γ parameter as a famil-
ial or structural correlation index parameter. In practice, it is of interest to estimate
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both regression parameter vector β and the overdispersion or familial correlation
index parameter σ2

γ , as consistently and efficiently as possible.
For convenience, for the development of the estimation techniques for β and

σ 2
γ in the followup sections, we first provide the conditional (on γ∗i ) as well as the

unconditional first− and second-order moments of the count variables

Yi1, . . . ,Yi j, . . . ,Yini ,

in Lemma 4.1.
Lemma 4.1. Conditional on γ∗i , the means and the variances of Yi j, and the pair-

wise covariances between Yi j and Yik for j 6= k, j, k = 1, . . . ,ni are given by

E[Yi j|γ∗i ] = var[Yi j|γ∗i ] = µ
∗
i j = exp(x′i jβ +σγ γ

∗
i ) (4.3)

cov[(Yi j,Yi,k)|γ∗i ] = 0, (4.4)

and for γ∗i
iid∼ N(0,1), the corresponding unconditional means, variances, and co-

variances are given by

E[Yi j] = µi j = exp(x′i jβ +
1
2

σ
2
γ ) (4.5)

var[Yi j] = µi j +[exp(σ2
γ )−1]µ2

i j (4.6)

cov[Yi j,Yik] = µi jµik[exp(σ2
γ )−1], (4.7)

yielding the pairwise familial correlations as

corr[Yi j,Yik] =
exp(σ2

γ )−1

[{µ
−1
i j +(exp(σ2

γ )−1)}{µ
−1
ik +(exp(σ2

γ )−1)}]1/2
. (4.8)

Proof: For an auxiliary parameter s, it follows from (4.1) that the moment generat-
ing function (mgf) of Yi j conditional on γ∗i , is given by

MYi j |γ∗i (s) = E[exp(sYi j)] = exp[µ∗
i j{exp(s)−1}], (4.9)

where µ∗
i j = exp(ηi j) = exp(x′i jβ +σγ γ∗i ).

Now for a positive integer r, by evaluating the rth order derivative of the mgf in
(4.9) with respect to s, at s = 0, that is, by simplifying

∂ r

∂ sr MYi j |γ∗i (s)|s=0,

one obtains E[Y r
it |γ∗i ]. For the special cases with r = 1,2, one obtains

E[Yi j|γ∗i ] = µ
∗
i j

E[Y 2
i j|γ∗i ] = µ

∗
i j + µ

∗
i j

2, (4.10)
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and similarly for r = 3,4, the conditional moments have the formulas:

E[Y 3
i j|γ∗i ] = µ

∗
i j +3µ

∗
i j

2 + µ
∗
i j

3

E[Y 4
i j|γ∗i ] = µ

∗
i j +7µ

∗
i j

2 +6µ
∗
i j

3 + µ
∗
i j

4. (4.11)

The results in (4.3) follow from (4.10). The result in (4.4) follows from the fact
[see also (4.1)] that conditional on γ∗i , the count responses of any two members of a
family are independent, implying that

E[Yi jYik|γ∗i ] = E[Yi j|γ∗i ]E[Yik|γ∗i ] = µ
∗
i jµ

∗
ik, (4.12)

for j 6= k, j,k = 1, . . . ,ni. �
Next, under the assumption that γ∗i

iid∼ N(0,1), for an auxiliary parameter s, one
writes the moment generating function of γ∗i as

E[exp(sγ
∗
i )] = exp(

1
2

s2). (4.13)

This moment generating function along with the formula for µ∗
i j, that is, µ∗

i j =
exp(x′i jβ )[exp(σγ γ∗i )], can be used to derive the unconditional first− and the second-
order moments as

E[Yi j] = Eγ∗i
E[Yi j|γ∗i ] = Eγ∗i

[µ∗
i j] = exp(x′i jβ +

1
2

σ
2
γ ) = µi j (4.14)

E[Y 2
i j] = Eγ∗i

E[Y 2
i j|γ∗i ] = Eγ∗i

[µ∗
i j + µ

∗
i j

2] = µi j + exp(σ2
γ )µ

2
i j (4.15)

E[Yi jYik] = Eγ∗i
E[Yi jYik|γ∗i ] = Eγi [µ

∗
i jµ

∗
ik] = exp(σ2

γ )µi jµik, (4.16)

yielding the unconditional means, variances, and covariances as in (4.5)− (4.7).
Note that as mentioned earlier, it is clear from (4.6) and (4.8) that σ2

γ may be
referred to as the overdispersion or familial correlation index parameter. This is
because, the equation (4.6), for example, indicates that σ2

γ plays an important role
in understanding the dispersion of the response variable Yi j. To be specific, when
σ2

γ = 0, Yi j has the same dispersion as that of the Poisson data, whereas a slight
increase in the value of σ2

γ may cause very large dispersion in the data, especially
when exp(x′i jβ ) is large.

Further note that in order to understand the model or the properties such as the
model based mean and the variance of the data, it is of interest to estimate both
regression effects β and the variance component of the random effects, σ2

γ . Vari-
ous techniques for the estimation of these parameters are discussed in the next sec-
tion under a fully parametric model setup. Estimation in a similar parametric model
setup but with multiple random effects, is discussed in Section 4.3. In Section 4.4,
we provide the estimation techniques for the regression and single variance com-
ponent parameters in a semiparametric setup, where no assumptions are made for
the distributions of the random effects, instead it is assumed that the moments up to
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order four are known. In Section 4.5, we outline the estimation of the parameters in
a nonparametric setup.

4.2 Estimation for Single Random Effect Based Parametric
Mixed Models

In this parametric model setup, it is assumed that γ∗i follows a specified distribution
such as

γ
∗
i

iid∼ N(0,1). (4.17)

Also, it is assumed that conditional on γ∗i , the count responses of the members of
the ith family are independent, and marginally they follow a Poisson density leading
to the likelihood function in (4.1).

4.2.1 Exact Likelihood Estimation and Drawbacks

The log-likelihood function based on (4.1)− (4.2) and (4.17) is given by

log L(β ,σγ) =−
K

∑
i=1

ni

∑
j=1

log yi j!+
K

∑
i=1

ni

∑
j=1

yi jx
′
i jβ +

K

∑
i=1

log Ji, (4.18)

with
Ji =

∫ ∞

−∞
exp[si(γ∗i )]gN(γ∗i |1)dγ

∗
i , (4.19)

where gN(γ∗i |1) is the standard normal density of γ∗i and

si(γ∗i ) = σγ γ
∗
i

ni

∑
j=1

yi j −
ni

∑
j=1

exp(x′i jβ +σγ γ
∗
i ). (4.20)

Note that the exact computation of the above integral Ji is not possible. The
NLMIXED procedure in SAS, for example, uses a numerical approximation to this
integral. Some authors use a simulation approach or binomial approximation to eval-
uate this integral. Fahrmeir and Tutz (1994, Chapter 7) [see also Jiang (1998)], for
example, use a simulation technique to evaluate such integrals. More specifically,
in the simulation technique, for a large N such as N = 1000, Ji is replaced by a

simulation based J(s)
i , where

J(s)
i =

1
N

N

∑
w=1

exp[si(γ∗iw)], (4.21)
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where γ∗iw is a sequence of standard normal values for w = 1, . . . ,N. Ten Have and
Morabia [1999, eqn. (7)], for example, have used the standardized binomial approx-
imation to evaluate similar integrals. For a known reasonably big V such as V = 5,
let vi ∼ binomial(V,1/2). Because γ∗i has the standard normal distribution, consider

γ
∗
i =

vi−V (1/2)
V (1/2)(1/2)

.

One may then approximate the integral Ji by a binomial approximation based inte-

gral J(b)
i defined as

J(b)
i =

V

∑
vi=0

exp[si(vi)]
(

V
vi

)
(1/2)vi(1/2)V−vi , (4.22)

where
exp[si(vi)] = [exp{si(γ∗i )}][γ∗i ={vi−V (1/2)}/{V (1/2)(1/2)}] ,

with si(γ∗i ) as in (20).

Next, by using, for example, J(s)
i for Ji in (4.18), one solves the simulation based

approximate likelihood estimating equations

U (s)
1 (β ,σ2

γ ) =
K

∑
i=1

ni

∑
j=1

[yi j −
A(s)

i

J(s)
i

]xi j = 0, (4.23)

and

U (s)
2 (β ,σ2

γ ) =
1
2

K

∑
i=1

ni

∑
j=1

[σ−1
γ

M(s)
i

J(s)
i

] = 0, (4.24)

for β and σ2
γ , respectively. In (4.23)− (4.24), A(s)

i and M(s)
i are given by

A(s)
i =

1
N

N

∑
w=1

exp[si(γ∗iw)]exp[ηi j(γ∗iw)],

M(s)
i =

1
N

N

∑
w=1

exp[si(γ∗iw)]

[
γ
∗
iw

ni

∑
j=1
{yi j − exp[ηi j(γ∗iw)]}

]
. (4.25)

Some Drawbacks

(1) One of the main difficulties of the likelihood estimation approach is the com-
plexity involved in computing the Fisher information matrix (more reliable than
using the Hessian matrix) for the purpose of computing the standard errors of the
likelihood estimates of β and σ2

γ . This is evident, for example, from the formula for
the expectation of the second derivative of the log likelihood function with respect
to β , given by
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E[
∂U (s)

1 (β ,σ2
γ )

∂β ′ ] =
∞

∑
yi1=0

. . .
∞

∑
yini =0

[{M(s)
i }2/J(s)

i ] exp

[
ni

∑
j=1

yi jx
′
i jβ

]
/Π

ni
j=1yi j!,

(4.26)
which is computationally quite involved, in particular for large ni.
(2) Computations become cumbersome when the mixed model involves multi-
dimensional random effects [e.g. Jiang (1998)].
(3) The likelihood approach naturally would be of no use for the inferences in the
extended familial longitudinal model, where further responses are collected over a
period of time from the members of all families. This is because it is either im-
possible or extremely complex to write a likelihood function for the repeated count
responses; they are being longitudinally correlated conditional on the random ef-
fects.

To avoid the above and other possible difficulties with the exact likelihood ap-
proach, some authors such as Breslow and Clayton (1993) have suggested a pe-
nalized quasi-likelihood (PQL) approximation; Lee and Nelder (1996) have used
a hierarchial likelihood (HL) approximation. These approaches estimate β and σ2

γ

through the estimation/prediction of the random effects γi. Breslow and Lin (1995)
have, however, cautioned in the context of a binary mixed model that the PQL ap-
proach yields consistent estimates for both β and σ2

γ provided the true σ2
γ value

is small (≤ 0.5). Sutradhar and Qu (1998) have demonstrated this inconsistency
problem under a Poisson mixed model, and further proposed a small σ2

γ asymptotic
approach to develop a likelihood approximation (LA) that produces less-biased esti-
mates than the PQL approach even if true σ2

γ is more than 0.5. For the same Poisson
mixed model, Chowdhury and Sutradhar (2009) have shown that the HL approach
of Lee and Nelder (1996) also suffers from similar bias or inconsistency problems.
In the following three subsections, these PQL, LA, and HL approaches are discussed
in brief for the sake of completeness.

4.2.2 Penalized Quasi-Likelihood Approach

For the Poisson mixed model defined through (4.1)− (4.2) and (4.17), the log of
the quasi-likelihood function derived by Breslow and Clayton [1993, eqn. (5), p. 11]
reduces to

ql(β ,σ2
γ , γ̃) =−1

2

K

∑
i=1

log

(
1+σ

2
γ

ni

∑
j=1

exp(x′i jβ + γ̃i)

)
−

K

∑
i=1

h(γ̃i) (4.27)

[see also Sutradhar and Qu (1998)], where γ̃ = (γ̃1, . . . , γ̃i, . . . , γ̃K) with γ̃i as the
posterior mode of γi computed from

∂h(γi)
∂γi

= 0,
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where

h(γi) =−
ni

∑
j=1

yi j(x′i jβ + γi)+
ni

∑
j=1

exp(x′i jβ + γi)+
γi

2

2σ2
γ

.

Estimating equations for β and γi: Similar to the best linear unbiased predic-
tion (BLUP) approach [Henderson (1950); see also Searle, Casella, and McCulloch
(1992, Section 3.4)], the PQL approach pretends that the random effects γi are fixed
effects parameters and estimate/predict them along with β , before estimating σ2

γ .
The estimating equations for β and γi are obtained by maximizing the penalized
quasi-likelihood function [−∑K

i=1 h(γi)], with respect to β and γi, and they are given
by

g∗1(β ,γi) =
K

∑
i=1

ni

∑
j=1

[yi j − exp(x′i jβ + γi)]xi j = 0 (4.28)

and

g∗2(β ,γi,σ
2
γ ) =

ni

∑
j=1

[yi j − exp(x′i jβ + γi)]−
γi

σ2
γ

= 0 (4.29)

for β and γi, respectively, where σ2
γ is assumed to be known. Let β̂PQL and

γ̂i,PQL (i = 1, . . . ,K) be the solutions.

Estimating equation for σ2
γ : For the estimation of this variance parameter, a pro-

file quasi-likelihood function is constructed first, by replacing β and γ̃i in (4.27)
with β̂PQL and γ̂i,PQL (i = 1, . . . ,K), respectively. Next, the profile quasi-likelihood
function ql(β̂PQL,σ2

γ , γ̂i,PQL) is written in the form of a ‘working’ normal likelihood
function and the restricted maximum likelihood estimate of σ2

γ is obtained following
Patterson and Thompson (1974), for example. This profile quasi-likelihood based
score equation for σ2

γ is given by

g∗3(β̂PQL,σ2
γ , γ̂i,PQL) =

∂ql(β̂PQL,σ2
γ , γ̂i,PQL)

∂σ2
γ

=
K

∑
i=1

γ̂
2
i,PQL−σ

4
γ

K

∑
i=1

∑ni
j=1 exp(x′i jβ̂PQL + γ̂i,PQL)

1+σ2
γ ∑ni

j=1 exp(x′i jβ̂PQL + γ̂i,PQL)

= 0. (4.30)

The estimate of σ2
γ obtained from (4.30) is denoted by σ̂2

γ,PQL.

Some Remarks on the Asymptotic Properties of the PQL Estimators: Note that
it is of interest to estimate only β and σ2

γ . It is, however, clear from (4.28) and
(4.30) that the estimates of these two parameters depend on the estimates of γi (i =
1, . . . ,K), where, for a given i, the estimate of γi is obtained from (4.29) by exploiting
only ni responses from the ith family. Because ni is small in the present familial
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setup, one can only obtain a small sample estimate for this γi. Moreover (4.29) also
shows that the estimation of γi requires the knowledge of σ2

γ . Consequently, any
poor estimates of σ2

γ obtained by (4.30) may produce a biased estimate of γi for
some i and in turn all γi (i = 1, . . . ,K) estimates, good or poor, collectively may
produce a biased estimate of σ2

γ . In fact, it may be verified following Sutradhar
and Qu (1998) that the normality based profile quasi-likelihood estimating equation
(4.30) for σ2

γ may not produce a consistent estimate for σ2
γ , even if one uses true β

and true γi. The problem will get much worse if a considerable portion of true γis
are substituted by corresponding biased estimates.

Now to verify the asymptotic property of the estimator of σ2
γ obtained from (4.30)

for given true values of β and γi, we rewrite the equation (4.30) as

σ
2
γ =

∑K
i=1 γ2

i /(Kσ2
γ )

(1/K)∑K
i=1[∑

ni
j=1 µ∗

i j/(1+σ2
γ ∑ni

j=1 µ∗
i j)]

, (4.31)

where µ∗
i j = exp(x′i jβ +γi). Note that the true γis are iid with zero mean and variance

σ2
γ , thus it follows that

limitK→∞(
1
K

)
K

∑
i=1

γ
2
i = σ

2
γ .

Consequently, the right-hand side of (4.31) converges to σ2
γ , only when wi =

∑ni
j=1 µ∗

i j = ∑ni
j=1 exp(x′i jβ + γi) is sufficiently large. For small wi, the right hand-

side of (4.31) converges to a quantity different from σ2
γ . Thus, the PQL approach

may or may not a yield consistent estimate for σ2
γ , depending on the family size and

the covariate information xi j for j = 1, . . . ,ni.
Note that a simulation study reported by Sutradhar and Qu (1998, Table 2, p.

183) also supports the above finding with regard to the poor performance of the PQL
approach in estimating σ2

γ . To be specific, for K = 100 families with family effects
γ∗i (i = 1, . . . ,K) generated independently from a normal distribution with mean 0
and variance 1, these authors have generated count responses for family members
with family size ni = 4,6, by following the Poisson mixed model (4.1)− (4.2) with

ηi j(γ∗i ) = β1xi j1 +β2xi j2 +β3xi j3 +β4xi j4 +σγ γ
∗
i ,

where regression effects were considered to be

β1 = 2.5, β2 =−1.0, β3 = 1.0, and β4 = 0.5,

and for all i = 1, . . . ,K, covariates were chosen as

xi j1 = 1.0, for j = 1, . . . ,ni,

xi j2 =

{
1 for j = 1, . . . ,ni/2

0 for j = (ni/2)+1, . . . ,ni,
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xi j3 = j− ni +1
2

, for j = 1, . . . ,ni, and

xi j4 = xi j2xi j3.

By using the generated count data {yi j} and the above covariates, the regression ef-
fects β = [β1, β2, β3, β4]′ and the variance of the family effects σ2

γ , were estimated
iteratively by solving (4.28)− (4.30). These PQL estimates were obtained for 5000
simulations. The simulated mean (SM) and the standard error (SSE) for the 5000
PQL estimates of σ 2

γ were found to be as in the following table. It is clear from Ta-

Table 4.1 Simulated means and simulated standard errors of the PQL estimates for σ 2
γ based on

5000 simulations.
PQL Estimates for σ2

γ

Family Size Statistic True σ2
γ = 0.10 0.25 0.50 0.75 1.00

4 SM 0.140 0.320 0.649 1.020 1.429
SSE 0.009 0.016 0.027 0.040 0.057

6 SM 0.119 0.294 0.615 0.975 1.374
SSE 0.005 0.009 0.015 0.021 0.028

ble 4.1 that the PQL approach in general overestimates the random effects variance
σ2

γ . The SM value appears to be far away from the true value of σ2
γ , especially when

the true value of σ2
γ is large. Thus, the bias appears to get larger as the true value of

σ2
γ increases. The increase in family size from 4 to 6 helped in bias reduction but

the bias still remains very high, showing the inconsistency of the PQL approach for
σ2

γ estimation, especially when the true value of σ2
γ is more than 0.5.

Note that there also exist some bias correction approaches to reduce the biases of
the PQL estimators. But these approaches, for example, the bias correction approach
discussed in Breslow and Lin (1995, p. 90) for the binary mixed models, appear to
improve the results when the true value of σ2

γ is small such as less than or equal
to 0.50. See also Jiang (1998) for some discussions on the drawbacks of the PQL
approach in estimating the variance of the random family effects.

4.2.3 Small Variance Asymptotic Approach: A Likelihood
Approximation (LA)

Realizing the difficulties encountered by the PQL approach in consistently estimat-
ing the parameters of the Poisson familial models, in particular the variance of the
random family effects, some authors such as Sutradhar and Qu (1998) have approx-
imated the Poisson−normal mixed model based likelihood by a Poisson−gamma
mixed model based likelihood, the approximation being valid for σ2

γ ↓ 0. It is
demonstrated by these authors that this small σ2

γ based likelihood approximation
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performs well in estimating σ2
γ even when the true value of σ2

γ is as large as 1.0,
and it always produces a less biased estimate for σ2

γ than the PQL approach.
The following lemma is useful to develop the proposed LA.

Lemma 4.2. Recall from (4.17) that γi
iid∼ N(0,σ2

γ ). Let wi = exp(γi). For σ2
γ ↓ 0,

the normal density of γi can be approximated by a gamma ‘working’ distribution for
wi given as

hw(wi) =
φ α

Γ (α)
exp(−φwi)wα−1

i , (4.32)

where

α =
1

exp(σ2
γ )−1

and φ =
1

exp(σ2
γ /2){exp(σ2

γ )−1}
.

Proof: It is easy to prove the lemma in a reverse way. Because γi = log wi, the
gamma ‘working’ distribution (4.32) is equivalent to the ‘working’ distribution of γi

given by

gw(γi) =
φ α

Γ (α)
exp{αγi−φ exp(γi)}, (4.33)

for any σ2
γ > 0. Now, for small σ2

γ , that is, for σ2
γ ↓ 0, one may use Taylor’s se-

ries expansion and approximate the probability density of γi in (4.33) by a normal
density with 0 mean and variance σ2

γ . �
We now use Lemma 4.2 to approximate the exact log likelihood function in (4.18)

as follows. First, for γi = σγ γ∗i = log wi, we re-express si(γ∗i ) in (4.20) as

s∗i (wi) =

[
log wi

ni

∑
j=1

yi j −wi

ni

∑
j=1

exp(x′i jβ )

]
. (4.34)

Next by Lemma 4.2, by using the equivalence of N(0,σ2
γ ) density for γi to the

gamma ‘working’ density hw(wi) in (4.32), we write an approximation to the in-
tegral in (4.19) as

Ji ≈
∫ ∞

−∞
exp[s∗i (wi)]hw(wi)dwi

= J∗i (say). (4.35)

Note that this integral is computable and it yields a log likelihood approximation to
(4.18) as

log L(β ,σγ) ≈ −
K

∑
i=1

ni

∑
j=1

log yi j!+
K

∑
i=1

ni

∑
j=1

yi jx
′
i jβ +

K

∑
i=1

log
Γ (α +∑ni

j=1 yi j)

Γ (α)

−
K

∑
i=1

(
α +

ni

∑
j=1

yi j

)
log

(
φ +

ni

∑
j=1

exp(x′i jβ )

)
+Kα log φ

= log L∗(β ,σγ) (say). (4.36)



70 4 Familial Models for Count Data

One may then solve the following likelihood estimating equations for β and σ2
γ

given by

U∗
1 (β ,σ2

γ ) =
∂ log L∗(β ,σγ)

∂β
=

K

∑
i=1

(
ni

∑
j=1

yi jxi j −
y∗i
µ∗

i

ni

∑
j=1

xi j exp(x′i jβ )

)
= 0, (4.37)

and

U∗
2 (β ,σ2

γ ) =
∂ log L∗(β ,σγ)

∂σ2
γ

= α
′(σ2

γ )
K

∑
i=1

(
ψ(y∗i )−ψ(α)+ log

φ

µ∗
i

)
+φ

′(σ2
γ )

K

∑
i=1

(
α

φ
− y∗i

µ∗
i

)
= 0, (4.38)

respectively, where

y∗i = α +
ni

∑
j=1

yi j, µ
∗
i = φ +

ni

∑
j=1

exp(x′i jβ ), α
′(σ2

γ ) =
∂α

∂σ2
γ

=−
exp(σ2

γ )
[exp(σ2

γ )−1]2
,

and

φ
′(σ2

γ ) =
∂φ

∂σ2
γ

=−
3exp(σ2

γ )−1

2exp(σ2
γ /2)[exp(σ2

γ )−1]2
.

Let β̂LA and σ̂2
γ,LA be the LA estimates obtained from (4.37)− (4.38) for β and σ2

γ ,
respectively.

To examine the relative performances of the LA and PQL estimation approaches
for β and σ2

γ , Sutradhar and Qu (1998) have used the same simulated data that we

have described in the last section and obtained 500 values of β̂LA and σ̂2
γ,LA. The

average and standard errors of these 500 estimates are available in Tables 4.1 and
4.2 in Sutradhar and Qu (1998). For convenience, we show the simulation results
for the estimator σ̂2

γ,LA in Table 4.2 below. The results of this table under the LA
approach correspond to the results of Table 4.1 under the PQL approach discussed
in Section 4.2.

Table 4.2 Simulated means and simulated standard errors of the LA estimates for σ2
γ based on

5000 simulations.
LA Estimates for σ2

γ

Family Size Statistic True σ2
γ = 0.10 0.25 0.50 0.75 1.00

4 SM 0.102 0.244 0.436 0.591 0.722
SSE 0.007 0.009 0.010 0.011 0.011

6 SM 0.101 0.242 0.434 0.588 0.718
SSE 0.004 0.005 0.006 0.007 0.007

When the results of Table 4.2 are compared to those of Table 4.1, it is clear that
the LA estimates (Table 4.2) of σ2

γ are much closer to the true values of σ2
γ than
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the corresponding PQL estimates (Table 4.1). For example, when the family size is
ni = 4, the LA estimate for true σ2

γ = 0.5 is 0.436, whereas the PQL estimate was
0.649, showing that the PQL approach is more biased than the LA approach. The
simulated standard errors appear to be much more stable and smaller under the LA
approach as compared to the PQL approach.

As far as the performances of the PQL and LA approaches for the estimation of
β are concerned, the LA approach performs much better than the PQL approach in
estimating the intercept parameter β1, whereas they perform almost the same for
the estimation of other regression parameters, namely, β2, β3, and β4. See Table 4.3
below, for example, for a simulation based comparative performance of the PQL
and LA approaches when σ2

γ is small. Their relative performances in estimating the
regression effects, for other small and moderately large values of σ2

γ , can be found
in Table 1 in Sutradhar and Qu (1998, p. 181).

Table 4.3 Simulated means and simulated standard errors of the LA and PQL estimates for regres-
sion effects when σ2

γ = 0.25 based on 5000 simulations.

Estimates for Regression Effects
Family Size Method Statistic β1 = 2.5 β2 =−1.0 β3 = 1.0 β4 = 0.5

4 LA SM 2.422 −0.993 1.000 0.519
SSE 0.033 0.126 0.024 0.156

PQL SM 2.283 −0.997 1.00 0.510
SSE 0.026 0.126 0.024 0.156

6 LA SM 2.425 −0.994 1.000 0.518
SSE 0.022 0.103 0.010 0.112

PQL SM 2.207 −0.999 1.000 0.509
SSE 0.017 0.103 0.010 0.112

Remark that when the combined results of Tables 4.1 and 4.3 are examined,
the PQL approach appears to overestimate σ2

γ (Table 4.1) and underestimate β1

(Table 4.3). Thus, it appears that this approach is able to properly estimate β1 + 1
2 σ2

γ

as a confounded effect involved in the exponent for the unconditional mean µi j =
exp(x′i jβ + 1

2 σ2
γ ) (4.14) of the response yi j, whereas the LA approach is able to

produce almost unbiased estimates for β1 and σ2
γ separately and hence does not

suffer from any identification of the parameter problems.

4.2.3.1 A Higher-Order Likelihood Approximation (HOLA)

Recall that in the LA approach, for σ2
γ ↓ 0, the true normal density of γi, that is,

gN(γi|σ2
γ ) = (2πσ

2
γ )−1/2 exp{−γi

2/2σ
2
γ }

was approximated by gw(γi), a ‘working’ density of γi as given by (4.33). The main
objective of the HOLA approach is to approximate the true density gN(γi) of γi
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by a better density than gw(γi), in order to obtain a better likelihood function than
L∗(β ,σγ) in (4.36). Let g̃w(γi) denote the improved probability density which will
have its first four moments the same as the first four moments of the true distri-
bution gN(γi), whereas gw(γi) has its first two moments the same as the first two
moments of the true distribution gN(γi). The improved likelihood function based on
the improved density g̃w(γi) of γi is denoted by L̃(β ,σγ).

In order to derive the improved density g̃w(γi) as a function of gw(γi) (4.33), we
use the well-known Gram−Charlier series expansion [cf. Johnson and Kotz (1972,
pp. 15−22)] up to the term with moments up to order four, and obtain

g̃w(γi) ≈
[

1− ε1P1(γi)+
1
2
{ε

2
1 + ε2}P2(γi)−

1
6
{ε

2
1 +3ε1ε2 + ε3}P3(γi)

+
1
24
{ε

4
1 +6ε

2
1 ε2 +4ε1ε3 + ε4}P4(γi)

]
gw(γi), (4.39)

where, for ` = 1, . . . ,4,
ε` = K`−K∗

` , (4.40)

with K` and K∗
` as the `th cumulants of the distributions gN(γi) and gw(γi), respec-

tively, and the formulas for P̀ (γi) are obtained by writing the `th derivative of gw(γi)
with respect to γ∗i , in the form

∂ `gw(γi)
∂γi

`
= P̀ (γi)gw(γi). (4.41)

See Exercise 4.1 for the specific values of K` and K∗
` and Exercise 4.2 for the for-

mulas for P̀ (γi), for all ` = 1, . . . ,4.
Note that the formula for gw(γi) in (4.39) is given by (4.33) which is approx-

imated by hw(wi) = [φ α/Γ (α)]exp(−φwi)wα−1
i as given in (4.32), where wi =

exp(γi). Now express g̃w(γi) in (4.39) as

g̃w(γi) = h̃w(wi) = P∗(wi)hw(wi), (4.42)

where P∗(wi) is a function of wi, and is equivalent to the function in the square
bracket in the right-hand side of (4.39), and hw(wi) is written for gw(γi). Conse-
quently, the integral Ji in (4.19) is now approximated as

Ji ≈
∫ ∞

−∞
exp[s∗i (wi)]h̃w(wi)dwi

= J̃i (say), (4.43)

where s∗i (wi) is given by (4.34). Next by using this J̃i for Ji in (4.18), one obtains an
improved log likelihood approximation over (4.36), given by

log L̃(β ,σγ) = −
K

∑
i=1

ni

∑
j=1

log yi j!+
K

∑
i=1

ni

∑
j=1

yi jx
′
i jβ +Kα log φ
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+
K

∑
i=1

log

[
5

∑
r=1

CrΓ (y∗ir)
Γ (α)(µ∗

i )y∗ir

]
, (4.44)

[Sutradhar and Das (2001, eqn. (3.3), p. 63] where, for

α =
1

exp(σ2
γ )−1

and φ =
1

exp(σ2
γ /2){exp(σ2

γ )−1}
,

y∗ir = α + r−1+
ni

∑
j=1

yi j and µ
∗
i = φ +

ni

∑
j=1

exp(x′i jβ ),

and

C1 = 1− 1
6

α
3
σ

4
γ −

1
12

α
4
σ

6
γ

C2 =
1
6

φ [1+3α +3α
2]σ4

γ +
1

12
φ [1+4α +6α

2 +4α
3]σ6

γ

C3 = −1
2

φ
2[1+α]σ4

γ −
1

12
φ

2[7+12α +6α
2]σ6

γ

C4 =
1
6

φ
3
σ

4
γ +

1
6

φ
3[3+2α]σ6

γ

C5 = − 1
12

φ
4
σ

6
γ .

One then uses (4.44) to write the likelihood estimating equations for β and σ2
γ given

by

Ũ1 =
∂ log L̃(β ,σγ)

∂β
=

K

∑
i=1

[
ni

∑
j=1

yi jxi j −
si2

si1

ni

∑
j=1

xi j exp(x′i jβ )

]
= 0 (4.45)

Ũ2 =
∂ log L̃(β ,σγ)

∂σ2
γ

=
[
Kα

′(σ2
γ ){log φ −ψ(α)}+Kαφ

′(σ2
γ )/φ

]
+

K

∑
i=1

s′i1(σ
2
γ )

si1
= 0, (4.46)

where ψ(α) = ∂ logΓ (α)/∂α, and

si1 =
5

∑
r=1

Cr pir, si2 =
5

∑
r=1

Cr pi,r+1,

s′i1(σ
2
γ ) =

5

∑
r=1

[
C′

r(σ
2
γ )pir +Cr pirwir

]
,

with Cr as in (4.44) and C′
r(σ

2
γ ) = ∂Cr/∂σ2

γ , and
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pir = Π
r−1
u=1

y∗iu
{µ∗

i }r−1

wir =
[

α
′(σ2

γ ){ψ(y∗ir)− log µ
∗
i }−φ

′(σ2
γ )

y∗ir
µ∗

i

]
.

Let β̂HOLA and σ̂2
γ,HOLA be the improved higher-order likelihood approximate esti-

mates for β and σ2
γ obtained from (4.45) and (4.46), respectively.

Note that it is expected that the HOLA approach will yield better estimates than
the LA approach. In order to have a quantitative idea on the relative performances of
these two approaches, Sutradhar and Das (2001, Table 4.1) conducted a simulation
study using K = 100 families each with ni = 6 members. For simplicity, as opposed
to 4 covariates considered by Sutradhar and Qu (1998), Sutradhar and Das (2001)
have considered p = 2 covariates. These two covariates were chosen as

xi j1 =


1 for j = 1, . . . ,ni/2; i = 1, . . . ,K/2,

0 for j = ni/2+1, . . . ,ni; i = 1, . . . ,K,

1 for j = 1, . . . ,ni; i = K/2+1, . . . ,K

xi j2 =



1 for j = 1, . . . ,ni/2; i = 1, . . . ,K/2,

2 for j = ni/2+1, . . . ,ni; i = 1, . . . ,K,

−1 for j = 1, . . . ,ni/3; i = K/2+1, . . . ,K,

0 for j = ni/3+1, . . . ,2ni/3; i = K/2+1, . . . ,K,

1 for j = 2ni/3+1, . . . ,ni; i = K/2+1, . . . ,K.

For selected true values of β1, β2, and σ2
γ , by generating data as in Section 4.2,

the LA estimates of these parameters were obtained by solving (4.37) and (4.38),
and their HOLA estimates were obtained from (4.45) and (4.46), respectively. The
simulated means and standard errors of the estimates based on 1000 simulations are
shown in Table 4.4 below.

The results of Table 4.4 show that in estimating both β1 and β2, in general, the
HOLA approach leads to a considerable bias reduction as compared to the LA ap-
proach. For example, the true β1 = 1.0 was estimated by the LA approach as 0.953,
0.951, and 0.953 when σ2

γ = 0.60, 0.75, 0.90, respectively, whereas the correspond-
ing HOLA estimates for β1 were found to be 0.984, 0.993, and 0.983. Similarly, the
HOLA approach leads to a significant improvement in estimating σ2

γ as compared
to the LA approach. For example, the true σ2

γ = 0.60 was estimated as 0.487 and
0.537 by the LA and HOLA approaches, respectively. The HOLA estimator ap-
pears to perform very well when true σ2

γ is large. Thus, in general, the higher-order
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Table 4.4 Simulated means and simulated standard errors of the LA and HOLA estimates for
regression effects as well as σ2

γ , based on family size ni = 6, for K = 100 families, and 1000
simulations, when β1 = β2 = 1.0.

True σ2
γ

Method Estimates Statistic 0.40 0.60 0.75 0.90
LA β̂LA,1 SM 0.949 0.953 0.951 0.953

SSE 0.029 0.025 0.021 0.019
β̂LA,2 SM 0.948 0.946 0.947 0.946

SSE 0.018 0.016 0.014 0.013
σ̂2

γ,LA SM 0.385 0.487 0.675 0.637
SSE 0.015 0.015 0.014 0.014

HOLA β̂HOLA,1 SM 0.925 0.984 0.993 0.983
SSE 0.086 0.023 0.019 0.018

β̂HOLA,2 SM 0.955 0.957 0.961 0.951
SSE 0.053 0.015 0.013 0.013

σ̂2
γ,HOLA SM 0.417 0.537 0.675 0.811

SSE 0.008 0.017 0.006 0.003

likelihood approximation leads to significant improvement over the LA approach in
estimating all β and σ2

γ parameters of the model.

4.2.4 Hierarchical Likelihood (HL) Approach

Similarly to the PQL approach, there exists a hierarchical likelihood (HL) approach
[Lee and Nelder (1996)] that uses the estimates of γi(i = 1, . . . ,K) to estimate the
desired regression parameter β and the overdispersion parameter σ2

γ . The difference
between the two approaches is that the PQL approach estimates β and γi by solv-
ing their estimating equations (4.28) and (4.29) developed by maximizing a penal-
ized quasi-likelihood function, whereas the HL approach maximizes the hierarchical
likelihood function

h = log
K

∏
i=1

ni

∏
j=1

f (yi j|γi,β ) + log
K

∏
i=1

g(γi|σ2
γ ), (4.47)

to estimate these parameters, where g(γi|σ2
γ ) is the density function of unobserved

γi, and f (yi j|γi,β ) is the Poisson density function as in (4.1) for the response yi j

given γi. Similarly to the PQL approach, we use the normal density

gN(γi|σ2
γ ) = (2πσ

2
γ )−1/2 exp{−γi

2/2σ
2
γ }

for g(γi|σ2
γ ) in (4.47). Note that as far as the estimation of σ2

γ is concerned, the
PQL approach solves the profile quasi-likelihood function based estimating equa-
tion (4.30), whereas the HL approach maximizes an adjusted profile hierarchical
likelihood function [Lee and Nelder (1996)] given by
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hA = h +
1
2

log{det(2π H−1)}

= h +
1
2

log(2π)− 1
2

log{det(H)}, (4.48)

where h is the hierarchical likelihood function as in (4.47) and the H matrix is de-
fined as

H =
[

X ′WX X ′WZ
Z′WX Z′WZ +U

]
(p+K)×(p+K)

, (4.49)

where X = [X1, ...,Xi, ...,XK ]′ : ∑ni× p, with Xi = [xi1, . . . ,xi j, . . . ,xini ]
′ as the ni× p

covariate matrix; W and Z are block-diagonal matrices given by W =
⊕K

i=1 A∗i :
∑ni ×∑ni and Z =

⊕K
i=1 1ni : ∑ni ×K, respectively, with A∗i = diag[µ∗

i1, ...,µ∗
ini

]:
∑ni ×∑ni where µ∗

i j = exp(x′i jβ + γi); and 1ni = (1, ...,1)′ : ∑ni × 1 ; and U =
[1/σ 2

γ ]IK , IK being the K×K identity matrix.
Note that by maximizing the HL function in (4.47) with respect to β and γi, one

obtains the HL estimating functions for β and γi given by

∂h
∂β

=
K

∑
i=1

X ′
i (yi−µ

∗
i ) = 0, (4.50)

∂h
∂γi

=
ni

∑
j=1

(yi j −µ
∗
i j) −

γi

σ2
γ

= 0. (4.51)

Next, for the HL estimation of σ 2
γ , the maximization of hA, the adjusted profile HL

function in (4.48), is achieved by using the iterative equation given by

σ̂
2
γ(r+1) = σ̂

2
γ(r) +

(∂ 2hA

∂σ4
γ

)−1
∂hA

∂σ2
γ


(r)

, (4.52)

where the square bracket [ ](r) indicates that the quantity in [ ] is evaluated at σ2
γ =

σ̂2
γ(r), r being the rth iteration. In (4.52),

∂hA

∂σ2
γ

= − K
2σ2 + ∑K

i=1 γ2
i

2σ4
γ

+
tr(D)
2σ4

γ

, (4.53)

∂ 2hA

∂σ4
γ

=
K

2σ4
γ

− ∑K
i=1 γ2

i

σ6
γ

− tr(D)
σ6

γ

+
tr(DD)

2σ8
γ

, (4.54)

with D = [(Z′WZ +U)−Z′WXX ′WXX ′WZ]−1 as the bottom diagonal matrix of
H−1 with appropriate dimension, H being defined in (4.49).

Let β̂HL be the solution of the HL based estimating equation (4.50) for β , and
σ̂2

γ,HL be obtained as the HL based estimate of σ2
γ from the iterative equation (4.52).

A simulation study was conducted by Chowdhury and Sutradhar (2009) in order to
examine the relative performances of these HL estimators to the corresponding gen-
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eralized quasi-likelihood (GQL) estimators suggested by Sutradhar (2004). In Sec-
tion 4.6, we provide details on this GQL estimation approach and discuss its superior
performance over the HL approach based on a simulation study by Chowdhury and
Sutradhar (2009).

4.2.5 Method of Moments (MM)

As opposed to the best linear unbiased prediction analogue such as the PQL (Bres-
low and Clayton, 1993) and the HL (Lee and Nelder, 1996) approaches, Jiang (1998)
discussed a simulated method of moments (SMM) for the estimation of the param-
eters of the generalized linear mixed models, the binary and Poisson mixed models
being two important special cases. The main purpose of the introduction of a simpler
method of moments is to handle the multidimensional random effects cases fairly
easily as compared to other approaches. In this approach, the normal random effects
are driven out by simulating them first and then numerically averaging over their
distributions. These are done to compute the necessary unconditional moments of
the responses, whereas the PQL and HL approaches estimate the parameters of the
models through the prediction/estimation of the random effects. The moment ap-
proach is also expected to produce consistent estimates for the parameters, whereas
the PQL and HL approaches may fail to produce such consistent estimates espe-
cially for the variance component of the random effects.

Note that as opposed to the binary case, one does not need any simulation or other
numerical techniques to compute the first− or higher-order moments of the count
responses following Poisson mixed models. Thus, we provide here the estimating
equations based on an ordinary method of moments (MM) where necessary mo-
ments can be computed directly provided random effects are normally distributed.
More specifically, under the Poisson mixed models, one estimates β and σ 2

γ by solv-
ing the moment equations

ψ1(β ,σ2
γ ) =

K

∑
i=1

ni

∑
j=1

xi j
{

yi j −µi j(β ,σ2
γ )
}

= 0, (4.55)

and

ψ2(β ,σ2
γ ) =

K

∑
i=1

( ni

∑
j=1

yi j

)2

−

(
ni

∑
j=1

λi j j(β ,σ2
γ )+2

ni

∑
j<k

λi jk(β ,σ2
γ )

)= 0,

(4.56)
respectively, where

µi j = E[Yi j] = exp(x′i jβ +
1
2

σ
2
γ ), λi j j = E[Y 2

i j] = µi j + exp(σ2
γ )µ

2
i j,

and
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λi jk = E[Yi jYik] = exp(σ2
γ )µi jµik,

by (4.14)− (4.16).
Now by re-expressing these two moment equations in (4.55) and (4.56) as[

ψ1

ψ2

]
=

[
w1−ξ1

w2−ξ2

]
= 0, (4.57)

and writing
ψ = [ψ ′

1,ψ2]′, w = [w′
1,w2]′, and ξ = [ξ ′1,ξ2]′,

one may obtain the MM estimate of θ = [β ′,σ2
γ ]′ by using the Gauss−Newton iter-

ative equation

θ̂MM(r +1) = θ̂MM(r)+
[

∂ξ ′

∂θ

]−1

r
[w−ξ ]r, (4.58)

where []r denotes that the expression within the square bracket is evaluated at θ =
θ̂MM(r), the estimate obtained for the rth iteration. Let the final solution obtained
from (4.58) be denoted by θ̂MM.

Note that because E[ψ] = 0, the MM estimator θ̂MM is consistent for θ but it may
still produce biased estimators in finite sample cases. Moreover, the MM estimator
can be inefficient. In the next section, it is demonstrated through a simulation study
that the MM approach indeed produces highly biased estimates in the finite sample
cases for both regression and variance component parameters, especially when the
true variance parameter value is large. The simulation study also includes a moments
based generalized quasi-likelihood approach proposed by Sutradhar (2004) which
appears to work much better than the MM approach, in estimating all regression and
variance component parameters.

4.2.6 Generalized Quasi-Likelihood (GQL) Approach

Let yi = (yi1, . . . ,yi j, . . . ,yini)
′ be the ni response vector collected from ni members

of the ith (i = 1, . . . ,K) family. Next, write the mean vector of yi and its covariance
matrix as

E[Yi] = µi(β ,σ2
γ ) = (µi1, . . . ,µi j, . . . ,µini)

′ : ni×1 (4.59)

Cov[Yi] = Σi(β ,σ2
γ ) = (σ jk) : ni×ni, (4.60)

where, by Lemma 4.1,

µi j = exp(x′i jβ +
1
2

σ
2
γ )

σi j j = var[Yi j] = µi j +[exp(σ2
γ )−1]µ2

i j
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σi jk = cov[Yi j,Yik] = µi jµik[exp(σ2
γ )−1], for j 6= k.

To understand the nature of the data through this Poisson mixed model, it is
of interest to estimate the parameters β and σ2

γ . Note that σ2
γ = 0 would reduce

the mixed model (4.1)− (4.2) to a fixed model. Also it implies that the responses
of the members would be independent. Now, if the responses were independent,
one could have estimated the only parameter β by using the well-known quasi-
likelihood (QL) approach of Wedderburn (1974) [see also McCullagh (1983)] which
exploits the means and variances of the data. More specifically, the QL estimating
equation would have been

K

∑
i=1

ni

∑
j=1

[
∂ µ ′

i j

∂β

(yi j −µi j)
var(yi j)

]
= 0, (4.61)

with µi j = exp(x′i jβ ).

4.2.6.1 Marginal Generalized Quasi-Likelihood (GQL) Estimation of β

For the correlated responses, Sutradhar (2003, Section 3) has proposed a general-
ization of the QL approach of Wedderburn (1974) to a longitudinal setup, where the
mean vector and covariance matrix of the responses are utilized in estimating the
parameter(s) involved in the mean vector. Furthermore, Sutradhar (2004) has used
this generalized quasi-likelihood approach in the binary and Poisson familial setup.
For the present Poisson familial (mixed) model with the unconditional mean vector
µi and covariance matrix Σi as in (4.59) and (4.60), respectively, the GQL estimating
equation for β , assuming known σ2

γ , is given by

K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i (yi−µi) = 0. (4.62)

The expectation of the estimating function in the left-hand side of (4.62) is zero,
therefore the GQL estimator, say β̂GQL obtained by solving (4.62) would be consis-
tent for β . Furthermore, because the estimating equation (4.62) is fully standardized
by using the inverse of the covariance matrix as the weight matrix, β̂GQL will also be
highly efficient, the maximum likelihood estimator being fully efficient or optimal,
which is, however, not easy to obtain under the present mixed model setup.

Note that the solution of (4.62) may be obtained by using the Gauss−Newton
iterative equation

β̂GQL(r +1) = β̂GQL(r)+

[
K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i

∂ µi

∂β ′

]−1

r

[
K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i (yi−µi)

]
r

, (4.63)
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where []r denotes that the expression within the square bracket is evaluated at
β = β̂GQL(r), the estimate obtained for the rth iteration. It also can be shown that
asymptotically (as K → ∞), for known σ2

γ , the final GQL estimator obtained from
(4.63) follows the multivariate Gaussian distribution with mean β and the covari-
ance matrix given by

cov(β̂GQL) = limitK→∞

[
K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i

∂ µi

∂β ′

]−1

. (4.64)

4.2.6.2 Marginal Generalized Quasi-Likelihood (GQL) Estimation of σ2
γ

Sutradhar [2004, eqn. (3.4), p. 270] has developed the GQL estimating equations
for the joint estimation of β and σ 2

γ . It can be shown that, conditional on γ∗i , all
first− and second-order responses can form a sufficient statistic for the parameters
β and σ2

γ involved in the generalized linear function ηi j = x′i jβ +σγ γ∗i (Jiang, 1998),
therefore we write a second-order response based GQL estimating equation for the
marginal estimation of σ2

γ , whereas the first-order responses were used to construct
the marginal GQL estimating equation (4.62) for the estimation of β .

Let
ui = (u′i1,u

′
i2)

′ (4.65)

be the vector of all second-order responses under the ith family, where

ui1 = (y2
i1, . . . ,y

2
i j, . . . ,y

2
ini

)′ : ni×1,

ui2 = (yi1yi2, . . . ,yi jyik, . . . ,yi(ni−1)yini)
′, j < k :

ni(ni−1)
2

×1.

Furthermore, let

λi = E[Ui]
= (λi11, . . . ,λi j j, . . . ,λinini ,λi12, . . . ,λi jk, . . . ,λi(ni−1)ni

)′, (4.66)

where, by (4.56), λi j j = E[Y 2
i j] = µi j + exp(σ2

γ )µ2
i j for all j = 1, . . . ,ni, and λi jk =

E[Yi jYik] = exp(σ2
γ )µi jµik for all j 6= k, j,k = 1, . . . ,ni. Also, let

Ωi = cov(Ui) =

[
cov(Ui1) cov(Ui1,U ′

i2)

cov(Ui2)

]
(4.67)

=

[
Fi Gi

Hi

]
, (4.68)

where the formulas for the component matrices Fi,Gi, and Hi, are given in Lemma
4.3 below. In the fashion similar to that of (4.62), for known β , one may solve the
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GQL estimating equation

K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i (ui−λi) = 0, (4.69)

for σ2
γ in order to obtain a consistent and highly efficient estimator for σ2

γ . Let
σ̂2

γ,GQL denote the solution of (4.69) which can be obtained by using the iterative
equation

σ̂
2
γ,GQL(r +1) = σ̂

2
γ,GQL(r)+

[
K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i

∂λi

∂σ2
γ

]−1

r

×

[
K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i (ui−λi)

]
r

, (4.70)

where []r denotes that the expression within the square bracket is evaluated at σ2
γ =

σ̂2
γ,GQL(r), the estimate obtained for the rth iteration. Furthermore, similar to that

of (4.64), it can be shown that asymptotically (as K → ∞), for known β , the final
GQL estimator obtained from (4.70) follows the univariate Gaussian distribution
with mean σ2

γ and the variance given by

var(σ̂2
γ,GQL) = limitK→∞

[
K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i

∂λi

∂σ2
γ

]−1

. (4.71)

Note that in practice, the iterative equations (4.63) for β and (4.70) for σ2
γ con-

stitute a cycle, and the cycles of operation continues until convergence, to obtain the
final GQL estimates β̂GQL and σ̂2

γ,GQL for β and σ2
γ , respectively.

Lemma 4.3. Recall from (4.1) that conditional on the random family effect γi,
yi j follows the Poisson distribution with mean parameter µ∗

i j = exp(x′i jβ + γi), for

all j = 1, . . . ,ni. Also we have assumed that γi
iid∼ N(0,σ2

γ ). For ui = (u′i1,u
′
i2)

′ as in
(4.65), it then follows that the formulas for the component matrices of Ωi = cov[Ui],
namely of Fi,Gi, and Hi (4.68), are given by

Formula for cov[Ui1] = Fi

var[Y 2
i j] = φi j j j j −λ

2
i j j

= µi j
[
1+7µi j exp(σ2

γ )+6µ
2
i j exp(3σ

2
γ )

+ µ
3
i j exp(6σ

2
γ )
]
−λ

2
i j j, for j = 1, . . . ,ni (4.72)

cov[Y 2
i j,Y

2
ik] = φi j jkk−λi j jλikk

= µi jµik exp(σ2
γ )
[
1+{µi j + µik}exp(2σ

2
γ )
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+ µi jµik exp(5σ
2
γ )
]
−λi j jλikk, for j 6= k, j,k = 1, . . . ,ni,(4.73)

where the formulas for µi j and λi j j for all j = 1, . . . ,ni, are given by (4.56).

Formula for cov[Ui2] = Hi

var[Yi jYik] = φi j jkk−λ
2
i jk for j 6= k (4.74)

cov[Yi jYik,Yi`Yim] =



φi j jkm−λi jkλi jm for j = `

φi j jk`−λi jkλi j` for j = m

φi jkkm−λi jkλikm for k = `

φi jkk`−λi jkλik` for k = m

(4.75)

cov[Yi jYik,Yi`Yim] = φi jk`m−λi jkλi`m (4.76)

= µi jµikµi`µim exp(6σ
2
γ )−λi jkλi`m, for j 6= `, k 6= m,(4.77)

where λi jk for j 6= k are given by (4.56), φi j jkk is given in (4.73), and

φi j jkm = µi jµikµim exp(3σ
2
γ )
[
1+ µi j exp(3σ

2
γ )
]

φi jkkm = µi jµikµim exp(3σ
2
γ )
[
1+ µim exp(3σ

2
γ )
]
,

for example.

Formula for cov[Ui1,U ′
i2] = Gi

cov[Y 2
i j,YikYi`] =


φi j j j`−λi j jλi j` for j = k

φi j j jk−λi j jλi jk for j = `
(4.78)

cov[Y 2
i j,YikYi`] = φi j jk`−λi j jλik`, for j 6= k, j 6= `, (4.79)

where φi j jk` is as in (4.75), and

φi j j jk = µi jµik exp(σ2
γ )[1+3µi j exp(2σ

2
γ )+ µ

2
i j exp(5σ

2
γ )],

for example.

Proof: All these formulas for the moments can be derived by computing first the ap-
propriate conditional moments for given random family effect γi, and then taking the
average over the distribution of the random family effects. For example, to compute
φi j j j j = E(Y 4

i j), by (4.11),we first compute the corresponding condition moment as
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E(Y 4
i j|γi) = µ

∗
i j +7µ

∗
i j

2 +6µ
∗
i j

3 + µ
∗
i j

4,

where µ∗
i j = exp(x′i jβ +γi). We then take the expectation of this conditional moment

over the normal distribution for γi, and obtain

φi j j j j = E[Y 4
i j] = EγiE[Y 4

i j]

= µi j
[
1+7µi j exp(σ2

γ )+6µ
2
i j exp(3σ

2
γ )+ µ

3
i j exp(6σ

2
γ )
]

as in (4.72). Similarly, the remaining fourth-order moments are computed using the
basic steps as follows;

φi j jkk = Eγi [E(Y 2
i j|γi)E(Y 2

ik|γi)]

= Eγi [{µ
∗
i j + µ

∗
i j

2}{µ
∗
ik + µ

∗
ik

2}]

φi j j jk = Eγi [E(Y 3
i j|γi)E(Yik|γi)]

= Eγi [{µ
∗
i j +3µ

∗
i j

2 + µ
∗
i j

3}{µ
∗
ik}]

φi j jk` = Eγi [E(Y 2
i j|γi)E(Yik|γi)E(Yi`|γi)]

= Eγi [{µ
∗
i j + µ

∗
i j

2}µ
∗
ikµ

∗
i`]

φi jk` = Eγi [E(Yi j|γi)E(Yik|γi)E(Yi`|γi)E(Yim|γi)]

= Eγi [µ
∗
i jµ

∗
ikµ

∗
i`µ

∗
im]. �

4.2.6.3 Joint Generalized Quasi-Likelihood (GQL) Estimation for β and σ2
γ

For quick convergence of the estimates, one may like to estimate β and σ2
γ jointly.

For this, the estimating equations (4.62) and (4.69) may be combined as follows.
Let

si = (y′i,u
′
i)
′

with
E[Si] = ζi = (µ

′
i ,λ

′
i )
′, and cov[Si] = ϒi, (4.80)

where µi and λi are as in (4.62) and (4.66), respectively, and

ϒi = cov(Si) =

[
cov(Yi) cov(Yi,U ′

i )

cov(Ui)

]
(4.81)
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=

[
Σi Λi

Ωi

]
, (4.82)

with Σi and Ωi as in (4.62) and (4.68),respectively, and

Λi = [cov(Yi,U
′
i1) cov(Yi,U

′
i2)] = [Bi Ei].

The formulas for Bi and Ei may be computed as follows.

Formula for cov[Yi,U ′
i1] = Bi

cov[Yi j,Y
2
ik] = δi jkk−µi jλi jk

= Eγi [E(Yi j|γi)E(Y 2
ik|γi)]−µi jλi jk

= Eγi [{µ
∗
i j}{µ

∗
ik + µ

∗
ik

2}]−µi jλi jk (4.83)

=


µi j

[
1+3µi j exp(σ2

γ )+ µ2
i j exp(3σ2

γ )
−µi j{1+3µi j exp(σ2

γ )}
]

for j = k

µi jµik
[
{exp(σ2

γ )−1}
+µik exp(σ2

γ ){exp(2σ2
γ )−1}

]
for j 6= k.

Formula for cov[Yi,U ′
i2] = Ei

cov[Yi j,YikYi`] = δi jk`−µi jλik`, k 6= `

= Eγi [E(Yi j|γi)E(Yik|γi)E(Yi`|γi)]−µi jλik`

= Eγi [µ
∗
i jµ

∗
ikµ

∗
i`]−µi jλik` (4.84)

=


µi jµi` exp(σ2

γ )
[
1+ µi j{exp(2σ2

γ )−1}
]

for j = k

µi jµik exp(σ2
γ )
[
1+ µi j{exp(2σ2

γ )−1}
]

for j = `

µi jµikµi` exp(σ2
γ )
[
exp(2σ2

γ )−1
]

for j 6= k, j 6= `.

For θ = (β ′,σ2
γ )′, it then follows that the joint GQL estimating equation for β

and σ2
γ may be written as

K

∑
i=1

∂ζ ′i
∂θ

ϒ
−1

i (si−ζi) = 0. (4.85)

This equation can be solved by using the iterative equation



4.2 Estimation for Single Random Effect Based Parametric Mixed Models 85

θ̂GQL(r +1) = θ̂GQL(r)+

[
K

∑
i=1

∂ζ ′i
∂θ

ϒ
−1

i
∂ζi

∂θ ′

]−1

r

[
K

∑
i=1

∂ζ ′i
∂θ

ϒ
−1

i (si−ζi)

]
r

, (4.86)

where []r denotes that the expression within the square bracket is evaluated at θ =
θ̂GQL(r), the estimate obtained for the rth iteration. Furthermore, similar to that of
(4.71), it can be shown that asymptotically (as K → ∞), the final GQL estimator
obtained from (4.86) follows the multivariate Gaussian distribution with mean θ

and the variance given by

var(θ̂GQL) = limitK→∞

[
K

∑
i=1

∂ζ ′i
∂θ

ϒ
−1

i
∂ζi

∂θ ′

]−1

. (4.87)

4.2.7 Efficiency Comparison

4.2.7.1 Efficiency Comparison Between GQL and MM Approaches: A Small
Sample Study

We now examine the efficiency performance of the GQL and MM estimators
through a simulation study. For simplicity, we consider a Poisson mixed model with
two fixed covariates and one source of random effects, so that conditional on the
random effects, the count response is generated from the Poisson distribution with
mean

µ
∗
i j = exp(xi j1β1 + xi j2β2 +σγ γ

∗
i ), (4.88)

[see (4.3)]. We consider β1 = β2 = 1 and K = 100 clusters. Furthermore, we consider
ni = n = 6 for all i. The two design covariates were chosen as

xi j1 =


1 for j = 1, . . . ,3; i = 1, . . . ,K/2

0 for j = 4, . . . ,6; i = 1, . . . ,K/2

1 for j = 1, . . . ,6; i = (K/2)+1, . . . ,K;

and

xi j2 =



1 for j = 1, . . . ,3; i = 1, . . . ,K/2

2 for j = 4, . . . ,6; i = 1, . . . ,K/2

−1 for j = 1,2; i = (K/2)+1, . . . ,K

0 for j = 3,4; i = (K/2)+1, . . . ,K

1 for j = 5,6; i = (K/2)+1, . . . ,K.



86 4 Familial Models for Count Data

In addition, the γi were independently generated from a standard normal distribution.
With regard to the selection of the variance of the random effects, we choose σ 2

γ =
0.4, 0.8, 1.0, and 1.25. We remark that even though in theory the overdispersion
index parameter σ2

γ can take any value from 0 to ∞, for practical purposes σ2
γ ≥ 1.0

appears to be quite large. This is because under the Poisson-normal mixed model
(4.1), the overdispersion in the count data may increase significantly even if the
increment in σ2

γ is small. To be specific, the variance of yi j, σi j j = µi j + [exp(σ2
γ )−

1]µ2
i j, under the Poisson-normal mixed model increases significantly, depending on

the value of the mean function µi j = exp(x′i jβ + 1
2 σ2

γ ), even if σ2
γ changes from

1.0 to 1.2, for example. We further remark that Breslow and Lin (1995, P. 90) were
able to obtain unbiased estimates of this overdispersion index parameter σ2

γ when
σ2

γ ranges only up to 0.5.
To simulate the data, the responses (yi1, . . . ,yini) for ni = 6 for each cluster i were

generated as realizations of the Poisson model (4.1) with mean and variance equal to
µ∗

i j = exp(β1xi j1 +β2xi j2 +σγ γ∗i ). The simulated data (yi j), j = 1, . . . ,6, i = 1, . . . ,K
(K = 100), and the covariates (xi ju), u = 1, . . . , p; j = 1, . . . ,6, i = 1, . . . ,K, were
used to compute the estimates of the fixed-effect parameters β and variance com-
ponent σ2

γ of the random effects, based on the MM and GQL approaches discussed
in Sections 4.2.5 and 4.2.6.3, respectively. More specifically, the estimates were
obtained by using the Newton−Raphson iterative equation (4.58) to solve (4.57)
for the moment estimates and by using (4.86) to solve (4.85) for the joint GQL
estimates. We have used the same small initial values for each of the β and σ2

γ

parameters under both moment and GQL approaches. The iterative procedure was
terminated when the difference between the estimates of two consecutive iterations
was less than or equal to 0.005. The simulation was repeated 1000 times in order to
obtain the mean value and standard errors of the parameter estimates.

Table 4.5 Comparison of the MM and GQL based simulated mean values, standard errors, and
mean squared errors of the regression estimates for selected values of σ2

γ ; K = 100; ni = n = 6
β1 = β2 = 1; 1000 simulations.

Regression Regression Estimates
parameter Method Quantity σ2

γ = 0.40 0.80 1.00 1.25
β1 MM Mean 1.048 1.067 1.072 1.079

SE 0.024 0.026 0.026 0.026
MSE 0.003 0.005 0.006 0.007

GQL Mean 1.016 1.023 1.000 1.035
SE 0.021 0.029 0.045 0.033

MSE 0.001 0.001 0.002 0.002
β2 MM Mean 0.891 0.815 0.780 0.738

SE 0.016 0.017 0.017 0.017
MSE 0.012 0.035 0.049 0.069

GQL Mean 0.951 0.952 0.953 0.957
SE 0.016 0.021 0.022 0.025

MSE 0.003 0.003 0.003 0.003
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Note that β and σ2
γ were estimated jointly based on moment and GQL ap-

proaches discussed in Sections 4.2.5 and 4.2.6.3. Table 4.5 reports the simulated
mean values and standard errors of the estimates of β1 and β2 computed by:
(1) Jiang’s moment method, and (2) the joint generalized quasi-likelihood approach.
As both the moment and GQL approaches yield biased estimates, we compute the
mean squared errors to study the efficiency of the estimators. More specifically, the
efficiency of one estimation method as compared to its counterpart should be com-
puted by comparing the mean squared errors of the estimator, not by comparing the
variances of the estimators produced by the methods. With this in view, we report
the simulated mean values, standard errors, and the mean squared errors of the re-
gression estimators in Table 4.5 and for the estimator of the variance component in
Table 4.6.

Table 4.6 Comparison of the MM and GQL based simulated mean values, standard errors, and
mean squared errors of the estimates of variance components of the random effects for selected
values of σ2

γ ; K = 100; ni = n = 6; β1 = β2 = 1; 1000 simulations.

Variance Component Estimate
Method Quantity σ2

γ = 0.40 0.80 1.00 1.25
MM Mean 0.192 0.410 0.529 0.677

SE 0.019 0.027 0.032 0.036
MSE 0.044 0.153 0.223 0.330

GQL Mean 0.353 0.789 0.990 1.376
SE 0.042 0.117 0.222 0.225

MSE 0.004 0.014 0.049 0.067

It is clear from Table 4.5 that in estimating both β1 and β2, in general, the GQL
approach leads to a large reduction in bias and hence in mean squared errors rel-
ative to the moment approach. In particular, the moment approach performs very
poorly in estimating β2 as compared to the GQL approach. For example, for the
case when σ2

γ = 0.8, the moment approach yields 0.035 as the mean squared error
of the estimator of β2, whereas the GQL approach yields only 0.003 for this estima-
tor, resulting in very large mean squared error efficiency gain for the GQL approach.
Note that the simulations are done also for large σ2

γ such as σ2
γ = 1.0,1.25, which

are beyond the ranges for σ2
γ considered by Breslow and Lin (1995) and Sutradhar

and Qu (1998). In all cases, the GQL approach performs better than the moment
approach.

It is clear from Table 4.6 that for all σ2
γ , the GQL method performs extremely

well in estimating σ2
γ as compared to the MM approach of Jiang (1998). The mo-

ment approach grossly underestimates σ2
γ , whether σ2

γ is large or small, whereas the
GQL approach slightly underestimates σ2

γ when σ2
γ is small, and overestimates σ2

γ

when σ2
γ is large. But as compared to the moment approach, the amount of bias is

relatively insignificant. Furthermore it is clear from the table that the MSEs yielded
by the moment approach are much larger than those of the GQL approach. The per-
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formance of the moment approach is worse for the large σ2
γ cases. This is because

as σ2
γ increases, the moment approach appears to be highly biased in estimating σ2

γ ,
as compared to the cases with smaller σ2

γ . In general, the standard errors of both
GQL and moment estimators increase as σ2

γ increases, but the moment approach
produces smaller standard errors for the large σ2

γ cases. This better performance of
the moment approach in producing smaller SE is apparently due to the fact that the
moment approach appears to yield similar simulated estimates but they are far off
from the actual parameter values. Thus, in summary, the GQL approach performs
much better than the moment approach in estimating all parameters of the Poisson-
mixed model including the regression effects.

4.2.7.2 Efficiency Comparison Between GQL and HL Approaches: A Small
Sample Study

As pointed out in Section 4.2.4, the hierarchical likelihood approach [Lee and
Nelder (1996)] is conceptually quite similar to the penalized quasi-likelihood (PQL)
approach [Breslow and Clayton (1993)]. Both of these approaches use the predicted
random effects for the estimation of the regression effects β and the random effects
variance component σ2

γ . As discussed in Section 4.2.2, it is, however, known that
the PQL approach may not produce consistent estimates for σ2

γ , especially when
the true value of σ2

γ is large. Because of the similarity between the PQL and HL
approaches, the HL approach may also produce biased and hence inconsistent esti-
mates. A simulation study by Chowdhury and Sutradhar (2009) appears to support
this conjecture that the HL approach similar to the PQL approach may encounter
convergence difficulties in estimating the parameters, especially the variance com-
ponent of the mixed model. We present here a part of this simulation study by
Chowdhury and Sutradhar (2009).

The data were generated in the same way as in the last section with Poisson
mean given by (4.88). For the family size, we now consider two values, namely,
ni = n = 4,6, for all i = 1, . . . ,K = 100. For the variance component of the random
effects, we choose σ2

γ = 0.4,0.8, and 1.20. As far as the covariates are concerned,
the first covariate is kept the same as in the last section but a slightly different second
covariate was chosen. These covariates are:

xi j1 =


1 for j = 1,2, . . . ,ni/2; i = 1,2, . . . ,K/2

0 for j = ni/2+1, . . . ,ni; i = 1,2, . . . ,K/2

1 for j = 1, . . . ,ni; i = K/2+1, . . . ,K
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xi j2 =



1 for j = 1,2, . . . ,ni/2; i = 1,2, . . . ,K/2

2 for j = ni/2+1, . . . ,ni; i = 1,2, . . . ,K/2

0 for j = 1,2, . . . ,ni/2; i = K/2+1, . . . ,K

1 for j = ni/2+1, . . . ,ni; i = K/2+1, . . . ,K

Next, under each simulation, the simulated values of {yi j} along with the values
of the covariates {xi j} were used to obtain the HL estimates of β and σ2

γ by using
(4.50) and (4.52), respectively. To obtain the GQL estimates, unlike in the last sec-
tion, we have solved the marginal GQL estimating equations (4.62) for β and (4.69)
for σ2

γ . Note that under the HL approach, we also had to estimate γi (i = 1, ...,100)
by treating them as the fixed parameters, but these estimates were not reported as
they are not of direct interest. The simulated means (Mean) and simulated standard
errors (SE) for the GQL and HL based regression estimates are shown in Table 4.7
for selected cluster sizes ni = 4, and 6, and for all selected values of σ2

γ .
Note that in the last section, we have used the simulated MSEs for comparing the

efficiency of the GQL and MM estimates. This type of MSE based comparison is
appropriate when competitive approaches are not so biased but they produce differ-
ent standard errors. However, when an estimate becomes highly biased with small
standard error, it turns out to be an useless estimate. For this reason, to compare
the performances of the actual convergence of the estimates to their corresponding
parameter values, in this section we have computed the simulated relative bias (RB)
given by

RB = |Mean−True parameter value |
SE × 100.

These RBs for the regression estimates are reported in the same Table 4.7 for two
cluster sizes and selected values of the overdispersion index parameter.

With regard to the estimation of β1 and β2, the results in Table 4.7 show that the
GQL approach always produces the regression estimates with smaller relative bias
as compared to the HL approach. This better performance of the GQL approach
appears to hold for both cluster sizes ni = 4, and 6; as well as for all small and
large values of σ2

γ = 0.4, 0.8, and 1.2. For example, when ni = 4 and σ2
γ = 0.4, the

GQL estimates of β1 and β2 are slightly biased with RBs 27 and 40, and respective
RBs are 15 and 22 when σ2

γ = 1.2. But, the HL estimates for the same regression
parameters appear to converge to wrong values with small standard errors. To be
specific, for ni = 4, the HL estimates of β1 and β2 appear to have RBs 300 and
411 when σ2

γ = 0.4, and strikingly large RBs 1162 and 1582 when σ2
γ = 1.2. For

cluster size ni = 6, the performance of the HL based regression estimation appears
to improve for large variance components, but the RBs still remain higher than for
the corresponding GQL estimates. Thus, irrespective of the cluster size ni and the
value of σ2

γ , the GQL approach performs much better than the HL approach in
estimating β1 and β2.

Note that the comparison between GQL and HL approaches by Chowdhury and
Sutradhar (2009) was done for wide-ranging values for family size, with smallest
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Table 4.7 Comparison of the GQL and HL based simulated mean values, standard errors, and
relative biases of the regression estimates for selected values of σ2

γ ; K = 100; β1 = β2 = 1; 500
simulations.

Family Regression Regression Estimates
Size (ni) Parameter Method Quantity σ2

γ = 0.40 0.80 1.20
4 β1 HL Mean 1.0878 1.1661 1.2894

SE 0.0293 0.0277 0.0249
RB 300 600 1162

GQL Mean 1.0109 1.0125 1.0079
SE 0.0405 0.0483 0.0523
RB 27 26 15

β2 HL Mean 1.0760 1.1430 1.2594
SE 0.0185 0.0205 0.0164
RB 411 698 1582

GQL Mean 1.0122 1.0108 1.0097
SE 0.0305 0.0399 0.0442
RB 40 27 22

6 β1 HL Mean 1.0958 1.1583 0.6222
SE 0.0240 0.0270 0.1131
RB 399 586 334

GQL Mean 1.0112 1.0081 1.0049
SE 0.0351 0.0460 0.0491
RB 32 18 10

β2 HL Mean 1.0831 1.1366 0.6498
SE 0.0152 0.0207 0.1039
RB 547 660 337

GQL Mean 1.0115 1.0080 1.0053
SE 0.0283 0.0375 0.0415
RB 41 21 13

size ni = 2 and the largest size ni = 16. It was found by these authors that the pat-
tern of the regression estimates as a function of ni and σ2

γ is different under the HL
approach as compared to the GQL approach. When cluster size is small such as ni

= 2, 4, and 6, the RBs of the regression estimates were found to get smaller for the
GQL estimates but they were found to get larger for the HL estimates, as the value
of σ2

γ increases. When cluster size is large such as ni = 10 and 16, the performances
of the GQL estimates of the regression parameters were found to remain the same
irrespective of the value of σ2

γ , whereas the HL estimates were found to perform bet-
ter as the value of σ2

γ increases. But, when HL and GQL approaches are compared,
the GQL approach was found to perform uniformly better than the HL approach in
estimating β1 and β2.

With regard to the estimation of the overdispersion parameter σ2
γ , the results in

Table 4.8 show that the GQL approach, in general, performs better than the HL
approach. For example, when ni = 6, the GQL approach produces σ2

γ estimates with
RBs 14 and 23 for σ2

γ = 0.4 and 1.2, respectively; whereas the corresponding RBs
for the HL estimates are found to be 65 and 196, respectively.
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Table 4.8 Comparison of the HL and GQL based simulated mean values, standard errors, and
mean squared errors of the estimates of variance components of the random effects for selected
values of σ2

γ ; K = 100; β1 = β2 = 1; 500 simulations.

Variance Component Estimate
Family Size (ni) Method Quantity σ2

γ = 0.40 0.80 1.20
4 HL Mean 0.4043 0.8281 1.3488

SE 0.0547 0.0528 0.0727
RB 8 53 205

GQL Mean 0.3923 0.7819 1.1719
SE 0.0646 0.0773 0.0898
RB 12 23 31

6 HL Mean 0.4170 0.8499 1.8340
SE 0.0261 0.0467 0.3234
RB 65 107 196

GQL Mean 0.3926 0.7939 1.1806
SE 0.0539 0.1449 0.0847
RB 14 4 23

4.2.8 A Health Care Data Utilization Example

As an application of the familial count data model we consider a dataset on health
care utilization, collected by the Department of Community Medicine, Health Sci-
ence Center (General Hospital) St. John’s, Canada. This dataset consists of informa-
tion on the number of visits paid to a physician during 1985 by 180 members of 48
families. Also information on various associated covariates such as gender, educa-
tion level, chronic disease condition, and age were collected. This familial data-set
is a part of the complete familial longitudinal data collected from the members of
these 48 families over a period of six years from 1985 to 1990. The complete dataset
is given in Table 6A in the appendix of Chapter 6. However, our purpose here is to
study the familial data for a given year, such as 1985. Note that in the present set up
the responses are counts. Furthermore, as ni (three or four) members belong to the
same family, it is likely that the responses of the family members would be corre-
lated. These correlations are referred to as the structural correlations. It is of scien-
tific interest to take the structural correlations into account and examine the effects
of selected covariates on the number of visits paid by a member to the physician.

We consider four important associated covariates: gender (xi j1), the chronic con-
dition (xi j2)[CC], education level (xi j3)[EL], and age of the individual (xi j4); and
code them as follows.

xi j1 =
{

0 female
1 male

xi j2 =
{

0 without chronic diseases
1 with chronic diseases

xi j3 =
{

0 less than high school
1 high school or above

xi j4 = exact age of the individual.
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However, before we consider a formal analysis for the effects of the covariates on
the count responses, it is helpful to understand the summary statistics for the data.
For this purpose, we present the observed distribution of the count responses, from
180 individuals, by all four covariates in Table 4.9.

Table 4.9 Summary statistics of physician visits by four covariates in the Health Care Utilization
Data for 1985.

Number of Visits
Covariates Level 0 1 2 3−5 ≥6 Total

Gender Male 28 22 18 16 12 96
Female 11 5 15 21 32 84

Chronic Condition No 26 20 15 16 11 88
Yes 13 7 18 21 33 92

Education Level < High School 17 5 11 10 15 58
≥ High School 22 22 22 27 29 122

Age 20−30 23 17 14 15 15 84
31−40 1 1 3 3 3 11
41−50 4 4 5 12 8 33
51−65 10 5 8 5 13 41
66−85 1 0 3 2 5 11

It is seen from Table 4.9 that, in general, more males appear to visit their physi-
cian a smaller number of times, whereas a large number of females visit the physi-
cian at least three times. As expected, we see that an individual with chronic diseases
visits a physician more often. Physician visits for individuals with a higher level of
education seems to be evenly distributed, that is, individuals are just as likely to visit
a physician once as three to five times. For those with a lower level of education,
they appear to either not visit their physician, or visit a large number of times. With
regard to the relationship between number of visits and age, we have temporarily
made five age groups and observed that some of the individuals in the 20−30 age
group have visited a physician a large number of times. As expected, a large num-
ber of individuals did not visit a physician at all. For older age groups, there was a
tendency for an individual to see the physician more often.

We now turn back to the confirmatory analysis. The main objective is to find the
effects of the aforementioned four covariates on the physician visits by the members
of 48 randomly chosen families. Jowaheer, Sutradhar, and Sneddon (2009, Section
4.1.2), among other things, computed these effects by using the MM and joint GQL
approaches. Chowdhury and Sutradhar (2009) reanalyzed this dataset by using the
HL and marginal GQL approaches. The GQL estimates reported in these two works
were found to provide similar results, except that because of different coding for
some covariates such as gender, the numerical values for the estimates were differ-
ent. For convenience, we now provide here the MM, HL, and marginal GQL esti-
mates from Chowdhury and Sutradhar (2009) but interpret the GQL estimates only
as it is evident by the simulation studies discussed in Sections 4.2.7.1 and 4.2.7.2
that the GQL approach produces less biased and more efficient estimates than the
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MM and HL approaches. Note that the random effects variance is an index parame-
ter for familial/structural correlations among the count responses of the members of
a given family. As discussed in the last section, this variance component or familial
correlation index parameter plays an important role in obtaining consistent and effi-
cient estimates for the effects of the covariates. The estimates for regression effects
and variance component along with their estimated standard errors are displayed in
Table 4.10.

Table 4.10 The MM, HL, and marginal GQL estimates along with the corresponding estimated
standard errors, for the Health Care Utilization Data for 1985.

Effects of the Covariates Variance
Method Quantity Gender(β̂1) CC(β̂2) EL(β̂3) Age(β̂4) σ̂2

γ

Marginal GQL Value −0.754 0.666 0.434 0.010 0.873
SE 0.091 0.125 0.123 0.0030 0.409

HL Value −0.693 0.689 0.633 0.016 0.187
SE 0.080 0.088 0.067 0.0017 0.020

MM Value −0.651 0.686 0.511 0.014 0.529
SE 0.079 0.088 0.067 0.0017 —

First, the large value of the GQL estimate of σ2
γ , that is, σ̂2

γ = 0.873, indicates
that the data is highly overdispersed. This parameter estimate appears to explain the
basic mean and variance of the observed data very well. This is because, when we
computed the mean and the variance of the count responses from all 180 members,
it was found that on the average each individual member visited a physician 3.92
times with very large variance 22.66. Further note that the variance component also
affects the familial correlations.

Next, with regard to the regression effects, the negative value of β̂1(GQL), namely

β̂1(GQL) = −0.754 indicates that females made more visits to the physician as com-

pared to males. The positive values for β̂2(GQL) and β̂4(GQL), namely, β̂2(GQL) = 0.666

and β̂4(GQL) = 0.010 suggest that the individuals having some chronic diseases or in-
dividuals who are older pay more visits to the physician, as expected. The effect of
the education level on the health condition, however, appears to be intriguing. This is
because β̂3(GQL) = 0.434 suggests that highly educated individuals have more visits
compared to individuals with a lower level of education. One of the possible reasons
for this type of behavior of this covariate may be that individuals with a higher level
of education are more concerned about their health condition and also they have
better facilities as compared to the individuals with a lower level of education.
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4.3 Estimation for Multiple Random Effects Based Parametric
Mixed Models

4.3.1 Random Effects in a Two-Way Factorial Design Setup

Consider the Poisson mixed model in (4.1) but suppose that unlike (4.2), ηi j is now
a function of more than one random effect. To be specific, let γi be the same random

effect as in (4.2) such that γi
iid∼ (0,σ2

γ ). Furthermore, let αi j
iid∼ (0,σ2

α) denote the
individual random effect of the jth member of the ith family. Then for γ∗i = γi/σγ

and α∗
i j = αi j/σα , the conditional mean in a two-way design setup for the count

responses following the model (4.1), may be expressed as

E[Yi j|γi,αi j] = µ
∗
i j = exp[ηi j], (4.89)

[Lin (1997), Jiang (1998), and Sutradhar and Rao (2003)] with

ηi j = h(x′i jβ +σγ γ
∗
i +σα α

∗
i j), (4.90)

h(·) being a known link function, and β the effect of the covariates xi j on the re-
sponse yi j. It is clear from the model (4.1) with ηi j in (4.90) that the responses
yi1, . . . ,yi j, . . . ,yini under the ith family are influenced by both an unobservable ran-
dom family effect as well as by an unobservable individual random effects.

As far as the inferences for the parameters β , σ 2
γ , and σ2

α are concerned, Sutrad-
har and Rao (2003) have demonstrated in the context of familial binary data anal-
ysis that the generalized quasi-likelihood approach produces consistent and highly
efficient estimates as compared to the so-called method of moments considered by
Jiang (1998). In a manner similar to that of Sutradhar and Rao (2003), one may deal
with the Poisson mixed model defined by (4.1) and (4.90), and develop the GQL
and MM estimating equations for all three parameters.

4.3.2 One-Way Heteroscedastic Random Effects

As opposed to the two-way random effects models defined by (4.1) and (4.90), there
also exist one way random effects models with heteroscedastic variances. See, for
example, the models considered by Jiang and Zhang (2001). For the case with two
heteroscedastic groups of families/clusters, this type of models for the familial count
data may be expressed as

E[Yi j|γ∗i1,γ∗i2] = µ
∗∗
i j = exp(η∗

i j), (4.91)

with

η
∗
i j =

{
h(x′i jβ +σγ1γ∗i1), for i = 1, . . . ,K1

h(x′i jβ +σγ2γ∗i2), for i = K1 +1, . . . ,K,
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where for both u = 1 and u = 2, γ
∗
iu

iid∼ N(0,1) and γ∗i1(i = 1, . . . ,K1) and γ∗i2(i = K1 +
1, . . . ,K) are independent. For the estimation of β , σγ1 , and σγ2 parameters, Jiang
and Zhang (2001) suggested an improved method of moments (IMM), but as shown
by Sutradhar (2004), this IMM approach has several pitfalls. Furthermore, the GQL
approach outperforms the so-called IMM approach with regard to the efficiency of
the estimators.

Note that the difference between the model (4.89) and (4.91) is that yi j, the count
response of the jth member of the ith family, is influenced by the unobservable ith
family effect as well as the jth individual effect under the model (4.89), whereas
under the model (4.91) yi j is influenced either by the family effects with variance
σ2

γ1
or by the family effects with variance σ2

γ2
.

4.3.3 Multiple Independent Random Effects

In some situations in practice, the count responses under the ith (i = 1, . . . ,K) fam-
ily may be influenced by two or more independent random effects with a distinct
component of dispersion. For example, in a clinical study of ‘asthma attack’ counts
for the children of a family, it is reasonable to consider that the frequency of asthma
attack on a sibling may be influenced by two random effects components that repre-
sent the prevalence of asthma in both the mother’s and father’s families. Let γi and τi

represent these two unobservable random family effects. Suppose that γi ∼N(0,σ2
γ )

and τi ∼ N(0,σ2
τ ) and γi and τi are independent for all i = 1, . . . ,K. Then, unlike

(4.89)− (4.90) and (4.91), the conditional mean of the count response yi j now may
be written as

µ
∗
i j = E[Yi j|γi,τi] = exp(ηi j) (4.92)

with
ηi j = h(x′i jβ + zi1σγ γ

∗
i + zi2στ τ

∗
i ), (4.93)

where γ∗i = γi/σγ and τ∗i = τ∗i /στ . In (4.93) β is a p×1 vector of regression effects
and zi1 and zi2 are known covariates corresponding to γi and τi. Note that if these
covariates are identical, that is, zi1 = zi2 for all i = 1, . . . ,K, and σγ = στ , then there
will be a problem of identification between σγ and στ . Thus, in any demonstrations
for the effectiveness of any estimation method for the estimation of both variance
components, it would be appropriate to consider different values for these variance
components in a situation when zi1 = zi2.

Further note that because the exact likelihood approach, as demonstrated in Sec-
tion 4.2.1, is complex for a single random effects based Poisson mixed model, this
approach will be much more complicated in the present case with two or more vari-
ance components. Also, because of the difficulties encountered by the PQL and HL
approaches in producing consistent estimates of the variance components, in this
section we concentrate on the GQL [Sutradhar (2004)] and MM [Jiang (1998)] ap-
proaches only, and for convenience of practitioners, provide the necessary formulas
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for the construction of the estimating equations under these approaches. These for-
mulas are also available from Jowaheer, Sutradhar, and Sneddon (2009).

4.3.3.1 Method of Moments Estimation for β , σ2
γ , and σ2

τ

In this approach, following Jiang (1998) [see also Jiang and Zhang (2001)], one
estimates the parameters of the model in (4.92)− (4.93), namely, β , σ2

γ , and σ2
τ by

using three moment estimating equations that are constructed based on three basic
statistics:

W1 =
K

∑
i=1

ni

∑
j=1

xi jyi j, W2 =
K

∑
i=1

zi1li, W3 =
K

∑
i=1

zi2li (4.94)

where li = ∑ni
j=1 y2

i j +2∑ j<k yi jyik. Let w = (W ′
1,W2,W3)′ be the (p+2)-dimensional

vector of these statistics and ξ = (ξ ′1,ξ2,ξ3)′ = E(w). Similar to (4.57), the moment
estimates of the parameters (i.e., of θ = (β ′,σ2

γ ,σ2
τ )′), are obtained by solving the

estimating equation
w−ξ = 0. (4.95)

Let θ̂MM = (β̂ ′
MM, σ̂2

γ , σ̂2
τ )′ denote the moment estimator of θ which is the solution

of (4.95). This solution may be obtained iteratively by using the customary Newton-
Raphson iterative equation

θ̂MM(r +1) = θ̂MM(r)+(P′)−1
(r) (w−ξ )(r) (4.96)

[see also (4.58)], where ( )(r) denotes the expression within brackets is evaluated at

θ̂MM(r). In (4.96), P is the (p + 2)× (p + 2) derivative matrix of ξ with respect to
θ ; that is

P′ =



∂ξ1

∂β ′
∂ξ2

∂β ′
∂ξ3

∂β ′

∂ξ1

∂σ2
γ

∂ξ2

∂σ2
γ

∂ξ3

∂σ2
γ

∂ξ1

∂σ2
τ

∂ξ2

∂σ2
τ

∂ξ3

∂σ2
τ


. (4.97)

Note that the formulas for ξ1, ξ2, and ξ3 may be obtained using the fact that, con-
ditional on γ∗i and τ∗i , yi j ∼ Poisson(µ∗

i j) with µ∗
i j = exp(x′i jβ + zi1σγ γ∗i + zi2στ τ∗i )

as in (4.92)− (4.93) with identity link function (i.e., h(g) = g), and also, yi j and
yik are independent for j 6= k, j,k = 1, . . . ,ni. See exercise 4.3 for these formulas.
Also, see Exercise 4.4 for the formulas for the derivatives required to construct the
derivative matrix P in (4.97).
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4.3.3.2 Joint GQL Estimation for β , σ2
γ , and σ2

τ

Recall from Section 4.2.6.3 that for the Poisson mixed model with one variance
component σ2

γ , the components of θ = (β ′,σ2
γ )′ were estimated by solving the joint

GQL estimating equation (4.85). We still can use this equation given by

K

∑
i=1

∂ζ ′i
∂θ

ϒ
−1

i (si−ζi) = 0, (4.98)

with a difference that θ now has one more component, that is, θ = (β ′,σ2
γ ,σ2

τ )′.
Also, the formulas for ζi and ϒi in (4.98) will be similar but different from those in
(4.85). Once these formulas are known, (4.98) may be solved by using an iterative
equation similar to that of (4.86). To compute the elements of ζi and ϒi, we re-
express their formulas from (4.80)− (4.82) as

ζi = E[Si] = (µ
′
i ,λ

′
i1,λ

′
i2)

′, (4.99)

with

µi = [µi1, . . . ,µi j, . . . ,µini ]
′

λi1 = [λi11, . . . ,λi j j, . . . ,λinini ]
′

λi2 = [λi12, . . . ,λi jk, . . . ,λi(ni−1)ni
]′, (4.100)

and

ϒi = cov(Si) =


cov(Yi) cov(Yi,U ′

i1) cov(Yi,U ′
i2)

cov(Ui1) cov(Ui1,U ′
i2)

cov(Ui2)



=


Σi Bi Ei

Ωi11 Ωi12

Ωi22



=


Σi Bi Ei

Fi Gi

Hi

 , (4.101)

Elements of the ζi Vector

The formulas for the general elements in (4.100) are (see Exercise 4.3) given by

µi j = mi j piqi, λi j j = mi j piqi(1+mi j p
3
i q3

i ), λi jk = mi jmik p4
i q4

i , (4.102)
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where
mi j = exp(x′i jβ , pi = exp(z2

i1σ
2
γ /2), and qi = exp(z2

i2σ
2
τ /2).

Elements of the Σi Matrix

It follows from (4.102) that

Var(Yi j) = σi j j = µi j(1−µi j + µi j p
2
i q2

i )
Cov(Yi j,Yik) = σi jk = λi jk−µi jµik.

Next, for µ∗
i j = mi jaibi ≡ mi j exp(zi1σγ γ∗i )exp(zi2στ τ∗i ), by using the Poisson

based third− and fourth-order conditional moments

E(Y 3
i j|γi,τi) = (µ

∗
i j)

3 +3(µ
∗
i j)

2 + µ
∗
i j

E(Y 4
i j|γi,τi) = (µ

∗
i j)

4 +7(µ
∗
i j)

3 +6(µ
∗
i j)

2 + µ
∗
i j

and the fact that the Yi j and Yik are independent for j 6= k, conditional on γi and τi,
one may derive the formulas for the elements of all submatrices in (4.101). More
specifically:

Elements of the Bi Matrix

Cov(Yi j,Y
2
i j) = µi j[1+3µi j p

2
i q2

i + µ
2
i j p

6
i q6

i −µi j(1+3µi j p
2
i q2

i )] (4.103)

Cov(Yi j,Y
2
ik) = µi jµik[(p2

i q2
i −1)+ µik p2

i q2
i (p4

i q4
i −1)], j 6= k (4.104)

Elements of the Ei Matrix

Cov(Yi j,Yi jYil) = µi jµil p2
i q2

i (1+ µi j(p4
i q4

i −1)] j < l (4.105)

= Cov(Yi j,YilYi j), j > l

Cov(Yi j,YikYil) = µi jµikµil p2
i q2

i (p4
i q4

i −1), j 6= k 6= l,k < l (4.106)

Elements of the Fi Matrix

Var(Y 2
i j) = µi j[(1+7µi j p

2
i q2

i +6µ
2
i j p

6
i q6

i + µ
3
i j p

12
i q12

i )

−µi j(1+ µi j p
2
i q2

i )
2)] (4.107)

Cov(Y 2
i j,Y

2
ik) = µi jµik[p2

i q2
i (1+(µi j + µik)p4

i q4
i + µi jµik p10

i q10
i )

− (1+ µi j p
2
i q2

i )(1+ µik p2
i q2

i )], j 6= k (4.108)

Elements of the Gi Matrix
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Cov(Y 2
i j,Yi jYik) = µi jµik p2

i q2
i [(1+3µi j p

4
i q4

i + µ
2
i j p

10
i q10

i )

−µi j(1+ µi j p
2
i q2

i )], j < k (4.109)

= Cov(Y 2
i j,YikYi j), k < j

Cov(Y 2
i j,YikYil) = µi jµikµil p2

i q2
i [p

4
i q4

i (1+ µi j p
6
i q6

i )

− (1+ µi j p
2
i q2

i )], j 6= k 6= l,k < l (4.110)

Elements of the Hi Matrix

Var(Yi jYik) = µi jµik p2
i q2

i [1+(µi j + µik)p4
i q4

i

+µi jµik p2
i q2

i (p8
i q8

i −1)], j < k (4.111)

Cov(Yi jYik,Yi jYim) = µi jµikµim p4
i q4

i [p
2
i q2

i + µi j(p8
i q8

i −1)],
j < k, j < m,k 6= m (4.112)

= Cov(Yi jYik,YimYi j), j < k,m < j,k 6= m

= Cov(YikYi j,Yi jYim), k < j, j < m,k 6= m

= Cov(YikYi j,YimYi j), k < j,m < j,k 6= m

Cov(Yi jYik,YilYim) = µi jµikµil µim p4
i q4

i

×(p8
i q8

i −1), j < k, l < m, j 6= l,k 6= m (4.113)

Note that the construction of the GQL estimating equation (4.98) also requires the
formulas for the elements of the (p+2)× [ni(ni +3)/2] derivative matrix ∂ζ ′i /∂θ ,
with θ = (β ,σ2

γ ,σ2
τ )′. Further note that to compute this derivative matrix, it is

sufficient to derive the formulas for ∂ µi j/∂β , ∂λi j j/∂β , ∂λi jk/∂β , ∂ µi j/∂σ2
γ ,

∂λi j j/∂σ2
γ , ∂λi jk/∂σ2

γ , ∂ µi j/∂σ2
τ , ∂λi j j/∂σ2

τ , and ∂λi jk/∂σ2
τ . These formulas are

available from Exercise 4.5.
We are now ready to solve the GQL estimating equation (4.98) for

θ = (β ′,σ2
γ ,σ2

τ )′.

Let θ̂GQL = (β̂ ′
GQL, σ̂2

γ(GQL), σ̂
2
τ(GQL))

′ be the solution of the GQL estimating equa-
tion (4.98). This solution may be achieved by using the iterative equation (4.86),
where now ζi and ϒi are given by (4.99) and (4.101), and the formula for the deriva-
tive matrix ∂ζ ′i /∂θ is given in Exercise (4.5).

4.3.3.3 Relative Performances of the GQL Versus MM Approaches: An
Asymptotic Efficiency Comparison

(a) Asymptotic Variance of the MM Estimator

Note that it follows from (4.96) that θ̂MM has the asymptotic (K → ∞) covariance
matrix given by
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Cov(θ̂MM) = P−1V(P′)−1, (4.114)

where P is the first-order derivative matrix given as in (4.97), and V is the covariance
matrix of w.

For convenience of computation, we express the V matrix as

V =

V11 V12 V13

V22 V23

V33

=

Var(W1) Cov(W1,W2) Cov(W1,W3)
Var(W2) Cov(W2,W3)

Var(W3)

 . (4.115)

Note that the elements of the V matrix in (4.115) can be computed as follows.
Recall W1, W2, and W3 as defined in (4.95). It follows that Var(W1) is given by

Var(W1) =
K

∑
i=1

[
σi j jxi jx′i j +2 ∑

j<k

σi jkxi jx′ik

]
,

where σi j j and σi jk are defined following (4.102). Similarly, by exploiting the vari-
ances and the covariances from (4.103) to (4.113), the remaining elements of the V
matrix may be computed as follows.

Formula for Cov(W1,W2) :

Cov(W1,W2) =
K

∑
i=1

[
ni

∑
j=1

ni

∑
k=1

zi1xi jCov(Yi j,Y
2
ik)+2∑

j,k

ni

∑
j<l

zi1xi jCov(Yi j,YikYil)

]

=
K

∑
i=1

[
ni

∑
j=1

zi1xi jCov(Yi j,Y
2
i j)+ ∑

j 6=k

zi1xi jCov(Yi j,Y
2
ik)

+2

(
∑
j<l

zi1xi jCov(Yi j,Yi jYil)+ ∑
l< j

zi1xi jCov(Yi j,YilYi j)

+ ∑
j 6=k 6=l, j<l

zi1xi jCov(Yi j,YikYil)

)]
(4.116)

Formula for Cov(W1,W3)

Cov(W1,W3) =
K

∑
i=1

[
ni

∑
j=1

ni

∑
k=1

zi2xi jCov(Yi j,Y
2
ik)+2∑

j,k

ni

∑
j<l

zi2xi jCov(Yi j,YikYil)

]

Formula for Var(W2)

Var(W2) = Var

[
K

∑
i=1

z2
i1

(
ni

∑
j=1

Y 2
i j +2

ni

∑
j<k

Yi jYik

)]
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∑
i

z2
i1

(
∑

j
Var(Y 2

i j)+ ∑
j 6=k

Cov(Yi j,Yik)

)

+4∑
i

z2
i1

(
∑
j<k

Var(Yi jYik)+ ∑
j<k, j<m,k 6=m

Cov(Yi jYik,Yi jYim)

+ ∑
j<k,m< j,k 6=m

Cov(Yi jYik,YimYi j)+ ∑
k< j, j<m,k 6=m

Cov(YikYi j,Yi jYim)

+ ∑
k< j,m< j,k 6=m

Cov(YikYi j,YimYi j)+ ∑
j<k,l<m, j 6=l,k 6=m

Cov(Yi jYik,YilYim)

)

+4∑
i

z2
i1

(
∑
j<k

Cov(Y 2
i j,Yi jYik)+ ∑

k< j

Cov(Y 2
i j,YikYi j)

+ ∑
j 6=k 6=l,k<l

Cov(Y 2
i j,YikYil)

)
. (4.117)

Note that Var(W3) can be computed from (4.117) by replacing z2
i1 with zi1zi2. This

completes the computation of the asymptotic covariance in (4.114).

(b) Asymptotic Variance of the GQL Estimator

Note that, unlike the computation of the asymptotic variance of the moment esti-
mator by (4.114), the computation of the asymptotic variance of the GQL estimator
is simpler. This is because it follows from (4.98) that, as K → ∞, one obtains the
asymptotic covariance of θ̂GQL as

Cov(θ̂GQL) = limK→∞

[
K

∑
i=1

∂ζ ′i
∂θ

ϒi
−1
i

∂ζi

∂θ ′

]−1

, (4.118)

which does not require the computation of any further formulas than those used
in (4.98). To be specific, to compute the covariance in (4.118), the formulas for ϒi

and the derivative matrix ∂ζ ′i /∂θ are available from (4.101) and Exercise 4.4, re-
spectively.

(c) Asymptotic Efficiency Comparison: An Illustration

Consider a simple case where all members in a family have the same covariate
information; that is, xi j = xi with p = 1 for all j = 1, . . . ,ni. Let the scalar regression
coefficient be denoted by β1. It then follows that yi j, conditional on γi and τi, has the
Poisson distribution with mean parameter

exp(xiβ1 + zi1σγ γi + zi2στ τi).
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We consider K = 100 and ni = 4 for all i = 1, . . . ,K. As far as the fixed effect
covariate is concerned, we consider

xi =

−1 i = 1, . . . ,25
0 i = 26, . . . ,75
1 i = 76, . . . ,100.

For random effects covariates we consider

zi1 =
{

1 i = 1, . . . ,50
0 otherwise

zi2 =
{

1 i = 1, . . . ,25
0 otherwise.

Now for selected values of the parameters, namely, β1 = 1.0, σγ = 0.25, and στ =
1.0, we compute the 3×3 covariance matrices Cov(θ̂MM) by (4.114) and Cov(θ̂GQL)
by (4.118), where θ = (β1,σ

2
γ ,σ2

τ ). The efficiency of the GQL estimators relative
to the moment estimators are found to be

eff(β̂1,GQL) =
Var(β̂1,MM)

Var(β̂1,GQL)
= 2.06, eff(σ̂2

γ,GQL) =
Var(σ̂2

γ,MM)

Var(σ̂2
γ,GQL)

= 2.40,

eff(σ̂2
τ,GQL) =

Var(σ̂2
τ,MM)

Var(σ̂2
τ,GQL)

= 2.13,

showing that the GQL estimator is 2.06 times more efficient in estimating β1, 2.40
times more efficient in estimating σ2

γ , and 2.13 times more efficient in estimating
σ2

τ than the MM approach.

4.3.3.4 GQL Versus MM Estimation: A Simulation Study Based on an
Asthma Count Data Model with Two Components of Dispersion

4.3.3.5 An Asthma Count Data Model with Four Fixed Covariates and Two
Components of Dispersion

The purpose of this section is to examine the relative performances of the MM and
GQL estimation approaches for the estimation of the parameters of a Poisson mixed
model with random effects from two independent sources. We consider hypothetical
asthma data where any asthma attack on a sibling may be influenced by two random
effects components that represent the prevalence of asthma in both the mother’s
and father’s families. Jowaheer, Sutradhar and Sneddon (2009) have conducted a
simulation study to examine the performances of the MM and GQL approaches for
this type of asthma data. For convenience, we explain their simulation results here.

Along with two sources of random effects, it is assumed that the mean of the
Poisson data are affected by four fixed covariates, namely, child’s gender (xi j1),
child’s age (xi j2), mother’s smoking habit (xi j3), and father’s smoking habit (xi j4).
Following (4.92), we now write the model with Poisson mean
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µ
∗
i j = exp(xi j1β1 + xi j2β2 + xi j3β3 + xi j4β4 + zi1σγ γ

∗
i + zi2στ τ

∗
i ). (4.119)

Assume that there is a 20% chance of asthma being present in the mother’s side.
Therefore, we use zi1 ∼ Bin(0.2). Similarly, we assume that there is a 10% chance
of asthma in the father’s side. Therefore, we use zi2 ∼ Bin(0.1). Next suppose that
there is a 50% probability for a child being male. Therefore xi j1 ∼ Bin(0.5). We
further assume that the age is uniformly distributed between 1 and 20, denoted as
Unif(1, 20), then create xi j2 = Unif(1,20)/100. Next we consider that there is a 25%
chance that the mother smokes, and 35% chance that the father smokes. Therefore

xi j3 ∼ Bin(0.25) and xi j4 ∼ Bin(0.35)

.
With regard to the model parameters, we consider 100 families (i.e., K = 100),

each with size 4 (i.e., ni = n = 4). As far as the effects of the four fixed covariates
are concerned, we use β1 = 0.5 (gender effect), β2 = 0.05 (age effect of the child),
β3 = 0.3 (effect of mother’s smoking status) and β4 = 0.1 (effect of father’s smoking
status). For the random hereditary effects, we use σ2

γ = 1 for the mother’s side and
σ2

τ = 0.25 and 0.5625 for the father’s side. These parameters were estimated based
on 500 simulations by solving the moment equations (4.95) under the MM approach
and by solving the GQL estimating equation (4.98) under the GQL approach. The
simulation results are shown in Table 4.11. For similar simulated results with more
model parameter we refer to Jowaheer et al (2009).

Table 4.11 The joint MM and joint GQL Estimates along with the corresponding estimated stan-
dard errors and mean squared errors for the hypothetical asthma data generated following the Pois-
son mixed model (4.119) with random effects from two independent sources.

σ2
γ σ2

τ Method Quantity β̂1 β̂2 β̂3 β̂4 σ̂2
γ σ̂2

τ

1.0 0.25 GQL Mean 0.496 0.074 0.296 0.094 0.905 0.186
SE 0.080 0.563 0.087 0.077 0.431 0.212

MSE 0.006 0.316 0.007 0.006 0.194 0.049
MM Mean 0.506 0.204 0.299 0.098 0.729 0.055

SE 0.092 0.686 0.124 0.097 0.325 0.419
MSE 0.009 0.493 0.015 0.009 0.179 0.213

0.5625 GQL Mean 0.501 0.048 0.295 0.096 0.853 0.455
SE 0.075 0.546 0.086 0.082 0.423 0.408

MSE 0.006 0.297 0.007 0.007 0.200 0.178
MM Mean 0.513 0.129 0.306 0.100 0.689 0.239

SE 0.098 0.693 0.116 0.119 0.325 0.459
MSE 0.010 0.485 0.013 0.014 0.202 0.315

It is interesting to note that both the GQL and MM approaches estimate the re-
gression effect well, with GQL being more efficient. This is because the MSE of the
GQL regression estimates appears to be the same or always smaller than the moment
estimates. The performance of the GQL estimates is much better than the moment
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estimates when σ2
τ is large. As far as the estimates of the variance components (re-

flecting hereditary differences) are concerned, GQL provides better estimates than
the moment approach in estimating σ2

τ , whereas the MM approach appears to per-
form slightly better than the GQL approach in estimating the large value of σ2

γ = 1.0.
However, the results in Jowaheer, Sutradhar, and Sneddon (2009, Table 6) show that
for almost all values of σ2

γ and σ2
τ , the GQL approach performs better than the MM

approach in estimating these variance parameters. In summary, the GQL approach,
as compared to the MM approach, yields better (consistent and efficient) estimates
for all parameters including the regression effects involved in the models with two
variance components.

4.4 Semiparametric Approach

For simplicity, consider the single random effects case, and similar to (4.93), write

ηi j = θi j + zi1γi, with θi j = x′i jβ .

Also, for convenience, write the Poisson density from (4.1) in the exponential form
as

f (yi j|ηi j) = exp[{yi jηi j −a(ηi j)}+b(yi j)], (4.120)

where a(ηi j) = exp(ηi j) and b(·) is a known function free from parameters. Note

that even though it is practically an appealing assumption that γi
iid∼ N(0,σ2

γ ), some
authors have studied the inferences in the generalized linear mixed model setup,
by relaxing the distributional assumptions for the random effects γi. For example,
instead of the normal distribution assumption, Sutradhar and Rao (2001) have as-
sumed that the moments of γi up to order four are known and the higher moments
of order more than four are negligible. Thus, they have considered a semiparametric
model, where it is known that conditional on γi, the responses follow the Poisson
distribution, but, the distribution of γi is not known. To be specific, for moments of
the random effects γi, they assumed that

Eγ
r
i = δr(σ2

γ ) =
r

∑
s=1

cr,sσ
r+1−s
γ , for r = 1, . . . ,4, (4.121)

and

Eγ
r
i = o(σ r

γ ), for r ≥ 5,

where cr,s are suitable known constants for r = 1, . . . ,4. For example, if γi ∼
N(0,σ2

γ ), then c1,1 = 0, c2,1 = 1, c2,2 = 0, c3,1 = c3,2 = c3,3 = 0, and c4,1 = 3,
c4,2 = c4,3 = c4,4 = 0.

Note that for the estimation of β and σ 2
γ , Sutradhar and Rao (2001) have used the

marginal QL (MQL) approach, which we have referred to as the marginal GQL ap-
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proach in Section 4.2.6. More specifically, the regression effects β and the variance
component σ2

γ , may be estimated by solving the marginal GQL estimating equa-
tions (4.62) and (4.69), respectively. However, these estimating equations are now
constructed by using the model (4.120) so that the moment assumptions in (4.121)
are satisfied. For convenience, we re-express the estimating equations (4.62) for β ,
and (4.69) for σ2

γ , as follows.

K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i (yi−µi) = 0,

K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i (ui−λi) = 0,

where for yi = (yi1, . . . ,yi j, . . . ,yini)
′,

µi = E[Yi], and Σi = var[Yi],

and for ui = (u′i1,u
′
i2)

′, with

ui1 = (y2
i1, . . . ,y

2
i j, . . . ,y

2
ini

)′ : ni×1,

ui2 = (yi1yi2, . . . ,yi jyik, . . . ,yi(ni−1)yini)
′, j < k :

ni(ni−1)
2

×1,

λi = E[Ui] and Ωi = var[Ui].

Now to compute
µi, λi, Σi, and Ωi,

such that the moment conditions in (4.121) are satisfied, we first develop an approxi-
mation to the unconditional joint distribution of the responses yi1, . . . ,yini , satisfying
(4.121). For convenience, we provide this approximation in the likelihood form as

Li(β ,σ2
γ ) =

[
Π

ni
j=1 f (yi j|θi j)

][
1+

[
σ2

γ

2
{A2

i −Bi}+
δ3(σ2

γ )
6

{A3
i −3AiBi−Ci}

+
δ4(σ2

γ )
24

{A4
i −6A2

i Bi−4AiCi +3B2
i −Di}

]]
, (4.122)

where f (yi j|θi j) = f (yi j|ηi j)|ηi j=θi j , δr(σ2
γ ) for r = 1, . . . ,4, are as in (4.121), and

Ai =
ni

∑
j=1

zi1(yi j −a′i j), Bi =
ni

∑
j=1

z2
i1a′′i j,

Ci =
ni

∑
j=1

z
3
2
i1a′′′i j , and Di =

ni

∑
j=1

z2
i1aIV

i j ,
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with a′i j, a′′i j, a′′′i j , and aIV
i j as the first−, second−, third−, and the fourth-order

derivatives of a(ηi j) = exp(ηi j) in (4.120) with respect to ηi j and then evaluated
at ηi j = θi j.

To derive the likelihood function in (4.122), we first write

Li(β ,σ2
γ ) =

∫
L∗i (β ,γi)gN(γi|σ2

γ )dγi

=
∫

Π
n1
j=1 f (yi j|ηi j)gN(γi|σ2

γ )dγi, (4.123)

where f (yi j|ηi j) is the Poisson density (4.120) of yi j conditional on γi. Next, one
may expand the conditional density f (yi j|ηi j) in (4.123) about θi j and take the ex-
pectation over ηi j under the assumption that E(γr

i ) = o(σ r
γ ), for r≥ 5. This operation

along with c1,1 = 0, c2,1 = 1, and c2,2 = 0, yields the approximate likelihood for the
data as in (4.122).

Computation of Univariate and Joint Probability Density Function

One utilizes the ni-dimensional joint density (4.122) to obtain a proper uncondi-
tional density of yi j and the joint density, for example, for yi j and yik. For conve-
nience, following the notation for the joint density in (4.122), let

Li, j, Li, jk, Li, jk`, and Li, jk`m

denote the univariate, bivariate, trivariate, and four-dimensional pdf of

yi j; yi j,yik; yi j,yik,yi`; and yi j,yik,yi`,yim,

respectively. For example, by integrating over yi j′ for all j′ = 1, . . . , j − 1, j +
1, . . . ,ni, the marginal density of yi j follows from (4.122), and is given by

Li, j(yi j) = f (yi j|θi j)

[
1+

[
σ2

γ

2
{A2

i, j −Bi, j}+
δ3(σ2

γ )
6

{A3
i, j −3Ai, jBi, j −Ci, j}

+
δ 4(σ2

γ )
24

{A4
i, j −6A2

i, jBi, j −4Ai, jCi, j +3B2
i, j −Di, j}

]]
, (4.124)

where Ai, j = zi1(yi j−a′i j), Bi, j = z2
i1a′′i j, Ci, j = z3/2

i1 a′′′i j , and Di, j = z2
i1aIV

i j . In a manner
similar to that of the derivation of the univariate density Li, j(·), we can derive the
desired joint densities, namely, Li, jk, Li, jk`, and Li, jk`m.
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4.4.1 Computations for µi, λi, Σi, and Ωi

Note that the computations for

µi, λi, Σi, and Ωi,

will require moments up to order eight. For this purpose, we first provide the first
eight moments of yi j when its probability function is given by (4.20) with ηi j = θi j,
and a(θi j) = exp(θi j). Let mi j,1 = Eexp(yi j) and mi j,s = Eexp(yi j −mi j,1)s for s =
2, . . . ,8, with pdf of yi j as in (4.120). The formulas for these moments are available
from Exercise 4.6.

Furthermore, to derive the moments of the distribution (4.124) of yi j of a finite-
order r, say, it is convenient to compute an integral as in the following lemma.

Lemma 4.4. Let h(r)
i j,(r+s) denote the integral

h(r)
i j,(r+s) =

∫
yr

i jA
s
i, j fi j(yi j|θi j)dyi j, (4.125)

where Ai, j = zi1(yi j −mi j,1), f (·) is the exponential density as in (4.120), and r and
s are nonnegative integers. Then for r = 1,2, and s = 0,1,2,3,4, the hs are given by

h(1)
i j,1 = mi j,1, h(1)

i j,2 = zi1mi j,2,

h(1)
i j,(1+s) = zs

i1{mi j,(1+s) +mi j,smi j,1}, for s = 2,3,4,

and

h(2)
i j,2 = mi j,2 +(mi j,1)2, h(2)

i j,3 = zi1{mi j,3 +2mi j,2mi j,1},

h(2)
i j,(2+s) = zs

i1{mi j,(2+s) +2mi j,(1+s)mi j,1 +mi j,s(mi j,1)2},

for s = 2,3,4, where mi j,1,mi j,2, . . . ,mi j,6 are as in Exercise 4.6.

Computation of E[Y r
i j] from Marginal pdf Li, j (4.124)

Because E[Y r
i j] =

∫
Y r

i jLi, j(yi j)dyi j, where Li, j(yi j) (4.124) is the marginal density of
yi j, by using the results from Lemma 4.4, one obtains

E(Y r
i j) = h(r)

i j,(r) +
σ2

γ

2
d(r)

i j,(r+2) +
δ3(σ2

γ )
2

d(r)
i j,(r+3) +

δ4(σ2
γ )

24
d(r)

i j,(r+4), (4.126)

where

d(r)
i j,(r+2) = h(r)

i j,(r+2)−h(r)
i j,(r), d(r)

i j,(r+3) = h(r)
i j,(r+3)−3h(r)

i j,(r+1)Bi· j −φh(r)
i j,(r)Ci· j,
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and

d(r)
i j,(r+4) = h(r)

i j,(r+4)−6h(r)
i j,(r+2)Bi, j −4h(r)

i j,(r+1)Ci, j +3h(r)
i j,(r)B

2
i, j −h(r)

i j,(r)Di, j,

with Bi, j, Ci, j, and Di, j given as in (4.125).

Computation of Product Moments E[Y r
i jY

s
ik] from Bivariate pdf Li, jk

Note that by integrating out ni − 2 variables (all variables except yi j and yik) over
the joint density in (4.123), similar to (4.124), one now obtains the bivariate p.d.f.
given by

Li, jk(yi j,yik) = f (yi j|θi j) f (yik|θik)

×

[
1+

[
σ2

γ

2
{A2

i, jk−Bi, jk}+
δ3(σ2

γ )
6

{A3
i, jk−3Ai, jkBi, jk−Ci, jk}

+
δ 4(σ2

γ )
24

{A4
i, jk−6A2

i, jkBi, jk−4Ai, jkCi, jk

+3B2
i, jk−Di, jk}

]]
, (4.127)

where Ai, jk = zi1[(yi j−a′i j)+(yik−a′ik)], Bi, jk = z2
i1[a

′′
i j +a′ik], Ci, jk = z3/2

i1 [a′′′i j +a′′ik],
and Di, jk = z2

i1[a
IV
i j +aIV

ik ].
For the purpose of computing

E[Y r
i jY

s
ik] =

∫
Y r

i jY
s
ikLi, jk(·)dyi jdyik,

similar to Lemma 4.4, it is convenient to perform some more basic integrations with
respect to the exponential pdf (4.120) as in the following lemma.

Lemma 4.5. For j 6= k, let H(r,s)
i jk,(r+s+q) denote the integral

H(r,s)
i jk,(r+s+q) =

∫
yr

i jy
s
ikAq

i, jk f (yi j|θi j) f (yik|θik)dyi jdyik, (4.128)

where, f (yi j|θi j), for example, is the exponential pdf as in (4.120), Ai, jk = zi1[(yi j−
mi j,1)+ (yik −mik,1)] as in (4.127), and r, s, and q are nonnegative integers. Then,
for r = 1, s = 1, and q = 0,1, . . . ,4, the H functions are given by

H(r,s)
i jk,(r+s+q) =

q+1

∑
u=1

tCu−1h(r)
i j,(t+2−u)h

(s)
ik,u, (4.129)

where h functions are as in Lemma 4.4, and tCu−1 denotes the number of ways that
u−1 functions can be chosen from q functions.
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The results of Lemma 4.5 are next exploited to derive the desired product mo-
ments as

E(Y r
i jY

s
ik) = H(r,s)

i jk,(r+s) +
σ2

γ

2
di jk,(r+s+2) +

δ3(σ2
γ )

6
d(r,s)

i jk,(r+s+3)

+
δ4(σ2

γ )
24

d(r,s)
i jk,(r+s+4), (4.130)

where for u = 2,3,4, d(r,s)
i jk,(r+s+u) are obtained from d(r)

i j,(r+s+u) in (4.126), by replac-

ing h(r)
i j,(r+s+u), Bi, j, and Ci, j with H(r,s)

i jk,(r+s+u), Bi, jk and Ci, jk respectively.

Formulas for µi, λi, and Σi

Let Mi j,1 denote the jth component of the µi = E[Yi] vector. Similarly, let Mi j j,2 =
E[Y 2

i j] and Mi jk,2 = E[Yi jYik] denote the two general elements of the λi vector. the
formulas for Mi j,1 and Mi j j,2 follow from (4.126), and the formula for Mi jk,2 follows
from (4.130), and these formulas are given by

Mi j,1 = a′i j +
σ2

γ

2
z2

i1a′′′i j +
δ3(σ2

γ )
6

z3
i1aIV

i j +
δ4(σ2

γ )
24

z4
i1aV

i j, (4.131)

Mi j j,2 =

[
(a′i j)

2 +σ
2
γ z2

i1{a′i ja
′′′
i j +(a′′i j)

2}+
δ3(σ2

γ )
3

z3
i1{a′i ja

IV
i j

+3a′′i ja
′′′
i j}+

δ4(σ2
γ )

12
z4

i1{a′i ja
V
i j +4a′′i ja

IV
i j +3(a′′′i j )

2}

]

+

[
a′′i j +

σ2
γ

2
z2

i1aIV
i j +

δ3(σ2
γ )

6
z3

i1aV
i j +

δ4(σ2
γ )

24
z4

i1aV I
i j

]
(4.132)

Mi jk,2 = a′i ja
′
ik +

σ2
γ

2
z2

i1

[
a′′′i j a

′
ik +2a′′i ja

′′
ik +a′i ja

′′′
ik

]
+

δ3(σ2
γ )

6
z3

i1

[
aIV

i j a′ik +3a′′′i j a
′′
ik +3a′′i ja

′′′
ik +a′i ja

IV
ik

]
+

δ4(σ2
γ )

24
z4

i1

[
aV

i ja
′
ik +4aIV

i j a′′ik +6a′′′i j a
′′′
ik +4a′′i ja

IV
ik +a′i ja

V
ik

]
. (4.133)

The diagonal elements of the Σi are then computed by

σi, j j = Mi j j,2− [Mi j,1]2, (4.134)
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and similarly, the off-diagonal elements are computed by

σi, jk = Mi jk,2− [Mi j,1Mik,1]. (4.135)

Formulas for the Elements of Ωi

For the construction of this matrix, one needs to compute the third− and fourth-
order moments, whereas the elements of the Σi matrix were computed by using the
formulas for the second-order moments from (4.126) and (4.130). Similar to these
second order moments, one may compute the third− and fourth-order moments,
namely E[Y r

i jY
s
ikY

t
i`] and E[Y r

i jY
s
ikY

t
i`Y

u
im]. The derivation of these moments is, however,

lengthy and not given here. For the readers interested in these formulas, we refer to
Theorems 4 and 5 in Sutradhar and Rao (2001).

4.4.2 Construction of the Estimating Equation for β When σ2
γ Is

Known

This estimating equation is given by ∑K
i=1[∂ µ ′

i /∂β ]Σ−1
i (yi−µi) = 0. Note that the

formulas for the elements of µi are developed as in (4.131), and Σi may be computed
by (4.134) and (4.135). We are now left with the computation of ∂ µ ′

i /∂β , where

µi = Mi,1 = [Mi1,1, . . . ,Mi j,1, . . . ,Mini,1]
′,

with Mi j,1 = E[Yi j] as in (4.131). This first-order derivative matrix is given as fol-
lows.

Computation of
∂M′

i,1
∂β

Note that ∂{M′
i,1}/∂β is the ni× p first derivative matrix of M′

i,1 with respect to β .
The formula for this matrix can be derived by computing the derivative of Mi j,1 in
(4.131) with respect to β . Because θi j = x′i jβ , and a′i j, . . . ,a

V
i j are, respectively, the

first five order derivatives of ai j = exp(θi j) with respect to θi j, it then follows from
(4.131) that

∂Mi j,1/∂β =

[
a′′i j +

σ2
γ

2
z2

i1aIV
i j +

δ 3(σ2
γ )

6
z3

i1aV
i j +

δ4(σ2
γ )

24
z4

i1aV I
i j

]
x′i j,

= wi jx
′
i j, (say),

so that
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∂M′
i,1/∂β =

wi1x′i1
...
winix

′
ini

=


wi1 0 · · · 0

0 wi2 · · · 0
...

...
...

0 0 · · · wini

Xi

= WiXi, (say),

where Wi = diag[wi1, . . . ,wini ] and Xi = [xi1, . . . ,xi j, . . . ,xini ]
′. This completes the

construction of the estimating function ∑K
i=1[∂ µ ′

i /∂β ]Σ−1
i (yi−µi), for β , under the

present semiparametric (SP) model, when σ2
γ is known.

Let β̂GQL,SP denote the GQL estimate of β obtained by solving the SP model
based estimating equation

K

∑
i=1

∂M′
i,1

∂β
M−1

i,2 (yi−Mi,1) = 0,

where, for convenience of notation, Mi,1 is used for µi, and Mi,2 is used for
Σi = (σi, jk), with σi, j j and σi, jk as given by (4.134) and (4.135), respectively. Fur-
thermore, similar to (4.64), it can be shown that asymptotically (as K → ∞), for
known σ2

γ , the GQL estimator β̂GQL,SP follows the multivariate Gaussian distribu-
tion with mean β and the covariance matrix given by

cov(β̂GQLSP) = limitK→∞

[
K

∑
i=1

∂M′
i,1

∂β
M−1

i,2
∂Mi,1

∂β ′

]−1

. (4.136)

4.5 Monte Carlo Based Likelihood Estimation

For simplicity in explaining this approach, we consider the Poisson mixed model
with a single random effect as in Sections 4.2 and 4.4. Thus, we use the model
(4.120) and using slightly different notations, rewrite

f (yi j|γi,β ) = exp[{yi jηi j −a(ηi j)}+b(yi j)], (4.137)

with a(ηi j) = exp(ηi j), where ηi j = θi j + zi1γi, with θi j = x′i jβ . As far as the distri-
butional assumption for γi is concerned, we use

γi
iid∼ N(0,σ2

γ ); thatis,gN(γi|σ2
γ ) = (2πσ

2
γ )−1/2 exp{−γi

2/2σ
2
γ } (4.138)

as in Section 4.2. It follows from (4.137) and (4.138) that the likelihood for the data
is given by

L(β ,σ2
γ ) =

∫
Π

K
i=1 f (yi|γi)gN(γi|σ2

γ )dγi, (4.139)
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where f (yi|γi) = Π
ni
j=1 f (yi j|γi).

Recall from Section 2.1 where β and σ2
γ were estimated by maximizing the exact

likelihood constructed by simulating [Jiang (1998)] the random effects. For a simi-
lar but different direct simulated likelihood estimation, one may also refer to Geyer
and Thompson (1992) and Gelfand and Carlin (1993), for example. In this section,
we highlight a different Monte Carlo approach that has been developed based on
the so-called Metropolis algorithm. To be specific, the Metropolis algorithm is used
to simulate the random effects and the so-called expectation-maximization (EM)
or Newton−Ralphson (NR) technique is used to maximize the Monte Carlo (sim-
ulated) based approximate likelihood function. One may be referred to McCulloch
(1997) for these MCEM and MCNR approaches. For convenience, in explaining
these two approaches, we first outline the common Metropolis algorithm to gener-
ate random effects, as follows.

Metropolis Algorithm

Recall from (4.18) that a closed-form likelihood function cannot be obtained due to
the problem of integration over the distribution of the random effect γi. To handle
such an integration problem, some numerical algorithms are developed where γi is
considered to be a missing dataum, and it is drawn from a conditional distribution
of γi|y by using the Metropolis algorithm [Tanner (1993)], which does not require
specification of the unconditional density of the data y. To be specific, a candidate
distribution h(γi) is considered, from which potential new values are drawn, and
also an acceptance function is considered that gives the probability of accepting the
new value. Suppose that γ

+
i denotes a new value generated from h(γi), whereas γ

−
i

is the previous value drawn from the conditional distribution of γi|y. The new value
γ

+
i is accepted with a probability A(γ−i ,γ+

i ), (say); otherwise the previous value γ
−
i

is retained. Denote this first-time decided value, whether γ
−
i or γ

+
i , as γ

(1)
i . Continue

this operation for a large number of times, say N, and denote these values of random
effect as

γ
(1)
i , . . . ,γ

(w)
i , . . . ,γ

(N)
i . (4.140)

Note that these values are chosen in a different way from the simulated random ef-
fect values γ∗i1, . . . ,γ

∗
iw, . . . ,γ∗iN , used in (4.21). The formula for the acceptance prob-

ability A(γ−i ,γ+
i ) is given by

A(γ−i ,γ+
i ) = min

[
1,

f (γ+
i |y,β ,σ2

γ )h(γ−i )

f (γ−i |y,β ,σ2
γ )h(γ+

i )

]
. (4.141)

The random effect values from (4.140) are then exploited to develop MCEM and
MCNR [McCulloch (1997, Sections 3.1, 3.2)] as follows:
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4.5.1 MCEM Approach

1. Choose starting values β (0) and σ2
γ

(0)
. Set r = 0.

2. Generate N values (4.140) of the random effect by using f (γ−i |y,β (r),σ2
γ

(r)), and

(a) Choose β (r+1) to maximize a Monte Carlo estimate of E[log f (y|γi,β )]; that is,
maximize

1
/

N
N

∑
w=1

log f (y|γ(w)
i ,β ). (4.142)

(b) Choose σ2
γ

(r+1)) to maximize [1/N]∑N
w=1 log g(γ(w)

i |σ2
γ ).

(c) Set r = r +1.

3. If convergence is achieved, then declare β (r+1) and σ2
γ

(r+1)
to be the maximum

likelihood estimates; otherwise, go back to Step 2.

4.5.2 MCNR Approach

1. Choose starting values β (0) and σ2
γ

(0)
. Set r = 0.

2. Generate N values (4.140) of the random effect by using f (γ−i |y,β (r),σ2
γ

(r)), and

(a) Obtain β (r+1) by using the Monte Carlo expectation based Newton−Raphson
iterative equation (see (4.28) and (4.50)):

β
(r+1) = β

(r) +E[
K

∑
i=1

X ′
i Ai(γi,β

(r))Xi]−1E[
K

∑
i=1

X ′
i {yi−µ

∗
i (γi,β

(r))}|y], (4.143)

where

µ
∗
i (γi,β

(r)) = [µ∗
i1(γi,β

(r)), . . . ,µ
∗
i j(γi,β

(r)), . . . ,µ
∗
ini

(γi,β
(r))]′

and
Ai(γi,β

(r)) = diag[µ∗
i1(γi,β

(r)), . . . ,µ
∗
i j(γi,β

(r)), . . . ,µ
∗
ini

(γi,β
(r))],

with µ∗
i j(γi,β ) = exp(x′i jβ + γi).

(b) Choose σ2
γ

(r+1)) to maximize [1/N]∑N
w=1 log g(γ(w)

i |σ2
γ ).

(c) Set r = r +1.

3. If convergence is achieved, then declare β (r+1) and σ2
γ

(r+1)
to be the maximum

likelihood estimates; otherwise, go back to Step 2.
Note that even though the semiparametric approach discussed in Section 4.4 and

the Monte Carlo approach discussed in Section 4.5 are flexible on the distributional
assumptions for the random effects, these techniques are, however, either long or
numerically expensive. Furthermore, these approaches also have serious theoretical
limitations, as they will not be applicable to clustered data such as longitudinal,
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where the correlations arise due to the dynamic relationship between observations at
two different times (see Chapters 6−8), instead of common random effects shared
by family members as in the present familial data setup. Consequently, these two
approaches are further discussed only in Chapter 5 on familial models for binary
data, but not in any other chapters dealing with longitudinal models.

Exercises

4.1. (Section 4.2.3) [Small σ2
γ based first four cumulants]

(a). For an auxiliary parameter t, derive Mγi(t) = E[exp(tγi)], the moment generating
function (m.g.f.) of γi when its distribution is given by (4.33); that is,

gw(γi) =
φ α

Γ (α)
exp{αγi−φ exp(γi)}.

(b). Show that the first four cumulants obtained from log Mγi(t), the cumulants gen-
erating function (c.g.f) of γi, are given by

K∗
1 = ψ(α)− log φ , K∗

2 = ψ
′(α), K∗

3 = ψ
′′(α), K∗

4 = ψ
′′′(α),

where ψ(α) is the digamma function

ψ(α) =
∂Γ (α)

∂α
=−ξ − 1

α
+

∞

∑
j=1

α

j(α + j)

with ξ = 0.57721, Euler’s constant, and where ψ ′(α), ψ ′′(α), and ψ ′′′(α) are, re-
spectively, the first−, second−, and the third-order derivatives of ψ(α) with respect
to α.
(c). Recall that α and φ in (4.33), that is, in the density gw(γi), are chosen such that

K∗
1 = 0 and K∗

2 = σ
2
γ .

Use this argument and justify that

K∗
3 =−σ

4
γ and K∗

4 = 2σ
6
γ .

(d). Show that if γi has the normal distribution

gN(γi) = (2πσ
2
γ )−1/2 exp{−γi

2/2σ
2
γ },

then the first four cumulants of γi are given by

K1 = 0, K2 = σ
2
γ , K∗

3 = 0, K4 = 0.
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4.2. (Section 4.2.3) [Formulas for P̀ (·) in (4.41)
Show that if gw(γi) given in Exercise 1 (a) [see also (4.33)] satisfies (4.41), then

P1(γi) = α−φ exp(γi)
P2(γi) = −φ exp(γi)+ [P1(γi)]2

P3(γi) = −φ exp(γi)−3λ exp(γi)[P1(γi)]+ [P1(γi)]3

P4(γi) = −φ exp(γi)+3λ
2 exp(2γi)−4φ exp(γi)P1(γi)

−6φ exp(γi)[P1(γi)]2 +[P1(γi)]4.

4.3. (Section 4.3.3.1) [Formulas for ξ1, ξ2, and ξ3 in (4.95)]
Express the conditional Poisson mean µ∗

i j in (4.92) as µ∗
i j = mi jaibi, where

mi j = exp(x′i jβ ), ai = exp(zi1σγ γ
∗
i ), and bi = exp(zi2στ τ

∗
i ).

For
γ
∗
i ∼ N(0,1) and τ

∗
i ∼ N(0,1),

and γi and τi are independent for all i = 1, . . . ,K, show that

ξ1 = E[W1] =
K

∑
i=1

ξ̃i1, ξ2 = E[W2] =
K

∑
i=1

zi1ξ̃i2, ; and ξ3 = E[W3] =
K

∑
i=1

zi2ξ̃i2,

where

ξ̃i1 =
ni

∑
j=1

xi jµi j, ξ̃i2 =
ni

∑
j=1

λi j j +2
ni

∑
j<k

λi jk,

with

µi j = E(Yi j) = mi j piqi

λi j j = E(Y 2
i j) = mi j piqi(1+mi j p

3
i q3

i )

λi jk = E(Yi jYik) = mi jmik p4
i q4

i ,

where

pi = E(ai) = exp(z2
i1σ

2
γ /2), and qi = E(bi) = exp(z2

i2σ
2
τ /2).

4.4. (Section 4.3.3.1) [Formulas for the elements of the derivative matrix P in (4.97)]
For ξ1, ξ2, and ξ3 given as in Exercise 4.3, verify that their derivatives:
with respect to β are−

∂ξ1

∂β ′ =
K

∑
i=1

ni

∑
j=1

xi jx
′
i jµi j,

∂ξ2

∂β ′ =
K

∑
i=1

zi1ξ
∗
i1,

∂ξ3

∂β ′ =
K

∑
i=1

zi2ξ
∗
i1;

with respect to σ2
γ are−
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∂ξ1

∂σ2
γ

=
1
2

K

∑
i=1

z2
i1ξ̃i1,

∂ξ2

∂σ2
γ

=
K

∑
i=1

z3
i1ξ

∗
i2,

∂ξ3

∂σ2
γ

=
K

∑
i=1

z2
i1zi2ξ

∗
i2;

with respect to σ2
τ have the formulas−

∂ξ1

∂σ2
τ

=
1
2

K

∑
i=1

z2
i2ξ̃i1,

∂ξ2

∂σ2
τ

=
K

∑
i=1

zi1z2
i2ξ

∗
i2,

∂ξ3

∂σ2
τ

=
K

∑
i=1

z3
i2ξ

∗
i2,

where ξ̃i1 is as in Exercise 4.3, and ξ ∗i1 and ξ ∗i2 are given by

ξ
∗
i1 =

ni

∑
j=1

x′i jµi j(1+2µi j p
2
i q2

i )+2
ni

∑
j<k

λi jk(x′i j + x′ik)

ξ
∗
i2 =

ni

∑
j=1

µi j

2
(1+4µi j p

2
i q2

i )+4
ni

∑
j<k

λi jk.

4.5. (Section 4.3.3.2) [Formulas for the elements of the derivative matrix ∂ζ ′i /∂θ :
(p+2)× [ni(ni +3)/2] in (4.98)]
For θ = (β ′,σ2

γ ,σ2
τ )′, and ζi = (µ ′

i ,λ
′
i1,λ

′
i2)

′ given as in (4.99), verify that their
derivatives:
with respect to β are−

∂ µi j

∂β
= xi jµi j,

∂λi j j

∂β
= xi jµi j(1+2xi jµi j p

2
i q2

i ),
∂λi jk

∂β
= (xi j +xik)µi jµik p2

i q2
i ;

with respect to σ2
γ are−

∂ µi j

∂σ2
γ

=
z2

i1

2
µi j,

∂λi j j

∂σ2
γ

=
z2

i1

2
µi j(1+4µi j p

2
i q2

i ),
∂λi jk

∂σ2
γ

= 2z2
i1µi jµik p2

i q2
i ;

with respect to σ2
τ have the formulas−

∂ µi j

∂σ2
τ

=
z2

i2

2
µi j,

∂λi j j

∂σ2
τ

=
z2

i2

2
µi j(1+4λi j p

2
i q2

i ),
∂λi jk

∂σ2
τ

= 2z2
i2µi jµik p2

i q2
i .

4.6. (Section 4.4) [Formulas for first eight moments of yi j with p.d.f. (4.120)]
Let m′

i j,1 = Eexp(yi j) and mi j,s = Eexp(yi j−m′
i j,1)

s for s = 2, . . . ,8, with pdf of yi j as
in (4.120). Show that the m.g.f. (see also (4.9) under Lemma 4.1] for Yi j with p.d.f.
(4.120) has the formula

MYi j |θi j
(s) = E[exp(sYi j)] = exp[a(θi j + s)−a(θi j],

with a(θi j) = exp(θi j), and show that

m′
i j,1 = a′i j, mi j,2 = a′′i j, mi j,3 = a′′′i j , mi j,4 = aIV

i j +3m2
i j,2
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mi j,5 = aV
i j +10mi j,2mi j,3, mi j,6 = aIV

i j +15mi j,2mi j,4 +10m2
i j,3−30m3

i j,2

mi j,7 = aV II
i j +21mi j,2mi j,5 +35mi j,3mi j,4−210m2

i j,2mi j,3

mi j,8 = aV III
i j +28mi j,2mi j,6 +56mi j,3mi j,5

−630m2
i j,2mi j,4 +70m2

i j,4−560mi j,2m2
i j,3 +945m4

i j,2,

where a′i j, a′′i j, . . . ,a
V III
i j , respectively, denote the first−, second−, . . ., eighth-order

derivative of a(θi j) in (4.120) with respect to θi j.
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Chapter 5
Familial Models for Binary Data

As opposed to Chapter 4, we now consider yi j as the binary response for the
jth ( j = 1, . . . ,ni) member of the ith (i = 1, . . . ,K) family/cluster. Suppose that
xi j = (xi j1, . . . ,xi jp)′ is the p-dimensional covariate vector associated with the bi-
nary response yi j. For example, in a chronic obstructive pulmonary disease (COPD)
study, yi j denotes the impaired pulmonary function (IPF) status (yes or no), and xi j

is the vector of covariates such as gender, race, age, and smoking status, for the jth
sibling of the ith COPD patient. Note that in this problem it is likely that the IPF
status for ni siblings of the ith patient may be influenced by an unobservable ran-
dom effect (γi) due to the ith COPD patient. Similar to the Poisson mixed model
discussed in the last chapter, let γi denote this random effect. This common random
effect makes the binary responses of any two siblings of the same patient correlated,
and this correlation is referred to as the familial correlation. It is of scientific interest
to find the effects of the covariates on the binary responses, that is, IPF status of an
individual sibling after taking the familial correlations (caused by the variation in
random effects) into account.

In Section 5.1, we provide the marginal (unconditional) distributional properties
of the binary response variable yi j, and the unconditional familial correlation struc-
ture for the responses of the members of the ith familiy under the assumption that
the random family effects follow a normal distribution. Note that unlike the Poisson
mixed model case, one cannot obtain any explicit formulas for the moments of the
binary variable in the mixed model setup even if the random effects are assumed
to be normally distributed. Thus, the basic properties discussed below in Section
5.1 are developed based on a suitable numerical such as simulation or binomial ap-
proximation approach. In Section 5.2 we discuss various inference techniques that
produce at least consistent estimates for the parameters involved. The penalized
quasi-likelihood (PQL) [Breslow and Clayton (1993)] and hierarchical likelihood
(HL) [Lee and Nelder (1996)] approaches were found to have inconsistency prob-
lems for the inferences in the Poisson case, and because there is no reason why
they will do better in the binary case, we therefore do not include these approaches
in Section 5.2. To be specific, we provide details on the development of estimat-
ing equations using the method of moments (MM) [Jiang (1998), Jiang and Zhang
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(2001)], generalized quasi-likelihood (GQL) [Sutradhar (2004)], and the exact max-
imum likelihood (ML) [Sutradhar and Mukerjee (2005)] approaches. This is done
for the cases when the mixed model contains random effects from a single source.
In Section 5.3, we provide the GQL inferences for the binary mixed models with
normal random effects but from two sources [Sutradhar and Rao (2003)].

In Section 5.4, we highlight a semiparametric (SP) estimation approach, whereas
in Section 5.5 we discuss a Monte Carlo (MC) based likelihood approximation. Note
that these two approaches correspond to those for the count data case discussed in
Sections 4.4 and 4.5, respectively. These two approaches do not require the assump-
tion that the random effects follow a Gaussian distribution. However, they are com-
putationally expensive, and also they are not directly useful for inferences in the
dynamic models based longitudinal data analysis.

5.1 Binary Mixed Models and Basic Properties

Let yi = (yi1, . . . ,yi j, . . . ,yini)
′ be the ni×1 vector of binary responses from ni mem-

bers of the ith (i = 1, . . . ,K) family. Let β be a p×1 vector of unknown fixed effects
of xi j on yi j, xi j being the p-dimensional covariate vector for the jth ( j = 1, . . . ,ni)
member of the ith family. Suppose that conditional on the random family effect γi, ni

counts due to the ith family are independent. The data of this type can be modelled
as

f (yi|γi) = Π
ni
j=1

[
{π

∗
i j}yi j{1−π

∗
i j}1−yi j

]
, (5.1)

where

π
∗
i j = Pr[Yi j = 1|γi] =

exp(ηi j)
1+ exp(ηi j)

with ηi j(β ,γi) = x′i jβ + γi. Note that, similar to (4.1), this conditional joint density
may be written as

f (yi|γi) = exp

[
ni

∑
j=1

yi jηi j −
ni

∑
j=1

a(ηi j)

]

= exp

[
ni

∑
j=1

yi jηi j −
ni

∑
j=1

log{1+ exp(ηi j)}

]
. (5.2)

Further note that if the random effect γi is assumed to have an unspecified distribu-

tion with mean 0 and variance σ2
γ and γis are independent, that is, γi

iid∼ (0,σ2
γ ), then

for γ∗i = γi/σγ , the linear predictor ηi j in (5.1) and (5.2) may be expressed as

ηi j(β ,σγ ,γ
∗
i ) = x′i jβ + γi = x′i jβ +σγ γ

∗
i , (5.3)

where γ∗i
iid∼ (0,1).
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Before proceeding toward the development of estimation techniques for the pa-
rameters β and σ2

γ , involved in the binary mixed model (5.1)− (5.3), we provide
below the basic properties such as the unconditional marginal and product moments
of orders two, three and four. The marginal and product moments of order two are
helpful in understanding the mean and correlation structures of the model, and also
these moments along with the product moments of order three and four are exploited
to develop the desired MM and GQL estimation approaches.

Lemma 5.1. Conditional on γ∗i , the mean and the variance of Yi j, and the covari-
ances between Yi j and Yik for j 6= k, j, k = 1, . . . ,ni are given by

E[Yi j|γ∗i ] = π
∗
i j(γ

∗
i ) =

exp(x′i jβ +σγ γ∗i )
1+ exp(x′i jβ +σγ γ∗i )

(5.4)

var[Yi j|γ∗i ] = π
∗
i j(γ

∗
i ){1−π

∗
i j(γ

∗
i )} (5.5)

cov[(Yi j,Yi,k)|γ∗i ] = 0, (5.6)

and, for γ∗i
iid∼ N(0,1), the corresponding unconditional mean, variance, and the

covariances are given by

E[Yi j] = πi j(β ,σ2
γ ) =

∫
π
∗
i j(γ

∗
i )gN(γ∗i |1)dγ

∗
i (5.7)

var[Yi j] = σi j j(β ,σ2
γ ) = πi j(β ,σ2

γ )(1−πi j(β ,σ2
γ )) (5.8)

cov[Yi j,Yik] = σi jk(β ,σ2
γ ) =

∫
π
∗
i j(γ

∗
i )π∗ik(γ

∗
i )gN(γ∗i |1)dγ

∗
i −πi jπik

= λi jk (say)−πi jπik, (5.9)

with gN(γ∗i |1) as the standard normal density, yielding the pairwise familial corre-
lations as

corr[Yi j,Yik] =
σi jk(β ,σ2

γ )

[πi j(β ,σ2
γ )(1−πi j(β ,σ2

γ ))πik(β ,σ2
γ )(1−πik(β ,σ2

γ ))]1/2
. (5.10)

Proof: Because f (yi j|γ∗i ) = {π∗i j}yi j{1−π∗i j}1−yi j by (5.1), it then follows that

E[Yi j|γ∗i ] =
1

∑
yi j=0

yi j{π
∗
i j}yi j{1−π

∗
i j}1−yi j ,

yielding the conditional mean as in (5.4). Note that for the binary data, for any finite
integer r, it also follows that

E[Y r
i j|γ∗i ] = E[Yi j|γ∗i ] = π

∗
i j(γ

∗
i ), (5.11)

yielding the conditional variance as in (5.5). Furthermore, because conditional on
γ∗i , Yi j and Yik are independent, it then follows that
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E[Yi jYik|γ∗i ] = E[Yi j|γ∗i ]E[Yik|γ∗i ] = π
∗
i j(γ

∗
i )π∗ik(γ

∗
i ), (5.12)

yielding the conditional covariance as in (5.6).
Next, one obtains the unconditional mean, variance, and the covariance in (5.7)−

(5.9) by using

E[Yi j] = Eγ∗i
E[Yi j|γ∗i ] = Eγ∗i

[π∗i j(γ
∗
i )] = πi j(β ,σ2

γ ) (5.13)

E[Y 2
i j] = Eγ∗i

E[Y 2
i j|γ∗i ] = Eγ∗i

[π∗i j(γ
∗
i )] = πi j(β ,σ2

γ ) (5.14)

E[Yi jYik] = Eγ∗i
E[Yi jYik|γ∗i ] = Eγ∗i

[π∗i j(γ
∗
i )π∗ik(γ

∗
i )] = λi jk(β ,σ2

γ ). (5.15)

In the manner similar to that for λi jk, the product moment of second order, one
may compute the product moments of orders three and four for the binary data, as
in the following lemma.

Lemma 5.2. Under the binary model (5.1)− (5.3), the unconditional product
moments of orders three and four, are given by

E[Yi jYikYi`] = δi jk` (say) =
∫

π
∗
i j(γ

∗
i )π∗ik(γ

∗
i )π∗i`(γ

∗
i )gN(γ∗i |1)dγ

∗
i (5.16)

E[Yi jYikYi`Yim] = φi jk`m (say) =
∫

π
∗
i j(γ

∗
i )π∗ik(γ

∗
i )π∗i`(γ

∗
i )π∗im(γ∗i )

× gN(γ∗i |1)dγ
∗
i . (5.17)

Proof: These third− and fourth-order product moments follow from the fact that
conditional on γi, the binary responses from the members are independent. Thus,

E[Yi jYikYi`] = Eγ∗i
E[Yi jYikYi`|γ∗i ]

= Eγ∗i
[E(Yi j|γ∗i )E(Yik|γ∗i )E(Yi`|γ∗i )]

= Eγ∗i
[πi j(γ∗i )πik(γ∗i )πi`(γ∗i )]

=
∫

πi j(γ∗i )πik(γ∗i )πi`(γ∗i )gN(γ∗i |1)dγ
∗
i , (5.18)

where

πi j(γ∗i ) =
exp[x′i jβ +σγ γ∗i ]

1+ exp[x′i jβ +σγ γ∗i ]
.

Similarly,

E[Yi jYikYi`Yim] = Eγ∗i
E[Yi jYikYi`Yim|γ∗i ]

= Eγ∗i
[E(Yi j|γ∗i )E(Yik|γ∗i )E(Yi`|γ∗i )E(Yim|γ∗i )]

= Eγ∗i
[πi j(γ∗i )πik(γ∗i )πi`(γ∗i )πim(γ∗i )]

=
∫

πi j(γ∗i )πik(γ∗i )πi`(γ∗i )πim(γ∗i )gN(γ∗i |1)dγ
∗
i . (5.19)



5.1 Binary Mixed Models and Basic Properties 123

5.1.1 Computational Formulas for Binary Moments

Note that unlike the Poisson mixed model (see Lemmas 4.1 and 4.3), one can not
obtain explicit formulas for the moments under the binary mixed models because
of the integration difficulty of a complex function over the normal distribution for
the random effects. Recall from Section 4.2.1 that a similar difficulty arose for the
likelihood computation under the Poisson mixed models, where as a remedy the
integrations were evaluated either by a simulation approach [Jiang (1998)] or by a
binomial approximation approach [see Ten Have and Morabia (1999, eqn. (7)), for
example]. We may use one of these approaches for the computation of the binary
moments given in Lemmas 5.1 and 5.2.

Simulated Binary Moments
In the simulation technique, for a large N such as N = 1000, the first-order binary
moment πi j(β ,σ2

γ ) in (5.7) may be computed as

π
(s)
i j (β ,σ2

γ ) =
1
N

N

∑
w=1

[π∗i j(γ
∗
iw)], (5.20)

where γ∗iw is a sequence of standard normal values for w = 1, . . . ,N. Next, by using
the notations

λ
∗
i jk(γ

∗
i ) = π

∗
i j(γ

∗
i )π∗ik(γ

∗
i ), δ

∗
i jk`(γ

∗
i ) = π

∗
i j(γ

∗
i )π∗ik(γ

∗
i )π∗i`(γ

∗
i ),

φ
∗
i jk`m(γ∗i ) = π

∗
i j(γ

∗
i )π∗ik(γ

∗
i )π∗i`(γ

∗
i )π∗im(γ∗i ),

one may follow (5.9), (5.16) and (5.17), and compute the simulation based binary
product moments of orders two, three, and four, as

λ
(s)
i jk (β ,σ2

γ ) = E[Yi jYik] =
1
N

N

∑
w=1

λ
∗
i jk(γ

∗
iw) (5.21)

δ
(s)
i jk`(β ,σ2

γ ) = E[Yi jYikYi`] =
1
N

N

∑
w=1

δ
∗
i jk`(γ

∗
iw) (5.22)

φ
(s)
i jk`m(β ,σ2

γ ) = E[Yi jYikYi`Yim] =
1
N

N

∑
w=1

φ
∗
i jk`m(γ∗iw), (5.23)

respectively.

Binary Moments Using Binomial Approximation to the Normal Integral

As an alternative to the simulation approach, one may compute the normal integrals
in (5.7), (5.9), (5.16), and (5.17), by using the so-called binomial approximation.
For a known reasonably big V such as V = 5, let vi ∼ binomial(V,1/2). Because γ∗i
has the standard normal distribution, consider
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γ
∗
i =

vi−V (1/2)
V (1/2)(1/2)

.

One may then approximate the desired normal integral by a binomial approximation
and compute the marginal and product moments up to order four as

π
(b)
i j (β ,σ2

γ ) =
V

∑
vi=0

π
∗
i j(vi)]

(
V
vi

)
(1/2)vi(1/2)V−vi (5.24)

λ
(b)
i jk (β ,σ2

γ ) =
V

∑
vi=0

λ
∗
i jk(vi)]

(
V
vi

)
(1/2)vi(1/2)V−vi (5.25)

δ
(b)
i jk`(β ,σ2

γ ) =
V

∑
vi=0

δ
∗
i jk`(vi)]

(
V
vi

)
(1/2)vi(1/2)V−vi (5.26)

φ
(b)
i jk`m(β ,σ2

γ ) =
V

∑
vi=0

φ
∗
i jk`m(vi)]

(
V
vi

)
(1/2)vi(1/2)V−vi , (5.27)

where
π
∗
i j(vi)] =

[
π
∗
i j(γ

∗
i )}
]
[γ∗i = vi−V (1/2)

V (1/2)(1/2) ]
,

for example.
Note that these moments computed either based on the simulation approach or

binomial approximation are used in the following sections for the inferences in the
binary mixed model (5.1)− (5.3). As far as the estimation approach is concerned,
as mentioned earlier, we concentrate on the MM, IMM, GQL, and ML approaches
as they all produce consistent estimators for the parameters, some such as the GQL
and ML being more efficient.

5.2 Estimation for Single Random Effect Based Parametric
Mixed Models

5.2.1 Method of Moments (MM)

In this approach, similar to the Poisson mixed model [see eqns. (4.55)− (4.58)],
one estimates β and σ2

γ by solving the moment equations

ψ1(β ,σ2
γ ) =

K

∑
i=1

ni

∑
j=1

xi j

{
yi j −π

(s)
i j (β ,σ2

γ )
}

= 0, (5.28)

and

ψ2(β ,σ2
γ ) =

K

∑
i=1

[
ni

∑
j<k

yi jyik−2
ni

∑
j<k

λ
(s)
i jk (β ,σ2

γ )

]
= 0 (5.29)
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[Jiang (1998)] respectively, where π
(s)
i j (β ,σ2

γ ) and λ
(s)
i jk (β ,σ2

γ ) are given by (5.20)

and (5.21), respectively. Note that one could alternatively use π
(b)
i j (β ,σ2

γ ) (5.24)

and λ
(b)
i jk (β ,σ2

γ ) (5.25), instead of π
(s)
i j (β ,σ2

γ ) and λ
(s)
i jk (β ,σ2

γ ), respectively, to con-
struct the above two moment equations. Further note that because the first-order
response yi j and the squared response y2

i j in the binary case provide the same in-
formation, the joint estimating equations (5.28) and (5.29) under the binary mixed
model are constructed by exploiting the first-order responses yi j( j = 1, . . . ,ni) and
the product responses yi jyik( j 6= k, j,k = 1, . . . ,ni), whereas in the count data case
all first-order yi j( j = 1, . . . ,ni), squared y2

i j( j = 1, . . . ,ni), and pairwise product
yi jyik( j 6= k, j,k = 1, . . . ,ni) responses were exploited to form the estimating equa-
tions (4.55) and (4.56). This structural difference between the estimating equations
for the count and binary data are also reflected under other methods such as IMM
and GQL discussed in Sections 5.2.2 and 5.2.3, respectively.

For θ = [β ′,σγ ]′, one obtains the MM estimate by using the Gauss−Newton
iterative equation

θ̂MM(r +1) = θ̂MM(r)+
[

∂ξ ′

∂θ

]−1

r
[w−ξ ]r, (5.30)

where w = [w′
1,w2]′, and ξ = [ξ ′1,ξ2]′, with

w1 =
K

∑
i=1

ni

∑
j=1

xi jyi j, w2 =
K

∑
i=1

ni

∑
j<k

yi jyik,

and

ξ1 =
K

∑
i=1

ni

∑
j=1

xi jπ
(s)
i j (β ,σ2

γ ), ξ2 = 2
K

∑
i=1

[
ni

∑
j<k

λ
(s)
i jk (β ,σ2

γ )

]
, (5.31)

and where []r denotes that the expression within the square bracket is evaluated
at θ = θ̂MM(r), the estimate obtained for the rth iteration. Let the final solution
obtained from (5.30) be denoted by θ̂MM.

Note that under the binary mixed model, the computation for the derivative
∂ξ ′/∂θ is slightly more complicated than the Poisson mixed model case. For con-
venience, by (5.4) and (5.21), we provide the formulas for the associated derivatives
as follows.

∂π
(s)
i j (β ,σ2

γ )

∂β
=

1
N

N

∑
w=1

∂π∗i j(γ
∗
iw)

∂β

=
1
N

N

∑
w=1

π
∗
i j(γ

∗
iw)[1−π

∗
i j(γ

∗
iw)]xi j (5.32)

∂π
(s)
i j (β ,σ2

γ )

∂σγ

=
1
N

N

∑
w=1

∂π∗i j(γ
∗
iw)

∂β
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=
1
N

N

∑
w=1

π
∗
i j(γ

∗
iw)[1−π

∗
i j(γ

∗
iw)]γ∗iw, (5.33)

and

∂λ
(s)
i jk (β ,σ2

γ )

∂β
=

1
N

N

∑
w=1

∂λ ∗
i jk(γ

∗
iw)

∂β

=
1
N

N

∑
w=1

π
∗
i j(γ

∗
iw)π∗ik(γ

∗
iw)[2−π

∗
i j(γ

∗
iw)−π

∗
ik(γ

∗
iw)]xi j (5.34)

∂λ
(s)
i jk (β ,σ2

γ )

∂σγ

=
1
N

N

∑
w=1

∂λ ∗
i jk(γ

∗
iw)

∂σγ

=
1
N

N

∑
w=1

π
∗
i j(γ

∗
iw)π∗ik(γ

∗
iw)[2−π

∗
i j(γ

∗
iw)−π

∗
i jk(γ

∗
iw)]γ∗iw. (5.35)

This completes the construction of the iterative equation (5.30).
Further note that becuase E[W − ξ ] = 0, the MM estimator θ̂MM obtained from

(5.30) is consistent for θ but it may still produce biased estimators in finite sam-
ple cases. Moreover, the MM estimator can be inefficient. As far as the asymptotic
variance of θ̂MM is concerned, one may obtain this from the fact that as K → ∞, it
follows from the multivariate central limit theorem [Mardia, Kent and Bibby (1979,
p. 51), for example] that θ̂MM has the multivariate Gaussian distribution with mean
θ and the variance given by

var(θ̂MM) = limitK→∞

[
∂ξ ′

∂θ

]−1

V

[
∂ξ

∂θ ′

]−1

, (5.36)

where V = var[W −ξ ] = var(W ).

5.2.2 An Improved Method of Moments (IMM)

Note that as the moment equations in (5.28)− (5.29) do not exploit the covariances
(5.9) or correlations (5.10) among the members of the family, they produce ineffi-
cient estimates. As an improvement over this approach, Jiang and Zhang (2001), for
example, have used an improved method of moments (IMM) estimation that solves
the moment estimating equation

B[w∗ −ψ
∗] = 0, (5.37)

instead of [w−ξ ] = 0 in (5.28)− (5.29), where

w∗ = [w′
11, w21, . . . ,w2i, . . . ,w2K ]′
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= [
K

∑
i=1

ni

∑
j=1

x′i jyi j,
n1

∑
j 6=k

y1 jy1k, . . . ,
ni

∑
j 6=k

yi jyik, . . . ,
nK

∑
j 6=k

yK jyKk]′, (5.38)

and

ψ
∗ = [E(W ′

11), E(W21), . . . ,E(W2i), . . . ,E(W2K)]′

= [
K

∑
i=1

ni

∑
j=1

x′i jπi j(β ,σ2
γ ),

n1

∑
j 6=k

λ1 jk(β ,σ2
γ ), . . . ,

ni

∑
j 6=k

λi jk(β ,σ2
γ ),

. . . ,
nK

∑
j 6=k

λK jk(β ,σ2
γ )]′, (5.39)

with πi j(β ,σ2
γ ) and λi jk(β ,σ2

γ ) as in (5.13) and (5.15), respectively. Also, in (5.37),

B = D′V ∗−1 with D as the derivative matrix D = ∂ψ∗/∂θ , and V ∗ is the covariance
matrix of W ∗. Note that as far as the dimension is concerned, D in (5.37) is the
(p + K)× (p + 1) derivative matrix and V ∗ is the (p + K)× (p + K) covariance
matrix of W ∗.

In principle, the construction of the V ∗ matrix must require the computations for
the third− and fourth-order moments of the responses in the same cluster. This is
because, for the computations of var(W2i)(i = 1, . . . ,K), one requires to compute
cov(Yi1Yi2, Yi2Yi3) and cov(Yi1Yi2, Yi3Yi4), for example. Here

cov(Yi1Yi2, Yi2Yi3) = E(Yi1Yi2Yi3)−E(Yi1Yi2)E(Yi2Yi3),

and

cov(Yi1Yi2, Yi3Yi4) = E(Yi1Yi2Yi3Yi4)−E(Yi1Yi2)E(Yi3Yi4),

which clearly require the computations of the third-order moment E(Yi1Yi2Yi3) and
the fourth-order moment E(Yi1Yi2Yi3Yi4), respectively. But, as the computation of the
fourth-order moments matrix V ∗, and hence the computation of the so-called opti-
mal B = D′V ∗−1 matrix is complicated, Jiang and Zhang (2001, Section 3, p. 758)
suggest using a simple form for the B matrix, say B0, which is free from higher-
order moments such as moments of orders three and four. Thus, instead of (5.37),
they suggest solving an estimating equation

B0(w∗ −ψ
∗) = 0, (5.40)

where B0 is an alternative choice for the so-called optimal B matrix in (5.37), which
is free from higher-order moments. It has been, however, demonstrated by Sutradhar
(2004) that there cannot be any such matrix free from moments of orders three and
four. We provide this interesting contradiction below.

5.2.2.1 Can There Be an Optimal B Free from Third− and Fourth-Order Mo-
ments Under Simple Binary Logistic Mixed Models?
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We examine whether there can be any choice for the B matrix in (5.37) which is
optimal but does not involve any moments higher than second order. For simplicity,
this we do, in connection with the simple binary logistic model considered by Jiang
and Zhang (2001, pp. 756−57) under a balanced mixed model with ni = n, ni being
the size of the ith (i = 1, . . . ,K) cluster. Next, in the following section, we show the
effect of the mis-specification of the B matrix in estimating the parameter vector θ .
This we do by obtaining the estimate of θ from (5.40) when, in fact, (5.37) with
B = D′V ∗−1, is the true improved moment estimating equation for θ .

Let yi j be the binary responses of the jth ( j = 1, . . . ,n) individual of the ith
(i = 1, . . . ,K) cluster. Similar to Jiang and Zhang (2001, pp. 756− 57), consider a
simple binary logistic model with xi j = xi for all j = 1, . . . ,n. Also, consider, p = 1.
It then follows from (5.1)− (5.3) that

logit{Pr(yi j = 1|γ∗i )}= xiβ +σγ γ
∗
i .

Here, γ
∗
i

iid∼ N(0,1). To estimate θ = (β ,σγ)′, Jiang and Zhang (2001, §2.3) have
chosen

B0 = diag(I1,1
′
K)

=

[
1 0 . . . 0

0 1 . . . 1

]
, (5.41)

as an optimal choice for the B matrix. We now verify whether this special B0 matrix,
not only free from higher-order moments but free from any moments, is really equal
to the optimal B = D′V ∗−1 matrix under the present simple binary logistic model.

Because xi j = xi, using a simpler notation hi(xiβ +σγ γ∗i ) = π∗i j(γ
∗
i ) = exp(xiβ +

σγ γ∗i )/{1 + exp(xiβ + σγ γ∗i )}, it follows from (5.13), (5.15), and (5.39) that the
derivative of the ψ∗ vector with respect to θ = (β ,σ)′ is given by

D′ =

 ∂E(W11)
∂β

∂E(W21)
∂β

. . . ∂E(W2K)
∂β

∂E(W11)
∂σ

∂E(W21)
∂σ

. . . ∂E(W2K)
∂σ



= n

∑K
i=1 xie∗1i 2(n−1)e∗31 . . . 2(n−1)e∗3K

∑K
i=1 xie∗2i 2(n−1)e∗41 . . . 2(n−1)e∗4K

 , (5.42)

where e∗1i, e∗2i, e∗3i, and e∗4i are defined as

e∗1i = Eγ∗i
[hi(·){1−hi(·)}xi], e∗2i = Eγ∗i

[γ∗i hi(·){1−hi(·)}],

e∗3i = Eγ∗i
[h2

i (·){1−hi(·)}xi], and e∗4i = Eγ∗i
[γ∗i h2

i (·){1−hi(·)}],

respectively.
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Next we compute the covariance matrix of W , namely V ∗ = cov(W ), where w =
(w11,w21, . . ., w2i, . . . ,w2K). Note that as w2i = ∑n

j 6=k yi jyik is the sum of products of
the responses of the ith (i = 1, . . . ,K) cluster and because k clusters are independent,
it then follows that

V ∗ =



var(W11) cov(W11,W21) cov(W11,W22) . . . cov(W11,W2K)

cov(W21,W11) var(W21) 0 . . . 0

cov(W22,W11) 0 var(W22) . . . 0
...

...
...

. . .
...

cov(W2K ,W11) 0 0 . . . var(W2K)


,

=



∑K
i=1 aix2

i b1x1 b2x2 . . . bKxK

b1x1 c1 0 . . . 0

b2x2 0 c2 . . . 0
...

...
...

. . .
...

bKxK 0 0 . . . cK


, (5.43)

where the formulas for ai, bi, and ci are given by

ai = var

(
n

∑
j=1

Yi j

)

= [ne1i +n(n−1)e2i], (5.44)

bi = cov

(
n

∑
j=1

Yi j,
n

∑
k 6=`

YikYi`

)

= 2n(n−1)e3i +n(n−1)(n−2)e4i, (5.45)

and

ci = var

(
n

∑
k 6=`

YikYi`

)

= 4var

(
∑
k<`

YikYi`

)
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= 4

[
n

∑
k<`

var(YikYi`)+2

{
∑
k<`

∑̀
<u

cov(YikYi`,YikYiu)

+
n−2

∑
k=1

n

∑
`=k+1

(
n

∑
u=`+1

cov(YikYi`,Yi`Yiu)+
`−1

∑
u=k+1

cov(YikYi`,YiuYi`)

)

+ ∑
k<`

∑
u<v

∑
k 6=u

∑̀
6=v

cov(YikYi`,YiuYiv)

}]

= 4

[
n(n−1)

2
e5i +2

{(
n−2

∑
j=1

j( j +1)/2

)
e6i +

(
n−2

∑
j=1

j( j +1)

)
e6i

+{n(n−1)(n−2)(n−3)/8}e7i}] , (5.46)

respectively, where

e1i = Eγ∗i
hi(·)−{Eγ∗i

hi(·)}2, e2i = Eγ∗i
h2

i (·)−{Eγ∗i
hi(·)}2,

e3i = Eγ∗i
h2

i (·)−Eγ∗i
hi(·)Eγ∗i

h2
i (·), e4i = Eγ∗i

h3
i (·)−Eγ∗i

hi(·)Eγ∗i
h2

i (·),

e5i = Eγ∗i
h2

i (·)−{Eγ∗i
h2

i (·)}2, e6i = Eγ∗i
h3

i (·)−{Eγ∗i
h2

i (·)}2, and

e7i = Eγ∗i
h4

i (·)−{Eγ∗i
h2

i (·)}2,

with Eγ∗i
{hr

i (·)}= Eγ∗i
[exp(xiβ +σγ γ∗i )/{1+ exp(xiβ +σγ γ∗i )}]r, for r = 1,2,3,4.

Note that as cov(W11,W2i) 6= 0, the V ∗ matrix in (5.43) is not a diagonal matrix.
Consequently, it is clear from (5.42)− (5.46) that

B = D′V ∗−1 6= B0

given in (5.41), which contradicts the claim by Jiang and Zhang (2001) that the op-
timal choice of the B = DV ∗−1 matrix has the simple block diagonal form, namely,
B = B0 = diag(I1,1K ], free from β and σ 2

γ . In fact, unlike Jiang and Zhang (2001),
the above calculations show that the so-called improved moment estimation requires
the computations for the third− and the fourth-order moments of the responses in a
cluster, to construct the cov(W ) = V ∗ matrix in particular.

5.2.2.2 Effect of Mis-specification For Optimal Choice

In this section, we proceed as in Jiang and Zhang (2001) and solve (5.40) for θ =
(β ,σγ)′ with B0 given as in (5.41), even though this B0 is no longer an optimal
substitute of the B matrix, and examine the effect of this misspecification on the
asymptotic variance of the estimator of θ .
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Let θ̂ = (β̂ , σ̂γ)′ be the solution of (5.40) for θ = (β ,σγ)′ based on Jiang and
Zhang’s (2001) optimal choice of B = B0 = diag(I1,1′K). As E(W ∗) = ψ∗, it then
follows that θ̂ has the asymptotic (as M = nK → ∞) covariance matrix given by

cov(θ̂) = (B0D)−1B0E[(W ∗ −ψ
∗)(W ∗ −ψ

∗)′]B′0{(B0D)−1}′

= (B0D)−1B0V ∗B′0{(B0D)−1}′, (5.47)

where V ∗ is the true covariance matrix of the base statistic W ∗, given in (5.43), and
D is the derivative matrix as given by (5.42). Note that the asymptotic covariance
matrix in (5.47) is the true covariance of the improved moment estimator, computed
based on the misspecified B0. If one were, however, solving the estimating equation
(5.37) for θ , then the improved moment estimator of θ would have the asymptotic
covariance matrix given by

[D′V ∗−1D]−1.

5.2.3 Generalized Quasi-Likelihood (GQL) Approach

Let yi = (yi1, . . . ,yi j, . . . ,yini)
′ be the ni binary response vector collected from ni

members of the ith (i = 1, . . . ,K) family. Next, write the mean vector of yi and its
covariance matrix as

E[Yi] = πi(β ,σ2
γ )

= (πi1(β ,σ2
γ ), . . . ,πi j(β ,σ2

γ ), . . . ,πini(β ,σ2
γ ))′ : ni×1 (5.48)

Cov[Yi] = Σi(β ,σ2
γ )

= (σi jk) = (λi jk(β ,σ2
γ )−πi j(β ,σ2

γ )πik(β ,σ2
γ )) : ni×ni, (5.49)

where πi j(β ,σ2
γ ) and λi jk(β ,σ2

γ ) are given in (5.7) and (5.8), respectively.

5.2.3.1 Marginal Generalized Quasi-Likelihood Estimation of β

Recall from (5.20) and (5.21) that π
(s)
i j (β ,σ2

γ ) and λ
(s)
i jk (β ,σ2

γ ) are the simulation

based computational formulas for πi j(β ,σ2
γ ) and λi jk(β ,σ2

γ ), respectively. We use
these computational formulas and write

π
(s)
i (β ,σ2

γ ) = (π(s)
i1 (β ,σ2

γ ), . . . ,π(s)
i j (β ,σ2

γ ), . . . ,π(s)
ini

(β ,σ2
γ ))′ : ni×1 (5.50)

Σ
(s)
i (β ,σ2

γ ) = (λ (s)
i jk (β ,σ2

γ )−π
(s)
i j (β ,σ2

γ )π(s)
ik (β ,σ2

γ )) : ni×ni, (5.51)
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as the computational formulas for πi(β ,σ2
γ ) and Σi(β ,σ2

γ ) given in (5.48) and
(5.49), respectively.

In the manner similar to that of the Poisson mixed model case (4.62), for given
σ2

γ , one may obtain the GQL estimate of β by solving the estimating equation given
by

K

∑
i=1

∂π
(s)
i

′

∂β
Σ

(s)
i

−1
(yi−π

(s)
i ) = 0, (5.52)

[Sutradhar (2003, Section 3)] where the derivative matrix ∂π
(s)
i

′
/∂β can be com-

puted by using the formula for ∂π
(s)
i j /∂β from (5.32), for all j = 1, . . . ,ni. Let β̂GQL

be the solution of (5.52). This GQL estimator is consistent and highly efficient. It
also follows that asymptotically (as K → ∞), for known σ2

γ , β̂GQL follows the mul-
tivariate Gaussian distribution with mean β and the covariance matrix given by

cov(β̂GQL) = limitK→∞

[
K

∑
i=1

∂π ′i
∂β

Σ
−1
i

∂πi

∂β ′

]−1

' limitK→∞

[
K

∑
i=1

∂π
(s)
i

′

∂β
Σ

(s)
i

−1 ∂π
(s)
i

∂β ′

]−1

. (5.53)

5.2.3.2 Marginal Generalized Quasi-Likelihood Estimation of σγ

The squared binary responses and the first-order binary responses provide the
same information, and because the first-order responses were used to construct the
marginal GQL estimating equation for β , unlike the Poisson mixed model case
(4.69) we therefore now use only second-order pairwise responses to construct the
marginal GQL estimating equation for σγ . Thus, we write the second-order pairwise
products based GQL estimating equation given by

K

∑
i=1

∂λ ′
i

∂σγ

Ω
−1
i (ui−λi) = 0, (5.54)

where

ui = (yi1yi2, . . . ,yi jyik, . . . ,yi(ni−1)yini)
′

λi = E[Ui] = (λi12, . . . ,λi jk, . . . ,λi(ni−1)ni
)′, (5.55)

with λi jk ≡ λi jk(β ,σ2
γ ) as given in (5.15). Furthermore, in (5.54), Ωi = cov[Ui]. The

formulas for the elements of this matrix can be computed as follows.

Formula for cov[Ui] = Ωi
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var[Yi jYik] = E[Y 2
i jY

2
ik]− [E[Yi jYik]]2

= E[Yi jYik]− [E[Yi jYik]]2

= λi jk(β ,σ2
γ )[1−λi jk(β ,σ2

γ )], (5.56)

where λi jk(β ,σ2
γ ) is defined in (5.15). Similarly, we obtain

cov[Yi jYik,Yi`Yim] =



δi jkm(β ,σ2
γ )−λi jk(β ,σ2

γ )λi jm(β ,σ2
γ ) for j = `

δi jk`(β ,σ2
γ )−λi jk(β ,σ2

γ )λi j`(β ,σ2
γ ) for j = m

δi jkm(β ,σ2
γ )−λi jk(β ,σ2

γ )λikm(β ,σ2
γ ) for k = `

δi jk`(β ,σ2
γ )−λi jk(β ,σ2

γ )λik`(β ,σ2
γ ) for k = m

, (5.57)

where the third-order moment δi jkm(β ,σ2
γ ), for example, is given by (5.16). Next,

cov[Yi jYik,Yi`Yim] = φi jk`m(β ,σ2
γ )−λi jk(β ,σ2

γ )λi`m(β ,σ2
γ ) for j 6= `, k 6= m,

(5.58)
where the fourth-order moment φi jk`m(β ,σ2

γ ) is given by (5.17).
Note that the computational formulas for

λi jk(β ,σ2
γ ), δi jkm(β ,σ2

γ ), and φi jk`m(β ,σ2
γ ),

are given by

λ
(s)
i jk (β ,σ2

γ ), δ
(s)
i jkm(β ,σ2

γ ), and φ
(s)
i jk`m(β ,σ2

γ ),

in (5.21), (5.22), and (5.23), respectively. We use these computational formulas in

λi and Ωi in (5.54) and construct the corresponding vector and matrix as λ
(s)
i and

Ω
(s)
i . These substitutions lead to the computational GQL estimating equation for σγ

as
K

∑
i=1

∂λ
(s)
i

′

∂σγ

Ω
(s)
i

−1
(ui−λ

(s)
i ) = 0. (5.59)

Let σ̂γ,GQL denote the solution of (5.59). It can be shown that asymptotically (as
K → ∞), for known β , the final GQL estimator obtained from (5.59) follows the
univariate Gaussian distribution with mean σγ and the variance given by

var(σ̂γ,GQL) = limitK→∞

[
K

∑
i=1

∂λ ′
i

∂σγ

Ω
−1
i

∂λi

∂σγ

]−1

' limitK→∞

[
K

∑
i=1

∂λ
(s)
i

′

∂σγ

Ω
(s)
i

−1 ∂λ
(s)
i

∂σγ

]−1

, (5.60)
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where the formula for the computation of ∂λ
(s)
i

′
/∂σγ is available from (5.35).

Note that in practice, the iterative equations (5.52) for β and (5.59) for σγ con-
stitute a cycle, and the cycles of operation continue until convergence, to obtain the
final GQL estimates β̂GQL and σ̂γ,GQL for β and σγ , respectively.

5.2.3.3 Joint Generalized Quasi-Likelihood (GQL) Estimation for β and σγ

For quick convergence of the estimates, one may like to estimate β and σγ jointly.
For this, the estimating equations (5.52) and (5.54) may be combined as follows.
Let

si = (y′i,u
′
i)
′,

where

yi = (yi1, . . . ,yi j, . . . ,yini)
′, and ui = (yi1yi2, . . . ,yi jyik, . . . ,yi(ni−1)yini)

′.

Note that E[Yi] = πi(β ,σ2
γ ) as given in (5.48), and E[Ui] = λi(β ,σ2

γ ) as given by
(5.55). Thus, we write

E[Si] = ζi(β ,σ2
γ ) = (π ′i ,λ

′
i )
′. (5.61)

Furthermore, let

cov[Si] = ϒi =

[
cov(Yi) cov(Yi,U ′

i )

cov(Ui)

]
(5.62)

=

[
Σi Λi

Ωi

]
, (5.63)

where Σi = cov(Yi) is given by (5.49), and Ωi = cov(Ui) is constructed by using the
formulas from (5.56) to (5.58). To construct ϒi, it remains to compute the elements
of the Λi = cov(Yi,U ′

i ) matrix. In the present binary mixed model case, this can be
done as follows.

Formula for cov[Yi,U ′
i ] = Λi

cov[Yi j,YikYi`] =


E[Y 2

i jYi`]−πi jλi j` = λi j`−πi jλi j` for j = k

E[Y 2
i jYik]−πi jλi jk = λi jk−πi jλi jk for j = `

E[Yi jYikYi`]−πi jλik` = δi jk`−πi jλik` for j 6= k; j 6= `,

(5.64)

where πi j(β ,σ2
γ ) and λi jk(β ,σ2

γ ), are given by (5.7) and (5.8), respectively. The
formula for the third-order moment δi jk`(β ,σ2

γ ) is given in (5.16).
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Next, for θ = (β ′,σγ)′, in the manner similar to that of (5.52) and (5.59), one
may construct the GQL estimating equation for θ given by

K

∑
i=1

∂ζ
(s)
i

′

∂θ
ϒ

(s)
i

−1
(si−ζ

(s)
i ) = 0, (5.65)

where ζ
(s)
i is computed from ζi by replacing πi j(β ,σ2

γ ) and λi jk(β ,σ2
γ ), with

π
(s)
i j (β ,σ2

γ ) and λ
(s)
i jk (β ,σ2

γ ), respectively. Similarly, ϒ
(s)

i is constructed from ϒi by
replacing

πi j(β ,σ2
γ ), λi jk(β ,σ2

γ ), and δi jk`(β ,σ2
γ ),

with
π

(s)
i j (β ,σ2

γ ), λ
(s)
i jk (β ,σ2

γ ), and δ
(s)
i jk`(β ,σ2

γ ),

respectively, where the formulas for the latter simulation based functions are given
in (5.20), (5.21), and (5.22), respectively.

Note that the estimating equation (5.65) can be solved by using the iterative equa-
tion

θ̂GQL(r +1) = θ̂GQL(r)+

[
K

∑
i=1

∂ζ
(s)
i

′

∂θ
ϒ

(s)
i

−1 ∂ζ
(s)
i

∂θ ′

]−1

r

×

[
K

∑
i=1

∂ζ
(s)
i

′

∂θ
ϒ

(s)
i

−1
(si−ζ

(s)
i )

]
r

, (5.66)

where []r denotes that the expression within the square bracket is evaluated at θ =
θ̂GQL(r), the estimate obtained for the rth iteration. Furthermore, similar to that of
(5.53) or (5.60), it can be shown that asymptotically (as K → ∞), the final GQL
estimator obtained from (5.66) follows the multivariate Gaussian distribution with
mean θ and the variance given by

var(θ̂GQL) = limitK→∞

[
K

∑
i=1

∂ζ ′i
∂θ

ϒ
−1

i
∂ζi

∂θ ′

]−1

' limitK→∞

[
K

∑
i=1

∂ζ
(s)
i

′

∂θ
ϒ

(s)
i

−1 ∂ζ
(s)
i

∂θ ′

]−1

. (5.67)

5.2.4 Maximum Likelihood (ML) Estimation

It follows from the model (5.1) that the likelihood function for the data is given by

L(β ,σ2
γ ) = Π

K
i=1Li(β ,σ2

γ ) = Π
K
i=1 f (yi|γi). (5.68)
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Let yi· = ∑ni
j=1 yi j. Then the log of likelihood function (5.68) may be expressed as

log L =
K

∑
i=1

ni

∑
j=1

yi jx
′
i jβ +

K

∑
i=1

log Ji, (5.69)

where

Ji =
∫ ∞

−∞
exp(σγ yi·γ

∗
i )∆i(γ∗i )gN(γ∗i |1)dγ

∗
i ≡

∫ ∞

−∞
J̃i(γ∗i )gN(γ∗i |1)dγ

∗
i , (5.70)

with ∆i(γ∗i ) = {Π
ni
j=1[1+ exp(x′i jβ +σγ γ∗i )]}−1. For likelihood estimation of β and

σγ , we now consider the joint score equations U1(β ,σ2
γ ) = ∂ log L/∂β = 0 and

U2(β ,σ2
γ ) = ∂ log L/∂σγ = 0, where

U1(β ,σ2
γ ) =

K

∑
i=1

ni

∑
j=1
{yi j −Ai j/Ji}xi j ≡

K

∑
i=1

U1i(β ,σ2
γ ), (5.71)

U2(β ,σ2
γ ) =

K

∑
i=1

Mi/Ji ≡
K

∑
i=1

U2i(β ,σ2
γ ), (5.72)

with Ji as in (5.70), and

Ai j =
∫ ∞

−∞
exp{σγ yi·γ

∗
i }∆i(γ∗i )π∗i j(γ

∗
i )gN(γ∗i |1)dγ

∗
i ≡

∫ ∞

−∞
Ãi j(γ∗i )gN(γ∗i |1)dγ

∗
i ,

Mi =
∫ ∞

−∞
exp{σγ yi·γ

∗
i }

[
ni

∑
j=1

(yi j −π
∗
i j(γ

∗
i ))

]
∆i(γ∗i )γ∗i gN(γ∗i |1)dγ

∗
i

≡
∫ ∞

−∞
M̃i(γ∗i )gN(γ∗i |1)dγ

∗
i .

Next, we approximate Ji, Ai j, and Mi, with

J(s)
i =

1
N

N

∑
w=1

J̃i(γ∗iw), A(s)
i j =

1
N

N

∑
w=1

Ãi j(γ∗iw), and M(s)
i =

1
N

N

∑
w=1

M̃i(γ∗iw), (5.73)

respectively, and compute U (s)
1 (β ,σ2

γ ) and U (s)
2 (β ,σ2

γ ) from U1(β ,σ2
γ ) in (5.71)

and U2(β ,σ2
γ ) in (5.72), by replacing Ai j, Ji, and Mi with A(s)

i j , J(s)
i , and M(s)

i , re-
spectively. One may now obtain the maximum likelihood estimates of β and σγ , by
solving the estimating equations

U (s)
1 (β ,σ2

γ ) = 0, and U (s)
2 (β ,σ2

γ ) = 0, (5.74)

jointly. Let β̂ML and σ̂γ,ML denote these maximum likelihood estimates for β and
σγ , respectively.
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Next, we briefly address the issue of estimating the asymptotic covariance matrix
of θ̂ML = (β̂ ′

ML, σ̂γ,ML)′. The asymptotic covariance matrix of θ̂ML is given by

cov(θ̂ML) = limitK→∞{I(θ)}−1, (5.75)

where by standard regularity conditions,

I(θ) =−

[
V11 V12

V22

]
(5.76)

with
V11 = Ey{∂U1(β ,σ2

γ )/∂β
′}, V12 = Ey{∂U1(β ,σ2

γ )/∂σγ},

and
V22 = Ey{∂U2(β ,σ2

γ )/∂σγ},

where U1(β ,σ2
γ ) and U2(β ,σ2

γ ) are the score functions as in (5.71) and (5.72), re-
spectively.

Note that although the I(θ) matrix given by (5.76) requires the computation of
the expectations of the second order derivatives, the existing computer packages
such as SAS program NLMIXED (SAS/STAT User guide, Version 8, Volume 2, p.
2475− 76), however, computes the I(θ) on the basis of the observed information

matrix, which may not be reliable. Here, we compute the I(θ) matrix by using V (s)
11 ,

V (s)
12 , and V (s)

22 for V11, V12,and V22, respectively, where

V (s)
11 =

K

∑
i=1

 1

∑
yi1=0

. . .
1

∑
yini =0

∂{U (s)
1i (β ,σ2

γ )/∂β
′}

 (5.77)

V (s)
12 =

K

∑
i=1

 1

∑
yi1=0

. . .
1

∑
yini =0

∂{U (s)
1i (β ,σ2

γ )/∂σγ}

 (5.78)

V (s)
22 =

K

∑
i=1

 1

∑
yi1=0

. . .
1

∑
yini =0

∂{U (s)
2i (β ,σ2

γ )/∂σγ}

 (5.79)

V (s)
21 = V (s)

12 , (5.80)

where U (s)
1i (β ,σ2

γ ) and U (s)
2i (β ,σ2

γ ) are obtained from U1i(β ,σ2
γ ) and U2i(β ,σ2

γ ) in

(5.71)− (5.72), by using J(s)
i , A(s)

i j , and M(s)
i , for Ji, Ai j, and Mi, respectively.
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5.2.5 Asymptotic Efficiency Comparison

In this section, we provide a numerical comparison among the asymptotic variances
of the IMM, GQL, and ML estimators obtained from (5.40), (5.65), and (5.74),
respectively. The formulas for the asymptotic covariance matrices for these three
estimators are, respectively, given by (5.47), (5.67), and (5.75). As far as the model
is concerned, we have chosen, for example, the same simple binary logistic model
considered in Section 5.2.2.1 [see also Jiang and Zhang (2001, 756−57)]. For con-
venience, we rewrite this model here as

logit{Pr(yi j = 1|γ∗i )}= xiβ +σγ γ
∗
i , (5.81)

where γ
∗
i

iid∼ N(0,1). As in practice cluster sizes are usually small, for example, in
a familial mixed model, family size can be 3 or 4, we choose ni = n = 4, that is,
families each with 4 members, for example. For parameter values, we consider, for
example, two values for the scalar β , namely,

β = 0.0 and 1.0

and some small and large values for σγ as

σγ = 0.5,0.75,1.0,1.25, and 1.5.

As far as the design covariate xi is concerned, we choose

xi =

−1.0, for i = 1, . . . ,K/4
0.0, for i = K/4+1, . . . ,3K/4
1.0 for i = 3K/4+1, . . . ,K.

(5.82)

For family number, we choose K = 500.

5.2.5.1 Asymptotic variance of the IMM Estimator

To compute the asymptotic covariance of the IMM estimator of θ = (β ,σγ)′ by
(5.47), that is,

cov[θ̂IMM] = (B0D)−1B0V ∗B′0{(B0D)−1}′ (5.83)

under the model (5.81), with

B0 =

[
1 0 . . . 0

0 1 . . . 1

]
,

as in Jiang and Zhang (2001), we can use the formulas for D and V ∗ matrices from
(5.42) and (5.43), and obtain
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B0D = n

 ∑K
i=1 xie∗1i ∑K

i=1 xie∗2i

2(n−1)∑K
i=1 e∗3i 2(n−1)∑K

i=1 e∗4i

 , (5.84)

and

B0V ∗B′0 =

∑K
i=1 aix2

i ∑K
i=1 bixi

∑K
i=1 bixi ∑K

i=1 ci

 . (5.85)

Note that the formulas for e∗ri for r = 1, . . . ,4; and for ai, bi, and ci, in terms of eri

for r = 1, . . . ,7; are available from (5.42) and (5.44)− (5.46). For n = 4, it follows
that the formulas for ai, bi, and ci reduce to

ai = 4e1i +12e2i, bi = 24[e3i + e4i], and ci = 4[6e5i +24e6i +6e7i].

Further note that the computations for e1i, . . . ,e7i, and e∗1i, . . . ,e
∗
4i necessary for

the aforementioned computations are done by simulating N values of γ∗i only
once from the N(0,1) distribution. Here we choose N = 5000, a sufficiently large
value for the approximations of the expectations involved in the formulas for
e1i, . . . ,e7i,e∗1i, . . . ,e

∗
4i. Thus, e∗1i, for example, is approximated by

e∗(s)1i = (N)−1
N

∑
w=1

[hi(γ∗iw){1.0−hi(γ∗iw)}]xi

and similarly, e3i, for example, is approximated by

e(s)
3i = [(N)−1

N

∑
w=1

h2
i (γ

∗
iw)][1− (N)−1

N

∑
w=1

hi(γ∗iw)],

where

hi(γ∗iw) =
exp(xiβ +σγ γ∗iw)

1+ exp(xiβ +σγ γ∗iw)
.

The covariance of θ̂IMM is now immediate by using (5.84) and (5.85) in (5.83).

5.2.5.2 Asymptotic Variance of the GQL Estimator

The formula for the asymptotic covariance matrix of θ̂GQL is given by (5.67), that
is,

cov(θ̂GQL) = limitK→∞

[
K

∑
i=1

∂ζ
(s)
i

′

∂θ
ϒ

(s)
i

−1 ∂ζ
(s)
i

∂θ ′

]−1

. (5.86)

To compute this covariance matrix, we need to compute the submatrices in (5.86)
under the model (5.81), for n = 4.

First, the formula for the derivative matrix ∂ζi
′/∂θ is given by
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∂ζi
′

∂θ
=

[
1′4e∗1i 2(1′6e∗3i)

1′4e∗2i 2(1′6e∗4i)

]
, (5.87)

where e∗1i, e∗2i, e∗3i, and e∗4i are defined as in (5.42). Next, recall from (5.63) that

ϒi =

[
Σi Λi

Λ ′
i Ωi

]
. (5.88)

For the present special case, that is, under the model (5.81), with n = 4, the subma-
trices in (5.88) can be computed as

Σi =



ei1 e2i e2i e2i

e1i e2i e2i

e1i e2i

e1

 (5.89)

Λi =



e3i e3i e3i e4i e4i e4i

e3i e4i e4i e3i e3i e4i

e4i e3i e4i e3i e4i e3i

e4i e4i e3i e4i e3i e3i

 , (5.90)

Ωi =



e5i e6i e6i e6i e6i e7i

e5i e6i e6i e7i e6i

e5i e7i e6i e6i

e5i e6i e6i

e5i e6i

e5i


, (5.91)

respectively, where e`i for ` = 1, . . . ,7 are given as in (5.44)− (5.46).
Now by approximating e∗ri (r = 1, . . . ,4) and e`i (` = 1, . . . ,7), by e∗(s)ri and e(s)

`i ,

respectively, one may compute the cov(θ̂GQL) for n = 4 by using the formulas from
(5.87) and (5.88) in (5.86).

5.2.5.3 Asymptotic Variance of the ML Estimator

By (5.75) and (5.76), we write the asymptotic covariance matrix of θ̂ML, as
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cov[θ̂ML] =−

V (s)
11 V (s)

12

V (s)
22

−1

, (5.92)

where V (s)
11 , V (s)

12 , and V (s)
22 , are given by (5.77), (5.78), and (5.79), respectively. To

compute this second-order derivative matrix, for convenience, we rewrite the first-
order derivatives from (5.71) and (5.72), as

U1(β ,σ2
γ ) =

K

∑
i=1

ni

∑
j=1

yi jxi j +
K

∑
i=1

Jiβ

Ji
, and U2(β ,σ2

γ ) =
K

∑
i=1

Jiσγ

Ji
,

respectively, where

Jiβ =
∂Ji

∂β
, and Jiσγ

=
∂Ji

∂σγ

.

It then follows that

V (s)
11 =

K

∑
i=1

Eyi1,...,yini

[
{J(s)

i J(s)
iββ

−{J(s)
iβ }

2}/(J(s)
i )2

]

=
K

∑
i=1

1

∑
yi1=0

. . .
1

∑
yini =0

[
{J(s)

i J(s)
iββ

−{J(s)
iβ }

2}/(J(s)
i )2

]
(5.93)

V (s)
12 =

K

∑
i=1

Eyi1,...,yini

[
{J(s)

i J(s)
iβσγ

− J(s)
iβ J(s)

i,σγ
]/(J(s)

i )2
]

=
K

∑
i=1

1

∑
yi1=0

. . .
1

∑
yini =0

[
{J(s)

i J(s)
iβσγ

− J(s)
iβ J(s)

i,σγ
]/(J(s)

i )2
]

(5.94)

V (s)
22 =

K

∑
i=1

Eyi1,...,yini

[
{J(s)

i J(s)
iσγ σγ

−{J(s)
iσγ
}2}/(J(s)

i )2
]
,

=
K

∑
i=1

1

∑
yi1=0

. . .
1

∑
yini =0

[
{J(s)

i J(s)
iσγ σγ

−{J(s)
iσγ
}2}/(J(s)

i )2
]
, (5.95)

where

Jiββ =
∂Jiβ

∂β ′ , Jiβσγ
=

∂Jiβ

∂σγ

, and Jiσγ σγ
=

∂Jiσγ

∂σγ

.

Note that for the current special case ni = 4, and β is a scalar parameter. The
second-order derivative elements in (5.93)− (5.95) may easily be calculated (see
Exercise 5.2) under the simple logistic model (5.81). One now uses these elements
in (5.92) to obtain the covariance matrix of θ̂ML.
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5.2.5.4 Numerical Comparison

For K = 200 families each containing ni = n = 4 members with covariates given
as in (5.82), we now compute the asymptotic variances for the estimators of β and
σγ by using (5.83), (5.86), and (5.92), under the IMM, GQL, and ML approaches,
respectively. For selected parameter values, these asymptotic variances are shown
in Table 5.1.

Table 5.1 Comparison of asymptotic variances of the IMM, GQL, and ML estimators for the
estimation of regression (β ) and variance component (σγ ) parameters of a simple binary logistic
mixed model, with ni = n = 4 (i = 1, . . . ,K) for K=200.

Regression Asymptotic Variances
Parameter (β ) Method Quantity σγ = 0.25 0.50 0.75 1.00 1.25 1.50

0.0 ML var(β̂ ) 0.0007 0.0008 0.0010 0.0014 0.0017 0.0022
var(σ̂γ ) 0.0003 0.0003 0.0005 0.0007 0.0013 0.0028

GQL var(β̂ ) 0.0108 0.0130 0.0168 0.0220 0.0288 0.0372
var(σ̂γ ) 0.0664 0.0259 0.0205 0.0213 0.0248 0.0305

IMM var(β̂ ) 0.0108 0.0130 0.0168 0.0220 0.0288 0.0372
var(σ̂γ ) 0.4340 0.1684 0.1320 0.1379 0.1646 0.2090

1.0 ML var(β̂ ) 0.0046 0.0028 0.0032 0.0038 0.0045 0.0055
var(σ̂γ ) 0.0134 0.0019 0.0014 0.0016 0.0022 0.0030

GQL var(β̂ ) 0.0143 0.0167 0.0205 0.0260 0.0331 0.0418
var(σ̂γ ) 0.0802 0.0299 0.0228 0.0230 0.0264 0.0320

IMM var(β̂ ) 0.0201 0.0237 0.0293 0.0373 0.0477 0.0604
var(σ̂γ ) 0.5664 0.2078 0.1539 0.1537 0.1778 0.2211

It is clear from the results of Table 5.1 that the ML approach produces the esti-
mates for both β and σγ parameters with uniformly smaller variances than the GQL
and IMM approaches, as expected. For example, when β = 1.0 and σγ = 1.25, the
ML, GQL, and IMM approaches estimate β with variances:

0.0045, 0.0331, and 0477,

respectively, and they estimate σγ with variances:

0.0022, 0.0264, and 0.1778,

respectively. When the GQL and IMM approaches are compared, both of these ap-
proaches appear to estimate β with almost equal variances, the GQL being slightly
better, but for the estimation of σγ , the GQL approach is much more efficient than
the IMM approach. The IMM approach always produces σγ estimates with very
large variance. Thus, this IMM approach cannot be trusted for the estimation of the
variance component of the random effects. Between the ML and GQL approaches,
even though the ML approach is always better than the GQL approach, the vari-
ances of the estimators under these two approaches are not too different. Thus, the
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GQL approach is highly competitive to the optimal ML approach for the estimation
of both parameters. Note, however, that the ML approach is computationally cum-
bersome as compared to the GQL approach. Further note that in the longitudinal
setup, discussed in the next two chapters, it is either impossible or extremely com-
plicated to obtain the ML estimates. This makes the GQL an unified highly efficient
estimation approach in both familial and longitudinal setups.

5.2.6 COPD Data Analysis: A Numerical Illustration

Consider the chronic obstructive pulmonary disease data, previously analyzed by
Cohen (1980), Liang, Zeger, and Qaqish (1992), and Ekholm, Smith, and McDonald
(1995), among others. This dataset contains the IPF (impaired pulmonary function)
status of 203 siblings of 100 COPD patients, along with the information of their
covariates sex, race, age, and smoking status. The IPF status was coded as 0 for a
sibling with IPF, and 1 for a sibling without IPF. The complete COPD data along
with covariate information is found in the appendix in Tables 5A to 5E [see also
Liang et al (1992)], where Table 5A contains the COPD data from the siblings of 48
patients each with one sibling. Table 5B similarly contains the data from the siblings
of COPD patients each with two siblings, and so on. The distribution of the COPD
patients with their sibling sizes is in Table 5.2.

Table 5.2 Summary statistics of COPD patients and their siblings.

Sibling Size
1 2 3 4 6

No. of COPD patients 48 23 17 7 5
Total siblings 48 46 51 28 30

It is of scientific interest to investigate the effects of the covariates: sex, race, age,
and smoking status on the IPF status of the siblings of a COPD patient, after taking
the familial correlations among the responses from the siblings of the same patient,
into account.

Note that Liang, Zeger, and Qaqish (1992) used the fixed binary logistic model
to analyze these COPD data. More specifically, they assume that the probability that
a sibling had IPF satisfies

logit[Pr(yi j = 1)] = xT
i jβ , (5.96)

where for p = 5, β = (β0,β1, . . . ,β4)T with β0 as the intercept and remaining four
components of the β vector representing the effects of the four covariates: sex, race,
smoking status, and age, respectively. As the binary responses of the siblings of a
COPD patient or family are likely to be correlated because of the common family
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effect shared by the siblings, Liang, Zeger, and Qaqish (1992) [see also Ekholm et al.
(1995)] modelled these correlations through pairwise odds ratios across the families
with more than one sibling. But as it is clear from Table 5A (see also Table 5.2) that
48 COPD patients have one sibling each, the pairwise odds ratio approach does not
appear to address the issue of family effects properly. This is because, when there
are at least two siblings in a family, the responses of these siblings get correlated as
they share the common family effect. It does not mean that there is no family effect
on the response of the only sibling in the family. Furthermore, the modelling of the
pairwise odds ratios [of the form exp(α)] considered by Liang, Zeger, and Qaqish
(1992) seems to be arbitrary.

Ekholm, Smith and McDonald (1995) have also analyzed these COPD data.
These authors, unlike Liang, Zeger, and Qaqish (1992) developed a multivariate
binary distribution by modelling the association using certain dependence ratios
defined in terms of the mean parameters. This permits flexible modelling of higher-
order associations, using maximum likelihood estimation. Note, however, that as
there may be many higher-order association parameters depending on the cluster
size, Ekholm et al. (1995) assumed a homogeneous association structure in ana-
lyzing the COPD data, mainly for the reduction of the number of association pa-
rameters, as the estimation of parameters becomes complicated without such as-
sumptions. This assumption of homogeneous association structure also appears to
be arbitrary.

Sutradhar and Mukerjee (2005), unlike Liang, Zeger, and Qaqish (1992) and
Ekholm, Smith, and McDonald (1995), have fitted the binary mixed model (5.1)−
(5.3) to the COPD data. This allows the responses of the siblings in a family of size
more than one to be overdispersed as well as correlated through the random effect of
the family which is shared by all siblings. For the COPD patient with one sibling, the
patient/family effect would cause the overdispersion in the binary responses. Fur-
thermore, the binary mixed model (5.1)− (5.3) would naturally accommodate the
higher-order moments or correlations, as unconditionally, the responses will have
an implicit joint probability distribution.

Note that σ2
γ in (5.3) denotes the variance among the unobserved family effects,

that is, among 100 patients for the COPD data. This parameter representing the
patient effect influences the unconditional mean and variance (5.7)− (5.8) of each
sibling of a patient and it also affects the correlations (5.10) of the responses from
the siblings of the same patient. In (5.7)−(5.8), or equivalently in the model (5.1)−
(5.3), β for the COPD data represents the effects of the covariates of the siblings on
their IPF status. In notation, these covariates are: gender (xi j1)[GR], race (xi j2)[RC],
smoking status (xi j3)[SMO], and age of the sibling (xi j4); and they are coded as
follows:

xi j1 =
{

0 female
1 male

xi j2 =
{

0 white
1 black
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xi j3 =
{

0 nonsmoker
1 smokes

xi j4 = exact age of the individual.

We have also considered an intercept parameter β0 [INTC], and hence the linear
predictor in (5.3) has the form:

ηi j(β ,σγ ,γ
∗
i ) = β0 +β1xi j1 +β2xi j2 +β3xi j3 +β4xi j4 +σγ γ

∗
i ,

leading the probability that a sibling has the IPF disease, as

Pr[Yi j = 1|γ∗i ] =
exp[ηi j(β ,σγ ,γ

∗
i )]

1+ηi j(β ,σγ ,γ∗i )
.

The regression parameters vector β = [β0, β1, β2, β3, β4]′ and the random effects
(of the patients) variance component σγ were estimated by using the ML approach
discussed in Section 5.2.4. Note that to compute the ML estimates we have used the
MM estimates as initial values for the parameters while solving the ML estimating
equations iteratively. For convenience, these MM estimates along with the final ML
estimates are given in Table 5.3. Note that there was no reason to include the IMM
approach in the present analysis as it was shown in the last section that this approach
is asymptotically less efficient than the GQL approach. This, however, indicates that
we could consider the GQL approach in the analysis, but it was also not exploited.
This is because our purpose here is to demonstrate that even though in general the
ML approach is complicated, in the present binary mixed model setup this approach
is, however, manageable.

Table 5.3 Estimates of regression and random family (patient) effects’ variance parameter and
their estimated standard errors for the COPD data.

Parameters
Method INTC GR RC SMO Age σγ

ML Estimate -0.770 -0.802 -0.729 1.007 0.041 1.030
ESE 0.136 0.141 0.191 0.162 0.001 0.494

MM Estimate -1.653 -0.994 -1.072 1.388 0.075 0.902
ESE 0.182 0.230 0.251 0.216 0.001 0.627

We now interpret the ML estimates. First, the high value (1.007) of β̂ML,3 (smok-
ing effect) reveals that smoking has a detrimental effect on the IPF of the siblings.
Furthermore, as the gender and race were coded as 1 for male and black, respec-
tively, the negative values of β̂ML,1 and β̂ML,2, respectively, indicate that males and
black are at more risk of IPF as compared to females and individuals from white
race. Similarly, the positive value of β̂ML,4 indicates that as age increases the risk of
IPF increases too, as expected.

As far as the variance component of the random effects of the COPD patients
is concerned, the estimate for σγ appears to be quite large, indicating that the fa-
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milial correlations cannot be ignored in any inferences for the COPD data. That is,
if the familial correlations are ignored, then one would obtain a misleading mean
(unconditional probability for IPF status) and variance of the data.

5.3 Binary Mixed Models with Multidimensional Random
Effects

Recall from Chapter 4, more specifically from Section 4.3 that there are situations
where familial data may be influenced by multiple random effects. For example,
(1) it was indicated in Section 4.3.1 that the responses of the jth member of the ith
family may be influenced by random family effects as well as by random member
(within a family) effects. Next it was indicated in Section 4.3.2 that (2) there can be
a random family effect for a group of families implying that the whole dataset may
contain multiple random effects depending on the number of groups. Furthermore,
Section 4.3.3 provides details on the inferences for mixed models for count data,
where (3) the response of a member in a given family is influenced by multiple
random family effects that arise from independent sources.

In this section we deal with a binary mixed model with multiple random effects
arising in a multiway factorial design setup. This factorial design set up is similar
but different from the familial setup with multiple random effects considered in
Section 4.3.1. For simplicity we consider two random effects arising in a two-way
factorial design setup. We also discuss a real-life data example from Sutradhar and
Rao (2003) where data are influenced by two random effects due to two factors in a
factorial design setup.

5.3.1 Models in Two-Way Factorial Design Setup and Basic
Properties

Let yi j denote the response due to the ith (i = 1, . . . ,m) level of a factor A, and the
jth ( j = 1, . . . ,n) level of a factor B, say, and xi j be a p× 1 vector of covariates
associated with yi j. Suppose that conditional on the random variables γi and α j, Yi j

follows the binary distribution given by

f (yi j|γi,α j) =
[
{π

∗
i j}yi j{1−π

∗
i j}1−yi j

]
, (5.97)

where

π
∗
i j = Pr[Yi j = 1|γi,α j] =

exp(η∗
i j)

1+ exp(η∗
i j)

with
η
∗
i j(β ,γi,α j) = x′i jβ + γi +α j.
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Further suppose that γi and α j are normally distributed; γi
iid∼ N(0,σ2

γ ) and α j
iid∼

N(0,σ2
α). Also suppose that γi and α j are independent. For

γ
∗
i =

γi

σγ

and α
∗
j =

α j

σα

,

one may then express the linear predictor as

η
∗
i j(β ,γi,α j) = x′i jβ +σγ γ

∗
i +σα α

∗
j . (5.98)

Note that the models in (5.97)− (5.98) may be treated as an extension to the binary
mixed models given by (5.1)− (5.3). However, in the present setup, the levels m
and n are finite. For the asymptotic case, we assume that K = mn→ ∞. This model
(5.97)− (5.98) involving the regression effects β and the two variance components
σ2

γ and σ2
α is referred to as the GLMM (generalized linear mixed models) with two

variance components. Here the scientific interest is to obtain consistent as well as
efficient estimates of the regression effects β , and the variance components σ2

γ and
σ2

α . Note that obtaining the efficient estimates would require the use of correlation
structure of the data.

In the present two-way factorial design setup, the observations are correlated in
two ways. More specifically, at the ith (i = 1, . . . ,m) level of the factor A (say), Yi j

and Yik are independent conditional on γ∗i but unconditionally they are correlated
with correlation ρ(ii) jk, say. Similarly, at the jth j( j = 1, . . . ,n) level of the factor
B (say), Yi j and Yr j are independent conditional on α∗

j but unconditionally they are
correlated with correlation ρ̃ir( j j), say. In general, these correlations ρ(ii) jk and ρ̃ir( j j)
are different. They will be the same in a very special case only when x′i jβ = µ (say)
for all i and j, and also σ2

γ = σ2
α . In Section 5.3.1.2, we provide the formulas for the

two-way covariances (or correlations) in the general case. The formulas for the un-
conditional means and variances are given in Section 5.3.1.1 below. The estimation
of the parameters is discussed in Section 5.3.2.

5.3.1.1 Unconditional Mean

Following Lemma 5.1, the unconditional mean and the variance may be written as

E[Yi j] = πi j(β ,σ2
γ ,σ2

α) =
∫ ∫

π
∗
i j(γ

∗
i ,α∗

j )gN(γ∗i |1)

×gN(α∗
j |1)dγ

∗
i dα

∗
j (5.99)

var[Yi j] = σ(ii)( j j)(β ,σ2
γ ,σ2

α) = πi j(β ,σ2
γ ,σ2

α)(1−πi j(β ,σ2
γ ,σ2

α)), (5.100)

where

π
∗
i j(γ

∗
i ,α∗

j ) =
exp(η∗

i j)
1+ exp(η∗

i j)

with
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η
∗
i j = x′i jβ +σγ γ

∗
i +σα α

∗
i ,

as in (5.97). Note that in the manner similar to that of (5.20), one may evaluate
πi j(β ,σ2

γ ,σ2
α) and σ(ii)( j j)(β ,σ2

γ ,σ2
α), as

π
(s)
i j (β ,σ2

γ ,σ2
α) =

1
N

N

∑
w=1

[π∗i j(γ
∗
iw,α∗

jw)]

σ
(s)
(ii)( j j)(β ,σ2

γ ,σ2
α) = π

(s)
i j (β ,σ2

γ ,σ2
α)[1−π

(s)
i j (β ,σ2

γ ,σ2
α)], (5.101)

where for w = 1, . . . ,N, γ∗iw and α∗
jw, are two sets of values from the same standard

normal distribution.

5.3.1.2 Unconditional Covariances and Correlations in a Two-Way Design
Setup

At a given level i of the factor A, the covariance between two responses at the jth
and kth levels of the factor B may be written as

cov(Yi j,Yik) = λ(ii) jk−πi jπik = σ(ii) jk (say), (5.102)

where λ(ii) jk is given by

λ(ii) jk = E(Yi jYik) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
[π∗i j(γ

∗
i ,α∗

j )π
∗
ik(γ

∗
i ,α∗

k )]

×gN(γ∗i |1)gN(α∗
j |1)gN(α∗

k |1)dγ
∗
i dα

∗
j dα

∗
k , (5.103)

which may be computed by using its simulation version

λ
(s)
(ii) jk = N−1

N

∑
w=1

[π∗i j(γ
∗
iw,α∗

jw)π∗ik(γ
∗
iw,α∗

kw)], (5.104)

generating three sets of standardized normal values γ∗iw, α∗
jw, and α∗

kw, for w =
1, . . . ,N.

Note that we have used a slightly different notation for the raw pairwise product
moment, namely, λ(ii) jk instead of simply λi jk in (5.9). This is because, in the present
two-way design setup, E[Yi jYik] for a given i and the E[Yi jYr j] for a given j do not
have the same interpretation. Thus, at a given level j of the factor B, we write the
covariance between two responses at the ith and rth levels of the factor A, as

cov(Yi j,Yr j) = E(Yi jYr j)−πi jπr j = λir( j j)−πi jπr j = σir( j j) (say), (5.105)

where λir( j j) may be calculated by using the simulated version of λir( j j) given by
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λ
(s)
ir( j j) = N−1

N

∑
w=1

[π∗i j(γ
∗
iw,α∗

jw)π∗r j(γ
∗
rw,α∗

jw)], (5.106)

where, unlike (5.104), a different set of three standardized normal sequences γ∗iw, γ∗rw,
and α∗

jw, for w = 1, . . . ,N, are used.
Once the covariances are computed by (5.102) and (5.105), the respective corre-

lations may easily be computed as

corr[Yi j,Yik] =
σ(ii) jk(β ,σ2

γ ,σ2
α)

[πi j(β ,σ2
γ ,σ2

α)(1−πi j(β ,σ2
γ ))πik(β ,σ2

γ ,σ2
α)(1−πik(β ,σ2

γ ,σ2
α))]1/2

= ρ(ii) jk (say). (5.107)

and

corr[Yi j,Yr j] =
σir( j j)(β ,σ2

γ ,σ2
α)

[πi j(β ,σ2
γ ,σ2

α)(1−πi j(β ,σ2
γ ))πr j(β ,σ2

γ ,σ2
α)(1−πr j(β ,σ2

γ ,σ2
α))]1/2

= ρir( j j) (say). (5.108)

5.3.2 Estimation of Parameters

5.3.2.1 Estimation of Regression Effects β

Let yi = (yi1, . . . ,yi j, . . . ,yik, . . . ,yin)′ be the n-dimensional response vector at the
ith (i = 1, . . . ,m) level of factor A and πi = (πi1, . . . ,πi j, . . . ,πik, . . . ,πin)′ be the
corresponding unconditional mean vector. Use yi and write a stack vector as

y = (y′1, . . . ,y
′
i, . . . ,y

′
r, . . . ,y

′
m)′

of dimension mn×1 which has its mean vector

π = (π ′1, . . . ,π
′
i , . . . ,π

′
r, . . . ,π

′
m)′.

Define the mn×mn covariance matrix of Y as

Σ = (cov[Yi j,Yrk]) =



σ(ii)( j j) for i = r; j = k

σ(ii) jk for i = r; j 6= k

σir( j j) for i 6= r; j = k

0 for i 6= r; j 6= k,

(5.109)
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where the formulas for the variances σ(ii)( j j), and covariances σ(ii) jk and σir( j j), are
given by (5.100), (5.102), and (5.105), respectively.

In order to obtain a consistent as well as efficient estimate for β , we take the two-
way covariances given by (5.109) into account and construct the GQL estimating
equation as

D′
Σ
−1(y−π) = 0, (5.110)

where D = ∂π/∂β ′ is the mn× p first derivative matrix of the stacked mean vec-
tor π with respect to β . Note that the formulas for the elements of the derivative
matrix can be computed by using the general formula, say for the derivative of
πi j(β ,σ2

γ ,σ2
α) with respect to β . This formula is given by

∂πi j(β ,σ2
γ ,σ2

α)
∂β

=
∫ ∫

π
∗
i j(γ

∗
i ,α∗

j )[1−π
∗
i j(γ

∗
i ,α∗

j )]xi j

×gN(γ∗i |1)gN(α∗
j |1)dγ

∗
i dα

∗
j . (5.111)

As indicated before, we now replace the π vector, Σ , and derivative (D) matrices
in (5.110) with their simulated versions π(s), Σ (s), and D(s), respectively, and write
the simulated version of the GQL estimating equation as

D(s)′ {Σ
(s)}−1(y−π

(s)) = 0, (5.112)

which may be solved iteratively by using the Newton−Raphson procedure. Note

that the construction of π(s) follows by using the π
(s)
i j (β ,σ2

γ ,σ2
α) from (5.101). Next,

Σ (s) can be computed by using the formulas for π
(s)
i j (β ,σ2

γ ,σ2
α) from (5.101), and

the formulas for λ
(s)
(ii) jk and λ

(s)
ir( j j), from (5.104) and (5.106), respectively. Similarly,

D(s) is computed by using the simulated version of the formula (5.111) given by

∂π
(s)
i j (β ,σ2

γ ,σ2
α)

∂β
=

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)[1−π
∗
i j(γ

∗
iw,α∗

jw)]xi j. (5.113)

Suppose that β̂GQL denotes the solution of the GQL estimating equation (5.112).
As the GQL estimating equation (5.112) is unbiased for the estimation of β , this
solution β̂GQL is consistent for β . Furthermore, as the estimating equation (5.112)
for β is constructed by taking the two-way correlations of the data into account,
β̂GQL is highly efficient too, the exact maximum likelihood estimator being the most
efficient. The exact maximum likelihood estimation is, however, more complicated
than the present GQL estimation. Furthermore, for K = mn, it may be shown un-
der some mild regularity conditions that K1/2(β̂GQL−β ) has an asymptotic normal
distribution, as K → ∞, with mean zero and a covariance matrix

G1 = K
[
D′

Σ
−1D

]−1
,

that can be computed by
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G(s)
1 = K

[
D(s)′ {Σ

(s)}−1D(s)
]−1

. (5.114)

5.3.2.2 Estimation of the Variance Component σ2
γ Due to Factor A

For i = 1, . . . ,m, let ui(s) = (y2
i1, . . . ,y

2
i j, . . . ,y

2
in)

′ be the n-dimensional vector of
squares of the elements of yi and ui(p) = (yi1yi2, . . . ,yi jyik, . . . ,yi,n−1yin)′ be the n(n−
1)/2-dimensional vector of cross-products for all n responses under the ith level of
factor A. Furthermore, let si = (u′i(s),u

′
i(p))

′ be the n(n+1)/2-dimensional combined

vector of squares and products. Note that because ui(s) = (y2
i1, . . . ,y

2
i j, . . . ,y

2
in)

′ ≡ yi =
(yi1, . . . ,yi j, . . . ,yin)′ for the binary data, we use the basic statistic si given by

si = [y′i,u
′
i(p)]

′ (5.115)

and its properties to develop the desired GQL estimating equation for σ2
γ .

Let λ ∗
i denote the expectation of si. Because E[Yi j] = πi j(β ,σ2

γ ,σ2
α) as in (5.99)

and E[Yi jYik] = λ(ii) jk(β ,σ2
γ ,σ2

α) by (5.102), we can write

E[Si] = λ
∗
i = [π ′i ,λ

′
(ii)]

′ : n(n+1)/2×1, (5.116)

where

πi = [πi1, . . . ,πi j, . . . ,πin]′

λ(ii) = [λ(ii)12, . . . ,λ(ii) jk, . . . ,λ(ii)(n−1)n]
′. (5.117)

In addition, we construct a stacked vector

s = (s′1, . . . ,s
′
i, . . . ,s

′
r, . . . ,s

′
m)′ : mn(n+1)/2×1.

Let

λ
∗ = E[S] = [λ ∗′

1, . . . ,λ
∗′

i, . . . ,λ
∗′

r, . . . ,λ
∗′

m]′ : mn(n+1)/2×1 (5.118)

Ω
∗ = cov[S]

=



cov(S1) . . . cov(S1,S′i) . . . cov(S1,S′r) . . . cov(S1,S′m)

...
...

...
. . .

...
. . .

...
cov(Si,S′1) . . . cov(Si) . . . cov(Si,S′r) . . . cov(Si,S′m)

...
...

...
. . .

...
. . .

...
cov(Sm,S′1) . . . cov(Sm,S′i) . . . cov(Sm,S′r) . . . cov(Sm)
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=



Ω ∗
11 . . . Ω ∗

1i . . . Ω ∗
1r . . . Ω ∗

1m

...
...

...
. . .

...
. . .

...
Ω ∗

i1 . . . Ω ∗
ii . . . Ω ∗

ir . . . Ω ∗
im

...
...

...
. . .

...
. . .

...
Ω ∗

m1 . . . Ω ∗
mi . . . Ω ∗

mr . . . Ω ∗
mm


, (5.119)

where

Ω
∗
ii =

 cov(Yi) cov(Yi,U ′
i(p))

cov(Ui(p))


=

Σ ∗
ii,11 Σ ∗

ii,12

Σ ∗
ii,22

 (say), (5.120)

and for i 6= r,

Ω
∗
ir =

 cov(Yi,Y ′
r ) cov(Yi,U ′

r(p))

cov(Ur(p))


=

Σ ∗
ir,11 Σ ∗

ir,12

Σ ∗
ir,22

 (say). (5.121)

Next, let B∗ = ∂λ ∗/∂σ2
γ be the ((mn(n+1))/2)×1 vector of first derivatives of

the elements of λ ∗. It then follows that the GQL estimating equation for σ2
γ is given

by
B∗′Ω ∗−1(s−λ

∗) = 0. (5.122)

Note, however, that as the components of the λ ∗ vector and Ω ∗ and B∗ matrices
involve integrations over the distributions of the random effects, which are not easy
to evaluate, we use their simulated approximations, namely λ ∗(s), Ω ∗(s), and B∗(s),
and rewrite the GQL estimating equation (5.122) for σ2

γ as

B∗(s)
′
{Ω

∗(s)}−1(s−λ
∗(s)) = 0. (5.123)

Suppose that σ̂ 2
γ,GQL is the solution of the estimating equation (5.123) for σ2

γ . By

arguments similar to those for β̂GQL obtained from (5.112), this solution σ̂2
γ,GQL ob-

tained from the GQL estimating equation (5.123) is a consistent estimator for σ2
γ ,

and it is also efficient. Note that we still need to compute Ω ∗(s) for (5.123), which
is given below. Furthermore, the formulas for the elements of the B∗ = ∂λ ∗/∂σ2

γ
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matrix are available in Exercise 5.3.

Construction of Ω ∗(s):
The construction of the Ω ∗(s) matrix requires the formulas for the Ω ∗

ii
(s) (5.120) and

Ω ∗
ir

(s) matrices. We first provide the formulas for the component matrices for Ω ∗
ii

(s).

Formulas for the elements of Ω ∗
ii

(s)

Construction of Σ
∗(s)
ii,11 : n×n

Σ
∗(s)
ii,11 = (cov[Yi j,Yik]) =

σ
(s)
(ii)( j j) = π

(s)
i j [1−π

(s)
i j ] for j = k

σ
(s)
(ii) jk = λ

(s)
(ii) jk−π

(s)
i j π

(s)
ik for j 6= k,

(5.124)

where π
(s)
i j and λ

(s)
(ii) jk are given in (5.101) and (5.104), respectively.

Construction of Σ
∗(s)
ii,12 : n×n(n−1)/2

Σ
∗(s)
ii,12 = (cov[Yi j,YikYi`]) =


λ

(s)
(ii) j`−π

(s)
i j [λ (s)

(ii) j`] for j = k

λ
(s)
(ii) jk−π

(s)
i j [λ (s)

(ii) jk] for j = `

δ
(s)
(ii) jk`−π

(s)
i j [λ (s)

(ii)k`] for j 6= k; j 6= `,

(5.125)

where

δ
(s)
(ii) jk` =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗ik(γ
∗
iw,α∗

kw)π∗i`(γ
∗
iw,α∗

`w).

Construction of Σ
∗(s)
ii,22 : n(n−1)/2×n(n−1)/2

Σ
∗(s)
ii,22 = (cov[Yi jYik,Yi`Yiv]) =



λ
(s)
(ii) jk− [λ (s)

(ii) jk]
2 for j = `;k = v

δ
(s)
(ii) jkv− [λ (s)

(ii) jk][λ
(s)
(ii) jv] for j = `;k 6= v

δ
(s)
(ii) jk`− [λ (s)

(ii) jk][λ
(s)
(ii) j`] for j = v;k 6= `

φ
(s)
(ii) jk`v− [λ (s)

(ii) jk][λ
(s)
(ii)`v] for j 6= `;k 6= v,

(5.126)

where

φ
(s)
(ii) jk`v =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗ik(γ
∗
iw,α∗

kw)π∗i`(γ
∗
iw,α∗

`w)π∗iv(γ
∗
iw,α∗

vw).

Formulas for the elements of Ω ∗
ir

(s) for i 6= r

Construction of Σ
∗(s)
ir,11 : n×n
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Σ
∗(s)
ir,11 = (cov[Yi j,Yrk]) =

σ
(s)
ir( j j) = λ

(s)
ir( j j)−π

(s)
i j π

(s)
r j for j = k

σ
(s)
(ir) jk = 0 for j 6= k,

(5.127)

where π
(s)
i j and λ

(s)
ir( j j) are given in (5.101) and (5.106), respectively.

Construction of Σ
∗(s)
ir,12 : n×n(n−1)/2

Σ
∗(s)
ir,12 = (cov[Yi j,YrkYr`]) =


δ

(s)
(irr) j j`−π

(s)
i j [λ (s)

(rr) j`] for j = k

δ
(s)
(irr) jk j −π

(s)
i j [λ (s)

(rr) jk] for j = `

0 for j 6= k; j 6= `,

(5.128)

where

δ
(s)
(irr) j j` =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗r j(γ
∗
rw,α∗

jw)π∗r`(γ
∗
rw,α∗

`w),

and

δ
(s)
(irr) jk j =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗rk(γ
∗
rw,α∗

kw)π∗r j(γ
∗
rw,α∗

jw).

Construction of Σ
∗(s)
ir,22 : n(n−1)/2×n(n−1)/2

Σ
∗(s)
ir,22 = (cov[Yi jYik,Yr`Yrv]) =



φ
(s)
(iirr) jk jk− [λ (s)

(ii) jkλ
(s)
(rr) jk] for j = `;k = v

φ
(s)
(iirr) jk jv− [λ (s)

(ii) jk][λ
(s)
(rr) jv] for j = `;k 6= v

φ
(s)
(iirr) jk j`− [λ (s)

(ii) jk][λ
(s)
(rr) j`] for j = v;k 6= `

0 for j 6= `;k 6= v,
(5.129)

where, for example,

φ
(s)
(iirr) jk jk =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗ik(γ
∗
iw,α∗

kw)π∗r j(γ
∗
rw,α∗

jw)π∗rk(γ
∗
rw,α∗

kw).

We now turn back to the properties of σ̂2
γ,GQL obtained from (5.123). For K = mn,

under mild regularity conditions, it may be shown that as K →∞, K1/2(σ̂2
γ,GQL−σ2

γ )
has asymptotically a univariate normal distribution with mean zero and the variance
that may be computed by

G(s)
2 = K[{B∗(s)

′
}{Ω

∗(s)}−1{B∗(s)}]−1. (5.130)
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5.3.2.3 Estimation of the Variance Component σ2
α Due to Factor B

Note that the variance component of the factor B is usually referred to as the vari-
ance component of the column effects. To estimate this variance component, as men-
tioned earlier, we now exploit the combined vector of squares and pairwise products
of the observations recorded under the columns, whereas σ2

γ was computed in Sec-
tion 5.3.2.2 by utilizing responses recorded under the rows. To be specific, use the
responses of the jth ( j = 1, . . . ,n) column and define

s̃ j = (ũ′j(s), ũ
′
j(p))

′, (5.131)

where
ũ j(s) = (y2

1 j, . . . ,y
2
i j, . . . ,y

2
m j)

′

and
ũ j(p) = (y1 jy2 j, . . . ,yi jyr j, . . . ,ym−1, jym j)′.

Note that for the present binary case, the vector statistic in (5.131) is equivalent to

s̃ j = (ỹ′j, ũ
′
j(p))

′, (5.132)

where ỹ j = [y1 j, . . . ,yi j, . . . ,ym j]′.
Let λ̃i denote the expectation of s̃ j. Because E[Yi j] = πi j(β ,σ2

γ ,σ2
α) as in (5.99)

and E[Yi jYr j] = λir( j j)(β ,σ2
γ ,σ2

α) by (5.105), we can write

E[S̃ j] = λ̃ j = [π̃ ′j, λ̃
′
( j j)]

′ : m(m+1)/2×1, (5.133)

where

π̃ j = [π1 j, . . . ,πi j, . . . ,πm j]′

λ̃( j j) = [λ12( j j), . . . ,λir( j j), . . . ,λ(m−1)m( j j)]
′. (5.134)

Furthermore, we construct a stacked vector

s̃ = (s̃′1, . . . , s̃
′
i, . . . , s̃

′
r, . . . , s̃

′
n)
′ : nm(m+1)/2×1.

Let

λ̃ = E[S̃] = [λ̃ ′
1, . . . , λ̃

′
i , . . . , λ̃

′
r , . . . , λ̃

′
n]
′ : nm(m+1)/2×1 (5.135)

Ω̃ = cov[S̃]
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=



cov(S̃1) . . . cov(S̃1, S̃′j) . . . cov(S̃1, S̃′k) . . . cov(S̃1, S̃′n)

...
...

...
. . .

...
. . .

...
cov(S̃ j, S̃′1) . . . cov(S̃ j) . . . cov(S̃ j, S̃′k) . . . cov(S̃ j, S̃′n)

...
...

...
. . .

...
. . .

...
cov(S̃n, S̃′1) . . . cov(S̃n, S̃′j) . . . cov(S̃n, S̃′k) . . . cov(S̃n)



=



Ω̃11 . . . Ω̃1 j . . . Ω̃1k . . . Ω̃1n

...
...

...
. . .

...
. . .

...
Ω̃ j1 . . . Ω̃ j j . . . Ω̃ jk . . . Ω̃ jn

...
...

...
. . .

...
. . .

...
Ω̃n1 . . . Ω̃n j . . . Ω̃nk . . . Ω̃nn


, (5.136)

where

Ω̃ j j =

 cov(Ỹj) cov(Ỹj,Ũ ′
j(p))

cov(Ũ j(p))


=

[
Σ̃ j j,11 Σ̃ j j,12

Σ̃ j j,22

]
(say), (5.137)

and for j 6= k,

Ω̃ jk =

 cov(Ỹj,Ỹ ′
k) cov(Ỹj,Ũ ′

k(p))

cov(Ũk(p))


=

[
Σ̃ jk,11 Σ̃ jk,12

Σ̃ jk,22

]
(say). (5.138)

Let B̃ = ∂ λ̃/∂σ 2
α be the ((nm(m+1))/2)× 1 vector of first derivatives of the

elements of λ̃ . It then follows that the GQL estimating equation for σ2
α is given by

B̃′Ω̃−1(s̃− λ̃ ) = 0. (5.139)

In the manner similar to that of (5.123), we may now rewrite the GQL estimating
equation (5.139) for σ2

α as

B̃(s)′ {Ω̃
(s)}−1(s̃− λ̃

(s)) = 0. (5.140)
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Suppose that σ̂2
α,GQL is the solution of the estimating equation (5.140) for σ2

α . By

arguments similar to those for β̂GQL obtained from (5.112), this solution σ̂2
α,GQL

obtained from the GQL estimating equation (5.140) is a consistent estimator for σ2
α ,

and it is also efficient.
As far as the asymptotic distribution of σ̂2

α,GQL is concerned, one may obtain

this in a manner similar to that of σ̂2
γ,GQL. More specifically, similar to (5.130),

for K = mn, under mild regularity conditions, it may be shown that as K → ∞,

K
1
2 (σ̂2

α,GQL − σ2
α) has asymptotically a univariate normal distribution with mean

zero and the variance that may be computed by

G(s)
3 = K[{B̃(s)′ }{Ω̃

(s)}−1{B̃(s)}]−1. (5.141)

Note that the estimating equation (5.140) and the asymptotic distribution of
σ̂2

α,GQL in (5.141) still require the formulas for Ω̃ (s) and B̃ = ∂ λ̃/∂σ2
α . The for-

mulas for the elements of the derivative matrix B̃(s) are available from Exercise 5.4,
whereas we provide the formulas for the elements of Ω̃ (s) matrix as follows.

Construction of Ω̃ (s)

The construction of the Ω̃ (s) matrix requires the formulas for the Ω̃
(s)
j j (5.137) and

Ω̃
(s)
jk (5.138) matrices. We first provide the formulas for the component matrices for

Ω̃
(s)
j j .

Formulas for the elements of Ω̃
(s)
j j

Construction of Σ̃
(s)
j j,11 : m×m

Σ̃
(s)
j j,11 = (cov[Yi j,Yr j]) =

σ
(s)
(ii)( j j) = π

(s)
i j [1−π

(s)
i j ] for i = r

σ
(s)
ir( j j) = λ

(s)
ir( j j)−π

(s)
i j π

(s)
r j for i 6= r,

(5.142)

where π
(s)
i j and λ

(s)
ir( j j) are given in (5.101) and (5.106), respectively.

Construction of Σ̃
(s)
j j,12 : n×m(m−1)/2

Σ̃
(s)
j j,12 = (cov[Yi j,Yr jYu j]) =


λ

(s)
iu( j j)−π

(s)
i j [λ (s)

iu( j j)] for r = i

λ
(s)
ir( j j)−π

(s)
i j [λ (s)

ir( j j)] for u = i

δ
(s)
iru( j j)−π

(s)
i j [λ (s)

ru( j j)] for r 6= i;u 6= i,

(5.143)

where

δ
(s)
iru( j j) =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗r j(γ
∗
rw,α∗

jw)π∗u j(γ
∗
uw,α∗

jw).
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Construction of Σ̃
(s)
j j,22 : m(m−1)/2×m(m−1)/2

Σ̃
(s)
j j,22 = (cov[Yi jYr j,Yu jYz j]) =



λ
(s)
ir( j j)− [λ (s)

ir( j j)]
2 for i = u;r = z

δ
(s)
irz( j j)− [λ (s)

ir( j j)][λ
(s)
iz( j j)] for i = u;r 6= z

δ
(s)
iru( j j)− [λ (s)

ir( j j)][λ
(s)
iu( j j)] for i = z;r 6= u

φ
(s)
iruz( j j)− [λ (s)

ir( j j)][λ
(s)
uz( j j)] for i 6= u;r 6= z,

(5.144)
where

φ
(s)
iruz( j j) =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗r j(γ
∗
rw,α∗

jw)π∗u j(γ
∗
uw,α∗

jw)π∗z j(γ
∗
zw,α∗

jw).

Formulas for the Elements of Ω̃
(s)
jk for j 6= k

Construction of Σ̃
(s)
jk,11 : m×m

Σ̃
(s)
jk,11 = (cov[Yi j,Yrk]) =

σ
(s)
ii( jk) = λ

(s)
ii( jk)−π

(s)
i j π

(s)
ik for i = r

σ
(s)
ir( jk) = 0 for i 6= r,

(5.145)

where π
(s)
i j and λ

(s)
ii( jk) ≡ λ

(s)
(ii) jk are given in (5.101) and (5.104), respectively.

Construction of Σ̃
(s)
jk,12 : m×m(m−1)/2

Σ̃
(s)
jk,12 = (cov[Yi j,YrkYuk]) =


δ

(s)
iiu( jkk)−π

(s)
i j [λ (s)

iu(kk)] for r = i

δ
(s)
iir( jkk)−π

(s)
i j [λ (s)

ir(kk)] for u = i

0 for i 6= r; i 6= u,

(5.146)

where

δ
(s)
iiu( jkk) =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗ik(γ
∗
iw,α∗

kw)π∗uk(γ
∗
uw,α∗

kw),

and

δ
(s)
iir( jkk) =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗rk(γ
∗
rw,α∗

kw)π∗ik(γ
∗
iw,α∗

kw).

Construction of Σ̃
(s)
jk,22 : m(m−1)/2×m(m−1)/2
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Σ̃
(s)
jk,22 = (cov[Yi jYr j,YukYzk]) =



φ
(s)
irir( j jkk)− [λ (s)

ir( j j)λ
(s)
ir(kk)] for u = i;z = r

φ
(s)
iriz( j jkk)− [λ (s)

ir( j j)][λ
(s)
iz(kk)] for u = i;z 6= r

φ
(s)
irui( j jkk)− [λ (s)

ir( j j)][λ
(s)
iu(kk)] for z = i;r 6= u

0 for i 6= u;r 6= z,
(5.147)

where, for example,

φ
(s)
irir( j jkk) =

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗r j(γ
∗
rw,α∗

jw)π∗ik(γ
∗
iw,α∗

kw)π∗rk(γ
∗
rw,α∗

kw).

5.3.2.4 Computational Steps

Note that the GQL estimators β̂GQL, σ̂2
γ,GQL, and σ̂2

α,GQL for β , σ2
γ , and σ2

α are the
solutions of the estimating equations (5.112), (5.123), and (5.140), respectively. We
obtain these solutions, based on a three-step procedure given below.

Step 1. For suitable initial values of σ2
γ and σ2

α , we solve the estimating equation
(5.112) for β , by using the iterative equation

β̂GQL(t +1) = β̂GQL(t)+
[
D(s)′ {Σ

(s)}−1D(s)
]−1

t

×
[
D(s)′ {Σ

(s)}−1(y−µ
(s))
]

t
, (5.148)

where β̂GQL(t) denotes the quasi-likelihood estimate of β at the tth iteration, and [ ]t
denotes that the expression within the brackets is evaluated at β = β̂GQL(t).

Step 2. For the initial value of σ2
α used in step 1, and for the estimate of β ob-

tained from step 1, we now solve the GQL estimating equation (5.123) for σ2
γ by

using the iterative formula

σ̂
2
γ,GQL(t +1) = σ̂

2
γ,GQL(t)+

[
B∗(s)

′
{Ω

∗(s)}−1{B∗(s)}
]−1

t

×
[
B∗(s)

′
{Ω

∗(s)}−1(s−λ
∗(s))

]
t
, (5.149)

where [ ]t denotes that the expression within the brackets is evaluated at σ2
γ =

σ̂2
γ,GQL(t).

Step 3. By using the estimates of β and σ2
γ obtained from steps 1 and 2, respec-

tively, we solve the GQL estimating equation (5.140) iteratively for σ2
α , by using

the Newton−Raphson iterative formula

σ̂
2
α,GQL(t +1) = σ̂

2
α,GQL(t)+

[
B̃(s)′ {Ω̃

(s)}−1{B̃(s)}
]−1

t
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×
[
B̃(s)′ {Ω̃

(s)}−1(s̃− λ̃
(s))
]

t
, (5.150)

where [ ]t denotes that the expression within the brackets is evaluated at σ2
α =

σ̂2
α,GQL(t).

Next the estimates of σ2
γ and σ2

α obtained from steps 2 and 3 are used in step
1 to obtain a new β estimate. This improved β estimate and the estimate of σ2

α

obtained from step 3 are then used in step 2 to obtain an improved estimate of
σ2

γ . Similarly, the improved estimates of β and σ 2
γ are used in step 3 to obtain an

improved estimate of σ2
α . This cycle of iterations continues until convergence of all

three estimates. The final solutions are denoted by β̂GQL, σ̂2
γ,GQL, and σ̂2

α,GQL for β ,

σ2
γ , and σ2

α , respectively.

5.3.3 Salamander Mating Data Analysis

5.3.3.1 Data Description

The salamander mating data were recorded from three experiments involving two
geographically isolated populations of salamanders, Rough Butt (RB) and White
Side (WS). Altogether 10 RB males (RBM) and 10 WS males (WSM) were se-
questered as pairs with 10 RB females (RBF) and 10 WS females (WSF) on six
occasions according to a design given in McCullagh and Nelder [1989, Table 14.3].
For each pair, it was recorded whether mating occurred. All 40 animals mentioned
above were used in each of three experiments, one conducted in the summer of 1986
and two in the fall of the same year, but the animals used in the first fall experiment
were identical to those used in the summer experiment. This certainly introduces
longitudinal correlations between the binary responses (1 for occurrence of mating
and 0 for nonoccurrence) repeatedly collected from each fixed pair of animals over
two time points. Kuk (1995), for illustration, analyzed the mating data from the
summer experiment only. Some authors such as Karim and Zeger (1992), Breslow
and Clayton (1993), and Lin and Breslow (1996), analyzed the data from each of the
three experiments separately as well as the pooled data, where pooling was done ig-
noring the longitudinal dependence among the summer and the first fall data. Thus,
to avoid any problems that may be caused by the longitudinal dependence, Sutradhar
and Rao (2003) analyzed the data for 40 animals from the summer and the second
fall experiments. For convenience, we reproduce here the data used by Sutradhar
and Rao (2003). This reproduction is shown in Figure 5.1, where the symbol ‘∗′ in-
dicates that the mating occurred and the ‘◦′ indicates that the mating did not occur.
Note that in preparing Figure 5.1, we have reorganized the data from Table 14.3 of
McCullagh and Nelder (1989) slightly so that the covariate values corresponding to
a given response are easily recognized.
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Fig. 5.1 Salamander mating data for summer and second fall experiments.

5.3.3.2 Binary Mixed Model for Salamander Data

For the data analysis, we have considered yi j as the binary response for the mating
of the ith female with the jth male (i, j = 1, . . . ,40), and x′i j = [xi j1,xi j2,xi j3,xi j4] be
the corresponding 1×4 covariate vector, with

xi j1 = 1 for all i,j

xi j2 =
{

1 if the ith female belongs to WS group for any j
0 otherwise

xi j3 =
{

1 if the jth male belongs to the WS group for any i
0 otherwise

and xi j4 = xi j2xi j3. The effects of these covariates are denoted by β ′ = [β1,β2,β3,β4].
Also note that as each animal was sequestered as pairs with six animals of the op-
posite sex, the six responses from these six animals will be structurally correlated
as these responses are generated due to the common effect of the individual animal
of the opposite sex. This common effect is considered to be a random effect in the
present approach, and it is denoted by γi for the ith individual female, and by α j
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for the jth individual male. These random effects are assumed to have normal dis-
tributions with mean 0 and variances σ2

γ and σ2
α , respectively. Consequently, in the

notation of Section 5.3.1, one may write

E(Yi j|γ∗i ,α∗
j ) = π

∗
i j(γ

∗
i ,α∗

j ) =
exp(x′i jβ +σγ γ∗i +σα α∗

j )
1+ exp(x′i jβ +σγ γ∗i +σα α∗

j )
, (5.151)

with γ∗i = γi/σγ and α∗
j = α j/σα .

5.3.3.3 Model Parameters Estimation and Interpretation

In connection with the estimation of the regression and the variance components
of the present binary mixed model, some authors have used the method of mo-
ments. For example, we refer to the original analysis in McCullagh and Nelder
(1989). The moment estimates in McCullagh and Nelder, in particular, the esti-
mates of the variance components are, however, not consistent. See Kuk (1995,
p. 404) for some discussions in this regard. As far as the regression estimates are
concerned, they may or may not be consistent depending on the design matrix and
sample size. But these estimates would be inefficient as the moment approach ig-
nores the structural correlations among the responses in constructing the estimating
equations for these parameters. Schall (1991), Breslow and Clayton (1993), Kuk
(1995), and Lin and Breslow (1996) utilize these structural correlations indirectly,
as they obtain the estimates of the regression and variance components, parameters
by using the estimates of the random effects γi and α j. More specifically, Schall
(1991) and Breslow and Clayton (1993) [see also McGilchrist (1994)] consider cer-
tain adjustment to the asymptotically biased and inconsistent best linear unbiased
prediction (BLUE) estimates for β and the random effects, and then estimate the
variance components by using normal theory procedures. These estimators, how-
ever, still exhibit considerable bias particularly with regard to the variance compo-
nents. Kuk (1995) and Lin and Breslow (1996) proposed independently certain bias
correction procedures, but these procedures are known to be satisfactory for small
values of the variance components or they produce large standard errors yielding
large mean squared errors. As opposed to these procedures, Jiang (1998) introduced
a simulated moment approach which always yields consistent estimators for the
parameters of the mixed model. But as discussed in Section 5.2.5.4 in connection
with a binary mixed model with a single component of dispersion, these moment
estimates can be seriously inefficient. It was also shown that the GQL approach pro-
duces highly efficient estimates, the ML approach being optimal. Note, however,
that in the present two-way factorial design setup, the ML inferences are extremely
complicated. We, therefore, follow Sections 5.3.2.1 to 5.3.2.3, and obtain the GQL
estimates for the parameters in (5.151). To be more specific, we now apply the three-
step GQL estimation approach given in Section 5.3.2.4, to the salamander data set
presented in Figure 5.1 for the estimation of the regression effects as well as the
variance components of the female and male random effects. With initial values of
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β1 = 0.02, β2 = 0.10, β3 =−0.03, β4 = 0.04, σ2
γ = 0.5, and σ2

α = 0.5,
a cyclical operation of the iterative equations (5.148), (5.149), and (5.150) yields the
estimates along with their standard errors as shown in Table 5.4. In the same table,
we also reproduce the so-called Gibbs estimates from Karim and Zeger (1992), and
the PQL estimates from Lin and Breslow (1996).

Table 5.4 Estimates of regression (β ) and variance components of the female (σ2
γ ) and male (σ2

α )
random effects and their estimated standard errors for the salamander data.

Parameters
Method β1 β2 β3 β4 σ2

γ σ2
α

GQL Estimate 1.32 -3.25 -0.65 3.65 2.37 1.28
ESE 1.13 0.99 0.48 0.93 0.72 0.51

PQL Estimate 0.68 -2.16 -0.49 2.65 0.99 0.81
ESE 0.37 0.55 0.43 0.64 - -

Gibbs Estimate 1.03 -3.01 -0.69 3.74 1.50 1.38
ESE 0.43 0.60 0.50 0.68 - -

Note that the standard errors of the variance component estimates for the PQL
and Gibbs approaches were not available, whereas under the GQL approach, they
were computed by using the standard formulas developed in (5.130) for the estimate
of σ2

γ , and in (5.141) for the estimate of σ2
α . Further note that the GQL estimates of

these variance components are quite different than those of Lin and Breslow (1996)
and Karim and Zeger (1992).

With regard to the estimation of the regression parameters, the GQL estimates
appear to be similar to Gibbs regression estimates of Karim and Zeger (1992), but
standard errors are different. We must, however, caution the readers that the GQL
estimates reported in Table 5.4 are in fact not directly comparable with the estimates
of Karim and Zeger, and Lin and Breslow. This is because the latter authors have
analyzed the pooled data (by pooling the summer, fall 1, and fall 2 data), whereas
Sutradhar and Rao (2003) have analyzed the summer and fall 2 data only, in order to
avoid longitudinal dependence of the summer and fall 1 data, as mentioned before.

Turning back to the GQL estimates, it is clear that the second and the fourth co-
variates appear to be highly significant. As β̂2 is negative, the mating occurrence rate
for WSF appears to be small. This means that RBF has a larger mating occurrence
rate as compared to the WSF. As the standard errors of the estimates of β̂1 (intercept
parameter) and β̂3 appear to be relatively large as compared to their values, these
covariates do not appear to be highly significant. A moderately negative large value
of β̂3 = −0.65, nevertheless, indicates that RBM has a larger mating occurrence
rate as compared to the WSM. Thus, in general, the salamanders from Rough Butt
appear to have more mating occurrence rates as compared to the salamanders from
White Side. But, the highly positive interaction (as compared to its standard error)
indicates that the WSF and WSM have more mating occurrences among themselves.
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Finally, a larger value of σ̂2
γ as compared to the value of σ̂2

α indicates that ir-
respective of the locations, female salamanders appear to have high variability in
matings as compared to the male salamanders.

5.4 Semiparametric Approach

Consider the binary mixed model (5.1)−(5.3) and assume that the binary responses
for the members of a given family are influenced by a random family effect, but
unlike in Sections 5.1− 5.3, we assume that the distribution of the random effects
from independent families is unknown. Instead, the moments of the random effects
γi(i = 1, . . . ,K) up to order four are known and they are given by

Eγ
r
i = δr(σ2

γ ) =
r

∑
s=1

cr,sσ
r+1−s
γ , for r = 1, . . . ,4, (5.152)

and

Eγ
r
i = o(σ r

γ ), for r ≥ 5,

where cr,s are suitable known constants for r = 1, . . . ,4.

5.4.1 GQL Estimation

By using the general exponential family density

f (yi j|ηi j) = exp[{yi jηi j −a(ηi j)}+b(yi j)],

with ηi j = θi j +zi1γi, and θi j = x′i jβ , it was shown in Section 4.4.2 how to construct
the estimating equation for the regression effect β , when σγ is assumed to be known.
To be specific, as it was given in Section 4.4.2, the estimating equation for β is given
by

K

∑
i=1

∂M′
i,1

∂β
M−1

i,2 (yi−Mi,1) = 0, (5.153)

where Mi,1 is the mean vector defined as

Mi,1 = [Mi1,1, . . . ,Mi j,1, . . . ,Mini,1]
′,

with

Mi j,1 = E[Yi j] = a′i j +
σ2

γ

2
z2

i1a′′′i j +
δ3(σ2

γ )
6

z3
i1aIV

i j +
δ4(σ2

γ )
24

z4
i1aV

i j,
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as in (4.131), and the covariance matrix Mi,2 can be computed by (4.134) and
(4.135). Note that these mean vectors and covariance matrix may now easily be
computed for the binary case by using the appropriate formula for a′i j and further
derivatives. In the binary case

a′i j(ηi j) =
exp(ηi j)

1+ exp(ηi j)
= mi j (say). (5.154)

One may, consequently, derive the formulas for the higher-order derivatives up to
order six as follows. Note that these formulas are needed to compute M′

i,1 and Mi,2

for the construction of the estimating equation (5.153). The formulas are:

a′′i j = mi j(1−mi j)

a′′′i j = a′′i j[1−2mi j]

aIV = a′′i j[1−6mi j +6m2
i j]

aV = a′′′i j [1−12mi j +12m2
i j]

aV I = aIV
i j [1−12mi j +12m2

i j]−12{a′′′i j}2. (5.155)

As far as the derivative ∂M′
i,1/∂β is concerned, it has the same formula as in the

Poisson case (see Section 4.4.2). For convenience, we rewrite the formula as

∂M′
i,1/∂β =

wi1x′i1
...
winix

′
ini

=


wi1 0 · · · 0

0 wi2 · · · 0
...

...
...

0 0 · · · wini

Xi

= WiXi, (say),

where Xi = [xi1, . . . ,xi j, . . . ,xini ]
′, and Wi = diag[wi1, . . . ,wi j, . . . ,wini , ] with

wi j =

[
a′′i j +

σ2
γ

2
z2

i1aIV
i j +

δ 3(σ2
γ )

6
z3

i1aV
i j +

δ4(σ2
γ )

24
z4

i1aV I
i j

]
.

Let β̂GQL,SP be the GQL estimator of β obtained by solving (5.153). It can be
shown that asymptotically (as K → ∞), for known σ2

γ , the GQL estimator β̂GQL,SP

follows the multivariate Gaussian distribution with mean β and the covariance ma-
trix given by

cov(β̂GQLSP) = limitK→∞

[
K

∑
i=1

∂M′
i,1

∂β
M−1

i,2
∂Mi,1

∂β ′

]−1

. (5.156)
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5.4.2 A Marginal Quasi-Likelihood (MQL) Approach

Recall that the PQL approach suggested by Breslow and Clayton (1993) may yield
inconsistent estimates, specially for σ2

γ . Apart from PQL, these authors also have
discussed a MQL approach which appears to be solving an estimating equation sim-
ilar to (5.52) for the regression parameters. Under the normality assumption (same

as for (5.52)) for the random effects, that is, γi
iid∼ N(0,σ2

γ ), they have used an ap-
proximation to the mean vector πi and the covariance matrix Σi. Thus, the estimate
of β is bound to be worse or the same, in the sense of consistency and efficiency,
as compared to the exact GQL estimate obtained from (5.52). In the next section,
following Sutradhar and Rao (2001), we evaluate the performance of the MQL es-
timate of β with that of the semiparametric approach based estimate obtained from
(5.153).

We now turn to the approximation of the mean vector and covariance matrix,
used by Breslow and Clayton (1993) to construct the MQL estimating equation.

Approximation to the Mean Vector π and the Covariance Matrix Σi

Following Zeger et al. (1988), Breslow and Clayton (1993) approximated the mean
vector πi by

p∗i = (p∗i1, . . . , p∗i j, . . . , p∗ini
)′,

where

p∗i j = 1/[1+ exp{−c′i jx
′
i jβ}], (5.157)

with ci j = (1 + c2σ2
γ )−1/2, and c = 16(31/2)/15π . Similarly, the covariance matrix

of yi, that is, Σi, was approximated by

Σ
∗
i = Vi0 +σ

2
γ Vi0UniVi0, (5.158)

where Uni is the ni×ni unit matrix and

Vi0 = diag[pi1(γi = 0)qi1(γi = 0), . . . , pini(γi = 0)qini(γi = 0)],

with pi j(γi) = 1/[1+ exp{−x′i jβ − γi}] and qi j(γi) = 1− pi j(γi).

MQL Estimating Equation for β

Now by using p∗i for πi, and Σ ∗
i for Σi, into (5.52), one writes the MQL estimating

equation for β as
K

∑
i=1

∂ p∗
′

i

∂β
Σ
∗
i
−1(yi− p∗i ) = 0. (5.159)
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Let β̂MQL denote the estimate of β in this approach. Similar to (5.53), it then
follows that K1/2(β̂MQL−β ) is asymptotically multivariate normal with zero mean
vector and covariance matrix V ∗

β
, which may be consistently estimated by

V̂ ∗
β

= lim
K→∞

K

[
K

∑
i=1

P∗i Σ
∗−1

i P∗
′
i

]−1

β̂MQL

, (5.160)

where P∗i = X ′
i M∗

i C∗
i , with

M∗
i = diag[p∗i1q∗i1, . . . , p∗i jq

∗
i j, . . . , p∗ini

q∗ini
] and C∗

i = diag[ci1, . . . ,cini ].

5.4.3 Asymptotic Efficiency Comparison: An Empirical Study

Note that the GQL estimating equation (5.153) is developed based on the assump-
tion that the distribution of the random effect is unknown but its moments up to
order four are known. Now to compare the efficiency of the normality based MQL
estimates from (5.159) with that of the estimates from (5.153), we use the moments
for normal distribution into (5.153). Thus, we put

δ1(σ2
γ ) = 0, δ2(σ2

γ ) = 1, δ3(σ2
γ ) = 0, and δ4(σ2

γ ) = 3σ
4
γ

to construct the GQL estimating equation (5.153), and then calculate the asymptotic
covariance of β̂GQL by (5.156). Under the MQL approach we compute the asymp-
totic covariance of β̂MQL by (5.160).

Now, to compute the relative efficiency of the MQL estimate for the uth (u =
1, . . . , p) regression component to the corresponding GQL estimate, we evaluate

reff(β̂u(MQL)) = vGQL(u,u)/vMQL(u,u), (5.161)

where vGQL(u,u) and vMQL(u,u) are the uth diagonal elements of the covariance
matrices, cov(β̂GQL) (5.156) and cov(β̂MQL) (5.160), respectively. In order to see
how relative efficiency can vary with regard to the change in σ2

γ values, we have

computed the relative efficiency of β̂MQL by (5.161) for two design matrices with
ni = 6 and p = 2 for i = 1, . . . ,100. The two covariates under the first design (D1)
were chosen as

xi j1 = 1 for j = 1, . . . ,6; i = 1, . . . ,100;

xi j2 = 1/ j for j = 1, . . . ,6; i = 1, . . . ,100;

and under the second design (D2), they were:
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xi j1 = 1 for j = 1, . . . ,6; i = 1, . . . ,100;

xi j2 =



−1 for j = 1, . . . ,3; i = 1, . . . ,50

0 for j = 4, . . . ,6; i = 1, . . . ,50

−1 for j = 1,2; i = 51, . . . ,100

0 for j = 3,4; i = 51, . . . ,100

1 for j = 5,6; i = 51, . . . ,100.

The relative efficiencies are reported in Table 5.5.

Table 5.5 Percentage relative efficiency of β̂MQL = (β̂1(MQL), β̂2(MQL))′ to the GQL estimator

β̂GQL = (β̂1(GQL), β̂2(GQL))′ for selected values of σ2
γ , and β1, β2.

Values of σ2
γ

Regression Relative
Design Coefficient Efficiency of 0.10 0.20 0.30 0.50 0.70 0.90

D1 β1 = 1,β2 =−1 β̂1(MQL) 99 98 97 95 94 93
β̂2(MQL) 99 98 97 95 93 91

β1 = 0.25,β2 = 0.25 β̂1(MQL) 99 98 96 93 88 82
β̂2(MQL) 99 98 97 94 92 89

β1 = 0.25,β2 =−0.25 β̂1(MQL) 99 98 97 92 87 81
β̂2(MQL) 99 98 97 94 91 87

D2 β1 = 1,β2 =−1 β̂1(MQL) 99 99 98 97 96 95
β̂2(MQL) 99 99 98 97 95 92

β1 = 0.25,β2 = 0.25 β̂1(MQL) 99 97 95 89 81 73
β̂2(MQL) 99 98 97 94 91 88

β1 = 0.25,β2 =−0.25 β̂1(MQL) 99 97 94 88 81 72
β̂2(MQL) 99 98 97 94 91 87

It is clear from the table that although the efficiency loss by the MQL approach
is negligible for small values of σ2

γ ≤ 0.3, the relative efficiency may, however, be
quite low: as 72% for the intercept parameter and 87% for the slope parameter for
σ2

γ = 0.9 under D2. Under both designs, the relative efficiencies of the regression
estimators appear to get smaller as σ2

γ gets larger, the situation being worse under D2

as compared to D1 for the intercept parameter. Under both designs, the efficiency
loss appears to be significant even for moderate values of σ2

γ such as σ2
γ = 0.5,

and 0.7. These relative efficiency results, therefore, indicate that the GQL approach
leads to better regression estimates as compared to the MQL approaches, such as
the MQL approach discussed in Breslow and Clayton (1993).

For the estimation of σ2
γ in the semiparametric approach, similar to the Poisson

case, we refer to Sutradhar and Rao [2001, Section 4], among others.
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5.5 Monte Carlo Based Likelihood Estimation

The computations for the Monte Carlo approach for the binary data are quite similar
to those for the Poisson data discussed in Section 4.5. The only difference is that for
the binary case one now uses the conditional density

f (yi j|γi,β ) = exp[{yi jηi j −a(ηi j)}+b(yi j)], (5.162)

with a(ηi j) = log[1+exp(ηi j)], where ηi j = θi j + zi1γi, with θi j = x′i jβ . This yields
the likelihood for the data as

L(β ,σ2
γ ) =

∫
Π

K
i=1 f (yi|γi)gN(γi|σ2

γ )dγi, (5.163)

where f (yi|γi) = Π
ni
j=1 f (yi j|γi), with f (yi j|γi) as in (5.162). One may then de-

velop the Monte Carlo expectation-maximization (MCEM) approach for the binary
data by replacing f (γi|yi) in Section 4.5.1 with binary density based f (γi|yi) from
(5.163). In the same way, one may use the binary density based f (γi|yi) in Section
4.5.2 and develop the Monte Carlo Newton−Raphson (MCNR) approach for the
binary data. With regard to the Monte Carlo expectation based Newton−Raphson
iterative equation for the estimate of β , one now needs to use

β
(r+1) = β

(r) +E[
K

∑
i=1

X ′
i Ai(γi,β

(r))Xi]−1E[
K

∑
i=1

X ′
i {yi−π

∗
i (γi,β

(r))}|y], (5.164)

where
π
∗
i (γi,β

(r)) = [π∗i1(γi,β
(r)), . . . ,π∗i j(γi,β

(r)), . . . ,π∗ini
(γi,β

(r))]′

and

Ai(γi,β
(r)) = diag[π∗i1(γi,β

(r)){1−π
∗
i1(γi,β

(r))}, . . . ,π∗i j(γi,β
(r)){1−π

∗
i j(γi,β

(r))},

. . . ,π∗ini
(γi,β

(r)){1−π
∗
ini

(γi,β
(r))}], (5.165)

with

π
∗
i j(γi,β ) =

exp(x′i jβ + γi)
1+ exp(x′i jβ + γi)

.

Exercises

5.1. (Section 5.2.1) [Alternative expression for MM equations]
Write the moment equations in (5.28) and (5.29) as
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K

∑
i=1

(wi−ξi) = 0,

where wi = [w′
i1,wi2]′ and ξi = [ξ ′i1,ξi2]′, with

wi1 =
ni

∑
j=1

xi jyi j, wi2 =

(
ni

∑
j=1

yi j

)2

,

and

ξi1 =
ni

∑
j=1

xi jπ
(s)
i j (β ,σ2

γ ), ξi2 =

[
ni

∑
j=1

π
(s)
i j (β ,σ2

γ )+2
ni

∑
j<k

λ
(s)
i jk (β ,σ2

γ )

]
.

One then obtains the MM estimate of θ = [β ′,σ2
γ ]′ by using the Gauss−Newton

iterative equation

θ̂MM(r +1) = θ̂MM(r)+
[

∂ ∑K
i=1 ξ ′i

∂θ

]−1

r
[

K

∑
i=1
{wi−ξi}]r, (5.166)

where []r denotes that the expression within the square bracket is evaluated at θ =
θ̂MM(r), the estimate obtained for the rth iteration. It may then be shown that this
moment estimator has the asymptotic variance given by

var(θ̂MM) = limitK→∞

[
∂ ∑K

i=1 ξ ′i
∂θ

]−1 K

∑
i=1

Vi

[
∂ ∑K

i=1 ξ ′

∂θ

]−1

, (5.167)

where Vi = var[Wi− ξi] = var(Wi). Verify that this asymptotic variance is the same
as the asymptotic variance given in (5.36).

5.2. (Section 5.2.5.3) [Aids to compute the elements of the information matrix in
(5.92) under a special binary case]
For the binary logistic probability given by (5.81), and for yi· = ∑ni

j=1 yi j with ni = 4,
show that

J(s)
i = N−1

N

∑
w=1

exp(γ∗iwσγ yi·)(1+ exp(xiβ +σγ γ
∗
iw))−4, (5.168)

J(s)
iβ = −4N−1xi

N

∑
w=1

exp{xiβ + γ
∗
iwσγ(1+ yi·)}

×(1+ exp(xiβ +σγ γ
∗
iw))−5, (5.169)

J(s)
iββ

= N−1x2
i

N

∑
w=1

exp{xiβ + γ
∗
iwσγ(1+ yi·)}(1+ exp(xiβ +σγ γ

∗
iw))−6
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×[4{4exp(xiβ +σγ γ
∗
iw)−1}], (5.170)

J(s)
iσγ

= N−1
N

∑
w=1

γ
∗
iw exp{γ

∗
iwσγ yi·}(1+ exp(xiβ +σγ γ

∗
iw))−5

×
[
yi·+ exp{xiβ + γ

∗
iwσγ}(yi· −4)

]
, (5.171)

J(s)
iβσγ

= N−1xi

N

∑
w=1

γ
∗
iw exp{xiβ + γ

∗
iwσγ(1+ yi·)}(1+ exp(xiβ +σγ γ

∗
iw))−6

×
[
4{exp(xiβ +σγ γ

∗
iw)(4− yi·)− (yi·+1)}

]
, (5.172)

and

J(s)
iσγ σγ

= N−1
N

∑
w=1

γ
∗2

iw exp{xiβ + γ
∗
iwσγ(1+ yi·)}(1+ exp(xiβ +σγ γ

∗
iw))−6

×
[
{yi·+ exp(xiβ +σγ γ

∗
iw)(4− yi·)}{exp(−xiβ −σγ γ

∗
iw)−4}

+(yi· −4)(1+ exp(−xiβ −σγ γ
∗
iw)
]
. (5.173)

5.3. (Section 5.3.2.2) [Derivative matrix for the GQL estimating equation (5.123)]
Verify that the ((mn(n+1))/2)× 1 derivative matrix B∗(s) in (5.123) can be com-
puted by exploiting the formulas for the derivatives of two general elements

π
(s)
i j (β ,σ2

γ ,σ2
α) and λ

(s)
ii jk(β ,σ2

γ ,σ2
α)

in (5.101) and (5.104), respectively, with respect to σ2
γ . Also verify that these deriva-

tives are given by

∂π
(s)
i j (β ,σ2

γ ,σ2
α)

∂σ2
γ

=
1

2σγ

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)[1−π
∗
i j(γ

∗
iw,α∗

jw)],

for i = 1, . . . ,m, j = 1, . . . ,n, and

∂λ
(s)
(ii) jk(β ,σ2

γ ,σ2
α)

∂σ2
γ

=
1

2σγ

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗ik(γ
∗
iw,α∗

kw)

×[2−π
∗
i j(γ

∗
iw,α∗

jw)−π
∗
ik(γ

∗
iw,α∗

kw)],

for i = 1, . . . ,m, j < k, j,k = 1, . . . ,n.

5.4. (Section 5.3.2.3) [Derivative matrix for the GQL estimating equation (5.141)]
Verify that the ((nm(m+1)/2)×1 derivative matrix B̃(s) in (5.141) can be computed
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by exploiting the formulas for the derivatives of two general elements π
(s)
i j (β ,σ2

γ ,σ2
α)

in (5.101) and λ
(s)
ir( j j)(β ,σ2

γ ,σ2
α) in (5.106), with respect to σ2

α . Also verify that these
derivatives are given by

∂π
(s)
i j (β ,σ2

γ ,σ2
α)

∂σ2
α

=
1

2σα

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)[1−π
∗
i j(γ

∗
iw,α∗

jw)],

for i = 1, . . . ,m, j = 1, . . . ,n, and

∂λ
(s)
ir( j j)(β ,σ2

γ ,σ2
α)

∂σ2
α

=
1

2σα

1
N

N

∑
w=1

π
∗
i j(γ

∗
iw,α∗

jw)π∗r j(γ
∗
rw,α∗

jw)

×[2−π
∗
i j(γ

∗
iw,α∗

jw)−π
∗
r j(γ

∗
rw,α∗

jw)],

for j = 1, . . . ,n, i < r, i,r = 1, . . . ,m.
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Appendix

Tables 5A−5E: COPD data. [Code: column 1 (C1)-Sibling identification; C2-IPF
status (1 for without IPF, 0 for with IPF); C3-Intercept; C4-Gender (1 for male, 0

for female); C5-Race (1 for black, 0 for white); C6-Age (centered at 50) ;
C7-Smoking status (1 for smoking, 0 for nonsmoking)].
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Table 5A. COPD data from the siblings of 48 patients each with one sibling.

C1 C2 C3 C4 C5 C6 C7
10005 0 1 1 0 -6 1
10007 0 1 1 1 9 1
10023 0 1 1 1 7 0
10024 0 1 1 1 -3 0
10031 1 1 1 0 11 0
10032 0 1 0 1 -23 0
10033 0 1 0 0 4 1
10040 0 1 1 0 -14 1
10041 1 1 0 0 -2 0
10050 0 1 0 1 -10 0
10053 0 1 1 0 -19 0
10063 0 1 1 0 3 1
10068 0 1 1 0 -4 1
10069 0 1 0 1 -12 0
10081 0 1 0 0 10 1
10088 0 1 1 0 -34 1
10091 1 1 1 1 15 0
10102 0 1 1 0 -12 0
10105 0 1 0 0 4 0
10113 1 1 1 1 13 0
10117 0 1 0 1 -37 0
10124 0 1 0 0 4 1
10130 1 1 0 0 1 1
10134 0 1 1 0 2 1
10137 1 1 0 0 0 0
10141 1 1 1 0 6 0
10155 0 1 1 1 -7 1
10160 0 1 1 1 23 0
10162 1 1 1 0 2 1
10173 0 1 0 1 4 0
10189 0 1 1 0 0 0
10196 0 1 1 1 -22 0
10198 0 1 1 0 -33 0
10202 0 1 1 0 13 1
10204 0 1 1 1 -9 0
10212 0 1 0 0 11 0
10213 1 1 0 1 14 1
10198 0 1 1 0 -33 0
10202 0 1 1 0 13 1
10204 0 1 1 1 -9 0
10212 0 1 0 0 11 0
10213 1 1 0 1 14 1
10220 0 1 1 1 6 1
10230 0 1 0 1 0 0
10235 1 1 1 1 0 1
10237 0 1 1 0 -10 1
10249 0 1 1 0 -6 1
10252 1 1 1 1 8 1
10255 1 1 1 0 -5 1
10260 0 1 0 0 -10 0
10263 0 1 0 0 -5 0
10264 1 1 0 0 -5 1
15001 0 1 1 1 -28 1
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Table 5B. COPD data from the siblings of 23 patients each with two siblings.

C1 C2 C3 C4 C5 C6 C7
10009 1 1 0 0 11 1
10009 0 1 1 0 14 0
10010 0 1 1 0 10 1
10010 0 1 1 0 9 1
10011 1 1 0 0 9 0
10011 0 1 1 0 7 1
10058 0 1 0 1 1 1
10058 0 1 1 1 5 0
10074 0 1 0 0 -2 0
10074 0 1 1 0 -6 0
10078 0 1 0 1 -19 0
10078 0 1 1 1 -23 1
10084 0 1 1 0 -16 1
10084 0 1 1 0 -22 1
10089 1 1 1 0 8 1
10089 1 1 1 0 2 1
10092 0 1 1 0 -36 0
10092 0 1 1 0 -39 0
10138 0 1 0 0 1 0
10138 0 1 1 0 4 1
10151 0 1 0 0 -8 0
10151 0 1 1 0 -17 0
10154 0 1 0 0 -4 0
10154 0 1 1 0 1 0
10166 1 1 0 0 -8 0
10166 0 1 1 0 7 0
10178 0 1 0 0 5 0
10178 0 1 1 0 10 1
10186 0 1 1 0 -10 1
10186 0 1 1 0 -13 1
10200 1 1 0 1 5 0
10200 0 1 1 1 16 1
10203 0 1 0 1 1 0
10203 0 1 0 1 -4 0
10226 0 1 0 1 -11 1
10226 0 1 1 1 -1 1
10231 0 1 0 1 -34 0
10231 0 1 1 1 -33 0
10241 1 1 0 0 -8 1
10241 0 1 1 0 1 0
10250 0 1 1 1 4 1
10250 0 1 1 1 -4 0
10254 1 1 0 1 7 1
10254 0 1 1 1 19 0
10257 1 1 1 1 18 1
10257 0 1 1 1 -1 0
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Table 5C. COPD data from the siblings of 17 patients each with 3 siblings.

C1 C2 C3 C4 C5 C6 C7
10016 1 1 0 0 22 0
10016 0 1 0 0 5 0
10016 0 1 1 0 12 0
10018 0 1 0 1 3 0
10018 1 1 1 1 11 1
10018 0 1 1 1 6 0
10061 0 1 0 0 9 0
10061 1 1 0 0 7 0
10061 1 1 1 0 5 0
10083 1 1 0 1 5 1
10083 0 1 0 1 2 1
10083 0 1 1 1 11 1
10098 1 1 0 0 4 0
10098 1 1 1 0 12 0
10098 1 1 1 0 5 1
10128 1 1 0 1 -2 0
10128 0 1 0 1 -3 1
10128 1 1 1 1 3 0
10136 0 1 0 0 -1 1
10136 0 1 1 0 -7 0
10136 0 1 1 0 -16 1
10140 0 1 0 0 10 1
10140 0 1 0 0 1 1
10140 0 1 1 0 6 0
10153 0 1 0 1 1 1
10153 0 1 1 1 2 0
10153 0 1 1 1 -4 0
10159 1 1 0 0 5 0
10159 0 1 0 0 2 0
10159 0 1 1 0 7 1
10168 1 1 0 0 -9 1
10168 1 1 1 0 -11 1
10168 1 1 1 0 -13 1
10185 0 1 0 0 15 0
10185 0 1 1 0 6 0
10185 1 1 1 0 3 0
10188 0 1 0 0 -37 0
10188 0 1 0 0 -38 0
10188 0 1 1 0 -34 0
10192 0 1 0 1 12 1
10192 0 1 0 1 7 0
10192 0 1 0 1 5 1
10207 1 1 0 0 10 0
10207 0 1 0 0 -5 0
10207 1 1 1 0 8 0
10210 0 1 0 1 -7 0
10210 0 1 1 1 18 1
10210 1 1 1 1 5 1
10229 0 1 1 0 2 0
10229 1 1 1 0 -1 0
10229 0 1 1 0 -4 0
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Table 5D. COPD data from the siblings of 7 patients each with four siblings.

C1 C2 C3 C4 C5 C6 C7
10028 0 1 0 1 8 0
10028 0 1 0 1 1 0
10028 0 1 0 1 -3 1
10028 0 1 1 1 -12 1
10039 0 1 0 0 -2 1
10039 0 1 0 0 -4 0
10039 1 1 0 0 -6 1
10039 0 1 0 0 -9 0
10051 1 1 0 0 2 1
10051 0 1 1 0 10 0
10051 0 1 1 0 -2 0
10051 1 1 1 0 -4 1
10090 0 1 0 1 -18 0
10090 0 1 0 1 -19 0
10090 0 1 0 1 -25 0
10090 0 1 1 1 -27 0
10209 0 1 0 1 -11 1
10209 0 1 1 1 -5 0
10209 0 1 1 1 -8 0
10209 0 1 1 1 -19 1
10242 0 1 0 1 0 1
10242 0 1 0 1 -7 1
10242 0 1 0 1 -7 1
10242 1 1 1 1 -4 1
10251 0 1 0 0 9 0
10251 1 1 0 0 4 0
10251 0 1 1 0 6 0
10251 0 1 1 0 -1 0
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Table 5E. COPD data from the siblings of 5 patients each with six siblings.

C1 C2 C3 C4 C5 C6 C7
10003 1 1 0 1 8 1
10003 1 1 0 1 5 1
10003 0 1 0 1 -9 1
10003 1 1 1 1 9 1
10003 0 1 1 1 2 1
10003 1 1 1 1 -6 1
10022 0 1 0 0 -8 0
10022 0 1 0 0 -10 0
10022 0 1 1 0 10 1
10022 0 1 1 0 6 1
10022 0 1 1 0 2 0
10022 0 1 1 0 -3 1
10095 1 1 0 1 -13 1
10095 1 1 0 1 -21 1
10095 0 1 1 1 -8 1
10095 0 1 1 1 -11 1
10095 0 1 1 1 -22 1
10095 0 1 1 1 -24 0
10158 1 1 0 0 -12 0
10158 1 1 0 0 -15 1
10158 1 1 1 0 4 1
10158 1 1 1 0 -5 0
10158 1 1 1 0 -6 1
10158 1 1 1 0 -9 1
10169 1 1 0 0 0 1
10169 1 1 0 0 -4 1
10169 1 1 0 0 -6 0
10169 0 1 1 0 7 0
10169 0 1 1 0 2 1
10169 0 1 1 0 -1 1



Chapter 6
Longitudinal Models for Count Data

In longitudinal studies for count data, a small number of repeated count responses
along with a set of multidimensional covariates are collected from a large number
of independent individuals. For example, in a health care utilization study, the num-
ber of visits to a physician by a large number of independent individuals may be
recorded annually over a period of several years. Also, the information on the co-
variates such as gender, number of chronic conditions, education level, and age, may
be recorded for each individual. For i = 1, . . . ,K, and t = 1, . . . ,T, let yit denote the
count response and xit = (xit1, . . . ,xit p)′ denote the p-dimensional covariate vector
collected at time point t from the ith individual. Let β be the effect of xit on yit .
Note that because yi1, . . . ,yit , . . . ,yiT are T repeated count responses from the same
individual, it is most likely that they are autocorrelated. The scientific concern is
to find β , the effects of the covariates on the repeated count responses, after taking
their autocorrelations into account.

Note that there are situations in practice, where the covariates of the ith individual
may be time independent. We denote such covariates by x̃i = (xi1, . . . ,xip)′. This is
a simpler special case of the general situation with time-dependent covariates xit . In
Section 6.1, we provide the marginal distributional properties of the count response
variable Yit under the general situation when corresponding covariates are time de-
pendent. For simplicity, Section 6.2 discusses the estimation of β by pretending
that the repeated count responses are independent, even though in reality they are
autocorrelated. In Section 6.3, we provide several autocorrelation structures for the
repeated count data for the special case with time-independent covariates. A unified
generalized quasi-likelihood (GQL) approach is discussed in Section 6.4 for the es-
timation of the regression effects β after taking the stationary correlations of the
data into account.

Note that stationary autocorrelation models can be generalized to the nonstation-
ary cases in various ways. We consider two types of nonstationary models. First,
we consider a class of nonstationary autocorrelation models where all models pro-
duce the same specified marginal mean and variance functions. These models are
given in Section 6.5. The same section also contains the estimating equation for β

after taking the nonstationary correlations into account. Second, in Section 6.6, we
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demonstrate that the stationary autocorrelation models discussed in Section 6.3 may
be generalized to a nonstationary class of models where these models may produce
different marginal means and variances along with different correlation structures.
The inferences for the regression effects β , after taking the nonstationary correla-
tion structure of the repeated data into account are discussed in details, including the
model misspecification effects. Note that in the stationary case, model selection is
not necessary for the estimation of the regression effects, whereas model selection
becomes an important issue in the nonstationary case. This model selection problem
is also discussed in Section 6.6 for the second type of nonstationary autocorrelation
models. A data example is considered in Section 6.7 to illustrate both correlation
model selection and estimation of the parameters.

6.1 Marginal Model

Suppose that each of the count response variables Yi1, . . . ,Yit , . . . ,YiT for the ith
(i = 1, . . . ,K) follows the well-known Poisson distribution with a suitable mean
parameter. Let µit = exp(x′itβ ) denote the mean of the Poisson distribution for Yit .
In the form of exponential density, one may then write the marginal distribution of
Yit as

f (yit) = exp[{yitθit −a(θit)}+b(yit)] (6.1)

[Nelder and Wedderburn (1972)], with

θit = x′itβ , ;a(θit) = exp(θit), and b(yit) = log(
1

yit !
).

We denote this marginal Poisson distribution as Yit ∼ Poi(µit). For an auxiliary pa-
rameter s, by using the moment generating function (m.g.f.) of Yit [see (4.9), also
Exercise (4.5)] given by

MYit (s) = E[exp(sYit)] = exp[a(s+θit)−a(θit)], (6.2)

one may obtain the basic properties such as the first four moments of the marginal
distribution (6.1) as in the following lemma.

Lemma 6.1 The first four moments of Yit under the exponential family density
(6.1) are given by

µit = [Yit ] = a′(θit)

σitt = var[Yit ] = a′′(θit)

δ̃itt = E[Yit −µit ]3 = a′′′(θit)

φ̃itttt = E[Yit −µit ]4 = a′′′′(θit)+3σ
2
itt , (6.3)



6.2 Marginal Model Based Estimation of Regression Effects 183

where a′(θit), a′′(θit), a′′′(θit), and a′′′′(θit) are, respectively, the first−, second−,
third−, and the fourth-order derivatives of a(θit) with respect to θit .

In the present longitudinal setup, the repeated count responses yi1, . . . ,yit , . . . ,yiT

are most likely to be correlated, and these correlations, unlike the familial correla-
tions developed through random effects in Chapter 4, should reflect the time effects.
Some suitable modelling for this type of time effects based correlations is discussed
in Section 6.3 for the cases when covariates are stationary (i.e., time independent),
and in Sections 6.5 and 6.6 when covariates are nonstationary (i.e., time dependent).
Note that if one is, however, interested to obtain only a consistent estimate for β as
opposed to a consistent as well as efficient estimate, then, the repeated responses
may be treated as independent and the marginal distribution (6.1) or the marginal
properties in Lemma 6.1 may be exploited to construct suitable estimating equations
to achieve such a goal. In the following section, we discuss three standard marginal
model based estimation techniques that use either the marginal density in (6.1) or
only the first two moments from Lemma 6.1.

6.2 Marginal Model Based Estimation of Regression Effects

Method of Moments (MM): Irrespective of the cases whether the repeated counts
yi1, . . . ,yit , . . . ,yiT are independent or autocorrelated, one may always obtain the mo-
ment estimate of β by solving the moment equation

K

∑
i=1

T

∑
t=1

[xit(yit −a′(θit))] = 0, (6.4)

where a′(θit)= µit = exp(x′itβ ) for Poisson yit . By writing yi =(yi1, . . . ,yit , . . . ,yiT )′ :
T ×1; µi = (µi1, . . . ,µit , . . . ,µiT )′ : T ×1; and Xi = (xi1, . . . ,xit , . . . ,xiT )′ : T × p, the
moment equation (6.4) may be re-expressed as

K

∑
i=1

[X ′
i (yi−µi)] = 0. (6.5)

Let the moment estimator of β , the root of the moment equation (6.5), be denoted
by β̂M. This root may be obtained by using the iterative equation

β̂M(r +1) = β̂M(r)+

[
K

∑
i=1

X ′
i AiXi

]−1

(r)

[
K

∑
i=1

X ′
i (yi−µi)

]
(r)

, (6.6)

where Ai = diag[a′′(θit)] = diag[σitt ], and [·](r) denotes that the expression within

the brackets is evaluated at β = β̂M(r), the rth iterative value for β̂M. Note that be-
cause (6.5) is an unbiased estimating equation for the zero vector, β̂M is a consistent
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estimator. Furthermore, because K individuals are chosen independently, by using
multivariate central limit theorem [Mardia, Kent and Bibby (1979, p. 51)] it follows
from (6.6) that K

1
2 (β̂M−β ) is asymptotically multivariate Gaussian with zero mean

vector and covariance matrix VM given by

VM = limitK→∞K

[
K

∑
i=1

X ′
i AiX

]−1[ K

∑
i=1

X ′
i A1/2

i CiA
1/2
i Xi

][
K

∑
i=1

X ′
i AiX

]−1

, (6.7)

where Ci is the true correlation matrix of yi, which may be unknown. This covariance
matrix VM may, however, be estimated by using the sandwich type estimator

V̂M = limitK→∞K

[
K

∑
i=1

X ′
i AiXi

]−1[ K

∑
i=1

X ′
i (yi−µi)(yi−µi)′Xi

][
K

∑
i=1

X ′
i AiXi

]−1

(6.8)
[see for example, Liang and Zeger (1986, p. 15)].

Quasilikelihood (QL) Method : Note that when there is a functional relationship
between the mean and the variance of the response, Wedderburn (1974) [see also
McCullagh (1983)] proposed a QL approach for independent data which exploits
both mean and the variance in estimating the regression effects β . The QL estimat-
ing equation for β is given by

K

∑
i=1

T

∑
t=1

[
∂a′(θit)

∂β

(yit −a′(θit))
var(yit)

] = 0, (6.9)

where the var(Yit) = a′′(θit) is a function of the mean parameter a′(θit) = µit . In the
Poisson case, for example,

var(Yit) = a′′(θit) = a′(θit) = µit = exp(x′itβ ).

Notice that there is no difference between this QL estimating equation (6.9) and the
MM estimating equation (6.4).

We remark, however, that as opposed to the independence case, in a practical
situation one would also exploit the correlation properties of the repeated responses
in generalizing the QL estimating equation (6.9), but the MM approach will still use
the estimating equation (6.5). Thus, in the longitudinal setup, the generalized QL
approach will yield a different estimate for β than the MM approach.

Marginal Likelihood (ML) Method: It is true that the repeated counts

yi1, . . . ,yit , . . . ,yiT

are autocorrelated. If the correlations are, however, ignored, that is, the repeated
responses are treated to be independent, then one may maximize the marginal like-
lihood function to obtain an independence assumption based ‘working’ likelihood
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estimate of β . By (6.1), the log of the marginal likelihood function of β is given by

logL(β ) =
K

∑
i=1

T

∑
t=1

[yitθit −a(θit)+b(yit)], (6.10)

yielding the likelihood equation for β as

∂ logL
∂β

=
K

∑
i=1

T

∑
t=1

[yit −a′(θit)]
∂θit

∂β
= 0. (6.11)

Because, θit = x′itβ , this likelihood equation is the same as the MM equation (6.4).
Thus it is clear that all three approaches, namely, the MM, QL and ML methods
yield the same estimate for β . All three approaches yield a consistent estimate for
this regression effect.

6.3 Correlation Models for Stationary Count Data

Note that a marginal model based estimation approach may not yield an efficient
regression estimate. Obtaining an efficient estimate will require exploitation of the
joint probability or correlation model for the repeated count data. In this section, we
discuss this issue, for a simpler situation when covariates of an individual are time
independent. Note that this situation can arise in some longitudinal studies such as
in a longitudinal clinical study where, for example, the number of weekly asthma
attacks is recorded as the responses over a small period such as four weeks of time.
Here, it is likely that the covariate information such as gender, education level, and
number of other chronic diseases of the individual will remain the same for each
week for the duration of the study over four weeks. This is, however, true that the
repeated responses will still be correlated due to the influence of time, the time being
a stochastic factor. In the end, it is of main interest to find the effects of the covariates
on the responses after taking the correlations of the responses into account.

Recall that x̃i = (xi1, . . . ,xip)′ denote the time-independent covariate vector for
the ith individual. For this time-independent covariate, the mean and the variance of
yit may be written, following Lemma 6.1, as

E[Yit ] = var[Yit ] = µ̃i = exp(x̃′iβ ), (6.12)

yielding the mean vector and the diagonal matrix of the variances as

µi = µ̃i1, Ai = diag(σitt) = diag(µ̃i), (6.13)

where 1 is the T ×1 unit vector.
As far as the correlation structures for the repeated counts yi1, . . . ,yiT are con-

cerned, it was speculated in some of the original studies such as in Liang and Zeger
(1986) that the correlations of the repeated data may follow Gaussian type such as
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autoregressive order 1 (AR(1)), moving average order (1) (MA(1)), or exchangeable
(equicorrelations) correlation structures. But, as it is not easy to know the underlying
true correlation structure, these authors have used a ‘working’ correlation structure
based generalized estimating equations (GEE) approach for the efficient estimation
of the regression effects. We discuss this GEE approach and its serious limitations
in Section 6.4.

We now provide three correlation models [Sutradhar (2003), McKenzie (1988)]
that yield the speculated AR(1), MA(1), and equicorrelation structures for repeated
count data. In fact, these three low-order models are easily extendable to other pos-
sible higher-order models such as AR(2), MA(2), and ARMA(1,1) models.

6.3.1 Poisson AR(1) Model

Let yi1 ∼ Poi(µ̃i), where µ̃i = exp(x̃′iβ ) as in (6.12). Furthermore, for t = 2, . . . ,T,
let the response yit at time t be related to yi,t−1 at time t−1 as

yit = ρ ∗ yi,t−1 +dit , (6.14)

[McKenzie (1988), Sutradhar (2003)] where it is assumed that for given yi,t−1, ρ ∗
yi,t−1 denotes the so-called binomial thinning operation (McKenzie, 1988). That is,

ρ ∗ yi,t−1 =
yi,t−1

∑
j=1

b j(ρ)

= zi,t−1,say, (6.15)

with Pr[b j(ρ) = 1] = ρ and Pr[b j(ρ) = 0] = 1−ρ . Furthermore, it is assumed in
(6.14) that dit ∼ P(µ̃i(1−ρ)) and is independent of zi,t−1.

It then follows that each yit satisfying the model (6.14) has marginally Poisson
distribution with parameters as in (6.12). Also by direct calculation, it can be shown
that

E[Yit ] = EYi,t−1E[Yit |Yi,t−1] = µ̃i

var[Yit ] = EYi,t−1var[Yit |Yi,t−1]+varYi,t−1E[Yit |Yi,t−1] = µ̃i. (6.16)

Next, by similar calculations as in (6.16), for lag ` = 1, . . . ,T −1, it can be shown
from (6.14) that E(YitYi,t−`) = µ̃2

i + µ̃iρ
`, yielding the lag ` correlation between yit

and yi,t−`, say c∗i,(t−`)t(ρ), as

corr(Yit ,Yi,t−`) = c∗i,(t−`)t(ρ)

= ρ
`, (6.17)
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which is the same as lag ` correlation under the Gaussian AR(1) autocorrelation
structure. But, the ρ parameter under the present AR(1) model (6.14) must satisfy
the range restriction 0 ≤ ρ ≤ 1, whereas in the Gaussian AR(1) structure ρ lies in
the range −1 < ρ < 1.

6.3.2 Poisson MA(1) Model

For a scale parameter ρ, let

dit
iid∼ Poi

(
µ̃i

1+ρ

)
, for t = 0,1, . . . ,T,

where µ̃i = exp(x̃′iβ ), t = 0 being an initial time. Next suppose that the response yit

is related to the dit as

yit = ρ ∗di,t−1 +dit , for t = 1, . . . ,T, (6.18)

where ρ ∗di,t−1 = ∑
di,t−1
j=1 b j(ρ) is the binomial thinning operation similar to (6.15).

By similar calculations as in the AR(1) process, one obtains

E[Yit ] = var[Yit ] = µ̃i

corr(Yit ,Yi,t−`) = c∗i,(t−`)t(ρ)

=
{

ρ/(1+ρ) for ` = 1
0 otherwise.

(6.19)

Note that the lag correlations in (6.19) have the same forms as in the Gaussian
MA(1) correlation structure, except that in the present set up 0 ≤ ρ ≤ 1, whereas
under the Gaussian structure −1 < ρ < 1.

6.3.3 Poisson Equicorrelation Model

Suppose that yi0 is a Poisson variable with the mean parameter µ̃i = exp(x̃′iβ ). Also
suppose that

dit
iid∼ Poi(µ̃i(1−ρ)) for all t = 1, . . . ,T.

By similar arguments as for the AR(1) and MA(1) processes, one can show that yit

given by
yit = ρ ∗ yi0 +dit (6.20)

also follows the Poisson distribution ( i.e., yit ∼ Poi(µ̃i), yielding the marginal prop-
erties

E[Yit ] = var[Yit ] = µ̃i = exp(x̃′iβ ). (6.21)
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Note that these marginal properties may also be computed directly by using the
model (6.20). As far as the product moments properties are concerned, it can be
shown that

corr(Yit ,Yi,t−`) = c∗i,(t−`)t(ρ)
= ρ, (6.22)

for all ` = 1,2, . . . ,T −1, with 0 ≤ ρ ≤ 1 instead of −(1/T −1)≤ ρ ≤ 1 under the
Gaussian equicorrelation model.

For convenience, we summarize the means, variances, and correlations for all
three stationary correlation models, as in Table 6.1.

Table 6.1 A class of stationary correlation models for longitudinal count data and basic properties.

Model Dynamic Relationship Mean, Variance,
& Correlations

AR(1) yit = ρ ∗ yi,t−1 +dit , t = 2, . . . E[Yit ] = µi·
yi1 ∼ Poi(µi·) var[Yit ] = µi·

dit ∼ Poi(µi·(1−ρ)), t = 2, . . . corr[Yit ,Yi,t+`] = ρ`

= ρ`

MA(1) yit = ρ ∗di,t−1 +dit , t = 1, . . . E[Yit ] = µi·
di0 ∼ Poi(µi·/(1+ρ)) var[Yit ] = µi·

dit ∼ Poi(µi·/(1+ρ)), t = 1, . . . corr[Yit ,Yi,t+`] = ρ`

=
{ ρ

1+ρ
for ` = 1

0 otherwise,
EQC yit = ρ ∗ yi1 +dit , t = 2, . . . E[Yit ] = µi·

yi1 ∼ Poi(µi·) var[Yit ] = µi·
dit ∼ Poi(µi·(1−ρ)), t = 2, . . . corr[Yit ,Yi,t+`] = ρ`

= ρ

6.4 Inferences for Stationary Correlation Models

6.4.1 Likelihood Approach and Complexity

As opposed to the marginal likelihood estimation by (6.10), it is natural that under
the correlation models (6.14), (6.18), and (6.20), the likelihood construction would
be complicated. This is because under these models, the likelihood function is given
by

L(β ,ρ) = Π
K
i=1[ f (yi1)Π T

t=2 f (yit |yi,t−1)], (6.23)

where f (yi1) = exp(−µ̃i)µ̃
yi1
i /yi1! is the Poisson density with µ̃i = exp(x̃′iβ ), un-

der all three models, but the conditional densities f (yit |yi,t−1) would have differ-
ent forms under different models. For example, under the stationary AR(1) model
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(6.14), the conditional density has the form given by

f (yit |yi,t−1) =
min(yit ,yi,t−1)

∑
s=1

(yi,t−1)!
s!(yi,t−1− s)!

ρ
s(1−ρ)yi,t−1−s exp(−µ̃i)µ̃

yit−s
i

(yit − s)!
, (6.24)

yielding by (6.23) a complex likelihood, which is not easy to maximize with regard
to the desired parameters β and ρ.

In the following section we provide an alternative efficient approach for the esti-
mation of the parameters of the models.

6.4.2 GQL Approach

Recall that under the independence assumption, one can solve the quasi-likelihood
[QL; Wedderburn (1974)] estimating equation (6.9) for β , but this will be an ineffi-
cient estimate given that the repeated responses are now assumed to follow either the
AR(1) correlation model (6.14) with correlation structure (6.17), MA(1) correlation
model (6.18) with correlation structure (6.19), or equicorrelation model (6.20) with
correlation structure as in (6.22). Note that all three correlation structures given in
(6.17), (6.19), and (6.22), may be represented by a general autocorrelation matrix of
the form

C∗
i (ρ) = (c∗i,(t−`)t(ρ)) =


1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2
...

...
...

...
ρT−1 ρT−2 ρT−3 · · · 1

 , (6.25)

[Sutradhar and Das (1999, Section 3)], where for ` = 1, . . . ,T −1, ρ` represents the
lag ` autocorrelation. For example, the AR(1) model based autocorrelation structure
(6.17) may be represented by this correlation matrix C∗

i (ρ) (6.25) by using ρ` =
ρ`. Similarly, when one uses ρ1 = ρ/(1+ρ) and ρ2 = ρ3 = . . . = ρT−1 = 0, in
(6.25), it produces the MA(1) correlation structure (6.19); and for ρ` = ρ for all
` = 1, . . . ,T −1, C∗

i (ρ) matrix in (6.25) represents the correlations under the equi-
correlations structure (6.22).

It is therefore clear that if it is assumed that the repeated counted responses fol-
low one of the AR(1), MA(1), or equi-correlation models, then one may estimate
the regression effects under any of these three models by simply estimating this
common C∗

i (ρ) matrix in (6.25) and then using this estimated correlation matrix
in a proper estimating equation for the regression effects β . Because C∗

i (ρ) is the
true correlation matrix for any of the three models, Sutradhar (2003, Section 3) pro-
posed a generalized quasi-likelihood approach that generalizes the independence
assumption based QL (6.9) approach of Wedderburn (1974) to the general station-
ary correlation setup. The GQL estimating equation for β is given by
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K

∑
i=1

X ′
i AiΣ

∗
i
−1(ρ)(yi−µi) = 0, (6.26)

where Σ ∗
i (ρ) = A1/2

i C∗
i (ρ)A1/2

i , with C∗
i (ρ) as the true stationary correlation struc-

ture for any of the AR(1), MA(1), or equicorrelation models. Note that in (6.26),
µi = µ̃i1, Ai = diag(σitt) = diag(µ̃i), as in (6.13), yi = (yi1, . . . ,yit , . . . ,yiT )′ is the
T × 1 vector of repeated counts for the ith individual, and X ′

i = [x̃i, . . . , x̃i] : p×T
is the corresponding matrix of stationary covariates with x̃i = (xi1, . . . ,xip)′ as the
p-dimensional time-independent covariate vector as in (6.12).

Note that the GQL estimating equation (6.26) may be solved for β when ρ (i.e.,
all lag correlations ρ1, . . . ,ρ`, . . . ,ρT−1) is known. It is, however, not necessary to
know the specific form for the correlation matrix C∗

i (ρ), as this form in (6.25) is
general which is valid under any of the three correlation structures (6.17), (6.19) and
(6.22). In practice ρ is unknown, therefore the lag correlations can be consistently
estimated by using the well-known method of moments. For ` = |u− t|, u 6= t, u, t =
1, . . . ,T , the moment estimator for ρ`, the autocorrelation of lag `, has the formula

ρ̂` =
∑K

i=1 ∑T−`
t=1 ỹit ỹi,t+`/K(T − `)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

, (6.27)

[Sutradhar and Kovacevic (2000, eqn. (2.18)); Sutradhar (2003)], where ỹit is the
standardized residual, defined as ỹit = (yit − µit)/{σitt}1/2. Note that under the
present stationary correlation models for the repeated count data µit = σitt = µ̃i

as in (6.12) and (6.13).
Let β̂GQL denote the GQL estimator of β which is obtained by solving (6.26)

after using ρ̂` from (6.27) for ρ`. Note that because the left-hand side of the GQL
estimating equation in (6.26) is an unbiased estimating function for the zero vector,
β̂GQL, the root of the equation (6.26) is a consistent estimator for β .

6.4.2.1 Asymptotic Distribution of the GQL Estimator

Note that β̂GQL may be obtained from (6.26) by using the iterative equation

β̂GQL(r +1) = β̂GQL(r)+

[
K

∑
i=1

X ′
i Σ

∗
i
−1(ρ)Xi

]−1

(r)

×

[
K

∑
i=1

X ′
i Σ

∗
i
−1(ρ)(yi−µi)

]
(r)

, (6.28)

where [·](r) denotes that the expression within the brackets is evaluated at β =
β̂GQL(r), the rth iterative value for β̂GQL. Because y1, . . . ,yi, . . . ,yK are indepen-
dent, by using the central limit theorem, it then follows from (6.28) that as K → ∞,
(β̂GQL−β ) has the p-dimensional multivariate normal distribution with mean vector
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0 and p× p covariance matrix V ∗ given by

V ∗(β̂GQL) = lim
K→∞

{
K

∑
i=1

XT
i A1/2

i C∗
i
−1(ρ)A1/2

i Xi

}−1

. (6.29)

Note that this asymptotic distribution is given here for known ρ. This result,
however, holds even when ρ̂ is used for ρ. This is because it can be shown that ρ̂`

from (6.27) converges in probability to ρ` for all ` = 1, . . . ,T −1.

6.4.2.2 ‘Working’ Independence Assumption Based GQL Estimation

It is known that if one is interested in obtaining only a consistent estimator for β ,
this can be achieved by solving the GQL estimating equation (6.26) by pretending
that the repeated responses are independent even though they are actually corre-
lated following any of the three models (6.14), (6.18), or (6.20). Thus, we obtain a
‘working’ independence assumption based GQL estimate by solving

K

∑
i=1

X ′
i AiΣ

∗
i
−1(ρ)(yi−µi)|ρ=0 =

K

∑
i=1

X ′
i (yi−µi) = 0. (6.30)

Note that this estimating equation is in fact the QL estimating equation (6.9) due to
Wedderburn (1974), which is also the same as the MM estimating equation (6.5).
This QL estimating equation is simpler to solve than the GQL (6.26) equation and
this provides the consistent estimate for β .

Let β̂ (I) denote the solution of (6.30). This estimator is the same as the MM
estimator β̂MM obtained from (6.5), therefore its asymptotic distribution is given by
(6.7). Thus, β̂ (I) has the asymptotic variance

V ∗(β̂ (I)) = limitK→∞

[
K

∑
i=1

X ′
i AiX

]−1[ K

∑
i=1

X ′
i Σ

∗
i (ρ)Xi

][
K

∑
i=1

X ′
i AiX

]−1

, (6.31)

where Σ ∗
i (ρ) = A1/2

i C∗
i (ρ)A1/2

i .

6.4.2.3 Efficiency of the Independence Assumption Based Estimator

Similar to the correlated linear model case [Amemiya (1985, Section 6.1.3)], a com-
parison of (6.31) with (6.29) shows that the independence assumption based estima-
tor β̂ (I) always has the less than or the same efficiency asthe GQL estimator β̂GQL.
We provide a numerical example below to illustrate this efficiency issue.

The percentage efficiency of the uth (u = 1, . . . , p) component of the β̂ (I) esti-
mator, for example, is defined as
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eff(β̂u(I)) =
var(β̂u,GQL)

var(β̂u(I))
×100, (6.32)

where var(β̂u,GQL) and var(β̂u(I)) are the uth diagonal elements of the covariance
matrices V ∗(β̂GQL) (6.29) and V ∗(β̂ (I)) (6.31), respectively. Let us take p = 2 for
simplicity so that the Poisson mean and the variance µit for the ith (i = 1, . . . ,K)
at time t (t = 1, . . . ,T ), has the formula µ̃i = exp(x̃i1β1 + x̃i2β2) under any of the
three stationary models (6.14), (6.18), or (6.20). Let us consider K = 100, and three
values of T = 5,10, and 15. As far as the time-independent stationary covariates are
considered, we choose

xit1 = x̃i1 = 1.0, for all i = 1, . . . ,K, and t = 1, . . . ,T,

and

xit2 = x̃i2 =



−1 for t = 1, . . . ,T ; i = 1, . . . ,K/4

0 for t = 1, . . . ,T ; i = (K/4)+1, . . . ,K/2

0 for t = 1, . . . ,T ; i = (K/2)+1, . . . ,3K/4

1 for t = 1, . . . ,T ; i = (3K/4)+1, . . . ,K;

Next to compute the covariance matrices V ∗(β̂GQL) (6.29) and V ∗(β̂ (I)) (6.31),
we need to construct the Xi and Ai matrices by

Xi = [x̃i11T , x̃i21T ], and Ai = diag[µ̃i] : T ×T.

We also need to specify the correlation matrix C∗
i (ρ). We choose all three cor-

relation models AR(1), MA(1), and exchangeable correlation structures given by
(6.17), (6.19), and (6.22), respectively. Note that because the lag 1 correlations un-
der the AR(1) (6.17) and equicorrelations (6.22) structures are given as ρ1 = ρ, we
choose, for example, ρ = 0.3 and 0.7 under both AR(1) and equi-correlation struc-
tures. But, as the lag 1 correlation under the MA(1) structure has to satisfy the range
0 < ρ1 = ρ/(1+ρ) < 0.5, we choose, for example, two values of ρ = 0.25 and 0.67,
yielding the lag 1 correlations ρ1 = 0.2 and 0.4, respectively.

For β1 = β2 = 1.0, and for the selected values of ρ, the efficiencies of β̂ (I) as
compared to β̂GQL are given in Table 1.

The results of Table 6.2 show that as expected the independence assumption
based GQL estimator β̂ (I) obtained by solving (6.30) always has less or the same
efficiency as compared to the true correlation structure based GQL estimator β̂GQL

obtained by solving (6.26).
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Table 6.2 Percentage relative efficiency of β̂1(I) and β̂2(I) to the generalized estimators β̂1,GQL

and β̂2,GQL, respectively, with true stationary correlation matrix C∗
1(ρ) for AR(1), MA(1), and

Equi-correlation structures, for µit = µ̃i = exp(x̃i1β1 + x̃i2β2) with β1 = β2 = 1

AR(1) MA(1) EQC
T ρ β̂1(I) β̂2(I) ρ β̂1(I) β̂2(I) ρ β̂1(I) β̂2(I)
5 0.3 98 98 0.25 99 99 0.30 100 100

0.49 96 96 0.49 100 100
0.7 95 95 0.67 97 97 0.7 100 100

10 0.3 99 99 0.25 99 99 0.3 100 100
0.49 96 96 0.49 100 100
0.7 93 93 0.67 98 98 0.7 100 100

15 0.3 99 99 0.25 100 100 0.3 100 100
0.49 97 97 0.49 100 100
0.7 93 93 0.67 99 99 0.7 100 100

6.4.2.4 Performance of the GQL Estimation: A Simulation Example

Suppose that the repeated count responses follow either of the three stationary,
namely AR(1)(6.17), MA(1) (6.19), or equicorrelation (6.22) structures. In estimat-
ing the regression effects β , the GQL approach does not, however, require us to
know the specific correlation structure. What is needed here is: first consider that
the repeated data for the ith individual has the autocorrelation matrix C∗

i (ρ) (6.25)
which in fact is a valid matrix not only for the above three correlation structures but
also for any higher-order such as AR(2) and MA(2) correlation structures. Second,
estimate this general autocorrelation matrix consistently and use the estimate in the
GQL estimating equation (6.26) for β . This prompts the following two-step estima-
tion.

Step 1. First, we solve the estimating equation for β (6.26) iteratively by (6.28), us-
ing starting values zero for longitudinal correlations and small positive or negative
values for the regression parameters.
Step 2. This interim estimate of β from step 1 is then used in (6.27) to obtain the es-
timate of the autocorrelation matrix C∗

i (ρ) in (6.25), which is used in turn in (6.28)
to compute the new β estimate. This cycle of iterations continues until convergence.

To examine the performance of the above two-step based GQL estimation, we
now consider a simulation study. Suppose that we follow the Poisson AR(1) model
(6.14) and generate T = 4 repeated count observations for each of K = 100 in-
dependent individuals. As far as the covariates are concerned, we choose p = 2
time-independent covariates for each of these 100 individuals, given by
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xit1 =



−1 for t = 1, . . . ,T ; i = 1, . . . ,K/4

0 for t = 1, . . . ,T ; i = (K/4)+1, . . . ,K/2

0 for t = 1, . . . ,T ; i = (K/2)+1, . . . ,3K/4

1 for t = 1, . . . ,T ; i = (3K/4)+1, . . . ,K;

and
xit2 = z∗i mbox f or t = 1, . . . ,T ; i = 1, . . . ,K,

where z∗i is a standard normal quantity. In this problem, β = (β1,β2)′ denotes the
effects of the two covariates on the repeated counts.

Note that even though the data are generated following the AR(1) model (6.14),
the GQL approach does not, however, require this model to be known for the es-
timation of β . This is because the GQL estimating equation (6.26) is developed
based on a general autocorrelation structure Ci(ρ∗), which accommodates all three
AR(1) (6.17), MA(1) (6.19), and exchangeable (6.22) correlation structures. Further
note that for T = 4, this general autocorrelation structure has three lag correlations,
namely, ρ1, ρ2, and ρ3, to estimate, by using the formula (6.27) as explained in Step
2 above. It would be interesting to see how these three estimates behave in estimat-
ing the three lag correlations ρ, ρ2, and ρ3, for the AR(1) model that generated the
data. Next these correlation estimates are used in step 1 to estimate β by solving
the GQL estimating equation (6.26). For a selected set of parameter values, namely
β1 = β2 = 0.0, and ρ = 0.6, 0.8, the simulation is repeated 500 times. The average
and standard error of the 500 estimates for each parameter are given in Table 6.3. In
the table, these estimates are referred to as the simulated mean (SM) and simulated
standard error (SSE). The estimated standard errors (ESE) of the regression esti-
mates are also computed. This is done by using the asymptotic covariance formula
for V ∗(β̂GQL) given in (6.29).

Table 6.3 Simulated means, simulated standard errors, and estimated standard errors of the GQL
estimates for regression and autocorrelation coefficients for selected values of the true correlation
parameter under the Poisson AR(1) process with T = 4, K = 100, β1 = β2 = 0, based on 500
simulations.

Estimates
AR(1) Correlation (ρ) Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

0.6 SM -0.003 -0.001 0.595 0.352 0.203
SSE 0.085 0.049 0.061 0.088 0.108
ESE 0.086 0.050

0.8 SM 0.000 0.003 0.791 0.626 0.496
SSE 0.096 0.056 0.043 0.070 0.098
ESE 0.098 0.057

The results in Table 6.3 clearly show that the two-step based GQL approach es-
timates all parameters very well. For example, when ρ = 0.8, the lag correlation es-
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timates are 0.791, 0.626, and 0.496, whereas the true AR(1) based lag correlations
are ρ = 0.8, ρ2 = 0.64, and ρ3 = 0.512. Similarly, the GQL approach estimates for
β1 = β2 = 0 are 0.000, 0.003. Furthermore, for this ρ = 0.8 case, the ESE of the
regression estimates , that is, 0.098, and 0.0.57 appear to be very close to the SSEs
0.096 and 0.056, respectively.

In Tables 6.4 and 6.5 below, we show similar results with regard to the perfor-
mance of the GQL approach when data are generated under the MA(1) (6.18) and
exchangeable (6.20) correlation models, respectively, by using the same covariates
as in the AR(1) case.

Table 6.4 Simulated means, simulated standard errors, and estimated standard errors of the GQL
estimates for regression and autocorrelation coefficients for selected values of the true correlation
parameter under the Poisson MA(1) process with T = 4, K = 100, β1 = β2 = 0, based on 500
simulations.

Estimates
ρ (MA(1) Correlation (ρ1)) Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

0.25 (0.2) SM 0.002 0.002 0.191 -0.006 0.004
SSE 0.083 0.063 0.058 0.073 0.100
ESE 0.081 0.063

0.67 (0.4) SM -0.004 -0.004 0.396 -0.005 -0.004
SSE 0.085 0.069 0.059 0.074 0.097
ESE 0.088 0.070

Table 6.5 Simulated means, simulated standard errors, and estimated standard errors of the GQL
estimates for regression and autocorrelation coefficients for selected values of the true correlation
parameter under the Poisson equicorrelation process with T = 4, K = 100, β1 = β2 = 0, based on
500 simulations.

Estimates
Equi-correlation (ρ) Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

0.6 SM -0.006 -0.005 0.587 0.587 0.587
SSE 0.119 0.096 0.064 0.065 0.088
ESE 0.118 0.093

0.8 SM -0.009 -0.009 0.790 0.790 0.789
SSE 0.131 0.101 0.043 0.041 0.059
ESE 0.130 0.103
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6.4.3 GEE Approach and Limitations

In order to gain efficiency over the independence assumption based regression es-
timator β̂ (I) (6.30), in the generalized estimating equations approach [Liang and
Zeger (1986)], one solves a ‘working’ correlation matrix, R(α), based estimating
equation

K

∑
i=1

X ′
i AiV

∗−1
i (α̂)(yi−µi) = 0, (6.33)

where V ∗
i (α) = A1/2

i R(α)A1/2
i is the working covariance matrix of yi, α being an s×

1 vector of parameters which fully characterizes R(α). Note that the GEE in (6.33)
appears to be similar to the GQL estimating equations in (6.26), but they are quite
different. Also, in (6.33), α̂ is obtained by solving a ‘working’ correlation model
based moment equation. The data used in such a moment equation follow a different
but true correlation structure, thus it is inappropriate to assume that α̂ converges to
α [Crowder (1995)]. In view of this anomaly, any efficiency computations by using
α̂ for α in the formula for the covariance matrix of the GEE estimator obtained from
(6.33) [Liang and Zeger (1986)] would be incorrect.

Let β̂G be the solution for β based on (6.33). Next suppose that α̂ converges
to α0, which must be a function of the true correlation parameter (ρ). In order to
examine the correlation misspecification effects on the efficiency of β̂G, Sutradhar
and Das (1999) have suggested using this α0 in the formula for the covariance matrix
of β̂G. Thus, K1/2(β̂G −β ) is now asymptotically multivariate Gaussian with zero
mean vector and covariance matrix VG given by

VG = lim
K→∞

K

(
K

∑
i=1

X ′
i A1/2

i R−1(α0)A
1/2
i Xi

)−1

×

{
K

∑
i=1

X ′
i A1/2

i R−1(α0)Ci(ρ)R−1(α0)A
1/2
i Xi

}

×

{
K

∑
i=1

X ′
i A1/2

i R−1(α0)A
1/2
i Xi

}−1

, (6.34)

where Ci(ρ) is the true correlation matrix, as given in (6.25).

6.4.3.1 Efficiency of the GEE Based Estimator Under Correlation Structure
Mis-specification

As far as the correlation models are concerned, we consider the same three station-
ary Poisson correlation models as we took for Section 6.4.2.3. Note that similar
to (6.32), the percentage efficiency of the uth (u = 1, . . . , p) component of the β̂G
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estimator, for example, is defined as

eff(β̂u,G) =
var(β̂u,T R)

var(β̂u,G)
×100, (6.35)

where var(β̂u,T R) is the uth diagonal element of the covariance matrix of the true
correlation structure based estimator V ∗

T R computed by (6.29) using the true correla-
tion structure for C∗

i (ρ), and var(β̂u,G) is the uth diagonal element of the covariance
matrix VG given in (6.34). For the purpose, we first show how to compute α0 under
possible model mis-specifications, and then compute the efficiencies.

(i) Computation of α0 Under True AR(1) Correlation Structure
For EQC Working Correlation Structure

Under the working exchangeable correlation structure, α̂ satisfies the estimating
equation

K

∑
i=1

T

∑
t 6=u

(ỹit ỹiu−α) = 0, (6.36)

where ỹit = (yit − µit)/{σitt}1/2, as in (6.27), with µit = σitt = µ̃i = exp(x̃′iβ )
for the present stationary case. Note that for the true AR(1) correlation structure,
E(ỹit ỹiu) = ρ

|t−u| with 0 < ρ < 1. This shows that α̂ obtained from (6.36), if it
exists, will converge to α0 satisfying

α0 = 2ρ{T − (1−ρ
T )/(1−ρ)}/T (T −1)(1−ρ). (6.37)

For example, when ρ = 0.7 the equation (6.37) yields α0 = 0.52, 0.35 and 0.26 for
T = 5, 10, and 15, respectively.

Now to compute the efficiency of the ‘working’ equicorrelation structure based
GEE estimator β̂G, when in fact the repeated counts truly follow the AR(1) correla-
tion structure, we need to put AR(1) based Ci(ρ) and EQC based R(α0) in (6.34),
for example, with α0 = 0.52 when ρ = 0.7 for T = 5. The efficiencies for selected
ρ and for the selected design covariates as in Section 6.4.2.4 for T = 5, 10, 15, are
shown in Table 6.6.

For MA(1) Working Correlation Structure

For the working MA(1) correlation structure, we solve

K

∑
i=1

T−1

∑
t=1

ỹit ỹi(t+1)−K(T −1)α = 0, (6.38)

to obtain α̂ . If α̂ exists, then in this case α̂ will converge to α0 = ρ , because,
under the true AR(1) structure, E(ỹit ỹi(t+1)) = ρ . Note, however, that although in
the present case ρ can take any value from 0 to 1, we can use only the range
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Table 6.6 Percentage relative efficiency of β̂1,G and β̂2,G to the true correlation structure based
estimators β̂1,T (= β̂1,GQL) and β̂2,T (= β̂2,GQL), respectively, with true stationary correlation matrix
C∗

1(ρ) for AR(1) structure, for µit = µ̃i = exp(x̃i1β1 + x̃i2β2) with β1 = β2 = 1

True Correlation Structure AR(1)
Working Structure MA(1) EQC
T ρ α0 β̂1,MA(1) β̂2,MA(1) ρ α0 β̂1,EQC β̂2,EQC

5 0.3 0.3 100 100 0.3 0.15 98 98
0.49 0.49 95 95 0.7 0.52 95 95

10 0.3 0.3 100 100 0.3 0.08 99 99
0.49 0.49 98 98 0.7 0.35 93 93

15 0.3 0.3 100 100 0.3 0.06 99 99
0.49 0.49 97 97 0.7 0.26 93 93

0 < ρ(= α0) < 0.5 for the efficiency computation. This is because in the GEE ap-
proach ρ is unknown and the working correlation α can range from −0.5 to 0.5
only. This is clear from the formula of VG in (6.34), where one cannot use R−1(α0)
beyond the range −0.5 < α < 0.5, as R(α) has the MA(1) correlation structure.
In view of this we have chosen ρ = 0.3 and 0.49 for our efficiency computations.
These efficiencies are also reported in Table 6.6, for T = 5, 10, and 15.

(ii) Computation of α0 Under True MA(1) Correlation Structure
For AR(1) Working Correlation Structure

Let ci,ut be the (u, t) element of the true correlation matrix Ci(ρ). For MA(1) true
correlation structure, ci,ut = ρ1 = ρ(1+ρ) if |t − u| = 1, and ci,ut = 0 otherwise,
where ρ1 denotes the lag-1 correlation. Under this structure, ρ1 satisfies −0.5 ≤
ρ1 ≤ 0.5.

Now consider the working AR(1) correlation matrix. Here ri,ut = α
|t−u| for u, t =

1, . . . ,T . If we base the estimation again on the average correlation, the estimating
equation

K

∑
i=1

T

∑
u<t

(ỹit ỹiu−α
|t−u|) = 0 (6.39)

results, giving α̂; a simple moment estimator for α , see also Crowder (1995), where
ỹiu and ỹit are the standardized residuals defined as in (6.36). Because

E

{
T

∑
u<t

ỹit ỹiu

}
= (T −1)ρ1 = (T −1)

ρ

1+ρ

under the MA(1) correlation structure, it follows from (6.39) that α0 is in fact the
solution of

α0(1−α0)−1{T − (1−α
T
0 )/(1−α0)}− (T −1)ρ1 = 0. (6.40)
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Therefore, if α̂ exists, α̂ will converge in probability to α0, α0 being related to ρ

through (6.40). For example, when ρ1 = 0.4, that is, ρ = 0.67, the α0 values are
approximately 0.31, 0.30, and 0.29 for T = 5, 10, and 15 respectively. For selected
values of ρ , the efficiencies of β̂G for the MA(1) versus AR(1) correlation structures,
are shown in Table 6.7.

Table 6.7 Percentage relative efficiency of β̂1,G and β̂2,G to the true correlation structure based es-
timators β̂1,T R(= β̂1,GQL) and β̂2,T R(= β̂2,GQL), respectively, with true stationary correlation matrix
C∗

1(ρ) for MA(1) structure, for µit = µ̃i = exp(x̃i1β1 + x̃i2β2) with β1 = β2 = 1

True Correlation Structure MA(1)
Working Structure AR(1) EQC
T ρ α0 β̂1,AR(1) β̂2,AR(1) ρ α0 β̂1,EQC β̂2,EQC

5 0.25 0.17 100 100 0.25 0.08 99 99
0.67 0.31 99 99 0.67 0.16 97 97

10 0.25 0.17 100 100 0.25 0.04 99 99
0.67 0.30 100 100 0.67 0.08 98 98

15 0.25 0.17 100 100 0.25 0.04 99 99
0.67 0.29 100 100 0.67 0.05 98 98

For EQC Working Correlation Structure

For the working exchangeable correlation matrix R(α), one writes ri,ut = α for all
u, t except for u = t. We must have −{1/(T −1)} ≤ α ≤ 1 for R(α) to be a positive
definite matrix, where T is the dimension of the R(α) matrix. It then follows that
the moment estimator α̂ [see also Crowder (1995] for α is given by

α̂ =
K

∑
i=1

T

∑
u6=t

r̂i(ut)/KT (T −1)

=
K

∑
i=1

T

∑
u6=t

ỹiuỹit/KT (T −1). (6.41)

Because Ci(ρ) has the MA(1) correlation structure,

E(α̂) = {KT (T −1)}−12K(T −1)ρ1 = 2ρ1/T =
2ρ

T (1+ρ)
. (6.42)

Thus, if α̂ exists, then α̂ converges to α0 = 2ρ1/T . Therefore, to compute the effi-
ciency of β̂G, we use the true ρ1 = ρ/(1+ρ) for Ci(ρ) and α0 = 2ρ1/T for R(α0)
in VG given in (6.34). For example, with T = 5 and ρ = 0.67, we use α0 = 0.16 in
R(α0). The efficiencies for selected values of ρ are shown in Table 6.7.
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(iii) Computation of α0 Under True Equicorrelation (EQC) Structure

For AR(1) Working Correlation Structure:

For the working AR(1) correlation structure, the estimating equation for α remains
the same as (6.39). However, as E(ỹiuỹit) = ρ under the true exchangeable correla-
tion structure, α̂ obtained from (6.39), if it exists, converges to α0, now satisfying
the equation

α0(1−α0)−1{T − (1−α
T
0 )/(1−α0)}−T (T −1)ρ/2 = 0. (6.43)

Here ρ ≥ −1/(T − 1). Consequently, we use only positive ρ values for efficiency
computations. For example, when ρ = 0.7 is used in (6.43), α0 is 0.83, 0.90, and
0.93 for T = 5, 10, and 15 respectively. Now the efficiencies of AR(1) ‘working’
structure based β̂G, when EQC is the true correlation structure, are shown in Table
6.8, for the selected values of ρ.

Table 6.8 Percentage relative efficiency of β̂1,G and β̂2,G to the true correlation structure based es-
timators β̂1,T R(= β̂1,GQL) and β̂2,T R(= β̂2,GQL), respectively, with true stationary correlation matrix
C∗

1(ρ) for EQC structure, for µit = µ̃i = exp(x̃i1β1 + x̃i2β2) with β1 = β2 = 1.

EQC True Correlation Structure
Working Structure AR(1) MA(1)
T ρ α0 β̂1,AR(1) β̂2,AR(1) ρ α0 β̂1,MA(1) β̂2,MA(1)
5 0.3 0.49 96 96 0.3 0.3 99 99

0.7 0.83 95 95 0.49 0.49 92 92
10 0.3 0.65 95 95 0.3 0.3 99 99

0.7 0.90 94 94 0.49 0.49 98 98
15 0.3 0.74 94 94 0.3 0.3 100 100

0.7 0.93 93 93 0.49 0.49 98 98

For MA(1) Working Correlation Structure

For the working MA(1) correlation structure, the estimating equation for α is given
by (6.38). Because E(ỹit ỹi(t+1)) = ρ for the true exchangeable correlation structure,

it follows from (6.38) that α̂ , if it exists, converges to α0 = ρ . The efficiencies of β̂G

for the exchangeable versus MA(1) correlation structure are also shown in Table 6.8,
for selected values of ρ.

Note that when the efficiencies displayed in Tables 6.6− 6.8 under correlation
structure misspecification are compared with those in Table 6.2 computed for the
independence assumption based regression estimators, it is seen that in some cases,
especially when EQC is the true correlation structure, the β̂ (I) appears to be equally
or more efficient than the GEE based estimator β̂G. For this reason, as Sutradhar
and Das (1999) [see also Sutradhar (2003)] argued, there is no guarantee that the
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GEE approach can provide more efficient estimates than the simpler MM estimates
obtained from (6.6) or QL estimates obtained from (6.9).

6.5 Nonstationary Correlation Models

In Section 6.3, we provided three stationary correlation models for longitudinal
count data. In Section 6.4, we discussed various estimation techniques including
the GEE and GQL approaches, for the estimation of the regression effects. Note
that in the GEE approach, the selection of a suitable ‘working’ correlation struc-
ture out of these three or other possible correlation structures is left to the user. It
was shown in Section 6.4 [see also Sutradhar and Das (1999)] that the use of such
a ‘working’ correlation structure may in reality produce a less efficient estimate
for the regression effect β than the ‘independence’ assumption based estimate. As
a remedy, Sutradhar (2003) has suggested using a general (robust) autocorrelation
structure that accommodates the above three stationary correlation structures as spe-
cial cases. Thus, as demonstrated in Section 6.4.2.3 (see Table 6.2), if the data fol-
low this class of Gaussian type stationary correlation structure, then the solution of a
generalized quasi-likelihood equation, following Sutradhar (2003), always produces
consistent and efficient estimates.

There, however, remains a concern that it may not be reasonable to use a station-
ary correlation structure when it is known that the covariates are time dependent.
In Section 6.5.1, we provide three nonstationary correlation models as a generaliza-
tion of the stationary AR(1), MA(1), and EQC structures, discussed in Section 6.3.
These models produce the same mean and variance functions, and different cor-
relation structures, under both stationary and nonstationary conditions. Under the
assumption that the repeated count data follow one of these three possible nonsta-
tionary models, in Section 6.5.2, we discuss the estimation of the parameters under
all three models. In Section 6.6.1, we deal with more nonstationary autocorrelation
models that belong to the same autocorrelation class as that of Section 6.5, but now
the marginal means and variances can be different under different models. In Sec-
tion 6.6.2 we provide a model selection criterion based on the principle of minimum
error sum of squares. A simulation study is conducted in Section 6.6.3 to exam-
ine the performances of the estimates under the true as well as misspecified models.
Also, the simulation study in the same section justifies the model selection criterion.
In Section 6.7, a real-life data example is discussed both for model selection as well
as estimation of the regression effects and the correlation parameters.
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6.5.1 Nonstationary Correlation Models with the Same Specified
Marginal Mean and Variance Functions

6.5.1.1 Nonstationary AR(1) Models

Suppose that yi1 follows the Poisson distribution with mean parameter µi1 = exp(x′i1β );
that is, yi1 ∼ Poi(µi1 = exp(x′i1β )), and for t = 2, . . . ,T, yit relates to yi,t−1 through
the dynamic relationship

yit = ρ ∗ yi,t−1 +dit , for t = 2, . . . ,T, (6.44)

where

ρ ∗ yi,t−1 =
yi,t−1

∑
s=1

bs(ρ),

with Pr[bs(ρ) = 1] = ρ and Pr[bs(ρ) = 0] = 1−ρ. Also suppose that

yi,t−1 ∼ Poi(µi,t−1), and dit ∼ Poi(µit −ρµi,t−1),

with µit = ex′it β , and dit and yi,t−1 are independent. After some algebra, it may be
shown that this model (6.44) yields the means and the variances as

E(Yit) = var(Yit) = µit = ex
′
it β , (6.45)

and for u < t with t = 2, . . . ,T, nonstationary (ns) correlations, say c(ns)
i,ut (xiu,xit ,ρ),

as

corr(Yiu,Yit) = c(ns)
i,ut (xiu,xit ,ρ)

= ρ
t−u
√

µiu

µit
, (6.46)

with ρ satisfying the range restriction

0 < ρ < min

[
1,

µit

µi,t−1

]
, t = 2, · · · ,T. (6.47)

Stationary Correlation Structure: Note that in the stationary case, that is, when
the covariates are time independent such as xit = x̃i for all t = 1, . . . ,T, the means
and variances given by (6.45) and the correlation matrix given by (6.46) become
stationary. In particular, the nonstationary correlations given by (6.46) reduce to the
covariates free stationary correlations

c∗i,ut(ρ)) = (ρ |t−u|), for all u 6= t,u, t = 1, . . . ,T, (6.48)

which is same as the correlation in (6.17) derived under the stationary correlation
model (6.14).
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6.5.1.2 Nonstationary MA(1) Models

To generalize the stationary MA(1) model [Sutradhar (2003)] to the nonstationarity
case, we consider the dynamic relationship

yi1 ∼ Poi(µi1 = exp(x′i1β ))
yit = ρ ∗di,t−1 +dit , for t = 2, . . . ,T, (6.49)

where

dit
iid∼ Poi

[
t−1

∑
j=0

(−ρ) j
µi,t− j

]
for all t = 1, . . . ,T.

After some algebra, this model yields the same means and variances as in (6.45)
derived under the AR(1) model. Furthermore, it can be shown that the correlations
are given by

corr(Yiu,Yit) = c(ns)
i,ut (xiu,xit ,ρ) =

 ρ{∑min(u,t)−1
j=0 (−ρ) jµ

i,min(u,t)− j
}

√
µiuµit

for |u− t|= 1

0 otherwise,
(6.50)

with ρ satisfying the range restriction

0 < ρ < min [1,ρi20, . . . ,ρit0, . . . ,ρiT 0] , (6.51)

where ρit0 is the solution of ∑t−1
j=0(−ρ) jµi,t− j = 0. Note that this range restriction

may allow only a narrow range for the ρ parameter.

Stationary Correlation Structure: Note that in the stationary case, the means and
the variances have the form µit = µi· = exp(x̃′iβ ) for all t = 1, . . . ,T. Furthermore,
by (6.50), the limiting correlations when min(u, t)→ ∞ have the formula

c∗i,ut(ρ) = corr(Yiu,Yit) =
{

ρ{∑∞
j=0(−ρ) j = ρ

1+ρ
for|u− t|= 1

0 otherwise,
(6.52)

which is free from the time-dependent covariates. This stationary correlation is the
same as the correlation in (6.19) derived under the stationary MA(1) model (6.18).

6.5.1.3 Nonstationary EQC Models

To generate a nonstationary equicorrelations model, we consider

yi1 ∼ Poi(µi1 = exp(x′i1β ))
yit = ρ ∗ yi1 +dit , for t = 2, . . . ,T, (6.53)

where dit is assumed to be distributed as
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dit ∼ Poi(µit −ρµi1)

with µit = ex′it β . Also it is assumed that dit for t = 2, . . . ,T, are independent of yi1.

It then follows that E(Yit) = var(Yit) = µit = ex
′
it β as in the AR(1) and MA(1) cases,

for all t = 1, . . . ,T, and for u < t,

cov(Yiu,Yit) = ρµi1, (6.54)

yielding the nonstationary correlation structure

corr(Yiu,Yit) = c(ns)
i,ut (xiu,xit ,ρ) =

ρµi1√
µiuµit

, (6.55)

with ρ satisfying the range restriction

0 < ρ < min

[
1,

µit

µi1

]
, t = 2, . . . ,T.

Stationary Correlation Structure: Note that when covariates are time indepen-
dent, that is, xit = x̃i for all t = 1, . . . ,T, the nonstationary correlations in (6.55)
reduce to the stationary correlations in (6.22) derived under the stationary exchange-
able correlation model (6.20).

For convenience, we summarize the means, variances, and correlations for all
three nonstationary correlation models, as in Table 6.9.

Table 6.9 A class of nonstationary correlation models for longitudinal count data and basic prop-
erties.

Model Dynamic Relationship Mean, Variance
and Correlations

AR(1) yit = ρ ∗ yi,t−1 +dit , t = 2, . . . ,T E[Yit ] = µit

yi1 ∼ Poi(µi1) var[Yit ] = µit

dit ∼ Poi(µit −ρµi,t−1), t = 2, . . . ,T corr[Yiu,Yit ] = ρ
(ns)
|t−u|

= ρ |t−u|
[

µiu
µit

] 1
2

MA(1) yit = ρ ∗di,t−1 +dit , t = 2, . . . ,T E[Yit ] = µit

yi1 ∼ Poi(µi1) var[Yit ] = µit

dit
iid∼ Poi

[
∑t−1

j=0(−ρ) jµi,t− j

]
t = 1, . . . ,T corr[Yiu,Yit ] = ρ

(ns)
|u−t|

=

{
ρ{∑min(u,t)−1

j=0 (−ρ) j µi,min(u,t)− j}√
µiuµit

for |u− t|= 1

0 otherwise,
EQC yit = ρ ∗ yi1 +dit , t = 2, . . . ,T E[Yit ] = µit

yi1 ∼ Poi(µi1) var[Yit ] = µit

dit ∼ P(µit −ρµi1), t = 2, . . . ,T corr[Yiu,Yit ] = ρ
(ns)
|u−t|

= ρµi1√
µiuµit



6.5 Nonstationary Correlation Models 205

6.5.2 Estimation of Parameters

It follows from Sections 6.5.1.1−6.5.1.3 (see also Table 6.9) that all three nonsta-
tionary, namely AR(1), MA(1), and EQC, models have the same mean and variance
structures. Their correlation structures are, however, different; that is, the nonsta-
tionary correlation matrix C(ns)

i (xi,ρ) = (c(ns)
i,ut (xiu,xit ,ρ)) is not the same under all

three models. Suppose that the structure is identified (see Section 6.5.3 for an ex-
ploratory way for the model selection). Now assuming that we have a consistent
estimate for ρ, say ρ̂, we may obtain a consistent and highly efficient estimate for
β by using the GQL approach that we provide below.
GQL Estimating Equation for β : Similar to the GQL estimation (6.26) for the
stationary case, we now solve the GQL estimating equation given by

K

∑
i=1

∂ µ ′
i

∂β
Σ

(ns)
i

−1
(ρ̂)(yi−µi) = 0, (6.56)

where µi = (µi1, . . . ,µit , . . . ,µiT )
′

is the mean vector of yi = (yi1, . . . ,yit , . . . ,yiT )
′

with

µit = exp(x′itβ )

Σ
(ns)
i (ρ̂) = A1/2

i C(ns)
i (xi, ρ̂)A1/2

i , (6.57)

where
Ai = diag[σi11, . . . ,σitt , . . . ,σiT T ],

with σitt = exp(x′itβ ). Furthermore, in (6.56), ∂ µ ′
i /∂β = X ′

i Ai, with Xi as the T × p
covariate matrix as defined earlier.

Let β̂GQL denote the solution of (6.56) after using ρ̂ computed under the se-
lected model. Under mild regularity conditions one may then show that β̂GQL has
the asymptotic (as K → ∞) normal distribution given by

K1/2(β̂GQL−β )∼ N

0, K

[
K

∑
i=1

X ′
i AiΣ

(ns)
i

−1
AiXi

]−1
 .

We now show how to compute ρ̂ under all three models.

6.5.2.1 Estimation of ρ Parameter Under AR(1) Model

Moment Equation for ρ: Under the nonstationary AR(1) model (6.44), the moment
estimate of ρ has the formula given by

ρ̂ =
∑K

i=1 ∑T
t=2 ỹit ỹi,t−1

∑K
i=1 ∑T

t=1 ỹ2
it

KT

∑K
i=1 ∑T

t=2[µi,t−1/µit ]1/2
, (6.58)
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where ỹit = [yit−µit ]/
√

µit . Note that the formula for ρ given by (6.58) was obtained
by equating the lag 1 sample autocorrelation with its population counterpart given
by (6.46). Furthermore, ρ̂ computed by (6.58) must satisfy the range restriction
given in (6.47). This implies that if the value of ρ̂ computed by (6.58) falls beyond
the range shown in (6.47), we use the upper limit of ρ given in (6.47) as the estimate
of ρ .

6.5.2.2 Estimation of ρ Parameter Under MA(1) Correlation Model

Note that unlike the formula for lag 1 correlations (6.46) under the AR(1) model,
the formula for this lag 1 correlation given by (6.50) under the nonstationary MA(1)
model (6.49) involves a complicated summation. Thus, it is convenient to solve the
moment equation for ρ by using the Newton−Raphson iterative technique. To be
specific, by writing the moment equation as

g(ρ) =
∑K

i=1 ∑T−1
t=1 ỹit ỹi,t+1/K(T −1)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

− ρ

T −1

T−1

∑
u=1

[
∑u−1

j=0(−ρ) jµi,u− j
√

µiuµi,u+1

]
= 0,

(6.59)
we solve for ρ iteratively by using the Newton−Raphson iterative formula

ρ̂(r +1) = ρ̂(r)−
[
{∂g(ρ)

∂ρ
}−1g(ρ)

]
(r)

,

where [·](r) denotes that the expression within brackets is evaluated at ρ = ρ̂(r), the
rth iterative value of ρ. Note that ρ̂ must satisfy the range restriction (6.51).

6.5.2.3 Estimation of ρ Parameter Under Exchangeable (EQC) Correlation
Model

The moment estimating equation for the ρ parameter for the exchangeable model is
quite similar to that of the AR(1) model. The difference between the two equations
is that under the AR(1) process we have considered all lag 1 standardized residuals,
whereas under the exchangeable model, one needs to use standardized residuals of
all possible lags. Thus, following (6.58) for the AR(1) model, we write the moment
formula for ρ under the exchangeable model as

ρ̂ =
∑K

i=1 ∑T−1
`=1 ∑T−`

t=1 ỹit ỹi,t+`

∑K
i=1 ∑T−1

`=1 ∑T−`
t=1 ỹ2

it

KT

∑K
i=1 ∑T−1

`=1 ∑T−`
t=1

µi1

[µit µi,t+`]
1
2

, (6.60)

where ỹit = [yit −µit ]/
√

µit . Note that ρ̂ must satisfy the range restriction in (6.55).
This implies that if the value of ρ̂ computed by (6.58) falls beyond the range shown
in (6.55), we take ρ̂ as the upper limit of ρ given in (6.55).
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6.5.3 Model Selection

Note that in the stationary case it is not necessary to identify the correlation structure
for the construction of the estimating equation (6.26) for β . This is because the
estimating equation (6.26) is constructed based on a common correlation structure
for C∗

i (ρ) as given by (6.25) with ρ` estimated as

ρ̂` =
∑K

i=1 ∑T−`
t=1 ỹit ỹi,t+`/K(T − `)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

, (6.61)

(see also (6.27)) where ỹit = [yit − µit ]/
√

σitt . Nevertheless, if one would like to
identify the stationary correlation structure for the purpose of forecasting or other
reasons, this could be done by using the values of ρ̂` for ` = 1, . . . ,T − 1. This is
because one may show that

E[ρ̂`] = ρ`,

approximately, and it is reasonable to use the values of ρ̂` for ` = 1, . . . ,T − 1, to
identify a stationary correlation structure.

As far as the identification of a nonstationary correlation structure is concerned,
it appears that the values of ρ̂` can still be used for such an identification. More
specifically, simply compute the values of ρ̂` by (6.61) and compare their pattern
for best possible matching with those of E[ρ̂`] under desired models for all possi-
ble values of ρ = 0.0, 0.05, . . . ,0.90, 0.95. Suppose that it is intended to find out
whether the longitudinal count data follow one of the low-order, namely AR(1),
MA(1), or EQC, models. To resolve such an issue, one would compute the E[ρ̂`]
under all these three models and select that model which produces a pattern for ρ̂`

similar to that of E[ρ̂`].
For the longitudinal count data, the formulas for the expectations under the

AR(1), MA(1), or EQC models are given by

For AR(1) : E[ρ̂`] =
ρ`

K(T − `)

K

∑
i=1

T−`

∑
t=1

[
µit

µi,t+`

]1/2

for ` = 1, . . . ,T −1(6.62)

For MA(1) : E[ρ̂`] =

 ρ

K(T−`) ∑K
i=1 ∑T−`

t=1

[
∑t−1

j=0(−ρ) jµi,t− j√
µit µi,t+`

]
for ` = 1

0 otherwise
(6.63)

For EQC : E[ρ̂`] =
ρ

K(T − `)

K

∑
i=1

T−`

∑
t=1

[
µi1

{µit µi,t+`}
1
2

]
, (6.64)

for ` = 1, . . . ,T − 1, where µit = exp(x′itβ ) for all t = 1, . . . ,T. Note that as far
as the value of β is concerned for computing ρ̂` by (6.61) and the expectations
by (6.62)− (6.64), this may be obtained by solving the GQL estimating equation
(6.26) under the ’working’ independence assumption ρ = 0.0. This is because such
an estimate is always consistent and one does not necessarily require an efficient
estimate for β before the correlation structure is identified.
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Further note that if the time dependent covariates are not so different over time,
then the expected values in (6.62)− (6.64) would almost agree with the correlation
pattern under the stationary case, described through (6.17), (6.19), and (6.22). To
demonstrate this, we now examine empirically the pattern for E[ρ̂`] under all three
correlation models. For this purpose, we consider two time-dependent covariates as
follows:

xit1 =



1
2 for t = 1, 2; i = 1, . . . ,K/4

1 for t = 3, 4; i = 1, . . . ,K/4

− 1
2 for t = 1; i = (K/4)+1, . . . ,3K/4

0 for t = 2, 3; i = (K/4)+1, . . . ,3K/4

1
2 for t = 4; i = (K/4)+1, . . . ,3K/4

t
8 for t = 1, . . . ,4; i = (3K/4)+1, . . . ,K,

and

xit2 =


t−2.5

8 for t = 1, . . . ,4; i = 1, . . . ,K/2

0 for t = 1,2; i = (K/2)+1, . . . ,K

1
2 for t = 3, 4; i = (K/2)+1, . . . ,K.

For T = 4 and K = 100, the values for E[ρ̂`] computed by (6.62)− (6.64) for suit-
able values of ρ are displayed in Table 6.10.

It is clear from the results of the table that the E[ρ̂`] for ` = 1, . . . ,T−1, exhibit an
exponentially decaying pattern under the nonstationary AR(1) model, whereas they
exhibit a truncated pattern under the MA(1) model, and a constant pattern under the
EQC model. These patterns are quite similar to those under the respective stationary
correlation structure. Thus, it appears that in practice one may still exploit the values
of ρ̂` computed by (6.61) in order to diagnose the nonstationary correlation pattern.
More specifically, because the values of E[ρ̂`] for ` = 1, . . . ,T −1, under the AR(1),
MA(1), and EQC models exhibit three different patterns, and because the values
of ρ̂` computed from the data should reflect the pattern supported by the values of
E[ρ̂`], it is quite reasonable to examine the pattern generated by the values of ρ̂` to
diagnose the appropriate model.
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Table 6.10 The pattern for E[ρ̂`] for lag ` = 1, . . . ,T −1, under AR(1), MA(1), and EQC correla-
tion structures for longitudinal count data with selected values for the correlation index parameter
ρ.

Correlation Structure
AR(1) MA(1) EQC

ρ ` E[ρ̂`] ρ ` E[ρ̂`] ρ ` E[ρ̂`]
0.3 1 0.282 0.1 1 0.089 0.3 1 0.251

2 0.078 2 0.0 2 0.248
3 0.022 3 0.0 3 0.248

0.5 1 0.469 0.2 1 0.168 0.5 1 0.417
2 0.216 2 0.0 2 0.413
3 0.103 3 0.0 3 0.412

0.6 1 0.563 0.3 1 0.239 0.6 1 0.502
2 0.312 2 0.0 2 0.495
3 0.178 3 0.0 3 0.494

0.68 1 0.638 0.4 1 0.306 0.7 1 0.587
2 0.400 2 0.0 2 0.577
3 0.259 3 0.0 3 0.577

6.6 More Nonstationary Correlation Models

6.6.1 Models with Variable Marginal Means and Variances

In this section, we demonstrate that as opposed to the nonstationary MA(1) model in
(6.49), one may construct a different MA(1) model that produces the mean and the
variance functions different from those produced by the nonstationary AR(1) (6.44)
and EQC (6.53) models. These two latter models in (6.44) and (6.53) produce the
mean and the variance as

E[Yit ] = var[Yit ] = exp(x′itβ ). (6.65)

We now construct an alternative MA(1) model to (6.49), and examine its mean,
variance, and correlation structures.

6.6.1.1 Nonstationary MA(1) Models

Suppose that the non-stationary MA(1) model for the count responses has the same
form, that is,

yit = ρ ∗di,t−1 +dit , (6.66)

as in (6.18) under the stationary case, but the model components are now assumed
to satisfy the following distributional assumptions.
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Assumption 1. For t = 1, . . . ,T, the discrete errors dit follow the Poisson distribu-
tion as dit ∼ P(µit/(1+ρ)), with µit = exp(x′itβ ).

Assumption 2. For all t = 1, . . . ,T, dits are independent.

Assumption 3. An initial discrete error di0 ∼ P(µi0/[1 + ρ]), where the choice of
µi0, a function of some initial or past covariates, is left to the user. In the stationary
case, µi0 = µi1 = · · ·= µiT = µi·.

For t = 1, . . . ,T, by writing zi,t−1 = ρ ∗di,t−1, for convenience, one may now use
the model (6.66) and compute the mean νit = E(Yit) and the variance σitt = var(Yit)
as

νit = Edi,t−1E[zi,t−1]+E[dit ] = [ρµi,t−1 + µit ]/(1+ρ), (6.67)

and

σitt = vardi,t−1E[zit |di,t−1]+Edi,t−1var[zit |di,t−1]+var[dit ]

= vardi,t−1 [ρdi,t−1]+Edi,t−1 [ρ(1−ρ)di,t−1]+ [µit/(1+ρ)]

= [ρµi,t−1 + µit ]/(1+ρ), (6.68)

respectively. Thus, it is clear that for t = 1, . . . ,T , yit has the mean νit and the
variance σitt = νit , which are, however, different from the mean and the variance
functions given in (6.65) under the AR(1) and EQC models. Also, it is to be noted
that the ρ parameter in the MA(1) model (6.66) must satisfy the range restriction
max[−µit/µi,t−1] < ρ < 1, for all i and t. Next by similar calculations as in the
AR(1) model, it follows from (6.67)− (6.68) that under the MA(1) model, the `th
` = 1, . . . ,T −1, lag autocorrelation is given by

corr(Yit ,Yi,t−`) = c(ns)
it,t−l(xi,ρ) =

 [ρµi,t−`/(1+ρ)]/[νitνi,t−`]1/2 for ` = 1

0 for ` > 1.

 ,

(6.69)

which is nonstationary. This correlation structure is different from that (6.50) of the
other MA(1) model (6.49).

Thus, under this alternative nonstationary MA(1) model (6.66), it is not only that
the correlations are different from those of the AR(1) and EQC models, but the mean
and the variances are also different.



6.6 More Nonstationary Correlation Models 211

6.6.2 Estimation of Parameters

Note that the three nonstationary models, namely AR(1), MA(1), and EQC intro-
duced in Sections 6.5.1.1, 6.5.1.2, and 6.5.1.3, respectively, produce the same mean
and variance functions but different correlation structures. In spite of their differ-
ent correlation structures, the regression parameter β was estimated by solving the
GQL estimating equation (6.56), which is unbiased for zero vector, irrespective of
the model for the data. This happens because all three correlation models produce
the same mean vector µi as given in (6.56). As opposed to Section 6.5, in Section
6.6 we now assume that the repeated count data are generated following either the
AR(1) (6.44) or EQC (6.53) model from Section 6.5, or following the MA(1) model
(6.66) introduced in Section 6.6.1.1. The MA(1) model (6.66) produces different
mean and variance structure, thus it is no longer possible to use the estimating equa-
tion (6.56) for β to obtain consistent estimate, under the MA(1) model (6.66). This
is, however, a valid equation to solve for β under the AR(1) and EQC models. Fur-
thermore, for these two models (6.44) and (6.53), the ρ parameter is consistently
estimated by (6.58) and (6.60), respectively.

In the next section, we demonstrate how to estimate β and ρ parameters of the
MA(1) model (6.66).

6.6.2.1 GQL Estimation for Regression Effects β

We now fit the nonstationary MA(1) model (6.66) to the longitudinal count data.
The mean and the variance structures under this model are given in (6.67)− (6.68),
whereas the nonstationary correlation structure is given by (6.69).

Let
νi = (νi1, . . . ,νit , . . . ,νiT )

′

be the mean vector of yi, where for t = 1, . . . ,T,

νit = [µit +ρµi,t−1]/(1+ρ)

by (6.67). For convenience, we assume that µi0 = 0. Furthermore, let Σ
(ns)
i (ρ) =

(σiut) be the T ×T covariance matrix of yi, where

σiut =

σitt , if u = t

ρµiu
1+ρ

, if u < t,
(6.70)

with σitt as in (6.68). It then follows that for known ρ , one may write the GQL
estimating equation for β as

K

∑
i=1

∂νi
′

∂β
Σ

(ns)
i

−1
(ρ̂)(yi−νi) = 0, (6.71)
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which is a different estimating equation from that of under the AR(1) model
(6.44) and EQC model (6.53).One may now solve (6.71) iteratively by using the
Newton−Raphson algorithm. To be specific, (6.71) is solved for β iteratively by
using

β̂ (r +1) = β̂ (r)+

{ K

∑
i=1

[(X
′
i Ai +Z′iBi)Σ−1

i (AiXi +BiZi)]

}−1

×
K

∑
i=1

{
(X

′
i Ai +Z′iBi)Σ−1

i (yi−νi)
}]

[r]

, (6.72)

where

X ′
i = (xi1, . . . ,xit , . . . ,xiT ), Z′i = (1p, xi1, . . . ,xi,T−1),

Ai = diag(
µi1

1+ρ
,

µi2

1+ρ
, . . . ,

µit

1+ρ
, . . . ,

µiT

1+ρ
),

B = diag(0,
ρµi1

1+ρ
,

ρµi2

1+ρ
, . . . ,

ρµit

1+ρ
, . . . ,

ρµi,T−1

1+ρ
),

and [.]r denotes the fact that the expression within the brackets is evaluated at β̂ (r).
Let β̂GQL denote the solution obtained from (6.72). Under mild regularity conditions
it may be shown that β̂GQL has the asymptotic (as K →∞) normal distribution given
as

K
1
2 (β̂GQL−β )∼ N

0, K

[
K

∑
i=1

(X ′
i Ai +Z′iBi)Σ−1

i (AiXi +BiZi)

]−1
 . (6.73)

6.6.2.2 Moment Estimation for the Correlation Parameter ρ

As far as the ρ parameter is concerned, we estimate this parameter consistently by
using the well-known method of moments. For the purpose, we first observe under
the MA(1) model that

E

[
(Yit −νit)√

νit

]2

= 1

E

[
(Yit −νit)√

νit

(Yi,t−1−νi,t−1)√
νi,t−1

]
=

ρ

1+ρ

µi,t−1√
νitνi,t−1

. (6.74)
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Consequently, one may obtain a consistent estimator of ρ by solving the moment
equation

a(ρ)
b(ρ)

=
ρ

1+ρ
c(ρ), (6.75)

where

a(ρ) =
1

K(T −1)

K

∑
i=1

T

∑
t=2

(Yit −νit)√
νit

(Yi,t−1−νi,t−1)√
νi,t−1

b(ρ) =
1

KT

K

∑
i=1

T

∑
t=1

[
(Yit −νit)√

νit

]2

,

and

c(ρ) =
1

K(T −1)

K

∑
i=1

T

∑
t=2

µi,t−1√
νitνi,t−1

. (6.76)

Note that unlike solving for ρ by (6.58) under the AR(1) process or by (6.60)
under the EQC model, solving (6.75) for ρ under the MA(1) model is complicated
as νit contains ρ for all t = 1, . . . ,T. One may, however, obtain an approximate
solution, based on an iterative technique by using an initial value of ρ , say ρ0, in all
νit , and solving (6.75) for ρ as

ρ1 =
a(ρ0)

b(ρ0)c(ρ0)−a(ρ0)
. (6.77)

Next one may improve the estimate of ρ by using ρ1 in place of ρ0 in (6.75). That
is, the new solution of ρ is obtained as

ρ2 =
a(ρ1)

b(ρ1)c(ρ1)−a(ρ1)
. (6.78)

This iteration continues until convergence.

6.6.3 Model Selection

Under the assumption that the longitudinal count data follow either the nonstation-
ary AR(1) (6.44) or EQC (6.53) model described in Section 6.5, we have estimated
their common regression parameter by (6.56), and their correlation parameter ρ was
estimated by (6.58) and (6.60), respectively. Next, for the estimation of the param-
eters of the MA(1) model (6.66), we have used the GQL approach (6.71) for β

estimation, and the moment estimating equation (6.75) for the estimation of the ρ

parameter. Now the question arises, which model to recommend for use in practice?
We consider a lag 1 model fitting approach to answer this question. Note that this
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model selection approach is different from that we have used in Section 6.5.3. One
of the reasons for this difference in model selection approaches is that in Section
6.5 we have considered models with the same mean functions, whereas in this sec-
tion we have considered models with different mean functions. To be more specific,
when the models do not agree for the mean functions, it is better to fit them to the
data separately and then see which model fits the data best. Thus, in this section, we
fit a model M (say) to the data and simply compute the error sum of squares, GM,
under the model M, defined by

GM =
K

∑
i=1

T

∑
t=1

[yit − ŷit(M)]2, (6.79)

and recommend that model with the smallest value of the error sum of squares. In
(6.79), ŷit(M) denotes the fitted value of yit under the model M.

The formula for ŷit(M)under each of the three models are as follows.

When Nonstationary AR(1) Model (6.44) Is Fitted

ŷit =

{
µ̂it for t = 1

µ̂it + ρ̂{yi,t−1− µ̂i,t−1} for t = 2, . . . ,T,
(6.80)

with µ̂it = exp(x′it β̂ ), where β̂ is obtained by solving the GQL estimating equation
(6.56) and ρ̂ is obtained as the moment estimate by using (6.58).
When Non-stationary MA(1) Model (6.66) is Fitted

ŷit =


µ̂it

1+ρ̂
for t = 1

µ̂it+ρ̂ µ̂i,t−1
1+ρ̂

for t = 2, . . . ,T,
(6.81)

with µ̂it = exp(x′it β̂ ), but β̂ is obtained by solving the GQL estimating equation
(6.71) and ρ̂ is obtained as the moment estimate by solving (6.75). Note that es-
timating equations in (6.71) and (6.75) under the MA(1) model are similar to but
different from the AR(1) based estimating equations (6.56) and (6.58), respectively.

When Nonstationary Exchangeable or Equicorrelation (EQC) Model (6.53) Is
Fitted

ŷit =

{
µ̂it for t = 1

µ̂it + ρ̂{yi1− µ̂i1} for t = 2, . . . ,T,
(6.82)

with µ̂it = exp(x′it β̂ ), where β̂ and ρ̂ are obtained by solving the GQL (6.56) and
moment estimating equation (6.60).
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6.6.4 Estimation and Model Selection: A Simulation Example

We now consider a simulation study and examine the performance of the GQL es-
timation approach discussed in Section 6.6.2. We also examine the performance of
the mean squared errors (MSEs) based model selection approach discussed in Sec-
tion 6.6.3. We demonstrate here that if a misspecified model is used, then the GQL
approach may lead to inconsistent estimates for the regression effects causing a se-
rious inference problem. This happens when the mean and the variance functions of
the true model are different from those of the so-called ‘working’ or misspecified
model.

6.6.4.1 Simulated Estimates Under the True and Misspecified Models

To choose a simulation design, we take p = 2 and β1 = β2 = 0.5. With regard to
the correlation index parameter, we consider two cases, one with moderately large
ρ = 0.5 and the other with large ρ = 0.75. Next we choose K = 300, where K is
the number of independent individuals. As far as the values of the covariates are
concerned, we consider two time-dependent covariates given in Section 6.5.3.

Next, for a selected value of K, and ρ, we simulate the longitudinal responses
yi1, . . . ,yiT , following a true, say AR(1) or exchangeable correlation model as de-
scribed in Section 6.5.1, or the MA(1) model as described in Section 6.6.1. We
consider 1000 simulations. In each simulation, we then estimate the parameters
β1, β2, and ρ, by using the formulas for all three processes as discussed in Sec-
tion 6.6.2. The simulated mean and the simulated standard error of the estimates are
reported in Table 6.11.

The results in Table 6.11 clearly indicate that fitting a ‘working’ nonstationary
model can be extremely dangerous. For example, when the longitudinal data are
generated, say following the MA(1) model, and also the estimates are obtained by
fitting the MA(1) model, the GQL estimates appear to perform very well. The GQL
estimates computed based on either the AR(1) or EQC model, however, appear to be
far off from the true parameter values. To be specific, when ρ = 0.75, the true MA(1)
based GQL estimates for β1 = 0.5 and β2 = 0.5 are 0.491 with standard error 0.175,
and 0.499 with standard error 0.175, respectively. These estimates are very close to
the true values. Similarly, the moment estimate for ρ = 0.75 is found to be 0.749
with small standard error 0.064, which indicates superb performance of the GQL
approach provided the true model is used for the estimation. On the contrary, when
AR(1) model is used as the ’working’ model, the regression estimates are found
to be −1.016 and 1.709 for true β1 = β2 = 0.5. It is clear that these estimates are
complete nonsense. Similar results hold for ρ estimation. The AR(1) based moment
estimate for ρ = 0.75 is found to be 1.000, which is also highly biased. Note that
these results are not surprising. This is because unlike under the stationary models
[Liang and Zeger (1986), Sutradhar (2003)], the mean and variance structures under
different correlation models may be different.
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Table 6.11 The simulated means and the simulated standard errors of the estimates of the re-
gression and the correlation index parameters under both true and ‘working’ nonstationary AR(1),
MA(1), and EQC (equicorrelations) models for longitudinal count data, with true β1 = β2 = 0.5,
for K = 300 individuals, and a selected value of ρ , based on 1000 simulations.

True Nonstationary Correlation Model
AR(1) MA(1) EQC

Working Model True ρ Parameters SM SSE SM SSE SM SSE
AR(1) 0.60 β1 0.499 0.111 −0.159 0.370 0.502 0.125

β2 0.494 0.103 1.171 0.306 0.491 0.116
ρ 0.599 0.033 0.847 0.076 0.504 0.044

0.75 β1 0.499 0.094 −1.016 0.279 0.504 0.114
β2 0.503 0.087 1.790 0.232 0.499 0.104
ρ 0.749 0.029 1.000 0.004 0.696 0.042

MA(1) 0.60 β1 0.477 0.138 0.483 0.178 0.360 0.130
β2 0.388 0.133 0.506 0.177 0.601 0.129
ρ 0.386 0.031 0.598 0.062 0.249 0.039

0.75 β1 0.481 0.127 0.491 0.175 0.368 0.122
β2 0.367 0.125 0.499 0.175 0.611 0.121
ρ 0.452 0.028 0.749 0.064 0.291 0.042

EQC 0.60 β1 0.498 0.126 0.215 0.278 0.498 0.110
β2 0.496 0.111 0.875 0.253 0.498 0.097
ρ 0.521 0.042 0.717 0.080 0.597 0.044

0.75 β1 0.497 0.115 0.777 0.446 0.498 0.090
β2 0.500 0.097 1.618 0.350 0.500 0.080
ρ 0.655 0.038 0.966 0.054 0.749 0.041

Remark that because the AR(1) and EQC models produce the same mean and
the variance functions, the estimates under model misspecification do not vary too
much but the standard errors tend to be larger under the misspecified models [Su-
tradhar and Das (1999)]. For example, when the data are generated following the
AR(1) model, the AR(1) model based estimates for β1, β2, and ρ, have the standard
errors 0.094, 0.087, 0.029, whereas the EQC model based corresponding standard
errors are 0.115, 0.097, 0.038, confirming inefficient estimation under the ’work-
ing’ correlation models.

In summary, when the longitudinal data follow a nonstationary correlation model,
the effect of selecting a ‘working’ model with different mean and variance functions
can be very serious. Thus, it is important to identify the true model to fit the data.

6.6.4.2 Model Selection

Note that it is practical to attempt to fit a possible low-order correlation model to
given longitudinal data. But it may not be easy to identify the actual correlation
structure for the data, especially when the data may follow one of the three non-
stationary correlation models discussed in the paper. We thus recommend fitting
all three models initially to the given data and compute the GM statistic defined in
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(6.79) under all three fitted models. One may then choose the model which produces
the smallest value of the statistic GM. The simulation results reported in Table 6.12
appear to support this technique of model selection.

Table 6.12 The simulated error sum of squares (ESS) under both true and ‘working’ nonstationary
AR(1), MA(1), and EQC (equi-correlations) models for longitudinal count data, with true β1 =
β2 = 0.5, for K = 300 individuals, and a selected value of ρ , based on 1000 simulations.

True nonstationary Correlation Model
AR(1) MA(1) EQC

Selected ρ Working Model ESS ESS ESS
0.60 AR(1) 0.967 1.378 1.180

MA(1) 1.281 1.138 1.158
EQC 1.053 1.347 1.012

0.75 AR(1) 0.788 1.450 1.046
MA(1) 1.249 1.120 1.145
EQC 0.919 1.425 0.856

For example, when the data were generated following the nonstationary AR(1)
model (6.44) with ρ = 0.75, the simulated average values of the GM statistic com-
puted by using the fitted values based on AR(1) (6.80), MA(1) (6.81), and EQC
(6.82) models are found to be 0.788, 1.450, and 1.046, respectively. It is then clear
that when the data follow the AR(1) model and the AR(1) model is fitted, the GM

statistic has the smallest value. Similar results hold under the other two models too.

6.7 A Data Example: Analyzing Health Care Utilization Count
Data

We now consider an illustration for the application of the nonstationary correlation
models for repeated count data discussed in Section 6.6, by analyzing the health
care utilization data, earlier studied by Sutradhar (2003), for example. This dataset,
provided in Appendix 6A, is a part of the longitudinal dataset collected by the Gen-
eral Hospital of the city of St. John’s, Canada. To be specific, here we consider
the longitudinal count data that contain the complete records for 144 individuals
for four years (n = 4) from 1985− 1988. The number of visits to a physician by
each individual during a given year was recorded as the response, and this was
repeated for four years. Also, the information on four covariates, namely, gender,
number of chronic conditions, education level, and age, were recorded for each
individual. Note that as the responses are counts, it is appropriate to assume that
the response variable, marginally, follows the Poisson distribution, and the repeated
counts recorded for four years will be longitudinally correlated. Along the lines of
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Liang and Zeger (1986) we assume that the data may follow any of the low-order
correlations such as AR(1), MA(1), or EQC models discussed in Section 6.6. Note
that because these models produce different mean and the variance structures, they
must be fitted by using these varied mean, variance, and correlation structures for
the purpose of obtaining consistent and efficient estimates for the regression effects
β and the correlation index parameter ρ.

Following the notations used in Sections 6.5 and 6.6, the four covariates for
the ith (i = 1, . . . ,K = 144) individual at time t (t = 1, . . . ,4) are denoted by
xit1,xit2,xit3, and xit4 respectively. The first covariate geneder was coded as 0 for
female and 1 for male. Thus, at any time t, xit1 = 0 if the ith individual is female,
otherwise xit1 = 1. Similarly, the number of chronic diseases was coded as xit2 = 0
for the absence of chronic disease for the ith individual at time t, and xit2 = 1 if the
ith individual had 1 or more chronic diseases at time t. The third covariate, educa-
tion level, xit3, was coded as 1 for less than high school, and 0 for high school or
higher education. The last covariate, xit4, represents the age of the individual. The
effects of these covariates are denoted by β = (β1,β2,β3,β4)′, so that the mean of
the count response for the ith individual at a time point t is given by (6.65) under
the nonstationary AR(1) and EQC structures, and by (6.67) under the nonstationary
MA(1) model. In all these mean functions xit = (xit1,xit2,xit3,xit4)′.

We now apply the GQL estimation methodology discussed in Section 6.6. By
using the response data yit and xit vector for all i = 1, . . . ,144, individuals and over
t = 1, . . . ,4, years, we obtain the estimate of β and ρ from Section 6.5.1.1 under
the nonstationary AR(1), from Section 6.6.1.1 under the MA(1), and similarly from
Section 6.5.1.3 under the EQC models. These results along with the standard errors
of the estimates of β computed by using the asymptotic covariance matrices from
these three sections, are reported in Table 6.13.

Table 6.13 Comparison of the estimates of the regression and the correlation parameters under
the nonstationary AR(1), MA(1), and EQC (equicorrelations) models in fitting the health care
utilization data.

Nonstationary Correlation Models
AR(1) MA(1) EQC

Parameters EST SE EST SE EST SE
Gender effect (β1) −0.223 0.060 −0.179 0.054 −0.204 0.065
Chronic effect (β2) 0.374 0.072 0.363 0.065 0.341 0.078
Education effect (β3) −0.428 0.074 −0.400 0.066 −0.390 0.081
Age effect(β4) 0.029 0.001 0.031 0.001 0.029 0.001
ρ 0.554 – 0.769 – 0.529 –
ρy(1) 0.546 – 0.486 – 0.521 –
GM 14.20 – 20.46 – 15.34

As far as the selection of a model from these three lower-order models is con-
cerned, we have computed the fitted residual squared distance GM by (6.79) under
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all three models and reported them in the same Table 6.13. As the GM statistic has
the lowest value 14.20 under the AR(1) structure, we chose the AR(1) model to
interpret the estimates.

As the first covariate gender was coded as 1 for male and 0 for female, it follows
from (6.65) and (6.67) that the negative value of β̂1 = −0.223 suggests that the
females made more visits to the physician as compared to the males. The positive
values of β̂2 = 0.374 and β̂4 = 0.029 suggest that individuals having one or more
chronic diseases or individuals belonging to the older age group pay more visits to
the physicians, as expected. The third covariate education level was coded as 1 for
less than high school, 0 for higher education. The effect of the education level on
the physician visits was found to be β̂3 = −0.428. This negative estimate shows
that highly educated individuals pay more visits as compared to individuals with a
low level of education. One of the reasons for this type of behavior of this covariate
may be that the individuals with a high-level education (more than high school) are
more concerned about their health condition as compared to the individuals with
low-level education.

Note that the standard errors of the regression estimates under the AR(1) model
were found to be

s.e.(β̂1) = 0.060, s.e.(β̂2) = 0.072, s.e.(β̂3) = 0.074, s.e.(β̂4) = 0.001.

As these standard errors are quite small as compared to the corresponding values
of the regression estimates, all four covariates appear to have significant effects on
the physician visits. Further note that the standard errors of the estimates under the
MA(1) model appear to be smaller than the corresponding standard errors under the
AR(1) model. Nevertheless, the estimates under the MA(1) model cannot be trusted
as it is evident from the simulation study (see Table 6.11) that they can be highly
biased when the data really follow the AR(1) model. Here the data as mentioned
earlier appear to follow the AR(1) model with the smallest GM value.

6.8 Models for Count Data from Longitudinal Adaptive Clinical
Trials

In a clinical trial study with human subjects, it is highly desirable that one use certain
data-dependent treatment allocation rules which exploit accumulating past informa-
tion to assign individuals to treatments so that more study subjects are assigned
to the better treatment. For example, consider a clinical trial study to examine the
performance of a new treatment for asthma prevention. Suppose that one individual
patient is assigned to one of the treatments in an adaptive way and number of asthma
attacks for a week is recorded. Here the number of asthma attacks for a week may
be considered to follow a Poisson distribution. Once the outcome of the first individ-
ual is known, the treatment for the second individual may be decided based on the
outcome of the first individual as well as the covariate information of the individual.
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Similarly, a treatment is assigned to the third individual based on the outcomes of
the past two individuals and their covariate information. This adaptive procedure
continues for a large number of weeks, say for 100 weeks for the treatment of 100
individuals. Note that 100 or more weeks is a reasonable duration for the completion
of an intensive clinical trial study. Here, the purpose is to determine the effects of
the treatments after treating a large proportion of subjects by the better treatment.

Note that there are many clinical studies including the aforementioned asthma
study where it may be necessary to record the count responses repeatedly over a
small period of time, from a patient based on the same assigned treatment, assign-
ment of treatment being done in a longitudinal adaptive way. For example, for the
asthma problem, it may be better to collect responses from a patient weekly for a
period of T = 4 weeks, say, where the responses will be longitudinally correlated.
As far as the treatment assignment is concerned, the assignment of the treatment to
the third patient, for example, will be benefitted from the first week’s response of
the second patient, and the first and second weeks’ responses from the first patient,
and so on. The main purpose of this section is to discuss such longitudinal count
data collected from a clinical trial study based on a suitable adaptive design. For
the purpose, following Sutradhar and Jowaheer (2006), we first provide two longi-
tudinal adaptive designs in Section 6.8.1. In Section 6.8.2, we demonstrate through
a simulation study that the longitudinal adaptive designs discussed in Section 6.8.1
indeed allocate more patients to a better treatment. The overall treatment effects and
the effects of other possible covariates are consistently and efficiently estimated in
Section 6.8.3 by using a weighted GQL (WGQL) approach, based on the complete
data collected from all patients during the study. We remark here that the WGQL
approach indicates that the longitudinal adaptive design weights responsible for the
collection of the longitudinal count data are incorporated in the so-called GQL ap-
proach discussed in the previous sections.

6.8.1 Adaptive Longitudinal Designs

Autocorrelated Poisson Model Conditional on Design Weights: Suppose that K
independent patients will be treated in the clinical study and T longitudinal count
responses will be collected from each of them. Also, for simplicity, let there be two
treatments A and B to treat these patients and A is the better treatment between
the two. Next suppose that δi refers to the selection of the treatment for the ith
(i = 1, . . . ,K) patient, and

δi =

{
1, if ith patient is assigned to A

0, if ith patient is assigned to B

with
Pr(δi = 1) = wi and Pr(δi = 0) = 1−wi. (6.83)
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Here wi refers to the better treatment selection probability for the ith patient. Now
to construct a longitudinal adaptive design one needs to derive the formulas for
the selection probabilities wi(i = 1, . . . ,K) so that in the long run more patients are
treated by A.

Note that the value of δi determines the treatment by which the ith patient will be
treated. Now suppose that conditional on δi, yit denotes the count response recorded
from the ith patient at time t(t = 1, . . . ,T ), and xit denotes the p-dimensional covari-
ate vector corresponding to yit , defined as

xit = (δi,xit2, . . . ,xitu, . . . ,xit p)′

= (δi,x
∗′
it )

′, (6.84)

where x∗it = (xit2, . . . ,xitu, . . . ,xit p)′ denote the p− 1× 1 vector of covariates such
as prognostic factors (e.g., age, chronic conditions, and smoking habit) for the ith
patient available at time point t. Thus, for i = 2, . . . ,K, the distribution of δi, that
is, the formula of wi, will depend on {δ1, . . . ,δi−1} and available responses ykv (k =
1, . . . , i−1;1≤ v≤ T ) along with their corresponding covariate vector xkv. For i = 1,
w1 is assumed to be known.

As far as the availability of the repeated responses is concerned, we assume that
for all i = 1, . . . ,K, once δi becomes known, the repeated count responses from the
ith patient will be available following a Poisson distribution with conditional mean
and variance (conditional on δi) given by

E(Yit |δi,x
∗
it) = var(Yit |δi,x

∗
it) = exp(θit), (6.85)

where θit = x′itβ , with xit = (δi,x∗
′

it )
′. Also we assume that the pairwise longitudinal

correlations between two repeated count responses are given by

corr[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] = ρ

(ns)
|t−v|(δi,x

∗
it ,x

∗
iv,ρ)

= c(ns)
i,tv (δi,x

∗
it ,x

∗
iv,ρ), (6.86)

where c(ns)
i,tv (δi,x∗it ,x

∗
iv,ρ) has the formulas given by (6.46), (6.50), and (6.55) under

the nonstationary AR(1), MA(1), and EQC models, respectively. It then follows by
(6.85) and (6.86) that the conditional (on δi) covariance between yit and yiv is given
by

cov[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] = ρ

(ns)
|t−v|{exp(θit +θiv)}

1
2 .

Note, however, that for simplicity we use the stationary correlations based covari-
ance matrix given by

cov[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] ' c∗i,tv(ρ){exp(θit +θiv)}1/2

= ρ|t−v|{exp(θit +θiv)}
1
2 . (6.87)
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6.8.1.1 Simple Longitudinal Play-the-Winner (SLPW) Rule to Formulate wi

Note that in the cross-sectional setup, i.e., when T = 1 there exist a number of op-
tions to formulate the adaptive design weights wi for i = 1, . . . ,K. For example, we
refer to the

(i) randomized play the winner (RPW) rule [Zelen (1969); Wei and Durham (1978);
Wei et al. (1990)],
(ii) random walks rule [Durham and Flournoy (1994)],
(iii) group sequential test [Jennison and Turnbull (2001)], and
(iv) optimum biased coin designs [Pocock and Simon(1975); Smith (1984); Atkin-
son (1999)].

The purpose of these designs is to assign a better treatment to an incoming patient
based on the past outcomes of the experiment as well as the covariate information.
Note that even if there are controversies [Royall 1991; Farewell, Viveros, and Sprott
(1993)] about the usefulness of the play the winner rule, this seems to be the only
design which was applied by some investigators [see, e.g., Tamura et al (1994);
Rosenberger (1996)]. In this section, following Sutradhar, and Jowaheer (2006) [see
also Sutradhar, Biswas, and Bari (2005)] we discuss a SLPW design to deal with
longitudinal count data.

Note that as wi is the probability of selection of the better treatment for the ith
patient, it is convenient to compute wi by considering two types of balls in an urn,
the first type being the indicator for the selection of the better treatment A and the
second type for the other treatment. The two types of balls are added to the urn as
follows.

(a) As in the beginning we have no reason to believe that any particular treatment
is better than the other, we take the initial urn composition in a 50:50 fashion.
Thus, the urn will have two types of balls, say α balls of each type at the outset,
and the probability that the first patient will be treated by treatment A is 0.5; that
is, Pr(δ1 = 1) = w1 = 0.5. For simplicity one may use α = 1.

(b) Suppose that at the selection stage of the ith patient {yrt} denote all available
responses for r = 1, . . . , i−1 and 1≤ t ≤min(T, i− r). The range of t here depends
on the value of r. For example, for the selection time of the ith (i = 2, . . . ,K) pa-
tient, t = 1 when r = i−1. Similarly t = 1,2 for r = i−2. Also suppose that at this
selection stage we take all these available responses into account and for a suitable
τ value and for specific available response yrt , we add τ balls of the same kind by
which the patient was treated if yrt ≤ m∗

0, and add τ balls of the opposite kind in
the urn if yrt > m∗

0. Here m∗
0 is a threshold value of the responses so that any patient

with response less than this may be thought to belong to the success group. By the
same token, if the response exceeds this threshold value, the patient may be thought
to belong to the failure group. Thus, at this stage, we add τ balls for each and every
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available response. In general τ can be small such as τ = 2, or 4.

(c) On top of the past responses, it may also be sensible to take into account the
condition of certain covariates which, along with the treatment (A or B) were re-
sponsible for yielding those past responses yrt . For a suitable quantity urt defined
such that a large value of urt implies the prognostic factor based on a less serious
condition of the rth (r = 1, . . . , i−1) past patient, G−urt balls of the same kind by
which the rth patient was treated and urt balls of the opposite kind are added, at the
treatment selection stage for the ith patient, where [0, G] is the domain of urt .

The above scheme described through (a) to (c), produces the selection probabil-
ities wi(i = 2, . . . ,K) for the cases 2 ≤ i ≤ T as in Exercise 6.4, and for i > T as in
Exercise 6.5.

6.8.1.2 Bivariate Random Walk (BRW) Design

Note that in the cross-sectional setup, apart from the randomized play-the-winner
rule, there exist some alternative adaptive designs such as the random walk rule [see,
e.g., Temple (1981), and Storer (1989)] to collect and analyze the clinical trial data.
These random walk rules are variants of the familiar up-and-down rules [Anderson,
McCarthy, and Tukey (1946), Derman (1957)]. For example, in the two treatment
case, if the (i− 1)th (i = 2, . . . ,K,) patient is assigned to treatment A, then the ith
patient will be assigned to treatment A with probability pi, and to treatment B with
probability qi, such that pi +qi = 1. The parameters pi and qi depend on the previous
patient’s response and some random event, such as the result of a biased coin flip.

Remark that in the SLPW design in the previous section, the design weight wi

was mainly dependent on the responses of the individuals 1,2, . . . , i− 1, as well as
on the conditions of their covariates. Consequently, the construction of any random
walk type of rules must be based on past responses as well as covariates. As in the
previous section, suppose that a greater value of urt implies a better condition of
the rth past patient and it was a more favorable condition of the patient to treat. By
the same token, a smaller value of urt means that the patient was serious. Now to
make sure that this better or serious covariate condition of the past patient does not
influence the selection of the treatment for the present ith patient, and also to make
sure that the past better response (say, a low value of the response such as yrt ≤ y0)
gets more weight for the assignment of the patient to the better treatment, one may
use a bivariate probability structure given by

Pr(urt ≤ u0,yrt ≤ y0) = prt , Pr(urt ≤ u0,yrt > y0) = qrt ,

Pr(urt > u0,yrt ≤ y0) = qrt , Pr(urt > u0,yrt > y0) = hrt ,

so that prt + 2qrt + hrt = 1.0. Here the parameters are chosen such that prt > qrt >
hrt . Note that the bivariate probability structure arises from the consideration of
using the past responses and the covariate condition of the patients.
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The design weights wi under this BRW rule are given in Exercise 6.6 for the case
2≤ i≤ T, and in Exercise 6.7 for the case i > T.

6.8.2 Performance of the SLPW and BRW Designs For Treatment
Selection: A Simulation Study

In the last two sections, we have discussed how to construct the longitudinal adaptive
design weights represented by wi for the selection of a better treatment for the ith
patient, for all i = 2, . . . ,K. We now conduct an empirical study to examine the
performance of wi under both SLPW and BRW designs.

To evaluate wi under the SLPW design, we use the following steps.

Step 1. Parameter Selection: Clinical Design Parameters

α = 1.0, ; G = 3.0, and τ = 2 and 4.

Longitudinal Response Model Parameters

K = 100 subjects, p = 3 covariates, β1 = 0.5,1.00; β2 = 0.5; β3 = 0.25,

along with Poisson AR(1) responses for T = 4 time points with correlation index
parameter ρ = 0.9. Also, use threshold count m∗

0 = 8.

Note that the p = 3 covariates are denoted by xit = (δi,xit2,xit3)′. Here δi is
the treatment selection for the ith patient. Suppose that xit2 and xit3 are both non-
stochastic covariates. Let xit2 = 0,1, . . . ,5 denote the number of chronic diseases for
the ith patient at the entry time to the clinical experiment, and xit3 = 1,2, . . . ,6 be
the age group of the ith patient. These two covariates are virtually time independent.
We generate these covariates as

xit2 ∼ Binomial(5, p = 0.9)

zit3 ∼ Uniform(20,80),

for all i = 1, . . . ,K, and t = 1, . . . ,T, and then assign
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xit3 =



1 for 20≤ zit3 < 30

2 for 30≤ zit3 < 40

3 for 40≤ zit3 < 50

4 for 50≤ zit3 < 60

5 for 60≤ zit3 < 70

6 for 70≤ zit3 ≤ 80.

Step 2. Generate Correlated Responses for First Individual: First using w1 = 1
2 ,

generate δ1 such that Pr[δ1 = 1] = w1. Now for i = 1, that is, for the first patient,
use

x11 = [δ1,x111,x112]′

and generate y11 following

y11 ∼ Poi(µ11 = exp(x′11β ).

Next use the stationary Poisson AR(1) model (6.14), that is,

y1t = ρ ∗ y1,t−1 +d11,

to generate the remaining three responses, namely y12,y13, and y14.

Step 3. Generation of the nonstochastic u-Variable: Next to generate w2, one
depends on the y11 just generated and also on a u-variable which is a function of the
second and third covariates. We now define the nonstochastic u-variable, uit , given
by

uit =
2

xit2 +1
+

1
xit3

which ranges from 0.5 to 3. This aids the consideration of G = 3 under the SLPW
design.

Step 4. Generation of wi and δi for i = 2, . . . ,K: Use the formula for wi from Ex-
ercise 6.4 and 6.5. The desired yit values are generated following the model (6.14);
that is,

y1t = ρ ∗ y1,t−1 +d1t . (6.88)

Step 5. Generate δi. Once wi is computed, obtain δi such that Pr[δi = 1] = wi, and
compute δ ∗ = ∑K

i=1 δi in each simulation.
In a manner similar to that of the SLPW design, we now evaluate wi under the

BRW design. To compute wi in the BRW design, one requires an upper limit for the
u-variable, say u0 = 1 and an upper limit for yrt , say y0 = 8 for all past rth individuals
at time point t = 1, . . . ,4. By using β1 = 1.0,β2 = 0.25, and β3 = 0 we generate
w2 and other values of wi, i = 3, . . . ,100 by using the formulas from Exercise 6.6
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and 6.7. For the BRW design we also use prt = 0.75,qrt = 0.10, and hrt = 0.05
as the bivariate probabilities depending on the past responses and the values of the
u-variable.

Next, in each of 1000 simulations we generate binary values δi with correspond-
ing probability wi, where the wi are generated as above except that w1 = 0.5. In each
simulation we then calculate δ ∗ = ∑100

i=1 δi. For different parameter values under two
designs, the mean and standard error of δ ∗ are shown in Table 6.14.

Table 6.14 Simulated mean values and simulated standard errors of the total number of patients
δ ∗ = ∑100

i=1 δi receiving the better treatment (A) among K = 100 subjects under both SLPW and
BRW designs, based on 1000 simulations.

δ ∗

Design ρ β1 Mean SE
SLPW 0.9 τ = 2 0.50 62 4.90

1.00 58 4.73
τ = 4 0.50 68 4.92

1.0 61 4.79
BRW 0.9 0.50 61 4.74

1.00 56 5.01

It is clear from Table 6.14 that the design weights wi under both SLPW and
BRW designs appear to perform well for the selected parameter values. In all cases,
the design weights appear to help assign more patients to the better treatment. More
specifically, for τ = 2 and β1 = 0.50, the SLPW design assigns on the average 62 pa-
tients out of 100 to the better treatment A. Similarly for β1 = 0.50, the BRW design
assigns 61 patients on the average to the better treatment A. Note that all these val-
ues of total number of patients receiving treatment A are significant as the standard
errors of δ ∗ = ∑100

i=1 δi are reasonably small in all cases. Remark that β1 in both de-
signs represent the treatment effect. In both SLPW and BRW designs, smaller values
of the response variable y indicate that the treatment is better. For example, a fewer
number of asthma attacks for an individual implies that the individual received the
better treatment. This justification also follows, for example, from the formulas for
wi in Exercises 6.4 and 6.6. This is because as the threshold point m∗

0 in the SLPW
design and the cut point (y0,u0) in the BRW design are predetermined and fixed, the
smaller values of the response variable y will produce many of I(yrt) ≤ m∗

0 as 1 in
the formula for wi in Exercise 6.4, and δyrt prt in the formula for wi in Exercise 6.6
will contribute significantly. Thus, the better treatment should produce smaller val-
ues of y in the present setup. This in turn means that the smaller values of β1 should
indicate the better treatment. Consequently, the formulation of the design weights
for both SLPW and BRW designs appear to work well as more patients are seen to
be assigned to treatment A when β1 = 0.5 as compared to β1 = 1.0.
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6.8.3 Weighted GQL Estimation for Treatment Effects and Other
Regression Parameters

In previous sections, the repeated count responses for the ith individual were repre-
sented by a vector yi = [yi1, . . . ,yit , . . . ,yiT ]′ with its mean vector µi, and covariance

matrix Σ ∗
i (ρ) = A1/2

i C∗
i (ρ)A1/2

i (6.26) under the stationary correlation models or

Σ
(ns)
i (ρ) = A1/2

i C(ns)
i (xi,ρ)A1/2

i (6.56) under the nonstationary correlation models.
It was, however, demonstrated in Sections 6.8.1 and 6.8.2 under the longitudinal
adaptive clinical trial setup, that a treatment is selected first for the ith individual
based on adaptive design weight wi, and then the responses are collected. To reflect
this operation, we now denote the response vector as

yi(wi) = [yi1(wi), . . . ,yit(wi), . . . ,yiT (wi)]′

and its mean vector and stationary correlations based covariance matrix, for exam-
ple, by

µi(wi0), and Σ
∗
i (wi0,ρ),

respectively, where wi0 is the limiting value of wi, for example, wi0 = E[wi].

6.8.3.1 Formulas for µi(wi0), and Σ ∗
i (wi0,ρ) :

Construction of the Mean Vector µi(wi0) Let

z′it = x′it |δi=1 = (1,x∗
′

it ), and z∗
′

it = x′it |δi=0 = (0,x∗
′

it ),

where x∗it = (xit2, . . . ,xit p)′. Also, define

µ
∗
rt1 = exp(z′rtβ ), and µ

∗
rt2 = exp(z∗

′
rt β ). (6.89)

Now by taking the average over the distribution of δi, it follows from (6.85) that the
unconditional mean of Yit , that is, µit(wi0) has the formula given by

E(Yit |x∗it) = Eδ1
Eδ2|δ1

. . .Eδi|δ1,δ2,...,δi−1
E(Yit |δi, . . . ,δ1)

= wi0 exp(z′itβ )+(1−wi0)exp(z∗
′

it β )

= wi0µ
∗
it1 +(1−wi0)µ

∗
it2

= µit(wi0), (6.90)

where for i = 1, . . . ,K, wi0 is the expectation of wi, with wi = Pr(δi = 1|yHi−1) as
defined in Exercises 6.4 and 6.5 for the SLPW design, and in Exercises 6.6 and 6.7,
for the BRW design. More specifically, for the SLPW design, wi0 can be computed
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for the case 2≤ i≤ T as

wi0 = Eδ1
Eδ2|δ1

· · · Eδi|δ1,δ2,...,δi−1
E(δi|yHi−1)

=
1

2α + 1
2 i(i−1)(G+ τ)

×

[
α +

i−1

∑
r=1

i−r

∑
t=1

[{(G−urt)+ µ̃rt1τ}wr

+{urt +(1− µ̃rt2)τ}(1−wr)]] , (6.91)

and for the case i > T as

wi0 = Eδ1
Eδ2|δ1

. . .Eδi|δ1,δ2,···,δi−1
E(δi|yHi−1)

=
{

2α +(G+ τ)T
(

i− T +1
2

)}−1

×

[
α +

i−T

∑
r=1

T

∑
t=1
{(G−urt + µ̃rt1τ)wr +(urt +(1− µ̃rt2)τ)(1−wr)}

+
i−1

∑
r=i−T+1

i−r

∑
t=1
{((G−urt)+ µ̃rt1τ)wr

+(urt +(1− µ̃rt2)τ)(1−wr)}] , (6.92)

with

µ̃rt1 =
∫ m∗

0

0
f (yrt |θrt = z′rtβ ) =

m∗
0

∑
k=0

exp(−µ∗
rt1)(µ∗

rt1)
k

k!

and

µ̃rt2 =
∫ m∗

0

0
f (yrt |θrt = z∗

′
rt β ) =

m∗
0

∑
k=0

exp(−µ∗
rt2)(µ∗

rt2)
k

k!
,

where m∗
0 is the threshold count as mentioned before.

Note that the computation of the unconditional mean vector µi(wi0) for the BRW
design is similar to that of SLPW design, and hence omitted.

Construction of the Covariance Matrix Σ ∗
i (wi0,ρ)

Next, we construct the unconditional covariance matrix Σ ∗
i (ρ) of the Yi vector as

follows. Recall that given δ1,δ2, . . . ,δi, or simply say, given δi, the conditional vari-
ance of Yit and the conditional covariance between Yit and Yiv are given in (6.85) and
(6.87), respectively. Now by similar arguments as for the construction of the mean
vector, the unconditional covariance between Yit and Yiv may be computed as
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cov[(Yit ,Yiv)|x∗it ,x∗iv] = Eδ1
Eδ2|δ1

. . .Eδi|δ1,...,δi−1
[cov(Yit ,Yiv)|δi]

+ covδ1,...,δi
[E(yit |δi),E(yiv|δi)],

= Eδ1
Eδ2|δ1

. . .Eδi|δ1,...,δi−1
[ρ|t−v|{exp[(θit +θiv)′β ]}1/2]

+covδ1,...,δi
{exp[(θit +θiv)′β ]}

= ρ|t−v|

[
wi0{µ

∗
it1µ

∗
iv1}1/2 +(1−wi0){µ

∗
it2µ

∗
iv2}1/2

]
+wi0{µ

∗
it1µ

∗
iv1}+(1−wi0){µ

∗
it2µ

∗
iv2}−µit(wi0µiv(wi0)

= σ
∗
i jk(wi0,ρ), say, (6.93)

where µ∗
it1 and µ∗

it2 are given as in (6.89), and µit(wi0) is given as in (6.90). For
t = v, equation (6.93) yields the unconditional variance of yit given by

var(Yit |x∗it) = µ
∗
it +{wi0µ

∗2
it1 +(1−wi0)µ

∗2
it2}−µ

∗2
it . (6.94)

The construction of the covariance matrix Σ ∗
i (wi0,ρ) = (σ∗

i jk(wi0,ρ)), say, is now
completed by (6.93) and (6.94).

6.8.3.2 Weighted GQL Estimation of β

Note that β = [β1,β2, . . . ,βp]′ is the effect of the covariate

xit = [δi,x
∗′
i t]′ = [δi,xit2, . . . ,xit p]′

on yit for all i = 1, . . . ,K, and t = 1, . . . ,T, where yit is now collected based
on longitudinal adaptive design scheme and is represented by yit(wi). Because
E[Yi(wi)] = µi(wi0) by (6.90), and var[Yi(wi)] = Σ ∗

i (wi0,ρ) by (6.93) and (6.94),
similar to the construction of the GQL estimating equation (6.26) or (6.56), we may
now construct a weighted GQL estimating equation for β given by

K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)(yi(wi)−µi(wi0) = 0. (6.95)

where ρ̂ is a consistent estimate of ρ, the longitudinal correlation index parameter of
the model. Now, by treating the data as though they follow the stationary correlation
structure, one may apply the MM and equate the sample auto-covariance to the
autocovariance of the data given by (6.93) and obtain a moment estimate of ρ` (` =
|t− v|= 1, . . . ,T −1) as

ρ̂` =
N1−N2

D
, (6.96)
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where

N1 =
∑K

i=1 ∑|t−v|=`[(yit −µit(wi0))(yiv−µiv(wi0))/K(T − `)

∑K
i=1 ∑T

t=1[yit −µit(wi0)]2/KT

N2 = −
∑K

i=1 ∑|t−v|=`[wi0µ∗
it1µ∗

iv1 +(1−wi0)µ∗
it2µ∗

iv2−µit(wi0)µiv(wi0)]/K(T − `)

∑K
i=1 ∑T

t=1[µit(wi0)−µ2
it(wi0)+wi0µ∗2

it1 +(1−wi0)µ∗2
it2]/KT

,

and

D =
∑K

i=1 ∑|t−v|=`

[
wi0{µ∗

it1µ∗
iv1}1/2 +(1−wi0){µ∗

it2µ∗
iv2}1/2

]
/K(T − `)

∑K
i=1 ∑T

t=1[µit(wi0)−µ2
it(wi0)+wi0µ∗2

it1 +(1−wi0)µ∗2
it2]/KT

.

For given ρ̂` (a function of ρ̂), the solution of (6.95) may easily be obtained by using
the Newton−Rapson iterative equation.

β̂(m+1) = β̂(m) +

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)

∂ µi(wi0)
∂β ′

]−1

m

×

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)(yi(wi)−µi(wi0))

]
m

, (6.97)

where β̂(m) is the value of β at the mth iteration and [·]m denotes that the expression

within brackets is evaluated at β̂(m). Let β̂WGQL be the solution of (6.97), which is
consistent for β .

Under some mild regularity conditions, it may be shown from (6.97) that for
large K, β̂WGQL has an asymptotically p-dimensional normal distribution with mean
β and covariance matrix var(β̂WGQL) which may be consistently estimated by using
the sandwich type estimator given by

ˆvar(β̂WGQL) =

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)

∂ µi(wi0)
∂β ′

]−1

+

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)

∂ µi(wi0)
∂β ′

]−1

×

[
2

K

∑
i<r

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)(yi−µi(wi0))

× (yr−µr(wi0))′Σ ∗
r
−1(wr0, ρ̂)

∂ µr(wr0)
∂β ′

]
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×

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)

∂ µi(wi0)
∂β ′

]−1

. (6.98)

Formula for the Derivative (∂ µ ′
i (wi0))/∂β in (6.95)

As
∂ µit(wi0)

∂β
= wi0µ

∗
it1zit +(1−wi0)µ

∗
it2z∗it ,

the p×T matrix ∂ µ ′
i (wi0)/∂β is computed as

∂ µ ′
i (wi0)
∂β

= wi0Z′iAi1 +(1−wi0)Z∗
′

i Ai2, (6.99)

where Z′i = (zi1, . . . ,zit , . . . ,ziT ) and Z∗
′

i = (z∗i1, . . . ,z
∗
it , . . . ,z

∗
iT ) are p× T matrices,

Ai1 = diag[µ∗
i11, . . . ,µ∗

iT 1], and Ai2 = diag[µ∗
i12, . . . ,µ∗

iT 2], with

µ
∗
it1 = exp(z′itβ ), µ

∗
it2 = exp(z∗

′
it β ),

where zit = (1,x∗
′

it )
′ and z∗it = (0,x∗

′
it )

′, for all t = 1, . . . ,T.

Exercises

6.1. (Section 6.5.1.1) [Likelihood estimation for nonstationary AR(1) model]
Consider the nonstationary AR(1) model given by (6.44). Then demonstrate that
similar to that (6.23) of the stationary AR(1) model (6.14), one may write the like-
lihood function for the model (6.44) as

L(β ,ρ) = Π
K
i=1[ f (yi1)Π T

t=2 f (yit |yi,t−1)],

with

f (yit |yi,t−1) = exp[−(µit −ρµi,t−1)]

×
min(yit ,yi,t−1)

∑
s=1

(yi,t−1)!ρs(1−ρ)yi,t−1−s(µit −ρµi,t−1)yit−s

s!(yi,t−1− s)!(yit − s)!
.

Now, argue that the likelihood estimation of β and ρ, is extremely complicated.

6.2. (Section 6.5.1.1) [Conditional moments for nonstationary AR(1) model]
Show either by using the conditional density from Exercise 6.1, or by direct compu-
tation from the model (6.44), that for t = 2, . . . ,T, the conditional mean and variance
of yit given yi,t−1 have the formulas:
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E[Yit |yi,t−1] = µit +ρ(yi,t−1−µi,t−1)

var[Yit |yi,t−1] = µit +ρ(yi,t−1−µi,t−1)−ρ
2yi,t−1.

Next, verify that for u < t, the conditional covariance has the formula

cov[{Yiu,Yit}|yi,u−1,yi,t−1] = 0.

6.3. (Section 6.5.2) [Conditional GQL estimating equation]
Denote the conditional mean and the variance in Exercise (6.2) by µ∗

it|t−1 and λitt|t−1,

respectively. Let µ∗ = [µi1,µ∗
i2|1, . . . ,µ∗

it|t−1, . . . ,µ∗
iT |T−1]

′ be the T × 1 conditional
mean vector, and Λi = diag[µi1,λi22|1, . . . ,λitt|t−1, . . . ,λiT T |T−1] is the T ×T condi-
tional covariance matrix of yi. Then, similar to (6.56), argue that a consistent esti-
mator of β can also be obtained by solving the conditional GQL estimating equation
given by

K

∑
i=1

∂ µ∗′

∂β
Λ
−1
i (ρ̂)(yi−µ

∗) = 0,

where ρ̂ is obtained by using (6.58) as in the unconditional estimation. Also, derive
the formulas for the elements of the p× T derivative matrix ∂ µ∗′/∂β . Comment
on the relative efficiency of this conditional GQL estimator of β as compared to the
unconditional GQL estimator obtained from (6.56).

6.4. (Section 6.8.1.1) [wi for the case 2≤ i≤ T under SLPW rule]
As the selection of the ith patient is made at the ith time point, by this time, the (i−
1)th patient has yielded one response and (i−2)th patient has yielded two responses
and so on. Use the rules (a), (b), and (c) from the Section 6.8.1.1 and argue that at
this treatment selection stage for the ith patient, there are

n∗i−1 = 2α +
i−1

∑
r=1

i−r

∑
t=1

(G+ τ) = 2α +
1
2

i(i−1)(G+ τ)

balls in total in the urn. Also justify that among these balls, there are

n∗i−1,1(yHi−1) = α +
i−1

∑
r=1

i−r

∑
t=1

[δr{(G−urt)+ I[yrt ≤ m∗
0]τ}

+(1−δr){ur j + I[yrt > m∗
0]τ}]

balls of first type, where yHi−1 indicates the history of responses from the past i−1
patients. The number of second type of balls may be denoted by n∗i−1,2(yHi−1). It
then follows that for given yHi−1 , the conditional probability that δi = 1 is given by

wi = Pr(δi = 1|yHi−1) = n∗i−1,1(yHi−1)/n∗i−1.

6.5. (Section 6.8.1.1) [wi for the case i > T under SLPW rule]
Argue that under this case, at the treatment selection stage for the ith patient, there
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are

ñi−1 = 2α +
i−T

∑
r=1

T

∑
t=1

(G+ τ)+
i−1

∑
r=i−T+1

i−r

∑
t=1

(G+ τ)

balls in total in the urn. Also argue that among these balls, there are ñi−1,1(yHi−1)
balls of first type, where

ñi−1,1(yHi−1) = α +
i−T

∑
r=1

T

∑
t=1

[δr{(G−urt)+ I[yrt ≤ m∗
0]τ}

+(1−δr){urt + I[yrt > m∗
0]τ}]

+
i−1

∑
r=1−T+1

i−r

∑
t=1

[δr{(G−urt)+ I[yrt ≤ m∗
0]τ}

+(1−δr){urt + I[yrt > m∗
0]τ}].

Clearly, for this i > T case, one may then evaluate the design weight wi as

wi =
ñi−1,1(yHi−1)

ñi−1
.

6.6. (Section 6.8.1.2) [wi for the case 2≤ i≤ T under BRW rule]
Let δurt = 1 for urt ≤ u0 and δurt = 0 otherwise. Similarly, let δyrt = 1 for yrt ≤ y0 and
δyrt = 0 otherwise. Verify, in the fashion similar to that of Exercise 6.4 that under
the BRW rule, the design weight wi has the formula

wi =
∑i−1

r=1 ∑i−r
t=1[δurt g(yrt)]+ [(1−δurt )s(yrt)]

∑i−1
r=1 ∑i−r

t=1(prt +2qrt +hrt)
,

where g(yrt) = δyrt prt +(1−δyrt )qrt , and s(yrt) = δyrt qrt +(1−δyrt )hrt .

6.7. (Section 6.8.1.2) [wi for the case i > T under BRW rule]
For this case, make an argument similar to that of Exercise 6.5 for the SLPW design,
and justify under the BRW rule, that wi has the formula given by

wi =
1

0.5i(i−1)−0.5(i−T )(i−T −1)

×[
i−T

∑
r=1

T

∑
t=1

[δurt g(yrt)]+ [(1−δurt )s(yrt)]

+
i−1

∑
r=i−T+1

i−r

∑
t=1

[δurt g(yrt)]+ [(1−δurt )s(yrt)]],

where g(yrt) and s(yrt) are defined as in Exercise 6.6.
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Appendix

Table 6A. Health care utilization data for six years from 1985 to 1990 collected by Health Science
Center, Memorial University, St. John’s, Canada. [Code: column 1 (C1)-Family identification; C2-
Member identification; C3-Gender (1 for male, 2 for female); C4-Chronic disease status (0 for
no chronic disease, 1 for 1 chronic disease and so on); C5-Education level (1 for less than high
school, 2 for high school, 3 for university graduate, and 4 for post graduate); C6-Age at 1985;
C7-C12-Number of physician visits from 1985 to 1990]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
7 101 2 3 3 51.7 10 15 10 6 7 14
7 102 1 2 2 55.4 0 6 0 4 2 0
7 203 2 1 4 24.9 12 6 2 0 3 2
7 204 2 0 4 21.5 0 1 1 0 0 0

27 101 2 1 3 49.5 2 11 8 7 7 3
27 102 1 1 4 50.7 13 13 16 12 18 12
27 203 1 0 4 20.2 1 5 0 2 0 0
27 203 1 0 4 20.2 2 3 7 1 0 0
36 101 2 2 3 49.7 5 5 4 18 11 9
36 102 1 1 3 54.6 1 0 0 2 1 1
36 203 2 0 3 26.0 10 6 9 9 21 16
36 204 1 0 2 22.4 3 4 1 0 4 1

189 101 2 1 3 58.6 4 3 1 3 0 6
189 102 1 0 4 58.3 1 0 0 3 0 3
189 203 2 3 2 31.7 8 4 4 12 12 7
189 204 2 1 3 20.2 2 0 6 2 2 5
436 101 2 0 1 62.1 10 8 7 10 8 11
436 102 1 0 1 68.9 6 5 2 6 4 6
436 203 1 0 3 31.8 1 3 4 0 0 0
436 204 1 0 4 23.8 2 2 5 0 0 0
469 101 2 4 2 44.1 4 1 6 7 13 3
469 102 1 0 3 47.5 2 0 1 0 1 1
469 203 1 0 3 23.7 2 4 3 2 1 0
469 204 1 2 4 21.2 5 5 5 0 8 0
574 101 2 0 1 47.2 4 10 12 17 13 10
574 102 1 4 1 52.9 8 9 14 23 22 15
574 203 2 1 3 23.2 5 3 6 6 5 7
574 204 1 0 2 21.9 2 0 3 3 1 1
580 101 2 2 1 41.9 2 5 1 0 1 0
580 102 1 0 2 44.2 1 1 4 24 5 2
580 203 2 1 2 20.5 13 11 11 16 18 21
580 204 2 0 2 23 9 3 4 3 19 3
706 101 2 2 3 40.7 17 5 1 5 3 2
706 102 1 0 1 42.9 1 1 7 6 1 0
706 203 1 0 3 21.5 1 3 0 3 0 0
706 204 1 0 3 19.9 0 0 0 0 0 0
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Table Cont’d

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
754 101 2 1 2 49.8 8 2 5 12 8 8
754 102 1 0 1 50.8 0 2 0 0 2 0
754 203 1 1 2 21.3 0 0 0 0 1 0
754 204 1 0 4 25.3 1 1 1 0 0 2
758 101 2 1 2 60.9 2 5 1 1 0 0
758 102 1 0 4 63.7 1 0 0 0 0 0
758 203 1 1 4 22.8 0 0 0 2 1 0
758 204 1 0 4 20.9 2 11 4 11 10 4
921 101 2 1 1 50.8 0 3 0 3 7 14
921 202 1 1 1 26.4 1 1 4 3 5 2
921 203 2 1 3 25.2 3 2 2 1 2 2
921 204 2 0 2 21.9 3 2 4 2 5 16
965 101 2 1 1 44.8 13 18 13 13 15 17
965 102 1 2 1 48.6 4 2 0 3 0 6
965 203 1 0 3 25 4 3 1 0 6 2
965 204 1 0 3 20.9 2 3 1 1 3 1
993 101 2 3 1 67.3 2 3 3 2 4 3
993 203 1 2 1 31.3 2 0 1 1 2 3
993 204 2 1 2 22 11 6 3 4 17 8
993 205 1 0 1 22.3 1 1 4 9 4 1

1054 101 2 0 2 41.1 1 11 3 5 2 4 9
1054 102 1 2 1 43.6 3 4 10 4 11 11
1054 203 2 1 4 22.2 4 2 3 4 14 11
1054 204 2 2 4 20.3 1 4 3 5 10 9
1120 101 2 3 1 52.7 2 9 2 1 9 7
1120 102 1 0 1 63.1 0 0 0 0 0 0
1120 203 2 0 4 32.2 12 7 27 11 5 13
1120 204 1 1 2 26 1 3 0 3 10 3
1269 101 2 0 4 56.1 1 3 1 9 10 14
1269 102 1 1 4 56.3 4 0 3 8 4 4
1269 203 1 0 4 22 2 0 2 0 2 1
1269 204 2 0 4 20.5 0 0 0 1 0 0
1333 101 2 1 1 50.9 2 2 1 0 0 0
1333 102 1 0 1 49.5 3 6 2 9 5 4
1333 203 2 0 3 22.6 0 0 0 0 0 0
1333 204 1 0 2 20.6 0 0 0 1 4 12
1344 101 2 2 1 46.4 0 0 0 2 2 3
1344 203 1 0 1 24 0 1 0 0 0 0
1344 204 1 0 1 28.8 0 0 0 0 0 0
1344 205 1 1 1 20.3 2 0 1 1 0 1
1361 101 2 0 1 71.6 4 7 9 8 3 8
1361 202 2 0 3 35.3 2 4 7 9 10 6
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Table Cont’d

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
1361 203 1 0 2 33 3 3 5 2 0 3
1361 204 1 0 3 27.4 1 1 2 2 2 3
1397 101 2 0 3 25.3 7 3 5 7 5 5
1397 102 1 1 1 53 2 4 5 6 6 3
1397 203 1 0 4 27.3 2 0 0 0 0 0
1397 204 1 0 3 22 12 1 2 2 4 4
1637 101 2 1 4 43.5 6 10 2 2 3 3
1637 102 1 1 4 47.4 0 3 4 1 0 0
1637 203 1 0 4 23.1 0 0 0 1 1 0
1637 204 1 1 4 21.7 1 2 2 4 5 2
1664 101 2 2 4 47.2 25 9 8 14 12 29
1664 102 1 2 2 49.2 4 3 9 0 10 4
1664 203 2 0 4 23.5 3 3 0 2 2 1
1664 204 1 1 4 22.3 1 1 0 0 0 0
1669 101 2 0 2 50.6 0 0 0 2 4 1
1669 202 2 0 3 24.7 7 5 5 12 7 6
1669 203 1 0 4 22.5 0 0 1 1 2 0
1669 204 1 0 2 20.9 0 0 1 0 0 3
1682 101 2 1 1 62.1 0 2 3 1 0 0
1682 102 1 4 1 65.2 7 0 0 0 0 0
1682 203 1 3 3 29 9 9 12 5 4 4
1682 404 2 4 1 74.9 13 17 16 15 14 10
1702 101 2 2 1 59.2 6 5 2 1 1 6
1702 102 1 2 1 64 0 0 0 0 0 2
1702 203 1 1 1 21.1 0 0 0 0 0 0
1702 304 2 3 1 85.2 6 7 8 6 24 0
1703 101 2 1 3 56.9 3 4 3 10 4 14
1703 202 1 0 4 25.5 0 0 0 0 0 0
1703 204 2 0 4 22.1 1 0 1 3 0 0
1703 305 2 1 2 80.5 5 7 4 8 4 8
1728 101 2 1 1 40.1 5 3 2 2 2 1
1728 102 1 4 3 51.5 12 13 10 7 22 19
1728 203 2 1 2 24.3 10 11 4 5 7 3
1728 204 1 0 3 20.4 3 2 3 2 2 2
1737 101 2 3 2 43.8 11 6 9 4 4 4
1737 102 1 1 4 44.1 6 0 8 1 0 8
1737 203 2 0 3 21.9 1 4 10 8 25 10
1737 204 1 0 4 22.9 0 0 0 0 0 0
1751 101 2 5 2 52 9 12 11 6 18 15
1751 102 1 0 1 55.5 0 0 2 0 1 0
1751 203 1 1 1 23.6 3 2 8 2 3 6
1751 204 1 0 1 22.6 1 8 3 2 1 3
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Table Cont’d

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
1838 101 2 0 2 44.7 3 3 3 2 10 11
1838 102 1 1 1 46 3 1 2 2 0 3
1838 203 1 0 4 23.5 2 3 1 4 1 0
1838 404 2 1 1 76.4 0 0 7 5 8 4
1876 101 2 1 1 46.7 0 0 4 4 0 2
1876 102 1 1 3 51.1 2 10 10 16 10 6
1876 203 2 0 3 24.6 5 2 0 0 0 0
1876 205 2 4 4 21 2 1 1 2 3 5
1925 101 2 1 3 52.6 19 4 12 9 7 5
1925 102 1 0 2 60.2 4 15 13 5 1 7
1925 203 2 0 4 21.5 9 6 4 13 8 0
1925 204 1 0 4 23.2 0 0 1 0 0 0
1935 101 2 1 3 65.9 2 1 3 4 5 12
1935 102 1 1 1 67.6 9 6 7 8 7 7
1935 203 1 0 2 25.6 2 1 0 0 0 0
1935 204 2 0 3 38.4 4 2 4 9 17 18
2046 101 2 0 1 56.3 11 17 4 3 12 9
2046 202 1 0 1 33.4 0 0 0 0 0 0
2046 203 1 0 2 27.8 1 1 0 3 3 9
2046 204 2 0 3 25 0 3 4 5 5 8
2076 101 2 2 3 52 5 3 6 8 3 3
2076 102 1 1 1 53.8 2 0 3 7 6 2
2076 203 2 0 4 24.6 14 11 5 1 2 0
2076 204 1 3 3 31.4 2 1 4 3 4 14

41 102 1 0 1 54 0 0 0 0 0 0
41 203 2 0 4 22 2 2 2 9 7 0
41 204 1 0 4 23 3 2 2 4 7 0

101 101 2 1 1 62.8 2 0 0 0 1 0
101 102 1 5 1 65.9 2 2 5 10 7 2
101 203 1 1 3 24.2 0 0 0 0 0 0
129 101 2 3 1 56.3 10 14 7 9 9 13
129 102 1 1 1 57.1 9 15 8 10 13 2
129 204 1 0 4 21.6 1 1 4 1 0 0
208 102 1 0 4 50.5 0 0 0 7 11 12
208 203 1 0 4 25.3 0 1 1 1 4 1
208 204 1 0 3 23.8 1 1 1 1 0 1
219 101 2 4 1 62.5 11 17 8 18 23 17
219 203 2 1 1 40.4 9 4 2 6 4 2
219 204 2 1 4 21.3 5 2 1 4 0 0
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Table Cont’d

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
522 102 1 0 1 51.2 1 5 7 7 9 6
522 203 2 1 3 21.6 11 7 3 8 20 19
522 204 2 1 2 24.4 12 7 19 6 12 7
605 101 2 1 1 58.2 2 6 0 2 0 2
605 102 1 0 1 58.6 0 0 0 0 0 1
605 203 1 1 2 21.3 0 0 0 0 1 2
622 203 1 0 1 25 0 0 0 0 0 0
622 204 2 0 1 30.5 0 0 0 0 0 0
622 205 2 0 1 22.4 3 5 0 10 23 18
731 101 2 1 3 50.2 4 5 3 8 13 11
731 204 1 0 4 24 0 0 3 3 0 0
731 205 1 1 4 21.9 3 2 5 1 5 0

1097 101 2 0 3 43 2 3 2 1 0 6
1097 102 1 1 4 49.1 3 0 3 2 2 2
1097 203 1 0 4 23.5 1 4 1 3 2 2
1689 101 2 0 1 44.9 3 7 5 16 7 8
1689 102 1 2 3 47.8 1 8 24 22 14 8
1689 204 1 3 2 21.6 6 8 3 2 6 4
1906 101 2 4 1 67.8 27 23 29 39 19 16
1906 202 2 0 2 47.5 2 0 4 5 9 8
1906 203 1 1 2 50.2 12 8 8 11 9 13



Chapter 7
Longitudinal Models for Binary Data

In Chapter 6, we have discussed the stationary and nonstationary correlation models
for count data, and estimated the effects of the covariates on the count responses, by
taking the correlation structure into account. In this chapter, we deal with repeated
binary responses. For example, there exists a longitudinal study on the health ef-
fects of air pollution, where wheezing status (1 = yes, 0 = no) of a large number
of independent children are repeatedly recorded, along with maternal smoking sta-
tus, family cleanliness status, level of chemicals used, and pet-owning status of the
family. For i = 1, . . . ,K, and t = 1, . . . ,T, let yit denote the binary response and
xit = (xit1, . . . ,xit p)′ denote the p-dimensional covariate vector collected at time
point t from the ith individual. Similarly, one may be interested to study employ-
ment data for many individuals over a short period of T = 4 years. Here yit = 1 may
be used to indicate that the ith individual was unemployed at time point t, whereas
yit = 0 indicates that the individual was employed. In this example, xit , the covariate
vector, may consist of some of the important covariates such as gender, age, edu-
cation level, geographic location, and marital status of the individual. Let β be the
effect of xit on yit . Note that because yi1, . . . ,yit , . . . ,yiT are T repeated binary re-
sponses from the same individual, it is most likely that they are autocorrelated. The
scientific concern is to find β , the effects of the covariates on the repeated binary
responses, after taking their autocorrelations into account.

Note that there are also situations in practice, where the covariates of the ith in-
dividual may be time independent. We denote such covariates by x̃i = (xi1, . . . ,xip)′.
This is a simpler special case of the general situation with time-dependent covariates
xit . Note that when the covariates are time dependent, the responses follow a non-
stationary correlation model, whereas in the special case when covariates are time
independent, the correlation model becomes stationary. In Section 7.1, we provide
the marginal distributional properties of the binary response variable Yit under the
general situation when corresponding covariates are time dependent. In the same
section, we discuss the estimation of β by pretending that the repeated binary re-
sponses are independent, even though in reality they are correlated. In Section 7.2,
we discuss three selected binary correlation models, namely a multivariate density
based (MBD) model due to Bahadur (1961), an autoregressive order 1 (AR(1)) type
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observation-driven dynamic (ODD) model [Kanter (1975)], and a linear dynamic
conditional probability (LDCP) model [Qaqish (2003)]. These models are discussed
first for the special case with time-independent covariates and then for the general
case with time-dependent covariates. All of these three probability models produce
the same marginal mean and the variance, and the MDB and LDCP models can
accommodate any desired correlation structures, whereas the ODD model follows
an AR(1) type structure. Note, however, that the ranges for correlations under all
three models are restricted by probability conditions, the LDCP model being more
flexible that accommodates correlations satisfying a wider range as compared to the
other two models. In the same section, a numerical study is reported on the range
performances of these probability model based correlations. In Section 7.3, we pro-
vide an autocorrelation class of correlation models for the stationary binary data.
In the same section, we discuss the GQL inferences for the regression effects β ,
after taking the stationary correlation structure of the repeated data into account. In
Section 7.4, we generalize the class of correlation structures to the nonstationary
case. We consider a numerical example in Section 7.5 and illustrate the application
of stationary correlation structure based model fitting to the nonstationary survey
of labor and income dynamic (SLID) data collected by Statistics Canada. In Sec-
tion 7.6, a stationary correlation structure based binary model is considered in a
longitudinal clinical trial setup. The longitudinal adaptive design based weighted
generalized quasi-likelihood (WGQL) inference is introduced for the estimation of
the regression parameters including the treatment effects.

Note that the nonstationary binary models discussed in Section 7.4 accommodate
specified marginal means and variances and a suitable class of nonstationary (i.e.,
time-dependent) correlation structures. In practice, there are, however, situations in
the longitudinal setup, where the mean and the variance at a given time point may
maintain some deterministic relationship with their past counterparts. To analyze
this type of non-stationary longitudinal binary data, in Section 7.7, we discuss a
nonlinear binary dynamic logit (BDL) model as opposed to the LDCP models from
Section 7.2. This is quite interesting to point out that this NLDCP model for re-
peated binary data always accommodates correlations with full ranges from −1 to
+1. In this BDL model setup, we consider several estimation approaches such as
maximum likelihood (ML), GQL, and an optimal GQL (OGQL) approach for the
estimation of the regression effects and a dynamic dependence parameter (an in-
dex for correlations), and study their properties through a simulation study. In the
same section, longitudinal binary data on asthma status are analyzed by using the
ML, GQL, and OGQL estimation approaches. In the same section, we demonstrate
the application of a BDL model in a longitudinal adaptive clinical trial setup with
possibly more than two treatments.
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7.1 Marginal Model

Even though the T repeated binary responses for the ith individual are autocorre-
lated, marginal model based inferences either ignore the correlations and hence use
the independence assumption, or use the ‘working’ correlations assumption (such
as by the GEE approach) without modelling the correlations. The drawbacks of
the GEE (generalized estimating equations) approach for the longitudinal count
data analysis were discussed in Section 6.4.3, and we revisit this issue in Section
7.4 in brief for the longitudinal binary data analysis. For the purpose of using the
‘working’ independence assumption in estimating the regression effects β , we now
write a standard logistic binary marginal density and provide some of its moment
properties. The density can be used to obtain independence based ML estimate,
whereas the moments are used to obtain MM (method of moments) and QL (quasi-
likelihood) estimates.

For convenience we write the logistic binary distribution of Yit in exponential
density form given by

f (yit) = exp[{yitθit −a(θit)}+b∗(yit)], (7.1)

which was also used for the Poisson case (see eqn. (6.1)), but unlike the Poisson
case, we now have

a(θit) = log{1+ exp(θit)}, with θit = x′itβ . (7.2)

Also in (7.1), b∗(yit) = 1.
Let a′(θit), a′′(θit), a′′′(θit), and a′′′′(θit) be, respectively, the first−, second−,

third− and the fourth-order derivatives of a(θit) with respect to θit . By using the
m.g.f. as for (6.2), or by direct calculations, one obtains the first four marginal mo-
ments of the binary variable as in the following lemma.

Lemma 7.1 The first four moments of the binary random variable Yit under the
exponential family density (7.1)− (7.2) are given by

πit = E[Yit ] = a′(θit) =
exp(θit)

1+ exp(θit)

σitt = var[Yit ] = a′′(θit) = πit(1−πit)

δ̃itt = E[Yit −µit ]3 = a′′′(θit) = πit(1−πit)(1−2πit)

φ̃itttt = E[Yit −µit ]4 = a′′′′(θit)+3σ
2
itt = πit(1−πit){1−3πit(1−πit)} . (7.3)

We denote the marginal binary distribution given by (7.1)− (7.2) as Yit ∼ b(πit).
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7.1.1 Marginal Model Based Estimation for Regression Effects

Note that as the Poisson and the binary densities are written in (6.1) and (7.1) in the
same form of exponential family density, the MM, QL, and ML estimating equations
for β under the binary model have the same expressions as those under the Poisson
model discussed in Section 6.2. Thus, these equations are, respectively, given by

Method of Moments (MM)

K

∑
i=1

T

∑
t=1

[xit(yit −a′(θit))] = 0, (7.4)

Quasilikelihood (QL) Method

K

∑
i=1

T

∑
t=1

[
∂a′(θit)

∂β

(yit −a′(θit))
var(Yit)

] = 0, (7.5)

and

Marginal Likelihood (ML) Method

∂ logL
∂β

=
K

∑
i=1

T

∑
t=1

[yit −a′(θit)]
∂θit

∂β
= 0, (7.6)

where, under the binary model, by Lemma 7.1, we now have

a′(θit) = πit =
exp(θit)

1+ exp(θit)
and var(Yit) = πit(1−πit), with θit = x′itβ .

Note that all three approaches, namely MM (7.4), QL (7.5), and ML (7.6) esti-
mating equations provide the same estimate for β , as they have the same estimating
equation form given by

K

∑
i=1

[X ′
i (yi−πi)] = 0, (7.7)

[see also (6.5)], where

yi = (yi1, . . . ,yit , . . . ,yiT )′, X ′
i = (xi1, . . . ,xit , . . . ,xiT ),

and

πi = (πi1, . . . ,πit , . . . ,πiT )′ with πit =
exp(x′itβ )

1+ exp(x′itβ )
.

Let β̂ be the solution of (7.7) for β . This estimate may be obtained by using the
iterative equation
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β̂ (r +1) = β̂ (r)+

[
K

∑
i=1

X ′
i AiXi

]−1

(r)

[
K

∑
i=1

X ′
i (yi−πi)

]
(r)

, (7.8)

where

Ai = diag[a′′(θi1), . . . ,a′′(θit), . . . ,a′′(θiT )]
= diag[σi11, . . . ,σitt , . . . ,σiT T ]
= diag[πi1(1−πi1), . . . ,πit(1−πit), . . . ,πiT (1−πiT )], (7.9)

and [·](r) denotes that the expression within the brackets is evaluated at β = β̂ (r),
the rth iterative value for β̂ . Furthermore, similar to (6.7), it may be shown that
K1/2(β̂ − β ) is asymptotically multivariate Gaussian with zero mean vector and
covariance matrix V ∗

M given by

V ∗
M = limitK→∞K

[
K

∑
i=1

X ′
i AiX

]−1[ K

∑
i=1

X ′
i A1/2

i CiA
1/2
i Xi

][
K

∑
i=1

X ′
i AiX

]−1

, (7.10)

where Ai is given by (7.9), and Ci is the true correlation matrix of yi which may be
unknown.

7.2 Some Selected Correlation Models for Longitudinal Binary
Data

There is a long history on the modelling of correlated binary data in the time se-
ries setup. For example, one may refer to some of the early works such as by Ba-
hadur (1961), Cox and Lewis (1966), Klotz (1973), Kanter (1975), Lindquist (1978),
Keenan (1982), and Jacobs and Lewis (1983). Among the recent works, one may,
for example, refer to the Markov dependence type linear dynamic conditional prob-
ability based model discussed by Qaqish (2003). Note that among these models,
the multivariate binary density based model by Bahadur (1961) [see also Cox and
Lewis (1966); Cox (1972); Prentice (1988), for example] and the Markov depen-
dence based LDCP type model [e.g. Zeger, Liang and Self (1985)] are widely used.
There are, however, two main difficulties with these models. First, even though the
functional forms for the marginal means and variances remain the same for all time
points, these models are developed such that they can accommodate any correlation
structures. As opposed to the Gaussian type stationary correlation structure, non-
stationary correlation structures are less familiar, therefore these models may be of
very limited use in the nonstationary case. Secondly, even if the stationary correla-
tions are used, the ranges for the correlations can be narrow, which, however, are
needed to be satisfied for any inferences for the data. In the nonstationary case, the
range restrictions pose more serious problems. In Section 7.2.1, we consider these
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MBD and LDCP models both for the stationary and nonstationary cases. In Section
7.2.2, following Farrell and Sutradhar (2006), we compare the range performances
for AR(1) type correlations under these two models, in the stationary case. Because
there also exist an observation-driven dynamic AR(1) type model proposed by Kan-
ter (1975), we consider this ODD model as well in the comparison of ranges for
correlations. It is demonstrated that the LDCP model allows wider ranges for the
correlations as opposed to the MBD and ODD models. In Section 7.3 and 7.5, we
introduce a class of stationary autocorrelated models of low order which are similar
to but different from the LDCP models.

7.2.1 Bahadur Multivariate Binary Density (MBD) Based Model

To develop a correlation model for the repeated binary responses yi1, . . . ,yit , . . . ,YiT

for all i = 1, . . . ,K, it is sufficient to develop such a model for a single individ-
ual. This is because the individuals are independent. We now, therefore, explain the
MBD model for the ith individual only. The other two correlation models, namely,
the ODD and LDCP models are also discussed for the ith individual.

7.2.1.1 Stationary Case

In the stationary setup, covariates are time independent. Recall that we use xit = x̃i

for all t = 1, . . . ,T, to represent such a time-independent covariate. This reduces the
marginal probability πit in Lemma 7.1 to π̃i. To be more specific, in the stationary
case

π̃i = P(yit = 1) =
exp(x̃′iβ )

1+ exp(x̃′iβ )
,

so that for t = 1, . . . ,T,

E[Yit ] = π̃i, and var[Yit ] = π̃i(1− π̃i).

Next, suppose that for u 6= t,u, t = 1, . . . ,T, c∗i,ut denote a general pairwise correla-
tion between yit and yiu. In the present stationary case, this correlation is indepen-
dent of covariates x̃i. For example, if the repeated observations follow a Gaussian
type AR(1) stationary correlation model, then c∗i,ut ≡ c∗i,ut(ρ) = ρ |t−u| with ρ as the
correlation index parameter. For T ≥ 2, the MBD considered by Bahadur (1961) is
written as

f (yi1, . . . ,yiT ) = Π
T
t=1π̃

yit
i (1− π̃i)1−yit

×

[
1+

T

∑
t<u

c∗i,ut

(
yiu− π̃i

[π̃i(1− π̃i)]
1
2

)(
yit − π̃i

[π̃i(1− π̃i)]
1
2

)]
, (7.11)

which, alternatively, can also be expressed in a simpler way as
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f (yi1, . . . ,yiT ) = 1+[
T

∑
t<u

c∗i,ut(−1)yit+yiu π̃
2−yit−yiu
i (1− π̃i)yit+yiu ]/[π̃i(1− π̃i)],

(7.12)
where yit = 0,1 for any i and all t = 1, . . . ,T.

Mean, Variance, and Covariance or Correlation Structures

It follows from the joint density (7.11) that the marginal mean and the variance of
Yit are E[Yit ] = π̃i and var[Yit ] = π̃i(1− π̃i), respectively. Also, c∗i,ut is the correlation
between yiu and yit . Note that to verify these functions, it is sufficient to check these
properties from the bivariate density of yi1 and yi2, for example. For this purpose,
by summing over yi j = 0,1, for j = 3, . . . ,T, one can write the bivariate density of
yi1 and yi2, from (7.11), as given by

f (yi1,yi2) = Π
2
t=1π̃

yit
i (1− π̃i)1−yit

[
1+ c∗i,12

(yi1− π̃i)(yi2− π̃i)
π̃i(1− π̃i)

]
. (7.13)

This density provides

E[Yi1] = Pr[Yi1 = 1] = f (yi1 = 1,yi2 = 0)+ f (yi1 = 1,yi2 = 1) = π̃i

E[Yi2] = Pr[Yi2 = 1] = f (yi1 = 0,yi2 = 1)+ f (yi1 = 1,yi2 = 1) = π̃i, (7.14)

yielding the desired means. Next, because E[Y 2
it ] = E[Yit ] for binary yit , it then fol-

lows that
var[Yit ] = π̃i− π̃

2
i = π̃i(1− π̃i).

Furthermore, it follows from the bivariate density (7.13) that

E[Yi1Yi2] = Pr[Yi1 = 1,Yi2 = 1] = f (yi1 = 1,yi2 = 1) = π̃
2
i +c∗i,12[π̃i(1− π̃i)], (7.15)

yielding the desired correlation as

corr(Yi1,Yi2) =
cov(Yi1,Yi2)

[var[Yit ]var[Yit ]]
1
2

= c∗i,12. (7.16)

Range for Correlation Index Parameter

Note that even if a specific form is considered for the pairwise correlations c∗i,ut in
(7.11), the computation for the range of correlations gets complicated when T in-
creases. For any T, the ranges are in general functions of marginal probabilities. For
example, suppose that we consider the Gaussian AR(1) type correlation structure
mentioned above, namely, c∗i,ut ≡ c∗i,ut(ρ) = ρ |t−u| for all individuals i = 1, . . . ,K,
with ρ as a correlation index parameter. Note that this correlation index parameter
ρ is also the lag 1 correlation. For T = 2, the correlation index parameter or the lag
1 correlation ρ has the range
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max

[
− π̃i

1− π̃i
,−1− π̃i

π̃i

]
< ρ < 1, (7.17)

which is quite different than the Gaussian type range−1 to +1. For T > 2, the range
becomes more restricted, and it may be computed numerically such that a selected
value of ρ satisfies the probability range restriction

0 < f (yi1, . . . ,yit , . . . ,yiT ) < 1, (7.18)

for all i = 1, . . . ,K. Note, however, that this computation can be cumbersome. For
example, to find the range for the lag 1 parameter ρ, under the AR(1) type correla-
tion structure for T = 4 and a value of π̃i =0.40, (say), for all i = 1, . . . ,K, one needs
to compute all 24 values of f (·) for each ρ = −0.999 (0.001) 0.999, and obtain the
range under which all 24 values of f (·) are found to lie between 0 and 1. This range
is −0.262 < ρ < 0.449; see Table 7.1 [see also Farrell and Sutradhar (2006)].

7.2.1.2 Nonstationary Case

Similar to (7.11), the Bahadur’s MBD under the nonstationarity condition is written
as

f (yi1, . . . ,yiT ) = Π
T
t=1π

yit
it (1−πit)1−yit

[
1+

T

∑
t<u

c∗i,ut
[(yiu−πiu)(yit −πit)]

[πiu(1−πiu)πit(1−πit)]1/2

]
,

(7.19)
where, for example, we may consider

πit =
exp(x′itβ )

1+ exp(x′itβ )

with xit as the time-dependent covariates for t = 1, . . . ,T, and for all i = 1, . . . ,K.
Note that one may exploit this MBD in (7.19) and show that

E[Yit ] = πit , var[Yit ] = πit(1−πit) for t = 1, . . . ,T

corr[Yiu,Yit ] = c∗i,ut , for u < t; t = 2, . . . ,T. (7.20)

Further note that the correlations c∗i,ut in (7.19) and (7.20) are nonstationary and in

general they may be denoted by c(ns)
i,ut (xiu,xit ,ρ) (see (6.46) for the Poisson data), ρ

being a correlation index parameter. However, even if a stationary correlation struc-
ture such as c∗i,ut ≡ c∗i,ut(ρ) = ρ |t=u| is used in place of nonstationary correlations,
finding the range for ρ by exploiting (7.19) is naturally much more difficult than
finding its range by exploiting the stationary density (7.11) [see also (7.18)]. This is
because, unlike in the stationary case, the range for ρ will also depend on the values
of xit . For example, for T = 2, ρ has to satisfy the range restriction
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max

[
−
{

πi1πi2

πc
i1πc

i2

}1/2

,−
{

πc
i1πc

i2

πi1πi2

}1/2
]

< ρ < min

[{
πi1πc

i2

πi2πc
i1

}1/2

,

{
πi2πc

i1

πi1πc
i2

}1/2
]

,

(7.21)
where πc

it = 1− πit for t = 1,2. For T > 2, finding the range restriction for ρ is
much more complicated. This is one of the reasons why we do not follow the MBD
any more in the chapter for the inference purpose, that is, for the estimation of the
regression parameter β .

7.2.2 Kanter Observation-Driven Dynamic (ODD) Model

7.2.2.1 Stationary Case

Kanter (1975) has introduced an observation-driven dynamic correlated binary
model for stationary time series data. In the context of the present longitudinal setup,
suppose that yi1 is binary with probability π̃i. Further suppose that for t = 2, . . . ,T,
sit is a binary random variable with

Pr(sit = 1) = γ1, with 0 < γ1 < 1,

and dit is another binary random variable with

Pr(dit = 1) = ξ
∗
i = π̃i(1− γ1)/(1−2γ1π̃i).

Following Kanter (1975), one may then generate the AR(1)-type correlated re-
sponses yi1, . . . ,yiT by using the model

yit = sit{yi,t−1⊕dit}+(1− sit)dit , for t = 2, . . . ,T, (7.22)

where ⊕ denotes addition modulo 2. Now, if yi,t−1, sit , and dit are assumed to be
independent, it follows from (7.22) that yit(t = 2, . . . ,T ) has a binary distribution
with Pr(yit = 1) = π̃i, which is the same distribution as that of yi1.

Mean, Variance, and Covariance or Correlation Structures

Because yi1 ∼ b(π̃i) and also yit ∼ b(π̃i) for t = 2, . . . ,T, by (7.22), it then follows
that

E[Yit ] = πit = π̃i, for t = 1, . . . ,T

var[Yit ] = π̃i(1− π̃i) for t = 1, . . . ,T. (7.23)

It can further be shown by (7.22) that for

ρi = γ1(1−2π̃i)/(1−2γ1π̃i), (7.24)
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the correlation between yit and yiu is given by

Corr(Yit ,Yiu) = c∗i,ut(ρ) = ρ
|t−u|
i , for t 6= u,

which appears to be similar to the lag |t − u| autocorrelation under a Gaussian au-
toregressive process. Note that here ρi is the lag 1 correlation among the binary
responses of the ith individual, whereas γ1 that defines ρi as in (7.24) is referred to
as the correlation index parameter.
Range for Correlation Index Parameter:
Note that Pr(dit = 1) = ξ ∗i has the range 0 < ξ ∗i < 1, implying that the correlation
index parameter γ1 must satisfy the range restriction

0 < γ1 < min{1− π̃i

π̃i
,1}, for i = 1, . . . ,K. (7.25)

Further note that this range restriction must be satisfied when computing the esti-
mate of β , involved in all π̃i for i = 1, . . . ,K, by using ρi as as function of γ1.

Range for Lag 1 Correlation

Now to find the range restrictions for the lag 1 correlation ρi as a function of π̃i, we
substitute the value for π̃i into the formula for ξ ∗i . We then compute ranges for γ1 by
using 0 < ξ ∗i < 1 for all i = 1, . . . ,K. These ranges for γ1 are then used in (7.24) to
obtain the ranges for ρi under the AR(1) process, as follows:

ρi = 0, for π̃i = 0.5

0 < ρi < 1, for 0 < π̃i < 0.5

−mini

[
1− π̃i

π̃i

]
1−2π̃i

2π̃imini

[
1−π̃i

π̃i

]
−1

< ρi < 0, for 0.5 < π̃i < 1 (7.26)

Note that because γ1 is considered to be a common parameter for the correlation
structures for all K individuals, the range of this correlation index parameter as
shown in (7.25) depends on the values of π̃i for all i = 1, . . . ,K. Consequently, as
given in (7.26), the range for ρi, the lag 1 correlation for the ith individual also
depends on the values of π̃i for all i = 1, . . . ,K.

Further note that in the context of stationary binary time series generated by
(7.22), one deals with K = 1. For such a case with i = 1 only, by writing

π̃ ≡ π̃1, ρ ≡ ρ1,

one may simplify (7.26) and obtain the range for the lag 1 correlation ρ as

ρ = 0, for π̃ = 0.5

0 < ρ < 1, for 0 < π̃ < 0.5
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−1− π̃

π̃
< ρ < 0, for 0.5 < π̃ < 1. (7.27)

Alternatively, the range restrictions in (7.27) are also valid in a specialized longitu-
dinal setup with

π̃i = π̃, for all i = 1, . . . ,K.

This is because in such a case one naturally uses

ρ = γ1(1−2π̃)/(1−2γ1π̃), (7.28)

as the special case of (7.24). Note, however, that this special case with the same
stationary binary probability for the responses of all K individuals is most unlikely
in practice.

7.2.2.2 Non-stationary Case

In the nonstationary case, the dynamic relationship (7.22) still holds with the same
probability function for the sit binary variable; that is, Pr(sit = 1) = γ1, with 0 <
γ1 < 1, but dit is now a binary random variable with

Pr(dit = 1) = ξ
∗
it = πit(1− γ1)/(1−2γ1πit), (7.29)

where

πit =
exp(x′itβ )

1+ exp(x′itβ )
.

The nonstationary mean and the variance of yit are given by

E[Yit ] = πit , and var[Yit ] = πit(1−πit),

respectively. Next, for the purpose of computing the lag w = 1,2, . . . ,T − 1, corre-
lations, one may compute the lag w autocovariance by using the formula

cov[Yi,t−w,Yit ] = Pr[Yi,t−w = 1, Yit = 1]+πi,t−wπit , (7.30)

for t = w+1, . . . ,T. For w = 1, and 2, for example, the joint probabilities are given
by

Pr (Yi,t−1 = 1, Yit = 1) = Pr(Yi,t−1 = 1)Pr(Yit = 1|Yi,t−1 = 1), (7.31)

and

Pr (Yi,t−2 = 1, Yit = 1) = Pr(Yi,t−2 = 1)
× [Pr(Yi,t−1 = 1|Yi,t−2 = 1)Pr(Yit = 1|Yi,t−1 = 1)
+Pr(Yi,t−1 = 0|Yi,t−2 = 1)
× Pr(Yit = 1|Yi,t−1 = 0)] , (7.32)
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respectively, where Pr[Yi,t−w = 1] = πi,t−w, and the conditional probabilities have
the formulas

Pr(Yi,t−w = 1|Yi,t−w−1 = 1) = γ1 +(1−2γ1)ξi,t−w

Pr(Yi,t−w = 0|Yi,t−w−1 = 1) = 1− γ1− (1−2γ1)ξi,t−w

Pr(Yi,t−w = 1|Yi,t−w−1 = 0) = ξi,t−w

Pr(Yi,t−w = 0|Yi,t−w−1 = 0) = 1−ξi,t−w (7.33)

with
ξi,t−w =

πi,t−w− γ1πi,t−w−1

1−2γ1πi,t−w−1
. (7.34)

Note that because the probability ξ ∗it in (7.29) must lie between 0 and 1, it then fol-
lows that in the non-stationary case, the correlation index parameter γ1 must satisfy
the range restriction

0 < γ1 < min

[
πit

πi,t−1
,

1−πit

πi,t−1
,

1
2πi,t−1

]
for all i = 1, . . . ,K; t = 2, . . . ,T.

7.2.3 A Linear Dynamic Conditional Probability (LDCP) Model

7.2.3.1 Stationary Case

To model the correlated binary data, many authors [see Zeger, Liang, and Self
(1985), e.g.] have used the Markovian or AR(1) type LDCP model given by

Yi1 ∼ b(π̃i)
Pr[Yit = 1|Yi,t−1 = yi,t−1] = π̃i +ρ(yi,t−1− π̃i), for t = 2, . . . ,T. (7.35)

This model produces the marginal mean and the variance of yit for all t = 1, . . . ,T,
as

E[Yit ] = π̃i

var[Yit ] = π̃i(1− π̃i), (7.36)

and for u < t, the Gaussian type lag t−u autocorrelation as

Corr[Yiu,Yit ] = c∗i,ut(ρ) = ρ
t−u, (7.37)

but, unlike the Gaussian case, lag 1 correlation ρ must satisfy the range restriction

maxi

[
− π̃i

1− π̃i
,−1− π̃i

π̃i

]
≤ ρ ≤ 1. (7.38)
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A General LDCP Model

There exists a generalization to the LDCP model (7.35) to accommodate any spec-
ified stationary correlation structure, along with the specified mean and variance.
One may refer to Qaqish (2003), for example, for this generalization, where for the
stationary case, the general model is written as

Pr(yit = 1|yi,t−1, . . . ,yi1) = π̃i +
t−1

∑
j=1

bi,t j(yi j − π̃i), for t = 2, . . . ,T, (7.39)

with bi,t j as the dependence parameters that must satisfy the range restriction 0 <
Pr(yit = 1|yi,t−1, . . . ,yi1) < 1. It is clear from the model (7.39) that the marginal
mean and the variance of Yit are given by

E[Yit ] = π̃i, var[Yit ] = π̃i(1− π̃i).

Furthermore, similar to the Bahadur MBD model, this model (7.39) allows
any specified correlation structure. Let b∗i,t−1 = (bi,t1, . . . ,bi,t,t−1)′ be the t − 1-
dimensional vector of dependence parameters. Also, consider

y∗i,t−1 = [yi1, . . .yi,t−1]′ : (t−1)×1

A∗i = diag[a∗i,11, . . . ,a
∗
i,t−1,t−1], with a∗i, j j = var(yi j) = π̃i(1− π̃i), (7.40)

leading to the covariance matrix of y∗i,t−1 as

var(Y ∗
i,t−1) = (A∗i )

1/2C∗
i (A∗i )

1/2, (7.41)

where
C∗

i = (c∗i, jk)

is the correlation matrix, with c∗i, jk being the ( j,k)th ( j,k = 1, . . . , t − 1) element.
One further obtains

cov(Y ∗
i,t−1,Yit) = (

√
a∗i,tta

∗
i,11c∗i,1t , . . . ,

√
a∗i,tta

∗
i,t−1,t−1c∗i,t−1,t)

′. (7.42)

Now by combining (7.41) and (7.42), one may compute the dependence vector b∗i,t−1
as the function of correlations by using

b∗i,t−1 = [var(Y ∗
i,t−1)]

−1cov(Y ∗
i,t−1,Yit). (7.43)

For example, one may compute this vector by using the Gaussian type stationary
AR(1) correlation structure, namely

(c∗i, jk)(ρ) = ρ
| j−k|, for all j 6= k,

ρ being the correlation index or lag 1 correlation parameter. Note, however, that
because the model (7.39) has to satisfy 0 < Pr(yit = 1|yi,t−1, . . . ,yi1) < 1, the AR(1)
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lag 1 correlation parameter ρ must satisfy the range restriction

maxi

[
− π̃i

1− π̃i
,−1− π̃i

π̃i

]
< ρ < 1.

Further note that the range restrictions for the correlations under other possible sta-
tionary Gaussian processes such as Gaussian MA(1) and exchangeable (equicorre-
lations), may be found similarly. See, for example, Qaqish (2003, Section 4).

7.2.3.2 Nonstationary Case

In the nonstationary case, that is, when the covariates are time dependent, following
(7.39), one writes the LDCP model as

Pr(yit = 1|yi,t−1, . . . ,yi1) = πit +
t−1

∑
j=1

bi,t j(yi j −πit), for t = 2, . . . ,T, (7.44)

where πit = exp(x′itβ )/[1 + exp(x′itβ )]. As far as the dependence parameters are
concerned, the dependence parameters vector b∗i,t−1 may still be computed by using
the formula in (7.43) given for the stationary case, except that unlike in the stationary
case, one now uses

a∗i, j j = var(Yi j) = πi j(1−πi j), for all j = 1, . . . , t−1.

Note that even if one uses the stationary correlation structure such as

(c∗i, jk)(ρ) = ρ
| j−k|, for all j 6= k

in the nonstationary model (7.44) for the computation of the dependence parameter
vector, the range restriction for the correlation index parameter ρ, or equivalently
finding the range restrictions for the dynamic dependence parameters bi,t j would
be much more complicated than in the stationary case. We do not pursue this com-
plicated case any more. One may be referred to Qaqish (2003), for example, for
the range restrictions under the nonstationary models with stationary correlation
structures. Further note that in Section 7.3 we discuss simpler nonstationary binary
models with both stationary and nonstationary correlation structures.

7.2.4 A Numerical Comparison of Range Restrictions for
Correlation Index Parameter Under Stationary Binary
Models

In the notation of Sections 7.2.1− 7.2.3, Qaqish (2003) as well as Farrell and Su-
tradhar (2006) have considered the correlation structures for one individual, i.e., for
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K = 1. For simplicity, we also consider this special case here and by writing π̃ = π̃i,
for i = 1, we compute the range restrictions for the correlation index parameter ρ

under a stationary AR(1) process, where the correlation structure is defined as

Corr(yit ,yiu) = c∗i,ut(ρ) = ρ
|t−u|.

To be specific, we compute these ranges by exploiting (7.18), (7.27), and (7.38)
under the MBD, ODD, and LDCP models, respectively. These ranges for T = 4 and

π̃ = 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9

from Farrell and Sutradhar (2006, Table 1) are displayed in Table 7.1.

Table 7.1 For different values of π̃, range restrictions on ρ for each of the MDB (Bahadur), ODD
(Kanter), and LDCP (Qaqish) models that are based on a stationary process with T = 4 and an
AR(1) correlation structure.

π̃ MDB ODD LDCP
0.40 (−0.262, 0.449) (0.000, 1.000) (−0.667, 1.000)
0.50 (−0.430, 0.430) (0.000, 0.000) (−1.000, 1.000)
0.60 (−0.262, 0.449) (-0.667, 0.000) (−0.667, 1.000)
0.70 (−0.158, 0.503) (-0.429, 0.000) (−0.429, 1.000)
0.80 (−0.088, 0.486) (-0.250, 0.000) (−0.250, 1.000)
0.90 (−0.038, 0.442) (-0.111, 0.000) (−0.111, 1.000)

The results illustrate that the LDCP model provides the widest acceptable range
for the correlation parameter at all values of π̃ . In particular, the range restrictions
for the MDB and ODD models are always more confining and entirely contained
within the corresponding range for the LDCP model, regardless of the value of π̃ .
However, although the LDCP model handles all values of positive correlation re-
gardless of the value of π̃ , the only instance where the restriction for ρ under the
LDCP model is over the entire range from −1 to 1 is when π̃ = 0.5. In fact, the
LDCP model restrictions allow for less of the range of negative correlation as π̃

moves farther away from 0.5, to the point where only negative correlations close to
zero are permitted as π̃ approaches zero or one. Note that it was further indicated by
Farrell and Sutradhar (2006) that the relative performance of the three models for
the stationary equicorrelations and MA(1) models is similar to that for the AR(1)
structure, but the ranges for the correlation parameters are more restrictive.

Because of the fact that among the three models, the LDCP model provides wider
ranges for the correlation index parameter, and also because in practice, one fre-
quently encounters low-order correlation structures, in Section 7.3, we consider such
low-order correlation models, namely AR(1), MA(1), and equicorrelation LDCP
models and deal with inferences for the stationary case. These stationary models are
next generalized to the nonstationary models in Section 7.4. The inferences for the
nonstationary case are also given in the same section.
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7.3 Low-Order Autocorrelation Models for Stationary Binary
Data

Similar to the stationary autocorrelation models for count data discussed in the last
chapter (see Section 6.3), in this section, we consider three low-order stationary
autocorrelation models, namely AR(1), MA(1), and EQC (equicorrelations) models
for repeated binary data. All three models are founded on the same idea of writing
the conditional probability for the current binary response in a linear dynamic form
similar to that of (7.39). Note, however, that among these three models, we write
the AR(1) model as a direct special case of (7.39), whereas the other two models
are developed in a similar but different fashion. In fact, in the later two models, the
conditional probability is expressed in a time series concept based MA(1) and EQC
linear forms. For details on three models both in stationary and nonstationary setup,
we refer to Sutradhar (2010). We now first describe the stationary models as follows.
The nonstationary models are discussed in Section 7.4.

7.3.1 Binary AR(1) Model

This model and its basic marginal properties such as the mean and the variance,
and its joint or product moment properties, namely autocorrelations, are described
through equations from (7.35) to (7.38).

7.3.2 Binary MA(1) Model

Suppose that the repeated binary responses yi1, . . . ,yit , . . . ,yiT are generated follow-
ing the probability relationship

Pr[Yi1 = 1] = π̃i

Pr[Yit = 1|dit ,di,t−1] = dit +ρdi,t−1, for t = 2, . . . ,T, (7.45)

where dits are independently distributed with mean ξ ∗i and variance ηi; that is,

dit
id∼
[

ξ
∗
i =

π̃i

1+ρ
, ηi = π̃i(1− π̃i)

]
, (7.46)

for all t = 1, . . . ,T. Note that the binary MA(1) model (7.45) is similar but different
than the well-known Gaussian MA(1) model. This is because, in the Gaussian case,
one uses the observation driven model, i.e., yit = dit + ρdi,t−1, whereas (7.45) is a
conditional probability model. The distributional assumptions in two cases are also
similar but different.
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As far as the marginal properties of the model (7.45) are concerned, one obtains
the means as

E[Yi1] = µi1

E[Yit ] = Edit ,di,t−1E[Yit |dit ,di,t−1]
= Edit ,di,t−1 [dit +ρdi,t−1]

=
π̃i

1+ρ
+ρ

π̃i

1+ρ

= π̃i, for t = 2, . . . ,T, (7.47)

and the variances as

var[Yi1] = π̃i[1− π̃i]
var[Yit ] = Edit ,di,t−1var[Yit |dit ,di,t−1]+vardit ,di,t−1E[Yit |dit ,di,t−1]

= Edit ,di,t−1

[
E(Y 2

it |dit ,di,t−1)−{E(Yit |dit ,di,t−1)}2]
+vardit ,di,t−1 [dit +ρdi,t−1]

= Edit ,di,t−1 [{dit +ρdi,t−1}−{dit +ρdi,t−1}2]
+vardit ,di,t−1 [dit +ρdi,t−1]

= Edit ,di,t−1 [dit +ρdi,t−1]− [Edit ,di,t−1{dit +ρdi,t−1}]2

= π̃i− π̃
2
i = π̃i(1− π̃i), for t = 2, . . . ,T, (7.48)

respectively.
Next, for u < t, by using the model relationship (7.45), one may write

cov(Yiu,Yit) = Ediu,di,u−1,dit ,di,t−1cov[(Yiu,Yit)|diu,di,u−1,dit ,di,t−1]
+covdiu,di,u−1,dit ,di,t−1 [diu +ρdi,u−1,dit +ρdi,t−1]

= covdiu,di,u−1,dit ,di,t−1 [diu +ρdi,u−1,dit +ρdi,t−1]. (7.49)

It then follows from (7.46) and (7.48)− (7.49) that

corr(Yiu,Yit) = c∗i,ut(ρ) =

{
ρvar(diu)√

var(diu)
√

var(dit )
for t−u = 1

0 for (t−u) > 1
(7.50)

=
{

ρ for |u− t|= 1
0 otherwise.

(7.51)

Range for Lag 1 Correlation

The range for the lag 1 correlation or correlation index parameter depends on the
nature of the model. The stationary MA(1) model given by (7.45)− (7.46) is semi-
parametric by nature. This is because no distributional assumption is made in (7.46)
for the dit variable. Thus it becomes impossible to find the range. Now by making a
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reasonable distributional assumption (similar to the Gaussian type model) such as

dit
iid∼ N

[
ξ
∗
i =

π̃i

1+ρ
, ηi = π̃i(1− π̃i)

]
,

one may attempt to find the range for ρ, which is, however, also not easy. Note,
however, that in practice, when a consistent estimation method is used to compute
the lag correlations such as in (7.51), the range issue may not be a big problem.
Nevertheless, it is desirable to compute the range for the validity of the correlation
interpretation as well as for the estimation of the main regression parameter β .

Note that as opposed to the probabilistic range, that is, the range for ρ satisfying
the probability limits 0 to 1 for the conditional probability in (7.45), there exist
procedures to find the weak stationary range for ρ by using the condition that the
correlation matrix

C∗
i (ρ) =


1 ρ 0 · · · 0

ρ 1 ρ · · · 0
...

...
...

...
0 0 0 · · · 1

 , (7.52)

defined by (7.51) be positive definite. A similar procedure is used by Qaqish (2003)
to find the range for ρ, where the general dynamic model (7.39) is fitted with a spec-
ified MA(1) correlation structure. To be specific, suppose that the linear dynamic
model (7.39) is used to define the binary MA(1) process with correlation structure
(7.52), ρ being the lag 1 correlation. It can be shown that [see Qaqish (2003. eqn.
(7)]

bi,t j =
[

σitt

σi j j

] 1
2 a j −a− j

a−t −at for j = 1, . . . , t−1; i = 1, . . . ,K, (7.53)

where σi j j = π̃i(1− π̃i) for all j = 1, . . . ,T, and a
.= {(1−4ρ2)1/2−1}/(2ρ). Then,

for a given i, the range for ρ can be computed by satisfying

LT ≤ π̃i ≤ 1−LT , (7.54)

where

LT =


a−aT

1−aT+1 (ρ < 0)
a2−aT

(1+a)(1−aT+1) (ρ > 0, T even)
(a−aT )2

(1+a)(1−aT+1)(1−aT ) (ρ > 0, T odd).

(7.55)

Suppose that (7.54)-(7.55) leads to the range for ρ as

cl,i < ρ < cu,i,

for the ith (i = 1, . . . ,K) individual. It then follows that the ρ will have the range

maxi[cl,i] < ρ < mini[cu,i]. (7.56)
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For i = 1, the ranges for ρ under the model (7.39) are computed by Qaqish (2003,
Table 1) [see also Farrell and Sutradhar (2006)] for different possible values of π̃1.

7.3.3 Binary Equicorrelation (EQC) Model

Suppose that yi0 is an unobservable initial binary response with its mean π̃i. Also,
suppose that all repeated binary responses yi1, . . . ,yit , . . . ,yiT are generated follow-
ing the probability relationship

Pr[Yit = 1|yi0] = π̃i +ρ(yi0− π̃i), for t = 1, . . . ,T. (7.57)

It then follows that

E[Yit ] = EYi0E[Yit |Yi0] = EYi0 [Pr(Yit = 1|Yi0)]
= EYi0 [π̃i +ρ(Yi0− π̃i)] = π̃i, (7.58)

and

var[Yit ] = EYi0 [var{Yit |Yi0}]+varYi0 [E{Yit |Yi0}]
= EYi0 [{π̃i +ρ(Yi0− π̃i)}(1−{π̃i +ρ(Yi0− π̃i)})]+varYi0 [π̃i +ρ(Yi0− π̃i)]

= EYi0{π̃i +ρ(Yi0− π̃i)}− [EYi0{π̃i +ρ(Yi0− π̃i)}]2

= π̃i(1− π̃i). (7.59)

These means in (7.58) and the variances in (7.59) under the EQC model are the
same as those of the AR(1) binary process given in (7.36), and also of the MA(1)
binary process given in (7.47)− (7.48).

For u 6= t, by using the model relationship (7.57), one may write

cov(Yiu,Yit) = EYi0cov[(Yiu,Yit)|Yi0]
+covYi0 [(π̃i +ρ(Yi0− π̃i)) ,(π̃i +ρ(Yi0− π̃i))]

= covYi0 [(ρ(Yi0− π̃i)) ,(ρ(Yi0− π̃i))]

=
[
ρ

2
π̃i(1− π̃i)

]
≡
[
ρ

2
π̃i(1− π̃i)

]
, (7.60)

yielding the correlations as

corr(Yiu,Yit) = c∗i,ut(ρ) =

[
ρ2π̃i(1− π̃i)

][√
π̃i(1− π̃i)

√
π̃i(1− π̃i)

]
= ρ

2. (7.61)
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Table 7.2 A class of stationary correlation models for longitudinal binary data and basic proper-
ties.

Model Dynamic Relationship Mean, Variance
& Correlations

AR(1) Pr[Yi1 = 1] = π̃i E[Yit ] = π̃i

Pr[Yit = 1|yi,t−1] = π̃i +ρ[yi,t−1− π̃i], t = 2, . . . var[Yit ] = π̃i(1− π̃i)
corr[Yit ,Yi,t+`] = ρ`

= ρ`

MA(1) Pr[Yit = 1|dit ,di,t−1] = dit +ρdi,t−1, t = 1, . . . E[Yit ] = π̃i

dit ∼ [mean = π̃i/(1+ρ),var = π̃i(1− π̃i)], t = 0,1, . . . var[Yit ] = π̃i(1− π̃i)
corr[Yit ,Yi,t+`] = ρ`

=
{

ρ for ` = 1
0 otherwise,

EQC Yi0 ∼ bin(π̃i) E[Yit ] = π̃i

Pr[Yit = 1|yi0] = π̃i +ρ(yi0− π̃i), t = 1, . . . var[Yit ] = π̃i(1− π̃i)
corr[Yit ,Yi,t+`] = ρ`

= ρ2

For convenience, we summarize the means, variances, and correlations for all
three binary stationary correlation models, as in Table 7.2.

Range For Correlation Index Parameter ρ

The conditional probabilities for AR(1) (7.35) and EQC (7.57) models are similar,
therefore by similar calculations as for the AR(1) model, one may show that ρ in
the EQC model (7.57) satisfies the same range restriction

maxi

[
− π̃i

1− π̃i
,−1− π̃i

π̃i

]
≤ ρ ≤ 1, (7.62)

as in (7.38).

7.3.4 Complexity in Likelihood Inferences Under Stationary
Binary Correlation Models

The marginal likelihood estimation by (7.6) is done by ignoring the correlations. If
the longitudinal correlation model such as binary AR(1) (7.35), MA(1) (7.45), or
EQC (7.57) is known, one may then attempt to obtain the likelihood estimates of β

and ρ, by maximizing the likelihood function

L(β ,ρ) = Π
K
i=1[ f (yi1)Π T

t=2 f (yit |yi,t−1)], (7.63)

where



7.3 Low-Order Autocorrelation Models for Stationary Binary Data 261

f (yi1) = π̃
yi1
i [1− π̃i]1−yi1

is the binary density with

π̃i =
exp(x′iβ )

1+ exp(x′iβ )
,

and the conditional density has the form

f (yit |yi,t−1) = [λ ∗
it (β ,ρ|yi,t−1)]yit [1−λ

∗
it (β ,ρ|yi,t−1)]1−yi1 (7.64)

where the conditional probability λ ∗
it (β ,ρ|yi,t−1) = P[yit = 1|yi,t−1] has the forms

(7.35), (7.45), and (7.57) under the AR(1), MA(1), and EQC models, respectively.
Note that because dit and di,t−1 in (7.45) follow an unknown distribution, one can-
not compute the likelihood function (7.64) and hence cannot obtain likelihood esti-
mates for the parameters involved. Further note that even if the distributions of dit

and di,t−1 were known such as normal, the integrations would be complicated. A
similar integration problem arises in computing the likelihood function under the
EQC model (7.57). One of the other major problems with the likelihood approach
for the longitudinal binary data analysis is that the model itself for the data may not
be known.

Unlike the likelihood approach, the following GQL approach does not need an
assumption for any specific model. All that is needed is to assume that the repeated
stationary binary data follow any of the three (7.35), (7.45), or (7.57) or similar auto-
correlation models. In the nonstationary case one, however, is required to identify
the model. Nevertheless, the GQL approach will be much easier than the likelihood
approach.

7.3.5 GQL Estimation Approach

Note that the correlation structures for the AR(1), MA(1), and EQC models are
given by (7.37), (7.51), and (7.61), respectively. Further note that all three correla-
tion structures may be represented by an autocorrelation matrix of the form:

C∗
i (ρ) = (c∗i,(t−`)t(ρ)) =


1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2
...

...
...

...
ρT−1 ρT−2 ρT−3 · · · 1

 , (7.65)

which is same as (6.25), written for three stationary correlation models, for Poisson
longitudinal data.

Let
πi = π̃i1T
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be the mean vector of yi = [yi1, . . . ,yit , . . . ,yiT ]′ where 1T is the T -dimensional unit
vector. Because the correlation matrix C∗

i (ρ) in (7.65) represents the correlations of
all three models, namely AR(1), MA(1), and EQC, and because this matrix is the
same as the correlation matrix in (6.25) under the Poisson model, one may follow
the Poisson case and write the GQL estimating equation and the asymptotic vari-
ance of the estimates as follows.

GQL Estimating Equation for β

K

∑
i=1

∂π ′i
∂β

Σ
∗
i
−1(ρ)(yi−πi) =

K

∑
i=1

X ′
i AiΣ

∗
i
−1(ρ)(yi−πi) = 0, (7.66)

where Σ ∗
i (ρ) = A1/2

i C∗
i (ρ)A1/2

i . Note that irrespective of the model, the lag ` (` =
1, . . . ,T −1,) correlation involved in C∗

i (ρ) may be estimated by

ρ̂` =
∑K

i=1 ∑T−`
t=1 ỹit ỹi,t+`/K(T − `)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

, (7.67)

where ỹit is the standardized residual, defined as ỹit = (yit − πit)/{σitt}1/2. Here,
unlike in the Poisson case (see Section 6.4.2), σitt = π̃i[1− π̃i] for all t = 1, . . . ,T,
and Ai in (7.66), has the formula:

Ai = diag[σi11, . . . ,σitt , . . . ,σiT T ) = π̃i[1− π̃i]IT . (7.68)

The p×T covariate matrix X ′
i is the same as in the Poisson case and is given by

X ′
i = [x̃i, . . . , x̃i] with x̃i = (xi1, . . . ,xip)′.

‘Working’ Independence Assumption Based GQL Estimation

By using C∗
i (ρ) = IT in (7.65), a ‘working’ independence assumption based GQL

estimate may be obtained by solving

K

∑
i=1

X ′
i AiΣ

∗
i
−1(ρ)(yi−πi)|ρ=0 =

K

∑
i=1

X ′
i (yi−πi) = 0, (7.69)

which is also referred to as the ‘working’ independence assumption based GEE
estimate [Liang and Zeger (1986)].

7.3.5.1 Efficiency of the Independence Assumption Based Estimation

Let β̂GQL and β̂ (I), be the solutions of (7.66) and (7.69), respectively. The asymp-
totic variances of these estimators have the same forms as in the Poisson case, and
they are given by (6.29) and (6.31), respectively. There are, however, two significant
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differences in the formulas between the count and binary cases.

Remark 1. First, the Ai matrix has the formula given by (7.68); that is, Ai =
π̃i(1− π̃i)IT in the present binary case, whereas in the Poisson case Ai = µ̃iIT .

Remark 2. Second, the corresponding elements of the C∗
i (ρ) matrix under the Pois-

son MA(1) and EQC structures are different from those of the binary structures. For
example, the Poisson EQC structure (6.20) produces correlations ρ (6.22), whereas
the binary EQC structure (7.57) yields the correlations as ρ2 (7.61). These differ-
ences have to be taken into account while computing the asymptotic variances of
both GQL and ‘working’ independence based GQL estimators.

Note that to compute the relative efficiencies in the binary case, one also has to pay
attention to the ranges for the correlation index parameter ρ, which are different
from the Poisson case. In the present binary case, the ranges for ρ, for example,
under the stationary AR(1) and EQC models are given by (7.38) and (7.62), respec-
tively. For the purpose, one needs to compute the value of π̃i for all i = 1, . . . ,K. For
example, for K = 100, and β1 = β2 = 1.0, and the covariates

xit1 = x̃i1 = 1.0, for all i = 1, . . . ,K, and t = 1, . . . ,T,

and

xit2 = x̃i2 =


−1 for t = 1, . . . ,T ; i = 1, . . . ,K/4

0 for t = 1, . . . ,T ; i = (K/4)+1, . . . ,3K/4

1 for t = 1, . . . ,T ; i = (3K/4)+1, . . . ,K,

we compute the values of π̃i by

π̃i =
exp(x̃i1β2 + x̃i2β2)

1+ exp(x̃i1β2 + x̃i2β2)
,

and they are found to be

π̃i =


0.50 for i = 1, . . . ,K/4

0.73 for i = (K/4)+1, . . . ,3K/4

0.88 for i = (3K/4)+1, . . . ,K.

These values of probabilities for all K = 100 individuals produce

maxi

[
− π̃i

1− π̃i
,−1− π̃i

π̃i

]
=−0.14,
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yielding the valid range for ρ as−0.14 < ρ < 1.0 under the AR(1) and EQC models
with the aforementioned covariates.

Now for selected values of ρ within the range −0.14 < ρ < 1.0 for AR(1) and
EQC models, for example, and following the above Remarks 1 and 2, we compute
the efficiencies of the β̂I to β̂GQL by using the formulas (6.29) and (6.31) in (6.32) in
Section 6.4. These efficiencies of the independence based estimator with regard to
binary AR(1) and EQC models are shown in Table 7.3, along with the efficiencies
of certain GEE estimators. It is clear that β̂I always has larger or equal asymptotic
variances as compared to the GQL estimator β̂GQL, showing that the GQL estimator
is always more efficient than the ‘working’ independence based estimator, irrespec-
tive of the discrete nature of the data whether they are binary or count. Note that
when these results of Tables 7.2 and 7.3 are compared to those of Table 6.2 for the
Poisson case, the efficiency of β̂I remains the same for the Poisson or binary AR(1)-
type data, whereas the efficiency of β̂I gets worse under the binary EQC model as
compared to the Poisson EQC model.

7.3.6 GEE Approach and Its Limitations for Binary Data

For the estimation of the regression effects by using the GEE approach [Liang and
Zeger (1986)] for the Poisson data, we refer to Section 6.4.3. To be specific, the
regression effect β is estimated by solving the GEE given in (6.33) and such GEE
based estimator β̂G has the asymptotic covariance matrix given by (6.34). Note that
these formulas for the count data may still be used for the binary data case, except
that µi vector is replaced by πi = 1′T π̃i and the Ai matrix now has the form

Ai = diag[σi11, . . . ,σitt , . . . ,σiT T ) = π̃i[1− π̃i]IT

as in (7.68). As far as the working correlation matrices are concerned, the formulas
for R(α) and R(α0) remain the same as in the Poisson data case. Here α is the so-
called ‘working’ correlation parameter and its moment estimate, say α̂, converges in
limit to α0. The values of α0 corresponding to the true correlation index parameter
are calculated in a similar fashion as in Section 6.4.3 [see also Sutradhar and Das
(1999)].

The purpose of this section is to examine whether β̂G can always be more effi-
cient than the ‘working’ independence based estimator β̂I under the stationary cor-
relation models for the binary data. Recall that following Sutradhar and Das (1999),
it was demonstrated in Section 6.4.3 for the stationary Poisson data that β̂G, in fact,
can be less efficient than the simpler β̂I . Thus the GEE based estimation cannot be
trusted. Note that Sutradhar and Das (1999) have examined this efficiency issue for
a nonstationary binary dataset following stationary binary correlations, which was
earlier used by Liang and Zeger (1986). Here we consider stationary binary data
with means, variances, and correlations, free from time-dependent covariates. For
simplicity, we now consider two models, namely AR(1) (7.35) and EQC (7.57) with
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true correlation index parameter ρ = 0.3, 0.7 which are within the valid range for
the covariates considered in Section 7.3.5.1. The efficiencies of GEE estimators are
computed by using (6.35) under the assumption that true data follow AR(1) model
(7.35) whereas one uses the EQC model (7.57) as the ‘working’ correlation model,
and vice versa. The results are given in Table 7.3. As mentioned in Section 7.3.5.1,
the same table also contains the efficiencies of the independence based estimator β̂I

as compared to the GQL (true model based) estimator β̂GQL.

Table 7.3 Percentage relative efficiency of β̂I and β̂G to the GQL estimator β̂GQL with true cor-
relation matrix C(ρ) for AR(1) and EQC (exchangeable) structure, for πit = π̃i = exp(x̃i1β1 +
x̃i2β2)/[1+ exp(x̃i1β1 + x̃i2β2)] with β1 = β2 = 1.

Working/True Correlation Structures
AR(1)/EQC EQC/AR(1)

T ρ β̂1I β̂2I α0 β̂1G β̂2G ρ β̂1I β̂2I α0 β̂1G β̂2G

5 0.3 100 100 0.49 93 93 0.3 98 98 0.15 98 98
0.7 100 100 0.83 90 90 0.7 95 95 0.52 95 95

10 0.3 100 100 0.65 87 87 0.3 99 99 0.08 99 99
0.7 100 100 0.90 88 87 0.7 93 93 0.35 93 93

15 0.3 100 100 0.74 83 83 0.3 99 99 0.06 99 99
0.7 100 100 0.93 85 85 0.7 93 93 0.26 93 93

The results from Table 7.3 show that the independence assumption based esti-
mator β̂I is equally efficient to the GQL estimator β̂GQL when the true correlation
structure is EQC. This β̂I is less efficient than β̂GQL when binary data follow the
AR(1) correlation structure. Thus, β̂GQL is always the same or more efficient than
the independence based estimator. These results are exactly the same as in the Pois-
son case (see Table 6.2).

Next, when the GEE estimator β̂G is compared to the independence based esti-
mator β̂I , the former appears to be less efficient when binary data follow the EQC
model but estimation is done based on the AR(1) model. When the data follow the
AR(1) model but estimation is done based on the EQC model, the independence
based estimator β̂I appears to be equally efficient to the GEE based estimator β̂G.
Thus, this comparison along with the comparison made in Section 6.4.3 for the sta-
tionary Poisson longitudinal data clearly demonstrates that the so-called GEE ap-
proach cannot be trusted as it may fail to produce more efficient estimates than the
independence assumption based estimation approach.
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7.4 Inferences in Nonstationary Correlation Models for
Repeated Binary Data

In this section, following Sutradhar (2010), we provide a generalization to the three
stationary binary correlation models discussed in Section 7.3. In the nonstationary
case, it is not only that the marginal means and variances are nonstationary, i.e.,
they are functions of the time-dependent covariates, the correlations also are non-
stationary as they become the functions of time dependent covariates. Note that it
is reasonable to expect that ignoring the nonstationary correlations may have ad-
verse effects on the estimation of the correlation index parameter that one uses to
define the stationary correlation structure. This in turn may cause efficiency loss for
the estimates of the regression effects. As a remedy, it then becomes an issue to
identify the nonstationary correlation structure within the autocorrelation class of
models. As shown in Section 7.4.5, the identification is done by computing the lag
correlations ρ̂` (` = 1, . . . ,T −1) for β = 0, and matching their pattern with that of
the expected values under a given nonstationary model. Remark that for simplicity,
one may identify the nonstationary correlation structure by comparing the pattern of
ρ̂` (` = 1, . . . ,T −1) with that of stationary correlation models. Once the identifica-
tion is done, one goes back to the identified model and does the GQL estimation for
the regression effects to obtain consistent and efficient estimates. This GQL estima-
tion, similar to the Poisson case (Section 6.5.2), is given briefly in Section 7.4.4.

We now provide three binary nonstationary correlation models, namely AR(1),
MA(1), and EQC, as a generalization of the stationary binary AR(1), MA(1), and
EQC models, given in Sections 7.3.1, 7.3.2, and 7.3.3, respectively. Note that all
three correlation models given below produce the same time-dependent marginal
means and variances, their correlation structures being different and they are func-
tions of time-dependent covariates.

7.4.1 Nonstationary AR(1) Correlation Model

Suppose that the repeated binary responses yi1, . . . ,yit , . . . ,yiT are generated follow-
ing the probability relationship

Pr[Yi1 = 1] = πi1

Pr[Yit = 1|yi,t−1] = πit +ρ(yi,t−1−πi,t−1), for t = 2, . . . ,T, (7.70)

where πit = exp(x
′
itβ )/[1+exp(x

′
itβ )], for all t = 1, . . . ,T. This model clearly yields

the means and the variances as

E(Yit) = πit

var(Yit) = σitt = aitt = πit(1−πit), (7.71)
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for t = 1, . . . ,T.

Next, for u < t, by using the model relationship (7.70), one may compute the
covariance between yiu and yit as

cov[Yiu,Yit ] = E[YiuYit ]−E[Yiu]E[Yit ]
= EyiuYiuEyi,t−(t−u−1) [. . . [Eyi,t−2 [Eyi,t−1 [Yit |yi,t−1]|yi,t−2] . . .]|yi,t−(t−u−1)]
−πiuπit

= EyiuYiu[πit +
t−u−1

∑
j=1

ρ
j
πi,t− j +ρ

t−u(Yiu−πiu)−
t−u−1

∑
j=1

ρ
j
πi,t− j]−πiuπit

= πiuπit +ρ
t−uEyiu [Yiu(Yiu−πiu)]−πiuπit

= ρ
t−u

πiu[1−πiu]
= ρ

t−u
σiuu. (7.72)

Consequently, for all u, t = 1, . . . ,T , the nonstationary correlation matrix is given by

c(ns)
i,u,t(xiu,xit ,ρ) = corr(Yiu,Yit) =


ρ t−u

[
σiuu
σitt

]1/2
, for u < t

ρu−t
[

σitt
σiuu

]1/2
, for u > t.

(7.73)

Note that in (7.73), the correlations are nonstationary. This is because σitt , for ex-
ample, depends on xit . Further note that the ρ parameter in (7.73) must satisfy the
range restriction

max

[
− πit

1−πi,t−1
,−1−πit

πi,t−1

]
≤ ρ ≤min

[
1−πit

1−πi,t−1
,

πit

πi,t−1

]
. (7.74)

Remarks on the Stationary Correlation Structure: Under the stationary case,
σitt = π̃i(1− π̃i) for all t = 1, . . . ,T, therefore the nonstationary correlation struc-
ture in (7.73) reduces to the same form c∗i,ut(ρ) = ρ |t−u| as in (7.37), which is
also the AR(1) stationary correlation structure for the longitudinal count data [see
(6.17)]. Thus, even though the nonstationary AR(1) correlation structures for the
count (6.46) and binary (7.73) data are different, their stationary correlation struc-
tures are, however, the same. Thus, in any inferences for the regression effects under
the stationary case, one can use the unique autocorrelation structure (7.65) irrespec-
tive of the situations whether longitudinal data are count or binary, also irrespective
of the processes whether AR(1), MA(1), or EQC, but in the nonstationary case it is
not only that the correlation structures are different for binary and count data, they
are also different under different processes.
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7.4.2 Nonstationary MA(1) Correlation Model

Suppose that the repeated binary responses yi1, . . . ,yit , . . . ,yiT are generated follow-
ing the probability relationship

Pr[Yi1 = 1] = πi1

Pr[Yit = 1|dit ,di,t−1] = dit +ρdi,t−1, for t = 2, . . . ,T, (7.75)

where the dits are independently distributed with mean ξ ∗it and variance ηit ; that is,

dit
id∼

[
ξ
∗
it =

t−1

∑
j=0

(−ρ) j
πi,t− j, ηit = [

∑t−1
j=0(−ρ) jπi,t− j

∑t−1
j=0(−ρ) j

][1−
∑t−1

j=0(−ρ) jπi,t− j

∑t−1
j=0(−ρ) j

]

]
,

for all t = 1, . . . ,T. Under this model, one obtains the means given by

E[Yi1] = πi1

E[Yit ] = Edit ,di,t−1E[Yit |dit ,di,t−1]
= Edit ,di,t−1 [dit +ρdi,t−1]

=

[
t−1

∑
j=0

(−ρ) j
πi,t− j

]
+ρ

[
t−2

∑
j=0

(−ρ) j
πi,t−1− j

]
= πit , for t = 2, . . . ,T, (7.76)

and the variances, by similar calculations as in (7.48), given by

var[Yi1] = πi1[1−πi1]
var[Yit ] = Edit ,di,t−1var[Yit |dit ,di,t−1]+vardit ,di,t−1E[Yit |dit ,di,t−1]

= πit −π
2
it = πit [1−πit ], (7.77)

respectively.
Next, for u < t, by using the model relationship (7.75), and by similar calcula-

tions as in (7.49), one obtains

cov(Yiu,Yit) = covdiu,di,u−1,dit ,di,t−1 [diu +ρdi,u−1,dit +ρdi,t−1]

= ρ

[
[
∑u−1

j=0(−ρ) jπi,u− j

∑u−1
j=0(−ρ) j

][1−
∑u−1

j=0(−ρ) jπi,u− j

∑u−1
j=0(−ρ) j

]

]
, (7.78)

yielding the nonstationary lag |t−u| correlations as
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c(ns)
i,u,t(xiu,xit ,ρ)= corr(Yiu,Yit)=


ρ

[
[

∑u−1
j=0 (−ρ) jπi,u− j

∑u−1
j=0 (−ρ) j ][1−

∑u−1
j=0 (−ρ) jπi,u− j

∑u−1
j=0 (−ρ) j ]

]
[√

πit (1−πit )
√

πiu(1−πiu)
] for t−u = 1

0 for (t−u) > 1
(7.79)

Remarks on Stationary Correlation Structure

For the stationary correlated data, the nonstationary correlation structure in (7.79)
reduces to the correlation structure in (7.51), which has the form

c∗i,ut(ρ) = corr(Yiu,Yit) =
{

ρ for |u− t|= 1
0 otherwise,

Note that even though this stationary correlation structure is the same as for the
Poisson case (6.19), the lag 1 correlation formula for the Poisson case is c∗i,u,u+1 =
ρ/1+ρ which is different from the present binary case. This is expected as the
correlation index parameter ρ for the count and binary cases has a different inter-
pretation. Similar things happen also under the EQC structure for count and binary
data.

7.4.3 Nonstationary EQC Model

Suppose that yi0 is an unobservable initial binary response with its mean the same
as that of yi1. Also, all repeated binary responses yi1, . . . ,yit , . . . ,yiT are generated
following the probability relationship

Pr[Yit = 1|yi0] = πit +ρ(yi0−πi1), for t = 1, . . . ,T. (7.80)

It then follows that

E[Yit ] = Eyi0E[Yit |yi0] = Eyi0 [Pr(Yit = 1|yi0)]
= Eyi0 [πit +ρ(yi0−πi1)] = πit , (7.81)

and

var[Yit ] = Eyi0 [var{Yit |yi0}]+varyi0 [E{Yit |yi0}]
= Eyi0 [{πit +ρ(yi0−πi1)}(1−{πit +ρ(yi0−πi1)})]

+varyi0 [πit +ρ(yi0−πi1)]

= Eyi0{πit +ρ(yi0−πi1)}− [Eyi0{πit +ρ(yi0−πi1)}]2

= πit(1−πit). (7.82)
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These means (7.81) and the variances (7.82) under the EQC model are same as that
for the AR(1) binary process given in (7.71), and also for the MA(1) binary process
given in (7.76)− (7.77).

For u 6= t, by using the model relationship (7.80), one obtains

cov(Yiu,Yit) = Eyi0cov[(Yiu,Yit)|yi0]
+covyi0 [(πiu +ρ(yi0−πi1)) ,(πit +ρ(yi0−πi1))]

= covyi0 [(ρ(yi0−πi1)) ,(ρ(yi0−πi1))]

=
[
ρ

2
πi0(1−πi0)

]
≡
[
ρ

2
πi1(1−πi1)

]
, (7.83)

yielding the correlations as

c(ns)
i,ut (xiu,xit ,ρ) = corr(Yiu,Yit) =

[
ρ2πi1(1−πi1)

][√
πit(1−πit)

√
πiu(1−πiu)

] . (7.84)

Remarks on Stationary Correlation Structure: Note that for the stationary case,
the correlations in (7.84) reduce to the form

c∗i,ut(ρ) = ρ
2,

which is similar to (7.61). Here for the stationary EQC binary data, ρ2 represents
the constant correlation, whereas ρ is the constant correlation parameter under the
stationary EQC model for count data. But this difference in parameter selection does
not cause any problems in inferences for the regression parameters. This is because
the constant stationary correlation matrix form (7.65) is used any way in the GQL
estimating equation (7.66), for all stationary cases.

For convenience, we summarize the nonstationary binary AR(1), MA(1), and
EQC models along with their correlation structures in Table 7.4.

7.4.4 Nonstationary Correlations Based GQL Estimation

GQL Estimating Equation for β : Similar to the GQL estimation (6.56) under
nonstationary Poisson models, we now solve the GQL estimating equation for β

given by
K

∑
i=1

∂π ′i
∂β

Σ
(ns)
i

−1
(ρ̂)(yi−πi) = 0, (7.85)

where

πi = (πi1, · · · ,πit , · · · ,πiT )
′

and Σ
(ns)
i (ρ̂) = A1/2

i C(ns)
i (xi, ρ̂)A1/2

i
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Table 7.4 A class of nonstationary correlation models for longitudinal binary data and basic prop-
erties.

Model Dynamic Relationship Mean, Variance,
& Correlations

AR(1) Pr[Yi1 = 1] = πi1 E[Yit ] = πit

Pr[Yit = 1|yi,t−1] = πit +ρ(yi,t−1−πi,t−1), t = 2, . . . ,T var[Yit ] = πit(1−πit)
corr[Yiu,Yit ] = ρ

(ns)
|u−t|

= ρ |t−u|
[

σiuu
σitt

] 1
2

MA(1) Pr[Yi1 = 1] = πi1 E[Yit ] = πit

Pr[Yit = 1|dit ,di,t−1] = dit +ρdi,t−1, t = 2, . . . ,T var[Yit ] = πit(1−πit)

dit
id∼
[

∑t−1
j=0(−ρ) jπi,t− j, [

∑t−1
j=0(−ρ) jπi,t− j

∑t−1
j=0(−ρ) j ][1− ∑t−1

j=0(−ρ) jπi,t− j

∑t−1
j=0(−ρ) j ]

]
corr[Yiu,Yit ] = ρ

(ns)
|u−t|

=


ρ

[
[

∑u−1
j=0 (−ρ) jπi,u− j

∑u−1
j=0 (−ρ) j ][1−

∑u−1
j=0 (−ρ) jπi,u− j

∑u−1
j=0 (−ρ) j ]

]
[√

πit (1−πit )
√

πiu(1−πiu)
] for |u− t|= 1

0 otherwise,
EQC Pr[Yit = 1|yi0] = πit +ρ(yi0−πi1), t = 1, . . . ,T E[Yit ] = πit

Yi0 ∼ bin(πi1) var[Yit ] = πit(1−πit)
corr[Yiu,Yit ] = ρ

(ns)
|u−t|

= ρ2πi1(1−πi1)√
πiu(1−πiu)πit (1−πit )

are the mean vector and true covariance matrix of yi = (yi1, · · · ,yit , · · · ,yiT )
′
. Note

that

E[Yit ] = πit =
exp(x′itβ )

1+ exp(x′itβ )

and
Ai = diag[σi11, . . . ,σitt , . . . ,σiT T ],

with σitt = πit(1−πit), remain the same under all three nonstationary binary AR(1)
(7.70−7.71), MA(1) (7.75−7.77), and EQC (7.80−7.82) models, but their corre-

lation structures, that is, C(ns)
i (xi,ρ), given in (7.73) under the AR(1) model, (7.79)

under the MA(1) model, and in (7.84) under the EQC model, are different from each
other. For this reason, it is necessary to identify the correlation structure (see the
next section). Once the correlation structure is identified, by using ∂π ′i/∂β = X ′

i Ai

in (7.85), one may solve the GQL estimating equation

K

∑
i=1

X ′
i AiΣ

(ns)
i

−1
(ρ̂)(yi−πi) = 0, (7.86)

for β . Similar to the Poisson case, let β̂GQL denote the solution of (7.86) after using
ρ̂ computed under the selected model. Under mild regularity conditions one may
then show that β̂GQL has the asymptotic (as K → ∞) normal distribution given by



272 7 Longitudinal Models for Binary Data

K
1
2 (β̂GQL−β )∼ N

0, K

[
K

∑
i=1

X ′
i AiΣ

(ns)
i

−1
AiXi

]−1
 . (7.87)

We now show how to compute ρ̂ under all three binary models.

7.4.4.1 Estimation of ρ Parameter Under Binary AR(1) Model

Moment Equation for ρ: Recall that the correlations under the nonstationary bi-
nary AR(1) model (7.70) are given in (7.73). Now to estimate the correlation index
parameter ρ in this correlation structure (7.73), one may use the moment estimate
of ρ given by

ρ̂ =
∑K

i=1 ∑T
t=2 ỹit ỹi,t−1

∑K
i=1 ∑T

t=1 ỹ2
it

KT

∑K
i=1 ∑T

t=2[σi,t−1,t−1/σitt ]
1
2

, (7.88)

where ỹit = [yit − πit ]/
√

σitt , with σitt = πit(1− πit). Note that the formula for ρ

given by (7.88) was obtained by equating the lag 1 sample autocorrelation with its
population counterpart given by (7.73). Furthermore, ρ̂ computed by (7.88) must
satisfy the range restriction given in (7.74). This implies that if the value of ρ̂ com-
puted by (7.88) falls beyond the range shown in (7.74), we use the upper limit of ρ

given in (7.74) as the estimate of ρ .

7.4.4.2 Estimation of ρ Parameter Under Binary MA(1) Correlation Model

Similar to the Poisson MA(1) model, the formula for lag 1 correlations given by
(7.79) under the nonstationary MA(1) model (7.75) involves a complicated sum-
mation. Thus, it is convenient to solve the moment equation for ρ by using the
Newton−Raphson iterative technique. To be specific, by writing the moment equa-
tion as

g(ρ) =
∑K

i=1 ∑T−1
t=1 ỹit ỹi,t+1/K(T −1)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

− ρ

T −1

T−1

∑
u=1

 [
∑u−1

j=0(−ρ) jπi,u− j

∑u−1
j=0(−ρ) j ][1− ∑u−1

j=0(−ρ) jπi,u− j

∑u−1
j=0(−ρ) j ][√

πi,u+1(1−πi,u+1)
√

πiu(1−πiu)
]
= 0, (7.89)

we solve for ρ iteratively by using the Newton−Raphson iterative formula

ρ̂(r +1) = ρ̂(r)−
[
{∂g(ρ)

∂ρ
}−1g(ρ)

]
(r)

,

where [·](r) denotes that the expression within brackets is evaluated at ρ = ρ̂(r), the
rth iterative value of ρ. Note that ρ̂ must satisfy the appropriate range restrictions,
which are, however, complicated to derive under the MA(1) model. One of the ad-
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vantages of using the moment method for the estimation of ρ is that the estimates
usually satisfy the underlying restrictions irrespective of the formulas for the ranges.

7.4.4.3 Estimation of ρ Parameter Under Exchangeable (EQC) Correlation
Model

The moment estimating equation for the ρ parameter for the exchangeable model is
quite similar to that for the AR(1) model. The difference between the two equations
is that under the AR(1) process we have considered all lag 1 standardized residuals,
whereas under the exchangeable model, one is required to use standardized resid-
uals of all possible lags. Thus, following (6.58) for the AR(1) model, we write the
moment formula for ρ under the exchangeable model as

ρ̂
2 =

∑K
i=1 ∑T−1

`=1 ∑T−`
t=1 ỹit ỹi,t+`

∑K
i=1 ∑T−1

`=1 ∑T−`
t=1 ỹ2

it

KT

∑K
i=1 ∑T−1

`=1 ∑T−`
t=1

πi1(1−πi1)

[πit (1−πit )πi,t+`(1−πi,t+`)]
1
2

, (7.90)

where ỹit = [yit −πit ]/
√

πit(1−πit).

7.4.5 Model Selection

As it was argued in Section 6.5.3 for the model selection for Poisson correlated
data that the pattern of lag correlations can be exploited to identify the correlation
structures in both stationary (if needed) and nonstationary cases. This argument also
holds for the longitudinal binary data. Thus, to select a nonstationary binary corre-
lation model among the three possible AR(1), MA(1), and EQC models, we first
compute the estimated lag correlations by using

ρ̂` =
∑K

i=1 ∑T−`
t=1 ỹit ỹi,t+`/K(T − `)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

, (7.91)

[see also (6.61)] where ỹit = [yit −πit ]/
√

[πitt(1−πitt)]. This can be done by using
β = 0 in the formulas for πit . These values of ρ̂`, which are stationary correlation
values, may be enough to identify the correlation structure. For finer identification,
one computes the approximate expected values; that is, E[ρ̂`] under all three models
for all possible trial values of ρ, the correlation index parameter. Next, the closeness
of the pattern for ρ̂` with that of E[ρ̂`] under a model determines the selection of the
model.

A first-order approximation to the formulas for E[ρ̂`] under the nonstationary
binary AR(1), MA(1), or EQC models is given as follows.

For AR(1) : E[ρ̂`] =
ρ`

K(T − `)
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×
K

∑
i=1

T−`

∑
t=1

[
σitt

σi,t+`,t+`

] 1
2

for ` = 1, . . . ,T −1 (7.92)

For MA(1) : E[ρ̂`] =



ρ

K(T−1) ∑K
i=1 ∑T−1

t=1
1√

σitt σi,t+1,t+1

×
[
{∑t−1

j=0(−ρ) jπi,t− j/∑t−1
j=0(−ρ) j}

{1−∑t−1
j=0(−ρ) jπi,t− j/∑t−1

j=0(−ρ) j}
]

0 for ` = 2, . . . ,T −1,

(7.93)

For EQC : E[ρ̂`] =
ρ2

K(T − `)

×
K

∑
i=1

T−`

∑
t=1

[
σi11

{σittσi,t+`,t+`}
1
2

]
for ` = 1, . . . ,T −1,(7.94)

with σitt = πit(1−πit), where πit = exp(x′itβ )/[1+ exp(x′itβ )] for all t = 1, . . . ,T.

7.5 SLID Data Example

7.5.1 Introduction to the SLID Data

The Survey of Labour and Income Dynamics (SLID) is a longitudinal household
survey, designed to capture changes in the economic well-being of Canadians over
time. Statistics Canada has conducted this survey from 1993 to 1998. In this study,
we considered all SLID longitudinal respondents who were either employed or un-
employed during 1993−1996. Those who were out of the labour force for at least
a part of the year were excluded. A binary response variable ‘unemployed all year’,
derived from a variable ‘labour force status for the year’, assigns value yit = 1 to the
ith individual who was unemployed for the full year ‘t ′, and yit = 0 if the individual
was employed for the full year ‘t ′ or a part of year employed and a part unemployed.

Note that the SLID data were earlier analyzed by Sutradhar and Kovacevic (2000)
and Sutradhar, Rao, and Pandit (2008), among others. Sutradhar and Kovacevic
(2000) have, however, considered an ordinal longitudinal multinomial model for
the jobless spell response variable and studied the complete responses from 16,890
individuals collected over a period of two years 1993 and 1994, whereas, Sutrad-
har, Rao, and Pandit (2008) have analyzed the SLID data for four years from 1993
to 1996 collected from 15,731 individuals, by fitting a nonlinear binary dynamic
mixed model. This nonlinear mixed model for binary data is discussed in detail in
Chapter 9. Here, it is of interest to illustrate an application of the nonstationary
LDCP (linear dynamic conditional probability) models for binary data discussed in
Section 7.4. For the purpose, we consider the same dataset used by Sutradhar, Rao,
and Pandit (2008). Thus, in our notation, K = 15,731 and T = 4. The frequency dis-
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tribution for the ‘unemployment’ status for these 15,731 individuals over four years
is shown in Table 7.5.

Table 7.5 Sample counts of ‘unemployed all year’ over time.

Year
Unemployment status 1993 1994 1995 1996
Not unemployed (=0) 15451 15373 15406 15406

Unemployed (=1) 280 358 325 325
Total individuals 15731 15731 15731 15731

Note that the binary responses for each of the individuals will be longitudinally
correlated. The purpose of the present study is to evaluate the effects of the associ-
ated covariates on the unemployment status, by taking the longitudinal correlations
of the data into account. As far as the correlation model is concerned, we assume
that the data follow one of the three nonstationary, namely AR(1), MA(1), or EQC,
correlation models discussed in Section 7.4. As far as the covariates are concerned,
we use five important covariates, namely gender, age, geographic location, educa-
tion level, and marital status of the individual. Although gender, age, and geographic
location were held as observed in 1993, education level and marital status are con-
sidered to be time-dependent covariates. To shed some light on the nature of the
longitudinal relationship between the binary responses ‘unemployed all year’ and
the 5 covariates, we construct appropriate three-way tables for these 5 covariates
and the binary response variable ‘unemployed all year’ for the period from 1993 to
1996. These weighted counts are shown in the appendix, in Tables from 7A to 7E,
for the gender, age, region of residence, education level, and marital status, respec-
tively.

Table 7A shows that the proportion of unemployment is more for female than
male during all four years from 1993 to 1996. Table 7B shows that there are more
‘unemployed all year’ individuals in the age group of 25 to 55 which is obvious
as this group has the largest range. The proportions of unemployed individuals are,
however, also larger for this age group followed by the 16 to 25 age group. The older
age group 55 to 65 has the smallest proportions of ‘unemployed all year’ from 1994
to 1996. The proportions of unemployment appear to decrease over time in all three
groups since 1994.

Table 7C shows that the proportion of ‘unemployed all year’ is the highest in the
Atlantic region followed by Quebec, Ontario, Prairie, and BC. Note that this pro-
portion in BC is higher than in Prairies for all four years. Similarly ’unemployed all
year’ proportions of the Atlantic region are slightly higher than of Quebec except
for 1995, Ontario’s proportions are being far smaller than those of Quebec as well
as the Atlantic region. So, Ontario appears to have a middle place in the country
with regard to the ‘unemployed all year’ status of the individuals. Table 7D helps
to understand the effect of education on unemployment over the years. It is clear
from this table that the ‘high education’ group has the smallest ‘unemployment all
year’ rate followed by the ‘medium education’ group, as expected. These propor-
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tions are quite high over the years in the ‘lower education’ group. Table 7E shows
that the proportions of ‘unemployed all year’ individuals are smaller over the years
in the ‘married/common law’ group, followed by ‘widowed’, ‘single’, and ‘sepa-
rated/divorced’ groups. More specifically, the proportions are closer to each other
between the ‘married/common law’ and ‘widowed’ groups, and also between the
‘single’ and the ‘separated/divorced’ groups. But when the ‘married/common law’
or ‘widowed’ group is compared with the ‘single’ or ’separated/divorced’ group,
their proportions appear to be quite different.

7.5.2 Analysis of the SLID Data

For convenience, we rename the five covariates discussed in Section 7.5.1 as fol-
lows. First, the gender covariate is represented by x1 which is 0 for female and 1 for
male. For the second covariate, we consider three age groups: group 1 consists of
individuals between 16 and 24 inclusive at 1993, group 2 consists of individuals be-
tween 25 and 54, and group 3 from 55 to 65. The younger age group 1 is considered
to be the reference group. Thus we represent the three groups by x2 and x3 so that
x2 = 0,x3 = 0 stands for the individual of the group 1, x2 = 1,x3 = 0 represents the
individual of the group 2, and x2 = 0,x3 = 1 would identify the individual belong-
ing to the group 3. Similarly, we consider x4, x5, x6, and x7 to identify an individual
from any of the Atlantic, Quebec, Ontario, Prairies, and British Columbia regions.
Here we consider the Atlantic region as the reference region with all four variables
coded with 0; x4 = 1 and others with 0 will represent the individual from Quebec,
and so on. For education level, we have two variables x8 and x9 to represent three
levels (low, medium and high) of education, lower level being the reference level.
Finally, for four marital status: married and common-law spouse, separated and di-
vorced, widow, and single (never married), we use three covariates x10, x11, andx12,
respectively, married and common law spouse group being the reference group.

We now compute the effects of these 12 covariates, some being time dependent,
on the binary all-year unemployment variable after taking the longitudinal corre-
lations into account. To select one of the three possible nonstationary correlation
models, we follow the suggestion from Section 7.4.5 and compute first the initial
estimates of the lag correlations ρ̂` `(1, . . . ,T − 1) by (7.91). To be specific, for
β = 0, we compute

ρ̂` =
∑K

i=1 ∑T−`
t=1 ỹit ỹi,t+`/K(T − `)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

,

where ỹit = [yit −1/2]/
√

(1/2)(1/2). These values of lag correlations show an ex-
ponential decay, a similar pattern for the correlations for the stationary AR(1) model.
Note that even though one could use the refined model selection procedure by using
(7.92)− (7.94), for simplicity we follow the lead by the pattern found for the initial
values for ρ̂` and choose the nonstationary AR(1) model (7.70) to fit the SLID data.
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Table 7.6 Nonstationary AR(1) correlation model based estimates of regression and their standard
errors, for complete SLID data for the duration from 1993 to 1996.

Estimate SE
Male vs Female (x1) −0.540 0.072
Age group 2 vs 1 (x2) −1.586 0.049
Age group 3 vs 1 (x3) −2.168 0.125
Quebec vs Atlantic (x4) −0.832 0.083
Ontario vs Atlantic (x5) −1.003 0.092
Prairies vs Atlantic (x6) −1.854 0.112
BC & Alberta vs Atlantic (x7) −1.564 0.159
Education medium vs low (x8) −1.604 0.066
Education high vs low (x9) −2.454 0.157
Marital status 2 vs 1 (x10) 0.206 0.091
Marital status 3 vs 1 (x11) −0.590 0.276
Marital status 4 vs 1 (x12) −0.561 0.095

ρ
(ns)
1 0.412 –

ρ
(ns)
2 0.259 –

ρ
(ns)
3 0.167 –

For the estimation of the regression effects β , we solve the GQL estimating equa-
tion (7.85) for β and the moment equation (7.88) for ρ (correlation index parameter)
iteratively. Note that to compute the covariance structure in (7.85), we have used the
nonstationary AR(1) correlations given by

c(ns)
i,u,t(xiu,xit ,ρ) = ρ

t−u
[

σiuu

σitt

]1/2

, for u < t,

[see (7.73)] with σitt = πit(1−πit), for example, where

πit =
exp(x′itβ )

1+ exp(x′itβ )
.

The estimates of β1, . . . ,β12, along with their standard errors computed by using
(7.87), are shown in Table 7.6. For the sake of completeness, we also show the
average lag correlation values computed by

ρ̂
(ns)
` = ρ̂`

1
K(T − `)

K

∑
i=1

T−`

∑
u=1

[
σiuu

σi,u+`,u+`

]1/2

,

with ρ` = ρ`. These estimates are found to be 0.412, 0.259, and 0.167, respectively.
Note that the lag correlations, in particular the lag 1 correlation value appears to be
large indicating that ignoring the correlation structure, that is, using the indepen-
dence assumption based approach will produce less efficient regression estimates.

Now, with regard to the interpretation of the GQL regression effects, the negative
value −0.540 for the gender effect indicates that the male has lower probability of
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an all-year unemployment as compared to the female. The negative values −1.586
and −2.168 of β2 and β3 indicate that the younger group has higher probability of
an all-year unemployment and the probability decreases for older age groups. As far
as the effect of geographic location on the all-year unemployment is concerned, it
appears that the Prairies had the smallest probability of an all-year unemployment
during 1993 to 1996 followed by BC, Ontario, Quebec, and Atlantic provinces.
This follows from the fact that the regression estimates for Quebec, Ontario, BC,
and Prairies are found to be −0.832, −1.003, −1.854, and −1.564, respectively.
The larger negative value −2.454 for β9 as compared to β8 =−1.604 indicates that
as the education level gets higher, the probability of an all-year unemployment gets
smaller. Finally, with regard to marital status, the positive value 0.206 for β10 means
that the separated and divorced individuals have higher probability of all-year un-
employment as compared to the married and common law spouse group. Similarly,
the widowed had less probability of an all-year unemployment as compared to the
single but never married individual.

7.6 Application to an Adaptive Clinical Trial Setup

In the last chapter (see Section 6.8), we have discussed the longitudinal count data
analysis in an adaptive clinical trial setup, where it is attempted to treat an individual
upon arrival with the available better treatment. Note that once a treatment is se-
lected, the individual is treated with the same treatment over the duration of the lon-
gitudinal study. In this section, we study a similar problem with an exception that we
now collect repeated binary responses as opposed to the repeated count responses. In
the cross-sectional setup (i.e., when the individual is treated only once and a binary
response is desired), the construction of adaptive design weights for better treatment
selection has been discussed by Bandyopadhyay and Biswas (1999), for example.
Note that these authors have considered the case where the binary response, on top
of treatment effect, is also affected by certain prognostic factors. Sutradhar, Biswas,
and Bari (2005) have generalized this idea from the cross-sectional to the longi-
tudinal setup. Here we follow this later work and show (1) how to construct the
longitudinal adaptive designs so that a better treatment may be allocated for the in-
coming individual, and (2) how to estimate the overall treatment effect as well as the
effects of the prognostic covariates, by accommodating the longitudinal correlations
into account.

7.6.1 Binary Response Based Adaptive Longitudinal Design

Suppose that K independent patients will be treated in the clinical study and T lon-
gitudinal binary responses will be collected from each of them. Similar to the count
data case, for simplicity, let there be two treatments A and B to treat these patients
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and A is the better treatment between the two. Next suppose that δi refers to the
selection of the treatment for the ith (i = 1, . . . ,K) patient, and

δi =

{
1, if ith patient is assigned to A

0, if ith patient is assigned to B

with
Pr(δi = 1) = wi and Pr(δi = 0) = 1−wi. (7.95)

Here wi refers to the better treatment selection probability for the ith patient.
Note that the value of δi determines the treatment by which the ith patient will be

treated. Now suppose that conditional on δi, yit denotes the binary response recorded
from the ith patient at time t(t = 1, . . . ,T ), and xit denotes the p-dimensional covari-
ate vector corresponding to yit , defined as

xit = (δi,xit2, . . . ,xitu, . . . ,xit p)′

= (δi,x
∗′
it )

′, (7.96)

where x∗it = (xit2, . . . ,xitu, . . . ,xit p)′ denote the p− 1× 1 vector of covariates such
as prognostic factors (e.g., age, chronic conditions, and smoking habit) for the ith
patient available at time point t. Thus, for i = 2, . . . ,K, the distribution of δi, that
is, the formula of wi, will depend on {δ1, . . . ,δi−1} and available responses ykv (k =
1, . . . , i−1;1≤ v≤ T ) along with their corresponding covariate vector xkv. For i = 1,
w1 is assumed to be known.

As far as the availability of the repeated responses is concerned, we assume that
for all i = 1, . . . ,K, once δi becomes known, the repeated binary responses from the
ith patient will be available following a binary distribution with conditional mean
and variance (conditional on δi) given by

π
∗
it(δi) = E(Yit |δi,x

∗
it) =

exp(θit)
1+ exp(θit)

σ
∗
itt(δi) = var(Yit |δi,x

∗
it) = π

∗
it(δi)[1−π

∗
it(δi)], (7.97)

where θit = x′itβ , with xit = (δi,x∗
′

it )
′. Also we assume that the pairwise longitudinal

correlations between two repeated binary responses are given by

corr[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] = ρ|t−v|(δi,x

∗
it ,x

∗
iv,ρ)

= c(ns)
i,tv (δi,x

∗
it ,x

∗
iv,ρ), (7.98)

where c(ns)
i,tv (δi,x∗it ,x

∗
iv,ρ) has the formulas given by (7.73), (7.79), and (7.84) under

the nonstationary AR(1), MA(1), and EQC models, respectively. It then follows that
the conditional (on δi) covariance between yit and yiv is given by

cov[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] = c(ns)

i,tv (δi,x
∗
it ,x

∗
iv,ρ){σ

∗
itt(δi)σ∗

ivv(δi)}1/2, (7.99)
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with

c(ns)
i,tv (δi,x

∗
it ,x

∗
iv,ρ) = ρ

t−v
[

σ∗
ivv(δi)

σ∗
itt(δi)

]1/2

for v < t,

under the nonstationary binary AR(1) model, for example. Note that Sutradhar,
Biswas, and Bari (2005) have used the stationary autocorrelation structure and hence
the covariances are approximated as

cov[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] ' c∗i,tv(ρ){σ

∗
itt(δi)σ∗

ivv(δi)}1/2

= ρ|t−v|{σ
∗
ivv(δi)σ∗

itt(δi)}1/2. (7.100)

7.6.1.1 Simple Longitudinal Play-the-Winner (SLPW) Rule to Formulate wi

The construction of the SLPW rule in the longitudinal count data setup is described
through (a) to (c) in Section 6.8.1.1 and the formulas for wi are given in Exercise 6.4
for 2≤ i≤ T, and in Exercise 6.5 for the case when T < i≤ K, K being the number
of patients and T is the total number of time points indicating the duration of the
longitudinal study. The formulas for wi in the binary case are similar to those of the
Poisson case, except that I[yrt ≤ m∗

0] (m∗
0 being a threshold number) in the Poisson

case is replaced simply by yrt in the binary case, where yrt is the response of the rth
individual at time point t. By the same token, I[yrt > m∗

0] from the Poisson case, is
now replaced with 1−yrt in the binary case. For convenience, we re-explain the rule
in brief and write the formulas for wi [see also Sutradhar, Biswas, and Bari (2005,
Section 2.1)] under the present binary case.

Urn Design for SLPW Rule

1. For the first patient, choose w1 = 0.5 and obtain δ1 so that Pr[δ1 = 1] = w1.
2. Next, for i = 2, . . . ,K, the distribution of δi will depend on {δ1, . . . ,δi−1} and

available responses along with their corresponding covariates. Let this past his-
tory be

yH i−1 ≡ [yrt ,xrt (r = 1, . . . , i−1;1≤ t ≤min(T, i− r))].

3. As wi is the probability of selection of the better treatment for the ith patient to
be computed based on the history yH i−1, it is convenient to compute this wi by
counting two types of balls in an urn [see Wei & Durham (1978), e.g.], the first
type being the indicator for the selection of the better treatment A and the second
type for the other treatment.

4. The urn will have α balls of each type initially.
5. For a suitable τ value and for available past responses yrt , yrtτ balls of the same

kind by which the rth (r = 1, . . . , i−1) patient was treated and (1−yrt)τ balls of
the opposite kind are added, at the treatment selection stage for the ith patient.

6. For a suitable quantity urt [see also Section 7.6.1.2 (b) for its construction] de-
fined such that a larger value of urt implies the prognostic factor based better
condition of the rth (r = 1, . . . , i−1) past patient, G−urt balls of the same kind
by which the rth patient was treated and urt balls of the opposite kind are added,
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at the treatment selection stage for the ith patient, where [0,G] is the domain of
urt .

Adaptive Design Weights

The above scheme produces the selection probabilities wi(i = 1, . . . ,K) for the cases
2≤ i≤ T and i > T as follows.

Case 1. 2≤ i≤ T

Under this case

wi = Pr(δi = 1|yH i−1) = n∗i−1,A(yH i−1)/n∗i−1, (7.101)

where

n∗i−1 = 2α +
i−1

∑
r=1

i−r

∑
t=1

(G+ τ) = 2α +(1/2)i(i−1)(G+ τ), (7.102)

is the total number of balls in the urn at the selection stage of the ith patient, and

n∗i−1,A(yH i−1) = α +
i−1

∑
r=1

i−r

∑
t=1

[δr{(G−urt)+ yrtτ}+(1−δr){urt +(1− yrt)τ}],

(7.103)
is the number of balls of the first type that supports the selection of the treatment A.

Case 2. i > T

Under this case

wi = Pr(δi = 1|yH i−1) = ñi−1,A(yH i−1)/ñi−1, (7.104)

where

ñi−1 = 2α +
i−T

∑
r=1

T

∑
t=1

(G+ τ)+
i−1

∑
r=i−T+1

i−r

∑
t=1

(G+ τ) (7.105)

and

ñi−1,A(yH i−1) = α +
i−T

∑
r=1

T

∑
t=1

[δr{(G−urt)+ yrtτ}+(1−δr){urt +(1− yrt)τ}]

+
i−1

∑
r=i−T+1

i−r

∑
t=1

[δr{(G−urt)+ yrtτ}

+(1−δr){urt +(1− yrt)τ}], (7.106)
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are similar to those of n∗i−1 in (7.102) and n∗i−1,A(yH i−1) in (7.103), respectively.

7.6.1.2 Performance of the Adaptive Design

a. Limiting Behavior of Design Weights wi

Note that it follows from (7.104) that wi+1/wi → 1 as i → ∞. Again the sequence
{wi, i≥ 1} is bounded by 0 from the left and by 1 from the right. Hence there exists
a subsequent wk(i) which is convergent. Suppose that it converges to ω . Then from
the above limiting result, we have

wk(i)+1/wk(i) → 1

as i→ ∞, implying for some ε > 0,

ω(1− ε)≤ liminf wk(i)+1 ≤ limsup wk(i)+1 ≤ ω(1+ ε),

and hence
limsup wk(i)+1− liminf wk(i)+1 ≤ 2ωε.

Because ε is arbitrary, we conclude that {wi, i ≥ 1} is convergent. Suppose that it
converges to ω∗. The formula for ω∗ is available from exercise 7.3 [see also Sutrad-
har, Biswas, and Bari (2005, Section 2.2.1].

b. Allocation Performance (Based on Small Sample) of the Proposed Design: A
Simulation Study

In the last subsection, we have computed the limiting value of wi as i → ∞. As
in practice, a large but limited number of patients are considered in a clinical trial
study, Sutradhar, Biswas, and Bari (2005) have examined the performance of the
proposed adaptive design for K = 100 and 200, where K is the total number of
patients involved in the clinical trial experiment. We summarize their simulation
design and finding as follows.

Simulation Design and Generation of the Design Weights wi

1. Consider T = 4 repeated responses to be collected from each of the K individuals.
2. Consider p = 4 covariates; namely 1 treatment covariate (δi) and the other 3

prognostic covariates, denoted by x∗it2, x∗it3, and x∗it4 for the ith individual at the
tth (t = 1, . . . ,T ) data collection time.

a. The values of δi for all i (i = 1,2, . . . ,K) are determined based on the adaptive
longitudinal design weights

wi = Pr(δi = 1|yH i−1),

constructed in section 7.6.1.1.
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b. Suppose that x∗it2 represent the chronic disease condition of an incoming pa-
tient. Let ci ∼ bin(m,π) (binomial distribution) with m = 5 and π = 0.5. De-
fine

x∗it2 =
{

0 for ci = 0,1
1 for ci = 2, . . . ,5.

c. Consider x∗it3 and x∗it4 to represent an age group of an individual, namely
young, middle, and old age groups. let di ∼U [21,80] (uniform distribution).
Define

(x∗it3,x
∗
it4)≡

 (0,0) for di ∈ [61,80] (old age group)
(0,1) for di ∈ [41,60] (middle age group)
(1,0) for di ∈ [21,40] (young age group).

d. In order to compute the adaptive longitudinal design weights wi [by (7.101)
and (7.104)], we also require to define a nonstochastic continuous quantity
with domain [0,G], say. More specifically, for a suitable ψ function, we re-
quire to construct urt = ψ(x∗rt2,x

∗
rt3,x

∗
rt4) that measures the condition of the

prognostic covariates x∗rt2,x
∗
rt3, and x∗rt4 so that larger value of urt implies the

better condition of the rth (r = 1, . . . , i− 1) patient. In the simulation study,
we choose

urt = (2/(cr +1))+(1/d∗r ),

for all t (1 ≤ t ≤ min(T, i− r)), where cr is an implicit function of x∗rt2, and
similarly d∗r is an implicit function of x∗rt3 and x∗rt4. Note that d∗i is constructed
from di as follows

d∗i =



1 for di ∈ [21,30]
2 for di ∈ [31,40]
3 for di ∈ [41,50]
4 for di ∈ [51,60]
5 for di ∈ [61,70]
6 for di ∈ [71,80].

Further note that as cr = 0,1, . . . ,5 and d∗r = 1,2, . . . ,6, it then follows that urt

lies in the range of 0 to 3 yielding G = 3.

3. Next, for simplicity we consider α = 1.
4. Remark that as the limiting value of wi mainly depends on τ as shown in Exercise

7.3, we consider two values of τ = 2 and 4, one small and the other large.
5. Note that the computation of wi by (7.101) and (7.104) requires yrt

[r = 1, . . . , i−1;1≤ t ≤min{T, i− r}]

to be known. For known δr (r = 1, . . . , i−1) the correlated binary responses are
generated as follows. First, yr1 are generated with probability

Pr(yr1 = 1) = exp(x′r.β )/[1+ exp(x′r.β )] = π
∗
r (δr), (7.107)
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assuming that xrt = xr. for all t = 1, . . . ,T so that xr. = (δr,x∗r.2,x
∗
r.3,x

∗
r.4)

′. Next,
we generate yr2, . . . ,yr,min(T,i−r) following the binary AR(1) model (7.70), for
example, with πrt = π∗r (δr), for all possible t. In (7.107), use

β1 = 1.50, β2 = 0.0, β3 = 0.20, and β4 = 0.10.

Furthermore, for the ρ parameter in (7.70), we choose the small and large corre-
lation index as ρ = 0.3,and 0.7.

Table 7.7 Simulated means and standard errors of δs (total number of patients receiving the better
treatment) for selected values of the true correlation parameter ρ under AR(1) binary model with
β1 = 1.5, β2 = 0.0, β3 = 0.2, and β4 = 0.1; and adaptive design parameters α = 1.0, G = 3.0, and
τ = 2.0,4.0; for different values of K = 100,200

K τ ρ Mean Standard Error

100 2.0 0.3 58.703 8.505
0.7 58.632 8.588

4.0 0.3 62.483 8.779
0.7 62.348 9.047

200 2.0 0.3 116.660 11.097
0.7 116.291 11.451

4.0 0.3 124.693 11.668
0.7 123.675 12.349

Allocation Performance

Now to examine the allocation performance of the proposed longitudinal adaptive
design, we study the distribution of δs = ∑K

i=1 δi where wi = Pr(δi = 1|yH i−1) are
the design weights defined by (7.101) and (7.104). This we do based on the 1000
simulations. Note that the longitudinal adaptive design proposed in Section 7.6.1.1
is expected to assign more subjects to the better treatment. For this to happen, δs =
∑K

i=1 δi, say, has to be greater than K/2.
The values of wi are calculated following the aforementioned simulation design.

Note that once wi is known, the corresponding δi is generated from binary distri-
bution with probability wi. As mentioned earlier, to understand whether the pro-
posed design can allocate more individuals to the better treatment, we now compute
δs = ∑K

i=1 δi under each of the 1000 simulations. The simulated mean and standard
deviation of δs for various values of K, τ , and ρ are shown in Table 7.7.
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It is clear from Table 7.7 that irrespective of correlation values, the proposed
design allocated more individuals to the better treatment A. For example, for K =
100, τ = 4.0, and ρ = 0.7, 62 individuals out of 100 were assigned to treatment A.
Thus relatively more individuals were assigned to the better treatment. Similarly for
K = 200, τ = 4.0, and ρ = 0.7, 124 individuals were allocated to treatment A which
is about 62%. Remark that allocation gets better for larger τ . For example, for the
same K = 200, and ρ = 0.7, the allocated number of individuals to treatment A is
116 for the case with τ = 2.0, whereas the allocated number is 124 for τ = 4.0. Thus
the proposed design works well in assigning more subjects to a better treatment.

7.6.2 Construction of the Adaptive Design Weights Based Weighted
GQL Estimation

Recall from (7.97) that conditional on δi, the mean and the variance of Yit are given
by

E(Yit |δi,x
∗
it) = π

∗
it(δi) =

exp(θit)
1+ exp(θit)

, and var(Yit |δi,x
∗
it) = π

∗
it(δi)[1−π

∗
it(δi)],

respectively, with θit = x′itβ , where xit = (δi,x∗
′

it )
′. Also, by (7.100), conditional on

δi, the covariance between yiu and yit has the formula

cov[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv]' ρ|t−v|{σ

∗
ivv(δi)σ∗

itt(δi)}1/2.

Note that because in the present adaptive longitudinal setup δi depends on

δi−1, . . . ,δ1,

finding the unconditional mean and the variance of yit and the unconditional co-
variance between yiu and yit , will require the unconditional expectation of δi to be
known, which we compute as follows.

7.6.2.1 Computation of Unconditional Expectation of δi : wi0

The distribution of δi depends on the past δi−1, . . . ,δ1, thus we write

wi0 = E[δi] = Eδ1
Eδ2|δ1

. . .Eδi|δ1,...,δi−1
(δi)

= Eδ1
Eδ2|δ1

. . .Eδi−1|δi−2,...,δ1
[wi|δi−1, . . . ,δ1] , (7.108)

where wi has the formula given by (7.101) for 2 ≤ i ≤ T and by (7.104) for i > T.
To simplify this expectation, one needs to compute

E(δrYrt) = Eδ1
Eδ2|δ1

. . .Eδr |δ1,...,δr−1
E(δrYrt |δr, . . . ,δ1)
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= Eδ1
Eδ2|δ1

. . .Eδr |δ1,...,δr−1
(δrπ

∗
rt(δr)), for r = 1, . . . , i−1, (7.109)

where
π
∗
rt = E(Yrt |δr, . . . ,δ1) = exp(x′rtβ )/(1+ exp(x

′
rtβ ))

with xrt = (δr,x∗rt2, . . . ,x
∗
rt p)

′. Suppose that

zrt1 = xrt |δr = 1, and zrt0 = xrt |δr = 0.

The expectation in (7.109) then reduces to

E(δrYrt) = wr0πrt1, (7.110)

where πrt1 = exp(z
′
rt1β )/(1 + exp(z

′
rt1β )). By similar calculation, it can be shown

that
E(1−δr)(1−Yrt) = (1−wr0)(1−πrt2), (7.111)

where πrt2 = exp(z
′
rt0β )/(1+ exp(z

′
rt0β )). Now by applying (7.110) and (7.111) to

(7.108), it follows from (7.101) that for 2 ≤ i ≤ T , the unconditional expectation of
wi is given as

wi0 =

[
α +∑i−1

r=1 ∑i−r
t=1[{(G−urt)+πrt1τ}wr0 +{urt +(1− prt2)τ}(1−wr0)]

]
[2α +(1/2)i(i−1)(G+ τ)]

.

(7.112)
Similarly, it follows from (7.104) that for i > T , the unconditional expectation of wi

is given by

wi0 = {2α +(G+ τ)T (i− (T +1)/2)}−1

×

[
α +

i−T

∑
r=1

T

∑
t=1
{(G−urt +πrt1τ)wr0 +(urt +(1−πrt2)τ)(1−wr0)}

+
i−1

∑
r=i−T+1

i−r

∑
t=1
{((G−urt)+πrt1τ)wr0

+ (urt +(1−πrt2)τ)(1−wr0)}] . (7.113)

7.6.2.2 WGQL Estimating Equations for Regression Parameters Including the
Treatment Effects

Note that in the conditional mean function π∗it(δi) in (7.97), β = [β1,β2, . . . ,βp]′ de-
notes the effect of xit = [δi,x∗

′
it ]
′ on yit . Here β1 is the treatment effect and β2, . . . ,βp,

are the effects of p− 1 prognostic covariates. This is of interest when estimating
β after accommodating the longitudinal correlations represented by ρ` (7.100) for
` = 1, . . . ,T −1.

Let yi = (yi1, . . . ,yit , . . . ,yiT )
′

be a T ×1 vector of repeated binary responses for
the ith (i = 1, . . . ,K) individual. Note that the ith individual is assigned to treatment
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A with probability wi = Pr(δ i = 1|yH) given by (7.101) for 2≤ i≤ T and by (7.104)
for i > T . Here, yit is the tth response of the ith individual. Further note that be-
cause wi depends on the responses from the past i− 1 patients, the unconditional
expectation of yit may be computed as

E(Yit) = Eδ1
Eδ2|δ1

· · ·Eδi|δ1,...,δi−1
E(Yit |δi,δi−1, . . . ,δ1)

= wi0πit1 +(1−wi0)πit2 = π̄it , (7.114)

where wi0 is given by (7.112) for 2 ≤ i ≤ T and by (7.113) for i > T , and πit1 and
πit2 are defined in (7.110) and (7.111), respectively. We now denote by π̄, the mean
vector of yi. That is,

π̄i = E(Yi) = E(Yi1, . . . ,YiT )
′

= [π̄i1, . . . , π̄it , . . . , π̄iT ]
′
, (7.115)

with π̄it as in (7.114) for t = 1, . . . ,T.
Next, by using the stationary autocorrelations based conditional autocovariances

given by (7.100), one writes the formula for the unconditional covariance between
Yit and Yiv as

cov(Yit ,Yiv) = Eδ1
Eδ2|δ1

. . .Eδi|δ1,...,δi−1
[cov(Yit ,Yiv)|δi,δi−1, . . . ,δ1)]

+covδi,...,δ1
[E(Yit |δi,δi−1, . . . ,δ1),E(Yiv|δi,δi−1, . . . ,δ1)]

= Eδ1
Eδ2|δ1

. . .Eδi|δ1,...,δi−1
[ρ|t−v|

×{π
∗
it(δi)(1−π

∗
it(δi))π∗iv(δi)(1−π

∗
iv(δi))}1/2]

+covδi,...,δ1
[π∗it(δi),π∗iv(δi)], (7.116)

where by (7.97) we have used E(Yit |δi, . . . ,δ1)= π∗it(δi)= exp(x
′
itβ )/(1+exp(x

′
itβ ))

and var(Yit |δi, . . . ,δ1) = π∗it(δi)(1− π∗it(δi)). After some algebra, by (7.100), the
equation (7.116) reduces to

cov(Yit ,Yiv) = ρ|t−v|

[
wi0{πit1(1−πit1)πiv1(1−πiv1)}1/2

+(1−wi0){πit2(1−πit2)πiv2(1−πiv2)}1/2
]

+wi0{πit1πiv1}+(1−wi0){πit2πiv2}− π̄it π̄iv

= σ̄itv(wi0). (7.117)

When t = v, the covariance σ̄itv(wi0) in (7.117) reduces to the variance of yit given
by

var(Yit) = σ̄itt(wi0) = π̄it(1− π̄it). (7.118)

Let Σ̄i(wi0,ρ) denote the covariance matrix of yi, which may be expressed as
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Σ̄i(wi0,ρ) = cov(Yi) = (σ̄itv(wi0)),

for t,v = 1, . . . ,T , where σ̄itv(wi0) are given by (7.117) and (7.118).
Next for known Σ̄i(wi0, ρ̂), we write the generalized quasi-likelihood (GQL) es-

timating equation for β as

K

∑
i=1

(∂ π̄
′
i (wi0)/∂β )Σ̄−1

i (wi0, ρ̂)(yi− π̄i(wi0)) = 0 (7.119)

[Sutradhar (2003)], where π̄i(wi0) is the T ×1 vector given by (7.115) and
∂ π̄

′
i (wi0)/∂β is the p×T first derivative vector of π̄

′
i (wi0) with respect to β . Note

that to be precise, we refer to (7.119) as the weighted GQL estimating equation. This
is for the fact that the binary probabilities in (7.119) are adaptive design weights
dependent.

Now to solve (7.119) for β , one may consider the following three scenarios: first,
for some initial β , wi0 is known in the spirit of GEE; second, wi0 is unknown but it
can be replaced with adaptive design weight wi as E(wi) = wi0; third, wi0 is an un-
known function of β . Here we use the second option and refer to Sutradhar, Biswas,
and Bari (2005) for details on all three scenarios. Suppose that β̂WGQL denotes the
solution of (7.119) that may be obtained by using iterative equation

β̂(m+1)GQL
= β̂(m)GQL

+

[
K

∑
i=1

(∂ π̄
′
i (wi0)/∂β )Σ̄−1

i (wi0, ρ̂)(∂ π̄i(wi0)/∂β
′
)

]−1

m

×

[
K

∑
i=1

(∂ π̄
′
i (wi0)/∂β )Σ̄−1

i (wi0, ρ̂)(yi− π̄i(wi0))

]
m

, (7.120)

where β̂(m)GQL
is the value of β at the mth iteration and [·]m denotes that the ex-

pression within brackets is evaluated at β̂(m)GQL
. By (7.114), the first derivative in

(7.120) has the formula

∂ π̄
′
i (wi0)/∂β = ∂ π̄

′
i (wi0)/∂β

∣∣wi0=wi

= wi(∂π
′
i·1/∂β )+(1−wi)(∂π

′
i·2/∂β ), (7.121)

where

πi·1 = (πi11, . . . ,πit1, . . . ,πiT 1)
′
, and πi·2 = (πi12, . . . ,πit2, . . . ,πiT 2)

′
,

with

πit1 = exp(z
′
it1β )/(1+ exp(z

′
it1β )), and πit2 = exp(z

′
it0β )/(1+ exp(z

′
it0β )),

where zit1 = xit |δi=1 and zit0 = xit |δi=0. It then follows from (7.121) that
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∂ π̄
′
i (wi0)/∂β = wiZ

′
iAi1 +(1−wi)Z∗

′
i Ai2 = Ci, (7.122)

where

Z′i = (zi11, . . . ,zit1, . . . ,ziT 1), and Z∗
′

i = (zi10, . . . ,zit0, . . . ,ziT 0),

are p×T matrices, and

Ai1 = diag[πi11(1−πi11), . . . ,πiT 1(1−πiT 1)],

and
Ai2 = diag[πi12(1−πi12), . . . ,πiT 2(1−πiT 2)],

are T ×T matrices.
Note that solving the iterative equation (7.120) for β requires the knowledge of

ρ̂ = (ρ̂1, . . . , ρ̂`, . . . , ρ̂T−1) where ρ̂` (` = 1, . . . ,T −1) may be obtained consistently
as in the next section, by using the so-called method of moments.

7.6.2.2.1 Moment Estimates for Longitudinal Correlations

For a given value of the estimate of β , we now obtain a moment estimator ρ̂ , which
is consistent for ρ . To be specific, by (7.117) we write the moment estimator as

ρ̂` = [a`/s−b`/ξ ]/[c`/ξ ], (7.123)

where

a` =
K

∑
i=1

∑
|t−v|=`

[(yit − π̄it)(yiv− π̄iv)]/K(T − `)

s =
K

∑
i=1

T

∑
t=1

[yit − π̄it ]2/KT

b` =
K

∑
i=1

∑
|t−v|=`

[wi0π̄it1π̄iv1 +(1−wi0)π̄it2π̄iv2− π̄it π̄iv]/K(T − `)

ξ =
K

∑
i=1

T

∑
t=1

[π̄it(1− π̄it)]/KT,

and

c` =
K

∑
i=1

∑
|t−v|=`

[
wi0{πit1(1−πit1)πiv1(1−πiv1)}1/2

+ (1−wi0){πit2(1−πit2)πiv2(1−πiv2)}1/2
]
/K(T − `).
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Note that the wi0 in b` and c` may be replaced with data based adaptive design
weight wi (i = 1, . . . ,K).

7.6.2.2.2 Asymptotic Variances of the WGQL Regression Estimates

By using the multivariate central limit theorem [see Mardia, Kent and Bibby (1979,
p. 51)], it may be shown that for large K, β̂WGQL obtained from (7.120) have asymp-
totically p-dimensional normal distribution with mean β and p× p covariance ma-
trix V which can be estimated as

V̂ = ˆvar(β̂WGQL) =

[
K

∑
i=1

CiΣ̄
−1
i (wi, ρ̂)C

′
i

]−1

, (7.124)

where Σ̄i(wi, ρ̂) is obtained from Σ̄i(wi0, ρ̂) by replacing wi0 with its data based
estimate wi, and Ci is given by (7.122).

We remark here that it has been demonstrated by Sutradhar, Biswas, and Bari
(2005) through a simulation study that the WGQL approach performs very well in
estimating the treatment as well as other regression effects. See their Tables 2 and 3
for details. It is also demonstrated by these authors (see their Table 4) that ignoring
adaptive design weights wi, that is, using random design weight wi = 0.5 causes
mean squared efficiency loss in treatment and other regression effects estimation.

7.7 More Nonstationary Binary Correlation Models

In some longitudinal studies for binary data, the expectation of the binary response
variable of an individual at a given point of time may depend on the covariate history
up to the present time. By the same token, the variance at a given point of time and
the correlation of the two responses at two given time points may also depend on the
history of the time-dependent covariates of the individual. In this section, we discuss
two such binary dynamic models, one linear and the other nonlinear, by nature. The
linear binary dynamic regression (LBDR) model and its basic properties along with
inferences for the regression effects are discussed in Section 7.7.1, whereas details
on a nonlinear BDR (NLBDR) model are given in Section 7.7.2.

7.7.1 Linear Binary Dynamic Regression (LBDR) Model

Let {yit , t = 1, . . . ,T} be a sequence of repeated binary responses and xit =
(xit1, . . . ,xt p)

′
be the p-dimensional vector of covariates corresponding to yit . Also

let β = (β1, . . . ,βp)
′

be the p-dimensional effect of the covariates xit on yit , for ev-
ery individual i = 1, . . . ,K. Suppose that for the ith individual, there exists a binary
series {εi,2t , t = 1, . . . ,T} such that
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Pr[εi,2t = 1] = πit

= exp(x′it β )/[1+ exp(x′it β )], (7.125)

that is, εi,2t ∼ b(πit). Further suppose that yi1 ∼ b(πi1). One may now write a LBDR
model for {yit} as a linear mixture of yi,t−1 and εi,2t defined as

yit = εi,1t yi,t−1 +(1− εi,1t)εi,2t , (7.126)

where for a suitable 0 < ρ < 1, εi,1t denotes a binary variable with mixture proba-
bility ρ , that is, εi,1t ∼ b(ρ). Further note that εi,1t and εi,2t are independent. It then
follows that {yit} generated by (7.126) constitute a sequence of repeated binary ob-
servations with nonstationary marginal mean and variance given by

E[Yit ] = µit =
t−1

∑
j=1

(πi j −πi, j+1)ρ t− j +πit (7.127)

var[Yit ] = σitt = µit(1−µit). (7.128)

Note that as opposed to the longitudinal setup, this linear dynamic mixture model
(7.126) has been discussed by Tong [1990, model (4), Table 3.1, p.113], among oth-
ers, in the time series setup. See also Tagore and Sutradhar (2009) for inferences in
correlated binary regression model in time series setup.

7.7.1.1 Autocorrelation Structure

It follows that the LBDR model (7.126) yields the lag ` (` = 1 . . . ,T − 1) auto-
correlation between yit and yi,t−` (t = 2, . . . ,T ) given by

corr[Yit ,Yi,t−`] = ρ`(y) =
µi,t−`{ρ` +(1−ρ)∑l−1

j=0 ρ j πi,t− j −µit}

[σitt σi,t−`,t−`]
1
2

, (7.129)

where µit and σitt are given by (7.127) and (7.128), respectively.
Note that under the present dynamic model (7.126), the mean of yit is πit plus

a weighted sum of successive differences of πi j and πi, j+1 for j = 1, . . . , t − 1,
where weights follow an exponential function in mixture probability ρ . Thus the
linear mixture model (7.126) has the mean at a given time t which depends on the
past means, that is, on the past history. By the same token, the variance given by
(7.127) also depends on the past history. Also, it is clear that this dynamic model
in (7.126) is different from the nonstationary conditionally linear binary models
discussed in Section 7.4. It was demonstrated in Section 7.4 that these later models
unlike (7.126) produce means and variances at a given time t that depend on the
covariates collected at the same time point t only. The nonlinear dynamic model
discussed in Section 7.8 has properties similar to the model (7.126). Further note
that for ρ −→ 0, the mean of yit under the model (7.126), however, tends to πit .
That is, in such a case the past binary contributes very little. For ρ −→ 1, the mean
µit tends to πi1. That is, the series depends mostly on the initial binary response.
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As far as the autocorrelations given by (7.129) of the repeated binary responses
for the ith individual are concerned, it may be shown that ρ`(y) satisfies a narrower
range than −1 to 1. For example, for a given t,

ρ`(y)−→ 0 as ρ −→ 0 (7.130)

and

ρ`(y)−→ 1 as ρ −→ 1. (7.131)

Thus for all t and any 0 < ρ < 1, the lag correlation ρ`(y) has the range between 0
and 1, for a given individual.

7.7.1.2 GQL and Conditional GQL (CGQL) Approaches for Parameter Esti-
mation

GQL Estimation for β

Note that it follows from (7.127) that the response vector yi = (yi1, . . . ,yit , . . . ,yiT )
′

has the mean µi = (µi1, . . . ,µit , . . . ,µiT )
′
. Furthermore, let Σi denote the T ×T

covariance matrix of yi. To be specific, the diagonal elements of this matrix are
given by (7.128) for all t = 1, . . . ,T, for a given individual i = 1, . . . ,K. For u < t,
the off-diagonal elements of Σi are given by

σi,t−u,t = σi,t,t−u = cov(Yi,t−u,Yit)

= µi,t−u [ρu +(1−ρ)
u−1

∑
j=0

ρ
j
πi,t− j −µit ], (7.132)

[see also (7.129)]. We may then exploit a two-moments based GQL approach to
estimate β . More specifically, the GQL estimating equation for β is written as

K

∑
i=1

∂ µ
′
i

∂β
Σ
−1
i (yi−µi) = 0, (7.133)

where for t = 2, . . . ,T ,

∂ µit

∂β
= πit(1−πit)x

′
it +

t−1

∑
j=1

[πi j(1−πi j)x
′
i j −πi, j+1(1−πi, j+1)x

′
i, j+1]ρ

t− j

whereas
∂ µi1

∂β
= πi1(1−πi1)x

′
i1.

Note that the solution of (7.133) produces a consistent as well as a highly efficient
estimator for β as compared to moment estimator, for example. This is because the
GQL estimating equation (7.133), similar to that of (7.85), is unbiased for zero and
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it uses the inverse of the covariance matrix as a weight function in the estimating
equation.

CGQL Estimation for β

In the time series setup, the GQL approach, however, may encounter computational
difficulties when the Σ1 (as i = 1 only) matrix has large dimension, that is, when the
time series is long. As a remedy, Tagore and Sutradhar (2009, Section 3.1.2, p. 888)
have used a conditional GQL (CGQL) approach for the estimation of β . One may
follow this approach and write the CGQL estimating equation for β in the present
longitudinal setup, as

K

∑
i=1

∂ µ
′
i(c)

∂β
Σi(c)

−1(yi−µi(c)) = 0, (7.134)

where yi = (yi1, . . . ,yit , . . . ,yiT )
′

is the vector of observations as before, µi(c) is
the conditional mean of yi; that is,

µi(c) = E[Yi1,Yi2|Yi1, . . . ,Yit |Yi,t−1, . . . ,YiT |Yi,T−1]
′

= [λ ∗
i1,λ

∗
i2, . . . ,λ ∗

it , . . . ,λ ∗
iT ]

′
, (7.135)

where by the model (7.125)− (7.126)

λ
∗
it =

{
Pr[yi1 = 1] = πi1, for t = 1

Pr[yit = 1|yi,t−1] = πit +ρ(yi,t−1−πit), for t = 2, . . . ,T,
(7.136)

are the same as in (7.70), with πit = exp(x′it β )/[1+ exp(x′it β )] for all t = 1, 2, . . . ,T,
In (7.134), unlike under (7.70), Σi(c) denotes the covariance matrix of the ele-

ments of yi conditional on the past history. To be specific, Σi(c) has a diagonal form
given by

Σi(c) = cov[Yi1,Yi2|Yi1, . . . ,Yit |Yi,t−1, . . . ,YiT |Yi,T−1]
′

= diag[var(Yi1),var(Yi2|Yi1), . . . ,var(Yit |Yi,t−1), . . . ,var(YiT |Yi,T−1)]

= diag[σi,11(c),σi,22(c), . . . ,σi,tt(c), . . . ,σi,T T (c)]
′

(7.137)

with σi,tt(c) = λ ∗
it(1−λ ∗

it) for all t = 1, 2, . . . ,T . Furthermore, in (7.134)

∂ µ
′
i(c)

∂β
= [

∂ µi(c)(1)
∂β

, . . , . ,
∂ µi(c)(t)

∂β
, . . . ,

∂ µi(c)(T )
∂β

]
′
, (7.138)

where
∂ µi(c)(t)

∂β
= (1−ρ)

∂πit

∂β
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by (7.135), with ∂πit/∂β = πit(1−πit)xit .

The CGQL estimating equation (7.134) can be solved iteratively. Let β̂CGQL be
the solution, which may be obtained by using the iterative equation

β̂CGQL(r +1) = β̂CGQL(r)

+

 K

∑
i=1

(
∂ µ

′
i(c)

∂β
Σ
−1
i(c)

∂ µi(c)

∂β

)−1
K

∑
i=1

∂ µ
′
i(c)

∂β
Σi(c)

−1(yi−µi(c))


β=β̂CGQL(r)

.(7.139)

Note that because E[Yit |Yi,t−1 − µi(c)(t)] = 0, the CGQL estimating equation is
unbiased and it produces a consistent estimator of β . Further note that because Σi(c)
is a diagonal matrix, the solution of the CGQL estimating equation (7.134) for β is
straight forward.

Moment Estimating Equation for ρ

Note that the estimation of β by using either the GQL estimating equation (7.133)
or the CGQL estimating equation (7.134) requires the mixture probability ρ to be
known. In practice, however, this ρ is unknown.

Further note that when β is estimated by using the GQL estimating equation
(7.133), it is reasonable to estimate the ρ parameter by solving a moment equation
in a lag 1 sample correlation given by

ρ̂1−ρ1 = 0, (7.140)

where for given β , ρ` from (7.129) is a function of ρ. But this estimate does not
have closed-form expression because the unconditional mean given in (7.127) is a
polynomial function in ρ, and also the lag correlation ρ1 involves the unconditional
mean in a complicated way. For practical convenience, an approximate estimate of
ρ is found in Exercise 7.4. Note that the estimate of ρ found from exercise 7.4 is
then used in (7.133) to obtain an improved estimate of β , which in turn is used in
exercise 7.4 to improve the estimate for ρ . This constitutes a cycle of iteration, and
the cycle continues until the convergence of the estimate is achieved.

In the CGQL approach, one may, however, easily compute a moment estimate
of ρ by minimizing the conditional mean squared error ∑K

i=1 ∑T
t=2(yit −λ ∗

it )
2. The

estimating formula for ρ is given by

ρ̂ =
∑K

i=1 ∑T
t=2(yit −πit)(yi,t−1−πit)

∑K
i=1 ∑T

t=2(yi,t−1−πit)2
. (7.141)

This estimate of ρ is then used in (7.134) to obtain an improved estimate of
β , which in turn is used in (7.141) to improve the estimate for ρ . This constitutes
a cycle of iteration. The cycle continues until the convergence of the estimate is
achieved.
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7.7.2 A Binary Dynamic Logit (BDL) Model

As opposed to the LBD model (7.126), there exists a more flexible correlation struc-
ture based nonlinear binary dynamic model. In a time series setup, this type of
nonlinear dynamic model was studied by many econometricians. See, for example,
Amemiya (1985, p. 422), Manski (1987), and Farrell and Sutradhar (2006), among
others. For discussion on this type of nonlinear binary dynamic model in the lon-
gitudinal set up, we refer to Sutradhar and Farrell (2007), for example. This model
may be written as

pi1 = Pr[yi1 = 1] = πi1 = exp(x′i1 β )/[1+ exp(x′i1 β )]

pit|t−1 = Pr[yit = 1|yi,t−1] =
exp(x′itβ +θyi,t−1)

1+ exp(x′itβ +θyi,t−1)
, (7.142)

for t = 2, . . . ,T, where θ may be referred to as the dynamic dependence parame-
ter. Note that this lag 1 dependence model (7.142) is a special case of a full lag
dependence model defined as

pit|t−1,t−2,...,1 = Pr[yit = 1|yi,t−1, . . . ,yi1]

=
exp(x′itβ +θ1yi,t−1 +θ2yi,t−2 + . . .+θt−1yi1)

1+ exp(x′itβ +θyi,t−1 +θ2yi,t−2 + . . .+θt−1yi1)
, (7.143)

which is a nonlinear probability function, whereas the model in (7.39) considered
by Qaqish (2003) is linear by nature. Note that as opposed to the conditional linear
probability model (7.39), this model in (7.143) is valid for any range for the dynamic
dependence parameters θ1, . . . ,θT−1. Consequently, the correlations computed from
the nonlinear logistic model (7.143) must satisfy the range from −1 to +1. For sim-
plicity, here we deal with the lag 1 dependence model (7.142) and provide its basic
properties as follows [see also Sutradhar and Farrell (2007)].

7.7.2.1 Basic Properties of the Lag 1 Dependence Model (7.142)

Unconditional Mean and Variance

For pi1 and pit|t−1 defined as in (7.142), let

p̃it = pit|t−1|yi,t−1=1 =
exp(x′itβ +θ)

1+ exp(x′itβ +θ)
. (7.144)

It then follows that the unconditional mean of yit satisfies the recursive relationship

µit = E(Yit) = Pr(yit = 1) = πit + µi,t−1(p̃it −πit), for t = 2, . . . ,T, (7.145)

with µi1 = πi1, where
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πit =
exp(x′i1 β )

[1+ exp(x′i1 β )]
,

for all t = 1, . . . ,T. Note that the expectation in (7.145) may be derived by using the
conditioning argument. For example,

E[Yi2] = EYi1E[Yi2|yi1]
= EYi1 [pi2|1(yi1)],

=
1

∑
yi1=0

[pi2|1(yi1)]πi1
yi1(1−πi1)1−yi1 , (7.146)

where by the model (7.142), pi2|1(yi1) as a function of yi1 is given by

pi2|1(yi1) =
exp(x′itβ +θyi1)

1+ exp(x′itβ +θyi1)
.

Furthermore, because

pi2|1(1) = p̃i2 and pi2|1(0) = πi2,

it then follows from (7.146) that

E[Yi2] = p̃i2πi1 +πi2(1−πi1)
= πi2 +πi1[p̃i2−πi2], (7.147)

yielding
µi2 = πi2 + µi1[p̃i2−πi2].

By similar arguments, the unconditional expectation of yit , that is,

E[Yit ] = EYi1EYi2|yi1
. . .EYit |yi,t−1

[Yit |yi,t−1]

can be derived in the form (7.145). The variance of yit has the formula

σitt = var[Yit ] = µit [1−µit ], (7.148)

where µit is the unconditional expectation given by (7.145).

Covariances and Correlations

For u < t, by computing the expectation of the product of yiu and yit following a
conditional argument, that is,

E[YiuYit ] = EYiu

[
YiuEYi,u+1|yiu

. . .EYit |yi,t−1
{Yit |yi,t−1, . . . ,yiu

}
],

the covariance between yiu and yit under the model (7.142) is obtained as
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cov(Yiu,Yit) = E[YiuYit ]−µiuµit = σiut = µiu(1−µiu)
t

∏
j=u+1

(p̃i j −πi j), (7.149)

where µiu is given by (7.145), and p̃i j and πi j, respectively, have the formulas

p̃i j =
exp(x′i jβ +θ)

1+ exp(x′i jβ +θ)
and πi j =

exp(x′i jβ )
1+ exp(x′i jβ )

.

Consequently, one obtains the lag (t−u) autocorrelation between yiu and yit as

corr(Yiu,Yit) =

√
µiu(1−µiu)
µit(1−µit)

t

∏
j=u+1

(p̃i j −πi j), (7.150)

which satisfies the full range from −1 to 1, as 0 < p̃i j,πi j < 1 [see also Sutradhar
and Farrell (2007)].

Note that the nonlinear BDL model (7.142) is more appropriate for situations
where the mean and the variance at a given point of time are thought to be influ-
enced by the past means and variances. This is technically evident from the formu-
las for the marginal means and variances shown in (7.145) and (7.148), respectively.
In practice, one encounters this situation, for example, in socioeconomic studies in-
volving growth in gross domestic products (GDP), where such growth at a given
year is most likely to be influenced by the GDP growth over the past. Similarly, in
a biomedical such as asthma study, the mean asthma status of a patient at a given
week is most likely to be influenced by the average asthma status of the individual in
the past. Further note that the autocorrelation structure (7.150) of the model is quite
flexible. According to this model, one does not need to know whether correlations
follow any known Gaussian type such as AR(1), MA(1), and EQC models. More-
over, unlike the nonstationary binary correlation models discussed in Section 7.4,
the BDL model (7.142) accommodates correlations with full range from −1 to +1
as shown in (7.150). It has been demonstrated by Farrell and Sutradhar (2006, Table
2) that the correlations generated by the model (7.142) may lie outside the ranges of
correlations produced by the linear dynamic conditional probability model (7.139)
[see also Qaqish (2003)]. This shows that the BDL model is more appealing to use
in practice as opposed to the conditional linear dynamic models discussed in Section
7.4.

7.7.2.2 Estimation of the Parameters of the BDL Model

To fit the BDL model to the longitudinal binary data, it is necessary to estimate the
regression effects β and the dynamic dependence parameter θ , consistently and ef-
ficiently. This we do in the next two sections by using a generalized quasi-likelihood
estimation approach. A standard simple GQL as well as a so-called optimal GQL
estimating equations is considered. We also consider the maximum likelihood esti-
mation. It is demonstrated that the OGQL estimates are the same as ML estimates.
Note that even though the ML estimation is quite manageable for the BDL fixed
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effects model (7.142), this ML approach may be complicated under the BDL mixed
effects model. This we discuss in Chapter 9.

7.7.2.2.1 GQL Estimation

Let yi = (yi1, . . . ,yit , . . . ,yiT )′ denote the vector of T repeated binary responses with
yit for t = 2, . . . ,T, following the nonlinear dynamic model (7.142). Also, let µi =
(µi1, . . . ,µit , . . . ,µiT )′ be the unconditional mean of the response vector yi, where µit

is the expectation of yit , which is computed by (7.145). That is,

µit = πit + µi,t−1(p̃it −πit).

Furthermore, let Σi = (σiut) be the T×T covariance matrix of yi, where σitu for u < t
is defined by (7.149). As far as the diagonal elements of the Σi matrix are concerned
, they are the variances of the repeated data, and they are given in (7.148).

The generalized quasi-likelihood estimate of ζ = (β ′,θ)′ is now obtained by
solving the estimating equation

K

∑
i=1

∂ µ ′
i

∂ζ
Σ
−1
i (yi−µi) = 0, (7.151)

[Sutradhar (2003)] where ∂ µ ′
i /∂ζ is the (p + 1) × T first derivative matrix of µi

with regard to ζ . These first-order derivatives are available from Exercise 7.5.
Note that the GQL estimating equation (7.151) is a proper unbiased estimating

equation for the zero vector and hence its solution, ζ̂GQL, say, will be consistent.
Furthermore, as the covariance matrix Σi is used for the weight matrix, to construct
the GQL estimating equation (7.151), ζ̂GQL will also be more efficient than the mo-
ment estimator of ζ , for example. However, because θ is the dynamic dependence of
yi,t−1 on yit , GQL estimation of this parameter by solving (7.151) may still produce
some biases, especially in the finite sample case. A simulation study conducted by
Sutradhar and Farrell (2007) supports this argument. For convenience, we present
here a part of the simulation results from their study.

Performance of GQL Estimates Through Simulations

Consider the following simulation design from Sutradhar and Farrell (2007, Design
2, p. 458) with K = 100, T = 4, and p = 2.

xit1 = 1.0 (t = 1,2) and xit1 = 0.0 (t = 3,4) for i = 1, . . . ,25,
xit1 = 1.0 for i = 26, . . . ,75 and t = 1, . . . ,4,
xit1 = 0.0 (t = 1,2) and xit1 = 1.0 (t = 3,4) for i = 76, . . . ,100,
xit2 = t/4 for i = 1, . . . ,100 and t = 1, . . . ,4.

For β1 = β2 = 1.0 and θ = −3.0,−1.0,0.0, and 1.0, we generate the data for
5000 times by using the model (7.142) and estimate the parameters β and θ by
solving the GQL estimating equation (7.151). The simulated estimates are given in
Table 7.8. The table also contains the estimated standard errors of the GQL estimates
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computed by using the asymptotic covariance expression

cov(ζ̂GQL) =

[
K

∑
i=1

∂ µ ′
i

∂ζ
Σ
−1
i

∂ µi

∂ζ ′

]−1

. (7.152)

Table 7.8 Simulated means, simulated standard errors, and estimated standard errors (in brackets
following the SSEs), for the estimators of model (7.142) parameters under GQL, with β1 = β2 = 1,
based on 5000 simulations.

θ Method Quantity β̂1 β̂2 γ̂

−3.0 GQL SM 1.0115 1.0169 −3.0334
SSE (ESE) 0.2603 (0.2548) 0.4113 (0.4041) 0.5595 (0.5712)

−1.0 GQL SM 1.0167 1.0100 −1.0048
SSE (ESE) 0.2228 (0.2210) 0.5004 (0.4897) 0.5259 (0.5192)

0.0 GQL SM 1.0236 0.9804 0.0510
SSE (ESE) 0.2271 (0.2279) 0.6826 (0.6458) 0.6981 (0.6469)

1.0 GQL SM 1.0387 0.9853 1.1091
SSE (ESE) 0.2773 (0.2723) 0.9284 (0.8838) 0.9818 (0.9537)

The results of Table 7.8 show that in general the GQL estimates of β1 and β2 are
almost unbiased, with an indication that for nonnegative values of θ = 0.0,1.0, the
estimates are slightly biased. For these parameter values, the GQL estimate of the
dynamic dependence parameter θ appear to be significantly biased. For example,
the GQL estimate for θ = 1.0 is shown to be 1.1091 which is highly biased.

In the next section, we consider an optimal GQL (OGQL) method where the
GQL estimating equation is constructed by using both first-order and second-order
responses. As indicated earlier, the second-order product responses must be more
informative for the θ parameter as it defines the dynamic dependence of yi,t−1 on
yit .

7.7.2.2.2 OGQL Estimation

Note that in GQL estimation by (7.151), the dynamic dependence parameter θ in
(7.142) has been considered as a regression parameter similar to β . However, be-
cause yi,t−1 is a different regression variable from the fixed effect covariate vector
xit , considering yi = (yi1, . . . ,yit , . . . ,yiT )′ as a basic statistic to construct the GQL
estimating equation, does not appear to exploit sufficient information for the esti-
mation of the model parameters, especially for θ . Thus to improve the GQL esti-
mates of these parameters we construct a new GQL estimating equation by using all
possible pairwise products and the first-order responses, instead of using only the
first-order responses. For

yi = (yi1, . . . ,yiT )′, and si = (yi1yi2, . . . ,yiuyit , . . . ,yi,T−1yiT )′,
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let
gi = (y′i,s

′
i)
′, (7.153)

denote the T (T +1)/2×1 vector containing all first and distinct second-order paired
responses. Suppose that

νi = E[Gi] = (µ
′
i ,λ

′
i )
′, (7.154)

where µi = E[Yi] is the same as in the GQL estimating equation (7.151), and

λi = E(Si) = E(Yi1Yi2, . . . ,YiuYit , . . . ,Yi,T−1YiT )′.

Note that E(YiuYit) is easily computed from (7.149) as

E(YiuYit) = λiut = σiut + µiuµit .

Furthermore, let Ωi = cov(Gi) such that

Ωi =
[

cov(Yi) cov(Yi,S′i)
cov(Si)

]
=
[

Σi ∆i

Φi

]
, (7.155)

is the T (T + 1)/2 x T (T + 1)/2 covariance matrix of the T (T + 1)/2-dimensional
extended vector fi. By following (7.151), we now write an improved GQL estimat-
ing equation for ζ = (β ′,θ)′ given by

K

∑
i=1

∂ν ′i
∂ζ

Ω
−1
i (gi−νi) = 0, (7.156)

for the estimation of both β and θ parameters. Note that as argued in Exercise 7.6,
gi in the estimating equation (7.156) is in fact a vector of sufficient statistics under
the lag 1 dynamic model (7.142). For this reason, we refer to (7.156) as an OGQL
estimating equation for ζ = (β ′,θ)′.

Note that under a quadratic exponential model for correlated binary data, Zhao
and Prentice (1990), for example, have used an estimating equation similar to
(7.156) for the estimation of the mean and covariance vector. Their model [see also
Prentice (1988)] ignores the higher-order moments (more than second-order) and
hence in their approach one cannot compute the fourth-order moment matrix Ωi

needed to construct the estimating equation (7.156). Moreover, under the present
model, the covariances of the data (7.149) are functions of β and θ only. Thus, as
opposed to Zhao and Prentice (1990) in the present setup one needs to compute
fewer parameters.

As far as the computation of the Ωi matrix in (7.156) is concerned, Zhao and
Prentice (1990) have done this by using a ‘working’ normality based approach. To
be specific, they compute this fourth-order moment matrix by pretending that the
data follow a normal distribution with correct mean and variances computed under
the binary quadratic model, even though in reality the data are binary. This ‘work-
ing’ assumption may not improve the efficiency [Sutradhar (2003)] of the estimates
as compared to the ‘working’ independence assumption for the correlated binary
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data, which makes their approach less useful in practice where one needs to com-
pute consistent as well as efficient estimates.

Computation of the Weight Matrix Ωi

For convenience, we compute this matrix in three parts as follows.

Computation of Σi = E[Yi]

The diagonal elements (σitt) of this matrix Σi = (σiut) are computed by (7.148) and
the formulas for off-diagonal elements (σiut) are given in (7.149).

Computation of ∆i = cov[Yi,S′i]

Note that ∆i is a third-order moment matrix. The elements of this matrix may be
computed by using the formula for

δ̃iuvt = cov[Yiu,YivYit ] = E[YiuYivYit ]−µiuλivt , (7.157)

where µit is given by (7.145) and λivt has the formula as in (7.154) [see also (7.149)].
Further note that for either u = v or u = t, the third-order expectation E[YiuYivYit ] in
(7.157) reduces to the second-order expectation such as

E[YiuYivYit ] = E[Y 2
iuYit ] = E[YiuYit ] = λiut , for v = u,

which is known by (7.154). Thus, to complete the computation for all δiuvt elements
we need to compute the third-order expectation E[YiuYivYit ] only for distinct u,v, and
t. The formula for this expectation is given by

E[YiuYivYit ] = Pr(yiu = 1,yiv = 1,yit = 1)

= ∑
S∗1

[
f (yi1)

T

∏
t=2

f (yit |yi,t−1)

]
yiu=1,yiv=1,yit=1

= δiuvt , (say), (7.158)

where ∑S∗1
indicates the summation over all yi j = 0,1 for j 6= u,v, t. In (7.158),

f (yi1) = µi1
yi1 [1−µi1]1−yi1 and f (yit |yi,t−1) = (pit|t−1)

yit (1− pit|t−1)
1−yit .

Computation of Φi = cov[Si,S′i]

To compute the elements of this fourth-order moments matrix, we write

φ̃iuv`t = E[YiuYivYi`Yit ]−λiuvλi`t . (7.159)
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Note that for either u = ` or v = `, for example, the fourth-order expectation
E[YiuYivYi`Yit ] in (7.159) reduces to the third-order expectation such as

E[YiuYivYi`Yit ] = E[Y 2
iuYivYit ] = E[YiuYivYit ] = δiuvt , for ` = u,

which is known by (7.158). Similarly, when u = ` and v = t, for example, the fourth-
order expectation E[YiuYivYi`Yit ] in (7.159) reduces to the second-order expectation
such as

E[YiuYivYi`Yit ] = E[Y 2
iuY 2

iv] = E[YiuYiv] = λiuv, for ` = u, and t = v,

which is known by (7.154). Thus, to complete the computation for all φiuv`t ele-
ments we need to compute the fourth-order expectation E[YiuYivYi`Yit ] only for dis-
tinct u,v, `, and t. The formula for this expectation is given by

E[YiuYivYi`Yit ] = Pr(yiu = 1,yiv = 1,yi` = 1,yit = 1)

= ∑
S∗2

[
f (yi1)

T

∏
t=2

f (yit |yi,t−1)

]
yiu=1,yiv=1,yi`=1,yit=1

, (7.160)

where ∑S∗2
indicates the summation over all yi j = 0,1 for j 6= u,v, `, t.

Computation of the Derivatives ∂ν ′i /∂ζ

To construct the OGQL estimating equation (7.156), we also need to compute the
first-order derivatives of ν ′i = (µ ′

i ,λ
′
i ) with respect to ζ = (β ′,θ)′. The derivatives

of µi with respect to β and θ are available from Exercise 7.5. Now to compute
∂λ ′

i /∂ζ , it is convenient to write that for u < t

λiut = E(YiuYit) = ∑
yiu,yit /∈S∗

[
f (yi1)

T

∏
t=2

f (yit |yi,t−1)

]
yiu=1,yit=1

, (7.161)

where ∑yiu,yit
/∈ S∗ reflects the summation over all components of yi except yiu and

yit . Then, using (7.161), it is sufficient to determine

∂λiut/∂β = ∑
yiu,yit /∈S∗

[ f (yi1)
T

∑
k=2

{
T

∏
j 6=k

f (yi j|yi, j−1)} f (yik|yi,k−1)(yik− pik|k−1)xik

+{∏T
j=2 f (yi j|yi, j−1)} f (yi1)(yi1−µi1)xi1]yiu=1,yit=1,

or equivalently,

∂λiut

∂β
= ∑

yiu,yit /∈S∗
[ f (yi1)

T

∏
j=2

f (yi j|yi, j−1)

×{
T

∑
k=2

(yik− pik|k−1)xik +(yi1−µi1)xi1}]yiu=1,yit=1, (7.162)
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where pik|k−1 is given in (7.142). Similarly,

∂λiut

∂θ
= ∑

yiu,yit /∈S∗
[ f (yi1)

T

∏
j=2

f (yi j|yi, j−1){
T

∑
k=2

(yik− pik|k−1)yi,k−1}]yiu=1,yit=1.

(7.163)
Performance of the OGQL Estimates Through a Simulation Study

By using the same parameters and time-dependent covariates as in the simulation
study in the last section, we now have obtained simulated OGQL estimates for β

and θ , by solving the OGQL estimating equation in (7.156). The simulated mean
and standard errors of the estimates are shown in Table 7.9. The estimated standard
errors computed by using the asymptotic covariance formula

cov(ζ̂OGQL) =

[
K

∑
i=1

∂ν ′i
∂ζ

Ω
−1
i

∂νi

∂ζ ′

]−1

, (7.164)

are also given in the same table. The results of the table indicate a substantial im-
provement over the GQL estimates shown in Table 7.8. For example, when θ = 1.0,
the OGQL estimates for β1 = 1.0, β2 = 1.0, and θ are

1.0085, 1.0591, and 0.9832,

respectively, whereas the corresponding GQL estimates from Table 7.8 are

1.0387, 0.9853, and 1.1091.

Thus the OGQL estimates are much less biased than the GQL estimates, showing a
large improvement, especially for the estimation of the dynamic dependence param-
eter θ . Also, the standard errors of the estimates are much smaller under the OGQL
approach as compared to the GQL approach.

Table 7.9 Simulated means, simulated standard errors, and estimated standard errors (in brackets
following the SSEs), under OGQL (and ML) method with β1 = β2 = 1, based on 5000 simulations.

θ Method Quantity β̂1 β̂2 γ̂

−3.0 OGQL SM 1.0142 1.0250 −3.0566
SSE (ESE) 0.2425 (0.2425) 0.3346 (0.3306) 0.2952 (0.2933)

−1.0 OGQL SM 1.0119 1.0308 −1.0327
SSE (ESE) 0.2154 (0.2138) 0.3411 (0.3371) 0.2642 (0.2670)

0.0 OGQL SM 1.0105 1.0351 −0.0203
SSE (ESE) 0.2229 (0.2249) 0.4121 (0.4011) 0.3185 (0.3113)

1.0 OGQL SM 1.0085 1.0591 0.9832
SSE (ESE) 0.2569 (0.2595) 0.5246 (0.5153) 0.4042 (0.4017)
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7.7.2.2.3 Likelihood Estimation

Note that unlike in the longitudinal setup for count data, the likelihood estimation
under the present binary dynamic logit model is quite manageable, in fact it is much
easier than the OGQL estimation. However, when this model is extended to accom-
modate random effects, the maximum likelihood estimation will be more compli-
cated than the OGQL (or GQL) approach for the estimation of the parameters of
such a dynamic mixed model. These issues are discussed in detail in the next two
chapters.

Turning back to the likelihood estimation for the present BDL model (7.142), by
using the conventional notation yi0 = 0, the likelihood may be written as

L(β ,θ) =
K

∏
i=1

[
exp[(x′i1β )yi1]
1+ exp(x′i1β )

T

∏
t=2

exp[(x′itβ +θyi,t−1)yit ]
1+ exp(x′itβ +θyi,t−1)

]

=
K

∏
i=1

[gi1]
T

∏
t=2

[
git|t−1

]
, (say) (7.165)

(see also Exercise 7.6). One may then write the log-likelihood function as

logL =
I

∑
i=1

T

∑
t=1

yit(x′itβ +θyi,t−1)−
I

∑
i=1

T

∑
t=1

log[1+ exp(x′itβ +θyi,t−1)], (7.166)

that yields the likelihood estimating equations for β and θ given by

∂ logL
∂β

=
I

∑
i=1

T

∑
t=1

[yit − pit|t−1]x
′
it = 0, (7.167)

and
∂ logL

∂γ
=

I

∑
i=1

T

∑
t=1

[yit − pit|t−1]yi,t−1 = 0, (7.168)

where pit|t−1 = exp(x′itβ +θyi,t−1)/[1+ exp(x′itβ +θyi,t−1)].

Performance of the ML Estimates Through a Simulation Study

It appears from the likelihood function (7.165) that the first-order responses {yit}
and the second-order responses {yityi,t−1}must be sufficient for the estimation of the
parameters β and θ . Because the OGQL approach also uses these first− and second-
order responses, the ML and OGQL approaches may yield the same estimates for
the present BDL model. In fact, the simulation study conducted by Sutradhar and
Farrell (2007) supports this observation, where it is reported that the ML and OGQL
estimates are the same. For this reason, it is not necessary to produce any separate
table with results on ML estimation, rather we have indicated in Table 7.9 that ML
estimates are the same as the OGQL estimates.
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Note that the estimated standard errors of the ML estimates obtained from
(7.167)− (7.168), were computed by using covariance matrix

cov[ζ̂ML] = Q−1, (7.169)

where the so-called Fisher information matrix Q, is computed as

Q =

−E( ∂ 2logL
∂ββ ′ ) −E( ∂ 2logL

∂β∂θ
)

−E( ∂ 2logL
∂θ 2 )

 . (7.170)

7.7.2.3 Fitting Asthma Data to the BDL Model: An Illustration

As an illustration of the application of GQL and OGQL (=ML) approaches, we con-
sider a dataset that contains complete records of I = 537 children from Steubenville,
Ohio, each of whom was examined annually at ages 7 through 10. The repeated
response is the asthma status (1 = yes, 0 = no) of a child on each of the T = 4 oc-
casions. Maternal smoking status was considered as a covariate; it was recorded as
1 if the mother smoked regularly, and 0 otherwise. The dataset is given in Table 7F
in the appendix. It is of interest to estimate the dynamic dependence parameter that
explains how the asthma status at a given time is affected by the previous asthma
status. It is also of interest to compute the effect of smoking by the mother on the
asthma status of her child.

Note that this dataset was earlier analyzed by Zeger, Liang and Albert (1988),
Sutradhar (2003), and Sutradhar and Farrell (2007), among others. As the binary
responses for each child are repeatedly collected over a period of T = 4 years, it
is likely that they will be longitudinally correlated. Sutradhar (2003) has modelled
the longitudinal correlations by using a T ×T stationary autocorrelation structure
(7.65), and obtained the regression estimates β̂1 (intercept) = −1.820 and β̂2 (ma-
ternal smoking effect) = 0.263, by solving the GQL estimating equation (7.66). The
stationary lag correlations were estimated by (7.67), and they were found to be ρ̂1 =
0.397, ρ̂2 = 0.310, and ρ̂3 = 0.297, respectively. Unlike Sutradhar (2003), Sutradhar
and Farrell (2007) fitted the BDL model (7.142) to the same asthma data . Thus,
Sutradhar and Farrell (2007) estimated θ , the lag 1 dependence parameter, whereas
Sutradhar (2003) computed three lag correlations, the lag 1 correlation being simi-
lar to but different from θ . But, β1 and β2 denote the regression effects of the same
two covariates both in Sutradhar (2003) and Sutradhar and Farrell (2007). Note,
however, that these regression effects influence the means of the response variable
under the BDL model (7.142) in a different way from that of the model considered
by Sutradhar (2003), means are being nonstationary and dynamic under the model
(7.142). To be more specific, the expected asthma status of a child at a given year is
influenced by the history of the covariates under the BDL model such as the history
of the smoking habits of the parents in a household, whereas in the existing literature
such as in Sutradhar (2003), the expected asthma status at a given year is influenced
only by the smoking habit of the parents during that specified year.
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In Table (7.10), we reproduce the GQL (7.151) and OGQL (∼=ML) (7.156) esti-
mates of the parameters of the BDL model from Sutradhar and Farrell (2007). The
standard errors of the estimates are also given.

Table 7.10 For the wheeze data where T = 4, estimates obtained using GQL (7.151) and OQGL
(=ML) (7.156) for the binary dynamic logit model (7.142) containing a lag 1 dependence parame-
ter. For each estimation approach, the estimated covariance matrix is given below the estimates for
β1, β2, and θ .

Method β̂1 β̂2 θ̂

GQL −1.7738 0.2842 −0.4943
1.40×10−2 −3.48×10−3 −1.08×10−1

1.60×10−2 −3.33×10−2

1.45×100

OGQL (∼=ML) −2.1886 0.2205 1.9544
7.94×10−3 −6.69×10−3 −5.25×10−3

1.75×10−2 −3.66×10−4

2.35×10−2

The results in Table 7.10 show that the GQL estimates appear to be different
from the OGQL or ML estimates. In addition, the standard errors (computed from
the diagonal elements of the estimated covariance matrix) of the GQL estimates are
relatively larger than counterparts obtained under the OGQL or ML approach. This
illustrates that, as expected, the OGQL or ML approach is more efficient than the
GQL approach.

The GQL estimates for β1 and β2 are close to the corresponding GQL estimates
found by Sutradhar (2003). However, the GQL estimates under the BDL model
appear to be more efficient than those under the traditional longitudinal model con-
sidered by Sutradhar (2003), specifically, the standard error of β̂2 of 0.177 obtained
by Sutradhar (2003), whereas the analogous standard error in Table 7.10 arrived at
using GQL under the BDL model is 0.126. The standard errors of β̂1 are the same
under both models. Under the BDL model, the OGQL estimates for β1 and β2 are
more efficient than the GQL estimates. The estimates obtained for the regression pa-
rameters under OGQL are β̂1,OGQL =−2.19 and β̂2,OGQL = 0.22, which are generally
different than their GQL counterparts: β̂1,GQL = −1.77 and β̂2,GQL = 0.28.

As far as the dynamic dependence parameter is concerned, the GQL approach
produces a negative estimate, namely, θ̂GQL = −0.49, whereas the OGQL or ML
approach produces a high positive estimate, θ̂OGQL = 1.95. The simulation study in
the last section showed that the OGQL approach produces a reliable estimate for
the dynamic dependence parameter θ , whereas the GQL estimate can be different
from the true value. This leads one to accept the high positive estimate 1.95 for
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the θ parameter. Note that this high positive estimate of θ is in agreement with the
positive lag 1 correlation estimate 0.397 found in Sutradhar (2003).

We now use the OGQL or ML estimates to interpret the data. The high positive
value θ̂OGQL = 1.95 shows that a previous asthma attack contributes highly to the
asthma attack at a given time. The negative estimate for β1, that is, β̂1,OGQL = −2.19
and the positive value for β̂2,OGQL = 0.22 indicate that even if there is an overall de-
creasing tendency in asthma attack rate, this rate, however, increases for the children
whose mothers are smokers.

7.7.3 Application of the Binary Dynamic Logit (BDL) Model in an
Adaptive Clinical Trial Setup

The BDL model considered in the last section is developed based on certain fixed
covariates. In some practical situations such as in longitudinal clinical studies, it
may happen that some of the covariates such as treatments are selected randomly
following an adaptive design, whereas the rest of the covariates may be fixed by
nature. For details on the construction of longitudinal design weights, we refer to
Section 7.6.1.1. The purpose of this section is to discuss the effects of the design
weights selection on the parameter estimation including the treatment effects, after
taking the longitudinal correlations of the repeated binary responses into account.
Note that with regard to the longitudinal correlation structure, it was assumed in
Section 7.6 that once the treatment was selected for the ith (i = 1, . . . ,K) patient,
the repeated binary responses follow a stationary AR(1) correlation structure (see
(7.100)). However, here we assume that the repeated binary responses follow the
binary dynamic logit model (7.142). Thus, the correlations modelled through the
dynamic dependence parameter θ can be nonstationary.

7.7.3.1 Random Treatments Based BDL Model

This model was developed by Sutradhar and Jowaheer (2009). Let yit denote the
binary response for the ith (i = 1, . . . ,K) individual collected at time t (t = 1, . . . ,T ),
xit = [xit1, . . . ,xitu, . . . ,xit p]′ be the p-dimensional vector of time-dependent fixed co-
variates, and δi = [δi1, . . . ,δi j, . . . ,δic]′ be the c-dimensional random indicator vec-
tor that determines the selection of one treatment for the ith individual out of c + 1
treatments. In Section 7.6, we considered c+1 = 2, for simplicity. Furthermore, let
α = [α1, . . . ,α j, . . . ,αc]′ and β = [β1, . . . ,βu, . . . ,βp]′ denote the effects of δi and
xit , respectively, on the binary response yit . This is of interest to estimate α and β

consistently and efficiently.
For j = 1, . . . ,c, suppose that

Pr[δi1 = 0, . . . ,δi, j−1 = 0,δi j = 1,δi, j+1 = 0, . . . ,δi,c = 0] = wi j (7.171)
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is the probability of the selection of the jth treatment for the ith patient. It then
follows that the probability for the selection of (c+1)th treatment for the assignment
of the ith patient is given by

Pr[δi1 = 0, . . . ,δi, j−1 = 0,δi j = 0,δi, j+1 = 0, . . . ,δi,c = 0] = 1−
c

∑
j=1

wi j. (7.172)

In adaptive clinical trials, these probabilities wi js are referred to as the adaptive
design weights and they are computed based on a suitable scheme such as the sim-
ple longitudinal play-the-winner rule, discussed in Section 7.6.1.1, using two treat-
ments.

Note that as far as the correlation structure for the repeated binary responses
yi1, . . . ,yit , . . . ,yiT , is concerned, we follow the BDL model (7.142), and re-express
it conditional on the random treatments as follows.

p∗i1 = Pr[yi1 = 1|δi] =
exp(δ ′i α + x′i1β )

1+ exp(δ ′i α + x′i1β )

p∗it|t−1 = P(yit = 1|yi,t−1,δi) =
exp(δ ′i α + x′itβ +θyi,t−1)

1+ exp(δ ′i α + x′itβ +θyi,t−1)
(7.173)

[see also Amemiya (1985); Zhao and Prentice (1990); Aitkin and Alfo (1998)] for
t = 2, . . . ,T, where θ is the dynamic dependence parameter, α is the effect of the
treatment indicator vector δi = [δi1, . . . ,δi j, . . . ,δic]′, and β is the effect of the time-
dependent prognostic fixed covariates xit .

Note that in practice δi vectors for i = 1, . . . ,K, are unknown. In adaptive clini-
cal trial studies, they are usually generated by using the design weights wi j which
are, however, known based on a randomized scheme such as the SLPW rule. More
specifically, δi can be generated by following the multinomial distribution given by

Pr[δi1, . . . ,δi,c] =
1!

δi1! . . .δi,c!(1−∑c
j=1 δi j)!

wδi1
i1 · · ·w

δi,c
i,c (1−

c

∑
j=1

wi j)
1−∑c

j=1 δi j .

(7.174)
In (7.174), all of the c variables δi j for j = 1, . . . ,c may be 0 or at most one of them
may assume the value 1 so that ∑c

j=1 δi j = 0 or 1. When all δi j = 0, for j = 1, . . . ,c,
the physician selects the c+1th treatment for the individual.

7.7.3.1.1 Unconditional Moments Up to Order Four

Let

πit(α j) =
exp(α j + x′itβ )

1+ exp(α j + x′itβ )
and p̃it(α j) =

exp(α j + x′itβ +θ)
1+ exp(α j + x′itβ +θ)

.

It then follows that
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µit = E[Yit ] = Pr[Yit = 1] =
c

∑
j=1

wi jµit(α j)+(1−
c

∑
j=1

wi j)µit(0), (7.175)

with µit(0) = [µit(α j)]|α j=0, and where by similar calculations as in (7.145) one
writes

µit(α j) = πit(α j)+ µi,t−1(α j)[p̃it(α j)−πit(α j)], for t = 2, . . . ,T, (7.176)

with µi1(α j) = πi1(α j).
To compute the second− and higher-order moments up to order four, conditional

on δi, we first define

g∗i1(δi) =
exp[(δ ′i α + x′i1β )yi1]
1+ exp(δ ′i α + x′i1β )

,

g∗it|t−1(δi) =
exp[(δ ′i α + x′itβ +θyi,t−1)yit ]
1+ exp(δ ′i α + x′itβ +θyi,t−1)

, for t = 2, . . . ,T. (7.177)

Note that when δi has 1 in the jth position, one may write these functions as

g∗i1(α j) =
exp[(α j + x′i1β )yi1]
1+ exp(α j + x′i1β )

, g∗it|t−1(α j) =
exp[(α j + x′itβ +θyi,t−1)yit ]
1+ exp(α j + x′itβ +θyi,t−1)

,

for t = 2, . . . ,T.
For u < v < l < t, one may then compute the second, third, and fourth order

unconditional moments by using the corresponding conditional moments given by

λ
∗
ut(δi) = E[YiuYit |δi]

= ΣS∗1
[(g∗i1(δi)

T

∏
t=2

g∗i,t|t−1)(δi)yiu=1,yit=1], (7.178)

δ
∗
uvt(δi) = E[YiuYivYit |δi]

= ΣS∗2
[(g∗i1(δi)

T

∏
t=2

g∗i,t|t−1)(δi)yiu=1,yiv=1,yit=1], (7.179)

and

φ
∗
uvlt(δi) = E[YiuYivYilYit |δi]

= ΣS∗3
[(g∗i1(δi)

T

∏
t=2

g∗i,t|t−1)(δi)yiu=1,yiv=1,yil=1,yit=1], (7.180)



310 7 Longitudinal Models for Binary Data

respectively, where ΣS∗1
indicates the summation over all yik = 0,1 for k 6= u, t, and

similarly ΣS∗2
and ΣS∗3

reflect the summation over all yik = 0,1 for k 6= u,v, t, and over
all yik = 0,1 for k 6= u,v, l, t, respectively. The unconditional second−, third−, and
fourth-order moments have the formulas as

E(YiuYit) = λiut

= Eδi
E[(YiuYit)|δi]

=
c

∑
j=1

wi j[ΣS∗1
(g∗i1(α j)

T

∏
t=2

g∗i,t|t−1(α j))yiu=1,yit=1]

+(1−
c

∑
j=1

wi j)[ΣS∗1
(g∗i1(0)

T

∏
t=2

g∗i,t|t−1(0))yiu=1,yit=1], (7.181)

E(YiuYivYit) = δ
∗
iuvt

= Eδi
E[(YiuYivYit)|δi]

=
c

∑
j=1

wi j[ΣS∗2
(g∗i1(α j)

T

∏
t=2

g∗i,t|t−1(α j))yiu=1,yiv=1,yit=1]

+(1−
c

∑
j=1

wi j)[ΣS∗2
(g∗i1(0)

T

∏
t=2

g∗i,t|t−1(0))yiu=1,yiv=1,yit=1],(7.182)

and

E(YiuYivYilYit) = φ
∗
iuvlt

= Eδi
E[(YiuYivYilYit)|δi]

=
c

∑
j=1

wi j

[
ΣS∗3

(g∗i1(α j)
T

∏
t=2

g∗i,t|t−1(α j))yiu=1,yiv=1,yil=1,yit=1

]

+(1−
c

∑
j=1

wi j)[ΣS∗3
(g∗i1(0)

×
T

∏
t=2

g∗i,t|t−1(0))yiu=1,yiv=1,yil=1,yit=1], (7.183)

respectively. Note that as T is small in the longitudinal setup, such as T = 3 or 4, the
expectations in (7.181), (7.182), and (7.183) are easily evaluated.
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7.7.3.1.2 Extended WGQL (EWGQL) or Weighted OGQL (WOGQL) Estimat-
ing Equation

Following the OGQL estimating equation (7.156), we now write the design weights
(w≡ {wi j}) based OGQL estimating equation for

ζ
∗ = (α ′,β ′,θ)′

as
K

∑
i=1

∂ν ′i (w)
∂ζ ∗

Ω
−1
i (w)(gi−νi(w)) = 0, (7.184)

where
gi = (y′i,s

′
i)
′

with
yi = (yi1, . . . ,yiT )′, and si = (yi1yi2, . . . ,yiuyit , . . . ,yi,T−1yiT )′.

Note that the design weights based formula for

νi(w) = E[Gi(w)]

can be computed by (7.175) and (7.181), and

Ωi(w) = cov[Gi] =
[

cov(Yi) cov(Yi,S′i)
cov(Si)

]
=
[

Σi(w) ∆i(w)
Φi(w)

]
, (7.185)

can be computed by using (7.181)− (7.183). Note that in view of the adaptive de-
sign weights based WGQL estimating equation (7.119) for β , the weighted OGQL
(WOGQL) estimating equation in (7.184) may also be referred to as an extended
WGQL (EWGQL) estimating equation for α, β , and θ parameters. The derivatives
in (7.184) require some lengthy but straightforward algebra. They are available from
the appendix in Sutradhar and Jowaheer (2009).

Performance of the EWGQL Approach: A Simulation Study

A part of the simulation results from Sutradhar and Jowaheer (2009) is given here
to demonstrate the performance of the EWGQL estimating equation (7.184) for
the dynamic dependence and regression parameters including the treatment effects.
This is done for known adaptive design weights. Three different combinations of
design weights are considered: (1) equal weights, (2) decreasing weights, the largest
weight being assigned for the selection of the best treatment, and also (3) increasing
weights, the smallest weight being assigned for the best treatment. The simulation
design including the parameter values is chosen as follows.

K = 200 individuals, c+1 = 3 treatments, T = 4 time points;
Equal weights: wi1 = 0.33,wi2 = 0.33, and wi3 = 0.34, for i = 1, . . . ,200;
Decreasing weights: wi1 = 0.60,wi2 = 0.30, and wi3 = 0.10, for i = 1, . . . ,200;
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Increasing weights: wi1 = 0.10,wi2 = 0.20, and wi3 = 0.70, for i = 1, . . . ,200;
Relative treatment effects: α1 = 1.0, and α2 = 0.5;
Two prognostic covariate effects: β1 = β2 = 1.0;
Dynamic dependence parameter θ = 1.0;
xit3 = 1.0 (t = 1,2) and xit3 = 0.0 (t = 3,4) for i = 1, . . . ,50,
xit3 = 1.0 for i = 51, . . . ,150 and t = 1, . . . ,4,
xit3 = 0.0 (t = 1,2) and xit3 = 1.0 (t = 3,4) for i = 151, . . . ,200;
xit4 = t/4 for i = 1, . . . ,200 and t = 1, . . . ,4.

Note that in the simulation study, we first use the design weights in the multino-
mial distribution (7.174) and generate 200 sets of values of the treatment covariates
(δi1, δi2). The treatment is not changed over time for an individual, thus these values
are kept the same for all t = 1, . . . ,4, and we use xit1 = δi1, and xit2 = δi2.

The repeated binary responses generated under a simulation, along with the co-
variate values, are used in (7.184) to obtain the EWGQL estimates for all five pa-
rameters, namely,

α1, α2, β1, β2, and θ .

The simulations are repeated 1000 times. For a given set of values for the design
weights: wi1, wi2, wi3, the average estimates, that is, the simulated means, along
with their standard errors, for all five parameters, are computed. These results are
given in Table 7.11.

Table 7.11 Simulated means, simulated standard errors, estimated standard errors, and mean
squared errors for the estimators of model parameters under the EWGQL approach, with unequal
treatment effects α1 = 1.0, α2 = 0.5; prognostic covariate effects β1 = β2 = 1; and large positive
dynamic dependence parameter θ = 1.0, based on 1000 simulations.

Treatment Effects Design Weights
(α1, α2) (wi1,wi2,wi3) Quantity α̂1 α̂2 β̂1 β̂2 θ̂

(1.0, 0.5) (0.33, 0.33, 0.34) SM 1.0285 0.5043 1.0002 1.0783 0.9706
SSE 0.3142 0.2623 0.2241 0.5147 0.3540
ESE 0.3116 0.2597 0.2252 0.5030 0.3536
MSE 0.0995 0.0688 0.0502 0.2711 0.1262

(0.60, 0.30, 0.10) SM 1.0054 0.4921 1.0154 1.0889 0.9778
SSE 0.3016 0.3218 0.2641 0.6173 0.3972
ESE 0.3024 0.3128 0.2547 0.6115 0.3956
MSE 0.0910 0.1036 0.0700 0.3889 0.1583

(0.10, 0.20, 0.70) SM 1.1362 0.5193 1.0032 1.0505 0.9844
SSE 0.9354 0.3186 0.2008 0.4104 0.3117
ESE 0.5020 0.3097 0.1965 0.3955 0.3036
MSE 0.8935 0.1019 0.0403 0.1710 0.0974

The results of the table indicate that the EWGQL approach produces almost un-
biased estimates for the parameters including the treatment effects, when equal
weights wi1 = 0.33, wi2 = 0.33, wi3 = 0.34, are used to choose the treatments.
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In this case, the simulated estimates for the treatment effects are 1.0285, 0.5043,
with simulated standard errors 0.3142, 0.2623, respectively. The estimates for the
other parameters including the dynamic dependence parameter also appear to be
very close to their corresponding true values. It is further seen that the estimates
of the treatment effects are better when larger design weights are considered for
the selection of the first treatment. To be specific, when the first treatment is con-
sidered to be the best, the estimate of α1 has the minimum MSE (0.0910), when
wi1 = 0.60, wi2 = 0.30, and wi3 = 0.10. This result indicates that it is not only that
there should be a provision for ethical reasons to assign the best treatment to most
of the patients, in fact, this type of assignment also would help to estimate the treat-
ment effect efficiently. By the same token, if the best treatment is assigned to a few
patients, it can happen that the treatment effect may not be estimated unbiasedly,
that is, consistently. For example, when the best treatment was assigned with proba-
bility weight wi1 = 0.10, followed by wi2 = 0.20 and wi3 = 0.70, the best treatment
effect α = 1.0 was estimated as α̂1 = 1.1362 with a large bias.

Note that once an estimate is obtained for the true parameter value, in practice
one may like to compute the standard error of the estimate mainly for the construc-
tion of a confidence interval at a desired level of significance. For the purpose, under
each of the 1000 simulations, we have also computed the asymptotic standard errors
of the estimates for the parameters α1, α2, β1, β2, and θ by using the formula

[
I

∑
i=1

∂ν ′i
∂ζ ∗

Ω
−1
i

∂νi

∂ζ ∗′
]−1,

for the asymptotic covariance matrix obtained from (7.184). Next, the averages of
these 1000 standard errors for each of the five estimates were computed, and re-
ported as ESE in Table 7.11. It appears from the table that in general the ESE
agrees with the SSE, provided the design weights are chosen reflecting the treat-
ment effects. For example, for α1 = 1.0, α2 = 0.5, when weights are chosen as
wi1 = 0.6, wi2 = 0.3, and wi3 = 0.1, in monotonic decreasing order, the ESEs of
α̂1, α̂2, β̂1, β̂2, and θ̂ are

0.3024, 0.3128, 0.2547, 0.6115, 0.3956,

respectively, which agree with the corresponding SSEs

0.3016, 0.3218, 0.2641, 0.6173,0.3972.

However, when the design weights are not chosen reflecting the treatment effects,
the ESE can be biased for SSE, and hence may not be reliable. For example, when
wi1 = 0.10, wi2 = 0.20, and wi3 = 0.70, the results in the table show that the ESE
of α̂1 is 0.5020, whereas for this case SSE is 0.9354.
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Exercises

7.1. (Section 7.2.1.2) [Nonstationary Bahadur bivariate binary distribution]
Use the T = 3−dimensional Bahadur’s binary density (7.18) and show that yi1 and
yi2 follow the bivariate density given by

f (yi1,yi2) = Π
2
t=1π

yit
it (1−πit)1−yit

[
1+ c∗i,12

[(yi1−πi1)(yi2−πi2)]

[πi1(1−πi1)πi2(1−πi2)]
1
2

]
. (7.186)

Also show that this bivariate density provides

E[Yit ] = πit for t = 1,2

E[Yi1Yi2] = πi1πi2 + c∗i,12[πi1(1−πi1)πi2(1−πi2)]1/2, (7.187)

yielding c∗i,12 as the correlation between yi1 and yi2.

7.2. (Section 7.2.2.2) [Higher lag autocovariances for nonstationary ODD model]
The lag 1 and 2 autocovariances are computed in (7.31)− (7.32). For the compu-
tation of the higher (than 2) lag autocovariances, verify that for w ≥ 3, the joint
probabilities can be computed by using the formula

Pr (Yi,t−w = 1, Yit = 1) = Pr(Yi,t−w = 1)

×
1

∑
j1=0

. . .
1

∑
jw−1=0

Pr(Yi,t−(w−1) = j1|Yi,t−w = 1)

×
{

Π
w−1
r=2 Pr(Yi,t−(w−r) = jr|Yi,t−(w−r+1) = jr−1)

}
×Pr(Yit = 1|Yi,t−1 = jw−1), (7.188)

[Sutradhar (2008, Section 2)] where the conditional probabilities have the formulas
as in (7.33).

7.3. (Section 7.6.1.2) [Limiting behavior of the adaptive design weights wi]
Recall from (7.97) that the binary probability conditional on δi (treatment indicator
for the ith patient) is given by

π
∗
it(δi) = E(Yit |δi,x

∗
it) =

exp(θit)
1+ exp(θit)

,

where θit = x′itβ , with xit = (δi,x∗
′

it )
′. Suppose that as i→ ∞,

(1) (1/iT )
i−T

∑
r=1

T

∑
j=1

π
∗
r j(1)→ π1, (2) (1/iT )

i−T

∑
r=1

T

∑
j=1

π
∗
r j(0)→ π2,

(3) (1/iT )
i−T

∑
r=1

T

∑
j=1

ur j → u∗.
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Then prove that as i→ ∞, the wi defined in (7.104) converges to ω∗ given by

ω
∗ = (1/(G+ τ)) [(G−u∗+π1τ)ω∗+(u∗+(1−π2)τ)(1−ω

∗)]
= {u∗+(1−π2)τ}/{2u∗+(2−π1−π2)τ} , (7.189)

which is primarily a function of τ . Also argue that this ω∗ is the limiting value of
the probability of allocation of treatment A.

7.4. (Section 7.7.1.2) [Moment estimation of ρ for LBDR model]
For ` = 1, it follows from (7.129) that

ρ1 =
µi,t−1{ρ +(1−ρ)πit −µit}

[σitt σi,t−1,t−1]1/2
, for all i = 1, . . . ,K,

where µit and σitt by (7.127) and (7.128), have the forms

µit =
t−1

∑
j=1

(πi j −πi, j+1)ρ t− j +πit and

var[Yit ] = σitt = µit(1−µit),

respectively, which are functions of ρ for given β . Next, consider the sample lag 1
correlation

r1 =
∑K

i=1 ∑T
t=2

(
yit−µit√

σitt

)(
yi,t−1−µi,t−1√

σi,t−1,t−1

)
∑K

i=1 ∑T
t=1

(
yit−µit√

σitt

)2 . (7.190)

Now by treating all σitt as functions of known ρ, and also by treating µit in r1 as
functions of known ρ, justify that a moment estimate for ρ may be obtained by
using the iterative equation

ρ̂(k +1) = ρ̂(k)−
(
[ f ′(ρ)]−1 f (ρ)

)
(k) , (7.191)

where (·)(k) indicates that the quantity in (·) is evaluated at ρ = ρ̂(k), with

f (ρ) = r1−ρ1

f ′(ρ) ' −
K

∑
i=1

T

∑
t=2

1
√

σittσi,t−1,t−1

[
µi,t−1{(1−πit)−

∂ µit

∂ρ
}

+
∂ µi,t−1

∂ρ
{ρ +(1−ρ)πit −µit}

]
. (7.192)

7.5. (Section 7.7.2.2.1) [First-order derivatives for GQL estimation]
Verify that the first-order derivatives, namely ∂ µ ′

i /∂ζ for (7.151) may be computed
by using

∂ µit

∂βm
= {p̃it(1− p̃it)µi,t−1 +πit(1−πit)(1−µi,t−1)}xitm
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+(p̃it −πit)
∂ µi,t−1

∂βm
, (7.193)

for m = 1, . . . , p, and

∂ µit

∂θ
=

t

∑
u=2

[
µi,u−1 p̃iu(1− p̃iu)

t

∏
k=u+1

(p̃ik−πik)

]
, (7.194)

for t = 2, . . . ,T , and where ∂ µi1/∂θ = 0.

7.6. (Section 7.7.2.2.2) [Basic sufficient statistics for OGQL estimation]
Recall from (7.142) that the marginal probability of yi1 is pi1, whereas pit|t−1 for
t = 2, . . . ,T denote the lag 1 conditional probabilities. This yields the likelihood of
the data as

L(β ,θ) =
K

∏
i=1

f (yi1) f (yi2|yi1) . . . f (yiT |yi,T−1), (7.195)

with

f (yi1) = µi1
yi1 [1−µi1]1−yi1 and f (yit |yi,t−1) = (pit|t−1)

yit (1− pit|t−1)
1−yit ,

where by (7.142),

µi1 = pi1 = πi1 =
exp(x′i1β )

1+ exp(x′i1β )
,

and

pit|t−1 =
exp(x′itβ +θyi,t−1)

1+ exp(x′itβ +θyi,t−1)
for t = 2, . . . ,T.

Simplify the likelihood function L(β ,θ) as

L(β ,θ) =
K

∏
i=1

[
exp[(x′i1β )yi1]
1+ exp(x′i1β )

T

∏
t=2

exp[(x′itβ +θyi,t−1)yit ]
1+ exp(x′itβ +θyi,t−1)

]
,

and argue that the pairwise products yi1yi2, . . . ,yiuyit , . . . ,yi,T−1yiT along with the
first-order responses yi1, . . . ,yit , . . . ,yiT provide sufficient information for the esti-
mation of β and θ .
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Appendix

SLID Data: Tables 7A to 7E
Asthma Data: Table 7F

Table 7A. Estimated counts cross-classified according to ‘Unemployment Status’ and ‘Sex’ (in
’000).

Year
Sex Unemployment Status 1993 1994 1995 1996

Male Not unemployed (=0) 7357 7344 7361 7346
Unemployed (=1) 139 152 135 150

Female Not unemployed (=0) 8094 8029 8045 8060
Unemployed (=1) 141 206 190 175

Table 7B. Estimated counts cross-classified according to ‘Age Group in 1993’ and ‘Unemployed
All Year’ (in ’000).

Year
Age Group Unemployment Status 1993 1994 1995 1996

16 ≤ Age in 1993 <25 Not unemployed (=0) 2319 2299 2300 2299
Unemployed (=1) 34 54 53 54

25 ≤ Age in 1993 < 55 Not unemployed (=0) 10978 10917 10938 10397
Unemployed (=1) 198 259 238 239

55 ≤ Age in 1993 < 65 Not unemployed (=0) 2154 2157 2168 2170
Unemployed (=1) 48 45 34 32

Table 7C. Estimated counts cross-classified by ‘Region of Residence in 1993’ and ‘Unemployed
All Year’ (in ’000).

Year
Region of Residence Unemployment Status 1993 1994 1995 1996

Atlantic Not unemployed (=0) 3472 3424 3424 3385
Unemployed (=1) 90 112 102 119

Quebec Not unemployed (=0) 3244 3216 3212 3228
Unemployed (=1) 80 110 112 97

Ontario Not unemployed (=0) 3787 3793 3822 3820
Unemployed (=1) 64 69 52 68

Prairies Not unemployed (=0) 3584 3554 3555 3569
Unemployed (=1) 33 51 44 29

BC Not unemployed (=0) 1364 1386 1393 1404
Unemployed (=1) 13 16 15 12
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Table 7D. Estimated counts cross-classified according to ‘Education Level’ and ‘Unemployed All
Year’ (in ’000).

Year
Education Level Unemployment Status 1993 1994 1995 1996
Low education Not unemployed (=0) 3244 2990 2908 2872

Unemployed (=1) 115 122 122 111
Medium education Not unemployed (=0) 10165 10252 10274 10241

Unemployed (=1) 154 215 188 198
High education Not unemployed (=0) 2042 2131 2224 2293

Unemployed (=1) 11 21 15 16

Table 7E. Estimated counts cross-classified by ‘Marital Status’ and ‘Unemployed All Year’ (in
’000).

Year
Marital Status Unemployment Status 1993 1994 1995 1996

Married/common law Not unemployed (=0) 10832 10853 10973 11109
Unemployed (=1) 175 225 177 180

Separated/divorced Not unemployed (=0) 1008 1107 1192 1289
Unemployed (=1) 30 34 56 45

Widowed Not unemployed (=0) 300 332 369 391
Unemployed (=1) 5 6 7 10

Single Not unemployed (=0) 3311 3081 2872 2617
Unemployed (=1) 70 93 85 90
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Table 7F. Asthma data for 537 children from Steubenville, Ohio, from ages 7 through 10.

Ages (Occasions)
Covariates/Response Child Identity 7(1) 8(2) 9(3) 10(4)

Intercept 1 to 537 1 1 1 1
Mother’s smoking status 1 to 350 0 0 0 0

351 to 537 1 1 1 1
Asthma status 1 to 237 0 0 0 0

238 to 247 0 0 0 1
248 to 262 0 0 1 0
263 to 266 0 0 1 1
267 to 282 0 1 0 0
283 to 284 0 1 0 1
285 to 291 0 1 1 0
292 to 294 0 1 1 1
295 to 318 1 0 0 0
319 to 321 1 0 0 1
322 to 324 1 0 1 0
325 to 326 1 0 1 1
327 to 332 1 1 0 0
333 to 334 1 1 0 1
335 to 339 1 1 1 0
340 to 350 1 1 1 1
351 to 468 0 0 0 0
469 to 474 0 0 0 1
475 to 482 0 0 1 0
483 to 484 0 0 1 1
485 to 495 0 1 0 0

496 0 1 0 1
497 to 502 0 1 1 0
503 to 506 0 1 1 1
507 to 513 1 0 0 0
514 to 516 1 0 0 1
517 to 519 1 0 1 0

520 1 0 1 1
521 to 524 1 1 0 0
525 to 526 1 1 0 1
527 to 530 1 1 1 0
531 to 537 1 1 1 1



Chapter 8
Longitudinal Mixed Models for Count Data

Recall that in Chapter 6, a class of correlation models was discussed for the analysis
of longitudinal count data collected from a large number of independent individu-
als, whereas in Chapter 4, we discussed the analysis of count data collected from
the members of a large number of independent families. Thus, in Chapter 4, familial
correlations among the responses of the members of a given family were assumed
to be caused by the influence of the same family effect on the members of the fam-
ily, whereas in Chapter 6, longitudinal correlations were assumed to be generated
through a dynamic relationship among the repeated counts collected from the same
individual. A comparison between the models in these two chapters (4 and 6) clearly
indicates that modelling the longitudinal correlations for count data through a com-
mon individual random effect would be inappropriate. If it is, however, thought that
the longitudinal count responses may also be influenced by an invisible random ef-
fect due to the individual, this will naturally create a complex correlation structure
where repeated responses will satisfy a longitudinal correlation structure but con-
ditional on the individual random effect. The purpose of this chapter is to discuss
inferences in such longitudinal mixed models that generate longitudinal correla-
tions conditional on the individual random effect. Note that this type of longitudinal
mixed models is studied by some econometricians among others, where the model
is referred to as the panel data model for count data. For example, we refer to Haus-
man, Hall and Griliches (1984), Wooldridge (1999), and Montalvo (1997). See also
Sutradhar and Bari (2007), and Jowaheer and Sutradhar (2009). Further note that
the longitudinal mixed model for count data discussed in this chapter is extended in
Chapter 10 to the familial longitudinal mixed model.

8.1 A Conditional Serially Correlated Model

Let yi1, . . . ,yit , . . . ,yiT be the T repeated counts collected from the ith (i = 1, . . . ,K)
individual, xit = (xit1, . . . ,xit j, . . . ,xit p)′ be the p-dimensional covariate vector as-
sociated with the response yit , and β = (β1, . . . ,β j, . . . ,βp)′ denote the regression
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effects of xit on yit . Because the repeated responses are likely to be correlated, in
Chapter 6, the regression effect β was estimated by taking the correlations of the
repeated data into account. More specifically, a class of autocorrelations was intro-
duced and the autocorrelation parameters involved in such a correlation structure
were consistently estimated in order to obtain a consistent and efficient estimate for
the regression effect β . The generalized quasi-likelihood (GQL) method was used
for such efficient estimation.

In this chapter we assume that the repeated counts of an individual are also in-
fluenced by the individual random effect. Thus, conditional on the random effect

γi
i.i.d.∼ N(0,σ2

γ ), the repeated responses yi1, . . . ,yit , . . . ,yiT are assumed to follow a
suitable autocorrelation structure such as the class of autocorrelations discussed in
Chapter 6. However, for simplicity the inference in this chapter is given under a
conditional AR(1) correlation structure only. To be specific, conditional on γi, let
yi1, . . . ,yit , . . . ,yiT follow the dynamic relationship as in (6.44), that is,

yit |γi = ρ ∗ yi,t−1|γi +dit |γi, t = 2, . . . ,T, (8.1)

where it is assumed that yi,1|γi ∼ Poi(µ∗
i1), and for t = 2, . . . ,T , yi,t−1|γi ∼ Poi(µ∗

i,t−1)
and dit |γi ∼ Poi(µ∗

it −ρµ∗
i,t−1) with µ∗

i j = exp(x′i jβ +γi) for j = 1, . . . , t−1, t, . . . ,T .
In (8.1), conditional on γi, dit and yi,t−1 are independent. Furthermore, for a given
count yi,t−1, ρ ∗ yi,t−1 = ∑

yi,t−1
j=1 b j(ρ) is a binomial thinning operation as defined

in Section 6.3 [see also (6.44)]. Here b j(ρ) stands for a binary variable with
Pr[b j(ρ) = 1] = ρ and Pr[b j(ρ) = 0] = 1− ρ . It then follows that the mean and
the variance of yit conditional on γi are given by

E(Yit |γi) = var(yit |γi) = µ
∗
it = exp(x′itβ + γi). (8.2)

Furthermore, by using (8.1), for u < t, one can compute the E(YiuYit |γi) which yields
the lag (t−u) correlation conditional on γi as

corr(Yiu,Yit |γi) = ρ
t−u

√
µ∗

iu

µ∗
it

, (8.3)

where µ∗
it = exp(x′itβ +γi). Note that the conditional serial correlation given by (8.3)

under the non-stationary model (8.1) depends on the time-dependent covariates,
similar to (6.46). This conditional correlation in (8.3), does not, however, depend
on γi, and it is clear, based on the positive parameter of the Poisson distribution of
dit , that ρ must now satisfy the range restriction 0 < ρ < min[1,µ∗

it/µ∗
i,t−1], which

is the same as

0 < ρ < min[1,mit/mi,t−1] for t = 2, . . . ,T ; i = 1, . . . ,K, (8.4)

where mit = exp(x′itβ ).
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8.1.1 Unconditional Mean, Variance, and Correlations Under Serially Corre-
lated Model

Similar to Chapter 4, we assume that γi
i.i.d.∼ N(0,σ2

γ ). It then follows from (8.2) that
yit unconditionally has the mean and the variance given by

E[Yit ] = exp(x′itβ +σ
2
γ /2) = µit ,(say), (8.5)

var[Yit ] = µit +[exp(σ2
γ )−1]µ2

it = σitt . (8.6)

Now to derive the unconditional covariance between yiu and yit , it follows from the
model (8.1) that conditional on γi, the covariance between yiu and yit (u < t) is given
by

cov(Yiu,Yit |γi) = ρ
t−u

µ
∗
iu. (8.7)

Consequently, the unconditional covariance between yiu and yit has the form

σiut = cov(Yiu,Yit)

= E[cov{(Yiu,Yit)|γi}]+ cov[E(Yiu|γi), E(Yit |γi)]

= ρ
t−u

µiu +[exp(σ2
γ )−1]µiuµit , (8.8)

leading to the lag t−u correlations as

corr(Yiu,Yit) =
µiuρ t−u + µiuµit{exp(σ2

γ )−1}
[{µiu +(exp(σ2

γ )−1)µ2
iu}{µit +(exp(σ2

γ )−1)µ2
it}]1/2

. (8.9)

Note that the unconditional mean and the variance given by (8.5) and (8.6), re-
spectively, have the same form as in (4.5) and (4.6) under the familial model, but
the unconditional correlation given in (4.8) under the familial model (see Chapter 4)
is different from the unconditional correlation (8.9) under the present longitudinal
mixed model (8.1). More specifically, the correlation between any two members in a
familial setup is computed under the assumption that the responses of the members
are independent conditional on the random family effect, whereas the correlation in
(8.9) is computed under the assumption that two repeated responses of an individual
are correlated conditional on the individual random effect, ρ being the correlation
index parameter.

8.2 Parameter Estimation

Recall that it was found in Chapter 6 that in a longitudinal setup, one may con-
sistently and efficiently estimate the regression effects β by solving the GQL esti-
mating equation (6.56), whereas the correlation index parameter ρ was consistently
estimated by using the moment equation (6.58). In the present longitudinal mixed
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model setup (8.1), these two parameters may still be computed by using similar
equations, but we need to compute an additional parameter, namely σ2

γ , the vari-
ance of the random effects. In the familial set up, that is, in Chapter 4 we have
computed the regression effects β and the variance of the random family effects
σ 2

γ by solving the GQL estimating equations (4.62) and (4.69), respectively. In the
following sections, we use this GQL approach for the estimation of all three param-
eters β , σ2

γ , and ρ. Also, recall from Chapter 3 (see Section 3.3.1) that a generalized
method of moments (GMM) [or an improved method of moments (IMM)] as well
as the GQL approaches were used to estimate the parameters of a dynamic linear
mixed model. Jowaheer and Sutradhar (2009) have compared the efficiencies of
these GMM and GQL approaches for the panel count data. In the following sec-
tions, in addition to the GQL approach, we also present the GMM approach for the
estimation of all three parameters. Furthermore, we discuss a conditional maximum
likelihood (CML) approach due to Wooldridge (1999), only for β estimation. For
the estimation of the same β parameter, in Section 8.2.1, we discuss an instrumental
variables based generalized method of moments (IVBGMM) studied by Montalvo
(1997), among others.

8.2.1 Estimation of the Regression Effects β

8.2.1.1 GMM/IMM Approach

Note that when the traditional method of moments (MM) is used to estimate the β

vector, one solves the unbiased moment estimating equation

K

∑
i=1

ψi1(β , σ
2
γ ) = 0, (8.10)

where

ψ1i(β , σ
2
γ ) =

T

∑
t=1

[xit(yit −µit)] , (8.11)

[Jiang (1998); Sutradhar (2004)] is an unbiased moment function as E[Yit ] = µit

leading to E[ψ1i(β , σ2
γ )] = 0. In the notation of (8.10)− (8.11) but for known σ2

γ ,
in the GMM approach [Hansen (1982)] one would minimize the distance function

Q(β ) = K−1

[
K

∑
i=1

ψi1(β |σ2
γ )

]′
C1

[
K

∑
i=1

ψi1(β |σ2
γ )

]
, (8.12)

where C1 is a suitable weight. An optimal choice for C1 would be the inverse of the
variance of the unbiased moment function; that is,
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C1 = [var(K−1
K

∑
i=1

ψi1(β ,σ2
γ ))]−1. (8.13)

Note that minimizing Q(β ) in (8.12) with respect to β is equivalent to solving
the GMM estimating equation

∂ψ ′
1

∂β
C1ψ1 = 0, (8.14)

for β , where ψ1 = K−1 ∑K
i=1 ψ1i so that

∂ψ ′
1

∂β
= K−1

K

∑
i=1

T

∑
t=1

µit xitx
′
it . (8.15)

As far as the C1 matrix in (8.14) is concerned, by (8.13), this may be computed by

C−1
1 = K−2

K

∑
i=1

T

∑
u=1

T

∑
t=1

σiut(β , σ
2
γ , ρ)xiux′it , (8.16)

where for all u, t = 1, . . . ,T, σiut(β , σ2
γ , ρ) is given by (8.6) and (8.8).

8.2.1.2 GQL Approach

For yi = [yi1, . . . ,yit , . . . ,yiT ]′, let

E[Yi] = µi(β ,σ2) = [µi1(β ,σ2), . . . ,µit(β ,σ2), . . . ,µiT (β ,σ2)]′,

with µit(β ,σ2
γ ) = exp(x′itβ +σ2

γ ) as given in (8.5). Also, let Σi(β ,σ2,ρ) denote the
covariance matrix of yi. To be specific,

Σi(β ,σ2
γ ,ρ) = (σiut), (8.17)

where var(Yit) = σitt ≡ σitt(β ,σ2
γ ) and cov(Yiu,Yit) = σiut ≡ σiut(β ,σ2

γ ,ρ) for u 6= t,
with σitt and σiut defined as in (8.6) and (8.8), respectively. Now following (4.62)
or (6.56) [see also Sutradhar (2004), and Sutradhar and Jowaheer (2003)], one may
solve the generalized quasi-likelihood estimating equation given by

K

∑
i=1

∂ µ ′
i (β ,σ2

γ )
∂β

Σ
−1
i (β ,σ2

γ ,ρ)[yi−µi(β ,σ2
γ )] = 0, (8.18)

to obtain the GQL estimate of β . For given σ 2
γ and ρ , the GQL estimate obtained

from (8.18) is consistent for β . This is because, as E(Yi) = µi(β ,σ2), the estimat-
ing equation (8.18) is unbiased. Furthermore, because the GQL estimating equation
(8.18) is constructed by using the covariance matrix Σi(β ,σ2,ρ) as a weight matrix,
it follows that the GQL estimate of β obtained from (8.18) would be highly efficient
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as compared to other competitors such as the GMM estimator.

8.2.1.3 Conditional Maximum Likelihood (CML) Approach

Note that as opposed to the correlation parameters (σ2
γ , ρ) based moment (8.14) and

GQL (8.18) estimation for β , some authors such as Hausman, Hall, and Griliches
(1984), Montalvo (1997), and Wooldridge (1999) have used a ‘working’ indepen-
dence, that is, ρ = 0 assumption based likelihood estimation. Note that at a given
point of time, conditional on γi, it may be assumed that the count response yit fol-
lows the Poisson distribution

fit(yit |γi) =
exp(−µ∗

it)µ∗
it

yit

yit !
, (8.19)

with µ∗
it = exp(x′itβ +γi). When it is assumed that the repeated responses yi1, . . . ,yiT

are independent conditional on the individual random effect γi, one may write a
‘working’ joint density as

Li(β ,γi) = Π
T
i=1 fit(yit |γi) =

exp(−∑T
t=1 µ∗

it)Π
T
t=1µ∗

it
yit

Π T
t=1yit !

. (8.20)

Note that this ‘working’ likelihood model ignoring the serial dependence is capable
of producing the correct mean and the variance, provided the distribution of γi is
known. This is, however, well known (see also Chapter 4) that even if it is assumed

that γi
i.i.d.∼ N(0,σ2

γ ), the exact likelihood estimation of β and σ2
γ is complicated.

To avoid such complexity, some authors such as Wooldridge [1999, eqn. (2.6), p.
79] used a further conditioning on the total count of an individual and proposed a
conditional maximum likelihood approach for the estimation of β . This approach
is not influenced by the individual random effects and hence they may follow any
distributions. We first explain this approach below and then discuss its limitations.

In the CML approach, conditional on total count ∑T
t=1 yit = ni, one first writes a

conditional likelihood for the repeated responses under the ith individual as

Li(β |ni) = fi(yi1, . . . ,yiT |ni)

=
ni!

yi1! . . .yi,T−1!(ni−∑T−1
t=1 yit)!

pyi1
i1 . . . p

yi,T−1
i,T−1 p

ni−∑T−1
t=1 yit

iT , (8.21)

where pit = µ∗
it/∑T

t=1 µ∗
it . Note that because

pit =
exp(x′itβ + γi)

exp(γi)∑T
t=1 exp(x′itβ )

=
exp(x′itβ )

∑T
t=1 exp(x′itβ )

, (8.22)

the conditional likelihood (8.21) is free from γi. Consequently, one may estimate β

[Montalvo (1997, Section 1); Wooldridge (1999, eqn. (2.6), p. 79)] by maximizing
the log-likelihood
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L∗(β ) = Π
K
i=1logLi(β |ni)

= k0 +
K

∑
i=1

T

∑
t=1

yit log(pit), (8.23)

where k0 is a constant free from β , and yiT = ni−∑T−1
t=1 yit .

Note that the maximization of the log-likelihood function (8.23) for β is equiva-
lent to solving the likelihood estimating equation given by

∂L∗(β )
∂β

=
K

∑
i=1

T

∑
t=1

yit

[
xit −

T

∑
t=1

pitxit

]
= 0. (8.24)

Further note that the CML estimate of β obtained from (8.24) is expected to be
consistent but inefficient. The inefficiency arises mainly because of conditioning on
the cluster total as well as for ignoring the serial correlations. More specifically,
when the data are serially correlated, the independence assumption based condi-
tional likelihood (8.20) is no longer a valid likelihood. Hence it is bound to produce
an inefficient estimate. A simulation study in Section 8.2.1.5 for the estimation of β

also supports this observation. More specifically it is shown that when count panel
data are generated by using the AR(1) type mixed model (8.1), the CML estimates
for the components of β are unbiased and hence consistent, but these estimates are
less efficient than the GQL approach given in the previous section, where the GQL
estimation of β also utilizes the information about other parameters of the longitu-
dinal mixed model.

There appears to be another major problem with the CML approach. When the
covariates are stationary such as xit = x̃i for t = 1, . . . ,T, the multinomial probability
in (8.22) reduces to pit = 1/T which makes the likelihood function (8.21) param-
eter free. Thus in the stationary case β becomes redundant and there is nothing to
estimate. Hence the inference procedure breaks down. In the GQL approach, one
may still estimate β consistently and efficiently, even if the data are stationary.

8.2.1.4 Instrumental Variables Based GMM (IVBGMM) Estimation Approach

As opposed to the conditioning on the total count as in the last section, Montalvo
(1997, eqn. 32, p.85) considered the lag 1 based differences, namely

ψit(β ) = yit − yi,t−1 exp[(xit − xi,t−1)′β ], for t = 2, . . . ,T, (8.25)

which is unbiased for zero irrespective of the distribution of γi. Next by exploiting
the (T −1)×1 vector

ψi(β ) = [ψi2(β ), . . . ,ψit(β ), . . . ,ψiT (β )]′,

Montalvo (1997, eqn. 36) obtained a GMM estimate for β by minimizing the
quadratic distance function
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D =

[
K

∑
i=1

Z′iψi(β )

]′
W−1

[
K

∑
i=1

Z′iψi(β )

]
, (8.26)

where Zi is the (T −1)× p{(T (T +1))/2−1} instrumental matrix given by

Zi =


zi2 0 0 · · · 0

0 zi3 0 · · · 0
...

...
...

...
0 0 0 · · · ziT

 , (8.27)

with zit = [x′it ,x
′
i(t−1), . . . ,x

′
i1], and where

W =
1
K

K

∑
i=1

Z′iψi(β )ψ ′
i (β )Zi.

Note that obtaining β by minimizing the distance function D in (8.26) is equiva-
lent to solving the estimating equation[

K

∑
i=1

∂ψ ′
i

∂β
Zi

]
W−1

[
K

∑
i=1

Z′iψi(β )

]
= 0, (8.28)

for β , where ∂ψ ′
i /∂β is obtained by using the formula for the general element

∂ψit

∂β
=−yi,t−1[xit − xi,t−1]exp((xit − xi,t−1)′β .

But the use of a sandwich-type covariance matrix estimate Ŵ (β̂r) in the distance
function D may cause bias, and hence inconsistency, because of the repeated use of
iterative estimated values for the parameter of interest. Furthermore, the IVBGMM
estimate obtained from (8.28) will in fact produce a less efficient estimate than the
CML approach. This is because the IVBGMM estimating equation (8.28) uses only
lag 1 pairwise responses, whereas the CML approach uses all possible responses in
the cluster to form the likelihood function. Consequently, the IVBGMM estimates
will be much more inefficient than the GQL estimates, as the GQL estimates are ex-
pected to be more efficient than the CML estimates. The empirical study in the fol-
lowing section also supports this conjecture. We also refer to Jowaheer and Sutrad-
har (2009), where it is shown that the GMM approach given in Section 8.2.1.1 pro-
duces asymptotically less efficient estimates than the generalized quasi-likelihood
approach.

Note that similar to the CML approach, the IVBGMM approach becomes use-
less in the stationary case. This is because when xit = x̃i, for all t = 1, . . . ,T, the lag
1 based difference ψit(β ) in (8.25) does not contain any parameter. Thus, there is
nothing to estimate by minimizing the distance function (8.26), and the inference
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procedure breaks down.

8.2.1.5 A Simulation Study

The CML and IVBGMM approaches are introduced for the estimation of β only,
thus in this section, we make a mean squared error based efficiency comparison
of these approaches with the GQL approach for the estimation of β . This is done
through a simulation study. The GQL approach appears to be the best among these
three approaches, the IVBGMM approach being the worst. In Section 8.2.2.3, we
provide an asymptotic efficiency comparison between the GQL and GMM/IMM
approaches for the estimation of both main parameters β and σ 2

γ .

Let β̂GQL be the solution of (8.18). For known σ2
γ and ρ, this GQL estimate may

be obtained by using the iterative equation

β̂GQL(r +1) = β̂GQL(r)+

{ K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i (ρ, σ

2
γ )

∂ µi

∂β ′

}−1

×

{
K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i (ρ, σ

2
γ )(yi−µi)

}]
|
β=β̂GQL(r)

, (8.29)

where β̂GQL(r) is the value of β at the rth iteration.
Note that the CML estimate of β is obtained by solving the multinomial likeli-

hood estimating equation (8.24). Let β̂CML denote this estimate, which we obtain by
using the iterative equation

β̂CML(r +1) = β̂CML(r)−

[{
∂ 2L∗(β )
∂β∂β ′

}−1
∂L∗(β )

∂β

]
|
β=β̂CML(r)

= β̂CML(r)+

{ K

∑
i=1

(
T

∑
t=1

yit)

(
T

∑
t=1

pitxitx
′
it −

T

∑
t=1

pitxit

T

∑
t=1

pitx
′
it

)}−1

×
K

∑
i=1

T

∑
t=1

yit

{
xit −

T

∑
t=1

pitxit

}]
|
β=β̂ML(r)

, (8.30)

where β̂CML(r) is the value of β at the rth iteration. Similarly, the IVBGMM esti-
mate of β , say β̂IV BGMM, is obtained by solving the estimating equation (2.28). This
may be achieved by using the iterative equation

β̂IV BGMM(r +1) = β̂IV BGMM(r)−

[{ K

∑
i=1

∂ψ ′
i

∂β
Zi

}
W−1

{
K

∑
i=1

Z′i
∂ψi(β )

∂β ′

}]−1
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×

[
K

∑
i=1

∂ψ ′
i

∂β
Zi

]
W−1

[
K

∑
i=1

Z′iψi(β )

]]
|
β=β̂IV BGMM (r)

, (8.31)

where β̂IV BGMM(r) is the value of β at the rth iteration.
For selected values of σ2

γ = 0.5, 1.0, and ρ = 0.5, we simulate the count data
yit by using the dynamic mixed model (8.1), for t = 1, . . . ,T, and i = 1, . . . ,K. We
choose K = 100 independent individuals and generate data for them for a period of
T = 4 time points. We consider p = 2 regression parameters and choose to estimate
their true values β1 = β2 = 0. As far as the covariates are concerned, we choose two
time-dependent covariates as given by

xit1 =



0.0 for i = 1, . . . ,K/2; t = 1,2

1.0 for i = 1, . . . ,K/2; t = 3,T

1.0 for i = K/2+1, . . . ,K; t = 1,2

1.5 for i = K/2+1, . . . ,K; t = 3,T,

and

xit2 =



0.05+0.10(t−1) for i = 1, . . . ,K/4; t = 1, . . . ,T

t
4 for i = K/4+1, . . . ,K/2; t = 1, . . . ,T

0.0 for i = K/2+1, . . . ,3K/4; t = 1,2,

1.0 for i = K/2+1, . . . ,3K/4; t = 3,T

−1.0 for i = 3K/4+1, . . . ,K; t = 1,2,

1.0 for i = 3K/4+1, . . . ,K; t = 3,T.

Now by using these covariates and the generated data, we compute the estimates
of β by (8.29), (8.30), and (8.31) under each of 1000 simulations. The simulated
mean (SM), the simulated standard error (SSE), and the simulated mean squared
error (SMSE) based on 1000 estimates for all three approaches are reported in Table
8.1.

The results of Table 8.1 show that for all selected values of σ 2
γ and ρ, the GQL

and CML approaches produce unbiased estimates with smaller standard errors (and
hence smaller MSEs) as compared to the IVBGMM approach. Between the CML
and GQL approaches, the CML approach produces unbiased estimates with larger
SSEs than the GQL approach. Thus, the GQL approach clearly performs the best
among the three approaches. Moreover, the GQL approach is also developed to es-
timate other parameters when needed. The IVBGMM approach at times appears
to produce highly biased estimates, also with larger SSEs than the other two ap-
proaches. For example, when σ2

γ = 1.0, and ρ = 0.5, the GQL and CML approach
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Table 8.1 Simulated mean, simulated standard error, and simulated mean squared error of the
GQL, CML, and IVBGMM estimates for the regression parameters (β = [β1,β2]′) of AR(1) type
Poisson mixed model (8.1) with known random effects variance (σ2

γ = 0.5, 1.0) and longitudinal
correlation index parameter (ρ = 0.50); K = 100; T = 4; β1 = β2 = 0.0; 1000 simulations.

Variance Correlation Index Estimation Estimates
Component (σ2

γ ) Parameter (ρ) Method Quantity β̂1 β̂2

0.50 0.50 GQL SM 0.028 −0.013
SSE 0.060 0.103
SMSE 0.004 0.011

CML SM 0.014 0.036
SSE 0.123 0.140
SMSE 0.015 0.021

IVBGMM SM 0.133 −0.502
SSE 1.069 1.318
SMSE 1.160 1.989

1.00 0.50 GQL SM 0.026 0.012
SSE 0.066 0.127
SMSE 0.005 0.016

CML SM 0.021 0.032
SSE 0.109 0.138
SMSE 0.012 0.020

IVBGMM SM 0.089 −0.481
SSE 1.163 1.434
SMSE 1.360 2.290

estimate β1 = 0 as 0.026 and 0.021, respectively, whereas the IVBGMM approach
yielded 0.089 as the estimate which is highly biased. The IVBGMM approach pro-
duced a much more biased estimate for β2 as compared to the CML and GQL ap-
proaches. This is one of the reasons why we have computed the MSEs for com-
parison. For the same selected values of the parameters, that is, when σ2

γ = 1.0,
and ρ = 0.5, the GQL, CML, and IVBGMM approaches produced the estimates
of β1 with MSEs 0.005, 0.012, and 1.360, respectively, and the estimates for β2

with MSEs 0.016, 0.020, and 2.290, respectively. Thus, the IVBGMM approach
cannot be trusted as it produces biased estimates with large standard errors, yield-
ing large MSEs. When the SSEs or SMSEs for the GQL and CML are compared,
the GQL approach appears to be the same or more efficient than the CML ap-
proach. For example, for the aforementioned estimation of β1, the GQL approach
is 0.012/0.005 = 2.4 times more efficient (in the sense of MSE) than the CML ap-
proach. In summary, the GQL approach performs the best followed by the CML
approach in estimating both β1 and β2.
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8.2.2 Estimation of the Random Effects Variance σ2
γ :

8.2.2.1 GMM Estimation for σ2
γ

Note that because in the mixed model setup, that is, when ρ = 0 under the present
longitudinal mixed model setup, conditional on γi, one can show that the count
responses along with their squared and pairwise products are sufficient to estimate
β and σ2

γ [Jiang (1998); Sutradhar (2004)], we now exploit such information to
estimate the σ2

γ parameter. Note, however, that using the second-order information
in the GMM approach, will require the fourth-order moments for the responses. The
GQL estimation approach for σ2

γ discussed in the next section also requires these
fourth-order moments. We now provide below the formulas for these fourth-order
moments of the responses for the case when ρ = 0 [Sutradhar and Bari (2007);
see also Section 4.2.6.2.] before we show the construction of the GMM estimating
equation for σ2

γ .

(a) E(Y 4
it |ρ = 0) = Eγi [E(Y 4

it |γi)]

= Eγi [µ
∗
it +7µ

∗
it

2 +6µ
∗
it

3 + µ
∗
it

4]

= µit
[
1+7µit exp(σ2

γ )+6µ
2
it exp(3σ

2
γ )

+ µ
3
it exp(6σ

2
γ )
]
. (8.32)

(b) E(Y 2
iuY 2

it |ρ = 0) = Eγi [E(Y 2
iu|γi)E(Y 2

it |γi)]

= Eγi [{µ
∗
iu + µ

∗
iu

2}{µ
∗
it + µ

∗
it

2}]

= µiuµit exp(σ2
γ )
[
1+{µiu + µit}exp(2σ

2
γ )

+ µiuµit exp(5σ
2
γ )
]
. (8.33)

(c) E(Y 3
iuYit |ρ = 0) = Eγi [E(Y 3

iu|γi)E(Yit |γi)]

= Eγi [{µ
∗
iu +3µ

∗
iu

2 + µ
∗
iu

3}{µ
∗
it}]

= µiuµit exp(σ2
γ )
[
1+3µiu exp(2σ

2
γ )

+ µ
2
iu exp(5σ

2
γ )
]
. (8.34)

(d) E(Y 2
iuYivYit |ρ = 0) = Eγi [E(Y 2

iu|γi)E(Yiv|γi)E(Yit |γi)]
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= Eγi [{µ
∗
iu + µ

∗
iu

2}µ
∗
ivµ

∗
it ]

= µiuµivµit exp(3σ
2
γ )[1+ µiu exp(3σ

2
γ )]. (8.35)

(e) E(YiuYivYi`Yit |ρ = 0) = Eγi [E(Yiu|γi)E(Yiv|γi)E(Yi`|γi)E(Yit |γi)]

= Eγi [µ
∗
iuµ

∗
ivµ

∗
i`µ

∗
it ]

= µiuµivµi`µit exp(6σ
2
γ ). (8.36)

In the fashion similar to that of the GMM estimation of β by solving (8.14), we
obtain the GMM estimate for σ 2

γ by solving the GMM estimating equation

∂ψ2

∂σ2
γ

C2ψ2 = 0, (8.37)

where ψ2 = K−1 ∑K
i=1 ψ2i with ψ2i = ∑T

u≤t [yiuyit −λiut ], λiut being the expectation
of the second-order responses YiuYit for u≤ t. Note that by (8.6) and (8.8), we obtain

λiut = E[YiuYit ] =

 µit +[exp(σ2
γ )]µ2

it , for u = t

ρ t−uµiu +[exp(σ2
γ )]µiuµit for u < t,

(8.38)

so that

∂ψ2

∂σ2
γ

= K−1
K

∑
i=1

[
T

∑
t=1

[µit/2+2exp(σ2
γ )µ

2
it ]

+
T

∑
u<t

[ρ t−u
µiu/2+2exp(σ2

γ )µiuµit ]

]
.

Note that C2 in (8.37) is not easy to compute for general ρ. We rather compute this
matrix by using a ‘working’ longitudinal independence assumption; that is, ρ = 0.
The formula for C2 is then given by

C−1
2 = var

(
K−1

K

∑
i=1

ψ2i

)

= K−2

[
K

∑
i=1

T

∑
u≤`

T

∑
m≤t

φ̃iu`mt(β , σ
2
γ , ρ = 0)

]
, (8.39)

where for u≤ ` and m≤ t, the formula for

φ̃iu`mt(β , σ
2
γ , ρ = 0) = cov[YiuYi`,YimYit |ρ = 0]
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= E [YiuYi`YimYit |ρ = 0]−E[YiuYi`|ρ = 0]E[YimYit |ρ = 0]

= E [YiuYi`YimYit |ρ = 0]−λiu`|ρ=0λimt |ρ=0

can be computed by using the fourth-order moments formula given from (8.32) to
(8.36), and the second-order expectation given by (8.38). For example, when u = `
and m = t but u 6= m, the value for the fourth-order moment E[Y 2

iuY 2
im|ρ = 0] would

be computed by (8.33).

8.2.2.2 GQL Estimation for σ 2
γ :

For the estimation of σ2
γ , the GQL approach exploits the squared and the pairwise

product of the observations in a different manner from the MM approach (8.37). Let

ui = (y2
i1, . . . ,y

2
iT ,yi1yi2, . . . ,yityi,t+1, . . . ,yi,T−1yiT )′,

and write its expectation as

λi(β ,σ2
γ ,ρ) = (λi11, . . . ,λitt , . . . ,λiT T ,λi12, . . . ,λiut , . . . ,λi,T−1,T )′,

where by (8.6), one obtains

λitt ≡ λitt(β ,σ2
γ ) = E(Y 2

it ) = µit + µ
2
it exp(σ2

γ ), (8.40)

for all t = 1, . . . ,T , and by (8.8)

λiut ≡ λiut(β ,σ2
γ ,ρ) = E(YiuYit) = ρ

t−u
µiu + µiuµit exp(σ2

γ ), (8.41)

for all u < t. By using the QL principle similar to that of (8.18), one may now write
the GQL estimating equation for σ2

γ as

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
i (β ,σ2

γ ,ρ)[ui−λi(β ,σ2
γ ,ρ)] = 0, (8.42)

[Sutradhar and Jowaheer (2003)] where Ωi is the covariance matrix of ui. Note that
it is, however, extremely cumbersome to compute Ωi in general under the auto-
regression model (8.1). As a remedy, one may use a ‘working’ covariance matrix of
ui such as Ωiw(β ,σ2

γ ,ρ = 0) under the ‘working’ assumption of conditional longi-
tudinal independence; that is,

corr(Yiu,Yit |γi) = 0, (8.43)

whereas the true conditional correlation is assumed to be given by (8.3). Thus we
propose to solve the ‘working’ GQL estimating equation
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K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
iw (β ,σ2

γ ,ρ = 0)[ui−λi(β ,σ2
γ ,ρ)] = 0, (8.44)

for the estimation of σ 2
γ . Note that the GQL estimate of σ2

γ obtained from (8.44)
may not be highly efficient because of the use of a ‘working’ weight matrix. This
estimator is, however, consistent as (8.44) is an unbiased estimating equation.

Computation of Ωiw(β ,σ2
γ ,ρ = 0)

For the computation of the elements of the ‘working’ higher-order moments matrix
Ωiw(β ,σ2

γ ,ρ = 0) in (8.44), we need the formulas for the fourth-order moments
of the responses under the assumption that ρ = 0. These fourth-order moments are
given in the equations from (8.32) to (8.36), and they may now be used to compute
the elements of the Ωiw(β ,σ2

γ ,ρ = 0) matrix. For example, we use the formula for
E[Y 2

iuYivYit |ρ = 0] from (8.35) and compute

cov[(Y 2
iu,YivYit)|ρ = 0] = E[Y 2

iuYivYit |ρ = 0]−E[Y 2
iu]E[YivYit |ρ = 0]

= µiuµivµit exp(3σ
2
γ )[1+ µiu exp(3σ

2
γ )]

−[µiu + µ
2
iu exp(σ2

γ )]
{

µivµit exp(σ2
γ )
}

. (8.45)

8.2.2.3 Asymptotic Efficiency Comparison : GMM versus GQL

The means and the variances of the count responses are functions of both β and σ2
γ ,

thus we are mainly interested in examining the relative efficiency of the GMM and
GQL approaches in estimating these parameters. Below we provide the covariance
matrix of the estimator of β and the variance of the estimator of σ2

γ , under the GMM
and GQL approaches.

8.2.2.3.1 Asymptotic Variances of the GMM Estimators

The K individuals provide repeated count responses independently, thus as K →
∞, it follows from (8.14) by using the central limit theorem that the GMM based
estimator of β has the asymptotic covariance matrix given by

cov(β̂GMM) = LtK→∞

[
∂ψ ′

1

∂β
C1

∂ψ1

∂β ′

]−1

. (8.46)

Similarly, by (8.37), one derives the asymptotic variance of the GMM estimator of
σ2

γ as

var(σ̂2
γ,GMM) = LtK→∞C−1

2

[
∂ψ2

∂σ2
γ

]−2

. (8.47)

8.2.2.3.2 Asymptotic Variances of the GQL Estimators
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By similar calculations as in the GMM case, it follows from (8.18) that the asymp-
totic covariance matrix of the GQL estimator of β is given by

cov(β̂GQL) = LtK→∞

[
K

∑
i=1

∂ µ ′
i (β ,σ2

γ )
∂β

Σ
−1
i (β ,σ2

γ ,ρ)
∂ µi(β ,σ2

γ )
∂β ′

]−1

. (8.48)

Next, it follows from (8.44) that the asymptotic variance of the GQL estimator of
σ2

γ is given by

var(σ̂2
γ,GQL) = LtK→∞

[
K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
iw (β ,σ2

γ ,ρ = 0)
∂λi(β ,σ2

γ ,ρ)
∂σ2

γ

]−2

×

[
K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
iw (β ,σ2

γ ,ρ = 0)Ωi(β ,σ2
γ ,ρ)

× Ω
−1
iw (β ,σ2

γ ,ρ = 0)
∂λi(β ,σ2

γ ,ρ)
∂σ2

γ

]
. (8.49)

8.2.2.3.3 Asymptotic Efficiency Computation

One may now compute the asymptotic efficiency of the GQL estimators for the
components of β as compared to those of the GMM estimators by comparing the
respective diagonal elements of the covariance matrices given in (8.46) and (8.48).
Similarly, the asymptotic efficiency of the GQL estimator of σ2

γ to the GMM esti-
mator is found by comparing the variances in (8.47) and (8.49).

We now illustrate the relative efficiency of the GQL and GMM estimators
through a numerical example. For the purpose, we consider K = 500, p = 2, T = 4,
and use a covariate matrix with the first covariate as

xit1 =


0 for i = 1, . . . ,K/2; t = 1,2

1 for i = 1, . . . ,K/2; t = 3,4

1 for i = K/2+1, . . . ,K; t = 1, . . . ,4,

.

whereas the second covariate is chosen to be

xit2 =



1 for i = 1, . . . ,K/2; t = 1,2

1.5 for i = 1, . . . ,K/2; t = 3,4

0 for i = K/2+1, . . . ,K; t = 1,2

1 fori = K/2+1, . . . ,K; t = 3,4.

.
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Furthermore, for true parameter values, we consider β1 = β2 = 1.0, ρ = 0.8, and
σ 2

γ = 0.5, and 1.5. The asymptotic variances computed from (8.46) through (8.49)
are shown in Table 8.2 for the above selection of parameter values.

Table 8.2 Comparison of asymptotic variances of the GQL and GMM estimators for the estimation
of the regression parameters (β1 and β2), and the variance component (σ2

γ ), of a longitudinal mixed
model for count panel data, with T = 4, ρ = 0.8, and K = 500.

Asymptotic Variances
Method Quantity σ2

γ = 0.5 1.5

GQL Var(β̂1) 9.68 ×10.0−4 6.62×10.0−4

Var(β̂2) 6.74×10.0−4 4.86×10.0−4

Var(σ̂2
γ ) 7.38×10.0−5 1.08×10.0−5

GMM Var(β̂1) 4.26×10.0−3 1.93×10.0−2

Var(β̂2) 3.16 ×10.0−3 1.49×10.0−2

Var(σ̂2
γ ) 3.74×10.0−3 0.230

The results of Table 8.2 show that the variances of the estimators for all three
main parameters β1, β2, and σ2

γ , under the GQL approach are uniformly much
smaller than the corresponding variances under the GMM approach, justifying that
the GQL approach produces much more efficient estimates than the GMM approach
for all main parameters of the model. For example, when σ2

γ = 1.5, the GQL esti-
mates of β1 and β2 are, respectively,

1.93×10.0−2

6.62×10.0−4 = 29.15 and
1.49×10.0−2

4.86×10.0−4 = 30.66

times more efficient than the corresponding GMM estimates. For the estimation
of σ2

γ , the GQL approach appears to perform extra-ordinarily better than the GMM
approach. For example, for the same set of parameters, ( i.e., when ρ = 0.8 and σ2

γ =
1.5), the GQL estimate of σ 2

γ is

0.230
1.08×10.0−5 = 21296.30

times more efficient. In summary, the GQL approach performs much better than the
GMM approach in estimating all main parameters, its performance being extraordi-
narily better in estimating the variance component σ2

γ .

8.2.3 Estimation of the Longitudinal Correlation Parameter ρ

8.2.3.1 GMM Estimation for ρ
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In the fashion similar to that of the GMM estimation of σ2
γ by solving (8.37), we

obtain the GMM estimate for ρ by solving the estimating equation

∂ψ ′
3

∂ρ
C3ψ3 = 0, (8.50)

where ψ3 = K−1 ∑K
i=1 ψ3i with ψ3i = ∑T

t=2[yityi,t−1−λit,t−1], where by (8.38)

λit,t−1 = E[YitYi,t−1] = ρµi,t−1 +[exp(σ2
γ )]µi,t−1µit , (8.51)

so that
∂ψ3

∂ρ
= K−1

K

∑
i=1

T

∑
t=2

[µi,t−1]. (8.52)

Similar to the computation for C2 in (8.37), we compute C3 in (8.50) under the
‘working’ longitudinal independence assumption (ρ = 0). To be specific,

C−1
3 = var

(
K−1

K

∑
i=1

ψ3i

)

= K−2

[
K

∑
i=1

T

∑
u=2

T

∑
t=2

φiu,u−1,t,t−1(β , σ
2
γ , ρ = 0)

−

(
K

∑
i=1

T

∑
t=2

λit,t−1(β , σ
2
γ , ρ = 0)

)2
 , (8.53)

where λit,t−1 is given by (8.51), and the formula for φiu,u−1,t,t−1(β , σ2
γ , ρ = 0)

can be computed by using the fourth-order moments formula given from (8.32) to
(8.36). Note that this moment estimate can be inefficient because the weight matrix
C3 is computed by pretending that ρ = 0, when ρ itself is the parameter of interest.

8.2.3.2 ρ Estimation Under the GQL Approach

Note that the regression effect β and the variance of the random effects have been
estimated by using the GQL and the ‘working’ GQL estimating equations (8.18)
and (8.44), respectively, for a known value of ρ . But in practice ρ is rarely known.
For given β and σ 2

γ , the correlation or probability parameter (ρ) may be consistently
estimated by solving a suitable moment estimating equation that may be developed
by equating the population covariance of the data given in (8.8) with its sample
counterpart. Note that as ρ is a correlation parameter under the autoregressive order
1 setup, similar to the Gaussian setup, it would be sufficient to exploit the lag 1
autocovariance only to estimate this parameter. More specifically, as by (8.6)

E(Yit −µit)2 = σitt = µit +[exp(σ2
γ )−1]µ2

it ,
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and by (8.8)

E(Yit −µit)(Yi,t+1−µi,t+1) = ρµit +{exp(σ2
γ )−1}µit µi,t+1,

ρ may be estimated consistently by

ρ̂ =
a1−b1

g1
, (8.54)

where a1 is the observed lag 1 correlation defined as

a1 =
∑K

i=1 ∑T−1
t=1 y∗it y

∗
i(t+1)/K(T −1)

∑K
i=1 ∑T

t=1 y∗
2

it /KT
,

with y∗it = (yit −µit)/(σitt)1/2, where σitt = µit +(exp(σ2
γ )−1)µ2

it . In (8.54),

g1 =
K

∑
i=1

T−1

∑
t=1

µit(σittσi,t+1,t+1)−1/2/K(T −1),

and

b1 = (exp(σ2
γ )−1)

K

∑
i=1

T−1

∑
t=1

mitmi,t+1/K(T −1),

with mit = µit/(σitt)1/2.
Note that at every stage of iterations the estimate of ρ from (8.54) must satisfy the

range restriction (8.4). In case the estimate falls outside the boundary of this range
in a given iteration, we use the upper or lower limit as appropriate as the estimate
under that iteration.

8.2.4 A Simulation Study

To examine the finite sample performance of the GQL approach for the estima-
tion of all three parameters, namely β , σ2

γ , and ρ, Sutradhar and Bari (2007) con-
ducted an extensive simulation study for both balanced and unbalanced designs.
The data were generated following the model (8.1) for K = 100 individuals based
on p = 2 covariates with their effects β1 = 0.0, β2 = 0.0; and for various values
of σ2

γ = 0.25, 0.5, 0.75, and 1.0; and ρ = 0.25, 0.5, and 0.75. We consider here
σ2

γ = 0.5, and 1.0; and ρ = 0.5, and 0.75.

A Balanced Design (D1)

As far as the covariates are concerned, they are available from all K = 100 individ-
uals for all time points t = 1, . . . ,4. The covariates are chosen as
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xit1 =



1/2 for i = 1, . . . ,K/4; t = 1,2

0 for i = 1, . . . ,K/4; t = 3,4

−1/2 for i = K/4+1, . . . ,3K/4; t = 1

0 for i = K/4+1, . . . ,3K/4; t = 2,3

1/2 for i = K/4+1, . . . ,3K/4; t = 4

t/8 for i = 3K/4+1, . . . ,K; t = 1, . . . ,4,

,

Pr(xit2 = 1) =

0.3 for t = 1
0.5 for t = 2,3
0.8 for t = 4.

.

We now generate the data following the model (8.1) based on the aforementioned
covariates and parameter values. Consider 1000 simulations. In each simulation,
for the full model (8.1), we obtain the GQL estimates for β = (β1,β2)′ and σ2

γ

by using the estimating equations (8.18) and (8.44), respectively. The correlation
parameter (ρ) is estimated by (8.54). The simulated mean, simulated standard error,
and simulated relative bias (SRB) computed by

SRB =
Absolute Bias

SSE
×100

for the full model are reported in Table 8.3.

Table 8.3 Simulated mean, simulated standard error, and simulated relative bias of the GQL es-
timates for parameters of the nonstationary longitudinal mixed model with the balanced design
(D1), for selected values of σ2

γ and ρ; K = 100; T = 4; β1 = β2 = 0.0; 1000 simulations.

Variance Correlation Estimates
Component (σ2

γ ) Parameter(ρ) Quantity β̂1 β̂2 σ̂2
γ ρ̂

0.50 0.50 SM 0.028 −0.014 0.424 0.522
SSE 0.148 0.089 0.186 0.094
SRB 19 16 41 23

0.75 SM 0.012 −0.014 0.430 0.754
SSE 0.117 0.088 0.202 0.063
SRB 10 16 35 6

1.0 0.50 SM 0.017 −0.008 0.833 0.500
SSE 0.162 0.089 0.244 0.135
SRB 11 9 68 0

0.75 SM −0.011 0.000 0.823 0.746
SSE 0.124 0.091 0.222 0.086
SRB 9 0 80 1
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An Unbalanced Design (D2)

Note that even though the GQL estimating equations for β (8.18) and σ2
γ (8.44),

and the moment estimation of ρ by (8.54) were developed for balanced longitudinal
data, they can easily be modified for unbalanced data. More specifically, the esti-
mating equations for β (8.18) and σ2

γ (8.44) may be adjusted for the unbalanced
case by using Ti for T for the ith (i = 1, . . . ,K) individual. The moment estimating
formula (8.54) for ρ requires minor adjustment for all three quantities a1, b1, and
g1. Thus, under the present unbalanced case, the formula for a1, b1, and g1 may be
written as

a1 =
∑K

i=1 ∑Ti−1
t=1 y∗it y

∗
i(t+1)/∑K

i=1(Ti−1)

∑K
i=1 ∑Ti

t=1 y∗
2

it /∑K
i=1 Ti

b1 = (exp(σ2
γ )−1)

K

∑
i=1

Ti−1

∑
t=1

mitmi,t+1/
K

∑
i=1

(Ti−1)

g1 =
K

∑
i=1

Ti−1

∑
t=1

µit(σittσi,t+1,t+1)−
1
2 /

K

∑
i=1

(Ti−1), (8.55)

with mit = µit/(σitt)1/2. Also note that the GQL estimation technique is not re-
stricted to any particular values of the regression parameters. Thus, in this simula-
tion study for the unbalanced data, we choose nonzero regression effects, namely
β1 = 1.0 and β2 = 0.5. The values of σ2 and ρ remain the same, for example, as in
the last simulation study conducted for the balanced data. As far as the unbalanced
design for the covariates is concerned, we choose them as

xit1 =



−1.0 for i = 1, . . . ,K/2; t = 1,2

1.0 for i = 1, . . . ,K/2; t = 3,4

−1/2 for i = K/2+1, . . . ,3K/4; t = 1

0 for i = K/2+1, . . . ,3K/4; t = 2,3

1/2 for i = K/2+1, . . . ,3K/4; t = 4

t/6 for i = 3K/4+1, . . . ,K; t = 1, . . . ,3,

.

and
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Pr(xit2 = 1) =



0.3 for i = 1, . . . ,3K/4; t = 1

0.5 for i = 1, . . . ,3K/4; t = 2,3

0.8 for i = 1, . . . ,3K/4; t = 4,

0.3 for i = 3K/4+1, . . . ,K; t = 1,

0.5 for i = 3K/4+1, . . . ,K; t = 2,

0.8 for i = 3K/4+1, . . . ,K; t = 3,

.

The simulation results for the present unbalanced design case are reported in
Table 8.4. Note that in this simulation study, we have used ∑K

i=1 Ti = 375, whereas
in the balanced design case, we considered KT = 400.

Table 8.4 Unbalanced design (D2) based simulated mean, simulated standard error, estimated
standard error, and simulated relative bias of the GQL estimates for parameters of the nonstationary
longitudinal mixed model with two covariates for selected values of σ2

γ and ρ; K = 100; β1 = 1.0
and β2 = 0.5; 1000 simulations.

Variance Correlation Estimates
Component (σ2

γ ) Parameter(ρ) Quantity β̂1 β̂2 σ̂2
γ ρ̂

0.50 0.50 SM 0.971 0.510 0.478 0.458
SSE 0.146 0.086 0.192 0.098
ESE 0.178 0.109 0.279 −
SRB 20 12 11 43

0.75 SM 0.960 0.516 0.498 0.695
SSE 0.134 0.091 0.211 0.102
ESE 0.184 0.112 0.310 −
SRB 30 17 1 54

1.0 0.50 SM 0.955 0.493 0.810 0.469
SSE 0.150 0.093 0.206 0.091
ESE 0.208 0.131 0.362 −
SRB 30 8 92 35

0.75 SM 0.949 0.501 0.811 0.676
SSE 0.132 0.095 0.199 0.114
ESE 0.184 0.130 0.316 −
SRB 38 1 95 65

With regard to the estimation of the regression effect, both Tables 8.3 and 8.4
show that the GQL estimating equation (8.18) appears to perform well. To estimate
the overdispersion parameter (σ2

γ ), the GQL estimating equation (8.44) appears to
underestimate this parameter, the estimates being better for small values of σ2

γ . The
moment estimation for the longitudinal correlation parameter ρ appears to work
extremely well in the balanced data case (8.54), whereas in the unbalanced case,
the moment formula (8.55) appears to underestimate this correlation parameter ρ .
For example, for σ2

γ = 0.5 and ρ = 0.75, the balanced design based results from



8.2 Parameter Estimation 343

Table 8.3 show that the estimates of β1 = 0.0, β2 = 0.0, σ2
γ , and ρ are found to

be 0.012, −0.014, 0.430, and 0.754, respectively with relative bias 10, 16, 35, and
6. Similarly, for the same values of σ2

γ and ρ, the unbalanced design based results
from Table 8.4 show that the estimates of β1 = 1.0, β2 = 0.5, σ2

γ , and ρ are found to
be 0.960, 0.516, 0.498, and 0.695, respectively, with relative bias 30, 17, 1, and 54.

Note that because the exact computation of the fourth-order weight matrix Ωi

in (8.42) is either impossible or extremely difficult, we have approximated it by a
‘working’ conditional independence (ρ = 0) assumption based weight matrix, for
the estimation of σ2

γ by (8.44). This approximation yielded slightly biased estimates
both in Tables 8.3 and 8.4, especially when the true value of σ2

γ was large. Some
authors have used a different approximation such as ‘working’ multivariate normal-
ity based approximation to the weight matrix, where, for the purpose of computing
the weight matrix only, it is pretended that the repeated responses of an individual
follow the multivariate normal distribution with correct count mean vector and co-
variance matrix. See, for example, Jowaheer and Sutradhar (2002) [see also Prentice
and Zhao (1991) in the context of fixed longitudinal models] for such an approxi-
mation under a longitudinal model for negative binomial count data. This normality
based approximation for the improvement of σ2

γ estimation is discussed further in
Section 8.3 in the context of a conditional serially correlated model with a deflated
marginal mean as compared to the marginal mean (8.5) under the model (8.1).

We now turn back to examine how different simpler ‘working’ approximations
can negatively affect the estimation of nonregression parameters. More specifically,
in Section 8.2.4.1, we check through a simulation study, the model misspecification
effect of completely ignoring ρ on the estimation of β and σ2

γ . Similarly in Section
8.2.4.2, we conduct another simulation study to examine the model misspecification
effect of completely ignoring σ2

γ on the estimation of β and ρ.

8.2.4.1 Estimation Under the ‘Working’ Conditional Independence (ρ = 0)
Model

The purpose of this section is to examine the effect of using the assumption ρ = 0 in
estimating both β and σ2

γ parameters. Note that this is different from the estimation
of σ2

γ by using ‘working’ independence based fourth-order matrix as a weight in the
GQL estimating equation (8.44). Here the data are generated under the full model
(8.1), but the parameters β and σ2

γ are estimated by writing the GQL estimating
equations for β and σ2

γ under the conditional independence (ρ = 0) assumption.
As far as the estimating equations for β and σ2

γ under the condition ρ = 0, are
concerned, the ‘working’ independence based GQL estimating equation for β , fol-
lowing (8.18), may be written as

K

∑
i=1

∂ µ ′
i (β ,σ2

γ )
∂β

Σ
−1
i (β ,σ2

γ ,ρ = 0)[yi−µi(β ,σ2
γ )] = 0. (8.56)
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Similarly, the ‘working’ independence based GQL estimating equation for σ2
γ , fol-

lowing (8.44), may be written as

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ = 0)
∂σ2

γ

Ω
−1
iw (β ,σ2

γ ,ρ = 0)[ui−λi(β ,σ2
γ ,ρ = 0)] = 0. (8.57)

Note that the Σi(β ,σ2
γ ,ρ = 0) in (8.56) may easily be computed by putting ρ = 0

in the formulas for the elements of the Σi(β ,σ2
γ ,ρ) matrix defined in (8.18). Simi-

larly, the formulas for λi(β ,σ2
γ ,ρ = 0) in (8.44) may be computed by putting ρ = 0

in the formula for λiut(β ,σ2
γ ,ρ) defined in (8.41). Furthermore, the fourth-order mo-

ments based weight matrix Ωiw(β ,σ2
γ ,ρ = 0) in (8.57) is the same as that of (8.44),

and hence no additional computation is required.

Table 8.5 [Estimation effects when ρ is ignored (ρ = 0)] Simulated mean, simulated standard er-
ror, and simulated relative bias of the GQL estimates for parameters of the pretended nonstationary
mixed model with two covariates for selected values of σ 2

γ and ρ; K = 100; T = 4; β1 = β2 = 0.0;
1000 simulations.

Convergent Variance Correlation Estimates
Simulations Component (σ2

γ ) Parameter(ρ) Quantity β̂1 β̂2 σ̂2
γ

68 0.50 0.50 SM 0.042 −0.028 1.099
SSE 0.138 0.095 0.261
SRB 30 30 330

0 0.75 SM − − −
SSE − − −
SRB − − −

41 1.0 0.50 SM 0.013 −0.012 1.879
SSE 0.167 0.080 0.935
SRB 8 15 94

5 0.75 SM 0.034 −0.063 3.601
SSE 0.127 0.066 0.148
SRB 27 96 1757

Now by generating the data under the full model (8.1), but by computing β and
σ 2

γ from (8.56) and (8.57), respectively, one obtains the misspecified model based
estimates. These estimates are reported in Table 8.5. Note that the results of the table
indicate that the conditional independence (ρ = 0) assumption encountered serious
convergence problems. To be specific, when the true ρ is large but it was considered
to be 0 (i.e., ρ = 0), there are almost no convergent simulations. This shows that
one may not be able to estimate β and σ2

γ by ignoring the longitudinal correlation
parameter. In simulations, particularly for small ρ , where the convergence problem
was not so serious, the estimates of β1 and β2 are found to be satisfactory, whereas
the estimates of σ2

γ are found to be highly positively biased and hence not trustwor-
thy.
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8.2.4.2 Estimation Under the ‘Working’ Longitudinal Fixed (σ2
γ = 0) Model

In this section, we examine the effect of ignoring the random effects on the esti-
mation of β and ρ . To be specific, even though the responses are generated in the
presence of β , σ2

γ , and ρ , we, however, estimate the β and ρ parameters under the
assumption that σ2

γ = 0. In this case, the regression parameter β is estimated by
solving the GQL estimating equation given by

K

∑
i=1

∂ µ ′
i (β ,σ2

γ = 0)
∂β

Σ
−1
i (β ,σ2

γ = 0,ρ)[yi−µi(β ,σ2
γ = 0)] = 0, (8.58)

where µi(β ,σ2
γ = 0) and Σi(β ,σ2

γ = 0,ρ) are obtained by evaluating µi(β ,σ2
γ ) and

Σi(β ,σ2
γ ,ρ) with σ2

γ = 0.
For the estimation of ρ when σ2

γ = 0, we still can use the formula

ρ̂ =
a1−b1

g1
,

following (8.54), but a1, b1, and g1 have to be evaluated at σ2
γ = 0. For example,

a1(σ2
γ = 0) =

∑K
i=1 ∑T−1

t=1 ỹit ỹi(t+1)/K(T −1)

∑K
i=1 ∑T

t=1 ỹ
2

it/KT
,

where ỹit = (yit −µit|σ2
γ =0)/σ

1/2
itt|σ2

γ =0
. The simulation results are given in Table 8.6.

Table 8.6 [Estimation effects when σ2
γ is ignored (σ2

γ = 0)] Simulated mean, simulated standard
error, and simulated relative bias of the GQL estimates for parameters of the pretended nonstation-
ary longitudinal fixed model with two covariates for selected values of σ2

γ and ρ; K = 100; T = 4;
β1 = β2 = 0.0; 1000 simulations.

Variance Correlation Estimates
Component (σ2

γ ) Parameter(ρ) Quantity β̂1 β̂2 ρ̂

0.50 0.50 SM 0.040 −0.018 0.683
SSE 0.145 0.089 0.058
SRB 28 20 316

0.75 SM 0.015 −0.017 0.836
SSE 0.115 0.088 0.043
SRB 13 19 200

1.0 0.50 SM 0.023 −0.012 0.775
SSE 0.150 0.087 0.049
SRB 15 14 561

0.75 SM −0.008 −0.007 0.884
SSE 0.121 0.092 0.037
SRB 7 8 362
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The results of Table 8.6 show that the estimates of β1 and β2 are slightly biased,
whereas the SRB for the estimate of ρ is much larger as compared to that of Ta-
ble 8.3. For example, when the true value of σ 2

γ is 1.0 but the estimates of β1 = 0.0,
β2 = 0.0, and ρ = 0.75 are obtained under the fixed model assumption (i.e., σ2

γ = 0),
the SRBs for β1, β2, and ρ are found to be 7, 8, and 362, respectively, whereas the
corresponding SRBs are 9, 0, and 1, respectively, under the full model (Table 8.3).
This shows significant detrimental effects on the estimation of ρ due to ignoring the
σ2

γ .
When the results of these two Tables 8.5 and 8.6 are summarized, it appears that

the model misspecification has detrimental effects mainly on the estimation of non-
regression parameters. More specifically, the estimation of σ2

γ (Table 8.5) by ignor-
ing the longitudinal correlations appears to have serious nonconvergence problems.

8.2.5 An Illustration: Analyzing Health Care Utilization Count
Data by Using Longitudinal Fixed and Mixed Models

In Chapter 6 (see Section 6.7), a health care utilization dataset was analyzed by fit-
ting a fixed longitudinal model under the assumption that the four repeated count
responses from each of 144 individuals follow a Poisson AR(1) type correlation
model. Note that the health care utilization data given in Appendix 6A contains the
record of the number of physician visits by 180 individuals. Among them, each of
the 36 additional (to what was considered in Section 6.7) individuals had a record
of repeated count responses for three years. Thus, the data are unbalanced, whereas
in Section 6.7 we analyzed the larger balanced segment of the data. Sutradhar and
Bari (2007) have reanalyzed this complete unbalanced dataset by considering an
additional assumption that the repeated responses may further be influenced by an
individual random effect. They have, thus, used the conditionally serially correlated
model (8.1) to fit the data, whereas the model used in Section 6.7 was serially cor-
related without any attention to the individual random effects.

Note that even though we consider the complete data record from 180 individu-
als, it was found that four individuals had visibly distinct outlier responses. To un-
derstand the nature of the bulk of the data, for convenience, we have ignored these
four responses and analyzed the data by using a possible nonstationary (due to age)
correlation structure based longitudinal Poisson mixed model. Note that as opposed
to the longitudinal fixed model (Chapter 6), the fitting of a longitudinal mixed model
to this data set appears to be more reasonable. This is because as shown in Table 8.7,
the average variation (for 176 individuals) of longitudinal responses was found to
be 7.417 as opposed to the average sample mean 3.932. Thus the data appear to ex-
hibit some overdispersion which motivated us to use the longitudinal Poisson mixed
model instead of longitudinal Poisson fixed model.
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Table 8.7 Observed and estimated summary statistics for health data for 176 individuals under
both longitudinal mixed and longitudinal fixed models.

Quantity Sample Estimated Based on Estimated based on
LM model LF model

Mean 3.932 3.966 3.690
Variance 7.417 7.674 3.690

Table 8.8 Estimates of regression and variance component parameters with their estimated stan-
dard errors, as well as estimates of autocorrelations, under both longitudinal mixed and longitudinal
fixed models for health data.

Model Quantity Gender No. of Chronic Education Age Variance Correlation
Disease Component(σ2) Parameter(ρ)

LM Estimate −0.481 0.571 0.350 0.024 0.150 0.294
ESE 0.069 0.077 0.065 0.001 0.076 −

LF Estimate −0.383 0.562 0.302 0.023 − 0.575
ESE 0.051 0.060 0.047 0.001 − −

Note that in the present analysis, the education level was coded in a reverse way
as compared to that of Section 6.7 [see also Sutradhar (2003)], whereas the other
covariates were coded in the same way. By applying the GQL estimating equation
(8.18) for unbalanced data, we have obtained the estimates of the effects of gen-
der (β̂1), chronic disease status (β̂2), education level (β̂3), and age (β̂4). Next, we
have used the ‘working’ GQL estimating equation (8.44) for unbalanced data for
the estimation of the random effects variance component σ2

γ . Also, the longitudinal
correlation parameter (ρ) was estimated by the moment equation (8.54) using for-
mulas from (8.55) for the unbalanced data. The estimates along with their standard
errors are given in Table 8.8.

Furthermore, the GQL approach was applied to estimate the regression effects
and longitudinal correlation parameter by ignoring the presence of overdispersion.
The results under this longitudinal fixed model (shown in the same Table 8.8) appear
to agree quite well with those of Section 6.7. Note, however, that when the estimates
under both a mixed and a fixed model were used to compute the fitted mean and
variance of the data (Table 8.7), the results based on the mixed model appear to
agree quite well with the sample mean and variance as compared to those of the
fixed model. Because of this good agreement, in Figure 8.1, we exhibit the plots
for the means and variances of longitudinal values of 176 individuals computed (1)
from the sample as well as (2) from the fitted values based on the mixed model.
The sample means and variances appear to agree quite well with the corresponding
means and variances estimated based on the mixed model.
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Fig. 8.1 Average and variance of T = 4 longitudinal counts and corresponding estimates for 176
individuals.

Recall from the simulation study (Table 8.6) that when σ2
γ was ignored but the

data were generated following the full model, the longitudinal correlation was in
general overestimated. The results in Table 8.8 appear to follow this pattern. This is
because under the fixed model, ρ̂ was found to be 0.575 as compared to ρ̂ = 0.294
under the mixed model. This also indicates that it is better to use the mixed model
based results for this dataset as compared to those of the fixed model in Section 6.7.

8.3 A Mean Deflated Conditional Serially Correlated Model

When it is assumed that
γi

i.i.d.∼ N(0,σ2
γ ),

one may still consider that the conditional model (8.1) holds for the repeated re-
sponses, but with a deflated marginal mean such that yit ∼ Poi(µ∗

it) with

µ
∗
it = E[Yit |γi] = exp[x′itβ −

1
2

σ
2
γ + γi], (8.59)
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yielding the unconditional mean as

µit = E[Yit ] = exp(x′itβ ). (8.60)

Note that this unconditional mean is free from σ2
γ , whereas the unconditional mean

under the model (8.1) is µit = exp(x′itβ + 1
2 σ2

γ ), as given in (8.5). The formulas for
the elements of Σi = cov[Yi] remain the same as in (8.6) and (8.8), except that µit for
these formulas is now defined by (8.60).

8.3.1 First− and Second-Order Raw Response Based GQL Estimation

Under the present mean deflated model, the GQL estimating equation (8.18) for β

takes the form
K

∑
i=1

∂ µ ′
i (β )

∂β
Σ
−1
i (β ,σ2

γ ,ρ)[yi−µi(β )] = 0, (8.61)

where the µi(·) vector is free from σ2
γ . Also, the ρ parameter is estimated by the

method of moments using the formula in (8.54) except that µit = exp(x′itβ ) under
the mean deflation model.

For the estimation of σ2
γ , one may, however, use one of the following two ‘work-

ing’ GQL approaches.

8.3.1.1 GQL(I) Approach for σ2
γ Estimation

The formulas for the ‘working’ independence assumption based GQL estimating
equation for σ2

γ remains the same as in (8.44), except that µit = exp(x′itβ ) is now free
from σ2

γ . Note that this new formula for the mean function µit has to be taken into
account when derivatives are computed for (8.44) to derive the estimating equation
for σ2

γ . To make even more clear, the GQL(I) represents the GQL approach where
σ2

γ is solved by using the ‘working’ independence (I) assumption based estimating
equation, whereas the regression and the longitudinal correlation parameters are
estimated by using the exact GQL and method of moments, respectively.

In the next approach, σ2
γ is computed by solving a GQL estimating equation

with weight matrix computed based on a ‘working’ normality (N) assumption for
the count responses. This approach is referred to as the GQL(N) approach.

8.3.1.2 GQL(N) Approach for σ2
γ Estimation

In this approach, β is estimated by using the GQL estimating equation (8.61), and
the ρ parameter is estimated by the method of moments using µit = exp(x′itβ ) in
(8.54). However, for the estimation of σ2

γ , as opposed to solving the independence
assumption based ‘working’ GQL estimating equation (8.44), we now solve the
normality based ‘working’ GQL estimating equation
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K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
iN (β ,σ2

γ ,ρ)[ui−λi(β ,σ2
γ ,ρ)] = 0, (8.62)

where for
ui = (y2

i1, . . . ,y
2
iT ,yi1yi2, . . . ,yityi,t+1, . . . ,yi,T−1yiT )′,

one writes

λi(β ,σ2
γ ,ρ) = E[Ui] = (λi11, . . . ,λitt , . . . ,λiT T ,λi12, . . . ,λiut , . . . ,λi,T−1,T )′,

with

λiut = E[YiuYit ] =

 µit +[exp(σ2
γ )]µ2

it , for u = t

ρ t−uµiu +[exp(σ2
γ )]µiuµit for u < t,

(8.63)

where µit = x′itβ .
To compute the Ω

−1
i,N matrix for (8.62), we pretend that even though the response

vector yi = (yi1, . . . ,yiT )′ of the repeated counts for the ith firm/individual are gener-
ated by AR(1) type count data model [(8.1 and 8.59)], they follow a ‘working’ mul-
tivariate normal distribution N(µi,Σi), where µi and Σi are the true mean vector and
covariance matrix of yi as in (8.61). Note that for the vector of count responses yi,
the elements of the µi vector are given by (8.60) and the diagonal and off-diagonal
elements of the Σi matrix are given by

σiut = λiut −µiuµit , for u≤ t,

where λiut is given in (8.63). Next, these variances and covariances are used to com-
pute the product moments of order four E[YiuYitYi`Yim], under the normality assump-
tion. These product moments are then used to compute the ‘working’ fourth-order
moments matrix Ωi,N .

Note that under normality,

E[(Yiu−µiu)(Yit −µit)(Yi`−µi`)(Yim−µim)] = σiutσi`m +σiu`σitm +σiumσit`.
(8.64)

Let
δiut` = E[YiuYitYi`] (8.65)

be the third-order product moments. By using (8.64), one may then obtain the
fourth-order product moments under the normality as

E[YiuYitYi`Yim] = σiutσi`m +σiu`σitm +σiumσit`

+δiut`µim +δiutmµi` +δiu`mµit +δit`mµiu

−σiut µi`µim−σiu`µit µim−σiumµit µi`−σit`µiuµim

−σitmµiuµi`−σi`mµiuµit +3µiuµit µi`µim. (8.66)
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As far as the third-order product moments are concerned, the normality based equa-
tion

E[(Yiu−µiu)(Yit −µit)(Yi`−µi`)] = 0, (8.67)

yields them as

δiut` = σiut µi` +σiu`µit +σit`µiu−2µiuµit µi`. (8.68)

8.3.2 Corrected Response (CR) Based GQL Estimation

Note that the computation of the ΩiN by using (8.66) and (8.68) is straightforward
but lengthy. To reduce the computational burden, one may use a corrected (from
mean) second-order response vector based ‘working’ GQL approach for the estima-
tion of σ2

γ . The regression effects β and the longitudinal correlation parameter ρ,
are still estimated by solving (8.61) and (8.54), respectively.

Consider a {T (T +1)/2}-dimensional vector statistic

g∗i = [(yi1−µi1)2, . . . ,(yiT −µiT )2,(yi1−µi1)(yi2−µi2),
. . . ,(yi(T−1)−µi(T−1))(yiT −µiT )]′, (8.69)

based on corrected squared and pairwise products. Let σ̃i be the mean of g∗i . Note
that because Σi, the covariance matrix of the response vector yi, is known by (8.60)
and (8.61), the elements of the σ̃i vector are nothing but the selected elements of the
Σi matrix. In notation,

σ̃i = [σi11, . . . ,σiT T ,σi12, . . . ,σi(T−1)T ]′, (8.70)

where
σitt = µit + cµ

2
it ,

and for t < w,
σitw ≡ σiwt = ρ

w−t
µit + cµit µiw,

with µit = exp(x′itβ ), and c = [exp(σ 2
γ )−1]. Suppose that the covariance matrix of

g∗i is denoted by Ω ∗
i (β , σ2

γ , ρ).

8.3.2.1 GQL(CR-I) Estimation for σ2
γ

By using the distance vector g∗i − σ̃i, in the manner similar to that of the GQL(I) ap-
proach [see also (8.44)], one may construct the ‘working’ GQL estimating equation
for σ2

γ as
K

∑
i=1

∂ σ̃ ′
i

∂σ2
γ

Ω
∗−1

i (β , σ
2
γ , ρ = 0)(g∗i − σ̃i) = 0, (8.71)

where

∂ σ̃ ′
i

∂σ2
γ

= [σ̃i11, . . . , σ̃iT T , σ̃i12, . . . , σ̃i(T−1)T ]′
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= exp(σ2
γ )[µ2

i1, . . . ,µ
2
iT ,µi1µi2, . . . ,µi,T−1µiT ]′

= ṽ′i (say). (8.72)

Let σ̂2
γ,GQL(CR−I) be the solution of (8.71) for σ2

γ . By abbreviating Ω ∗
i (β , σ2

γ , ρ =
0) with Ω ∗

i (I), this estimate may be obtained by using the iterative equation

σ̂
2
γ,(m+1) = σ̂

2
γ,(m) +

[
K

∑
i=1

ṽ′iΩ
∗−1

i (I)ṽi

]−1

m

[
K

∑
i=1

ṽ′iΩ
∗−1

i (I)(g∗i − σ̃i)

]
m

. (8.73)

Furthermore, one may show [see also (8.49)] that K1/2(σ̂2
γ,GQL(CR−I) −σ

2
γ ) has a

univariate normal distribution, as K → ∞, with mean zero, and the variance which
can be consistently estimated by

K

[
K

∑
i=1

ṽ′iΩ
∗−1

i (I)ṽi

]−2[ K

∑
i=1

ṽ′iΩ
∗−1

i (I)(g∗i − σ̃i)(g∗i − σ̃i)′Ω ∗−1
i (I)ṽi

]
. (8.74)

Construction of Ω ∗
i (I)

As far as the formulas for the elements of the Ω ∗
i (I) matrix are concerned, we pro-

vide them through Lemma 8.1 and Exercise 8.1.

Lemma 8.1 The formulas for var[(Yit − µit)2] and cov[(Yit − µit)2,(Yit − µit)(Yis −
µis)] are given by

var[(Yit −µit)2] = µit +{7exp(σ2
γ )−4}µ

2
it +6{exp(3σ

2
γ )−2exp(σ2

γ )+1}µ
3
it

+{exp(6σ
2
γ )−4exp(3σ

2
γ )+6exp(σ2

γ )−3}µ
4
it −σ

2
itt , (8.75)

and

cov[(Yit −µit)2 , (Yit −µit)(Yis−µis)] = µit µis
[
{exp(σ2

γ )−1}+3{exp(3σ
2
γ )

−2exp(σ2
γ )+1}µit

]
−σittσits(0), (8.76)

respectively, where σitt is the variance of yit as given by (8.70), and σits(0) = cµit µis

is the covariance between yit and yis evaluated from (8.70) at ρ = 0.

Proof of Lemma 8.1: To derive the formula in (8.75), we re-express the variance as

var[(Yit −µit)2] = E(Yit −µit)4−{E(Yit −µit)2}2

= EγiE[{(Yit −µ
∗
it)+(µ

∗
it −µit)}4|γi]−σ

2
itt
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= EγiE[{Z4
it +4Z3

itbit +6Z2
itb

2
it +4Zitb

3
it +b4

it}|γi]

−σ
2
itt , (8.77)

with Zit = Yit − µ∗
it and bit = µ∗

it − µit . The result in (8.75) may now be obtained
from (8.77) by noting the fact that conditional on γi, Yit has the Poisson distribution
with mean parameter µ∗

it ; that is,

E(Zit |γi) = 0, E(Z2
it |γi) = E(Z3

it |γi) = µ
∗
it , and E(Z4

it |γi) = µ
∗
it +3µ

∗2
it ,

and

bit = µ
∗
it −µit = exp(x′itβ −

1
2

σ
2
γ ){wi− exp(

1
2

σ
2
γ )},

where

E{Wi− exp(
1
2

σ
2
γ )}2 = exp(σ2

γ ){exp(σ2
γ )−1}, (8.78)

E{Wi− exp(
1
2

σ
2
γ )}3 = exp(

9
2

σ
2
γ )+2exp(

3
2

σ
2
γ )−3exp(

5
2

σ
2
γ ), (8.79)

E{Wi− exp(
1
2

σ
2
γ )}4 = exp(8σ

2
γ )+6exp(3σ

2
γ )

−4exp(5σ
2
γ )−3exp(2σ

2
γ ). (8.80)

The formula for the covariance in (8.76) may be obtained similarly.

8.3.2.2 GQL(CR-N) Estimation σ 2
γ

Under this approximation, instead of the independence assumption based estimat-
ing equation (8.71), one solves the normality assumption based estimating equation
given by

K

∑
i=1

∂ σ̃ ′
i

∂σ2
γ

Ω
∗−1

i,N(β ,σ2
γ ,ρ)(g∗i − σ̃i) = 0, (8.81)

to obtain a ‘working’ GQL estimate for σ 2
γ . Because g∗i in (8.81) is a vector of

corrected squares and cross-products of repeated count responses as in (8.69), the
fourth-order moments matrix Ω ∗

i,N(β ,σ2
γ ,ρ) in (8.71), under normality assumption,

may be computed simply by applying the equation (8.64); that is,

E[(Yiu−µiu)(Yit −µit)(Yi`−µi`)(Yim−µim)] = σiutσi`m +σiu`σitm +σiumσit`,

where σitt , for example, by (8.63), has the formula

σitt = µit +[exp(σ2
γ )−1]µ2

it ,

with µit = exp(x′itβ ).
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8.3.3 Relative Performances of GQL(I) and GQL(N) Estimation Approaches:
A Simulation Study

A simulation study conducted in Section 8.2.4 suggested that the GQL(I) approach
produces almost unbiased estimates for the regression (β ) and longitudinal corre-
lation (ρ) parameters, but it underestimated the overdispersion parameter σ2

γ , es-
pecially when the true value of σ2

γ is large. We remark that this underestimation
happens because of the approximation required to construct the GQL estimating
equation in the longitudinal mixed model setup, whereas the GQL approach in the
familial mixed model setup does not require any such approximations and yields an
almost unbiased estimate for this overdispersion parameter (see Table 4.6, Section
4.2.7, for example). In this section, we examine whether the normality approxima-
tion based GQL(N) approach improves the estimation, mainly for σ2

γ . This we do,
however, under the present mean deflated model. As far as the simulation design is
concerned, we use the same balanced design D1 as used in the simulation study in
Section 8.2.4.

For the sake of completeness, we use all four approximations, namely the
GQL(I), GQL(N), GQL(CR-I), and GQL(CR-N) approaches, and estimate all three
parameters β , ρ, and σ2

γ .

8.3.3.1 Performance for Overdispersion Estimation

The simulated mean, standard error, and mean squared error are reported in Ta-
ble 8.9 for the overdispersion parameter σ2

γ under all four approximations.
The results of Table 8.9 suggest that GQL(CR-I) approximation provides an es-

timate of σ2
γ with smaller MSE as compared to the GQL(I) approximation. Simi-

larly, between the normality based approximations GQL(N) and GQL(CR-N), the
GQL(CR-N) approximation produces the σ2

γ estimate with smaller MSE as com-
pared to the GQL(N) approximation.

For example, when ρ = 0.75, the GQL(I) approximation based approach es-
timates σ 2

γ = 0.75 with MSE 0.067, whereas the GQL(CR-I) approach estimates
this parameter value with smaller MSE 0.053. Similarly, the same parameter value
is estimated by GQL(N) and GQL(CR-N) approximations with MSE 0.128 and
0.041, respectively. Thus the corrected response based approximations appear to
perform better as compared to their corresponding raw response based approxima-
tions. This pattern appears to hold for all parameter values considered in Table 8.9.
Among all four approximations, the GQL(CR-N) approximation performs the best
and GQL(N) approximation is the worst. Note that the GQL(CR-N) approximation
attains the smallest MSE because of the smallest standard error of the estimate.
Thus the efficiency gain by the GQL(CR-N) approximation may be quite significant
as compared to the other three approximations in estimating the overdispersion pa-
rameter σ2

γ . In summary, normality based approximation appears to work well when
CRs are used to construct the GQL estimating equation. If raw or uncorrected re-
sponses are used, independence assumption based approximation works better than
the normality based approximation. Further note that irrespective of the approxima-
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Table 8.9 Overdispersion estimation: Simulated mean, simulated standard error, and simulated
mean squared errors of the GQL estimates for the overdispersion parameter σ2

γ , based on GQL(I),
GQL(CR-I), GQL(N), and GQL(CR-N) approximations, for selected values of σ2

γ and ρ; K = 100;
T = 4; β1 = β2 = 0.0; 1000 simulations.

Approximation
True σ2

γ True ρ Quantity GQL(I) GQL(CR-I) GQL(N) GQL(CR-N)
0.25 0.25 SM 0.247 0.248 0.377 0.235

SSE 0.148 0.126 0.267 0.079
SMSE 0.022 0.016 0.087 0.006

0.50 SM 0.247 0.247 0.408 0.237
SSE 0.171 0.130 0.340 0.103
SMSE 0.029 0.017 0.141 0.011

0.75 SM 0.296 0.281 0.371 0.242
SSE 0.193 0.172 0.280 0.135
SMSE 0.039 0.030 0.093 0.018

0.50 0.25 SM 0.457 0.457 0.470 0.456
SSE 0.187 0.163 0.211 0.106
SMSE 0.037 0.028 0.045 0.013

0.50 SM 0.456 0.458 0.525 0.452
SSE 0.205 0.179 0.292 0.128
SMSE 0.044 0.034 0.086 0.019

0.75 SM 0.594 0.572 0.595 0.507
SSE 0.239 0.203 0.327 0.175
SMSE 0.066 0.046 0.116 0.031

0.75 0.25 SM 0.771 0.762 0.802 0.754
SSE 0.212 0.180 0.194 0.133
SMSE 0.045 0.032 0.040 0.018

0.50 SM 0.795 0.785 0.799 0.742
SSE 0.227 0.198 0.281 0.158
SMSE 0.053 0.040 0.081 0.025

0.75 SM 0.806 0.790 0.847 0.746
SSE 0.253 0.226 0.344 0.203
SMSE 0.067 0.053 0.128 0.041

tions, the MSE of the estimator of σ2
γ gets larger as the value of ρ increases. Thus

the estimation of σ2
γ is affected by the longitudinal correlations. The performances

of all four approximations in estimating the longitudinal correlation index parame-
ter are discussed in Section 8.3.3.3.

8.3.3.2 Performance for Regression Effects Estimation

The GQL estimates of β1 and β2 are obtained by solving the GQL estimating equa-
tion (8.61). These estimates are affected by the other two parameters σ2

γ and ρ only
through the weight matrix involved in (8.61). Thus it is expected that the estimates
of these later parameters will have no effect on the consistency of the regression
estimates. Furthermore, because the GQL(CR-I) and GQL(I) produced almost the
same estimates for σ2

γ in Table 8.9, for convenience we exclude the tabulation of the
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results for the GQL(CR-I) approach, while showing results on regression estimates
in Table 8.10. The simulation results, namely SMs, SSEs, and SMSEs reported in
Table 8.10 show that the efficiencies of the GQL regression estimates are also not
affected by the estimates of the σ2

γ as well as ρ parameters. This is because the
MSEs of the estimates of β1 and β2 appear to remain almost the same under all
three remaining approximations.

Table 8.10 Regression estimation: Simulated mean, simulated standard error, and simulated mean
squared errors of the GQL estimates for the regression parameters β1 and β2, based on GQL(I),
GQL(N), and GQL(CR-N) approximations, for selected values of σ2

γ and ρ; K = 100; T = 4;
β1 = β2 = 0.0; 1000 simulations.

Approximation
GQL(I) GQL(N) GQL(CR-N)

True σ2
γ True ρ Quantity β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

0.25 0.25 SM 0.043 −0.021 0.043 −0.024 0.043 −0.022
SSE 0.158 0.084 0.157 0.084 0.158 0.085

SMSE 0.027 0.007 0.026 0.008 0.027 0.008
0.50 SM 0.014 −0.013 0.012 −0.014 0.036 −0.020

SSE 0.126 0.079 0.126 0.079 0.130 0.078
SMSE 0.016 0.006 0.016 0.006 0.018 0.006

0.75 SM 0.017 −0.012 0.015 −0.012 0.018 −0.010
SSE 0.100 0.064 0.101 0.165 0.102 0.066

SMSE 0.010 0.004 0.010 0.027 0.011 0.004
0.50 0.25 SM 0.050 −0.027 0.050 −0.029 0.049 −0.025

SSE 0.166 0.093 0.165 0.093 0.166 0.094
SMSE 0.030 0.009 0.030 0.009 0.030 0.009

0.50 SM 0.028 −0.016 0.030 −0.018 0.027 −0.016
SSE 0.134 0.085 0.134 0.085 0.135 0.085

SMSE 0.019 0.007 0.019 0.008 0.019 0.007
0.75 SM 0.002 −0.006 0.002 −0.007 0.002 −0.006

SSE 0.096 0.066 0.096 0.066 0.096 0.066
SMSE 0.009 0.004 0.009 0.004 0.009 0.004

0.75 0.25 SM 0.016 −0.039 0.014 −0.037 0.014 −0.036
SSE 0.154 0.090 0.153 0.090 0.153 0.090

SMSE 0.024 0.010 0.024 0.009 0.024 0.009
0.50 SM 0.017 −0.027 0.015 −0.026 0.014 −0.025

SSE 0.131 0.085 0.130 0.085 0.130 0.085
SMSE 0.017 0.008 0.017 0.008 0.017 0.008

0.75 SM 0.009 −0.014 0.009 −0.015 0.009 −0.014
SSE 0.098 0.067 0.098 0.067 0.098 0.067

SMSE 0.010 0.005 0.010 0.005 0.010 0.005

For example, when σ2
γ = 0.75 and ρ = 0.50, all three approximations yield MSEs

0.017 for β̂1 and 0.008 for β̂2. Further note that under any given approximation, the
MSEs of both β̂1 and β̂2 appear to get smaller as the value of ρ gets larger. For
example, when σ2

γ = 0.50, under the GQL(CR-N) approximation, the MSEs of β̂2

are found to be 0.009, 0.007, and 0.004, for ρ = 0.25, 0.50, and 0.75, respectively.



8.3 A Mean Deflated Conditional Serially Correlated Model 357

Furthermore, these MSE values appear to remain almost the same for the other
two values of σ2

γ = 0.25 and 0.75. Thus, it is clear that the GQL estimates of the
components of β are more affected by ρ than σ2

γ . But, it has nothing to do with
the selection of an approximation for β estimation. More specifically, any of the
four approximations can be chosen for β estimation. We, however, recommend the
GQL(CR-N) approximation as it is simpler and estimates σ2

γ with smaller MSEs as
compared to the other three approximations.

8.3.3.3 Performance for Correlation Index Estimation

The longitudinal correlation index parameter ρ has to be estimated to understand the
correlation structure of the data as well as for the estimation of β and σ2

γ parameters.
This parameter may be consistently estimated by using the moment equation (8.54)
using µit = exp(x′itβ ) under the mean deflated model. For selected true values of σ2

γ ,
the simulated moment estimates of ρ as well as their SSEs and MSEs are reported
in Table 8.11. The results of Table 8.11 show that the moments based approach
produces almost unbiased estimates for ρ, irrespective of the approximations used
to estimate σ2

γ .

For example, when σ2
γ = 0.75, the correlation index parameter value ρ = 0.5

is estimated as 0.488, 0.469, 0.465, and 0.477, by using σ2
γ estimates based on

the GQL(I), GQL(CR-I), GQL(N), and GQL(CR-N) approximations, respectively.
However, the corresponding SMSEs were found to be 0.014, 0.012, 0.016, and
0.008, showing that the GQL(CR-N) approach produces slightly more efficient ρ

estimates as compared to the other three approximations. This pattern appears to
hold for other selected values of σ2

γ and ρ. Thus, the GQL(CR-N) approximation
produces better or the same estimates for both σ2

γ (Table 8.9) and ρ (Table 8.11).
Furthermore, this approach is as good as any other approximations in estimating β ,
which makes the GQL(CR-N) approximation best in estimating all parameters of
the longitudinal mixed model.

8.3.4 A Further Application: Analyzing Patent Count Data

To illustrate the mean deflated longitudinal mixed model for count data introduced
in Sections 8.3.1 and 8.3.2, we consider a part of the U.S. patents and R&D (Re-
search and Development) expenditures dataset that contains the patents and R&D
expenditures from 168 firms from 1971 to 1979. This patent count dataset was ear-
lier analyzed by some authors such as Hausman, Hall, and Griliches (1984), Blun-
dell, Griffith, and Windmeijer (1995), and Montalvo (1997), mainly by using the
GMM and CML approaches. The patent data also contain the type of each firm
whether scientific or nonscientific, and the log of the book value of capital (in 1972
millions of dollars) less than or equal to 4.0. These two covariates along with the
R&D expenditures for the period from 1971 to 1979 are shown in Table 8B in the
appendix. As far as the longitudinal responses are concerned, we consider the patent
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Table 8.11 Correlation estimation: Simulated mean, simulated standard error, and simulated mean
squared error of the moment estimates for correlation index parameter ρ, based on GQL(I),
GQL(I), GQL(N), and GQL(CR-N) approximations, for selected values of σ2

γ and ρ; K = 100;
T = 4; β1 = β2 = 0.0; 1000 simulations.

Approximations
True σ2

γ True ρ Quantity GQL(I) GQL(CR-I) GQL(N) GQL(CR-N)
0.25 0.25 SM 0.269 0.261 0.258 0.263

SE 0.096 0.086 0.110 0.075
SMSE 0.010 0.008 0.012 0.006

0.50 SM 0.466 0.460 0.490 0.505
SE 0.081 0.075 0.082 0.063
SMSE 0.008 0.007 0.007 0.006

0.75 SM 0.748 0.748 0.749 0.751
SE 0.052 0.047 0.053 0.043
SMSE 0.003 0.002 0.003 0.002

0.50 0.25 SM 0.266 0.259 0.265 0.260
SE 0.114 0.105 0.120 0.091
SMSE 0.013 0.011 0.015 0.008

0.50 SM 0.509 0.513 0.524 0.505
SE 0.097 0.084 0.107 0.077
SMSE 0.009 0.007 0.012 0.006

0.75 SM 0.728 0.737 0.735 0.739
SE 0.065 0.058 0.058 0.050
SMSE 0.005 0.004 0.004 0.003

0.75 0.25 SM 0.243 0.245 0.174 0.218
SE 0.159 0.131 0.164 0.118
SMSE 0.025 0.017 0.033 0.015

0.50 SM 0.488 0.469 0.465 0.477
SE 0.118 0.104 0.121 0.090
SMSE 0.014 0.012 0.016 0.008

0.75 SM 0.732 0.740 0.739 0.734
SE 0.073 0.065 0.078 0.059
SMSE 0.006 0.004 0.006 0.004

counts from 1974 to 1979 awarded to each of 168 industries. These patent counts
are shown in Table 8A in the appendix.

In the notation of Sections 8.3.1 and 8.3.2, suppose that yit is the number of
patents for the ith firm at time t. Thus, for t = 1, . . . ,T, with T = 6, yi1 denotes
the number of patents awarded to the ith firm in 1974, and yi2 denotes the num-
ber of patents awarded in 1975, and so on. As far as the explanatory variables are
concerned, we consider p = 6 covariates, among which p1 = 4 are time-dependent
covariates and p2 = 2 are time-independent covariates, so that xit = (xit1, . . . ,xit6)′,
where for u = 1, . . . , p, xitu denotes the uth covariate value recorded at year t from
the ith (i = 1, . . . ,K) firm for K = 168. To be specific, xit1, xit2, xit3, and xit4 are
the R&D expenditures at year t, t− 1, t− 2, and t− 3, respectively. Similarly, xit5

denotes the type of firm (coded as 0 for nonscientific firms and as 1 for scientific
firms) and xit6 is the log of the book value of capital in 1972. In this problem, it
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is of main interest to find the relationship of the above six covariates (xit ) with the
number of patents (yit ) awarded at each of the six years from 1974 to 1979. The
count responses yit , on top of xit , may also be influenced by certain unobservable
random effects (γi), and because the repeated count responses of a firm may be lon-
gitudinally correlated, the longitudinal mixed model (8.1) appears therefore to be
appropriate to fit the data. As far as the conditional means are concerned, we choose
to use the simpler mean deflated model given in (8.59). Thus, the estimation tech-
niques introduced in Sections 8.3.1 and 8.3.2 would be appropriate to use to analyze
the present patent count dataset.

Note that to see whether the model (8.60) and (8.63) can represent the patents
and R&D data, we have computed the basic moments (mean, variance, correlations)
of the data as shown in Table 8.12. It is clear that at a given year, the variances of
the count response are much larger than their corresponding means.

Table 8.12 Six yearly summary statistics for 168 firms.

1974 1975 1976 1977 1978 1979

Data based moments
Mean 2.952 2.435 2.369 2.244 2.399 2.161
SD 3.508 2.952 2.704 2.851 3.094 2.854

Correlation 1.000 0.692 0.615 0.561 0.648 0.635
1.000 0.651 0.607 0.583 0.534

1.000 0.595 0.593 0.592
1.000 0.630 0.661

1.000 0.695
1.000

For example, the mean of the number of patents awarded in 1977 is 2.244,
whereas the variance is 8.128. This mean−variance relation may well be explained
by the formulas for mean µit = exp(x′itβ ) from (8.60) and variance σitt = µit +
[exp(σ2)− 1]µ2

it from (8.63), which are derived from the model (8.1) and (8.59).
In fact the estimate of β , obtained by solving (8.61) iteratively, and the estimate of
σ2

γ obtained by using all four approximations, namely GQL(I) [(8.44) with µit as
in (8.60)], GQL(N) (8.62), GQL(CR-I) (8.71), and GQL (CR-N) (8.81) yielded the
mean and standard deviations close to the observed means and standard deviations.
For example, the estimated mean and standard deviations based on GQL(CR-I) and
GQL(CR-N) approximations, shown in Table 8.13, are in good agreement with those
observed means and standard deviations in Table 8.12. Note that in the simulation
study conducted in the last section, these two approximations were found to be bet-
ter than the other two approximations in estimating all parameters, GQL(CR-N)
being the best.

Note that for the aforementioned estimation of β as discussed above, we also had
to compute the moment estimate of ρ under each approximation. The estimates of
all parameters along with standard errors, where applicable, based on the two best
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Table 8.13 Yearly fitted values based on GQL(CR-I) and GQL(CR-N) approximations.

1974 1975 1976 1977 1978 1979

GQL(CR-I) based fitted moments
Mean 2.304 2.226 2.305 2.348 2.417 2.432
SD 2.266 2.213 2.278 2.321 2.374 2.388

Correlation 1.000 0.504 0.450 0.444 0.447 0.447
1.000 0.501 0.446 0.443 0.442

1.000 0.506 0.453 0.447
1.000 0.509 0.455

1.000 0.513
1.000

GQL(CR-N) based fitted moments
Mean 2.304 2.226 2.305 2.348 2.417 2.432
SD 2.341 2.286 2.362 2.400 2.455 2.470

Correlation 1.000 0.526 0.476 0.471 0.473 0.473
1.000 0.523 0.472 0.470 0.469

1.000 0.528 0.479 0.473
1.000 0.532 0.480

1.000 0.536
1.000

approximations, namely GQL(CR-N) and GQL(CR-I), are reported in Table 8.14.
Before we interpret these, mainly the estimates of the regression effects, we examine
how these estimates explain the overall longitudinal correlations of the data.

Table 8.14 GQL(CR-I) and GQL(CR-N) estimates of regression and their estimated standard
errors, as well as estimates of autocorrelations under Poisson longitudinal mixed model for the
patents and R&D data.

Estimation Approach
GQL(CR-I) Approximation GQL(CR-N) Approximation

Parameters Estimate SE Estimate SE
Lag 0 R&D (x1) 0.447 0.086 0.446 0.086
Lag 1 R&D (x2) −0.119 0.098 −0.119 0.096
Lag 2 R&D (x3) −0.007 0.090 −0.007 0.093
Lag 3 R&D (x4) −0.027 0.076 −0.027 0.076
Firm type (x5) 0.343 0.101 0.343 0.102
Log book (x6) 0.265 0.083 0.265 0.026

σ2
γ 0.370 0.074 0.336 0.008

ρ 0.452 − 0.496 −

For this purpose, we have first computed the observed correlations up to lag 5
(from six years’ data) from 168 firms. These observed correlations are shown in
Table 8.12 along with the observed means and standard deviations for six years.
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Next, we estimate all lag correlations up to lag 5 by using the lag ` = 1, . . . ,T −1,
correlation formula

corr(Yit ,Yi,t−`) =
ρ`µi,t−` + cµit µi,t−`

[{µit + cµ2
it}{µi,t−` + cµ2

i,t−`}]2
, (8.82)

constructed from (8.9) by using (8.60), where c = exp(σ2
γ )−1. Now by averaging

over the 168 firms, we compute the estimate of lag ` = 1, . . . ,T −1, correlations un-
der a given approximation. These estimated lag correlations under the GQL(CR-I)
and GQL(CR-N) approximations are displayed in Table 8.13. Note that the esti-
mated lag correlations shown in Table 8.13 are in general in agreement with the
observed lag correlations displayed in Table 8.12. This agreement along with the
agreement of the observed and estimated means and standard deviations of the data
provides a satisfactory assessment about the use of the model (8.1) along with (8.60)
to fit the patent and R&D data and about the performance of the estimation approx-
imations.

We now interpret the estimates provided in Table 8.14 under both the GQL(CR-
I) and GQL(CR-I) approaches. It is clear from the results of this table that both the
GQL(CR-I) and GQL(CR-N) approaches yield the same estimates along with the
same standard errors for the components of the β parameter. This is in agreement
with the simulation findings displayed in Table 8.10 for the estimation of the β pa-
rameter. Based on the GQL(CR-I) approximation, the current (lag 0) R&D expendi-
tures appear to have a positive influential effect (0.446) on the patents awarded to the
firm, whereas the lag 1, 2, and 3 R&D covariates appear to have moderately nega-
tive effect or no effects on the patent numbers, estimates being −0.119, −0.007 and
−0.027 respectively. The firm type appears to have a large positive effect (0.343)
indicating that the scientific firms are awarded more patents as compared to the
nonscientific firms. As far as the capital value of the firm is concerned, it appears
that it also has large positive effect (0.265) on the number of patents awarded to the
firms.

With regard to the estimates of the overdispersion parameter σ 2
γ , the GQL(CR-

I) approach yielded the σ2
γ estimate as 0.370 with standard error 0.074, whereas

the GQL(CR-N) approach gives the σ2
γ estimate as 0.336 with smaller standard

error 0.008. These results are in agreement with the simulation results displayed
in Table 8.9 for the estimation of σ2

γ , where it was found that the GQL(CR-N)
approximation performs the best in estimating the parameters. The estimate of the
ρ parameter based on the best GQL(CR-N) approximation is found to be 0.496,
which is significantly far away from zero correlation. Note that the GQL(CR-N)
estimate 0.336 for σ2

γ is the reflection of a large overdispersion in the data. This
is also verified from Tables 8.12 and 8.13, where it was shown that the estimated
and/or observed variances are larger than the corresponding means.
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8.4 Longitudinal Negative Binomial Fixed Model and Estimation
of Parameters

In previous sections, the longitudinal count responses of an individual are assumed
to be longitudinally correlated conditional on the individual random effect. This
causes unconditional correlations to be functions of both longitudinal correlation
index parameter (ρ) and the variance of the random effects (σ2

γ ). Jowaheer and Su-
tradhar (2002) have considered a different model where the marginal variance is
only affected by the variance of the random effects and longitudinal correlations are
simply functions of the correlation index parameter ρ. Consequently, this model of
Jowaheer and Sutradhar (2002) is in fact a longitudinal fixed model. We discuss this
model and its basic properties below. Also, the estimation of the parameters of the
model is discussed.

Marginal Mixed Model:

In Section 8.1, it was assumed that each of the repeated count responses yi1, . . . ,yiT

shares the common random effect γi, and conditional on γi, the responses are longi-
tudinally correlated. As far as the influence of random effects is concerned, we now
consider that these T responses are influenced by T different random effects, namely
γi1, . . . ,γit , . . . ,γiT , respectively, and these T random effects are independent. Thus,
in the spirit of the previous sections, the random effects are not causing any longi-
tudinal correlations among the repeated responses. More specifically, these random
effects will cause certain overdispersion marginally on each responses.

Suppose that conditional on γit , yit has the Poisson distribution given by

f (yit |γit) =
1

yit !
exp{yitηit − exp(ηit)} ,

[see (8.19)] with E(Yit |γit) = var(Yit |γit) = exp(ηit), where ηit = x>it β +log(γit). Next
suppose that γit has the gamma distribution with mean 1 and variance c∗, with den-
sity

g(γit) =
{

c∗−1/c∗/Γ (c∗−1)
}

exp(−c∗−1
γit)γc∗−1−1

it . (8.83)

For θit = x′itβ , it then follows that marginally yit has the negative binomial distribu-
tion given by

f (yit) =
Γ
(
c∗−1 + yit

)
Γ (c∗−1)yit !

(
1

1+ c∗θit

)c∗−1(
c∗θit

1+ c∗θit

)yit

, (8.84)

which accommodates the overdispersion indexed by c∗. More specifically, under
(8.84), the marginal expectation and the variance have the formulas

E(Yit) = θit = exp(x′itβ )



8.4 Longitudinal Negative Binomial Fixed Model and Estimation of Parameters 363

var(Yit) = θit + c∗θ 2
it . (8.85)

The negative binomial distribution (8.84) will be denoted by yit∼NeBi(1/c∗,c∗θit).

8.4.1 Inferences in Stationary Negative Binomial Correlation
Models

Following Lewis (1980) and McKenzie (1986), we may relate yit for the ith individ-
ual at time t with yi,t−1 by

yit = αit ∗ yi,t−1 +dit , (8.86)

where, for given probability 0 < αit < 1 and count yi,t−1, the symbol ∗ indicates the
binomial thinning operation, so that αit ∗yi,t−1 is the sum of yi,t−1 binomial variables
with probability αit . Note that the dynamic model in (8.86) is similar but different
from the stationary longitudinal model (6.14) used for correlated Poisson responses.
Unlike in (6.14), the probability αit in (8.86) is time dependent and also it is consid-
ered as a random variable. Further suppose that

1. yi,0∼NeBi(1/c∗,c∗θi).
2. dit∼NeBi{(1−ρ)/c∗,c∗θi}, all variables being independent, with θi = exp(x′iβ ),
where xi is the p×1 vector of time independent covariates.
3. b j(αit) denotes the jth binary variable, with probability of success αit ; that is,
pr{b j(αit) = 1}= αit = 1−pr{b j(αit) = 0}.
4. αit follows a beta distribution, namely

αit∼Be{ρ/c∗,(1−ρ)/c∗};

that is,

g(αit) ==
Γ (1/c∗)

Γ ( ρ

c∗ )Γ ( 1−ρ

c∗ )
α

(ρ/c∗)−1
it (1−αit)(1−ρ)/c∗−1, (8.87)

for all i and t, with 0≤ ρ ≤ 1,
Now for given yi,t−1 and also αit , it follows that

αit ∗ yi,t−1 =
yi,t−1

∑
j=1

b j(αit) = zit

yields the conditional binomial distribution as

zit |yi,t−1,αit∼Bi(yi,t−1,αit),

independently for all i and t. Next, by using the aforementioned assumption 4, that
is, beta distribution (8.87) for αit , one obtains the conditional distribution of zit given
yi,t−1 as



364 8 Longitudinal Mixed Models for Count Data

g(zit |yi,t−1) =
yi,t−1!

zit !(yi,t−1− zit)!
Γ (1/c∗)

Γ {(1−ρ)/c∗}Γ (ρ/c∗)

×
Γ (ρ/c∗+ zit)Γ {(1−ρ)/c∗+ yi,t−1− zit}

Γ (1/c∗+ yi,t−1)
, (8.88)

for zit = 0, . . . ,yi,t−1, which is referred to as the beta-binomial distribution. Hence,
the unconditional distribution of zit is given by

g(zit) =
∞

∑
yi,t−1=zit

gc∗(zit |yi,t−1)g(yi,t−1)

=
Γ (ρ/c∗+ zit)
Γ (ρ/c∗)zit !

(
1

ρ + c∗θi

)ρ/c∗( c∗θi

ρ + c∗θi

)zit

. (8.89)

Because dit∼NeBi{(1−ρ)/c∗,c∗θi} and zit∼NeBi(ρ/c∗,c∗θi), independently for
all i and t, it then follows that, marginally, yit∼NeBi(1/c∗,c∗θi), independently for
all i and t.

To examine the correlation structure, one may show by using the relationship
yit = αit ∗yi,t−1 +dit , for example, that yityi,t−2 = yi,t−2(αitαi,t−1yi,t−2 +di,t−1αit)+
yi,t−2dit . As the αits are independent with E(αit) = ρ , for all t = 1, . . . ,T , it then fol-
lows that E(yityi,t−2) = ρ2(θi. + c∗θ 2

i. )+θ 2
i. , yielding lag 2 correlation ρ2 = ρ2. By

similar calculations, one can show that, for ` = 1, . . . ,T −1, the lag ` autocorrelation
is given by ρ` = ρ`, which is a special case of the general correlation structure

Ci(ρ)≡Ci(ρ1, . . . ,ρT−1) =


1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2
...

...
...

...
ρT−1 ρT−2 ρT−3 · · · 1

 , (8.90)

[see also (6.25)] yielding the autocovariance structure

Σi(β ,c∗,ρ)≡ Σi(β ,c∗,ρ1, . . . ,ρT−1) = A1/2
i Ci(ρ1, . . . ,ρT−1)A

1/2
i , (8.91)

with Ai = diag{var(Yit)}, where by (8.85), var(Yit) = θi + c∗θ 2
i for the stationary

case. Note that it is clear from (8.90) that the stationary negative binomial counts
modelled by (8.86) exhibit the same autocorrelation structure (6.25) as in the station-
ary Poisson case. This is also same as the autocorrelation structure for the Gaussian
data.

8.4.1.1 Estimation of Parameters

8.4.1.1.1 GQL Estimation for β
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By using (8.61), for example, one may write the GQL estimating equation for β as

K

∑
i=1

1′T ∂θi(β )
∂β

Σ
−1
i (β ,c∗,ρ)[yi−θi(β )1T ] = 0, (8.92)

where Σi(β ,c∗,ρ) is given by (8.91) and θi = exp(x′iβ ) for the stationary negative
binomial counts.

8.4.1.1.2 Estimation of c∗

GQL(I) Approach

Similar to (8.44), one may compute the independence assumption based GQL esti-
mate of c∗ by solving

K

∑
i=1

∂λ ′
i (β ,c∗,ρ)

∂c∗
Ω
−1
i (β ,c∗,ρ = 0)[ui−λi(β ,c∗,ρ)] = 0, (8.93)

where
ui = [y2

i1, . . . ,y
2
it , . . . ,y

2
iT ,yi1yi2, . . . ,yivyit , . . . ,yT−1yiT ]′,

with

λitt = E[Y 2
it ] = θi +(c∗+1)θ 2

i , λivt = ρ
|v−t|[σivvσitt ]1/2 +θ

2
i = ρ

|v−t|[θi +c∗θ 2
i ]+θ

2
i .

When it is pretended that ρ = 0, the Ωi(β ,c∗,ρ = 0) in (8.93) takes the diagonal
matrix form. That is,

Ωi(β ,c∗,ρ = 0) = diag[. . . ,var(Y 2
it ), . . . ,var[YivYit ], . . .], (8.94)

where

var[YivYit ]|ρ=0
= σivvσitt +σivvθ

2
i +σittθ

2
i

= [θi + c∗θ 2
i ]2 +2[θi + c∗θ 2

i ]θ 2
i ,

and by Exercise 8.2,

var(Y 2
it ) = E[Y 4

it ]−λ
2
itt

= θi +(6+7c∗)θ 2
i +(4+16c∗+12c∗2)θ 3

i +(4c∗+10c∗2 +6c∗3)θ 4
i .

GQL(N) Approach

In this approach, one solves the estimating equation

K

∑
i=1

∂λ ′
i (β ,c∗,ρ)

∂c∗
Ω
−1
iN (β ,c∗,ρ)[ui−λi(β ,c∗,ρ)] = 0, (8.95)
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where ΩiN is the normality assumption based covariance matrix of ui. By (8.66)
and (8.68), one first computes the third− and fourth-order raw moments; that is,
δiut` = E[YiuYitYi`] and φiut`m = E[YiuYitYi`Yim] as the functions of θit = θi and σiut .
Next, these moments are used to compute the appropriate variances and covariances
of the elements of the ui vector. For example,

cov[Y 2
iu,YitYi`] = φiuut`−λiuuλit`.

Note that under the present stationary negative binomial longitudinal model

θit = exp(x′iβ ), and σiut = ρ
|t−u|[σiuuσitt ]1/2, (8.96)

where, for example, σiuu = θi + c∗θ 2
i .

GQL(CR-I) Approach

Let

gi = [(yi1−θi1)2, . . . ,(yiT −θiT )2,(yi1−θi1)(yi2−θi2),
. . . ,(yi,T−1−θi,T−1)(yiT −θiT )].

In this approach, one then solves the ‘working’ GQL estimating equation by

K

∑
i=1

∂σ ′
i (β ,c∗,ρ)

∂c∗
Ω
∗−1

i (β ,c∗,ρ = 0)[gi−σi(β ,c∗,ρ)] = 0, (8.97)

where
σi(β ,ρ,c∗) = [σi11, . . . ,σiT T ,σi12, . . . ,σi,T−1,T ]′,

with σitt and σiut as defined in (8.96). Note that as opposed to the conditional serially
correlated model [see the construction of Ω ∗

i (I) in (8.71)−(8.73) and Lemma 8.1],
the computation of

Ω
∗
i (β ,c∗,ρ = 0)≡Ω

∗
i (I)

is easier. This is because when ρ = 0, under the negative binomial model σits = 0,
whereas in (8.71), σits = cµit µis. More specifically, under the present model

Ω
∗
i (β ,c∗,ρ = 0) = diag[var(Yi1−θi1)2, . . . ,var{(Yi,T−1−θi,T−1)(YiT −θiT )}].

GQL(CR-N) Approach

Similar to (8.97), in this approach we compute c∗ by solving the GQL estimating
equation

K

∑
i=1

∂σ ′
i (β ,c∗,ρ)

∂c∗
Ω
∗−1

iN (β ,c∗,ρ)[gi−σi(β ,c∗,ρ)] = 0, (8.98)
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which is easier to compute than (8.97). This is because the elements of Ω ∗
iN(β ,c∗,ρ)

can be computed by using

φiut`m = E[(Yiu−θiu)(Yit −θit)(Yi`−θi`)(Yim−θim)]
= σiutσi`m +σiu`σitm +σiumσit`,

[see (8.64)] where σiut = θit + c∗θ 2
it .

8.4.1.1.3 Moment Estimation of ρ

Note that even though the AR(1) type correlation model is considered in (8.86), a
more general correlation structure (8.90) may be fitted in the stationary setup. For
the present negative binomial model, the lag ` correlation can be estimated by using
the moment equation

ρ̂`,M =
∑K

i=1 ∑T−`
t=1 y∗it y

∗
i(t+`)/K(T − `)

∑K
i=1 ∑T

t=1 y∗
2

it /KT
, ` = 1, . . . ,T −1, (8.99)

with y∗it = (yit −θit)/(σitt)1/2, where

θit = exp(x′itβ ), and σitt = θit + c∗θ 2
it ,

with θit = θi = exp(x′iβ ) in the stationary case. Note that the formula for ρ estima-
tion by (8.99) is similar to that of the stationary longitudinal count data model, given
by (6.27), where σitt = θit unlike in (8.99). Further note that this formula in (8.99)
is different from (8.54) given under the conditional serially correlation model.

8.4.2 A Data Example: Analyzing Epileptic Count Data by Using
Poisson and Negative Binomial Longitudinal Models

Jowaheer and Sutradhar (2002) have revisited the epileptic dataset that was earlier
analyzed by Thall and Vail (1990), among others. At each of four successive two-
weekly clinic visits, the number of seizures occurring over the previous two weeks
was reported by each of a group of 59 epileptics. Summary statistics for this re-
sponse variable are given in Table 8.15. Variances are much larger than their

Table 8.15 Summary statistics for four two-weekly seizure counts for 59 epileptics.

Visit
1 2 3 4

Sample mean 8.949 8.356 8.441 7.305
Sample variance 220.084 103.785 200.182 93.112
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corresponding means, indicating clear overdispersion. Thall and Vail (1990) used
the negative binomial model for analysing this overdispersed data, but their ap-
proach introduced certain random effects, whereas Jowaheer and Sutradhar (2002)
assumed that the four counts for each epileptic follow the general longitudinal au-
tocorrelation structure (8.90). The model considered by Jowaheer and Sutradhar
(2002) is easily interpreted with regard to the longitudinal correlations of the re-
peated responses, the longitudinal correlations can be estimated consistently, and,
unlike the approach of Thall and Vail (1990), their approach does not require esti-
mation of multidimensional variance components under a mixed model, which is an
extremely difficult problem as it is not easy to check the consistency and efficiency
of the variance component estimators. In this section, we provide the results for the
epileptic study from Jowaheer and Sutradhar (2002).

We consider five covariates, the intercept (INTC) variable for the ith epileptic at
time t, denoted by xit1, the adjuvant treatment (TR) xit2 , coded as 0 for placebo and 1
for progabide, baseline seizure rate (BR) xit3, the age of the person in that year (Age)
xit4, and the interaction (INTA) xit5 between treatment and baseline seizure rate.
None of these covariates is time dependent. Thus the mean parameter of the negative
binomial distribution for the ith person may be denoted by θi· = exp(x′i·β ), with
xi· = (xit1,xit2, . . . ,xit5)′ for all t = 1, . . . ,4, which is conformable with the notation
used in Section 8.4.1. Here β is the 5×1 vector of regression parameters, and it is
of interest to estimate β after taking the longitudinal correlations of the data into
account.

Table 8.16 Estimates of regression and overdispersion parameters and their estimated standard
errors, as well as estimates of autocorrelations, under both negative binomial and Poisson longitu-
dinal models for the epileptic data.

Parameters
Model INTC TR BR age INTA c ρ1 ρ2 ρ3
NeBi Estimate 0.458 −0.247 0.027 0.021 0.001 0.514 0.522 0.337 0.203

SE 0.432 0.152 0.004 0.013 0.005 0.312 − − −
Poisson Estimate 0.486 −0.309 0.021 0.028 0.003 − 0.500 0.353 0.191

SE 0.021 0.113 0.001 0.006 0.002 − − − −

As far as the GQL estimation of the parameters is concerned, Jowaheer and Su-
tradhar (2002) have used the GQL estimating equation (8.92) for β , and the GQL(N)
estimating equation (8.95) based on

ui = [y2
i1, . . . ,y

2
iT ]′

for c∗, and the moment estimating equation (8.99) to estimate the lag correlations
ρ`. Having chosen starting values of zero for the longitudinal correlations and small
positive values for the regression and overdispersion parameters, they estimated
the parameters iteratively and obtained the estimates shown in Table 8.16. The
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results for the Poisson model (i.e., for the negative binomial model with c∗ = 0)
are also shown. The autocorrelation values under both Poisson and negative bino-
mial models are large, indicating high longitudinal correlations. The large value of
ĉ∗GQL(N) = 0.514 confirms that the seizure counts data are highly overdispersed.
This overdispersion affects the regression estimates as, except for age and interac-
tion, the regression estimates are generally different under the negative binomial
and Poisson models. The negative value for β̂2,GQL = −0.247 under the negative
binomial model indicates that the predicted seizure counts will be less in the treat-
ment group than in the placebo group. The positive estimate for β4 indicates that, as
age increases, it is likely that the individual epileptic will have more seizure counts.
Unlike as in Thall and Vail (1990), the interaction between the treatment and the
baseline seizure rate does not appear to be significant.

8.4.3 Nonstationary Negative Binomial Correlation Models and
Estimation of Parameters

8.4.3.1 First Two Moments Based Negative Binomial Autoregression Model

In a time series setup, Mallick and Sutradhar (2008) have exploited an observation-
driven model for nonstationary negative binomial counts and discussed the estima-
tion of the parameters of such a model. In the longitudinal setup, this observation-
driven model has the form as in (8.86); that is,

yit = αit ∗ yi,t−1 +dit , t = 2, . . . ,T ; i = 1, . . . ,K, (8.100)

but unlike (8.86), we now assume that

yi1 ∼ NeBi(c∗−1,c∗θi1) (8.101)

with θi1 = exp(x
′
i1β ), where xi1 = (xi11, · · · ,xi1p)

′
is the p-dimensional vector of

covariates associated with yi1, and

dit ∼ NeBi(ψit|t−1,ξit|t−1), t = 2, . . . ,T, (8.102)

with

ψit|t−1 =
(θit −ρθi,t−1)2

c∗(θ 2
it −ρθ 2

i,t−1)
, ξit|t−1 =

c∗(θ 2
it −ρθ 2

i,t−1)
(θit −ρθi,t−1)

, (8.103)

where θit = exp(x
′
itβ ) with xit = (xit1, · · · ,xit p)

′
, and yi,t−1 and dit are independent.

Further note that even though it has been assumed that yi1 and dit , t = 2, . . . ,T, fol-
low marginally a negative binomial distribution, unlike in the stationary case (Sec-
tion 8.4.1), it is, however, not easy to derive the marginal distribution of yit , for
all t = 2, . . . ,T. By the same token, it is difficult to compute the moments of order
higher than 2, following the nonstationary dynamic model (8.100). We, however,
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show below that irrespective of the negative binomial marginal distribution for all
yit , these responses satisfying (8.100) have the means and the variances of negative
binomial variable.

8.4.3.1.1 Nonstationary Mean−Variance Structure

Lemma 8.2 The repeated count responses satisfying the dynamic model (8.100) and
the related assumptions through (8.101) to (8.103), have the means and the variances
as given by

E(Yit) = θit = exp(x
′
itβ ), and var(Yit) = θit + c∗θ 2

it = σitt , (8.104)

respectively.

Proof of Lemma 8.2: It follows from the model (8.100) that

E(Yit) = Eαit Eyi,t−1E [Yit | yi,t−1,αit ]

= Eαit Eyi,t−1 [αitYi,t−1 +E(dit)] , (8.105)

and

var(Yit) = Eαit

[
varyt−1E(Yt | αit ,yi,t−1)+Eyi,t−1var(Yit | αit ,yi,t−1)

]
+varαit

[
Eyi,t−1E(Yit | αit ,yi,t−1)

]
, (8.106)

where
dit ∼ NeBi

[
ψit|t−1,ξit|t−1

]
as in (8.102)− (8.103), yi1 ∼ NeBi(c∗−1,c∗θi1) by (8.101) and αit has beta distri-
bution with probability density function g(αit) as defined under the model (8.87).

Based on the above assumptions, one obtains

E(dit) = θit −ρθi,t−1

E(Yit | αit ,yit−1) = yi,t−1αit +θit −ρθi,t−1

var(Yit | αit ,yi,t−1) = yi,t−1αit(1−αit)+θit −ρθi,t−1 + c∗(θ 2
it −ρθ

2
i,t−1)

E(αit) = ρ

var(αit) = ρ(1−ρ)c∗/(1+ c∗). (8.107)

Now, for t = 2, by applying (8.107) to (8.105) and (8.106), and by using

E[Yi1] = θi1, var[Yi1] = θi1 + c∗θ 2
i1,

one obtains
E[Yi2] = θi2, var[Yi2] = θi2 + c∗θ 2

i2. (8.108)
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Consequently, by using

E[Yi,t−1] = θi,t−1, var[Yi,t−1] = θi,t−1 + c∗θ 2
i,t−1,

the repeated applications of (8.107) to (8.105) and (8.106), provides the mean and
the variance of yit , for all t = 1, . . . ,T, as

E[Yit ] = θit , var[Yit ] = θit + c∗θ 2
it ,

yielding the lemma.

8.4.3.1.2 Non-stationary Correlation Structure

Let ` denote the lag between two responses. Also let ρy(`) denote the lag ` correla-
tion between yit and yi,t−` for ` = 1, · · · , t−1. To derive this `th lag correlation, one
needs to find the

cov(Yit ,Yi,t−`) = E(YitYi,t−`)−θitθi,t−`. (8.109)

Note that as αit is a beta variable with E(αit) = ρ , and E(dit) = θit −ρθi,t−1, it then
follows from the model (8.100) that

E(YitYi,t−`) = Eyi,t−`
Eyi,t−`+1 · · ·Eyi,t−1E

[
YitYi,t−` | yi,t−1,yi,t−2, · · · ,yi,t−`

]
= ρ

`(θi,t−` + c∗θ 2
i,t−`)+θitθi,t−`,

yielding the covariance in (8.109) by (8.104) as

cov(Yit ,Yi,t−`) = ρ
`
σi,t−`,t−`. (8.110)

It then follows that the lag ` autocorrelation between yit and yi,t−` is given by

ρy(`) = ρ
`

√
σi,t−`,t−`

σitt
. (8.111)

It is clear that this lag ` autocorrelation in (8.111) is nonstationary. This is because
σitt in (8.104) is a function of θit which depends on time-dependent covariate xit .
Further note that the correlation structure in (8.111) reduces to the Gaussian AR(1)
type autocorrelation structure under the stationary negative binomial model where
xit = xi is considered to be time independent. As far as the range restriction of ρ

is concerned, it is clear that for ψit|t−1 and ξit|t−1 in (8.103) to be positive, ρ must
satisfy

0 < ρ < min

{
1,

θit

θi,t−1
,

θ 2
it

θ 2
i,t−1

}
, t = 2, · · · ,T ; i = 1, . . . ,K. (8.112)

8.4.3.2 A Proposed Conditional GQL (CGQL) Estimation Approach
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The computation of the higher-order moments under the model (8.100) is com-
plicated, unlike the stationary case (see Section 8.4.1.1), therefore we now use a
so-called conditional GQL (CGQL) approach for the estimation of the regression
effects β and the overdispersion parameter c∗. As expected, the estimation of the ρ

parameter is done by using the unconditional moments. For the purpose of estima-
tion of β and c∗, by using model (8.100), here we provide the conditional moments
of yit up to order four conditional on yi,t−1, as follows.

Conditional Moments: Conditional on yi,t−1, the first− and second-order condi-
tional moments easily follow from the model (8.100). These moments are given
by

E(Yit | yi,t−1) = θit +ρ(yi,t−1−θi,t−1) = θit|t−1

E(Y 2
it | yi,t−1) = δ1ρy2

i,t−1 +ρyi,t−1(1−δ1 +2ait)+(a2
it +ait + c∗bit)

= λit|t−1, (8.113)

where

ait = θit −ρθi,t−1, bit = θ
2
it −ρθ

2
i,t−1, and δ1 =

c∗+ρ

1+ c∗
.

The remaining third− and fourth-order conditional moments are available from Ex-
ercise 8.3.

8.4.3.2.1 CGQL Estimation for β

To develop a CGQL estimating equation for β , we first construct a distance vec-
tor for the ith individual, namely, yi − µi(c), where yi = (yi1, · · · ,yit , · · · ,yiT )

′
is the

response vector and

µi(c) = [E(yi1),E(yi2 | yi1), · · · ,E(yit | yi,t−1), · · · ,E(yiT | yi,T−1)]
′

= (θi1,θi2|1, · · · ,θit|t−1, · · · ,θiT |T−1)
′
, (8.114)

is the conditional expectation of yi. Note that as yi1 is the initial response, θi1 is the
marginal mean of yi1. Next, suppose that Σi(c) is the conditional covariance of the
response vector. To be specific, the (u, t)th component of this Σi(c) matrix is defined
as

σiut(c) =



var(Yi1), for u = t = 1

var(Yit |yi,t−1), for u = t = 2, . . . ,T

cov(Yiu,Yit |yi,t−1, · · · ,yiu), for u < t

cov(Yiu,Yit |yi,u−1, · · · ,yit), for u > t.

(8.115)

Now by following the GQL estimating equation from Sutradhar (2003, Section 3),
the CGQL estimating equation for β may be written as



8.4 Longitudinal Negative Binomial Fixed Model and Estimation of Parameters 373

K

∑
i=1

∂ µ
′
i(c)

∂β
Σ
−1
i(c)(yi−µi(c)) = 0, (8.116)

where ∂ µ
′
i(c)/∂β is the first-order p×T derivative matrix of µi(c) with respect to β .

The formulas for the elements of µi(c), Σi(c), and ∂ µ
′
i(c)/∂β are computed as follows.

(a) Computation of µi(c)

To compute µi(c), one requires E(Yi1) = θi1 and E(Yit |yi,t−1) = θit|t−1 for t =
2, . . . ,T . The formula for θit|t−1 is given by (8.113).

(b) Computation of Σi(c)

This matrix is computed by using the formulas

var(Yi1) = θi1 + c∗θ 2
i1 (8.117)

var(Yit |yi,t−1) = E(Y 2
it |yi,t−1)−θ

2
it|t−1 for u = 2, . . . ,T (8.118)

cov(Yiu,Yit |yi,t−1, · · · ,yiu) = 0 for u < t (8.119)

cov(Yiu,Yit |yi,u−1, · · · ,yit) = 0 for u > t (8.120)

where E(Y 2
it |yi,t−1) and θit|t−1 for (8.118) are available from (8.113).

(c) Computation of ∂ µ
′
i(c)/∂β

The derivative matrix is computed by calculating ∂θi1/∂β and ∂θit|t−1/∂β . To be
specific, for k = 1, . . . , p,

∂θi1

∂βk
= xi1kθi1 (8.121)

∂θit|t−1

∂βk
= xitkθit −ρxi,t−1,kθi,t−1, (8.122)

with θit = exp(x
′
itβ ).

8.4.3.2.2 CGQL Estimation for c∗

Next we proceed to develop the CGQL estimating equation for the overdispersion
parameter c∗ as follows. To do this, we first construct a second-order response vector
ui = (y2

i1, . . . ,y
2
it , . . . ,y

2
iT )

′
and denote its conditional expectation by

λi(c) =
[
E(Y 2

i1), . . . ,E(Y 2
it |yi,t−1), . . . ,E(Y 2

iT |yi,T−1)
]′

=
[
λi1, . . . ,λit|t−1, . . .λiT |T−1

]′
. (8.123)
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Furthermore, let Ωi(c) denote the conditional covariance of ui. That is

ωiut(c) =



var(Y 2
i1), for u = t = 1

var(Y 2
it |yi,t−1), for u = t = 2, · · · ,T

cov(Y 2
iu,Y

2
it |yi,t−1, · · · ,yiu), for u < t

cov(Y 2
iu,Y

2
it |yi,u−1, · · · ,yit), for u > t.

(8.124)

The CGQL estimating equation for c∗ is similar to that of β in (8.116), which is
given by

K

∑
i=1

∂λ
′
i(c)

∂c∗
Ω
−1
i(c)(ui−λi(c)) = 0, (8.125)

where ∂λ
′
i(c)/∂c∗ is the 1×T first-order derivative matrix of λi(c) with respect to

c∗. The formulas for the elements of λi(c), Ωi(c), and ∂λ
′
i(c)/∂c∗ are computed as

follows.

(a) Computation of λi(c)

To compute λi(c), one requires E(Y 2
i1) = θi1 + θ 2

i1(1 + c∗) and E(Y 2
it |yi,t−1) for

t = 2, . . . ,T . The formula for E(Y 2
it |yit−1) = λit|t−1 is given by (8.113).

(b) Computation of Ωi(c)

This matrix is computed by using the formulas

var(Y 2
i1) = θi1 +(6+7c∗)θ 2

i1 +(4+16c∗+12c∗2)θ 3
i1 +(4c∗+10c∗2 +6c∗3)θ 4

i1,
(8.126)

by Exercise 8.2, and

var(Y 2
it |yi,t−1) = E(Y 4

it |yi,t−1)−λ
2
it|t−1 for u = 2, . . . ,T , (8.127)

by (8.113) and Exercise 8.3. Furthermore,

cov(Y 2
iu,Y

2
it |yi,t−1, · · · ,yiu) = 0 for u < t (8.128)

cov(Y 2
iu,Y

2
it |yi,u−1, · · · ,yit) = 0 for u > t. (8.129)

(c) Computation of ∂λ
′
i(c)/∂c∗

The derivative matrix is computed by calculating ∂λi1/∂c∗ and ∂λit|t−1/∂c∗. To be
specific,
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∂λi1

∂c∗
= θ

2
i1, (8.130)

and

∂λit|t−1

∂c∗
=

1
(1+ c∗)2 [ρ(1−ρ)yi,t−1(yi,t−1−1)]+θ

2
it −ρθ

2
i,t−1. (8.131)

8.4.3.2.3 MMs Equation for ρ

Recall from Section 8.4.3.1.2 that the lag 1 corrrelation between yit and yi,t−1 is

given by ρy(1) = ρ [σi,t−1,t−1/σi,tt ]
1/2, where σitt , for example, is a function of θit =

exp(x
′
itβ ) and c∗. Thus, to compute a moment estimate for ρ , one may equate the

lag 1 sample correlation to its population counterpart, namely, ρy(1). To be specific,
the moment estimator of ρ , that is, ρ̂M has the formula given by

ρ̂M =
∑K

i=1 ∑T
t=2 ỹit ỹi,t−1

∑K
i=1 ∑T

t=1 ỹ2
it

KT

∑K
i=1 ∑T

t=2 [σ̂i,t−1,t−1/σ̂i,tt ]
1/2

, (8.132)

where

ỹit =
yit − θ̂it√

σ̂itt
.

Exercises

8.1. (Section 8.3.2.1) [Construction of Ω ∗
i (I)]

The formulae for var[(Yit − µit)2] and cov[(Yit − µit)2,(Yit − µit)(Yis − µis)] were
given in Lemma 8.1. For

riut =
[

µiu

µit

] 1
2

and
ρ|t−s| = ρ

|t−s|,

by similar calculations as in Lemma 8.1, show that the other elements of the Ω ∗
i (I)

matrix have a general formula given by

cov[(Yit −mit)(Yiw−miw),(Yir−mir)(Yis−mis)]

= exp(σ2
γ )
[
ritwritsρ|t−w|ρ|r−s|+ ritrriwsρ|t−r|ρ|w−s|

+riwrritsρ|w−r|ρ|t−s|
]

exp{1
2
(xit + xiw + xir + xis)′β}

+
{

exp(3σ
2
γ )−2exp(σ2

γ )+1
}[

ritwρ|t−w| exp{(xit/2+ xiw/2+ xir + xis)′β}
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+rirsρ|r−s| exp{(xit + xiw + xir/2+ xis/2)′β}

+ritrρ|t−r| exp{(xit/2+ xiw + xir/2+ xis)′β}

+riwsρ|w−s| exp{(xit + xiw/2+ xir + xis/2)′β}

+riwrρ|w−r| exp{(xit + xiw/2+ xir/2+ xis)′β}

+ritsρ|t−s| exp{(xit/2+ xiw + xir + xis/2)′β}
]

+{exp(6σ
2)−4exp(3σ

2)+6exp(σ2)−3}exp{(xit + xiw + xir + xis)′β}

−σitwσirs, (8.133)

When the formula in (2.16) is evaluated at ρ0 = 1 and ρ|t−w| = 0 for t 6= w, it pro-
vides the formulas for all elements of the Ω ∗

i (I) matrix except the formulae for the
variance and covariance provided in (8.75) and (8.76), respectively.

8.2. (Section 8.4.1.1) [Higher-order marginal moments for negative binomial distri-
bution]
Show that for the negative binomial distribution of yit , the moment generating func-
tion (mgf) is given by

Myit (s) = {1+ cθit − cθit exp(s)}−1/c,

where s is a real parameter. Also by using the mgf, verify that

var(Yit) = θit + cθ
2
it ,

cov(Yit ,Y
2
it ) = θit{1+(2+3c)θit +2c(1+ c)θ 2

it},

var(Y 2
it ) = θit +(6+7c)θ 2

it +(4+16c+12c2)θ 3
it +(4c+10c2 +6c3)θ 4

it .

8.3. (Section 8.4.3.2.1 ) [Third− and fourth-order conditional moments]
Let

δ2 =
2c∗+ρ

1+2c∗
, and δ3 =

3c∗+ρ

1+3c∗
.

Also, for convenience, suppress the subscript i, and use at and bt , for ait = θit −
ρθi,t−1 and bit = θ 2

it −ρθ 2
i,t−1, respectively. Now by using the model (8.100), show

that conditional on yt−1, (i suppressed ) the third− and the fourth-order moments of
yt (i suppressed) are given by

E(Y 3
t | yt−1) = δ1δ2ρy3

t−1 +δ1ρy2
t−1(3+3at −3δ2)

+ρyt−1
[
1+6at +3a2

t +3c∗bt −δ1(3+3at −2δ2)
]
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+
1
at

(a4
t +3a3

t +a2
t +3c∗atbt +3c∗a2

t bt +2c∗2b2
t ), (8.134)

and

E(Y 4
t | yt−1) = δ1ρy2

t−1(6a2
t +18at +6c∗bt +7)

+ρyt−1 [δ1δ2δ3(yt−1−1)(yt−1−2)(yt−1−3)

+δ1δ2(yt−1−1)(yt−1−2)(4at +6)

+4at(1−3δ1)+(1−7δ1)+6(1−δ1)(a2
t +at + c∗bt)

+
4
at

(
a4

t +3a3
t +a2

t +3c∗atbt +3c∗a2
t bt +2c∗2b2

t

)]

+
1

a2
t

(
a6

t +6a5
t +7a4

t +a3
t +10c∗a3

t bt +14c∗a4
t bt

+7c∗a2
t bt +12c∗2atb

2
t +3c∗2a2

t b2
t +8c∗2a3

t b2
t

+ 6c∗3b3
t

)
, (8.135)

respectively.
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Appendix

U.S. Patent Data For 168 Industries : Table 8A
Corresponding Covariates Including R&D Expenditures : Table 8B

Table 8A. U.S. patent data from 168 industries from 1974 to 1979.

Patent Awarded
1974 1975 1976 1977 1978 1979

2 3 2 1 1 1
0 0 0 1 0 0
8 0 0 0 1 0
5 2 3 0 2 3
1 0 1 5 2 0
1 0 0 0 0 0

12 4 3 5 5 5
0 2 1 2 4 2
4 3 3 0 2 2
2 1 0 0 1 2
0 2 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 4 3 4 2 6
4 3 4 2 1 1
1 0 3 0 2 0
1 1 0 0 0 0
6 4 4 1 4 3
1 0 1 0 0 0
2 5 0 1 3 0
5 5 8 6 2 5
0 0 2 0 0 0
0 0 0 0 0 0
1 0 2 0 0 1
1 0 2 0 1 2
7 5 5 10 2 4
0 1 1 2 2 1
0 0 3 2 1 0
5 5 7 7 5 9
4 2 5 2 3 5
2 4 4 2 13 2
3 4 3 11 4 5
1 1 5 2 3 1
1 0 0 1 0 0
1 5 1 2 4 0
0 3 0 7 7 9
6 6 4 4 3 3
8 3 2 1 2 8
0 1 2 2 1 0
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Table 8A Cont’d

1974 1975 1976 1977 1978 1979
0 0 2 0 2 1
2 3 2 2 0 3
3 5 6 6 8 4
8 4 3 4 13 4
0 0 1 1 0 0
0 0 2 1 1 0
0 3 5 2 1 1
9 10 6 11 13 7
1 2 1 1 2 6
0 0 0 0 0 0
0 2 0 2 3 0
9 3 6 13 5 7
1 4 5 6 2 4
2 6 7 1 1 1
9 13 4 2 2 1
1 0 2 0 0 0
0 0 0 0 0 0
3 4 2 2 4 1
8 2 4 3 0 1
1 0 2 1 5 1
3 0 2 0 2 4

10 1 3 3 5 3
1 1 1 0 0 0
2 0 4 3 3 2
7 2 3 0 1 0
3 1 2 2 2 1
1 2 3 3 4 3
1 1 4 5 0 1
1 1 0 0 0 0
1 0 0 1 1 0
2 1 2 0 1 0
1 1 1 5 5 8
2 1 3 1 0 0
0 0 1 0 0 0
3 4 0 0 4 3
2 2 4 5 2 4
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Table 8A Cont’d

1974 1975 1976 1977 1978 1979
2 1 3 2 1 0
0 0 1 1 0 0

15 13 6 4 9 6
2 2 3 0 2 0
0 0 1 0 4 0
5 2 1 0 0 1
7 3 3 5 8 13
1 2 1 0 2 0
0 0 0 1 0 0
0 0 0 0 0 1
4 10 6 6 2 1
6 6 1 1 3 2

16 14 8 6 12 12
7 6 6 1 0 1
9 5 10 4 5 5
1 0 0 0 1 0
0 0 0 0 0 0
5 6 2 6 7 5
5 6 4 5 2 5
7 5 3 5 3 4
0 0 0 0 0 0
2 0 2 2 2 4
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 1 0 1
1 0 0 0 0 0
0 2 1 0 0 0

10 7 4 6 2 7
0 1 0 1 0 0
6 1 5 1 9 5
3 5 1 4 3 2
0 3 1 0 0 0
0 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
4 2 2 0 1 6
5 4 4 3 4 2
0 3 2 4 0 3
3 1 0 3 1 0
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Table 8A Cont’d

1974 1975 1976 1977 1978 1979
4 3 0 0 0 0
2 3 3 0 0 1
4 5 1 0 1 0
2 2 2 1 1 4
4 2 4 8 5 5
3 0 1 5 1 9
2 1 1 1 2 3
0 0 0 0 1 0
0 1 0 1 0 0

11 6 7 7 9 9
2 5 3 2 2 1
3 1 3 4 7 5
4 1 2 2 0 0
5 2 8 2 6 5
1 2 2 0 0 2
0 0 0 0 0 0
1 0 0 0 0 0
0 6 5 3 1 0
4 1 4 2 3 1
4 1 0 5 7 1
2 4 0 1 1 3
0 6 0 4 2 1
0 1 2 5 1 3
0 0 0 0 0 0
0 0 0 0 0 0
4 12 6 10 6 5
0 1 1 1 0 0
3 0 3 1 3 2

15 12 11 13 10 5
11 7 4 6 6 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
7 1 0 4 9 5
0 0 2 0 0 2
5 4 2 0 1 1
1 2 2 0 0 0
4 3 3 8 1 2
4 5 3 0 0 1
4 2 6 6 6 2
9 3 0 2 4 5
1 0 4 0 0 0
3 1 1 1 1 2
2 5 3 4 6 2
0 0 0 0 1 0
2 1 1 1 1 0
8 0 1 1 4 1
0 0 0 0 0 0
3 4 5 3 8 5
3 2 1 1 2 3
3 0 0 1 0 0

10 10 20 6 12 12
16 11 11 12 13 14
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Table 8B. Covariates corresponding to patent counts in Table 8A.

R & D Expenditures
Industry Book

Type Value 1971 1972 1973 1974 1975 1976 1977 1978 1979
1 1.975 −0.216 0.084 −0.151 −0.685 −1.485 −1.195 −0.610 −0.581 −0.609
0 0.684 0.485 0.588 0.488 0.537 0.434 0.338 0.366 0.439 0.425
0 2.064 −0.889 −0.315 −0.218 −0.362 −1.298 −1.675 −2.150 −1.325 −2.834
1 2.790 0.224 0.357 0.371 0.041 −0.318 −0.190 −0.199 0.079 0.194
0 0.678 −0.593 −2.733 −1.714 −1.361 −1.800 −1.732 −1.560 −1.544 −1.560
0 3.819 −0.244 −0.435 −0.708 −0.758 −0.721 −1.001 −0.483 −0.358 −0.422
1 3.644 0.878 1.002 0.907 0.910 0.958 1.053 1.191 1.287 1.513
0 2.455 −1.325 −1.076 −0.937 −0.883 −0.936 −0.902 −0.905 −0.910 −1.000
1 2.493 0.617 0.536 0.432 0.370 0.079 −0.157 −0.260 −0.081 −0.188
0 2.955 0.450 0.405 0.274 -0.092 0.355 0.214 0.296 0.508 0.450
0 0.406 −0.133 −0.182 −0.211 −0.616 −0.691 −1.543 −1.272 −1.379 −1.450
0 3.674 −0.936 −0.870 −0.811 −0.740 −0.740 −0.622 −0.676 −0.604 −0.489
0 1.434 −1.019 −1.044 −1.162 −1.227 −1.229 −1.171 −0.798 −0.684 −0.548
0 3.002 0.236 0.278 0.297 0.399 0.352 0.502 0.593 0.661 0.838
0 3.534 −0.348 −0.232 −0.128 −0.056 0.020 0.152 0.186 0.172 0.229
0 1.507 −0.822 −1.204 −2.007 −2.708 −2.253 −2.153 −2.775 −2.697 −2.425
0 3.767 0.503 0.650 0.612 0.587 0.495 0.484 0.532 0.522 0.686
0 3.826 1.967 1.963 1.547 1.844 2.011 2.309 2.289 2.307 2.262
0 3.022 −0.466 −0.163 −0.075 −0.528 −0.668 −0.627 −0.637 −0.757 −0.047
1 3.383 2.037 2.113 2.076 1.818 1.954 1.910 1.886 1.935 1.962
1 −0.249 −0.218 −0.167 −0.140 −0.078 0.176 0.543 0.599 0.566 0.462
0 0.832 −0.240 −0.828 −0.267 −0.046 −0.013 0.097 −0.005 0.113 0.139
0 1.590 −1.447 −1.050 −0.537 −0.308 −0.497 −0.672 −0.459 −0.492 −0.636
0 1.048 −1.438 −1.402 −1.269 −1.391 −1.538 −1.585 −1.442 −1.311 −1
0 3.611 0.148 0.087 0.312 0.392 −0.068 −0.398 −0.486 −1.062 −1.683
0 3.840 1.463 1.463 1.193 0.515 0.387 0.601 0.625 0.736 0.736
0 1.959 −0.241 −0.136 −0.032 0.105 −0.261 −0.408 −0.434 0.275 0.121
1 2.370 0.633 0.896 0.987 0.329 0.402 0.401 0.420 0.217 0.033
1 3.211 0.522 0.655 0.989 0.945 0.892 0.939 0.942 0.855 0.854
0 2.932 0.279 0.427 0.461 0.559 0.781 0.945 0.951 0.997 0.935
1 1.759 −0.762 −0.693 −0.755 −0.473 −0.271 −0.945 −0.905 −0.278 −0
1 2.905 1.275 1.075 1.359 1.582 1.300 1.761 1.868 2.141 2.093
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Table 8B Cont’d

Industry Book
Type Value 1971 1972 1973 1974 1975 1976 1977 1978 1979

1 3.489 1.323 1.398 1.573 1.623 1.604 1.719 1.909 1.980 2.067
0 2.835 0.276 70.255 0.330 0.322 0.188 0.247 0.298 0.159 0.123
1 2.711 0.878 0.833 0.978 0.869 0.815 1.217 1.554 1.562 1.678
0 2.027 −0.991 −1.109 −1.733 −1.631 −1.779 −1.731 −1.626 −1.565 −1.552
1 3.506 1.320 1.441 1.555 1.551 1.565 1.577 1.611 1.649 1.688
1 2.209 0.141 0.391 0.382 0.198 0.416 −0.050 0.186 0.357 0.338
0 0.698 −1.276 −1.938 −1.523 −1.391 −1.468 −1.546 −1.269 −1.136 −1.220
1 2.334 0.633 0.759 0.730 −0.512 −0.370 0.424 −0.476 −1.073 −0.714
0 1.628 −0.118 0.307 0.467 0.238 0.303 −0.072 −0.050 0.151 −0.062
1 0.609 0.773 1.030 0.748 0.051 −0.243 −0.424 0.082 0.270 0.457
0 2.402 −0.689 −0.796 −0.684 −0.790 −0.829 −0.669 −0.843 −0.861 −0.960
1 3.439 −1.088 −1.019 −0.930 −0.491 −0.680 −0.507 −0.580 −0.623 −0.533
1 1.686 0.527 0.781 0.112 −0.399 −0.840 −0.943 −0.889 −1.657 −2.704
1 3.198 0.738 0.596 0.431 0.542 0.515 0.573 0.567 0.684 0
1 3.758 2.605 2.560 2.366 2.371 2.517 2.507 2.687 2.766 2.778
0 2.464 0.086 0.451 0.813 0.562 0.696 0.679 0.671 0.360 0.218
0 1.442 0.450 0.833 0.678 1.087 1.128 1.264 2.038 2.146 1.742
1 0.863 −2.258 −1.766 −1.276 −1.073 −1.081 −0.649 −0.544 −0.299 −0.346
1 1.268 −0.061 0.244 0.261 0.069 0.114 0.181 0.310 0.732 1.130
0 3.197 1.380 0.840 1.085 1.087 0.553 0.128 0.174 0.104 0.010
0 1.816 −1.345 −1.366 −1.647 −0.768 −1.579 −0.879 −2.366 −2.441 −2.020
0 2.279 0.410 0.452 0.680 0.614 0.492 0.744 0.669 0.633 0.738
1 −1.633 −3.531 −2.976 −2.459 −2.364 −2.563 −2.872 −2.942 −2.918 −3.006
1 1.928 −0.008 0.028 0.070 −0.071 0.083 0.129 0.237 0.208 0.246
1 2.828 0.450 0.313 0.438 0.009 −0.586 −0.381 −0.310 −0.279 0.395
0 2.315 −0.312 −0.942 −1.043 −0.416 −0.493 −0.515 −1.733 −1.387 −1.647
1 1.053 −0.897 −0.875 −0.821 −0.881 −0.794 −0.691 −0.143 −0.171 −0.252
0 2.097 0.227 0.331 0.287 0.329 0.200 0.298 0.453 0.504 0.467
1 2.802 0.738 0.531 0.340 0.879 0.207 0.451 0.544 0.602 0.967
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Table 8B Cont’d

Industry Book
Type Value 1971 1972 1973 1974 1975 1976 1977 1978 1979

0 0.806 −2.067 −1.884 −1.846 −1.844 −2.486 −3.304 −2.680 −2.168 −1.340
1 2.690 −0.433 −0.046 −0.192 −0.030 0.028 −0.052 −0.019 0.124 0.055
0 3.123 −0.078 −0.281 −0.104 −0.035 −0.147 −0.026 −0.067 −0.129 −0.119
1 2.427 0.518 0.634 0.763 0.913 0.782 0.821 0.960 1.076 1.137
0 3.359 1.102 0.745 0.981 0.962 0.951 1.028 1.056 1.015 0.906
0 0.407 −1.159 −1.523 −1.421 −1.416 −1.445 −0.826 −0.525 −0.494 −0.447
1 1.458 −0.128 −0.183 −0.021 −0.176 0.056 0.287 0.389 0.322 0.325
1 1.718 −0.135 −0.035 −0.047 0.066 −0.039 0.016 0.454 0.566 0.633
0 3.169 −0.528 −0.409 −1.293 −0.036 −0.461 0.012 0.262 0.189 −0.071
0 1.031 −0.869 −0.870 −0.467 −0.492 −0.579 −0.595 −0.442 −0.232 0.154
1 1.196 0.178 0.292 0.427 0.671 0.815 1.049 0.788 0.420 0.414
1 1.749 −0.494 −0.949 −1.279 −1.432 −1.457 −1.730 −2.403 −2.697 −3.577
0 1.907 −0.889 −0.952 −0.988 −0.588 −0.762 −0.681 −0.404 −0.468 −0.389
1 2.963 0.511 0.448 0.526 0.641 0.545 0.677 0.553 0.668 0.673
1 1.204 0.410 0.696 0.978 1.096 1.267 1.087 1.140 1.245 1.429
0 0.253 −2.432 −3.352 −3.674 −3.153 −3.548 −3.849 −3.479 −3.112 −3.092
1 2.375 0.630 0.468 0.594 0.593 0.400 0.546 0.722 0.827 1.176
0 0.718 −1.362 −1.221 −2.158 −1.742 −1.880 −1.305 −1.287 −0.972 −0.759
0 0.351 0.009 0.137 0.399 0.588 −0.780 −0.529 −0.228 −0.090 0.601
0 2.517 0.450 −0.564 0.498 0.284 0.014 −0.141 −0.461 −0.226 −0.550
0 3.861 −0.734 −0.701 −0.656 −0.897 −0.916 −1.502 −1.644 −1.580 −0.082
0 −0.741 −1.447 −1.478 −1.353 −1.272 −1.216 −1.242 −1.190 −1.077 −0.076
0 2.718 0.094 −0.233 0.479 −0.308 −0.706 −0.734 −1.669 −1.792 −1.647
0 2.172 −2.820 −3.124 −3.141 −2.906 −2.693 −2.581 −2.044 −1.684 −1.659
1 1.475 −0.055 −0.050 0.454 0.700 0.744 0.543 0.662 0.810 0.829
1 0.829 −0.758 −0.468 −0.505 −0.450 −0.503 −0.492 0.097 0.461 0.535
1 3.969 1.579 1.604 1.662 1.690 1.688 1.875 2.025 2.023 2.020
1 2.021 0.410 0.461 0.527 0.727 1.012 1.269 1.398 1.500 1.588
0 3.621 0.961 1.132 1.569 1.722 1.652 1.733 1.715 1.740 1.776
0 0.321 −1.407 −2.033 −1.211 −2.174 −1.678 −0.766 −1.137 −0.508 −0.270
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Table 8B Cont’d

Industry Book
Type Value 1971 1972 1973 1974 1975 1976 1977 1978 1979

0 2.519 −2.026 −2.323 −2.693 −2.500 −2.524 −2.471 −2.282 −2.093 −1.745
0 3.494 0.099 0.330 −0.568 −0.064 −0.417 −0.304 −0.410 −0.521 −0.662
0 1.241 −0.176 0.109 −0.051 −0.103 −0.035 0.126 0.294 0.181 0.206
0 2.950 0.576 0.594 0.580 0.538 0.391 0.434 0.721 0.808 0.878
0 3.297 0.278 0.292 0.325 0.327 0.198 0.135 0.160 0.107 −0
1 1.786 0.009 0.588 0.480 0.518 0.231 0.570 0.449 0.824 0.796
0 2.859 −1.425 −1.461 −1.502 −1.459 −1.524 −1.592 −1.602 −1.583 −1.516
0 1.507 −3.013 −2.526 −2.216 −2.303 −2.615 −2.716 −2.603 −2.590 −2.121
0 3.001 −1.616 −1.715 0.631 0.536 0.666 0.790 0.931 0.800 0.794
1 0.552 −1.139 −0.794 −0.581 −0.582 −0.405 −0.351 −0.377 −0.458 −0.240
0 2.833 −1.079 −1.291 −1.409 −1.073 −1.788 −1.800 −1.764 −1.369 −1.522
1 1.456 0.190 −0.152 −0.170 −0.675 −0.582 −0.550 −0.474 −0.879 −0.911
1 3.054 1.208 1.194 1.324 1.287 1.051 1.072 1.084 1.098 1.430
0 1.959 −0.771 −1.386 −1.266 −1.766 −1.747 −1.667 −1.702 −1.701 −1.745
1 1.896 −0.244 −0.543 −0.234 −0.108 −0.076 −0.087 0.344 0.606 0.484
0 2.229 −0.907 −0.919 −0.775 −0.683 −0.631 −0.682 −0.512 −0.377 −0.215
1 3.182 −1.005 −0.203 −0.308 −0.439 −0.831 0.028 0.153 0.189 0.201
0 3.203 −1.893 −2.137 −2.141 −2.002 −2.524 −2.173 −2.680 −2.669 −2.574
0 2.109 −2.506 −2.590 −2.110 −2.430 −2.371 −2.034 −2.426 −2.557 −2.262
0 2.833 −0.104 −0.511 −0.629 −1.245 −1.506 −0.766 −0.732 −0.810 −0.490
1 0.271 −0.957 0.170 0.567 0.647 1.073 0.852 1.211 1.591 1.555
0 2.900 −0.957 −1.204 −1.448 −0.262 −0.081 0.222 0.264 0.289 0
1 2.521 0.450 0.149 0.079 0.019 −0.168 −0.109 −0.115 −0.159 −0.193
0 2.650 −0.406 −0.361 −0.374 −0.310 −0.108 −0.028 0.094 0.135 0.099
1 2.384 0.512 −0.229 −0.138 −0.123 −0.176 −0.193 0.113 0.143 −0.320
1 2.197 0.045 0.123 0.326 0.451 0.461 0.402 0.460 0.516 0.441
1 −0.121 −2.519 −2.235 −1.360 −1.204 −1.063 −1.007 −1.599 −0.956 −0.225
0 0.796 −2.408 −1.214 −1.421 −1.855 −2.053 −2.311 −2.380 −2.304 −2.301
1 3.114 1.065 1.057 1.075 1.113 0.866 0.334 0.637 0.658 0.653
0 3.804 1.038 1.024 0.894 0.834 0.962 1.003 1.104 1.242 1.290
0 1.885 0.214 0.259 0.043 0.330 0.073 0.282 0.492 0.592 0.683
0 2.788 −0.596 −0.417 −0.199 −0.274 −0.244 −0.343 −0.279 −0.080 0.196
1 −0.053 −1.037 −1.041 −1.307 −1.338 −1.422 −1.473 −0.947 −0.850 −0.905
0 3.472 0.700 0.668 0.702 0.730 0.494 0.506 0.606 0.580 0.673
0 2.839 −1.113 −0.732 −1.816 −1.416 −1.372 −1.740 −2.054 −1.851 −2.064
0 2.769 0.112 0.125 0.150 0.298 0.012 0.047 0.100 0.280 0.485
0 3.601 0.687 0.649 0.430 0.340 0.571 0.347 0.222 −0.057 −0.0101
0 3.659 1.390 1.533 1.440 1.436 1.429 1.537 0.222 1.615 1.606
0 3.517 0.673 0.723 0.655 0.613 0.621 0.628 0.709 0.636 0.789
0 1.316 −2.971 −1.394 −1.554 −1.699 −1.583 −1.679 −1.539 −1.506 −2.438
1 2.532 −0.371 −0.473 −0.556 −0.730 −0.739 −0.817 −0.780 −0.687 −0.637
1 1.529 −0.881 −0.260 −0.090 −0.345 −0.065 0.205 0.404 1.004 1.164
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Table 8B Cont’d

Industry Book
Type Value 1971 1972 1973 1974 1975 1976 1977 1978 1979

1 1.642 −1.681 −0.728 −0.510 −0.910 −1.047 −1.222 −1.309 −1.142 −1.008
0 1.042 −0.648 −0.916 −0.897 −0.688 −0.653 −0.662 −0.730 −0.722 −0.749
1 −1.079 −1.506 −1.465 −1.401 −1.426 −1.090 −1.162 −1.312 −1.313 −1.135
0 1.389 −0.996 −0.504 −0.504 −0.269 −0.171 −0.104 −0.538 −0.346 −0.543
0 2.738 −0.113 0.044 0.187 0.316 0.159 0.384 0.468 0.542 0
0 3.625 −2.420 −2.303 −2.365 −2.460 −2.553 −2.515 −2.388 −2.286 −2.307
0 2.856 −1.341 −2.283 −2.208 −1.971 −0.995 −0.936 −0.894 −0.828 −0.812
0 3.697 0.193 0.421 0.638 0.607 0.056 0.277 0.160 0.123 0.188
0 2.076 −0.876 −1.191 −1.293 −2.167 −1.917 −1.964 −1.764 −1.464 −0.833
1 3.106 0.461 0.544 0.566 0.623 0.607 0.674 0.801 0.899 0.911
1 3.955 2.038 0.878 1.678 1.803 1.378 1.397 1.524 1.535 1.678
1 2.266 −0.243 −0.301 −0.213 −0.224 −0.365 −0.640 −0.784 −0.655 −0.660
0 2.099 −1.739 −1.448 −2.065 −2.683 −2.841 −2.953 −2.786 −2.991 −2.983
1 1.741 1.304 0.226 0.093 0.482 0.546 0.516 0.941 1.173 1.367
0 0.557 −2.162 −0.904 −1.712 −2.802 −3.246 −1.943 −1.883 −3.283 −3.388
1 3.692 1.605 1.665 1.519 0.518 0.510 0.723 1.260 1.576 1.646
1 −1.770 −1.727 −1.988 −1.432 −1.474 −1.475 −1.333 −1.616 −1.523 −1.114
0 2.688 0.227 0.339 0.194 −0.343 0.151 0.281 0.315 0.371 0.349
0 2.021 0.237 0.179 0.175 0.032 0.025 0.240 0.247 0.414 0.555
0 2.864 −0.245 −0.047 0.070 0.076 0.122 −0.100 0.105 0.248 0.319
0 2.698 0.381 0.588 0.580 0.485 0.337 0.434 0.539 0.463 0.488
1 2.762 0.700 0.702 0.772 0.753 0.741 0.754 0.882 1.074 1.274
0 3.386 0.376 0.592 0.579 0.576 0.229 0.258 0.269 0.283 0.382
1 3.238 0.920 0.742 −0.755 −0.365 −1.321 −1.659 −2.156 −2.524 −3.388
0 2.190 −1.564 −1.124 −0.708 −0.219 −0.251 −0.046 0.028 0.017 −0.010
1 1.972 0.082 −0.223 −0.364 −0.145 −0.074 −0.089 −0.087 0.720 0.068
1 1.806 −0.089 −0.087 0.079 0.153 −0.058 0.076 0.156 0.255 0.593
0 2.245 −0.310 −0.188 −0.056 −0.062 −0.054 −0.028 0.244 0.161 0.076
1 2.443 −0.006 0.155 0.118 0.106 0.108 0.084 0.068 0.040 0.195
0 0.659 −3.307 −3.058 −3.058 −2.460 −2.984 −2.051 −2.498 −3.112 −3.275
0 2.718 0.576 0.742 0.825 0.818 0.608 0.713 0.628 0.640 0.633
1 2.972 −0.256 −0.105 −0.062 0.158 0.207 0.222 0.315 0.503 0.524
1 2.178 −1.159 −0.892 −0.978 −0.768 −1.289 −1.384 −1.009 −1.013 −1.748
0 3.754 0.873 0.835 0.782 0.739 0.666 0.936 0.916 0.898 0.750
1 3.373 1.837 1.885 2.024 2.101 2.119 2.236 2.401 2.489 2.480



Chapter 9
Longitudinal Mixed Models for Binary Data

Recall that various stationary and nonstationary correlated binary fixed models were
discussed in Chapter 7. In this chapter, we consider a generalization of some of
these fixed models to the mixed model setup by assuming that the repeated binary
responses of an individual may also be influenced by the individual’s random effect.
Thus, this generalization will be similar to that for the repeated count data subject
to the influence of the individual’s random effect that we have discussed in Chapter
8. Note that in this chapter, we concentrate mainly on the nonstationary models,
stationary models being the special cases.

In Section 9.1, we discuss a binary longitudinal mixed model as a generalization
of the linear dynamic nonstationary AR(1) model used in Section 7.4.1. The basic
properties as well as the estimation of the parameters of the mixed model are also
given. In Section 9.2, we provide a generalization of the nonlinear binary dynamic
logit (BDL) model discussed in Section 7.7.2, to the mixed model setup. This gen-
eralized model is referred to as the binary dynamic mixed logit (BDML) model, the
BDL model being alternatively referred to as the binary dynamic fixed logit (BDFL)
model. The so-called IMM (improved method of moments) and GQL (generalized
quasi-likelihood) estimation approaches are discussed in detail for the estimation of
the parameters, namely the regression effects and dynamic dependence parameter
as well as the variance of the random effect, of the BDML model. We revisit the
SLID data analyzed by fitting the BDFL model in Section 7.5, and reanalyze it now
by fitting the BDML model. In the same section, we also include the likelihood
estimation and compare its performance with the GQL approach. In Section 9.3,
we consider a binary dynamic mixed probit (BDMP) model as an alternative to the
BDML model and use the GQL estimation approach for the desired misspecification
inferences.
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9.1 A Conditional Serially Correlated Model

Let yi1, . . . ,yit , . . . ,yiT be the T repeated binary responses collected from the ith
(i = 1, . . . ,K) individual, xit = (xit1, . . . ,xit j, . . . ,xit p)′ be the p-dimensional covari-
ate vector associated with the response yit , and β = (β1, . . . ,β j, . . . ,βp)′ denote the
regression effects of xit on yit . Because the repeated responses are likely to be cor-
related, in Chapter 7, more specifically in Section 7.4, they were modelled based
on a class of nonstationary autocorrelation structures, namely AR(1), MA(1), and
EQC (equicorrelations). In this section, we, for example, consider the nonstationary
AR(1) model only. The other models may be treated similarly. However, in addition
to the stochastic time effect, we now assume that the repeated binary responses of
an individual are also influenced by the individual random effect. Consequently,

conditional on the random effect γi
i.i.d.∼ N(0,σ2

γ ), the repeated binary responses
yi1, . . . ,yit , . . . ,yiT are assumed to follow the AR(1) correlation model

Pr[Yi1 = 1|γi] = π
∗
i1

Pr[Yit = 1|γi,yi,t−1] = π
∗
it +ρ(yi,t−1−π

∗
i,t−1), for t = 2, . . . ,T, (9.1)

where π∗it = exp(x
′
itβ + γi)/[1+ exp(x

′
itβ + γi)], for all t = 1, . . . ,T.

9.1.1 Basic Properties of the Model

Conditional on the random effects γi, the linear dynamic probability model (9.1)
yields the conditional means and the variances as

E(Yit |γi) = π
∗
it

var(Yit |γi) = σ
∗
itt = π

∗
it(1−π

∗
it), (9.2)

for t = 1, . . . ,T. Next, for u < t, by using the model relationship (9.1), similar to
(7.72), one may compute the conditional covariance between yiu and yit as

cov[(Yiu,Yit)|γi] = ρ
t−u

σ
∗
iuu. (9.3)

The unconditional means, variances and covariances may be obtained as in the fol-
lowing lemma.

Lemma 9.1. By using

γ
∗
i =

γi

σγ

iid∼ N(0,1)

so that π∗it(γ
∗
i ) = exp(x

′
itβ +σγ γ∗i )/[1 + exp(x

′
itβ +σγ γ∗i )], and the conditional mo-

ments from (9.2) and (9.3), one obtains the unconditional means, variances, and
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covariances as

E[Yit ] = πit(β ,σ2
γ ) =

∫
π
∗
it(γ

∗
i )gN(γ∗i |1)dγ

∗
i (9.4)

var[Yit ] = σitt(β ,σ2
γ ) = πit(β ,σ2

γ )(1−πit(β ,σ2
γ )) (9.5)

cov[Yiu,Yit ] = σiut(β ,σ2
γ ,ρ)

= ρ
t−u
[

πiu−
∫

π
∗2

iu(γ
∗
i )gN(γ∗i |1)dγ

∗
i

]
+
[∫

π
∗
iu(γ

∗
i )π∗it(γ

∗
i )gN(γ∗i |1)dγ

∗
i −πiuπit

]
= ρ

t−u [πiu−πiuu]+ [πiut −πiuπit ] , (9.6)

with gN(γ∗i |1) as the standard normal density, yielding the pairwise familial corre-
lations as

corr[Yi j,Yik] =
ρ t−u [πiu−πiuu]+ [πiut −πiuπit ]

[πiu(β ,σ2
γ )(1−πiu(β ,σ2

γ ))πit(β ,σ2
γ )(1−πit(β ,σ2

γ ))]1/2
. (9.7)

Proof: In the manner similar to that of Lemma 5.1, one obtains the unconditional
mean, variance, and the covariance in (9.4)−(9.6) by using the following formulas.

E[Yit ] = E[Y 2
it ] = Eγ∗i

E[Yit |γ∗i ]

var[Yit ] = Eγ∗i
[var{Yit |γ∗i }]+varγ∗i

[E{Yit |γ∗i }]
cov[Yiu,Yit ] = Eγ∗i

cov[{Yiu,Yit}|γ∗i ]+ covγ∗i
[E(Yiu|γ∗i ),E(Yit |γ∗i )], (9.8)

where by (9.3), the conditional covariance, that is, cov[{Yiu,Yit}|γ∗i ] is a function of
the longitudinal correlation index parameter ρ.

Note that similar to that in Chapter 5, πiuu and πiut in (9.6) may be computed by
using either a simulation or binomial approximation. To be specific, in the simula-
tion technique, for a large N such as N = 1000, πiuu in (9.6), for example, may be
computed as

π
(s)
iuu(β ,σ2

γ ) =
1
N

N

∑
w=1

[π∗2
iu (γ∗iw)], (9.9)

[see also (5.20)] where γ∗iw is a sequence of standard normal values for w = 1, . . . ,N.
Alternatively, one may approximate the desired normal integral by a binomial ap-
proximation and compute πiuu as

π
(b)
iuu (β ,σ2

γ ) =
V

∑
vi=0

π
∗2
iu (vi)]

(
V
vi

)
(1/2)vi(1/2)V−vi , (9.10)

[see also (5.24)] where for a known reasonably big V such as V = 5,

vi ∼ binomial(V,1/2),
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and hence it has a relation to γ∗i as

γ
∗
i =

vi−V (1/2)
V (1/2)(1/2)

.

Further note that unlike in Chapter 5, πiut in (9.6) is not the same as λiut =
E[YiuYit ]. This is because when yiu and yit are correlated,

λiut = E[YiuYit ] 6= Eγ∗i
[π∗iuπ

∗
it ],

when ρ 6= 0.

9.1.2 Parameter Estimation

9.1.2.1 GQL Estimation of the Regression Effects β

For yi = [yi1, . . . ,yit , . . . ,yiT ]′, let

E[Yi] = πi(β ,σ2
γ ) = [πi1(β ,σ2

γ ), . . . ,πit(β ,σ2
γ ), . . . ,πiT (β ,σ2

γ )]′,

with

πit(β ,σ2
γ ) =

∫ exp(x′itβ +σγ γ∗i )
1+ exp(x′itβ +σγ γ∗i )

gN(γ∗i |1)dγ
∗
i

=
∫

π
∗
it(γ

∗
i )gN(γ∗i |1)dγ

∗
i

= π
(b)
it (β ,σ2

γ ), (say). (9.11)

Next, let Σi(β ,σ2
γ ,ρ) denote the covariance matrix of yi. To be specific,

Σi(β ,σ2
γ ,ρ) = (σiut), (9.12)

where var(Yit) = σitt ≡ σitt(β ,σ2
γ ) and cov(Yiu,Yit) = σiut ≡ σiut(β ,σ2

γ ,ρ) for u 6= t,
with σitt and σiut defined as in (9.5) and (9.6), respectively. Now following (8.18)
[see also Sutradhar (2004)], one may solve the estimating equation given by

K

∑
i=1

∂π ′i (β ,σ2
γ )

∂β
Σ
−1
i (β ,σ2

γ ,ρ)[yi−πi(β ,σ2
γ )] = 0, (9.13)

to obtain the GQL estimate of β . In (9.13), the first derivative vector may be com-
puted simply by using the formula for the derivative of πit(β , σ2

γ ) with respect to
β . This formula for the derivative is given by
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∂πit(β , σ2
γ )

∂β
=
∫

∂π∗it(γ
∗
i )

∂β
gN(γ∗i |1)dγ

∗
i

= xit

∫
[π∗it(γ

∗
i ){1−π

∗
it(γ

∗
i )}gN(γ∗i |1)dγ

∗
i

= xit [pi(b)
it (β ,σ2

γ )−π
(b)
itt (β , σ

2)].

Note that for given σ2
γ and ρ , the GQL estimate obtained from (9.13) is consis-

tent for β . This is because, as E(Yi) = πi(β ,σ2
γ ), the estimating equation (9.13) is

unbiased. Furthermore, because the GQL estimating equation (9.13) is constructed
by using the covariance matrix Σi(β ,σ2

γ ,ρ) as a weight matrix, it follows that the
GQL estimate of β obtained from (9.13) would be highly efficient as compared to
other competitors such as the method of moments based estimate.

9.1.2.2 GQL Estimation of the Random Effects Variance σ2
γ

For the estimation of σ2
γ , the GQL approach exploits the squared and the pairwise

product of the observations. Let

ui = (y2
i1, . . . ,y

2
iT ,yi1yi2, . . . ,yityi,t+1, . . . ,yi,T−1yiT )′

with its expectation

λi(β ,σ2
γ ,ρ) = E[Ui]

= (λi11, . . . ,λitt , . . . ,λiT T ,λi12, . . . ,λiut , . . . ,λi,T−1,T )′. (9.14)

Because y2
it and yit are the same in the binary case, to compute λi(β ,σ2

γ ,ρ) one uses

λitt ≡ λitt(β ,σ2
γ ) = πit

λiut ≡ λiut(β ,σ2
γ ,ρ) = E(YiuYit)

= ρ
t−u [πiu−πiuu]+πiut , (9.15)

by (9.6), for all u < t. By using the QL principle similar to that of (8.18), one may
now write the GQL estimating equation for σ 2

γ as

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
i (β ,σ2

γ ,ρ)[ui−λi(β ,σ2
γ ,ρ)] = 0, (9.16)

[Sutradhar and Jowaheer (2003)] where Ωi is the covariance matrix of ui. Note that
it is, however, extremely cumbersome to compute Ωi in general under the auto-
regression model (9.1). As a remedy, we consider two approximations, namely re-
placing the Ωi matrix by a ‘working’ independence assumption based fourth-order
moments matrix Ωi(I), or replacing the Ωi matrix by a ‘working’ normality based
weight matrix ΩiN .
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9.1.2.2.1 GQL(I) Estimation of σ2
γ

Under the ‘working’ independence based approximation, one solves the ‘working’
GQL(I) estimating equation given by

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
iw (β ,σ2

γ ,ρ = 0)[ui−λi(β ,σ2
γ ,ρ)] = 0, (9.17)

for the estimation of σ2
γ .

Computation for Ωiw(β ,σ2
γ ,ρ = 0)

The computation of this matrix requires the computations of the third− and fourth-
order product moments. By using the binomial approximation [see (9.10)], for ex-
ample, the third order moments may be computed as

δiut` = E[YiuYitYi`]
= Eγ∗i

[E(Yiu|γ∗i )E(Yit |γ∗i )E(Yi`|γ∗i )]

= Eγ∗i
[π∗iuπ

∗
itπ

∗
i`]

=
V

∑
vi=0

[π∗iu(vi)π∗it(vi)π∗i`(vi)]
(

V
vi

)
(1/2)vi(1/2)V−vi

= π
(b)
iut`(β ,σ2

γ ). (9.18)

Similarly, the fourth-order moments under the assumption that ρ = 0 may be
computed as

φiut`m = E[YiuYitYi`Yim]
= Eγ∗i

[E(Yiu|γ∗i )E(Yit |γ∗i )E(Yi`|γ∗i )E(Yim|γ∗i )]

= Eγ∗i
[π∗iuπ

∗
itπ

∗
i`π

∗
im]

=
V

∑
vi=0

[π∗iu(vi)π∗it(vi)π∗i`(vi)π∗im(vi)]
(

V
vi

)
(1/2)vi(1/2)V−vi

= π
(b)
iut`m(β ,σ2

γ ). (9.19)

9.1.2.2.2 GQL(N) Estimation of σ 2
γ

Under the ‘working’ normality based approximation, one solves the ‘working’
GQL(N) estimating equation given by

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
iN (β ,σ2

γ ,ρ)[ui−λi(β ,σ2
γ ,ρ)] = 0, (9.20)
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for the estimation of σ2
γ .

Computation for ΩiN(β ,σ2
γ ,ρ)

Similar to Section 8.3.1.2, the third− and fourth-order moments for the correlated
binary variables, under the normality assumption, are computed as follows. Note
that under normality

E[(Yiu−πiu)(Yit −πit)(Yi`−πi`)] = 0, (9.21)

yielding the third-order raw moments as

δiut` = E[YiuYitYi`] = σiutπi` +σiu`πit +σit`πiu−2πiuπitπi`, (9.22)

where by (9.4), (9.6), and (9.10), one writes

πit ≡ π
(b)
it

σiut = σ
(b)
iut = ρ

t−u
[
π

(b)
iu −π

(b)
iuu

]
+
[
π

(b)
iut −π

(b)
iu π

(b)
it

]
. (9.23)

Similarly, because under normality

E[(Yiu−πiu)(Yit−πit)(Yi`−πi`)(Yim−πim)] = σiutσi`m +σiu`σitm +σiumσit`, (9.24)

one obtains the fourth-order raw product moments as

E[YiuYitYi`Yim] = φiut`m

= σiutσi`m +σiu`σitm +σiumσit`

+δiut`πim +δiutmπi` +δiu`mπit +δit`mπiu

−σiutπi`πim−σiu`πitπim−σiumπitπi`−σit`πiuπim

−σitmπiuπi`−σi`mπiuπit +3πiuπitπi`πim, (9.25)

where πit and σiut , for example, are given by (9.23), and δiut` is given by (9.22).

9.1.2.3 Estimation of ρ Under the GQL Approach

Note that the regression effect β may be estimated by using the GQL estimating
equation (9.13), and the variance of the random effects σ2

γ may be estimated by
using either the GQL(I) estimating equation in (9.17) or the GQL(N) equation in
(9.20), provided ρ is known. But in practice ρ is rarely known. For given β and
σ2

γ , the correlation or probability parameter (ρ) may be consistently estimated by
solving a suitable moment estimating equation that may be developed by equating
the population covariance of the data given in (9.6) with its sample counterpart. Note
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that as ρ is a correlation parameter under the autoregressive order 1 setup, similar to
the Gaussian set up, it would be sufficient to exploit the lag 1 autocovariance only
to estimate this parameter. More specifically, as by (9.5)

var[Yit ] = σitt(β ,σ2
γ ) = πit(β ,σ2

γ )(1−πit(β ,σ2
γ )),

and by (9.6)

cov[Yit ,Yi,t+1] = σit,t+1(β ,σ2
γ ,ρ) = ρ [πit −πitt ]+ [πit,t+1−πitπi,t+1] ,

in the manner similar to that of the Poisson mixed model case [see eqn. (8.54)], ρ

may be estimated consistently by

ρ̂ =
a1−b1

g1
, (9.26)

where a1 is the observed lag 1 correlation defined as

a1 =
∑K

i=1 ∑T−1
t=1 y∗it y

∗
i(t+1)/K(T −1)

∑K
i=1 ∑T

t=1 y∗
2

it /KT
,

with y∗it = (yit −µit)/(σitt)1/2, where σitt = πit [1−πit ]. In (9.26),

g1 =
1

K(T −1)

K

∑
i=1

T−1

∑
t=1

[
πit −πitt

(σittσi,t+1,t+1)1/2

]
,

and

b1 =
1

K(T −1)

K

∑
i=1

T−1

∑
t=1

[
πit,t+1−πitπi,t+1

(σittσi,t+1,t+1)
1
2

]
.

9.2 Binary Dynamic Mixed Logit (BDML) Model

As opposed to the linear binary dynamic mixed model considered in Section 9.1,
in this section, mainly following Sutradhar, Rao, and Pandit (2008), we consider a
nonlinear binary dynamic mixed model, given by

Pr(yit = 1|γi) =


exp(x′i1β+γi)

1+exp(x′i1β+γi)
= p∗i10, for i = 1, . . . ,K; t = 1

exp(x′it β+θyi,t−1+γi)
1+exp(x′it β+θyi,t−1+γi)

= p∗ityi,t−1
, for i = 1, . . . ,K; t = 2, . . . ,T

= Fit , say, (9.27)
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where β is the regression effects of fixed covariates, θ is the dynamic dependence

parameter, and γi
i.i.d.∼ N(0,σ2

γ ) is the latent random effect of the ith (i = 1, . . . ,K)
individual. Note that for convenience, we use γ∗i = γi/σγ . Further note that the bi-
nary mixed model in (9.27) is a direct generalization of the BDFL model considered
in Section 7.7.2 [see also Sutradhar and Farrell (2007)]. Also, this model in (9.27)
is known as the binary panel data model in the econometrics literature. Many au-
thors such as Heckman (1981), Manski (1987), and Honore and Kyriazidou (2000)
studied this model, for a distribution-free random effects case.

For the inferences for β and θ , Honore and Kyriazidou (2000, p. 844), for ex-
ample, attempted to estimate these parameters by exploiting the first differences of
the responses yi1−yi0, yi2−yi1, . . ., which are approximately independent of γi. For
example, for a special case with T = 4, they suggest to estimate β and θ by maxi-
mizing an approximate weighted log-likelihood function

logL̃ =
I

∑
i=1

Iδ{yi2 + yi3 = 1}Iδ{xi3− xi4 = 0}

× ln

(
exp((xi2− xi3)β +θ(yi1− yi4))yi2

1+ exp((xi2− xi3)β +θ(yi1− yi4))

)
, (9.28)

which seems to be very restrictive as, in longitudinal setup, it is unlikely that xi3 will
be the same as xi4 to yield the indicator function value Iδ{xi3− xi4 = 0} = 1. As a
remedy to this problem due to nonstationarity, Honore and Kyriazidou (2000, eqn.
6, p. 845) further suggest to replace the indicator function Iδ{xi3− xi4 = 0}= 1 by
a kernel density function κ{(xi3−xi4)/bK}, where bK is the bandwidth that shrinks
as K increases. This replacement, however, appears to be quite artificial in order
to avoid the technical difficulty produced by the method. In fact for larger T , the
estimation problem will be much more difficult. Thus, even if one is interested in
the estimation of β and θ , this semiparametric approach of Honore and Kyriazidou
(2000) appears to be impractical.

Note that in practice, unlike Honore and Kyriazidou (2000), one may be inter-
ested to have an idea about the dispersion (σ 2

γ ) of the random effects, as this param-
eter affects both the mean and the variance of the binary responses. It is clear that
obtaining the likelihood estimators of β , θ , and σ2

γ in (9.27) requires the maximiza-
tion of the exact likelihood function

L(β , θ , σγ) =
∫ ∞

γ1=−∞
. . .
∫ ∞

γK=−∞

K

∏
i=1

{
Fi1(x′i1β +σγ γ

∗
i

}yi1

×
{

1−Fi1(x′i1β +σγ γ
∗
i )
}1−yi1

×

[
T

∏
t=2

{
Fit(x′itβ +θyi,t−1 +σγ γ

∗
i )
}yit
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×
{

1−Fit(x′itβ +θyi,t−1 +σγ γ
∗
i )
}1−yit

]
×φ(γ∗1 ) . . .φ(γ∗K) dγ

∗
1 . . .dγ

∗
K , (9.29)

which appears to be manageable but complicated. In (9.29), φ(γ∗i ) is the standard
normal density, and Fit is the conditional probability given by (9.27).

As opposed to the aforementioned complex weighted likelihood and exact like-
lihood estimation approaches, in the following section we discuss a generalized
method of moments (GMM) (referred to as the IMM in Section 5.2.2) that pro-
duces consistent estimates for the parameters β , θ ,and σ2

γ involved in the BDML
model. In Section 9.2.2, we discuss the GQL estimation for the same parameters
and demonstrate that the GQL approach is much more efficient as compared to the
GMM estimation approach. Note that these GMM and GQL approaches were de-
veloped by Sutradhar, Rao, and Pandit (2008) for the estimation of the parameters
in this BDML model.

9.2.1 GMM/IMM Estimation

As pointed out earlier, the GMM approach due to Hansen (1982) is a popular es-
timation approach in the econometrics literature. For example, see the articles in
the ‘Twentieth Anniversary GMM Issue’ of the Journal of Business and Economic
Statistics. Let α = (β ′,θ ,σ2

γ )′ be the (p+2)-dimensional vector of the parameters
of the dynamic mixed model (9.27). The construction of the GMM estimating equa-
tions for the components of α requires the formulas for their unbiased estimating
functions. These unbiased functions are given in the next section.

9.2.1.1 Construction of the Unbiased Moment Functions

Note that in the binary panel data model (9.27), β is the regression parameter vec-
tor and θ is the scalar dynamic dependence parameter, whereas σ2

γ is the variance
component of the random effects. Let

ψi(yi,β , θ , σ
2
γ ) = [ψ ′

1i,ψ2i,ψ3i]′ (9.30)

be a vector of three unbiased moment functions corresponding to three parameters
β , θ , and σ 2

γ . Now to construct the first and third components of this vector, one
may refer to the construction of the moment functions under the binary mixed model
discussed in Chapter 5 (see Section 5.2.2). This is because, for the case when θ = 0,
the present BDML model reduces to the BDFL model which has been exploited
extensively in the statistics literature to analyze binary data in the generalized linear
mixed model (GLMM) setup. For example, for the estimation of β and σ2

γ , Jiang
(1998) [see also Jiang and Zhang (2001) and Sutradhar (2004)] has exploited the
sufficient statistics under the conditional GLMM set up and constructed the basic
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distance functions as

ψ1i =
T

∑
t=1

xit [yit −πit ], and

ψ3i =
T

∑
t=1

[y2
it −λitt ]+

T

∑
u<t

[yiuyit −λiut ]

=
T

∑
t=1

[yit −πit ]+
T

∑
u<t

[yiuyit −λiut ], (9.31)

respectively, where πit = λitt = E[Yit ] and λiut = E[YiuYit ]; their formulas are given
as follows.

9.2.1.1.1 Formula for πit

It follows from the BDML model (9.27) that conditional on γ∗i , the means of the
repeated binary responses are given by

π
∗
it(γ

∗
i ) = E[Yit |γ∗i ] =


exp(x′i1β+σγ γ∗i )

1+exp(x′i1β+σγ γ∗i ) , for i = 1, . . . , I; t = 1

p∗it0 +π∗i,t−1(p∗it1− p∗it0), for i = 1, . . . , I; t = 2, . . . ,T
(9.32)

[see also (7.145)] where

p∗it1 =
exp(x′itβ +θ +σγ γ∗i )

[1+ exp(x′itβ +θ +σγ γ∗i )]
and p∗it0 =

exp(x′itβ +σγ γ∗i )
[1+ exp(x′itβ +σγ γ∗i )]

.

Subsequently, one obtains the unconditional means as

πit = E(Yit) = Pr(yit = 1)

= M−1
M

∑
w=1

π
∗
it(γ

∗
iw)

= M−1
M

∑
w=1

[p∗it0 +π
∗
i,t−1(p∗it1− p∗it0)]|γ∗i =γ∗iw

(9.33)

[Jiang (1998); Sutradhar (2004)] where γ∗iw is the wth (w = 1, . . . ,M) realized value
of γ∗i generated from the standard normal distribution. Here M is a sufficiently large
number, such as M = 5000. By (9.32), the p∗it1,w involved in (9.33), for example, is
written as

p∗it1,w =
exp(x′itβ +θ +σγ γ∗iw)

[1+ exp(x′itβ +θ +σγ γ∗iw)]
.

9.2.1.1.2 Formula for λiut

Conditional on γ∗i , for u < t, the second-order expectation may be written as
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E(YiuYit |γ∗i ) = λ
∗
iut(γ

∗
i ) = cov(Yiu,Yit |γ∗i )+π

∗
iuπ

∗
it = σ

∗
iut +π

∗
iuπ

∗
it , (9.34)

where by (7.149), the covariance between yiu and yit , conditional on γ∗i , has the
formula

σ
∗
iut = cov(Yiu,Yit |γ∗i ) = π

∗
iu(γ

∗
i )(1−π

∗
iu(γ

∗
i ))Π t

j=u+1(p∗i j1− p∗i j0). (9.35)

It then follows that the unconditional second-order raw moments have the formula

λiut = E(YiuYit) = M−1
M

∑
w=1

[π∗iu(γ
∗
iw)(1−π

∗
iu(γ

∗
iw))

×Π
t
j=u+1(p∗i j1,w− p∗i j0,w)+π

∗
iu(γ

∗
iw)π∗it(γ

∗
iw)
]
. (9.36)

Note that the first-order responses are used to construct ψ1i for the β parameter
and both squared and pairwise products are used to construct ψ3i for the σ2

γ param-
eter. By the same token, to construct the basic distance function ψ2i for the dynamic
dependence parameter θ we use the pairwise products only. Thus,

ψ2i =
T

∑
u<t

[yiuyit −λiut ]. (9.37)

9.2.1.2 GMM Estimating Equation for α = (β ′, θ , σ2
γ )′

By combining (9.31) and (9.37), for ψi(yi,α) = [ψ ′
1i,ψ2i,ψ3i]′, we now write a

quadratic function as

Qc(α) = K−1

[
K

∑
i=1

ψi(yi,α)

]′
C

[
K

∑
i=1

ψi(yi,α)

]
, (9.38)

[Hansen (1982)] where ψi(yi,α) is the (p+2)-dimensional vector of moment func-
tions corresponding to β , θ , and σ2

γ , and C is a suitable weight matrix and must be
positive definite. The GMM estimate of α is obtained by minimizing the quadratic
function (9.38). To be specific, the GMM estimating equations for β , θ , and σ 2

γ are
given by

∂ψ ′

∂α
Cψ = 0, (9.39)

where ψ = (ψ ′
1,ψ2,ψ3)′ with

ψ1 = K−1
K

∑
i=1

ψ1i, ψ2 = K−1
K

∑
i=1

ψ2i, ψ3 = K−1
K

∑
i=1

ψ3i,

and C is a weight matrix optimally chosen as
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C =

[
K−2

K

∑
i=1

E{ψi(yi,α)ψ ′
i (yi,α)}

]−1

.

This C matrix is constructed in the next section.

9.2.1.2.1 Computation of the C Matrix

We now show how to compute the weight matrix C for the construction of the esti-
mating equations given in (9.39). Remark that when one analyzes a semiparametric
model, it becomes a challenge to construct an optimal weight matrix C. As a solu-
tion to this problem, Hansen (1982) suggested using a ‘working’ weight matrix C
which may be constructed under certain relaxed conditions or parametric assump-
tion. Under the present setup, one does not, however, need to use any ‘working’
C matrix. This is because the present dynamic binary mixed model (9.27) is com-
pletely specified and hence one can compute the optimal weight matrix C given by
C = [cov(ψ)]−1.

For convenience, we write the cov(ψ) matrix under the present setup as

cov(ψ) =


var(ψ1) cov(ψ1,ψ2) cov(ψ1,ψ3)

var(ψ2) cov(ψ2,ψ3)

var(ψ3)

 , (9.40)

and provide the formulas for the components of this covariance matrix as follows.
First, we write the formula for the variance of ψ1 which requires the uncondi-

tional moments of second order for the binary responses. To be specific,

var(ψ1) = K−2
K

∑
i=1

T

∑
u=1

T

∑
t=1

σiutxitx
′
it , (9.41)

where the formulas for σiut , the variances and covariances of the repeated binary
responses, are given by

σitt = πit [1−πit ]
σiut = λiut −πiuπit , (9.42)

with λiut as in (9.36) and πit as in (9.33).
Next, we write the formulas for the covariances requiring the moments of the

data up to order three. These covariances are:

cov(ψ1,ψ2) = K−2

[
K

∑
i=1

T

∑
u=1

T

∑̀
≤t

xiuδiu`t −
K

∑
i=1

T

∑
u=1

xiuπiu

K

∑
i=1

T

∑
u≤t

λiut

]
, (9.43)

and
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cov(ψ1,ψ3) = K−2

[
K

∑
i=1

T

∑
u=1

T

∑̀
≤t

xiu(λiu` +δiu`t)−
K

∑
i=1

T

∑
u=1

xiuπiu

×
K

∑
i=1

T

∑
u≤t

(πiu +λiut)

]
, (9.44)

where the formulas for the raw second-order moments λiut are given in (9.36) and
the raw third-order moments δiu` have the formulas given by

δiu`t = E(YiuYi`Yit)

= M−1
M

∑
w=1

1

∑
yiu,yi`,yit 6∈s

Π
T
j=2

[
p̃i jy j−1(γ

∗
iw)p̃i1(γ∗iw)

]
yiu=1,yi`=1,yit=1

, (9.45)

where

p̃i1(γ∗iw) = exp{yi1(x′i1β +σγ γ
∗
iw)}/[1+ exp(x′i1β +σγ γ

∗
iw)], and

p̃ityi,t−1(γ
∗
iw) = exp{yit(x′itβ +θyi,t−1 +σγ γ

∗
iw)}/[1+ exp(x′i1β +θyi,t−1 +σγ γ

∗
iw)].

In (9.45), the sample space s contains the other t−3 elements out of all t elements
yi1, . . . ,yiu, . . . ,yi`, . . . ,yim, . . . ,yit .

The formulas for the remaining components contain the moments of the repeated
responses up to order four. To be specific,

var(ψ2) = K−2

 K

∑
i=1

T

∑
u≤`

T

∑
m≤t

φiu`mt −

(
K

∑
i=1

T

∑
u≤t

λiut

)2
 , (9.46)

cov(ψ2,ψ3) = K−2

[
K

∑
i=1

T

∑
u=1

T

∑̀
≤t

δiu`t −
K

∑
i=1

T

∑
u=1

πiu

K

∑
i=1

T

∑
u≤t

λiut

]
+var(ψ2), (9.47)

and

var(ψ3) = K−2
K

∑
i=1

T

∑
u=1

T

∑
t=1

σiut +K−2

[
K

∑
i=1

T

∑
u=1

T

∑̀
≤t

δiu`t −
K

∑
i=1

T

∑
u=1

µiu

K

∑
i=1

T

∑
u≤t

λiut

]
+var(ψ2), (9.48)

where φiu`mt , the fourth-order unconditional uncorrected moments, have the formu-
las given by

φiu`mt = E(YiuYi`YimYit)

= M−1
M

∑
w=1

1

∑
yiu,yi`,yim,yit 6∈s

Π
T
j=2

[
p̃i jyi, j−1(γ

∗
iw)p̃i1(γ∗iw)

]
yiu=1,yi`=1,yim=1,yit=1.

(9.49)
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In (9.49), the sample space s contains the other t−4 elements out of all t elements
yi1, . . . ,yiu, . . . ,yi`, . . . ,yim, . . . ,yit . Note that as T is usually small in the panel data
model, such as T = 4 or more, and because yits (t = 1, . . . ,T ) are binary, the third−
and the fourth-order moments given by (9.45) and (9.49), respectively, are easily
computed.

9.2.1.2.2 Computation of ∂ψ ′

∂α

Now to solve (9.39) for β , θ , and σ2
γ , we also need to compute the partial deriva-

tives ∂ψ ′/∂α . Note that ψ1 and ψ2 are functions of πit and λiut , respectively, and
ψ3 is a function of both πit and λiut . Thus, the computation of the derivative of the
ψ function with regard to α = (β ′,θ ,σ2

γ )′ requires the computation of the deriva-
tives ∂πit/∂β j, ∂πit/∂θ , ∂πit/∂σ2

γ , and ∂λiut/∂β j, ∂λiut/∂θ and ∂λiut/∂σ2
γ . For

convenience, these derivatives are given in Exercises 9.1 and 9.2.

9.2.2 GQL Estimation

To construct the GQL estimating equations, follow Sutradhar (2003; 2004) and write
a basic vector statistic containing the repeated responses and their distinct products
for an individual. Let

ui = (y′i,s
′
i)
′

represent this vector with y′i = (yi1, . . . ,yiT ) as the T -dimensional vector of responses
for the ith individual and s′i = (yi1yi2, . . . ,yiuyit , . . . ,yi,T−1yiT )′ be the (T − 1)T/2-
dimensional vector of distinct pairwise products of the T responses. Let

λi = E(Ui) = [E(Y ′
i ),E(S′i)]

′

be the expectation of the vector ui, which is already computed in Section 9.2.1.1.
To be specific, E(Yit) = µit and E(YiuYit) = λiut are known by (9.33) and (9.36),
respectively. Furthermore, let Ωi be the {T (T + 1)/2× T (T + 1)/2} covariance
matrix of ui for the ith individual. In the GQL approach, one essentially minimizes
the so-called generalized squared distance

K

∑
i=1

(ui−λi)′Ω−1
i (ui−λi) (9.50)

to estimate the parameters of the model, whereas the quadratic function Qc(α) in
(9.38) was minimized to obtain the GMM estimates. Once again it should be clear
from (9.38) and (9.50) that in the GMM approach the quadratic distance function
is written by using the distance between a combined statistic and its center (9.38),
whereas in the GQL approach standardized distances for all individuals are com-
bined to compute the generalized distance function (9.50). Note that minimization
of the generalized squared distance (9.50) for the estimation of the α = (β ′,θ ,σ2

γ )′



404 9 Longitudinal Mixed Models for Binary Data

parameter leads to the GQL estimating equations for α = (β ′,θ ,σ2
γ )′ as

K

∑
i=1

∂λ ′
i

∂α
Ω
−1
i (ui−λi) = 0, (9.51)

which may be solved iteratively by using

α̂(r +1) = α̂(r)+

(
K

∑
i=1

∂λ ′
i

∂α
Ω
−1
i

∂λi

∂α ′

)−1

r

(
K

∑
i=1

∂λ ′
i

∂α
Ω
−1
i (ui−λi)

)
r

, (9.52)

where ( )r denotes that the quantity in the parenthesis is evaluated at α = α̂(r),
the value of α obtained from rth iteration. Let α̂GQL denote the solution of (9.51)
obtained by (9.52). This GQL estimator is consistent and it is more efficient than
the GMM estimator. This is because the estimating equation (9.51) is constructed
by using the true variance−covariance matrix of a basic statistic, whereas the GMM
estimating equation (9.39) ignores the correlation structure of the data to form the
combined basic statistics. An empirical study in Section 9.2.4 also confirms this
superior relative efficiency performance of the GQL approach as compared to the
GMM approach.

Note that to apply the iterative equation (9.52), one needs to compute the deriva-
tive vector ∂λ ′

i /∂α , where

λi = [πi1, . . . ,πit , . . . ,πiT ,λi12, . . . ,λiut , . . . ,λi(T−1)T ]′.

Also it is required to compute the Ωi = cov(Ui) matrix, where

ui = (yi1, . . . ,yiu, . . . ,yiT ,yi1yi2, . . . ,yi`yit , . . . ,yi(T−1)yiT )′.

But, as the derivatives of πit and λiut with respect to α = (β ′,θ ,σ2
γ )′ are available

from exercises 9.1 and 9.2, the vector of the derivatives, that is, ∂λ ′
i /∂α , is known.

9.2.2.1 Computation of Ωi

Now to compute the Ωi matrix, we need to compute the variances var(Yiu) and
var(Yi`Yit) for all u = 1, . . . ,T, and ` < t, t = 2, . . . ,T. Also, we need to compute
the covariances cov(Yiu,Yit), cov(Yiu,Yi`Yit) for ` < t, and cov(YiuYi`,Yimyit) for all
possible values of u < ` and m < t. The formulas for some of these variances and co-
variances are already provided in Section 9.2.1.2.1 as basic properties of the model.
To be specific, the formulas for the var(Yiu) = σiuu and cov(Yiu,Yit) = σiut are given
in (9.42). The remaining variances and covariances may be computed as follows.
For example, the variance of the product variable yi`yit is given by

var(Yi`Yit) = E(Y 2
i`Y

2
it )− [E(Yi`Yit)]2

= E(Yi`Yit)[1−E(Yi`Yit)]
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= λi`t [1−λi`t ], (9.53)

where the formula for λi`t is known by (9.36). Similarly one obtains the other higher-
order covariances. For example,

cov(Yiu,Yi`Yit) = δiu`t −πiuλi`t , (9.54)

where δiu`t is a third-order moment of the binary variables given by (9.45). Similarly,
the cov(YiuYi`,YimYit) may be computed as

cov(YiuYi`,YimYit) = E(YiuYi`YimYit)−E(YiuYi`)E(YimYit)

= φiu`mt −λiu`λimt , (9.55)

where the formula for the fourth moment φiu`mt is given in (9.49). This completes
the construction of the {T (T +1)/2}×{T (T +1)/2} covariance matrix Ωi.

9.2.3 Efficiency Comparison: GMM Versus GQL

9.2.3.1 Asymptotic Distribution of the GMM Estimator

Let α̂GMM be the GMM estimate of α = (β ′,θ ,σ2
γ )′ which is obtained by solving

the GMM estimating equation (9.39). To be specific, this estimate is obtained by
using the iterative equation

α̂GMM(r +1) = α̂GMM(r)+
[

∂ψ ′

∂α
C

∂ψ

∂α ′

]−1

r

[
∂ψ ′

∂α
Cψ

]
r
, (9.56)

where [ ]r denotes that the quantity in the square bracket is evaluated at α =
α̂GMM(r), the value of α at the rth iteration. It then follows from (9.56) that asymp-
totically (as K → ∞)

K
1
2 (α̂GMM −α)∼ N

[
0,K

(
∂ψ ′

∂α
C

∂ψ

∂α ′

)−1
]

. (9.57)

The normal distribution of the estimator follows from the fact that each of the com-
ponents of the ψ = (ψ ′

1,ψ2,ψ3)′ vector is a sum of K independent quantities. More
specifically, ψ1, ψ2, ψ3 are constructed in (9.39) by using the sum of K indepen-
dent quantities, namely, f1i = ∑T

t=1 xityit , f2i = ∑T
t=1 yit , and f3i = ∑T

u<t yiuyit . Conse-
quently, normality follows from the multivariate central limit theorem [Mardia, Kent
and Biby (1979, p. 51)]. See also Theorem 3.4 in Newey and McFadden (1993) for
details on such asymptotic convergence.
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9.2.3.2 Asymptotic Distribution of the GQL Estimator

Let α̂GQL be the GQL estimate of α which is obtained by solving the GQL estimat-
ing equation (9.51). It then follows that α̂GQL satisfies the equation ∑I

i=1 Mi(α̂GQL) =
0, where Mi(α) = (∂λ ′

i /∂α)Ω−1
i ( fi−λi) so that E[Mi(α)] = 0. It then follows, for

example, from Theorem 3.4 of Newey and McFadden (1993) that with probability
approaching 1, there is a unique solution, say α̂GQL to ∑K

i=1 Mi(α) = 0 that satisfies

√
K(α̂GQL−α) =−E

[
K−1

K

∑
i=1

∂Mi(α)
∂α

]−1

K−1/2
K

∑
i=1

Mi(α)+op(1), (9.58)

implying the consistency of α̂GQL for α . Next, by the central limit theorem, it fol-
lows from (9.58) that as K → ∞,

K
1
2 (α̂GQL−α)∼ N

0,K

[
K

∑
i=1

∂λ ′
i

∂α
Ω
−1
i

∂λi

∂α ′

]−1
 . (9.59)

In the next section, we report a comparative study from Sutradhar, Rao, and Pan-
dit (2008) between the asymptotic variances of the GMM estimators computed by
(9.57) and the asymptotic variances of the GQL estimators computed by (9.59). This
asymptotic variance comparison was done through an empirical study based on a set
of time-dependent covariates and a selected set of parameter values. In the following
section, we discuss their simulation results on the small sample performances of the
GMM estimates obtained from (9.56) and the GQL estimates obtained from (9.52).

9.2.3.3 Asymptotic Efficiency Comparison

It is clear from the last section that the GQL approach uses the true covariance
structure of the model as the weight function in the estimating equation, whereas
the GMM approach uses the moment equations that are constructed by ignoring
the underlying correlation structure. This indicates that the GQL approach must
produce estimates of the parameters with smaller standard errors as compared to
the GMM estimators. In this subsection, we illustrate this efficiency gain of the
GQL estimators over the GMM estimators by comparing their asymptotic variances
numerically. In the next subsection we conduct a simulation study to examine the
small sample performances of the GMM and GQL estimators.

For the asymptotic case, we compute the asymptotic variance−covariances of
the GMM estimators of α = (β ′,θ ,σ2

γ )′ by (9.57) and those of the GQL estimators
by (9.59). This we do under a binary panel data setup with K = 500 and T = 4. As
far as the covariates are concerned, we choose two time-dependent covariates. The
first covariate is considered to be:
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xit1 =



1 for i = 1, . . . ,K/4; t = 1,2

0 fori = 1, . . . ,K/4; t = 3,4

−1 for i = K/4+1, . . . ,3K/4; t = 1

0 for i = K/4+1, . . . ,3K/4; t = 2,3

1 for i = K/4+1, . . . ,3K/4; t = 4

t/T for i = 3K/4+1, . . . , I; t = 1, . . . ,4,

.

whereas the second covariate is chosen to be

xit2 =


(t−2.5)/T for i = 1, . . . ,K/2; t = 1, . . . ,T

0 for i = K/2+1, . . . ,K; t = 1,2

1 for i = K/2+1, . . . ,K; t = 3,4.

.

Furthermore, for true parameter values, we consider β1 = β2 = 1.0; θ =−0.3, and
σ2

γ = 0.2, 0.5, 0.8, 1.0, 1.2, 1.5, and 2.0. By using (9.57) and (9.59), we compute
the asymptotic covariance matrices of

α̂GMM = (β̂1,GMM, β̂2,GMM, θ̂GMM, σ̂
2
γ,GMM)′,

and
α̂GQL = (β̂1,GQL, β̂2,GQL, θ̂GQL, σ̂

2
γ,GQL)′,

respectively. The diagonal elements of these covariance matrices, that is, the vari-
ances of these estimators, are presented in Table 9.1.

Table 9.1 Comparison of asymptotic variances (Var) of the GQL and GMM estimators for the
estimation of the regression parameters (β1 and β2), the dynamic dependence parameter θ =−3.0,
and the variance component (σ2

γ ), of a logistic dynamic mixed model for binary panel data, with
T = 4 and K = 500.

Asymptotic Variances
Method Quantity σ2

γ = 0.2 0.5 0.8 1.0 1.2 1.5 2.0

GQL Var(β̂1) 0.010 0.010 0.010 0.010 0.011 0.011 0.013
Var(β̂2) 0.018 0.018 0.018 0.018 0.018 0.018 0.020
Var(θ̂) 0.035 0.035 0.036 0.036 0.037 0.038 0.041

Var(σ̂2
γ ) 0.086 0.019 0.013 0.012 0.012 0.013 0.017

GMM Var(β̂1) 0.031 0.030 0.030 0.030 0.030 0.030 0.032
Var(β̂2) 0.051 0.046 0.041 0.038 0.036 0.034 0.034
Var(θ̂) 0.303 0.273 0.246 0.231 0.220 0.209 0.205

Var(σ̂2
γ ) 0.349 0.075 0.048 0.044 0.043 0.047 0.061
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It is clear from the table that the asymptotic variances under the GQL approach
are uniformly smaller than those under the GMM approach. For example, when
σ2

γ = 1.0, the GQL approach produces the asymptotic variances of the estimates of
regression effects (β1, β2), dynamic dependence parameter (θ), and of the variance
component of the random effects (σ2

γ ) as 0.010, 0.018, 0.036, 0.012, respectively,
whereas the corresponding variances produced by the GMM approach are found to
be 0.030, 0.038, 0.231, 0.044. To be more specific, the GQL estimates of β1 and θ ,
for example, are, respectively, 3 and 28 times more efficient than the corresponding
GMM estimates. This indicates that the GQL approach is definitely asymptotically
more efficient as compared to the GMM approach.

Table 9.2 Comparison of simulated mean values, standard errors, and mean squared errors of
the GQL and GMM estimates for the regression, dynamic dependence, and variance component
parameters for θ =−1.0 and selected values for σ2

γ ; K = 100; T = 4; true values of the regression
parameters: β1 = β2 = 1; 500 simulations.

Variance Estimates
Component (σ2

γ ) Method Quantity β̂1 β̂2 θ̂ σ̂2
γ

0.50 GQL Mean 1.033 1.195 −1.120 0.461
SE 0.242 0.297 0.304 0.329

MSE 0.060 0.127 0.107 0.102
GMM Mean 1.060 1.232 −1.173 0.532

SE 0.314 0.402 0.570 0.392
MSE 0.102 0.215 0.355 0.154

0.80 GQL Mean 1.018 1.275 −1.155 0.743
SE 0.238 0.318 0.319 0.292

MSE 0.057 0.177 0.126 0.088
GMM Mean 1.046 1.295 −1.186 0.812

SE 0.308 0.416 0.581 0.429
MSE 0.097 0.260 0.372 0.184

1.00 GQL Mean 1.008 1.305 −1.161 0.914
SE 0.241 0.311 0.329 0.330

MSE 0.058 0.189 0.134 0.116
GMM Mean 1.035 1.316 −1.178 0.983

SE 0.324 0.407 0.586 0.468
MSE 0.106 0.266 0.375 0.220

1.50 GQL Mean 0.980 1.389 −1.154 1.310
SE 0.242 0.333 0.343 0.242

MSE 0.059 0.262 0.141 0.094
GMM Mean 1.015 1.438 −1.220 1.429

SE 0.355 0.474 0.686 0.424
MSE 0.127 0.416 0.519 0.185

9.2.3.4 Small Sample Efficiency Comparison: A Simulation Study

In order to examine the small sample performances of the GQL and GMM es-
timators, we carried out a simulation study with K = 100 clusters. Using T = 4
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throughout, we considered the same data designs with two covariates as in the pre-
vious subsection. The true values of the regression parameters were considered to be
β1 = β2 = 1.0. For the chosen design, we generated 500 simulated datasets under
model (9.27) for a negative value of the dynamic dependence parameter, namely,
θ = −1.0, and four different values of σ2

γ : 0.5, 0.8, 1.0, and 1.5. Then, for each
group of 500 datasets associated with θ = −1.0 and a chosen value for σ2

γ (there
are four such groups of 500 datasets in total), we computed estimates for

α̂ = (β̂1, β̂2, θ̂ , and σ̂
2
γ )′

under the GMM approach by using (9.56), and under the GQL approach by using
(9.52). For each of the two estimation approaches, these estimates were then used
to compute their means (Mean) and standard errors (SE). We also computed the
simulated mean squared errors (MSE) of the estimators of the four parameters under
each of the two approaches. These simulated Mean, SE, and MSE are reported in
Table 9.2 for the case when θ =−1.0.

It appears from the table that the means of the GQL estimates for β1,β2, and θ

appear to be closer to the true parameter values as compared to those of the GMM
estimates. The GMM approach, however, appears to produce a slightly less biased
estimate for the variance component parameter σ2

γ . But the SE of the estimates for
all four parameters are found to be smaller under the GQL approach as compared
to the GMM approach. This in turn shows that the GQL approach always produces
estimates with a smaller MSE than the GMM approach. For example, the results in
Table 9.2 illustrate that when θ = −1.0, and σ 2

γ = 1.00, the estimates of the MSE
for the GQL estimators are

0.058, 0.189, 0.134, 0.116,

versus
0.106, 0.266, 0.375, 0.220,

under the GMM approach.
In summary, both the asymptotic results of the previous subsection and the sim-

ulation results of this subsection clearly demonstrate the superiority of the GQL
approach over the GMM approach in estimating the parameters of the dynamic bi-
nary mixed models.

9.2.4 Fitting the Binary Dynamic Mixed Logit Model to the SLID
data

Recall that in Chapter 7, more specifically in Section 7.5.2, the Survey of Labour
and Income Dynamics (SLID) data collected by Statistics Canada was analyzed by
fitting the nonstationary AR(1) correlation model (7.70). As explained in Section
7.5.1, this study contains the longitudinal responses on employment status, that is,



410 9 Longitudinal Mixed Models for Binary Data

whether employed or unemployed for the full year, from K = 15,731 individuals
for a period of four years from 1993 to 1996. Altogether the effects of 12 important
covariates including gender, age group, region of residence, and education level,
were computed by applying the GQL approach that accommodates the nonstation-
ary longitudinal correlations. The results were reported in Table 7.6. However, if it
is assumed that the mean response in a given year may be a function of the mean re-
sponses of the previous years, and also the response at a given year for an individual
may be influenced by the individual’s random effect, then it would be appropriate
to fit the BDML model (9.27) to the data instead of fitting the linear dynamic con-
ditional probability model (7.70). Becasue these assumptions are realistic for the
SLID data, we now fit the BDML model to this dataset.

Note that with regard to fitting the BDML model (9.27) to the longitudinal data,
in Sections 9.2.1 and 9.2.2, we have discussed the GMM and GQL estimation ap-
proaches, the GQL approach being more efficient as compared to the GMM ap-
proach. We now apply both procedures to the SLID data and estimate all 12 regres-
sion parameters, and dynamic dependence parameter (θ), as well as the variance of
the individual random effects σ2

γ .

Table 9.3 Estimates of regression and their estimated standard errors, as well as estimates and
standard errors of dynamic dependence and variance component parameters.

Estimation Method
GQL Approach GMM Approach

Parameters Estimate SE Estimate SE
Male vs Female (x1) −0.528 0.078 −0.536 0.094
Age group 2 vs 1 (x2) −1.525 0.035 −1.719 0.081
Age group 3 vs 1 (x3) −2.198 0.110 −2.108 0.169
Quebec vs Atlantic (x4) −0.728 0.072 −1.239 0.115
Ontario vs Atlantic (x5) −0.982 0.068 −1.326 0.101
Praries vs Atlantic (x6) −1.523 0.097 −2.001 0.131
BC & Alberta vs Atlantic (x7) −1.216 0.148 −1.913 0.187
Education medium vs low (x8) −1.572 0.039 −1.576 0.085
Education high vs low (x9) −2.326 0.149 −2.543 0.234
Marital status 2 vs 1 (x10) 0.189 0.082 0.251 0.136
Marital status 3 vs 1 (x11) −0.616 0.223 −0.525 0.356
Marital status 4 vs 1 (x12) −0.525 0.067 −0.629 0.144

θ 0.574 0.192 0.623 0.321
σγ 0.948 0.157 0.935 0.287

To be specific, we obtain the GMM estimates by using the GMM based iterative
equation (9.56), and the GQL estimates by using the GQL based iterative equation
(9.52). The standard errors of the GMM and GQL estimates are computed by using
(9.57) and (9.59), respectively. The results are given in Table 9.3. It is clear from
the table that the estimates for all parameters produced by both GMM and GQL
approaches are close to each other. The SEs of the GQL estimates are, however,
smaller than the GMM estimates. This is in agreement with the asymptotic and sim-
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ulation results discussed in the last section. Consequently, it is sufficient to interpret
the GQL estimates.

The GQL estimates for the dynamic dependence (θ ) and variance component
(σγ ) parameters are found to be 0.574 and 0.948 with corresponding standard er-
rors 0.192 and 0.157. The estimate for the dependence parameter indicates that the
repeated binary responses are moderately positively correlated, θ = 0 being the in-
dependence case. Also, the large value of σγ = 0.948 indicates that the unobservable
random effects appear to have a large or moderately large influence on the mean and
variance of the responses.

With regard to the BDML model based GQL regression effects, they are similar
to those of the GQL estimates found in Table 7.6 by fitting the LDCP model to the
data. It follows from Table 9.3 that the negative value −0.528 for the gender effect
indicates that the male has a lower probability of an all-year unemployment as com-
pared to the female. The negative values −1.525 and −2.918 of β2 and β3 indicate
that the younger group has a higher probability of an all-year unemployment and
the probability decreases for older age groups. As far as the effect of geographic
location on all-year unemployment is concerned, it appears that the Prairies had the
smallest probability of an all-year unemployment during 1993 to 1996 followed by
BC, Ontario, Quebec, and Atlantic provinces. This follows from the fact that the
regression estimates for Quebec, Ontario, BC, and Prairies are found to be -0.728,
−0.982, −1.216, and −1.523, respectively. The larger negative value −2.326 for
β9 as compared to β8 = −1.572 indicates that as the education level gets higher,
the probability of an all-year unemployment gets smaller. Finally, with regard to the
marital status, the positive value 0.189 for β10 means that the separated and divorced
individuals have a higher probability of all-year unemployment as compared to the
married and common-law spouse group. Similarly, the widowed had less probability
of an all-year unemployment as compared to the single but never married individual.

9.2.5 GQL Versus Maximum Likelihood (ML) Estimation for
BDML Model

The GQL estimation procedure has been discussed in Section 9.2.2, which was
found to be better than the GMM approach in estimating the parameters of the un-
derlying BDML model. Recall from Chapter 7, more specifically from Sections
7.7.2.2.2 and 7.7.2.2.3 that the ML approach and OGQL (optimal GQL) approaches
were found to produce the same estimates for the parameters of the BDFL model.
Note that the GQL in Section 9.2.2 is the same as the OGQL for the fixed model
discussed in Section 7.7.2.2.2 as they both use the same first− and second-order re-
sponse based basic statistic. But the GQL in Section 9.2.2 and ML may not produce
the same estimates for the BDML model. In this section, we report their compara-
tive performances following Sutradhar, Bari, and Das (2010).
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9.2.5.1 ML Estimation

For convenience we estimate α∗ = (β ′, θ , σγ)′ by the ML approach, the GQL es-
timation for α = (β ′, θ , σ 2

γ )′ in Section 9.2.2 being easily adjustable for σγ . In
the ML approach, one may obtain the estimate of α∗ = (β ′, θ , σγ)′ by solving the
likelihood estimating equation

∂

∂α∗ logL = 0, (9.60)

where the likelihood function in (9.29) may be written as

L(β , θ , σγ) =
K

∏
i=1

∫ ∞

−∞
pi10

T

∏
t=2

pityi,t−1φ(γ∗i )dγ
∗
i , (9.61)

with pi10 =(p∗i10)
yi1(1− p∗i10)

1−yi1 , and pityi,t−1 =(p∗ityi,t−1
)yit (1− p∗ityi,t−1

)1−yit , where
p∗ityi,t−1

is defined in the model (9.27).
In (9.61), φ(γ∗i ) is the density function for standard normal γ∗i . Note that one may

solve (9.60) by using the iterative equation

α̂
∗
r+1 = α̂

∗
r −

[(
∂ 2

∂α∗∂α∗′ logL

)−1
∂

∂α∗ logL

]
(r)

, (9.62)

where [·] indicates that the quantity in the square bracket is evaluated at α∗ = α̂∗
r

obtained from the rth iteration. Further note that the computation of α̂ML by (9.62)
and its variance will depend on the forms of p∗i10 and p∗ityi,t−1

which, under the present
BDML model, by (9.27), are given as

p∗i10 =
ex′i1β+σγ γ∗i

1+ ex′i1β+σγ γ∗i
and p∗ityi,t−1

=
ex′it β+θyit−1+σγ γ∗i

1+ ex′it β+θyit−1+σγ γ∗i
.

Unlike the GQL estimation discussed in Section 9.2.2, the computations for
the ML estimation are complex and lengthy. For example, the components of
∂ logL/∂α∗ for (9.60) under the dynamic logit mixed model have the forms:

∂ logL
∂β

=
K

∑
i=1

T

∑
t=1

[
yit −

Ait

Ji

]
xit , (9.63)

∂ logL
∂θ

=
K

∑
i=1

T

∑
t=1

[
yit −

Ait

Ji

]
yit−1, (9.64)

and
∂ logL
∂σγ

=
K

∑
i=1

Mi

Ji
, (9.65)

respectively, where
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Ji =
∫ ∞

−∞
exp(σγ γ

∗
i si)∆iφ(γ∗i )dγ

∗
i ,

with si = ∑T
t=1 yit and ∆i =

[
∏T

i=1{1+ exp(x′itβ +θyit−1 +σγ γ∗i )}
]−1

, and Ait and
Mi are given as

Ait =
∫ ∞

−∞
exp(σγ γ

∗
i si)∆i p

∗
ityi,t−1

φ(γ∗i )dγ
∗
i ,

Mi =
∫ ∞

−∞
exp(σγ γ

∗
i si)

[
T

∑
t=1

(yit − p∗ityi,t−1
)

]
∆iγ

∗
i φ(γ∗i )dγ

∗
i ,

respectively.
Let α̂∗

ML be the solution obtained from (9.62). One may then show that as K →∞,
α̂∗

ML has asymptotic normal distribution given by

√
K(α̂∗

ML−α
∗)∼ N(0,KV−1

ML) (9.66)

[Amemiya (eqns. (11.1.38), 1985); Gourieroux and Monfort (1981)] where VML =
−E
{
(∂ 2/∂α∗∂α∗′)logL

}
. The exact computation for this covariance matrix is not

possible under the present dynamic mixed model, but, it can be computed numeri-
cally, by simulating the random effects γ∗i (Sutradhar, 2004).

9.2.5.2 Relative Performances of the GQL and ML Approaches for BDML
model: A Simulation Study

To examine the relative performance of the ML approach as compared to the GQL
approach in estimating all parameters β , θ , and σγ , for the BDML model (9.27),
we now carry out a Monte Carlo study based on 1000 simulations. As far as the
simulation design is concerned, we consider T = 4 repeated binary responses from
each of K = 100 independent individuals. To represent the dynamic dependence in
repeated responses, the data are generated with lag 1 dependence parameter θ = 1.0.
With regard to the dimension of the regression effects, we consider p = 2, with
β1 = β2 = 0.0. As far as the covariates are concerned, we choose the first covariate
as

xit1 =



1/2 for i = 1, . . . ,K/4; t = 1,2

0 for i = 1, . . . ,K/4; t = 3,4

−1/2 for i = K/4+1, . . . ,3K/4; t = 1

0 for i = K/4+1, . . . ,3K/4; t = 2,3

1/2 for i = K/4+1, . . . ,3K/4; t = 4

t/(2T ) for i = 3K/4+1, . . . ,K; t = 1, . . . ,4,

whereas the second covariate is chosen as
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Pr(xit2 = 1) =

0.3 for t = 1
0.5 for t = 2,3
0.8 for t = 4.

.

Note that even though xit2s are generated from the binary distributions, they were
kept the same under all simulations. Thus, this xit2 is also a fixed covariate. As far
as the selection of the additional parameter σ2

γ is concerned, we choose both small
and large values, namely, σγ = 0.5, 0.8, and 1.2.

Next, in each of the 1000 simulations, we solve the estimating equation in (9.52)
under the BDML model to obtain the GQL estimates, and use (9.62) to obtain the
ML estimates. We then obtain the simulated means (SMs) and simulated variances
(SVs) of these 1000 estimates for each parameter. Note that as opposed to the fixed
models considered in Chapter 7, it is expected that the ML estimates would be dif-
ferent in general as compared to the GQL estimates under the mixed models. Also
it is anticipated that the estimates may be much more biased under the mixed mod-
els as compared to the fixed models. Because an estimate with large bias and small
standard error becomes inconsistent, along with the SMs and SVs, in this section,
we compute the simulated relative biases (SRBs) of the estimates as opposed to
their simulated mean squared errors (SMSEs). The percentage relative biases, for
example, the percentage simulated relative bias (SRB) of θ̂ML is defined by

SRB(θ̂ML) =
|SM(θ̂ML)−θ0|√

SV(θ̂ML)
×100.

The SMs, SVs, and SRBs of the GQL and ML estimates for θ = 1, β1 = β2 = 0, and
for selected values of the other parameter σγ , under the BDML model, are shown in
Table 9.4.

Table 9.4 Simulated mean, variance, and relative bias of the ML and GQL estimates under the
BDML model for β1 = β2 = 0.0 and θ = 1.0.

Method of Estimation
ML GQL

σγ β̂1 β̂2 θ̂ σ̂γ β̂1 β̂2 θ̂ σ̂γ

0.5 SM −0.021 0.058 1.000 0.390 −0.021 0.078 0.973 0.503
SV 0.137 0.041 0.055 0.075 0.140 0.041 0.071 0.308

SRB 6 29 0 40 6 39 10 1
0.8 SM −0.049 0.066 1.029 0.653 −0.037 0.095 0.984 0.774

SV 0.149 0.045 0.061 0.132 0.151 0.045 0.065 0.214
SRB 13 31 12 40 10 45 6 6

1.2 SM −0.113 0.034 1.121 0.878 −0.0404 0.117 0.990 1.209
SV 0.178 0.066 0.099 0.364 0.179 0.053 0.077 0.083

SRB 27 13 39 53 10 51 4 3
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The results in Table 9.4 show that irrespective of the true value of σγ , small
or large, the ML approach always produces a σγ estimate with larger RB than the
GQL approach. With regard to the estimation of θ = 1, the ML approach produces
estimates with less RBs when σγ is small, but it produces estimates with larger RBs
than the GQL approach when σγ is large such as σγ = 0.8, 1.2. For the estimation
of the regression effects, the ML and GQL approaches exhibit mixed performances.
For example, when σγ = 0.5, they perform almost the same in estimating β1 and β2;
and for large σγ , the ML approach estimates β2 with smaller RBs but estimates β1

with larger RBs, as compared to the GQL approach. Thus, the results of Table 9.4
indicate that in general the GQL approach performs better than the ML approach
in estimating the parameters of the BDML model. Note, however, that because the
results of Table 9.4 show that a selected true parameter value falls in the interval:
estimate minus/plus two times standard deviation, both ML and GQL approaches
clearly produce consistent estimates, which is in agreement with the asymptotic
results given in (9.66) for the ML estimators and in (9.58) for the GQL estimators.

Note that in general when ML estimates are found to be unbiased or almost un-
biased, they are recommended in practice as compared to other competitors such as
the method of moments (MM) or QL estimates. This is because, the standard errors
of the ML estimates are usually found to be less than those of the other estimates,
leading the ML estimates to be consistent and more efficient as well. In such cases,
the mean squared errors of the ML estimates will also be smaller as compared to the
other estimates. It is, however, well known that ML estimates can be more biased
for certain parameters such as for the variance parameter of the well-known normal
distribution as compared to the MM or QL estimates. In the present BDML setup,
the variance parameter of the random effects plays a complicated role to interpret
the variation and other moments of the binary data. Thus, it was not surprising to
observe that the ML estimates become biased for such variance and dynamic depen-
dence parameters. By the same token, when ML estimates are biased, the traditional
MSE comparison may not reveal the real properties of the estimates. This is be-
cause a biased estimate with smaller standard error will mostly converge to a wrong
place, that is, to a value different than the true value of the parameter. This is why, in
the aforementioned discussion, we have concentrated on the RB instead of MSE to
compare the actual performance of the estimates in the sense of their convergence
to the true values.

9.3 A Binary Dynamic Mixed Probit (BDMP) Model

In binary panel data analysis, there are situations where the binary outcomes are
thought to arise from a standard normal latent process [Amemiya (1985)]. To be
specific, let the binary observation yit be obtained from the standard normal distri-
bution of y∗it as follows.
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yi1 =
{

1 if y∗i1 < x′i1β +σγ γ∗i
0 otherwise,

(9.67)

and for t = 2, . . . ,T,

yit =
{

1 if y∗it < x′itβ +θyi,t−1 +σγ γi

0 otherwise.
(9.68)

One may then write the binary probabilities as

Pr(yit = 1|γi) =


Φ(x′i1β +σγ γ∗i ) = p∗i10, for i = 1, . . . ,K; t = 1

Φ(x′itβ +θyi,t−1 +σγ γ∗i ), for i = 1, . . . ,K; t = 2, . . . ,T

= p∗ityi,t−1

= Fit , say, (9.69)

where Φ(·) is the cumulative probability of the standard normal variable. Note that
as opposed to the BDML model (9.27), the binary model in (9.69) is known as the
binary dynamic mixed probit model that arises from standard normal latent process,
whereas as indicated in exercise 9.3, the BDML model arises from logistic latent
distribution.

Further note that because the ML approach performed worse than the GQL ap-
proach under the BDML model, and because of the fact that the GQL approach is
simpler than the ML approach under any model, we do not attempt any study for the
comparison of the ML and GQL approaches for the estimation of the parameters of
the probit model. Thus, in the next section we examine the performance of the GQL
approach only, for the estimation of the parameters of the BDMP model. We also
show the performance of the GQL approach for the same parameter values under
the BDML model.

9.3.1 GQL Estimation for BDMP Model

The GQL estimating equation for α = [β ′. θ , σ 2
γ ]′ under the BDML model (9.27)

is given by (9.51). The GQL estimating equation for α∗ = [β ′. θ , σγ ]′ under the
BDMP model (9.69) has similar form as that of (9.51), but

λi = E[Ui], Ωi = cov[Ui], and
∂λ ′

i

∂α∗ ,

have to be computed now under the probit model (9.69). Let

λi,P and Ωi,P
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denote the expectation and the covariance matrix of ui under the probit (P) model
(9.69). These moments may be computed following (9.33) and (9.36), respectively,
but by using the formulas for p∗i10 and p∗ityi,t−1

from (9.69) instead of (9.27). We now
write the GQL estimating equation for α∗ as

K

∑
i=1

∂λ ′
iP

∂α∗ Ω
−1
i,P (ui−λi,P) = 0, (9.70)

where the first-order derivatives have the formulas as in Exercise 9.3. The estimators
are consistent and highly efficient. Also, the GQL estimator α̂∗

GQL,P obtained from
(9.70) has the asymptotic (K →∞) normal distribution with mean α∗ and covariance
matrix

cov[α̂∗
GQL,P] =

[
K

∑
i=1

∂λ ′
iP

∂α∗ Ω
−1
i,P

∂λiP

∂α∗′

]−1

. (9.71)

In the next section, we report some simulation results from Sutradhar, Bari, and Das
(2010) on the finite sample performance of the GQL estimation approach for the
parameters of the BDMP model.

9.3.2 GQL Estimation Performance for BDMP Model: A
Simulation Study

For the simulation study, we consider the same two covariates as in Section 9.2.5.2.
Also, even though we have examined the performance of the GQL approach for
the estimation of the parameters of the BDML model through a simulation study
in Section 9.2.5.2 (see Table 9.4), we include the estimation for this model in the
current simulation study. For the regression parameters we choose β1 = β2 = 0, the
same as in the other simulation study in Section 9.2.5.2, but consider new values
for θ , namely θ = 0.0,2.0. Three different values for σγ are considered, namely
σγ = 0.5,0.8,1.2. The GQL estimates for parameters of the BDMP and BDML
models are obtained by solving (9.70) and (9.51), respectively. The asymptotic esti-
mated variances (AEV) of the GQL estimators under BDMP and BDML models are
computed by using (9.71) and (9.59), respectively. Based on 1000 simulations, we
display the SM, SV, SRB, and AEV of the GQL estimates of all three parameters in
Table 9.5.

It is clear from Table 9.5 that under both probit and logit mixed models, the SMs
in general appear to agree with the coresponding true values of the parameters. The
GQL estimates of β1 appear to be much better in the sense of RB, as compared
to those of β2, under both probit and logit models. The GQL approach appears to
perform quite well in estimating the variance of the random effects under the logit
mixed model. The GQL estimates for this variance parameter appear to have larger
relative biases under the probit mixed model as compared to the logit model. With
regard to the estimation of the dynamic dependence parameter θ , the GQL approach
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Table 9.5 Simulated mean, variance, and relative bias, and asymptotic estimate of variance, based
on the GQL approach under the BDPM and BDLM models; 1000 simulations, β1 = β2 = 0.0.

Model
Probit Logit

θ σγ Quantity β̂1 β̂2 θ̂ σ̂γ β̂1 β̂2 θ̂ σ̂γ

0.0 0.5 SM 0.018 0.008 0.017 0.447 −0.014 0.080 −0.041 0.505
SV 0.050 0.013 0.026 0.028 0.122 0.035 0.062 0.140

AEV 0.048 0.015 0.028 0.023 0.115 0.035 0.064 0.123
SRB 8 7 11 32 4 43 17 1

0.8 SM 0.013 0.050 0.006 0.748 −0.032 0.097 −0.021 0.790
SV 0.060 0.016 0.030 0.021 0.135 0.036 0.067 0.067

AEV 0.057 0.018 0.034 0.028 0.129 0.040 0.074 0.065
SRB 5 40 3 39 9 51 8 4

1.2 SM 0.011 0.055 0.018 1.107 −0.043 0.116 −0.014 1.213
SV 0.071 0.020 0.040 0.030 0.162 0.042 0.081 0.070

AEV 0.070 0.024 0.044 0.042 0.151 0.048 0.090 0.076
SRB 4 39 9 54 11 57 5 5

2.0 0.5 SM −0.007 0.055 2.063 0.470 −0.002 0.077 2.010 0.459
SV 0.078 0.029 0.116 0.048 0.164 0.057 0.090 0.542

AEV 0.074 0.030 0.133 0.044 0.149 0.055 0.081 0.509
SRB 3 32 19 14 1 32 3 6

0.8 SM −0.010 −0.016 2.095 0.698 −0.030 0.092 2.016 0.773
SV 0.085 0.032 0.092 0.049 0.168 0.063 0.094 0.124

AEV 0.089 0.035 0.103 0.051 0.167 0.061 0.092 0.102
SRB 3 9 31 46 7 37 5 8

1.2 SM −0.018 0.061 2.074 1.059 −0.061 0.110 2.011 1.195
SV 0.098 0.033 0.136 0.037 0.205 0.072 0.108 0.111

AEV 0.115 0.045 0.149 0.046 0.197 0.072 0.112 0.114
SRB 6 34 20 73 14 41 3 2

performs well under both models when θ = 0, that is, for the longitudinally inde-
pendent case, but for large θ = 2.0, the GQL approach appears to produce better
estimates under the logit model than the probit model. In summary, the GQL ap-
proach appears to perform quite well in estimating all parameters of the dynamic
probit and logistic mixed models. Furthermore, this approach is simpler as com-
pared to the ML approach, especially under the probit mixed model.

9.3.2.1 Random Effects Mis-specification: True t Versus Working Normal Dis-
tributions For Random Effects

In practice, it is standard to assume that the random effects involved in the mixed
models follow a Gaussian distribution. The simulation results with regard to the
performance of the GQL estimation for normal random effects based probit and
logit mixed models were shown in Table 9.5. In this section, we conduct an addi-
tional small simulation study by generating random effects γ∗i for i = 1, . . . ,K with
K = 100 from a heavy-tailed t-distribution with degrees of freedom ν = 6.55, and
examine the robustness of the normal random effects based GQL approach. Note
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that ν = 6.55 yields the variance component σγ =
√

ν/(ν −2) = 1.2. As far as
the covariates and parameter values are concerned, we consider the same covariates
and parameter values as in the previous Section 9.3.2. The SMs, SVs, and SRBs of
the normality assumption based GQL estimates for all parameters β1, β2, θ , and σγ

under both probit and logit mixed models are reported in Table 9.6.

Table 9.6 Simulated mean, standard error, and relative bias of the GQL estimates computed by
using the normal random effects based BDPM and BDLM models when data are generated from
the BDPM and BDLM models with the random effects following t-distribution with degrees of
freedom ν = 6.55 (σγ = 1.2); β1 = β2 = 0.0; based on 1000 simulations.

Model
Probit Logit

θ Quantity β̂1 β̂2 θ̂ σ̂γ β̂1 β̂2 θ̂ σ̂γ

0.0 SM −0.101 0.016 −0.066 1.253 −0.139 0.036 −0.105 1.280
SV 0.069 0.021 0.044 0.030 0.161 0.042 0.091 0.066

SRB 39 11 32 31 35 18 35 31
2.0 SM −0.166 −0.050 2.099 1.199 −0.143 0.012 1.969 1.300

SV 0.086 0.034 0.124 0.036 0.203 0.070 0.116 0.102
SRB 57 27 28 1 32 5 9 31

When these results of Table 9.6 are compared with those in Table 9.5 for σγ =
1.2 (bottom four rows from each half), the estimate of β1 appears to be affected
adversely under both probit and logit mixed models. The estimate of σγ also appears
to be affected but under the logit model only. For example, Table 9.6 shows that the
SRB for σγ estimate is 31, when θ = 0, 2.0 under the logit model, whereas true
normality based GQL approach (Table 9.5) produces SRBs 5 and 2 for θ values 0
and 2.0, respectively. Thus, in general, the GQL approach appears to be sensitive to
the correct distributional assumption for the random effects.

Note that in the linear model set up, the moments based estimation approaches
such as the present GQL approach are known to be less affected by the departure of
the distributional assumption from normality. This is especially true when the error
distribution for a linear model remain symmetric but different from the normal dis-
tribution. In the present nonlinear setup, it is, however, expected that this stability
property may not hold. This is mainly because when the distribution of the random
effects in the exponent of the probability function is replaced by another nonnormal
symmetric or asymmetric distribution, the distributional properties, that is, the mo-
ments of the actual data get changed in a complicated way. Thus, the results in Table
9.6 showing that a change in the distribution of the random effects may affect the
estimates considerably, appear to be reasonable. However, it is practical to consider
that the random effects follow the Gaussian distribution.
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Exercises

9.1. (Section 9.2.1.2.2) [First-order derivatives of πit with respect to α∗ =(β , θ , σγ)′

under the logit model (9.27)]
Write the binary probabilities in the BDML model (9.27) as

FL(z∗) =
ez∗

1+ ez∗ , (9.72)

[Cumulative logistic distribution function] so that

fL(z∗) =
∂FL(z∗)

∂ z∗
= FL(z∗)(1−FL(z∗)). (9.73)

Now using fL(z∗), verify from (9.33) that the derivatives of πit with respect to
β , θ , and σγ have the formulas given by:

∂πit

∂α∗ =
1
M

M

∑
w=1

∂π∗it(γ
∗
iw)

∂α∗ , (9.74)

where, for
α
∗ = (β ′, θ , σ)′ ≡ (α∗′

1, α
∗
2 , α

∗
3 )′

and by using the recurrence relationship (9.33), one obtains

∂π∗it(γ
∗
iw)

∂α∗
v

= cv,t +dv,tπ
∗
i,t−1 +[p∗it1− p∗it0]

∂π∗i,t−1(γ
∗
iw)

∂α∗
v

, (9.75)

with

cv,t =


fL
(
x′itβ +σγ γ∗iw

)
xit for v = 1

0 for v = 2

fL
(
x′itβ +σγ γ∗iw

)
γ∗iw for v = 3,

(9.76)

and

dv,t =



[ fL(x′itβ +θ +σγ γ∗iw)− fL(x′itβ +σγ γ∗iw)]xit

for v = 1

fL
(
x′itβ +θ +σγ γ∗iw

)
for v = 2[

fL(x′itβ +θ +σγ γ∗iw)− fL(x′itβ +σγ γ∗iw)
]

γ∗iw for v = 3.

(9.77)
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9.2. (Section 9.2.1.2.2) [First-order derivatives of λiut with respect to α∗ =(β , θ , σγ)′

under the logit model (9.27)]
Use the notation from Exercise 9.1 and verify from (9.36) that the derivatives of λiut

with respect to β , θ , and σγ have the formulas given by:

∂λiut

∂α∗ =
1
M

M

∑
w=1

∂λ ∗
iut(γ

∗
iw)

∂α∗ , (9.78)

where by (9.34),

λ
∗
iut = π

∗
iu(1−π

∗
iu)

t

∏
j=u+1

[
p∗i j1− p∗i j0

]
+π

∗
iuπ

∗
it ,

so that for
α
∗ = (β ′,θ ,σ)′ ≡ (α∗′

1, α
∗
2 ,α∗

3 )′,

one obtains

∂λ ∗
iut

∂α∗
v

= (1−2π
∗
iu)

∂π∗iu
∂α∗

v

t

∏
j=u+1

(
p∗i j1− p∗i j0

)
+ [π∗iu(1−π

∗
iu)]

t

∑
j=u+1

dv, j

t

∏
l 6= j,l=u+1

(p∗il1− p∗il0)

+
[

π
∗
it

∂π∗iu
∂α∗

v
+π

∗
iu

∂π∗it
∂α∗

v

]
. (9.79)

9.3. (Section 9.3.1) [First-order derivatives of πit and λiut with respect to α∗ =
(β ′, θ , σγ)′ under the probit model (9.69)]
Justify that the first-order derivatives

∂πit

∂α∗ and
∂λiut

∂α∗ ,

under the BDMP model (9.69) may be computed by replacing the logit (L) model
based fL(z∗) in Exercises 9.1 and 9.2, with the probit model based fN(z∗) which has
the formula given by

fN(z∗) =
∂

∂ z∗

[∫ z∗

−∞

1√
2π

exp[−1
2

z2]∂ z

]
=

1√
2π

exp[−1
2

z∗2], (9.80)

a standard normal density.
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Chapter 10
Familial Longitudinal Models for Count Data

In Chapter 4, we discussed familial models for count data, where count responses
along with a set of covariates are collected from the members of a large number
of independent families. In Chapter 6, we discussed longitudinal models for count
data, where count responses along with a set of covariates are collected from a large
number of independent individuals over a small period of time. In practice there
are situations where the count responses and their corresponding covariates are col-
lected in a familial longitudinal setup. In this setup, count responses and the asso-
ciated covariates are collected from the members of a large number of independent
families over a small period of time. For example, in health care utilization data,
the number of visits to the physician by the members of a large number of indepen-
dent families may be recorded over a period of several years. Also the information
on the covariates: gender, number of chronic conditions, education level, and age
may be recorded for the members of each family. To analyze this type of familial
longitudinal data, one needs to combine the familial and longitudinal models from
Chapters 4 and 6, and construct a general familial longitudinal model. As expected,
the count responses, in such a setup, will exhibit a familial longitudinal correlation
structure. The purpose of this chapter is to take this two-way correlation structure
into account, and develop a suitable estimation approach, such as generalized quasi-
likelihood (GQL) estimation approach, for the estimation of the regression effects
and the familial correlation index parameter, whereas the longitudinal correlation
parameter is estimated by using the well-known method of moments.

10.1 An Autocorrelation Class of Familial Longitudinal Models

Let yi jt denote the count response for the jth ( j = 1, . . . ,ni) individual on the
ith (i = 1, . . . ,K) family/cluster at a given time t (t = 1, . . . ,T ). Also, let xi jt =
(xi jt1, . . . ,xi jt p)′ denote the p covariates associated with the response yi jt , and β de-
notes the effect of the covariate vector xi jt on yi jt . Note that as the members of the
ith (i = 1, . . . ,K) family are likely to be influenced by a common family effect, say
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γi, the count responses of any two members of the same family at a given time are
likely to be correlated. This correlation is referred to as the familial correlation. Fur-
thermore, conditional on the unobservable family effect γi, the repeated count data
collected from the same member of the ith family are also likely to be correlated.
This correlation is referred to as the longitudinal correlation. Note that if the covari-
ates, such as the education level, in the health care utilization data, collected from
the same individual over a period of time, are time dependent, then the longitudinal
lag correlations for the same individual will be nonstationary. It is of main interest
to find β , the effects of the covariates on the count responses of an individual after
taking the nonstationary familial and longitudinal correlations into account.

10.1.1 Marginal Mean and Variance

10.1.1.1 Conditional Marginal Mean and Variance

Suppose that conditional on the random family effect γi, yi jt follows the Poisson
density given by

f (yi jt |γi) =
1

yi jt !
exp[yi jt log(µ

∗
i jt)−µ

∗
i jt ], (10.1)

where
µ
∗
i jt = exp(x′i jtβ + γi).

We denote the marginal distribution in (10.1) by

yi jt |γi ∼ Poi(µ
∗
i jt).

This distribution yields the marginal mean and the variance of yi jt conditional on γi

as
E(Yi jt |γi) = var(Yi jt |γi) = µ

∗
i jt . (10.2)

10.1.1.1 Unconditional Marginal Mean and Variance

As in Chapter 4, we assume that γi ∼ N(0,σ2
γ ) [Breslow and Clayton (1993); Jiang

(1998); Sutradhar (2004)]. It then follows that the unconditional mean and the vari-
ance of yi jt are given by

E[Yi jt ] = µi jt = exp(x′i jtβ +
σ2

γ

2
)

var[Yi jt ] = µi jt +{exp(σ2
γ )−1}µ

2
i jt . (10.3)
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10.1.2 Nonstationary Autocorrelation Models

As an extension of the longitudinal models discussed in Chapters 6 and 7, Sutrad-
har (2010) has introduced a class of autocorrelation models for familial longitudi-
nal data. These models are referred to as the generalized linear longitudinal mixed
models (GLLMMs), appropriate for both count and binary data. In this section, we
consider the GLLMMs from Sutradhar (2010) for the count data.

10.1.2.1 Conditional AR(1) Model

Initially consider the nonstationary AR(1) longitudinal model (6.44) for repeated
count data for an individual, discussed in Section 6.5.1.1. We now assume that con-
ditional on the random family effects γi, the AR(1) model (6.44) is appropriate for
the jth ( j = 1, . . . ,ni) member of the ith family. Thus, we write

yi jt |γi = ρ ∗ [yi j,t−1|γi]+di jt |γi, for t = 2, . . . ,T, (10.4)

where

ρ ∗ yi j,t−1 =
yi j,t−1

∑
s=1

bs(ρ),

with Pr[bs(ρ) = 1] = ρ and Pr[bs(ρ) = 0] = 1−ρ , but,

di jt |γi ∼ Poi(µ
∗
i jt −ρµ

∗
i j,t−1),

with µ∗
i jt = exp(x′i jtβ + γi), as in (10.2) for all t = 1, . . . ,T. Also, suppose that con-

ditional on γi, di jt is independent of zi j,t−1 = ρ ∗ yi j,t−1. Now by assuming that for
t = 1,

yi j1|γi ∼ Poi(µ
∗
i j1),

in the fashion similar to that of (6.45)−(6.46), it can be shown that the model (10.4)
produces the marginal mean and the variance given by

E(Yi jt |γi) = var(Yi jt |γi) = µ
∗
i jt , (10.5)

the same as in (10.2), and it also produces the autocorrelations

corr(Yi ju,Yi jt |γi) = ρ
|t−u|

[
µ∗

i ju

µ∗
i jt

]1/2

= ρ
|t−u|

[
µi ju

µi jt

]1/2

= ρ
|t−u|ri jut , (10.6)

with ri jut = exp{− 1
2 (xi jt − xi ju)′β}, and µi jt has the formula as in (10.3). As far as

the longitudinal correlations between two members of a family are concerned, we
assume that at any two time points, the responses of any two members are condi-
tionally independent. In notation,

cov[{Yi ju,Yikt}|γi] = 0, for j 6= k. (10.7)
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10.1.2.1.1. Unconditional Mean, Variance, and Correlation Structure

Based on the assumption that γi
iid∼ N(0,σ2

γ ), it follows from (10.5)− (10.7) that the
unconditional mean, variance and the covariances have the formulas given by

E(Yi jt) = µi jt = exp(x′i jtβ +σ
2
γ /2), for all i, j, and t

cov(Yi ju,Yikt) =


µi jt +[exp(σ2

γ )−1]µ2
i jt for k = j;u = t

ρ t−uµi ju +[exp(σ2
γ )−1]µi juµi jt for k = j;u < t

[exp(σ 2
γ )−1]µi juµikt for k 6= j;u≤ t.

(10.8)

10.1.2.2 Conditional MA(1) Model

Similar to the AR(1) case, the extended familial longitudinal MA(1) model as an
extension of (6.49), may be written as

yi j1|γi ∼ Poi(µ
∗
i j1 = exp(x′i j1β + γi))

yi jt |γi = ρ ∗ [di j,t−1|γi]+di jt |γi, for j = 1, . . . ,ni; t = 2, . . . ,T, (10.9)

where the distributional assumptions, conditional on γi remain the same as those for
the longitudinal MA(1) model (6.49). That is,

di jt |γi
iid∼ Poi

[
t−1

∑
k=0

(−ρ)k
µ
∗
i j,t−k

]
for all t = 1, . . . ,T.

Also, it is assumed that

cov[{Yi ju,Yikt}|γi] = 0, for j 6= k. (10.10)

This conditional MA(1) model (10.9) produces the same conditional mean and the
variance [given by (10.5)] as in the AR(1) case. The conditional correlation is, how-
ever, different and is given by

c(ns)
i j,ut(xi ju,xi jt ,ρ,γi) = corr[(Yi ju,Yi jt)|γi]

=


ρ{∑min(u,t)−1

k=0 (−ρ)kµ∗
i j,min(u,t)−k

}
√

µ∗i juµ∗i jt
for |u− t|= 1

0 otherwise,

(10.11)

which under the stationary case reduces to

c∗i j,ut(ρ) = corr[(Yi ju,Yi jt)|γi] =
{

ρ{∑∞
k=0(−ρ)k = ρ

1+ρ
for|u− t|= 1

0 otherwise,
(10.12)
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the same as in the longitudinal case (6.52), as expected.

10.1.2.2.1. Unconditional Mean, Variance, and Correlation Structure

Based on the assumption that γi
iid∼ N(0,σ2

γ ), it follows from (10.9)− (10.11) that
the unconditional mean and the variance have the formulas as in (10.8) under the
AR(1) case, but, the unconditional covariances have the formulas

cov(Yi ju,Yikt) =



ρ{∑min(u,t)−1
k=0 (−ρ)kµi j,min(u,t)−k}

+[exp(σ2
γ )−1]µi juµikt for k = j; |u− t|= 1

[exp(σ2
γ )−1]µi juµikt for k = j; |t−u|> 1

[exp(σ2
γ )−1]µi juµikt for k 6= j;u≤ t.

(10.13)

10.1.2.3 An Alternative Conditional MA(1) Model

The MA(1) model in Section 10.1.2.2 produces the same mean and variance as
those by the AR(1) model discussed in Section 10.1.2.1. However, as introduced in
Chapter 6 (see Section 6.6), one may use a certain alternative MA(1) model which
produces Gaussian MA(1) correlations in the stationary case, but the mean and the
variance under the alternative model can be different from those under the AR(1)
model. Following Sutradhar, Jowaheer, and Sneddon (2008), we consider such an
MA(1) model given by

yi jt |γi = ρ ◦ [di j,t−1|γi]+di jt |γi. (10.14)

Suppose that conditional on γi, di jt , and di j,t−1 follow the Poisson distributions given
by

di jt |γi ∼ Poi(µ
∗
i jt/(1+ρ)), and di j,t−1|γi ∼ Poi(µ

∗
i j,t−1/(1+ρ)), (10.15)

respectively, with µ∗
i jt = exp(x′i jtβ + γi). The model in (10.14)− (10.15) produces

the conditional mean, variance, and conditional correlations as

E[Yi jt |γi] = var[Yi jt |γi] =
µ∗

i jt +ρµ∗
i j,t−1

1+ρ
(10.16)

and

corr[(Yi ju,Yikt)|γi] =


ρ

1+ρ
[

µ∗i ju
µ∗i jt

]1/2 for |t−u|= 1

0 for ` > 1.

(10.17)



428 10 Familial Longitudinal Models for Count Data

It is clear from (10.16) that the conditional mean and the variance are different from
those of the MA(1) model considered in the last section [see (10.5) for mean and
variance]. The formula for the conditional autocorrelations given in (10.17) is, how-
ever, much simpler than that of (10.11). Note that because the autocorrelations under
the current as well as the previous MA(1) models are functions of the time depen-
dent covariates, using the stationary MA(1) model based ‘working’ autocorrelations
with ρ1 = ρ/(1+ρ), and ρ` = 0, for ` = 2,3, . . . in place of the conditional corre-
lations (10.17) or (10.11), may lead to an inconsistent estimate for the correlation
parameter.

10.1.2.3.1 Unconditional First− and Second-Order Moments

By using the assumption that γi
iid∼ N(0,σ2

γ ), it follows from (10.16) that the uncon-
ditional first moment under the current MA(1) model is given by

E(Yi jt) = [µi jt +ρµi j,t−1]/(1+ρ) = µ̃i jt for j = 1, . . . ,ni; t = 1, . . . ,T, (10.18)

where µi jt = exp(x′i jtβ +σ2
γ /2). Furthermore, for u≤ t, the unconditional variances

and covariances have the formulas

cov(Yi ju,Yikt) =



µ̃i jt +[exp(σ2
γ )−1]µ̃2

i jt for k = j;u = t

ρµi ju/(1+ρ)+ [exp(σ2
γ )−1]µ̃i jt µ̃i ju for k = j; t−u = 1

[exp(σ 2
γ )−1]µ̃i juµ̃i jt for k = j; t−u > 1

[exp(σ 2
γ )−1]µ̃i juµ̃ikt for k 6= j;u≤ t.

(10.19)

It is clear from (10.19) that the unconditional covariances are functions of the time-
dependent covariates in a complicated way, which is an effect of the involvement of
the time dependent covariates in the conditional correlations.

10.1.2.4 Conditional EQC Model

The EQC model in the familial longitudinal setup may be written by extending the
longitudinal EQC model given in (6.53). This extended EQC model is given by

yi j1|γi ∼ Poi(µ
∗
i j1 = exp(x′i j1β + γi))

yi jt |γi = ρ ∗ [yi j1|γi]+di jt |γi, for j = 1, . . . ,ni; t = 2, . . . ,T, (10.20)

Also it is assumed that di jt for t = 2, . . . ,T, are independent of yi j1. It then follows
that the conditional mean and the variance are given by

E[Yi jt |γi] = var[Yi jt |γi] = µ
∗
i jt = exp(x

′
i jtβ + γi),
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the same as those under the AR(1) model (10.4) and MA(1) model (10.9), for all t =
1, . . . ,T. Furthermore, for u < t, the conditional autocovariances for the jth member
of the ith family, are given by

cov[(Yi ju,Yi jt)|γi] = ρµ
∗
i j1, (10.21)

yielding the nonstationary conditional correlation structure

c(ns)
i,ut (xi ju,xi jt ,ρ,γi) = corr[(Yi ju,Yi jt)|γi] =

ρµ∗
i j1√

µ∗
i juµ∗

i jt

, (10.22)

with ρ satisfying the range restriction

0 < ρ < min

[
1,

µ∗
i jt

µ∗
i j1

]
, t = 2, . . . ,T.

For two different members, that is, for j 6= k, similar to AR(1) and MA(1) models,
we assume that

cov[(Yi ju,Yikt)|γi] = 0. (10.23)

10.1.2.4.1. Unconditional Mean, Variance, and Correlation Structure

Based on the assumption that γi
iid∼ N(0,σ2

γ ), it follows from (10.20)− (10.21) that
the unconditional mean, variance, and the covariances have the formulas given by

E(Yi jt) = µi jt = exp(x′i jtβ +σ
2
γ /2), for all i, j, and t

cov(Yi ju,Yikt) =


µi jt +[exp(σ2

γ )−1]µ2
i jt for k = j;u = t

ρµi j1 +[exp(σ2
γ )−1]µi juµi jt for k = j;u < t

[exp(σ2
γ )−1]µi juµikt for k 6= j;u≤ t.

(10.24)

Note that the unconditional means and the variances in (10.24) are the same
as in (10.8) under the AR(1) process. They are also the same as those under the
conditional MA(1) model in (10.9), but different from those under the conditional
MA(1) model given by (10.14). As far as the unconditional covariances (10.24)
under the EQC model are concerned, they are generally different from those under
the AR(1) and MA(1) models, especially for the same member, that is, when j = k.

10.2 Parameter Estimation

In the familial longitudinal setup, we need to estimate the regression effects β , the
random effects variance σ2

γ (also referred to as the familial correlation index pa-
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rameter), and the longitudinal correlation index parameter ρ. We assume that the
correlation model for the data is known or identified in the fashion similar to that
of Section 6.5.3, where we dealt with longitudinal correlation model selection. For
convenience, we now discuss the estimation under one model, namely under the
conditional AR(1) model (10.4)− (10.7). For the purpose, we solve the appropri-
ate GQL estimating equations to estimate β and σ2

γ , and use the MM (method of
moments) to estimate ρ.

10.2.1 Estimation of Parameters Under Conditional AR(1) Model

10.2.1.1 GQL Estimation of Regression Parameter β

Let yi j = (yi j1, . . . ,yi jt , . . . ,yi jT )′ denote the T ×1 repeated responses recorded over
T occasions for the jth ( j = 1, . . . ,ni) member of the ith (i = 1, . . . ,K) family. Fur-
thermore, let

yi = (y′i1, . . . ,y
′
i j, . . . ,y

′
ini

)′

denote the niT ×1 vector of count responses for the ith family.
We now write the niT ×1 unconditional mean vector of yi as

µi(β ,σ2
γ ) = (µ

′
i1(β ,σ2

γ ), . . . ,µ
′
i j(β ,σ2

γ ), . . . ,µ
′
ini

(β ,σ2
γ ))′, (10.25)

where
µi j(β ,σ2

γ ) = (µi j1(β ,σ2
γ ), . . . ,µi jt(β ,σ2

γ ), . . . ,µi jT (β ,σ2
γ ))′

is the T × 1 vector with µi jt as its general element. The formula for this general
element is given by (10.8).

Also let the covariance elements defined by (10.8) constitute the T -dimensional
diagonal matrices Σi j j(β ,σ2

γ ,ρ) for all j = 1, . . . ,ni, and the off-diagonal matrices
Σi jk(β ,σ2

γ ) for all j 6= k, j,k = 1, . . . ,ni. It then follows that the niT ×niT uncondi-
tional variance−covariance matrix of yi can be expressed as

Σi(β ,σ2
γ ,ρ) =



Σi11 Σi12 · · · Σi1k · · · Σi1ni

Σi22 · · · Σi2k · · · Σi2ni
...

Σikk · · · Σikni

. . .
...

Σinini


. (10.26)

For known σ2
γ and ρ, similar to the GQL estimation in Section 6.5.2, the GQL

estimating equation for β in the present familial longitudinal setup, may be written
as
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K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i (yi−µi) = 0, (10.27)

where µi and Σi are defined as in (10.25) and (10.26) respectively, and ∂ µi/∂β ′ is
the niT × p first-order derivative matrix. Note that because

µi j = (µi j1, . . . ,µi jt , . . . ,µi jT )′

with µi jt defined as in (10.8), the derivative of µi with respect to β ′ requires the
derivation of µi jt with respect to β . To be specific, ∂ µi jt/∂β is the p× 1 vector
given as

∂ µi jt

∂β
= µi jt xi jt , (10.28)

where xi jt is the p× 1 vector of all covariates for the jth individual under the ith
family at time t. Let β̂GQL denote the GQL estimator of β , obtained by solving the
estimating equation (10.27). This estimator is consistent, and it is highly efficient
as the GQL estimating equation is unbiased as well as the weight matrix Σi is the
true covariance matrix of yi. Furthermore, by using the multivariate central limit
theorem [see Mardia, Kent, and Bibby (1979, p.51), for example], it may be shown
that K

1
2 (β̂GQL − β ) has an asymptotic normal distribution, as K → ∞, with mean

zero and with covariance matrix given by

K

(
K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i

∂ µi

∂β ′

)−1

. (10.29)

Remark that the computation of the estimate of β by (10.27) requires the esti-
mates for σ2

γ and ρ. These parameters are estimated in the following two sections.

10.2.1.2 GQL Estimation of Familial Correlation Index Parameter σ2
γ

In Chapter 8 (see Section 8.2.2.2), this variance component parameter was estimated
in a longitudinal mixed model setup, where in addition to a time factor, the repeated
count responses of an individual were also influenced by the individual’s random
effect. In the familial longitudinal setup, repeated responses of an individual family
member are affected by a time factor and the random family effect. Consequently,
we can generalize the GQL estimation of σ2

γ given in Section 8.2.2.2 to the familial
longitudinal setup, as follows.
Let

ui j = [u′i j(s),u
′
i j(p)]

′ (10.30)

be the T (T + 1)/2-dimensional combined vector of squares and pairwise products
for the jth ( j = 1, . . . ,ni) member of the ith (i = 1, . . . ,K) family, where

ui j(s) = [y2
i j1, . . . ,y

2
i jt , . . . ,y

2
i jT ]′ : T ×1
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ui j(p) = [yi j1yi j2, . . . ,yi jtyi jv, . . . ,yi j(T−1)yi jT ]′ :
T (T −1)

2
×1.

Next, we write the niT (T +1)/2-dimensional vector of squares and distinct products
for all ni individuals in the ith family. Let ui denote this vector and λi be its mean.
That is,

ui = [u′i1, . . . ,u
′
i j, . . . ,u

′
ini

]′

λi = [λ ′
i1, . . . ,λ

′
i j, . . . ,λ

′
ini

]′, (10.31)

where
λi j = [λ ′

i j(s),λ
′
i j(p)]

′,

with

λi j(s) = [E(Y 2
i j1), . . . ,E(Y 2

i jt), . . . ,E(Y 2
i jT )]′

= [λi j,11, . . . ,λi j,tt , . . . ,λi j,T T ]′ (10.32)

λi j(p) = [E(Yi j1Yi j2), . . . ,E(Yi jvYi jt), . . . ,E(Yi j(T−1)Yi jT )]′,

= [λi j,12, . . . ,λi j,vt , . . . ,λi j,T−1,T ]′, (10.33)

where
λi j,tt = µi jt +[exp(σ2

γ )]µ2
i jt

and for v < t
λi j,vt = ρ

t−v
µi jv +[exp(σ2

γ )]µi jvµi jt

by (10.8), with µi jt = exp(x′i jtβ +σ2
γ /2). Similar to (8.42), we may write the GQL

estimating equation for σ2
γ as

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
i (β ,σ2

γ ,ρ)[ui−λi(β ,σ2
γ ,ρ)] = 0, (10.34)

where, unlike (8.42), Ωi = cov[Ui] is the {niT (T +1)/2}×{niT (T +1)/2} covari-
ance matrix of ui, and ∂λ ′

i /∂σ2
γ is the 1×{niT (T +1)/2} vector of first derivative

of λi with respect to σ2
γ . The formulas for the elements of this derivative vector are

available in Exercise 10.1. As far as the construction of Ωi is concerned, one may use
either Ωi(β ,σ2

γ ,ρ = 0) or the normality based approximation ΩiN(β ,σ2
γ ,ρ). How-

ever, following the notation for ui from (10.31), we first express the Ωi in (10.34)
as
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Ωi =



Ωi11 Ωi12 · · · Ωi1k · · · Ωi1ni

Ωi22 · · · Ωi2k · · · Ωi2ni
...

...
Ωikk · · · Ωikni

...
Ωinini


, (10.35)

where Ωi j j = cov(Ui j) and Ωi jk = cov(Ui j,Uik), for j 6= k, j,k = 1, . . . ,ni. Note
that the Ωi matrix in (10.35) appears to be quite similar to the Σi matrix de-
fined in (10.26). They are, however, different matrices. In (10.26) Σi jk is the
T ×T covariance matrix of yi j = (yi j1, . . . ,yi jT )′ and yik = (yik1, . . . ,yikT )′, whereas
Ωi jk in (10.35) is the {T (T + 1)/2}× {T (T + 1)/2} covariance matrix of ui j =
(u′i j(s),u

′
i j(p))

′ and uik = (u′ik(s),u
′
ik(p))

′. Note that in order to construct the Ωi in
(10.35) it is sufficient to construct two matrices, namely, Ωi j j and Ωi jk, where Ωi j j

is the jth block diagonal matrix and Ωi jk is the block off-diagonal matrix corre-
sponding to the individuals j and k.

10.2.1.2.1 GQL(I) Estimation of σ2
γ

When the Ωi matrix in (10.34) is approximated based on independence (I) assump-
tion, one writes the GQL(I) estimating equation for σ2

γ as

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
i (β ,σ2

γ ,ρ = 0)[ui−λi(β ,σ2
γ ,ρ)] = 0, (10.36)

where Ωi(β ,σ2
γ ,ρ = 0) is constructed as follows.

Construction of Ωi(β ,σ2
γ ,ρ = 0)≡Ωi(I)

As mentioned in the last section, to construct the Ωi(I) matrix as a substitute
for the Ωi matrix defined in (10.34), it is sufficient to compute Ωi j j(I) for all j =
1, . . . ,ni, and Ωi jk(I) for all j 6= k, j,k = 1, . . . ,ni. Note that when it is pretended that
ρ = 0, it follows from (10.6) and (10.7) that for v 6= t,

corr{(yi jv,yikt)|γi}= 0, for all j = k; j 6= k. (10.37)

Thus to construct Ωi(I), the submatrices Ωi j j(I) and Ωi jk(I) are constructed by us-
ing the conditional independence assumption in (10.37). For convenience, we write

Ωi j j =

 cov(Ui j(s)) var(Ui j(s),U
′
i j(p))

var(Ui j(p))

 , (10.38)

and
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Ωi jk =

 cov(Ui j(s),U
′
ik(s)) cov(Ui j(s),U

′
ik(p))

cov(Ui j(p),U
′
ik(p))

 . (10.39)

Now for the computation of the elements of Ωi j j(I) and Ωi jk(I) matrices, we use
the conditional independence assumption (10.37) to derive the elements of these
two matrices given in (10.38) and (10.39).

Note that for the computation of the elements of the Ωi j j(I) in (10.38), it is
sufficient to compute the formulas for

(a) : (i) var[Y 2
i jt ], (ii) cov[Y 2

i jt ,Y
2
i j`], (iii) cov[Y 2

i jt ,Yi j`Yi ju], (iv) var[Yi jtYi ju], and

(v) cov[Yi jtYi ju,Yi j`Yi jv]. (10.40)

Similarly, for the computation of the elements of the Ωi jk(I) in (10.39), it is suffi-
cient to compute the formulas for

(b) : (i) cov[Y 2
i ju,Y

2
ikt ], (ii) cov[Y 2

i jt ,Yik`Yiku], (iii) cov[Yi jtYi ju,Yik`Yikv]. (10.41)

Note that the computation of the moments in (10.40) and (10.41) requires the
formulas for various unconditional fourth− as well as unconditional second-order
moments. The formulas for the unconditional second-order moments, namely

λi j,tt = E[Y 2
i jt ] and λi j,vt = E[Yi jvYi jt ]

are already given in (10.32) and (10.33). Next, let

φ
∗
i, jk,tu`v = E[{Yi jtYi juYik`Yikv}|γi,ρ = 0] and φi, jk,tu`v = E[{Yi jtYi juYik`Yikv}|ρ = 0],

(10.42)
denote the conditional (on γi) and corresponding unconditional fourth-order mo-
ments evaluated at ρ = 0, for any j,k = 1, . . . ,ni, and at times t,u = 1, . . . ,T, for
the jth member and at times `,v = 1, . . . ,T, for the kth member. The formulas for
these conditional and unconditional moments evaluated at ρ = 0, are available in
Exercises 10.2 and 10.3, which may be used to compute the covariances in (10.40)
and (10.41). For example, cov[Yi jtYi ju,Yik`Yikv] is calculated by using the formula

cov[Yi jtYi ju,Yik`Yikv] = [φi, jk,tu`v−λi j,tuλik,`v].

Note that similar to that of Section 8.2.2.3.2, the asymptotic variance of the GQL
estimator of σ2

γ obtained from (10.36) has the formula

var(σ̂2
GQL) = LtK→∞

[
K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i (β ,σ2

γ ,ρ = 0)
∂λ ′

i

∂σ2
γ

]−2

×

[
K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i (β ,σ2

γ ,ρ = 0)Ωi(β ,σ2
γ ,ρ)
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× Ω
−1
i (β ,σ2

γ ,ρ = 0)
∂λ ′

i

∂σ2
γ

]
, (10.43)

which may be consistently estimated by

ˆvar(σ̂2
GQL) =

[
K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i (β ,σ2

γ ,ρ = 0)
∂λ ′

i

∂σ2
γ

]−2

×

[
K

∑
i=1

∂λ ′
i

∂σ2
γ

Ω
−1
i (β ,σ2

γ ,ρ = 0)(ui− λ̂i)(ui− λ̂i)′

× Ω
−1
i (β ,σ2

γ ,ρ = 0)
∂λi

∂σ2
γ

]
, (10.44)

where λ̂i is computed by using β̂GQL and σ̂2
γ,GQL in the formula for λi given by

(10.31).

10.2.1.2.2 GQL(N) Estimation of σ 2
γ

When the Ωi matrix in (10.34) is approximated by pretending that the data follow a
normal (N) distribution, one writes the GQL(N) estimating equation for σ2

γ as

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
iN (β ,σ2

γ ,ρ)[ui−λi(β ,σ2
γ ,ρ)] = 0, (10.45)

where ΩiN(β ,σ2
γ ,ρ) is constructed as follows.

Construction of ΩiN(β ,σ2
γ ,ρ)

To construct this normality assumption based fourth-order moment matrix, it is suffi-
cient to construct the normality (N) assumption based two general matrices, Ωi j j(N)
and Ωi jk(N), where Ωi j j and Ωi jk are defined by (10.38) and (10.39), respectively.
Note that to construct the ΩiN(·) matrix under the normality assumption, one pre-
tends that

yi = (y′i1, . . . ,y
′
i j, . . . ,y

′
ini

)′ : niT ×1

count response vector follows the niT -dimensional multivariate normal vector but
with true Poisson mean vector µi (10.25) and Poisson AR(1) correlation structure
based covariance matrix Σi (10.26). Express the Σi matrix as

Σi(β ,σ2
γ ,ρ) = (σi, jk,ut) : niT ×niT, (10.46)

where the formulas for
σi, jk,ut = cov[Yi ju,Yikt ]
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for all j,k = 1, . . . ,ni, and u, t = 1, . . . ,T, are given by (10.8).

Construction of Ωi j j(N)

Recall from (10.30) that Ωi j j is the {T (T +1)/2}×{T (T +1)/2} covariance matrix
of

ui j = (u′i j(s),u
′
i j(p))

′,

ui j(s) being the T ×1 vector of squares of the elements of yi j = (yi j1, . . . ,yi jT )′, and
ui j(p) is the {T (T − 1)/2× 1} vector of distinct pairwise products of the elements
of yi j. Now by using the marginal property of the multivariate normal distribution,
we write by following (10.46) that

yi j = [yi j1, . . . ,yi jt , . . . ,yi jT ]∼ NT (µi j,Σi j j), (10.47)

where
Σi j j = (σi, j j,ut)

with σi, j j,ut = cov[Yi ju,Yi jt ] as given in (10.8). Further note that under the normality
assumption, one writes

E(Yi jt −µi jt)(Yi jv−µi jv)(Yi jr−µi jr) = 0,

and

E(Yi jt −µi jt)(Yi jv−µi jv)(Yi jr−µi jr)(Yi jd −µi jd)

= σi, j j,tvσi, j j,rd +σi, j j,trσi, j j,vd +σi, j j,tdσi, j j,vr, (10.48)

yielding, by (10.32)− (10.33),

δi, j j j,tvr = E[Yi jtYi jvYi jr]
= λi j,tvµi jr +λi j,trµi jv +λi j,vrµi jt −2µi jt µi jvµi jr, (10.49)

and

φi, j j j j,tvrd = E[Yi jtYi jvYi jrYi jd ]
= [σi, j j,tvσi, j j,rd +σi, j j,trσi, j j,vd +σi, j j,tdσi, j j,vr

+δi, j j j,tvrµi jd +δi, j j j,tvd µi jr +δi, j j j,trd µi jv +δi, j j j,vrd µi jt ]

−[λi j,tvµi jrµi jd +λi j,trµi jvµi jd +λi j,vrµi jt µi jd

+λi j,td µi jvµi jr +λi j,vd µi jt µi jr +λi j,rd µi jt µi jv]

+3µi jt µi jvµi jrµi jd . (10.50)
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Next, by putting v = t and d = r in (10.50), one easily obtains φi, j j j j,ttrr = E(Y 2
i jtY

2
i jr)

yielding the (t,r)th element of the cov(Ui j(s)) matrix as

cov(Y 2
i jt ,Y

2
i jr) = φi, j j j j,ttrr−λi j,ttλi j,rr, (10.51)

where λi j,tt is given by (10.32).
In the manner similar to that of (10.51), one may compute any elements of the

cov(Ui j(s),Ui j(p)) and var(Ui j(p)) matrices. For example, the covariance between the
products yi jtyi jv and yi jryi jd may be obtained as

cov(Yi jtYi jv,Yi jrYi jd) = φi, j j j j,tvrd −λi j,tvλi j,rd . (10.52)

This completes the construction of the Ωi j j(N) matrix for the ΩiN matrix in (10.45).

Construction of Ωi jk(N) Matrices for Cases when j 6= k

Recall from (10.39) that Ωi jk is the {T (T +1)/2}×{T (T +1)/2} covariance matrix
of ui j = (u′i j(s),u

′
i j(p))

′ and uik = (u′ik(s),u
′
ik(p))

′ for j 6= k, j,k = 1, . . . ,ni. Note that
in order to obtain various fourth-order moments similar to (10.50) to construct this
Ωi jk(N) matrix for two selected members j 6= k, it is appropriate to construct a
stacked random vector

y∗i, jk = [y′i j,y
′
ik]
′

which under the normality assumption follows the T (T + 1)-dimensional normal
vector with mean

µ
∗
i, jk = [µ ′

i j,µ
′
ik]
′

and covariance matrix

Σ
∗
i jk =

[
Σi j j Σi jk

Σikk

]
= (σ∗

i, jk,ut), T (T +1)×T (T +1), (10.53)

where

σ
∗
i, jk,ut = cov[Yi ju,Yikt ]

= E[Yi juYikt ]−µi juµikt = λi, jk,ut −µi juµikt

= [exp(σ2
γ )−1]µi juµikt , (10.54)

by (10.8). By following (10.48) and (10.49), and by using the notation λi, jk,ut from
(10 .54), one may compute the third− and fourth-order raw moments as

δi, j jk,tvr = E[Yi jtYi jvYikr]
= λi j,tvµi jr +λi, jk,trµi jv +λi, jk,vrµi jt −2µi jt µi jvµikr, (10.55)

δi, jkk,tvr = E[Yi jtYikvYikr]
= λi, jk,tvµi jr +λi, jk,trµi jv +λik,vrµi jt −2µi jt µikvµikr, (10.56)
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and

φi, j jkk,tvrd = E[Yi jtYi jvYikrYikd ]
= [σ∗

i, j j,tvσ
∗
i,kk,rd +σ

∗
i, jk,trσ

∗
i, jk,vd +σ

∗
i, jk,tdσ

∗
i, jk,vr

+δi, j jk,tvrµi jd +δi, j jk,tvd µi jr +δi, jkk,trd µi jv +δi, jkk,vrd µi jt ]

−[λi j,tvµi jrµi jd +λi, jk,trµi jvµikd +λi, jk,vrµi jt µikd

+λi, jk,td µi jvµikr +λi, jk,vd µi jt µikr +λik,rd µi jt µi jv]

+3µi jt µi jvµikrµikd . (10.57)

Now by using (10.57), one can compute any elements of the Ωi jk(N) matrix. For
example,

cov(Y 2
i jt ,Y

2
ikv) = φi, j jkk,ttvv−λi j,ttλik,vv (10.58)

cov(Y 2
i jt ,YikvYikr) = φi, j jkk,ttvr−λi j,ttλik,vr (10.59)

cov(Yi jtYi jv,Y
2
ikr) = φi, j jkk,tvrr−λi j,tvλik,rr (10.60)

cov(Yi jtYi jv,YikrYikd) = φi, j jkk,tvrd −λi j,tvλik,rd . (10.61)

This completes the construction of the Ωi jk(N) matrices.

10.2.1.3 Estimation of Longitudinal Correlation Index Parameter ρ

Note that the iterative solution of the estimating equation (10.27) for β , and (10.36)
or (10.45) for σ2

γ requires a consistent estimator for the longitudinal correlation
index parameter ρ. This consistent estimation for ρ may be achieved by using the
method of moments. Recall from (10.8) that under the AR(1) process, the lag 1
covariance between yi jt and yi j,t+1 is given by

cov(Yi jt ,Yi j,t+1) = ρµi jt +[exp(σ2
γ )−1]µi jt µi j,t+1.

For known β and σ 2
γ , one may then obtain the moment estimator of ρ , which is con-

sistent, by equating the sample lag 1 autocovariance with its population counterpart.
To be specific, the moment estimator of ρ under the AR(1) process has the formula
given by

ρ̂M =
a1−b1

c1
, (10.62)

where

a1 =
∑K

i=1 ∑ni
j=1 ∑T−1

t=1 ỹi jt ỹi j(t+1)/
{
(T −1)∑K

i=1 ni
}

∑K
i=1 ∑ni

j=1 ∑T
t=1 ỹ2

i jt/
{

T ∑K
i=1 ni

} ,
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b1 =
∑K

i=1 ∑ni
j=1 ∑T−1

t=1 φ̄i j jt(t+1)

(T −1)∑K
i=1 ni

,

and

c1 =
K

∑
i=1

ni

∑
j=1

T−1

∑
t=1

[
φ̄i j jt(t+1)/qi jt(t+1)

]
/

{
(T −1)

K

∑
i=1

ni

}
,

where

ỹi jt =
{

(yi jt −µi jt)/σ
1/2
i, j j,tt

}
, qi jt(t+1) =

{
[exp(σ2

γ )−1](µi j(t+1))
}

, and φ̄i jtt(t+1)

is given as

φ̄i j jt(t+1) =
[exp(σ2

γ )−1]

[{[exp(σ2
γ )−1]+1/µi jt}{[exp(σ2

γ )−1]+1/µi j(t+1)}]
1
2

.

This correlation estimate from (10.62) is used in (10.27) and (10.36) [or (10.45)]
to obtain further improved estimates of β and σ2

γ , respectively, which are in turn
used in (10.62) to obtain further improved estimate of ρ. This cycle of iteration
continues until convergence.

10.2.2 Performance of the GQL Approach: A Simulation Study

To examine the performance of the GQL approach in the familial longitudinal set
up, Sutradhar, Jowaheer, and Sneddon (2008) conducted a simulation study, and it
was shown that the GQL approach works very well in estimating the regression ef-
fects β and familial correlation index parameter σ2

γ , along with good performance
of the moment approach for the estimation of the longitudinal correlation index pa-
rameter ρ. We explain this simulation study as follows.

10.2.2.1 Simulation Study with p = 1 Covariate

For this single covariate case, suppose that β = 1.0. Consider K = 100 families
each with ni = 2(i = 1, . . . ,K) members. Also suppose that count responses were
collected from each member for a period of T = 4 time points. The covariates were
chosen as follows. For the first member, the time-dependent covariate was chosen
to be

xi1t1 =

 (t2−2.5)/8 for i = 1, . . . ,K/2; t = 1, . . . ,4

t2/8 for i = K/2+1, . . . ,K; t = 1, . . . ,4,

whereas for the second member the time-dependent covariate was taken as
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xi2t1 =


0.1+(t−1)×0.25 for i = 1, . . . ,K/4; t = 1, . . . ,4

(1+ t + t2)/12 for i = K/4+1, . . . ,3K/4; t = 1, . . . ,4

(t2−2.5)/8 for i = 3K/4+1, . . . ,K; t = 1, . . . ,4.

Table 10.1 Simulated mean, simulated standard error, and relative bias of the GQL estimates for
parameters of the nonstationary familial longitudinal model with single covariate for selected val-
ues of σ2

γ and ρ; K = 100; T = 4; β = 1.0; 500 simulations.

Variance Correlation Estimates
Component (σ2

γ ) Parameter(ρ) Quantity β̂ σ̂2
γ ρ̂

0.50 0.25 SM 0.968 0.488 0.279
SSE 0.077 0.169 0.264
RB 42 7 11

0.75 SM 0.980 0.494 0.715
SSE 0.047 0.134 0.161
RB 43 4 22

0.75 0.25 SM 0.923 0.730 0.272
SSE 0.146 0.269 0.269
RB 53 7 8

0.75 SM 0.955 0.707 0.627
SSE 0.101 0.218 0.275
RB 45 20 45

Next, we choose two values for the σ2
γ parameter, namely, σ2

γ ≡ 0.50, 0.75, and
to reflect small and large longitudinal correlations we have chosen ρ ≡ 0.25, 0.75.
Note that when σ2

γ = 0, the longitudinal mixed model reduces to the longitudinal
fixed model. Furthermore, it is clear from (10.8) that a small increase in the value
of σ2

γ will cause a large change in overdispersion for the data. Thus, even though in
theory σ2

γ can take any nonnegative values, it seems to be more practical to consider
only moderately large values for σ2

γ in the simulation study such as σ2
γ = 0.5, 0.75.

We remark here that some of the existing estimation methods such as the penal-
ized quasi-likelihood (PQL) approach [Breslow and Lin (1995, p. 90)] cannot even
unbiasedly estimate this σ 2

γ parameter when it is larger than 0.25.
The data are generated following the conditional Poisson AR(1) model (10.4)

for a selected value of σ2
γ and longitudinal correlation parameter ρ. In each sim-

ulation, three parameters, namely β , σ2
γ , and ρ are estimated by solving the GQL

estimating equations (10.27), (10.36) (ρ = 0 based), and moment equation (10.62),
respectively. Based on 500 simulations, the simulated mean (SM), simulated stan-
dard error (SSE), and the relative bias (RB) defined by

RB(β̂ ) =
[β −SM(β̂ )]

SE(β̂ )
×100,
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are reported in Table 10.1.
The results in the table show the GQL approach performs very well in estimat-

ing the regression effect β , irrespective of the values of σ2
γ and ρ. For example, for

the case when σ2
γ = 0.5 and ρ = 0.25, the GQL approach produces the β estimate

as 0.968 for true β = 1.0 with RB as 42, whereas for larger values of σ2
γ = 0.75

and ρ = 0.75, the β estimate is found to be slightly worse as 0.955 with RB as 45.
This GQL approach also works well for the estimation of the other two parameters,
except when both parameters are considerably very large. For example, when σ 2

γ

is large such as σ2
γ = 0.75, with a small value for ρ = 0.25, the estimates of these

parameters appear to be very close to the corresponding true values (0.73 and 0.27,
respectively), whereas for the same value of σ2

γ with a larger value of ρ = 0.75, it
produced slightly biased estimates (0.71 and 0.63, respectively) for these parame-
ters, especially for ρ.

10.2.2.2 Simulation Study with p = 2 Covariates

Note that whether it is a longitudinal or familial or familial−longitudinal study, the
inferences about the model parameters depend on the nature of the covariates. This
issue that the covariates play an important role in inferences is clear, for example,
from the correlation structure (10.8), where it is seen that the correlations of the
responses are functions of the time-dependent covariates. The correlation structure
involving the covariates is a key factor in the construction of the estimating equa-
tions (10.27) for β , (10.36) for σ 2

γ , and (10.62) for ρ, thus in this section we study
the performance of the GQL estimation approach for a case when the model con-
tains more than one time-dependent covariate. As in the last simulation study in
Section 10.2.2.1, we consider K = 100, T = 4, ni = 2, but p = 2 as opposed to
p = 1. Furthermore, we consider the following two time-dependent covariates as in
Sutradhar, Jowaheer, and Sneddon (2008). For the first member in a given family,
we consider

xi1t1 =



1/2 for i = 1, . . . ,K/4; t = 1,2

0 fori = 1, . . . ,K/4; t = 3,4

−1/2 for i = K/4+1, . . . ,3K/4; t = 1

0 for i = K/4+1, . . . ,3K/4; t = 2,3

1/2 for i = K/4+1, . . . ,3K/4; t = 4

t/8 for i = 3K/4+1, . . . ,K; t = 1, . . . ,4,

,

and
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xi1t2 =


(t−2.5)/2 for i = 1, . . . ,K/2; t = 1, . . . ,4

0 for i = K/2+1, . . . ,K; t = 1,2

1/2 for i = K/2+1, . . . ,K; t = 3,4.

For the second member of the families we consider the first covariate as the binary
variable following the distribution

Pr(xi2t1 = 1) =

0.3 for t = 1
0.5 for t = 2,3
0.8 for t = 4,

,

and the second covariate was chosen as

xi2t2 =

{
(t−2.5)/2 for i = 1, . . . ,K/2; t = 1, . . . ,4

t/2 for i = K/2+1, . . . ,K; t = 1, . . . ,4.

As far as the parameters are concerned, we consider two sets of regression mod-
els: M1 with β1 = β2 = 0.0 and M2 with β1 = 1.0, β2 = 0.5. With regard to the
values for the familial (σ2

γ ) and longitudinal (ρ) correlation index parameters, we
choose them as in the last simulation study.

Now, by using the chosen covariates, we simulate the responses following the
conditional autocorrelation model (10.4) for a selected set of parameter values. In
each simulation, we then obtain the GQL estimates for the β and σ 2

γ parameters by
using the GQL estimating equations (10.27) and (10.36), respectively. The moment
estimate of ρ is obtained by (10.62). The simulations are repeated 500 times. The
simulated estimates are reported in Table 10.2.

For both sets of values of β1 and β2, the results in Table 10.2 show that the GQL
method performs very well in estimating the regression effects. For example, for true
β1 = β2 = 0.0, the estimates of β1 and β2 are found to be 0.006 and −0.010, with
corresponding RB 2 and 11 only, when σ2

γ = 0.75 and ρ = 0.75. This good behavior
of the GQL estimates appears to hold for the estimation of the nonzero true values
of β1 and β2, under various selection for the other two parameter values. Next, for
the true value of ρ = 0.75, when β1 = 0, β2 = 0, the correlation estimate was found
to be ρ̂ = 0.760, indicating that the moment estimate of ρ is almost unbiased and
hence consistent. This consistency pattern appears to hold for the estimation of this
ρ parameter, irrespective of the selected true values for β1, β2, and σ2

γ , as shown
in the Table 10.2. As far as the estimation of σ2

γ is concerned, the estimates are
reasonably unbiased in general except for the cases with a large value of ρ. For ex-
ample, when β1 = 1.0, β2 = 0.5, and ρ = 0.75, the estimate of σ2

γ is found to be
0.464 which is slightly biased for true σ2

γ = 0.5, and 0.663, a biased estimate, for
true σ2

γ = 0.75. This poor performance of the GQL estimation for σ2
γ is, however,

not surprising, as the ‘working’ GQL estimating equation (10.36) is constructed
based on the weight matrix Ωi(ρ = 0) ignoring the longitudinal correlation ρ. Re-
call that it was demonstrated through a simulation study in Chapter 8 (see Tables
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Table 10.2 Simulated mean, simulated standard error, and relative bias of the GQL estimates for
the parameters of two nonstationary familial longitudinal regression models, M1: β1 = 0, β2 = 0;
M2: β1 = 1.0, β2 = 0.5; each with various selected values of the variance component (σ2

γ ), and
longitudinal correlation index parameter (ρ); and K = 100; T = 4; 500 simulations.

Estimates
Model σ2

γ ρ Quantity β̂1 β̂2 σ̂2
γ ρ̂

M1 0.50 0.25 SM 0.021 −0.004 0.458 0.237
SSE 0.270 0.080 0.164 0.144
RB 8 5 26 9

0.75 SM −0.023 0.004 0.393 0.734
SSE 0.193 0.080 0.157 0.077
RB 12 5 68 21

0.75 0.25 SM 0.021 −0.005 0.636 0.256
SSE 0.320 0.099 0.190 0.164
RB 7 5 60 4

0.75 SM 0.006 −0.010 0.593 0.760
SSE 0.260 0.095 0.215 0.063
RB 2 11 73 16

M2 0.50 0.25 SM 1.013 0.494 0.478 0.259
SSE 0.242 0.080 0.145 0.158
RB 5 8 15 6

0.75 SM 1.006 0.497 0.464 0.746
SSE 0.221 0.077 0.146 0.083
RB 3 4 25 5

0.75 0.25 SM 0.973 0.498 0.670 0.260
SSE 0.381 0.112 0.162 0.197
RB 7 2 49 5

0.75 SM 0.982 0.499 0.663 0.745
SSE 0.319 0.109 0.171 0.144
RB 6 1 51 3

8.10 and 8.11) in the context of longitudinal mixed model for count data, that the
normality approximation based GQL approach works better than the independence
assumption based GQL approach in estimating the variance component of the ran-
dom effects. This result should hold also in the present familial longitudinal setup.
Thus, it is expected that in the present setup, the GQL estimating equation (10.45)
constructed using the normality based weight matrix ΩiN(ρ) will improve the esti-
mate for σ2

γ . We, however, do not add any new simulations for this, for convenience.

10.2.2.3 Effects of Partial Model Fitting: A Further Simulation Study with
p = 2 Covariates

Note that the familial longitudinal models considered in this chapter reduce to the
simpler longitudinal models discussed in Chapter 6 when σ2

γ = 0, and they reduce
to the simpler familial models in Chapter 4 when longitudinal correlations are zero,
that is, when ρ = 0, (say). Consequently, when regression parameters are of interest
in the familial longitudinal setup, as opposed to fitting the complete familial lon-
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Table 10.3 Simulated estimates for a partial longitudinal model when in fact the data came from a
familial longitudinal model with regression parameters, M1: β1 = 0, β2 = 0; M2: β1 = 1.0, β2 =
0.5; each with various selected values of the variance component (σ2

γ ), and longitudinal correlation
index parameter (ρ); and K = 100; T = 4; 500 simulations.

Estimates
Model σ2

γ ρ Quantity β̂1 β̂2 ρ̂

M1 0.50 0.25 SM 0.094 −0.016 0.528
SE 0.158 0.051 0.047
RB 60 31 591

0.75 SM −0.013 0.019 0.831
SE 0.148 0.061 0.032
RB 9 31 253

0.75 0.25 SM 0.106 −0.012 0.611
SE 0.156 0.053 0.046
RB 68 23 785

0.75 SM 0.022 −0.014 0.867
SE 0.154 0.072 0.032
RB 14 19 366

M2 0.50 0.25 SM 0.984 0.514 0.653
SE 0.130 0.035 0.050
RB 12 40 806

0.75 SM 0.981 0.512 0.913
SE 0.131 0.044 0.085
RB 15 27 192

0.75 0.25 SM 0.964 0.521 0.749
SE 0.143 0.034 0.044
RB 25 62 1134

0.75 SM 0.955 0.521 0.966
SE 0.129 0.045 0.037
RB 35 47 584

gitudinal model (10.4, say), one may alternatively attempt to use either one of the
simpler models (familial or longitudinal). In order to examine the effect of fitting
such simpler but partial models, Sutradhar, Jowaheer, and Sneddon (2008, Sections
4.2− 4.4) have done further simulation studies on model misspecification effects.
We consider here two of their cases and examine the estimation effects of ignoring
family effects through using σ2

γ = 0 and of ignoring longitudinal effects through
using ρ = 0, when in fact none of them are zero in the familial longitudinal data.

To be specific, in each simulation, the familial longitudinal data are generated as
in Section 10.2.2.2 using the conditional AR(1) model (10.4). However, in the first
case, we pretend that σ2

γ = 0, which is equivalent to assuming that there do not exist
any families, so that, the data came from all ∑K

i=1 ni = n individuals, those who are
independent of each other. Thus, in this case, we use the GQL estimating equation
(10.27) for β estimation and use (10.62) for ρ estimation. Here both equations are
evaluated at σ 2

γ = 0. The simulation results based on 500 simulations are shown in
Table 10.3. When the results of Table 10.3 are compared to the corresponding results
in Table 10.2, it is clear that both regression and the correlation estimates become bi-
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Table 10.4 Simulated estimates for a partial familial model when in fact the data came from a
familial longitudinal model with regression parameters, M1: β1 = 0, β2 = 0; M2: β1 = 1.0, β2 =
0.5; each with various selected values of the variance component (σ2

γ ), and longitudinal correlation
index parameter (ρ); and K = 100; T = 4; 500 simulations.

Convergent Estimates
Model simulations σ2

γ ρ Quantity β̂1 β̂2 σ̂2
γ

M1 223 0.50 0.25 SM 0.070 −0.010 0.584
SE 0.388 0.143 0.159
RB 18 7 53

56 0.75 SM 0.236 −0.119 0.675
SE 0.483 0.192 0.214
RB 49 62 82

298 0.75 0.25 SM 0.026 −0.011 0.710
SE 0.461 0.143 0.161
RB 6 8 25

149 0.75 SM 0.083 −0.053 0.757
SE 0.519 0.195 0.184
RB 16 27 4

M2 444 0.50 0.25 SM 1.014 0.487 0.495
SE 0.300 0.100 0.166
RB 5 13 3

364 0.75 SM 1.017 0.478 0.545
SE 0.422 0.141 0.172
RB 4 16 26

471 0.75 0.25 SM 0.966 0.493 0.679
SE 0.396 0.129 0.192
RB 9 5 37

422 0.75 SM 0.989 0.500 0.683
SE 0.460 0.150 0.186
RB 2 0 36

ased when σ2
γ is ignored. In particular, the correlation estimates appear to be highly

biased with relatively smaller standard errors. Thus, the estimator converges to a
wrong value quite often showing the inconsistency of the estimates. For example,
consider the case with the smaller value of σ2

γ = 0.50. When β1 = 1.0, β2 = 0.5,

and ρ = 0.75, and σ2
γ is ignored, the results of Table 10.3 show that the relative

biases for the estimates of β1, β2, and ρ are 15, 27, and 192, respectively, which
are substantially larger than the corresponding relative biases 3, 4, and 5 produced
in Table 10.2. These results clearly demonstrate that ignoring random family effects
variation has severe consequences mainly on the estimation of ρ which itself is an
important parameter in the longitudinal setup.

Next, we pretend that ρ = 0, which is equivalent to assuming that the repeated
count responses from each and every family member are independent. Thus, in this
case, we use the GQL estimating equation (10.27) for β estimation and use (10.36)
for ρ estimation. Here both equations are evaluated at ρ = 0. The simulation results
based on 500 simulations are shown in Table 10.4. This estimation situation appears
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to be gloomy. This is because as shown in Table 10.4, the iterations did not con-
verge to an estimate for many simulations. For example, when β1 = 1.0, β2 = 0.5,
σ 2

γ = 0.75, and ρ = 0.75, but the estimation is carried out by assuming ρ = 0.0,
the iterations converged in 422 simulations out of 500 simulations. Note that even
though the converged estimates for the regression effects β1, β2, and the variance
parameter σ2

γ appear to be satisfactory as in the complete case reported in Table
10.2, it is, however, not recommended to use ρ = 0.0 in estimating other parame-
ters. This is because when ρ = 0.0 is used, there will be no guarantee that in practice
one can obtain the estimates for other parameters if the data really follow the famil-
ial longitudinal model with a nonzero ρ value.

10.3 Analyzing Health Care Utilization Data by Using GLLMM

The complete health care utilization data collected from 36 families of size 4, and
12 families of size 3, for a period of six years from 1985 to 1990, are displayed
in Table 6A in the appendix of Chapter 6. The data contain the number of visits
to the physician by a member of a family at a given year. Thus, this count (i.e.,
number of visits), can be denoted appropriately by yi jt , where i = 1, . . . ,K, K = 48
being the number of independent families; j = 1, . . . ,ni, with ni as the number of
members in the ith family (ni = 4 for i = 1, . . . ,36; and ni = 3 for i = 37, . . . ,48);
and t = 1, . . . ,T, T = 6 being the number of years. The data also contain informa-
tion on four covariates, namely (i) gender, (ii) initial number (in 1985) of chronic
conditions, (iii) education level, and (iv) age, corresponding to each yi jt . The four-
dimensional covariate vector can be represented by xi jt = [xi jt1,xi jt2,xi jt3,xi jt4]′. Let
β = [β1,β2,β3,β4]′ denote the effects of the fixed covariate vector xi jt on the re-
sponse yi jt . Note that there arise the following two types of correlations among the
responses in this familial longitudinal setup.

(a) Familial correlations. At a given time t, the responses from any two members,
say yi jt and yikt , under the ith family, will be correlated as they share the common
random family effects, say γi. This causes familial correlations.

(b) Longitudinal correlations. Conditional on the latent family effect γi, the re-
sponses collected at two time points, say yi ju and yi jt , from the same ( jth) member
of the ith family will also be correlated. These correlations are referred to as the
longitudinal correlations as they take place because of certain dynamic relation-
ships between responses over time.
Note that it is important to take these correlations into account and then compute the
regression effects β . Furthermore, in many situations these correlations may also be
of primary interest. Now for a complete analysis of this type of data, one may apply
a suitable familial longitudinal model introduced in Section 10.1.2. These models,
namely conditional AR(1), MA(1), and EQC, belong to a nonstationary autocorre-
lations class and are simple to implement for their low order. Because the AR(1)
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model shows correlation decay over time, which is mostly expected in practice,
Sutradhar, Jowaheer, and Sneddon (2008) have fitted this model the familial longi-
tudinal health care utilization data. We discuss it below as an illustration.

Note that a part of this health care dataset in a familial setup was analyzed
by Chowdhury and Sutradhar (2009). These authors considered the data from all
48 families for 1985 only. For the covariates: gender (xi j1), the chronic condition
(xi j2)[CC], education level (xi j3)[EL], and age of the individual (xi j4); coded as

xi j1 =
{

0 female
1 male

xi j2 =
{

0 without chronic diseases
1 with chronic diseases

xi j3 =
{

0 less than high school
1 high school or above

xi j4 = exact age of the individual,

their effects β , on the count responses, along with the estimate for familial correla-
tion index parameter (variance of the random effects, σ2

γ ) were reported in Chapter
4 (see Table 4.10 in Section 4.2.8). In a longitudinal setup, Sutradhar (2003) has
analyzed a part of the dataset, specifically, the repeated count responses from 144
individuals (members of first 36 families), collected over four time points from 1985
to 1988. By using a reverse code for education level, namely,

xi j3 =
{

1 less than high school
0 high school or above,

but the same codes for the other three covariates as in the familial setup, Sutrad-
har (2003) has computed the GQL estimates for the components of β , as well as
the longitudinal correlation index parameter ρ. These estimates were reported in
Chapter 6 (see Table 6.13 in Section 6.7). Note that in this longitudinal setup, it was
assumed that 144 individuals were selected independently even though they belong
to 36 famililes. Thus, this analysis was done by ignoring the family variation or
familial correlation (i.e., by pretending that σ2

γ = 0). We remark here that this longi-
tudinal model fitting to the familial longitudinal data by Sutradhar (2003) was done
simply for an illustration. Later on Sutradhar, Jowaheer, and Sneddon (2008) have
analyzed the same familial longitudinal data by fitting the appropriate familial longi-
tudinal model for count data, namely the conditional AR(1) model (10.4)− (10.8).
It is clear from Sutradhar, Jowaheer, and Sneddon (2008) that it is quite important
to consider the σ 2

γ parameter for the health care utilization data. This is because
as shown in the following Table 10.5, the sample variance for 144 individuals at
a given year for a period of four years appears to be much larger than the corre-
sponding sample mean, indicating over dispersion, that is, the presence of σ2

γ . To be
specific, the sample means and variances appear to reflect the mean and variances
shown in (10.8) under the conditional AR(1) model (10.4) (or MA(1) (10.9) or EQC
(10.20)); that is,
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Table 10.5 Summary statistics of physician visits by 144 members of 36 families at a given year
for a period of four years.

Year
1 2 3 4

Average number of visit 3.88 3.75 3.85 4.31
Sample variance 19.65 16.85 18.05 23.24

µi jt = E[Yi jt ] = exp(x′i jtβ +
1
2

σ
2
γ ); var[Yi jt ] = σi j,tt = µi jt +[exp(σ2

γ )−1]µ2
i jt .

Table 10.6 GQL estimates (EST) along with standard errors (SE) (where appropriate) by fitting
(a) nonstationary AR(1) model (10.4)− (10.8), and (b) nonstationary longitudinal model (6.44)
[re-display from Table 6.13], to the health care utilization data for 36 families each with four
members; and (c) familial model (4.1)− (4.2) [re-display from Table 4.10] to all 44 families at
one time point, 1985.

GQL Applying to
Full Model (a) Partial Model (b) Partial Model (c)

Parameters EST SE EST SE EST SE
Gender effect (β1) −0.468 0.003 −0.223 0.060 −0.754 0.091
Chronic effect (β2) 0.331 0.004 0.374 0.072 0.666 0.125
Education effect (β3) 0.486 0.003 −0.428 0.074 0.434 0.123
Age effect(β4) 0.024 0.000 0.029 0.001 0.010 0.003
Variance component (σ2

γ ) 1.184 0.314 − − 0.873 0.409
ρ 0.447 − 0.554 − − −

Further note that because the consistent and efficient estimation for β by (10.27),
and for σ2

γ by (10.36) [or (10.45)], requires the consistent estimate for the longi-
tudinal correlation parameter ρ, we also estimate this later parameter by using the
moment estimating equation (10.62). We also compute the standard errors of the es-
timate of β by (10.29) and of the estimate of σ2

γ by (10.44). These estimates (EST)
and standard errors (SE) of the estimates are given in Table 10.6. In the same table,
for a clear comparison, we also re-display the estimates from Table 6.13 obtained
by fitting AR(1) longitudinal model, and the estimates from Table 4.10 obtained by
fitting a familial model (to 1985 data).

When the estimates under the full (familial longitudinal) model (a) are compared
to those of partial (1985 familial data) model (c), it becomes clear that the family
effects have a significant variation that is evident by the estimates for σ2

γ under both
models (a) and (c). The estimate of σ2

γ under full model (a) is computed by using
data for four years, whereas it is computed based on 1985 data only under model (c).
The estimate under model (a) with smaller standard error as compared to model (c)
is naturally more reliable. This large value (1.184) for σ2

γ also supports the presence
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of overdispersion or family variation reflected by the mean and variance comparison
in Table 10.5. All estimates under model (a) are improvement over the estimates
found under model (3). The estimates of gender and chronic effects appear to be
quite different under these two models, whereas education and age effects are almost
the same under the two models. The standard errors under model (a) are uniformly
smaller than those under model (c). This gain in efficiency can be interpreted as
an effect of considering the larger dataset under model (a), or more specifically,
as an effect of using the longitudinal correlation in the estimating equation (10.27)
for regression effects β and in the estimating equation (10.36) for σ2

γ . Under the
full model (a), the longitudinal correlation estimate was found to be 0.447, a large
positive value, indicating that the conditional correlation structure (10.4)− (10.8)
plays a significant role in the analysis of the data.

Note that a comparison between the estimates under full model (a) and the lon-
gitudinal model (b) show that except for gender effect, the regression estimates are
almost the same. This is not surprising as both models are fitted to the same large
longitudinal dataset. However, as expected, the standard errors under model (a) are
uniformly smaller than the corresponding standard errors under model (b). This effi-
ciency gain can be interpreted as an improvement due to the utilization of the family
effects variation under model (a) as compared to the longitudinal model (b) where
family variation was treated to be zero, even though it is highly significant.

We now interpret the regression estimates under the familial longitudinal model
(a). Because the female was coded as 0 and the male as 1, the large negative value of
β̂1 =−0.468 indicates that the females pay more visits to the physician as compared
to the males. The positive large values of β̂2 = 0.331 and β̂3 = 0.486 imply that
the individuals having a large number of chronic diseases or the individuals with
high education pay more visits to the physicians. Similarly, the positive value of
β̂4 = 0.024 indicates that the subjects in the higher age group appear to pay more
visits as compared to the individuals in the lower age group, as expected.

10.4 Some Remarks on Model Identification

In the present familial longitudinal setup, the familial correlations are introduced
through the random family effects. As far as the longitudinal correlations are con-
cerned, it has been argued that the repeated data from the family members are most
likely to follow one of the conditional (on random family effect) nonstationary low-
order autocorrelations such as the AR(1), MA(1), or EQC model, discussed in Sec-
tion 10.1.2. However, among these three structures, AR(1) perhaps will be the most
probable model for repeated data because of the fact that the autocorrelations under
this model exhibit a decaying correlation nature as the lag increases. For this rea-
son, for convenience, in Sections 10.2 and 10.3, we have demonstrated how to de-
velop inferences in the conditional AR(1) familial longitudinal model (10.4). More
specifically, the covariance structure (10.8) under this AR(1) model was used to de-
velop the GQL estimating equations for β as in (10.27) and for σ2

γ as in (10.36)
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[or (10.45)], and the longitudinal index correlation ρ was estimated by using the
moment equation (10.62). Note that in case it is found that the conditional MA(1)
or EQC model is more appropriate than AR(1) model, the inferences for these mod-
els may easily be developed in the same fashion as that for the AR(1) model. The
only difference lies in using the appropriate covariance structure such as (10.13)
for the MA(1) model and (10.24) for the EQC model, into the estimating equations
(10.27), (10.36) [or (10.45)] and write the appropriate formula for the longitudinal
correlation index parameter in a similar way to that of (10.62).

For the identification of the longitudinal correlation structure (assuming that one
of the aforementioned three models fit the data) within the familial longitudinal
setup, we provide below a few important steps, which are quite similar to the iden-
tification steps used in the longitudinal setup in Chapter 6 (see Section 6.5.3).

10.4.1 An Exploratory Identification

Note that because the familial correlations are introduced through the random ef-
fects, it remains only to identify the longitudinal correlation structure. Also note
that in the familial longitudinal setup, the correlation models are written at the con-
ditional level. That is, conditional on the random effects, the repeated responses of
the same individual member in a given family are correlated. To have an approxi-
mate idea about the correlation structure, follow the steps below:

Step 1. Use γi = 0 (i.e., σ2
γ = 0) for all i = 1, . . . ,K, so that µ∗

i jt = exp(x′i jtβ ).
Step 2. Obtain a ‘working’ independence assumption based estimate for β by solv-
ing (10.27) where now

Σi(β ,ρ,σ2
γ ) = Ai = diag[µ∗

i11, . . . ,µ
∗
i jt , . . . ,µ

∗
iniT ].

Step 3. Compute all lag ` = 1, . . . ,T correlations by using

ρ̂`|γ1 = 0, . . . ,γK = 0 =
∑K

i=1 ∑ni
j=1 ∑T−`

t=1 ỹi jt ỹi j,t+`/(T − `)∑K
i=1 ni

∑K
i=1 ∑ni

j=1 ∑T
t=1 ỹ2

i jt/T ∑K
i=1 ni

, (10.63)

where ỹi jt = [yi jt −µ∗
i jt ]/

√
µ∗

i jt is evaluated by using β estimate from Step 2.

Step 4. Now, similar to the Gaussian autocorrelation process, if the values of ρ̂`

decay as ` increases, then decide for the AR(1) covariance structure (10.8); if ρ̂1

is nonzero and for other `, ρ̂` = 0, then decide for the MA(1) covariance structure
(10.13); if however the values of ρ̂` for all ` = 1, . . . ,T − 1, are almost the same,
then decide for the EQC covariance structure (10.24).
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10.4.2 A Further Improved Identification

Step 1. Compute ρ̂` for all ` = 1, . . . ,T −1, following Section 10.4.1.
Step 2. Use the ‘working’ estimate of β for β from Section 10.4.1 and compute
µ∗

i jt = exp(x′i jtβ ), and go to Step 3.
Step 3. Evaluate the approximate expectation of ρ̂` under all three possible models
as follows.

For AR(1) :

E[ρ̂`|γ1 = 0, . . . ,γK = 0] ≡ ρ`

∑K
i=1 ni(T − `)

K

∑
i=1

ni

∑
j=1

T−`

∑
t=1

[
µ∗

i jt

µ∗
i j,t+`

]1/2

for ` = 1, . . . ,T −1, (10.64)

For MA(1) :

E[ρ̂`|γ1 = 0, . . . ,γK = 0] ≡


∑K

i=1 ∑ni
j=1 ∑T−`

t=1

[
∑t−1

v=0(−ρ)vµ∗i j,t−v√
µ∗i jt µ∗i j,t+`

]
×
[

ρ

∑K
i=1 ni(T−`)

]
for ` = 1

0 otherwise

(10.65)

For EQC :

E[ρ̂`|γ1 = 0, . . . ,γK = 0] ≡ ρ

∑K
i=1 ni(T − `)

K

∑
i=1

ni

∑
j=1

T−`

∑
t=1

 µ∗
i1

{µ∗
it µ

∗
i,t+`}

1
2


for ` = 1, . . . ,T −1, (10.66)

Step 4. Compare the pattern of ρ̂` with that of E[ρ̂`|γ1 = 0, . . . ,γK = 0] from Step 3,
for all possible values of ρ, under all three models. Choose the model under which
the expected values are in closest agreement with the pattern of ρ̂`.

Exercises

10.1. (Section 10.2.1.2.) [First order derivatives of λi with respect to σ2
γ (equation

(10.34))]
Notice from (10.31)− (10.33) that for the derivation of ∂λ ′

i /∂σ2
γ it is sufficient to

take the derivatives of
λi j,tt = µi jt +[exp(σ2

γ )]µ2
i jt

and
λi j,vt = ρ

t−v
µi jv +[exp(σ2

γ )]µi jvµi jt , for v < t,

with respect to σ2
γ , where µi jt = exp(x′i jtβ + σ2

γ /2). Verify that these derivatives
have the formulas:



452 10 Familial Longitudinal Models for Count Data

∂λi j,tt

∂σ2
γ

=
µi jt

2
+2exp(σ2

γ )µ
2
i jt ,

and

∂λi j,vt

∂σ2
γ

=
1
2

ρ
t−v

µi jv +2exp(σ2
γ )µi jt µi jv.

10.2. (Section 10.2.1.2.1) [Fourth-order moments when ρ = 0 for (10.40)]
For µ∗

i jt = exp(x′i jtβ + γi) as in (10.1) [see also (10.5)], use the conditional Poisson
marginal moments

E(Yi jt |γi) = µ
∗
i jt , E(Y 2

i jt |γi) = µ
∗
i jt + µ

∗2
i jt ,

E(Y 3
i jt |γi) = µ

∗
i jt +3µ

∗2
i jt + µ

∗3
i jt ,

and
E(Y 4

i jt |γi) = µ
∗
i jt +7µ

∗2
i jt +6µ

∗3
i jt + µ

∗4
i jt ,

and verify in a fashion similar to Section 8.2.2 (the longitudinal mixed model setup)
that in the present familial longitudinal setup, the fourth-order raw moments at ρ = 0
for the jth member of the ith family are given by

(a(i)) E(Y 4
i jt) = φi, j j,tttt

= Eγi [E(Y 4
i jt |γi)]

= µi jt [1+7µi jt exp(σ2
γ )+6µ

2
i jt exp(3σ

2
γ )

+ µ
3
i jt exp(6σ

2
γ )] (10.67)

(a(ii),a(iv)) E(Y 2
i juY 2

i jt |ρ = 0) = φi, j j,uutt

= Eγi [E(Y 2
i ju|γi)E(Y 2

i jt |γi)]

= µi juµi jt exp(σ2
γ )[1+{µi ju + µi jt}exp(2σ

2
γ )

+µi juµi jt exp(5σ
2
γ )] (10.68)

(a(iii−1)) E(Y 3
i juYi jt |ρ = 0) = φi, j j,uuut

= Eγi [E(Y 3
i ju|γi)E(Yi jt |γi)]

= µi juµi jt exp(σ2
γ )[1+3µi ju exp(2σ

2
γ )

+µ
2
i ju exp(5σ

2
γ )] (10.69)

(a(iii−2)) E(Y 2
i juYi jvYi jt |ρ = 0) = φi, j j,uuvt

= Eγi [E(Y 2
i ju|γi)E(Yi jv|γi)E(Yi jt |γi)]
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= µi juµi jvµi jt exp(3σ
2
γ )

×[1+ µi ju exp(3σ
2
γ )] (10.70)

(a(v)) E(Yi juYi jvYi j`Yi jt |ρ = 0) = φi, j j,uv`t

= Eγi [E(Yi ju|γi)E(Yi jv|γi)E(Yi j`|γi)E(Yi jt |γi)]

= µi juµi jvµi j`µi jt exp(6σ
2
γ ). (10.71)

10.3. (Section 10.2.1.2.1) [Fourth-order moments when ρ = 0 for (10.41)]
Verify in a fashion similar to Exercise 10.2 that the fourth-order raw moments at
ρ = 0 for the jth and kth members of the ith family are given by

(b(i) E(Y 2
i juY 2

ikt |ρ = 0) = φi, jk,uutt

= Eγi [E(Y 2
i ju|γi)E(Y 2

ikt |γi)]

= µi juµikt exp(σ2
γ )[1+{µi ju + µikt}exp(2σ

2
γ )

+µi juµikt exp(5σ
2
γ )] (10.72)

(b(ii) E(Y 2
i juYikvYikt |ρ = 0) = φi, jk,uuvt

= Eγi [E(Y 2
i ju|γi)E(Yikv|γi)E(Yikt |γi)]

= µi juµikvµikt exp(3σ
2
γ )

×[1+ µi ju exp(3σ
2
γ )] (10.73)

(b(iii)) E(Yi juYi jvYik`Yikt |ρ = 0) = φi, jk,uv`t

= Eγi [E(Yi ju|γi)E(Yi jv|γi)E(Yik`|γi)E(Yikt |γi)]

= µi juµi jvµik`µikt exp(6σ
2
γ ). (10.74)
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Chapter 11
Familial Longitudinal Models for Binary Data

In the familial longitudinal setup, binary responses along with a set of multidimen-
sional time-dependent covariates are collected from the members of a large number
of independent families. For example, in a clinical study, the asthma status of each
of the family members of a large number of independent families may be collected
every year over a period of four years. Also, the covariates such as gender, age, edu-
cation level, and life style of the individual member may be collected. In this setup,
it is likely that the responses from the members of the same family at a given year
will be correlated. This is due to the fact that every member of the family shares cer-
tain common family effects which are latent or invisible. Also, the repeated asthma
status collected over several years will be longitudinally correlated. It is of interest
to take these two types of familial and longitudinal correlations into account and
then find the effects of the covariates on the responses. Two types of familial lon-
gitudinal models, namely conditional linear and nonlinear models are introduced in
Sections 11.1 and 11.3, to analyze this type of two-way correlated binary data. Note
that these models for familial longitudinal binary data would be a generalization
of either familial models discussed in Chapter 5 or longitudinal models discussed
in Chapter 7. In the conditional linear model setup, it is assumed that conditional
on random family effects, the repeated binary responses from a member of a given
family follow a LDCP (linear dynamic conditional probability) model as in Section
7.4. We refer to such a model as the linear dynamic conditional-conditional proba-
bility (LDCCP) model. This model along with the estimation of the parameters is
discussed in Section 11.1. An illustration of the estimation methodology is given in
Section 11.2 to analyze the Waterloo Smoking Prevention Project-3 (WSPP3) data.

In the conditional nonlinear model setup, it is assumed that conditional on the
random family effects, the repeated binary responses from a member of a given
family follow a BDL (binary dynamic logit) model as in Section 7.7.2. In the lon-
gitudinal setup, this random effects based BDL model was referred to as the binary
dynamic mixed logit (BDML) (see Section 9.2) model. In the familial longitudinal
setup, we refer to this family based BDML model as the FBDML model. This model
along with the estimation of the regression and the dynamic dependence parameters
is discussed in Section 11.3. Both LDCCP and FBDML models are discussed in
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Sections 11.1 and 11.3, respectively, and involve one variance component due to a
single random family effect.

Let yi jt denote the binary response for the jth ( j = 1, . . . ,ni) individual on
the ith (i = 1, . . . ,K) family/cluster at a given time t (t = 1, . . . ,T ). Also, let
xi jt = (xi jt1, . . . ,xi jt p)′ denote the p covariates associated with the response yi jt , and
β denote the effect of the covariate vector xi jt on yi jt . Similar to the familial longi-
tudinal models for count data introduced in the last chapter, the binary longitudinal
responses of any two family members will also exhibit both familial and longitu-
dinal correlations. As an extension of the binary longitudinal models discussed in
Chapter 7, one may write linear or nonlinear conditional probability models as in
Sections 11.1 and 11.3, to accommodate both familial and longitudinal correlations.
Note that these binary models are quite different from the familial longitudinal mod-
els given in Chapter 10 for count data.

11.1 LDCCP Models

11.1.1 Conditional-Conditional (CC) AR(1) Model

Suppose that conditional on the random family effect γi, the repeated binary re-
sponses from the jth ( j = 1, . . . ,ni) member of the ith family follow the LDCP
(linear dynamic conditional probability) model of AR(1) form given in (7.70). That
is, the CC AR(1) model has the form:

Pr[Yi j1 = 1|γi] = π
∗

i j1

Pr[Yi jt = 1|yi j,t−1,γi] = π
∗

i jt +ρ(yi j,t−1−π
∗

i,t−1), (11.1)

for j = 1, . . . ,ni; t = 2, . . . ,T. In (11.1), π∗i jt = exp(x
′
i jtβ + γi)/[1+exp(x

′
i jtβ + γi)]

for all j = 1, . . . ,ni, t = 1, . . . ,T.

11.1.1.1 Conditional Mean, Variance, and Correlation Structure

Conditional on the random family effects γi, the linear dynamic probability model
(11.1) yields the conditional means and the variances, for the jth member of the ith
family at a time point t, as

E(Yi jt |γi) = π
∗
i jt

var(Yi jt |γi) = σ
∗
i, j j,tt = π

∗
i jt(1−π

∗
i jt), (11.2)

for t = 1, . . . ,T. Next, for u < t, by using the model relationship (11.1), one may
compute the conditional covariance between yi ju and yi jt as

cov[(Yi ju,Yi jt)|γi] = ρ
t−u

σ
∗
i, j j,uu, (11.3)
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yielding the conditional correlations as

corr[(Yi ju,Yi jt)|γi] =


ρ t−u

[
σ∗i, j j,uu
σ∗i, j j,tt

]1/2
, for u < t

ρu−t
[

σ∗i, j j,tt
σ∗i, j j,uu

]1/2
, for u > t

. (11.4)

As far as the longitudinal correlations between two members of a family are
concerned, we assume that at any two time points, the responses of any two members
are conditionally independent. In notation,

cov[{Yi ju,Yikt}|γi] = 0, for j 6= k. (11.5)

11.1.1.2 Unconditional Mean, Variance, and Correlation Structure

The unconditional means, variances, and the covariances may be computed by using
the following formulas

E[Yi jt ] = E[Y 2
i jt ] = EγiE[Yi jt |γi]

var[Yi jt ] = Eγi [var{Yi jt |γi}]+varγi [E{Yi jt |γi}]
cov[Yi ju,Yikt ] = Eγicov[{Yi ju,Yikt}|γi]+ covγi [E(Yi ju|γi),E(Yikt |γi)], (11.6)

where the conditional means, variances and covariances are given by the equations

from (11.2) to (11.5). Based on the assumption that γi
iid∼ N(0,σ2

γ ), and by using
γ∗i = γi/σγ with gN(γ∗i |1) as the standard normal density, the unconditional first
moments given in (11.6) may be simplified as

E[Yi jt ] = πi jt(β ,σ2
γ ) =

∫
π
∗
i jt(γ

∗
i )gN(γ∗i |1)dγ

∗
i

=
V

∑
vi=0

[π∗i jt(vi)]
(

V
vi

)
(1/2)vi(1/2)V−vi ,

= π
(b)
i jt (β ,σ2

γ ), (say) [ binomial approximation], (11.7)

where for a known reasonably big V such as V = 5, vi ∼ binomial(V,1/2), and
hence it has relation to γ∗i as

γ
∗
i =

vi−V (1/2)
V (1/2)(1/2)

[see (9.10)], so that

π
∗
i jt(vi) = π

∗
i jt(γ

∗
i )|γ∗i =(vi−V (1/2))/[V (1/2)(1/2)].

It also follows that the unconditional variance has the formula
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var[Yi jt ] = σi, j j,tt(β ,σ2
γ ) = πi jt(β ,σ2

γ )(1−πi jt(β ,σ2
γ )). (11.8)

Next, for j = k, the unconditional covariances in (11.6) may be simplified as

cov[Yi ju,Yi jt ] = σi, j j,ut(β ,σ2
γ ,ρ) = ρ

t−u
[

πi ju−
∫

π
∗2

i ju(γ
∗
i )gN(γ∗i |1)dγ

∗
i

]
+
[∫

π
∗
i ju(γ

∗
i )π∗i jt(γ

∗
i )gN(γ∗i |1)dγ

∗
i −πi juπi jt

]
= ρ

t−u [πi ju−πi j j,uu]
+[πi j j,ut −πi juπi jt ] , (11.9)

(say). Thus, in general, for all j,k, the unconditional covariances have the formulas

cov(Yi ju,Yikt) =

{
ρ t−u [πi ju−πi j j,uu]+ [πi j j,ut −πi juπi jt ] for k = j;u < t[
πi jk,ut −πi juπikt

]
for k 6= j;u≤ t,

(11.10)
where

πi jk,ut =
∫

π
∗
i ju(γ

∗
i )π∗ikt(γ

∗
i )gN(γ∗i |1)dγ

∗
i

= π
(b)
i j,ut ,

yielding the unconditional AR(1) correlation structure as

corr[Yi ju,Yikt ] =


ρt−u[πi ju−πi j j,uu]+[πi j j,ut−πi juπi jt ]

[πi ju(β ,σ2
γ )(1−πi ju(β ,σ2

γ ))πi jt (β ,σ2
γ )(1−πi jt (β ,σ2

γ ))]1/2 for k = j;u < t

[πi jk,ut−πi juπikt ]
[πi ju(β ,σ2

γ )(1−πi ju(β ,σ2
γ ))πikt (β ,σ2

γ )(1−πikt (β ,σ2
γ ))]1/2 for k 6= j;u≤ t.

(11.11)

11.1.2 CC MA(1) Model

Conditional on the random family effects γi, we can follow the MA(1) model given
in Section 7.4.2, to construct the desired MA(1) model in the familial longitudinal
set up. To be specific, we consider

Pr[Yi j1 = 1|γi] = π
∗

i j1

Pr[Yi jt = 1|di jt ,di j,t−1,γi] = di jt |γi +ρdi j,t−1|γi, (11.12)

for j = 1, . . . ,ni; t = 2, . . . ,T. In (11.12), the di jts are independently distributed with
mean ξ ∗i jt and variance ηi jt ; that is,



11.1 LDCCP Models 459

di jt
id∼

[
ξ
∗
i jt =

t−1

∑
v=0

(−ρ)v
π
∗
i j,t−v, ηit = [

∑t−1
v=0(−ρ)vπ∗i j,t−v

∑t−1
v=0(−ρ)v

][1−
∑t−1

v=0(−ρ)vπ∗i j,t−v

∑t−1
v=0(−ρ)v

]

]
,

for all t = 1, . . . ,T, and where

π
∗

i jt = exp(x
′
i jtβ + γi)/[1+ exp(x

′
i jtβ + γi)],

for all j = 1, . . . ,ni, t = 1, . . . ,T. It then follows that the conditional means, vari-
ances, and covariances are given by

E[Yi jt |γi] = π
∗
i jt

var[Yi jt |γi] = π
∗
i jt [1−π

∗
i jt ]

cov[(Yi ju,Yi jt)|γi] =

ρ

[
[

∑u−1
v=0(−ρ)vπ∗i j,u−v

∑u−1
v=0(−ρ)v ][1− ∑u−1

v=0(−ρ)vπ∗i,u−v

∑u−1
v=0(−ρ)v ]

]
for t−u = 1

0 for |t−u|> 1

(11.13)

Furthermore, similar to the AR(1) case (11.5), for any two members j 6= k, under
the ith family, we assume that

cov[{Yi ju,Yikt}|γi] = 0, for j 6= k.

Note that by using the formulas in (11.6), one may then compute the uncondi-
tional means, variances, and covariances, under this MA(1) model.

11.1.3 CC EQC Model

To construct the EQC model in the familial longitudinal setup, we follow the EQC
model (7.80), but conditional on the random family effect. Thus, we write

Pr[Yi jt = 1|yi j0,γi] = π
∗

i jt +ρ(yi j0−π
∗

i j1), for j = 1, . . . ,ni; t = 1, . . . ,T, (11.14)

where yi j0 is an initial unobservable binary response for the jth member of the ith
family, with its mean π∗i j1, which is also the mean of yi j1.

Now by using (11.14), we can write the conditional means, variances, and co-
variances as

E[Yi jt |γi] = π
∗
i jt

var[Yi jt |γi] = π
∗
i jt [1−π

∗
i jt ]

cov[(Yi ju,Yi jt)|γi] = ρ
2
π
∗
i j1[1−π

∗
i j1]. (11.15)

For any two members, we make the same conditional assumption, that is,
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cov[{Yi ju,Yikt}|γi] = 0, for j 6= k,

similar to that of the AR(1) (11.5) and MA(1) models.
One may then derive the formulas for the unconditional means, variances, and

covariances by applying (11.15) to (11.6).

11.1.4 Estimation of the AR(1) Model Parameters

Note that among the three LDCCP models: AR(1), MA(1), and EQC; the AR(1)
model exhibits decay in longitudinal lag correlations, which is expected in practice
for most of the familial longitudinal data. We now, for convenience, provide the
estimation of the parameters of the AR(1) LDCCP model. The parameters of the
other two models may be estimated similarly. If a model identification issue arises,
this can be done in a similar way to that of the familial longitudinal count data case
discussed in the last chapter (see Section (10.4.1)).

Further note that once we complete a brief discussion in this section, on the
estimation of parameters for the AR(1) LDCCP model, we illustrate the estimation
methodology in Section 11.2, with real life data discussed by Sutradhar and Farrell
(2004), under a special familial longitudinal model with stationary autocorrelation
structure (appropriate for time-independent covariates) that accommodates all three
longitudinal correlation models.

We now turn back to the estimation of the parameters of the AR(1) LDCCP
model.

11.1.4.1 GQL Estimation of Regression Parameter β

The GQL estimating equation for β has the same form as that under the familial lon-
gitudinal count data model. By representing the mean vector of the binary responses
under the ith family with πi, following (10.27), this equation may be written as

K

∑
i=1

∂ µ ′
i

∂β
Σ
−1
i (yi−πi) = 0, (11.16)

where
yi = (y′i1, . . . ,y

′
i j, . . . ,y

′
ini

)′

denote the niT ×1 vector of binary responses for the ith family, with

yi j = (yi j1, . . . ,yi jt , . . . ,yi jT )′,

yi jt being the binary response recorded at time t (t = 1, . . . ,T ), from the jth ( j =
1, . . . ,ni) member of the ith (i = 1, . . . ,K) family. The niT ×1 unconditional mean
vector of πi may be expressed as
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πi(β ,σ2
γ ) = (π ′i1(β ,σ2

γ ), . . . ,π ′i j(β ,σ2
γ ), . . . ,π ′ini

(β ,σ2
γ ))′, (11.17)

where
πi j(β ,σ2

γ ) = (πi j1(β ,σ2
γ ), . . . ,πi jt(β ,σ2

γ ), . . . ,πi jT (β ,σ2
γ ))′

is the T × 1 vector with πi jt as its general element. The formula for this general
element is given by (11.7).

Also, in (11.16), Σi is the niT × niT unconditional variance−covariance matrix
of yi, which has the same form as given by (10.26) under the count data model, but,
the elements of the block diagonal matrix Σi j j(β ,σ2

γ ,ρ) for all j = 1, . . . ,ni, are now
computed by using the formulas for the unconditional variances and longitudinal
covariances for the jth member, given by (11.8)-(11.10), whereas the elements for
the off-diagonal matrices Σi jk(β ,σ2

γ ) for all j 6= k, j,k = 1, . . . ,ni, are computed by
(11.10).

Furthermore, because πi j = (πi j1, . . . ,πi jt , . . . ,πi jT )′ with πi jt defined as in (11.7),
the derivative of πi with respect to β ′ requires the differentiation of πi jt with respect
to β . To be specific, ∂πi jt/∂β is the p×1 vector given as

∂πi jt

∂β
=
∫

∂π∗i jt(γ
∗
i )

∂β
gN(γ∗i |1)dγ

∗
i

= xi jt

V

∑
vi=0

[π∗i jt(γ
∗
i ){1−π

∗
i jt(γ

∗
i )}]

(
V
vi

)
(1/2)vi(1/2)V−vi ,

= xi jt [π
(b)
i jt (β ,σ2

γ )−π
(b)
i j j,tt(β ,σ2

γ )], (11.18)

where xi jt is the p× 1 vector of all covariates for the jth individual under the ith
family at time t. In (11.18), for

π
∗
i jt(vi) = π

∗
i jt(γ

∗
i )|γ∗i =(vi−V (1/2))/[V (1/2)(1/2)]

and also
πi, j j,tt(β ,σ2

γ ) = Eγ∗i
[π∗2

i jt ]

[see (9.6) for a similar notation].
Let β̂GQL denote the GQL estimator of β , obtained by solving the estimating

equation (11.16). This estimator is consistent, and it is highly efficient as the GQL
estimating equation is unbiased as well as the weight matrix Σi is the true covari-
ance matrix of yi. Furthermore, by using the multivariate central limit theorem [see
Mardia, Kent and Bibby (1979, p.51)], similar to (10.29) for count data, one may
show that K1/2(β̂GQL −β ) has an asymptotic normal distribution, as K → ∞, with
mean zero and with covariance matrix given by

K

(
K

∑
i=1

∂π ′i
∂β

Σ
−1
i

∂πi

∂β ′

)−1

, (11.19)



462 11 Familial Longitudinal Models for Binary Data

where Σi is the aforementioned covariance matrix of the binary response vector yi

for the ith family.
Remark that the computation of the estimate of β by (11.16) requires the esti-

mates for σ2
γ and ρ. These parameters are estimated in the following two sections.

11.1.4.2 GQL Estimation of Familial Correlation Index Parameter σ2
γ

Similar to the count data case (see Section 10.2.1.2), consider

ui j = [u′i j(s),u
′
i j(p)]

′ (11.20)

as the T (T + 1)/2-dimensional combined vector of squares and pairwise products
for the jth ( j = 1, . . . ,ni) member of the ith (i = 1, . . . ,K) family, where

ui j(s) = [y2
i j1, . . . ,y

2
i jt , . . . ,y

2
i jT ]′ : T ×1

ui j(p) = [yi j1yi j2, . . . ,yi jtyi jv, . . . ,yi j(T−1)yi jT ]′ :
T (T −1)

2
×1.

Note, however, that unlike in the count data case, here for the binary responses

ui j(s) = [y2
i j1, . . . ,y

2
i jt , . . . ,y

2
i jT ]′ : T ×1

= [yi j1, . . . ,yi jt , . . . ,yi jT ]′

= yi j. (11.21)

Next, we write the niT (T +1)/2-dimensional vector of squares and distinct prod-
ucts for all ni individuals in the ith family. Let ui denote this vector and λi be its
mean. That is,

ui = [u′i1, . . . ,u
′
i j, . . . ,u

′
ini

]′

λi = [λ ′
i1, . . . ,λ

′
i j, . . . ,λ

′
ini

]′, (11.22)

where
λi j = [λ ′

i j(s),λ
′
i j(p)]

′,

with

λi j(s) = [E(Y 2
i j1), . . . ,E(Y 2

i jt), . . . ,E(Y 2
i jT )]′

= [λi j,11, . . . ,λi j,tt , . . . ,λi j,T T ]′ (11.23)

λi j(p) = [E(Yi j1Yi j2), . . . ,E(Yi jvYi jt), . . . ,E(Yi j(T−1)Yi jT )]′,

= [λi j,12, . . . ,λi j,vt , . . . ,λi j,T−1,T ]′, (11.24)

where
λi j,tt = πi jt

and for v < t,
λi j,vt = ρ

t−v [πi jv−πi j j,vv]+πi j j,vt ,
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by (11.6) and (11.9), with

πi jt =
∫

π
∗
i jt(γ

∗
i )gN(γ∗i |1)dγ

∗
i = π

(b)
i jt

πi j j,tt =
∫

π
∗2

i jt(γ
∗
i )gN(γ∗i |1)dγ

∗
i = π

(b)
i j j,tt

πi j j,vt =
∫

π
∗
i jv(γ

∗
i )π∗i jt(γ

∗
i )gN(γ∗i |1)dγ

∗
i = π

(b)
i j j,vt , (11.25)

using the binomial approximation notation from (11.7).
Let Ωi = cov(Ui), and (∂λ ′

i (β ,σ2
γ ,ρ))/∂σ2

γ be the first derivative vector of λi

(11.22) with respect to σ2
γ . Now by computing Ωi and these derivatives appropriate

under the present binary familial longitudinal model, one may obtain, similar to the
count data case, the GQL estimate of σ2

γ either by solving

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
i (β ,σ2

γ ,ρ = 0)[ui−λi(β ,σ2
γ ,ρ)] = 0, (11.26)

[see (10.36)] or normal approximation based estimating equation

K

∑
i=1

∂λ ′
i (β ,σ2

γ ,ρ)
∂σ2

γ

Ω
−1
iN (β ,σ2

γ ,ρ)[ui−λi(β ,σ2
γ ,ρ)] = 0, (11.27)

[see (10.45)]. The formulas for the elements of (∂λ ′
i (β ,σ2

γ ,ρ))/∂σ2
γ are available

in Exercise 11.1. The construction of Ωi(β ,σ2
γ ,ρ = 0) and ΩiN(β ,σ2

γ ,ρ) matrices,
is given below.

Construction of Ωi(β ,σ2
γ ,ρ = 0)≡Ωi(I)

Recall that the structure of Ωi is given by (10.35) under the familial longitudinal
count data model. This structure remains the same for the binary data. Now, to
construct the Ωi(I) matrix as a substitute of the Ωi matrix defined in (10.35), it is
sufficient to compute Ωi j j(I) for all j = 1, . . . ,ni, and Ωi jk(I) for all j 6= k, j,k =
1, . . . ,ni. Note that when it is pretended that ρ = 0, it follows from (11.5) that for
v 6= t,

corr{(yi jv,yikt)|γi}= 0, for all j = k; j 6= k. (11.28)

Now for the computation of the elements of Ωi j j(I) and Ωi jk(I) matrices, we use
the conditional independence assumption (11.28) and derive the elements of these
two matrices.

Note that for the computation of the elements of the Ωi j j(I), it is sufficient to
compute the formulas for

(a) : (i) var[Yi jt ], (ii) cov[Yi jt ,Yi j`], (iii) cov[Yi jt ,Yi j`Yi ju], (iv) var[Yi jtYi ju], and

(v) cov[Yi jtYi ju,Yi j`Yi jv]. (11.29)
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Similarly, for the computation of the elements of the Ωi jk(I), it is sufficient to com-
pute the formulas for

(b) : (i) cov[Yi ju,Yikt ], (ii) cov[Yi jt ,Yik`Yiku], (iii) cov[Yi jtYi ju,Yik`Yikv]. (11.30)

These variance and covariances under (a) and (b) may be computed from the for-
mulas available in Exercises 11.2 and 11.3, respectively.

Construction of ΩiN(β ,σ2
γ ,ρ)

To construct this normality assumption based fourth-order moment matrix, it is suffi-
cient to construct the normality (N) assumption based two general matrices, Ωi j j(N)
and Ωi jk(N). Note that to construct the ΩiN(·) matrix under the normality assump-
tion, one pretends that the

yi = (y′i1, . . . ,y
′
i j, . . . ,y

′
ini

)′ : niT ×1

binary response vector follows the niT -dimensional multivariate normal vector but
with true binary mean vector πi (11.17) and binary AR(1) correlation structure based
covariance matrix

Σi(β ,σ2
γ ,ρ) = (σi, jk,ut) : niT ×niT, (11.31)

where the formulas for
σi, jk,ut = cov[Yi ju,Yikt ]

for all j,k = 1, . . . ,ni, and u, t = 1, . . . ,T, are given by (11.10).

Construction of Ωi j j(N)

Recall that Ωi j j is the {T (T +1)/2}×{T (T +1)/2} covariance matrix of

ui j = (u′i j(s),u
′
i j(p))

′,

ui j(s) being the T ×1 vector of squares of the elements of yi j = (yi j1, . . . ,yi jT )′, and
ui j(p) is the {T (T − 1)/2× 1} vector of distinct pairwise products of the elements
of yi j. Now by using the marginal property of the multivariate normal distribution,
we write by following (11.31) that

yi j = [yi j1, . . . ,yi jt , . . . ,yi jT ]∼ NT (µi j,Σi j j), (11.32)

where
Σi j j = (σi, j j,ut)

with σi, j j,ut = cov[Yi ju,Yi jt ] as given in (11.10). Further note that under the normality
assumption, one writes

E(Yi jt −πi jt)(Yi jv−πi jv)(Yi jr−πi jr) = 0, (11.33)
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yielding, by (11.23)− (11.24),

δi, j j j,tvr = E[Yi jtYi jvYi jr]
= λi j,tvπi jr +λi j,trπi jv +λi j,vrπi jt −2πi jtπi jvπi jr, (11.34)

where, for example, for t < v,

λi j,tv = ρ
v−t [πi jt −πi j j,tt ]+πi j j,tv,

by (11.24).
Similarly, under the normality assumption, one writes

E(Yi jt −πi jt)(Yi jv−πi jv)(Yi jr−πi jr)(Yi jd −πi jd)

= σi, j j,tvσi, j j,rd +σi, j j,trσi, j j,vd +σi, j j,tdσi, j j,vr, (11.35)

yielding

φi, j j j j,tvrd = E[Yi jtYi jvYi jrYi jd ]
= [σi, j j,tvσi, j j,rd +σi, j j,trσi, j j,vd +σi, j j,tdσi, j j,vr

+δi, j j j,tvrπi jd +δi, j j j,tvdπi jr +δi, j j j,trdπi jv +δi, j j j,vrdπi jt ]

−[λi j,tvπi jrπi jd +λi j,trπi jvπi jd +λi j,vrπi jtπi jd

+λi j,tdπi jvπi jr +λi j,vdπi jtπi jr +λi j,rdπi jtπi jv]

+3πi jtπi jvπi jrπi jd . (11.36)

Note that no extra computation is needed to obtain the elements of the cov(Ui j(s))
in the present binary setup. This is because

ui j(s) = [y2
i j1, . . . ,y

2
i jt , . . . ,y

2
i jT ]′ ≡ [yi j1, . . . ,yi jt , . . . ,yi jT ]′

yielding
cov(Ui j(s)) = cov[Yi j] = Σi j j,

the covariance matrix of the original data as in (11.32).
Next, all aforementioned moments up to order three can be used to construct the

desired cov(Ui j(s),Ui j(p)) matrix, and similarly all moments up to order four can be
used to compute the var(Ui j(p)) matrix. For example, two general elements of the
cov(Ui j(s),Ui j(p)) matrix have the formulas

cov[Yi ju,Yi jtYi jr] = δi, j j j,utr−λi j,ttλi j,tr

cov[Yi ju,Yi juYi jr] = λi j,ur[1−πi ju], (11.37)
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where λi j,tt = πi jt and λi j,tr is given by (11.24). Similarly, two general elements of
the var(Ui j(p)) matrix have the formulas

var[Yi jtYi jv] = λi j,tv[1−λi j,tv]
cov[Yi jtYi jv,Yi jrYi jd ] = φi, j j j j,tvrd −λi j,tvλi j,rd . (11.38)

This completes the construction of the Ωi j j(N) matrix for the ΩiN matrix in (11.27).

Construction of Ωi jk(N) Matrices for Cases when j 6= k

Recall that Ωi jk is the {T (T + 1)/2}× {T (T + 1)/2} covariance matrix of ui j =
(u′i j(s),u

′
i j(p))

′ and uik = (u′ik(s),u
′
ik(p))

′ for j 6= k, j,k = 1, . . . ,ni. Note that in order
to obtain the formulas for various moments up to order four to construct this Ωi jk(N)
matrix for two selected members j 6= k, it is appropriate to construct a stacked ran-
dom vector

y∗i, jk = [y′i j,y
′
ik]
′

which the under normality assumption follows the T (T + 1)-dimensional normal
vector with mean

π̃i, jk = [π ′i j,π
′
ik]
′

with
πi j = [πi j1, . . . ,πi jt , . . . ,πi jT ]′

and covariance matrix

Σ̃i jk =

[
Σi j j Σi jk

Σikk

]
= (σ̃i, jk,ut), T (T +1)×T (T +1), (11.39)

where

σ̃i, jk,ut = cov[Yi ju,Yikt ]
= E[Yi juYikt ]−πi juπikt

=
∫

π
∗
i ju(γ

∗
i )π∗ikt(γ

∗
i )gN(γ∗i |1)dγ

∗
i −πi juπikt

= πi jk,ut −πi juπikt , (11.40)

by (11.25).
Now define the third− and fourth-order moments for responses from two mem-

bers as

δi, j jk,tvr = E[Yi jtYi jvYikr]
= λi j,tvπikr +πi jk,trπi jv +πi jk,vrπi jt −2πi jtπi jvπikr, (11.41)

δi, jkk,tvr = E[Yi jtYikvYikr]
= πi jk,tvπi jr +πi jk,trπikv +λik,vrπi jt −2πi jtπikvπikr, (11.42)
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and

φi, j jkk,tvrd = E[Yi jtYi jvYikrYikd ]
= [σ̃i, j j,tvσ̃i,kk,rd + σ̃i, jk,trσ̃i, jk,vd + σ̃i, jk,tdσ̃i, jk,vr

+δi, j jk,tvrπi jd +δi, j jk,tvdπi jr +δi, jkk,trdπi jv +δi, jkk,vrdπi jt ]

−[λi j,tvπi jrπi jd +πi jk,trπi jvπikd +πi jk,vrπi jtπikd

+πi jk,tdπi jvπikr +πi jk,vdπi jtπikr +λik,rdπi jtπi jv]

+3πi jtπi jvπikrπikd . (11.43)

Now by using (11.41)− (11.43), one can compute any element of the Ωi jk(N)
matrix. For example,

cov(Yi jt ,Yikv) = σ̃i, jk,tv (11.44)

cov(Yi jt ,YikrYikv) = δi, jkk,trv−πi jtλik,rv (11.45)

cov(Yi juYi jt ,Yikv) = δi, j jk,utv−λi j,utπikv (11.46)

cov(Yi jtYi jv,YikrYikd) = φi, j jkk,tvrd −λi j,tvλik,rd . (11.47)

This completes the construction of the Ωi jk(N) matrices.

11.1.4.3 Moment Estimation of Longitudinal Correlation Index Parameter ρ

Note that the iterative solution of the estimating equation (11.16) for β and (11.26)
or (11.27) for σ2

γ requires a consistent estimator for the longitudinal correlation
index parameter ρ. This consistent estimation for ρ may be achieved by using the
method of moments. Recall from (11.9) that under the AR(1) process, the lag 1
covariance between yi jt and yi j,t+1 is given by

cov(Yi jt ,Yi j,t+1) = ρ [πi jt −πi j j,tt ]+
[
πi j j,t,t+1−πi jtπi j,t+1

]
. (11.48)

For known β and σ 2
γ , one may then obtain the moment estimator of ρ , which is con-

sistent, by equating the sample lag 1 autocovariance with its population counterpart.
To be specific, the moment estimator of ρ under the AR(1) process has the formula
given by

ρ̂M =
a1−b1

c1
, (11.49)

where

a1 =
∑K

i=1 ∑ni
j=1 ∑T−1

t=1 ỹi jt ỹi j(t+1)/
{
(T −1)∑K

i=1 ni
}

∑K
i=1 ∑ni

j=1 ∑T
t=1 ỹ2

i jt/
{

T ∑K
i=1 ni

} ,
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b1 =
∑K

i=1 ∑ni
j=1 ∑T−1

t=1

[
πi j j,t,t+1−πi jtπi j,t+1

]
(T −1)∑K

i=1 ni
,

and

c1 =
∑K

i=1 ∑ni
j=1 ∑T−1

t=1 [πi jt −πi j j,tt ]{
(T −1)∑K

i=1 ni
} ,

where

ỹi jt =
(yi jt −πi jt)

σ
1
2

i, j j,tt

,

with σi, j j,tt(β ,σ2
γ ) = πi jt(β ,σ2

γ )[1−πi jt(β ,σ2
γ )] by (11.8).

This correlation estimate from (11.49) is used in (11.16) and (11.26) [or (11.27)]
to obtain further improved estimates of β and σ2

γ , respectively, which are in turn
used in (11.49) to obtain further improved estimate of ρ. This cycle of iteration
continues until convergence.

11.2 Application to Waterloo Smoking Prevention Data

In the GQL estimation approach discussed in the last section, the regression effects
β for the familial longitudinal model were estimated by (11.16), the longitudinal
correlation parameter was estimated by (11.49), whereas it was suggested to esti-
mate the familial correlation index parameter σ2

γ either by using the Ωi(I) based
GQL(I) estimating equation (11.26) or by using the ΩiN based GQL(N) estimat-
ing equation (11.27). Sutradhar and Farrell (2004), for example, have applied this
GQL(I) approach to cluster-correlated binary longitudinal data from the Waterloo
Smoking Prevention Project, Study 3. They have, however, used a stationary corre-
lation structure based GQL(I) approach which does not require the specification of a
longitudinal correlation structure whether AR(1), MA(1), or EQC, but this station-
ary correlations based approach is suitable when covariates are time-independent.
Sashegyi, Brown, and Farrell (2000) have applied a generalized penalized quasi-
likelihood (GPQL) approach to analyze the same smoking prevention study data.
This GPQL approach is a generalization of the PQL approach of Breslow and Clay-
ton (1993) from the generalized linear mixed models (GLMMs) setup to the gen-
eralized linear longitudinal mixed models (GLLMMs) setup. Note, however, that
this GPQL approach appears to have several pitfalls. First, as mentioned above, the
best linear unbiased prediction (BLUP) analogue PQL approach does not produce a
consistent estimate for the variance component of the random effects for small clus-
ter sizes (see Section 4.2.2 in the context of count data). Second, in this approach,
one estimates the conditional correlations by using the unconditional sample corre-
lations, yielding inconsistent estimates.
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In the smoking prevention study [See Best et al. (1995); Brown and Cameron
(1997); and Sashegyi, Brown, and Farrell (2000)], initially 100 Southern Ontario
elementary schools were assigned to either a control condition receiving no inter-
vention or one of the four treatment conditions distinguished by the type of provider
delivering the intervention program (nurse or teacher), and the type of training the
provider had received (workshop participation or self-preparation through printed
material). A baseline measure of smoking status was taken prior to any intervention
at the beginning of Grade 6. Subsequent assessments were then made at the end of
Grades 7 and 8, after which the students moved on to secondary schools.

As part of the high school component of the study, the students of the elementary
cohort were followed to the end of Grade 12, and their smoking status was measured
annually for four years starting in Grade 9. In this part of the study, 30 high schools,
each of which enrolled 30 or more students from the original cohort, were randomly
assigned to either an intervention or control condition.

We focus here on a subset of the data from the secondary school component of
the study only. Specifically, we attempted to construct a dataset by selecting a simple
random sample of four students at each high school from among those individuals at
the institution who provided complete information from Grades 9 through 12. This
was not possible for one of the schools due to an insufficient number of students
providing complete information. However, appropriate samples of size four were
selected from the other 29 schools in order to create the dataset.

In notation, the response yi jt = 1 if the jth student ( j = 1, . . . ,4), attending the ith
school (i = 1, . . . ,29) was a smoker at time period t(t = 1, . . . ,4), and 0 otherwise.
We assume that the random school level effects, γi ∼ i.i.d. N(0,σ2

γ ). The covariates
included in the model were as follows.

• t, grade effect, t = 1, . . . ,4, where t = 1 represents a Grade 9 observation, and so
on.

• HS, high school study condition, HS = 1 for intervention schools, and 0 other-
wise.

• ES, elementary school study condition, ES = 1 for any one of the four types of
intervention schools, and 0 otherwise.

• GENDER, gender effect, taking 1 for females, and 0 for males.
• IRISK, individual level risk score, IRISK = 1 for students deemed to be at high

risk for smoking based on the habits of parents, siblings, and friends, and 0 oth-
erwise.

In addition, the interaction between elementary and high school conditions HS x
ES, and the interaction between high school condition and gender HS x GENDER,
were also considered. Note that because the covariates are time independent, Su-
tradhar and Farrell (2004) have considered a stationary correlation structure among
the responses over time. Thus, Corr(yi jt ,yi ju|γi) = ρ∗l = ρ∗|t−u|, where l = |t − u|,
and l = 1, . . . ,3. Note that this stationary correlation structure produces the uncon-
ditional covariances as
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cov(Yi ju,Yikt) =

{
ρ∗|t−u|gi j j,ut +[πi j j,ut −πi juπi jt ] for k = j;u < t[
πi jk,ut −πi juπikt

]
for k 6= j;u≤ t,

(11.50)

where
gi j j,ut =

∫ ∞

−∞
[π∗i ju{1−π

∗
i ju}π

∗
i jt{1−π

∗
i jt}]1/2gN(γ∗i |1)dγ

∗
i .

Now by using σi, j j,ut as the function of ρ∗|t−u| by (11.50), and

λi j,ut = ρ
∗
|t−u|gi j j,ut +πi j j,ut ,

the estimating equation (11.16) for β and the GQL(I) estimating equation (11.26)
for σ2

γ are solved for given values of ρ∗` (` = 1, . . . ,3). For the estimation of ρ∗` ,
similar to (11.49), we use the method of moments and obtain

ρ̂`,M =
a∗1−b∗1

c∗1
, (11.51)

where

a∗1 =
∑K

i=1 ∑ni
j=1 ∑T−`

t=1 ỹi jt ỹi j(t+`)/
{
(T − `)∑K

i=1 ni
}

∑K
i=1 ∑ni

j=1 ∑T
t=1 ỹ2

i jt/
{

T ∑K
i=1 ni

} ,

b∗1 =
∑K

i=1 ∑ni
j=1 ∑T−`

t=1

[
πi j j,t,t+`−πi jtπi j,t+`

]
(T − `)∑K

i=1 ni
,

and

c∗1 =
∑K

i=1 ∑ni
j=1 ∑T−`

t=1 gi, j j,t,t+`{
(T − `)∑K

i=1 ni
} .

The results from fitting the model using both the GQL(I) and GPQL approaches
are presented in Table 11.1. There is little difference in the estimates of the fixed
effects parameters in the model. Results obtained under both approaches seem to
suggest that there is a significant grade effect, and that the individual level risk score
also influences smoking status. In addition, they indicate that there appears to be a
significant interaction between the high school study condition and gender, regard-
less of the estimation approach used. There are, however, noticeable differences
in the GQL(I) and GPQL estimates of the correlation coefficients and the random
effects variance. Also of note is the sizeable difference in the estimated standard
errors of the GQL(I) and GPQL estimators of the random effects variance, with the
former being much smaller. These results are expected and in agreement with the
aforementioned pitfalls in the GPQL approach. For a simulation study on the fi-
nite sample relative performances of the GQL(I) and GPQL approaches, revealing
a similar pattern in estimates, we refer to Sutradhar and Farrell (2004).
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Table 11.1 GQL(I) and GPQL estimates of model parameters and associated standard errors ob-
tained using the subset of the Waterloo Smoking Prevention Project-3 high school data.

GQL(I) GQL(I) GPQL GPQL
TERM Estimate Std Err Estimate Std Err

Intercept −1.328 0.409 −1.339 0.418
t 0.381 0.089 0.372 0.093

HS −0.416 0.464 −0.401 0.455
ES −0.398 0.373 −0.400 0.365

HS x ES 0.263 0.490 −0.256 0.482
Gender −0.348 0.292 −0.360 0.298

HS x Gender 1.008 0.415 0.994 0.413
Irisk 0.718 0.224 0.712 0.229
ρ∗1 0.589 − 0.466 −
ρ∗2 0.381 − 0.270 −
ρ∗3 0.233 − 0.145 −
σ2

γ 1.199 0.032 2.384 0.281

11.3 Family Based BDML Models for Binary Data

In Sections 11.1 and 11.2, we have discussed a class of family based linear dynamic
conditional probability models to analyze familial longitudinal binary data. How-
ever, as argued in Chapter 9 (see Section 9.2), there are situations when, as opposed
to the linear dynamic models, the nonlinear dynamic logit model may explain the
binary data well. This happens especially when it is expected that the marginal mean
and variance at a given time depend on the past means and variances, respectively,
in a recursive way. Also, a technical advantage of this nonlinear logit model over
the LDCP models is that the correlations in the nonlinear setup satisfy the full range
from−1 to +1. In this section, for the purpose of fitting familial longitudinal binary
data, we consider a generalization of the BDML (binary dynamic mixed logit) mod-
els used in Section 9.2 in the longitudinal setup, to the familial longitudinal setup.
This family based new longitudinal mixed model is referred to as the family based
BDML (FBDML) model. Because, as opposed to the LDCP models, it is feasible
to use the likelihood approach in this logit model setup, we discuss the likelihood
estimation approach in addition to the GQL approach for fitting such FBDML mod-
els. The GQL and ML (maximum likelihood) approaches are developed in Sections
11.3.2 and 11.3.3, respectively, whereas the basic properties of the FBDML model
are given in Section 11.3.1.
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11.3.1 FBDML Model and Basic Properties

As opposed to the conditional linear dynamic binary probability model given in
(11.1), we consider a generalization of the mixed logit model (9.27) to the familial
longitudinal setup. This FBBDML model is given by

Pr(Yi j1 = 1|xi j1;γi) =
exp(x′i j1β + γi)

[1+ exp(x′i j1β + γi)]
= p∗i j10(γi), (11.52)

Pr(Yi jt = 1|xi jt ,yi j,t−1;γi) =
exp{x′i jtβ +θyi j,t−1 + γi}

[1+ exp{x′i jtβ +θyi j,t−1 + γi}]
= p∗i jtyi j,t−1

(γi), (11.53)

for t = 2, . . . ,T. In (11.52)− (11.53), β is the p-dimensional vector of regression
effects, θ is the lag 1 dynamic dependence parameter, and γi is the unobservable
random effect for the ith family. As far as the distribution of γi is concerned, similar

to the LDCCP models, we assume that γi
iid∼ N(0,σ2

γ ) [Breslow and Clayton (1993);

Sutradhar (2004)] so that for γ∗i = γi/σγ , γ
∗
i

iid∼ N(0,1).

11.3.1.1 Conditional Mean, Variance, and Correlation Structures

Note that the familial longitudinal model defined by (11.52)− (11.53) may be
treated as a generalization of the binary longitudinal mixed model for an individ-
ual considered by Sutradhar, Rao, and Pandit (2008). Further note that the binary
dynamic model defined by (11.52) and (11.53) appears to be quite suitable to in-
terpret the data for many health problems. For example, this model produces the
mean (also the variance) at a given time point for an individual member of a given
family as a function of the covariate history of the individual up to the present
time. This history based mean function appears to be useful to interpret the cur-
rent asthma status (yes or no) of an individual as a function of the related covariates
such as smoking habits and cleanliness over a suitable past period. In notation, con-
ditional on the random effect γi, the marginal mean at a given point of time t, that is,
π∗i jt(γi) = E[Yi jt |γi] = Pr(Yi jt = 1|γi), for t = 2, . . . ,T, has the dynamic relationship
with past means as given by

π
∗
i jt(γ

∗
i ) = E[Yi jt |γ∗i ] = p∗i jt0(γ

∗
i )+π

∗
i j,t−1(γ

∗
i )(p∗i jt1(γi)− p∗i jt0(γ

∗
i )), (11.54)

with

π
∗
i j1(γ

∗
i ) = p∗i j10(γ

∗
i ) =

exp(x′i j1β +σγ γ∗i )
[1+ exp(x′i j1β +σγ γ∗i )]

by (11.52), and for other t, p∗i jt1(γ
∗
i ) and p∗i jt0(γ

∗
i ) are given by (11.53) with γi =

σγ γ∗i . By a similar operation as in (11.54), the formula for the covariance between
yi ju and yi jt , conditional on γ∗i , may be obtained as
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σ
∗
i, j j,ut(γ

∗
i ) = cov(Yi ju,Yi jt |γ∗i )

= π
∗
i ju(γ

∗
i )(1−π

∗
i ju(γ

∗
i ))Π t

m=u+1(p∗i jm1(γ
∗
i )− p∗i jm0(γ

∗
i )). (11.55)

Furthermore, we assume that conditional on γi, the responses of any two members
are independent irrespective of their recording times. That is,

cov[(Yi ju,Yikt)|γi] = 0, for j 6= k. (11.56)

It then follows that conditional on γ∗i , the correlation between yi ju and yikt has the
form given by

ρ
∗
i, jk,ut(γ

∗
i ) = corr{(Yi ju,Yikt)|γ∗i }

=


√

π∗i ju(γ∗i )(1−π∗i ju(γ∗i ))
π∗i jt (γ

∗
i )(1−π∗i jt (γ

∗
i )) Π t

m=u+1(p∗i jm1(γ
∗
i )− p∗i jm0(γ

∗
i )), for j = k

0, for j 6= k,

(11.57)

which ranges between −1 and +1. Thus, the nonlinear dynamic model (11.52)−
(11.53) produces correlations with full ranges, whereas the conditional linear dy-
namic probability model (11.1) produces correlations with narrower ranges.

It may also be convenient to have the formulas for the second-order raw mo-
ments. Conditional on γ∗i , for u < t, these raw second-order expectations, by fol-
lowing (11.55) and (11.56), may be written as

E(Yi juYikt |γ∗i ) =

σ∗
i, j j,ut(γ

∗
i )+π∗i ju(γ

∗
i )π∗i jt(γ

∗
i ) = λ ∗

i j jut , for j = k

π∗i ju(γ
∗
i )π∗ikt(γ

∗
i ) = λ ∗

i jkut for j 6= k,
(11.58)

where π∗i ju(γ
∗
i ) is given by (11.54), and it is quite different from the conditional bi-

nary probability in (11.2) under the linear dynamic model.

11.3.1.2 Unconditional Mean, Variance, and Correlation Structures

As far as the unconditional means, variances, and covariances are concerned, they
may be derived from (11.54)− (11.56) as follows. First, to compute the uncondi-
tional mean from the conditional mean in (11.54), we write

E[Yi jt ] = EτiE[Yi jt |γ∗i ]

=
∫ ∞

−∞
π
∗
i jt(γ

∗
i )gN(γ∗i |1)dγ

∗
i

= πi jt , (11.59)

where the formula for π∗i jt(γ
∗
i ) is given in (11.54).
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In the fashion similar to that of (11.59), one may next compute the unconditional
second-order moments E[Y 2

i jt ] and E[Yi juYikt ] by using (11.58), as

E(Yi juYikt) =


∫ ∞
−∞ λ ∗

i j jut(γ
∗
i )gN(γ∗i |1)dγ∗i = λi j jut for j = k,∫ ∞

−∞ λ ∗
i jkut(γ

∗
i )gN(γ∗i |1)dγ∗i = λi jkut for j 6= k,

(11.60)

yielding the variances and the covariances as

var[Yi ju] = σi, j j,uu = λi j juu−π
2
i ju

cov[Yi ju,Yikt ] = σi, jk,ut = λi jkut −πi juπikt , (11.61)

respectively. The integrals in (11.59) and (11.60) may be computed by using the
binomial approximation as used in (11.7).

Note that the aforementioned first− and second-order unconditional moments
along with other higher-order moments up to order four are used in the next section
to develop the so-called GQL estimating equations for the regression parameters
vector β , dynamic dependence parameter θ , and the variance of the random effects
σ 2

γ . The likelihood equations for these parameters are given in Section 11.3.3.

11.3.2 Quasi-Likelihood Estimation in the Familial Longitudinal
Setup

11.3.2.1 Joint GQL Estimation of Parameters

Recall that in Sections 11.1 and 11.2, the regression effects β and the random ef-
fects variance σ2

γ were estimated by solving GQL estimating equations, whereas
the longitudinal correlation index parameter ρ was estimated by using the method
of moments. Note that in the present FBDML model, the dynamic dependence pa-
rameter θ is equivalent to ρ, but, it is more similar to the β parameter when past
responses are thought to be certain regression covariates. Consequently, we chose
to estimate all three parameters, namely, β , θ , and σγ , simultaneously by solving a
joint GQL estimating equation.

For

yi = [yi11, . . . ,yi jt , . . . ,yiniT ]′ : niT ×1,

s∗i = [y2
i11, . . . ,y

2
i jt , . . . ,y

2
iniT ]′ : niT ×1,

si1 = [yi11yi12, . . . ,yi juyi jt , . . . ,yini(T−1)yiniT ]′ : niT (T −1)/2×1, and

si2 = [yi11yi21, . . . ,yi juyikt , . . . ,yi(ni−1)T yiniT ]′ :
ni(ni−1)

2
T 2×1, (11.62)
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let
fi = [y′i,s

′
i1,s

′
i2]
′ (11.63)

be the vector of distinct first− and second-order responses. Furthermore, let α =
(β ′, θ , σγ)′ be the vector of all parameters involved in the model (11.52)−(11.53).
Following Sutradhar (2004) [see also Sutradhar rao, and Pandit (2008)], the GQL
estimating equations for the components of the α vector may be written as

K

∑
i=1

∂ξ ′i
∂α

Ω
−1
i ( fi−ξi) = 0, (11.64)

where

ξi = E(Fi) = [E(Y ′
i ),E(S′i1,E(S′i2)]

′

= [µ ′
i ,λ

′
i1,λ

′
i2]
′ (say) (11.65)

Ωi = cov(Fi) =


cov(Yi) cov(Yi,S′i1) cov(Yi,S′i2)

· cov(Si1) cov(Si1,S′i2)

· · cov(Si2)



=


Σi ∆i11 ∆i12

· Ωi11 Ωi12

· · Ωi22

 (say). (11.66)

and ∂ξ ′i /∂α denotes the matrix of the first derivative of ξi with respect to the com-
ponents of α.

Note that the formula for πi jt is given by (11.59). One may then construct the
mean vector πi as

πi = [π ′i1, . . . ,π
′
i j, . . . ,π

′
ini

]′,

where πi j = [πi j1, . . . ,πi jt , . . . ,πi jT ]′. Note that even though the mean vector πi here
looks similar to that of (11.16), the formula for its components are, however, quite
different. Similarly, the niT ×niT covariance matrix Σi for (11.61) can be computed
by using the formulas for the var[Yi jt ] and cov[Yi ju,Yikt ] from (11.61). As far as the
computation of the other mean vectors, namely, λi1 and λi2 in (11.65), and the com-
putation of the other component matrices for Ωi in (11.66) are concerned, they may
be done similarly. However, because the construction of some of the matrices in
(11.66) require fourth-order moment computations, for practical convenience, we
provide below a simpler uniform and numerically friendly computational technique
for all components of the mean vector ξi and covariance matrix Ωi.
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(a) Formulas for the Elements of the Mean Vector ξi for GQL Estimating Equa-
tion (11.64)

Let

p̃∗i j10(τi) = Pr(yi j1|τi) = p∗
yi j1
i j10(τi)(1− p∗i j10(τi))1−yi j1

p̃∗i jtyi,t−1
(τi) = Pr(yi jt |yi j,t−1,τi) = p∗

yi jt
i jtyi j,t−1

(τi)

×(1− p∗i jtyi j,t−1
(τi))1−yi jt , (11.67)

where p∗i jtyi j,t−1
are defined in (11.52)− (11.53). We now first compute the condi-

tional first-order moment π∗i jt(γ
∗
i ) as

π
∗
i jt(γ

∗
i ) = E[Yi jt |γ∗i ]

= Π
ni
j=1[p̃

∗
i j10(γ

∗
i )] ∑

(yi jt )6∈s

Π
ni
j=1Π

T
t=2

[
p̃∗i jtyi j,t−1

(γ∗i )
]
(yi jt=1)

, (11.68)

where ∑(yi jt )6∈s indicates the summation over all responses in the sample space ′s′

which in this case does not contain yi jt only. More specifically, here ′s′ contains all
binary responses recorded at all time points for all members except the response
from the jth member at the tth time under the ith family. Similarly, for any j,k =
1, . . . ,ni, and u, t = 1, . . . ,T, we compute the conditional second-order moments as

λ
∗
i jkut(γ

∗
i ) = E[Yi juYikt |γ∗i ]

= Π
ni
j=1[p̃

∗
i j10(γ

∗
i )] ∑

(yi ju,yikt )6∈s

Π
ni
j=1Π

T
t=2

[
p̃∗i jtyi j,t−1

(γ∗i )
]
(yi ju=1,yikt=1).

(11.69)

By using (11.68) and (11.69), we now compute the unconditional first− and
second-order moments by

πi jt = E (Yi jt) =
∫ ∞

−∞
π
∗
i jt(γ

∗
i )gN(γ∗i |1)dγ

∗
i (11.70)

λi jkut = E (Yi juYikt) =
∫ ∞

−∞
λ
∗
i jkut(γ

∗
i )gN(γ∗i |1)dγ

∗
i , (11.71)

which may be evaluated by using the binomial approximation similar to (11.7). It
is then clear that (11.70) leads to the vector πi and similarly (11.71) leads to the
vectors λi1 and λi2, completing the computation of the mean vector ξi for the GQL
estimating equation (11.64).
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(b) Formulas for the Elements in the Submatrices of the Weight Matrix Ωi for
GQL Estimating Equation (11.64)

Recall that the weight matrix Ωi in (11.64) contains the submatrices as shown
by (11.66). The computation of these submatrices requires the knowledge of the
second−, third− and fourth-order moments of the data. More specifically, Σi is the
second-order moment matrix, which may be computed by using the formulas for
the first and second moments given by (11.68) and (11.69). For example, a general
formula for the diagonal elements of this niT ×niT matrix is given by

var(Yi ju) = πi ju(1−πi ju), (11.72)

whereas a general formula for the off-diagonal elements is given by

cov(Yi ju,Yikt) = λi jkut −πi juπikt . (11.73)

b(i) Computation of the Third-Order Moment Matrices ∆i11 and ∆i12

These matrices can be computed by using two different general elements, namely,
cov(Yi ju,Yi juYikt) and cov(Yi ju,YiktYi`v). The first general element computation can
be completed by using the first− and second-order moments from (11.70) and
(11.71). To be specific, the formula for this general element is given by

cov(Yi ju,Yi juYikt) = E[Y 2
i juYikt ]−πi juλi jkut

= E[Yi juYikt ]−πi juλi jkut = λi jkut(1−πi ju). (11.74)

Next to compute the second general element cov(Yi ju,YiktYi`v), similar to (11.69),
we first write the formula for the conditional third-order moment given by

ψ
∗
i jk`utv(γ

∗
i ) = E (Yi juYiktYi`v|γ∗i )

= Π
ni
j=1[p̃

∗
i j10(γ

∗
i )]

× ∑
(yi ju,yikt ,yi`v)6∈s

Π
ni
j=1Π

T
t=2

[
p̃∗i jtyi j,t−1

(γ∗i )
]
(yi ju=1,yikt=1,yi`v=1)

,(11.75)

yielding the unconditional third-order moment as

ψi jk`utv = E (Yi juYiktYi`v) =
∫ ∞

−∞
ψ
∗
i jklutv(γ

∗
i )gN(γ∗i |1)dγ

∗
i . (11.76)

We then use this unconditional third moment and compute the desired general ele-
ment by

cov(Yi ju,YiktYi`v) = E [Yi juYiktYi`v]−πi juλik`tv
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= ψi jk`utv−πi juλik`tv. (11.77)

b(ii) Computation of the Fourth-Order Moment Matrices Ωi11, Ωi12 and Ωi22

The computation of the elements of these matrices requires the computation for the
third− and fourth-order moments, where the formulas for the third-order moments
are given by (11.76). For the computation of the fourth-order moments, we first
write the formula, similar to (11.75), for the conditional fourth-order moment as

φ
∗
i jk`mutvq(γ

∗
i ) = E (Yi juYiktYi`vYimq|γ∗i )

= Π
ni
j=1[p̃

∗
i j10(γ

∗
i )]

× ∑
(yi ju,yikt ,yi`v),yimq 6∈s

Π
ni
j=1Π

T
t=2

[
p̃∗i jtyi j,t−1

(γ∗i )
]
(yi ju=1,yikt=1,yi`v=1,yimq=1)

,(11.78)

yielding the unconditional fourth-order moments given by

φi jk`mutvq = E (Yi juYiktYi`vYimq|γ∗i ) =
∫ ∞

−∞
φ
∗
i jk`mutvq(γ

∗
i )gN(γ∗i |1)dγ

∗
i . (11.79)

Finally, these fourth-order moments can be used to compute the desired elements
for these matrices as given by

cov[Yi juYikt ,Yi`vYimq] = E [Yi juYiktYi`vYimq]−E [Yi juYikt ]E [Yi`vYimq]

= φi jk`mutvq−λi jkutλi`mvq, (11.80)

where the formula for the second-order moments λi jkut , for example, is given by
(11.71).

(c) Formulas for the Derivatives ∂ξ ′i /∂α For (11.64)

To compute these derivatives, it is sufficient to compute the derivatives ∂πi jt/∂α

and ∂λi jkut/∂α. They are available in Exercises 11.4 and 11.5.

11.3.2.2 Asymptotic Covariance Matrix of the Joint GQL Estimator

Let α̂GQL denote the solution of (11.64). Because the expectation of the GQL es-
timating function in the left-hand side of (11.64) is zero, this estimator α̂GQL is
consistent for α. The GQL estimator α̂GQL is also expected to be highly efficient
because of the fact that the GQL estimating equation (11.64) is constructed by us-
ing the inverse of the covariance matrix Ωi as the weight matrix. Furthermore, under
some mild regularity conditions it may be shown that α̂GQL asymptotically (K →∞)
follows a Gaussian distribution with mean α and covariance matrix
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K

∑
i=1

∂ξ ′i
∂α

Ω
−1
i

∂ξi

∂α ′

]−1

. (11.81)

11.3.3 Likelihood Based Estimation

11.3.3.1 Likelihood Function for the FBDML Model

Recall from (11.67) that

p̃∗i j10(γ
∗
i ) = Pr(yi j1|γ∗i ) = p∗

yi j1
i j10(γ

∗
i )(1− p∗i j10(γ

∗
i ))1−yi j1

p̃∗i jtyi,t−1
(γ∗i ) = Pr(yi jt |yi j,t−1,γ

∗
i ) = p∗

yi jt
i jtyi j,t−1

(γ∗i )(1− p∗i jtyi j,t−1
(γ∗i ))1−yi jt .

The responses of any two members of the same family at any two time points, say
yi ju and yikt , conditional on the family effect γ∗i , are assumed to be independent, thus
it follows that the likelihood function for β , θ , and σγ is given by

L(β ,θ ,σγ) = Π
K
i=1

∫ ∞

−∞
Π

ni
j=1

[
p̃∗i j10(γ

∗
i )Π T

t=2 p̃∗i jtyi j,t−1
(γ∗i )

]
φ(γ∗i )dγ

∗
i , (11.82)

where φ(γ∗i ), for example, is the standard normal density of γ∗i . This leads to the
log-likelihood function as

log L(β ,θ ,σγ) =
K

∑
i=1

ni

∑
j=1

T

∑
t=1

[
yi jtx

′
i jtβ +θyi jtyi j,t−1

]
+

K

∑
i=1

log Ji, (11.83)

where, for technical convenience, we assume yi j0 = 0 for all j = 1, . . . ,ni, and i =
1, . . . ,K, and Ji has the form given by

Ji =
∫ ∞

−∞
exp(disi)∆iφ(τi)dτi,

with

si =
ni

∑
j=1

T

∑
t=1

yi jt , di = σγ γ
∗
i ,

and

∆i =
[
Π

ni
j=1Π

T
t=1{1+ exp(x′i jtβ +θyi j,t−1 +σγ γ

∗
i )}
]−1

.

This log-likelihood function is exploited in the next subsection to obtain the likeli-
hood estimates for all three parameters β ,θ , and σγ .

11.3.3.2 Likelihood Estimating Equations
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The likelihood estimating equations for the parameters β , θ , and σγ , are obtained
by equating their respective score functions to zero. These equations are given by

U1(β ,θ ,σγ) =
∂ logL

∂β
= 0, U2(β ,θ ,σγ) =

∂ logL
∂θ

= 0,

U3(β ,γ,στ) =
∂ logL
∂σγ

= 0, (11.84)

where the score functions are computed as

U1(β ,θ ,σγ) =
K

∑
i=1

ni

∑
j=1

T

∑
t=1

yi jtxi jt −
K

∑
i=1

Ai

Ji
, (11.85)

U2(β ,θ ,σγ) =
K

∑
i=1

ni

∑
j=1

T

∑
t=1

yi jtyi j,t−1−
K

∑
i=1

Bi

Ji
, (11.86)

and

U3(β ,γ,στ) =
K

∑
i=1

Mi

Ji
, (11.87)

respectively, where

Ai =
∫ ∞

−∞
exp(disi)∆i

[
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
xi jt

]
φ(γ∗i )dγ

∗
i ,

Mi =
∫ ∞

−∞
exp(disi)∆i

[
si−

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1

]
γ
∗
i φ(γ∗i )dγ

∗
i ,

with p∗i jtyi j,t−1
as in (11.67). Also, Bi in (11.86) is obtained from Ai by replacing xi jt

with yi j,t−1. In notation,
Bi = Ai|xi jt→yi j,t−1 .

The maximum likelihood (ML) estimator of α = (β ′,θ ,σγ)′ is then obtained by
solving these score equations in (11.84).

Note that the evaluation of Ji, Ai, Bi, and Mi, require an integration, which ap-
pears to be quite difficult to solve. As in the last section [see (11.59) for example],
we approximate them numerically by using the simulation approach [Jiang (1998);
Fahrmeir and Tutz (1994, Chapter 7)]. Note that alternatively, one may use the bi-
nomial approximation as in (11.7). For example, we approximate Ai in (11.85) by,

say A(s)
i as given by

A(s)
i =

1
M

M

∑
w=1

exp(diwsi)∆iw

[
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
(γ∗iw)xi jt

]
, (11.88)

where by (11.83)
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diw = σγ γ
∗
iw, and ∆iw =

[
Π

ni
j=1Π

T
t=1{1+ exp(x′i jtβ +θyit−1 +σγ γ

∗
iw)}

]−1
,

and

p∗i jtyi j,t−1
(γ∗iw) =

exp(x′i jtβ +θyi j,t−1 +diw)
1+ exp(x′i jtβ +θyi j,t−1 +diw)

,

by (11.53). With regard to the numerical approximations, we further remark that
one may also achieve them by using other techniques as opposed to the aforemen-
tioned simulation approach. For example, one may refer to the adaptive Gaussian
quadrature method [Liu and Pierce (1994)] or the so-called binomial approximation
[Ten Have and Morabia ( 1999, eqn. 7)] to the normal integrals. For example, in the
later binomial approximation approach, as opposed to the simulation approxima-

tion (11.88), one would approximate Ai by A(b)
i (say), similar to (11.7), where for a

known reasonably big V such as V = 5, and νi ∼ binomial(V, 1
2 ), A(b)

i has the form

A(b)
i =

V

∑
νi=0

exp(di(νi)si)∆i(νi)

[
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
(νi)xi jt

](
V
νi

)
(

1
2
)νi(

1
2
)V−νi ,

(11.89)
where, for example,

∆i(νi) = ∆i|[γ∗i =(νi−V (1/2))/(V (1/2)(1/2))],

with ∆i given in (11.83) as a function of γ∗i .

11.3.3.3 Asymptotic Covariance of the Joint ML Estimator

Let α = (β ′, θ , σγ)′ be the (p + 2)-dimensional vector of parameters, and U =
[U ′

1 U2, U3]′ be the vector of corresponding score functions, where score functions
are given by (11.84). Furthermore, let M = −∂U/∂α ′ be the (p + 2)× (p + 2)
Hessian matrix, which is computed as

M =−


∂ 2logL
∂β∂β ′

∂ 2logL
∂β∂θ

∂ 2logL
∂β∂σγ

· ∂ 2logL
∂θ 2

∂ 2logL
∂θ∂σγ

· · ∂ 2logL
∂σ2

γ

 . (11.90)

One may then obtain the maximum likelihood estimate of α by using the iterative

α̂r+1 = α̂r +
[
{EyM}−1U

]
(r) , (11.91)

where [·] indicates that the quantity in the square bracket is evaluated at α = α̂r

obtained from the rth iteration.
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Note that in (11.91), I(α) = −EyM is known as the Fisher information matrix.
However, it is well known that the use of the observed Hessian matrix M in place
of EyM produces almost accurate ML estimate [Efron and Hinkley (1978)]. Thus,
instead of (11.91), one may use the Hessian matrix based iterative equation

α̂r+1 = α̂r +
[
{M}−1U

]
(r) , (11.92)

to obtain the ML estimate of α. Let α̂ML be the ML estimator of α which is the solu-
tion of (11.92). It also follows that as K → ∞, α̂ML follows the (p+2)-dimensional
Gaussian distribution with mean α and covariance matrix

cov(α̂ML) = I−1(α) =−[EyM]−1, (11.93)

with its diagonal elements as the asymptotic variances of the ML estimators. Note
that an estimate of this asymptotic covariance matrix in (11.93) may be obtained by
using the observed Hessian matrix; that is,

ˆcov(α̂ML) = Î−1(α) =−[M]−1. (11.94)

However, to examine the efficiency performance of the likelihood approach as com-
pared to the GQL approach discussed in the last section, without doing any expen-
sive simulation study, we need to compute the asymptotic covariance matrix itself
given by (11.93). For this purpose we compute the Ey(M) as follows.

Computation of Ey(M)

We first compute all six second-order derivatives as shown in Exercise 11.6. These
formulas involve the binary responses yi j1, . . . ,yi jT for j = 1, . . . ,ni and i = 1, . . . ,K.
Now to obtain the expected values of these derivatives over all possible values of
the responses, we first rewrite them by replacing, for example, Ji with Jiy, and then
taking the sum of the whole derivative function under the ith family over all possible
values of the binary responses. For convenience, we demonstrate how to apply this
technique to compute the expectation of one of the second-order derivatives, namely
for E

[
∂ 2logL/[∂β∂β ′]

]
. We re-express the formula for this derivative from Exer-

cise 11.6 as
∂ 2logL
∂β∂β ′ =−

K

∑
i=1

1

J2
iy

[
JiyAiyβ +AiyA′iy

]
,

and compute its expectation as

E

[
∂ 2log L
∂β∂β ′

]
=−

K

∑
i=1

 1

∑
yi11=0

. . .
1

∑
yi jt=0

. . .
1

∑
yiniT =0

1

J2
iy

[
JiyAiyβ +AiyA′iy

] . (11.95)

Note that as we are using the simulation (or binomial) approach to approximate Ai

by A(s)
i , for example, we in fact approximate the expectation in (11.95) as
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E

[
∂ 2log L
∂β∂β ′

]
≡−

K

∑
i=1

 1

∑
yi11=0

. . .
1

∑
yi jt=0

. . .
1

∑
yiniT =0

1

J(s)2
iy

[
J(s)

iy A(s)
iyβ

+A(s)
iy A(s)′

iy

] .

(11.96)
The approximate expectation for five other derivatives may be computed similarly.

Exercises

11.1. (Section 11.1.4.2.) [First-order derivatives of λi with respect to σ2
γ (equations

(11.26) and (11.27))]
Recall the definition of the elements of λi from (11.22) to (11.25). Following the
notation in (11.25), verify that the derivatives of these elements with respect to σ2

γ

are obtained by using the following formulas:

∂πi ju

∂σ2
γ

=
1

2σγ

V

∑
vi=0

[
vi−V (1/2)

V (1/2)(1/2)
][π∗i ju(vi){1−π

∗
i ju(vi)}]

(
V
vi

)
(1/2)vi(1/2)V−vi

∂πi, j j,uu

∂σ2
γ

=
1

σγ

V

∑
vi=0

[
vi−V (1/2)

V (1/2)(1/2)
]π∗i ju(vi)[π∗i ju(vi){1−π

∗
i ju(vi)}](

V
vi

)
(1/2)vi(1/2)V−vi

∂πi, j j,ut

∂σ2
γ

=
1

2σγ

V

∑
vi=0

[
vi−V (1/2)

V (1/2)(1/2)
][π∗i ju(vi)π∗i jt(vi){2−π

∗
i ju(vi)−π

∗
i jt(vi)}]

×
(

V
vi

)
(1/2)vi(1/2)V−vi ,

where
π
∗
i jt(vi) = π

∗
i jt(γ

∗
i )|γ∗i =(vi−V (1/2))/[V (1/2)(1/2)],

γ∗i being a standard normal variable.

11.2. (Section 11.1.4.2 ) [Binary marginal and product moments up to order four
when ρ = 0 for any member(11.29)]
Verify the following results.

(a(i)) var(Yi jt) = σi j,tt = πi jt [1−πi jt ] by (11.8). (11.97)

(a(ii)) cov(Yi ju,Yi jt) = σi j,ut |ρ=0 (11.98)

= Eγ∗i
[π∗i juπ

∗
i jt ]−πi juπi jt

= πi j j,ut −πi juπi jt by (11.10). (11.99)

(a(iii)) cov(Yi ju,Yi jtYi j`) = E[Yi juYi jtYi j`]−πi juπi j j,ut

= Eγ∗i
[π∗i juπ

∗
i jtπ

∗
i j`]−πi juπi j j,ut
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= πi j,ut`−πi juπi j j,ut (11.100)

(a(iv)) var[Yi juYi jt ] = πi j j,ut [1−πi j j,ut ] (11.101)

(a(v)) cov(Yi juYi jt ,Yi j`Yi jv) = E[Yi juYi jtYi j`Yi jv]−πi j j,utπi j j,`v

= Eγ∗i
[π∗i juπ

∗
i jtπ

∗
i j`π

∗
i jv]−πi j j,utπi j j,`v

= πi j j,ut`v−πi j j,utπi j j,`v. (11.102)

11.3. (Section 11.1.4.2 ) [Binary product moments up to order four when ρ = 0 for
any two members (11.30)]
Verify the following results.

(b(i)) cov(Yi ju,Yikt) = E[Yi juYikt ]−πi juπikt

= Eγ∗i
[π∗i juπ

∗
ikt ]−πi juπikt

= πi jk,ut −πi juπi jt (11.103)

(b(ii)) cov(Yi ju,YiktYik`) = πi jk,ut`−πi juπikk,t` (11.104)

(b(iii)) cov(Yi juYi jt ,Yik`Yikv) = E[Yi juYi jtYik`Yikv]−πi j j,utπikk,`v

= Eγ∗i
[π∗i juπ

∗
i jtπ

∗
ik`π

∗
ikv]−πi j j,utπikk,`v

= πi jk,ut`v−πi j j,utπikk,`v. (11.105)

11.4. (Section 11.3.2.1) [Formula for ∂πi jt/∂α]

Write qi(yi|γ∗i ) = Π
ni
j=1[p̃

∗
i j10(γ

∗
i )]Π ni

j=1Π T
t=2

[
p̃∗i jtyi j,t−1

(γ∗i )
]
, and show from (11.68)

that

∂π∗i jt(γ
∗
i )

∂β
= ∑

yi jt /∈s

[
qi(yi|γ∗i )

ni

∑
j=1

T

∑
t=1

(yi jt − p∗i jtyi j,t−1
(γ∗i ))xi jt

]
(yi jt=1)

∂π∗i jt(γ
∗
i )

∂θ
= ∑

yi jt /∈s

[
qi(yi|γ∗i )

ni

∑
j=1

T

∑
t=1

(yi jt − p∗i jtyi j,t−1
(γ∗i ))yi j,t−1

]
(yi jt=1)

∂π∗i jt(γ
∗
i )

∂σγ

= ∑
yi jt /∈s

[
qi(yi|γ∗i )

ni

∑
j=1

T

∑
t=1

(yi jt − p∗i jtyi j,t−1
(γ∗i ))τi

]
(yi jt=1)

, (11.106)

with

p∗i j1yi j0
(γ∗i ) = p∗i j10 =

exp[x
′
i jtβ +σγ γ∗i ]

1+ exp[x′i jtβ +σγ γ∗i ]
,

yielding the desired derivatives as

∂πi jt

∂β
=
∫ ∞

−∞

∂π∗i jt(γ
∗
i )

∂β
gN(γ∗i |1)dγ

∗
i

∂πi jt

∂θ
=
∫ ∞

−∞

∂π∗i jt(γ
∗
i )

∂θ
gN(γ∗i |1)dγ

∗
i
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∂πi jt

∂σγ

=
∫ ∞

−∞

∂π∗i jt(γ
∗
i )

∂σγ

gN(γ∗i |1)dγ
∗
i ,

respectively.

11.5. (Section 11.3.2.1) [Formula for ∂λi jkut/∂α]

Similar to Exercise 11.4, verify that

∂λ ∗
i jkut(γ

∗
i )

∂β
= ∑

yi ju,yi jt /∈s

[
qi(yi|γ∗i )

ni

∑
j=1

T

∑
t=1

(yi jt − p∗i jtyi j,t−1
(γ∗i ))xi jt

]
(yi ju=1,yi jt=1)

∂λ ∗
i jkut(γ

∗
i )

∂θ
= ∑

yi ju,yi jt /∈s

[
qi(yi|γ∗i )

ni

∑
j=1

T

∑
t=1

(yi jt − p∗i jtyi j,t−1
(τi))yi j,t−1

]
(yi ju=1,yi jt=1)

∂λ ∗
i jkut(γ

∗
i )

∂σγ

= ∑
yi ju,yi jt /∈s

[
qi(yi|γ∗i )

ni

∑
j=1

T

∑
t=1

(yi jt − p∗i jtyi j,t−1
(γ∗i ))γ∗i

]
(yi ju=1,yi jt=1)

,(11.107)

yielding the desired derivatives as

∂λi jkut

∂β
=
∫ ∞

−∞

∂λ ∗
i jkut(γ

∗
i )

∂β
gN(γ∗i |1)dγ

∗
i

∂λi jkut

∂θ
=
∫ ∞

−∞

∂λ ∗
i jkut(γ

∗
i )

∂θ
gN(γ∗i |1)dγ

∗
i

∂λi jkut

∂σγ

=
∫ ∞

−∞

∂λi jkut(γ∗i )
∂σγ

gN(γ∗i |1)dγ
∗
i ,

respectively.

11.6. (Section 11.3.3.3) [ Formulas for the elements of the second-order derivatives
(11.90) of the likelihood function]
Verify that

(1)
∂ 2logL
∂β∂β ′ =−

K

∑
i=1

1

J2
i

[
JiAiβ +AiA

′
i

]
, (11.108)

where Ji and Ai are as in (11.85), and the new quantity Aiβ has the formula

Aiβ =
∫ ∞

−∞
exp(disi)∆i

[
{

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
(1− p∗i jtyi j,t−1

)xi jtx
′
i jt}

− {
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
xi jt

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
x′it}

]
φ(γ∗i )dγ

∗
i . (11.109)
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Similarly

(2)
∂ 2logL
∂β∂θ

=−
K

∑
i=1

1

J2
i

[JiAiθ +AiBi] , (11.110)

where the new quantity Aiθ has the formula

Aiθ =
∫ ∞

−∞
exp(disi)∆i

[
{

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
(1− p∗i jtyi j,t−1

)xi jtyi j,t−1}

− {
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
xi jt

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
yi j,t−1}

]
φ(γ∗i )dγ

∗
i . (11.111)

Further verify that

(3)
∂ 2log L
∂β∂σγ

=−
K

∑
i=1

1

J2
i

[
JiAiσγ

−AiMi
]
, (11.112)

where

Aiσγ
=
∫ ∞

−∞
exp(disi)∆i

[
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
(1− p∗i jtyi j,t−1

)xi jt

+ (
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
xi jt)(si−

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
)

]
×γ

∗
i φ(γ∗i )dγ

∗
i . (11.113)

Next show that the second derivatives with respect to θ and σγ , have the formulas
given by

(4)
∂ 2log L

∂θ 2 = −
K

∑
i=1

1

J2
i

[
JiBiθ +B2

i

]
, (11.114)

(5)
∂ 2log L
∂θ∂σγ

= −
K

∑
i=1

1

J2
i

[
JiBiσγ

−BiMi
]
, (11.115)

where

Biθ =
∫ ∞

−∞
exp(disi)∆i

[
{

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
(1− p∗i jtyi j,t−1

)y2
i j,t−1}

+ {
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
yi j,t−1}2

]
φ(γ∗i )dγ

∗
i , (11.116)
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Biσγ
=
∫ ∞

−∞
exp(disi)∆i

[
{

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
(1− p∗i jtyi j,t−1

)yi j,t−1}

+ {
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
yi j,t−1}(si−

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
)

]
×γ

∗
i φ(γ∗i )dγ

∗
i . (11.117)

Further show that

(6)
∂ 2log L

∂σ2
γ

=
K

∑
i=1

1

J2
i

[
JiMiστ

−M2
i

]
, (11.118)

where

Miσγ
=
∫ ∞

−∞
exp(disi)∆i

[
(si−

ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
)2

− {
ni

∑
j=1

T

∑
t=1

p∗i jtyi j,t−1
(1− p∗i jtyi j,t−1

)}

]
γ
∗2

i φ(γ∗i )dγ
∗
i . (11.119)
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