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Preface

The invention of hybrid intelligent methods is a very active research area in arti-
ficial intelligence (AI). The aim is to create hybrid methods that benefit from each
of their components. It is generally believed that complex problems can be easily
solved with hybrid methods. By “hybrid,” we mean any kind of combined use
(either tight or loose) of distinct intelligent methods toward solving a problem,
either specific or general. In this sense, it is used as synonymous with “integrated.”

Some of the existing efforts try to make hybrids of what are called soft com-
puting methods (fuzzy logic, neural networks, and genetic algorithms) either among
themselves or with more traditional AI methods, such as logic and rules. Another
stream of efforts integrates case-based reasoning or machine learning with soft
computing or traditional AI methods. Yet another integrates agent-based approa-
ches with logic and non-symbolic approaches. Some of the combinations have been
quite important and more extensively used, like neuro-symbolic methods,
neuro-fuzzy methods, and methods combining rule-based and case-based reason-
ing. However, there are other combinations that are still under investigation, such as
those related to the Semantic Web and Big Data areas. For example, the recently
emerged deep learning architectures or methods are also hybrid by nature. In some
cases, integrations are based on first principles, creating hybrid models, whereas in
other cases they are created in the context of solving problems leading to systems or
applications.

Important topics of the above area are (but not limited to) the following:

• Case-Based Reasoning Integrations
• Ensemble Learning, Ensemble Methods
• Evolutionary Algorithms Integrations
• Evolutionary Neural Systems
• Fuzzy-Evolutionary Systems
• Semantic Web Technologies Integrations
• Hybrid Approaches for the Web
• Hybrid Knowledge Representation Approaches/Systems
• Hybrid and Distributed Ontologies
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• Information Fusion Techniques for Hybrid Intelligent Systems
• Integrations of Neural Networks
• Integrations of Statistical and Symbolic AI Approaches
• Intelligent Agents Integrations
• Machine Learning Combinations
• Neuro-Fuzzy Approaches/Systems
• Swarm Intelligence Methods Integrations
• Applications of Combinations of Intelligent Methods to

– Biology and Bioinformatics
– Education and Distance Learning
– Medicine and Health Care
– Multimodal Human–Computer Interaction
– Natural Language Processing and Understanding
– Planning, Scheduling, Search, and Optimization
– Robotics
– Social Networks

This volume includes extended and revised versions of some of the papers
presented in the 6th International Workshop on Combinations of Intelligent
Methods and Applications (CIMA 2016) and also papers submitted especially for
this volume after a CFP. CIMA 2016 was held in conjunction with the 22nd
European Conference on Artificial Intelligence (ECAI 2016), August 30, 2016, The
Hague, Holland. Papers went through a peer review process by the CIMA-16
program committee members.

Giannopoulos et al. present results on using two deep learning methods (Goo-
gleNet and AlexNet) on facial expression recognition. The paper of Haque et al.
presents results on how communication model affects robotics swarm performance.
Jabreel et al. introduce and experiment with a target-dependent sentiment analysis
approach for tweets. Maniak et al. present a hybrid approach used for the modeling
and prediction of taxi usage in the context of smart cities. The paper of Mason et al.
introduces a reinforcement learning approach combining a Markov decision process
and quantification verification to restrict an agent’s behavior at a safe level. Mosca
and Magoulas propose a method for approximating an ensemble of deep neural
networks by a single deep neural network. Finally, Teppan and Friedrich present a
constraint answer programming solver and investigate its performance through its
application to two manufacturing problems.

We would like to express our appreciation to all the authors of submitted papers
as well as to the members of CIMA 2016 program committee for their excellent
review work.

We hope that this kind of post-proceedings will be useful to both researchers and
developers.

Patras, Greece Ioannis Hatzilygeroudis
Coventry, UK Vasile Palade
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Deep Learning Approaches for Facial
Emotion Recognition: A Case Study
on FER-2013

Panagiotis Giannopoulos, Isidoros Perikos
and Ioannis Hatzilygeroudis

Abstract Emotions constitute an innate and important aspect of human behavior
that colors the way of human communication. The accurate analysis and interpre-
tation of the emotional content of human facial expressions is essential for the
deeper understanding of human behavior. Although a human can detect and
interpret faces and facial expressions naturally, with little or no effort, accurate and
robust facial expression recognition by computer systems is still a great challenge.
The analysis of human face characteristics and the recognition of its emotional
states are considered to be very challenging and difficult tasks. The main difficulties
come from the non-uniform nature of human face and variations in conditions such
as lighting, shadows, facial pose and orientation. Deep learning approaches have
been examined as a stream of methods to achieve robustness and provide the
necessary scalability on new type of data. In this work, we examine the perfor-
mance of two known deep learning approaches (GoogLeNet and AlexNet) on facial
expression recognition, more specifically the recognition of the existence of emo-
tional content, and on the recognition of the exact emotional content of facial
expressions. The results collected from the study are quite interesting.
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1 Introduction

An envisaged aim of artificial intelligence is to make the interaction between human
and next generation computing systems more natural. In order to achieve efficient
and smooth interaction between human and computer systems, a series of aspects of
human behavior should be taken into account. One of the most important aspects
concerns the emotional behavior and the affective state of the human. Next gen-
eration human-centered computing systems should possess the capacity to perceive,
accurately analyze and deeply understand emotions as communicated by social and
affective channels [1].

Emotions constitute an innate and important aspect of human behavior that
colors the way of communication. Humans express their innate conditions through
various channels, such as body language and facial expressions. Facial expressions
are the most direct and meaningful channel of non-verbal communication, which
forms a universal language of emotions that can instantly express a wide range of
human emotional states, feelings and attitudes and assists in various cognitive tasks.
The accurate analysis and interpretation of the emotional content of human facial
expressions is essential for the deeper understanding of human behavior. Indeed,
facial expressions are to wit the most cogent, naturally preeminent means for human
beings to communicate emotions, comprehension, and intentions and to regulate
interactions and communication with other people [2, 1].

Facial expressions considerably assist in direct communication and it has been
indicated that during face-to-face human communication, 7% of the information is
communicated by the linguistic part, such as the spoken words, 38% is commu-
nicated by paralanguage, such as the vocal part, and 55% is communicated by the
facial expressions [3]. Indeed, even a simple signal such as a head nod or a smile
can convey a large number of meanings [4, 5]. In general, facial expressions are the
most natural, meaningful and important communication channel of human inter-
action and communication.

The recognition of facial expressions is assistive in a wide spectrum of systems
and applications and is quite necessary for achieving naturalistic interaction. The
facial expressions assist in various cognitive tasks; so reading and interpreting the
emotional content of human expressions is essential for deeper understanding of
human condition. Therefore, the main aim of facial expression recognition methods
and approaches is to enable machines to automatically estimate the emotional
content of a human face. Giving computer applications the ability to recognize the
emotional state of humans from their facial expressions is a very important and
challenging task with wide ranging applications. In general, affective computing
systems need to perceive emotional reactions by the user and successfully incor-
porate this information into the interaction process [6]. The interaction between
human and computer systems (HCI) would become much more natural and vivid if
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the computer applications could recognize and adapt to the emotional state of the
human. Indeed, automated systems that can determine emotions of humans based
on their facial expressions can improve the human computer interaction and give
computer systems the ability to customize and adapt their responses [7]. Embodied
conversational agents can greatly benefit from spotting and understanding the
emotional states of the participants, achieving more realistic interactions at an
emotional level [8]. In intelligent tutoring systems, emotions and learning are
inextricably bound together; so recognizing learners’ emotional states could sig-
nificantly improve the efficiency of the learning procedures delivered to them [9–
11]. Moreover, surveillance applications such as driver monitoring and elderly
monitoring systems could benefit from a facial emotion recognition system, gaining
the ability to deeper understand and adapt to the person’s cognitive and emotional
condition. Also, facial emotion recognition could be applied to medical treatment to
monitor patients and detect their status.

However, the analysis of human face characteristics and the recognition of its
emotional state are considered to be very challenging and difficult tasks. The main
difficulty comes from the non-uniform nature of the human face and various lim-
itations related to lighting, shadows, facial pose and orientation conditions [12].
Although a human can detect and interpret faces and facial expressions naturally,
with little or no effort, accurate and robust facial expression recognition by com-
puter systems is still a great challenge. Deep learning approaches have been
examined as a stream of methods to achieve robustness and superior performance
compared to basic machine learning classification methods, such as multilayer
perceptron neural networks and support vector machines. Since humans operate in
diversity of contexts, human behavior analysis needs to be robust and deep learning
methods can provide the necessary robustness and scalability on new type of data.

In this work, we examine the performance of deep learning approaches on facial
expression recognition, more specifically on the recognition of the existence of
emotional content on facial expressions and on the recognition of the exact emo-
tional content. To that end, we experiment with GoogLeNet and Alexnet, two
popular and wide used deep learning methods, and we examine their performance
on FER-2013 dataset. The results collected from the examination study are quite
interesting.

The structure of the paper is organized as follows. In Sect. 2, background topics
on emotion models and on deep learning methods are examined. In Sect. 3, related
works on the utilization of machine learning and deep learning methods for the
recognition of facial expressions are presented. After that, Sect. 4, presents the
experimental study conducted, examines the results collected and discusses the
main findings. Finally, Sect. 5 concludes the paper and draws directions for future
work.

Deep Learning Approaches for Facial Emotion Recognition … 3



2 Background Topics

2.1 Facial Emotion Recognition Methods

In the field of facial emotion recognition two types of methods dominate: the
holistic methods and the analytical or local-based methods [13]. The holistic
methods try to model the human facial deformations globally, which encode the
entire face as a whole. On the other hand, the analytical methods observe and
measure local or distinctive human facial deformations such as eyes, eyebrows,
nose, mouth etc. and their geometrical relationships in order to create descriptive
and expressive models [14]. In the feature extraction process for expression analysis
there are mainly two types of approaches, which are the geometric feature based
methods and the appearance based methods. The geometric facial features try to
represent the geometrical characteristics of a facial part deformation, such as the
part’s locations, and model its shape. The appearance based methods utilize image
filters, such as Gabon wavelets, to the whole face or on specific parts to extract
feature vectors.

2.2 Emotion Models

The way that emotions are represented is a basic aspect of an emotion recognition
system. A very popular categorical model is the Ekman emotion model [15], which
specifies six basic human emotions: anger, disgust, fear, happiness, sadness, sur-
prise. Ekman’s emotion model has been used in several research studies and in
various systems that are used to recognize emotional state from text and facial
expressions. Another popular model is the OCC (Ortony/Clore/Collins) model [16],
which specifies 22 emotion categories based on emotional reactions to situations
and is mainly designed to model human emotions in general. Plutchik’s model of
emotions [17] is a dimensional model, which offers an integrative theory based on
evolutionary principles and defines eight basic bipolar emotions. These eight
emotions are organized into four bipolar sets: joy versus sadness, anger versus fear,
trust versus disgust, and surprise versus anticipation.

2.3 Deep Learning Methods

Deep learning methods constitute a stream of approaches that rely on deep archi-
tectures and are surpassing other machine learning approaches in terms of accuracy
and efficiency. In general, deep architectures are composed of multiple levels of
non-linear operations components, like neural nets that have many hidden layers.
They aim to learn feature hierarchies with features at higher levels in the hierarchy
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formed by the composition of lower level features. Deep learning methods through
machine learning models with multi hidden layers, which are trained on massive
volumes of data, could learn more useful features and thus improve the accuracy of
classification and prediction [18]. In general, they employ the softmax activation
function for prediction and minimize cross-entropy loss. Deep learning methods are
becoming exponentially more important, due to their demonstrated success at
tackling complex learning problems. Some widely used methods among others are
the Convolutional Neural Networks, the Deep Belief Networks and the Deep
Boltzmann Machines.

Convolutional Neural Networks.

Convolutional neural networks (CNNs) are a category of neural networks special-
ized in areas such as image recognition and classification. In general, convolutional
neural networks pose collections of small neurons in multiple layers that process the
input image in portions that are the receptive fields. A convolutional neural network,
in the most part of it, consists of three layer types: the convolutional layers, the
max-pooling layers and the fully-connected layer. With the latter one being the less
fundamental, the other two types of layers are responsible for feature extraction,
introduction of non-linearity in the network and feature dimension reduction. The
fully-connected layer is assigned the task of classifying the input, based on the
previously extracted features by the other layers. The training process of a convo-
lutional neural network is called back propagation and it can be divided into 4 parts,
the forward pass, the loss function, the backward pass and the weights update.
A simple architecture of a CNN is shown in (Fig. 1) and was created by [44].

Deep Belief Networks.

Deep belief networks (DBNs) are multi-layer belief networks that are probabilistic
generative models, which resemble convolutional neural networks in many ways.
Deep belief networks composed of multiple layers of latent variables hidden units,
where there are connections between the layers, but not between the units within
each layer. The main problem of back propagation used in CNNs is the possibility
of hitting a local minima instead of the global one, when performing the gradient
descent. Unlike convolutional neural networks, deep belief networks are not trained

Fig. 1 Representation of basic convolutional neural network architecture

Deep Learning Approaches for Facial Emotion Recognition … 5



via the back propagation process immediately. Instead, the “pre-training” process
takes place and through i, the error rate accosts the optimal. Then, the back
propagation process commits to reduce the error rate even more. The reasons that
enable pre-training to be of any success are better initialization of the weights and
soft regularization, which offers better generalization power for the back propa-
gation process later on. The whole deep belief network is trained when the learning
for the final hidden layer is achieved.

Deep Boltzmann Machines.

Deep Boltzmann Machines (DBM’s) [19] relay on Boltzmann machines, which are
networks of symmetrically connected neuron-like units that make stochastic deci-
sions about whether to be on or off. Deep Boltzmann Machines can be considered a
special Boltzmann machine where the hidden units are organized in deep layered
manners, where the adjacent layers are connected and there are no visible hidden
connections within the same layer [20]. Deep Boltzmann Machines have the
potential of learning internal representations that become increasingly complex,
something that is considered to be a promising approach for problems like facial
expression recognition [21].

3 Related Work

Over the last decade there has been a huge research interest and many studies on the
formulation of methods and systems for the recognition of emotional content of
facial expressions. A detailed overview of approaches can be found in [22, 23].
Several works study the way humans express emotions and try to specify facial
emotions from static images and video streams [24].

The work in [25], presents a facial expression classification method based on
histogram sequence of feature vector. It consists of four main tasks, which are image
pre-processing, mouth segmentation, feature extraction and classification, which is
based on histogram-based methods. The system is able to recognize five human
expressions: happiness, anger, sadness, surprise and neutral, based on the geo-
metrical characteristics of the human mouth with an average recognition accuracy
of 81.6%. In [26], authors recognize Ekman basic emotions (sadness, anger, disgust,
fear, happiness and surprise) in facial expressions by utilizing Eigen spaces and
using a dimensionality reduction technique. The system developed achieved a
recognition accuracy of 83%. The work presented in [27] recognizes facial emo-
tions based on a novel approach using Canny, principal component analysis tech-
nique for local facial feature extraction and an artificial neural network for the
classification process. The average facial expression classification accuracy of the
method is reported to be 85.7%. In the work presented in [28], authors present a
process to specify and extract meaningful facial features using a multilayer per-
ceptron neural network approach that achieves a performance of 76.7% in Jaffe
database. In [29], a hybrid two stage classification schema is presented, where a
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SVM is used to specify whether facial expressions convey emotional content or are
neutral and then, at the second stage, a Multilayer Perceptron Neural Network
specifies each expression’s emotional content on Ekman’s emotional categories.
The system reports a performance of 85% on Jaffe and Cohn-Kanade database. In
the work presented in [30], authors developed a system that consists of a face
tracker, an optical flow algorithm to track motion in faces and a recognition engine
based on SVMs and multilayer perceptron, which achieve a recognition accuracy of
81.8%. The authors in the work presented in [31] recognize four basic emotions of
happiness, anger, surprise and sadness focusing in preprocessing techniques for
feature extraction, such as Gabor filters, linear discrimination analysis and principal
component analysis. They achieve a 93.8% average accuracy in their experiments,
for images of the Jaffe face database with little noise and with particularly exag-
gerated expressions and an average accuracy of 79% in recognition on just
smiling/non smiling expressions in the ORL database. In [32], a work that recog-
nizes the seven emotions on Jaffe database using Fisher weight map is presented.
Authors utilize image preprocessing techniques such as illumination correction and
histogram equalization and the recognition rate of their approach is reported to be
69.7%. Principal component analysis (PCA) and Linear discriminant analysis
(LDA) methods are used for both dimensional reduction and also the expression
classification in emotion recognition process [33]. In the work presented in [34],
authors highlight the higher performance of PCA-LDA fusion methods. In [35],
representation-based classification of facial expressions. The PCA-based dictionary
building results in better recognition performance on CK +, MMI databases up
to 6%.

Recently deep learning methods have attracted a lot of interest and there is a
huge research interest in the study of deep learning methods on the recognition of
emotions from facial expressions. Deep Learning methods have been examined on
facial emotion recognition and are mainly based on supervised learning relying on
manually labelled data. In the work presented in [36], authors present a L2-SVM,
which has as its main objective to train deep neural net. Lower layer weights are
learned by back propagating the gradients from the top layer linear SVM. The
authors approach achieved an accuracy of 71.2% on FER dataset. Authors, in the
work presented in [37], present a bag of visual words model adapted to the FER
Challenge dataset, where histograms of visual words were replaced with normalized
presence vectors, then local learning was used to predict class labels of test images.
Their model reported an accuracy of 67.49% on FER dataset. In the work presented
in [38], a deep network that consists of two convolutional layers, each followed by
max pooling and then four Inception layers, is presented. The network is a single
component architecture that takes registered facial images as the input and classifies
them into either the six basic expressions or the neutral expression. The author’s
approach reports an accuracy of 66.4% on FER dataset.

Deep Learning Approaches for Facial Emotion Recognition … 7



4 Experimental Study

In this section, the experimental study conducted and the results gathered are
presented. The dataset used in the experiment is the FER-2013 dataset, a widely
used dataset for benchmark and assessing the performance of facial expression
recognition systems and approaches.

4.1 Datasets

The Facial Emotion Recognition 2013 (FER-2013) dataset was created by Pierre
Luc Carrier and Aaron Courville and was introduced in the ICML 2013 workshop’s
facial expression recognition challenge [39]. The dataset was formulated by using
the Google image search API to crawl images that match emotional keywords. In
total, the dataset consists of 35887 facial images most of them in wild settings. In
the dataset, 4953 images express anger, 547 images express disgust, 5121 images
express fear, 8989 images express happiness, 6077 images express sadness, 4002
images express surprise and 6198 images are emotionally neutral. The dataset is
quite challenging, since faces greatly vary in age, pose and occlusion conditions. In
addition, the accuracy of human recognition is approximately 65 ± 5%. The dataset
comprises 3 parts: the original training data (OTD), which consists of 28709
images, the Public Test Data (PTD), which consists of 3589 images and was used
during the workshop contest to provide feedback accuracy of participating models,
and the Final Test Data (FTD), which consists of 3589 images that were used to
score the final models (Fig. 2).

Fig. 2 Example images from the FER-2013 dataset [45]
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4.2 Deep Learning Architectures

GoogLeNet

The incarnation of the “Inception” architecture proposed in the ILSVRC 2014
competition was named GoogLeNet [40]. The network is 22 layers deep, when
counting only layers with parameters, while the overall number of layers used is
almost 100. From Fig. 3, it is obvious that there are parts of the network which are
executed in parallel. These parts are called “Inception modules”. The initial naïve
approach was to split the input of each layer to 1 × 1, 3 × 3 and 5 × 5 con-
volutions and a 3 × 3 pooling, but that would lead to an extortionate number of
outputs. Shifting from the naïve to the full Inception module, the creators decided to
combat this by inserting 1 × 1 convolution operations before the 3 × 3 and
5 × 5 ones. By adding the 1 × 1 convolutions, a kind of dimensional reduction is
introduced and the problem is significantly mitigated. Nine such modules are used
in the network, until we reach the last layers, where the classification process takes
place. Contrary to most deep learning architectures, the GoogLeNet does not use
fully connected layers. Instead, it uses an average pool to transfer from a
7 × 7 × 1024 to a 1 × 1 × 1024 volume, using far more less parameters. For
the purposes of comparison with the AlexNet architecture, which will be deployed
next, GoogLeNet uses 12 times fewer parameters. Another main idea of the pro-
posed architecture is to make use of the extra sparsity, but exploiting the hardware,
by utilizing computations on dense matrices. Clustering sparse matrices into rela-
tively dense submatrices is what gives state of the art results. The network was
trained through the DistBelief system [41], using asynchronous stochastic gradient
descent of 0.9 momentum, fixed learning rate schedule (decreasing the learning rate
by 4% every 8 epochs), Polyak averaging at inference time, photometric distortions
to combat overfitting, and random interpolation methods for resizing. The perfor-
mance is measured based on the highest scoring classifier predictions and the main
metrics are: top-1 accuracy rate (compares the ground truth against the first pre-
dicted class) and top-5 error rate (compares the ground truth against the first 5
predicted classes).

Fig. 3 Basic architecture of GoogLeNet

Deep Learning Approaches for Facial Emotion Recognition … 9



AlexNet.

AlexNet, named by its creator Alex Krizhevsky, is an architecture originally sub-
mitted in the ILSVRC competition in 2012 [42]. The network consists of 8
fully-connected. The output of the last fully-connected layer is fed to a 1000-way
softmax function, which produces a distribution over 1000 class labels. Starting
with the first convolutional layer shown in Fig. 4, it is clear that the input size is
224 × 224 × 3, the receptive field size is equal to 11, the stride is 4, and the
output of the layer is 55 × 55 × 96, as there are two streams of depth 48 each.
This means that there are 55 × 55 × 96 = 290400 neurons, each one having
11 × 11 × 3 = 363 weights and 1 bias, leading to 290400 × 364 = 105705600
parameters on the first layer. This makes overfitting inevitable when it comes to
learning all of them. Two approaches on handling over-fitting were proposed on
[42] (data augmentation and dropout), but we would branch off the goal of this case
study by delving into them. Keeping up with Fig. 4, we see that the second layer
has 256 kernels of size 5 × 5 × 48, the next one has 384 kernels of size
3 × 3 × 256 etc. The network was trained using stochastic gradient descent with
a batch size of 128, momentum of 0.9 and weight decay of 0.0005. The weights in
each layer were initialized from a zero-mean Gaussian distribution with a standard
deviation of 0.01. Finally, equal learning rate for all layers was used, and when the
validation error rate stopped improving, the learning rate was divided by 10. The
architecture, as shown in Fig. 4, is divided into two streams, which are the two
GPUs the training was split into, due to the computational expense of the training
process.

4.3 Implementation

Pre-Processing.

The FER-2013 dataset holds 48 × 48 pixel values for each image. Initially, we
rebuild the images of the dataset via Python scripts that receive as input the
intensity of the black color in each image, meaning a vector of the 48 × 48 values

Fig. 4 Basic architecture of AlexNet
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mentioned above, with every value being between 0 and 255. This produces two
folders with the train and test images. Both of those folders, combined with the text
files that describe the label of each image, which were also created simultaneously
by the same Python script we crafted, are used in order to create the “lmdb” files
needed by the framework.

Implementation Framework.

The framework used for the experimental purpose of this case study is the “Caffe”
toolbox [43], which is maintained by Berkley Vision and Learning Center (BVLC)
and has acquired many contributors from its growing community. Caffe toolbox
was chosen mainly for the high maturity level it encompasses and also the suit-
ability it offers for using, manipulating and training deep learning methods as well
as the GoogLeNet and AlexNet, described in the previous sections.

Training process and hyper parameter values.

The training process was designed to go through 5000 iterations on the GoogLeNet
and the AlexNet experiments. The average loss was presented every 10 iterations,
while the accuracy of each network was presented every 500 iterations. The values
and methods mentioned below were applied to both architectures. We fed the
source field of the train_val.prototxt file with the path to the lmdb files we created,
as this is the format of input files that Caffe recognizes, we set the batch_size of the
train layer to 32 and the batch_size of the test layer to 50, test_iter to 20, all
mean_value fields to 125, and crop_size as both architectures require it to be; 224.
As for the most crucial part, the hyper parameters were set as; average_loss = 40,
base_lr = 0.001, lr_policy = poly, power = 0.5, max_iter = 5000, momen-
tum = 0.9, weight_decay = 0.0002, test_interval = 500 and finally, the solver_-
mode = CPU. The weights from the pretrained BVLC models were used as initials.
Various alternations of our final approach were studied, for the purpose of ensuring
that the best optimal, to our knowledge, hyper parameter values were chosen. We
next describe the most notable. In an attempt to expand the network’s learning
capability, we adjusted the learning rate to 0.0001 and set the max iterations to
10000. Despite the promising results we received at the first iterations, the accuracy
seemed to approach the one we reached using the learning rate and max iterations
mentioned above. Thus, presenting both cases would be of no use. We then
attempted to train the network on more iterations with the initial learning rate of
0.001, and found out that after the first 5000 iterations, the accuracy was almost the
same. Moreover, as more iterations were performed, the accuracy started to slightly
drop, meaning the network was overtraining. Another endeavor was to increase the
number of test iterations performed, from 20 to 100, aiming to make the testing
process more robust and perhaps raising its accuracy. When using a test_iter of µ
for example, the network is performing µ*batch_size (of the test layer) tests on
individual inputs, calculating the probabilities and classifying each input to the most
relatable class. Again, the accuracy did not prove to augment noticeably and tes-
t_iter was kept as equal to 20.
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4.4 Performance Analysis

The performance of the GoogLeNet and AlexNet has been studied on the
FER-2013 dataset in three aspects, where each one evaluates a specific functionality
of the methods. In the first part of the study, the performance of the networks has
been studied in recognizing the existence, or not, of emotional content in a facial
expression and after that, in the second part of the study, their performance has been
examined in specifying the exact emotional content of facial expressions. Finally, in
the third part the two deep learning methods have been trained on both emotional
and neutral data studied. The results of the three parts are illustrated in Fig. 5.

Recognizing the existence of emotional content.
In this section of the study, the dataset was divided into two parts. The first part
contained the neutral emotion (represented by class “6” based on the FER-2013
documentation), and the second part contained the rest of the classes (from “0” to
“5”), which represent any emotional state. In this specific binary classification, the
two networks start the testing process after the first 500 training iterations with
exactly the same accuracy. Through the 2500 first iterations it is obvious that the
deviation between them is minor. AlexNet only seems to surpass GoogLenet’s
accuracy when 4000 iterations are completed, by 1%, and then again GoogLeNet
finishes the 5000 iterations with a greater accuracy. Moreover, by observing Fig. 5,
it is clear that both network accuracies deploy almost parallel to each other after
every testing phase, with the most obvious part of the parallel formation being the
last 500 iterations. No major divergences appear in the specific experiment, as there
is not a wide variety of features to be distinguished, since only two classes exist.

Fig. 5 The performance based on the concept studied
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Recognizing the emotional content of emotional expressions.

In this phase of the study, the neutral emotion was removed from the dataset and the
computer was trained in recognizing emotions and the class they belong to. Unlike
the previous experiment, here, GoogLeNet seems to begin the testing process after
the first 500 training iterations with an accuracy of 8% higher than AlexNet. The
two accuracies approach on 1500 iterations, and then they seem to deploy almost
parallel to each other, until they reach the 4500th iteration where AlexNet is leading
with a 1.4% higher rate than GoogLeNet. Despite the initial distance, AlexNet
managed to complete the training process, achieving almost the same accuracy. The
reason for this is that the GoogLeNet architecture is much deeper, offering a wider
range of feature recognition. On the other hand, a deeper network leads to a slower
training process, and this is why AlexNet seems to almost achieve GoogLeNet’s
accuracy at the end of 5000 iterations.

Recognizing the emotional (emotional/neutral) content of emotional
expressions.

Finally, in the last phase of the study, the whole dataset was used for the training
process. This means that the computer had to recognize the existence of 7 different
emotions, assuming that the neutral expression represents a separate emotional
class. This is the only approach of the study that AlexNet seems to be more accurate
than GoogLeNet in almost half of the iterations. Again, AlexNet begins at a much
lower accuracy and after the first 3000 iterations, it surpasses the accuracy of
GoogLeNet and manages to preserve this lead until the end. Again both architec-
tures end the training and testing processes with almost the same accuracy, but this
time AlexNet is ahead by 1%. By using the whole dataset as mentioned, an extra
complexity of feature recognition is introduced, and GoogLeNet might be more
efficient after many iterations when AlexNet will be overtrained, due to its lack of
depth, but in the first 5000 iterations, thanks to its shallow architecture, AlexNet
seems to reach and get ahead of GoogLeNet’s accuracy as it manages to train quite
quicker.

5 Conclusions and Future Work

The accurate analysis and interpretation of the emotional content of human facial
expressions is essential for deeper understanding human behavior. Although a
human can detect and interpret faces and facial expressions naturally, with little or
no effort, accurate and robust facial expression recognition by computer systems is
still a great challenge. Deep learning approaches have been examined as a stream of
methods to achieve robustness and provide the necessary robustness and scalability
on new type of data. In this work, we examine the performance of deep learning
methods on facial expression recognition and more specifically, the recognition of
the existence of emotional content and the recognition of the exact emotional
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content of the facial expressions. The experimental study examined the perfor-
mance of GoogLenet and Alexnet on the FER-2013 dataset and revealed quite
interesting results. As future work, a main direction concerns the design and the
examination of the performance of ensembles of deep learning methods. Also
another direction for future work concerns the examination of image preprocessing
procedures and oration alignments processes and how they affect the performance
of the deep learning methods. Exploring this direction, is a main aspect that future
work will examine.
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Analysis of Biologically Inspired Swarm
Communication Models
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Abstract The biological swarm literature presents communication models that

attempt to capture the nature of interactions among the swarm’s individuals. The

reported research derived algorithms based on the metric, topological, and visual

biological swarm communication models. The evaluated hypothesis is that the choice

of a biologically inspired communication model can affect the swarm’s performance

for a given task. The communication models were evaluated in the context of two

swarm robotics tasks: search for a goal and avoid an adversary. The general findings

demonstrate that the swarm agents had the best overall performance when using

the visual model for the search for a goal task and performed the best for the avoid

an adversary task when using the topological model. Further analysis of the perfor-

mance metrics by the various experimental parameters provided insights into specific

situations in which the models will be the most or least beneficial. The importance

of the reported research is that the task performance of a swarm can be amplified

through the deliberate selection of a communications model.
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1 Introduction

Animals that live in groups gain reproductive advantages, benefit from reduced pre-

dation risks, and forage efficiently through group hunting and the distribution of

information amongst group members [20]. The collective behavior of these biolog-

ical systems, for instance, trail-forming ants, schooling fish, and flocking birds, dis-

play tight coordination that appears to emerge from local interactions, rather than

through access to global information or a central controller [8]. Numerical simula-

tions based solely on local interaction rules can recreate coordinated movements of

biological systems living in groups [2, 12, 17, 19, 27, 32].

Proposed communication models for group behavior in animals include the met-

ric [11], the topological [1, 3], and the visual models [31]. The metric model is

directly based on spatial proximity: two individuals interact if they are within a cer-

tain distance of one another [11]. Ballerini et al.’s [3] topological model requires

each individual to interact with a finite number of nearest group members. The visual

model, which is based on the sensory capabilities of animals, permits an individual

to interact with other agents in its visual field [31]. The communication model is

an important element in collective behavior, because it reveals how information is

transferred in the group [31].

The development of communication networks is described as “one of the main

challenges” in swarm robotics [18]. Bio-inspired artificial swarms inherit desirable

properties from their counterparts in nature, such as decentralized control laws, scal-

ability, and robustness [6]. Robustness in the context of this paper implies that the

failure of one agent does not lead to the failure of the entire swarm. Despite the ben-

eficial properties, a poorly designed communication network to an artificial swarm

can lead to undesirable consequences, such as the swarm fragmenting into multiple

components [18].

The evaluated hypothesis is that the three communication models—metric, topo-

logical, or visual—when used by a tasked artificial swarm will affect the swarm’s per-

formance. The evaluation analyzes how the communication models impact swarm

performance for two swarm robotics tasks: searching for a goal and avoiding an

adversary. The findings demonstrate that there is a significant impact of the com-

munication model on task performance, which implies that the task performance

of a deployed artificial swarm is amplified through performance-based selection of

communication models.

Section 2 provides related work. Section 3 describes the coordination algorithms

derived from the biological models. Experiments are presented in Sects. 4 and 5.

Practical applications are discussed in Sect. 6, and an overall discussion with con-

cluding remarks is provided in Sect. 7.
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2 Related Work

Comparative evaluations of swarm communication models can be grouped into three

fields: biology [3, 31], physics [4, 29], and computer science [16].

Prior research compared the communication models to identify which model best

explains the propagation of information within biological species. Stranburg-Peshkin

et al. [31] reported that for golden shiners, Notemigonus crysoleucas, the visual

model best predicts information transfer within the school. The Metric and topologi-

cal models were compared for flocks of European starlings, Sturnus vulgaris [3], and

the topological model most accurately described the starlings’ information network.

The experiment compared the cohesion of simulated swarms using the topological

and metric models, and the topological model generated more cohesive swarms [3].

Physics-based approaches compared the metric and topological models and pre-

sented the resulting system properties. Specifically, Shang and Bouffanais [29] pre-

sented results on the probability of reaching a consensus. Barberis and Albano [4]

analyzed the difference in group orders (alignment and moment) that arise when

using the metric and topological models.

Computer science results include evaluating the metric and topological models

in the context of human-swarm interaction [16]. The human steered the swarm by

manipulating a leader agent that directly influenced other swarm members. It was

determined that a human can more easily manage a swarm using the topological

model.

The presented evaluation appears to be the first to compare the metric, topological,

and visual models for tasks on artificial agents.

3 Coordination Algorithms

The agents are modeled as 2D self-propelled particles. A self-propelled particle is

controlled through updates to its velocity heading, which in turn affects the particle’s

position [12, 15, 32].

The artificial agents are indexed 1 through N, where N is the number of agents

in the swarm. If there is a communication link from agent i ∈ {1,… ,N} to agent

j ∈ {1,… ,N}, where i ≠ j, agent j is a neighbor of agent i. The neighbor set of

agent i, denoted by i(t) is the collection of all the neighbors of agent i at time t.
The coordination of the swarm agents is designed through a multi-level coordi-

nation algorithm. At the higher level of abstraction, an agent’s neighbors are deter-

mined by the communication model. Thus, for agent i, the communication model

constructs the set i(t) at each time t. At the lower abstraction level, agents only

interact with their neighbors and the nature of this interaction is governed by three

rules: repulsion, orientation, and attraction. The rules are based on Reynolds’s rules

for boids (see [27]), which are similar to the biological swarm literature (e.g., [2]).



20 M. Haque et al.

Each agent’s zones of repulsion, orientation, and attraction are centered at the

agent’s position and are parameterized through the radii rrep, rori, and ratt, respec-

tively, where rrep < rori < ratt. The zones are represented as circles in the 2D case.

The heading of each agent i ∈ {1,… ,N} is updated as follows: (1) Veer away

from all agents in i(t) within a distance rrep, (2) Align velocity with all agents in

i(t) that are between a distance of rrep and rori, and (3) Remain close to all agents

j ∈ i(t) that are between a distance of rori and ratt [21, 27].

3.1 Communication Models

The metric model uses a single parameter dmet that represents a distance measure.

All agents within a distance dmet from agent i are i’s neighbors, as shown in Fig. 1a.

Due to the symmetric nature of the model, if j ∈ i(t), then i ∈ j(t). A stochas-

tic version of this model was developed to analyze starling data [5]. The analyzed

models assign neighbors in a deterministic manner.

The topological model is characterized by ntop, measured in units of agents. i(t)
is the set containing the ntop nearest agents from agent i ∈ {1,… ,N}. Zebrafish,

Danio rerio, have 3–5 topological neighbors [1], and starlings coordinate, on aver-

age, with the nearest 6–7 birds [3]. Figure 1b depicts the neighbors of agent i, with

ntop set to 5.

Fig. 1 Agents (triangles)

are shown in relation to the

focus agent (filled triangle),

labeled i. The

communication links from

agent i to its neighbors are

represented with lines.

a Metric: Agent k is at a

distance greater than dmet
(dashed circle) from agent i;
b Topological: ntop is set to

5; c Visual: The visual range

of agent i is shown (dashed
sector), where agent j is in

agent i’s blindspot and agent

k is occluded from agent i by

another agent

(a) Metric (b) Topological

(c) Visual
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A sensing range, a blindspot, and occlusion are used to describe the visual model

[31]. Agent j is a neighbor of agent i, if three conditions are met: (1) The distance

between the two agents is less than dvis, (2) Agent j is not in agent i’s blindspot,

and (3) The line-of-sight between the agents is not occluded by another agent or

object in the environment. A blindspot emerges because the agent’s sensing range is

characterized by an angle ±𝜙 from its heading [12, 15]. Figure 1c depicts agent i’s
sensing range, with 𝜙 set to 2𝜋∕3 radians.

The particular choices made for the values of dmet, ntop, dvis, and 𝜙 can be charac-

terized as inheriting from the “descriptive agenda” of multi-agent learning [22, 30].

The goal in the descriptive agenda is to model the underlying phenomenon from the

social sciences (biological swarm communication models). The biological swarm lit-

erature provides parameter values that are used to compare the different communica-

tion models on tasked artificial swarms. dmet was set to ratt for metric model exper-

iments (e.g., [2, 11]). The visual model experiments set an agent’s dvis to half the

size of the diagonal of the world with 𝜙 = 2𝜋∕3 radians [12, 31]. ntop ∈ {5, 6, 7, 8}
for the topological experiments, allowing some variability, while remaining close to

what was observed in nature [3].

The novelty is the comparative evaluations of the different communication mod-

els that are solely based on the biological swarm literature; hence, strictly inher-

iting from a descriptive agenda. Traditional artificial swarm communication mod-

els do not typically mimic the three communication models (e.g., [9]). Although,

perception-based models that rely on line-of-sight communication, such as a swarm

of foot-bots responding to light sensors, is a variant of the visual model [14]. As

such, one potential application is to serve as a guide for hardware selection.

4 The Search for a Goal Experiment

4.1 Experimental Design

All experiments were conducted using theProcessing open-source programming

language on a 8 GB, 2.6 GHz Intel Core i5 Macbook Pro. The body length, BL, of

each agent was set to 2 pixels. The size of the world was 600 × 600 pixels.

The communication model is the primary independent variable: metric, topolog-

ical, and visual. Additional independent variables were: the number of agents, the

number of obstacles, the radius of repulsion, the radius of orientation, and the radius

of attraction. The experiment combined each of the primary independent variables

with each of the additional independent variables. The resulting pair-wise combi-

nations offers a more comprehensive analysis of the effect of the communication

models.

The number of agents, N, was 50, 100, and 200. The tuple (rrep, rori, ratt) describes

an agent’s repulsion, orientation, and attraction zones. The radius of repulsion, rrep,

was set to either 5 × BL or 10 × BL. The radius of orientation, rori, was assigned to
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Fig. 2 The eight possible interaction zone configurations. The inner-most, middle, and outer-most

circles represent the zones of repulsion, orientation, and attraction, respectively

Fig. 3 An artificial swarm

performing the search for a

goal task using the

topological model. The

center of the goal area is

represented by a star, circles
represent obstacles, agents

are filled triangles, and the

lines denote communication

links. The trial parameters

were: N = 50, Nobs = 0.20N,

rrep = 20, rori = 40,

ratt = 60, and ntop = 6

either 1.50 × rrep or 2.00 × rrep, and the radius of attraction, ratt, was given a value of

either 1.50 × rori or 2.00 × rori. Designing the interaction zones in this manner results

in 23 possible tuples with varying (relative) zone sizes, as illustrated in Fig. 2.

The search for a goal task included environmental obstacles. The number of obsta-

cles, Nobs, was 0%, 10%, or 20% of N.

The objective of the artificial swarm during the search for a goal is to locate

a single goal location,
1

the star in Fig. 3. The goal area’s size is scaled to ensure

the swarm is able to fit within the goal area. The world is bounded by a wall that

exerts a repulsive force. An agent can sense the goal if it is within ratt of the goal

area’s location. Once an agent locates the goal, it can communicate the location to

its neighbors. Agents aware of the goal’s location update their headings by equally

weighing the desire to travel to the goal and the desire to follow the interaction rules,

which was employed by Couzin et al. [11] and Goodrich et al. [16]. The simulation

runs for 1,000 iterations.

The percent reached, denoted by R, determines the number of agents that reached

the goal area, expressed as a percentage of the swarm’s size, N, at the end of the task.

1
Videos of example trials can be found at http://www.eecs.vanderbilt.edu/research/hmtl/wp/index.

php/research-projects/human-swarm-interaction/emulating-swarm-communications/.

http://www.eecs.vanderbilt.edu/research/hmtl/wp/index.php/research-projects/human-swarm-interaction/emulating-swarm-communications/
http://www.eecs.vanderbilt.edu/research/hmtl/wp/index.php/research-projects/human-swarm-interaction/emulating-swarm-communications/
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The latency, L, measures the rate of information transfer in the swarm during

the task. Specifically, latency represents the number of iterations required for the

swarm to transition from a state where at least one agent knows the goal’s location

to all agents being aware of the goal’s location. Degenerate cases are processed by

setting the latency to the maximum possible duration, 1,000 iterations, Based on this

definition, the simulator did not influence this metric.

The clustering coefficient is the fraction of pairs of a swarm agent’s neighbors

that are neighbors with each other [13]. The coefficient ranges from 0, where none

of the swarm agent’s neighbors are neighbors with each other, to 1, where all pairs

of a swarm agent’s neighbors are neighbors with each other. The swarm cluster-
ing coefficient, denoted by SCC, averages the clustering coefficients of all swarm

agents. A high swarm clustering coefficient implies a dense communication net-

work and redundant information passing between the agents. While calculating the

swarm clustering coefficient, the asymmetric nature of the communication links that

resulted from the topological and visual models were ignored. Strandburg-Peshkin

et al. [31] performed the same treatment on directed links when comparing this met-

ric across different communication models for fish data. This metric permits com-

parison to prior findings.

The three hypotheses for this task are:

1. Hsg1: RV > RT > RM ,

2. Hsg2: LV < LT < LM , and,

3. Hsg3: SCCV < SCCT < SCCM .

The subscripts associated with the performance metrics indicate the metric (M), the

topological (T) and the visual (V) models.

Hypothesis Hsg1 assumes that a greater percentage of agents will reach a goal

using the visual model and that the metric model will have the lowest percentage

reached. The hypothesis is based on the potentially long-range sensing capabilities

associated with the visual model. Agents favorably oriented and not occluded by

obstacles or other agents have a higher chance of communicating with an agent that

has located the goal. Moreover, fewer stragglers may arise with the visual and topo-

logical models, thus increasing the percent reached. Hsg1 further assumes that the

limit on ntop, compared to the range of dvis, allows a greater percentage of agents to

arrive at a goal using the visual model, compared to the topological model.

Establishing long-range communication between two agents in the visual model

depends on the orientation of the agents and occluding factors. The range dvis may

not be a limiting factor in identifying neighbors when positioned in the interior of the

swarm. However, any occurrence, regardless of how infrequent, of a long-range link

in the network can act as a short-cut for transferring information. As such, Hsg2 states

that information diffuses faster in swarms using the visual and topological models,

than with the metric model.

Hypothesis Hsg3 states that the swarm clustering coefficient will be the highest

in the metric model and the lowest in the visual model. Communication links in the

metric and topological models are not affected by occlusions, a factor that is expected

to yield sparser networks for the visual model.
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A trial is defined as a single simulation run for a given selection of parameters,

(N,Nobs, rrep, rori, ratt). Twenty-five trials for each parameter selection were com-

pleted. The total number of trials for the search for a goal task was 10,800: 1,800

trials for each of the metric and visual models, and 7,200 trials for the topological

model (1,800 trials for each of the four values of ntop).

4.2 Results

The Anderson-Darling test for normality indicated that all performance metrics: per-

cent reached (A = 431.01, p < 0.001), latency (A = 621.88, p < 0.001), and swarm

clustering coefficient (A = 162.72, p < 0.001) were distributed normally. An analy-

sis of variance (ANOVA) by ntop did not find a significant difference for the topo-

logical model’s performance. Without loss of generality, the topological trials with

ntop = 7 are used in the reported ANOVAs.

The topological and visual models had virtually identical mean percent reached,

as reported in Table 1. The ANOVA found that model type had a significant impact

on the percent reached (F(2, 5398) = 83.91, p < 0.001). A Fisher’s LSD test inves-

tigated the pair-wise differences. There was no significant difference between the

visual and topological models, and the metric model had a significantly lower per-

cent reached compared to the other models.

All data was further analyzed by the number of agents, number of obstacles, and

the radii of repulsion, orientation, and attraction. ANOVAs showed significant inter-

actions between the communication models and the number of agents (F(2, 5398) =
11.26, p < 0.001), the number of obstacles (F(2, 5398) = 8.85, p < 0.001), and the

radius of attraction (F(2, 5398) = 2.52, p = 0.043). No significant interactions were

found for the radii of orientation and repulsion.

Table 1 The search for a goal task descriptive statistics by models. The best means are in bold.

(The percent reached, latency, and swarm clustering coefficient are represented by R, L, and SCC,

respectively)

Model Statistic R L SCC

Metric Mean 27.68 637.79 0.95

Median 0.00 1000.00 0.95

Std. Dev. 41.60 471.73 0.03

Topological Mean 39.08 864.99 0.62

Median 34.00 1000.00 0.62

Std. Dev. 31.75 290.20 0.06

Visual Mean 41.10 438.73 0.31
Median 22.00 31.00 0.33

Std. Dev. 42.56 487.99 0.07



Analysis of Biologically Inspired Swarm Communication Models 25

(a) Percent reached. (b) Percent reached.

(c) Latency (d) Swarm clustering coefficient.

Fig. 4 The search for a goal task performance metrics. Each box plot denotes the first and third

quartile of data. The horizontal lines indicate the medians, the crosses represent the means, and the

circles show the outlying data. The legend for the plots b–d can be found in a, where M, T7, and V
denote the metric, topological (with ntop = 7), and visual models, respectively

Fisher’s LSD test showed that for N = 50, there was no significant difference

between the visual and topological models. The mean percent reached was the high-

est when N = 100 using the topological model. The visual model had the highest

mean percent reached for N = 200. The percent reached for the metric model was

significantly different compared to the other models across all values of N.

The mean percent reached for all the models decreased as additional obstacles

were included, as shown in Fig. 4a.

At ratt = 22.50 there was no significant difference in percent reached for the met-

ric and visual models, see Fig. 4b. The metric model’s mean percent reached was

significantly higher at ratt = 22.50 compared to ratt = 80.

The means are susceptible to the influence of outliers, thus the median values are

also reported as a central tendency measure to better assess the performance of the
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communication models. Further, the interquartile ranges provide additional insights

beyond the means.

The median for the metric model’s percent reached was 0 for the overall results

(see Table 1), which was much lower than the mean. The metric model’s median

was 0 for most of the parameters and their associated values. The exception being

the largest value of N, the obstacle-free trials, the smallest values for the radii of

repulsion and orientation, and the two smallest values for the radius of attraction. The

median was typically below 10 for those cases, and less than 40 for the obstacle-free

trials.

The visual model’s third quartiles were at least 95 and mostly 100, except for

when N = 100, Nobs = 0.2, and for the smallest values of the radii of orientation

and attraction. The high third quartiles indicates that the fourth quartile, or the top

25% of the visual model trials, and at least one of the third quartile trials, had all
agents reaching the goal area. The metric model’s interquartile ranges had much

larger variability than the topological model. Across the various parameters, there

was at least one parameter value for which the metric model’s third quartile was

100%.

Overall, the visual model’s mean latency was the lowest, whereas the topological

model had the highest mean latency, as presented in Table 1. ANOVA showed that

a significant difference existed by communication model (F(2, 5398) = 449.26, p <

0.001). Moreover, pair-wise testing with Fisher’s LSD test found that latency for all

three models were significantly different from each other.

ANOVA found significant interactions by model and the number of agents

(F(2, 5398) = 45.70, p < 0.001), number of obstacles (F(2, 5398) = 40.60, p <

0.001), radii of repulsion (F(2, 5398) = 66.96, p < 0.001), orientation (F(2, 5398) =
28.59, p < 0.001), and attraction (F(2, 5398) = 11.15, p < 0.001).

Fisher’s LSD test showed that the visual model latency at ratt = 22.50 was sig-

nificantly lower than the metric and topological models. At ratt = 80, the analysis

found a significant difference across each of the models, with the metric model’s

mean latency being lowest (see Fig. 4c). An identical trend occurs for the lowest and

highest radius of orientation.

The metric model’s median latency was 1000, for most cases across the number

of agents, number of obstacles, and the radii of repulsion, orientation, and attrac-

tion. The exceptions occurred for the largest value of the radius of repulsion, the two

largest values of the radius of orientation, and the two largest values of the radius of

attraction, as shown in Fig. 4c. The median latency was typically 0 for those excep-

tional cases. Similarly, the topological model’s median latency was 1000 across the

variables. Additionally, the first quartile of the topological model’s latency was 1000

in most cases, and in certain cases, it was at least greater than 400 (see Fig. 4c). The

visual models’ median latency was lower than the mean, and was 0 for the largest

value of the number of agents, the largest value of the radius of repulsion, and the

two largest values of the radii of orientation and attraction (see Fig. 4c).

The mean swarm clustering coefficient was lowest in the visual model and

highest in the metric model. An ANOVA showed a significant difference by model
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(F(2, 5398) = 1810, p < 0.001). Fisher’s LSD test found that all the models had sig-

nificantly different means.

Results from ANOVA showed that for the swarm clustering coefficient, there were

significant interactions by model and the number of agents (F(2, 5398) = 631.50,

p < 0.001), the number of obstacles (F(2, 5398) = 2132.00, p < 0.001), the radii of

repulsion (F(2, 5398) = 320.90, p < 0.001), orientation (F(2, 5398) = 144.40, p =
0.03), and attraction (F(2, 5398) = 166.40, p < 0.001). The results of Fisher’s LSD

test found a significant pair-wise difference between the models across all variables

and associated values.

The median swarm clustering coefficients for all communication models were

generally close to the means across all parameters and associated values. The

interquartile ranges were typically tight, with only a few cases where the maximum

value of one model overlapped with the minimum value of another. Those cases were

the smallest number of agents (see Fig. 4d), the smallest radii of repulsion, orienta-

tion, and attraction.

4.3 Discussion

Hsg1 was partially supported. The topological and visual models outperformed the

metric model in reaching the goal area, yet there was no clear difference between the

visual and topological models.

The visual model latency was substantially lower than the topological and metric

models; however, the metric model outperformed the topological model in terms

of the transfer of information. As such, Hsg2 was also only partially supported. The

metric model’s bidirectional communication links possibly allowed information to

spread faster through the network, compared to the topological model.

Similar to Strandburg-Peshkin et al.’s [31] results for fish, the swarm clustering

coefficient was lowest with the visual model. The clustering coefficient for fish with

the topological model was higher than the metric model, contrary to the findings

presented in Table 1. One possible reason for this difference can be attributed to

the difference in using collective motion experimental data as opposed to modeling

through self-propelled particles.

Based on the general findings, the visual communication model is the best for

artificial swarms completing a search for a goal task when fewer redundant con-

nections are desired, because it resulted in virtually the best percent reached, the

lowest latency, and the lowest swarm clustering coefficient. A low swarm clustering

coefficient can be disadvantageous in noisy environments, which can benefit from

redundant communication links. The metric and topological models are preferred

for such environments, because of their high swarm clustering coefficients. Further-

more, given a noisy environment and a requirement for only a few agents to reach

the goal, then the metric model is preferred. Given the same noisy environment, but

a high percentage of agents needed to reach the goal, then the topological model can

be used. The tradeoff is the model’s high latency.
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The analysis by the radius of attraction, which was the value of dmet, revealed

that the metric and visual models are fundamentally different from one another and

the difference does not stem from the visual model’s larger communication range.

Overall, the visual-based swarms performed better than the metric-based swarms.

However, at the lowest value of the radius of attraction (dmet = 22.50), the metric and

visual models had comparable mean percent reached. Furthermore, for the highest

value of the radius of attraction, or dmet = 80, the latency of the metric model was

shown to be significantly lower than the visual, which used a range of dvis = 425.

5 The Avoid an Adversary Experiment

5.1 Experimental Design

This experiment was performed using the same machine and the experimental para-

meters, other than Nobs, were identical. No obstacles were included in this experi-

ment.

The swarm is required to avoid a predator-like agent
2

during the avoid an adver-
sary task, which is modeled through a repulsive force exerted by the adversary on

the swarm agents [3]. The swarm (dark mass in Fig. 5a) is initially aligned facing the

predator (triangle in Fig. 5a). The predator is the same size as the swarm agents and

can occlude the visual communication between agents. For illustrative purposes, the

rendering of the predator has been increased. The predator (moving in a predefined

path) and swarm travel toward each other and when the swarm agents are within ratt
of the adversary, the predator’s repulsive forces affect the swarm agents’ heading.

Agent positions are initially distributed in an area that is proportional to the swarm’s

size, N. The predator’s starting position is horizontally offset, such that the preda-

tor and swarm travel the same distance to meet, regardless of the swarm’s size. The

effects of the adversary on the swarm are isolated by removing the environmental

obstacles and negating the wall’s repulsive forces. Each trial runs for 200 iterations.

Dispersion, denoted by D, is measured as the percentage increase of the average

agent to agent distance from the start to the end of the trial. The average agent to agent

distance has significance in the biological literature and is one of eleven parameters

considered when characterizing the emergent properties of fish [26].

A connected component is defined as the largest collection of agents in which any

two agents are either connected directly by a communication link or indirectly via

neighbors [13]. The number of connected components, CCO, is calculated at the end

of a trial, and is 1 at the start of a trial.

The percent isolated components, represented by I, is the percentage of swarm

agents that have no neighbors.

2
Videos of example trials can be found at http://eecs.vanderbilt.edu/research/hmtl/wp/index.php/

research-projects/human-swarm-interaction/emulating-swarm-communications/.

http://eecs.vanderbilt.edu/research/hmtl/wp/index.php/research-projects/human-swarm-interaction/emulating-swarm-communications/
http://eecs.vanderbilt.edu/research/hmtl/wp/index.php/research-projects/human-swarm-interaction/emulating-swarm-communications/
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(a) Initial configuration (b) Metric at t = 181

(c) Topological at t = 187 (d) Visual at t = 183

Fig. 5 An artificial swarm performing the avoid an adversary task under all three communica-

tion models. The adversary is denoted by a triangle and swarm’s agents are represented by filled
triangles. The lines between agents denote communication links. The trial parameters were: b–d
N = 50, rrep = 10, rori = 15, ratt = 30; b dmet = 30; c ntop = 6; d dvis = 425

The three hypotheses for this task are:

1. Haa1: DV < DT < DM .

2. Haa2: CCOV < CCOT < CCOM .

3. Haa3: IT < IV < IM .

The subscripts indicate the communication models.

Hypothesis Haa1 assumes that the metric model will generate swarms with the

highest dispersion due to fragmentation. Additionally, the topological and visual

models are expected to attract outlying agents back into the main swarm after the

adversary’s attack, reducing the swarm’s dispersion.

Hypothesis Haa2 states that swarms using the visual model will fragment into

fewer connected components compared to the topological swarms, which will



30 M. Haque et al.

fragment less than the metric-based swarms. The hypothesis is based on the met-

ric model’s limited sensing range.

By definition, the topological model does not produce any isolated agents for any

ntop ≥ 1. Haa3 in relation to the visual and metric models follows the same reason-

ing underlying Haa2: the metric model’s limited sensing range will lead to a higher

percentage of isolated agents than the visual model.

The avoid an adversary task experiments were specified similarly to the search

for a goal task. The total number of trials for the avoid adversary task was 3,600:

600 trials for the metric and the visual models, and 2,400 trials for the topological

model (600 trials for each of the four values of ntop).

5.2 Results

Dispersion (A = 70.16, p < 0.001), number of connected components (A = 179.90,

p < 0.001), and percent isolated components (A = 296.44, p < 0.001) were distrib-

uted normally according to the Anderson-Darling test. Similar to the prior experi-

ment, ntop was set to 7, as the ANOVA found no significant interactions across the

metrics by the topological number. Unlike the previous experiment, a detail account

of the medians and quartile ranges are not reported as the medians were generally

quite close to the means. Furthermore, the interquartile ranges were tight (see Fig. 6).

Overall, dispersion was the highest with the topological model and the lowest

with the visual model (see Table 2). An ANOVA showed that model type had a sig-

nificant impact on dispersion (F(2, 5398) = 562.49, p < 0.001). Fisher’s LSD test

found the mean dispersions to be significantly different across the three models.

ANOVAs revealed that the communication models had significant interactions

for the number of agents (F(2, 5398) = 118.32, p < 0.001), the radius of repulsion

(F(2, 5398) = 363.27, p < 0.001), the radius of orientation (F(2, 5398) = 26.15, p <

0.001), and the radius of attraction (F(2, 5398) = 9.98, p < 0.001).

Dispersion using the topological model was significantly higher compared to the

metric and the visual models for all values of N. Fisher’s LSD tests showed that

the visual model dispersion was significantly lower compared to the metric model

at N = 50. However, no significant difference between the metric and visual model

dispersions was found for the other values of N (see Fig. 6a).

Fisher’s LSD test found that the mean dispersion for the visual model was sig-

nificantly lower than the metric model at rrep = 10, but significantly higher than the

metric model at rrep = 20, as shown in Fig. 6b. Similarly, as the values of the radii

of orientation and attraction increased, the metric model’s dispersion decreased to a

value significantly lower than the visual model.

ANOVA determined that model type had a significant impact on the number of
connected components (F(2, 5398) = 1776.23, p < 0.001). This metric was signif-

icantly different between each of the communication models, as indicated by the

Fisher’s LSD test. The visual model had the lowest number of connected compo-

nents, while metric had the highest, as shown in Table 2.
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(a) Dispersion. (b) Dispersion.

(c) Number of connected
components.

(d)Percent isolated
components.

Fig. 6 The avoid an adversary task performance metrics. The legend for the plots b–d can be

found in a, where M, T7, and V denote the metric, topological (with ntop = 7), and visual models,

respectively

The ANOVAs found significant interactions by the number of agents

(F(2, 5398) = 5.25, p < 0.01), and the radii of repulsion (F(2, 5398) = 772.53, p <

0.001), orientation (F(2, 5398) = 133.89, p < 0.001), and attraction (F(2, 5398) =
53.72, p < 0.001).

Fisher’s LSD test showed that the number of connected components was signif-

icantly different between all three models across the number of agents. Visual had

the lowest number of connected components, whereas metric had the highest, for all

values of N.

The metric model generated fewer connected components as the radius of attrac-

tion increased (see Fig. 6c). At ratt = 80, there was no significant difference between

the metric and visual models in the number of connected components.
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Table 2 The avoid an adversary task descriptive statistics by models. Dispersion, the number

of connected components, and the percent isolated components are denoted by D, CCO, and I,

respectively

Model Statistic D CCO I

Metric Mean 275.61 4.46 1.19

Median 144.71 4.00 1.00

Std. Dev. 334.85 2.78 1.38

Topological Mean 493.92 1.75 0.00
Median 421.50 2.00 0.00

Std. Dev. 356.32 0.79 0.00

Visual Mean 232.03 1.35 0.33

Median 168.68 1.00 0.00

Std. Dev. 196.64 0.58 0.54

The visual model produced values for the percent isolated components that

were typically lower than the metric model (Table 2). ANOVA found a significant

difference across the communication models (F(2, 5398) = 489.78, p < 0.001), and

Fisher’s LSD test found that the models had significantly different means from each

other.

ANOVAs indicated that communication models had significant interactions with

the number of agents (F(2, 5398) = 8.14, p < 0.001), the radius of repulsion

(F(2, 5398) = 232.23, p < 0.001), the radius of orientation (F(2, 5398) = 32.24,

p < 0.001), and the radius of attraction (F(2, 5398) = 29.28, p < 0.001).

Similar to the connected components evaluations, the metric model’s percent iso-

lated components decreased as the size of the radii of repulsion, orientation, and

attraction (see Fig. 6d) increased. At, ratt = 80, the metric model’s percent isolated

components was significantly lower than the visual model.

5.3 Discussion

The topological model produced the highest dispersion compared to the other mod-

els. Haa1 was only partially supported due to the topological’s higher dispersion com-

pared to the metric model.

Haa2 was fully supported, as the visual model produced the smallest number of

connected components, whereas the metric model generated the highest number of

connected components. The visual model’s percent isolated components was lower

than the metric model, which fully supports Haa3.

A high dispersion in some biological species may serve to confuse a predator from

singling out a particular swarm agent [3]. Thus, if a higher dispersion is preferred,

the general findings indicate that the topological communication model is the best

for the avoid an adversary task, because it offers the highest dispersion, paired with
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low connected components, and no isolated components. A high dispersion can be

disadvantageous if environmental features physically constrain the swarm’s move-

ment. The metric and the visual models are preferred for such environments, as they

provide a lower dispersion. However, if a task requires a low percentage of isolated

components, then the visual model is preferred, otherwise, the metric communica-

tion model will suffice.

The results across independent variables did not find the visual model’s relatively

larger communication range to provide an unfair advantage over the metric model.

At the highest radius of attraction, or dmet = 80, there was no significant difference

in number of connected components between the metric and visual models, despite

dvis being 425.

6 Practical Applications

This research is intended to serve as the foundation of a more complete examination

of what factors impact swarm performance. To date, this research has focused on the

set of behavior, environment, task, and hardware (BETH) as factors likely to impact

swarm performance. The behavioral components in this research were the commu-

nication model used and the values set for the radii of repulsion, orientation, and

attraction. The environmental variables in this research were the number of obsta-

cles and the number of adversaries, but future research will explore other variables

such as size of the area of deployment, environmental hazards, and characteristics

of adversaries. This research only considered two tasks, search for a goal and avoid

adversary, but these simple tasks form the basis of many more complex tasks with

both military and civilian applications [7, 10]. The number of agents deployed to

a task was the primary hardware limitation in this research, but as discussed in the

previous section, the radii of repulsion, orientation, and attraction can be limited by

hardware capabilities; other physical factors such as agent size and speed are outside

the scope of this research, but future research needs to explore the impact these fac-

tors have singularly and in concert with the other components of BETH. Identifying

the BETH variables that impact swarm performance and quantifying the effects of

their interactions enables the development of a decision support software to optimize

the likelihood of successful task completion for any given combination of known and

unknown values of the components of BETH.

The body of research that explores decision support software (DSS) extends as

far back as the 1970s and encompasses many different algorithms for processing

the available information [25]. The goal of such software for operators of remotely

deployed mobile robots is to provide decision support by simplifying the informa-

tion presented to the operator [33]. A full examination of DSS and the design of

interfaces for robot operators would far exceed the available space, and the design,

implementation, and validation of such an interface requires its own lengthy research

process. A simplified example of design and use of such an interface is given below
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Fig. 7 An example interface using the BETH DSS model is shown. This simple wireframe illus-

trates how gathered data can reduce the decisions an operator needs to make in order to optimize

the performance of a remotely deployed artificial swarm

to illustrate how knowledge of the factors that impact swarm performance can be

used to support the operator of a robotic swarm.

Figure 7 shows an example interface that uses the BETH model to organize and

simplify information for the operator deploying a swarm of robots. The available



Analysis of Biologically Inspired Swarm Communication Models 35

performance factors are presented grouped by Behavior, Environment, and Task.

Hardware factors that impact swarm performance are made implicit by limiting the

behavior, environment, and task factors to values permitted by the available hard-

ware, freeing the operator from tracking hardware capabilities.

To use the interface, the operator must select a Task Type. The operator can then

assign values for as many of the remaining performance factors as desired. For exam-

ple, the operator in Fig. 7 is creating a Search for a Goal task. The operator has spec-

ified the topological communication model, but has left the padlock button toggled

to “unlocked.” Thus, the system the system is allowed to change the communication

model during the optimization process, if a different model has a higher likelihood

of success. The three radii of repulsion, orientation, and attraction are shown greyed

out; the interface makes the information available but clearly indicates that the val-

ues of the radii cannot be changed by the operator (presumably the values are limited

by the hardware capabilities of the swarm).

The operator has the option to supply information about the Environment where

the swarm will be deployed; in this example the operator has provided a value for

Known Hazards and is selecting a value for Obstacle Density. The operator has

locked the Known Hazards field and left the Obstacle Density field unlocked, indi-

cating that the system can adjust the Obstacle Density value if provided with new

information, but that the information the operator has provided about he Known

Hazards is to be assumed true even if the system cannot detect those hazards.

The Number of Agents can be set by the operator. The operator in the example

the operator can choose between 50 and 100 agents although the value 200 is greyed

out, indicating that some of the operators robots are otherwise engaged, lost, or dam-

aged. The operator can press the Optimize button, and the system will validate the

deployment variables. If the system determines that changing the values of any of

the unlocked Behavior or Task variables will improve the likelihood of success, or

if the system has updated information for any unlocked environmental variables, the

system will update the variables with the new values, highlighting the fields that have

changed so the operator understands the changes. When the operator is satisfied with

the deployment configuration, pressing the “Commit” button sends the command to

the swarm.

7 Discussion and Conclusion

The presented research focuses on a general hypothesis that the selection of commu-

nication model impacts the swarm’s task performance. The general findings demon-

strated that there was a significant impact of model type on task performance. Fur-

ther, the results show that the visual model resulted in the best overall task perfor-

mance for the search for a goal task, while the best overall performance was achieved

with the topological model for the avoid an adversary task. The relevance of this out-

come is that the intelligence of a remotely deployed swarm is amplified through the

deliberate selection of a communication model. Additional analysis of typical arti-
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ficial swarm tasks is necessary to fully support the general hypothesis; however, the

presented results provide preliminary evidence that artificial swarm design needs to

consider the communication model and task pairing in order to optimize the overall

swarm performance.

Based on the presented search for a goal and avoid an adversary task results, con-

nections can be made to the biological swarm literature. Couzin et al. [12] showed

that the size of the radius of repulsion did not have an effect on the transitions between

different swarm movement patterns. Rather, the relative sizes of the radius of orienta-

tion to the radius of repulsion and the radius of attraction to the radius of orientation

produces the transitions. For instance, simulated swarms rotate in a torus when the

ratio of the radius of orientation to the radius of repulsion is relatively low and the

ratio of the radius of attraction to the radius of orientation is relatively high. Pre-

sented results for the search for a goal task conform to Couzin et al.’s [12] results in

relation to the radius of repulsion. The duration of this task (1000 iterations) resulted

in trials that demonstrated swarm movement patterns, as found by Couzin et al. Sim-

ilar results were expected for the avoid an adversary task; however, were not found

due to the task’s short duration (200 iterations).

The scope of the reported research does not follow the so-called prescriptive

agenda where the values of the model parameters are free design choices [22, 30];

thus, dvis is not varied. This line of inquiry will become necessary when prescrib-

ing the communication models to specific platforms, such as the s-bots, which are

equipped with proximity and vision sensors [24]. Analyzing the effects of varying

model parameters, such as dmet and dvis will also be necessary due to differences in

the communication ranges across the platforms that will attempt to adopt the mod-

els. For instance, the metric model can be realized with omni-directional antennas,

as well as infrared LED sensors. The LED range is considerably smaller (10 cm in

Kilobots [28]). Similarly, exploring the effects of different values of ntop will be use-

ful. The topological model can be implemented using band-limited communication

channels [16], and for infrared-based, band-limited platforms, such as the r-one, ntop
will be inversely related to the maximum communication range [23].
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Target-Dependent Sentiment Analysis
of Tweets Using Bidirectional Gated
Recurrent Neural Networks

Mohammed Jabreel, Fadi Hassan and Antonio Moreno

Abstract The task of target-dependent sentiment analysis aims to identify the sen-

timent polarity towards a certain target in a given text. All the existing models of this

task assume that the target is known. This fact has motivated us to develop an end-to-

end target-dependent sentiment analysis system. To the extent of our knowledge, this

is the first system that identifies and extract the target of the tweets. The proposed

system is composed of two main steps. First, the targets of the tweet to be analysed

are extracted. Afterwards, the system identifies the polarities of the tweet towards

each extracted target. We have evaluated the effectiveness of the proposed model on

a benchmark dataset from Twitter. The experiments show that our proposed system

outperforms the state-of-the-are methods for target-dependent sentiment analysis.

1 Introduction

Sentiment analysis (SA) (also known as opinion mining) is the problem of identify-

ing people’s opinions, sentiments or attitudes expressed in text. It normally involves

the classification of text into categories such as positive, negative and neutral.

Due to the rapid growth of social networks on the Internet, SA has been applied

to analyse opinions on Twitter, Facebook and other digital communities in real time.

Sentiment analysis has now a wide range of applications in fields like marketing,

management, e-health, politics and tourism [10, 11, 19]. For instance, it can enhance

the capabilities of customer relationship management systems and recommenders
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camera ba ery life
target context

Targeted SA Targeted SA

target context

+ -

Its  camera  is wonderful but the   ba ery life   is too shortcamera ba ery life
target context

Targeted SA Targeted SA

target context

+ -

Fig. 1 Example of the two steps. The filled rectangle represents the target extraction step, where

the rounded rectangle represents the sentiment analysis step and it receives two inputs the extracted

target and its context

by finding out which features customers are particularly interested in or avoiding the

recommendation of items that have received unfavourable feedbacks.

SA can be done at different levels. Coarse-grained analysis attempt to extract the

overall polarity on a document or sentence level, whereas, in a fine-grained level of

analysis, the problem is to identify the sentiment polarity towards a certain target in

a given text (Target-dependent sentiment analysis) [3, 13, 35]. In this problem it is

necessary to determine the target and its context, which can be defined as follows:

Target A target is an entity (person, organisation, product, object, etc.) referred

to in a text, about which an opinion is expressed.

Context The context of the target is the text surrounding it, that provides informa-

tion about the polarity of the sentiment towards it.

It is quite usual to give several opinions on different aspects of an object in a single

sentence. For example, the text “I have got a new mobile. Its camera is wonderful but
the battery life is too short.”, gives both positive and negative remarks about a mobile

phone. It may be seen that the example contains three targets (“mobile”, “camera”

and “battery life”) and the sentiment polarities towards them can be seen as “neutral”,

“positive” and “negative”, respectively. Such fine-grained opinions are important for

both producers and customers [22]. The importance of target information has been

proven by previous studies. It has been shown [13] that about 40% of the errors

of sentiment analysis systems are caused by the lack of information about the target.

Thus, the target-dependent SA problem can be addressed by designing a system with

two steps, shown in Fig. 1. The first step aims to extract or identify the target in a

given text, while the objective of the second step is to identify the opinion expressed

in the text towards the extracted target. Those steps are commented in the following

subsections.
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1.1 Target Identification

Target-dependent sentiment analysis on Twitter is the problem of identifying the

sentiment polarity towards a certain target in a given tweet. Extracting the targets

from the tweets is the key task in this problem. However, all the existing studies

of this task assume that the target is known. Thus, we have developed a system to

identify automatically the explicit targets of the tweets.

Recently, a similar problem to target identification, known as aspect term extrac-
tion, has been studied extensively. There are two main kinds of approaches: super-
vised and unsupervised. In the supervised approaches machine-learning systems are

trained on manually annotated data to extract targets in the reviews. The most com-

mon techniques employed in supervised approaches are decision trees, support vec-

tor machines, K-nearest neighbour, Naive Bayesian classifiers and neural networks

[14, 34]. On the other hand, unsupervised approaches aim to automatically extract

product features using syntactic and contextual patterns without the need of anno-

tated data [21, 22].

There is one particularly interesting supervised approach, which conceptualizes

the aspect extraction problem as a sequence labeling problem [12]. The most suc-

cessful sequence labeling systems are probabilistic graphical models such as Hid-

den Markov Models and Conditional Random Fields [16, 29]. However, their main

drawback is that they rely heavily on a set of hand-crafted features, whose definition

is very time consuming task. Recently, deep neural networks have been utilized to

extract automatically high-level features in many tasks such as speech recognition

[5], text classification [15], image classification [7], etc. Recurrent Neural Networks

(RNNs) have been proved to be a very useful technique to represent sequential data

such as text. These models have also shown great success in solving sequence label-

ing tasks, e.g. Named Entity Recognition and Part-Of-Speech tagging [17, 18]. Fol-

lowing these approaches we propose to use a bidirectional gated recurrent neural

network to solve the problem of target extraction, as described in Sect. 3.1.

1.2 Target-Dependent Sentiment Analysis

Most of the current studies on sentiment analysis are inspired by the work presented

in [26]. Machine learning techniques have been used to build a classifier from a set of

sentences with a manually annotated sentiment polarity. The success of these models

is based on two main facts: the availability of a large amount of labeled data and the

intelligent manual design of a set of features that can be used to differentiate the

samples.

Their performance basically depends on defining an appropriate set of efficient

classifying features [4, 20, 25, 28]. For instance, the authors in [24] and [10] used

diverse sentiment lexicons and a variety of hand-crafted features in their sentiment

analysis systems.
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Target-dependent sentiment analysis is also regarded as a text classification prob-

lem in the literature. Standard text classification approaches such as feature-based

Support Vector Machines [13, 26] can be used to build a sentiment classifier. For

instance, the work presented in [13] combined manually designed target-independent

features and target-dependent features with expert knowledge, a syntactic parser and

external resources.

Recent studies, such as the works proposed by [3, 33, 35, 36], use neural net-

work methods and encode each sentence in a continuous and low-dimensional vec-

tor space without feature engineering. Dong et al. [3] transformed a sentence depen-

dency tree into a target-specific recursive structure, and used an Adaptive Recursive
Neural Network to learn a higher level representation. Vo and Zhang [35] used rich

features including sentiment-specific word embedding and sentiment lexicons. The

work presented in [36] modeled the interaction between the target and the surround-

ing context using a gated neural network. Tang et al. [33] developed long short-term

memory models to capture the relatedness of a target word with its context words

when composing the continuous representation of a sentence. Most of these stud-

ies rely on the idea of splitting the sentence/text into target, left context and right

context.

Unlike previous studies, we propose a target-dependent bidirectional gated recur-
rent unit (TD-biGRU), which is capable of modeling the relatedness between target

words and their contexts by concatenating an embedded vector that represents the

target word(s) with two vectors that capture both the preceding and following con-

textual information. Section 3.2 describes the proposed model in detail.

The rest of this chapter is structured as follows. Section 2 presents the basic con-

cepts used in this work. In Sect. 3 the proposed models are described. The experi-

ments and results are presented and discussed in Sect. 4. Finally, in the last section

the conclusions and lines of future work are outlined.

2 Background

This section explains briefly the basic concepts used in this work. We start by

explaining the vector representations of words, and then we describe recurrent neural

networks, gated recurrent units, bidirectional recurrent neural networks and the soft-

max classifier.

2.1 Vector Representations of Words

Word embeddings are an approach for distributional semantics which represents

words as vectors of real numbers. Such representation has useful clustering prop-

erties, since the words that are semantically and syntactically related are represented
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by similar vectors [23]. For example, the words “coffee” and “tea” will be very close

in the created space.

When a text has to be analysed, the first step is to map each word into a con-

tinuous, low dimensional and real-valued vector, which can later be processed by

a neural network model. All the word vectors are stacked into a matrix E ∈ ℝd×N
,

where N is the vocabulary size and d is the vector dimension. This matrix is called

the embedding layer or the lookup table layer. The embedding matrix can be ini-

tialized using a pre-trained model like word2vec or Glove [23, 27]. In this work, the

embedding layer contains a pre-trained model which was learned using the Glove
algorithm [27] on a large corpus of two billions of tweets (short textual messages

sent through the Twitter social network).

2.2 Recurrent Neural Networks (RNNs)

A Recurrent Neural Network (RNN) is a type of neural network architecture specif-

ically designed for modeling sequential inputs of varying lengths such as text.

As shown in Fig. 2, at each time step t, it takes the input vector x ∈ ℝd
and the

hidden state vector ht−1 ∈ ℝdh and outputs the next hidden state ht by applying the

following equation:

ht = 𝜙
(
xt, ht−1

)
(1)

Usually, h0 is initialized to a zero vector in order to calculate the first hidden state.

The most common approach is to use the affine transformation operation followed

by an element-wise non-linearity, e.g. Rectified Linear Unit (ReLU), as the function

𝜙 that produces the next hidden state vector ht.

𝜙(xt, ht−1) = f (Wxt + Vht−1 + b) (2)

In this formula, W ∈ ℝd×dh , V ∈ ℝdh×dh and b ∈ ℝdh are the parameters of the

model, and f is an element-wise non-linearity.

In practice, the major issue of RNNs using these transition functions is the diffi-

culty of learning long-term dependencies due to vanishing/exploding gradients [1].

Fig. 2 Recurrent Neural Network
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Long short-term memory (LSTM) units [9] and Gated Recurrent Unit (GRU) [2]

have been specifically designed to address this problem. In this work we use a GRU

as 𝜙, and we explain how it is used to produce the hidden state vector ht in the next

subsection.

2.3 Gated Recurrent Unit (GRU)

Gated recurrent units (GRUs) were designed to have more persistent memory, mak-

ing them very useful to capture long-term dependencies between the elements of a

sequence. GRUs are the basic components of the model proposed in this chapter.

Figure 3 shows a graphical depiction of a gated recurrent unit.

This kind of units have reset (rt) and update (zt) gates. The former has the ability

to completely reduce the past hidden state ht−1 if it considers that it is irrelevant to

the computation of the new state, whereas the later is responsible for determining

how much of ht−1 should be carried forward to the next state ht.
The output ht of a GRU depends on the input xt and the previous state ht−1, and

it is computed as follows:

rt = 𝜎
(
Wr ⋅ [ht−1; xt] + br

)
(3)

zt = 𝜎
(
Wz ⋅ [ht−1; xt] + bz

)
(4)

h̃t = tanh
(
Wh ⋅ [(rt ⊙ ht−1); xt] + bh

)
(5)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (6)

In these expressions rt and zt denote the reset and update gates, h̃t is the can-

didate output state and ht is the actual output state at time t. The symbol ⊙ stands

for element-wise multiplication, 𝜎 is a sigmoid function and ; stands for the vector-

Fig. 3 Gated Recurrent

Unit (GRU). Figure source
http://www.colah.github.io/

posts/2015-08-

Understanding-LSTMs/

http://www.colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.colah.github.io/posts/2015-08-Understanding-LSTMs/
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concatenation operation. Wr,Wz,Wh ∈ ℝdh×(d+dh) and br, bz, bh ∈ ℝdh are the para-

meters of the reset and update gates, where dh is the dimension of the hidden state.

2.4 Bidirectional RNNs

The standard RNN, described in Sect. 2.2, reads an input sequence X = (x1,… , xn)
in a forward direction (left-to-right) starting from the first symbol x1 and ending in

the last one xn. Thus, it processes sequences in temporal order, ignoring the future

context. For many tasks on sequences it is beneficial to have access to future as well

as to past information. For example, in text processing, decisions are usually made

after the whole sentence is known. The Bidirectional BiRNN architecture [6] pro-

posed a solution for making predictions based on both past and future information.

Figure 4 illustrates the architecture of a BiRNN, it consists of forward ⃖⃗𝜙 and

backward ⃖⃖𝜙 RNNs. The first one reads the input sequence in a forward direction

(x1,… , xn) and produces a sequence of forward hidden states (⃖⃖⃖⃗h1,… , ⃖⃖⃖⃗hn), whereas

the former reads the sequence in the reverse order (xn,… , x1) resulting in a sequence

of backward hidden states (⃖⃖⃖⃖hn,… , ⃖⃖⃖⃖h1).
We obtain a representation for each word xt by concatenating the corresponding

forward hidden state ⃖⃖⃗ht and the backward one ⃖⃖⃖ht. The following equations illustrate

the main ideas:

⃖⃖⃗ht = ⃖⃗𝜙(xt, ⃖⃖⃖⃖⃖⃖⃗ht−1) (7)

⃖⃖⃖ht = ⃖⃖𝜙(xt, ⃖⃖⃖⃖⃖⃖⃖ht−1) (8)

ht = [ ⃖⃖⃗ht; ⃖⃖⃖ht] (9)

In this work we use two GRUs, one as ⃖⃗𝜙 and the other as ⃖⃖𝜙. We call this model

biGRU.

Fig. 4 Bidirectional Recurrent Neural Network
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2.5 Softmax Classifier

The softmax classifier is a feed-forward neural network followed by the softmax

function, which is used for multi-class classification (under the assumption that the

classes are mutually exclusive). It takes as input a vector v ∈ ℝm
and produces the

probabilities for each class as follows:

p(y = i|v;W, b) =
exp(wT

i v + bi)
∑C

j=1 exp(w
T
j v + bj)

, i = 1, 2,… ,C (10)

This can be interpreted as the (normalized) probability assigned to each class i
given the input vector v, and parameterized by W ∈ ℝm×C

and b ∈ ℝC
, where C is

the number of classes, wi is the i-th column of W and bi is a bias term.

3 Model Description

We describe in this section the proposed model to tackle the problem of target-

dependent SA. It is composed of two main steps. First, the target of the tweet to

be analysed is identified as described in next subsection. Once the target has been

obtained, it is passed together with the tweet as input to the model described in

Sect. 3.2 to determine the sentiment polarity.

3.1 Target Identification

In this step we aim to extract the targets which customers expressed their opinions

on. Target identification can be typically regarded as a kind of sequence labeling

problem in which the text (i.e. a sequence of words) can be represented using the

IOB2 tagging scheme [30]. The idea is that each word in a given text is labeled by

one of the tags I, O, or B, which indicate if the word is inside, outside, or at the

beginning of a target respectively.

Following [12] we have used a bidirectional gated recurrent neural network to

extract the targets from a given text. This model, called TI-biGRU, reads a sequence

of words and predicts a sequence of corresponding IOB2 tags. Once we have the

predicted sequence of IOB2 tags for a text, we can interpret it and extract the targets.

Figure 5 shows an example of the application of the proposed model to the prob-

lem of opinion target identification. Its main steps are the following. First, the words

of the input sentence are mapped to vectors of real numbers as explained in Sect. 2.1,

resulting in a sequence of vectors x1, x2,… , xn. Afterwards, the resulting sequence

is passed to a biGRU to produce a sequence of recurrent states h1, h2,… , hn. Finally,
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Fig. 5 TI-biGRU model for target identification

each produced sequence element hi is passed through a softmax layer to predict the

probability distribution over the three possible output tags (I, O or B).

The model is trained to minimize the following objective function, which is the

cross-entropy between the expected tag and the predicted tag distribution of each

word i:

J = −
∑

s∈S

n∑

i=1

3∑

t=1
psi (t)log(P(y = t|hsi )) (11)

In this expression psi (t) ∈ {0, 1} is the ground-truth function which indicates

whether tag t is the correct tag for the word i in the sentence s and S is the set of

the sentences in the training set. The derivative of the objective function J is taken

through back-propagation with respect to the whole set of parameters of the model.

These parameters are optimized using the stochastic optimization method RMSProp.
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Fig. 6 TD-biGRU model for target-dependent sentiment classification

3.2 Target-Dependent Sentiment Analysis

Figure 6 shows the proposed model for the problem of target-dependent sentiment

classification. Its main steps are the following. First, the words of the input sentence

are mapped to vectors of real numbers. Then, the input sentence is represented by a

real-valued vector using the TD-biGRU encoder by concatenating the vectors ⃖⃖⃖⃗hn, ⃖⃖⃖⃖hn
and xv, formally:

X = [⃖⃖⃖⃗hn; xv; ⃖⃖⃖⃖hn] (12)

Here xv is the vector representation of the target word(s). If the target is a single

word, its representation is the embedding vector of that word. If the target is com-

posed of multiple words, such as “battery life”, its representation is the average of

the embedding vectors of the words [32].

In this way, the obtained vector summarizes the input sentence and contains

semantic, syntactic and/or sentimental information based on the word vectors.

Finally, this vector is passed through a softmax classifier to classify the sentence

into positive, negative or neutral.

We trained the system to minimize the following categorical cross-entropy:

J = −
∑

s∈S

3∑

c=1
Gc(s)log(P(y = c|s)) (13)

In this expression S is the training set and Gc(s) ∈ {0, 1} is the ground-truth func-

tion which indicates whether class c is the correct sentiment category for sentence s.
The derivative of the objective function is taken through back-propagation with

respect to the whole set of parameters of the model, and these parameters are updated

with the stochastic gradient descent. The learning rate is initially set to 0.1 and the

parameters are initialized randomly over a uniform distribution in [−0.03, 0.03]. For

the regularization, dropout layers [8, 31] are used with probability 0.5 on the lookup-

table output to the GRU input and on the concatenation output to the softmax input.
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4 Experiments and Results

4.1 Datasets

We evaluated the effectiveness of the proposed models by using them in the super-

vised tasks of target identification and target-dependent sentiment classification on

the benchmark dataset provided in [3]. The dataset contains 6248 training exam-

ples and 692 examples in the testing set. Each example in the dataset contains the

sentence, the target and the label of sentiment polarity. In case the sentence contains

more than one target with different polarities it is repeated with each one. The numer-

ical description of the positive, negative and neutral examples is shown in Table 1.

4.2 Evaluation Metrics

The evaluation metrics of the target identification problem are the precision (the

number of correct targets divided by the number of all returned targets), recall (the

number of correct targets divided by the number of targets that should have been

returned) and F1 (the harmonic mean of precision and recall), which can be defined

as follows:

Precision = |S ∩ G|
|S|

(14)

Recall = |S ∩ G|
|G|

(15)

F1 =
2 ⋅ Precision ⋅ Recall
Precision + Recall

(16)

Here S is the set of the predicted targets that the system returned for all the test

examples, and G is the set of the gold (correct) targets.

Table 1 Numerical description of the dataset

Training Testing Percentage (%)

#Positives 1562 173 25

#Neutrals 3124 346 50

#Negatives 1562 173 25

Total 6248 692
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The evaluation metrics of the target-dependent sentiment analysis system are the

classification accuracy (the percentage of examples that are correctly classified) and

the Macro-F1 measure (the averaged F1 measure over the three sentiment classes).

4.3 Results and Discussions

4.3.1 Target Identification

As stated before, all the existing models of target-dependent SA assume that the

target is known. Thus, to the extent of our knowledge, this is the first target-dependent

SA system that identifies and extracts the target of the tweets. The typical RNN model

defined in Eq. (2) is used as our baseline. We investigated the effectiveness of TI-

biGRU, which is used to automatically identify the target from a tweet, by comparing

it with the baseline model.

In Table 2 baseline-I and baseline-II denote the typical RNN and biRNN respec-

tively, while TI-GRU is the simplified version of TI-biGRU in which only the past

information is considered, ignoring the bidirectionality. It is clearly shown that TI-

biGRU outperforms the other models. Another interesting observation from the

reported result is that both baseline-II and TI-biGRU perform better than their

relaxed versions (i.e. baseline-I and TI-GRU). Such conclusion confirms the effec-

tiveness of BiRNNs in this kind of tasks.

From the table, we observe that both TI-GRU and TI-iGRU perform better than

the baselines (i.e. the standard RNN based models). In term of recall all the models

give interesting results. This can be attributed to the fact that achieving a recall of

100% is trivial by assuming that all words in the sentence/tweet are targets. There-

fore, recall alone is not enough and it is also necessary to measure the number of

incorrect returned targets by computing the precision.

In addition, we can see that there are remarkable improvements in term of preci-

sion. For example, TI-biGRU’s precision score is the best and it has 12.8%, 9.57%

and 7.65% precision improvements compared with those of baseline-I, baseline-II

and TI-GRU, respectively. On the other hand, there are smaller improvements in

terms of recall.

Table 2 Comparison of our model to the baselines on target identification. Best scores are shown

in bold

Model Precision Recall F1

baseline-I 77.90 87.57 82.44

baseline-II 79.76 90.17 84.67

TI-GRU 81.18 90.89 86.10

TI-biGRU 87.39 91.18 89.25



Target-Dependent Sentiment Analysis of Tweets . . . 51

4.3.2 Target-Dependent Sentiment Analysis

We compared the proposed model with the state-of-the-art methods used in the task

of target-dependent sentiment classification, including:

∙ SVM-indep: Support Vector Machine classifier built with target-independent fea-

tures, such as unigram, bigram, punctuations, emoticons, hashtags and the num-

bers of positive or negative words in the General Inquirer sentiment lexicon [13].

∙ SVM-dep: SVM-indep model extended by adding a set of features that represent

the target [13].

∙ Recursive RNN: a recursive neural network is employed to learn the feature rep-

resentation of the examples over a transferred target-dependent dependency tree

[3].

∙ AdaRNN: extension of the recursive RNN which uses more than one composition

function and adaptively selects them according to the input [3]. AdaRNN has three

variations: AdaRNN-w/oE, AdaRNN-w/E and AdaRNN-comb. Unlike AdaRNN-

w/oE, AddRNN-w/E model uses the dependency type in the process of compo-

sition function selection. AddaRNN-comb combines the root vectors obtained by

AdaRNN-w/E with the unigram and bigram features, and then they are fed into a

SVM classifier.

∙ Target-ind/Target-dep: SVM classifiers based on a rich set of target-independent

and target-dependent features [35]. This model has an extension, called Target-
dep+, in which sentiment lexicon features have been incorporated.

∙ LSTM, TD-LSTM, TC-LSTM: these methods are based on the long short-term
memory model proposed by [33]. In the LSTM model the target is ignored. The

idea behind TD-LSTM is to use two LSTM neural networks, so that the left one

represents the preceding context plus the target and the right one represents the

target plus the following context. TC-LSTM is an extension of TD-LSTM in which

a vector that represents the target is concatenated to each context word.

The values under the section “A” in Table 3 represent the results of the base-

line model (basic bidirectional gated recurrent units—biGRU—without incorporat-

ing target information), the new TD-biGRU model in case the targets are manu-

ally given and the results when we apply the two steps of our system to analyse the

tweets. Each tweet is passed to the system to first extract the targets and then iden-

tify the sentiment polarities towards these targets. Section “B” contains the results

of the compared models (obtained from their associated papers). With the exception

of AdaRNN, each approach presented in Table 3 has a target-independent version

(which does not incorporate any information about targets) and two or three target-

dependent versions. For instance, in our case biGRU is the target-independent ver-

sion.

As it can be observed from the reported results, the target-independent mod-

els (SVM-indep, Target-indep, LSTM and biGRU) have a worst performance than

the corresponding models that consider the target information (SVM-dep, Target-

dep*, TD-LSTM, TC-LSTM and TD-biGRU). This conclusion confirms the fact that

ignoring the target information causes about 40% of sentiment analysis errors [13]. It
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Table 3 Comparison of different methods on target-dependent sentiment classification. Evaluation

metrics are accuracy and macro-F1. Best scores are shown in bold

Model Accuracy Macro-F1

A. Our model
biGRU 69.94 68.40

TD-biGRU 72.25 70.47
End-To-End-TD 70.08 68.22

B. State-of-the-art systems
SVM-indep 62.70 60.20

SVM-dep 63.40 63.30

Recursive NN 63.00 62.80

AdaRNN-w/oE 64.90 64.44

AdaRNN-w/E 65.80 65.50

AdaRNN-comb 66.30 65.90

Target-ind 67.30 66.40

Target-dep 69.70 68.00

Target-dep
+

71.10 69.90

LSTM 66.50 64.70

TD-LSTM 70.80 69.00

TC-LSTM 71.50 69.50

may also be notived that neural-based models perform better than the feature-based

SVM classifiers.

The novel TD-biGRU model outperforms the state-of-the-art models both in

terms of accuracy and Macro-F1. Our end-to-end approach gives a comparable

results to those models, including our TD-biGRU model, that assume the target is

known.

To get more insight on this result, we analyzed the confusion matrix given by

the TD-biGRU model to figure out which are the most common incorrect cases.

Figure 7 shows the confusion matrix obtained by applying TD-biGRU. As observed,

the matching between the true and the predicted labels is quite high (matrix diago-

nal). Out of the 192 misclassified samples, 76 (39.6%) of them were misclassified

between negative and neutral (i.e., either negative samples were misclassified as neu-

tral or viceversa) and 31 (16.1%) samples were misclassified between negative and

positive. The number of samples misclassified between positive and neutral is 85

(44.3%).

This analysis shows that most of the misclassified examples are related to the

neutral category. We believe that this problem can be handled by adding more infor-

mation (e.g. lexicon information). We leave the study of this hypothesis for the future

work.
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Fig. 7 Confusion matrix

5 Conclusion

We have developed an end-to-end target-dependent Twitter sentiment analysis sys-

tem. The proposed model has the ability of identifying and extracting the target of the

tweets, representing the relatedness between the targets and its contexts and identify-

ing the polarities of the tweets towards the targets. The effectiveness of the proposed

system has been evaluated on a benchmark of tweets, obtaining results that outper-

form the state-of-the-art models. The confusion matrix of the results obtained by

TD-biGRU shows that most of the misclassified examples are related to the neutral

category.

In the future work we plan to extend our system to handle this weakness by inte-

grating more information such as lexicon information and/or the dependency tree.

Our system extracts only the targets that are mentioned explicitly in the tweets. How-

ever, it is sometimes recognized that targets are mentioned implicitly in tweets and

they are detected from the context. Thus, we will consider this point in our future

work, by designing a system that can detect both the explicit targets and the implicit

targets that are not mentioned in the tweets. Although joint learning of all subsys-

tems has been proved to be useful in natural language processing and text analysis

tasks, in this work we have trained each subsystem (i.e. the target identification and

the targeted SA) independently and we have combined them in the inference step.

Thus, we plan to extend our system and apply this learning technique.
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Traffic Modelling, Visualisation
and Prediction for Urban Mobility
Management

Tomasz Maniak, Rahat Iqbal and Faiyaz Doctor

Abstract Smart city combines connected services from different disciplines
offering a promise of increased efficiency in transport and mobility in urban
environment. This has been enabled through many important advancements in
fields like machine learning, big data analytics, hardware manufacturing and
communication technology. Especially important in this context is big data which is
fueling the digital revolution in an increasingly knowledge driven society by
offering intelligence solutions for the smart city. In this paper, we discuss the
importance of big data analytics and computational intelligence techniques for the
problem of taxi traffic modelling, visualisation and prediction. This work provides a
comprehensive survey of computational intelligence techniques appropriate for the
effective processing and analysis of big data. A brief description of many smart city
projects, initiatives and challenges in the UK is also presented. We present a hybrid
data modelling approach used for the modelling and prediction of taxi usage. The
approach introduces a novel biologically inspired universal generative modelling
technique called Hierarchical Spatial-Temporal State Machine (HSTSM).
The HSTSM modelling approach incorporates many soft computing techniques
including: deep belief networks, auto-encoders, agglomerative hierarchical clus-
tering and temporal sequence processing. A case study for the modelling and
prediction of traffic based on taxi movements is described, where HSTSM is used to
address the computational challenges arising from analysing and processing large
volumes of varied data.
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1 Introduction

The cost of traffic congestion is dramatically increasing both in terms of delays
caused in commuting, delivery of goods and services and importantly CO2 emis-
sions. Big data analytics, IoT (Internet of Things) and machine learning approaches
have the potential to address the traffic congestion problem more effectively by
means of traffic modelling, visualisation and prediction for urban mobility man-
agement. These big-data based approaches are also fundamental in developing
solutions for connected cars and autonomous vehicles. Big data analytics is used to
examine and process high volume data to discover hidden patterns, reveal the
underlying structure, identify relationships and gain other insight concerning traffic
congestion and management. Recent advances in hardware and software tech-
nologies have facilitated big data acquisition. This data can now be harvested from
a large number of diverse sources including GPS, IoT, traffic videos, phone utili-
sation and social media posts. IoT refers to the various sensors, actuators and
controllers incorporated into Internet enabled devices to facilitate data exchange.

The utilisation of this huge amount of information has positioned big data and
big data analytics as a centre of focus for research communities, businesses, and
governments [8, 19]. These all work together to deliver new concepts, products and
services which serve an ever-increasing number of diverse application contexts
from smart cities [9] to healthcare [23]. This has contributed to an increase of the
amount of data available and led to new challenges in the processing of the data. To
overcome these problems a set of techniques have been developed all of which are
grouped under the common name of machine learning (ML).

ML approaches are used for modelling patterns and correlations in data to
discover relationships and make predictions, based on unseen data/events. ML
approaches consist of supervised learning (learning from labelled data), unsuper-
vised learning (discovering hidden patterns in data or extracting features) and
reinforcement learning (goal oriented learning in dynamic situations). As such, ML
approaches can also be categorised into: regression techniques, clustering approa-
ches, density estimation methods and dimensionality reduction approaches.
Non-exhaustive examples of these approaches are: decision tree learning, associate
rule learning, artificial neural networks, deep learning support vector machines,
clustering and Bayesian networks.

Computational Intelligence (CI) is a subcategory of ML approaches focusing on
algorithms that are devised to imitate human information processing and reasoning
mechanisms. These approaches are nature-inspired computational methodologies
which have been developed to address complex real-world data-driven problems for
which mathematical and traditional modelling are unable to work owing to: high
complexity, uncertainty and stochastic nature of processes. Fuzzy Logic [1, 2, 6,
16], Evolutionary Algorithms [28] and Artificial Neural Networks [4] together
comprise the core CI approaches that have been developed to handle this growing
class of real-world problems.
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This paper presents a part of our continuing research for big data and predictive
analytics applying deep learning approaches to IoT and smart city applications. The
rest of the paper is organised as follows. Section 2 discusses computational intel-
ligence for big data analytics. Section 3 presents a novel methodology to provide
solutions to data driven problems. Section 4 discusses the proposed hybrid based
approach. Section 5 discusses a case study of the Taxi prediction application.
Section 6 presents the performance of the Taxi prediction application. Finally,
Sect. 7 presents conclusions and future directions.

2 Intelligent Transport System

The growth of modern urbanised and increasingly connected rural environments
requires the development of efficient transportation infrastructures to better support
the needs of visitors and commuters. Many initiatives have been implemented to
satisfy personalised and contextualised user defined objectives to improve user
mobility, utility, and satisfaction while helping to avoid congestion [5, 27].

The self learning car developed by Jaguar Land Rover is a an example of a state
of the art vehicle exploiting some of these capabilities [14]. This emerging tech-
nological environment creates a massive opportunity for vehicles to take full
advantage of the concept of the Internet of Things (IoT) by collecting, processing
and aggregating this information and transforming it into knowledge required by
their cars, other drivers, vehicles, and the wider society. For example having a
distributed sensor network of cars being able to assess the density of traffic on the
road can be used to optimize the traffic within a region, maximizing the road and
public transport throughput.

For the advantages of Big Data and IoT to be exploited there is an increasing
need for implementing intelligent systems and computational techniques which can
reduce the complexity and cognitive burden on accessing and processing the large
volumes of data generated in both embedded hardware and software based data
analytics [1, 2, 11, 20]. Furthermore, personalised contents need to to be delivered
through energy efficient wireless communication networks [24] in secure vehicular
mobile cloud and vehicular ad hoc networks (VANET) [17, 18].

Another problem is managing transport networks effectively in urban areas [25].
For example, if the demand for taxi services is known, then a more efficient method
for picking up passengers can be devised. This can be achieved by using historical
and real-time data to predict the hot spots where taxis pick up and set down people
in an urban area over the course of a day. By collecting data for the high and low
predicted taxi demands over the urban area, contextual information pertaining to
traffic conditions, geospatial distribution of the fleet and vehicle telematics, rec-
ommendations to taxi operators for the distribution and optimisation of taxi services
can be provided.

Behaviour modelling could also be used to recommend real-time re-routings to
satisfy personal objectives of road users while relieving traffic congestion. The
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problem of optimally managing the distribution of taxi services can also be tackled
at large transportation hubs such as railway stations and airports to meet passenger
demands. This could be achieved by applying vision processing algorithms to live
CCTV camera feeds to create an airport taxi stand passenger queue tracking system.
This system could then identify and count individuals waiting in a queue to estimate
the number of people entering/exiting and queuing throughput over time. This
information could then be used to measure length, growth rate and predict the wait
time for each queue, which can be visualized in real-time and used to send
notifications/alerts based on operator triggers and thresholds.

3 Smart City Projects

In this section a number of smart system projects being carried out in the various
cities of the United Kingdom are summarised. Applications for these systems
include: connected and self-driving cars; data visualisation for planning and man-
agement; pervasive sensing and IoT based solutions for road infrastructure moni-
toring; and predictive modelling for traffic congestion management. Table 1 lists
several recent UK based smart-transport initiatives (UK Smart Cities Index, [26]).

Towards the development of smart city projects various researchers have used a
range of techniques and data sources. For example, Restricted Boltzmann Machine
(RBM) and Recurrent Neural Network (RNN) have been used to tackle tremendous

Table 1 UK smart transport systems/projects

Project city Smart city innovation

1 Milton keynes Use of big data to build a smart transport system and battle
congestion and pollution (Space in IOT, self-driving vehicle, public
engagement)

2 Peterborough Use of 4D virtual model as testbeds to test city-scale policy and
planning implications as well as new technology impacts prior to
adoption or deployment

3 Liverpool Use of cost effective sensor technologies, data from city transport and
local authorities, pedestrian movement, environmental data

4 Cambridge Use of intelligent technology for big analytics for traffic
management, air quality, energy network and health and social care

5 Ipswich, suffolk Use of data to improve urban planning and transport systems, with
further aspect of engaging local citizens via their mobile phones
based on their precise physical location and context

6 East london,
silvertown

Development of a connected society (application areas include from
energy efficiency management and transport to waste management
and parking, street furniture and way finding)

7 Bristol Development of a physical and digital model of the city combined
with power analytics and 3D visualisation tools

8 Reading and
bracknell

Development of IoT based solutions to provide smart transport
solutions for highways and public transport services
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high-dimensional traffic data from taxi to model and predict traffic congestion [22].
Another project has used Artificial Neural Networks for the real-time prediction of
bus travel speeds [15]. Object detection and identification for traffic monitoring was
carried out using Convolutional Neural Network [3]. The algorithm was applied on
traffic monitoring videos. Several researchers have used social media for the pre-
diction of traffic congestion [7].

Table 2 Data sources and type of data

Data source Type of data

1 Local/government authorities Local/government internal data
2 Global positioning system (GPS) Data from taxi/bus companies

Companies that provide navigation and mapping
products

3 Monitoring equipment Traffic videos
Thermal imaging cameras

4 Telecommunication providers Phone utilisation
5 Web based sources Social media posts

RSS feeds to identify significant events
6 Academic experts and research

literature
Subject specific knowledge

Table 3 Sensors for traffic control and monitoring systems

Sensors /devices for traffic
control and monitoring

Description

1 Loop detectors To detect vehicle and measure velocity as well as
transmit the collect data

2 Radar To capture traffic data (velocity, occupancy and flow
rate of vehicles)

3 Video For traffic monitoring and to record vehicle number
plates

4 License Plate Readers To capture number plate information. Other traffic
information can also be captured by the use of multiple
devices

5 Radio-frequency
identification

Collecting tolls from drivers, measuring travel times

6 Bluetooth To calculate travel time when multiple readers are used
on roads

7 Wireless sensors To provide similar functionality as loop detectors. These
devices will be able to provide more accurate
information

8 Sparsely sampled GPS Provides information about the location of vehicles. The
data is collected from GPS enabled vehicles at a fixed
frequency

9 High frequency GPS Provides more accurate information about the location
of vehicles

Traffic Modelling, Visualisation and Prediction for Urban … 61



Smart city projects have used various sources of data to capture information
related to the location and speed of the traffic. The various data sources and the type
of data which can be collected including equipment and devices, as shown in
Table 2 are briefly explained. This section also discusses various other sensors or
dedicated devices used for data acquisition as shown in Table 3.

4 Proposed Hybrid Approach

In this section, a hybrid approach that can be applied for the analysis and modelling
of smart city data sources is presented. This approach has already been used suc-
cessfully in the development of the taxi demand prediction application described in
Sect. 5. It provides solutions to other challenging real world big data problems that
require spatial-temporal modelling.

The core part of this approach is based on the latest discoveries in the field of
neuroscience and introduces a novel universal generative modelling approach called
Hierarchical Spatial-Temporal State Machine (HSTSM). The model is inspired and
implemented based on the understanding of the structure and functionality of the
human brain. The implementation is based on a hybrid method which includes deep
belief networks, auto-encoders, agglomerative hierarchical clustering and temporal
sequence processing [21]. The model handles high volumes of data characterised by
complex correlations between the input values and temporal consequences of the
different input states of the system (termed here as spatial-temporal correlations).

The main elements of the proposed methodology include the data layer, input
layer, data transformation layer, spatial pooling, temporal inferences, prediction
model and finally, the presentation of information or application layer as shown in
Fig. 1.

The data layer captures and aggregates heterogeneous data from many data
sources including hardware and IoT, manual input and software.

The Data Transformation Layer encodes the input data into binary distributed
representations, scalable to high dimensional data. Spatial Modelling identifies a
hierarchical organisation of multiple levels of data abstraction achieved in a process
of automatic feature extraction.

The discovery of correlations between individual inputs are determined by the
spatial transformation (spatial pooling) of input space into a feature space and the
discovery of correlations between the individual inputs [10]. To achieve this, the
encoded vector is compressed and an automatic process of feature extraction is
performed by deep belief neural networks (DBN). The trained restricted Boltzmann
Machines (RBM) forming the DBN are used to initialise the deep auto-encoder.
This unsupervised method of feature extraction enables the model to acquire an
improved and more compressed representation of the input space. Hierarchical
clustering is performed on the transformed features derived from the deep belief
network, to extract the many possible states of the modelled system. The main
purpose of this operation is to reduce the input space to a fixed number of the most

62 T. Maniak et al.



probable states. The basic metric used with the hierarchical clustering is Euclidian
distance. This process is a type of spatial pooling, where the original binary inputs
that occur close together in space are pooled together.

Temporal inference is performed on the identified states, and prediction of the
next possible state of the system can be achieved with the utilisation of an n-order
Markov chain. Prediction acquired in this way can be subsequently used to identify
specific patterns of behaviour of the modelling problem under investigation. At the
end of this process, the predicted vector can be compared with the actual input
vector, generated at each moment in a specific application context, to identify
specific patterns or irregular behaviour. This can be achieved by distance function
or basic ML techniques, like a Multilayer Perceptron. Spatial-temporal model
achieved in this way can also serve as an input to various optimisation frameworks
to optimise the processes being modelled.

The application layer is responsible for displaying the results through the
interface of an application or visualisation which can provide stakeholder insight
into the data being modelled. The visualisation or interface can also be personalised
using the type and functional form of information representation to meet the
individual needs of users [12, 13].

Fig. 1 Proposed hybrid approach for big data analytics
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5 Taxi Prediction

In this section, the development of a taxi prediction application is discussed. The
work is focused on optimising taxi fleet distribution and routing in the context of
urban traffic conditions to:

• enhance availability
• reduce waiting
• reduce journey times
• promote fuel economy

To achieve the research objectives the proposed approach was applied which
could predict the hot spots where taxis pick up and set down people in an urban area
over the course of a day.

The data used to train the predictive model were acquired from the New York
City (NYC) Open Data webpage as shown in Table 4. This includes the 2013
Green taxi trip data which contain trip records from all trips completed in green
taxis in NYC in 2013. The proposed model was utilised for the development of a
commercial software application, and achieved above 95% prediction accuracy.
A screenshot of the software’s interface can be seen in Fig. 2.

The user can observe the actual and predicted demand, and the error generated
by the system (i.e. mean square error). The map on the left is used to display the

Table 4 NYC dataset
features

Field Value

Pickup_datetime 12/06/2013 12:11:05 PM
Dropoff_datetime 12/06/2013 12:14:06 PM
Store_and_fwd_flag N
Rate_code 1
Dropoff_latitude 40.811981201171875
Passenger_count 1
Trip_distance 0.5
Fare_amount 4
Extra 0
MTA_tax 0.5
Tip_amount 0
Tolls_amount 0
Ehail_fee
Total_amount 4.5
Payment_type 2
Trip_type
Pickup_longitude −73.9650650024414
Pickup_latitude 40.8061408996582
Dropoff_longitude −73.96223449707031
Vendor_id 1
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actual taxi pick-ups while the map on the right shows the predicted taxi pick-ups.
A “−/+” button is used to hide or show the main control panel. The Control Panel
(top left side) has an adjustable slider bar for selecting the prediction date with a
label indicating the selected date.

The application shows and predicts hot spots where taxi’s drop off and set down
people in urban areas over the course of a day. This information can be fed to an
optimisation system using evolutionary algorithms to optimise the real-time dis-
tribution of taxi’s based on the predicted demand (i.e. from the developed pre-
diction model) together with consideration of other factors pertaining to fleet load,
traffic situation and optimal routing, urban events, status of the fleet, running costs
and possibly environmental considerations such as weather and the carbon footprint
of the fleet operations. The system could then recommend customers taxi
availability/advisability, estimation of routings, waiting times and journey times
based on their location, what they are doing and the period of engagement. For
instance: dinner in restaurant ‘A’ in location ‘Y’ reserved for 7 pm for approx.
1.5 h, followed by a show in location ‘X’ starting at 9 pm for 2 h on day Z, where
factor 1 is ‘B’ and factor n is ‘C’.

Based on the above scenario, a pre-emptive recommendation of taxi services
availability, waiting times and journey times can be made to users via their smart
phones. Alternatively, an auto booking could be made based on the predicted need
given the personal information about user activities, schedule of appointments,
engagement and transport utilisation behaviour.

Fig. 2 Taxi demand prediction application interface (Iteration 4)
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6 Evaluation

In this section, the evaluation methods which were applied to test the taxi prediction
application are discussed. Two evaluation methods were used.

• Usability Analysis: User centred design methodology was used to test the
usability aspects of the web interface of the developed application.

• Performance Analysis: The mean square error metric (MSE) was applied to test
the performance of the application.

6.1 Usability Analysis

The usability of the web based application has been tested using the user centred
methodology as discussed in [12, 13]. The usability analysis was carried out by 7
participants involving 2 members of the design team, 1 usability expert and 4 end
users. An iterative process was followed which led to the development of four
versions of the application. The main features of each iteration are briefly explained.

First Iteration

One web based interface was designed to display either the predicted or actual data
at any given time by pressing the button labelled as Prediction or Actual.

Second Iteration

This iteration uses a split screen to show predicted or actual data on one screen
(similar to the one shown in Fig. 2 but without displaying the mean square error
rate chat).

Third Iteration

An interface was designed to show the predicted and actual data on one screen as
hot spots with different colours. In this iteration, it was difficult for the end users to
view and compare predictive and actual data points (See Fig. 3).

Fourth Iteration

One screen showing both predicted and actual points in one screen with the mean
square error rate chart. The user interface (iteration 4) which met user requirements
is shown in Fig. 2.

6.2 Performance Analysis

The data used to train the predictive model has been acquired from the NYC Open
Data webpage. The 2013 Green taxi trip data includes trip records from all trips by
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NYC green taxis in 2013. Records include fields capturing pick-up and drop-off
dates/times, pick-up and drop-off locations, trip distances, itemised fares, rate types,
payment types, and driver-reported passenger counts. The data used in the attached
datasets were collected and provided to the NYC Taxi and Limousine Commission
(TLC) by technology providers authorised under the Livery Passenger Enhance-
ment Program (LPEP). An exemplary row in the data set is shown in Table 4.

The dataset used in this application was ranged for 11 months from January
2012 to November 2013. In order to train and evaluate our predictive model, we
split the data set into two folders as shown in Table 5. One month data (December
2013) was not used owing to additional noise in the data caused by holidays season.

To assess the performance of the application the mean square error metric
(MSE) was used. MSE is a measure of performance which is widely used in
machine learning and statistical application to determine the error in the predictive
model against test data. The equation is shown below.

Fig. 3 Taxi demand prediction application interface (Iteration 3)

Table 5 Training and test data set split

No Data Ratio% Description

1 Training data 90.9 10 months data from January 2013-Oct 2013
2 Test data 9.1 1 month data for November 2013
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MSE=
1
N

∑
n

i=1
ðZi − YiÞ2

where Zi is predicted value, Yi is a target value and N is a number of samples.
The metric has been embedded into the application interface which displays the

error rate for current prediction (per day) corresponding to the slider position. The
accuracy of the predictions was above 95% based on the unseen data. The chart
presents the mean square error (MSE) of the predictions for a given day. The values
on Y axis give the average error of predictions for each point on the chart. For
example, 0.3 meant that on average if each point on the map is considered, the
predictions could be wrong by 0.3 Taxi pickups. Each Taxi pick up location on the
map had an accuracy of up to 5 m, meaning the actual pick up location point could
be within 5 m from the predicted location. The X axis shows the error for a specific
day. Figure 4 shows the individual MSE for test dates between 1st November 2013
and 30th November 2013.

7 Conclusions

In this paper, the importance of big data analytics and the application of machine
learning in urban mobility and smart city applications has been discussed. Special
attention has been given to modelling and predicting traffic from GPS and temporal
data and an overview of computational intelligence techniques appropriate for the
effective processing and analysis of big data has also been discussed.

Fig. 4 MSE error for individual days in test set
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A data modelling methodology, which introduces a novel biologically inspired
universal generative modelling approach called Hierarchical Spatial-Temporal State
Machine (HSTSM) has been presented. The proposed methodology relies on a
hybrid method, based on the structure and functions of the mammalian brain. It
incorporates different soft computing techniques and has the potential to deal with
large amounts of data, which are characterised by spatial-temporal correlations. An
application case study has been provided that demonstrates the use of a novel deep
learning spatial modelling technique. The method is applied to the prediction of hot
spots where taxis pick up and set down people in an urban area over the course of a
day.

The potential benefits arising from this novel methodology are numerous
spanning a large spectrum of smart city application areas such as traffic congestion
prediction, anticipating maintenance and overhaul requirements of public transport,
fleet management and optimising deployment based utilisation patterns and con-
sumer data driven improvements in urban services. These solutions can have a
significant impact on knowledge, society, the economy, and individuals. Scientific
knowledge and research may benefit from revealing hidden patterns in data pro-
viding city and the insight of municipal authorities to drive urban planning and
management policies. Society could profit from the delivery of applications, which
promote improved public transportation services. E-businesses and organisations
could also be assisted through sentiment analysis tools, which could contribute to
the delivery of personalised and contextualised products and services, meeting the
needs of urban users, commuters and visitors.

Future work will involve the utilisation and deployment of the proposed
methodology to different application areas to create novel models and applications
with significant commercial and scientific value together with further improvements
of the developed systems.
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Assurance in Reinforcement Learning
Using Quantitative Verification

George Mason, Radu Calinescu, Daniel Kudenko and Alec Banks

Abstract Reinforcement learning (RL) agents converge to optimal solutions for

sequential decision making problems. Although increasingly successful, RL can-

not be used in applications where unpredictable agent behaviour may have signifi-

cant unintended negative consequences. We address this limitation by introducing an

assured reinforcement learning (ARL) method which uses quantitative verification

(QV) to restrict the agent behaviour to areas that satisfy safety, reliability and perfor-

mance constraints specified in probabilistic temporal logic. To this end, ARL builds

an abstract Markov decision process (AMDP) that models the problem to solve at

a high level, and uses QV to identify a set of Pareto-optimal AMDP policies that

satisfy the constraints. These formally verified abstract policies define areas of the

agent behaviour space where RL can occur without constraint violations. We show

the effectiveness of our ARL method through two case studies: a benchmark flag-

collection navigation task and an assisted-living planning system.
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1 Introduction

Reinforcement learning (RL) [1] is a widely-used machine learning technique used

to find solutions for sequential decision making problems. Solutions are learned by

an autonomous agent which explores an initially unknown Markov decision process

(MDP) to find an optimal policy, i.e. the actions to take in different MDP states in

order to maximise the cumulative reward while navigating the MDP. Despite suc-

cessful adoption in some robotics [2], sensing [3], gaming [4] and control [5] appli-

cations, traditional RL cannot be used in mission- and safety-critical applications. In

these applications, unpredictable agent actions can lead to mission failure, increased

risks to humans or other systems, or violations of legal requirements (e.g. in business

domains) [6]. Furthermore, if the system learns a solution that does not conform to

conventional behaviours expected of its domain, the users of the system may have

difficulty trusting the solution even though it may not violate any requirements.

The difficulty lies in how objectives are defined in RL and how solutions are

learned by the agent [7]. Objectives are imparted in an RL MDP by a reward struc-
turewhich returns numerical rewards to the agent for achieving objectives. The agent

aims to maximizing the reward cumulated and therefore achieve as many objec-

tives as possible. However, in scenarios where objectives conflict with one another it

becomes difficult to define an effective reward structure. For example, in a case study

we describe later in this paper, the agent’s objective is to traverse an area to reach

as many checkpoints as possible (yielding a positive reward) whilst minimizing the

risk of being captured (which yields a negative reward, i.e. a punishment). The agent

can either attempt to reach all the checkpoints at high risk of capture, or it can ignore

them all with no risk of capture. Defining a maximum probability of risk that the

agent is captured and minimum number of checkpoints it must reach is not possible

with traditional RL, which cannot accommodate finding solutions that lie within a

specific range of probability and a specific range of rewards. Traditional RL can max-

imize (or minimize) one objective but at the detriment of the other. Alternatively, it

can learn to optimize a solution to compromise for both objectives at the same time,

but the solution is unlikely to satisfy strict safety requirements. Furthermore, it is

often the case that complex requirements can be difficult to define concisely in the

reward function, requiring more features to define environment states, expanding the

state space, thereby worsening the state space explosion problem and significantly

increasing the time taken to learn solutions [1].

Recently there has been increasing research into addressing this problem [7].

Approaches range from changing how reward accumulation is optimised to how the

agent actively explores the environment. However, these approaches are difficult to

generalize, cannot provide firm guarantees that the solution will be safe or, where

safety can be assured, it is at a significant cost to the optimality of the solution and

difficulty in expressing realistic safety properties.

In this extended version of our preliminary work on providing assurance for

RL policies [8], we present and extensively evaluate an RL method which can be

used in applications that must satisfy strict safety, reliability and performance con-
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straints. Our assured reinforcement learning (ARL) combines traditional reinforce-

ment learning with a formal analysis stage in which the agent exploration is restricted

to areas of the original MDP that satisfy the required constraints. ARL carries out this

analysis using quantitative verification (QV) [9], a mathematically based technique

for establishing the reliability, performance and other quality-of-service properties

of stochastic systems. Particular advantages of our hybrid ARL are scalability due

to a hierarchical approach and convenience of formulating required constraints by

using an expressive representation language that has been successfully applied in

quantitative verification.

Specifically, ARL supports constraints specified in a variant of probabilistic tem-

poral logic called probabilistic computation tree logic (PCTL) [10], and comprises

a QV stage and an RL stage. In the QV stage, expert-provided knowledge of the sce-

nario is given in the form of an abstract Markov decision process (AMDP) [11], a

common and feasible practice in safety engineering [12–14]. Compared to the com-

plete MDP to be explored by the RL agent, the AMDP can be assembled with only

limited understanding of the problem, and has a significantly reduced state space

and a simplified action set [11, 15, 16] that enable efficient analysis which would

not have been feasible without this hierarchical approach. Given a set of PCTL con-

straints, quantitative verification is then used to identify AMDP policies that satisfy

all these constraints. Each of these “safe” abstract policies resolves some of the non-

determinism of the original MDP, inducing a restricted MDP that the agent explores

in the reinforcement learning stage of our ARL method without violating any of the

constraints.

As described above, ARL incorporates a set of constraints on the behaviour of a

reinforcement learning agent both in the learning process and in the learnt policy.

Multiple “safe” abstract policies are typically generated during the QV stage. ARL

supports the selection of a suitable abstract policy for the RL stage by retaining only

the abstract policies that are Pareto-optimal with respect to optimization objectives

associated with constraints from the QV stage and/or specified additionally.

Our work contributes to the ongoing research on safe reinforcement learning [7].

Thus, ARL complements the existing constrained optimisation approaches to safe

RL, in which the agent seeks a policy that maximises its obtained reward subject to

a set of constraints. To the best of our knowledge, ARL is the first such approach that

supports the broad range of safety, reliability and performance constraints that can

be formally specified in PCTL [10] extended with rewards [17], and that uses quan-

titative verification [9] to identify allowable MDP policies. In contrast, the existing

approaches are typically limited to specifying bounds for the reward obtained by the

RL agent or for simple measures related to its optimisation [18–23].

The remainder of this paper is organized as follows. Section 2 introduces the tech-

nologies that are used in ARL. Section 3 provides an example scenario, based on the

benchmark RL flag-collection domain [24] and modified to include an aspect of risk

where the application of ARL is necessary. Section 4 outlines the procedure for using

ARL, using the example scenario to illustrate the process. Section 5 evaluates ARL
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through two case studies, the first based on the running example and the second

based on an assisted-living system [25]. Section 6 discusses related research, and

Sect. 7 summarizes our results and discusses directions for future work.

2 Background

2.1 Markov Decision Processes (MDPs)

Markov decision processes represent a formalism for modelling sequential decision-

making problems [1]. An MDP models an environment in which an agent (i.e. deci-

sion maker) can perceive the current state s, and select an action a from a set of

actions. States contains features which uniquely define the status of the environment.

Performing the selected action a results in the agent transitioning to a new state s′
and receiving an immediate numerical reward r ∈ IR.

It is through rewards that objectives are defined in an MDP. Generally, objectives

that the agent must aim to achieve are given a positive reward and events and areas

in the MDP that the agent must avoid (e.g. fail states) are assigned a negative reward

(also referred to as a cost). The agent aims to maximize the rewards it cumulates,

thus achieving objectives, or inversely, minimize the cost of its actions.

Formally, an MDP is defined as a tuple (S,A,T ,R), where:

∙ S is a set of states;

∙ A is a set of actions;

∙ T is a state transition function such that for any s, s′ ∈ S and any action a ∈ A that

is permitted in state s, T(s, a, s′) gives the probability of transitioning to state s′
when performing action a in state s;

∙ R is a reward function such that R(s, a, s′) = r is the reward received by the agent

when action a performed in state s leads to state s′.

A related concept that is central to RL is that of a policy. ARL uses deterministic
policies, i.e. mappings of the form 𝜋 ∶S→A that associate each state s∈S to one of

the actions allowed in state s.
When all elements of the MDP are known, the problem can be solved using

dynamic programming, e.g. by using the value or policy iteration algorithms. In sce-

narios where the transition and/or reward functions are unknown a priori, RL needs

to be used as described in Sect. 2.3.

2.2 Quantitative Verification (QV)

QV is a formal verification technique used to establish safety, reliability, perfor-

mance and other non-functional properties of systems through the analysis of their
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stochastic models [9, 26]. Unlike techniques like testing and simulation, QV uses

efficient algorithms to examine the entire state space of the analysed model, yielding

results that are guaranteed to be correct. QV supports the analysis of models includ-

ing MDPs, Markov chains and probabilistic automata. The analysed properties of

these models are specified formally in probabilistic variants of temporal logic. QV

is performed using efficient probabilistic model checkers, such as PRISM [27] or

MRMC [28].

For the analysis of MDPs, QV labels the model states with atomic propositions
that specify basic properties of interest that hold in each MDP state, e.g. success, fail
or retry. MDPs labelled with atomic propositions enable the QV of properties that

express probabilities and temporal relationships between events. For example, QV

can verify if the probability of achieving success without any retry (i.e. of reaching a

state labelled success without passing through a state labelled retry) is at least 0.95.

These properties are specified in a probabilistic temporal logic called probabilistic

computational tree logic (PCTL) [10]. Given a set of atomic propositions AP, a state
formula 𝛷 and a path formula 𝛹 in PCTL are defined by the grammar:

𝛷 ∶∶= true | a | ¬𝛷 |𝛷1 ∧ 𝛷2 | P⋈p[𝛹 ]
𝛹 ∶∶= X𝛷 |𝛷1 U𝛷2 |𝛷1 U

≤k
𝛷2

, (1)

where a ∈ AP, ⋈ ∈ {<,≤,≥, >}, p ∈ [0, 1] and k ∈ IN; and a PCTL reward state
formula [29] is defined by the grammar:

𝛷 ∶∶= R⋈r[I=k] | R⋈r[C≤k] | R⋈r[F𝛷] | R⋈r[S], (2)

where r∈IR
≥0. State formulae include the logical operators ∧ and ¬, which allow

the formulation of disjunction (∨) and implication (⇒).

The semantics of PCTL are defined with a satisfaction relation ⊧ over the states

and paths of an MDP (S,A,T ,R). Thus, s ⊧ 𝛷 means 𝛷 is satisfied in state s. For

any state s ∈ S, we have: s ⊧ true; s ⊧ a iff s is labelled with the atomic propo-

sition a; s ⊧ ¬𝛷 iff ¬(s ⊧ 𝛷); and s ⊧ 𝛷1 ∧𝛷2 iff s ⊧ 𝛷1 and s ⊧ 𝛷2. A state for-

mula ⋈p[𝛹 ] is satisfied in a state s if the probability of the future evolution of

the system satisfying 𝛹 satisfies ⋈ p. For an MDP path s1s2s3 …, the “next state”

formula X𝛷 holds iff 𝛷 is satisfied in the next path state (i.e. in state s2); the

bounded until formula 𝛷1 U
≤k
𝛷2 holds iff before 𝛷2 becomes true is some state sx,

x < k, 𝛷1 is satisfied for states s1 to sx−1; and the unbounded until formula 𝛷1 U𝛷2
removes the constraint x < k from the bounded until. For instance, the PCTL for-

mula P
≥0.95[¬𝑟𝑒𝑡𝑟𝑦 U 𝑠𝑢𝑐𝑐𝑒𝑠𝑠] formalises the constraint ‘the probability of reaching

success without retry is at least 0.95’ from the earlier example.

The notation F≤k𝛷 ≡ 𝑡𝑟𝑢𝑒U≤k
𝛷, and F𝛷 ≡ 𝑡𝑟𝑢𝑒U𝛷 is used when the first part of a

bounded until, and until formula, respectively, are 𝑡𝑟𝑢𝑒. The reward state formulae (2)

express the expected cost at timestep k (⋈r[I=k]), the expected cumulative cost

up to time step k (⋈r[C≤k]), the expected cumulative cost to reach a future state

that satisfies a property 𝛷 (⋈r[F𝛷]), and the expected steady-state reward in the

long run (⋈r[S]).
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Finally, probabilistic model checkers also support PCTL formulae in which the

bounds ‘⋈ p’ and ‘⋈ r’ are replaced with ‘=?’, to indicate that the computation of the

actual bound is required. For example, P=?[F≤20
𝑠𝑢𝑐𝑐𝑒𝑠𝑠] expresses the probability

of succeeding (i.e. of reaching a state labelled success) within 20 time steps.

2.3 Reinforcement Learning (RL)

RL is used to solve MDPs when either the reward and/or transition function is

unknown, and involves the use of an autonomous agent. The agent starts with no

knowledge of the environment, and must learn about it by exploration, i.e. by select-

ing initially arbitrary actions whilst moving from one state of the unknown MDP to

another.

By receiving rewards after each state transition, the agent learns about the qual-

ity of its action choices. The agent stores this knowledge it gains about the qual-

ity of a state-action pair (s, a) in the form of a Q-value, denoted Q(s, a). Updates to

Q-values are done iteratively using a temporal difference learning algorithm, such as

Q-learning [30], and through these updates information about rewards in the envi-

ronment are propagated over state-action pairs. The Q-learning algorithm has the

update formula:

Q(s, a) ← Q(s, a) + 𝛼[r + 𝛾 ⋅max
a′∈A

Q(s′, a′) − Q(s, a)], (3)

where 𝛼 ∈ (0, 1] is the learning rate and 𝛾 ∈ [0, 1] is the discount factor. The learning

rate determines how influential the rewards received are when updating Q-values. If

the learning rate is too high then the agent may fail to converge on an optimal solution

as the agent can oscillate around an optimal solution but fail to land on it. For this

reason it is sometimes necessary to decay 𝛼 to zero over the learning process. The

discount factor specifies how far into the future the agent should consider, e.g. if the

agent should perform an action which in the immediate future might incur a cost but

in the distant future may yield a high reward.

With these Q-values the agent can exploit the knowledge it has already learned:

when revisiting a state, instead of randomly selecting an action to perform, it can

select an action based on a pre-defined policy. An example of such a policy is the

𝜖-greedy policy, where with probability 0 < 𝜖 < 1 the agent will act randomly and

with probability 1−𝜖 it will select the highest-value action it knows about [1]. Setting

a value of 𝜖 too high can cause the agent to ignore previously learned information

making it repeat actions that it has already learned may be costly, increasing the time

it takes to learn an optimal solution. Similarly, though, if 𝜖 is too small then the agent

will not explore enough, instead relying too heavily on the limited knowledge it has

previously acquired, also prolonging the time taken to reach a solution.



Assurance in Reinforcement Learning Using Quantitative Verification 77

An RL experiment comprises a number of learning episodes, collectively known

as a learning run. In an episode, the agent performs actions until either it encoun-

ters an absorbing state or a maximum number of timesteps has passed, in both cases

the learning episode will terminate. It is rarely sufficient to perform just a single

episode, though, and multiple learning episodes are often required. For each succes-

sive episode the agent begins again from the starting state but retains the knowledge

it has learned in previous episodes.

Provided that each state in the MDP is visited an infinite number of times the

algorithm is guaranteed to converge to an optimal policy, i.e. the Q-values no longer

change when updated. In practice, though, a finite number of learning episodes is

typically sufficient to obtain an optimal policy, or one that is sufficiently optimal.

2.4 Abstract MDPs (AMDPs)

An AMDP is a high-level representation of an MDP in which multiple states of

the MDP are aggregated (e.g. based on their similarity [15]). Additionally, the low-

level actions of the MDP are replaced by temporally abstract options [16]. For exam-

ple, instead of an agent performing a sequence of stepwise movements to transition

through a series of Cartesian coordinates from location A to enter location B, in

an AMDP each location would be a single state and the option would simply be to

“move” from one location to the other. An AMDP is orders of magnitude smaller

than its MDP counterpart, can often be assembled with significantly less knowledge

about the environment, and can be solved and reasoned about much faster [11].

Given an MDP (S,A,T ,R) and a function z ∶ S → ̄S that maps each state s ∈ S to

an abstract state z(s) ∈ ̄S such that z(S) = ̄S, an AMDP can be formally defined as a

tuple ( ̄S, ̄A, ̄T , ̄R), where:

∙ ̄S is the set of abstract states;

∙ ̄A is the set of options;

∙ ̄T is a state transition function such that ̄T(s̄, o, s̄′) =
∑

s∈S,z(s)=s̄ ws
∑

s′∈S,z(s′)=s̄′ P(s′|s, o) for any s̄, s̄′ ∈ ̄S and any option o ∈ ̄A;

∙ ̄R is a reward function such that, for any s̄ ∈ ̄S and any o ∈ ̄A, ̄R(s̄, o) =
∑

s∈S,z(s)=s̄ wsR(s, o),

where ws is the weight of state s, calculated based on the expected frequency of

occurrence of state s in the abstract state z(s) [11].

A parameterised AMDP uses parameters to specify which option to perform in

each AMDP state [31]. An abstract policy fixes the values of all these parameters,

and thus resolves the non-determinism of the AMDP, essentially transforming it into

a Markov chain since there is a fixed, single option for each state.



78 G. Mason et al.

3 Running Example

We will illustrate the application of ARL using an extension of the benchmark RL

flag-collection mission from [24]. In the original mission, an agent learns to navigate

a series of rooms and hallways in order to find and collect flags scattered throughout

a building. In our extension, the building is augmented with security cameras that

monitor certain doorways between areas. The detection of the agent by a camera

results in the capture of the agent and the termination of its flag-collection mission.

An illustration of this environment is shown in Fig. 1.

The agent is camouflaged, yet there is still a probability that it can be detected.

The detection effectiveness of the cameras decreases towards the boundary of their

field of vision, we represent this by sectioning the camera-monitored doorways into

three areas: direct view by the camera, partial view, and hidden. These three areas

are associated with decreasing probabilities of detection (Table 1).

Start

Goal

Fig. 1 Augmented flag-collection domain, showing the locations of the security cameras and their

scope of vision, start and goal positions for the agent and flags to collect A-F

Table 1 Detection probabilities when transitioning between areas

Area transitions View detection probabilities

Direct Partial Hidden

HallA ↔ RoomA 0.18 0.12 0.06

HallB ↔ RoomB 0.15 0.1 0.05

HallB ↔ RoomC 0.15 0.1 0.05

RoomC ↔ RoomE 0.21 0.14 0.07
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Table 2 Constraints for the flag-collection mission

ID Constraint PCTL

C1 The probability that the agent reaches the ‘goal’ area should be at

least 0.75
P
≥0.75[F 𝑔𝑜𝑎𝑙]

C2 The agent should cumulate a reward above 2 before reaching the

‘goal’

R
>2[F 𝑔𝑜𝑎𝑙]

Suppose that in the real world, where the agent is actually a physical vehicle of

some value, the owners of the vehicle wish for the safe return of it. However, they

do not want it to behave “too safely” or it will not collect enough flags. Therefore,

they specify the constraints from Table 2 for the agent. In this way, the right level

of risk can be selected for each instance of the mission. Note that formulating the

constraints C1 and C2 into a reward function and using standard RL to solve the

problem is not possible since these objectives conflict and RL seeks to maximize a

reward or minimize a cost, not maintain it within a specified range.

4 Method

As shown in Fig. 2, ARL takes as input a description of the problem to solve that com-

prises: (a) incomplete knowledge about the environment (i.e. problem); and (b) the

set of constraints  = {C1,C2,… ,Cn} that must be satisfied by the policy obtained

by the RL agent. The incomplete knowledge must contain sufficient information for

the conservativeQV analysis of the environment properties associated with the n > 0
constraints. For instance, given the constraintC1 from Table 2, it is sufficient to know

a conservative lower bound for the detection probabilities of the cameras from the

flag-collection mission in our running example. Note that the incomplete knowl-

edge about the environment assumed by ARL is necessary: no constraints could be

ensured during RL exploration in the absence of any information about the environ-

ment.

Under the assumptions detailed above, our ARL method yields a policy that satis-

fies the constraints . To this end, ARL employs a process that integrates quantitative

verification and reinforcement learning, and comprises the following stages:

1. AMDP
construction

2. Abstract
policy

synthesis

3. Safe
learning

Incomplete
problem

knowledge

AMDP
model

Safety
constraints

C1, C2, . . . , Cn

Safe
abstract
policies

Safe
RL

policy

Fig. 2 Stages of the ARL method
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1. AMDP construction – This ARL stage devises a parameterised AMDP model

of the RL problem that supports the QV of the constraints C1, C2, . . . , Cn.

2. Abstract policy synthesis – This stage generates AMDP policies (i.e. abstract
policies) that satisfy the problem constraints. These “safe” policies are used

to assemble an approximate Pareto-front of abstract policies. The optimisation

objectives used to establish the Pareto dominance between different abstract poli-

cies are derived directly from the constraints (as described later in Sect. 4.2) or

specified manually.

3. Safe learning – In this ARL stage, a suitable abstract policy from the Pareto-

front is selected, and translated into state-action constraints for the exploration of

the environment by the RL agent. Accordingly, the RL agent obtains an optimal

policy that complies with the problem constraints.

4.1 Stage 1: AMDP Construction

In this ARL stage, all features that are relevant for the problem constraints must be

extracted from the available incomplete knowledge about the RL environment. This

could include locations, events, rewards, actions or progress levels. The objective is

to abstract out the features that have no impact on the solution attributes that the con-

straints  refer to, whilst retaining as much detail as possible about the key features

that these attributes depend on. This ensures that the constructed AMDP is suffi-

ciently small to be analysed using quantitative verification, while also containing

the necessary details to enable the analysis of all constraints.

In our running example, the key features are the locations and connections of

rooms and halls, the detection probabilities of the cameras and the progress of the

flags collected. Instead of having each (potentially unknown) Cartesian coordinate

within a room or hall as a separate state, the room or hall as a whole is considered

a single state in the AMDP. Also, we only consider the conservative detection prob-

ability per camera (which allows a conservative verification of constraint C1 from

Table 2), since the probabilities from Table 1 are unknown to the agent at this stage.

These abstractions reduce the size of the RL MDP, which is unknown to the agent

and contains 14,976 states, to just 448 states for the associated AMDP. Note that the

number of AMDP states is larger than the number of locations (i.e. rooms and halls)

because different AMDP states are used for each possible combination of a location

and a number of flags collected so far.

The actions of the full RL MDP should be similarly abstracted. For example,

instead of having the cardinal movements at each location of the building from our

running example, abstract actions (i.e. options – cf. Sect. 2.1) are specified as sim-

ply the movement between locations. Thus, instead of the four possible actions for

each of the 14,976 MDP states, the 448 AMDP states have only between one and

four possible options each. The m options that are available for an AMDP state cor-

respond to the m ≥ 1 passageways that link the location associated with that state

with other locations, and can be encoded using a state parameter that takes one of
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the discrete values 1, 2, . . . , m. The parameters for AMDP states with a single pas-

sageway (corresponding to rooms A, B and E from Fig. 1) can only take the value 1
and are therefore discarded. This leaves a set of 256 parameters that correspond to

approximately 4 × 1099 possible abstract policies.

4.2 Stage 2: Abstract Policy Synthesis

In this ARL stage, a heuristic is used to find abstract policies that satisfy the con-

straints  for the AMDP constructed in Stage 1. The process is made easy by the

use of the state parameters proposed in the previous section. Thus, each abstract pol-

icy can be obtained by assigning suitable values to these parameters. Fixing these

parameter values in the AMDP resolves all nondeterminism, and the resulting model

(which is a Markov chain) can be verified using QV, to establish if the abstract policy

satisfies each constraint from . If it does, the policy is deemed “safe”, and is consid-

ered for inclusion in an approximate Pareto-optimal set of abstract policies. This set

consists of abstract policies that Pareto-dominate each other according to a number

of optimisation objectives such as probability of success or cumulated reward, where

a policy 𝜋A is said to Pareto-dominate another policy 𝜋B iff 𝜋A gives superior results

to 𝜋B for at least one objective, and for all other objectives 𝜋A it is at least as good

as 𝜋B [32]. A Pareto-optimal set and the associated Pareto-front of objective values

allow an acceptable trade-off between objectives to be determined a posteriori.

Algorithm 1 shows how this process of obtaining a Pareto-front of abstract poli-

cies is performed. The algorithm takes as its inputs the AMDP , the set of con-

straints  and the set of objectives to be optimised. Starting with the initially empty

set of Pareto policies 𝑃𝑆 (line 2), a while loop begins which first generates a set of

candidate abstract policies P using the function GETCANDIDATEPOLICIES (line 4).

This function can be a search heuristic such as a genetic algorithm [33], hill climbing,

simple random search or another search technique that may prove effective for the

specific AMDP. Each policy 𝜋 ∈ P is then verified against each constraint c ∈  by

the function PMC1 which invokes a probabilistic model checker (e.g. PRISM) and

returns true if the constraints are satisfied and false otherwise (line 6). If the policy

satisfies all the constraints it is then compared to other safe policies (lines 8–15) to

see if it Pareto-dominates any of them by function DOM (lines 24–26), where PMC2
computes the value for the optimisation properties o ∈ . Those policies 𝜋

′ ∈ 𝑃𝑆
which are pareto dominated by 𝜋 are removed from the set, if 𝜋 itself is not dominated

by any other policies then it is included in 𝑃𝑆. The outer while loop in lines 3–21

terminates once some criterion for ¬DONE(𝑃𝑆) is fulfilled, for example if 𝑃𝑆 is

sufficiently large or if a predefined number of iterations has been performed.

The optimisation objectives used to assess if either of two abstract policies Pareto-

dominates the other can be specified manually or can be derived automatically from

the constraints . In the former case, additional PCTL formulae need to be formu-

lated. In the latter case, the PCTL formula for each constraintCi that specifies a lower

bound for an attribute of the RL problem is interpreted as an attribute whose value
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Algorithm 1 Abstract policy synthesis heuristic

1: function GENABSTRACTPOLICIES(,,)

2: 𝑃𝑆 ← {}
3: while ¬DONE(𝑃𝑆) do
4: P ← GETCANDIDATEPOLICIES(𝑃𝑆,)
5: for 𝜋 ∈ P do
6: if

⋀
c∈ PMC1(, 𝜋, c) then

7: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = 𝖿𝖺𝗅𝗌𝖾
8: for 𝜋′ ∈ PS do
9: if DOM(𝜋, 𝜋

′
,,) then

10: 𝑃𝑆 ← 𝑃𝑆 ⧵ {𝜋′}
11: else if DOM(𝜋

′
, 𝜋,,) then

12: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = 𝗍𝗋𝗎𝖾
13: break
14: end if
15: end for
16: if ¬𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 then
17: 𝑃𝑆 ← 𝑃𝑆 ∪ {𝜋}
18: end if
19: end if
20: end for
21: end while
22: return 𝑃𝑆
23: end function

24: function DOM(𝜋1, 𝜋2,,)

25: return
∀o∈ ⋅ PMC2(,𝜋1,o)≥PMC2(,𝜋2,o)∧
∃o∈ ⋅ PMC2(,𝜋1,o)>PMC2(,𝜋2,o)

26: end function

should be maximised. Conversely, attributes for which upper bounds are specified in

the problem constraints are considered attributes whose value should be minimised.

In our running example, the two constraints for the flag-collection problem spec-

ify lower bounds both for the probability that the agent reaches the ‘goal’ area and

for the reward cumulated by the RL agent. Therefore, using automated selection of

optimisation objectives for the running example yields an approximate Pareto-front

corresponding to these two attributes being maximized.

4.3 Stage 3: Safe Learning

The last ARL stage exploits the approximate Pareto-optimal set of abstract policies

synthesised in Stage 2. A policy is selected from this set by taking into account

the trade-offs that different policies achieve for the optimisation objectives used to

assemble the set. The selected abstract policy is then used to ensure that the RL agent

achieves the required constraints by removing the low-level MDP actions that do not



Assurance in Reinforcement Learning Using Quantitative Verification 83

correspond to options from the abstract policy. For instance, assume that the selected

abstract policy for our running example requires the agent to never enter RoomA.

In this case, should the agent be at Cartesian coordinates (5, 9) (i.e. the position

immediately to the North of the Start position), the action to move North and thus

to enter RoomA is removed from the agent’s action set, for this specific state. By

disallowing the actions that are not associated with options permitted by the abstract

policy, the RL agent’s learning and learnt low-level behaviours are guaranteed to

satisfy the problem constraints, as illustrated in the next section for a case study.

Abstract policies intentionally reduce agent autonomy to prevent unsafe actions,

but do not preclude it completely. For example, in the running example the agent

must learn the flag locations within the rooms as well as the doorway areas safest to

cross, information which is not contained within the abstract policies. Whilst abstract

policy constraints may yield suboptimal RL policies with respect to the RL model

in its entirety, this key feature guarantees safety.

5 Evaluation

5.1 Experimental Setup

We evaluated the effectiveness and generality of our ARL approach by applying it

to two case studies. The first case study is based on the navigation task described in

Sect. 3, where the learning agent must navigate a guarded environment comprising

hallways and rooms in order to collect flags distributed throughout. Our second case

study is adapted from [25], where an assisted-living system has been developed to

aid dementia sufferers with daily living tasks.

For each case study we conducted a set of four experiments. The first of these

experiments did not involve the use of our ARL approach, and was a standard RL

implementation of the case study. This experiment serves as a baseline which we

contrast with the ARL experiments in order to determine the effects of our method.

All experiment parameters were chosen empirically in line with standard RL prac-

tice. For all experiments we use a discount factor 𝛾 = 0.99 and a learning rate 𝛼 = 0.1
which decays to 0 over the learning run. Parameters specific to individual experi-

ments are mentioned throughout this section. As is convention when evaluating sto-

chastic processes, we repeated each experiment multiple times (i.e. five times) and

we evaluated the final policy for each experiment many times (i.e. 10,000 times) in

order to ensure that the results are suitably significant [34].

Learning evaluation is done after each learning episode during a run, whilst we

only perform five learning runs per experiment, error bars for the standard error of

the mean show the statistical significance of the learning (Figs. 4, 5, 8 and 9). Policy

evaluations were done once learning had finished (Tables 4 and 8).

We implemented the ARL experiments using the York Reinforcement Learning

Library (YORLL, www.cs.york.ac.uk/rl/software.php), which supports a wide range

www.cs.york.ac.uk/rl/software.php
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of environments and learning algorithms. For the QV component of ARL, we used

the PRISM model checker [27], which supports the verification of reward-extended

PCTL properties for MDPs and has been successfully used to analyse similar models

of systems ranging from cloud infrastructure [35] and service-based systems [36] to

unmanned vehicles [37, 38].

5.2 Guarded Flag-Collection

This case study is based on the scenario described in Sect. 3 and referred to through-

out Sect. 4. In the interest of brevity, the details presented in these two previous

sections will not be repeated here.

In our RL implementation, the agent receives a reward of 1 for each flag it collects

and an additional reward of 1 for reaching the ‘goal’ area of the building. If the agent

is captured the agent receives a reward of -1, regardless of any flags already collected.

We used the AMDP constructed during the first ARL stage as described in

Sect. 4.1. In the second ARL stage, we generated 10,000 abstract policies with para-

meter values (i.e. state to action mappings) drawn randomly from a uniform distribu-

tion. Out of these abstract policies, QV using the probabilistic model checker PRISM

identified 14 policies that satisfied the two constraints from Table 2. Figure 3 shows

the QV results obtained for these 14 abstract policies, i.e. their associated probabil-

ity of reaching the ‘goal’ area and expected number of flags collected. The approx-

imate Pareto-front depicted in this figure was obtained using the two optimization
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Fig. 3 Pareto-front of abstract policies that satisfy the constraints from Table 2. Those policies

that were selected for ARL are labelled A, B and C
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Table 3 Selected abstract policies to use for ARL in the guarded flag-collection

Abstract policy Probability of reaching ‘goal’ Expected reward

A 0.9 2.85

B 0.81 3.62

C 0.78 4.5

Table 4 Results for baseline and ARL experiments for guarded flag-collection

Abstract Policy Probability of

reaching ‘goal’

Standard error Expected reward Standard error

None 0.72 0.0073 4.01 0.031

A 0.9 0.0012 2.85 0.0029

B 0.81 0.0019 3.62 0.0037

C 0.78 0.0012 4.5 0.0041

objectives described in Sect. 4.2, i.e. maximizing the expected number of flags col-

lected and the probability of reaching the ‘goal’ area of the building.

From this Pareto-front we selected three abstract policies (labelled as A, B and

C in Fig. 3) to use in different experiments during the safe learning ARL stage, as

explained in Sect. 4.3. The properties of these three abstract policies are shown in

Table 3.

The baseline experiment (which did not use ARL) used an exploration probability

𝜖 = 0.8 and performed 2 × 107 learning episodes, each with 10,000 steps. This did

not, however, reach a global optimum. Even after extensive learning, in excess of 109
learning episodes, conventional RL did not attain a superior solution. In contrast to

our experiments where ARL was used, cf. abstract policy C, Table 4, a superior pol-

icy was learned much faster, further demonstrating the advantages of our approach.

Figure 4 shows the learning progress for this experiment.

Next, we ran three further sets of RL experiments, one for each of the abstract

policies from Table 3. It was not necessary to have so many learning episodes as

for the baseline experiment, since the abstract policy had the effect of guiding the

agent with regard to the locations to enter next, and therefore only 105 episodes were

necessary for the learning to converge. Similarly, a lower exploration probability of

𝜖 = 0.6 proved best since the abstract policy reduced the state space the agent needed

to explore. Figure 5 show the RL learning progress for each of the abstract policies

used for ARL.

As can be seen from the results summarized in Table 4, the experiments where an

abstract policy was applied resulted in an RL policy that: (a) satisfied the problem

constraints from Table 2; and (b) matched the probability of reaching the ‘goal’ area

and the expected reward of the abstract policy (cf. Table 3). The baseline experiment

gave results that do not satisfy our constraints, which was expected given that only

14 of the 10,000 abstract policies synthesised by ARL satisfied these constraints.
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Fig. 4 Learning for guarded flag-collection with no ARL applied
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Fig. 5 Learning for guarded flag-collection with ARL applied using the selected abstract policies

A, B and C

5.3 Assisted-Living System for Dementia Sufferer

Dementia is an illness where sufferers experience, amongst other symptoms, the

decreasing ability to perform daily tasks. For example, the task of washing ones

hands can present as a significant challenge as the sufferer can struggle to recollect
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Table 5 The individual

subtasks for washing hands

and their associated the

boolean atomic propositions

indicating if the task has been

performed

Subtask Atomic proposition

Turn tap on on

Apply soap soaped

Wet hands under tap wet

Rinse washed hands rinsed

Dry hands dried

the correct order of events they must perform to complete the task, or they may forget

what stage of the process they have reached so far and as a consequence may regress

by repeating things they have already done. It is therefore necessary for someone,

e.g. a nurse, to care for the sufferer by assisting them with such tasks.

The constant need for a caregiver to be present, however, can be a considerable

burden to them, furthermore, can be costly for the health service. Therefore, a sys-

tem has been designed in [25] to substitute for a caregiver to help perform these daily

tasks. The “assisted-living system” uses an MDP to model the task of hand-washing

and in certain states the system can give a voice prompt to the sufferer with the aim

to guide them on what they must do next, if they are struggling to progress. These

voice prompts become increasingly explicit in their instructions if the sufferer repeat-

edly fails to progress. Should the sufferer still fail to progress after three consecutive

prompts the system can resort to summoning the caregiver to intervene.

The task of hand-washing can be broken down into several subtasks. Table 5 lists

each of the subtasks involved when washing ones hands. Throughout this section

we will use boolean atomic propositions to represent whether or not the subtask has

been achieved or not. Fig. 6 illustrates the workflow when washing hands, including

the possible progressions and regressions that can be made by a dementia sufferer.

We have adapted this system for use as a second case study. In our RL imple-

mentation of the system we have expanded it by introducing different genders

s0
s5

wet
on

on
s1

wet
s11

s3
wet
on

done
s10

s8
dried
on

dried
s9

s2 s4
soaped
on

soaped

soaped

wet

s12
soaped

s6
rinsed

on
wet

wet

s7
rinsed

Fig. 6 The subtasks involved when washing hands. Progress is shown as black, continuous-lines

and nodes and the possible regressions as red, dashed-lines and nodes. Nodes where atomic propo-

sitions are present indicates that they are true, where they do not appear they are false
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Table 6 Constraints and optimisation objectives for the assisted-living system wherem is the num-

ber of mistakes made at any given time, 𝑀𝐴𝑋_𝑀𝐼𝑆𝑇𝐴𝐾𝐸𝑆 is the maximum allowed number

of mistakes before summoning the caregiver, distress is the reward structure for number of prompts

given and “done” represents completion of the task

ID Constraint (C)/Optimisation objective (O) PCTL

C1 The probability that the caregiver

provides assistance should be at least 0.05
P
≥0.05[F m =𝑀𝐴𝑋_𝑀𝐼𝑆𝑇𝐴𝐾𝐸𝑆]

C2 The probability that the caregiver

provides assistance should be at most 0.2
P
≤0.2[F m =𝑀𝐴𝑋_𝑀𝐼𝑆𝑇𝐴𝐾𝐸𝑆]

O1 The level of dementia sufferer distress

due to multiple voice prompts should be

minimised

minimise Rdistress

=? [F 𝑑𝑜𝑛𝑒∨
m =𝑀𝐴𝑋_𝑀𝐼𝑆𝑇𝐴𝐾𝐸𝑆]

O2 The probability of calling the caregiver

should be minimised (subject to C1 and

C2 being satisfied)

minimise

P=?[F m =𝑀𝐴𝑋_𝑀𝐼𝑆𝑇𝐴𝐾𝐸𝑆]

(male/female) and volumes (soft/moderate/loud) for the voice prompt, where the RL

agent learns which gender/volume is most conducive to the agent progressing.

The RL agent must also learn when to give prompts so to (a) minimize the prob-

ability that the caregiver is called for, whilst (b) minimizing the number of prompts

given to the sufferer since persistent prompts can become distressing to the patient.

In addition to these optimisation objectives, we also desire that the caregiver must

be present sometimes so that the sufferer does not feel neglected, yet we do not wish

them to be present too frequently which would defeat the purpose of the system.

Therefore, supposing a person washes there hands approximately five times a day,

and we wish the caregiver to be present at least once every one-to-four days, the

probability of them intervening should be between 0.05 and 0.2. These optimisation

objectives and constraints are specified as PCTL formulae in Table 6.

The transition probabilities between each stage of the task were approximated

based on the careful consideration of the complexity of each task. The transition

probabilities for progressing increase when prompts are given, moreover, the style

of prompt can further increase the probability of progressing as more appealing styles

are more likely to be followed. The reward function for the RL MDP is defined as

follows: −1 for each prompt given since giving prompts increases the distress to the

sufferer and should only be provided when necessary, −300 for calling for the care-

giver as this should only be done as a final resort, and 500 for successfully completing

the task.

An AMDP was constructed based on the workflow shown in Fig. 6. For the AMDP

we use the the transition probabilities for progression which are highest, assuming

the RL agent will successfully learn which prompt style is most appealing to the

sufferer. The reward function for the AMDP only requires -1 for when prompts are

given; rewards for completing the task and for calling the caregiver are only required
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Fig. 7 Safe abstract policies for the assisted-living system including the Pareto-front. The three

policies chosen for ARL are labelled as A, B and C

by the RL agent so it learns to reach the “done” absorbing state s10 as well as to not

immediately call the caregiver, respectively.

Abstract policies for the AMDP contain 12 parameters, once for each stage of

the workflow excluding s10 where the task has been completed and no prompts are

required. Each parameter defines the maximum number of mistakes for each stage

that are necessary for a prompt to eventually be given, where a parameter value of 0

will mean that a prompt is always given, and a value equal to the maximum mistakes

threshold before calling the caregiver will mean never giving a prompt. An additional

parameter to find is the threshold for the maximum number of mistakes allowed

before calling for the caregiver.

As with the previous case study, we generated 10,000 candidate abstract policies,

of which 786 satisfied the constraints C1 and C2 from Table 6. The Pareto-front of

these safe abstract policies was generated subject to optimisation objectives O1 and

O2 from Table 6. Figure 7 shows this Pareto-front with three policies chosen for ARL

labelled A, B and C. The probability of calling the caregiver and level of distress to

the dementia sufferer for these three policies are listed in Table 7.

For all experiments for this case study we used an 𝜖 = 0.5 and episodes had a

maximum of 1,000 steps. For the baseline experiment 106 episodes were necessary,

more were required for the safe RL experiments since the nature of the abstract poli-

cies to sometimes prevent the agent from giving prompts meant the agent was unable

to try them as frequently, increasing the time needed to learn which prompt style was

best. The learning progress for the baseline experiment is shown in Fig. 8, and for

the experiments using safe abstract policies is shown in Fig. 9.
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Table 7 The chosen safe abstract policies to be used during the safe learning stage of ARL for the

assisted-living system

Abstract policy Probability of calling the

caregiver

Distress to dementia sufferer

A 0.08 2.17

B 0.13 1.70

C 0.17 1.38
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Fig. 8 Learning for assisted-living system with no ARL applied

The results from these experiments are summarised in Table 8. As can be seen, the

safe RL experiments (using abstract policies A, B and C) satisfy the safety require-

ments specified in Table 6, furthermore, the baseline RL experiment without safe

learning did not. Comparing with the policy attributes from Table 7, the results

closely match the probability of calling the caregiver and the distress to the patient.

The probability of calling the caregiver for safe learning using policy C is slightly

higher than that policy’s probability in Table 7, this can be attributed to the fact

that the learned policy was not completely optimal and with extra learning episodes

should converge to the same probability.

6 Related Work

The ARL technique introduced in our paper belongs to a class of RL techniques

called safe reinforcement learning [7]. The previous research on safe RL has pro-

posed techniques that can enforce bounds on the either the reward obtained by the
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Fig. 9 Learning for assisted-living system with ARL applied using the selected abstract policies

A, B and C

Table 8 Results from baseline and ARL experiments for the assisted-living system

Abstract policy Probability of

calling the

caregiver

Standard error Distress to patient Standard error

None 4.02 × 10−4 4.28 × 10−4 8.31 4.03 × 10−3

A 0.08 4.95 × 10−4 2.17 3.25 × 10−3

B 0.13 5.17 × 10−4 1.70 2.22 × 10−3

C 0.18 4.27 × 10−4 1.38 1.84 × 10−3

RL agent or on simple measures that are related to its optimisation. Alternative

approaches modify how the agent explores the environment to avoid areas of risk.

The technique proposed by Geibel [21] supports an inequality constraint on the

reward cumulated by the RL agent or a maximum permitted probability for such

a constraint to be violated. Safe RL techniques that support similar constraints by

generalizing chance-constrained planning to infinite-horizon MDPs are presented

by Mannor and Delage [20] and Ponda et al. [23]. The constraints supported by [20,

21, 23] are a subset of the types of constraints supported by ARL, which can handle

the wide range of constraints that can be specified in PCTL.

Abe et al. [18] describe a safe RL technique in which high-level business and legal

“constraint rules” are enforced during each value iteration of the RL process, and

apply it to a tax collection optimization problem. Building on insights from financial

decision making and robust process control, Castro et al. [19] introduce a safe RL

technique that enforces constraints on the cumulative reward obtained by the RL
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agent, on the variance of this reward, or on some combination of the two. Moldovan

and Abbeel [22] introduce a safe RL technique that enforces the RL agent to avoid

irreversible actions by visiting only states from which it can return to the initial state.

Our ARL technique operates with different types of constraints than [18, 19, 22], and

is therefore complementary to these results.

ARL also differs from the existing safe RL approaches through its unique inte-

gration of quantitative verification and reinforcement learning, and use of abstract

policies to enforce safe learning and a safe learnt policy. In contrast, existing tech-

niques operate by modifying the reward function to “penalize” agent actions asso-

ciated with high variance in the probability of attaining the reward [39, 40] or to

avoid irreversible actions [22], or by using domain knowledge to avoid unsafe states

altogether [41].

Another distinguishing characteristic of ARL is its synthesis of an approximate

Pareto-optimal set of permissible (abstract) policies. This offers a broad choice of

trade-offs between relevant attributes of the optimisation problem that is not sup-

ported by existing safe RL techniques. A different area of RL research known as

multi-objective RL (MORL) [32, 42] has also considered the problem of learning

a policy that satisfies multiple objectives that may conflict with each other. How-

ever, neither single-policy MORL algorithms (which learn an optimal policy for each

objective and then combine them to form a single policy [43, 44]) nor multi-policy

algorithms (which learn an approximate Pareto-front for each objective [45] or a

joint Pareto-front [46]) support the rich expressiveness provided by ARL through its

use of reward-augmented PCTL constraints.

7 Conclusion

We proposed the use of an abstract MDP formally analysed using quantitative veri-

fication as a means to restrict the action set of an RL agent to the actions that were

proven to satisfy a set of required constraints, adding to the growing research on safe

RL. Through two case studies based on the benchmark RL flag-collection domain

and an assissted-living planning system, we demonstrated that the hybrid ARL tech-

nique can be applied successfully. ARL requires that partial knowledge of the prob-

lem is provided a priori, and makes the typical assumption that RL will converge

towards an optimal policy.

Unlike standard RL, our technique supports a wide range of safety, performance

and reliability constraints that cannot be expressed using a single reward function

and are not supported by existing safe RL techniques. Furthermore, the use of an

AMDP allows the application of ARL with only limited knowledge about the envi-

ronment, and ensures that ARL scales to much larger and complex models than

would otherwise be feasible. Additionally, the construction of the AMDP and the

use of PCTL formulae, an expressive and convenient representation formalism for

required properties, enables on the fly experimentation of constraints and properties

without requiring modification of the underlying model.
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Our future work on the ARL technique will include exploiting some of the more

sophisticated constraints that can be specified in PCTL. For example, unbounded

until PCTL formulae can be used to constrain the order in which the agent visits dif-

ferent rooms in the guarded flag-collection case study, e.g. P
≥0.9[¬𝑅𝑜𝑜𝑚𝐴 U𝑅𝑜𝑜𝑚𝐵]

requires that, with a probability of at least 0.9, the agent should not visit RoomA

before RoomB. Furthermore, bounded until PCTL formulae can additionally place

constraints on the number of time steps taken to achieve a certain outcome.

Additionally, we plan to research a means of updating the AMDP should it not

accurately reflect the RL MDP. As we mention in [47, 48], in the event that the RL

agent encounters dynamics in the RL MDP that do not correlate with the AMDP, a

means of feeding back this information to update the AMDP can be developed based

on [49–51]. After updating the AMDP the constraints will need to be reverified and,

if necessary, a new abstract policy will be generated.

Finally, we also plan to explore the possibility to employ multi-objective RL [32,

42] in the abstract policy synthesis of ARL, and to develop a variant of the technique

where the actions restricted through QV and those learnt by the RL agent belong to

disjoint sets. This ARL variant will support the common scenario in which a set of

system attributes like cost and energy usage need to be optimised once strict con-

straints are guaranteed to be satisfied for some other system attributes such as avail-

ability and response time.
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Distillation of Deep Learning Ensembles
as a Regularisation Method

Alan Mosca and George D. Magoulas

Abstract Ensemble methods are among the most commonly utilised algorithms that

construct a group of models and combine their predictions to provide improved gen-

eralisation. They do so by aggregating multiple diverse versions of models learned

using machine learning algorithms, and it is this diversity that enables the ensemble

to perform better than any of its members taken individually. This approach can be

extended to produce ensembles of deep learning methods that combine various good

performing models, which are between them very diverse because they have reached

different local minima and make different prediction errors. It has been shown that

a large, cumbersome deep neural network can be approximated by a smaller net-

work through a process of distillation, and that it is possible to approximate an

ensemble of other learning algorithms by using a single neural network, with the

help of additional artificially generated pseudo-data. We extend this work to show

that an ensemble of deep neural networks can indeed be approximated by a single

deep neural network with size and capacity equal to the single ensemble member,

and we develop a recipe that shows how this can be achieved without using any

artificial training data or any other special provisions, such as using the soft output
targets during the distillation process. We also show that, under particular circum-

stances, the distillation process can be used as a form of regularisation, through its

implicit reduction in learning capacity. We corroborate our findings with an experi-

mental analysis on some common benchmark datasets in computer vision and deep

learning.
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1 Introduction

A typical trait among almost all of the many available machine learning ensemble

methods, of which a survey can be found in [6], is that at the time of testing (some-

times also called “inference time”), the input is run through every single member of

the ensemble, in order to obtain the combined result. This makes the operation of the

ensemble at test–time expensive when compared to each base classifier taken indi-

vidually, with both time and memory requirements increasing linearly w.r.t. the num-

ber of members in the ensemble. Because of this cost relationship to the ensemble

size, which is also mirrored in the training phase, ensembles have been usually only

used with small base learner algorithms, or as a final addition to an independently

fine–tuned, more complex, base learner. This means that deep learning ensembles

have been largely overlooked as a field of research because of the high costs involved.

A process called distillation has been developed in [9], which shows how a

reduced–complexity deep neural network is able to approximate the behaviour of

a more cumbersome network. This is achieved by using the soft output values of the

cumbersome network as a training target for the approximate network. In [4], the

authors show that a simple feed-forward, fully-connected Artificial Neural Network

is able to learn the distilled knowledge of an ensemble of other types of classifiers,

demonstrating that the principle of distillation is also applicable to ensembles.

We show that it is possible to apply the distillation method to approximate an

ensemble of deep convolutional neural networks with a single network. We do this

for two reasons. First, a distilled ensemble will be more portable than the original

ensemble, with smaller computational and memory requirements compared to the

original version. Second, the improved generalisation achieved with the ensemble

may be transferable to the distilled version.

We provide guidelines that we derived from learning theory, as to what the opti-

mal methodology for such a distillation is, and show that, where the original training

data is sufficiently sized, the distillation process also serves as a regularizer of the

ensemble as a whole. Our recipe for distillation of ensembles also simplifies some

of the prerequisites imposed by existing methods: it is no longer necessary to use

the “soft” output as a target for training the distilled network. Instead we can use the

classification output as the target and the distillation process still works. Addition-

ally, we reason that any additional artificial data used to cover the input space is only

likely to reduce the regularization abilities of the distilled network.

The rest of the paper is structured as follows. Section 2 explores the background

and existing literature in deep learning, specifically regarding the methods used in

this paper. Section 3 covers the necessary background in ensemble theory and meth-

ods related to this work. Section 4 presents background on the distillation process.

Section 5 derives and illustrates our recipe for the distillation of deep learning ensem-

bles, and Sect. 6 shows how our methodology leads to an improvements over using

just the ensemble method. Finally, Sect. 7 discusses our results, and considers how

the use of an intermediate ensemble could become an integral part of training a deep

neural network.
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2 Supervised Deep Learning

Deep Learning is a branch of machine learning applied to the study of very large Arti-

ficial Neural Networks (ANNs). Such ANNs are usually termed “deep” because of

the large number of hidden layers that they contain. In this paper, we focus our efforts

on Convolutional Neural Networks because of their popularity, but our recipe and

experimentation can be easily extended to work with other supervised deep learning

algorithms.

2.1 Convolutional Neural Networks

Convolutional Neural Networks [11] were introduced mostly for use in image recog-

nition, or other similar problem domains, where applying a convolution operation

to the input features makes sense (Video Analysis, Sound data, Natural Language

Processing). These networks are usually trained using backpropagation and gradient

descent, and most of the readily available update rules can be applied. Each convolu-

tional layer is composed of the following functional elements, which for simplifica-

tion of the backpropagation steps, can be considered as separate layers that usually

come in sequence:

∙ Convolution of the input features across multiple kernels, sometimes also called

filters, where the function of each kernel is learned. In some cases this is thought

of as generating a volume of neurons by extrusion, because each kernel will per-

form a convolution across the input volume. However, the same kernel will be

applied on each of the “depth” layers, which leads to weight-sharing and there-

fore improves the time required to compute and train the layer. If we consider an

N × M rectangular input from layer l − 1, to which a n × m rectangular kernel 𝜔

is applied, the forward pass of the convolution operation to yield the value of the

output at index i, j would be:

z(l)ij =
n−1∑

a=0

m−1∑

b=0
𝜔aby(l−1)(i+a)(j+b) (1)

An activation function is applied to calculate each output y(l)ij = A(z(l)ij ), as with

standard neurons. When it comes to the back-propagation of the error present at

the output of the convolutional layer E(l)
, we need to compute the partial derivative

with respect to each input
𝜕E(l)

𝜕y(l−1)ij
. This is done using the chain rule, as per normal

back-propagation
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𝜕E
𝜕𝜔ab

=
n−1∑

a=0

m−1∑

b=0

𝜕E
𝜕z(l)ij

𝜕z(l)ij

𝜕𝜔ab

=
n−1∑

a=0

m−1∑

b=0

𝜕E
𝜕z(l)ij

y(l−1)(i+a)(j+b)

=
n−1∑

a=0

m−1∑

b=0

𝜕E
𝜕y(l)ij

A′(z(l)ij )y
(l−1)
(i+a)(j+b)

(2)

then summing over all z(l)ij where 𝜔ab appears. To propagate the error backwards

to the previous layer, we utilize the chain rule again:

𝜕E
𝜕y(l−1)ij

=
n−1∑

a=0

m−1∑

b=0

𝜕E
𝜕z(l)(i−a)(j−b)

𝜕z(l)(i−a)(j−b)

𝜕y(l−1)ij

=
n−1∑

a=0

m−1∑

b=0

𝜕E(l)

𝜕z(l)(i−a)(i−b)

𝜔ab

(3)

∙ Pooling, or Subsampling, is then applied to the output of the convolution, to reduce

the dimensionality of the output. Most commonly the mean or the max functions

are applied. If the original back-propagated error on the l-th layer is

E(l) = ((W (l))TE(l+1)) ⋅ A′(z(l)) (4)

where E(l)
is the error term for the l-th layer, W is the weights matrix and A′(z(l))

is the derivative of the activation function, we need to first reverse the subsam-

pling, by applying the reverse operation. For instance, for the mean we would just

propagate back the error to all inputs to the subsampling:

E(l) = upsample((W (l))TE(l+1)) ⋅ A′(z(l)) (5)

In practice, this also means that the error propagated backwards from a max-

pooling layer is very sparse, because only one of the inputs will receive the error.

Typically, after a number of these convolutional layers, each connected into each

other, a number of fully connected layers is added, with the specific goal of classify-

ing the input features detected by the convolutional layers.

The “all convolutional neural network” [20], a variant of Convolutional Neural

Networks that replaces the pooling layer for dimensionality reduction with a 1 × 1
convolution, and removes the fully connected layers, has shown improved results on

the original method.
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3 Ensembles

3.1 Bagging

Bagging (short for “bootstrap aggregating”) is a technique that is based on the sta-

tistical bootstrapping method, originally introduced in [3], where the original author

also shows a number of applied use cases. A quantity N of bootstraps is created by

randomly picking M elements from a training dataset of size Z with re-sampling,

and then using each of these bootstraps to train a separate identical base classifier.

Ref. [3] introduces Bagging with M = Z, and this practice seems to be observed in

most of the literature. This will create diverse members because of the randomized

re-sampling, but because there will be significant overlap in the training sets, all

the members will still have positive correlation. If we consider a learner function

Y = 𝜙(X,T , c) that produces a candidate solution Y on class c for a training set T
and input vector X, then the aggregate yj of these bootstraps, by averaging, would

be:

yj(cj) =
∑N

n=1 𝜙(X,Tn, cj)
N

(6)

and the final aggregate label is

Y = argmax
cj∈C

yj(cj) (7)

The reason why this works can be argued as follows, and is originally explained, in

Ref. [3]. This argument is initially made for regression problems with a follow-up

on classification. Given (x, y) pairs taken from the bootstrapped training set Tn, and

𝜙(x,Tn) as the learned predictor, the aggregate predictor will be the average over all

bootstraps:

𝜙A(x) = ET𝜙(x,T) (8)

If we take x to be a fixed input value and y an output, then

ET (y − 𝜙(x,T))2 = y2 − 2yET𝜙(x,T) + ET𝜙
2(x,T) (9)

Integrating both sides over the joint (x, y) distribution, we get that the MSE of 𝜙A(x)
is lower than the MSE averaged over T of 𝜙(x,Tn). The magnitude of this difference

is dependent on the difference between the two sides of:

(ET𝜙(x,T))2 ⩽ ET𝜙
2(x,T) (10)
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Breiman [3] goes on to highlight the importance of the instability between these two

figures, and that there is a crossover point at which the bagged example has worse

performance.

3.2 AdaBoost

Boosting is a technique first introduced in [18, 19], by which classifiers are trained

sequentially, using a sample from the original dataset, with the prediction error from

the previous algorithms affecting the sampling weight for the next round. After each

round of boosting, the decision can be made to terminate and use a set of calculated

weights to apply as a linear combination of the newly created set of learners.

Algorithm 1 A generic Boosting meta-algorithm

D0 ← uniform()
t ← 0
while notstoppingConditionReached() do

currentSubset ← pickFromSet(wholeSet,Dt)
ht ← newClassifier(currentSubset)
𝜖t ← getError(ht,wholeSet)
𝛼t ← learnerCoefficient(𝜖t)
Dt+1 ← nextDistribution(Dt, ht, 𝛼t,wholeSet)
t ← t + 1

end while
H ← aggregate(h0..t, 𝛼0..t)

In [19], Freund and Schapire present two variants of boosting, called AdaBoost.

M1 and AdaBoost.M2. The main difference between the two algorithms is in the way

the final hypothesis is calculated and how multiple class problems are handled, and

they both follow roughly the high-level description of Algorithm 1. Each boosting

variant builds a distribution of weights Dt, which is used to sample from the train-

ing set, and is updated at each iteration to increase the importance of the examples

that are harder to classify correctly. The resampled dataset is used to train a new

classifier ht, which is then incorporated in the group, with a weight 𝛼t, based on its

classification error 𝜖t. The new Dt is then generated for the next iteration. The main

differences between each AdaBoost variant are in how the getError, learnerCoeffi-
cient, nextDistribution and aggregate functions are implemented.

It has been shown that the requirement of AdaBoost.M1 on maximum error of the

underlying weak learner is much stronger than just performing better than random

[19]:
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The main disadvantage of AdaBoost.M1 is that it is unable to handle weak hypotheses with

error greater than 1/2. The expected error of a hypothesis which randomly guesses the label is

1 − 1∕k, where k is the number of possible labels. Thus AdaBoost.M1 requirement for k = 2
is that the prediction is just slightly better than random guessing. However, when k > 2, the

requirement of AdaBoost.M1 is much stronger than that, and might be hard to meet.

AdaBoost.M2 solves this problem by introducing additional communication between

the weak learner and the boosting algorithm. For each sample x and label y a hypoth-

esis function ht(x, y) → [0, 1] is obtained such that the pseudo-loss of a hypothesis

can be calculated. We use y to indicate the mislabelled class, and yi to indicate the

currently considered weak learner’s output associated with xi. Dt is the weight dis-

tribution on the training examples at iteration t.

𝜖t =
1
2

∑

(i,y)∈B
Dt(i, y)(1 − ht(xi, yi) + ht(xi, y)) (11)

to be used in place of the error, where B is the set of all mislabelled pairs (i, y):

B = (i, y) ∶ i ∈ 1,… ,m, y ≠ yi (12)

where m is the number of samples and yi is the label for sample i. It should be noted

that some slight modifications will need to be made to standard learners in order

to produce this hypothesis, so that instead of producing a single decision, they can

output a probability P(y|ht, x) = ht(x, y) of y being the correct label assignment.
1

Subsequently, we set 𝛽t = 𝜖t∕(1 − 𝜖t) and use it to calculate the updated value of Dt:

Dt+1(i, y) =
Dt(i, y)

Zt
⋅ 𝛽

1
2 (1+ht(xi,yi)−ht(xi,y)

t (13)

where Zt is the normalization constant that is also calculated in AdaBoost.M1.

3.3 Deep Incremental Boosting

Deep Incremental Boosting (DIB), introduced in [14], is an example of a white-box
ensemble method: instead of treating the base learner as a “black-box”, character-

istics and properties of such model are exploited to improve the results given by

the ensemble method. DIB applies concepts from transfer of learning to improve the

speed of convergence of boosting rounds by copying a subset of convolutional layers

1
Fortunately, in the case of Deep Learning algorithms, we find that in most cases the output layer

is a SoftMax, which already gives us this value with no additional work.
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Fig. 1 Illusration of subsequent rounds of DIB

trained at round t − 1 as the initialisation for the network to be trained at round t. The

new network is also given additional capacity to learn the new resampled dataset and

the corrections from the previously trained layers. An illustration of the architecture

of DIB is given in Fig. 1, and the full algorithm is shown in Algorithm 2.

Algorithm 2 Deep Incremental Boosting

D0(i) = 1∕M for all i
t = 0
W0 ← randomly initialised weights for first classifier

while t < T do
Xt ← pick from original training set with distribution Dt
ut ← create untrained classifier with additional layer of shape Lnew
copy weights from Wt into the bottom layers of ut
ht ← train ut classifier on current subset

Wt+1 ← all weights from ht
𝜖t =

1
2
∑

(i,y)∈B Dt(i)(1 − ht(xi, yi) + ht(xi, y))
𝛽t = 𝜖t∕(1 − 𝜖t)
Dt+1(i) =

Dt(i)
Zt

⋅ 𝛽(1∕2)(1+ht (xi ,yi)−ht(xi ,y))

where Zt is a normalisation factor such that Dt+1 is a distribution

𝛼t =
1
𝛽t

t = t + 1
end while
H(x) = argmax

y∈Y

∑T
t=1 log𝛼tht(x, y)
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4 Related Work

4.1 Meta–Models

In the field of simulation, the concept of a meta–model is not a novel one. A meta–

model is a model that is designed to reproduce the effects of another model.

This “second–order” modelling has several advantages. It may be the case that

the original model cannot be used to make predictions, or it may be too complex

to fully evaulate, so a meta–model can be developed to obtain similar results with

lesser cost. It may be that some of the characteristics of the original model are not

measurable, so that it cannot be completely reproduced.

A number of surveys has been produced on the subject of meta–modelling, for

example [22]. The meta–models that are more closely related to the work in this

paper are those that use Artificial Neural Networks as the second–order model [2, 7].

These meta–models typically have been trained on small datasets and the ensemble

member is also usually a model with relatively small capacity. The distilled ANN

cannot be considered deep enough to be representative of modern deep learning.

4.2 Approximating an Ensemble with a Neural Network

In [23] it has been shown that it is possible to use a neural network to approximate

an ensemble. However, whilst the results from the approximate network are better

than training the network from scratch, and they approximate very well the results

produced by utilising bagging, the ANNs used are also shallow and very small com-

pared to today’s deep learning models. This method makes use of a pseudo-training
set which is generated from the original training set and the outputs of the ensemble.

An improvement to this methodology has been developed by [4]. Instead of using

a sample of the original training set to generate the pseudo-training set, the authors

sample the entire input space S. This approach is then evaluated on trying to approx-

imate bagged ensembles of SVMs and numerous variants of decisions trees. The

generation of artificial data points in the sample space appears to work well for small

datasets with low complexity. However, as we will see, for high-dimensional datasets

such as those used in deep learning, it poses a few problems of its own.

4.3 Distillation in Deep Learning

Work has been done towards showing that it is possible to distil the knowledge in an

ensemble of relatively deep neural networks [9]. In the paper presenting this work,

a similar argument as in [23] is made: the true function underpinning the data is not

known and therefore it is impossible to learn to generalise it perfectly using only
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what is represented by the training data, so a proxy function has to be used—in this

case the output of the cumbersome model. This gives credit to the idea of generating

a pseudo-training dataset to extract the knowledge of said proxy function, which in

this case is to be created using the inputs of the original training set (or a specially

dedicated “transfer set”) and the soft targets for those given inputs. For a single deep

neural network, this equates to the output of the Softmax layer, before any argmax
operation is applied. In the case of ensembles, this is extended as the geometric or

algebraic mean of the soft outputs of each ensemble member. It is argued that doing

so serves as a regulariser.

This research is focused on relatively small deep networks (up to 8 layers), and

without any of the additional architectural characteristics that are typically found

in contemporary deep learning systems. Additionally, two of the experiments pro-

vided are not reproducible, as they are conducted on ad-hoc, unpublished, propri-

etary datasets (Google JFT and unnamed Android development set). On MNIST,

the only results given are for a small network, used to distill a larger network. The

large network reports an error of 0.67%, the small one 1.46% and the distilled version

0.74%, indicating that the process of distillation is useful to improve the performance

of the smaller network, but it does not beat the performance of the cumbersome one.

An attempt is then made to utilise ensembles in the distillation process. However,

the authors make use of “specialist models”, where each member of the ensemble

has received specialised training on a specific class or task, and no consideration is

made for the general case of traditional ensemble methods.

We therefore conclude that, although it is seminal work in proving that distillation

of deep learning models is possible, it is still necessary to extend the experimenta-

tion to more modern supervised deep learning architectures, to network sizes that

are similar to those currently being used, and, most importantly, to non-specialised

ensembles.

Additional work has been done when looking at distillation as a tool, especially

with regards to adversarial examples [8, 16, 17]. Such examples are generated in

a way that a small perturbation of the input, which is normally imperceptible to the

human eye, causes a large change in the outputs of a network. It is shown that distilla-

tion reduces the magnitude and count of input gradients that create these adversarial

examples, which serves as a good indication that the process of distillation is very

effective at removing the superfluous perturbations of the learned function, by sim-

plifying it and regularising it.

Another variant of distillation has been developed, called FitNet [1], which specif-

ically trains a distilled network that has a larger number of smaller layers than its

teacher. In this case, we can see that a teacher network that has 9.84% error on

CIFAR-10, can be used to train a FitNet network that reaches 8.39% error on the

same test set.
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5 Distillation of Deep Learning Ensembles

We begin by formally defining the process of distillation.

Definition 1 Let S be the (unknown) manifold of the feature space 𝕊 where some

data X exists.

Let Y be the set of labels corresponding to the data X.

Let 𝕐 be the output space in which the data is labelled.

Let Y = f (X) ∶ 𝕊 → 𝕐 be the (unknown) ground truth function that correctly

labels the data, which is the target of the learning.

Let D be the (unknown) distribution of the data X in the manifold S.

Let D̄ be an approximate estimation of the distribution D.

Let h(x) be a model hypothesis that is designed to learn the function f (x).
Let Ȳ = f̄ (X) ∶ 𝕊 → 𝕐 be the approximate function that is instead learned by the

model h(X).
Let X̄ be any additional synthetic training data sampled from D̄ and f̄ (X̄) its pre-

dicted labels by the model h(X).

Definition 2 Then we establish that it is possible to derive a distilled model h′(X)
which learns from data

(
X̄, f̄ (X̄)

)
a new function f̂ (X) ∶ 𝕊 → 𝕐 which is itself an

approximation of f̄ (X).

Figure 2 represents graphically how each function is learned from its ancestor,

mapping the same two spaces in different manners. Because the functions f (X), f̄ (X)
and f̂ (X) are by definition increased orders of approximation of one another, it is not

possible to assume that they all cover the same manifold of the spaces 𝕊 and 𝕐 . We

therefore identify the manifolds as:

∙ S and Y for f (X)
∙ S̄ and Ȳ for f̄ (X)
∙ Ŝ and Ŷ for f̂ (X)

Fig. 2 A schematic

representation of distillation X Y
f(X)

learning

X Y

f̄(X)

learning

X Y

f̂(X)
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Proposition 1 X is the best available representation of the feature space manifold
S at training time.

Because the distribution D is unknown, any estimation of it will be an approxi-

mation and inevitably

D̄ − D ≠ ∅ (14)

D̄ − D ∉ S (15)

This implies that any new synthetic example x̄ may be possibly drawn from D̄ − D,

and that therefore there is a non-zero probability P(x̄ ∉ S) > 0 of x̄ being sampled

outside of the manifold S.

Proposition 2 Any additional training example x̄ sampled from D̄ − D does not pro-
vide any additional information to improve the generalisation from f̂ (X) → f (X).

We know that f̄ (X) ≠ f (X), because otherwise the learning for the particular prob-

lem would be solved. It follows that any individual samples x̄ taken outside of S will

have no use for the representation of f (X) when training f̂ (X), because these regions

are outside the domain of f (X).

Proposition 3 As the manifold S becomes smaller with respect to the feature space
𝕊, the data is more sparse, and therefore P(x̄ ∉ S) increases.

Paradoxically, for an infinitely small manifold S, we know that all the synthetic

data will lie outside of S, and therefore represent values of f̄ (X) that are not defined

in f (X). Therefore, although the synthetic dataset X̄ will improve the ability of gen-

eralising f̄ (X) from f̂ (X), it will have a higher likelihood of containing information

with a higher deviation from the original target function f (X).
In the case of common problems in Deep Learning, we know S to be very small

compared to 𝕊, therefore making the additional purely synthetic data superfluous,

and in some cases potentially harmful to the learning. This is in contrast with noise–

injection and data–augmentation, which use existing training examples as a starting

point. In these cases, the augmented examples can also be considered as part of S
because they represent classifiable data. In practical terms, it is easy to imagine that,

when training a recognizer of hand-written digits, not all the values of the feature

space of all the possible pixel value combinations in an image of the same dimension

make sense as a training example. In fact, it makes no sense semantically to try and

categorize most of the possible resulting images as a digit (Fig. 3).

Moreover, if the new training set for the small network is generated solely from

the examples on which the Ensemble is trained, other areas of the feature space 𝕊 in

which the distribution D does not exist, and the approximate function f̄ (X) is over-

fitting, are explicitly avoided.

It is therefore possible to consider the smaller model as a regularised model,

because it is not forced to learn these overfitted regions, allowing it to learn a simpler
approximated function. Because of this, any additional sample x̄ is superfluous and

can even be harmful.



Distillation of Deep Learning Ensembles as a Regularisation Method 109

S Y

S Y
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Fig. 3 A schematic depiction of how manifolds might be overlapping

Because the given definition of distillation uses h(X) as the target output, the pro-

posed approach does not make use of soft target probabilities and does not create

additional synthetic training data. This recipe relies solely on the assumption that the

original Ensemble is likely to have overfit the training data. The soft target probabil-

ities are not used as simplification to the procedure. We found empirically that with

ensembles of deep convolutional neural networks the difference was small enough

to justify dropping this practice in favour of simplifying the methodology.

By obtaining the labels produced by the Ensemble on the training set Xtrain and

using them to train a new classifier of the same type and shape as those used as

members of the Ensemble (Algorithm 3), it is possible to construct a regularised

version of the approximated function f̄ (X), which is learned by a model h(X).
The validation and testing of the model is performed on the original validation

and test sets. This ensures that the distilled model’s learned function f̂ (X) is evaluated

on how well it approximates f (X)—the (unknown) function that correctly labels the

data, which is the target of the learning—rather than f̄ (X), which was the original

goal of the learning process.

Algorithm 3 Regularized Distillation

H(X,Y) = generator of deep networks

E(H,X,Y) = ensemble method

hE(X,Y) ← E(H,Xtrain,Ytrain)
yh(Xtrain) ← hE(Xtrain,Ytrain)
hD(X, yh(X)) ← H(Xtrain, yh(X)
evaluate hD(X, yh(X)) on the original validation and testing sets (Xvalid ,Yvalid) and (Xtest,Ytest)

Although in theory it is possible to utilise any architecture for the distilled net-

work, it is practical to use the same architecture originally used for the base classifier.

This avoids the need to fit additional hyperparameters and the architecture is already

known to be suitable to the problem. It also serves to demonstrate the point that

improved learning can be achieved with no additional capacity.
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6 Experimental Study

We report the experimental results with convolutional neural networks on bench-

mark datasets in computer vision. We have compared the distillation of Bagging,

AdaBoost and Deep Incremental Boosting. We have included a mixture of over- and

under-fitting network, so as to illustrate that when a network is overfitting, distillation

also acts as a regulariser.

Each time the experiment was run, the initialisations for each network were

aligned by keeping a fixed random seed. This allows a direct comparison between

the ensemble methods and their distilled counterparts, given that the single network

is initialised identically each time. The values reported are for the median result from

five separate runs. The goal of this experimental study is not to achieve a new state–

of–the–art performance on the datasets under examination, but to demonstrate how

our methodology can be applied to improve a well–performing network, that is close

to state–of–the–art.

All experiments were run with the Toupee Deep Learning Ensemble experimen-

tation toolkit. This is a set of libraries and tools, based on Keras [5], which allow the

creation of repeatable experiments in deep learning, including ensemble methods.

An experiment is described by a “model file”, which contains the entire description

of the architecture of the network, and an “experiment file”, which contains all the

information needed to train and test the network, and if applicable, the ensemble.

Source code for Toupee is available at http://github.com/nitbix/toupee.

6.1 MNIST

MNIST [12] is a common computer vision dataset that associates pre-processed

images of hand-written numerical digits with a class label representing that digit.

The input features are the raw pixel values for the 28 × 28 images, in grayscale, and

the outputs are the numerical value between 0 and 9.

MNIST is generally considered a solved problem, with some relatively simple

deep learning models reaching 99.79% accuracy of the best model on the test set

with the appropriate data augmentation [21] and longer training. However, we have

used this dataset to show an example of how an ensemble of relatively small models

that has already slightly overfit the data can be approximated by our regularised

distillation. Figure 4 shows how even such a simple convolutional network is already

able to start overfitting the training set, by reaching 0% classification error on the

training set within four epochs, whilst the test error starts increasing after epoch 14.

We note from Table 1 that the distilled classification errors are better than the

ensemble for each of the methods considered, and also better than the original single

network (0.66%), further corroborating our hypothesis that the distillation process

can serve as a regulariser.

http://github.com/nitbix/toupee
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Fig. 4 Non-augmented training and test error on MNIST

Table 1 Test misclassification error on MNIST (median of five experiments)

AdaBoost (%) Bagging (%) DIB (%)

Ensemble 0.63 0.59 0.51
Distilled 0.52 0.55 0.49

The Convolutional Neural Network–CNN used for MNIST has the following

structure. We used WAME [15] as the training method, and trained for 20 epochs.

We found that training on MNIST for additional time did not improve generalization.

We used the training, validation and test sets provided, and commonly used in the

literature.

∙ An input layer of 784 nodes

∙ 64 5 × 5 convolutions

∙ 2 × 2 max-pooling

∙ 128 5 × 5 convolutions

∙ 2 × 2 max-pooling

∙ A fully connected layer of 1024 nodes

∙ Dropout with P(D) = 0.5
∙ a Softmax layer with 10 outputs (one for each class).

6.2 CIFAR-10

CIFAR-10 is a dataset that contains 60,000 small images of 10 categories of objects.

It was first introduced in [10]. The images are 32 × 32 pixels, in RGB format. The
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Table 2 Test misclassification error on non-augmented CIFAR-10 (median of five experiments)

AdaBoost (%) Bagging (%) DIB (%)

Ensemble 9.62 8.91 9.39
Distilled 9.15 9.31 9.34

output categories are airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck. The classes are completely mutually exclusive so that it is translatable to a

1-versus-all multiclass classification.

The network structure that we used for CIFAR-10 is a variant of the network

used in [20], with the following layers. We note that we replaced some of the all-

convolutional layers for dimensionality reduction with traditional max-pooling lay-

ers, to reduce the required training times. We used WAME [15] as the training

method. The training lasted 100 epochs, and, as is practice with the CIFAR datasets,

did not use a validation set.

∙ An input layer of 3 × 32 × 32 nodes

∙ 96 3 × 3 convolutions, with 1 × 1 padding

∙ 96 3 × 3 convolutions, with 1 × 1 padding

∙ 2 × 2 max-pooling

∙ Dropout with P(D) = 0.5
∙ 192 3 × 3 convolutions, with 1 × 1 padding

∙ 192 3 × 3 convolutions, with 1 × 1 padding

∙ 2 × 2 max-pooling

∙ Dropout with P(D) = 0.5
∙ 192 3 × 3 convolutions, with 1 × 1 padding

∙ 192 3 × 3 convolutions, with 1 × 1 padding

∙ 192 1 × 1 convolutions, with 1 × 1 padding

∙ 10 1 × 1 convolutions, with 1 × 1 padding

∙ Dropout with P(D) = 0.5
∙ Global average pooling

∙ a Softmax layer with 10 outputs (one for each class).

We first trained our model with no dataset augmentation, running the experiment

five times. The single network obtained a median classification error of 11.15%. This

is higher than the original all-convolutional network, which is reported as 9.08%. The

principal reasons for the difference are:

∙ our dataset was not preprocessed with ZCA whitening and Global Contrast Nor-

malization.

∙ the shorter and more aggressive training schedule, that we used in order to be able

to run ensembles of 10 models in an acceptable time.

∙ the original paper is not reporting the median of five runs, but appears to just be

reporting the best results.
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Fig. 5 Non-augmented training and test error on CIFAR-10

Table 3 Test misclassification error on augmented CIFAR-10 (median of five experiments)

AdaBoost (%) Bagging (%) DIB (%)

Ensemble 7.64 6.69 7.16
Distilled 7.14 8.14 7.11

We were able to recreate a result that was similar to the original reported values

when using the full training schedule, but given the long time required to train we

were not able to incorporate this into the ensembles. This however, means that the

network is underfitting the data, and therefore it is also likely that the ensemble will

be doing the same. This is corroborated by the graph in Fig. 5, which shows that even

at the final epochs of training there is still improvement in the test error.

Each ensemble method was run with 10 members, then the final resulting ensem-

ble was distilled according to the recipe provided in Sect. 5. The results without any

data augmentation are reported in Table 2. We then repeated the same experiment

with data augmentation, as prescribed in [13]. Results for the augmented data are

reported in Table 3. In this case our single network reaches a median error of 10.07%.

We believe that, while Bagging might still be able to improve the generalisation

and is therefore slightly underfitting (despite achieving the best results of the three

ensemble methods), Deep Incremental Boosting and AdaBoost are able to overfit the

data, because of the increase in learning capacity added at each round and additional

emphasis on “hard-to-classify” examples. This is corroborated by the graph in Fig. 6,

which shows how subsequent rounds of DIB are not improving the performance of

the ensemble on the test set.

We note how the process of distillation, once again, has been able to improve

the generalisation results for those ensembles that were overfitting, while, although
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Fig. 6 Rounds of DIB on augmented CIFAR-10 show overfitting

it wasn’t able to improve the results for bagging, it is still returning considerably

improved results when compared to the single network.

6.3 CIFAR-100

CIFAR-100 is a dataset that contains 60000 small images of 100 categories of

objects, grouped in 20 super-classes. It was first introduced in [10]. The image for-

mat is the same as CIFAR-10. Class labels are provided for the 100 classes as well as

the 20 super-classes. A super-class is a category that includes 5 of the fine-grained

class labels (e.g. “insects” contains bee, beetle, butterfly, caterpillar, cockroach).

The network used was identical to that used to classify the CIFAR-10 dataset,

except for the number of filters in the last 1 × 1 convolution and the number of out-

puts of the Softmax, which were both increased to 100 to reflect the change in the

number of output classes. We also used the same training parameters.

We first trained our model with no dataset augmentation. The single network

obtained a median classification error of 39.48%. This is again higher than the origi-

nal all-convolutional network, which is reported as 33.71%. We believe that the rea-

son for not obtaining the same error results as reported in the original paper are the

same as those we reported for CIFAR-10. Additionally, the shorter training schedule

allowed for a slight underfitting of the single network. This is corroborated by the

graph in Fig. 7, which shows that even at the final epochs of training there is still

improvement in the test error.
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Fig. 7 Non-augmented training and test error on CIFAR-100

Table 4 Test misclassification error on non-augmented CIFAR-100 (median of five experiments)

AdaBoost (%) Bagging (%) DIB (%)

Ensemble 32.23 31.41 31.40
Distilled 33.66 34.12 33.69

Table 5 Test misclassification error on augmented CIFAR-100 (median of five experiments)

AdaBoost (%) Bagging (%) DIB (%)

Ensemble 31.49 28.58 30.38
Distilled 32.56 31.02 31.32

Each ensemble method was run for 10 rounds, then the final resulting ensemble

was distilled according to the recipe provided in Sect. 5. The results without any data

augmentation are reported in Table 4. We then repeated the same experiment with

data augmentation, as prescribed in [13]. Results for the augmented data are reported

in Table 5. The single network with augmentation reaches an error of 32.76%.

We believe that, unlike with CIFAR-10, the ensemble methods have not been

able to overfit the data. This is corroborated by the graph in Fig. 8, which shows how

subsequent rounds of DIB are improving the performance of the ensemble on the test

set, suggesting that if there were further rounds, the performance would continue to

improve.

We note how, even though we are not improving on the results of the ensemble, the

distillation process does improve the results when compared to the single network,

capturing almost all of the gains given by the ensemble.
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Fig. 8 Rounds of DIB on augmented CIFAR-100 show no overfitting

We then repeated the same experiment with dataset augmentation: random hor-

izontal flips, random zoom and tilt, but no random cropping. We still did not use

ZCA whitening or Global Contrast Normalisation. The results in Table 5 show that

a similar conclusion to the non-augmented version of the experiment can be made:

because the Ensemble is not overfitting, the distillation process is regularising a func-

tion that doesn’t need to be regularised. We note that, although the distilled network

has worse performance than the ensemble methods, it still has better performance

than the original network (33.71%).

7 Discussion and Conclusions

We have seen how the process of distillation of a cumbersome model can be extended

to the representation of the function learned by an ensemble of deep neural networks

with a single deep neural network. We have reported some guidelines that, when

appropriate, also show how this process can be utilised as a regulariser for the func-

tion learned by the ensemble.

We have explored experimentally how our methodology works, both on overfit-

ted and underfitted networks, showing that in all cases we are able to improve the

performance of the single network by distilling the knowledge of the ensemble. Fur-

thermore, when the ensemble is overfitting the training data, we are able to use the

distillation process as a regulariser, improving the generalisation.

Based on the data from all experiments, a single-tailed Wilcoxon test confirms

that, at the 5% confidence level, the improvements in performance are significant.

The observed empirical evidence when comparing the distilled network to the orig-

inal single network shows that the distilled network has lower error every time. A
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single-tailed Wilcoxon test also confirms that the distilled network is significantly

better at the 5% confidence level. Because of the results of these two tests, we can

conclude that, in the cases where the computational capacity is not sufficient to run

the ensemble at test time (for example those situations where the model needs to be

run at scale on commodity hardware), it is always better to use the distilled network.

In terms of the regularisation ability of the distillation process, our experiments

provide evidence that distillation works best in cases where the original ensemble is

overfitting the data. In such situations, applying distillation improves the accuracy

even further. If we imagine that a single member network can learn a function of

complexity Cn, we can assume that the overall learning capacity for an ensemble of

size n will be Ce ≈ nCn. The process of distillation subsequently reduces the com-

plexity of the function learned back to Cn. However, because of the changed learning

process explained in Sect. 5, the function being learned is more effective and is able

to reduce the overfitting learned by the ensemble.

Lastly, another finding of this work is that utilising a distilled ensemble, even in

situations where the distillation does not provide good regularisation, can still pro-

duce improvements over the original single network. We therefore can easily envi-

sion situations where training an ensemble and distilling its knowledge back to a

single network could become an integral part of training the single network. In these

cases, the single network remains the goal of the training process, and the ensemble

becomes a training vehicle for the improvement of the generalisation.
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Heuristic Constraint Answer Set
Programming for Manufacturing Problems

Erich C. Teppan and Gerhard Friedrich

Abstract Constraint answer set programming (CASP) is a family of hybrid

approaches integrating answer set programming (ASP) and constraint programming

(CP). These hybrid approaches have already proven to be successful in various

domains. In this paper we present the CASP solver ASCASS (A Simple Constraint

Answer Set Solver) which provides novel methods for defining and exploiting search

heuristics. Beyond the possibility of using already built-in problem-independent

heuristics, ASCASS allows on the ASP level the definition of problem-dependent

variable selection, value selection and pruning strategies which guide the search of

the CP solver. In this context, we investigate the applicability and performance of

CASP in general and ASCASS in particular in two important manufacturing prob-

lem domains: system configuration and job scheduling.

1 Introduction

During the last decade, Answer Set Programming (ASP) under the stable model

semantics [13] has evolved to an extremely powerful approach for solving combi-

natorial problems. Especially conflict-driven search mechanisms contributed to the

high performance of state-of-the-art solvers [11]. Furthermore, ASP provides supe-

rior problem encoding capabilities as ASP is declarative in nature and even provides

language features which go beyond first order.

However, the expressive power on the one hand and the highly effective conflict-

driven search approach on the other hand does not come for free. Current ASP solvers

employing conflict-driven search transform the higher-order problem representation

to propositional logic. This transformation (called grounding) constitutes the space

bottleneck of nowadays ASP systems. Once the grounding step is completed, the per-
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formance of the conflict-driven search in combination with state-of-the-art look-back

heuristics like VSIDS and restarts [17] typically shows superior performance com-

pared to other search approaches. Yet, grounding is not possible for many industrial-

sized problem instances.

One approach that emerged also out of the need of easing the grounding was

Constraint Answer Set Programming (CASP) [19]. CASP can be seen as a hybrid

approach extending ASP by Constraint Programming (CP) features. Conceptually,

it is very close to satisfiability (SAT) modulo theory approaches which integrate

first-order formulas with additional background theories such as real numbers or

integers [24]. For certain classes of problems like special forms of scheduling CASP

was already successfully applied [3]. Especially search problems with large vari-

able domains often profit from the CASP representation due to the alleviation of

the grounding bottleneck [18]. In CASP often a majority of the solution calcula-

tion is done by the CP solver. Hence, the applied search strategies on the CP level

play a crucial role for the successful application of CASP in real-world problem

domains. Furthermore, for many real-world problem domains problem-independent

general purpose strategies typically built-in state of-the-art solvers are not sufficient

and problem-dependent heuristics are needed.

Any problem-dependent heuristic on the CP level basically consists of three com-

ponents:

1. a problem-dependent variable selection strategy

2. a problem-dependent value selection strategy

3. a problem-dependent pruning strategy

Up to now there was no focus on the development of sophisticated features for

expressing and exploiting search strategies in CASP solvers. Consequently, the sup-

port for expressing and exploiting search strategies on the CP level are rather limited

in existing solvers. The two most well known CASP solvers are Clingcon and EZCSP.

Clingcon
1

[21] does not provide any means for influencing the search of the

underlying CP solver Gecode.
2

In EZCSP
3

[2] there is a set of built-in strategies

depending on the underlying CP solver that can be used. In EZCSP, also problem-

dependent variable selection strategies are already possible. By the special predicate

label_order it is possible to define the order in which the constraint variables are

processed by the CP solver. What is missing is the possibility of expressing custom

value ordering and pruning strategies.

In this article we first present ASCASS, a novel CASP solver which uses Clingo

for answer set solving and the Java framework Jacop for CP solving. ASCASS com-

bines and extends the heuristic capabilities of state-of-the-art CASP solvers and

makes them completely available on the problem encoding level. Beyond the usage

of built-in strategies, ASCASS provides powerful constructs for the formulation and

1
http://www.cs.uni-potsdam.de/clingcon/.

2
www.gecode.org.

3
http://www.mbal.tk/ezcsp/index.html.

http://www.cs.uni-potsdam.de/clingcon/
www.gecode.org
http://www.mbal.tk/ezcsp/index.html
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exploitation of problem-dependent heuristics consisting of variable selection, value

selection and pruning strategies.

Based on the heuristic representation abilities of ASCASS, we show how to real-

ize heuristic methods for two industrially highly important problem fields. The first

problem field is concerned with the configuration of products and services. As a

generic representative for such problems we investigate the partner units configura-

tion problem. The second problem field is job scheduling in manufacturing environ-

ments. Here, we focus on the most famous job-shop scheduling problem. We provide

a new benchmark of realistic large-scale instances with proven optimal solutions

comprising up to 10,000 job operations scheduled on up to 100 machines. In par-

ticular, we show how to realize dispatching rules. Dispatching rules are greedy and

easy to calculate scheduling rules that are widely applied in nowadays production

lines.

The remainder of this article is structured as follows: The next section gives

a small introduction into the basics of ASP, CP and CASP. Section 3 introduces

ASCASS, a simple constraint answer set solver. Section 4 examines configuration

problems as an industrially important problem field and shows how to realize heuris-

tic problem solving of the partner units configuration problem within the CASP

framework. Section 5 discusses job scheduling as an important problem class for

industry. Based on a new set of benchmark instances with proven optimal solutions,

we investigate the application of ASCASS on large-scale job-shop scheduling. In

particular, we show how to produce schedules with the help of dispatching rules.

Finally, Sect. 6 summarizes the main results and concludes the article.

2 Background

In this section we introduce the basic concepts of answer set and constraint answer

set programming as it is needed for the purposes of this article. In particular, we

ignore disjunctive logic rules and classic negation in ASP for readability reasons.

For further information about ASP and CASP please refer to [2, 11, 13, 19, 21].

2.1 Syntax of ASP

In ASP, a term refers either to a (logic) variable or a constant. Strings starting with

upper case letters denote variables. Constants are represented by strings starting with

lower case letters, by quoted strings or by integers. An atom is either a classical
atom, a cardinality atom or an aggregate atom. A classical atom is an expression

p(t1,… , tn) where p is an n-ary predicate and t1,… , tn are terms. A negation as
failure (NAF) literal is either a classical atom 𝜆 or its negation not 𝜆. A cardinality

literal is either a cardinality atom 𝜓 or its negation not 𝜓 . A cardinality atom is of

the form
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l ≺l {a1 ∶ l11 ,… , l1m
;… ; an ∶ ln1 ,… , lno

} ≺u u

where

∙ ai ∶ li1 ,… , lij represent conditional literals in which ai (the heads of the cardinality

atom) constitute classical atoms and the conditions lij are NAF literals

∙ l and u are terms (i.e. variables or constants) representing non-negative integers.

If not specified, the defaults are 0 respectively ∞.

∙ ≺l and ≺u are comparison operators.

An aggregate literal is either an aggregate atom 𝜑 or its negation not 𝜑. An aggre-
gate atom is of the form

l ≺l #op{t11 ,… , t1m
∶ l11 ,… , l1n

;… ; to1 ,… , top
∶ lo1 ,… , loq

} ≺u u

Most syntactical parts of aggregate literals are the same as for cardinality atoms,

except that

∙ a head of a conditional literal is a tuple of terms ti1 ,… , tij and

∙ #op is an aggregate function in {#min, #max, #count, #sum}.

Generally, a rule is of the form

h ← b1,… , bm, not bm+1,… , not bn.

where

∙ h, b1,… , bm are atoms (i.e. positive literals),

∙ not bm+1,… , not bn are negative literals,

∙ H(r) = {h} is called the head of the rule,

∙ B(r) = {b1,… , bm,… , not bm+1,… , not bn} is called the body of the rule,

∙ B+(r) = {b1,… , bm} is called the positive body of the rule and

∙ B−(r) = {not bm+1,… , not bn} is called the negative body of the rule.

A rule r with H(r) including a cardinality atom is called choice rule. A rule r
where B(r) = {}, e.g. ‘a ←’ is called fact. For facts, typically ‘←’ is omitted. A rule

r where H(r) = {}, e.g. ‘← b’, is called integrity constraint, or simply constraint.
We allow the typically built-in arithmetic functions (+,−, ∗, ∕) and comparison

predicates (=,≠, <, >,≤,≥). For example, A = B + C could also be rewritten as =
(A,+(B,C)).

2.2 Semantics of ASP

The semantics of a non-ground ASP program is defined with respect to (w.r.t.) its

grounding. A program’s grounding can be defined in terms of its Herbrand universe
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and base. The Herbrand universe HUP of a program P is the set of all constants

appearing in P.

The grounding for a rule r without cardinality atoms and aggregates is the set

of rules obtained by applying all possible substitutions of variables in r with con-

stants in HUP. The grounding of a rule which contains cardinality or aggregate lit-

erals is defined by the two-step instantiation described in [27]: first produce a set

of partially grounded rules by substitution of variables occurring outside the cardi-

nality/aggregate literal and then, within each partially grounded rule, replace each

conditional literal by a set of ground conditional literals in which the remaining

variables inside the cardinality or aggregate literal are substituted with constants in

HUP.

The grounding PG of a program P is the union of all rule groundings. The Her-
brand base HBP w.r.t P is the set of all positive NAF literals (i.e. classical atoms)

that occur in PG.

An interpretation I satisfies a (ground) positive NAF literal 𝜆 (written as I ⊨ 𝜆)

iff 𝜆 ∈ I. A positive cardinality literal is satisfied by I iff the number of satisfied head

literals in the cardinality atom satisfies the lower and upper bounds l and u w.r.t. the

order relations ≺l and ≺u. Both, bounds and comparison symbols are optional. By

default, 0 ≤ is used for the lower and ≤ ∞ for the upper bound. A positive aggregate

literal is satisfied iff the value returned by the aggregate function #op applied on

the set of term tuples that satisfy their conditions does not violate the lower and

upper bounds. Here, #count counts the number of distinct satisfied term tuples, and

#min, #max and #sum are calculating the minimum, maximum or sum of the first

terms in the distinct satisfied term tuples. A negative literal not 𝜔 is satisfied by I
(written as I ⊨ not 𝜔) iff 𝜔 is not satisfied by I.

A ground rule r is satisfied by I (written as I ⊨ r) iff the head is satisfied or the

body is not. The body of a rule is satisfied by I iff all literals in the body are satisfied.

An empty body is always satisfied. The head of a rule is satisfied iff the literal in it

is satisfied. An empty head is never satisfied. In particular, integrity constraints are

satisfied iff the body is not satisfied, i.e. the constraint is not violated. A program P
is satisfied by an interpretation I iff all rules in its grounding PG are satisfied.

An answer set for a program can be defined on the basis of the program’s

reduct [13, 27]. The reduct PI
of a ground program P relative to an interpretation

I ⊆ HBP is defined as PI ∶= {H(r) ← B(r)+ ∶ r ∈ P, I ⊨ B(r)−}.

An interpretation I ⊆ HBP (which may be empty) is an answer set for a program

P not containing choice rules iff

∙ I satisfies all rules r in PI
, i.e. ∀r ∈ PI

: I ⊨ r and

∙ I is subset-minimal, i.e. there is no I′ ⊂ I so that I′ satisfies all rules in PI′
.

Choice rules can produce answer sets that are not subset-minimal, which leads to

a slight change of semantics when such rules are present. For example, the program

consisting only of the choice rule {a}. possesses the two answer sets {} and {a}. In

order to be in line with the original semantics and thus restore subset-minimality an

equivalent program can be produced by extending the program as follows:
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For every head ai within a cardinality atom of a choice rule a new atom a′
i is

introduced, which is not occurring elsewhere in the program. Furthermore, addi-

tional rules are added which assure that either ai or a′
i but not both must be in an

answer set. Thus, informally speaking, a′
i expresses that ai is not in the interpreta-

tion. This way, the choice rule {a}. equivalently produces the two answer sets {a′}
and {a}, i.e. in the one answer set ai is existent in the other it is not. For details,

consult [11].

An ASP program is unsatisfiable iff it has no answer sets and satisfiable otherwise.

2.3 Constraint Satisfaction and Constraint ASP

A constraint satisfaction problems (CSP) can be defined as a three-tuple ⟨V ,D =
{dom(v) ∶ v ∈ V},C⟩ whereby V is a set of variables,

4 D is the set of domains of

the variables in V and C is a set of constraints on variables in V . A solution to a

CSP is an assignment ∀v ∈ V ∶ v ∶= d, d ∈ dom(v) such that all constraints c ∈ C
are fulfilled. A CSP comprising only finite domains is called finite. If all domains are

defined over discrete values (most commonly integers), the CSP is called discrete.

For integrating CP into ASP there are basically two approaches. First, solvers

like Clingcon [21] are based on the extension of the ASP input language in order

to support the definitions of constraints. Take as a simple example the following

encoding in Clingcon (‘:-’ represents left-implication and ‘!=’ represents ≠):

num(1).num(2).num(3).

$domain(1..6).

var(X)$+var(Y)$+var(Z)$==6:-

num(X),num(Y),num(Z),X!=Y,Y!=Z,X!=Z.

var(1) $> 1.

$distinct{var(N):num(N)}.

The above encoding expresses that the sum of the three CSP variables var(1),
var(2) and var(3) must be equal to six. The domain of the variables is 1..6. Fur-

thermore, var(1) must be greater than one and all CSP variables must be distinct to

each other. The ASP and CSP are fully integrated into one language. CSP specific

constructs are indicated by $, like $+ or $==. $distinct constitutes a well known

global constraint, i.e. a constraint over a set of variables. In Clingcon CSP variables

are not defined explicitly but indirectly by the constraints. CP solving is integrated

in the answer set production process and carried out by the Gecode solver. For more

information on Clingcon please refer to [21].

The Ezcsp solver [2] is based on a different approach where ASP and CP are

not integrated into one language. ASP rather acts as a specification language for

Constraint Satisfaction Problems (CSPs). The main idea is that answer sets constitute

4
Constraint variables are not to be confused with first-order logic variables in ASP. In the rest of

this paper the word ‘variable’ refers to a constraint variable.
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CSP encodings which are used as input for a CP solver. The above example can be

expressed in Ezcsp as:

num(1).num(2).num(3).

cspdomain(fd).

cspvar(var(N),1,6):-num(N).

required(var(X)+var(Y)+var(Z)==6):-

num(X),num(Y),num(Z),X!=Y,Y!=Z,X!=Z.

required(var(1) > 1).

required(all_distinct([var/1]).

After some pre-processing, an answer set is calculated that includes cspvar,

required and cspdomain facts. cspdomain(fd) denotes that the CSP is finite and dis-

crete. Ezcsp is also able to handle real domains. CSP variables are explicitly defined

by cspvar facts also specifying lower and upper bounds of the variable domains. Con-

straints are represented as required facts. For expressing global constraints, which

requires referring to sets of CSP variables, Ezcsp allows the usage of functional sym-

bols. E.g. [var∕1] designates all variables formed by the unary function var. Once

an answer set has been produced, the CSP encoded by the cspdomain, cspvar and

required facts is passed to the CP solver. As answer set production and CSP solu-

tion search are two separated processes, different CP solvers can be used in Ezcsp.

Currently, Sicstus- and B-Prolog are supported.

The semantics of a program builds on the notion of extended answer sets [2]: A

pair ⟨A, S⟩ is an extended answer set of program 𝛱 iff A is an answer set of 𝛱 and

S is a solution to the CSP defined by A. We further define that the empty CSP (i.e.

without any CSP variables) possesses the empty solution.

For CSP solution search, Ezcsp provides different search strategies impacting the

underlying CP solver. In case of Sicstus Prolog as a CP solver, the built-in value selec-

tion strategies step (min domain value, when ascending order is used, max domain

value when descending order is used) and bisect (bisection of the domain in the mid-

dle) are available. Similarly in case of B-Prolog, the bisection strategies split and

reverse_split are supported. The supported variable selection strategies are leftmost
(leftmost variable), min (leftmost variable with minimal lower bound), max (leftmost

variable with maximal upper bound), and ff (first-fail). By the special label_order/2
predicate it is also possible to define problem-dependent CSP variable orderings for

the CP solver. However, there are no constructs for expressing problem dependent

value or pruning strategies.

3 ASCASS—A Simple Constraint Answer Set Solver

In the following we introduce our novel CASP solver ASCASS. First, we give a

brief introduction to the overall architecture of ASCASS and the encoding of CSPs

in ASCASS. After that, we present the means for formulating problem-dependent

heuristics.
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Fig. 1 Architecture of ASCASS

3.1 Architecture

ASCASS
5

is a finite discrete CASP solver following the approach of Ezcsp, i.e. the

input language is pure ASP and the answer sets encode CSPs. Figure 1 shows the

overall architecture of ASCASS. Answer set production (grounding and solving) is

done by Clingo,
6

which is currently one of the most powerful ASP systems. The

input language is the ASP standard ASP-Core-2.
7

After answer set solving, a generated answer set is handed over to a parsing mod-

ule that extracts the facts which encode the CSP and search directives. This informa-

tion is used to instantiate a corresponding CSP in the CP solver and perform search

conforming to the given search directives. Currently, Jacop
8

is used within ASCASS

as a CP solver. In case that the CSP could not be solved by the CP solver or a time-

out occurred (defined by the special predicate csptimeout(𝛥)), the process continues

with the next answer set, until a solution is found, or there are no more answer sets.

The empty CSP (i.e. when there is not a single CSP variable) is always satisfiable

and possesses the empty CSP solution.

3.2 Encoding of CSPs

ASCASS focuses on finite discrete Constraint satisfaction problems (CSPs). In order

to encode a CSP within ASCASS there can be used a number of specific predicates.

The following explanations refer to their grounded form.

The predicates cspvar(𝛼, 𝜆, 𝜐) and cspvar(𝛼, 𝜆, 𝜐, 𝜂) are responsible for encoding

CSP variables. Hereby, 𝛼 represents the variable name and 𝜆 and 𝜐 represent respec-

tively the numerical lower and upper bound of the variable’s domain. For example

cspvar(x, 1, 10) stands for a CSP variable v with the domain [1..10]. The numerical

priority 𝜂 is used to define a custom variable selection ordering. When using the

5
http://isbi.aau.at/hint/ascass.

6
sourceforge.net/projects/potassco/files/clingo.

7
http://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf.

8
http://jacop.osolpro.com.

http://isbi.aau.at/hint/ascass
http://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
http://jacop.osolpro.com
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variable selection strategy priority (see below), the CP solver selects the variable

with the highest priority first.

The predicate cspconstr(𝛼, 𝜌, 𝜏) encodes a relational constraint (i.e. =, <>, <, <=
, >, >=) over a variable 𝛼. 𝜌 denotes the type of relation and must be a constant out of

{eq, neq, lt, lteq, gt, gteq}. 𝜏 denotes another CSP variable or a numerical constant.

For example, cspconstr(x, lt, 5) expresses that variable x must be lower than 5.

The predicate csparith(𝛼, 𝜋, 𝛽, 𝜌, 𝛾) encodes arithmetic constraints. 𝛼, 𝛽 and 𝛾 are

CSP variable names. Like for cspconstr, the constant 𝜌 denotes the type of relation.

𝜋 is a constant representing an arithmetic operation. Currently, ASCASS supports

addition (plus), subtraction (minus), multiplication (mult), division (div) and expo-

nent (exp). For example, csparith(xa, plus, xb, eq, xc) states that the sum of the values

of xa and xb must be equal the value of xc.

For expressing logical constraints predicates of the form 𝑐𝑠𝑝𝑖𝑓 (Ξ1, and,Ξ2,

and,… , and,Ξm, then,Ξm+1, or,Ξm+2, or,… , or,Ξn) can be used. Each Ξ consists

of a variable 𝛼, a relational symbol 𝜌 and another variable or numerical constant 𝜏.

For example, 𝑐𝑠𝑝𝑖𝑓 (x, lt, 5, and, y, gt, 10, then, z, gteq, 0) is to be read as ‘if x is lower

than 5 and y is greater than 10 then z must be non-negative’.

Global constraints are constraints over arrays of variables. In ASCASS global

constraints are defined by predicates of the form cspglobal(𝜎1,… , 𝜎m, 𝜅) and

cspglobal(𝜎1,… , 𝜎m, 𝜅, 𝜏1,… , 𝜏n). 𝜅 is a constant denoting the type of global con-

straint. 𝜎1,… , 𝜎m represent arrays of variables. 𝜏1,… , 𝜏n represent single CSP vari-

ables or integers. The selection of global constraints currently supported by ASCASS

has been determined by the needs of our application areas and will be further

expanded. ASCASS currently supports the following global constraints
9
:

∙ min: cspglobal(𝜎,min, 𝜏), the minimum value of the variables 𝜎 is equal to 𝜏

∙ max: cspglobal(𝜎,max, 𝜏), the maximum value of the variables 𝜎 is equal to 𝜏

∙ sum: cspglobal(𝜎, sum, 𝜏), the sum of values of the variables 𝜎 is equal to 𝜏

∙ count: cspglobal(𝜎, count, 𝜏1, 𝜏2), 𝜏1 is equal to the counted number of variables

in 𝜎 with value 𝜏2
∙ global cardinality: cspglobal(𝜎1, 𝜎2, gcc), a more general counting constraint

where the occurring values in 𝜎1 are counted in the corresponding counter vari-

ables in 𝜎2
∙ all different: cspglobal(𝜎, 𝑎𝑙𝑙𝑑𝑖𝑓𝑓 ), all variables in 𝜎 are mutually unequal

∙ element: cspglobal(𝜎, element, 𝜏1, 𝜏2), the value of the 𝜏1-th variable in 𝜎 is equal

to 𝜏2
∙ cumulative: cspglobal(𝜎1, 𝜎2, 𝜎3, cumulative, 𝜏), 𝜎1 represents the starting times of

|𝜎1| many jobs, 𝜎2 represents the durations of the jobs, 𝜎3 represents the amounts

of needed resources of the jobs and 𝜏 represents the allowed accumulated amount

of resources at any time point

∙ bin packing: cspglobal(𝜎1, 𝜎2, 𝜎3, binpacking), 𝜎1 represents bin assignments for

|𝜎1|many items, 𝜎2 represents the bin sizes of the |𝜎2|many bins and 𝜎3 represents

the item sizes

9
More information about global constraints can be found at http://jacop.osolpro.com/guideJaCoP.

pdf and http://sofdem.github.io/gccat/.

http://jacop.osolpro.com/guideJaCoP.pdf
http://jacop.osolpro.com/guideJaCoP.pdf
http://sofdem.github.io/gccat/
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Fig. 2 Concept of variable arrays in ASCASS

In order to address arrays of CSP variables, ASCASS not only allows simple

constants but also n-ary functional terms for variable names of the form 𝜙(𝜄1,… , 𝜄n)
with 𝜄1,… , 𝜄n representing string or integer arguments (see Fig. 2). The special func-

tional argument all acts as a placeholder and can be used for addressing arrays

of variables. For example, take the four variable definitions cspvar(v(1, 1), 1, 10),
cspvar(v(1, 2), 1, 10), cspvar(v(2, 1), 1, 10) and cspvar(v(2, 2), 1, 10). A natural inter-

pretation of the arguments is row and column of a two-dimensional variable array.

Consequently, cspglobal(v(all, 2), 𝑎𝑙𝑙𝑑𝑖𝑓𝑓 ) expresses that the values of all second

column’s variables, in our case v(1, 2) and v(2, 2), must be different to each other.

v(all, all) stands for all variables in the two-dimensional array, i.e. all variables

formed by the functional symbol v with arity 2.

3.3 Encoding of Variable Selection Strategies

Apart from the predicates for defining a CSP, ASCASS provides predicates for steer-

ing the search of the CP solver. The predicates cspvarsel(𝜀) and cspvarsel (𝜀, 𝜃)
define the variable selection strategy to be used. Herby, 𝜀 is the primary selec-

tion strategy and, if defined, 𝜃 acts as a secondary, tiebreaking strategy. For vari-

able selection, ASCASS currently supports the problem-independent built-in strate-

gies smallestDomain, mostConstrainedStatic, mostConstrainedDynamic, smallest-
Min, largestDomain, largestMin, smallestMax, maxRegret, weightedDegree and the

problem-dependent strategy priority. The default for 𝜀 is smallestDomain and the

default for 𝜃 is mostConstrainedDynamic.

When using the priority-strategy, ASCASS builds an ordering of the CSP vari-

ables based on the provided priorities 𝜂 in cspvar(𝛼, 𝜆, 𝜐, 𝜂). Variables with high

priorities are selected first. Variables for which there is no 𝜂 defined are selected as

the last ones.

3.4 Encoding of Value Selection Strategies

For value selection ASCASS provides the predicates cspvalsel(𝜙) and cspvalsel
(𝜙,𝜑) where 𝜙 and 𝜑 are constants denoting the strategy. As it is often important

to have different value selection strategies for different sets of variables, ASCASS

provides also the predicates cspvalsel(𝜎, 𝜙) and cspvalsel(𝜎, 𝜙, 𝜑) where 𝜎 repre-
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sents an array of variables like in global constraints. ASCASS supports the already

built-in strategies indomainMin, indomainMiddle, indomainMax and indomainRan-
dom. For expressing problem-dependent value selection strategies, the novel strategy

indomainPreferred can be used.

When using indomainPreferred, the CP solver first tries to use specified val-

ues before changing to the built-in strategy 𝜑 (minDomain if not stated other-

wise). For specifying preferred values, ASCASS provides the special predicate

𝑐𝑠𝑝𝑝𝑟𝑒𝑓𝑒𝑟(𝛼, 𝜌, 𝜏) and 𝑐𝑠𝑝𝑝𝑟𝑒𝑓𝑒𝑟(𝛼, 𝜌, 𝜏, 𝜂). Like for relational constraints, 𝛼 rep-

resents a CSP variable, 𝜌 represents a relational symbol and 𝜏 stands for a further

variable or a numerical constant. For example, 𝑐𝑠𝑝𝑝𝑟𝑒𝑓𝑒𝑟(v, eq, 5) states that for the

CSP variable v a preferred value is 5. In order to specify an ordering of the spec-

ified values, it is possible to make use of a numerical priority 𝜂. Higher priority

statements are taken into account first by ASCASS. For example, if there is given

𝑐𝑠𝑝𝑝𝑟𝑒𝑓𝑒𝑟(v, eq, 5, 1) and 𝑐𝑠𝑝𝑝𝑟𝑒𝑓𝑒𝑟(v, eq, 20, 2), ASCASS tries to first label v with

20 and only after that with 5. Of course, only preferred values are taken into account

which are still in the variable’s domain. In case that 𝜏 denotes another variable, the

minimum value in the current domain of 𝜏 is used as a preferred value, i.e. 𝜏 does

not need to be singleton for specifying a preferred value of 𝛼. This in combination

with global constraints is a highly dynamic and powerful mechanism.

As with the relational constant eq in combination with the priorities 𝜂 every order-

ing of preferred values can be expressed, the usage of lt, lteq, gt and gteq can be

clearly seen as syntactic sugar. By using lt, lteq, gt and gteq sets of preferred values

can be expressed:

∙ lteq 𝜏 : {𝜏, 𝜏 − 1,… ,−∞}
∙ lt 𝜏 : {𝜏 − 1,… ,−∞}
∙ gteq 𝜏 : {𝜏, 𝜏 + 1,… ,∞}
∙ gt 𝜏 : {𝜏 + 1,… ,∞}

Note that all preferred values of such a set P have the same priority (pos-

sibly given explicitly by 𝜂). For defining an order relation over P, i.e. fix the

order in which ASCASS considers the preferred values in P, the following holds:

For lt and lteq decreasing order is used, i.e. 𝜏, 𝜏 − 1,… ,−∞ and for gt and gteq
increasing order is used, i.e. 𝜏, 𝜏 + 1,… ,∞. For example having the variable defin-

ition cspvar(v, 1, 10) and the value selection strategy cspvalsel(indomainPreferred,
indomainMin), 𝑐𝑠𝑝𝑝𝑟𝑒𝑓𝑒𝑟(v, lt, 5) would effect that ASCASS considers the domain

values in the following order: 4, 3, 2, 1, 5, 6, 7, 8, 9, 10. The reason why for lt and lteq
descending order and for gt or gteq ascending order is used is simply the following:

Would it be the other way round, the behavior with lt and lteq would conform to

indomainMin and with gt and gteq to indomainMax.
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3.5 Encoding of Pruning Strategies

The third component of many problem-dependent heuristics is the pruning strategy.

For specifying how a search tree is pruned, ASCASS provides the special predicate

cspsearch(𝜔, 𝜇). Hereby, 𝜔 specifies the pruning type and 𝜇 specifies a numerical

limit that, when reached, triggers backtracking. Again it could be beneficial having

different limits for different groups of variables or even having no limit on certain

variables whilst search on others is limited. To this, ASCASS provides the predicate

cspsearch(𝜎, 𝜔, 𝜇) with 𝜎 denoting an array of variables like for global constraints.

Currently, ASCASS provides two pruning types. cspsearch(limited, 𝜇) limits the

number of wrong decisions for variables. If the number 𝜇 of wrong choices for a

variable is reached, backtracking is triggered and the counter for the variable is reset.

For example, cspsearch(limited, 3) specifies that for every variable v there must not

be more than three labeling trials for v within a search branch. The second pruning

type is based on limited discrepancy search [14] and operates on the level of search

paths. When specifying cspsearch(lds, 𝜇) only a certain number of wrong decisions

(called discrepancies) along the whole search path is allowed. If this number reaches

𝜇, backtracking is triggered.

Furthermore, it is possible to limit search time of the CP solver by csptimeout
(𝛥) where 𝛥 is the number of seconds when the timeout is triggered. The timeout

concerns only the search of Jacop so that search might start over based on the next

answer set if such exists.

3.6 Directives for Answer Set Production

In order to specify which heuristic is to be utilized by Clingo, the special ASCASS

predicate aspheuristic(𝜈) can be exploited. Hereby, 𝜈 is a constant denoting the

heuristic which is passed to Clingo as a command line option --heur = 𝜈. As this

happens before the actual answer set solving, aspheuristic(𝜈) must only be used as a

single fact within program source code. Common heuristics are VSIDS or Berkmin
[17]. When using aspheuristic(domain), Clingo harnesses a user-defined heuris-

tic defined via the _heuristic predicate built-in Clingo [12]. For limiting the num-

ber of produced answer sets, the special predicate aspnumas(𝛥) can be utilized. 𝛥

is a non-negative integer and is passed to Clingo as a command line option. The

default is ‘1’ and ‘0’ effects the production of all answer sets. Like aspheuristic,

also aspnumas must only be used as a single fact within the problem source code.

Similarly, asptimeout(𝛥) specifies a timeout for answer set solving.

4 Application to System Configuration

The configuration of products and services [8, 26], or more generally the configu-

ration of systems, is an important task in many production strategies such as mass

customization, configure-to-order, or assembly-to-order. On the one hand, the basic



Heuristic Constraint Answer Set Programming for Manufacturing Problems 131

goal is to provide customers with products and services which fulfill all their require-

ments and maximize the satisfaction of their preferences. On the other hand, these

products and services shall be offered at mass production efficiency. In order to fulfill

these goals, systems are assembled by pre-designed and pre-fabricated components

where such components themselves may be assembled by components. In addition,

there are means to individualize components by characterizing their properties by

parameters (e.g. color or size).

The goal of the configuration task is to generate a system description (i.e. a con-

figuration) for given requirements and preferences that (1) contains all the infor-

mation needed for manufacturing or service provision in an explicit, succinct, and

simple to process format (e.g. a set of facts) and (2) describes a system which will

fulfill the requirements and will optimize the preferences. One of the most promi-

nent approaches for solving the configuration task is knowledge-based configuration

which employs a knowledge-base to describe all configurations for all requirements

and preferences. Such a knowledge-base must be specific enough such that only

working systems which fulfill the requirements will be provided. Moreover, the con-

figuration knowledge-base must be as general as possible such that no opportunity

for satisfying the requirements and optimizing the preferences is missed. Typically a

configuration knowledge-base comprises a set of component types and descriptions

representing various technical and non-technical constraints, e.g. which components

must be selected and connected as well as how the parameters must be set such that

the customer satisfaction is maximized.

4.1 The Partner Units Configuration Problem

The partner units problem (PUP) [7] is a perfect representative of a configuration

problem in the classical sense, i.e. where certain components have to be connected

so that predefined user requirements and technical constraints are respected [20].

Because of its generic nature it posses many real world application domains like

railway safety, surveillance or electrical engineering [1, 28]. The PUP is N P-

complete in the general case and also for most industrially important subclasses.

Furthermore, it is one of the hardest benchmark problems participating in the ASP

competitions
10

[34].

The PUP originates in the domain of railway safety systems. One of the prob-

lems in this domain is to make sure that certain rail tracks are not occupied by a

train/wagon before another train enters this track. The signals for the corresponding

occupancy indicators are calculated by special processing units based on the input

of several observing sensors. Because of fail-safety and realtime requirements the

number of sensors respectively indicators which can be connected to the same unit

is limited (called unit capacity, UCAP). Also one sensor/indicator device can only be

directly connected to one unit. However, a unit can be connected to a limited number

(called inter unit capacity, IUCAP) of other units. These units are called the partner

10
Further information can be found at http://www.mat.unical.it/aspcomp2014/.

http://www.mat.unical.it/aspcomp2014/
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Fig. 3 Railway track layout,

PUP input and solution

units of the unit. Devices (i.e. sensors and indicators) can only communicate with

devices connected to the same unit and with devices connected to one of the part-

ner units. Given the IUCAP, UCAP and a bipartite input graph represented by edges

specifying which sensor data is needed in order to calculate the correct signal of

an occupancy indicator, the problem consists in connecting sensors/indicators with

units and units with other units such that all communication requirements are ful-

filled and IUCAP and UCAP are not violated. Formally, the Partner Units Decision

Problem (PUDP) can be defined as follows:

Given is a bipartite Graph G = (I, S,E) and two natural numbers IUCAP and

UCAP. The PUDP is to decide whether there is a partition of the vertices I ∪ S into a

set U of units such that each unit contains at most UCAP vertices from I and at most

UCAP vertices from S, and has at most IUCAP connected units. Two different units

U1 ∈ U and U2 ∈ U are connected whenever v1 ∈ U1 and v2 ∈ U2 and {v1, v2} ∈ E.

For minimizing hardware costs, a common further objective is the minimization

of the number of units, i.e. |U| → min.

Figure 3 shows a simple example for a railway track layout, the corresponding

bipartite input graph and a possible solution for IUCAP = 2 and UCAP = 2. In order

to calculate the correct signal for Indicator 3 only data from Sensor 3 and Sensor

4 is needed. If the number of outgoing wheels counted by Sensor 4 is equal to the

incoming wheel counts of Sensor 3 then Track 3 is empty. In order to calculate the

correct signal for Indicator 2 it is not sufficient to only incorporate data from Sensor

2 and Sensor 5 as it is not clear whether a wheel has headed to or is coming from

Track 3. Therefore, additional data from Sensor 3 and Sensor 4 is needed.
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Fig. 4 Breadth-first

restructured input graph for

example in Fig. 3, (start node

= Indicator 1)

The state-of-the-art heuristic for solving PUP is the QuickPup heuristic proposed

in [33]. QuickPup is based on three major techniques. First, based on the input graph

and a distinguished root indicator, QuickPup produces a topological ordering of the

devices, which is basically the minimum distances from the root indicator to all other

devices. The distance to itself is zero, the distance to the direct neighbors is one, the

distance to the neighbors of the neighbors is two and so forth. This reflects the (par-

tial) ordering in which the devices should be processed. Figure 4 shows the idea of

the breadth-first order for the example in Fig. 3. Thus, when beginning with Indica-

tor 1 as starting node the ordering would be: Indicator1 → Sensor1 → Sensor2 →
Sensor5 → Sensor6 → Indicator2 → Sensor3 → Sensor4 → Indicator3.

Second, for each device, first try to place it on the next empty unit and if this

is unsuccessful try the already used units in descending order. Third, try different

root indicators, and consequently different topological orderings, and limit search

for each trial. The intuition behind that is that not all root indicators are equally good

to start search from.

4.2 Encoding in ASCASS

The input for a PUP encoding comprises a set of egde(i, s) facts where i takes the

numerical id of an indicator and s takes the id of a sensor. Additionally the input
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includes a fact ucap(x) with x > 0 that defines the unit capacity (UCAP) and a fact

iucap(y) with y > 0 that defines the inter-unit capacity (IUCAP).

For the code snippets given in the remainder of this section we use the standard

notation of logic programming. In order to produce explicit indicator and sensor

information the following lines of code are used:

sensor(S):-edge(I,S).

indicator(I):-edge(I,S).

numIndicators(N):-N=#count{I:indicator(I)}.

numSensors(N):-N=#count{S:sensor(S)}.

The number of indicators (numIndicators) respectively sensors (numSensors) are

calculated by means of the #count aggregate literal provided by Clingo.

In order to produce only optimal solutions, we restrict the number of units

(numUnits) available for a solution to the theoretical lower bound, i.e.

numUnits =
⌈

max(numIndicators,numSensors)
UCAP

⌉
:

max(M):-numIndicators(E),numSensors(F),M=#max(E;F).

numUnits(N):-max(M),ucap(C),N=(M+1)/C.

unit(Z):-numUnits(N),1<=Z,Z<=N.

For each indicator i there is a CSP variable device(i, 1) and for each sensor s
there is a CSP variable device(s, 2). This way it is also possible to refer to the array

of all CSP device variables as device(all, all), to only the indicator variables as

device(all, 1) and to the sensor variables as device(all, 2) which will be useful later.

The value range for these CSP variables is [1..numUnits]. Furthermore, the variables

get a priority defining the topological order in which they are labeled by ASCASS:

cspvar(device(I,1),1,N,P):-numUnits(N),iPriority(I,P).

cspvar(device(S,2),1,N,P):-numUnits(N),sPriority(S,P).

The calculation of the priorities is explained in detail below.

In order to assure UCAP, for each unit u there are two counting variables ci(u)
and cs(u). These variables can take values in the range [0..UCAP]. Furthermore, for

each unit u there are two count global constraints counting the number of indicator

respectively sensor variables taking the value u:

cspvar(ci(U),0,C):-ucap(C),unit(U).

cspvar(cs(U),0,C):-ucap(C),unit(U).

cspglobal(device(all,1),count,ci(U),U):-unit(U).

cspglobal(device(all,2),count,cs(U),U):-unit(U).

In order to capture which unit u1 is connected to which unit u2 there are

numUnits × numUnits many CSP variables (i.e. conn(U1,U2)). The variables can

take values in the range [0..1] if u1 <> u2. Otherwise, the variables’ ranges consists

of only a single value, i.e. [1..1]. This is because in our model each unit u is always
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connected to itself. Furthermore, there is a constraint assuring symmetry, i.e. if u1
is connected to u2 also u2 is connected to u1:

cspvar(conn(U1,U2),0,1):-unit(U1),unit(U2),U1<>U2.

cspvar(conn(U,U),1,1):-unit(U).

cspconstr(conn(U1,U2),eq,conn(U2,U1)):-

unit(U1),unit(U2),U1<U2.

For summing up how many units are connected to a unit u we make use of the

global sum constraint. The used summing variables can hereby take values in the

range [1..IUCAP + 1] as every unit is also connected to itself:

cspvar(sumconns(U),1,K+1):-iucap(K),unit(U).

cspglobal(conn(U,all),sum,sumconns(U)):-unit(U).

In order to make the summing variables and constraints take effect, it must be

assured that any connection variable conn(u1, u2) is set to one whenever there is

an edge(i, s) in the input so that device(i, 1) = u1 and device(s, 2) = u2. Following

the approach of [6], this is implemented by means of the global element constraint.

Given an array of CSP variables arr, an index i and a value v, an element constraint

assures that the ith variable in arr is equal to v. In our case, for each edge(i, s) in

the input there is such a global constraint setting the appropriate connection variable

within conn(all, all) to one:

cspglobal(conn(all,all),element,index(I,S),1):-

edge(I,S).

As the element constraint cannot directly handle multi-dimensional arrays, the

respective index is calculated as:

index(i,s)=(device(i,1)-1) x numUnits + device(s,2)

The formulation with constraints is straightforward.

The priorities for the device variables (i.e. device(i, 1) and device(s, 2) are based

on a topological ordering of the devices. Given the layer of a sensor or indicator

whereby the root of the topological graph is at layer zero, the priority is higher the

lower the layer is:

iPriority(I,P):-indicatorLayer(I,L),P=-L.

sPriority(S,P):-sensorLayer(S,L),P=-L.

The effect is that, given a root indicator, ASCASS first tries to label the root indi-

cator, then the neighbors of the root indicator, then the neighbors of the neighbors,

and so on. In our implementation a choice rule is used to express that there is exactly
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one distinguished indicator that acts as root. This indicator is always placed at the

first unit:

1{root(I):indicator(I)}1.

cspconstr(device(I,1),eq,1):-root(I).

The choice rule 1{root(I) ∶ indicator(I)}1 produces one answer set for each root

indicator and asserts a root(i) fact.

For calculating the actual layers, we first calculate the minimum distances to the

root whereas root indicator has a zero distance to itself. The maximum possible dis-

tance is equal to the total number of devices:

indicatorDist(I0,0):-root(I0).

sensorDist(S,D+1):-indicatorDist(I,D),edge(I,S),

numDevices(M),D<M.

indicatorDist(I,D+1):-sensorDist(S,D),edge(I,S),

numDevices(M),D<M.

numDevices(M):-numIndicators(E),numSensors(F),M=E+F.

The layers are calculated by using the #min aggregate literal from Clingo:

indicatorLayer(I,Dmin):-indicator(I),

Dmin=#min{D:indicatorDist(I,D)}.

sensorLayer(S,Dmin):- sensor(S),

Dmin = #min{D:sensorDist(S,D)}.

First to try to place devices on unused units and, only if not successful, on used

units in descending order can be expressed in ASCASS by means of preferred values:

cspprefer(device(I,1),lteq,nextUnit):-indicator(I).

cspprefer(device(S,2),lteq,nextUnit):-sensor(S).

The CSP variable nextUnit points to the next unused unit, which is the current

unit plus one
11

:

cspvar(curUnit,1,N):-numUnits(N).

cspvar(nextUnit,1,N+1):-numUnits(N).

csparith(curUnit,plus,one,eq,nextUnit).

For the calculation of the current unit, i.e. the highest number taken by some

device(i, 1) or device(s, 2) variable, the global max constraint is used:

cspglobal(device(all,all),max,curUnit).

11
Within the constraint, the helping variable cspvar(one, 1, 1) is used as arithmetic constraints only

accept variables in ASCASS.
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As ASCASS uses the lower bound of variables for calculating the preferred val-

ues, each device variable is first tried to be bound to values lower than or equal to

the lower bound of nextUnit = curUnit + 1 in descending order.

In order to control how many units are maximally tried per device variable, the

search is pruned such that only the next unit and a limited number of already used

units can be tried before backtracking is triggered. In our implementation we use the

following statement for only trying the next, the current and the last unit:

cspsearch(limited,3).

We furthermore restrict the maximum CSP search time for each call of the CP

solver in order to try different start indicators:

csptimeout(300).

In order to enforce that ASCASS respects the problem-dependent strategies,

cspvarsel(priority) and cspvalsel(device(all, all), indomainPreferred) must be

included. Thus, the concepts of QuickPup can be fully expressed in a declarative

way by ASCASS. To the best of our knowledge, this is not possible within any other

ASP or CASP approach.

4.3 Evaluation

We tested the ASP solver Clingo 4 and the CASP solvers ASCASS, Clingcon and

Ezcsp on the PUP benchmark suite used in [1].
12

Clingo was tested using the PUP

encoding proposed in [1].
13

Only optimal solutions were allowed. The tests were run

on a 3.2 GHz machine with 64 GB of RAM, assuring that the grounding bottleneck

does not play a role for the tested instances
14

and performance can be attributed to

the search phase.

In the Clingcon model, CSP variable selection, value selection or pruning strate-

gies cannot be manipulated. For Ezcsp, it is possible to express the topological vari-

able orderings similar to ASCASS. However, there are no means for pruning search

or problem-dependent value strategies.

Table 1 depicts how many instances of each type in the benchmark suite could be

solved by the different approaches within a 1000 s time frame. Clingo using VSIDS

heuristic peformed very well on the benchmark suite showing once again that the

conflict-driven search techniques employed by Clingo are quite powerful. Also Ezcsp

was able to solve some instances. Using other built-in heuristics did not result in

12
Encodings and benchmark instances can be found at http://isbi.aau.at/hint/ascass.

13
The ‘new’ encoding provided by the ASP competition 2014 was found to be inconsistent as it

also produces answer sets for unsatisfiable instances.

14
The biggest grounding in the ASP model was ∼ 12 GB.

http://isbi.aau.at/hint/ascass
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Table 1 Solved instances within 1000 s

# Clingo ASCASS Clingcon Ezcsp

Double (IUCAP = 2) 10 2 10 0 2

Doublev (IUCAP = 2) 6 3 6 0 0

Triple (IUCAP = 2) 3 2 3 0 2

Triple (IUCAP = 4) 7 6 6 0 3

Grid (IUCAP = 4) 10 10 10 0 0

Total 36 23 35 0 7

better performance. Clingcon was not able to solve a single instance. In the contrary,

ASCASS was able to solve all but one instances within time limits. We want to

point out that only optimal solutions (i.e. minimum number of units) were allowed

for easing the grounding bottleneck of conventional ASP. Increasing the number of

allowed units in a solution would increase grounding size for ASP significantly. In

the cases of ASCASS and Ezcsp, increasing the number of allowed units would not

affect the grounding size as the number of allowed units is captured by the upper

bounds of the CSP variables.

We want to make clear that the superior performance of ASCASS can be attributed

to the inclusion of the QuickPup strategies. This was crosschecked by removing the

heuristic parts from the ASCASS problem encodings. It is to be noted that Quick-

Pup originally was designed for producing only near-optimal solutions. However,

the concepts of QuickPup obviously also work well for finding optimal solutions.

5 Application to Production Scheduling

The scheduling of jobs [5] is an important task in almost all production systems

in order to optimize various objectives such as resource consumption, tardiness, or

flow time. In general, jobs are structured into operations which must be allocated to

resources such that various requirements are satisfied and in addition an objective

function is optimized. Research on scheduling has developed an extensive classifi-

cation scheme in order to characterize different scheduling problems. In this paper

we focus on the job-shop scheduling problem.
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5.1 The Job-Shop Scheduling Problem

The job-shop scheduling problem (JSP) is among the most famous N P-hard [10]

combinatorial problems and can be defined as follows:

∙ Given is a set M = {machine1,… ,machinem} of machines and a set

J = {job1,… , jobj} of jobs.

∙ Each job j ∈ J consists of a sequence of operations Oj = ⟨j1,… , jlj⟩ whereby jlj is

the last operation of job j.
Practically, jobs can be interpreted as products and operations can be interpreted

as their production steps. With respect to a job j and its operation ji, the operation

ji+1 is called successor and the operation ji−1 is called predecessor.

∙ Each operation o has an operation length lengtho ∈ ℕ.

∙ Each operation o is assigned to a machine machineo ∈ M by which it is processed.

∙ A (consistent and complete) schedule consists of a starting time starto for each

operation o such that:

– An operation’s successor starts after the operation has been finished,

i.e. with respect to a job j and the operations ji and ji+1:
startji+1 ≥ startji + lengthji

– Operations processed by the same machine are non-overlapping,

i.e. with respect to two operations o1 ≠ o2 with machineo1 = machineo2:

starto1 ≠ starto2
starto1 < starto2 → starto1 + lengtho1 ≤ starto2

∙ Makespan, i.e. the time period needed for processing all operations, is minimized.

I.e.:

– max
j∈J,o∈Oj

{starto + lengtho} → min

Many approaches have been used to solve scheduling problems like tabu and large

neighborhood search [35], simulated annealing or genetic algorithms [22]. Besides

such meta heuristic also constraint based approaches have a long and successful his-

tory in solving scheduling problems [4].

The declarative representation as a constraint satisfaction problem [23] which is

solved by some general purpose constraint solver has the big practical advantage that

adaptions of the problem specification can be made quickly and easily compared to

changing imperative code in productive use. This is of special importance in nowa-

days manufacturing environments offering highly dynamic fabrication regimes such

as mass customization, just-in-time or lean production [25]. Moreover the encoun-

tered scheduling problems most often do not fully conform to idealized scheduling

problems found in literature and as a matter of fact almost every real world schedul-

ing problem has specific characteristics regarding the manufacturing processes. Fur-

thermore, scheduling problems might diversify frequently due to change of the pro-

duction infrastructure, availability of operating staff, order situation or product port-

folio. Constraint-based approaches fit this need of flexibility in that special problem



140 E.C. Teppan and G. Friedrich

characteristics can be rigorously expressed by adding or removing constraints or

variables.

However, in real world environments often neither of the above mentioned

approaches is applied as problem instances are simply too large. Common prob-

lem instances for a weekly workload in semi-conductor domains like those of our

project partner Infineon Austria Technologies are of the order of 104 operations on

102 machines in the back-end, i.e. where the products are made ready for shipping,

and 105 operations on 103 machines in the front-end, i.e. where the chips are actually

produced. Consequently, runtimes beyond quadratic complexities are not acceptable.

One widely employed state-of-the-art technique for dealing with such large

scheduling problem instances in nowadays manufacturing environments is the appli-

cation of dispatching rules [15]. Dispatching rules are greedy heuristics for step-wise

deciding which is the operation to be scheduled next. There are basically two ways

for using dispatching rules. First, dispatching rules can be directly applied by opera-

tor staff for steering the production process. As soon as a machine becomes idle, an

operator decides which of the runnable operations in the dispatch list of the machine

is to be loaded next. Second, schedules are built by doing simulations based on dif-

ferent dispatching rules. A schedule which is found to be good enough is then carried

out. The big advantage of simulation-based scheduling compared to the direct appli-

cation in the production process is that it is possible to predict when a product will

be finished. This is especially important for customer relationship management.

In following, we will show how the JSP and some dispatching rules can be repre-

sented in a HCASP framework in a strongly declarative way. We conform hereby to

the language of ASCASS. Translation into the language of similar frameworks like

[2] is straight-forward.

5.2 Encoding in ASCASS

We expect the input for our JSP encoding to consist of logic facts of the following

form:

∙ time(t): max time horizon is t

∙ job(j): there is a job j

∙ machine(m): there is a machine m

∙ jobOperation(j, op): operation op belongs to job j

∙ opLength(op, l): operation op has length l

∙ opMachine(op, m): operation op is to be processed by machine m

∙ precedes(op1, op2): operation op2 is the successor of operation op1

For each operation op that is to be processed by machine m we define a CSP

variable for the starting time. The lower bound of the corresponding domain is 0 and

the upper bound is set to T whereby T captures the value t specified by the time-fact

in the input:
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cspvar(start(Op,M),0,T):-opMachine(Op,M),time(T).

Likewise, there are CSP variables for the operation lengths and the finishing

times:

cspvar(length(Op,M),L,L):-opMachine(Op,M),

opLength(Op,L).

cspvar(finished(Op,M),0,T):-opMachine(Op,M),time(T).

Arithmetic constraints link together the starting times, lengths and finishing

times:

csparith(start(Op,M),plus,length(Op,M),

eq,finished(Op,M)):-opMachine(Op,M).

For each precedence fact in the input there is a primitive constraint expressing

that the finishing time of a preceding operation must be lower or equal than the start

time of its successor:

cspconstr(finished(Op1,M1),lteq,

start(Op2,M2)):-opMachine(Op1,M1),opMachine(Op2,M2),

precedes(Op1,Op2).

In order to enforce non-overlapping of the operations that are processed by the

same machine we make use of the global ‘cumulative’ constraint
15

:

cspglobal(start(all,M),length(all,M),

consumption(all,M),cumulative,resources(M)):-

machine(M).

Hereby, resource variables capture the information that each machine can only

process a single operation at a time and consumption variables capture the informa-

tion that also all operations need exactly a single resource at a time:

cspvar(resources(M),1,1):-machine(M).

cspvar(consumption(Op,M),1,1):-opMachine(Op,M).

Finally, to restrict the makespan there is a corresponding CSP variable where its

domain’s upper bound is set to the value specified by the time fact in the input. The

makespan variable is used whithin a global constraint calculating the maximum of

the finishing times of all operations on all machines:

15
http://www.web.emn.fr/x-info/sdemasse/gccat/Ccumulative.html. The special constant ‘all’ is

used in the ASCASS system to refer to arrays of CSP variables.

http://www.web.emn.fr/x-info/sdemasse/gccat/Ccumulative.html


142 E.C. Teppan and G. Friedrich

cspvar(makespan,0,T):-time(T).

cspglobal(finished(all,all),max,makespan).

The extension of the basic encoding in order to realize dispatching rules is straight

forward by defining CSP variable priorities for the start variables. In a HCASP

framework such priorities can be used for specifying in which order the CSP vari-

ables are processed by the CP solver. In ASCASS the priorities are syntactically

integrated in the cspvar-predicate
16

:

cspvar(start(Op,M),0,T,P):-opMachine(Op,M),time(T),

priority(Op,P).

A simple dispatching rule might just process all first job operations at first, then

process all second job operations and so on. Priorities for that can be expressed as:

seq(Op,1):-operation(Op),not precedes(_,Op).

seq(Op2,S2):-precedes(Op1,Op2),seq(Op1,S1),S2=S1+1.

priority(Op,P):-seq(Op,S),P=-S.

Hereby, the seq/2 predicate specifies the sequence number of the operations, i.e.

at which step in the job the operation is carried out. We will refer to this rule as SEQ.

The priorities are simply the inverted sequence numbers, i.e. the smaller sequence

numbers result in higher priorities. Respecting the variable priorities, the labeling

order of the underlying CP solver conforms to the dispatching rule.

One of the most effective dispatching rules for minimizing the makespan is the

most-total-work-remaining (MTWR) rule [16]. According to MTWR, the next oper-

ation to be dispatched belongs to a job such that the sum of lengths of all remaining

operations is maximal. The priorities according to MTWR can be expressed as:

priority(Op,L):-opLength(Op,L),not precedes(Op,_).

priority(Op1,P2+L1):-precedes(Op1,Op2),

opLength(Op1,L1),priority(Op2,P2).

The idea is that the last operations of jobs, i.e. those with no successor, have a pri-

ority equal to their operation length. For any other operation the priority is calculated

as the sum of the operation length and the priority of the successor.

5.3 Evaluation

The purpose of this evaluation is to illustrate the efficacy of dispatching rule inspired

CASP encodings. For evaluation purposes we produced test instances of realistic

16
In Ezcsp there is a special label_order predicate to be used.



Heuristic Constraint Answer Set Programming for Manufacturing Problems 143

Table 2 Solved instances within 3600 s

# Basic SEQ MTWR

long-jobs (max makespan = 600k) 12 11 12 11

long-jobs (max makespan = 800k) 12 1 1 5

long-jobs (max makespan = 1000k) 12 4 8 11

long-jobs (max makespan = 1200k) 12 7 11 12

short-jobs (max makespan = 600k) 12 0 2 2

short-jobs (max makespan = 800k) 12 4 12 11

short-jobs (max makespan = 1000k) 12 3 12 12

short-jobs (max makespan = 1200k) 12 3 12 12

sizes (up to 10,000 operations of up to more than 2000 jobs on up to 100 machines)

which are on the one hand patterned on problems of our project partner Infineon

Austria Technologies and on the other hand have the advantage of proven minimal

makespans.
17

Two types of instances have been created which are different in nature. Instances

of the first type comprise many jobs consisting of a small number of operations. We

refer to this set of instances as ‘short-jobs’. Instances of the second type comprise

fewer jobs but with a larger number of operations per job. We refer to this set of

instances as ‘long-jobs’. All instances have a minimal makespan of 600,000 (600k),

which roughly constitutes one week in seconds.

We tested the three presented encodings (basic, SEQ, MTWR) on the benchmark

instances on a 3.2 GHz machine and allowed a maximum of 3600 s before a time-

out occurred. For the basic encoding the built-in default variable ordering heuris-

tic smallestDomain (= most constrained variable first) was employed. Each of the

encodings was tested with different maximal allowed makespans: 600,000 (600k) =

the optimum, 800,000 (800k) = 33.3% off the optimum, 1,000,000 (1000k) = 66.6%

off the optimum, and 1,200,000 (1200k) = double the optimum. Table 2 summarizes

the results for the different encodings on the benchmark problems allowing different

maximal makespans. All times are given in seconds.

The performance of the basic encoding on the long-jobs benchmark is two-fold.

When max allowed makespan is equal to the optimum, a schedule could be com-

puted for all but one instance. In these cases the search problem is highly constrained.

Consequently constraint propagation is very effective such that almost no search is

needed. When increasing the max allowed makespan the instances become less con-

strained such that more search is needed. Having a max allowed makespan of 800k,

only a single instance could be solved. Relaxing the max allowed makespan even

more makes it easier again to come up with a schedule. Still for many instances it

was not possible to produce schedules which are even double the optimum. On the

17
Used benchmark instances, encodings and result data sets can be downloaded at http://isbi.aau.

at/hint/misc.

http://isbi.aau.at/hint/misc
http://isbi.aau.at/hint/misc
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short-jobs instances the performance of the basic encoding is even worse as those

instances are less constrained.

The performance of the dispatching rule encodings is much better in general. Sim-

ilarly as in [16], the MTWR rule produces overall the best results. However, the very

simple SEQ rule performs quite well and sometimes even better than MTWR. Sim-

ilarly as for the basic encoding, even optimal solutions can be achieved if instances

are tightly constrained. In our evaluation this is the case for the long-jobs instances

in combination with setting the maximum allowed makespan to the real optimum.

For these cases SEQ was always able to reproduce an optimal solution. Of course,

in real world domains the optimum is not known in general and also the structure of

the problem instances (e.g. long-jobs vs. short-jobs) often changes depending on the

customers’ orders and the current product portfolio. Consequently, pursuing only a

single strategy might not be indicated. Instead, a combination of different dispatch-

ing rule based encodings and increasing maximum makespans should be used.

6 Conclusions and Future Work

Elaborated engineering and sophisticated general problem-independent heuristics

have significantly improved the runtime performance of general problem-solvers.

However, it is a well known observation that general problem-solvers which are

applied toN P-hard problems deliver satisfiable performance up to a certain size of

the problem instances. For many problems special heuristic algorithms were devel-

oped which resulted in exceptional runtime improvements compared to state-of-the-

art general problem-solvers. Though, general problem solvers, in particular declara-

tive problem solving approaches, provide superior knowledge representation features

which allow the efficient development and maintenance of problem descriptions.

The main contribution of this article is to show how problem-dependent heuristics

can be realized within a constraint answer set programming framework (CASP). To

this end, we first introduced the novel CASP solver ASCASS (A Simple Constraint

Answer Set Solver). ASCASS allows the declarative formulation of problem-specific

heuristics. This is done by the usage of ASP for generating problem-dependent

heuristics for CSP including variable and value selection as well as pruning strate-

gies.

We then exemplified the realization of problem-dependent heuristics for two

highly important manufacturing problem domains: the configuration of products and

services and the scheduling of jobs in large-scale job shops.

In the configuration domain we focused on the real-world Partner Units Prob-

lem (PUP), which constitutes one of the hardest benchmark problems of the ASP

competitions. By providing an encoding in ASCASS that includes both the declar-

ative description of the problem and an effective heuristic for solving the problem,

we could show that the non-trivial problem-dependent QuickPup heuristic can be

expressed succinctly in ASCASS. Due to this heuristic, which cannot be expressed
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by any other ASP or CASP system, ASCASS clearly outperforms state-of-the-art

ASP or CASP systems on the tested PUP instances.

For the job scheduling domain, it can be summarized that the CASP approach can

successfully be applied also for large-scale job shop scheduling problem instances

and the concept of dispatching rules can be easily integrated in CASP. We demon-

strated the efficacy of dispatching based CASP encodings with respect to a new large-

scale benchmark with proven optima and comprising up to 10000 job operations to

be scheduled on up to 100 machines.

Future work will concentrate on automatic generation of heuristics that consist

of CSP variable/value ordering and pruning strategies in the language of ASCASS.

A second interesting research direction connecting past research of the authors is to

investigate the possibilities of CASP in the area of knowledge-based recommender

systems [9, 29–32].
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