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Chapter 1
Introduction

Environmental problems often arise from a suspicion or an allegation that something
is wrong somewhere. It can be the suspicion that a municipal waste site is hazardous
for neighboring communities; it can be an allegation that a nuclear waste disposal
site is unsafe due to possibilities of exposure to radioactive material; or it can be
the problem of monitoring industrial effluents, managing a sewage water system,
disposal of municipal wastes, treatment of ash from a municipal incinerator, assess-
ing the quality of groundwater, or one of numerous other situations that call for
immediate attention from both the authority and the society.

Resolving each of these problems requires evidence in order to conclude one
way or the other. The evidence is usually collected in the form of data that come
from laboratory analyses of field samples collected from an appropriate site. Statis-
tical considerations can guide the sampling and analysis efforts to make the most
effective use of the available resources. That is, it is desired that as many issues be
addressed as are possible with the available resources without compromising the
quality of the outcome. This entails a carefully planned and implemented sampling
protocol, an appropriately developed statistical treatment of the collected data, and
a comprehensive interpretation of the results of the statistical procedures applied to
the data.

Since sampling at the site of the suspected or alleged violation of environmen-
tal safety is the very foundation of any such investigation, it is very important to
understand the statistical issues involved in sampling of such sites. Here sampling
is assumed to include the stages of selection, acquisition, and quantification of sam-
pling units from a site. It is then quite appropriate to point out the fundamental
dilemma of sampling that scientists – both statistical scientists and substantive sci-
entists – face during planning and implementation of a sampling design.

Sampling consists of selection, acquisition, and quantification of a part of the
population. While selection and acquisition apply to physical sampling units of the
population, quantification pertains only to the variable of interest, which is a particu-
lar characteristic of the sampling units. A sampling procedure is expected to provide
a sample that is representative with respect to some specified criteria. For example,
simple random sampling is known to provide a sample that is representative in that
the sample mean is an unbiased estimator of the population mean. In addition to

G.P. Patil et al., Composite Sampling, Environmental and Ecological Statistics 4,
DOI 10.1007/978-1-4419-7628-4_1, C© Springer Science+Business Media, LLC 2011

1



2 1 Introduction

representativeness, it is also expected that a sample be informative. Considerations
of desirable criteria for representativeness and informativeness as variously defined
usually lead to a desirable sample size of n̄ or more. On the other hand, consider-
ations of resources in terms of cost, time, and effort usually lead to an affordable
sample size of n or less.

A common experience is that n � n̄. Thus, what is desirable is not affordable,
and what is affordable is not adequate. How do we deal with this dilemma? One way
is to adopt the data quality objectives (DQO) process (see, for example, EPA QAMS,
1991). After discussing the issue of optimizing the sampling design, the DQO pro-
cess makes the following recommendation: “If it appears that there is no (sampling)
design that will meet both the limits of uncertainty (i.e., level of precision) and the
budget constraints, then determine whether to compromise by relaxing the limits on
uncertainty or other practical constraints or by finding additional funding to achieve
the desired limits on uncertainty within the boundaries of the study.”

Statistical theory attempts to deal with this situation by exploring additional
information, over the entire population, on the variable of interest or an associ-
ated variable. This helps stratify the population or do something related in terms
of clusters or primary sampling units leading to a reduction in the sample size and
hence in the associated cost while maintaining the representativeness, informative-
ness, and/or precision of the inference and may thus resolve the conflict between
cost and precision. However, if it is not possible to have additional information for
the entire population, then the existing statistical theory falls short of resolving this
conflict. This is where composite sampling approach can help when feasible.

Operationally, composite sampling recognizes the distinction between selection,
acquisition, and quantification. In certain applications, it is a common experience
that the costs of selection and acquisition are not very high, but the cost of quantifi-
cation, or measurement, is substantially high. In such situations, one may select a
sample sufficiently large to satisfy the requirement of representativeness and preci-
sion and then, by combining several sampling units into composites, reduce the cost
of measurement to an affordable level. Thus composite sampling offers an approach
to deal with the classical dilemma of desirable vs. affordable sample sizes, when
conventional statistical methods fail to resolve the problem.

Composite sampling, at least under idealized conditions, incurs no loss of infor-
mation for estimating the population means. But an important limitation to the
method has been the loss of information on individual sample values, such as for
example the extremely large value. In many of the situations where individual sam-
ple values are of interest or concern, composite sampling methods can be suitably
modified to retrieve the information on individual sample values that may be lost
due to compositing. In this monograph, we present statistical solutions to these and
other issues that arise in the context of applications of composite sampling.

A composite sample is formed by mixing several individual samples or subsam-
ples. The terminology of “sample” that we use in this document, as in “individual
sample” and “composite sample,” will be that of a physical sampling unit and not
a collection of observations as in the statistical sense. A composite sample may be
a physical mix of individual sampling units (or subunits) or it may be a batch of
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unblended individual sampling units that are subjected to measurement as a group.
Composite sampling techniques were developed for engineering applications where
it is necessary to test several pieces of equipment simultaneously. If we refer to
a group of individual sampling units to be tested simultaneously as a composite
sample, then group testing is a subset of composite sampling. Statistically, group
testing techniques are equivalent to composite sample techniques.

Individual sampling units can be created in two different ways. In batch or group
sampling, the individual sample units exist before sampling occurs. In bulk or inte-
grated sampling, the sampling process creates the sampling units, which may them-
selves be composite samples formed by the sampling process. Further compositing
steps may occur subsequent to the formation of sampling units (see Rohde, 1979).
For example, in the sampling of coal that is being passed along a moving conveyor
belt, an individual sample is created by dropping a portion of the coal through an
opening. This sample is then reduced in particle size prior to testing. Further com-
positing (forming composite samples), subsampling, and reduction steps may occur
before a final subsample is extracted for making measurement.

As far as we know, the original application of composite sampling was the
estimation of the prevalence of transmission of plant viruses by insects (see Wat-
son, 1936, for example). In this application, sets of potential insect vectors of dis-
ease are allowed to feed upon potential host plants. The transmission rate can be
estimated from the number of plants that subsequently become diseased.

Apparently, the next application of composite sampling occurred during World
War II. Dorfman (1943) proposed to classify US servicemen as either having or not
having been infected with syphilis, by detecting the presence or absence, respec-
tively, of an antigen of the syphilis-causing bacterium in samples of their blood. In
this application, composite samples are formed from subsamples of blood samples
drawn from the subjects. Composite samples testing positive for the presence of the
trait prompt additional tests on aliquots from the original blood samples compris-
ing that composite, until all individual samples are classified. Evidently, it was the
1951 edition of Feller’s book that brought this composite sampling problem to the
attention of statisticians.

In a third development, composite sampling has become a standard practice in
the sampling of soils, biota, and bulk materials when the goal is estimation of the
mean, with either a desired standard error or with limits on the cost of sampling,
which includes the cost of measurement. Though composite sampling has been
most frequently applied in the areas of estimating prevalence, classifying individual
samples, and estimating the mean, we anticipate that it may potentially be applicable
to other statistical problems requiring a sample. For example, the use of composite
sampling has been extended to general estimation and to hypothesis testing (Mack
and Robinson, 1985; Messner et al., 1990).

It is important to distinguish between two types of situations in which com-
posite sampling is often used. In the conventional case of sampling from a finite
population, sampling units exist prior to sampling. Human populations, items of
industrial product, or experimental subjects are examples of this type of setup. Not
all populations of interest have this characteristic. In such cases, we can consider
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the population as being composed of (hypothetical) sampling units, which are really
subsets of the population. Sampling in these cases therefore amounts to choosing a
subset of the population. Usually we use the term “finite population” to refer to a
population which consists of pre-existing identifiable sampling units and the term
“bulk population” to refer to a population in which objects to be selected in a sample
are themselves created by the sampling process. In finite populations the individual
values may be of interest while in bulk populations they are not, although some
measure of variability between samples may serve to measure internal variability of
the bulk population.

The term “sampling unit” is conventionally used to refer to an element of a finite
population, whereas the term “sample” or “grab” is used to refer to a subset of
a bulk population. In the literature on composite sampling, however, these terms
are interchangeably used. Rohde (1979) defines the following terms to avoid the
confusion between what is selected from a population and what is used to form
composite samples; between a sample as selected or formed and a sample as sub-
jected to laboratory analysis or measurement.

Primary Sampling Unit: A unit or an object in the population that is selected by the sampling
process.

Secondary Sampling Unit: A portion or aliquot of a primary sampling unit that can be
measured or observed. Note that a secondary sampling unit may coincide with a primary
sampling unit.

Composite Sample: A mixture of several secondary sampling units.

Laboratory Sample: A subsample of a larger sample unit (either a secondary sampling unit
or a composite sample) that is sent to the laboratory for measurement. Again note that a
laboratory sample may coincide with a secondary sampling unit (usually a case of finite
population sampling without compositing) or a composite sample (a case where the com-
posite sample itself is subjected to measurement).

Primary sampling units may exist before sampling (finite populations) or may be
created as a result of sampling (bulk populations). Often only a portion of a primary
sampling unit is actually used for laboratory procedures. A composite sample may
be a physical blend of secondary (or primary) sampling units or it may only be
a conceptual combination, as in group testing. As there are two distinct types of
populations, there also are two distinct types of sampling methods.

Batch or Group Sampling: Primary sampling units exist before sampling occurs (finite pop-
ulation sampling). Compositing may be done for convenience or as a cost-saving device.
Individual values of the primary sampling units may or may not be of intrinsic interest.

Bulk or Integrated Sampling: Primary sampling units are created by the sampling process
(bulk population sampling). Compositing is often performed by the very mechanism by
which primary sampling units are selected. Further compositing may also be performed.
Individual values of primary sampling units are of no intrinsic interest, though their vari-
ability may provide a measure of internal variability of the population.

The usual goal of composite sampling is to obtain the same information that
would have been obtained by measuring the individual samples but at a reduced
monetary cost, effort, or data variation. Sometimes the goal is to obtain more
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efficient procedures, and sometimes the goal is to obtain information when the indi-
vidual sample measurements are unavailable.

Practical considerations guide the feasibility and the physical formulation of
composite sampling. The physical formulation includes the composite sample
design in time or space, the number of individual samples composited, the mixing
and subsampling methods, and the retesting procedures. Some information, such as
the range and the variance of individual sample measurements, is lost upon com-
positing. However, some desired information may still be recoverable by certain
statistical and/or laboratory procedures. For example, the variance of individual
samples can be estimated from the sample variance of multiple composite samples.

If the integrity of the individual sample values is changed by compositing, then
composite sampling may not be the desired approach. Changes in the integrity of
sample values can occur, for example, if volatile chemicals evaporate upon mixing
of samples (Cline and Severin, 1989) or if there is interaction among sample con-
stituents. In the first case, compositing of individual sample extracts may perhaps
be a reasonable alternative to mixing individual samples as they are collected.

Another limitation on composite sample techniques is imposed by potential dilu-
tion. If an individual sample with a moderate sample value is combined with indi-
vidual samples having relatively small sample values, then the composite sample
value may be small enough to be undetectable. Reporting limits (Rajagopal, 1990,
“personal communication”) or action levels (Williams, 1990) of hazardous chemical
concentrations set by law to be close to the limit of detection eliminates the possibil-
ity of composite sampling. When not influenced by regulation, the determination of
the composite sample size will often be constrained by the magnitude of the report-
ing or action level relative to the magnitude of the detection limit. The presence of
measurement error further decreases the bound on the composite sample size that is
necessary to avoid non-detection (i.e., false-negative) problems.

When a physical blend of individual samples is subsampled, homogeneity of
the blend is desired for precise estimation of the mean response. The mixability of
sampling units will therefore influence the composite sample formulation. This is
usually more of a concern with the sampling of solids than with the sampling of
gases or liquids. Gases or liquids usually can be mixed to the level of molecules,
but the discreteness of solid material units (e.g., grain kernels, particles of coal or
soil) can add complexity to composite sampling. This complexity can be handled
substantively by effective subsampling, grinding, and mixing techniques and statis-
tically by assuming that the individual samples contribute to different subsamples
from the composite sample in different proportions. These proportions may then be
considered as random quantities, varying from subsample to subsample according
to a probability distribution.

The ability of the compositing device to blend the individual samples thoroughly
may also affect the degree of homogeneity with respect to the variable under study.
If the individual samples are themselves heterogeneous, that is, if different portions
or increments of the individual samples are characterized by different values, and
if the compositing device is unable to eliminate such heterogeneity, then portions
of the same individual samples in different subsamples may carry different values.
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This situation, which Elder et al. (1980) call “within-increment heterogeneity,” can
also add complexity to composite sampling.

Often, measurements on multiple attributes are desired. However, if retesting
is performed in order to classify individual samples, such as classifying the sam-
ples as being above or below an action level in hazardous waste monitoring, it is
unclear how to optimize the retesting relative to the different attributes (Schaeffer
et al., 1982). For example, should chemicals be tested independently or does there
exist dependence in the multivariate information that can be used to improve cost-
efficiency? Classifying for multiple attributes remains an open problem in composite
sampling.

Particular circumstances may dictate the feasibility or infeasibility of composite
sampling. In a nationwide study of the chemical concentrations in human adipose
tissue, small amounts of adipose tissue were collected from different subjects. To
ensure that enough adipose tissue was available to make a measurement, composit-
ing of tissue from several subjects was forced upon the design (Mack and Robin-
son, 1985). Conversely, events that are out of control of the field scientists may
eliminate composite sampling from constituting a design choice. For example, peo-
ple whose wells are being tested may demand that their wells be treated as equitably
as the wells of their neighbors. Measuring some well samples individually and some
well samples solely as part of composites may be seen by some well-owners as
unfair and could result in a political decree to measure each well sample individually
(Rajagopal, 1990, “personal communication”).

The nature of the variable of interest may also dictate the feasibility of composite
sampling. For instance, if the interest is in the average height of an individual in a
specified population, then grouping several individuals will not reduce the cost of
measurement for obvious reasons. On the other hand, if the interest is in the average
weight of an individual, then grouping several individuals for weighing provides a
measurement on the total weight of an entire group.

Circumstances that presently disqualify composite sampling from being applied
may change upon advances in technology. High turn-around time for laboratory
results and large labor costs may eliminate optimal sequential retesting designs
from consideration. However, retesting designs in the future may be automated
and guided by an expert system (Rajagopal, 1990, “personal communication”).
Advances in statistical methodology will further extend the utility of composite
sampling. Therefore, some of the uncertainties about the relevance of composite
sampling today may be obviated tomorrow.

We present here the statistical methodology, implementation strategies, and some
reported applications of composite sampling, keeping in view both the substantive
scientist and the statistician. The presentation is broadly divided into four parts,
each part pertaining to a major theme. The first part (Chapters 2, 3, 4, and 5) covers
the case where the interest is in characterizing every individual sample. Except for
Chapter 3, this part assumes presence/absence measurements. Chapter 2 discusses
the problem of classifying every individual sample as possessing or not possessing
a trait. Chapter 3 considers the issue of recovering the extreme individual sam-
ple values from composite sample data. Chapter 4 presents statistical methods of
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estimating the prevalence of a trait that is detected by presence/absence measure-
ments. Chapter 5 explores a Bayesian approach to the classification problem of
Chapter 2.

The second part (Chapters 6, 7, and 8) deals with statistical treatment of com-
posite sample data for continuous measurements. Chapter 6 considers the problem
of drawing statistical inference (estimation and testing of hypotheses) on the popu-
lation mean and variance using composite sample measurements. Chapter 7 models
the substantive issue of random weights in composite sampling, that is, the case
where the volumes of individual samples that contribute to a composite sample
cannot be fixed. Chapter 8 unifies various linear models reported in the literature
on composite sampling. The purpose of the unified linear model is to develop a
statistical tool to explore the relationship between the individual sample values and
composite sample values under all possible complexities in the population structure,
sampling protocol, and composite design.

The third part (Chapters 9 and 10) consists of some pertinent issues that affect
the performance of composite sampling procedures. Chapter 9 discusses the issue of
maintaining data quality through the data quality objectives (DQO) process and by
optimizing the composite design. Chapter 10 considers the spatial aspects of com-
posite sampling, where the individual samples represent a spatial point process and
compositing may result in altering the sampling interval without possibly reducing
the spatial sample support.

The fourth part (Chapters 11, 12, 13, and 14) comprises case studies of composite
sampling procedures applied to sampling of different materials and media: solids
such as soils and sediments (Chapter 11), liquids such as runoff water, industrial
effluents, or milk (Chapter 12), indoor house dust (Chapter 13), and tissue mass
(Chapter 14).

Most of this material will appeal to a general scientific reader, though the general
framework of Chapter 8 is intended for a reader with a background in linear models.
For other reviews of composite sampling, see Rohde (1976, 1979), Elder (1977),
Elder et al. (1980), Boswell and Patil (1987), and Garner et al. (1988).



Chapter 2
Classifying Individual Samples into One
of Two Categories

2.1 Introduction

Testing of groups for subsequent identification of group members possessing a trait
was initiated by Dorfman (1943) to identify US servicemen infected with syphilis.
Other reported applications of composite sampling include screening for pollutants
(Schaeffer et al., 1982; Rajagopal and Williams, 1989), testing for leaking contain-
ers (Sobel and Groll, 1959; Thomas et al., 1973), identifying faulty components
in a flow test (Hwang, 1984), identifying active users in a communications system
(Hayes, 1978; Berger et al., 1984; Wolf, 1985; Garg and Mohan, 1987), recogniz-
ing the pattern of a binary code, and screening experimental factors affecting yield
(Hwang, 1984). If the trait is relatively rare, then initially testing composite samples
and subsequently only those individual samples that belong to a composite that has
tested positive can greatly reduce the required number of tests (see, for instance,
Feller, 1968; Garner et al., 1986).

Group testing was originally developed for a binary response variable, where the
trait is either present or absent. However, the method can also be used for a (non-
negative) continuous response variable where the trait is defined as the exceedance
of some specified criterion level c. This latter case requires separate treatment since
compositing results in an averaging of the individual values and, consequently, a
measurement on the composite can fall below c even while some of the individual
values exceed c. By contrast, in the binary response case, absence of the trait in
the composite implies absence for all the individual samples. In either case, how-
ever, considerable savings can be realized by compositing if the trait is relatively
rare.

Individual samples are first collected and prepared for laboratory procedures.
Composite samples are then formed and measured. If a composite sample tests
positive, then further testing of some or all constituent individual samples must be
undertaken in order to classify the individual samples. Testing individual samples,
either separately or in the form of composite subsamples of the original composite
sample, is called retesting. Retesting may thus involve forming further composites
as well as making additional laboratory measurements. When the cost of forming
composites is negligible compared to the laboratory costs, then the effectiveness
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of compositing can be characterized by the relative cost which is defined as the
number of measurements per individual sample classified. Exhaustive testing of
all individual samples results in a relative cost of one measurement per sample.
In order for composite sampling techniques to be cost-effective, their relative cost
must be smaller than 1. Considerable cost savings can be realized when the trait
is relatively rare. For example, when the prevalence p of the trait is 0.01, then a
simple compositing strategy can result in a relative cost of 20%, or a savings of
80%, in the required number of measurements compared with exhaustive testing of
all individual samples.

Consider the case of a continuous response variable. For a measurement such as
the concentration of some pollutant in a composite sample, the composite sample
measurement is the average of the individual sample values plus a measurement
error, if present. For a measurement such as the total pollutant present in a compos-
ite sample, the composite sample measurement is the sum of the individual sample
values plus a possible measurement error. These two cases are really the same since
the concentration in a sample can be obtained from the total amount of the pollutant
and the volume of the sample. We will use, as an illustrative formulation, the testing
of water wells for the concentration of pollutants. Assume that the analytical mea-
surement is accurate. The measurement on a composite sample is then the average of
the individual sample values. Let c be the criterion value or action level. That is, the
water from any well with a concentration exceeding c is not potable. Further, assume
a detection limit of d. That is, if the concentration of the pollutant in any sample,
either individual or composite, does not exceed d, then the laboratory procedure will
return a measurement of 0 or an imprecise measurement. If water from one well with
a concentration level of c and from k − 1 other wells with no pollution is mixed to
form a composite sample, then the composite sample value will be c/k. In order not
to misclassify the polluted well as not polluted, it is necessary that c/k ≥ d. This
implies that the composite sample size k should satisfy k ≤ c/d. In any application
of composite sampling, it is accordingly necessary to place an upper limit on the
composite sample size in order to avoid detection limit difficulties. If the criterion
level is not at least twice as large as the detection level, then composite sample tech-
niques cannot be used for classification. Conversely, if composite sample techniques
are used, then implicitly there is a criterion level c = kd below which classification
is undependable. The detection limit for a composite sample of size k is also d, but
due to dilution a polluted well with concentration between c and kd may escape
detection and be misclassified as unpolluted.

For continuous measurements made without error, if any one individual sample
value exceeds c, then the measurement on a composite sample of k individual sam-
ples will exceed c/k. Of course, it is possible that none of the individual sample
values exceeds c and the composite sample measurement still exceeds c/k. If the
composite sample measurement exceeds c/k, then further testing would be under-
taken to identify individual sample values that exceed c, even though there may
be none. On the other hand, if the composite measurement does not exceed c/k,
then none of the individual samples needs be tested further, for none exceeds the
value of c.
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Section 2.2 discusses the presence/absence case, and Section 2.3 discusses the
case of a continuous response variable.

2.2 Presence/Absence Measurements

During World War II, it was feared that some of the US servicemen were infected
with syphilis-causing bacteria (Treponema pallidum). While the proportion of
infected servicemen was not expected to be high, it was necessary to be certain that
no infected individual remained undetected. The most commonly used laboratory
procedures for the detection of syphilis are carried out on a sample of blood serum
(serological tests for syphilis, or STS). The STS are based on detection of one of two
substances that appear in blood serum soon after the onset of the disease: syphilis
reagin and treponemal antibody. It was clear that a large proportion of laboratory
procedures would return a negative response, but it was essential to make certain
that the blood sample of every individual was subjected to laboratory procedures.

Dorfman (1943) came up with an apparently simple and yet cost-efficient proce-
dure to identify the infected servicemen. The basic argument that Dorfman devel-
oped was as follows: Fix a positive integer k, and pool blood samples of k ser-
vicemen to be subjected to the STS as a single specimen. Assuming independence
among servicemen, the probability that the syphilis bacteria are absent in a pooled
sample from k servicemen is g = 1 − pk , where p is the proportion of infected
servicemen. Since p is small, g is large and negatively testing composites occur
frequently, in which case a single test allows us to correctly classify k servicemen
as uninfected.

The cost of collecting and preparing samples for laboratory procedures is con-
stant since the number of individual samples is predetermined. The relative cost
of classification can therefore be defined as the expected number of tests divided
by the number of samples classified. When the cost of measurement is large and
the cost of forming composite samples is relatively small, the relative cost can be
reduced by the use of composite sample techniques. In Sections 2.2.1 through 2.2.6,
it is assumed that the hierarchical processing of a single composite sample results
in the classification of all individual samples eventually making up that composite.
The composite sample size is the number of individual samples used to form the
composite sample. If the composite sample size does not divide the total number of
individual samples to be classified evenly, then near the end of the classification pro-
cedure, smaller composite sample sizes must be used. For a relatively small number
of samples this “remainder” composite sample size must be taken into account. On
the other hand, if the total number of samples is large, then the remainder effect
can be ignored. In the limiting case, as the number of individual samples increases
indefinitely, the relative cost is the same as the asymptotic relative cost.

The asymptotic relative cost is derived for the retesting procedures discussed in
Sections 2.2.1 through 2.2.7. The formulation of Section 2.2.7 begins with the finite
case and deduces the asymptotic case. In the finite case, an optimal partition of all
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individual samples of various sizes is desired. Bush et al. (1984) and Gilstein (1985)
discuss optimal partitions in the finite case for the exhaustive retesting procedure.
This problem is not discussed in this monograph, as the emphasis here is in the
asymptotic relative cost of classification.

2.2.1 Exhaustive Retesting

The original composite sampling procedure of exhaustive retesting is due to
Dorfman (1943) and is often referred to as the Dorfman procedure in the literature
(see, for instance, Johnson et al., 1991). Exhaustive retesting utilizes two stages of
testing. The first stage consists of testing only the composite samples, while the
second stage consists of testing all members of positive testing composite samples.
Figure 2.1 shows the two stages of the exhaustive retesting procedure.

Fig. 2.1 Exhaustive retesting

Our analysis of the method employs a binomial model for the occurrence of the
trait. Thus the individual samples are treated as independent trials with a constant
probability, p, of possessing the trait. Let I1, I2, . . . , Ik be the k individual sample
values, each taking a value of 0 (trait not present) or 1 (trait present). Now I1, . . . , Ik

are independent and identically distributed with Pr[Ii = 1] = p which is small for
a rare trait. A composite sample formed from these individual samples will have a
test result I = 0 or I = 1, with respective probabilities

Pr[I = 0] = Pr[I1 = 0, I2 = 0, . . . , Ik = 0] = qk,

Pr[I = 1] = 1− Pr[I = 0] = 1− qk,
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where q = 1 − p. If the composite sample tests negative, then all the k constituent
individual samples are classified as not possessing the trait without any further test-
ing. That is, the classification is achieved with only one test. On the other hand, if the
composite sample tests positive, then every constituent individual sample is tested
and classified separately. The total number of tests in this case is k + 1, with one
test for the composite sample and k tests for the k individual samples. In this way,
for classifying the k individual samples in a single composite sample, the number of
tests, denoted by Tk , is either 1 or k + 1. The expected number of tests required is

E[Tk] = 1 · qk + (k + 1) · [1− qk] = (k + 1)− kqk . (2.1)

The ratio of E[Tk], the expected number of tests, to k, the number of individual
samples classified, is defined to be the (asymptotic) relative cost, RC, which in this
case is given by

RC = 1+ 1/k − qk . (2.2)

For given p, the optimal composite size k can be obtained by minimizing (2.2).

Samuels (1978) showed that for all p ≤ 1− (1/3)
1
3 ∼= 0.307, the optimal composite

sample size is the choice of 1 + [p− 1
2 ] or 2 + [p− 1

2 ], whichever minimizes the
relative cost, where [x] represents the integer part of x (see Table 2.1). The expected
number of tests per individual sample classified, when an optimal composite sample
size is used, is shown in Fig. 2.2 for selected values of p. Note that p must be
sufficiently small to gain most of the benefits of composite sampling (see Table 2.1).
For instance, for exhaustive retesting with the optimal k to be twice as efficient as
the conventional method of testing individual samples, p must be less than 0.07.

The performance of compositing can also be assessed by the relative savings
defined as RS = 1−RC. The relative savings is often expressed as a percentage and
represents the number of tests per classified item that can be saved, on average, by
using compositing instead of individually testing each item. For Dorfman’s method,
the relative savings becomes

RS = (1− p)k − 1

k
.

Notice that the relative savings can be negative indicating that conventional testing
would outperform the compositing method under consideration.

Identification of an optimal composite sample size k can yield performance ben-
efits but does require accurate prior information for the value of p. If this prior
information is inaccurate then the relative savings can be substantially suboptimal
and may even be negative. For this reason it is useful to have some rules of thumb
for choosing k when knowledge of p is limited. Ideally the rule would produce near-
optimal savings with only a small risk of negative savings. One such rule is called
the “1/4/12 rule” for Dorfman’s method and divides the possible values of p into
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Table 2.1 Optimal composite sample size (kopt) and the corresponding relative cost (RC) for
exhaustive retesting
p kopt RCa p kopt RC

(0.30663, 1.00000] 1 1.000000 (0.00049, 0.00051] 45 (0.044033, 0.044916]
(0.12394, 0.30663] 3 (0.660973, 0.999987] (0.00047, 0.00049] 46 (0.043129, 0.044033]
(0.06558, 0.12394] 4 (0.487622, 0.660973] (0.00045, 0.00047] 47 (0.042207, 0.043129]
(0.04112, 0.06558] 5 (0.389372, 0.487622] (0.00043, 0.00045] 48 (0.041262, 0.042207]
(0.02828, 0.04112] 6 (0.324792, 0.389372] (0.00041, 0.00043] 49 (0.040296, 0.041262]
(0.02066, 0.02828] 7 (0.278810, 0.324792] (0.00040, 0.00041] 50 (0.039806, 0.040296]
(0.01577, 0.02066] 8 (0.244410, 0.278810] (0.00038, 0.00040] 51 (0.038799, 0.039806]
(0.01243, 0.01577] 9 (0.217573, 0.244410] (0.00036, 0.00038] 52 (0.037771, 0.038799]
(0.01005, 0.01243] 10 (0.196068, 0.217573] (0.00035, 0.00036] 53 (0.037244, 0.037771]
(0.00830, 0.01005] 11 (0.178510, 0.196068] (0.00034, 0.00035] 54 (0.036710, 0.037244]
(0.00697, 0.00830] 12 (0.163839, 0.178510] (0.00033, 0.00034] 55 (0.036169, 0.036710]
(0.00593, 0.00697] 13 (0.151323, 0.163839] (0.00031, 0.00033] 56 (0.035062, 0.036169]
(0.00511, 0.00593] 14 (0.140635, 0.151323] (0.00030, 0.00031] 57 (0.034493, 0.035062]
(0.00445, 0.00511] 15 (0.131373, 0.140635] (0.00029, 0.00030] 58 (0.033915, 0.034493]
(0.00391, 0.00445] 16 (0.123255, 0.131373] (0.00028, 0.00029] 59 (0.033330, 0.033915]
(0.00346, 0.00391] 17 (0.116037, 0.123255] (0.00027, 0.00028] 60 (0.032731, 0.033330]
(0.00309, 0.00346] 18 (0.109738, 0.116037] (0.00026, 0.00027] 61 (0.032121, 0.032731]
(0.00277, 0.00309] 19 (0.103966, 0.109738] (0.00025, 0.00026] 63 (0.031498, 0.032121]
(0.00250, 0.00277] 20 (0.098827, 0.103966] (0.00024, 0.00025] 64 (0.030867, 0.031498]
(0.00227, 0.00250] 21 (0.094222, 0.098827] (0.00023, 0.00024] 65 (0.030219, 0.030867]
(0.00206, 0.00227] 22 (0.089800, 0.094222] (0.00022, 0.00023] 66 (0.029556, 0.030219]
(0.00189, 0.00206] 23 (0.086054, 0.089800] (0.00021, 0.00022] 68 (0.028879, 0.029556]
(0.00173, 0.00189] 24 (0.082364, 0.086054] (0.00020, 0.00021] 70 (0.028184, 0.028879]
(0.00160, 0.00173] 25 (0.079241, 0.082364] (0.00019, 0.00020] 71 (0.027476, 0.028184]
(0.00148, 0.00160] 26 (0.076237, 0.079241] (0.00018, 0.00019] 73 (0.026744, 0.027476]
(0.00137, 0.00148] 27 (0.073373, 0.076237] (0.00017, 0.00018] 75 (0.025992, 0.026744]
(0.00127, 0.00137] 28 (0.070665, 0.073373] (0.00016, 0.00017] 77 (0.025218, 0.025992]
(0.00118, 0.00127] 29 (0.068134, 0.070665] (0.00015, 0.00016] 80 (0.024423, 0.025218]
(0.00111, 0.00118] 30 (0.066102, 0.068134] (0.00014, 0.00015] 82 (0.023596, 0.024423]
(0.00104, 0.00111] 31 (0.063999, 0.066102] (0.00013, 0.00014] 85 (0.022739, 0.023596]
(0.00097, 0.00104] 32 (0.061821, 0.063999] (0.00012, 0.00013] 88 (0.021848, 0.022739]
(0.00091, 0.00097] 33 (0.059891, 0.061821] (0.00011, 0.00012] 92 (0.020919, 0.021848]
(0.00086, 0.00091] 34 (0.058235, 0.059891] (0.00010, 0.00011] 96 (0.019952, 0.020919]
(0.00081, 0.00086] 35 (0.056529, 0.058235] (0.00009, 0.00010] 100 (0.018929, 0.019952]
(0.00077, 0.00081] 36 (0.055125, 0.056529] (0.00008, 0.00009] 106 (0.017848, 0.018929]
(0.00073, 0.00077] 37 (0.053684, 0.055125] (0.00007, 0.00008] 112 (0.016696, 0.017848]
(0.00069, 0.00073] 38 (0.052201, 0.053684] (0.00006, 0.00007] 120 (0.015465, 0.016696]
(0.00065, 0.00069] 39 (0.050673, 0.052201] (0.00005, 0.00006] 130 (0.014118, 0.015465]
(0.00062, 0.00065] 40 (0.049498, 0.050673] (0.00004, 0.00005] 142 (0.012628, 0.014118]
(0.00059, 0.00062] 41 (0.048293, 0.049498] (0.00003, 0.00004] 158 (0.010936, 0.012628]
(0.00056, 0.00059] 42 (0.047054, 0.048293] (0.00002, 0.00003] 183 (0.008940, 0.010936]
(0.00054, 0.00056] 43 (0.046214, 0.047054] (0.00001, 0.00002] 224 (0.006500, 0.008940]
(0.00051, 0.00054] 44 (0.044916, 0.046214]
aRC: Relative cost

three categories, corresponding to “frequent,” “infrequent,” and “rare” occurrence
of the trait in question. A different value of k is used for each case as follows:

Frequent. If 0.29 < p < 1, use k = 1 (conventional testing).
Infrequent. If 0.01 < p < 0.29, use k = 4.
Rare. If 0 < p < 0.01, use k = 12.
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Fig. 2.2 Relative cost for exhaustive retesting using the optimal composite sample size

The following tabulation compares the relative savings achieved by the 1/4/12
rule with the optimal relative savings for several values of p. Relative savings is
expressed as percentages.

p RS (1/4/12) RS (optimal)

0.275 3 5
0.25 7 9
0.20 16 18
0.15 27 28
0.10 41 41
0.05 56 57
0.025 65 69
0.01+ 71 80
0.01− 80 80
0.005 86 86
0.001 90 94

The tabulation supposes that p is correctly classified into the frequent, infrequent,
or rare categories. Classification error can occur when p is near a category boundary.
In this case, the achieved savings can be somewhat more or somewhat less than
indicated in the tabulation.

2.2.2 Sequential Retesting

Sterrett (1957) suggested a modification to exhaustive retesting, and hence this mod-
ified procedure is often referred to as the Sterrett procedure. The modification is
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motivated by the following observations. When a composite tests positive, then the
test result tells us that at least one of the k constituent individual samples possesses
the trait. The Dorfman procedure determines which samples have the trait by indi-
vidually testing each item. Here, Sterrett notes that as soon as an individual sample
is found with the trait, then there is no information on whether any of the remain-
ing (untested and therefore unclassified) samples from that composite has the trait.
Moreover, the prevalence of the trait among these unclassified samples is still p. It
is then natural to argue that compositing the unclassified samples should be more
economical than individual testing, even at this stage. This was the observation that
led Sterrett (1957) to propose the following: When a composite tests positive, its
constituent individual samples are tested sequentially until a positively testing sam-
ple is identified. At this stage, all the remaining individual samples (from among the
k that formed the original composite) are used to form a new composite sample for
testing. If this composite tests negative, then all its constituent individual samples
are classified as not possessing the trait, and no more testing is necessary. On the
other hand, if this composite tests positive, then the same procedure is repeated,
beginning with sequential testing of constituent individual samples until an individ-
ual sample is identified as possessing the trait. This procedure continues until all the
k individual samples comprising the original composite sample have been classified.
Figure 2.3 displays the sequential retesting procedure.

Let Tk be the number of tests required to classify the k individual samples that
constitute a composite sample. For small values of k, the expected number of tests
can be calculated directly, giving, for instance,

E[T1] = 1 (T1 ≡ 1), E[T2] = 3− 2q2, and E[T3] = 5− q − 2q2 − q3.

A recurrence formula can be found by conditioning on the number of retests J to
find the first positively testing item. Thus, J = 0 if the composite sample tests
negative; J = 1 if the first item retested tests positive, etc. Now

E[Tk] = E[E (Tk |J )] =
k∑

j=0

E[Tk |J = j]P[J = j]

= E[Tk |J = 0]qk +
k∑

j=1

E[Tk |J = j]q j−1 p, k = 2, 3, . . . .

Given that the composite sample tests positive, that the first j − 1 individual
samples test negative, and that the j th individual sample tests positive, the remaining
k− j individual sample values are independent Bernoulli random variables with
parameter p. We therefore have

E[Tk |J = j] = j + 1+ E[Tk− j ], j > 0,
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Fig. 2.3 Sequential retesting

where T0 = 0, and hence

E[Tk] = qk +
k∑

j=1

{
j + 1+ E[Tk− j ]

}
q j−1 p.

So

E[Tk] = qk +
k∑

j=1

( j + 1)q j−1 p +
k∑

j=1

E[Tk− j ]q j−1 p

= qk +
k−1∑

j=0

( j + 2)q j p +
k−1∑

j=0

E[Tj ]qk− j−1 p.

Also

q E[Tk−1] = qk +
k−1∑

j=1

( j + 1)q j p +
k−2∑

j=0

E[Tj ]qk− j−1 p, k = 3, 4, . . . .
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Then

E[Tk] − q E[Tk−1] =
⎡

⎣2p +
k−1∑

j=1

q j p

⎤

⎦+ E[Tk−1]p.

Thus

E[Tk] − E[Tk−1] = 2p + qp
(
1− qk−1

)

1− q
= 2p + q − qk .

Further

E[Tk] − E[T2] =
k∑

j=3

{
E[Tj ] − E[Tj−1]

}

= (k − 2)(2p + q)−
k∑

j=3

q j

= (k − 2)(2p + q)− q3
(
1− qk−2

)

1− q
, k = 2, 3, . . . .

Substituting the value of E[T2] gives

E[Tk] = 3− 2q2 + (k − 2)(2p + q)+ 1− q3

p
− 1− qk+1

p

= 2k − (k − 3)q − q2 − 1− qk+1

p
, k = 2, 3, . . . .

The (asymptotic) relative cost is

RC = E[Tk]/k = 2− q + 1

k

[
3q − q2 − 1− qk+1

p

]
. (2.3)

The optimal composite sample size is tabulated in Table 2.2, and the relative
cost using the optimal composite sample size is shown in Fig. 2.4 for selected
values of p.

2.2.3 Binary Split Retesting

The exhaustive and sequential retesting procedures presented above have the follow-
ing limitation to their cost-efficiency. The prevalence of individual samples that pos-
sess the trait is sufficiently small to justify the use of composite sampling. However,
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Table 2.2 Optimal composite sample size (kopt) and the corresponding relative cost (RC) for
sequential retesting
p kopt RC p kopt RC

(0.30437, 1.00000] 1 1.000000 (0.00064, 0.00066] 56 (0.036512, 0.037090]
(0.21253, 0.30437] 3 (0.827997, 0.999984] (0.00061, 0.00064] 57 (0.035628, 0.036512]
(0.12774, 0.21253] 4 (0.622819, 0.827997] (0.00059, 0.00061] 58 (0.035030, 0.035628]
(0.08283, 0.12774] 5 (0.487586, 0.622819] (0.00057, 0.00059] 59 (0.034418, 0.035030]
(0.05759, 0.08283] 6 (0.397398, 0.487586] (0.00056, 0.00057] 60 (0.034111, 0.034418]
(0.04224, 0.05759] 7 (0.334221, 0.397398] (0.00054, 0.00056] 61 (0.033485, 0.034111]
(0.03226, 0.04224] 8 (0.287849, 0.334221] (0.00052, 0.00054] 62 (0.032847, 0.033485]
(0.02543, 0.03226] 9 (0.252541, 0.287849] (0.00050, 0.00052] 63 (0.032198, 0.032847]
(0.02055, 0.02543] 10 (0.224784, 0.252541] (0.00049, 0.00050] 64 (0.031869, 0.032198]
(0.01695, 0.02055] 11 (0.202456, 0.224784] (0.00047, 0.00049] 65 (0.031200, 0.031869]
(0.01422, 0.01695] 12 (0.184127, 0.202456] (0.00045, 0.00047] 66 (0.030519, 0.031200]
(0.01210, 0.01422] 13 (0.168814, 0.184127] (0.00043, 0.00045] 68 (0.029821, 0.030519]
(0.01042, 0.01210] 14 (0.155825, 0.168814] (0.00042, 0.00043] 69 (0.029466, 0.029821]
(0.00906, 0.01042] 15 (0.144618, 0.155825] (0.00040, 0.00042] 70 (0.028746, 0.029466]
(0.00796, 0.00906] 16 (0.134999, 0.144618] (0.00038, 0.00040] 72 (0.028006, 0.028746]
(0.00704, 0.00796] 17 (0.126487, 0.134999] (0.00036, 0.00038] 74 (0.027249, 0.028006]
(0.00627, 0.00704] 18 (0.118972, 0.126487] (0.00035, 0.00036] 75 (0.026861, 0.027249]
(0.00562, 0.00627] 19 (0.112299, 0.118972] (0.00034, 0.00035] 76 (0.026469, 0.026861]
(0.00507, 0.00562] 20 (0.106376, 0.112299] (0.00033, 0.00034] 78 (0.026070, 0.026469]
(0.00460, 0.00507] 21 (0.101079, 0.106376] (0.00032, 0.00033] 79 (0.025667, 0.026070]
(0.00419, 0.00460] 22 (0.096254, 0.101079] (0.00031, 0.00032] 80 (0.025259, 0.025667]
(0.00383, 0.00419] 23 (0.091835, 0.096254] (0.00030, 0.00031] 81 (0.024840, 0.025259]
(0.00351, 0.00383] 24 (0.087744, 0.091835] (0.00029, 0.00030] 83 (0.024417, 0.024840]
(0.00323, 0.00351] 25 (0.084020, 0.087744] (0.00028, 0.00029] 84 (0.023989, 0.024417]
(0.00299, 0.00323] 26 (0.080711, 0.084020] (0.00027, 0.00028] 85 (0.023550, 0.023989]
(0.00277, 0.00299] 27 (0.077567, 0.080711] (0.00026, 0.00027] 87 (0.023104, 0.023550]
(0.00258, 0.00277] 28 (0.074758, 0.077567] (0.00025, 0.00026] 88 (0.022649, 0.023104]
(0.00240, 0.00258] 29 (0.072004, 0.074758] (0.00024, 0.00025] 89 (0.022187, 0.022649]
(0.00224, 0.00240] 30 (0.069476, 0.072004] (0.00023, 0.00024] 92 (0.021714, 0.022187]
(0.00210, 0.00224] 31 (0.067194, 0.069476] (0.00022, 0.00023] 94 (0.021230, 0.021714]
(0.00197, 0.00210] 32 (0.065010, 0.067194] (0.00021, 0.00022] 95 (0.020735, 0.021230]
(0.00185, 0.00197] 33 (0.062933, 0.065010] (0.00020, 0.00021] 98 (0.020230, 0.020735]
(0.00174, 0.00185] 34 (0.060973, 0.062933] (0.00019, 0.00020] 101 (0.019714, 0.020230]
(0.00164, 0.00174] 35 (0.059140, 0.060973] (0.00018, 0.00019] 104 (0.019182, 0.019714]
(0.00155, 0.00164] 36 (0.057445, 0.059140] (0.00017, 0.00018] 105 (0.018635, 0.019182]
(0.00147, 0.00155] 37 (0.055900, 0.057445] (0.00016, 0.00017] 108 (0.018072, 0.018635]
(0.00139, 0.00147] 38 (0.054312, 0.055900] (0.00015, 0.00016] 113 (0.017495, 0.018072]
(0.00132, 0.00139] 39 (0.052889, 0.054312] (0.00014, 0.00015] 115 (0.016895, 0.017495]
(0.00125, 0.00132] 40 (0.051428, 0.052889] (0.00013, 0.00014] 119 (0.016275, 0.016895]
(0.00119, 0.00125] 41 (0.050145, 0.051428] (0.00012, 0.00013] 126 (0.015629, 0.016275]
(0.00114, 0.00119] 42 (0.049054, 0.050145] (0.00011, 0.00012] 131 (0.014956, 0.015629]
(0.00108, 0.00114] 43 (0.047710, 0.049054] (0.00010, 0.00011] 135 (0.014258, 0.014956]
(0.00104, 0.00108] 44 (0.046797, 0.047710] (0.00009, 0.00010] 141 (0.013520, 0.014258]
(0.00099, 0.00104] 45 (0.045630, 0.046797] (0.00008, 0.00009] 150 (0.012742, 0.013520]
(0.00094, 0.00099] 46 (0.044435, 0.045630] (0.00007, 0.00008] 156 (0.011909, 0.012742]
(0.00091, 0.00094] 47 (0.043704, 0.044435] (0.00006, 0.00007] 169 (0.011026, 0.011909]
(0.00087, 0.00091] 48 (0.042710, 0.043704] (0.00005, 0.00006] 186 (0.010057, 0.011026]
(0.00083, 0.00087] 49 (0.041694, 0.042710] (0.00004, 0.00005] 202 (0.008988, 0.010057]
(0.00080, 0.00083] 50 (0.040917, 0.041694] (0.00003, 0.00004] 228 (0.007782, 0.008988]
(0.00077, 0.00080] 51 (0.040126, 0.040917] (0.00002, 0.00003] 248 (0.006532, 0.007782]
(0.00074, 0.00077] 52 (0.039321, 0.040126] (0.00001, 0.00002] 250 (0.005269, 0.006532]
(0.00071, 0.00074] 53 (0.038499, 0.039321]
(0.00069, 0.00071] 54 (0.037941, 0.038499]
(0.00066, 0.00069] 55 (0.037090, 0.037941]
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Fig. 2.4 Relative cost for sequential retesting using the optimal composite sample size

after a composite sample tests positive, both of these retesting procedures recom-
mend exhaustive testing of the constituent individual samples (at least initially),
which may not be very cost-effective. Also, note that the conditional prevalence of
the trait among individual samples that comprise a composite that tests positive is
p+ = p

1−qk , where p is the prevalence of the trait in the population and k is the

composite sample size. It is clear that p+ > p, and hence the optimal compos-
ite sample size corresponding to the prevalence p+ will clearly not be larger than
k, which is optimal corresponding to the prevalence p. It may therefore be more
reasonable to form subcomposites of a positive testing composite rather than resort
to exhaustive testing. With this modification and assuming a binomial model, Gill
and Goltlieb (1974) proposed that positive testing composites be divided into two
subcomposites of as equal sizes as possible, and positive testing subcomposites be
recursively tested after dividing into two further subcomposites. Figure 2.5 describes
the binary split retesting procedure of Gill and Gottlieb. Examples of the binary split
retesting procedure for k = 4 and k = 8 are also presented in Figs. 2.6 and 2.7.

Let Tk be the number of tests required for classifying the k individual samples
in a composite. For small values of k, the expectations can be calculated directly,
giving

E[T1] = 1, E[T2] = 3− 2q2, and E[T3] = 5− 2q2 − 2q3.

When retesting is required, aliquots of the k individual samples are composited
into two groups of sizes k1 and k2 = k − k1, where k1 = k2 = k/2 if k is even and
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Fig. 2.5 Binary split retesting

where k1 = (k − 1)/2 and k2 = (k + 1)/2 if k is odd. Let “split” indicate that the
composite of size k tests positive. Note that “split” means at least one of the k items
has the trait. Now

E [Tk] = E
[
Tk | split

]+ E
[
Tk | not split

]

= (
1+ E

[
Tk1 + Tk2 | split

])
Pr

[
split

]+ 1 · Pr
[

not split
]

= E
[
Tk1 + Tk2 | split

]
Pr

[
split

]+ 1.

Now consider two separate composites of sizes k1 and k2, and let “split” indicate
that at least one of the composites tests positive. Note that “split” means that at least
one of the k1 + k2 = k items tests positive. Then

E
[
Tk1 + Tk2

] = E
[
Tk1 + tk2 | split

]
Pr

[
split

]

+E
[
Tk1 + Tk2 | not split

]
Pr

[
not split

]
.
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Fig. 2.6 An example of binary split retesting with k = 4

That is,

E
[
Tk1

]+ E
[
Tk2

] = E
[
Tk1 + tk2 | split

]
Pr

[
split

]+ 2qk .

Subtracting from the above expression for E [Tk] now yields

E [Tk] = E
[
Tk1

]+ E
[
Tk2

]+ 1− 2qk . (2.4)

This formula can be used to recursively generate E [Tk] for any given k. For exam-
ple, E[T2] = 2E[T1]+ 1− 2q2 and E[T3] = E[T1]+ E[T2]+ 1− 2q3. In this way,
we obtain

E[T2] = 3− 2q2,

E[T3] = 5− 2q2 − 2q3,

E[T4] = 7− 4q2 − 2q4,

E[T5] = 9− 4q2 − 2q3 − 2q5,

E[T6] = 11− 4q2 − 4q3 − 2q6,

E[T7] = 13− 6q2 − 2q3 − 2q4 − 2q7,

E[T8] = 15− 8q2 − 4q4 − 2q8,

E[T9] = 17− 8q2 − 2q3 − 2q4 − 2q5 − 2q9,
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Fig. 2.7 An example of binary split retesting with k = 8

E[T10] = 19− 8q2 − 4q3 − 4q5 − 2q10,

E[T11] = 21− 8q2 − 6q3 − 2q5 − 2q6 − 2q10,

E[T12] = 23− 8q2 − 8q3 − 4q6 − 2q12.

The asymptotic relative cost can be calculated by dividing the expected number of
tests by the corresponding composite sample size. The optimal composite sample
size is tabulated in Table 2.3, and the relative cost of classification with the binary
split procedure using the optimal composite sample size is shown in Fig. 2.8 for
selected values of p.

2.2.4 Curtailed Exhaustive Retesting

Many of the retesting strategies can be improved upon when the laboratory proce-
dure is free of testing error. It is also necessary to have some freedom to schedule
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Fig. 2.8 Relative cost for binary split retesting using the optimal composite sample size

Table 2.3 Optimal composite sample size (kopt) and the corresponding relative cost (RC) for
binary split retesting

p kopt RC

(0.29289, 1.00000] 1 1.00
(0.15910, 0.29289] 2 (0.792883, 0.999995]
(0.08299, 0.15910] 4 (0.555524, 0.792883]
(0.04239, 0.08299] 8 (0.360729, 0.555524]
(0.02142, 0.04239] 16 (0.222719, 0.360729]
(0.01077, 0.02142] 32 (0.132800, 0.222719]
(0.00540, 0.01077] 64 (0.077175, 0.132800]
(0.00267, 0.00540] 128 (0.043552, 0.077175]

the laboratory tests sequentially. In general, whenever a composite tests positive, the
items comprising that composite must be subjected to retesting, either individually
or in groups. Now suppose the items making up the composite can be partitioned
into two subsets and we know, from our retesting, that none of the items in one of the
subsets has the trait. Then, without testing, we know that at least one of the items
in the second subset does have the trait. The avoidance of the test on this second
subset is referred to as curtailment. Curtailment comes at a price when testing errors
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(specifically false positives) are possible. When retesting is not curtailed, the items
in positively testing groups undergo retesting which reduces the false-positive rate.
This advantage of compositing is lost with curtailed retesting. The effects of testing
error are examined in greater detail in Section 2.2.8.

Now consider the exhaustive retesting (Dorfman) procedure and suppose the
individual item values in a positively testing composite are denoted by X1, . . . , Xk .
Let these items be retested in sequential order and suppose after the first k−1 retests
that X1 = X2 = · · · = Xk−1 = 0. Then we know that the last item must have the
trait (Xk = 1) without testing and the items can be completely classified with only
k − 1 instead of k retests (see Fig. 2.9). Let Tk be the number of tests required
to completely classify a composite of size k using curtailed exhaustive retesting.
Writing q = 1− p as above, Tk takes three possible values: 1, k, and k + 1. But

Pr [Tk = 1] = qk,

Pr [Tk = k] = qk−1 p,

Pr [Tk = k + 1] = 1− qk − qk−1 p = 1− qk−1.

Thus

E [Tk] = qk + kqk−1 p + (k + 1)(1− qk−1)

= k + 1− kqk − qk−1 p. (2.5)

Fig. 2.9 Curtailed exhaustive retesting
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The (asymptotic) relative cost is RC = E [Tk] /k = 1−qk+ 1
k

[
1− qk−1 p

]
. For

selected values of p, the optimal composite sample size for the curtailed exhaustive
retesting procedure is tabulated in Table 2.4 and the corresponding relative cost is
shown in Fig. 2.10.

Table 2.4 Optimal composite sample size (kopt) and the corresponding relative cost (RC) for cur-
tailed exhaustive retesting
p kopt RC p kopt RC

(0.38196, 1.00000] 1 1.000000 (0.00051, 0.00054] 44 (0.044905, 0.046202]
(0.20261, 0.38196] 2 (0.783386, 0.999993] (0.00049, 0.00051] 45 (0.044022, 0.044905]
(0.10291, 0.20261] 3 (0.583770, 0.783386] (0.00047, 0.00049] 46 (0.043119, 0.044022]
(0.06010, 0.10291] 4 (0.457106, 0.583770] (0.00045, 0.00047] 47 (0.042198, 0.043119]
(0.03906, 0.06010] 5 (0.373965, 0.457106] (0.00043, 0.00045] 48 (0.041253, 0.042198]
(0.02733, 0.03906] 6 (0.315871, 0.373965] (0.00041, 0.00043] 49 (0.040288, 0.041253]
(0.02017, 0.02733] 7 (0.273231, 0.315871] (0.00039, 0.00041] 50 (0.039297, 0.040288]
(0.01549, 0.02017] 8 (0.240669, 0.273231] (0.00038, 0.00039] 51 (0.038792, 0.039297]
(0.01226, 0.01549] 9 (0.214956, 0.240669] (0.00036, 0.00038] 52 (0.037764, 0.038792]
(0.00994, 0.01226] 10 (0.194156, 0.214956] (0.00035, 0.00036] 53 (0.037238, 0.037764]
(0.00822, 0.00994] 11 (0.177008, 0.194156] (0.00034, 0.00035] 54 (0.036704, 0.037238]
(0.00691, 0.00822] 12 (0.162633, 0.177008] (0.00033, 0.00034] 55 (0.036163, 0.036704]
(0.00589, 0.00691] 13 (0.150415, 0.162633] (0.00031, 0.00033] 56 (0.035056, 0.036163]
(0.00508, 0.00589] 14 (0.139900, 0.150415] (0.00030, 0.00031] 57 (0.034488, 0.035056]
(0.00443, 0.00508] 15 (0.130814, 0.139900] (0.00029, 0.00030] 58 (0.033910, 0.034488]
(0.00389, 0.00443] 16 (0.122720, 0.130814] (0.00028, 0.00029] 59 (0.033325, 0.033910]
(0.00345, 0.00389] 17 (0.115686, 0.122720] (0.00027, 0.00028] 60 (0.032727, 0.033325]
(0.00308, 0.00345] 18 (0.109404, 0.115686] (0.00026, 0.00027] 61 (0.032117, 0.032727]
(0.00276, 0.00308] 19 (0.103645, 0.109404] (0.00025, 0.00026] 63 (0.031495, 0.032117]
(0.00249, 0.00276] 20 (0.098514, 0.103645] (0.00024, 0.00025] 64 (0.030864, 0.031495]
(0.00226, 0.00249] 21 (0.093915, 0.098514] (0.00023, 0.00024] 65 (0.030216, 0.030864]
(0.00206, 0.00226] 22 (0.089714, 0.093915] (0.00022, 0.00023] 66 (0.029553, 0.030216]
(0.00188, 0.00206] 23 (0.085749, 0.089714] (0.00021, 0.00022] 68 (0.028876, 0.029553]
(0.00173, 0.00188] 24 (0.082298, 0.085749] (0.00020, 0.00021] 70 (0.028181, 0.028876]
(0.00159, 0.00173] 25 (0.078932, 0.082298] (0.00019, 0.00020] 71 (0.027473, 0.028181]
(0.00147, 0.00159] 26 (0.075926, 0.078932] (0.00018, 0.00019] 73 (0.026742, 0.027473]
(0.00137, 0.00147] 27 (0.073326, 0.075926] (0.00017, 0.00018] 75 (0.025990, 0.026742]
(0.00127, 0.00137] 28 (0.070623, 0.073326] (0.00016, 0.00017] 77 (0.025216, 0.025990]
(0.00118, 0.00127] 29 (0.068096, 0.070623] (0.00015, 0.00016] 80 (0.024421, 0.025216]
(0.00111, 0.00118] 30 (0.066067, 0.068096] (0.00014, 0.00015] 82 (0.023594, 0.024421]
(0.00104, 0.00111] 31 (0.063967, 0.066067] (0.00013, 0.00014] 85 (0.022738, 0.023594]
(0.00097, 0.00104] 32 (0.061793, 0.063967] (0.00012, 0.00013] 88 (0.021847, 0.022738]
(0.00091, 0.00097] 33 (0.059865, 0.061793] (0.00011, 0.00012] 92 (0.020918, 0.021847]
(0.00086, 0.00091] 34 (0.058211, 0.059865] (0.00010, 0.00011] 96 (0.019951, 0.020918]
(0.00081, 0.00086] 35 (0.056507, 0.058211] (0.00009, 0.00010] 100 (0.018929, 0.019951]
(0.00077, 0.00081] 36 (0.055104, 0.056507] (0.00008, 0.00009] 106 (0.017847, 0.018929]
(0.00073, 0.00077] 37 (0.053665, 0.055104] (0.00007, 0.00008] 112 (0.016695, 0.017847]
(0.00069, 0.00073] 38 (0.052183, 0.053665] (0.00006, 0.00007] 120 (0.015465, 0.016695]
(0.00065, 0.00069] 39 (0.050657, 0.052183] (0.00005, 0.00006] 130 (0.014118, 0.015465]
(0.00062, 0.00065] 40 (0.049483, 0.050657] (0.00004, 0.00005] 142 (0.012628, 0.014118]
(0.00059, 0.00062] 41 (0.048280, 0.049483] (0.00003, 0.00004] 158 (0.010936, 0.012628]
(0.00056, 0.00059] 42 (0.047041, 0.048280] (0.00002, 0.00003] 183 (0.008940, 0.010936]
(0.00054, 0.00056] 43 (0.046202, 0.047041] (0.00001, 0.00002] 224 (0.006500, 0.008940]
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Fig. 2.10 Relative cost for curtailed exhaustive retesting using the optimal composite sample size

2.2.5 Curtailed Sequential Retesting

The sequential testing method can also be curtailed by avoiding a test of the last
item whenever the first k − 1 items of a composite test negative (see Fig. 2.11). The
expected number of tests can be obtained by modifying the argument of Section
2.2.2. Direct calculation gives E [T1] = 1; E [T2] = 3 − q − q2; and E [T3] =
5− 2q − q2 − q3. Let J be defined as in Section 2.2.2. Then

E [Tk] =
k∑

j=0

E
[
Tk |J = j

]
P
[
J = j

]

= qk +
k−1∑

j=1

E
[
Tk |J = j

]
q j−1 p + kqk−1 p

= qk + kqk−1 p +
k−1∑

j=1

{
j + 1+ E

[
Tk− j

]}
q j−1 p



28 2 Classifying Individual Samples into One of Two Categories

Fig. 2.11 Curtailed sequential retesting

= qk + kqk−1 p +
k−2∑

j=0

( j + 2)q j p +
k−1∑

j=1

E
[
Tj

]
qk− j−1 p.

Similarly,

q E
[
Tk−1

] = qk + (k − 1)qk−1 p +
k−3∑

j=0

( j + 2)q j+1 p

+
k−2∑

j=1

E
[
Tj

]
qk− j−1 p
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= qk + (k − 1)qk−1 p +
k−2∑

j=1

( j + 1)q j p

+
k−2∑

j=1

E
[
Tj

]
qk− j−1 p, k = 3, 4, . . . .

Thus, again

E [Tk]− q E
[
Tk−1

] = qk−1 p + 2p +
k−2∑

j=1

q j p + E
[
Tk−1

]
p

or

E [Tk]− E
[
Tk−1

] = qk−1 p + 2p + pq
(

1− qk−2
)

/(1− q)

= qk−1 p + 2p + q
(

1− qk−2
)

, k = 3, 4, . . . .

The number of tests takes any value (except 2) from 1 to (2k − 1). The average
number of tests for classifying k individual samples is therefore given by

E [Tk] = k(2− q)+ 2q −
(

1− qk+1
)

/p (2.6)

and

RC = 2− q + 1

k

[
2q − 1− qk+1

p

]
. (2.7)

For example, if k = 5 and p = 0.15, then the expected number of tests is 3.30
and the relative cost is 0.66. So, sequential retesting would require only 66% as
many tests as conventional testing of all individual items. By comparison, curtailed
exhaustive retesting gives RC = 0.74 for k = 5 and p = 0.15. For these parame-
ters, the curtailed sequential retesting procedure is more efficient than the curtailed
exhaustive retesting procedure.

The optimal composite sample size for the curtailed sequential retesting pro-
cedure is tabulated for selected values of p in Table 2.5. Figure 2.12 shows the
relative cost of classification when the optimal composite sample size is used for
the curtailed sequential retesting procedure.
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Table 2.5 Optimal composite sample size (kopt) and the corresponding relative cost (RC) for cur-
tailed sequential retesting
p kopt RC p kopt RC

(0.38196, 1.00000] 1 1.000000 (0.00064, 0.00066] 56 (0.036501, 0.037078]
(0.26101, 0.38196] 2 (0.857449, 0.999993] (0.00061, 0.00064] 57 (0.035618, 0.036501]
(0.16832, 0.26101] 3 (0.689891, 0.857449] (0.00059, 0.00061] 58 (0.035020, 0.035618]
(0.10986, 0.16832] 4 (0.551025, 0.689891] (0.00057, 0.00059] 59 (0.034409, 0.035020]
(0.07506, 0.10986] 5 (0.448910, 0.551025] (0.00056, 0.00057] 60 (0.034102, 0.034409]
(0.05381, 0.07506] 6 (0.374861, 0.448910] (0.00054, 0.00056] 61 (0.033477, 0.034102]
(0.04022, 0.05381] 7 (0.320154, 0.374861] (0.00052, 0.00054] 62 (0.032839, 0.033477]
(0.03109, 0.04022] 8 (0.278530, 0.320154] (0.00050, 0.00052] 63 (0.032191, 0.032839]
(0.02471, 0.03109] 9 (0.246079, 0.278530] (0.00048, 0.00050] 64 (0.031529, 0.032191]
(0.02008, 0.02471] 10 (0.220107, 0.246079] (0.00047, 0.00048] 65 (0.031193, 0.031529]
(0.01664, 0.02008] 11 (0.199027, 0.220107] (0.00045, 0.00047] 66 (0.030513, 0.031193]
(0.01400, 0.01664] 12 (0.181486, 0.199027] (0.00044, 0.00045] 67 (0.030166, 0.030513]
(0.01194, 0.01400] 13 (0.166741, 0.181486] (0.00043, 0.00044] 68 (0.029815, 0.030166]
(0.01030, 0.01194] 14 (0.154162, 0.166741] (0.00042, 0.00043] 69 (0.029460, 0.029815]
(0.00897, 0.01030] 15 (0.143279, 0.154162] (0.00040, 0.00042] 70 (0.028740, 0.029460]
(0.00789, 0.00897] 16 (0.133894, 0.143279] (0.00038, 0.00040] 72 (0.028001, 0.028740]
(0.00699, 0.00789] 17 (0.125616, 0.133894] (0.00036, 0.00038] 74 (0.027244, 0.028001]
(0.00623, 0.00699] 18 (0.118237, 0.125616] (0.00035, 0.00036] 75 (0.026856, 0.027244]
(0.00559, 0.00623] 19 (0.111699, 0.118237] (0.00034, 0.00035] 76 (0.026464, 0.026856]
(0.00504, 0.00559] 20 (0.105800, 0.111699] (0.00033, 0.00034] 78 (0.026066, 0.026464]
(0.00457, 0.00504] 21 (0.100521, 0.105800] (0.00032, 0.00033] 79 (0.025663, 0.026066]
(0.00417, 0.00457] 22 (0.095828, 0.100521] (0.00031, 0.00032] 80 (0.025255, 0.025663]
(0.00381, 0.00417] 23 (0.091421, 0.095828] (0.00030, 0.00031] 81 (0.024837, 0.025255]
(0.00350, 0.00381] 24 (0.087471, 0.091421] (0.00029, 0.00030] 83 (0.024413, 0.024837]
(0.00323, 0.00350] 25 (0.083896, 0.087471] (0.00028, 0.00029] 84 (0.023986, 0.024413]
(0.00298, 0.00323] 26 (0.080459, 0.083896] (0.00027, 0.00028] 85 (0.023547, 0.023986]
(0.00276, 0.00298] 27 (0.077320, 0.080459] (0.00026, 0.00027] 87 (0.023101, 0.023547]
(0.00257, 0.00276] 28 (0.074516, 0.077320] (0.00025, 0.00026] 88 (0.022647, 0.023101]
(0.00239, 0.00257] 29 (0.071768, 0.074516] (0.00024, 0.00025] 89 (0.022185, 0.022647]
(0.00224, 0.00239] 30 (0.069404, 0.071768] (0.00023, 0.00024] 92 (0.021711, 0.022185]
(0.00209, 0.00224] 31 (0.066961, 0.069404] (0.00022, 0.00023] 94 (0.021228, 0.021711]
(0.00196, 0.00209] 32 (0.064778, 0.066961] (0.00021, 0.00022] 95 (0.020733, 0.021228]
(0.00185, 0.00196] 33 (0.062879, 0.064778] (0.00020, 0.00021] 98 (0.020228, 0.020733]
(0.00174, 0.00185] 34 (0.060923, 0.062879] (0.00019, 0.00020] 101 (0.019713, 0.020228]
(0.00164, 0.00174] 35 (0.059094, 0.060923] (0.00018, 0.00019] 104 (0.019180, 0.019713]
(0.00155, 0.00164] 36 (0.057403, 0.059094] (0.00017, 0.00018] 105 (0.018633, 0.019180]
(0.00147, 0.00155] 37 (0.055862, 0.057403] (0.00016, 0.00017] 108 (0.018071, 0.018633]
(0.00139, 0.00147] 38 (0.054276, 0.055862] (0.00015, 0.00016] 113 (0.017494, 0.018071]
(0.00132, 0.00139] 39 (0.052856, 0.054276] (0.00014, 0.00015] 115 (0.016894, 0.017494]
(0.00125, 0.00132] 40 (0.051398, 0.052856] (0.00013, 0.00014] 119 (0.016274, 0.016894]
(0.00119, 0.00125] 41 (0.050117, 0.051398] (0.00012, 0.00013] 126 (0.015628, 0.016274]
(0.00113, 0.00119] 42 (0.048805, 0.050117] (0.00011, 0.00012] 131 (0.014955, 0.015628]
(0.00108, 0.00113] 43 (0.047686, 0.048805] (0.00010, 0.00011] 135 (0.014258, 0.014955]
(0.00104, 0.00108] 44 (0.046774, 0.047686] (0.00009, 0.00010] 141 (0.013519, 0.014258]
(0.00099, 0.00104] 45 (0.045608, 0.046774] (0.00008, 0.00009] 150 (0.012742, 0.013519]
(0.00094, 0.00099] 46 (0.044415, 0.045608] (0.00007, 0.00008] 156 (0.011909, 0.012742]
(0.00091, 0.00094] 47 (0.043685, 0.044415] (0.00006, 0.00007] 169 (0.011026, 0.011909]
(0.00087, 0.00091] 48 (0.042692, 0.043685] (0.00005, 0.00006] 186 (0.010057, 0.011026]
(0.00083, 0.00087] 49 (0.041677, 0.042692] (0.00004, 0.00005] 202 (0.008988, 0.010057]
(0.00080, 0.00083] 50 (0.040902, 0.041677] (0.00003, 0.00004] 228 (0.007782, 0.008988]
(0.00077, 0.00080] 51 (0.040111, 0.040902] (0.00002, 0.00003] 248 (0.006532, 0.007782]
(0.00074, 0.00077] 52 (0.039307, 0.040111] (0.00001, 0.00002] 250 (0.005269, 0.006532]
(0.00071, 0.00074] 53 (0.038486, 0.039307]
(0.00069, 0.00071] 54 (0.037929, 0.038486]
(0.00066, 0.00069] 55 (0.037078, 0.037929]
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Fig. 2.12 Relative cost for curtailed sequential retesting using the optimal composite sample size

2.2.6 Curtailed Binary Split Retesting

The binary split retesting procedure of Gill and Gottlieb (2.4) can be curtailed
so that only one of the two composite subsamples needs to be tested after cer-
tain binary splits. If the first of the two subcomposites tests negative, then the
other subcomposite would test positive and the test need not be carried out. That
is, the second composite is tested only when the first one tests positive. This
can save up to half of all retesting efforts and costs. The following recursion
formula can be obtained in the same way as that obtained for the uncurtailed
procedure:

E [Tk] = E
[
Tk1

]+ E
[
Tk2

]+ 1− qk−1 − qk . (2.8)

When k is even, then k1 = k2 = k/2. If k is odd, then the expected number of tests
is smaller with k1 = (k − 1)/2 rather than with k1 = (k + 1)/2. With this choice
for the value of k1, the recursion formula in (2.8) can be used iteratively to obtain
E[Tk] for any given k. For example,

E[T2] = 2E[T1] + 1− q − q2 = 3− q − q2,

E[T3] = E[T1] + E[T2] + 1− q − q3 = 5− 2q − q2 − q3,

E[T4] = 7− 2q − 3q2 − q4,

E[T5] = 9− 3q − 3q2 − q3 − q5,

E[T6] = 11− 4q − 2q2 − 3q3 − q6,
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E[T7] = 13− 4q − 4q2 − 2q3 − q4 − q7,

E[T8] = 15− 4q − 6q2 − 3q4 − q8,

E[T9] = 17− 5q − 6q2 − q3 − 2q4 − q5 − q9,

E[T10] = 19− 6q − 6q2 − 2q3 − 3q5 − q10,

E[T11] = 21− 7q − 5q2 − 4q3 − 3q5 − q11,

E[T12] = 23− 8q − 4q2 − 6q3 − 2q5 − q6 − q12.

The (asymptotic) relative cost can be calculated by dividing the expected number of
tests by the corresponding composite sample size. Table 2.6 shows the optimal com-
posite sample size corresponding to selected values of p for the curtailed binary split
procedure, while Fig. 2.13 shows the relative cost of classification for this procedure
when used with the optimal composite sample size.

Table 2.6 Optimal composite sample size (kopt) and the corresponding relative cost (RC) for cur-
tailed binary split retesting

p kopt RC

(0.38196, 1.00000] 1 1.00
(0.26101, 0.38196] 2 (0.857449, 0.999993]
(0.16582, 0.26101] 3 (0.685100, 0.857449]
(0.10106, 0.16582] 5 (0.513090, 0.685100]
(0.08439, 0.10106] 7 (0.458100, 0.513090]
(0.06817, 0.08439] 9 (0.397968, 0.458100]
(0.06640, 0.06817] 10 (0.391045, 0.397968]
(0.05054, 0.06640] 11 (0.325611, 0.391045]
(0.04316, 0.05054] 13 (0.292382, 0.325611]
(0.03346, 0.04316] 19 (0.243240, 0.292382]
(0.02563, 0.03346] 21 (0.200881, 0.243240]
(0.02170, 0.02563] 27 (0.177679, 0.200881]
(0.01709, 0.02170] 37 (0.148125, 0.177679]
(0.01689, 0.01709] 38 (0.146811, 0.148125]
(0.01659, 0.01689] 42 (0.144806, 0.146811]
(0.01282, 0.01659] 43 (0.119011, 0.144806]
(0.01090, 0.01282] 53 (0.105004, 0.119011]
(0.00842, 0.01090] 75 (0.085534, 0.105004]
(0.00643, 0.00842] 85 (0.069102, 0.085534]
(0.00546, 0.00643] 107 (0.060614, 0.069102]
(0.00426, 0.00546] 149 (0.049464, 0.060614]
(0.00422, 0.00426] 150 (0.049086, 0.049464]
(0.00414, 0.00422] 170 (0.048319, 0.049086]
(0.00321, 0.00414] 171 (0.039262, 0.048319]
(0.00249, 0.00321] 213 (0.031876, 0.039262]
(0.00244, 0.00249] 214 (0.031355, 0.031876]
(0.00238, 0.00244] 234 (0.030722, 0.031355]
(0.00186, 0.00238] 235 (0.025168, 0.030722]
(0.00151, 0.00186] 245 (0.021335, 0.025168]
(0.00148, 0.00151] 246 (0.021003, 0.021335]
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Fig. 2.13 Relative cost for curtailed binary split retesting

2.2.7 Entropy-Based Retesting

A source of inefficiency with hierarchical models such as binary splitting is that
we may be required to test subcomposites of smaller and smaller sizes; but these
sizes may be substantially less than the optimal size. In binary splitting, for exam-
ple, suppose an original composite of size k has tested positive and has been split
into two subcomposites of sizes k1 and k2. When the first subcomposite also tests
positive, then we have no information regarding the status of the second composite
of size k2 < k. Instead of testing this subcomposite, we would be better off to
return its k2 items to the pool of unclassified items and select a composite of size
k from that pool. This is the essence of the entropy-based retesting method due to
Hwang (1984).

Suppose we have a large collection of items to be classified. At each stage of the
entropy method, this collection is divided into three disjoint parts: those items that
have been classified as positive, those that have been classified as negative, and the
remaining unclassified pool. Let k be a fixed composite sample size and write k∗
for the smaller of k and the current size of the unclassified pool. The entropy-based
retesting method is described below. Notice that whenever items are put back into
the unclassified pool, we have no information about these items. Throughout, then,
the unclassified pool can be looked upon as a collection of independent Bernoulli
trials with an unchanging parameter p.
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Step 1. If k∗ = 0, then exit; otherwise, select a subset of size k∗ from the unclassi-
fied pool and test the resulting composite. If the test is negative, classify all
k∗ items as negative and go to Step 1. Otherwise, go to Step 2 with k′ = k∗.

Step 2. Here we have a set of k′ items whose corresponding composite has tested
(or would test) positive. If k′ = 1, classify the item as positive and go
to Step 1. Otherwise, split the k′ items into two disjoint subsets, of sizes
k1 ≤ k2, with k1 and k2 as nearly equal as possible. Form a composite of
size k1 from the first of these subsets and test the composite.

Step 2a. If the test is negative, classify all k1 items as negative and go to
Step 2 with the remaining k′ = k2 items.

Step 2b. If the test is positive, return the remaining k2 items to the
unclassified pool and go to Step 2 with k′ = k1 items.

Notice that the algorithm differs from binary retesting only in Step 2b, where
items are returned to the unclassified pool. Starting from a given composite in Step 1,
processing of that composite results in at most one item being classified as positive;
along the way, several items may be classified as negative.

Let the k∗ items in the composite at Step 1 be arranged in sequence from left to
right and let the binary splitting maintain this sequential arrangement. If J is the
position of the first item in the sequence that possesses the trait, then processing of
the composite results in classifying the first J − 1 items as negative, classifying the
J th item as positive, and returning the remaining k∗ − J items to the unclassified
pool. Consistent with earlier sections, we write J = 0 when a starting composite
contains no item with the trait. In this case all k∗ items are classified as negative.
Write Tm for the number of tests required to fully classify a pool of m items using
composites of size k.

Near the end of the classification procedure, smaller composite sample sizes may
have to be used. For the finite case, when the number of unclassified individual
samples drops below k, the composite sample size being used, all the remaining
individual samples are used to form the next composite sample. The following cases
develop the asymptotic relative cost and give several finite relative costs for various
composite sample sizes.

Case 1. Composites of Size k = 2 Are Used. Processing each composite requires
one or two tests, so that

E [Tm] = E [Tm |J = 0] q2 + E [Tm |J = 1] p + E [Tm |J = 2] qp

= {
1+ E

[
Tm−2

]}
q2 + {

2+ E
[
Tm−1

]}
p + {

2+ E
[
Tm−2

]}
qp

= q2 + 2p + 2qp + pE
[
Tm−1

]+ q E
[
Tm−2

]

= 2− q2 + pE
[
Tm−1

]+ q E
[
Tm−2

]
, m = 2, 3, . . . .

Since T1 = 1 and T0 = 0, we obtain

E [T2] = 2− q2 + p = 3− q − q2,
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E [T3] = 2− q2 + p
(

3− q − q2
)
+ q

= 5− 3q − q2 + q3,

E [T4] = 2− q2 + pE [T3]+ q [T2]

= 2− q2 + p
(

5− 3q − q2 + q3
)
+ q

(
3− q − q2

)

= 7− 5q + q3 − q4,

E [T5] = 9− 7q + q2 − q4 + q5.

We observe that E [T1]− E [T0] = 1, and

E [T2]− E [T1] = 2− q − q2,

E [T3]− E [T2] = 2− 2q + q3,

E [T4]− E [T3] = 2− 2q + q2 − q4,

E [T5]− E [T4] = 2− 2q + q2 − q3 + q5.

Recall that E [Tm] = 2 − q2 + pE
[
Tm−1

] + q E
[
Tm−2

]
, m = 2, 3, . . .. So,

q E
[
Tm−1

] = 2q − q3 + pq E
[
Tm−2

]+ q2 E
[
Tm−3

]
. Subtracting and simplifying

gives

E [Tm]− E
[
Tm−1

] = p(2− q2)+ q2 {E
[
Tm−2

]− E
[
Tm−3

]}
, m = 3, 4, . . . .

This difference is the average number of tests needed to classify one item when there
are m items to be classified. For m large, this difference is essentially a constant
independent of p. That is, for large m, the asymptotic relative cost (RC) can be
found by solving

RC = p
(

2− q2
)
+ q2 (RC) .

Thus, the asymptotic relative cost is

RC = p
(
2− q2

)

1− q2
= 2− q2

1+ q
. (2.9)

Case 2. Composites of Size k = 3 Are Used. Processing of one composite results
in one, two, or three tests. Consider

E [Tm] = E [Tm |J = 0] q3 + E [Tm |J = 1] p + E [Tm |J = 2] qp

+E [Tm |J = 3] q2

= {
1+ E

[
Tm−3

]}
q3 + {

2+ E
[
Tm−1

]}
p

+ {
3+ E

[
Tm−2

]}
qp + {

3+ E
[
Tm−3−1

]}
q2 p

= 2+ q − 2q3 + pE
[
Tm−1

]+ qpE
[
Tm−2

]+ q2 E
[
Tm−3

]
, for m ≥ 3.
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As before, T0 = 0 , T1 = 1 , and T2 is the same as in Case 1. Thus,

E [T2] = 3− q − q2,

and

E [T3] = 2+ q − 2q3 + p
(

3− q − q2
)
+ qp = 5− 2q − q2 − q3,

E [T4] = 2+ q − 2q3 + p
(

5− 2q − q2 − q3
)
+ qp

(
3− q − q2

)
+ q2 p

= 7− 3q − 2q2 − 2q3 + 2q4,

E [T5] = 9− 4q − 3q2 − 2q3 + 3q4 − q5.

Recall

E [Tm] = 2+ q − 2q3 + pE
[
Tm−1

]+ qpE
[
Tm−2

]+ q2 E
[
Tm−3

]
,

q E
[
Tm−1

] = 2q + q2 − 2q4 + qpE
[
Tm−2

]+ q2 pE
[
Tm−3

]+ q3 E
[
Tm−4

]
.

Subtracting the latter from the former and simplifying gives

E [Tm]− E
[
Tm−1

] = p
(

2+ q − 2q3
)
+ q3 {E

[
Tm−3

]− E
[
Tm−4

]}
.

For large m, this difference is essentially a constant equal to the relative cost. Thus,

RC = 2+ q − 2q3

1+ q + q2
. (2.10)

Case 3. Composites of Size k = 4 Are Used. Again, processing of a composite
results in one or three tests. Thus,

E [Tm] = {
1+ E

[
Tm−4

]}
q4 + {

3+ E
[
Tm−1

]}
p

+ {
3+ E

[
Tm−2

]}
qp + {

3+ E
[
Tm−3

]}
q2 p + {

3+ E
[
Tm−4

]}
q3 p

= 3− 2q4 + pE
[
Tm−1

]+ qpE
[
Tm−2

]+ q2 pE
[
Tm−3

]+ q3 E
[
Tm−4

]
.

Subtracting q E
[
Tm−1

]
and simplifying gives

E [Tm]− E
[
Tm−1

] = p
(

3− 2q4
)
+ q4 {E

[
Tm−4

]− E
[
Tm−5

]}
.

For large m, the relative cost is

RC = 3− 2q4

1+ q + q2 + q3
. (2.11)
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Case 4. Composites of Size k = 5 Are Used. In this case, one, three, or four tests
are required for processing a composite. Thus,

E [Tm] = {
1+ E

[
Tm−5

]}
q5 + {

3+ E
[
Tm−1

]}
p + {

3+ E
[
Tm−2

]}
qp

+ {
3+ E

[
Tm−3

]}
q2 p + {

4+ E
[
Tm−4

]}
q3 p + {

4+ E
[
Tm−5

]}
q4 p

= 3+ q3 − 3q5 + pE
[
Tm−1

]+ qpE
[
Tm−2

]+ q2 pE
[
Tm−3

]

+q3 pE
[
Tm−4

]+ q4 E
[
Tm−5

]
.

Subtracting q E
[
Tm−1

]
and simplifying gives

E [Tm]− E
[
Tm−1

] = p
(

3+ q3 − 3q5
)
+ q5 {E

[
Tm−5

]− E
[
Tm−6

]}
.

For large m this is the relative cost resulting in

RC = 3+ q3 − 3q5

1+ q + q2 + q3 + q4
. (2.12)

Note that the asymptotic relative cost with a composite sample size k is the ratio
of two polynomials in q, the denominator being a geometric series 1 + q + q2 +
· · ·+qk . The numerators of the respective relative costs corresponding to composite
sample sizes of k = 6, 7, 8, 9, and 10 are tabulated below:

k Numerator of the relative cost

6 3+ q − q3 + q4 − 3q6

7 3+ q − 3q7

8 4− 3q8

9 4+ q7 − 4q9

10 4+ q3 − q5 + q8 − 4q10

The optimal composite sample size depends on the number of individual samples
to be classified and on the prevalence p of individual samples possessing the trait,
and hence testing positive. Table 2.7 gives the optimal composite sample size as
a function of p for values of m = 2–12. See also Fig. 2.14 for the relative costs
corresponding to these composite sample sizes.

Table 2.7 can be used interactively by choosing or estimating the optimal com-
posite sample size to use initially. After the first composite sample has been pro-
cessed, the optimal composite sample size is determined by entering the table with
the number of remaining individual samples to be classified. Also, it is possible to
update the estimate of q after some initial samples have been classified.

In general, one would like to optimize the entropy-based procedure by permit-
ting k in Step 1 and (k1, k2) in Step 2 to vary depending upon the current size of
the unclassified pool. On the basis of exhaustive computer searches, Snyder and
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Fig. 2.14 Relative cost for composite sample sizes of k = 2–12

Larson (1969) have published such optimized algorithms for p = 0.01(0.01)0.1
and where the initial size of the unclassified pool can be as large as m = 50.

2.2.8 Exhaustive Retesting in the Presence of Classification Errors

The problem is to classify every individual sample as polluted or not polluted using
presence/absence measurements. Suppose that there is a positive probability of mis-
classifying any sample, either individual or composite, and assume that the proba-
bility of misclassification depends only on whether or not the sample is polluted. In
particular, composite samples and individual samples have the same misclassifica-
tion rates. Let rn be the probability of a false-negative classification. That is,

rn = Pr [negative test result | sample is polluted].

Similarly, let rp be the probability of a false-positive classification. That is,

rp = Pr
[
positive test result | sample is not polluted

]
.

Now consider using the exhaustive retesting procedure with composites of size
k. Let

dn = Pr
[
negative classification | individual sample is polluted

]
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Table 2.7 Optimal composite sample size k over the tabulated ranges of p for m =
1–16, 25, 50, and∞
k m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

1 0.0–1.0 0.38–1.0 0.38–1.0 0.38–1.0 0.38–1.0 0.38–1.0 0.38–1.0 0.0– 0.62
2 – 0.0–0.38 0.29–0.38 0.24–0.38 0.27–0.38 0.25–0.38 0.25–0.38 0.25– 0.38
3 – – 0.0–0.29 – 0.19–0.27 0.17–0.25 0.21–0.25 0.19–0.25
4 – – – 0.0–0.24 – 0.16–0.17 0.14–0.21 0.12–0.19
5 – – – – 0.0–0.19 – – –
6 – – – – – 0.0–0.16 – –
7 – – – – – – 0.0–0.14 –
8 – – – – – – – 0.0–0.12

k m = 9 m = 10 m = 11 m = 12 m = 13 m = 14 m = 15 m = 16
1 0.38–1.0 0.38–1.0 0.38–1.0 0.38–1.0 0.38–1.0 0.38–1.0 0.38–1.0 0.38–1.0
2 0.25–0.38 0.22–0.38 0.25–0.38 0.25–0.38 0.25–0.38 0.25–0.38 0.25–0.38 0.24–0.38
3 0.18–0.25 0.19–0.22 0.19–0.25 0.19–0.25 0.18–0.25 0.18–0.38 0.18–0.25 0.19–0.24
4 – 0.17–0.19 0.13–0.19 0.14–0.19 0.16–0.18 0.16–0.18 0.15–0.18 0.13–0.19
5 0.11–0.18 0.10–0.17 – 0.13–0.14 0.12–0.16 0.12–0.16 0.11–0.15 –
6 – – 0.12–0.13 – – – – –
7 – – 0.09–0.12 0.08–0.13 0.08–0.12 0.07–0.12 – 0.11–0.13
8 – – – – – – – 0.10–0.11
9 0.89–1.0 – – – – – 0.07–0.11 –
10 – 0.0–0.10 – – – – – –
11 – – 0.0–0.09 – – – – 0.07–0.10
12 – – – 0.0–0.08 – – – –
13 – – – – 0.0–0.08 – – –
14 – – – – – 0.0– 0.07 0.0–0.07 –
15 – – – – – – – –
16 – – – – – – – 0.0–0.07

m = 25
k = 1 k = 2 k = 3 k = 4 k = 5
0.38–1.0 0.25–0.38 0.18–0.25 0.15–0.18 0.11–0.15

k = 7 k = 9 k = 10 k = 16 k = 25
0.09–0.11 0.08–0.09 0.06–0.08 0.03–0.06 0.0–0.03

m = 50
k = 1 k = 2 k = 3 k = 4 k = 5 k = 7
0.38–1.0 0.25–0.38 0.18–0.25 0.15–0.18 0.11–0.15 0.09–0.11

k = 8 k = 9 k = 15 k = 17 k = 24 k = 50
0.08–0.09 0.06–0.08 0.05–0.06 0.03–0.05 ?–0.03 0.0–?

∞ (asymptotic case)
k = 1 k = 2 k = 3 k = 4 k = 5
0.38–1.0 0.25–0.38 0.18–0.25 0.14–0.18 0.11–0.14

k = 7 k = 8 k = 9 k = 16 k = 32
0.09–0.11 0.08–0.09 0.06–0.08 0.03–0.06 ?–0.03

The question mark (?) indicates the detection limit (which is a small positive number).

and

dp = Pr
[
positive classification | individual sample is not polluted

]
.

Consider the computation of dn . There are two ways in which an individual sam-
ple can be misclassified as negative. First, the composite is misclassified as negative,
so that every individual sample is automatically (but incorrectly) classified as neg-
ative. The probability of this happening is rn . Second, the composite is correctly
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classified as positive (which occurs with probability 1− rn), but the individual sam-
ple incorrectly tests negative (the probability of this happening is rn). Thus

dn = rn + (1− rn)rn = 2rn − r2
n .

If the misclassification rate rn is small, then the negative misclassification rate with
exhaustive retesting is approximately twice that for individual testing.

Similarly, the probability of a false-positive classification can be shown to be

dp = rp

{
rp +

(
1− qk−1

) (
1− rn − rp

)}
.

For example, suppose rn = rp = 0.2 and suppose 10% of the individual samples
are polluted. Using a composite sample size of k = 4, we have dn = 0.36 and
dp = 0.07. Notice that dn is approximately twice rn while the false-positive rate
under compositing, dp, is substantially less than for individual testing.

Misclassification also affects the relative cost of a retesting procedure. The
exhaustive retesting procedure results in either one test or k + 1 tests to process k
individual samples. If the tests were free of error, then a single test is required when
all k items are unpolluted. In the presence of testing error, a single test can also
occur when the composite incorrectly tests as negative. Examining the two cases,
we see that

Pr [one test] = rn

(
1− qk

)
+ (

1− rp
)

qk

= rn + qk (1− rn − rp
)
.

Also

Pr[k + 1 tests] = 1− Pr [one test]

= 1− rn − qk (1− rn − rp
)
.

The relative cost of classification becomes

RC = 1

k
+ Pr [k + 1 tests]

= 1+ 1

k
− rn − qk (1− rn − rp

)
.

Note that this expression reduces to the relative cost given in (2.2) when rn =
rp = 0.

2.2.9 Other Costs

Laboratory procedures become more costly and error-prone when numerous steps
must be performed in sequence. From this point of view, the exhaustive retesting
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method of Dorfman is certainly the easiest composite strategy to implement since
no more that two steps are required. By contrast, the sequential retesting method
may require k + 1 steps.

But what, precisely, is meant by the number of steps? Conceptually, let us sup-
pose that each test requires one unit of time and, further, that all tests are performed
as soon as possible. That is, a test is deferred only if its execution requires the results
of other, earlier, tests. Then a composite classification design is said to be R-step if
its performance to completion could require as many as R units of time. We also
refer to R as the maximum duration of the design. Clearly, R = 2 for exhaustive
retesting.

Retesting strategies require that aliquots or duplicates be maintained for each
separate item. The maintenance of these duplicates can be a significant portion of
total cost and a relevant consideration in deciding which design to select. In addition,
another source of error is introduced if true duplicates are difficult to achieve – and
the impact of this error source will grow as the needed number of duplicates grows.
We define the maximum aliquot count (MAC) to be the number of duplicates of
each item that must be available to complete the procedure under all possible cir-
cumstances. For simple hierarchical designs the MAC is the same as the maximum
duration of the design. For feedback designs like the entropy-based procedure, the
MAC and the maximum duration can be different – and each can be unreasonably
large. These issues are explored further in the Exercises.

2.3 Continuous Response Variables

The previous sections have examined retesting strategies for presence/absence mea-
surements, i.e., where the response variable is binary. The rationale for the different
strategies is found in the following two properties.

Property N. If the composite is negative, then every item in the composite is
negative.

Property P. If the composite is positive, then at least one item in the composite is
positive.

Property N is the fundamental premise of compositing for classification and
accounts for the method’s efficiency since it allows an entire group of items to
be classified on the basis of a single measurement. Property P is the justification
for curtailment and can lead to improved efficiencies, but is not fundamental to
compositing for classification.

We now want to turn our attention to response variables X that are nonnegative
but continuously distributed. An individual item is classified as positive if X ≥ c for
that item, where c is a specified criterion level. The proportion of positive items, i.e.,
the prevalence, is given as p = Pr[X ≥ c]. Consider a composite whose k items
have individual values X1, X2, . . . , Xk . Barring measurement error, the measured
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response Y on the composite is the average of X1, X2, . . . , Xk so that

kY = X1 + X2 + · · · + Xk .

We cannot classify the composite as negative whenever Y < c, for then Property
N would fail. But, since X is nonnegative, it is certainly the case that Xi < c for
all i whenever X1 + X2 + · · · + Xk < c. Thus, Property N will be true provided a
composite is classified as negative whenever kY < c. The probability of a negative
composite is then

qk = Pr[composite is negative]
= Pr[X1 + X2 + · · · + Xk < c]. (2.13)

When the individual items can be regarded as statistically independent, then the
distribution of X1 + X2 + · · · + Xk in (2.13) is that of the k-fold convolution
of X . Throughout we suppose that the individual items can in fact be treated as
independent.

The exhaustive retesting procedure is exactly the same as in the case of a binary
response: Measurement is made on a composite of size k. All individual items are
classified as negative, if the composite is negative; otherwise, measurement is made
individually on each item. As in the case of a binary response, the relative saving is

RS = Pr[composite is negative] − 1/k

= qk − 1/k. (2.14)

Recall that qk = qk = (1 − p)k for a binary response variable. Notice that RS
depends upon k and also upon p through the criterion level c. But RS also depends
upon the distribution of X because of the k-fold convolution occurring in (2.13).
This latter dependence is the principal distinction between the continuous and binary
response scenarios. Unfortunately, the relative savings is very sensitive to the under-
lying distribution of X , as we shall see below.

We have computed the relative savings as a function of k and p for the gamma
distribution with index parameter a and for the lognormal distribution with loga-
rithmic variance σ 2. The results, for k = 2, 3, 4, are shown in Fig. 2.15. Since the
relative savings, considered as a function of p, does not depend upon the scaling of
X , it was convenient to index the distributions in Fig. 2.15 by their coefficients of
variation CV. The corresponding parameter values are

CV a σ 2

1.5 0.44 1.09
1.0 1.00 0.83
0.5 4.00 0.47
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For comparison purposes, Fig. 2.15 also shows the relative savings for a binary
response variable (Bernoulli distribution).

Fig. 2.15 Relative savings of exhaustive retesting when the response variable is binary (Bernoulli)
or continuously distributed with a gamma distribution or a lognormal distribution (LN). Relative
savings is expressed as a percent and the coefficient of variation is denoted by CV

Several conclusions emerge from an examination of Fig. 2.15:

1. For fixed k and p, the relative savings is greater for the binary response variable
than for any continuous response variable.

2. Within each family of distributions (gamma and lognormal) the relative savings
increases with the skewness of the distribution and, conversely, in the other direc-
tion the relative savings decreases as the distribution approaches normality.

3. For fixed p, the performance is quite sensitive to k and to the underlying distri-
bution of X . The relative savings decreases rapidly with increasing k and with
decreasing variability of X .
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In view of the sensitivity described in item 3, there would be little purpose in
attempting to optimize with respect to k. In fact, it appears unlikely that one would
want to consider composite sizes much larger than k = 2 or k = 3.

We now examine items 1 and 2 to determine the extent to which they do or do not
hold generally. Let p be fixed and determine the criterion level c by the requirement
that Pr[X ≥ c] = p. We define a random variable X (p) and its corresponding
distribution by truncating X to the interval [0, c) and then rescaling to the interval
[0, 1) so that

X (p) = 1

c
X |x<c. (2.15)

Now, the event {X1+· · ·+ Xk < c} is contained in the event {X1 < c, . . . , Xk < c}
which implies that qk is given by

Pr[X1 + · · · + Xk < c] = Pr[X1 + · · · + Xk < c|X1 < c, . . . , Xk < c]
×Pr[X1 < c1, . . . , Xk < c]
= Pr[X1(p)+ · · · + Xk(p) < 1]qk, (2.16)

where q = 1 − p and X1(p), . . . , Xk(p) are independent realizations of X (p).
Equation (2.16) implies that

qk ≤ qk, (2.17)

so that the relative savings is always greater for a binary response variable than for
a continuous response variable.

A distribution function F is stochastically smaller than a distribution function
G provided F(x) ≥ G(x) uniformly in x . Given two response variables X and X̃,
we shall say that X is more zero-concentrated than X̃ if the distribution of X (p) is
stochastically smaller than that of X̃(p) for all p. In this case,

Pr[X1(p)+ · · · + Xk(p) < 1] ≥ Pr[X̃1(p)+ · · · + X̃k(p) < 1].

Comparing with (2.16), we see for all k and p that the relative savings of exhaustive
retesting is greater for the more zero-concentrated response variable. This result
is related to item 2 above. We generally associate skewness of a nonnegative ran-
dom variable with a heavy right-hand tail. But for typical families of distributions,
the right tail and the left tail are linked in a way that makes the left tail more
zero-concentrated as the right tail becomes more elongated. Thus, typically but not
always, a large skewness goes hand in hand with a large relative savings.
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2.3.1 Quantitatively Curtailed Exhaustive Retesting

It would be possible to curtail the exhaustive retesting procedure along the lines
used for a binary response variable. But the quantitative nature of the measurements
allows for a more sophisticated form of curtailment. Suppose the measurement Y
on a composite indicates that retesting is needed, i.e., kY ≥ c. After the first j
items have been measured, the individual values X1, . . . , X j are available and, con-
sequently, the total for the remaining items can be calculated as

X j+1 + · · · + Xk = kY − (X1 + · · · + X j ).

If this residual total is less than c, then these k− j remaining items can be classified
as negative without further testing. If the residual total exceeds c and if j < k − 1
then measurement is made on item j + 1 and the procedure iterates. If j = k − 1,
then the value Xk is known so that item k can be classified without measurement on
that item.

The number of retests Rk can take the values 0, 1, 2, . . . , k − 1 and the total
number of measurements, Tk = 1+ Rk , ranges from 1 to k. Now Rk ≥ j means that
item j must be tested, which is equivalent to saying that X j + · · · + Xk ≥ c. Thus,

Pr[Rk ≥ 0] = 1

Pr[Rk ≥ 1] = Pr[X1 + · · · + Xk ≥ c] = 1− qk

Pr[Rk ≥ 2] = Pr[X2 + · · · + Xk ≥ c] = 1− qk−1.

This pattern continues until

Pr[Rk ≥ k − 1] = Pr[Xk−1 + Xk ≥ c] = 1− q2.

Now

E[Tk] = Pr[Tk > 0] + Pr[Tk > 1] + · · · + Pr[Tk > k − 1]
= Pr[Rk ≥ 0] + Pr[Rk ≥ 1] + · · · + Pr[Rk ≥ k − 1]
= k − (q2 + q3 + · · · + qk).

From this, we obtain that the relative cost is

RC = (q2 + q3 + · · · + qk)/k,

and the relative savings becomes

RS = 1− (q2 + q3 + · · · + qk)/k.

As the exercises indicate, quantitative curtailment improves the performance of
exhaustive retesting rather markedly. But keep in mind that the derivations of this
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section do not account for the effects of measurement error, imperfect mixing, or
imperfect duplicates.

2.3.2 Binary Split Retesting

As in the case of presence/absence measurement, any positively testing compos-
ite sample is divided into two groups as nearly equal in size as possible. In the
presence/absence case, both the composite samples are tested. For continuous mea-
surements, only one composite sample need be formed and tested. The value of
the second composite sample can be calculated. Let Tk be the number of tests nec-
essary to classify all k samples starting with a composite sample of size k. Let
U j = X1 + · · · + X j , and let Vj = X j+1 + · · · + Xk = Uk − U j . Here we
assume that the Xi ’s are independent and identically distributed Bernoulli random
variables. Consider the five mutually exclusive cases defined in terms of values of
Jk given below.

Let
[ k

2

]
be the largest integer less than or equal to k/2. Then V[

k
2

] has the same

distribution as U
k−

[
k
2

]. Let

Jk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Uk < c

1 if Uk ≥ c, U[
k
2

] < c, V[
k
2

] < c

2 if U[
k
2

] ≥ c, V[
k
2

] < c

3 if U[
k
2

] < c, V[
k
2

] ≥ c

4 if U[
k
2

] ≥ c, V[
k
2

] ≥ c.

Then

Pr [Jk = 0] = qk,

Pr [Jk = 2] =
(

1− q[
k
2

]
)

q
k−

[
k
2

],

Pr [Jk = 3] = q[
k
2

]
(

1− q
k−

[
k
2

]
)

,

Pr [Jk = 4] =
(

1− q[
k
2

]
)(

1− q
k−

[
k
2

]
)

.

Thus

Pr [Jk = 1] = 1− Pr [Jk = 0]− Pr [Jk = 2]− Pr [Jk = 3]− Pr
[

jk = 4
]

= q[
k
2

]q
k−

[
k
2

] − qk .
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So

E [Tk] = E [E(Tk |Jk)] =
4∑

j=0

E(Tk |Jk = j) Pr
[
Jk = j

]

= 1 · Pr [Jk = 0]+ 2 Pr [Jk = 1]+
(

1+ E

[
T[

k
2

]|U[
k
2

] ≥ c

])
Pr [Jk = 2]

+
(

1+ E

[
T

k−
[

k
2

]|U
k−

[
k
2

] ≥ c

])
Pr [Jk = 3]

+
(

2+
{

E

(
T[

k
2

]|U[
k
2

] ≥ c

)
− 1

}
+

{
E

[
T

k−
[

k
2

]|U
k−

[
k
2

]
]
− 1

})
Pr [Jk = 4]

= Pr [Jk = 0]+ 2 Pr [Jk = 1]+ Pr [Jk = 2]+ Pr [Jk = 3]

+E

[
T[

k
2

]|U[
k
2

] ≥ c

]
{Pr [Jk = 2]+ Pr [Jk = 4]}

+E

[
T

k−
[

k
2

]|U
k−

[
k
2

] ≥ c

]
{Pr [Jk = 3]+ Pr [Jk = 4]} .

Thus

E [Tk] = 1+ Pr [Jk = 1]− Pr [Jk = 4]+ E

[
T[

k
2

]|U[
k
2

] ≥ c

](
1− q[

k
2

]
)

+E

[
T

k−
[

k
2

]|U
k−

[
k
2

] ≥ c

](
1− q

k−
[

k
2

]
)

= q[
k
2

] + q
k−

[
k
2

] − qk

+E

[
T[

k
2

]|U[
k
2

] ≥ c

](
1− q[

k
2

]
)

+E

[
T

k−
[

k
2

]|U
k−

[
k
2

] ≥ c

](
1− q

k−
[

k
2

]
)

.

Now

E
[
Tj

] = E
[
Tj |U j < c

]
Pr

[
U j < c

]+ E
[
Tj |U j ≥ c

]
Pr

[
U j ≥ c

]

= q j + E
[
Tj |U j ≥ c

]
(1− q j ).

So

E
[
Tj |U j ≥ c

] = E
[
Tj

]− q j

1− q j
.

Therefore,
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E [Tk] = q[
k
2

] + q
k−

[
k
2

] − qk + E

[
T[

k
2

]
]
− q[

k
2

] + E

[
T

k−
[

k
2

]
]
− q

k−
[

k
2

]

= E

[
T[

k
2

]
]
+ E

[
T

k−
[

k
2

]
]
− qk, k = 2, 3, . . . .

Now E [T1] = 1 so, E [T2] = 2−q2, E [T3] = 3−q2−q3, E [T4]= 2(2−q2)−q4,
etc.

This recurrence (difference) equation can be solved iteratively for composite
samples of arbitrary size k. If the composite sample size is a power of 2, the recur-
rence formula can be solved, giving

E(T2r ) = 2r − q2r − 2q2r−1 − · · · − 2r−1q2, r = 2, 3, . . . . (2.18)

The following examples may be useful:

E [T5] = 5− 2q2 − q3 − q5,

E [T6] = 6− 2q2 − 2q3 − q6,

E [T7] = 7− 3q2 − q3 − q4 − q7,

E [T9] = 9− 4q2 − q3 − q4 − q5 − q9,

E [T10] = 10− 4q2 − 2q3 − 2q5 − q10,

E [T11] = 11− 4q2 − 3q3 − q5 − q6 − q11,

E [T12] = 12− 4q2 − 4q3 − 2q6 − q12,

E [T13] = 13− 5q2 − 3q3 − q4 − q6 − q13,

E [T14] = 14− 6q2 − 2q3 − 2q4 − 2q7 − q14,

E [T15] = 15− 7q2 − q3 − 3q4 − q7 − q8 − q15.

It is interesting to note that the coefficients in the expressions for E (Tk) add up
to 1. The relative cost can be found by dividing E [Tk] by the composite sample
size, i.e., RCk = E [Tk] /k.

The optimal binary split retesting procedure starts with the largest possible com-
posite sample size. To understand why this is so, consider combining two composite
samples to form a larger composite sample. If the larger composite sample tests
negative, then one test is saved. If the larger composite sample tests positive, then
one of the original (smaller) composite samples is tested and the value of the other
composite sample is calculated. This results in a total of two tests, namely one on
the larger composite sample and the other on one of the smaller composite samples.
That is to say, it takes the same number of tests to reach this point if the two com-
posite samples were tested separately. In practice, the composite sample size will
be limited by the number of subsamples that can be mixed or ratio of the detection
limit to the action level.
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2.3.3 Entropy-Based Retesting

This method appears to be inappropriate for continuous response variables. Recall
that a positively testing composite results in the formation of a subcomposite of size
about half of that of the original composite. If this subcomposite tests positive, then
the remaining items in the original composite are returned to the pool of unclas-
sified items. However, the total for these remaining items can be calculated, and it
seems unreasonable not to use this information. If these items are not returned to the
unclassified pool, then the resulting procedure reduces to the curtailed binary split
retesting procedure.

2.4 Cost Analysis of Composite Sampling for Classification

2.4.1 Introduction

Sampling plans for environmental and public health monitoring often involve expen-
sive laboratory methods for quantifying observations on individual sample units.
United States Environmental Protection Agency (US EPA) and the regulated com-
munity spend an estimated $5 billion every year on collecting data for research,
regulatory decision making, and regulatory compliance (US EPA, 1994). Johnson
and Patil (2001) have carried out a cost analysis of composite sampling for classifi-
cation. The cases of presence/absence and continuous measurements are considered.
The general cost expression is using probability theory and the relative cost of com-
posite sampling is derived in comparison with the conventional method of using
individual sample measurements.

Cost analysis of composite sampling is not as easy as determining the expected
number of measurements to be made. Composite sampling involves costs that do
not arise in the conventional method of making measurements on individual sample
units. For instance, forming a composite sample of several soil samples requires
careful laboratory procedure of cleaning the containers and rinsing the solvent
before forming every composite. Similarly, when composite sampling is used for
sampling of fluids or gases, appropriate procedures have to be carefully imple-
mented while forming composite samples. Also, archiving aliquots of individual
samples for possible retesting involves storage and retrieval costs. Finally, any extra
labor costs must be taken into account before concluding as to whether or not com-
posite sampling will be truly cost-effective.

2.4.2 General Cost Expression

A general cost expression is derived by taking into consideration various cost com-
ponents and different retesting strategies. The following notation is used in the
derivation of the cost expression and relative cost of composite sampling:
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m = number of individual sample units to be classified,
n = number of composite sample units,
k = number of individual sample units contributing to a single composite

sample,
Cs = cost of acquisition of an individual sample unit,
Ca = cost of archiving an individual sample unit,
Cc = cost of forming a composite sample,
Ct = cost of testing a sample unit, either individual or composite,
Yk = number of composites to be formed, each of size k,
Tk = number of tests for classifying k individual sample units in a composite.

Then the relative cost of composite sampling is given by

RC = {(Cs + Ca)+ Cc E[Yk] + Ct E[Tk]}/(Cs + Ct ).

The procedure to be followed for classifying m individual sample units by com-
posite sampling with selective retesting is as follows:

1. Obtain m individual sample units.
2. Obtain an aliquot from every sample unit and archive the remaining material for

possible retesting.
3. Form n composite samples, each consisting of aliquots from l individual sample

units.
4. Analyze the n composite samples.
5. Classify a composite sample as “clean” or “contaminated.” If a composite sample

is “clean,” then all individual samples contributing aliquots to that composite are
classified as “clean.” Otherwise, retesting must be undertaken to classify individ-
ual samples as “clean” or “contaminated.”

6. Retest the archived sample units based on the result of Step 5. All the m individ-
ual sample units are classified.

2.4.3 Effect of False Positives and False Negatives on Composite
Sample Classification

Testing mechanisms are subject to some degree of error. In the case of binary clas-
sification, an error is either a false-positive or a false-negative test. Let rn and rp
denote the rates of these two errors, respectively. These rates are defined by the
following probability statements:

rp = Pr (positive test result|clean sample),
rn = Pr (negative test result|contaminated sample).

Composite sampling with retesting reduces the overall false-positive error
rate with a trade-off that the false-negative error rate can be magnified due to
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compositing. The false-negative error rate may be controlled by retesting some of
the negative testing composites, though this would increase the expected number of
tests.

The interest is in E[Yk] and E[Tk] for the specified values of Cs , Ca , Cc, Ct ,
and k. In situations where rp and rn are not negligible, the overall design false-
positive error rate, dp, and false-negative error rate, dn, are also derived.

2.4.4 Presence/Absence Measurements

The measurement of a sample returns a binary response indicating presence or
absence of the trait of interest in the tested sample. The Bernoulli model with
parameter p is appropriate for this situation under the assumption that all m individ-
ual measurements are independent and identically distributed with probability p of
testing positive.

2.4.4.1 Exhaustive Retesting

Exhaustive retesting, as proposed by Dorfman (1943), does not result in
re-formation of composites and hence E[Yk] = 1. The number of tests will be 1
(when the composite tests negative) or k + 1 (when the composite tests positive).
Writing q = 1 − p, where p denotes the probability that the trait is present in an
individual sample, the expected number of tests is given by

E[Tk] = 1 · qk + (k + 1) · (1− qk)

= 1+ k(1− qk).

The overall design false-negative error rate is given by

dn = rn + (1− rn)rn

= 2rn − r2
n .

The overall design false-positive error rate is given by

dp = rp · [Pr (retest|at least one of k − 1 is positive) · (1− qk)

+Pr (retest|all k − 1 are negative) qk−1]
= rp · [(1− rn)(1− qk−1 + rp · qk−1]
= rp · [1− rn − qk−1(1− rn − rp)].

Pr (Tk = 1) = rn(1− qk)+ (1− rp) qk

= rn + qk(1− rn − rp),
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Pr (Tk = k + 1) = 1− Pr (Tk = 1)

= 1− rn − qk(1− rn − rp).

Therefore,

E[Tk] = k + 1− k[rn + qk(1− rn − rp)].

2.4.4.2 Sequential Retesting

Sterret (1957) proposed sequential retesting method as an improvement in the
exhaustive retesting method. In this method,

E[Yk] = 1+ (k − 2)p,

E[Tk] = 2k − (k − 3)q − q2 − (1− qk+1)/(1− q), k = 2, 3, . . . .

If rn and rp are not negligible, then

E[Yk] = 1+ (k − 2)[rpq + (1− rn)p],
E[Tk] = 2k − (k − 3)[rn p + (1− rp)q] − [rn + (1− rp)q]2

− {1− [rn p + (1− rp)q]k+1}/{rp q + (1− rn)p}, k = 3, 4, . . . .

2.4.4.3 Binary Split Retesting

The binary split retesting method of Gill and Gottlieb (1974) entails a recurrence
relation for the expected number of composites to be formed and for expected num-
ber of tests to be carried out.

E[Yk] = E[Yk1] + E[Yk2] + 1− 2qk, k = 4, 5, . . . ,

E[Tk] = E[Tk1] + E[Tk2] + 1− 2qk, k = 2, 3, . . . ,

where k1 = k2 = k/2 if k is even and k1 = (k − 1)/2 and k2 = (k + 1)/2 if k
is odd.

The design false-positive rate is given by

dp =[(1− rn)(1− qk)+ rpqk] × [(1− rn)(1− qk1)+ rpqk1]
× [(1− rn)(1− qk11)+ rpqk11] × · · · × rp.

Here, k1 and k2 denote sizes of subcomposites of the composite of size k. These are
in turn split into subcomposites of sizes k11 and k12, k21 and k22, respectively, and
so on. The design false-negative error rate dn for an initial composite of size k is
given by
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dn(k) = rn − r2
n + dn(k/2) if k is even,

= rn − r2
n + dn((k + 1)/2) if k is odd.

Here, the argument of dn indicates the composite sample size.
The expected number of composites and tests is, respectively, given by

E[Yk] = E[Yk1] + E[Yk2] + 1− 2[(1− rp)q + rn p]k, k = 4, 5, . . . ,

E[Tk] = E[Tk1] + E[Tk2] + 1− 2[(1− rp)q + rn p]k, k = 2, 3, . . . .

These equations can be solved recursively for the appropriate value of k.

2.4.5 Continuous Measurements

Measurement on a continuous random variable results in classifying a sample unit
as negative if its measured value is less than some numerical criterion. However, a
size k composite cannot be classified as negative using the same criterion because
it would not imply that every individual sample unit contributing to the composite
is negative. For this purpose, if c denotes the criterion for an individual sample, the
numerical criterion for a composite sample of size k is c/k.

If X1, X2, . . . , Xk denote individual sample values and Y denotes the composite
value, then the probability that a composite sample tests negative is

qk = Pr[X1 + X2 + · · · + Xk < c]
= Pr[X1 + · · · + Xk < c|X1 < c, . . . , Xk < c] × Pr[X1 < c, . . . , Xk < c]
= Pr[X1 + · · · + Xk < c|X1 < c, . . . , Xk < c] × qk,

where q = Pr[X1 < c] and X1, . . . , Xk are independent and identically distributed.
Since qk < qk , the relative cost for measuring a continuous variable has a lower

bound representing the relative cost for measuring a presence/absence variable. The
expected number of composites and tests heavily depends on the probability dis-
tribution of the individual sample values. Approximations can be obtained through
expressions in case of presence/absence measurement. However, such an approxi-
mation can have a dual impact on the result.

On the one hand, this leads to over-optimistic results due to an upper bound on
the probability of a composite sample testing negative. On the other hand, the pres-
ence/absence expressions are based on independence among individual sample mea-
surements achieved through random formation of composite samples. When indi-
vidual sample values are autocorrelated, better strategies of forming composites can
be developed to improve the performance of composite sampling by reducing the
relative cost. In this case, there is no comparison with the case of presence/absence
measurements.



Chapter 3
Identifying Extremely Large Observations

3.1 Introduction

It is a common experience in several environmental problems of site characteriza-
tion, cleanup evaluation, and compliance monitoring that the interest is in both the
average and the extremely high contamination levels. Even though compositing,
at least under idealistic conditions, incurs no loss of information for estimating
the population mean, there is a loss of information on individual sample values,
particularly extreme values. This has been a limitation on application of composite
sampling techniques to environmental problems. There is very little literature about
the detection of large individual sample values. Casey et al. (1985) give a method
to predict the maximum sample value using composite sample measurements. Gore
and Patil (1993) have developed a statistical method to identify the largest individual
sample value without exhaustively measuring all the individual samples.

Under the assumption of continuous measurements, only one sample is likely to
have the largest value. Identifying this sample is then comparable to detecting the
defective item in a set known to contain exactly one defective. Can we use a classifi-
cation procedure for identifying the largest individual sample value? The following
observation is relevant to this question.

The classification problem for a continuous measurement has a criterion value c,
and it is desired to identify every individual sample having a value that exceeds or
equals c. Note that every retesting procedure involves at least as many measurements
as there are individual samples satisfying this criterion. As a consequence, if the
value of c is small then a large proportion of samples may satisfy the criterion,
and hence the relative cost of classification will be high. In an extreme situation the
criterion value can be so small that all individual samples are measured exhaustively.
On the other hand, if the criterion value c is large, then not too many samples will
satisfy the criterion, and hence the relative cost of classification will be small. Again,
in an extreme situation the criterion value can be so large that no individual sample
satisfies it, and hence the only information available at the end is on composite
sample measurements. As a third possible scenario, consider the situation where the
criterion value is exactly between the largest and the second largest sample values.
In this case, the classification will result in identifying the sample maximum at a
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very small relative cost. However, since the sample maximum is both variable and
unknown, it is unlikely to encounter this situation. However, this concept suggests
a procedure that may involve a succession of classification problems, where the
criterion value changes progressively.

Suppose measurements on n composites, each of size k, are available. Select a
composite at random and exhaustively test all the constituent samples. Treat the
largest of these individual sample values as the criterion value and initiate a classi-
fication process. As soon as an individual sample value exceeds the criterion value,
the criterion value is changed to this individual sample value. In this way, the succes-
sive criterion values will be ascending in magnitude like record values, and finally
we will have the sample maximum identified. How many measurements are required
to identify the sample maximum by this method? It is a variable that depends on
the choice of the composite that is selected to initiate the process. It is then obvi-
ous to optimize the choice of this composite so as to minimize the total number
of measurements leading to the identification of the sample maximum. There are
two choices available at this point of time. First, fix the number of measurements
that can be made on individual samples and infer on the sample maximum using
these measurements optimally. Second, select the initial composite sample with an
objective of minimizing the total number of measurements required to identify the
sample maximum.

The methods presented in this chapter for identifying the sample maximum are
based on the two choices described above. The first, discussed in Section 3.2, was
initially developed by Casey et al. (1985), where constituent samples of only the
largest measuring composite are subjected to further measurement. The second,
discussed in Section 3.3, is presented in Gore and Patil (1993), where the num-
ber of measurements required to identify the sample maximum is a variable, but
is minimized by careful successive selection of composites for measurements on
constituent individual samples.

3.2 Prediction of the Sample Maximum

Casey et al. (1985) developed a method to predict the maximum individual sam-
ple value by testing individual samples comprising the composite with the largest
measurement. Since there is no certainty that this method will always identify the
true maximum, they evaluated the probability that this method identifies the sample
maximum by simulation.

Pollution control standards frequently specify both time-dependent arithmetic
pollutant means and instantaneous maximum permitted values. Because of their
potential toxicological significance, knowledge about extreme values is particu-
larly important for the purpose of enforcing water quality standards. The maximum
pollutant concentration should be an observed value or be estimated from other
measurements.
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The principal barrier to the detection of violations is the cost of extensive and
comprehensive monitoring. Due to the random component of the data, no method
exists that will find the maximum concentration with certainty unless continuous
monitoring is used. Any sampling method adopted must be able to identify the
maximum pollutant concentration a large proportion of the time. Failing this iden-
tification, the method must be able to signal the existence of excessive pollutant
levels by finding some “large” value. A method is developed which can predict the
maximum from a finite set of sequential samples without testing all samples. The
following assumptions are used:

1. The process of collecting samples is distinct from their measurement
2. The cost of sample measurement is high relative to that of collection
3. The sample measurements have high positive autocorrelation

There are many situations in water, air, and industrial process monitoring where
the collection and testing of samples are distinct. An incremental change in the
number of tests performed is important because the cost of testing is typically much
larger than that of sampling if laboratory analysis is required. The assumption of
high positive autocorrelation is fundamental to the method developed. It permits the
estimation of information about some of the pollutant samples which are collected
but not tested.

Composite sampling, a common practice in water pollution monitoring, involves
the physical pooling of a set of sequential samples prior to measurement. The
result of this process is an arithmetic average of the samples that were composited.
Assume there are m samples aggregated into n sequential groups. Then, within each
group, a fixed portion of each sample is pooled to form a total of [m/n]∗ com-
posite samples which are subsequently measured. In the presence of high positive
autocorrelation, the maximum concentration among the m samples will tend to be
surrounded by samples with high values. As a consequence, the composite sample
that contains the maximum sample value will also tend to have a relatively high
measurement. This suggests that the search for the maximum can be concentrated
among the individual observations that formed the composites with the highest mea-
sured levels. Only a portion of each individual sample may be pooled when forming
the composites, since the remaining portion must be retained for later analysis once
the maximum among the composites is identified.

Primary first-order compositing (PFOC) consists of several steps. Initially, the
composites are formed and measured, and the composite with the maximum level
is identified. Then, all the samples that formed this composite are measured. The
maximum of these sample measurements is the estimate of the maximum for all
samples.

Several alternative composite methods should be considered. Improved perfor-
mance in detecting extreme values would be guaranteed if sample examination were
not confined to the composite with the highest measurement. The logical extension
would include an analysis of the samples from the second highest composite, and the
approach could be incrementally extended to other composites with lower values.
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The resulting increase in performance would, of course, entail higher laboratory and
related testing costs.

3.3 The Sweep-Out Method to Identify the Sample Maximum

Consider a composite sample of size k. Let x1, x2, . . . , xk be the k individual sample
values, and let y be the composite sample measurement. Further, let xk:k denote the
maximum of the k individual sample values. That is,

xk:k = max{x1, x2, . . . , xk}.

Observe that

y ≤ xk:k ≤ ky.

This inequality implies that the measurement on every composite sample gives a
lower bound as well as an upper bound for the largest value among its constituent
individual samples. It is then interesting to make the following observation.

Consider two composite samples. Let the composite sample sizes be k1 and k2,
the composite measurements y1 and y2, and the maximum individual sample values
xk1:k1 and xk2:k2 . Without loss of generality assume that y1 < y2. In general, this
does not imply xk1:k1 ≤ xk2:k2 . However, if k1 y1 ≤ y2, then it can be inferred that
xk1:k1 ≤ xk2:k2 , and hence the first composite sample cannot contain the individual
sample with the largest value. It is thus clear that there is no need to consider the first
composite sample when searching for the individual sample with the largest value.
In this way, we may eliminate a significant number of composite samples as not
containing the individual samples having large values. This elimination process may
finally leave us with a very few composite samples as possibly containing individual
samples having large values. All the individual samples constituting these composite
samples may then be subjected to measurement in order to identify the individual
samples having large values.

Using the above reasoning, we obtain a sweep-out method as follows:
Identify the composite sample with the largest measurement. Denote the size of

this composite by kmax and the measurement by ymax. Clearly, the largest value,
xmax, say, of a constituent individual sample satisfies

ymax ≤ xmax ≤ kmax ymax.

Any other composite of size k and measurement y cannot contain an individual
sample having a value that exceeds xmax if ky ≤ xmax. However, if xmax ≤ ky,
then measure every individual sample that constitutes the composite having the mea-
surement y. If an individual sample value exceeds xmax, then xmax is redefined and
assigned this value. If there is no composite sample that satisfies xmax ≤ ky, then
the search for the largest individual sample value is complete.
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The following algorithm describes the steps of the sweep-out method for identi-
fication of extremely large individual sample:

Step 1. Locate the composite sample with the largest measurement.
Step 2. Exhaustively measure every individual sample that constitutes this

composite.
Step 3. Identify the largest observation M among the k individual measure-

ments thus obtained.
Step 4. Check if any composite sample has a measurement Y that exceeds

M/k, where k is the composite sample size.
Step 5. If there is any composite sample satisfying the condition in step 4, then

exhaustively measure all of its constituent samples, identify the individual
sample measurements that are larger than M , then replace M by the largest
of these measurements, and repeat step 4. If there are two or more samples
satisfying the condition in step 4, then start with the composite sample that
has the largest measurement among all such composites.

Step 6. If no more composite samples satisfy the condition in step 4, then the
search for the largest measurement is complete.

Step 7. The same method with the second largest measurement will identify
the second largest measurement, etc.

3.4 Extensive Search of Extreme Values

The sweep-out method described in the previous section needs to be examined fur-
ther so that its cost effectiveness in identifying extreme values can be evaluated.
Note that, since exhaustive testing of all individual samples (without compositing)
identifies all individual values, identification of extreme values is achieved simply
by arranging the individual sample values in a descending order of magnitude. Thus
the method of exhaustive testing involves as many measurements as the number of
individual samples.

Another point worth noting at this stage is that we have assumed some spatial
autocorrelation between individual sample values. In case of positive autocorrela-
tion, samples from neighboring grid points are more likely to have similar values
than samples from randomly selected grid points. In the extreme case of a per-
fect spatial autocorrelation, it is possible that the four individual samples with the
largest measurements are composited in a single composite. In this case, measur-
ing the four individual samples from a single composite would lead to the iden-
tification of four extremely large individual sample values. If this phenomenon is
repeated in all the composites, then we will obtain a perfectly linear relationship
between the number of extreme values identified and the number of measurements
required.

The observations made above on the sweep-out method establish the need
for an investigation of the statistical properties of the sweep-out method. The
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performance of the sweep-out method will be partly determined by the spatial auto-
correlation structure among the individual sample values, partly by the statistical
distribution of these individual sample values and partly also by the composit-
ing plan as well as the composite sample size. While there is a need to exam-
ine the relevant statistical properties and issues, the results of this chapter seem
to be encouraging enough to recommend the use of composite sampling tech-
niques in situations where the interest is not restricted to estimating the popu-
lation mean, but it is also desired to identify extremely large individual sample
values.

As a consequence of identifying individual samples having large values, the
sweep-out method can provide estimates for the upper percentiles of the distribu-
tion of individual sample values. In several environmental problems of compliance
monitoring, it is common to encounter the following two situations:

1. Compliance limits are specified in terms of upper percentiles of the statistical
distribution of individual sample measurements. For considerations of cost, time,
and effort, compliance is to be verified with composite sample measurements.

2. Compliance limits are specified in terms of estimated upper percentiles (such as
99th or 95th) of the statistical distribution of composite measurements. However,
permit authorities may prefer to work with individual samples instead in order to
monitor for permit compliance purposes (Kahn, 1991, personal communication).

In the former situation, the proposed sweep-out method does the job. The sweep-
out method needs to be implemented on the composites formed for compliance mon-
itoring until the desired percentage of upper extreme values of individual samples
is identified. In the latter situation, the permit authority needs a guidance on how
to make an adjustment in the compliance limits so that individual samples could
be used for the purpose of monitoring compliance. Here, the sweep-out method
may not be applicable if the permit authority cannot possibly measure individual
samples. In such a situation, a separate statistical method of predicting extreme
individual sample values may be necessary. Such a method may assume a statistical
distribution and an autocorrelation model for the individual sample values. However,
if the permit authority has access to the original individual samples, and if additional
measurements on these individual samples are possible, then the sweep-out method
of this chapter can be implemented to express compliance limits in terms of indi-
vidual sample values rather than composite sample measurements.

3.5 Application

The sweep-out method is illustrated by applying it to data on polychlorinated
biphenyl (PCB) concentration in surface soil samples at the Armagh compressor
station along the gas pipeline of the Texas Eastern Gas Pipeline Company in Penn-
sylvania.
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The Armagh compressor station is located in West Wheatfield Township, Indiana
County, Pennsylvania. The site includes one compressor building along with several
other buildings on 79 acres. There are two known liquid pits. The surrounding area
contains 64 residences within 1 mile of the station. Some of these houses have pri-
vate wells; however, a public water supply line was recently installed. None of the
private wells has been contaminated as a result of the Texas Eastern operations.
There is one wetland situated within one-half mile of the site. Richard Run, which
flows to the south of the site, is classified as a cold water fishery. There are no
public recreational facilities near the station (see Texas Eastern Gas Pipeline Com-
pany, 1989a, b).

Onsite soils are defined as being within the confines of the station site fencing
and are accessible only by Texas Station personnel and authorized site visitors. The
detection limit for PCB concentration in a surface soil sample is 1 part per million
(ppm). The cleanup criteria for onsite soils are specified by an average overall PCB
concentration of 5 ppm in soils between 0 and 6 in. depth. The objective of the onsite
surface soil sampling is to characterize the presence of PCBs at the Armagh site in
terms of the average PCB concentration in onsite surface soils. Potential sources of
PCB have been identified, and a rectangular grid is laid out around each such source.
Four different onsite grids are identified by the alphabetic codes A through D. Grid
points are identified by a two-digit row number and an alphabetic column code.
Sampling of the surface soil is done at selected grid points in two distinct phases.
The second phase is undertaken to fill in locations not covered during phase I. Grid
D is not sampled during phase I, but is sampled during phase II. Phase II locations
are generally farther away from the potential PCB source, and the measured PCB
concentrations tend to be lower during this phase. A total of 130 onsite surface soil
samples are collected during phase I and 228 during phase II as follows:

Phase I Phase II

Grid A 78 samples 106 samples
Grid B 16 samples 16 samples
Grid C 36 samples 32 samples
Grid D 74 samples

The distance between consecutive rows as well as between consecutive columns
is 25 ft. For computerization of the data and to facilitate statistical analysis of the
same using statistical computer packages, the alphabetic column codes are con-
verted into numeric codes, with A converted into 1, B into 2, and so on. Row and
column codes of the sampling locations in grids B, C, and D are shifted so as to syn-
chronize them with the codes of the grid A. This synchronization enables plotting
of all the sampled grid points on the same graph, as in Fig. 3.1a.

All surface soil samples are collected from the 0 to 6 in. depth using a bucket
auger, trowel, or scoop. Vegetation, rocks, and other debris that interfered with sam-
ple collection are removed. Soil samples for PCB analysis are placed in a stainless
steel bucket/bowl and mixed with a trowel to obtain a homogeneous sample. All
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Fig. 3.1 (a) Sampling locations on grids A, B, and C. A: grid A, B: grid B, C: grid C; (b) sampling
locations and compositing scheme for grid A, 1: phase I, 2: phase II; (c) sampling locations and
compositing scheme for grid B; 1: phase I, 2: phase II; and (d) sampling locations and compositing
scheme for grid C, 1: phase I, 2: phase II

rocks, twigs, etc., are removed from the sample. The sample is then placed into a jar
using the stainless steel trowel.

Choice of composite sample size is dictated by two considerations. On the one
hand, the relative savings in measurement costs increases with the composite sample
size, and, therefore, the larger the composite sample size, the more cost-effective it
is. On the other hand, compositing has a dilution effect. That is, if an individual
sample having a large value is combined with other individual samples with rel-
atively small values in a single composite, then the large individual sample value
is diluted as the result of compositing. If the composite sample size is too large,
then the dilution can lead to non-detection of a large individual sample value. If,
for instance, the detection limit is d and if it is important to detect every individual
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sample having a value of c or more (the criterion value), then the composite sample
size should never exceed c/d so that possible dilution will not result in non-detection
of any individual sample with a value of c or more. In any particular problem, it is
therefore necessary to specify the detection limit and the criterion value so that the
optimal composite sample size may be determined.

In view of the dilution problem, a criterion value for the PCB concentration of 5
ppm and a detection limit of 1 ppm imply that the composite sample size should
not exceed 5. Moreover, it is usually the case that analytical variability is, in a
relative sense, high at low concentrations, particularly in the region of detection
levels. Analytical variability can lead to misclassification and thus can diminish the
cost-effectiveness of composite sampling techniques. This additional consideration
of analytical variability further limits the choice of the composite sample size. It
was therefore decided to choose the composite sample size to be 4. Only in a few
cases, where the spatial arrangement makes it impossible or impracticable to iden-
tify exactly four neighboring sample locations, composite samples of sizes 3 or 5
are formed.

Boswell and Patil (1990) have investigated strategies for composite sample for-
mation when samples are positively spatially autocorrelated. The purpose of the
analysis is to classify every individual sample as exceeding or not exceeding a speci-
fied criterion value. After comparing four different choices of compositing strategies
for classification of individual samples, Boswell and Patil conclude that, when there
is positive spatial dependence among the individual sampling locations, composit-
ing of samples from neighboring points, as nearly in a square region as possible,
increases the cost-efficiency of composite sampling. Due to positive spatial depen-
dence, these samples are likely to exhibit greater homogeneity within themselves
than randomly selected samples.

When samples of solids, such as soil, are composited, it is not easy to achieve
homogeneous composites, and therefore the mean of the composite sample mea-
surements can be more variable than the mean of the corresponding individual sam-
ple values. However, if care is taken to composite only homogeneous individual
samples, then the variability of the mean of composite sample measurements result-
ing from imperfect mixing will be minimal. It is therefore recommended to form
composites in such a way that the individual samples within every composite are
more homogeneous than those in different composites.

In order to maximize the within-composite homogeneity, it is decided that indi-
vidual samples collected from contiguous locations be composited. Considering the
fact that the four grids represent different sources of PCBs and considering the tem-
poral distance between the two sampling phases, it is also decided that all compos-
ites be formed within a sampling phase and also within a grid. This would also be
attractive from the management and operational point of view. These considerations
lead to the decision of compositing only individual samples collected from contigu-
ous locations belonging to the same grid and sampled during the same sampling
phase.

After the composite sample size and the composite sample formation strategy
are determined, it is necessary to identify the sampling locations to be composited.
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There is a considerable subjectivity involved at this stage since not all the grid points
are included in the sampling plan, and the sampled grid is therefore not exactly
rectangular. However, enough precaution is taken to avoid selection bias in the com-
posite sample formation. First, even though measurements on PCB concentrations
at sampled locations are available, formation of composite samples is based only
on the geographical positions of sampling locations. Second, a few other choices
for composite sample formation are implemented for comparison with that used for
the analysis reported here. As the estimate of the mean PCB concentration does
not depend on the particular choice of the compositing method, the estimate of the
population variance is used as the criterion for this comparison. Since there is no
significant difference between the various choices of composite sample formation,
only one set of composites is used in this chapter. Sampling locations and formation
of composites are shown in the schematic plots in Fig. 3.1. Table 3.1 shows the
individual sample values and simulated composite sample measurements.

To illustrate the sweep-out method in the case of the Armagh site, we note that
the highest PCB concentration in a composite sample (composite number 25 in
Table 3.1) is 4897.5 ppm. Since the size of this composite is 4, the highest PCB
concentration in an individual sample cannot exceed 19,590 ppm. Exhaustive testing
of the constituent samples results in identifying the highest PCB concentration in an
individual sample, which is 10,000. Note that there is a composite sample (compos-
ite number 5 in Table 3.1) with a PCB concentration of 3999.5 ppm and hence may
contain an individual sample with PCB concentration exceeding 10,000 ppm. Upon
measuring every individual sample in this composite, it is indeed found to be the
case, as there is an individual sample with PCB concentration of 10,700 ppm. This
implies that no composite sample with a PCB concentration of 2675 ppm or less
can contain an individual sample with PCB concentration exceeding 10,700 ppm.
Since there is no other composite sample with a measurement exceeding 2675 ppm,
the sampling location with the largest PCB concentration has been identified. Note
that this requires only 8 measurements in addition to the 90 composite sample
measurements.

Figure 3.2 shows a scatterplot of individual sample values plotted against the
simulated composite sample measurements. The two rays from the origin indicate
the upper and the lower bounds on the largest individual sample value for every
composite sample measurement. Thus, corresponding to the composite sample with
a measurement of 4897.5 ppm, the upper bound for the maximum individual sam-
ple value in this composite is 19,590 ppm, while the lower bound is 4897.5 ppm,
which is the same as the composite sample measurement. Since 4897.5 ppm is
the largest composite sample measurement, individual samples in this composite
are measured separately, and an individual sample with a PCB concentration of
10,000 ppm is identified. A horizontal line through the point identifying this indi-
vidual sample indicates that there is only one composite (composite number 5 in
Table 3.1) which can possibly contain an individual sample with a PCB concentra-
tion of more than 10,000 ppm. Making measurements on all the individual samples
constituting this composite, one locates an individual sample with a PCB concen-
tration of 10,700 ppm. There is no other composite that can contain an individual
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Fig. 3.2 Illustration of the sweep-out method. Individual sample values (Y-axis) vs. composite
sample measurements (X-axis) in 1000 ppm. (a) The upper and lower bounds for the largest
individual values. (b) Measurements on individual samples from only two composites identify
two largest individual values. (c) Measurements on individual samples from only two composites
identify the three largest individual values. (d) Measurements on individual samples from three
composites identify the four largest individual values

sample with a PCB concentration exceeding 10,700 ppm, as is evident from
Fig. 3.2b. Making measurements on the eight individual samples constituting two
composites has thus identified the individual sample with the largest PCB con-
centration. This search can easily be extended to identify more individual samples
with high PCB concentration. Figure 3.2c, d shows how additional measurements
on 12 individual samples constituting only 3 composites help identify the indi-
vidual samples with the 4 largest PCB concentrations. In other words, with only
12 measurements in addition to the 90 measurements on the simulated composite
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samples, we are able to identify the 4 individual samples with the highest PCB
concentrations.

In order to investigate the relationship between the number of extreme values
identified and the number of composites retested, we extend the sweep-out method
for the Armagh site to all the 90 composites. Figure 3.3 gives a graphical summary
of these results. It is interesting to note the concavity of the curve in the graph.
This implies that identification of every additional extreme value initially requires
relatively more measurements. Another way of interpreting the graph is illustrated
by the following statement: When about 20% largest individual sample values are
identified, which in turn implies that individual samples from the 50 composites are
measured, we already have information on 200 individual sample values. It is with
this information that identification of further extreme values appears to require a
relatively smaller number of measurements as the sweep-out method progresses.

Fig. 3.3 Number of composites retested (Y-axis) vs. number of extreme values identified (X-axis).
The diagonal line represents the optimal case in which exactly four extreme values are identified
for every composite

3.6 Two-Way Composite Sampling Design

A two-way composite sampling design forms a rectangular or square array of sam-
pling units. A row-composite is formed from individual sample units in a row.
A column-composite is similarly formed from individual sample units in a col-
umn. Every individual sample unit thus contributes to a row-composite and a
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column-composite. Measurements are made on all row-composites and all column-
composites.

Let Xi j denote the value of the individual sample unit that contributes to the
i th row-composite and j th column-composite, i = 1, . . . , r, j = 1, . . . , c. Let
Yi · denote the value of the i th row-composite and Y· j denote the value of the j th
column-composite, i = 1, . . . , r, j = 1, . . . , c.

Now rearrange the individual samples in the array so that the values of row-
composites and column-composites are in descending order. Let Y[i]· denote the
value of the i th ordered row-composite, i = 1, . . . , r , and let Y·[ j] denote the value
of the j th ordered column-composite, j = 1, . . . , c. Let X[i][ j], i = 1, . . . , r, j =
1, . . . , c, denote the individual sample value corresponding to the i th ordered row-
composite and j th ordered column-composite. Let W[i]· denote the composite sam-
ple total for the i th ordered row-composite, i = 1, . . . , r , and W·[ j] denote the com-
posite sample total for the j th ordered column-composite, j = 1, . . . , c. Table 3.2
illustrates the arrangement described so far.

Table 3.2 Arrangement for two-way sweep-out method

Column

Row 1 2 – c Value Total

1 X[1][1] X[1][2] – X[1][c] Y[1]· W[1]·
2 X[2][1] X[2][2] – X[2][c] Y[2]· W[2]·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

r X[r ][1] X[r ][2] – X[r ][c] Y[r ]· W[r ]·
Value Y·[1] Y·[2] – Y·[c]
Total W·[1] W·[2] – W·[c]

The two-way sweep-out method is described in the following algorithm.

1. Input values of {Y[i]·, i = 1, . . . , r} and {Y·[j], j = 1, . . . , c}.
2. Define R = 0, K = 0, k[i]· = c, i = 1, . . . , r , and k·[ j] = r, j = 1, . . . , c.

Compute values of W[i]· = Y[i]· × k[i]·, i = 1, . . . , r , and W·[ j] = Y·[ j] ×
k·[ j], j = 1, . . . , c.

3. Arrange the r × c individual samples so that row-composites and column-
composites are in descending order.

4. Define UR = {g : 1 ≤ g ≤ r, W[g]· > R},
UC = {h : 1 ≤ h ≤ c, W·[h] > R}.

5. If UR or UC is empty, then stop the search and follow step 17.
6. Define i = min{g : g ε UR}.
7. Define j = min{h : h ε UC}.
8. If the individual sample representing the cell (i, j) has not been measured so

far, follow step 11.
9. If Y[i]· < Y·[ j], include i in UR and follow step 8.

10. If Y[i]· ≥ Y·[ j], include j in UC and follow step 8.
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11. If k[i]· > 1 and k·[ j] > 1, follow step 14.
12. If k[i]· = 1, define X[i][ j] = Y[i]· and follow step 15.
13. If k·[ j] = 1, define X[i][ j] = Y·[ j] and follow step 15.
14. Make a measurement on the individual sample representing the (i, j)th cell and

denote it by X[i][ j]. Increment K by 1.
15. Update R← max{R, X[i][ j]}.
16. Update the i th row-composite:

W[i]· ← W[i]· − X[i][ j],
k[i]· ← k[i]· − 1,

Y[i]· ← W[i]·/k[i]·.

Similarly, update the j th column-composite:

W·[ j] ← W·[ j] − X[i][j],
k·[ j] ← k·[ j] − 1,

Y·[ j] ← W·[ j]/k·[ j].

Write 0 in the (i, j)th cell and follow step 3.
17. The value of R is the largest individual sample value and K is the number of

measurements made on individual sample units.

3.7 Illustrative Example

Application of the two-way composite sampling design for finding the largest indi-
vidual sample value is illustrated with an artificial data set.

Consider a two-way composite sampling design for 16 individual samples
arranged in a square of 4 rows and 4 columns. The individual sample values are
as follows.

Arrange the 16 individual sample values in a square of 4 rows and 4 columns.
Calculate row totals, column totals, row averages, and column averages.

Column

Row 1 2 3 4 Value Total

1 46 58 160 41 76.25 305
2 177 45 43 49 78.50 314
3 62 109 68 60 74.75 299
4 77 167 56 37 84.25 337
Value 90.5 94.75 81.75 44.25
Total 362 379 327 177
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Step 2. Define R = 0 and K = 0.
Step 3. Arrange the individual samples to obtain the following table. The row

averages and column averages in this table are in descending order.

Column

Row 1 2 3 4 Value Total

1 167 77 56 37 84.25 337
2 45 177 43 49 78.50 314
3 58 46 160 41 76.25 305
4 109 62 68 60 74.75 299
Value 94.75 90.5 81.75 44.25
Total 379 362 327 177

Step 4. UR = {1, 2, 3, 4},
UC = {1, 2, 3, 4}.

Step 5. Both UR and UC are non-empty and hence proceed to step 6.
Step 6. Define i = 1.
Step 7. Define j = 1.
Step 8. Since the individual sample representing the cell (1,1) has not been

measured so far, proceed to step 11.
Step 11. Since k[1]· > 1 and k·[1] > 1, proceed to step 14.
Step 14. Make a measurement on the individual sample representing the cell

(1,1) and obtain the value 167. Increment K by 1 so that K = 1.
Step 15. Update R = 167.
Step 16. Update the first row-composite: W [1]· = 170, k[1]· = 3, Y [1]· =

56.67.
Similarly, update the first column-composite: W· [1] = 212, k· [1] = 3, Y· [1] =

70.67.
Write 0 in the cell (1,1) to obtain the following table:

Column

Row 1 2 3 4 Value Total

1 0 77 56 37 56.67 170
2 45 177 43 49 78.50 314
3 58 46 160 41 76.25 305
4 109 62 68 60 74.75 299
Value 70.67 90.5 81.75 44.25
Total 212 362 327 177

Proceed to step 3.
Step 3. Arrange the individual samples to obtain the following table. The row

averages and column averages in this table are in descending order.
Step 4. UR = {1, 2, 3, 4},

UC = {1, 2, 3, 4}.
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Column

Row 1 2 3 4 Value Total

1 177 43 45 49 78.50 314
2 46 160 58 41 76.25 305
3 62 68 109 60 74.75 299
4 77 56 0 37 56.67 170
Value 90.5 81.75 70.67 44.25
Total 362 327 212 177

Step 5. Both UR and UC are non-empty and hence proceed to step 5.
Step 6. Define i = 1.
Step 7. Define j = 1.
Step 8. Since the individual sample representing the cell (1,1) has not been

measured so far, proceed to step 11.
Step 11. Since k[1]· > 1 and k·[1] > 1, proceed to step 14.
Step 14. Make a measurement on the individual sample representing the cell

(1,1) and obtain the value 177. Increment K by 1 so that K = 2.
Step 15. Update R = 177.
Step 16. Update the first row-composite: W [1]· = 137, k[1]· = 3, Y [1]· =

45.67.
Similarly, update the first column-composite: W· [1] = 185, k· [1] = 3, Y· [1] =

61.67.
Write 0 in the cell (1,1) to obtain the following table:

Column

Row 1 2 3 4 Value Total

1 0 43 45 49 45.67 137
2 46 160 58 41 76.25 305
3 62 68 109 60 74.75 299
4 77 56 0 37 56.67 170
Value 61.67 81.75 70.67 44.25
Total 185 327 212 177

Proceed to step 3.
Step 3. Arrange the individual samples to obtain the following table. The row

averages and column averages in this table are in descending order.
Step 4. UR = {1, 2},

UC = {1, 2, 3}.
Step 5. Both UR and UC are non-empty and hence proceed to step 5.
Step 6. Define i = 1.
Step 7. Define j = 1.
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Column

Row 1 2 3 4 Value Total

1 160 58 46 41 76.25 305
2 68 109 62 60 74.75 299
3 56 0 77 37 56.67 170
4 43 45 0 49 45.67 137
Value 81.75 70.67 61.67 44.25
Total 327 212 185 177

Step 8. Since the individual sample representing the cell (1,1) has not been
measured so far, proceed to step 11.

Step 11. Since k[1]· > 1 and k·[1] > 1, proceed to step 14.
Step 14. Make a measurement on the individual sample representing the cell

(1,1) and obtain the value 160. Increment K by 1 so that K = 3.
Step 15. R is unchanged at 177.
Step 16. Update the first row-composite: W [1]· = 145, k[1]· = 3, Y [1]· =

48.33.
Similarly, update the first column-composite: W· [1] = 167, k· [1] = 3, Y· [1] =

55.67.
Write 0 in the cell (1,1) to obtain the following table:

Column

Row 1 2 3 4 Value Total

1 0 58 46 41 48.33 145
2 68 109 62 60 74.75 299
3 56 0 77 37 56.67 170
4 43 45 0 49 45.67 137
Value 55.67 70.67 61.67 44.25
Total 167 212 185 177

Proceed to step 3.
Step 3. Arrange the individual samples to obtain the following table. The row

averages and column averages in this table are in descending order.

Column

Row 1 2 3 4 Value Total

1 109 62 68 60 74.75 299
2 0 77 56 37 56.67 170
3 58 46 0 41 48.33 145
4 45 0 43 49 45.67 137
Value 70.67 61.67 55.67 44.25
Total 212 185 167 177
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Step 4. UR = {1},
UC = {1, 2}.

Step 5. Both UR and UC are non-empty and hence proceed to step 5.
Step 6. Define i = 1.
Step 7. Define j = 1.
Step 8. Since the individual sample representing the cell (1,1) has not been

measured so far, proceed to step 11.
Step 10. Since k[1]· > 1 and k·[1] > 1, proceed to step 14.
Step 14. Make a measurement on the individual sample representing the cell

(1,1) and obtain the value 109. Increment K by 1 so that K = 4.
Step 15. R is unchanged at 177.
Step 16. Update the first row-composite: W [1]· = 190, k[1]· = 3, Y [1]· =

63.33.
Similarly, update the first column-composite: W· [1] = 103, k· [1] = 2, Y· [1] =

51.50.
Write 0 in the cell (1,1) to obtain the following table:

Column

Row 1 2 3 4 Value Total

1 0 62 68 60 63.33 190
2 0 77 56 37 56.67 170
3 58 46 0 41 48.33 145
4 45 0 43 49 45.67 137
Value 51.5 61.67 55.67 44.25
Total 103 185 167 177

Proceed to step 3.
Step 3. Arrange the individual samples to obtain the following table. The row

averages and column averages in this table are in descending order.

Column

Row 1 2 3 4 Value Total

1 62 68 0 60 63.33 190
2 77 56 0 37 56.67 170
3 46 0 58 41 48.33 145
4 0 43 45 49 45.67 137
Value 61.67 55.67 51.5 44.25
Total 185 167 103 177

Step 4. UR = {1},
UC = {1}.

Step 5. Both UR and UC are non-empty and hence proceed to step 5.
Step 6. Define i = 1.
Step 7. Define j = 1.
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Step 8. Since the individual sample representing the cell (1,1) has not been
measured so far, proceed to step 11.

Step 11. Since k[1]· > 1 and k·[1] > 1, proceed to step 14.
Step 14. Make a measurement on the individual sample representing the cell

(1,1) and obtain the value 62. Increment K by 1 so that K = 5.
Step 15. R is unchanged at 177.
Step 16. Update the first row-composite: W [1]· = 128, k[1]· = 2, Y [1]· = 64.
Similarly, update the first column-composite: W· [1] = 123, k· [1] = 2, Y· [1] =

61.50.
Write 0 in the cell (1,1) to obtain the following table:

Column

Row 1 2 3 4 Value Total

1 0 68 0 60 64.00 128
2 77 56 0 37 56.67 170
3 46 0 58 41 48.33 145
4 0 43 45 49 45.67 137
Value 61.50 55.67 51.5 44.25
Total 123 167 103 177

Proceed to step 3.
Step 3. Arrange the individual samples to obtain the following table. The row

averages and column averages in this table are in descending order.

Column

Row 1 2 3 4 Value Total

1 0 68 0 60 64.00 128
2 77 56 0 37 56.67 170
3 46 0 58 41 48.33 145
4 0 43 45 49 45.67 137
Value 61.50 55.67 51.5 44.25
Total 123 167 103 177

Step 4. UR = {},
UC = {}.

Step 5. Since UR and UC are both empty, stop the search and declare R = 177
as the largest individual sample value.

Note that K = 5 is the number of measurements made on individual sam-
ples in addition to the eight measurements made on composite samples (four row-
composites and four column-composites). In this way, the largest individual sample
value is obtained by making a total of 13 measurements instead of 16 as would be
required by the conventional method of making measurement for every individual
sample.
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3.8 Analysis of Composite Sampling Data Using the Principle
of Maximum Entropy

J. H. Carson, Jr. (2001), has proposed a new tool for hot spot detection with no
(or minimal) retesting based on the principle of maximum entropy. The methodol-
ogy is easy to implement and can accommodate multiple criteria for evaluating site
remediation. Very simple decision rules are provided by the new methodology that
complements use of composite sampling for controlling residual mean concentra-
tions.

3.8.1 Introduction

A risk-based cleanup standard Cs for a COC represents a bound for average residual
concentration of contaminant. This bound corresponds to the bound on the proba-
bility of an adverse effect. After a removal activity, the mean will be tested to verify
if the average residual concentration is less than Cs. Since a population having the
mean less than Cs has values greater as well as smaller than Cs, compliance in terms
of the mean does not imply compliance in terms of individual values. It is interesting
to note that most of the regulators insist that every individual value be less than Cs.

The heavy right tail of the distribution of environmental contaminant prompts an
auxiliary criterion for controlling extreme concentrations. For instance, the follow-
ing can make a valid set of criteria for remediation:

• A separate standard for an upper percentile.
• A stringent standard for every individual sample value (possibly a small multiple

of Cs).
• A limit on the proportion of sample values that exceed Cs.
• A small probability of an undetected hot spot.

Here a “sample” is a physical sample of material as opposed to an ensemble of
observations. Similarly, the processes of collecting samples and testing them must
be distinguished. A “hot spot” is defined as a small area where concentration of
contaminant exceeds the “hot spot threshold” with high probability.

3.8.1.1 Hot Spot Detection Based on Composite Sample Values

Composite sampling involves physical blending of individual samples or their
chemical extracts for measuring some physical or chemical properties. Composit-
ing results in averaging of characteristics and hence composite samples carry more
information about means than do individual samples. Composite sampling therefore
provides better estimates and more powerful tests concerning the mean. Even though
compositing reduces the variance of the mean, it does not erase the information
about extreme values completely. Many regulators think that compositing is used to
dilute or mask hot spots. Although compositing has the potential of achieving these
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goals, it is possible to judiciously use compositing and detect hot spots when com-
posite sample values are available. Due to the observational economy of composite
sampling, the sample coverage can be improved so as to increase the probability of
hitting the hot spot. It is then necessary to develop decision rules to indicate when a
component sample in a composite represents a hot spot.

The threshold Cs for individual sample value is not appropriate as hot spot thresh-
old. Carson (2001) proposes 3Cs as the hot spot threshold for the following reasons:

• A factor of 3 is within the minimum uncertainty factor used in noncarcinogenic
risk estimates (USEPA, 1986, pp. 6–15).

• Carcinogenic risk estimates are more conservative.
• The undetected hot spots should allow minimal exposure probability.

When composite sampling is implemented, a decision rule must be developed to
indicate that a component sample represents a hot spot. This requires a decision rule
similar to the following:

• Define a hot spot threshold (H ).
• Define a “clean” rule Rc for deciding that a composite does not include a sample

from a hot spot.
• Define a “hot” rule Rh for deciding that a composite includes a sample from a

hot spot.

For composites indicating the presence of a sample from a hot spot, a possi-
ble action is retesting or remediation. Both of these actions being expensive, Car-
son (2001) suggests a new method that estimates the probability that none of the
component samples is from a hot spot without requiring any retesting.

3.8.2 Modeling Composite Sampling Using the Principle
of Maximum Entropy

It is possible to estimate the probability of at least one of the component sam-
ple values exceeding the hot spot threshold using a simple probability model for
unobserved values of component samples in composites. The model assumes the
following:

• Component samples contribute equal material to a composite.
• Every composite sample is mixed thoroughly.
• Composite sample value is an unbiased estimator of the mean of component sam-

ple values.
• All combinations of component sample values that result in the same composite

sample value are equally likely.

The assumption of “equally likely” is same as putting the maximum entropy proba-
bility distribution on the simplex.
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3.8.2.1 What Is the Simplex?

For a positive integer k, let U = (U1, . . . , Uk, Uk+1) be a (k+1)-dimensional vector.
The k-simplex is the set

Sk = {U|U1 +U2 + · · · +Uk +Uk+1 = 1 and Ui ≥ 0, i = 1, . . . , k + 1}.

Individual values of component samples in a composite of size k+1 can be modeled
as random variables distributed on the k-simplex.

3.8.2.2 Maximum Entropy Applied to the k-Simplex

Note that Sk is a k-dimensional set embedded in a (k+1)-dimensional space. This is
due to the fact that the sum of the k+1 coordinates is constrained to be 1. Under the
assumptions that every component sample contributes an equal quantity to the com-
posite and that the composite has been mixed well before making the measurement,
the k + 1 individual sample values have a uniform distribution on Sk .

Let Ck+1
D = (×)k+1

i=1 [0, D] denote the (k + 1)-dimensional cube with opposite
vertices at the origin and the point (D, . . . , D). The symbol (×) denotes the Carte-
sian product of sets. The intersection of Sk and Ck+1

D is the set points in the simplex
that have all coordinates less than or equal to D. The probability of this event is the
ratio of the area of this intersection to the area of the k-simplex Sk . Now, consider
the probability that all component sample values of a composite of size k are less
than A when composite sample value is C . This is calculated as indicated above
with D = A/kC .

For higher dimensions (k > 3), this probability can be calculated directly, but
the calculation becomes too complicated. In this case, Monte Carlo simulation is an
easy and effective solution.

3.8.3 When Is the Maximum Entropy Model Reasonable
in Practice?

Consider a situation in which the analytical results of composites show a flat vari-
ogram, no obvious spatial pattern, and a right-skewed distribution. Approximate sta-
tistical independence of composite (and of component) samples would be a reason-
able assumption due to flat variogram, lack of pattern or trend, and independence of
measurement errors. Gamma distribution with shape parameter α and scale param-
eter β is a candidate distribution for the distribution of composite sample data due
to the right skew in the distribution. Even the exponential distribution is a candidate
distribution if the right tail is not very thick.

Further, it is a common practice to form composite samples from component
samples that are mutually related, either by spatial proximity or by some other
common feature. In such a case, component samples within a composite are not
independent. Such complications make it impossible to draw accurate quantitative
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inferences about variography and skewness of component samples based on com-
posite sample data. Nonetheless, quantitative inference about the variogram and
skewness of the distribution of component samples is possible under assumptions
like that of spatial stationarity, nonoverlapping composite formation, and so on. The
principle of maximum entropy seems to be reasonable in many situations of site
characterization.



Chapter 4
Estimating Prevalence of a Trait

4.1 Introduction

When presence/absence measurements are made on individual sampling units,
selected from a population, it is possible to either classify every sampling unit as
testing positive/negative or compute the proportion of sampling units that test posi-
tive. While the former is desired when the interest is in identifying those sampling
units that possess a certain trait (and hence test positive), the latter is useful when
the interest is not in the status of individual sampling units, but only in charac-
terizing the population by the proportion of sampling units that possess the trait.
The problem, then, is to estimate the proportion of sampling units in the popula-
tion that possess the trait, using presence/absence measurements. Here, the values
on the individual sampling units in the population are assumed to be independent
and identically distributed random variables. The usual procedure (without form-
ing composite samples) is to select and measure m individual sampling units and
to estimate the prevalence p by the sample proportion X̄m of individual sampling
units that possess the trait. This provides an unbiased estimator of p, the population
proportion of sampling units that possess the trait, since it is easy to note that

E[X̄m] = p and Var[X̄m] = p(1− p)

m
.

Instead of selecting and measuring m individual sampling units, it is possible to
consider the following composite sampling procedure. Select nk > m individual
samples, form and measure n < m composite samples of size k each. When the cost
of making measurement (testing) is large compared to that of collecting samples,
the procedure that uses composite samples may have a much smaller cost. Further,
an estimator based on the composite sample measurements may even have a smaller
mean square error.

The practice of estimating p with measurements on composite samples has been
widely used in estimating the proportion of infective vectors of disease-causing
agents among biological populations. An early use of composite sampling for
estimating the prevalence of a trait is reported by scientists studying virus trans-
mission rates of insects causing plant diseases (see Watson, 1936, for example).
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A number of reported studies have discussed statistical aspects of composite sam-
pling for estimating the prevalence (see, for instance, Gibbs and Gower, 1960; Chi-
ang and Reeves, 1962; Thompson, 1962; Kerr, 1971; Griffiths, 1972; Sobel and
Elashoff, 1975; Loyer, 1983; Swallow, 1985, 1987; Burrows, 1987).

In the composite sampling procedure, a total of n composite samples, each con-
sisting of k individual sampling units, are tested for the occurrence of a trait. The
trait is such that a composite sample is judged to test positive for the trait if at least
one of its constituent individual sampling units possesses the trait. For example,
a plant is judged as diseased after one or more of k vectors feeding on the plant
transmit the disease-causing agent. The identity of the individual sampling units
possessing the trait is not of interest in this case. If the probability of occurrence of
the trait in a single individual sampling unit is p and if individual sampling units
are independent, then the probability that a composite sample possesses the trait is
py = 1− (1− p)k .

Composite sampling for making a comparison between disease transmission
rates has been used to compare resistance of genetic sources (see Swallow, 1985).
Garner et al. (1988) suggest that composite sampling can also protect the confi-
dentiality of humans when, for example, a subject’s knowledge of the presence of
a disease might dissuade him/her from volunteering for individual testing for the
occurrence of the disease. Thompson (1960) and Swallow (1985) draw parallels
between estimating p by composite sampling and estimating densities of bacteria
on dilution plates (Fisher, 1921) or estimating the densities of plants in a quadrat
(Bartlett, 1935) by their presence or absence. The solution to the density estimation
problem is often modeled by the Poisson distribution, and the Poisson and binomial
distributions are very similar when p is small and n is large. In the problem of
estimating the prevalence of a trait with composite sample measurements, most of
the reported studies assume a binomial distribution for the number of individual
samples that possess the trait.

4.2 The Maximum Likelihood Estimator

Let y1, y2, . . ., yn represent the measurements on n composite samples of size k
each. Each of these measurements is 1 if the trait is present in the composite sample,
and it is 0 otherwise. The {yi } will then be observations on n independent Bernoulli
random variables with parameter py = 1 − qk where q = 1 − p. The likelihood

function of q is given by L(q) = (
1− qk

)n ȳn + (
qk

)n
(
1−qk

)
. Therefore, the log-

likelihood function of q is �(q) = ln(L(q)) = n ȳn ln
(
1− qk

)+ n (1− ȳn) ln(qk).
The maximum likelihood estimator of p is

p̂ = 1− (1− ȳn)1/k . (4.1)

Although 1 − ȳn , the proportion of composite samples that test negative, is an
unbiased estimator of (1 − p)k , a bias is introduced in p̂ by taking the kth root of
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1 − ȳn . In fact, p̂ is positively biased whenever k > 1 as is shown below using
properties of the binomial distribution and Jensen’s inequality for the expectation of
a convex function of a random variable:

E
[

p̂
] = 1− E

[
(1− ȳn)1/k

]
≥ 1− (1− E[ȳn])1/k

= 1−
(

1−
[
1− (1− p)k

] )1/k = p.

The mean and the variance of p̂ are, respectively, given by

E
(

p̂
) = 1−

n∑

i=0

(
i

n

)1/k (n
i

)[
(1− p)k

]i [
1− (1− p)k

]n−i
, (4.2)

Var
[

p̂
] =

n∑

i=0

(
i

n

)2/k (n
i

)[
(1− p)k

]i [
1− (1− p)k

]n−i − [
1− E

(
p̂
)]2

. (4.3)

The maximum likelihood estimator p̂ is expanded into a Taylor series around
the true parameter p so as to eliminate the leading term in the bias. This gives the
following expansion for the maximum likelihood estimator p̂:

p̂ = p + (
p̂ − p

) d p̂

dp
+ 1

2!
(

p̂ − p
)2 d2 p̂

dp2
+ · · · .

Taking term by term expectation of the Taylor series expansions of p̂ and
(

p̂ − p
)2,

we obtain

E
[

p̂
] = p + py(1− p)

(
k − 1

2k2

)[
1

n(1− py)
+ (1− 2py)(2k − 1)

3kn2(1− py)2
+ 0(p−3

y )

]

(4.4)
and

MSE[ p̂] = py(1− p)2

k2

[
1

n(1− py)
+ 1

n2(1− py)2

(
3

(
k − 1

k

)2

py

+2

(
k − 1

k

) (
1− py

))+ 0(p−3
y )

]
. (4.5)

The maximum likelihood estimator p̂ is consistent and has the asymptotic variance

a Var
[

p̂
] = 1− (1− p)k

nk2(1− p)k−2
. (4.6)

Several researchers have investigated the relationship between the bias in p̂ and p,
k, and n (see, for instance, Gibbs and Gower, 1960; Kerr, 1971; Griffiths, 1972;
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Loyer, 1983; Swallow, 1985, 1987; Boswell and Patil, 1987). Optimal composite
sample sizes have also been determined for specified values of k (Loyer, 1983;
Swallow, 1985), for specified values of m = k · n (Swallow, 1985), and for a range
of the cost of measuring composite samples relative to that of measuring individual
samples (Swallow, 1987).

Burrows (1987) proposed an alternative estimator which is a better estimator
of p in that it has smaller bias and mean square error than the maximum likelihood
estimator. Further it is just as easy to calculate as the maximum likelihood estimator.
The maximum likelihood estimator may not therefore be recommended at all. See
Section 4.4 for a comparison between the two estimators.

4.3 Alternative Estimators

The maximum likelihood estimator p̂ given above is biased because it is derived
from an unbiased estimator of a nonlinear function, (1 − p)k , of p. One approach
to the estimation of nonlinear functions, according to Burrows (1987), is found
in Haldane (1955) and Anscombe (1956). Burrows uses an estimator of the form

1−
[

nȲn+a
n+b

]1/k
, where a and b are arbitrary constants chosen so as to eliminate the

dominant term in the Taylor series expansion of the bias. The resulting estimator is
surprisingly simple, namely,

p̃ = 1− [
1− α ȳn

]1/k
, where α = 2kn/(2kn + k − 1).

Note that p̃ has a smaller bias and a smaller MSE than those of p̂ for the values of
k = 2, 50. The bias in p̃ is obtained from that in p̂ after removing the first term in
the Taylor series expansion, namely, 1

n(1−py)
. Thus, p̃ has a uniformly smaller bias

than p̂. Similarly, the MSE of p̃ is uniformly smaller than that of p̂. The optimal
composite sample size corresponding to a specified value of p̃ is different from the
optimal composite sample size corresponding to the same value of p̂. For combi-
nations of p, k, and n examined by Burrows, the bias of p̃ attained a maximum
of 5.2% of the bias of p̂, though higher optimal n were required to minimize the
MSE for the estimator p̃ than were required for the estimator p̂. Burrows gives a
table listing the optimal composite sample sizes for both the estimators and the ratio
MSE[ p̃]
MSE[ p̂] (in percentage form) for various values of n and p using the appropriate

optimal composite sample sizes.
A simple moment-type estimator of p is proposed by Gastwirth and Ham-

mick (1989). Under the assumptions made above, this estimator reduces to

p̄ = 1

nk

n∑

j=1

Y j ,

with
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bias
[

p̄
] = 1− kp − (1− p)k

k
(4.7)

and

MSE
[

p̄
] = 1

k2n
×

[
(n − 1)(1− p)2k + (2n − 2knp + 1) (1− p)k − k2np

(
2

k
− p

)
+ n

]
. (4.8)

Gastwirth and Hammick observe that the bias and the MSE of this simple estimator
are satisfactory only for small values of p(≤ 0.02) and small composite sample
sizes (k ≤ 10).

4.4 Comparison Between p̂ and p̃

Since the individual sample values are independent Bernoulli random variables with
a common parameter p, the average of n composite sample measurements, nȲn , has
a binomial distribution with parameters n and

(
1− qk

)
. This distribution, for given

values of m, k, and p, can be evaluated on a computer to obtain the means, the
variances, and the MSEs of both p̂ and p̃. For example,

E[ p̃] =
n∑

i=0

[
1−

(
1− ri

n

) 1
k
]

b
(

i;m,
(

1− qk
))

. (4.9)

Table 4.1 gives the result of some calculations carried out in order to illustrate how
the two estimators compare in their biases as well as in their mean squared errors
(MSEs).

4.5 Estimation of Prevalence in Presence of Measurement Error

If measurement errors are likely to occur, then the estimators of prevalence need to
be adjusted accordingly. In particular, if there is a probability α of a false-positive
test result and a probability β of a false-negative test result, then the probability of
a positive test response, p+, is given by

p+ = (1− p)α + p(1− β).

The prevalence p can then be expressed in terms of p+, α, and β as follows:

p = p+ − α

1− α − β
,
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Table 4.1 Bias and mean squared error of the maximum likelihood estimate p̂ and the alternative
estimate p̃ for selected composite sample sizes (k) when the individual prevalence rate is p = 0.1
and the sample size is n = 25

k Bias( p̂) MSE( p̂) Bias( p̄) MSE( p̃)

7 0.002555 0.000797 0.000031 0.000735
8 0.002795 0.000755 0.000036 0.000686
9 0.003053 0.000732a 0.000042 0.000652
10 0.003340 0.000733 0.000050 0.000628
11 0.003684 0.000777 0.000760 0.000614
12 0.004137 0.000915 0.000773 0.000605
13 0.004801 0.001248 0.000788 0.000603b

14 0.005847 0.001947 0.000105 0.000605
15 0.007527 0.003266 0.000123 0.000611

20 0.038920 0.032273 0.000071 0.000654
21 0.052627 0.045217 −0.000021 0.000656c

22 0.069465 0.061118 −0.000162 0.000653

35 0.469203 0.429973 −0.008624 0.000374
36 0.500732 0.458432 −0.009731 0.000365
37 0.530902 0.485585 −0.010875 0.000362d

38 0.559597 0.511337 −0.012049 0.000365
39 0.586741 0.535630 −0.013247 0.000370
a Minimum MSE( p̂) at k = 9
b Local minimum MSE( p̂) at k = 13
c Local maximum MSE( p̂) at k = 21
d Local minimum MSE( p̂) at k = 37

and the maximum likelihood estimator of p is accordingly adjusted and is written
as

p̂ = 1− (
1− p∗

)1/k
,

where

p∗ = ȳ − α

1− α − β
.

(Note that ȳ is the maximum likelihood estimator of p+.) For more details, see
Garner et al. (1990).



Chapter 5
A Bayesian Approach to the Classification
Problem

5.1 Introduction

When the measurements are present/absent, the optimal composite sample size can
be determined for any specified retesting procedure if the prevalence p of individual
samples possessing the trait is known. Chapter 2 contains the discussion and deriva-
tions of the necessary results for this purpose. Clearly, then, the optimal composite
sample size depends on this prevalence. However, since the prevalence is usually
not known prior to sampling, it is not always possible to accurately determine the
optimal composite sample size.

Suppose p is the prevalence of polluted samples. Assuming that the pollution
affects every sample independently, p is the probability that any individual sample
is polluted. Let k denote the composite sample size. Determination of the optimal
composite sample size without knowing p can lead to one of the two types of errors:
a strategic error and a tactical error. A strategic error is the error of adapting a wrong
strategy; that is, either we employ composite sampling when it would result in a
relatively higher cost than the cost of exhaustive testing of individual samples or
we do not employ composite sampling when it would result in a lower relative cost
than that of exhaustive testing. A tactical error is the error of choosing a nonoptimal
composite sample size which may result in a relative cost smaller than unity but still
higher than what could have been achieved with the optimal composite sample size.

For example, consider a situation with the true prevalence rate of p = 0.5. In this
case exhaustive testing has a smaller relative cost compared to that of composite
sampling with any composite sample size k ≥ 3. The graph in Fig. 5.1a shows
the relative cost that results from a strategic error of using composite samples with
values of k from 3 to 50 when the prevalence rate is p = 0.5. Next, consider a
situation with the true prevalence rate of p = 0.05. Suppose a strategic error of
not employing composite sample techniques is made, resulting in a relative cost of
unity. Had we used exhaustive retesting with any composite sample size k from 3 to
50, we would have achieved a relative cost lower than unity, as shown in the graph
in Fig. 5.1b. Finally, consider a situation with the prevalence rate of p = 0.01. The
optimal composite sample size in this case is k = 11, with a relative cost of 0.1956.
Incorrect prediction of p, resulting in a tactical error of using a nonoptimal value

G.P. Patil et al., Composite Sampling, Environmental and Ecological Statistics 4,
DOI 10.1007/978-1-4419-7628-4_5, C© Springer Science+Business Media, LLC 2011

87



88 5 A Bayesian Approach to the Classification Problem

Fig. 5.1 (a) Effect of a tactical error. The small horizontal line represents the relative cost if the
optimal composite sample size is used. The curve represents the actual relative cost of composite
sampling as a function of the composite sample size. (b) and (c) Effects of strategic errors. The
horizontal line at relative cost = 1 represents the relative cost of exhaustive testing. The curve
represents the actual relative cost of composite sampling as a function of the composite sample
size. (d) Shows (a), (b), and (c) on a single graph to facilitate comparison

of k, will incur a relative cost higher than 0.1956. However, the relative cost is still
smaller than unity, the relative cost of exhaustive testing. The graph in Fig. 5.1c
depicts this situation. Fig. 5.1d combines the graphs for all the three cases described
above.

A Bayesian formulation allows us to approach this problem more realistically.
Usually, there is some prior information, some local knowledge, or some expert
opinion available on the prevalence of samples that possess the trait. Using some
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or all of these forms of information, it is possible to specify a prior probability
distribution for the prevalence and thereby predict a value of the prevalence. This
predicted value of the prevalence is then used to determine the composite sample
size. After a batch of samples are classified using any of the classification proce-
dures described earlier (see Chapter 2), the information on the prevalence can be
updated by evaluating the posterior distribution of the prevalence, given the number
of samples classified as possessing the trait. In monitoring situations, this posterior
can be used as the prior at the subsequent monitoring stage. In this way, the prior
and the empirical information together may result in a composite sample size that
converges to the optimal value, as the monitoring progresses.

We now formalize the notation used in the remainder of this chapter. Samples are
to be classified in successive stages of sampling. Let p denote the true but unknown
prevalence of polluted samples. We assume that the pollution process acts indepen-
dently and identically on individual samples. Then p is also the probability that a
randomly selected sample is polluted. That is, the probability, p, that a given sample
is polluted is the same for every individual sample and does not depend on which, if
any, of the other samples are polluted. For i = 1, 2, . . ., suppose that ni samples are
classified during the i th sampling stage. This may be done using composite samples
or by exhaustively testing all the ni individual samples, because the outcome of the
classification does not depend on the particular method used for classifying samples.
This is so because we consider only those procedures that accurately classify the
samples. To distinguish the true prevalence p from its predicted value, we use pi to
denote the predicted value of p for the i th sampling stage. This predicted value, pi ,
is used to determine the composite sample size ki for use at the i th sampling stage.
As the result of classification of ni samples, there will be a random number Xi of
samples classified as polluted. By the assumptions made above, Xi has a binomial
distribution with parameters ni and p. When a prior distribution of p is used, the
parameters of the prior distribution will also have a subscript indicating the sampling
stage. For instance, imposing a conjugate prior on our belief about p implies a beta
distribution with parameters α and β, say. For i = 1, 2, · · · , let αi and βi indicate
the parameters of the prior distribution used at the i th sampling stage. The predicted
value of p for the i th sampling stage is then given by pi = αi/(αi + βi ). Note that
pi is never a parameter in the usual sense; it is a predicted value and thus is neither
the true value nor an unknown.

Under the usual method of exhaustively testing every individual sample, the total
number of measurements is the same as the number of individual samples to be
classified. That is, there is one measurement per individual sample and hence, the
relative cost is 1. The problem is to decide whether to form composite samples
for making measurements or to carry out exhaustive testing. For the purpose of
illustrating the difference between the two alternatives, we consider only exhaustive
retesting as the composite sampling procedure of classification.

In order to implement exhaustive retesting, it is necessary to choose the com-
posite sample size k (k = 1 implies exhaustive testing). The optimal choice of
k minimizes the relative cost for a specified value of p. One possible method of
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choosing k is to predict the value of the prevalence p based on the available prior
information, and then one can determine the corresponding optimal composite sam-
ple size for exhaustive retesting. After k individual samples in a single composite
sample are classified, the information on the prevalence can be updated using the
number of samples classified as polluted, and this procedure can be repeated at
every monitoring stage.

5.2 Bayesian Updating of p

As described in the preceding section, samples are to be classified in successive
stages. Suppose that the available prior information, local knowledge, and expert
opinion on the prevalence of polluted samples are expressed in terms of a beta
distribution with parameters α and β. The prior pdf of p is then given by

f (p) = 1

B(α, β)
pα−1(1− p)β−1, 0 < p < 1;

where α > 0, β > 0, and

B(α, β) = �(α)�(β)

�(α + β)
,

where � is the gamma function.
Suppose n samples are classified and X of them are classified as polluted. Then,

for a given value of p, the random variable X follows the binomial distribution with
parameters n and p. That is, the probability mass function of X is given by

Pr[X = x |p] =
(

n

x

)
px (1− p)n−x , x = 0, 1, . . . , n; 0 < p < 1.

The conditional pdf of p given that X = x is then derived as follows.
The conditional pdf f (p|X = x) of p given that X = x is defined by

f (p|X = x) = f (p) Pr[X = x |p]
Pr[X = x]

= f (p) Pr[X = x |p]
∫ 1

0 Pr[X = x |p] f (p)dp
.
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Now,

1∫

0

Pr[X = x |p] f (p)dp =
1∫

0

(
n

x

)
px (1− p)n−x · 1

B(α, β)
pα−1(1− p)β−1dp

=
(n

x

)

B(α, β)

1∫

0

pα+x−1(1− p)n+β−x−1dp

=
(

n

x

)
· B(α + x, n + β − x)

B(α, β)
.

We therefore have

f(p|X = x) =
(n

x)
B(α,β)

pα+x−1(1− p)n+b−x−1

(n
x)B(α+x,n+β−x)

B(α,β)

= 1

B(α + x, n + β − x)
pα+x−1(1− p)n+β−x−1, 0 < p1.

Note that this is the pdf of a beta distribution with parameters α+ x and n + β − x .
We now establish the updating formula for the predicted value of the prevalence

of polluted samples at successive sampling stages.
Suppose that the parameters of the initial prior distribution of p are denoted by

α1 and β1. Note that this prior distribution of p is to be used for predicting the value
of p at the first sampling stage. As noted earlier, the prior expectation of p is to be
used as the predicted value of p. Now the expectation of the beta distribution with
parameters α1 and β1 is given by

p1 = α1

α1 + β1
.

Let k1 denote the composite sample size that minimizes the relative cost
1+ 1

k − (1− p1)
k . Let n1 individuals be classified during the first sampling stage,

and further let X1 denote the number of samples classified as polluted. Then the pos-
terior distribution of p given X1 is a beta distribution with parameters α2 = α1+X1
and β2 = n1+β1−X1. This posterior distribution of p is used as its prior distribution
for the second sampling stage. That is, for the second sampling stage,

p2 = α1 + X1

n1 + β1 − X1

is the predicted value of the prevalence of polluted samples, and k2 is the corre-
sponding recommended composite sample size.
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Proceeding in the same manner from one sampling stage to another, we obtain a
sequence of the predicted values of the prevalence of polluted samples at successive
sampling stages. Thus,

pi = αi

αi + βi
, i = 1, 2, . . . ;

where

αi = αi−1 + Xi−1;
βi = ni−1 + βi−1 − Xi−1; i = 1, 2, . . . .

That is, for positive integers r ≥ 2, we have

αr = α1 +
r−1∑

i=1

Xi ,

βr = β1 +
r−1∑

i=1

ni −
r−1∑

i=1

Xi .

The predicted value pr = αr
αr+βr

is used to determine the composite sample size kr

at the r th sampling stage, r = 1, 2, . . ..
Since closed-form formulas are not available for the relative cost at successive

stages, computer calculations are used to calculate the binomial probabilities for all
possible cases and to evaluate the relative cost for the first 10 stages of monitoring.
The number of cases in the computation increases geometrically with the number
of sampling stages. The updating is done after each composite sample has been
processed. That is, ni is taken as ki , i = 1, 2, . . . , 10.

Since composite sample techniques are cost-efficient only for relatively small
prevalences, it was decided to use J-shaped beta prior distributions and to restrict
the prevalence to be smaller than 0.5. If the mean p is restricted to be smaller than
0.5 then the J-shaped beta distribution with mean μ and the largest possible variance
has β = 1 and α = μ/(1 − μ), that is, λ = 1.0 below. If the mean is μ = 0.5,
then the distribution is the uniform distribution. The J-shaped distribution with mean
μ < 0.5 and the smallest possible variance has α = 1 and β = (1 − μ)/μ, that is,
λ = 0.0 below. Then J-shaped curves with intermediate variances are obtained by
taking the following linear combinations:

α = λ

(
μ

1− μ

)
+ (1− λ) · 1,

β = λ · 1+ (1− λ)

(
1− μ

μ

)
,
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with λ = 0.0, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The variances of these seven distribu-
tions are shown in Fig. 5.2a, b. Large variances cause large changes when updating.
When the initial predicted prevalence is far from the true prevalence, large changes
are desirable.

Fig. 5.2 Variances for J-shaped beta distributions: α = λ
(

μ
1−μ

)
+ (1 − λ) · 1, β = λ · 1 +

(1− λ)
(

1−μ
μ

)
; λ = 1.0 gives maximum variance; λ = 0.0 gives minimum variance

However, when the initial predicted prevalence is close to the true prevalence,
large changes cause the procedure to deviate from the optimal procedure, and it
may take several sampling stages for it to approach the optimal procedure.

Although the emphasis is on the relative cost, the average composite sample sizes
are also calculated. This chapter assumes that a composite sample of any size can be
formed. Small predicted prevalences result in large composite sample sizes. When
α = 1.0, the composite sample size shoots up dramatically for small predicted
prevalences and small true prevalences and takes several sampling stages to come
back down. The use of larger predicted prevalence and/or the use of smaller values
of α may avoid this problem.

5.3 Minimization of the Expected Relative Cost

Recall that the relative cost for the exhaustive retesting procedure, given by RC =
1 + 1/k − qk , is a function of the composite sample size k and the prevalence
p = 1−q of the trait under study. In decision-theoretic notation, since the composite
sample size is a decision of the statistician and the prevalence of the trait is beyond
the statistician’s control, the relative cost is a loss function, which could be written
as

L(k, q) = 1+ 1/k − qk .
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The approach in the foregoing discussion imposed a conjugate prior on the preva-
lence p, giving the expected prevalence p̂, say, and then the composite sample size,
k̂, say, that minimizes L(k, q̂) was determined. That is, k̂ satisfies

L
(

k̂, q̂
)
= min

k
L(k, q̂).

In this section, we consider a decision-theoretical approach, minimizing the
expected loss rather than the loss function at the expected prevalence. Thus, we
use the prior distribution with a density f , say, to compute the risk function

R(k, f ) = E[L(k, q)] =
1∫

0

L(k, q) f (p)dp

and then determine the composite sample size k that minimizes R(k, f ). The con-
jugate prior distribution of the prevalence, p, is a beta distribution, which has two
parameters, α and β. Thus, the risk function can be expressed as

R(k, θ) =
1∫

0

L(k, q)
1

B(α, β)
pα−1qβ−1dp

= 1+ 1

k
− B(α, β + k)

B(α, β)
,

where θ = (α, β) and B(α, β) = �(α)�(β)
�(α+β)

. The composite sample size k that min-
imizes R(k, θ) will be the optimal composite sample size since it minimizes the
expected relative cost under the beta prior distribution.

The composite sample size k determined by this method is a step function of
α and β, which are the parameters of the beta prior distribution. Note that the
composite sample size determined by minimizing the relative cost for the predicted
prevalence is a function of the mean of the prior distribution, α/(α + β). Thus, the
method of the preceding section would return the same composite sample size for
all pairs (α, β) which have α/(α+β) constant. To get an idea as to how the values of
k determined by minimizing R(k, θ) change with α and β, some numerical results
were obtained. These are shown in Fig. 5.3a, b. Note that the contour lines in these
figures are not straight lines.

The sequential updating of the prior information can be described as follows.
Let the initial beta prior on p have the parameters α1 and β1. For the Dorfman
retesting scheme, the composite sample size for the first stage k1 is the value of k
which minimizes R (k, θ1), where θ1 = (α1, β1). Then composite samples of size
k1 are formed and tested. Suppose X1 individual samples out of n1 are classified as
polluted in the first stage.



5.4 Discussion 95

Fig. 5.3 Regions of optimal composite sample size k as a function of α and β

The posterior distribution of p given X1 is then beta with parameters α2 =
α1 + X1 and β2 = β1 + n1 − X1. This distribution is used as the prior distri-
bution at the second stage. For Dorfman retesting scheme, the composite sample
size, k2, corresponds to the risk function R(k, θ2), where θ2 = (α2, β2). Composite
samples of size k2 are then formed and tested, yielding X2 individual samples that
test positive for pollution. In general, after r sampling stages, as in the preceding
section, the posterior distribution of p is the beta distribution with parameters

αr+1 = α1 +
r∑

i=1

Xi and

βr+1 = β1 +
r∑

i=1

ni −
r∑

i=1

Xi .

This distribution is then used as the prior distribution of p for the (r +1)th stage.

5.4 Discussion

Even though composite sample techniques are known to be cost-efficient, it is not
always possible to arrive at the optimal composite sample size. The potential risk
of not being able to arrive at the optimal composite sample size is negotiated by the
sequential empirical Bayesian approach described in this chapter. Since closed-form
expressions are not available, numerical results are worked out for graphical presen-
tation in this chapter. An alternative to the computations could be a simulation study,
but it would result only in approximate results. It was therefore preferred to present
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the results of computations along with the algorithms. Due to limitations on the
computing time, only the first 10 sampling stages were included in the computations
reported here. The algorithms, however, are very general and can be implemented
to include any desired number of sampling stages for the purpose of computing the
relative costs as well as the composite sample sizes at all the sampling stages.

This chapter deals with a situation where all the individual samples have the
same probability p of being polluted, independently of one another. A more general
situation could have the probability that a sample is polluted changing from sample
to sample. Another possibility is regarding the type of measurement. This chapter
assumes a presence/absence measurement, and therefore every sample is simply
classified as testing positive or negative. If the measurement is continuous, then
the classification of samples will involve a criterion value for a composite sample,
which depends on the composite sample size and the criterion value for an individual
sample. Thus, if c is the criterion value for an individual sample and if k is the
composite sample size, then the criterion value for a composite sample (of size k) is
c/k. If the method of measurement is subject to a detection limit d, then one must
have c/k ≥ d in order to prevent any false-negative tests. This requirement restricts
the composite sample size k ≤ c/d.



Chapter 6
Inference on Mean and Variance

6.1 Introduction

A common purpose of compositing sampling is to draw statistical inference on the
population mean, and possibly on the population variance. As noted earlier (see
Chapter 1), sampling units may be selected from a finite population or from a bulk
population. In the former case, the sampling units are defined and exist before
sampling while in the latter case, the sampling units are created by the sampling
process. In either case, however, the sampling units as selected from the population
are called individual samples so that the remainder of this chapter applies equally
to both a finite population and a bulk or integrated population. Every individual
sample has a unique value for the variable of interest, and this value is called the
individual sample value. Individual sample values are denoted by X with a possible
subscript identifying an individual sample. Thus, the individual sample values for
m individual samples would be denoted by X1, X2, . . . , Xm . Usually the individual
sample values are assumed to be independent and identically distributed with mean
E[Xi ] = μx and Var[Xi ] = σ 2

x . If an individual sample is subjected to measure-
ment, then its measured value, also called the individual sample measurement, need
not coincide with the corresponding individual sample value due to a possible mea-
surement error. It is a common practice to derive an aliquot, also called an increment,
from an individual sample for making measurement. In such a case, the individual
sample is said to be homogeneous if every aliquot derived from this individual sam-
ple has the same value as that of the individual sample. Under the assumption of
homogeneity of all individual samples, making measurements on either individual
samples or aliquots derived therefrom would yield identical results, except for a
possible measurement error.

A composite sample of size k is formed by selecting k individual samples and
then pooling them together. It is also possible that a composite sample is formed
by pooling k aliquots derived from the k individual samples to be composited. It is
necessary to homogenize the composite sample in order to make it a homogeneous
primary sampling unit. Otherwise, the nonhomogeneity of the composite sample
should be accommodated in the statistical treatment of composite sample measure-
ments. Also, if the aliquots derived from the individual samples that contribute to a
composite sample are unequal in volume, then their contributions to the composite
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sample value will also be unequal. In this case, the composite sample value is a
weighted average of the individual sample values. In addition, it is not always possi-
ble to determine or control the volumes of the individual samples that contribute to a
composite sample. As a consequence, the relative proportions of these volumes have
to be treated as random variables. This case is called the case of composite sampling
with random weights. The foregoing discussion makes it clear that drawing statisti-
cal inference on the population mean using composite sample data involves a variety
of complexities through homogeneity or nonhomogeneity of the composite samples,
possible randomness of weights, and possible measurement error.

In this chapter, we relate the population parameters to the parameters of the dis-
tribution of composite sample data. It is important to note that the population is
modeled only through its first two moments, and no distributional assumption is
required on the population. As the result of compositing several individual samples,
the composite sample value is an average of the constituent individual sample val-
ues. A consequence of this averaging is that the probability distribution of composite
sample values is closer to the normal distribution than that of individual sample
values. The normality of the composite sample values is more pronounced if the
population distribution is moderately non-normal. That is, if the population distri-
bution is not highly skewed, then the composite sample values may be assumed to
be approximately normally distributed. This observation permits not only estima-
tion of population parameters using composite sample data but also construction
of confidence intervals and tests of hypotheses involving these parameters. In this
chapter, we develop the necessary statistical theory for estimation of population
parameters, construction of a confidence interval for the population mean, and con-
struction of the test for a hypothesis in the population mean. For a discussion on tests
of hypotheses with composite sample data, see also Mack and Robinson (1985),
Messner et al. (1990), Neptune et al. (1990), and Edland and van Belle (1994).

6.2 Notation and Basic Results

6.2.1 Notation

Let X denote the individual sample values for the characteristic of interest (observed
or conceptual), let Y (and occasionally Z ) denote the composite sample value, and
let W denote the weights of the individual samples within a composite. We shall
use uppercase letters to denote random variables and lowercase letters for constants.
Moreover, lowercase boldface letters will denote random or constant vectors and
uppercase boldface letters will denote random or constant matrices. Let ε denote
the measurement error that may occur while making measurement on a sample.
Subscripts will be used to distinguish between different samples− individual, com-
posite, as well as subsamples.

Let n be the number of composite samples; k be the composite sample size,
that is, the number of individual samples contributing to a single composite
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sample; and s be the number of subsamples drawn from a single composite sam-
ple. Define μx = E[x], the expected value of x; Σ x = Var[x], the vari-
ance/covariance matrix of x; and �x,z = cov [x, z], the covariance matrix between
x and z. Let x j i =

[
X ji1, X ji2, . . . , X jik

]′ be the vector of values taken up by
the k individual samples forming the i th subsample of the j th composite sample,
i = 1, . . . , s; j = 1, . . . , n; w j i =

[
W ji1, W ji2, . . . , W jik

]′ be the vector of
weights (compositing proportions) with which the k individual samples contribute
to the i th subsample of the j th composite sample, i = 1, . . . , s; j = 1, . . . , n; and
Y ji = ∑k

�=1 W ji� X ji� = w′j i x j i be the measurement on the i th subsample from
the j th composite sample, i = 1, . . . , s; j = 1, . . . , n.

6.2.2 Basic Results

Let x be a random k-vector with expectation μx and variance/covariance matrix Σ x

and let c be a constant k-vector. We have the following results for the expectation
and the variance of c′x.

Lemma 6.2.1 Expectation of c′x :

E
[
c′x

] = c′μx .

Proof Note that

c′x =
k∑

�=1

c� X�

and therefore

E
[
c′x

] = E

[
k∑

�=1

c� X�

]

=
k∑

�=1

c�E (X�) by linearity of expectation

= c′μx .

Lemma 6.2.2 Variance of c′x :

Var
[
c′x

] = c′Σ x c.

Proof Note that

c′x =
k∑

�=1

c� X�
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and therefore

Var
[
c′x

] = Var

[
k∑

�=1

c� X�

]

=
k∑

�=1

c2
�Var(X�)

+
∑

� �=�′
c�c�′cov (X�, X�′)

= c′Σ x c.

Corollary 6.2.1

E
[
xx′

] = Σ x + μxμ
′
x .

Proof Note that

Σ x = E
[(

x − μx
) (

x − μx
)′]

= E
[
xx′

]− μxμ
′
x

and therefore

E
[
xx′

] = Σ x + μxμ
′
x ,

and hence the corollary is proved.

Lemma 6.2.3 Let x be a random k-vector, and let c and d be constant k-vectors.
Then

cov
[
c′x, d ′x

] = c′Σ x d.

Proof Consider

cov
[
c′x, d ′x

] = cov

(
k∑

�=1

c� X�,

k∑

�′=1

d�′X�′

)

=
[(

k∑

�=1

c� X�

)(
k∑

�′=1

d�′X�′

)
−

(
k∑

�=1

c�μ�

)(
k∑

�′=1

d�′μ�′

)]

= E

[
k∑

�=1

k∑

�′=1

c�d�′X� X�′

]
− (

c′μx
) (

d ′μx
)
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= E
[
c′xx′d

]− c′μxμ
′
x d

= c′E
(
xx′

)
d − c′μxμ

′
x d

= c′
[
Σ x + μxμ

′
x

]
d − c′μxμ

′
x d by Corollary 6.2.1

= c′Σ x d,

and hence the lemma is proved.
Let x be a random k-vector and let C be a k × k constant matrix. We then have

the following result.

Lemma 6.2.4 Expectation of x′Cx:

E
[
x′Cx

] = μ′x Cμx + tr [CΣ x ] .

Proof Note that

x′Cx = tr
[
Cxx′

]

and therefore

E
[
x′Cx

] = E
[
trC

(
xx′

)] = tr
[
C E

(
xx′

)]

by linearity of expectation in Lemma 6.2.3:

= tr
[
C
(
μxμ

′
x +Σ x

)]

= tr
[
Cμxμ

′
x

]+ tr [CΣ x ]

= μ′x Cμx + tr [CΣ x ] .

6.3 Estimation Without Measurement Error

Suppose n composite samples are formed using known volumes of k individ-
ual (usually secondary) sampling units each. In case all the primary sampling
units are homogeneous, composite sample values are simply obtained as weighted
averages of values of the respective constituent primary sampling units. Suppose
m = kn. Suppose n composites are formed from k primary sampling units each
and are measured. Let Y1, . . . , Yn denote the n composite sample measurements. If
Vj1, Vj2, . . . , Vjk are volumes of the k secondary sampling units that form the j th
composite sample and if X j1, X j2, . . . , X jk are the corresponding primary sam-
pling unit values, then

Y j = W j1 X j1 +W j2 X j2 + · · · +W jk X jk,
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where

W ji = Vji

Vj1 + · · · + Vjk
.

Now

E
[
Y j

] =
k∑

i=1

W ji E
[
X ji

] = μx ,

since

k∑

i=1

W ji = 1

and

μx = μx 1k .

Further, assuming Σ x = σ 2
x Im , we have

Var
[
Y j

] =
k∑

i=1

W 2
j i Var

[
X ji

]

= σ 2
x

(
k∑

i=1

W 2
j i

)
,

provided X j1, . . . , X jk are independent.
If the k secondary sampling units that form a composite have the same vol-

ume, then W ji ≡ 1
k . In this case, E

[
Y j

] = μx and Var
[
Y j

] = σ 2
x /k. Further, if

Ȳn = 1
n

∑n
j=1 Y j is the average of the n composite sample measurements, then

E
[
Ȳn

] = μx and Var
[
Ȳn

] = [
σ 2

x /k
]
/n = σ 2

x /m, since m = nk. Recall that
the average of m = nk individual sample measurements yield E

[
X̄m

] = μx and
Var

[
X̄m

] = σ 2
x /m. In other words, making m = nk measurements on individual

sampling units yield an unbiased estimator of the population mean μx with a vari-
ance of σ 2

x /m. On the other hand, only n measurements on composite sample also
yield an unbiased estimator of μx with the same variance σ 2

x /m. It is then obvious
that at least under the idealistic assumptions of independence of primary sampling
units and compositing of equal volumes of secondary sampling units, composite
sampling achieves substantial savings in the cost of measurement by reducing the
total number of measurement from m = nk to n.
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6.4 Estimation in the Presence of Measurement Error

The measurements, either on individual or on composite samples, are not always
exact. Measurements are often made with error. In the presence of measurement
errors, the measured value of a sampling unit or a sample is different from its true
value. For instance, the measurement on an individual sample, Ti , may be related to
the true value, Xi , by the following relationship:

Ti = Xi + εi , i = 1, . . . , m.

Assuming {εi } to be independent and identically distributed with E[εi ] = 0 and
Var[εi ] = σ 2

ε , we have

E[Ti ] = μx and Var[Ti ] = σ 2
x + σ 2

ε .

If a sample of m primary sampling units is selected at random and measured, then
the sample mean T̄m is an unbiased estimator of the population mean μx . Further,
assuming that measurement errors are independent of sample values, we also have

Var
[
T̄m

] =
(
σ 2

x + σ 2
ε

)
/m.

Suppose n composites are formed from k primary sampling units each. If mea-
surement error has the same behavior when measuring composite samples as when
measuring individual samples, then the composite sample measurement Y j will be
given by

Y j =
k∑

i=1

W ji X ji + ε j ,

where W ji = Vji/(Vj1 + · · · + Vjk), and ε j is the measurement error with
E
[
ε j
] = 0, Var

[
ε j
] = σ 2

ε . Therefore, E
[
Y j

] = ∑k
i=1 W ji E

[
X ji

] = μx ,
and assuming that the measurement error is independent of measured values,

Var
[
Y j

] = σ 2
x

(∑k
i=1 W 2

j i

)
+ σ 2

ε .

If equal volumes of all the k individual samples are used to form compos-
ite samples, then W ji ≡ 1

k and hence E
[
Y j

] = μx , Var
[
Y j

] = σ 2
x /k + σ 2

ε ,

j = 1, 2, . . . , n.
If Ȳn is the average of the n composite sample measurements, then assuming

independence between composite samples, we obtain

E
[
Ȳn

] = μx ,

Var
[
Ȳn

] =
(
σ 2

x /k + σ 2
ε

)
/n

= σ 2
x /m + σ 2

ε /n.
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Compare the variance of the composite sample mean Ȳn with that of the individual
sample mean X̄m , which is given by

Var
[
X̄m

] = σ 2
x /m + σ 2

ε /m.

Here, the individual sample mean has a smaller variance, but the composite sample
mean has a smaller cost of measurement. Composite sample mean is based on only
n measurements as opposed to m = nk measurements required to obtain the indi-
vidual sample mean. If the cost of measurement is relatively high, then composite
sampling may result in substantial savings in the cost of measurement, although it
entails a reduction in the precision as well.

6.5 Maintaining Precision While Reducing Cost

If a certain level of precision is desired about the mean, then composite sampling
may be able to maintain that precision level, while reducing the overall cost of sam-
pling and of measurement relative to measuring each individual sample (Paasivirta
and Paukku, 1989a). Given the same model assumptions as before, the variance of
the mean of m individual samples measured with error is

Var
[
X̄m

] =
(
σ 2

x + σ 2
ε

)
/m,

while the variance of the mean of n composite samples, each of size k, is

Var
[
Ȳn

] = (σ 2
x /k + σ 2

ε )/n.

Maintaining precision in the mean between estimators based on m individual
samples and on n composite samples can be accomplished by restricting m

m ≥ n(λ+ (1− λ)/k),

where λ = σ 2
ε

(
σ 2

x + σ 2
ε

)
is the ratio of measurement error variability relative to the

sum of measurement error and sampling variability.
If Cs and Ca represent the cost of sampling and the cost of analysis or mea-

surement, respectively, then the total sampling and analytical costs of m individual
samples and of n composite samples, each of size k, are m(Cs+Ca) and n(kCs+Ca),
respectively. Here the additional cost of forming the composite samples, after the
individual samples have been taken, is negligible.

Substantial cost savings can be realized by composite sampling, as compared to
measuring each individual samples, while maintaining precision about the mean.
This is especially true when the analytical measurements are precise, but costly,
relative to sampling.
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For example, if the cost of measurement is 10 times the cost of taking a sample,
then it is only 24% as costly to composite 4 sets of 10 individual samples as it is
to measure each of 30 individual samples, yet precision in the mean is maintained
when λ ≥ 0.05.

In practice, there may be a number of attributes to measure, each with a different
λ. Therefore, the optimal choice of k and n may differ for each attribute, but only one
choice can be made. Possible design strategies might include a compromise choice,
utilizing the importance of the attributes to help determine the design or preserving
precision about all attributes.

6.6 Estimation of σ 2
x and σ 2

ε

Using composite samples as described in Section 6.4, the components of variance,
σ 2

x and σ 2
ε , are confounded and cannot be decomposed. However, the mean and

these two variance components can be separately estimated by taking multiple com-
posite samples of different sizes (Cameron, 1951).

Let Ȳ1 and Ȳ2 be the averages of n1 and n2 composite sample measurements of
sizes k1 and k2, respectively, and let S2

1 and S2
2 be the corresponding sample mean

squares of the composite sample measurements. Now S2
i is an unbiased estimator of

Var
[
Ȳi
] =

(
σ 2

x

ki
+ σ 2

ε

)
/ni

for i = 1, 2. Plugging in S2
i for Var

[
Ȳi
]

and solving these two equations we obtain
the moment estimators of the two variance components as given below:

σ̃ 2
x =

(
1

k1
− 1

k2

)−1 (
n1S2

1 − n2S2
2

)
,

σ̃ 2
ε = (k1 − k2)

−1
(

k1n1S2
1 − k2n2S2

2

)
.

Further, since both Ȳ1 and Ȳ2 are unbiased estimators of μx , we have for any real
number a,

E
[
aȲ1 + (1− a)Ȳ2

] = μx

and

Var
[
aȲ1 + (1− a)Ȳ2

] = a2Var
[
Ȳ1

]+ (1− a)2Var
[
Ȳ2

]

= a2

n1

[
σ 2

x

k1
+ σ 2

ε

]
+ (1− a)2

n2

[
σ 2

x

k2
+ σ 2

ε

]
.
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The value of a that minimizes this variance is

a∗ = n1σ
2
2 /(n1σ

2
2 + n2σ

2
1 ),

where

σ 2
1 =

σ 2
x

k1
+ σ 2

ε ,

σ 2
2 =

σ 2
x

k2
+ σ 2

ε .

This value can be estimated by replacing σ 2
i by S2

i , giving

ã = n1S2
2/(n1S2

2 + n2S2
1).

Therefore

μ̃x = ãȲ1 + (1− ã)Ȳ2

is an estimator of μx .
In general, μ̃x is a biased estimator of μx since ã and Ȳ1, Ȳ2 are not stochasti-

cally independent. However, if the distribution of the individual sample values is the
normal distribution, then μ̃x is an unbiased estimator of μx . This is true since in this
case Ȳ1, Ȳ2, S2

1 , and S2
2 are all stochastically independent.

6.7 Estimation of Population Variance

Loss of information on individual sample values has been a major limitation of
composite sampling procedures. When measurements are obtained on composite
samples, information on individual sample values is lost. As a consequence, infor-
mation on sample-to-sample variation within composites is also lost. If estimation
of population variance is desired, then the sample-to-sample variation within com-
posites may have to be compared with the variation within composites and may have
to be compared with the variation between composite sample measurements. Using
the notation of the preceding sections, let X ji , i = 1, . . . , ki ; j = 1, . . . , n, denote
the individual sample values and let Y j , j = 1, . . . , n, denote the composite sam-
ple measurement. For simplicity, we assume that all composite samples are formed
from k individual samples so that m = nk. We also assume that W ji ≡ 1

k so that

Y j = 1
k

∑k
i=1 X ji , j = 1, 2, . . . , n.

The individual sample mean X̄m is an unbiased estimator of the population mean
μx , and the variance of X̄m is given by σ 2

x /m. An unbiased estimator of σ 2
x is

given by
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S2
x =

1

m − 1

n∑

j=1

k∑

i=1

(X ji − X̄m)2.

Every composite sample measurement Y j has expectation μx and variance σ 2
x /k.

The composite sample mean Ȳn = 1
n

∑n
j=1 Y j is an unbiased estimator of the pop-

ulation mean μx , and the variance of Ȳn is given by σ 2
x /m. An unbiased estimator

of σ 2
x using composite sample measurements is given by

S2
y =

k

m − 1

n∑

j=1

(Y j − Ȳn)2.

The following identity is helpful in understanding how composite sampling
incurs a loss of information on sample-to-sample variation within composites. The
total variation among the nk individual sample values can be expressed as the sum of
two components, one corresponding to the variation between individual sample val-
ues within composite samples and the other corresponding to the variation between
composite sample measurements:

n∑

j=1

k∑

i=1

(X ji − X̄m)2 =
n∑

j=1

k∑

i=1

(X ji − Y j )
2

+ k
n∑

j=1

(Y j − Ȳn)2,

where X̄m ≡ Ȳn by the assumptions that W ji ≡ 1
k , and there is no measurement

error. If composite samples are formed by randomly grouping m individual samples
into n groups of size k each, then the above identity can theoretically give three
unbiased estimators of σ 2

x , namely,

S2
x =

1

m − 1

n∑

j=1

k∑

i=1

[
X ji − X̄m

]2
,

S2
y =

k

m − 1

n∑

j=1

[
Y j − Ȳn

]2
,

and

S2
w =

1

n(k − 1)

n∑

j=1

k∑

i=1

[
X ji − Y j

]2
.
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Note that S2
x uses only individual sample values including their mean, while S2

y is
based solely on composite sample measurements, again including their mean. The
third estimator will not be available in any application of composite sampling, since
it involves individual sample values as well as composite sample measurements. If
composite samples are formed and measured, then no measurements will be taken
on individual samples. On the other hand, if measurements are made on individ-
ual samples, then composite samples will not be formed, and hence no measure-
ments will be available on composite samples. It is interesting to note that it gives
a measure of sample-to-sample variation within composites. As a consequence of
nonavailability of this value, there is a loss of information of the sample-to-sample
variation within composite samples. As for the unbiasedness of these estimators, we
make the following observations:

• If composite samples are formed by randomly selecting k individual samples
each, then all the three estimators of σ 2

x given above are unbiased.
• If composites are formed with an objective of increasing heterogeneity of indi-

vidual samples within composites, then

E
[

S2
w

]
> σ 2

x ,

and hence

E
[

S2
y

]
< σ 2

x .

If only estimation of the population mean is of interest, then formation of inter-
nally heterogeneous composites results in an unbiased estimator Ȳn of the popu-
lation mean μx with a precision that is higher than that of the individual sample
estimator X̄m .

• Formation of internally homogeneous composites will imply that

E
[

S2
w

]
< σ 2

x ,

and hence

E
[

S2
y

]
> σ 2

x .

This case is considered more conservative than the case of random formation of
composites, since the confidence interval for the population mean based on com-
posite sample measurements will be wider than that based on individual sample
values. As a consequence, the probability that the confidence interval derived
from composite sample measurements straddles the population mean is at least
as high as the corresponding probability for the confidence interval derived from
individual sample values.
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The above discussion may be summarized in an analysis of variance as in
Table 6.1.

Table 6.1 Analysis of Variance

Source of variation Degree of freedom Sum of squares Expected mean squarea

Between composites n − 1 k
n∑

j=1
(Y j − Ȳn)2 σ 2

x

Within composites m − n = n(k − 1)
n∑

j=1

k∑
i=1

[
X ji − Y j

]2
σ 2

x

Between individual samples m − 1
n∑

j=1

k∑
i=1

(X ji − X̄m)2 σ 2
x

a Expectation is taken under the assumption of random formation of composites

6.8 Confidence Interval for the Population Mean

The composite sample mean provides an unbiased estimator of the population mean.
The composite sample mean square provides the standard error of this estimator.
Using these two sample quantities, it is possible to construct a confidence interval
for the population mean under certain assumptions. Since compositing of several
individual samples causes the composite sample value to be an average of the indi-
vidual sample values, there is a physical realization of the central limit theorem.
That is, the composite sample values are approximately normally distributed if the
population is moderately skewed. A confidence for the population mean can then
be constructed due to the approximate normality of the composite sample values.
Thus, if Y1, . . . , Yn are the n composite sample values, then the composite sample
mean is given by Ȳn = 1

n

∑n
i=1 Yi . Similarly, the composite sample mean square is

S2
y = 1

n−1

∑n
i=1

(
Yi − Ȳn

)2
, and an unbiased estimator of the population variance

σ 2 is given by kS2
y , where k is the composite sample size.

Assuming a normal distribution for the composite sample values Y1, . . . , Yn , we
obtain the following confidence interval for the population mean μ:

Ȳn ± tn−1,1−α/2 · Sy/
√

kn,

where α is the probability that the confidence interval does not straddle the true
population mean. The confidence interval based on n individual sample values,
X1, . . . , Xn , would have been given by

X̄n ± tn−1,1−α/2Sx/
√

n,

which is the standard form of a confidence interval for the population mean. Note
that the confidence interval based on composite sample values is always at least as
narrow as that based on individual sample values. As a matter of fact, the confidence
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interval based on composite samples of size 2 is about 29% shorter than the one
based on individual sample values.

6.9 Tests of Hypotheses in the Population Mean

Site characterization of a Superfund Site or a hazardous waste site often involves
comparing the field data with established safety standards. Cleanup evaluation
demands a comparison between pre- and post-remediation data. Compliance mon-
itoring requires routine checks to verify that contamination is under compliance
norms. All these situations call for carrying out statistical tests of hypotheses for
the population means. In some cases, the test is a single-sample procedure while in
some others, it is a two-sample problem. In either, it is necessary to assume that the
population values follow some probability distribution, with hypothesized mean μx

and variance σ 2
x . If this distribution is moderately skewed, then the composite sam-

ple values are approximately normally distributed with the same mean μx but with
a smaller variance σ 2

x /k, where k is the composite sample size. We discuss the one-
sample problem and the two-sample problem separately in the following sections.

6.9.1 One-Sample Tests

When composite sample data are collected to evaluate the status of a population in
terms of its mean, there are two possibilities. First, there is no prior knowledge or
standard as to what the mean is anticipated or supposed to be. Second, there is a
statutory standard for comparison, and the field data are to be compared against this
standard value of the mean. For instance, it may be stipulated that the concentra-
tion of lead in drinking water should not exceed a certain level for the water to be
considered safe. In the latter situation, data are collected on n composite samples of
size k each, and the composite sample mean is used to test the hypothesis that the
population mean does not exceed the standard.

Suppose the n composite sample values are denoted by Y1, . . . , Yn , and the com-
posite sample mean and mean square are Ȳn and S2

y , respectively. Suppose the stan-
dard for the population mean is expressed in terms of a value μ0 so that the following
hypothesis is of interest:

H0 : μx ≤ μ0

against the alternative

H1 : μx > μ0.

The most powerful test for this hypothesis is obtained under the assumption that
the composite sample values follow a normal distribution with the mean μx and the
variance σ 2

y = σ 2
x /k. The test statistic is given by
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t = Ȳn − μ0

Sy/
√

n
.

The test statistic t follows the Student’s t distribution with n−1 degrees of freedom.
The null hypothesis is accepted if

t ≤ tn−1,1−α,

where α is the significance level and tn−1,1−α is the critical value for the Student’s
t distribution with n − 1 degrees of freedom at the significance level α.

6.9.2 Two-Sample Tests

When two sets of composite samples are available and it is desired to compare
the means of the populations these sets represent, then we begin by computing the
sample statistics Ȳ1, Ȳ2, S2

1 , and S2
2 . Let n1 and n2 be the respective number of

composite samples in two sets. Suppose the hypothesis to test is

H0 : μ1 − μ2 ≤ 0

against the alternative

H0 : μ1 − μ2 > 0.

The test statistic corresponding to the most powerful test for the null hypothesis is
given by

t = Ȳ1 − Ȳ2

σ̂pooled/
√

1/n1 + 1/n2
,

where t follows the Student’s t distribution with n1 + n2 − 2 degrees of freedom,

σ̂pooled =
√

(n1 − 1) σ̂ 2
1 + (n2 − 1) σ̂ 2

2

n1 + n2 − 2
,

σ̂ 2
1 and σ̂ 2

2 being the variance estimates obtained from the samples of respective
sizes n1 and n2.

The test is carried out by comparing the test statistic against the appropriate crit-
ical value tn1+n2−2,1−α of the Student’s t distribution with n1 + n2 − 2 degrees of
freedom.

Often the null hypothesis may be

H0 : μ1 − μ2 ≤ c0
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against the alternative

H0 : μ1 − μ2 > c0.

In this case, the test statistic is also adjusted for c0 and is given by

t = Ȳ1 − Ȳ2 − c0

σpooled/
√

1/n1 + 1/n2
.

The composited value of the test statistic is compared with the critical value of
the Student’s t distribution, and the null hypothesis is accepted or rejected accord-
ingly. Tests for one-sided hypotheses can be easily developed by replacing 1−α by
1− α/2 in the defining equations for the critical values of the null distributions of
the respective test statistics.

6.10 Applications

6.10.1 Comparison of Arithmetic Averages of Soil pH Values with
the pH Values of Composite Samples

Peech (1965) stated that the relationship between soil pH and base saturation (BS)
level is linear in the acid range of New York soils. The BS level of a composite sam-
ple made up of cores with variable BS levels can be expected to equal the average
of the BS levels of the cores. Thus the observed pH of the composite sample should
be similar to the arithmetic average of the pH levels of the individual cores if the
relationship between pH and BS is indeed linear. Baker et al. (1981) made compar-
isons between arithmetically averaged soil pH values and pH values of composited
soil samples (Table 6.2).

6.10.2 Comparison of Random and Composite Sampling Methods
for the Estimation of Fat Contents of Bulk Milk Supplies

Milk supplies for manufacturing in Ireland are paid for generally on the basis of
fat content. The fat content is determined on a composite sample. In a report on
milk sampling in the Irish Dairy Industry it was recommended that the optimum
sampling and testing frequency should be determined to establish supply quality
with an acceptable precision. Sampling and testing schemes of milk supplies vary
over countries, but little information is available on their precision. Connolly and
O’Connor (1981) report the results of an experiment where 61 herd milk supplies
in 3 different creamery locations were sampled during the trials. Samples were ana-
lyzed for fat, and in addition each one was used in the formation of a composite.
Fat content was determined by the Milk Tester Automatic. Fat percentage can be
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Table 6.2 Comparisons of pH values of composited samples (consisting of equal weights of four
replicates) with arithmetic averages of individual pH values

Relative lime rate

Soil type Subgroup Sample 0 1 2 4

Sultan sil Aquic Average 5.44 5.63 5.66 5.77
Xerofluvent Composite 5.43 5.65 5.67 5.75

Puyallup sal Fluventic Average 5.04 5.36 5.52 6.03
Haploxeroll Composite 5.06 5.37 5.51 6.1

Kitsap � Dystric Average 5.36 5.65 5.91 6.16
Xerofluvent Composite 5.36 5.67 5.89 6.17

Nisqually Pachic Average 4.76 5.40 5.63 6.19
�sa Xerofluvent Composite 4.81 5.43 5.64 6.26
Alderwood � Dystric Average 5.18 5.51 5.76 6.03

Entic Composite 5.20 5.53 5.71 6.00
Durochrept

Norma sil Flaguentic Average 4.72 4.97 5.34 5.67
Humaquept Composite 4.72 4.96 5.34 5.70

Buckley � Typic Average 5.36 5.60 5.86 6.50
Humaquept Composite 4.72 4.96 5.34 5.70

Source: Baker et al. (1981)

Table 6.3 Comparison of composite and yield-weighted estimates of fat percentage for three
locations

Location

A B C

Composite fat (%) 3.729 3.700 3.576
Weighted fat (%) 3.788 3.681 3.576

Source: Connolly and O’Connor (1981)

estimated by composite sampling method or, if information is available on every
collection, by a weighted mean of the fat percentage of each collection, weighted
by the milk yield in the collection.

In the experimental data, the fat percentage was estimated by the weighted aver-
age and compared with the composite estimate. The results are summarized in
Table 6.3.

6.10.3 Optimization of Sampling for the Determination of Mean
Radium-226 Concentration in Surface Soil

The US Environmental Protection Agency (EPA) has certain standards for contam-
ination of soil with 226Ra. These standards (US EPA, 1983) require that the average
226Ra concentration over a 100 m2 area not exceed 5 p Ci/g above background in
the top 15 cm of soil. The normal background level of 226Ra is typically 1–2 p Ci/g
(see Myrick et al., 1983). Determination of compliance at a reasonable cost requires
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extremely efficient surveying techniques, since there are thousands of potentially
contaminated sites to be examined.

Williams et al. (1989) analyzed data for five sites. In this study, soil sam-
ples are collected from sites by three different methods: 10-composite sampling,
10-composite sampling, and individual or post-hole sampling. A 10-composite sam-
ple consists of 10 aliquots of soil weighing ∼50 g each and taken at approximately
uniformly spaced points over the site. A 20-composite sample consists of 20 aliquots
weighing ∼25 g each, collected at approximately uniformly spaced points over the
entire site. An individual sample is collected with a post-hole digger from an area
of about 500 cm2, but only a small portion of the collected and mixed soil (roughly
500 g) is taken for the sample. As nearly as practical, all samples were taken uni-
formly at depths from 0 to 15 cm. Results are summarized in Table 6.4.

Table 6.4 Summary of soil sample data

Site Area (m2) Type of sample Mean (p Ci/g) VEMa

A 15 Individual 14.2 14.2
20-Composite 14.2
10-Composite 13.7

B 130 Individual 7.3 9.0
20-Composite 9.6
10-Composite 10.2

C 270 Individual 19.3 17.3
20-Composite 15.2
10-Composite 10.1

D 30 Individual 7.9 7.8
20-Composite 7.7
10-Composite 7.8

E 200 Individual 51.3 57.9
20-Composite 64.1
10-Composite 58.3

a Unbiased estimate of the mean 226Ra concentration
Source: Williams et al. (1989)



Chapter 7
Composite Sampling with Random Weights

7.1 Introduction

Composite samples are formed by physically mixing aliquots of individual samples.
If aliquots of equal volumes are used, then the composite sample values are simply
the arithmetic averages of individual sample values. If aliquots are not equal in vol-
ume, then statistical techniques need to be adjusted to account for unequal volumes.
In this case, the composite sample values are weighted averages of individual sample
values. The weights associated with individual sample values are proportional to the
volumes of aliquots of the respective individual samples. If volumes of the aliquots
are known, so that the weights also are known, then they can be treated as constants.
The statistical properties of the composite sample values follow rather easily from
those of the individual sample values. However, it can be the case that the volumes
of the aliquots are unknown because they have resulted from a random process. In
such a case, the statistical properties of the composite sample values depend not
only on those of the individual sample values but also on those of the volumes (or,
equivalently, of the weights) and are affected by the interrelationships between the
individual sample values and the volumes of the aliquots.

The following examples illustrate how random weights can result from random
processes beyond the experimenter’s control:

A. The weights are generated by a random mechanism.
The effluents of several plants in an industrial zone are to be sampled to make

a measurement on the concentration of a particular contaminant. These plants dis-
charge their effluents directly into a stream. Samples are collected from the stream,
and then analytical measurements are made on these samples.

Since the samples are not collected separately from individual plants, the experi-
menter has no control over the volumes of effluents from different individual plants
that contribute to the samples collected from the stream. Moreover, these volumes
depend on the production processes of the plants; they may vary from time to time,
resulting in volumes varying randomly from sample to sample. It is therefore neces-
sary to treat the weights as random variables when analyzing the composite sample
measurements.

B. The weights are fixed by the experimenter, but the compositing apparatus fails
to homogenize the composite sample.

G.P. Patil et al., Composite Sampling, Environmental and Ecological Statistics 4,
DOI 10.1007/978-1-4419-7628-4_7, C© Springer Science+Business Media, LLC 2011
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At a hazardous waste site, an estimate of the average concentration level of a
certain contaminant is required in order to decide as to whether remediation is called
for. Four cores of soil, all equal in size and hence also in volume, are extracted from
four random locations on the site. These four cores are then blended to form a com-
posite sample. The instrument used to measure the concentration of the contaminant
can only test an amount of soil which is significantly smaller than the amount of soil
that the compositing apparatus can composite. It is therefore necessary to subsample
the composite sample for making an analytical measurement.

Suppose that blending is inaccurate; that is, blending may leave some clumps of
soil unbroken or it may not mix the soil thoroughly. Then the volumes of aliquots
that come from different individual samples in one subsample of the composite will
be different from those in another subsample. It is then necessary to treat the weights
as random variables (though perhaps not observable) when making measurements
on subsamples of the heterogeneous composite sample.

C. The weights are generated by the sampling protocol.
It is required to estimate the population density of a particular aquatic community

in a large body of water. A net is towed through water at different locations for a
fixed amount of time at a constant speed. The amount of water filtered during every
sampling episode depends on many random conditions such as the wind velocity,
wave height, and water currents. The fraction of each individual sample in the com-
posite sample is then a random quantity, thus giving rise to random weights.

7.2 Expected Value, Variance, and Covariance of Bilinear
Random Forms

Lemma 7.2.1 (Rohde, 1976) Let x, w, and u be random k-vectors and let x be
stochastically independent of both w and u. Then

E
[
w′x

] = μ′wμx , (7.1)

Var
[
w′x

] = μ′xΣwμx + μ′wΣ xμw + tr [ΣwΣ x ] , (7.2)

and

cov
[
w′x, u′x

] = μ′x�w,uμx + μ′wΣ xμu + tr
[
�w,uΣ x

]
. (7.3)

Proof The proof is a simple application of conditional expectation. Note that

E
[
w′x

] = E
[
E
(
w′x|w)]

and therefore

E
[
w′x

] = E
[
μ′xw

]
by Lemma 6.2.1 and since x is stochastically

independent of w
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= μ′xμ′w again by Lemma 6.2.1
= μ′wμ′x and hence (7.1) is proved.
Next note that

Var
[
w′x

] = Var
[
E
(
w′x|x)]+ E

[
Var

(
w′x|x)] .

First consider

E
[
w′x|x] = μ′wx by Lemma 6.2.1

and also

Var
[
w′x|x] = x′Σwx by Lemma 6.2.2.

Therefore

Var
[
E
(
w′x|x)] = Var

(
μ′wx

) = μ′wΣ xμw

by Lemma 6.2.2 and also

E
[
Var

(
w′x|x)] = E

[
x′Σwx

] = μ′xΣwμx + tr [ΣwΣ x ]

by Lemma 6.2.4.
This proves (7.2).
Finally, note that

cov
[
w′x, u′x

] = cov
[
E
(
w′x|x) , E

(
u′x|x)]

+E
[
cov

(
w′x, u′x|x)] .

By Lemma 6.2.1, we have

E
[(

w′x|x)] = μ′wx

and

E
[(

u′x|x)] = μ′u x

and by Lemma 6.2.3,

cov
(
μ′wx,μ′u x

) = μ′wΣ xμ
′
u .

Also,

cov
(
w′x, u′x|x) = x′�w,u x
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and hence

E
[
cov

(
w′x, u′x|x)] = E

[
x′�w,u x

]

= μ′x�w,uμx + tr
[
�w,uΣ x

]
by Lemma 6.2.4.

Thus

cov
[
w′x, u′x

] = μ′wΣ xμu + μx�w,uμx + tr(�w,uΣ x ),

and therefore (7.3) is proved. This completes the proof of the lemma.
Elder et al. (1980) relax the assumption that x is stochastically independent of

both w and u. They make the following assumptions:
E[w|x] = μw for all x (expectation independence);
Var[w|x] = Σw for all x (variance independence);
and
cov [w, u|x] = �w,u for all x (covariance independence).
Under these weaker assumptions, they prove that Lemmas 7.2.1, 7.2.2, and 7.2.3

hold.
Since the weights add up to unity, we have ı′w = 1, where ı = (1, 1, . . . , 1)′ is

a k-vector. Taking expectation and noting that the expectation of a constant (i.e., a
degenerate random variable) is same as its only possible value, we have E

[
ı′w

] = 1.
Also, noting that the variance of a degenerate random variable is zero, we obtain
Var

[
ı′w

] = ı′Σw ı = 0 (by Lemma 6.2.2).
Elder (1977) points out that the variances of the weights are bounded. Clearly

0 ≤ Wi ≤ 1(i = 1, . . . , k) and hence 0 ≤ W 2
i ≤ Wi ≤ 1 and so E(W 2

i ) ≤ E(Wi ).
Therefore

Var[Wi ] = E
[
W 2

i

]
− [E (Wi )]

2

≤ E (Wi )− [E (Wi )]
2

= E [Wi ] [1− E (Wi )] , i = 1, . . . , k.

7.3 Models for the Weights

The mean and the variance of the composite sample estimator of the population
mean depend on the distributions of the weights and of the individual sample values.
Two statistical distributions for the weights are studied. Rohde (1976) argues for the
Dirichlet distribution, and Elder (1977) formulates a model for the weights which
gives the multivariate hypergeometric distribution. This model is the same as that
originally used by Brown and Fisher (1972). Elder points out that both this distri-
bution and the Dirichlet distribution converge to a singular multivariate normal dis-
tribution under suitable conditions. He suggests this as a reasonable approximation
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in many cases because of the physical averaging that occurs due to blending of
composite samples.

The basic idea in the literature on random weights is that if reasonable models
are set up for the weights in the form of assumptions on their first two moments μw

and Σw, then, through the expectation and variance of each composite sample value
and hence of the composite sample estimator of the population mean can be found
by Lemma 6.3.1.

7.3.1 Assumptions on the First Two Moments

If the k individual samples contributing to a single composite sample have the same
size, then it is reasonable to assume, by symmetry of the compositing proportions,
that such proportions have a common expectation, a common variance, and that
every pair of proportions is equally correlated. Thus,

μw = 1

k
ık, (7.4)

Σw = σ 2
w

[
k

k − 1
Ik − 1

1− k
Jk

]
, (7.5)

where Ik is the identity matrix of order k and Jk is the square matrix of order k
with all elements equal to 1.

These two assumptions are widely used in the literature. Elder et al. (1980) refer
to them as characterizing an “unbiased” compositing/subsampling procedure.

7.3.2 Distributional Assumptions

It is possible to go further and assume a probability distribution for the weights. As
noted earlier, the weights, being proportions, must satisfy

μ′wık = 1

and

Σwık = o.

That is, the distribution of weights must be singular.
There are a number of distributions which may be appropriate for the weights.

Rohde (1976) advocates the use of the Dirichlet distribution. In particular, he rec-
ommends the one-parameter Dirichlet distribution

W ji ∼ D(λı),
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which implies (7.4) and (7.5). Rohde points out that Dirichlet is just one of the
distributions which satisfy (7.4) and (7.5), but he also gives a physical motivation
for the choice of the Dirichlet distribution using a theorem by Fabius (1973).

Theorem (Fabius, 1973) Let

(W1, . . . , Wk) ∼ D(λ1, . . . , λk),

and let

U1 = W1∑k−1
i=1 Wi

, . . . , Uk−1 = Wk−1∑k−1
i=1 Wi

.

If (U1, . . . , Uk−1) is independent of Wk, then

(U1, . . . , Uk−1) ∼ D(λ∗1, . . . , λ∗k−1),

where λ∗1, . . . , λ∗k−1 are suitably defined.

The physical interpretation of this statistical property is given by Rohde (1976)
as follows. Let W1, . . . , Wk represent the proportions of the k individual samples in
a composite sample. If the kth individual sample were deleted from the composite,
then the new proportions would be

U1 = W1

1−Wk
, . . . , Uk−1 = Wk−1

1−Wk
.

Note that

1−Wk =
k−1∑

i=1

Wi .

In order for the model for proportions not to be influenced unduly by the addition of
another sample to the composite, it seems reasonable to assume that U1, . . . , Uk−1
are independent of Wk . Note that Ui/U j = Wi/W j ; that is, the relative proportions
between the Us are the same as between the W ′s. As Rohde points out, this prop-
erty characterizes Dirichlet distribution. A failure of the Dirichlet distribution to fit
implies a dependence between the proportions of individual samples in a composite
sample and another sample to be added to the composite sample.

Brown and Fisher (1972) propose the multivariate hypergeometric distribution,
based on a physical model for discrete materials or pelletized products, such as
grains, pebbles, bales of wool. Elder (1977) shows that both the Dirichlet and the
multivariate hypergeometric distributions converge to a singular multivariate normal
distribution under suitable asymptotic conditions.
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7.4 The Model for Composite Sample Measurements

Let the composite sample measurement be written as

Y = W1 X1 + · · · +Wk Xk + ε, (7.6)

where {Wi } and {Xi } are defined in Chapter 6 (see Section 6.2.1) and ε is the
measurement error. Assume that measurement error is negligible and models the
composite sample value (or measurement) by

Y = W1 X1 + · · · +Wk Xk = w′x.

Assume that the weights {Wi } are stochastically independent of the individual sam-
ple values {Xi }. Then by Lemma 6.2.1, we have

E[Y ] = μ′wμx ,

Var [Y ] = μ′wΣ xμw + μ′xΣwμx + tr [ΣwΣ x ] .

We now consider this model in different situations. For example, we consider
several composite samples, subsampling of composite samples, and also some prob-
ability distributions for the weights.

7.4.1 Subsampling a Composite Sample

Rohde (1976) develops the theory for a single composite sample formed from k
individual samples. The proportions of the individual samples used to make up the
composite sample are either fixed (known) or random. Elder (1977) (see also Elder
et al., 1980) generalizes the theory to c composite samples, each formed from k
aliquots and s subsamples taken from each composite sample. Further, t analyses or
tests may be carried out on each subsample. This generalization takes into account
the variability due to dividing the original individual samples into increments before
compositing, the variability due to imperfect mixing of the composite samples and
also due to the selection of subsamples, and also the variability of the test procedure
itself, causing variation between the results of repeated measurements on the same
subsample.

If a composite sample is formed by taking subsamples, also called aliquots or
increments, from the k individual samples, then the fractions of the original sample
values represented in the composite sample value must have the properties described
earlier. If

Z = w′x and Y = u′x

are values of two composite samples formed from aliquots of the same k individual
samples, then
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cov[Z , Y ] = μ′x�w,uμx + μ′wΣ xμ
′
u + tr

[
�w,uΣ x

]
.

The sum of the weights being unity, μ′wı = ı and ı′Σwı = 0. In many cases, it is
reasonable to assume that the random weights are exchangeable random variables,
then μw = 1

k ı and

Σw = σ 2
w [(1− ρ) Ik + ρ Jk] . (7.7)

Furthermore, since ı′Σwı = 0, we have k [1+ (k − 1)ρ] σ 2
w = 0 or ρ = −1

k−1 . As
Rohde (1976) points out, the symmetric Dirichlet distribution has this property.

Now suppose that the financial restrictions allow only s measurements to be
made. We then construct s composite samples and compare the results with those
of s measurements on individual samples. As before, let X1, . . . , Xk be the values
associated with the k individual samples. By subsampling s times from each sample
we form s composite samples by combining one subsample from each individual
sample. Then Yi = w′i x is the value of the i th composite sample, i = 1, 2, . . . , s.
We compare Ȳs = 1

s

∑s
i=1 Yi with the average X̄s = 1

s

∑s
i=1 Xi of s randomly

selected individual samples from among k. Let

Ȳs = 1

s

(
w′1 + w′2 + · · · + w′s

)
x = v′x.

Clearly, Ȳs represents a composite sample measurement, and the formulas that were
derived earlier apply. Both X̄s and Ȳs are unbiased estimators of μx . Moreover,

Var
[
X̄s

] = 1

s2
ı′Σ x ı.

To calculate the variance of Ȳs , we need Σv = Var(v) where v = 1
s

∑s
i=1 wi :

Σv = Var(v) = Var

(
1

s

s∑

i=1

wi

)

= 1

s2

s∑

i=1

Σw = 1

s
Σw,

assuming independence of weights from one subsample to another. Then

Var
[
Ȳs

] = μ′vΣ xμv + μ′xΣvμx + tr [ΣvΣ x ]

= μ′wΣ xμw + 1

s
μ′xΣwμx + 1

s
tr [ΣwΣ x ] .

Now assume X1, . . . , Xk to be independent and identically distributed with mean
μx and variance σ 2

x . Then μx = μx ı and Σ x = σ 2
x I so that μ′xΣwμx = 0. It then
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follows that

Var
[
Ȳs

] = σ 2
x

k
+ kσ 2

wσ 2
x

s
= σ 2

x

k

[
1+ k2σ 2

w

s

]
. (7.8)

Assume w to have a Dirichlet distribution with parameter ı; then

Var
[
Ȳs

] = σ 2
x

k

[
1+ k − 1

s(k + 1)

]
.

Also, then,

Var
[
X̄s

] = σ 2
x

s
.

The ratio of the two variances is

Var
[
Ȳs

]

Var
[
X̄s

] = s

k

[
1+ k − 1

s(k + 1)

]
.

If k is sufficiently large compared to s, then the variance of Ȳs is much smaller than
the variance of X̄s .

It seems that choosing k large in comparison to s would result in the best com-
positing situation. However, when a composite sample is formed, the physical mix-
ing is often imperfect, resulting in a higher variability, affecting the optimality of the
composite sample size. The optimal choice may also depend on the cost of sampling
and the cost of analysis of a sample, individual, or composite.

Rohde (1976) points out that the sample variance of the composite sample mean
is a biased estimator of σ 2

x . In fact

E
[

S2
y

]
= E

[
1

s − 1

s∑

i=1

(Yi − Ȳs)
2

]
= kσ 2

wσ 2
x .

Rohde suggests two approaches to get an unbiased estimator of σ 2
x from the

sample variance of the composite sample measurements. If an independent estimator
of σ 2

w is available, it can be used to estimate σ 2
w so that S2

y can be used, with the

necessary adjustment, to obtain an unbiased estimator of σ 2
x . The other approach is

to assume some model, such as the Dirichlet distribution, which reduces the number
of parameters that need to be estimated.

Elder (1977) points out that Rohde makes the assumption of independence of the
weights Wi in different composite samples. When subsamples are repeatedly drawn
from the same composite sample for testing, then the resulting composite samples
may not have independent weights. In this case, the symmetric Dirichlet distribution



124 7 Composite Sampling with Random Weights

is not appropriate. However, as the number of subsamples s increases, the weights
become independent.

Alternatively, using the upper bound for σ 2
w given by Elder et al. (1980),

0 ≤ σ 2
w ≤

k − 1

k2
,

we see that

σ 2
x

k
≤ Var

[
Ȳs

] ≤ σ 2
x

k

[
1+ k − 1

s

]
.

These bounds on Var
[
Ȳs

]
lend themselves to some interesting conclusions about the

variability of the composited estimator in the presence of random weights:

(a) Neglecting the randomness of the weights may be misleading in assessing the
variance of Ȳs which is never smaller than the corresponding variance in the

“fixed weights” case, namely σ 2
x
k .

(b) The effect, on σ 2
w, of increasing k within any finite interval is contradictory. On

the one hand, since a composite is generally harder to homogenize the larger
it is, σ 2

w may increase with an increasing k; on the other hand, the larger the
composite, the smaller each proportion and hence the smaller σ 2

w will be (in
fact, as k →∞, σ 2

w→ 0). Therefore, in the random weights case, it is difficult
to predict how Var

[
Ȳs

]
varies with the composite sample size k.

7.4.2 Several Composite Samples

If there are m = nk individual samples, then n composite samples, each of size
k, can be formed by randomly forming n subsets of size k from the collection of
nk samples. Under the assumption that the individual samples are stochastically
independent, the composite samples are also stochastically independent, since they
comprise disjoint sets of individual samples. Thus a composite sample value is

Y j = w′j x j , j = 1, . . . , n.

Assuming that the weights are independent, we find that the composite sample esti-
mator Ȳn = 1

n

∑n
j=1 Y j is an unbiased estimator of μ′wμx . If we further assume that

the {X ji }ki=1 are independent and identically distributed, we have

μx = μx 1m and Σ x = σ 2
x Im .

Under this assumption, it is easy to see that



7.4 The Model for Composite Sample Measurements 125

E
[
Ȳn

] = μx ,

Var
[
Ȳn

] = 1

nk
σ 2

x +
k

n
σ 2

x σ 2
w

= σ 2
x

nk
[1+ k2σ 2

w].

Again, using the upper bound on σ 2
w given by Elder et al. (1980), namely,

0 ≤ σ 2
w ≤

k − 1

k2
,

we find that

σ 2
x

nk
≤ Var

[
Ȳn

] ≤ σ 2
x

n
.

The inequality on the left implies that the composite sample estimator of μx , due
to the randomness of the weights, cannot have a variance smaller than that of the
average of the nk individual sample values. On the other hand, since composite
sampling involves exactly n measurements, the inequality on the right implies that
the composite sampling, in spite of random weights, achieves a smaller variance for
the estimator of μx compared to the average of n individual sample values, i.e., one
individual sample from every set of k.

7.4.3 Subsampling of Several Composite Samples

Now we consider a combination of the two preceding methods. Here, with a collec-
tion of m = nk individual samples, we form n subsets of k individual samples each
and then take s subsamples from each composite sample. The foregoing results can
be combined to obtain the following. The composite sample mean, Ȳ , is an unbiased
estimator of the population mean μx with the variance

Var
[
Ȳ
] = σ 2

x

nk

[
1+ k2

s
σ 2

w

]
.

Using the upper bound given by Elder et al. (1980), we see that

σ 2
x

nk
≤ Var

[
Ȳ
] ≤ σ 2

x

nk

[
1+ k − 1

s

]
.

While the inequality on the left yields the same interpretation as given in the pre-
ceding section, writing the upper bound on Var

[
Ȳ
]

as
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Var
[
Ȳ
] ≤ σ 2

ns

[
1+ s − 1

k

]

it can be seen that, in the presence of random weights, the composite sample estima-
tor cannot be worse, in terms of the variance, than the comparable “uncomposited”
estimator X̄ = 1

ns

∑ns
i=1 Xi as long as s = 1, i.e., one subsample is selected from

each composite. If s > 1, the composited estimator may have a larger variance than
the uncomposited one, and some knowledge of σ 2

w is necessary to assess the effect
of compositing.

7.4.4 Measurement Error

In addition to the assumptions of model discussed in this chapter, Elder et al. (1980)
make the assumption that there may be error in measurement. Suppose n compos-
ites, each of size k, are formed as earlier. From each composite sample, select s
subsamples and run t analyses on each subsample. Let the result of the �th test on
the j th subsample from the i th composite sample be denoted by Yi j�. Then

Yi j� = w′i j xi j + εi j�,

i = 1, . . . , n; j = 1, . . . , s; � = 1, . . . , t;

where xi j depends on the composite sample index i . This model incorporates the
variability generated by dividing a sample into s aliquots; this is called within-
increment variability. The variability of the results of repeated testing on the same
sample (subsample) results in the additional term εi j�. The total of nst measure-
ments are assumed to have independent and identically distributed errors with

E
[
εi j�

] = 0, Var
[
εi j�

] = σ 2
t ,

i = 1, . . . , n; j = 1, . . . , s; � = 1, . . . , t.

The technique used to find the mean and the variance of the composite sample esti-
mator Ȳ is similar to that used earlier. The structure on the weights requires

E
[
wi j

] = E
[
(Wi j1, . . . , Wi jk)

]′ = 1

k
1;

Var
[
wi j

] = σ 2
w I .

It is then easy to show that

Ȳ = 1

nst

n∑

i=1

s∑

j=1

t∑

�=1

Yi j�
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is an unbiased estimator of μx , with variance

Var
[
Ȳ
] = σ 2

x

nk
+ kσ 2

wσ 2
x

ns
+ σ 2

t

nst
.

If the aliquots used to form the composites are either made up of discrete (equal-
sized) pieces or are divided into equal-sized pieces, then a hypergeometric distribu-
tion can be used to model the number of pieces from different increments that make
up the composite samples that are further broken down into subsamples (Brown and
Fisher, 1972; see also Elder, 1977). Assume each increment to be composed of g
equal-sized pieces and that each subsample is formed from a random selection of
G pieces. Then each subsample is a composite sample with weights W j� = g j�/G,
where j is the index of the subsample, � is the index of the increment, and g j� is the
number of pieces from increment � in the subsample j . From the hypergeometric
model,

E[g j�] = G/k

and

Var
[
g j�

] = G(kg − G)(k − 1)/
[
k2(kg − 1)

]
.

Then

σ 2
w =

(k − 1)(kg − G)

k2G(kg − 1)
.

Taking limit as both g and G increase to infinity, while keeping g/G constant,
results in the distribution of the weights approaching a singular normal distribution;
see Elder (1977).

The optimal values of k, n, and t depend on many factors. Elder (1977) discusses
this problem, pointing out that closed-form solutions do not exist. Generally, if the
cost of sampling is relatively small, then k can be much larger than n. If the within-
increment variability is small, then s is small.

We conclude the discussion of random weights with an observation that, under
suitable assumptions, the problem of random weights in composite sampling can be
handled with appropriate statistical methods, and valid conclusions can be drawn
regarding the unbiasedness of the composite sample estimator of the population
mean. The precision of this estimator can also be estimated and compared with an
uncomposited estimator.
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7.5 Applications

The literature on composite sample techniques for estimation of the population
parameters of a continuous measurement includes a number of applications of com-
posite sampling with random weights to a variety of environmental problems. Some
important applications are discussed here.

7.5.1 Sampling Frequency and Comparison of Grab
and Composite Sampling Programs for Effluents

The impetus behind the development of the theory of grab and composite sam-
pling was to enable the Illinois Environmental Protection Agency to evaluate alter-
native sampling requirements for dischargers to the state’s waterways, as well as
to optimize its own sampling programs. Janardan and Schaeffer mention that the
law required that dischargers report the results of 24-h composite samples for the
monthly maximum and mean. The agency was proposing changes in the averaging
requirement in order to provide a more flexible standard. Before any changes were
made, the influence of different sampling procedures on the demonstration of com-
pliance with the regulations had to be evaluated. To make this assessment, grab and
composite samples were generated by simulation of distributions observed in actual
data.

Some results of the simulation for the normal distribution are given in Table 7.1.
These data clearly show that the information content of a series of grab samples
is better than that of the same number of composites. The opposite is true when
only single samples of each type are compared. Further, the results show that the
sample variance of the composites underestimates the true variance in accordance
with theory.

Table 7.1 Summary statistics for grab and 24-h composite samples generated from normal distri-
bution (μ = 18.17, σ = 8.47)

Grab Composite Monthly Monthly
Statistics samples samples means (G) means (C)

Sample mean 18.52 18.19 18.52 18.18
Sample variance 70.83 4.34 3.06 0.1645
Expected variance 71.74 4.22 3.59 3.0509

7.5.2 Theoretical Comparison of Grab and Composite Sampling
Programs

Schaeffer and Janardan develop the theoretical results for grab and composite sam-
pling programs. They use the data from “Waste water sampling methodologies and



7.5 Applications 129

flow measurement techniques” by Harris and Keffer (1974) USEPA Region VII
Field Investigation Study. Table 7.2 gives grab sampling statistics while Table 7.3
gives composite sampling statistics.

Table 7.2 Grab sampling statistics

5-Day biochemical Chemical oxygen
oxygen demand demand Solids

Sample size (m) 32 32 32
Sample mean X̄ 207.38 233.65 207.38
Sample variance σ̂ 2

x 1326.56 9020.04 21,136.52

Data are taken from the study “Waste water sampling methodologies and flow
measurements techniques” by Harris and Keffer (1974) (table XVI)

Table 7.3 Composite samples based on (sample) volume proportional to total flow since last
samplea

5-Day biochemical Chemical oxygen
oxygen demand demand Solids

Sample mean 208.97 240.47 238.52
Sample variance 1186.11 5518.54 5047.82
Estimate of σ 2 9488.88 44,148.32 40,382.56

This table is constructed from data of table XVI of “Waste water sampling
methodologies and flow measurement techniques” by Harris and Keffer (1974)
a The data on proportions Wi in column 2 of this table are by Huibregtse and
Moser (1976) (table 2.1, p. 5)

7.5.3 Grab vs. Composite Sampling: A Primer for the Manager and
Engineer

Schaeffer, Kerster, and Janardan report the result of a simulation study comparing
grab and composite samples. As they observed, in no case did the simulator results
differ significantly from the theoretical expectations. All composite runs returned
about the same means as the grab samples. The composites show the expected loss
of information relative to grabs. The results are summarized in Table 7.4.

7.5.4 Composite Samples Overestimate Waste Loads

Wastewater treatment plant performance is monitored by the collection and analy-
sis of samples from the process stream for physical, chemical, and microbiological
constituents. Samples may be broadly classified as “grab” or “composite.” Grab
samples represent the composition of the flow at a given instant in time, irrespective
of the flow volume. Composite samples represent an average composition in the
flow over time (usually 24 h) and may or may not be proportional to the flow. Flow
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Table 7.4 Summary statistics for grab and composite samples

Obtained Sample Corrected Distribution
Sample meana varianceb variancec Sw2 shape (C/G)

A. BOD (mg/l)
Grab 18.52 70.83 71.74 Normal
Composite 18.19 4.34 6.13 7.18 E-4
Monthly mean grab 18.52 3.06 3.59
Monthly mean

composite
18.18 0.16 4.42

B. BOD (mg/l)
Grab 2.30 1.29 1.22 Lognormal
Composite 2.33 7.77 E-2 1.01E-1 5.19 E-4
Monthly mean grab 2.30 5.73 E-2 6.08 E-2
Monthly mean

composite
2.33 3.31 E-3 7.89 E-2

C. Industrial BOD (mg/l)
Grab 74.35 3315.61 2570.49 Gamma
Composite 77.52 167.71 218.76 5.29 E-4
Monthly mean grab 74.01 69.33 128.53
Monthly mean

composite
77.52 8.07 170.26

D. Lagoon BOD (mg/l)
Grab 28.89 822.14 834.50 Gamma
Composite 27.36 37.59 52.05 6.68 E-4
Monthly mean grab 28.49 28.59 41.73
Monthly mean

composite
27.36 1.51 38.31

E. Lagoon suspended
solids (mg/l)
Grab 33.92 627.55 603.23 Gamma
Composite 35.62 38.68 62.83 1.08 E-3
Monthly mean grab 33.92 39.53 30.16
Monthly mean

composite
35.62 3.09 39.89

F. Industrial zinc (mg/l)
Grab 0.22 1.73 E-2 1.73 E-2 Beta
Composite 0.22 0.98 E-3 1.22 E-3 4.30
Monthly mean grab 0.22 1.00 E-3 8.65 E-4
Monthly mean

composite
0.22 5.01 E-5 9.92 E-4

a For daily sample means n = 720; for monthly means n = 36
b Sample variance was obtained from the individual observations using Var[X ] =[
k
∑

X2
i −

(∑
Xi

)2
]
/
(
k2 − k

)

c Corrected variances were obtained using equations (10) and (11) of Schaeffer et al. (1983)

proportional (FP) sampling is one of two ways: fixed time with sample volume pro-
portional to flow (VP) or fixed volume with time proportional to flow (TP). Non-flow
proportional composites (NFP) are usually taken as a fixed volume at fixed times.
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Composite samples are generally believed to be more representative than grab
samples of process stream average performance. Work has shown that if flows and
concentrations are uncorrelated and lack autocorrelation, the same applies to the
mean concentration of grabs and composites. However, the true variance of FP
composites is larger than that of grab samples or TP composites. Furthermore,
loads computed from FP composites are biased because of the volume weighting
of subsamples during FP compositing.

When flows and concentrations are correlated, then VP and TP composites pro-
duce biased estimates of the mean and variance of concentrations, as well as of
loads. In addition, the data in this study show that the bias arising from the correla-
tion between flow and concentration substantially exceeds that arising from flow
proportioning. As a result, regulatory monitoring data obtained from composite
samples must be viewed with suspicion.

In the study reported by Schaeffer et al. (1983), samples from two treatment
plants (Freeport and St. Charles, IL) were analyzed for the total suspended solids
(TSS) by “Standard Methods” procedure 20913 (dried at 180◦C). At St. Charles, the
grab samples were also analyzed by drying at 105◦C (procedure 209A). Ammonia
(NH3) analyses at both plants were by ion-selective electrode (procedure 417E).
Flows (m3/s) were monitored continuously at both facilities.

Table 7.5 summarizes the data for Freeport, and Table 7.6 summarizes the data
for St. Charles. The tables give the number of observations, mean, standard devia-
tion, skewness, kurtosis, minimum, and maximum.

Table 7.5 Freeport effluent concentrations and loads. The standard deviations (SD) are computed
directly from sample data; variance corrections for compositing and for autocorrelation are not
included

Concentrations (ppm) Loads (ppm×m3/s)

Parameter Maximum Mean Skew Maximum Mean Skew

N Minimum SD Kurtosis Minimum SD Kurtosis

Hourly grabs
NH3 18.0 12.8 0.3 4.3 2.5 0.0
167 9.4 1.8 3.1 1.2 0.8 2.0
TSS 1480.0 971.2 0.3 390.0 190.0 0.4
167 704.0 125.3 4.9 86.0 64.0 3.1

Daily time proportioned composites
NH3 24.3 11.4 0.2 4.9 2.3 0.2
100 2.8 3.5 4.6 0.4 0.7 5.2
TSS 1158.0 862.3 0.1 316.5 172.1 0.2
99 658.0 102.9 2.8 81.5 40.2 3.9

Daily volume proportioned composites
NH3 22.5 11.6 0.0 4.6 2.3 0.1
100 0.6 3.4 4.7 0.1 0.7 4.5
TSS 1222.0 884.8 0.0 314.6 176.6 0.1
99 674.0 116.2 2.9 81.2 41.6 3.5

Source: Schaeffer et al. (1983)
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Table 7.6 St. Charles effluent concentrations and loads. The standard deviations (SD) are com-
puted directly from sample data; variance corrections for compositing and for autocorrelation are
not included

Concentrations (ppm) Loads (ppm×m3/s)

Parameter Maximum Mean Skew Maximum Mean Skew

N Minimum SD Kurtosis Minimum SD Kurtosis

Hourly grabs
NH3 15.5 7.3 0.1 2.9 1.3 0.1
168 2.0 4.0 2.1 0.3 0.7 1.8
TSS-105 122.0 28.0 1.2 23.0 4.9 1.9
191 0.0 24.6 3.8 0.0 4.7 4.4
TSS-180 32.0 8.0 0.9 6.3 1.4 2.0
163 0.0 7.1 3.3 0.0 1.3 5.0

Daily time proportioned composites
NH3 17.5 9.6 0.1 3.3 2.2 0.1
50 5.0 2.8 2.8 1.1 0.5 2.8
TSS-105 13.0 39.0 2.2 30.1 8.7 1.9
65

Daily volume proportioned composites
NH3 17.5 12.6 0.0 4.3 2.8 0.8
63 6.0 3.0 2.3 1.7 0.5 4.3
TSS-105 99.0 42.0 0.6 24.1 9.5 0.4
66 7.0 22.5 3.2 1.1 5.1 3.3

Source: Schaeffer et al. (1983)

7.5.5 Composite Samples for Foliar Analysis

Foliar analysis has frequently been used in forestry to detect nutrient deficiencies,
predict fertilizer requirements, and monitor uptake and recycling of nutrients. Sub-
stantial savings in cost can often result if laboratory analyses are performed on a
composite of the field samples rather than on the individual samples. The composite
sample consists of a thorough mixture of a number of field samples considered ade-
quate to represent the population in question. The practice is based on an assumption
that a valid estimate of the mean of some characteristic of the population may be
obtained by analysis of the single composite sample.

Several different methods of combining individual samples to produce a compos-
ite sample have been used in forestry. The methods differ in the weights of individual
samples which are combined. For instance, in grab sampling, a handful of needles is
obtained from each of a number of trees and combined, i.e., the weight of the indi-
vidual sample is unknown. Alternatively, equal weights of needles from each tree
may be combined, or equal numbers of needles from each tree may be combined.
In the latter case the samples are effectively combined in proportion to the average
weight of individual needles. Samples may also be combined in proportion to some
measure of tree size such as basal area.

Although the statistical properties and requirements of composite samples of
bulk materials such as wool (Brown and Fisher, 1972), water (Rohde, 1976, 1979),
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soil (Peterson and Calvin, 1965; Cameron et al., 1971), and other substances
(Kratochvil and Taylor, 1981) have been published, there is no corresponding
account of different methods for compositing samples of tree foliage. In this study
several methods of creating compositing samples for plots within a factorial experi-
ment were examined. The effects of the methods of estimates of plots and treatment
means and their implications for sampling intensity were assessed. Tables 7.7, 7.8,
and 7.9 summarize the results of this study.

Table 7.7 Effect of site preparation, fertilizer, and weed control on tree growth, needle weight, and
foliar concentration of nitrogen and phosphorus, within-plot variation in these, and the correlations
between them (Pinus radiata, age 3 years, Belanglo State Forest, NSW)

Fertilizer Significant
Variable Nil Weed control weed control effectsa

a. Treatment means for nutrient concentrations and growth variables
Nitrogen, N(% ) 1.84 1.98 1.99 1.87 Pr*
Phosphorus, P(% ) 0.114 0.125 0.169 0.160 F***
Fascicle weight, W (mg) 14.7 28.4 21.7 42.1 F**, W***
Height, H (m) 0.76 1.14 1.43 2.28 F.W*
Basal area, B(cm2) 1.33 6.56 6.63 31.16 F.W**

b. Within-plot standard deviations of nutrient concentrations and coefficients of variation
for growth variables
Nitrogen 0.200 0.274 0.226 0.287 Pr*
Phosphorus 0.0278 0.1209 0.0218 0.0320 F.W*
Fascicle weight 0.383 0.354 0.408 0.319 ns
Height 0.252 0.287 0.270 0.227 F.P*
Basal area 0.720 0.674 0.689 0.466 ns

c. Correlations between nutrient concentrations and growth variables
N:W 0.143 –0.156 0.150 0.084 ns
N:H 0.152 –0.198 0.148 0.252 F.W**, Pr.W*
N:B 0.243 –0.188 0.161 0.162 ns
P:W 0.397 0.228 0.051 0.101 F*
P:H 0.356 0.211 –0.025 0.423 F.W*
P:B 0.344 0.187 –0.065 0.283 F.W*
a Pr, site preparation; F, fertilizer; W, weed control; ns, not significant ∗, ∗∗, ∗∗∗, at 5, 1, and 0.1%,
respectively

7.5.6 Lateral Variability of Forest Floor Properties Under
Second-Growth Douglas-Fir Stands and the Usefulness
of Composite Sampling Techniques

One of the purposes of the study conducted by Carter and Lowe is to evaluate the
accuracy of composite sample data in relation to the mean of individual samples
used to create the composite sample.

The mass of each nutrient contributed to the composite sample from an individual
forest floor subsample is the product of the nutrient concentration in the subsample
with the mass of the subsample used. Assuming that weighing and analytical errors
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Table 7.8 Effect of site preparation, fertilizer, and weed control on the differences between treat-
ment means obtained by compositing needle samples on an equal weight basis and those obtained
using three compositing methods using unequal sample weights

Fertilizer and Significant
Compositing Nil Weed control Fertilizer weed control effectsa

Nitrogen (%)
Height 0.0065 –0.0227 0.0104 0.0186 F.W*
Fascicle weight 0.0119 –0.0156 0.0111 0.0114 Pr.F.W*
Basal area 0.0325 –0.0623 0.0241 0.0243 F.W*, Pr.W*

Phosphorus (%)
Height 0.0024 0.0013 0.0000 0.0035 F.W*
Fascicle weight 0.0042 –0.0013 0.0003 0.0014 ns
Basal area 0.0068 0.0030 –0.0011 0.0052 F.W*
a See footnote to Table 7.7

Table 7.9 Within-plot variation of nutrient mass obtained by using different compositing methods
and the number of randomly chosen sample trees required from a 25-tree plot to estimate the
weighted mean to within 10 and 20% of the true value

Number of samples

Within-plot standard deviation ±10% ±20%

Compositing factor N (%) P (%) N (%) P (%) N (%) P (%)

Equal weight 0.244 0.025 7 10 4 5
Height 0.574 0.052 16 l8 9 10
Fascicle weight 0.749 0.063 19 20 11 13
Basal area 1.250 0.096 22 23 17 17

are negligible, a nutrient’s concentration in a weighted composite sample will be
equal to the weighted composite sample and to the weighted arithmetic mean of
the nutrient concentration in the subsamples. Carter and Lowe (1986) study this
assumption, comparing analytical variables determined from weighted composite
samples with the same variable calculated as the weighted arithmetic mean of indi-
vidual subsamples. The composite samples were tested to determine whether they
were significantly different from the mean of the individual samples.



Chapter 8
A Linear Model for Estimation with Composite
Sample Data

8.1 Introduction

The foregoing chapters covered various issues involving composite sample data
with their statistical treatment. The problems vary from classification of individual
samples to drawing inference on population parameters, especially the population
mean. The measurements can be either presence/absence or continuous. A common
theme in all these chapters is the need to establish a relationship between individual
sample values and composite sample values. In Chapter 1, for instance, we observe
that Y = 1−∏k

i=1 (1− Xi ), where each Xi is a binary variable, taking a value 0 or
1, i = 1, . . . , k, and hence Y is also binary. Here, Y is the composite sample value
and Xi , i = 1, . . . , k, are individual sample values. In Chapter 6, we noted that the
composite sample value Y j is a weighted average of individual sample values and is
expressed as Y j = W j1 X j1 + · · · + W jk X jk . In Chapter 7, we considered the case
where the weights of individual sample values in the above expression are random.
In this chapter, we discuss a unified approach to express composite sample values
in terms of individual sample values when the measurements are continuous. Due
to the physical averaging of sample values upon compositing, it is proposed that a
linear model best represents the functional relationship between individual sample
values and composite sample values.

As for a statistical treatment of composite sample data, it is necessary to have
a functional relationship between the two sets of values, individual sample values
and composite sample values. With a linear model to express this relationship, most
of the procedures used in linear statistical inference can be extended easily to com-
posite sample data. For instance, if the individual sample values are generated by a
process that can be visualized as a linear model with a factor at several levels, then
composite sample data can be viewed as either a nested or a cross-over design where
the composite samples are treated very much like blocking of individual samples by
a factor at several levels. Thus, if n composite samples are formed, then we have
divided all the available individual samples into n blocks, each block representing
a composite sample. However, it must be noted here that, unlike in case of block
designs, the variation among individual samples within each composite sample is
never observed, and hence any inference from composite sample data has to be
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based only on variation between composite samples, as opposed to the variation
between individual samples if the individual samples themselves were subjected to
measurement.

8.2 Motivation for a Unified Model

Compositing is used in many different areas of application, with different materials
and procedures. As we saw in the earlier chapters, it may be preceded by sampling
schemes and followed by subsampling and laboratory measurement phases, which
are as varying as desired due to the wide range of situations involved.

The methodology for analyzing data from composite samples has been developed
mostly in an attempt to cope with problems which arise in specific areas of applica-
tion. As a consequence, there has often been a failure to recognize both the common
statistical structure of problems in different areas and the usefulness of methods
beyond the particular problem for which they have been proposed. Setting up of
a model, as general as possible, for the analysis of continuous measurements from
composite samples may facilitate a conceptualization of all the aspects of composite
sampling procedures and of the objectives of data analysis, including the unification
of terminology and notation and the development of methods for new applications.

The purpose of the model introduced in this chapter is to offer a flexible tool for
handling simultaneously both the basic features mentioned in the Introduction and
the complications presented in the two preceding chapters. In particular, features of
the compositing procedures which should be included in this general model are as
follows:

1. The presence of different average levels of the response variable in the population
under study, especially in meaningful subgroups in the population corresponding
to combinations of potentially explanatory variables (as, for instance, different
depths in a water body, different age–sex–race groups in a sample survey on a
human population).

2. The nature of the population or lot or physical medium under study. In particular,
the presence of natural segments (as, for instance, bags or bins where material to
be sampled is stored, sites in a spatially allocated population) and heterogeneity
of the material at various scales (between and within natural segments, within
individual units in a segment, etc.).

3. The physical, chemical, or biological process which takes place in the composit-
ing procedure. In particular, whether or not this process is such that the analyst
controls the proportions of original material entering into each composite sample
(case of fixed weights) or these proportions result from some random mechanism
(case of random weights), and whether or not this process eliminates the hetero-
geneity (if present) of the original sampled material.

4. The characteristics of the measurement phase, including presence and magnitude
of measurement errors.



8.3 The Model 137

8.3 The Model

Several models used in the literature to analyze measurements on a continuous vari-
able from composite samples may be regarded as special cases of the following
general model.

Suppose x is the m× 1 vector of values assumed by the individual samples; F is
an m × p known matrix; β is a p× 1 unknown vector of fixed-effect parameters; R
is an m×q known matrix; γ is a q×1 unknown vector of random-effect parameters;
ε is an m × 1 vector of random disturbances; y is the n × 1 vector of observations
on the composite samples; U is an n × m random matrix of compositing weights;
and η is an n × 1 vector of measurement errors.

With the above notation, the general model can be stated in the following form:

x = Fβ + Rγ + ε, (8.1)

y = U x + η. (8.2)

The following assumptions are made concerning the random components of sub-
model (8.1):

E(γ ) = 0q , (8.3)

Var[γ ] = Σγ , (8.4)

E[ε] = 0m, (8.5)

Var[ε] = Σε, (8.6)

cov[γ , ε] = 0q×m . (8.7)

The matrix U in submodel (8.2) has the generic element:

U ji =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W ji if the i th individual

sample contributes to the

j th composite sample;

0 otherwise.

It is convenient, as exemplified in the preceding chapter, to have the non-zero
weights arranged to be contiguous, i.e., to form a sub-(row)vector of each row
of U . This can be achieved by rearranging the elements of x accordingly so that
individual samples entering the same composite sample are themselves contiguous.
This is accomplished by permuting the elements of x by means of an appropriate
permutation matrix P of order m. Hence, U can be written in the form

U = W P .
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Since the statistical characterization of the non-zero weights in U is invariant under
permutation, we will concentrate on the matrix W when dealing with the statistical
properties of the compositing weights. The matrix W is considered as a sample data
matrix, whose j th row is a realization of a random vector w j with moments:

E
[
w j

] = μw j
, (8.8)

Var
[
w j

] = Σw j , (8.9)

and cross-covariance matrix between any pair of rows:

cov
[
w j ,w j ′

] = Γ w j ,w j ′ , j �= j ′. (8.10)

In this, note that the compositing weights are always in the form of proportions,
i.e., they are divided by the total weight (volume, number, quantity, etc.) of individ-
ual samples in each composite sample, and therefore

w′j ım = 1. (8.11)

As a consequence,

μ′w j
ım = 1 ∀ j, (8.12)

ı′mΣw j ım = 0 ∀ j, (8.13)

for ı′mΣw j ım is the variance of the degenerate random variable w′j ım

and ı′mΓ w j ,w j ′ ım = 0, j �= j ′, (8.14)

since ı′mΓ w j ,w j ′ ım is the covariance between two degenerate random variables.
Sometimes we shall denote the n × m matrix of expectations of W by MW and

the nm × nm variance/covariance matrix of W by ΣW, that is,

E[W ] = MW =
⎡

⎢⎣
μ′w1

...

μ′wn

⎤

⎥⎦ , (8.15)

Var(W) = ΣW =

⎡

⎢⎢⎢⎣

Σw1

Γ w2,w1
...

Γ wn ,w1

Γ w1,w2

Σw2
...

Γ wn ,w2

. . .

. . .

. . .

Γ w1,wn

Γ w2,w1
...

Σwn

⎤

⎥⎥⎥⎦ . (8.16)

Again, by (8.12)

MW ın = ın . (8.17)
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By using (8.13) and (8.14), we see that

ı′nmΣW ınm = 0, (8.18)

i.e., ΣW is singular.
Finally, for the vector of measurement errors

E(η) = on, (8.19)

Var[η] = Ση, (8.20)

cov[γ , η] = Oq×n, (8.21)

cov[ε, η] = Om×n, (8.22)

cov[w j , η] = Om×n ∀ j. (8.23)

8.4 Discussion of the Assumptions

The basic idea which underlies model (8.1) and (8.2) is that the data from com-
posite sampling arise in two stages: first, the mechanism generating x, which we
would investigate if we decided to carry out a traditional data analysis without com-
positing, and second, the mechanism generating y, the measurements we actually
analyze after compositing. From the point of view of statistical inference, we are
in the following situation: we (usually) want to make inference on the mechanism
generating x, but we must do this by analyzing y and taking into consideration any
additional disturbances due to its generating mechanism. Some relevant questions
then are

i. Which features of the process generating x are preserved in y?
ii. What restrictions should we put on the mechanism generating y in order to make

inference on those aspects of the mechanism generating x that are of particular
interest?

8.4.1 The Structural/Sampling Submodel

The first mechanism is modeled by (8.1), which we shall sometimes call the struc-
tural/sampling submodel, in that it accounts for structural effects of explanatory
variables on x through Fβ and for sources of variability due to the sampling scheme
through Rγ . In the terminology of theory of linear models, this is a mixed model,
since the structure is modeled via a set of fixed effects (and hence the letter F
for the coefficient matrix) while the sampling design affects x in terms of vari-
ance/covariance components and hence via a set of random effects (whereby the
letter R for the coefficient matrix). In general, the columns of F will refer to vari-
ables, either quantitative or qualitative or mixed, that do not require the same testing
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procedure as required for measuring x (and y), since the desire to avoid the cost and
effort of carrying out such a procedure on all original samples is precisely one of
the main motivations for compositing. For example, in the report of an analysis of
data obtained through the National Human Adipose Tissue Survey of the US Envi-
ronmental Protection Agency presented by Orban et al., (1990), F is the incidence
matrix of four qualitative variables (namely, census region, age group, race, sex)
fixed by sampling design and observed on donors of tissue specimens, which were
the individual samples in that application.

The structure of Σγ reflects the effects of the sampling design on the vari-
ance/covariance structure of x. The parent population may be finite or infinite;
appropriate choices of R and of Σγ will account for complexities of the sampling
scheme such as stratification, multiple stages, varying probability sampling.

The variance/covariance matrix Σε of the error component ε has, in most sit-
uations, the form Σε = σ 2 Im , but more complicated structures are possible. In
particular, a non-diagonal Σε may account for correlated errors which may result
from spatial autocorrelation of individual sample values on samples selected from
neighboring sites or from temporal autocorrelation of individual samples taken
sequentially over time.

8.4.2 The Compositing/Subsampling Submodel

The second mechanism, which we call as the compositing/subsampling submodel,
generating the observation y that we actually analyze, is modeled by (8.2). Again,
there are two aspects of this submodel: the compositing process, whose effect on the
compositing proportions is accounted for, after permutation P , through W , and the
subsequent laboratory measurement procedure, whose features are reflected in η.

As for η, the assumption E(η) = on simply means that the laboratory mea-
surement is valid, that is, it does not give systematically biased measurements. The
variance/covariance matrix of η usually has the form Ση = σ 2

η In , because it is
uncommon for carefully planned laboratory testing procedures to yield measure-
ments with reliability varying from test to test or with measurement errors correlated
over pairs of tests. However, in principle it is possible to take nonstandard features of
the measurement phase into account by complicating the assumed structure of Ση.

The matrix of weights, W, is the only component of model (8.1) and (8.2) which
is specific to the compositing process itself. As such, this component of submodel
(8.2) deserves some detailed illustration, which will be given in the discussion to
follow.

8.4.3 The Structure of the Matrices W, MW , and ΣW

Various features of the compositing design, such as the number of composite sample
size k, the number of composite samples n, subsampling of composite samples, and
the choice of individual samples for inclusion in every composite sample, impose
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specific structures on W. A stochastic characterization of W, especially regarding it
being random or not, affects the structures of MW and ΣW. It is rather difficult
to give a general treatment of such structures without complicating the notation
and derivations. Instead, we begin with a fairly general case in which s (>1) sub-
samples are drawn from each of the c (>1) composite samples of size k. Clearly,
the case c = 1, s > 1 reported by Brown and Fisher (1972) and by Rohde (1976)
and the case c > 1, s = 1 are just special cases of this more general case. Here
m = ck is the total number of individual samples and n = cs is the total number
of measurements. In order to avoid additional subscripts and also without loss of
generality, the number of individual samples k j and the number of subsamples s j

are assumed to be the same for every composite sample, j = 1, · · · , c. That is,
k j = k, and s j = s ∀ j . Furthermore, it is assumed that the compositing procedure is
exclusive, i.e., that each individual sample contributes to one and only one composite
sample.

In this general setting, the cs × ck matrix W is patterned as follows:

W =

⎡

⎢⎢⎢⎣

W1
Os×k

. . .

Os×k

Os×k

W2
. . .

Os×k

. . .

. . .

W j

. . .

Os×k

Os×k
...

W c

⎤

⎥⎥⎥⎦ , (8.24)

where

W j =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w′j1
w′j2
...

w′j i
...

w′js

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.25)

is the s× k sub-matrix of non-zero proportions with which the k individual samples
contribute to the s subsamples from the j th composite sample. The block diago-
nal pattern of W is due to the assumption of exclusiveness, since if a compositing
procedure is exclusive then two rows w′j i , w′j ′i ′ of W, pertaining to two different
composite samples, j �= j ′, cannot overlap, i.e., they cannot have non-zero weights
in the same column. Clearly, the (ck)-vector x is also patterned accordingly:

x = [x′1 x′2 . . . x′j . . . x′c]′, (8.26)

where x j = [x j1, x j2 . . . x j� . . . x jk]′ is the k-vector of individual sample values
associated with the k individual samples that form the j th composite sample and
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hence, under the assumption of homogeneity of individual samples, with the sk
aliquots contributing to the s-subsamples from the c composite samples.

Grouping of the rows of W into subsets corresponding to different composite
samples imposes a particular structure on the moments of these rows, since it is clear
that within each composite sample the weights are generated by the same random
vector, whereas weights in different composite samples may be generated by differ-
ent random vectors. In other words, there are c random vectors, generating the s non-
zero weights in w j , j = 1, . . . , c, with expected values μw j

, variance/covariance
matrices Σw j , and cross-covariance matrices Γ w j . Moreover, we shall denote by
Γ w j ,w�

the cross-covariance matrix between the random vectors generating the non-
zero weights in the j th and the �th composite samples, j, � = 1, . . . , c, j �= �.

At the first sight it may seem an unnecessary complication to consider Wj as a
sample data sub-matrix, whose non-zero elements in the i th row, i = 1, . . . , s, are a

realization of a random vector w j ∼
(
μw j

,Σw j ,�w j

)
, and of W as a sample data

matrix having the Wj s as diagonal blocks. However, this permits translating all the
prior information about the compositing process in terms of the statistical properties
of the compositing weights. In the following discussion, we shall try to illustrate this
translation in case of some common compositing situations.

8.4.3.1 Fixed Weights

If the proportions of the aliquots of individual samples which make up the composite
samples are fixed, i.e., they are constant over all the composite samples, then each
of the rows w′j i in (8.25) may be thought of as a realization from a degenerate
multivariate random variable wj with

μw j
= w j ,

Σw j = Ok,

�w j = Ok,

and Γ w j ,w�
= Ok, j �= �.

These can be written in a compact form as follows:

MW = W, (8.27)

ΣW = Onm (8.28)

so that Pr{W = MW } = 1.
The two most common situations in which the weights may be assumed to be

fixed are as follows:

(a) The weights (volumes or number) of individual samples are fixed by the analyst
and no subsampling is made, i.e., measurements are made on the composite
samples. This is, the case, for example, with the National Human Adipose
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Tissue Survey, where the analysts in the US EPA Office of Toxic Substance
decide as to which tissue specimens would enter each composite sample and
then analyze all the assembled tissue in each composite, since the primary rea-
son for compositing is the need for more tissue mass per analysis sample.

(b) Subsampling is made and physical mixing is (or may be assumed to be) perfect.
In this case, the weights will not only be fixed but also be known if the analyst
can predetermine them by design or observe them before compositing. Other-
wise, they are fixed but unknown. The latter situation may occur, for example,
if grab samples of water are taken with volumes proportional to flow and are
directly poured into a container and perfectly amalgamated, in order to esti-
mate waste loads. Then the volumes of the contributions of each grab sample
to each subsample from the container are unknown, but they are the same in
different subsamples. As a consequence, they are not realizations of a random
vector or, to be consistent with the approach followed in this chapter, they are
realizations of a degenerate random vector w with an unknown mean μw and
a null variance/covariance matrix.

8.4.3.2 Random Weights: The Case of c Composite Samples and s Subsamples
from Each

In Section 7.1 we illustrated, with the help of two examples, the two mechanisms
which may generate random weights. To give a more formal treatment of the topic,
let us consider the expected value and the variance/covariance matrix of W in the
case considered here, i.e., that of s > 1 subsamples from each of the c > 1 compos-
ite samples of size k. Since these matrices are highly patterned, their manipulation
is facilitated by the use of some results on the Kronecker product and on elementary
matrices and vectors, which are given in Section 8.7. For further details on the use
of these mathematical tools, see Graham (1981).

Owing to the presence of non-random zeros, the w j i vectors have the following
pattern:

w j i = [o′k o′k . . . w′j i . . . o′k o′k]′. (8.29)

As a consequence, MW and ΣW are themselves characterized by blocks of
patterned zeros. Suppose Ebs

i i ′ is an s × s elementary matrix, having a 1 in the
(i, i ′)th position and 0 elsewhere, which identifies the pair of subsamples (i, i ′);
the superscript bs reminds that this is a between subsamples operator; Ebc

j� is a c×c
elementary matrix, having a 1 in the ( j, �)th position and 0 elsewhere, which iden-
tifies the pair of composite samples ( j, �); the superscript bc reminds that this is a
between composite samples operator. Using formula (8.58) and the above notation,
we may write MW and ΣW in a compact way as follows:

MW =
c∑

j=1

(
Ebc

j j ⊗ ıs ⊗ μ′w j

)
, (8.30)
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ΣW =
c∑

j=1

[
s∑

i=1

(Ebc
j j ⊗ Ebs

i i )⊗ Ebc
j j ⊗Σw j

+
s∑

i=1

s∑

i ′=1
i �=i ′

(Ebc
j j ⊗ Ebs

i i ′)⊗ Ebc
j j ⊗ Γ w j

]

+
c∑

j=1

c∑

�=1
j �=�

s∑

i=1

s∑

i ′=1

(Ebc
j� ⊗ Ebs

i i ′)⊗ Ebc
j� ⊗ Γ w′j ,w�

. (8.31)

In the literature, it is usually assumed that Γ w j = Ok , i.e., that weights in dif-
ferent subsamples from the same composite are uncorrelated. Rohde (1976, p. 277)
further assumes they are independent, pointing out that this is “reasonable so long
as s is small relative to k.”

It should be noted here that, although the assumption Γ w j = Ok is often sat-
isfied, it is not necessarily so. For example, if the number of subsamples which
can be drawn from each composite is finite and a moderate to large number of
them is actually selected, then the weights in different subsamples are bound to
be negatively correlated (see, for example, Elder et al., 1980).

As for the cross-covariance matrix between vectors of weights in different com-
posite samples, Γ w j ,w�

, the values in these covariance matrices depend essentially
on whether or not compositing is exclusive. Recall that by exclusiveness we mean
that all the aliquots taken from a particular individual sampling unit enter a single
composite sample. Clearly, if compositing is exclusive, then the weights in any one
composite sample cannot affect the weights in any other composite sample, and
therefore Γ w j ,w�

= Ok ∀ j, �; j �= �. Another way of interpreting this is to
consider a whole exclusive compositing procedure as the “union” of c independent
compositing procedures.

Although exclusiveness is assumed in nearly all reported investigations in the
literature, it is conceptually possible to have non-exclusive compositing schemes.
For example, if sampling costs are not negligible, it may be justified to select k
individual sampling units to draw c aliquots from each of them and then to form
c composite samples using one aliquot from each individual sample. In this case,
there would be a “perfect non-exclusiveness.” That is, each individual sampling unit
would contribute to all the composite samples.

Clearly, in the non-exclusive case, the matrices Γ w j ,w�
can still be Ok if the

random mechanism generating the weights in one composite does not interact with
that generating the weights in any other composite. However, at least conceptu-
ally, the possibility of correlated weights in different composited samples cannot be
ruled out in non-exclusive compositing procedures, and we have allowed for this
possibility in (8.30) to retain the maximum possible generality in this theoretical
presentation.
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8.4.3.3 Unbiased Compositing/Subsampling Procedures

A compositing process and the subsequent subsampling step are said to constitute an
unbiased compositing/subsampling procedure if “on the average subsamples consist
of equal proportions of material from all increments in the composite” (see Elder
et al., 1980). For unbiased procedures, we have

μw j
= μık ∀ j. (8.32)

Constraint (8.12) implies that μ = 1
k . Hence, for the matrix of expected values

MW we get

MW = Ic ⊗ ıs ⊗ 1

k
ı′k . (8.33)

The following assumptions on the second moments of the weights are widely
used in the literature:

(a) All the weights have the same variance σ 2
w

(b) All pairs of weights in the same subsample have the same covariance
(c) Weights in different subsamples from the same composite as well as in different

composites are uncorrelated

These assumptions, along with constraints (8.13) and (8.14), yield

Σw j = σ 2
w

[(
k

k − 1

)
Ik −

(
1

k − 1

)
Jk

]
,

Γ w j = Ok,

Γ w j ,w�
= Ok .

Hence, for the variance/covariance matrix ΣW we obtain

ΣW =
c∑

j=1

s∑

i=1

(
Ebc

j j ⊗ Ebs
i i

)
⊗Ebc

j j⊗σ 2
w

[(
k

k − 1

)
Ik −

(
1

k − 1

)
Jk

]
. (8.34)

Assumptions (8.33) and (8.34) may be considered as an extended definition
of unbiasedness, insofar as their practical meaning is, with the insightful words
used by Elder et al. (1980), that “all increments (compositing objects in our ter-
minology) receive the same treatment in the compositing/subsampling procedure.”
In the remainder of this chapter, we shall refer to (8.33) and (8.34) as describing an
“unbiased composite/subsample procedure.”
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8.5 Moments of x and y

Suppose the random vector x and the random matrix W are expectation, variance,
and covariance independent. That is,

E[W |x] = E [W ] ∀x, (8.35)

Var[W |x] = Var[W ] ∀x. (8.36)

These conditions, which represent a matrix version of those first introduced by
Bohrnstedt and Goldberger (1969) and later used by Elder (1977), basically imply
that the random mechanism producing the weights does not interact with the random
mechanism generating the X -values in the population.

Under this assumption and using the specifications given in Section 8.3 for the
structural/sampling and the compositing/subsampling submodels, the expected val-
ues and variance/covariance matrices of x and y may be derived:

E[x] = Fβ, (8.37)

Var[x] = E
[
(Rγ + ε) (Rγ + ε)

] = RΣγ R′ +Σε, (8.38)

E
[

y
] = E(W x) = E(W)E(x) = MW Fβ, (8.39)

Var
[

y
] = Var[W x]+ Var[η] (8.40)

= MW RΣγ R′M ′W + MW Σε M ′W
+ [

(In ⊗ β ′F′)ΣW (In ⊗ Fβ)
]

+
n∑

j=1

n∑

j ′=1

e j tr
[(

e′j ⊗ Im

)
ΣW

(
e j ′ ⊗ Im

)
RΣγ R′

]
e′j ′

+
n∑

j=1

n∑

j ′=1

e j tr
[(

e′j ⊗ Im

)
ΣW

(
e j ′ ⊗ Im

)
Σε

]
e′j ′ +Ση.

For the derivation of (8.39) and (8.40), see Section 8.8.

8.6 Complex Sampling Schemes Before Compositing

In many applications of composite sampling, the population of interest is structured
and/or practical reasons make simple random sampling inadvisable. In all these
cases, a complex sampling scheme, i.e., a sampling design with two or more sam-
pling stages, with stratification and/or selection of clusters (or segments) at some
of such stages, must be employed for drawing the final individual sampling units
to be composited. The features of such complex sampling scheme must be taken
into account in the analysis of the final measurement on the composite samples,
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since they usually inflate the variance of each final measurement and sometimes
introduce correlation between final measurements.

One powerful and flexible approach for taking the complex sampling scheme
into consideration is to account for the effects of the various complications of the
sampling design through random-effect parameters in the model for Xi , the value
characterizing the i th individual sampling unit. There is a vast literature on this
topic, especially from researchers in the area of analytical use of sample survey data
from finite populations; a good review is in Skinner et al. (1989).

8.6.1 Segmented Populations

A simple and very common instance of structured population is provided by situa-
tions in which the population of interest is naturally divided into segments, i.e. into
clusters of spatially, temporally, or physically aggregated objects. Examples of such
populations include

(i) bales of wool (Cameron, 1951; Brown and Fisher, 1972);
(ii) sites in a water body (Rohde, 1979);

(iii) fertilizer in bags; and
(iv) materials in bins.

Let us illustrate the situation by a simple example (see Fig. 8.1). Some haz-
ardous waste material is stored in 100 barrels. In order to take appropriate action,
an estimate of the average concentration level of a highly toxic contaminant X is
needed. The measurement process is very costly, and therefore the analysts resort to
compositing. Four barrels (say nos. 2, 27, 55, and 65) are randomly chosen and two
individual samples are taken from each barrel at different depths.

The two individual samples from barrel 2 and the two from barrel 27 are compos-
ited; a similar procedure is carried out for the two individual samples from barrel 55
and barrel 65. Therefore, two composite samples of size 4 are finally measured at the
laboratory to determine the average concentration level in the batch of 100 barrels.
Again, to keep things easier, we assume that the measurement error is negligible and
may therefore be ignored.

8.6.2 Estimating the Mean in Segmented Populations

To introduce the basic concepts associated with the problem of estimating the mean
of X in a segmented population, let us generalize the features of the previous
example.

Let us first suppose that the population is composed of a very large number,
B →∞, of segments. cb segments are randomly selected and grouped into c sub-
sets. From each segment in each subset, a constant number a of compositing objects
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Fig. 8.1 Hazardous waste material in barrels example

is drawn randomly. The k = ab compositing objects are finally composited; there-
fore, there are c composite samples of size k = ab, and each is measured with-
out error. A graphical representation of such a compositing procedure is given in
Fig. 8.2.

This layout may be modeled as follows. Consider the random-effects linear
model expressing the X -value in each individual sample as an additive function
of the general mean μx (the parameter of interest), an effect due to the random
selection of barrels and an error component. This model may be written as follows:

X jhi = μx + γ jh + ε jhi , j = 1, . . . , c

h = 1, . . . , b

i = 1, . . . , a

with γ jh i.i.d.(0, σ 2
γ ), j = 1, . . . , c

h = 1, . . . , b

ε jhi i.i.d.(0, σ 2
ε ), j = 1, . . . , c

h = 1, . . . , b

i = 1, . . . , a .
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Fig. 8.2 Sampling/compositing scheme for segmented populations (with one composite per
subset)

Hence

Var
[
X jhi

] = σ 2
γ + σ 2

ε ,

cov
[
X jhi , X jhi ′

] = σ 2
γ , i �= i ′,

cov
[
X jhi , X jh′i ′

] = 0, h �= h′; ∀i, i ′,
cov

[
X jhi , X j ′h′i ′

] = 0, j �= j ′; ∀h, h′; ∀i, i ′.
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Denote the final measurement on the j th composite sample by

Y j =
b∑

h=1

a∑

i=1

W jhi X jhi , j = 1, . . . , c.

If W jhi = 1
k ∀ j, h, i , then

E
[
Y j

] = μx ∀ j,

Var
[
Y j

] = σ 2
γ

b
+ σ 2

ε

k
∀ j,

cov
[
Y j , Y j ′

] = 0, j �= j ′,

and the composited mean Ȳ =
∑c

j=1 Y j

c has expected value:

E
[
Ȳ
] = μx

and variance:

Var
[
Ȳ
] = σ 2

γ

cb
+ σ 2

ε

ck
.

That is, the composited mean is an unbiased estimator of μx , but the variance of Ȳ is
inflated, when compared to that of a composited mean in unsegmented populations,

by a quantity
σ 2

γ

cb . Notice that it is still possible to obtain an unbiased estimator of
Var

[
Ȳ
]
, since

E

[∑c
j=1(Y j − Ȳ )2

c(c − 1)

]
= σ 2

γ

cb
+ σ 2

ε

ck
= Var

[
Ȳ
]
,

but σ 2
γ and σ 2

ε are not separately estimable.

8.6.3 Estimating Variance Components in Segmented Populations

If the variability of X in the parent population is of direct interest, then care-
ful design of the compositing procedure makes it possible to get an estimate
of σ 2

ε .
To show this, let us now suppose that gb segments are randomly selected and

randomly grouped into g groups of b segments each. From each segment in each
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Fig. 8.3 Sampling/compositing scheme for segmented populations (with d composites per
subset)

group, a compositing objects are randomly drawn and composited; the procedure is
repeated until d composites are formed within each group. So, there are a total of
c = gd composites of size k = ab each. This compositing procedure is depicted in
Fig. 8.3.

Let X�jhi be the X -value for the ith individual sample from the segment h of the
�th group, which enters the jth composite sample. This value can then be modeled
as follows:

X�jhi = μx + γ�h + ε�hi ,
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with

γ�h i.i.d. (0, σ 2
γ ), � = 1, . . . , g; h = 1, . . . , b

ε�h i.i.d. (0, σ 2
ε ), � = 1, . . . , g; h = 1, . . . , b; i = 1, . . . , a.

Therefore,

Var
[
X�jhi

] = σ 2
γ + σ 2

ε ,

cov
[
X�jhi , X�jhi ′

] = σ 2
γ , i �= i ′,

cov
[
X�jhi , X�jh′i ′

] = 0, h �= h′ ∀i, i ′,
cov

[
X�jhi , X�j ′hi ′

] = σ 2
γ , j �= j ′ ∀i, i ′,

cov
[
X�jhi , X�j ′h′i ′

] = 0, h �= h′,
cov

[
X�jhi , X�j ′h′i ′

] = 0, � �= �′.

Let Y�j = ∑b
h=1

∑a
i=1 W�jhi X�jhi be the final measurement, without error, on

the j th composite in the �th group. Then,

Var
[
Y�j

] = σ 2
γ

b
+ σ 2

ε

k
∀�, j,

cov
[
Y�j , Y�j ′

] = σ 2
γ

b
, j �= j ′,

cov
[
Y�j , Y�′ j ′

] = 0, � �= �′; ∀ j, j ′.

The composite sample mean is now

Ȳ =
g∑

�=1

d∑

j=1

Y�j/gd,

and it is also possible to define the group means

Ȳ� =
d∑

j=1

Y�j/d, � = 1, . . . , g.

The total sum of squares for composite sample measurements may be decomposed
into two components as follows:



8.7 Estimating the Effect of a Binary Factor 153

g∑

�=1

d∑

j=1

(Y�j − Ȳ )2 =
g∑

�=1

d∑

j=1

(Y�j − Ȳ�)
2 +

g∑

�=1

d(Ȳ� − Ȳ )2,

and it is possible to show that

E

⎡

⎣
g∑

�=1

d∑

j=1

(Y�j − Ȳ�)
2

⎤

⎦ = σ 2
ε

(
d(g − 1)

k

)
.

That is, k
d(g−1)

∑g
�=1

∑d
j=1(Y�j − Ȳ�)

2 is an unbiased estimator of σ 2
ε .

8.7 Estimating the Effect of a Binary Factor

For illustration purposes, we shall introduce the basic problems encountered in the
estimation of fixed-effects parameters in linear models with composited data in the
context of the simplest possible example, that of a binary factor.

As an example, let us suppose that a county is divided into two areas: one in
which the prevailing economic activity is industrial and one in which the prevail-
ing economic activity is agricultural. A monitoring program is set up in order to
control the quality of underground water in the county. The purpose of the program
is twofold: to obtain accurate estimates of the average concentration level of some
contaminant X and to evaluate the differential impact of industrial and agricultural
activities on such concentration. In other words, the questions to be addressed are
how much contaminant X is present, on average, in the country underground water?
Given the contaminant X is a side product of both industry and farming, which of
the two activities is more responsible for its presence and concentration?

Two wells are randomly chosen in the industrial area and two in the agricul-
tural area (see Fig. 8.4). Due to cost and time constraints, the monitoring program
staff decides to use some form of compositing on the individual grab samples of
water taken from the wells. Two composite samples are formed mixing two of
the individual sampling units in each composite. The composite samples are then
completely tested, without subsampling, at the laboratory to determine the con-
centration of X . The measurements are taken with an error which is so negligible,
compared with natural variability of X , that they may be considered to be free of
errors.

This situation may be modeled as follows. Let

Xhi = μx + βh + εhi , h = 1, 2,

i = 1, 2
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Fig. 8.4 Industrial vs. agricultural water quality example

with β1, β2 unknown fixed parameters,

2∑

h=1

βh = 0⇒ β2 = −β1

εhi i.i.d. ∼ (0, σ 2
ε )

be the model expressing the effect of the two levels (h = 1: industrial area; h = 2:
agricultural area) of the binary factor F on the variable X of interest in the individual
samples. Notice that the two individual samples in each area may be thought of
as replicates and that, since the number of replicates in the areas is constant, the
individual sampling design is balanced.

Let

Y j =
2∑

h=1

2∑

i=1

U jhi Xhi , j = 1, 2,
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where

U jhi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W jhi if the i th individual sampling

unit at the factor-level h

contributes to the j th composite;

0 otherwise

be the compositing model, which describes the way the four individual samples are
composited into two composites of size 2. We assume that the final measurement on
each composite is made without error.

In matrix form,

x = Fβ + ε with E [ε] = o, Var [ε] = σ 2
ε Im, (8.41)

y = U x, (8.42)

where

x =

⎡

⎢⎢⎣

x11
x12
x21
x22

⎤

⎥⎥⎦ , F =

⎡

⎢⎢⎣

1 1
1 1
1 −1
1 −1

⎤

⎥⎥⎦ , β =
[
μx

β1

]
,

y =
[

y1
y2

]
, U =

[
u111 u112 u121 u122
u211 u212 u221 u222

]
.

Note that all the design and model features concerning the individual samples are
summarized in F, while U summarizes all the features of the compositing design
(assignment of individual samples to the composites and the composite sample size).
These features are fairly easy to understand if we consider their basic components.

The matrix F can be thought of as a product of two matrices:

F = GL,

where the matrix G describes the number of replicates for each combination of
levels of the explanatory factors (in our example, the number of wells drawn in each
area) and L gives a matrix representation of the model we are studying.

In our example

G =

⎡

⎢⎢⎣

1 0
1 0
0 1
0 1

⎤

⎥⎥⎦ ,
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L =
[

1 1
1 −1

]
.

The matrix U can also be thought of as a product of two matrices:

U = W P .

The matrix W contains the weights reordered in such a way that in each row the
non-zero weights 0 < w jhi ≤ 1 are contiguous. When, as in our example, each
individual sampling unit contributes to just one composite, then we say that the
compositing procedure is exclusive and the matrix W has the additional feature that
there is only one non-zero weight in each column. In our example:

W =
[
w11 w12 0 0

0 0 w21 w22

]
,

where w j i is the proportion with which the i th individual sampling unit in the j th
composite sample contributes to that composite.

In order to achieve this convenient form for W, individual sampling units must
be reordered so that units entering the same composite are themselves contiguous
in vector x. This is accomplished by the permutation matrix P. For example, if the
first and fourth individual sampling units (x11, x22) are to be mixed to form the first
composite and the second and third (x12, x21) to form the second composite, then
it is convenient to have the vector x reordered as x∗ = [x11, x22, x12, x21]′. This is
accomplished by a permutation matrix P that depends on the particular composit-
ing scheme. Hence, given the number of non-zero weights in each row of W, the
permutation matrix P plays the role of an assignment matrix, which identifies the
individual sampling units that are allocated to every composite sample.

To see how the estimation of β can be handled in this context, observe that (8.41)
and (8.42) may be rewritten as a single model as follows:

y = U Fβ + Uε = Dβ + ζ . (8.43)

Since Var
[

y
] = WVar[ε]W ′ = σ 2

ε W W ′ depends on the structure of W and may
therefore display heteroscedasticity even if Var[ε] does not, we must use a general-
ized least squares approach to estimate β. The normal equations are

(D′[W W ′]−1 D)β̂ = D′[W W ′]−1 y. (8.44)

The basic problem in the estimation of fixed linear models with composited data
can now be addressed more clearly: are D and ζ such that β is still identifiable? We
shall show by means of two somewhat extreme cases that the answer to this question
depends on the choice of W, i.e., upon the compositing design.
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8.7.1 Fully Segregated Composites

Suppose that, in the industrial vs. agricultural area example, the analyst may afford
to make two measurements a day. One reasonable way of forming two composites
out of the four available wells is to take two wells in each area and composite the
water grab samples from them. This compositing design is depicted in Fig. 8.5. With
this choice, each composite is formed only by water samples from one of the two
areas, either the industrial or the agricultural. This is what we call “full segregation”
of the composites.

Fig. 8.5 Industrial vs. agricultural water quality example: the “fully segregated composite
samples” case

We have

G =

⎡

⎢⎢⎣

1 0
1 0
0 1
0 1

⎤

⎥⎥⎦ , L =
[

1 1
1 −1

]
,

W =
[
w11 w12 0 0

0 0 w21 w22

]
,

P =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ = I4 ,
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so that

D = [W P GL] =
[

1 1
1 −1

]
.

Clearly, rank(D) = 2 so that segregation has preserved in D the full rank charac-
terization of F, and therefore μx and β1 are both estimable with the composited
measurements. We get

[D′(W W ′)−1 D] = [L′G′P ′W ′(W W ′)−1W P GL]

=
[

1 1
1 −1

]⎡

⎣
1

w2
11+w2

12
0

0 1
w2

21+w2
22

⎤

⎦
[

1 1
1 −1

]

=
⎡

⎣
1

w2
11+w2

12
+ 1

w2
21+w2

22

1
w2

11+w2
12
− 1

w2
21+w2

22
1

w2
11+w2

12
− 1

w2
21+w2

22

1
w2

11+w2
12
+ 1

w2
21+w2

22

⎤

⎦ .

Hence

|D′(W W ′)−1 D| = 4(
w2

11 + w2
12

) (
w2

21 + w2
22

)

and

[D′(W W ′)−1 D]−1

=
[(

w2
11+w2

12

)+(w2
21+w2

22

)

4

(
w2

11+w2
12

)−(w2
21+w2

22

)

4(
w2

11+w2
12

)−(w2
21+w2

22

)

4

(
w2

11+w2
12

)+(w2
21+w2

22

)

4

]
. (8.45)

We also have

D′(W W ′)−1 y =

⎡

⎢⎢⎣

(
w2

21+w2
22

)
y1+

(
w2

11+w2
12

)
y2(

w2
11+w2

12

)(
w2

21+w2
22

)

(
w2

21+w2
22

)
y1−

(
w2

11+w2
12

)
y2(

w2
11+w2

12

)
y2
(
w2

21+w2
22

)

⎤

⎥⎥⎦ . (8.46)

Using (8.45) and (8.46) in (8.44), we obtain

β̂ =
⎡

⎣
y1+y2

2

y1−y2
2

⎤

⎦ , (8.47)
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with

Var
[
β̂
]
= σ 2

ε

[
D′(W W ′)−1 D

]−1
.

Therefore, with fully segregated composite samples, we find that

(a) μx and β1 are estimable and their estimates are the “natural” ones: the com-
posited mean for μx and the semi-difference between the measurements of
the composite sample characterized by level 1 and the measurement on the
composite samples characterized by level 2;

(b) inspection of (8.45) shows that the effect of compositing on the variances of
μ̂x and β̂1 and on their covariance depends on the weights:

• If the weights are chosen to be different for the two composites, w11 �=
w22, then the two estimates in β̂ are correlated (positively if w11 > w21,
negatively if w11 < w21).

• If the weights are equal, the two estimates are uncorrelated and their vari-
ances attain the minimum when the weights are chosen to be uniform
(w11 = w12 = w21 = w22 = 1

2 ).

The latter result may be further formalized to show that indeed the uniform
weights choice in the fully segregated case gives a variance/covariance matrix

Var
[
β̂
]

which satisfies the important property of being D-optimal, i.e., of having

minimum determinant.
Recall that the variance of β̂ is given by

Var
[
β̂
]
= σ 2

ε

[
D′(W W ′)−1 D

]−1 = σ 2
ε

[
L′G′P ′W ′

(
W W ′

)−1 W P GL
]−1

.

The estimate β̂ is optimal if it has a “small” variance in some sense. The most
common criterion for judging if the variance is reasonably small is to compute some
scalar function of it. In the case of a variance/covariance matrix, the most widely
used function is its determinant, which corresponds to the generalized variance

|Var
[
β̂
]
| = σ 2

ε |D′
(
W W ′

)−1 D|−1.

Clearly, larger values of |D′(W W ′)−1 D| correspond to smaller values of |Var
[
β̂
]
|.

The variance/covariance matrix Var
[
β̂
]

with the minimum determinant, and hence

with the minimum generalized variance, is said to be “D-optimal”.
Recall that

|D′(W W ′)−1 D| = 4(
w2

11 + w2
12

) (
w2

21 + w2
22

) .
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If we define the quantity Q by

Q = Q(W) = |L′G′P ′W ′(W W ′)−1W P GL| , (8.48)

then, by imposing the constraints

w11 + w12 = 1 and w21 + w22 = 1 ,

we can write Q as the following function of w11 and w21 only

Q(W) = 4(
2w2

11 − 2w2
12 + 1

) (
2w2

21 − 2w2
22 + 1

) .

It can be seen, either analytically or by inspection of the graph in Fig. 8.6, that

max
W

Q(W) = 16,

which is achieved when

w11 = w12 = 1/2 and w21 = w22 = 1/2 ,

which is the case of uniform weights.

Fig. 8.6 Graph of Q(W) defined in (8.48) vs. w11 and w21 for the “fully segregated composite
samples” case
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8.7.2 Fully Confounded Composites

Suppose now that the monitoring staff of the industrial vs. agricultural area example
may afford only one measurement a day. To give a “fair” estimate of the average
concentration level of the contaminant X , the analysts decide they must have sam-
ples from both areas in the composite everyday. Therefore, they form the composite
taking everyday a different pair of wells, one in the industrial area and one in the
agricultural area (Fig. 8.7). Clearly, with this choice, all the composites contain
water from both areas. This is what we call “full confounding” of the composites.

Fig. 8.7 Industrial vs. agricultural water quality example: the “fully confounded composite sam-
ples” case

Under this design, we have

G =

⎡

⎢⎢⎣

1 0
1 0
0 1
0 1

⎤

⎥⎥⎦ , L =
[

1 1
1 −1

]
,

W =
[
w11 w12 0 0

0 0 w21 w22

]
,
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P =

⎡

⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ .

Notice that the only difference from the “fully segregated composites” case is in
matrix P , which assigns the third individual sampling unit x21 to the first composite
and the second sampling unit x12 to the second.

We obtain

D = [W P GL] =
[

1 w11 − w12
1 w21 − w22

]
.

Clearly, unlike in the context of equation 2.1.1, the rank of D depends now on the
choice of the weights:

(a) if the weights of the individual samples characterized by level 1 of F are equal
over the two pairs, w11 = w21 = w1, then the differences (w11 − w12) and
(w21 −w22) are equal, and the second column of D is proportional to the first,
i.e., rank (D) = 1; in this instance, only the function μx + (1 − 2w1)β1 is
estimable. In particular if w11 = w12 = 1

2 , j = 1, 2, that is, if the two individ-
ual samples in each composited pair are taken of the same size (volume, mass,
amount, etc.), then the second column of D is identically 0, μx is estimable,
but no estimation of β1 can be undertaken;

(b) estimation of both μx and β1 is still possible if the differences of the weights
w11 − w12 are purposely chosen to be different from pair to pair, for then rank
(D) = 2:

[D′(W W ′)−1 D] = [L′G′P ′W ′(W W ′)−1W P GL]

=
[

1 1
w11 − w12 w21 − w22

]⎡

⎣
1

w2
11+w2

12
0

0 1
w2

21+w2
22

⎤

⎦
[

1 w11 − w12
1 w21 − w22

]

=
⎡

⎣
1

w2
11+w2

12
+ 1

w2
21+w2

22

w11+w12
w2

11+w2
12
+ w21+w22

w2
21+w2

22

w11+w12
w2

11+w2
12
+ w21+w22

w2
21+w2

22

(w11+w12)
2

w2
11+w2

12
+ (w21+w22)

2

w2
21+w2

22

⎤

⎦ .

Hence,

|D′(W W ′)−1 D| = |L′G′P ′W ′(W W ′)−1W P GL|

= [(w11 − w12)− (w21 − w22)]2
(w2

11 + w2
12)(w

2
21 + w2

22)
.
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Inspection of |D′(W W ′)−1 D| gives another way of handling the estimabil-
ity problem. If w11 = w21, then |D′(W W ′)−1 D| = 0, and the normal equa-
tions [D′(W W ′)−1 D]β = D(W W ′)−1 y cannot be uniquely solved by inverting
[D′(W W ′)−1 D] to give the GLS estimator β̂ of β.

Now suppose the weights are chosen so as to give rank (D) = 2, then the matrix
[D′(W W ′)−1 D] is invertible and the inverse has the following form:

[D′(W W ′)−1 D]−1 =
⎡

⎢⎣
(w11−w12)

2(w2
21+w2

22)+(w21−w22)
2(w2

11+w2
12)

[(w11−w12)(w21−w22)]2
−(w11−w12)(w

2
21+w2

22)−(w21−w22)(w
2
11+w2

12)

[(w11−w12)(w21−w22)]2
−(w11−w12)(w

2
21+w2

22)−(w21−w22)(w
2
11+w2

12)

[(w11−w12)(w21−w22)]2
(w2

21+w2
22)+(w2

11+w2
12)

[(w11−w12)(w21−w22)]2

⎤

⎥⎦ .

We also find

D′(W W ′)−1 y =
⎡

⎢⎣
(w2

21+w2
22)y1+(w2

11+w2
12)y2

(w2
11+w2

12)(w
2
21+w2

22)

(w11−w12)(w
2
21+w2

22)y1+(w21−w22)(w
2
11+w2

12)y2

(w2
11+w2

12)(w
2
21+w2

22)

⎤

⎥⎦ , (8.49)

and hence

β̂ =
[

(w2
21−w2

22)y2−(w2
11−w2

12)y1
[(w11−w12)(w21−w22)]

y1−y2[(w11−w12)(w21−w22)]

]
, (8.50)

with Var
[
β̂
]
= σ 2

ε [D′(W W ′)−1 D]−1.

From (8.49) and (8.50) it is seen that in the case of fully confounded composites:

(a) both μx and β1 are still estimable; their estimates approach the fully segregated
ones in (8.50) when w11 → 1 and w22 → 1, that is, when the weights are
chosen to be as different as possible; at the extreme, when (w11 = 1, w12 = 0)

and (w21 = 0, w22 = 1), segregation is again achieved by using only one
individual sampling unit in each composite and the estimates in (8.50) are
equal to those in (8.47).

(b) inspection of (8.50) shows that the more similar the two vectors of weights in
the two composites, the larger the variances of μ̂ and β̂1 and their covariance;
furthermore, covariance will be positive if both w11 and w21 < 1

2 ; negative if
both w11 and w21 > 1

2 .

Again, this latter result may be better summarized by studying the determinant
of V (β̂), i.e., the conditions under which such matrix attains D-optimality.
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With Q(W) defined as in (8.48), we obtain

Q(W) = 4(w11 − w21)
2

(2w2
11 − 2w11 + 1)(2w2

21 − 2w21 + 1)
.

It can be seen, either analytically or by inspection of the graph in Fig. 8.8, that

max
W

Q(W) = 4 ,

which is attained when

w11 = 1 , w12 = 0 , w21 = 0 , w22 = 1 ,

i.e., when full segregation is again achieved by using only one individual sample in
each composite sample.

Fig. 8.8 Graph of Q(W) defined in (8.48) vs. w11 and w21 for the “fully confounded composite
samples” case

8.8 Elementary Matrices and Kronecker Products

An n×m matrix having a 1 in position i , j and 0 elsewhere is denoted by Ei j and is
termed an elementary matrix (of order n×m). The reference to the dimensions may
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be dropped, unless it is necessary to avoid confusion, in which case the notation Ei j

(n × m) may be used.
An n-vector having a 1 in position i and 0 elsewhere is denoted by ei and is

termed an elementary vector (of order n). Again, if the dimension is not obvious
from the context, the notation ei (n) should be used.

Let A and B be any two matrices of order n × m and p × q, respectively. Then
their Kronecker product is defined as follows:

C = A⊗ B =

⎡

⎢⎢⎢⎣

a11 B a12 B . . . a1m B
a21 B a22 B . . . a2m B

...
...

...

an1 B an2 B . . . anm B

⎤

⎥⎥⎥⎦ .

8.8.1 Decomposition of Block Matrices

Any (cm × cm) block matrix A of the form

A =

⎡

⎢⎢⎢⎣

A11 A12 . . . A1c

A21 A22 . . . A2c
...

... A j�
...

Ac1 Ac2 . . . Acc

⎤

⎥⎥⎥⎦ , (8.51)

where A is an (m ×m) submatrix, may be represented as a function of its blocks as
follows:

A =

⎡

⎢⎢⎢⎣

A11 Om . . . Om

Om Om . . . Om
...

... Om
...

Om Om . . . Om

⎤

⎥⎥⎥⎦+

⎡

⎢⎢⎢⎣

Om A12 . . . Om

Om Om . . . Om
...

... Om
...

Om Om . . . Om

⎤

⎥⎥⎥⎦ (8.52)

+ · · · +

⎡

⎢⎢⎢⎣

Om Om . . . Om

Om Om . . . Om
...

... Om
...

Om Om . . . Acc

⎤

⎥⎥⎥⎦

=
c∑

j=1

c∑

�=1

(E j� ⊗ A j�).
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Notice that, conversely,

A j� = [Om . . . Im . . . Om] A

⎡

⎢⎢⎢⎢⎢⎢⎣

Om
...

Im
...

Om

⎤

⎥⎥⎥⎥⎥⎥⎦
= (e′j ⊗ Im)A(e� ⊗ Im).

Hence,

A =
c∑

j=1

c∑

�=1

(E j� ⊗ [(e′j ⊗ Im)A(e� ⊗ Im)]).

This may be written in a more symmetrical way using properties of the Kronecker
product:

A =
c∑

j=1

c∑

�=1

(e j e′�)⊗ [(e′j ⊗ Im)A(e� ⊗ Im)]

=
c∑

j=1

c∑

�=1

{e j ⊗ [(e′j ⊗ Im)A]}{e′� ⊗ (e� ⊗ Im)}

=
c∑

j=1

c∑

�=1

(e j ⊗ e′j ⊗ Im)A(e′� ⊗ e� ⊗ Im)

=
c∑

j=1

c∑

�=1

(e j ⊗ e′j )⊗ Im]A[(e′� ⊗ e�)⊗ Im]

and, since for elementary vectors ei ⊗ e′k = ei e′k = Eik :

=
c∑

j=1

c∑

�=1

[E j j ⊗ Im]A[E�� ⊗ Im]. (8.53)

The representations of block matrices in (8.52) and (8.53) may be repeatedly
used for matrices with more than one level of blocking, i.e., matrices whose blocks
are block-submatrices, whose blocks are block sub-submatrices, and so on. For
example, if each A j� matrix in (8.51) is an (sk × sk) block matrix:
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A j� =

⎡

⎢⎢⎢⎣

j� B11 j� B12 . . . j� B1s

j� B21 j� B22 . . . j� B2s
...

... j� Bih
...

j� Bs1 j� Bs2 . . . j� B1s

⎤

⎥⎥⎥⎦ =
s∑

i=1

s∑

h=1

(Eih ⊗ j� Bih) , (8.54)

where j� Bih is a (k × k) sub-submatrix, then

A =
c∑

j=1

c∑

�=1

[
E j� ⊗

s∑

i=1

s∑

h=1

(Eih ⊗ j� Bih)

]
(8.55)

=
c∑

j=1

c∑

�=1

[
s∑

i=1

s∑

h=1

E j� ⊗ (Eih ⊗ j� Bih)

]

=
c∑

j=1

c∑

�=1

[
s∑

i=1

s∑

h=1

(
E j� ⊗ Eih

)⊗ j� Bih

]
.

This nested decomposition is useful when working with the variance/covariance
matrix of the random matrix of weights W , ΣW , in the general case of c > 1
composites and s > 1 subsamples from each, since in this case there are two levels
of blocking: composites and subsamples within composites. Here m = ck; we get

ΣW =
c∑

j=1

c∑

�=1

s∑

i=1

s∑

h=1

(
Ebc

j� ⊗ Ebs
ih

)
⊗ C(w j i ,w�h), (8.56)

where C(w j i ,w�h) is the ck × ck covariance matrix of the vectors w j i and w�h

of weights; Ebc
j� is a c × c between composites elementary matrix; Ebs

ih is an s × s
between subsamples elementary matrix.

Owing to the presence of necessarily zero weights, the generic random vector of
weights w j i has the following structure:

w j i =
( composite 1 composite 2 composite i composite c

o′k o′k . . . w∗′i j . . . o′k
)
,

where w∗j i is the k-subvector generating the only non-zero weights.
As a consequence, the only non-null covariance and cross-covariance matrices

are those between the subvectors of non-zero weights C(w∗j i ,w∗�h) for all j , �, i ,
and h. Thus, the covariance matrices in (8.56) are patterned as follows:

C(w j i ,w�h) = Ebc
j� ⊗ C(w∗j i ,w∗�h). (8.57)
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Summarizing, we may write

ΣW =
c∑

j=1

c∑

�=1

s∑

i=1

s∑

h=1

(
Ebc

j� ⊗ Ebs
ih

)
⊗ Ebc

j� ⊗ C(w∗j i ,w∗�h). (8.58)

8.9 Expectation and Dispersion Matrix When Both W
and x Are Random

8.9.1 The Expectation of W x

Let x be a random m-vector with

E[x] = μx ,

Var[x] = Σ x ,

and let W be a random n × m matrix such that

E [W ] = MW =
⎡

⎢⎣
μ′w1

...

μ′wn

⎤

⎥⎦ ,

Var[W ] = ΣW =

⎡

⎢⎢⎢⎣

Σw1

Γ w2,w1
...

Γ wn ,w1

Γ w1,w2

Σw2
...

Γ wn ,w2

. . .

. . .

. . .

Γ w1,wn

Γ w2,w1
...

Σwn

⎤

⎥⎥⎥⎦ . (8.59)

It is convenient to think of Var[W ] in terms of the “vec” operator:

Var[W ] = E

{[
vec

(
W ′ − M ′W

)] [
vec

(
W ′ − M ′W

)]′}
. (8.60)

Notice that, since vec
(

W ′ − M ′W
)

is an nm × 1 vector, Var[W ] is of order
nm × nm.

Furthermore, let us assume that W has its first two moments free of x, i.e.,

EW [W |x] = E [W ] ∀x, (8.61)

VarW [W |x] = Var[W ] ∀x, (8.62)

where EW and VarW denote the expectation and variance/covariance operators with
respect to the random matrix W. It immediately follows that

E [W x] = EW [(W |x)] Ex [x] = EW [W ] Ex [x] = MW μx . (8.63)
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The derivation of Var[W x] is less straightforward, and we need a few intermedi-
ate results to show it.

Result 1 Let e j be an elementary n-vector having a 1 in position j and 0 elsewhere.
Then

Ex

{
tr
[(

e′j ⊗ x′
)

ΣW
(
e j ′ ⊗ x

)]} =
(

e′j ⊗ μ′x
)

ΣW
(
e j ′ ⊗ μ′x

)

+tr
[
ΣW

(
e j ′e
′
j ⊗Σ x

)]
. (8.64)

Proof By cyclic commutativity of the trace operator

Ex

{
tr
[(

e′j ⊗ x′
)

ΣW
(
e j ′ ⊗ x

)]} = Ex {tr[ΣW (e j ′ ⊗ x)(e′j ⊗ x′).

Applying the Kronecker mixed product rule, the left-hand side of (8.64) becomes

= Ex

{
tr
[
ΣW

(
e j ′e
′
j ⊗ xx′

)]}

= tr
[
ΣW

(
e j ′e
′
j ⊗ E

(
xx′

))]

= tr
[
ΣW

(
e j ′e
′
j ⊗

(
Σ x + μxμ

′
x

))]
,

and, by distributivity of the Kronecker product, this is

= tr
[
ΣW

(
e j ′e
′
j ⊗Σ x

)
+ΣW

(
e j ′e
′
j ⊗ μxμ

′
x

)]
,

by Kronecker mixed product rule

= tr
[
ΣW

(
e j ′e
′
j ⊗Σ x

)]
+ tr

[
ΣW

(
e j ′ ⊗ μx

) (
e′j ⊗ μ′x

)]
,

by cyclic commutativity of the trace operator

= tr
[
ΣW

(
e j ′e
′
j ⊗Σ x

)]
+ tr

[(
e′j ⊗ μ′x

)
ΣW

(
e j ′ ⊗ μx

)]
,

finally, since the argument of the second trace is a scalar, we obtain

=
(

e′j ⊗ μ′x
)

ΣW
(
e j ′ ⊗ μx

)+ tr
[
ΣW

(
e j ′e
′
j ⊗Σ x

)]
,

which completes the proof.
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Result 2 With e j as in Result 1, we have

Ex
{[

In ⊗ x′
]
ΣW [In ⊗ x]

} = [(
In ⊗ μ′x

)
ΣW

(
In ⊗ μx

)]

+
n∑

j=1

n∑

j ′=1

e j tr
[(

e′j ⊗ Im

)
ΣW

(
e j ′ ⊗ Im

)
Σ x

]
e′j ′ . (8.65)

Proof On using (8.53), we may emphasize the patterned structure of ΣW given in
(8.59):

ΣW =
n∑

j=1

n∑

j ′=1

(
E j j ⊗ Im

)
ΣW

(
E j ′ j ′ ⊗ Im

)
.

Hence,

Ex
{[

In ⊗ x′
]
ΣW [In ⊗ x]

}

= Ex

⎧
⎨

⎩
[
In ⊗ x′

]
⎡

⎣
n∑

j=1

n∑

j ′=1

(
E j j ⊗ Im

)
ΣW

(
E j ′ j ′ ⊗ Im

)
⎤

⎦ [In ⊗ x]

⎫
⎬

⎭

= Ex

⎧
⎨

⎩

n∑

j=1

n∑

j ′=1

[
In ⊗ x′

] [
E j j ⊗ Im

]
ΣW

[
E j ′ j ′ ⊗ Im

]
[In ⊗ x]

⎫
⎬

⎭ ,

by the Kronecker mixed product rule

= Ex

⎧
⎨

⎩

n∑

j=1

n∑

j ′=1

[
E j j ⊗ x′

]
ΣW

[
E j ′ j ′ ⊗ x

]
⎫
⎬

⎭

=
n∑

j=1

n∑

j ′=1

Ex
{[

E j j ⊗ x′
]
ΣW

[
E j ′ j ′ ⊗ x

]}

=
n∑

j=1

n∑

j ′=1

Ex

{[
e j e′j ⊗ x′

]
ΣW

[
e j ′e
′
j ′x

]}

using again the Kronecker mixed product rule

=
n∑

j=1

n∑

j ′=1

Ex

{
e j

[(
e′j ⊗ x′

)
ΣW

(
e j ′ ⊗ x

)]
e′j ′

}

since the quantity in square brackets is a scalar
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=
n∑

j=1

n∑

j ′=1

e j Ex

{
tr
[(

e′j ⊗ x′
)

ΣW
(
e j ′ ⊗ x

)]}
e′j ′ .

Thus, using (8.64),

Ex
[(

In ⊗ x′
)
ΣW (In ⊗ x)

] =
n∑

j=1

n∑

j ′=1

e j

(
e′j ⊗ μ′x

)
ΣW

(
e j ′ ⊗ μx

)
e′j ′

+
n∑

j=1

n∑

j ′=1

e j tr
[
ΣW

(
e j ′e
′
j ⊗Σ x

)]
e′j ′ .

Now,

n∑

j=1

n∑

j ′=1

e j

(
e′j ⊗ μ′x

)
ΣW

(
e j ′ ⊗ μx

)
e′j ′

=
n∑

j=1

n∑

j ′=1

(
e j e′j ⊗ μ′x

)
ΣW

(
e j ′e
′
j ⊗ μx

)

=
⎡

⎣
n∑

j=1

(
e j e′j ⊗ μ′x

)
ΣW

n∑

j ′=1

(
e′j ′e
′
j ′ ⊗ μx

)
⎤

⎦

=
⎡

⎣

⎛

⎝
n∑

j=1

E j j

⎞

⎠⊗ μ′x

⎤

⎦ΣW

⎡

⎣

⎛

⎝
n∑

j=1

E j ′ j ′

⎞

⎠⊗ μx

⎤

⎦

= [(
In ⊗ μ′x

)
ΣW

(
In ⊗ μx

)]

and

n∑

j=1

n∑

j ′=1

e j tr
[
ΣW

(
e j ′e
′
j ⊗Σ x

)]
e′j ′

=
n∑

j=1

n∑

j ′=1

e j tr
[
ΣW

(
e j ′1e′j

)
⊗ (ImΣ x Im)

]
e′j ′

=
n∑

j=1

n∑

j ′=1

e j tr
[
ΣW

(
e j ′ ⊗ Im

)
Σ x

(
e′j ⊗ Im

)]
e′j ′

by cyclic commutativity of the trace operator
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=
n∑

j=1

n∑

j ′=1

e j tr
[(

e′j ⊗ Im

)
ΣW

(
e j ′ ⊗ Im

)
Σ x

]
e′j ′

and result (8.65) follows. This completes the proof of Result 2.

8.9.2 Variance/Covariance Matrix of W x

We can now derive the following expression for the variance/covariance matrix of
W x:

Var[W x] = MW Σ x M ′W +
[(

In ⊗ μ′x
)
ΣW

(
In ⊗ μx

)]

+
n∑

j=1

n∑

j ′=1

e j tr
[(

e′j ⊗ Im

)
ΣW

(
e j ′ ⊗ Im

)
Σ x

]
e′j ′ . (8.66)

For the proof, we write W̃ = W − MW so that

Var[W x] = Ex {Varw[W x|x]} + Varx {Ew [W x|x]}
= Ex

[
Ew

{(
W x − MW x

) (
W x − MW x

)′}]+ Varx
[
MW x

]

= Ex

{
Ew

[(
W − MW

) (
xx′

) (
W − MW

)′]}+ Varx
[
MW x

]

= Ex

{
Ew

[(
W̃ x

) (
x′W̃ ′

)]}
+ MW Var[x]M ′W

= Ex

{
Ew

[(
In ⊗ x′

) (
vec W̃

′) (
vec W̃

′)′
(In ⊗ x)

]}

+ MW Var[x]M ′W
= Ex

{[
In ⊗ x′

]
Ew

[(
vec W ′

) (
vec W ′

)′]
(In ′x)

}

+ MW Σ x M ′W
= Ex

{[
In ⊗ x′

]
Var[W ] [In ⊗ x]

}+ MW Σ x M ′W .

On using (8.65), the chain of equalities continues as

= MW Σ x M ′W +
[(

In ⊗ μ′x
)
ΣW

(
In ⊗ μx

)]

+
n∑

j=1

n∑

j ′=1

e j tr
[(

e′j ⊗ Im

)
ΣW

(
e j ′ ⊗ Im

)
Σ x

]
e′j ′ .

This result can also be written as

Var[W x] = MW Σ x M ′W +
[(

In ⊗ μ′x
)
ΣW

(
In ⊗ μx

)]
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+
n∑

j=1

n∑

j ′=1

e j

[
vec

(
e′j ⊗ Im

)]′ (
ΣW ⊗Σ x

) [
vec

(
e j ′ ⊗ Im

)′] e′j ′ .

Notice that, in the special case of a linear combination w′x of random vectors (i.e.,
n = 1), (8.66) reduces to

Var
[
w′x

] = μ′wΣ xμw + μ′xΣwμx + tr [ΣwΣ x ] ,

as already noted by Elder et al. (1980).



Chapter 9
Composite Sampling for Site Characterization
and Cleanup Evaluation

9.1 Data Quality Objectives

Environmental data are collected for making and/or defending certain decisions.
Using data quality objectives (DQO) to plan new data collection activities helps
assure that the right type and quality of information will be collected and that the
analysis of the collected information will lead to efficient decisions.

The DQO process is a total quality management tool developed by the US Envi-
ronmental Protection Agency (EPA) to facilitate the planning of data collection
activities. It requires the planners to focus their planning by specifying the applica-
tion (use of the data), the decision criteria, and the acceptable probability of making
an incorrect decision. The process is suitable for sequential consideration of relevant
issues.

DQOs are specifications required to design an investigation. These specifica-
tions can be put in the form of a process, where each step of the process iden-
tifies a specification. The DQO process developed by EPA has the following
steps:

1. State the problem
2. Identify the decision to be made
3. Identify inputs to the decision
4. Define the boundaries of the study
5. Develop decision rule
6. Specify limits on uncertainty
7. Optimize design for obtaining data

Data quality objectives enable the investigator to evaluate the potential con-
sequences of uncertainty before data collection is undertaken and to specify the
acceptable range for uncertainty in the decision that will be based on the results of
the investigation. Most importantly, the DQO process can save resources by identi-
fying efficient and cost-effective data collection protocols.

G.P. Patil et al., Composite Sampling, Environmental and Ecological Statistics 4,
DOI 10.1007/978-1-4419-7628-4_9, C© Springer Science+Business Media, LLC 2011
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The seven stages of the DQO process are described briefly below.

1. State the problem to be resolved.

A clear and well-stated description of the problem and any resources, time, or
other restrictions on the data collection activity are essential in order to optimally
utilize the available resources.

State the problem.

• Describe the problem as you currently understand it.
• Consider the importance of social and political considerations to the problem.
• Organize and review relevant information, including preliminary studies, and

indicate the source and reliability of the information. Conduct literature searches
and explore ongoing studies to ensure that the problem has not previously been
resolved.

• If it is a complex problem, then organize your understanding of it by identifying
components of the problem, each of which could potentially be addressed by a
separate study. Try to prioritize among these components for further planning.
Examine whether new data are critical to resolving this problem.

2. Identify the decision.

• Describe initial ideas on approaches to resolving the problem.
• State the range of actions that might be taken based on the outcome of this study.

Consider agency policies that may influence these actions (e.g., agency emphasis
on pollution prevention rather than source containment or treatment).

• Specify the criteria for taking these actions as specific “If . . . , then . . . ” scenarios
when possible. If the criteria are not known at this time, then specify how they
will be established.

• State the decision as a choice among alternative courses of action that will resolve
one or more components of the problem

The decision maker (data user) should be involved in this step and is encouraged
to provide general guidance for taking action.

3. Identify the inputs.

Make a list of environmental variables or characteristics to be measured, the
criteria for taking action, and any other information needed to make the decision.
Confirm that each environmental characteristic in the list can be measured.

4. Define the scope of the study.

It is necessary to have a detailed description of the population for which the
decision will be made, including area and time period involved. When the popula-
tion consists of people and objects, it is important to define space and time bound-
aries and the other characteristics that determine what belongs in and out of the
population.

Alternatively, the population may consist of a continuous medium (air, water,
soil). In this case, the portion of this medium that belongs to the population can



9.1 Data Quality Objectives 177

usually be defined just by the spatial and temporal boundaries, although there
may be other characteristics that help to define it. For example, a survey of the
toxic contaminant levels in surface waters of the population could consist of the
top 10–12 m of water (the epilimnetic waters). Other characteristics might include
meteorological conditions (wind speeds less than 15 mph, for instance).

Sometimes we are not able to sample from the entire population. In this case, we
either make inferences only to that portion of the population that can be measured
or we make assumptions that allow us to infer to the entire population.

Make sure that the practical considerations (identified in the problem step) are
consistent with these boundaries.

5. Develop a Decision Rule.

Prepare a statement that defines how environmental data will be summarized and
used to make the decision.

After the data have been collected, they are summarized to form a result, which
is compared to the criteria for taking action to make the decision. The purpose of
this step is to integrate the outputs from previous steps into a single statement spec-
ifying how environmental data will be summarized and used to make the decision,
including quantitative criteria for determining what action to take.

It is important that someone with statistical expertise be involved in this step to
be certain that the decision rule is stated in a manner that leads to an efficient design.

Develop a decision rule as an “If . . ., then . . . ” statement that incorporates the
study result, the criteria for taking action, and the actions(s) that will be taken under
various possible scenarios.

Confirm that you will need all the data you will be collecting. If not, then define
a more narrowly focused set of input variables.

6. Specify limits on uncertainty.

There is always some error in environmental data. As a result, some degree of
uncertainty will exist in any decision based on environmental data. The limits on
uncertainty should be based on careful consideration of the consequences of incor-
rect conclusions. There are two types of decision errors for all studies that will sup-
port a decision on whether or not to take action: false-positives and false-negatives.
The definition of what constitutes false-positive and false-negative errors depends
on how the decision is defined. In this step, limits on uncertainty are established
and stated as acceptable probabilities of making incorrect decisions; i.e., acceptable
false-positive and false-negative error rates for the decision.

Define false-positive (f(+)) errors for the decision and describe scenarios in
which each type of error might take place.

Determine if false-positive or false-negative errors are of greater concern.
Establish an acceptable probability for the occurrence of each of these errors.

Also, specify a region of indifference, the area in which you choose not to control
the probability of an incorrect outcome because, under the stated conditions, either
decision is acceptable. This region may be narrow or broad and must be acceptable
to the decision maker.
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Combine the probability statements into a formal statement of the levels of
uncertainty that can be tolerated in the results.

7. Optimize the design.

In this step, statistical techniques are used to develop and evaluate various designs
for the study that meet the specifications from the DQO process. The data collected
using these designs should enable the decision to be made subject to error rates no
greater than those specified in the limits on uncertainty (given that the assumptions
on which the design was developed hold true).

Obtain the information needed to develop alternative designs: the limits on uncer-
tainty from the proceeding step; any budget or time constraints; any practical consid-
erations; cost estimates for all study activities; estimates of the inherent variability
of variables or environmental characteristics to be measured; and estimates of the
variability that will be introduced by the sampling and measurement process.

Select the most cost-efficient design that has acceptable performance and meets
all other needs of the decision maker including political and social concerns.

Confirm that the design will yield useful results even when conditions are more
adverse than those expected or assumed.

If it appears that there is no design that will meet both the limits on uncertainty
and the budget constraints, then determine whether to compromise by relaxing the
limits on uncertainty or other practical constraints or by finding additional funding
to achieve the desired limits on uncertainty within the specified boundaries for the
study.

9.2 Optimal Composite Designs

The concept of optimality is very important in environmental sampling in general
and composite sampling in particular. Unlike in hard sciences, several factors affect
the sampling units resulting in high variability of the environmental characteristic
being observed. On the other hand, due to high costs of sampling and measurements,
the sample size can at most be moderate, making it more difficult to keep the errors
within stipulated bounds. It is therefore very important to optimize both sampling
and compositing designs.

Suppose the variability of composite sample measurements is modeled, as in
the preceding chapter, in terms of a linear model. Then the total variation among
composite sample measurements will have several variance components: σ 2

t , the
variance due to measurement error; σ 2

w, the variance component that accounts for
randomness of compositing weights; σ 2, the sampling variance or the population
variance; and σ 2

c , the variance component due to variability among individual sam-
ple values within a single composite sample. Each of these variance components
is estimable, and their respective estimators are as follows: σ 2

t is estimated by the
variability among measurements on the s subsamples drawn from the same individ-
ual or composite sample and σ 2 is estimated by the sample variance for individual
samples.
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9.2.1 Cost of a Sampling Program

Suppose the composite sample size is denoted by k, the number of composite sam-
ples by n, and the number of individual samples by m. Due to the possibility of
a measurement error, measurements are made on s subsamples of every sample,
either individual or composite. While the total sampling effort is measured by the
number of individual samples selected (m), the total analytical effort is measured by
the total number of measurements (ms when individual samples are used to make
measurements and ns when composites samples are used to make measurements).
Further, suppose cs is the cost of sampling per sampling unit (either individual or
composite), ct is the cost of measurement (testing) per sample, again either individ-
ual or composite, and ck the cost of collecting and processing an individual sample
before compositing. With these components of the cost of sampling and the cost of
measurement, a cost function can be defined that gives the cost of an analysis, which
covers both sampling and analytical tests. If the total cost is denoted by C , then we
have, for a situation where individual samples are subjected to measurements:

C = mcs + snct .

Since a composite sample is made up of k individual sampling units, we can replace
cs with kck to yield the following equation:

C = n (kck + sct ) .

For specified values of s and k, this equation can be inverted to yield

n = C

kck + sct
.

This enables one to compute the number of composite samples that one can afford.

9.2.2 Optimal Allocation of Resources

For sampling of individual samples, the optimum number of analytical tests to make
on each individual sample can be computed directly using the following formula:

ŝ =
√

cs S2
t

ct S2
,

where S2
t is an estimate of σ 2

t and S2 is an estimate of σ 2. The value of ŝ is truncated
to an integer and constrained to be greater than or equal to unity.

Analogous formulas can be derived for s and k in composite sampling by simul-
taneously minimizing both the variance of a sample mean and the cost of a sampling
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plan. This is done by computing the derivative (with respect to s and k) of the prod-
uct of cost and variance, setting these derivatives equal to zero, and then solving for
the optimal values of s and k (Kendall and Stuart, 1966). The number of composite
samples, n, is determined so that the plan is affordable and the desired statistical
test has sufficient statistical power. The number of composite samples must also be
greater than 1 so that an estimate of the sampling variance can be obtained.

The results depend on the model for the compositing weights. If the compositing
weights are fixed and all equal to 1

k , then explicit formulas cannot be obtained for s
and k except for their ratio

ŝ

k̂
=

√
S2

t ck

S2ct
.

Thus an iterative or trial and error approach is required as described below. Given
a pair of s and k values (in the above ratio), n can be computed so as to achieve a
desired total cost using the following formula:

n̂ = C

kck + sct
.

Alternatively, one can solve for a value of n that yields a specified standard error
of a sample mean using the following formula:

ŝ =
S2

t
s + S2

k

S2
Ȳ

,

where S2
Ȳ

is an estimate of the composite sample variance. If ŝ < 1, then a single
replicate should be used. For this model k should be as large as one can afford.

The value for m depends on the limitation of funds and the desired statistical
power one wishes to have for testing differences between subpopulations. The for-
mula for m to stay within a fixed cost is as given above. The formula to achieve a
desired standard error for this model is

m̂ =
1
k2

S2
t
s + S2

k

S2
Ȳ

.

9.2.3 Power of a Test and Determination of Sample Size

A sampling program needs to have sufficient sample sizes so that if there are
important differences between subpopulations, they are likely to be detected statis-
tically. Sokal and Rohlf (1981, p. 263.) give the following relationship to determine
the required sample size for comparing two means:
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n = 2
(σ

δ

)2 (
tα[v] + t2(1−p)[v]

)2
,

where δ is the smallest true difference that it is desired to detect, σ is the true stan-
dard deviation for a sample, v is the degrees of freedom of the estimate of σ , and
α is the significance level one plans to use. The probability p is the desired prob-
ability that an observed difference, as small as δ, will be found to be statistically
significant. It is 1 minus the probability of a type II error. This formula is based on
the assumption that the difference between means follows the normal distribution.

In the case of composite samples, this formula can be expressed as

n̂ŝ = 2
EMS

δ2
(tα[v] + t2(1−k)[v])2,

where EMS is the expected value for the mean square for differences among sample
values and v is the degrees of freedom that one will have for the mean square in a
statistical analysis based on the planned sampling program (usually v = m − 1).
The other symbols are as defined above. This equation must be used as part of an
iterative cycle since the degrees of freedom, v, depend on m and the expected mean
square depends on both n and k. The solution of this equation is further complicated
by the fact that for small sample sizes one cannot ignore the fact that n, k, and m are
integers. Unique solutions are not always possible.

9.2.4 Algorithms for Determination of Sample Size

The procedures to be used for determining the sample size vary according to whether
one wishes to find the best sampling design (minimum δ) for a fixed cost or the
least expensive sampling design that can detect a specified δ. For each problem the
formulas differ slightly and hence are both considered here.

In all cases one must consider transformations, removal of outliers, robust esti-
mation methods, etc., so that the means are more or less normally distributed. One
then needs to obtain good estimates of the variance due to measurement error, σ 2

t ,
and the variance among the individual sampling units σ 2. This latter quantity may
be difficult to obtain if the reason for using composite samples is that analytical
errors are very high when measuring a single individual sampling unit. If the data
have been transformed then these estimates must also be obtained for the trans-
formed variables. The cost, Ct , of each measurement on a composite sample and
the cost, Ck , of each individual sampling unit are also needed. There may be other
costs associated with collecting data. What is important in this context is the cost of
adding another individual sampling unit to a composite or to make another replicate
measurement. The “total cost” being modeled is the variable part of the experiment
after any initial setup costs. One also needs to make a decision about what levels
of type I and type II errors one can tolerate and the smallest differences that are
important to detect.
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9.2.4.1 Finding the Best Sampling Plan for a Fixed Cost, C

1. Compute the ratio r =
√

S2
t ck

S2ct
.

2. For integer values of n and k = n
r (k ≥ 1), let s = C

kck+nct
.

The number of samples should be truncated to an integer and constrained to be
equal to or greater than 2 so that an estimate of the variance can be obtained in
the planned design.

3. For each feasible combination of n, k, and s estimate δ, the smallest difference
that one can expect to detect in the planned experiment:

δ2 = 2

b

(
S2

t

n
+ S2

k

k

)
(tα[v] + t2(a−k)[v])2.

The combination that yields the smallest δ is the optimal design.

9.2.4.2 Finding the Least Expensive Sampling Plan That Can Detect
a Specified Difference

1. Compute the ratio r =
√

S2
t Ck

S2ct
. For integer values of n and k = n

r (k rounded to

an integer and constrained to be ≥1), compute

m̂ = 2

δ2

(
S2

t

n
+ S2

k

) (
tα[v] + t2(1−k)[v]

)2
.

The degrees of freedom, v = m−1, are a function of m; so this equation must be
solved iteratively. The result should be truncated to an integer and constrained to
be greater than or equal to 2 so that an estimate of the variance can be obtained
in the planned design.

2. For each feasible combination of n, k, and m compute the cost of each group in
the planned experiment:

C = m (kck + nct ) .

Information about the underlying distribution of the individual sampling units is
needed in order to meet assumptions of a particular statistical method. According
to the central limit theorem, minor deviations from normality are not important,
especially if sample sizes are not small.



Chapter 10
Spatial Structures of Site Characteristics
and Composite Sampling

10.1 Introduction

Environmental samples are most often collected at sites and therefore cannot be con-
sidered stochastically independent of one another. There is a common underlying
contamination diffusion process that affects all samples, possibly in varying degrees.
As a consequence, the samples collected at a particular site can be viewed as a real-
ization of the corresponding spatial point process. It is then obvious that a statistical
analysis of such data involves not only the overall population mean and variance but
also parameters of the spatial process such as components of the variability of the
process, spatial autocorrelation among sampling locations. In particular, the interest
is in the trend, which corresponds to the expectation of the process, and spatial
autocorrelation, which is usually characterized by the variogram, semivariogram, or
covariogram. There is also an interest in identifying the components of variability,
especially the scale of variability in comparison with the scale of sampling, which
is measured in terms of the distance between successive sampling locations.

Spatial issues that are important in environmental sampling are (1) what scale of
sampling is necessary to adequately sample a particular site and (2) how to design
compositing of individual samples in order to limit the effect of micro-scale vari-
ability on the spatial patterns at a larger scale. We also model the spatial variability
while considering the above two issues. Though there is no unique way to model
spatial variability of a spatial process, we propose an interpretation that appears
reasonable to us. In this chapter, we discuss the statistical model of sampling and
considerations of designing the composite sampling plan.

10.2 Models for Spatial Processes

A spatial process is a stochastic (i.e., random) process indexed by the location of
the sample point. These points may or may not form a lattice set. The data may be
continuous or discrete. Let s ∈ Rd be a generic sampling point in d-dimensional
Euclidean space and suppose the potential value X (s) at spatial location s is a
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random variable. Now let s vary over the index set D ⊂ Rd , which will represent
the site being sampled so as to generate the random process

{X (s), s ∈ D} . (10.1)

Here, X (s) is the value of the variable of interest at the spatial location s. To analyze
spatial data, i.e., data on the spatial process

{
X (s), s ∈ D ⊂ Rd

}
, we need to model

X (s). To begin with, we assume that E[X (s)] and Var[X (s)] exist for every s ∈ D.
Let us write

E[X (s)] = μ(s),

Var[X (s)] = C(s, s),

and

cov[X (s1) , X (s2)] = C (s1, s2) .

The mean function μ(·) is called the trend of the X (s) and C(·, ·) is called its
covariance function. Note that the trend and the covariance function of a spatial
process define its first two moments. One standard way of modeling X (s) is through
its first two moments, especially in some form of stationarity.

The process {X (s), s ∈ D} is said to be strictly stationary if for any positive
integer n, any n locations s1, . . . , sn ∈ D, any n (Borel) sets B1, . . . , Bn ⊂ D, and
any vector h ∈ Rd , we have

P[X (s1) ∈ B1, . . . , sn ∈ Bn] = P[X (s1+h) ∈ B1, . . . , X (s1+h) ∈ Bn]. (10.2)

Here, the process is stationary in the sense that every finite dimensional distribution
of the process is not changed if all the points are shifted in the same way, that is,
in the same direction and by the same distance. Note that, for a strictly stationary
process, we have E[X (s)] = E[X (s + h)] for any h ∈ Rd . That is, E[X (s)] is a
constant, and we can write

E[X (s)] = μ. (10.3)

For any two locations s1 and s2 and any vector h, we obtain

C (s1, s2) = C (s2 + h, s2 + h) .

In particular, taking h = −s2, we have

C (s1, s2) = C (s1 − s2, o) ,

so that the covariance function can be considered a function of the difference s1− s2
alone. That is, writing h = s1 − s2, we write
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C (s1, s2) = C (s1 − s2) = C (h) . (10.4)

Note that, for a strictly stationary process, C (−h) = C (h) , h ∈ Rd .
A process is defined to be increment stationary if it satisfies (10.3) and for

any positive integer n, any n locations s1, . . . , sn ∈ D, any n − 1 (Borel) sets
B1, . . . , Bn−1 ⊂ D, and any vector h ∈ Rd , we have

P[X (s2)− X (s1) ∈ B1, . . . , X (sn)− X (sn−1) ∈ Bn−1]
= P[X (s2 + h)− X (s1 + h) ∈ B1, . . . , X (sn + h)− X (sn−1 + h) ∈ Bn−1].

(10.5)

It is obvious that a strictly stationary process is increment stationary, but the con-
verse need not be true.

It is often more convenient to use the variogram or semivariogram than the
covariance function of a spatial process. For a process satisfying (10.3), the semi-
variogram is defined as

γ (s1, s2) = 1

2
E[X (s1)− X (s2)]2 = 1

2
Var[X (s1)− X (s2)].

The variogram is 2γ (s1, s2). Note that, by definition, γ (−h) = γ (h) and γ (0) = 0,
but it is possible that limh→o γ (h) �= 0. If γ (h) → c0 > 0, as h → o, then c0 is
called the nugget effect. This is because it is believed that micro-scale variation is
causing a discontinuity at the origin.

For an increment stationary process, γ (s1, s2) = γ (s1 + h, s2 + h) for any
h ∈ Rd . Letting h = −s2, we have

γ (s1, s2) = γ (s1 − s2, o)

and we write

γ (s1, s2) = γ (s1 − s2) . (10.6)

A process is said to be intrinsically stationary if it satisfies both (10.3) and (10.6).
Every increment stationary process is intrinsic stationary, but the converse need not
be true. Second-order stationary processes are intrinsically stationary. For a second-
order stationary process, we have

γ (s1, s2) = 1

2
Var[X (s1)− X (s2)]

= 1

2
{Var[X (s1)] + Var[X (s2)] − 2cov[X (s1) , X (s2)]}

= 1

2
{C(0)+ C(0)− 2C (s1 − s2)}

= C(0)− C (s1 − s2) ,



186 10 Spatial Structures of Site Characteristics and Composite Sampling

which is a function of s1 − s2. Hence the process is also intrinsically stationary. In
particular, if h = s1 − s2, then

γ (h) = Co− C(h). (10.7)

This simple relationship between the semivariogram and the covariance function
makes the covariogram more convenient than the variogram, though both contain
equivalent information.

Recall that C(·), the covariogram, also called the spatial autocovariance function,
is defined as the covariance between the X -values at two locations. If C(0) > 0, then
we define

ρ(h) = C(h)

C(0)

and call it the correlogram, also known as the spatial autocorrelation function.
Often the second-order properties of a process are assumed to depend only on the

distance between two locations and not on the direction of the vector joining them.
A second-order stationary process is said to be isotropic if

C (s1 − s2) = C (||s1 − s2||) .

An intrinsically stationary process is isotropic if

γ (s1 − s2) = γ (||s1 − s2||) .

In general, given the semivariogram it is not possible to reproduce the covariance
function of a spatial process. A special case in which the semivariogram and the
covariance function are equivalent is that of a second-order stationary process with

lim
||h||→∞

C(h) = 0.

In this case, by (10.7),

γ (h) = C(0)− C(h),

so

lim
||h||→∞

γ (h) = C(0)

and

C(h) = lim||u||→∞ γ (u)− γ (h).
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The quantity C(0) is called the sill of the semivariogram. The smallest value of ||r||
for which 2γ (r(1+ε)) = 2C(0), for any ε > 0, is called the range of the variogram
in the direction r/||r||.

In practice, neither the semivariogram nor the covariance function is known.
They have to be estimated from the data.

10.2.1 Composite Sampling

Composite sampling becomes a useful technique for reducing the response surface
prediction variance when there is considerable variability on a micro-scale (see
Starks, 1986). Composite sampling in the response surface prediction context is
usually performed by taking individual samples from within a small area, mixing
them thoroughly, and making a single measurement upon the composite sample.
Compositing is usually used for decreasing the response surface prediction variance.
We also consider how compositing affects the covariogram, for it is this effect that
will determine the effect of compositing upon the prediction variance (Starks, 1986).

When the individual samples are collected from a site using a regular grid, and
when data are collected on composite samples, then it is obvious that the interest
will initially be in the relationships between the spatial processes that represent
composite sample data and individual sample values. In this section, we discuss
these issues.

Sampling issues that we address in our study are (1) what scale, i.e., distance
between sample locations, of sampling is necessary to adequately sample a particu-
lar site and (2) how to design compositing of individual soil samples at each sample
location in order to limit the effect of variability on a very local scale to viewing the
spatial pattern of a larger scale.

Specifically, we consider how the choice of k, the composite sample size, and of
the individual sample spatial configuration affects the covariogram of the composite
samples. The choice of k will be limited by the amount of material that can be
logistically handled and that can be homogeneously mixed. However, within these
restrictions, k can be chosen by considering how it affects the composite sample
nugget variance. Here, it is simpler to consider a single stochastic process rather
than separate identifiable small-scale and micro-scale processes.

The model to describe the spatial process that represents the composite sample
values in terms of individual sample values is assumed to be of the following form:

Y (s) =
k∑

i=1

X(si )+ ε,

where Y is the measured value on a subsample of a composite of k individual
samples collected at locations si , i = 1, . . . , k, the true concentration of the i th
individual sample is X(si ), and ε denotes the measurement and subsampling error.
Here s is usually taken as the mean of the k locations si , i = 1, . . . , k:
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s =
k∑

i=1

si .

The values of ε for different composite samples are treated as independent and iden-
tically distributed with mean zero and variance σ 2

ε . Subsampling and measurement
error include such factors as inaccurate recording of the exact sampling locations
or of the exact amounts of soil volumes extracted, inability to thoroughly mix the
composite, or imprecision in laboratory procedures.

The individual sample values X(si ) will be regarded as observations on a spatial
process {X(s), s ∈ D} which will be represented as

X(s) = μ(s)+ ξ(s)+ δ(s),

where μ(s) is a large-scale deterministic trend, ξ(s) is a small-scale stochastic pro-
cess, and δ(s) is a micro-scale stochastic process.

The large-scale trend is regarded as varying over the entire study region. The
small-scale process occurs on a spatial scale considerably smaller than the entire
study region, but larger than the minimum inter-sample distance (or the minimum
distance for which there are sufficient data), while the micro-scale process varies
within the minimum inter-sample distance. Thus, within-composite variation is due
to δ, while μ and ξ affect the between-composite variability.

The model assumes stationarity in Y, at least within small data neighbor-
hoods. Three levels of stationarity can be distinguished for the composite sam-
ple process, too. Strong stationarity requires that the joint distribution of Y (s1),
Y (s2), . . . , Y (sn) should be equivalent to the distribution of Y (s1 + h), Y (s2 +
h), . . . , Y (sn + h) for each vector h.

Second-order stationarity requires that the means, E[Y (s)], and variances,
Var[Y (s)], exist, are constant, and do not depend upon s and also that the covariance
between Y (s1) and Y (s2) exists and depends only on the vector h = s2− s1 joining
s1 and s2. Under second-order stationarity, the correlogram,

ρ(h) = corr[Y (s1), Y (s1 + h)],

is related to the semivariogram, γ (h), by

2γ (h) = E[Y (s)− Y (s + h)]2
= 2σ 2[1− ρ(h)].

The process is (second-order) isotropic when ρ(h) is a unique function of the dis-
tance h = |s2 − s1|, in which case we write ρ(h) for the correlogram.

A third form of stationarity, weak stationarity, requires that the means exist and
do not depend on the location s and that the semivariogram be a unique function
of the vector h. Strong stationarity, together with the existence of the first two
moments, implies second-order stationarity, which in turn implies weak stationarity.
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Usually, the correlogram becomes small for large ||h|| and the semivariogram
levels off to the sill. A nugget effect, detected by a positive intercept in the sample
semivariogram, reflects the presence of micro-scale variation and/or measurement
error (Cressie, 1988).

Decomposing spatial variability into a large-scale trend and a small-scale
stochastic process can be problematical. This may be partly due to differences in
observer judgment (Cressie, 1988) and partly a matter of indeterminacy in both trend
model and the covariance structure of the stochastic process if these are unknown
beforehand (Armstrong, 1984). A common approach to approximating the trend is
the fitting of polynomials in local data neighborhoods, but the degree to which local
polynomials fit trend or small-scale stochastic process depends, in part, upon the
data neighborhood size. Our approach was to fit the trend over the entire region
in one operation, using the bicubic spline method of Dierckx (1981). This spline
function is a smoothing, not an interpolative, function and an appeal of this method
is that small-scale variation might not be fit if there is a high degree of smoothing.
Subsequent to the data decomposition, a cross-validation study was performed in
order to examine the behavior of response surface predictions if the actual sampling
had been less intense.

The composite sample nugget variance, σ 2
Nc

, is

σ 2
Nc
= σ 2

sillc − σ 2
τc

,

where σ 2
sillc

is the sill or limiting value of γ (h) as ||h|| → ∞ for the process of
composite sample values and σ 2

τc
is the limiting value of the covariance between

two composite samples as ||h|| → o.
The composite sample sill, or the variance of the mean of the individual samples,

in the absence of measurement error, is

σ 2
sillc = Var

(
k∑

i=1

Xi/k

)
= 1

k2

k∑

i=1

Var(Xi )+ 2

k2

k∑

i , i ′ = 1
i < i ′

cov(Xi , Xi ′)

= σ 2
τ + σ 2

N

k
+ 2

k2

k∑

i , i ′ = 1
i < i ′

cov(Xi , Xi ′).

The covariance between two composite samples, Y = (X1 + X2 + · · · + Xk)/k
and Y ∗ = (X∗1 + X∗2 + · · · + X∗k )/k, is

cov(Y, Y ∗) = cov

(
1

k

k∑

i=1

Xi ,
1

k

k∑

i ′=1

X∗i ′

)
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= 1

k2

k∑

i=1

cov(Xi , X∗i )+ 2

k2

k∑

i , i ′ = 1
i < i ′

cov(Xi , X∗i ′) ,

which converges to

σ 2
τc
= σ 2

τ

k
+ 2

k2

k∑

i , i ′ = 1
i < i ′

cov(Xi , X∗i ′)

as the two compositing configurations become coincident. It is then obvious that

σ 2
Nc
= σ 2

sillc − σ 2
τc
= σ 2

N

k
.

Thus, the nugget variance for a composite sample decreases inversely with increas-
ing composite sample size k, but does not depend upon the spatial configuration of
the individual samples.

The spatial configuration of the individual samples does influence the compos-
ite sill variance. In fact, this variance decreases with increasing distance among
the individual samples. As the inter-sample distance approaches zero, cov(Xi , X∗i ′ )
approaches σ 2

τ , and

σ 2
sillc �

σ 2
τ + σ 2

N

k
+ k − 1

k
σ 2

τ = σ 2
τ +

σ 2
N

k
.

On the other hand, as the distance between individual samples approaches the range
of spatial autocorrelation (i.e., the distance at which the covariogram effectively
vanishes),

σ 2
sillc =

σ 2
τ + σ 2

N

k
= σ 2

sill

k
.

From these results and from data collected at any particular site, we attempt to
infer how the composite sampling plans can be effective in reducing the nugget
variance and the sill.

10.3 Application to Two Superfund Sites

10.3.1 The Two Sites

Data from the Dallas Lead Site and the Palmerton Site were chosen for
this exploratory analysis because of common features of these sites and prior
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investigations: the similarity in the contamination processes, to the sampling
schemes, and to the extensiveness of prior statistical analyses. The processes sam-
pled at both sites were of heavy metal accumulation from the fallout of air-borne
particles emitted from point sources. The sampling schemes were designed to pro-
vide information about the data autocorrelation structure so as to enable response
surface prediction via kriging, composite sampling was utilized at both sites, and
special samples were taken to estimate variability due to certain sources.

10.3.2 Methods

10.3.2.1 The Data Analysis

The data were first examined for inconsistencies. Then, some features of the data
were examined through frequency distributions, contour plots, identification of out-
liers, plots of variance vs. mean, sample semivariograms, and variance component
estimates from individual, duplicate, and split sample data. Decomposition of the
data into large-scale trend vs. small-scale stochastic process was explored through
fitting trend models and examining residual semivariograms.

The sample semivariogram was calculated by

g = 1

2n(h)

n(h)∑

i=1

[Y (si )− Y (si + h)]2,

where Y (si ) is an observation on a composite sample with center location, si , and
Y (si + h) is an observation on a composite sample with center location h away, and
n(h) is the number of observations h units apart. Intervals of h were determined so
that n(h) was at least 30, a minimum suggested by Journel and Huijbregts (1978).

10.3.2.2 A Cross-Validation Study

A cross-validation analysis was performed in order to examine how the predictive
power of data changed with different sampling intensities. This was performed by
resampling the data at intensities lower than the realized intensity and assessing
how well data omitted one at a time could be predicted by the resampled data.
Observations were randomly assigned to one of two groups: a subset regarded as
resampled points to be used in calculating kriging predictions and a subset omitted
in the calculation of kriging predictions. The selection of data was performed by
first stratifying the data to insure that there was some degree of systematic coverage
of the sampled site and then by permuting the observations within strata and choos-
ing permuted points in order until the desired density was realized. All observa-
tions, from both the resampled subset and its complement, were predicted from the
resampled subset, however. In each of 100 runs per selected sampling intensity, each
datum in the non-resampled subset was predicted from the resampled data and each
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resampled datum was predicted from the remaining resampled points. The measure
of prediction performance was the mean squared error (MSE) of cross-validation,

MSE of cross-validation =
n∑

i=1

(yi − y∗i )2

n
,

where yi is datum i, i = 1, . . . , n, and y∗i is the predicted value of yi . This statistic
was also calculated for the case of all observations being resampled. A measure of
inter-sample distance of the resampled points was calculated by the median mini-
mum distance of points to neighbors.

10.3.2.3 The Behavior of the Composite Sample Variogram

The behavior of the composite sample nugget and the composite sample sill was
graphically examined for different choices of composite sample design factors and
underlying covariance structure of the data. The behavior of the composite sample
nugget was examined for different composite sample sizes, while the behavior of the
composite sample sill was examined for different choices of inter-sample distance
and rectangular configurations of individual samples.

10.3.3 Results

10.3.3.1 Decomposition of Data Variability

Cubic spline models were fitted to the Dallas Lead Site and the Palmerton Site data
in order to decompose the spatial variability into regional trend and a stochastic
process. Sills were considerably lowered by spline models with relatively few knots
as compared to semivariogram sills when no trend was removed. Omnidirectional
semivariograms were calculated for the Dallas Lead Site data as there had been
no indication of anisotropy in these data. The Palmerton Site semivariogram was
collapsed over sampling phase, since the difference in the nugget from increasing
the composite sample size from 4 to 9 appeared to be small relative to noise in the
semivariogram. This judgment was made from viewing the semivariograms with no
trend removed and from the pooled duplicate sample variances.

The proportions of variability in the log(ppm) data attributable to different
sources were calculated from the spline model results and the pooled sample vari-
ances. The proportions of variability due to combined subsubsampling and mea-
surement error, to micro-scale variation, and to the combined effect of large-scale
trend and local discontinuities associated with outliers were calculated as

σ̂ 2
a

σ̂ 2
z

,
σ̂ 2

n − σ̂ 2
a

σ̂ 2
z

, and
σ̂ 2

z − σ̂ 2
n

σ̂ 2
z

,
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respectively, where σ̂ 2
a , σ̂ 2

n , and σ̂ 2
z are the estimated measurement error, nugget,

and sample variances of the log(ppm) data, respectively. The estimated proportion
of variability due to subsampling and measurement error was small, being less than
1%. The proportion of variability due to micro-scale variation was larger, in the
range of 15–25%, while the proportion of variability due to both the large-scale
trend and outliers was the largest, in the range of 75–84% (see Table 10.1).

Table 10.1 The estimated components and proportions of variability attributable to different
sources in the Dallas Lead Site and the Palmerton Site data

Variance component estimate

Subsampling and
Site Metal Totala Nuggetb measurement error

Dallas Lead Pb 1.315 0.313 0.00528
– DMC area
Dallas Lead Pb 1.277 0.314 0.00528
– RSR area
Palmerton Cd 1.238 0.199 0.00275
Palmerton Pb 0.803 0.201 0.00453
Palmerton Zn 1.266 0.206 0.00380

Percent of variability estimate

Subsampling and
Site Metal Trendc Micro-scale measurement error

Dallas Lead Pb 76.2 23.4 0.4
– DMC area
Dallas Lead Pb 75.4 24.2 0.4
– RSR area
Palmerton Cd 83.9 15.9 0.2
Palmerton Pb 75.0 24.5 0.6
Palmerton Zn 83.7 16.0 0.3
a Sample variance of log(ppm)
b Estimated by semivariogram of spline model residuals collapsed over distance
c Includes local discontinuities of outliers

10.3.3.2 Cross-Validation Study Results

The purpose of this study was to assess the spatial scale necessary to capture the
large-scale trend. Therefore, the identified outliers were omitted from the cross-
validation analysis, since they probably could not be predicted well from nearby
data.

Omnidirectional spherical semivariograms were fit to the Dallas Lead Site data
and to the Palmerton Site data and were used in calculating the kriging predictions.
A linear anisotropic semivariogram provided a good fit to the Palmerton Site semi-
variogram data, but when the data were thinned below approximately half of the full
data set, the kriging predictions with this model were unstable. When more than half
of the data were resampled, the predictions based upon the spherical semivariogram
and upon the linear anisotropic semivariogram were very similar. Neighborhoods
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of points with highest correlation were used in calculating kriging predictions, with
neighborhood sizes chosen to be 20 for the Dallas Lead Site data and 15 for the
Palmerton Site data. A Lagrange multiplier for a constant mean was used in the
calculation of kriging coefficients as it provided a lower MSE of cross-validation
than kriging predictions calculated without Lagrange multipliers.

The MSE of cross-validation decreased in a nonlinear pattern with increasing
percentages of data in the resampled subset. There was relatively little loss in pre-
diction accuracy with up to about 60% omitted from the data subset. For exam-
ple, when the resampled subset constituted 42–45% of the non-outlier data set,
the increase in the MSE of cross-validation was just 10–17% over the MSE of
cross-validation when all non-outliers were resampled. The median minimum inter-
sample distance among resampled points exhibited a similar pattern with increasing
resampling percentages (Fig. 10.1). Standard errors of the mean for the 100 runs
were 0.0005–0.007 and 0.0002–0.006 for the MSE of cross-validation and for the
median minimum inter-sample distance, respectively.

Fig. 10.1 The cross-validation results: (a) MSE vs. the percent of data resampled, (b) median
minimum inter-sample distance vs. the percent of data resampled (Palmerton Site Cd, Pb, Zn data
were nearly identical so only the Cd data are presented), and (c) MSE vs. the median minimum
inter-sample distance scaled by the range of autocorrelation estimated by omnidirectional spherical
semivariogram models. Values are the means of 100 runs except for the case of 100% of the data
being resampled

Standardizing inter-sample distances by estimated ranges of large-scale autocor-
relation presented a different view of the scale of sampling from that anticipated
in the sampling design. If the range of autocorrelation was estimated from omni-
directional spherical semivariogram models fitted to the data with only outliers
omitted, then the median minimum inter-sample distances were 11–15 and 4–5%
of the estimated ranges of autocorrelation, respectively (Fig. 10.1). Calculating the
inter-sample distance on the scale of the large-scale process thus gave a sampling
scale much less than the 1/3–2/3 of the range of autocorrelation thought to have
been required for sampling a small-scale stochastic process.

The capability of estimating semivariograms was not lost when much of the
data was omitted, though there may have been too few points to reliably esti-
mate a semivariogram when only 17–19% of the Dallas Lead Site non-outlier data
were resampled. The sample semivariogram patterns when data were omitted in
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resampling were similar to the semivariogram patterns of all non-outlier data (Bol-
giano et al., 1990).

10.3.3.3 The Effect of Compositing upon the Sill

The composite sample sill decreases with increasing distance, h, between individual
sample locations and approaches 1

k th of the individual sample sill as h approaches
the range of autocorrelation. Therefore, the decrease in the sill with increasing h
becomes steeper as the composite sample size increases. For spherical and Gaus-
sian covariance models (Journel and Huijbregts, 1978), the effect upon the sill of
h depended upon the relative size of the nugget variance and the composite sample
size. The choice of h has a larger effect upon the sill when the nugget variance is
relatively small as compared to when it was relatively large (see Fig. 10.2).

Fig. 10.2 The nugget variance vs. h, the inter-sample distance for k = 4 (a) and for k = 9 (b) and
vs. the composite sample size (k) for rectangular configurations of individual samples. A spherical
covariogram model has been assumed, with the nugget comprising a

10 th of a standardized sill of
1.0, where a is the integer plotted on curves; h has been standardized relative to a range parameter
of 1.0 (i.e., the covariance between the values at two points that are h = 1 units apart is 0). Results
for a Gaussian covariance model are also similar

10.3.4 Discussion

This retrospective analysis of data collected at the Dallas Lead and the Palmerton
Superfund Sites examined the nature of variability in the data and sampling consid-
erations for sites possessing the variability scales hypothesized for these data. The
size of variability sources and the spatial scale on which they occur are important
factors in designing an efficient sampling scheme and accurately predicting a con-
taminant concentration response surface. Being able to allocate resources in light of
anticipated sizes of variability sources can contribute to cost-effective sample design
(Provost, 1984).

Traditionally, the sampling approach to geostatistics has implicitly assumed that
there exists a stochastic process nested within the regional trend that can be captured
by a systematic design (Yfantis et al., 1987; Flatman et al., 1988). However, the
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Dallas Lead Site data and the Palmerton Site data did not appear to exhibit small-
scale variability. Instead, the variability appeared to consist of a large-scale trend
with discontinuities caused by either local contamination processes or local soil
disturbance, by variability occurring on a micro-scale, and by a very small measure-
ment error. The cross-validation results implied that sampling of these large-scale
processes might have been suitably achieved with a larger scale of sampling than
the scale that was utilized.

One purpose of sampling a small-scale stochastic process is to achieve stationar-
ity in the data or at least to be able to assume approximate stationarity in local data
neighborhoods. The importance of the stationarity assumption may depend upon
the use for which the response surface prediction is intended and the importance
of an accurate variance estimate. The kriging predictions may be less sensitive to
stationarity violations than are kriging variance estimates, as the kriging weights are
likely to be similar using different, but reasonable, semivariogram models, while the
kriging variance estimate depends upon the assumed semivariogram. However, for
these data, it appears that calculation of kriging coefficients by other than a pure
nugget correlation model requires that the data correlation structure be modeled
from the large-scale trend. Cressie (1989) also appears to have utilized the large-
scale autocorrelation structure to perform kriging.

If the data correlation structure is to be estimated from data sampled on the large
scale, then the guidelines for sampling on the small scale may not apply. The grid
locations at the Dallas Lead Site and at the Palmerton Site were arranged to be 2/3
and 1/3, respectively, of the anticipated range of autocorrelation, which are scales
typically suggested for geostatistical studies (Flatman et al., 1988). However, if
a systematic sampling scheme is designed to capture the regional trend, then the
distance between sample locations might be much smaller than 1/3–2/3 of the large-
scale autocorrelation range.

If local contamination processes are important components of the entire contami-
nation process, as was evident at the Dallas Lead Site, then sampling can be designed
to detect hotspots (Gilbert, 1987), as well as to capture the large-scale trend. At the
Dallas Lead Site, the local hotspots were largely associated with industrial sites, and
sampling of such locations might be planned rather than being randomly encoun-
tered. Prediction of the extent of hotspot contamination around the local industries
would likely be overestimated if the autocorrelation structure of the large-scale pro-
cess were employed for interpolation (Gensheimer et al., 1986). Perhaps the best
solution to predicting the extent of local hotspot contamination is realized by further
sampling near those locations.

Spatial variability has traditionally been modeled in geostatistics as a stochastic
process that is not location dependent. However, as a process is studied in greater
detail, underlying causal mechanisms may become apparent, and so the designa-
tion of deterministic or stochastic is often applied relative to our scale of reference
(Wilding and Drees, 1983). Much of the pattern of heavy metal contamination at
the examined sites seems to be related to spatial features, such as the alignment
of the Palmerton Site contamination contours with the ridge and valley topography
and the lead level decrease in the Trinity River flood plain at the Dallas Lead Site
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DMC area. Further, at both sites, questions have been raised about the heavy metal
contamination being attributable to both smelters and motor vehicles (Carra, 1984;
Starks et al., 1987). The empirical approach of geostatistics ignores information
such as topography, airflow, erosion, and transportation networks that might be used
to understand causal mechanisms. As the demand for a higher degree of model
explanation vs. model empiricism (Lehmann, 1990) is required for characterization
of hazardous waste sites, spatial data analysis and response surface prediction might
shift focus to the modeling of causal factors.

The Palmerton Site data provided an opportunity to examine the efficacy of com-
posite sampling upon reducing the variogram parameters of the nugget variance
and the sill. Variability in the data semivariograms and the lack of sufficient data at
small distances obscured any possible differences in nugget variances between the
two sampling phases. The nugget variance of the Palmerton Site composite sample
data was not insignificant, estimated at about 16–25% of the total variability in the
logged data. Individual and duplicate sample data indicated that compositing four
individual samples may have decreased the nugget variance relative to not com-
positing, while compositing nine individual samples did not lower duplicate sample
variances appreciably. Conclusions based upon these data, however, are inclusive,
since there appeared to be considerable data variability in small samples and there
may have been a possible confounding effect of compositing sample size with inter-
sample distance. Compositing of four and nine individual samples was achieved by
configuring the individual sample position in square grids with inter-sample dis-
tance, d, of 4.24 and 2.125 m, respectively. However, these observations are consis-
tent with theoretical results. The inverse relationship between the nugget variance
and the composite sample size indicates that compositing has the greatest effect in
reducing the nugget variance when the individual sample nugget variance is large,
and there are decreasing returns to lowering the nugget variance as the composite
sample size increases. Increasing the composite sample size from 1 to 4 decreases
the nugget variance by 400%, but increasing the composite sample size from 4 to 9
only decreases the nugget variance by 14%.

The difference in sills between phase 1 and phase 2 Palmerton Site data reflected,
in part, a difference in the spatial location of samples. The first phase samples tended
to be collected from locations with high contamination, while second phase samples
tended to be collected from locations with lower contamination. Since the effect of
compositing upon the sill cannot be discerned from the data, the numerical results
might serve to guide judgment upon the effectiveness of compositing in reducing the
sill. The effectiveness of compositing in reducing the sill depends upon the config-
uration and nugget variance of individual samples. If the nugget variance comprises
50% of total stochastic variability, d is very small, then for a spherical variogram,
increasing the composite sample size from 1 to 4 would decrease the sill 37.5%,
while increasing the composite sample size from 4 to 9 would decrease the sill 11%.
This decrease would be lower or higher if the nugget comprised less or more of the
total stochastic variability, respectively. As with the effect of compositing upon the
nugget variance, there is a decreasing return upon lowering the sill by increasing the
composite sample size. Increasing d might be a means to decreasing the sill unless
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the nugget is large, though there is an upper limit on d for the composite sample to
be considered representative of a point in space.

Additional considerations may affect the selection of a composite sample design.
There is no statistical cost to increasing the composite sample size when d is
very small relative to the distance between composite samples, unless mixability
becomes more difficult. Therefore, the benefit of increasing precision might be
weighed against the cost of increasing the composite sample size. Starks (1986)
also minimized the mean squared error in predicting the spatial average of the sam-
ple support by the composite sample value in selecting a composite sample design.
However, we found that this criterion did not appear to be useful for this purpose
unless there was an identifiable stochastic process on a very small scale, because the
value of this criterion was nearly constant, assuming a Gaussian covariance model,
except for d near the range of autocorrelation.

Cost-effective sampling is likely to be achieved when the sampling design reflects
knowledge about the sizes of variability components in the process of interest and
the spatial scales on which they occur. If the regional trend and variation among
nearby individual samples contribute significantly to spatial variability, then the
choices of a sampling scale in measuring the important features of the large-scale
trend and compositing of individual samples might be important to achieving cost-
effectiveness in hazardous waste site characterization.

10.4 Compositing by Spatial Contiguity

10.4.1 Introduction

Sampling to determine the extent of pollution traditionally involves taking mea-
surements at every sampling location, often on a grid. Composite sampling is an
alternative approach that forms composite samples from a number of individual
samples, tests the composite sample, and retests aliquots of the individual samples
when the test on the composite sample indicates that one or more of its constituent
samples may be polluted. Used in this way, composite sampling is most efficient
when the overall contaminant levels are relatively low or when the contamination is
spatially clumped, for otherwise excessive retesting of the constituent samples will
be necessary.

The Center for Statistical Ecology and Environmental Statistics carried out a sim-
ulation study (i) to compare the cost (number of measurements) of various retesting
schemes and (ii) to study how spatial pattern in the data affects the overall perfor-
mance of composite sampling in the hotspot identification (action level) case.

In the presence/absence case, measurements indicate the presence or absence of
contamination, but the contaminant levels are not available or are not important.
The method is to form and test composite samples and then to retest aliquots of
the individual samples comprising any composite that tests positive for pollution.
A variety of strategies have been proposed for carrying out the retesting. These
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include the classical Dorfman (1943) scheme, the Sterrett (1957) scheme, the Gill
and Gottlieb (1974) scheme, and a scheme based on entropy (Hwang, 1984).

A hotspot can be defined to consist of contiguous locations at which the contam-
inant concentration exceeds a certain level c. This value may be an action level that
would require some remedial action. Instead of analyzing every sample at every
location, composite sampling combined with a suitable retesting strategy can be
used to determine the particular locations where pollution exceeds the level c. The
method is to form and analyze composite samples and then to reanalyze aliquots
of the individual samples of any composite that returns a value greater than c/k,
where k is the number of samples in the composite. If a composite sample returns
a measurement smaller than c/k then (barring measurement error) one is assured
that every constituent individual sample is below the action level and no retesting
is needed. In the contrary case, some retesting is required because one or more of
the component samples might, though not necessarily, exceed the action level. When
required, the retesting can be carried out according to various strategies as described
below.

It is not possible to form composite samples using existing data. Instead, a con-
ceptual composite sample can be formed and a value calculated by averaging. Thus
simulations can be carried out on realistic data. The algorithms necessary to carry
out these simulations are of two types, composite sample forming and retesting.
The computer programs to implement these algorithms are given in Appendix A of
Bolgiano et al. (1989).

10.4.2 Retesting Strategies

The four retesting strategies mentioned above are designed for use in the pres-
ence/absence case. Briefly, these strategies are as follows:

1. Exhaustive retesting: This procedure exhaustively tests every individual sample
from composites that test positive for pollution.

2. Sequential retesting: This procedure sequentially tests individual samples from
a positive testing composite. This stage is continued until a sample tests positive
for pollution, when a composite sample is formed from the remaining individual
samples. The process is repeated as often as necessary.

3. Binary split retesting: This procedure divides the individual samples from a posi-
tive testing composite sample into two groups, as nearly equal in size as possible.
A composite sample is formed from each group and is tested for pollution. The
process is repeated as often as necessary.

4. Entropy-based retesting: This procedure starts with a pool of unclassified sam-
ples from which composite samples are sequentially formed and tested. When
one of these “original” composite samples tests positive, then a “secondary”
composite sample is formed using one half (or as nearly as possible) of the
individual samples from the “original” sample. If the “secondary” composite
sample tests positive, then the remaining individual samples from the “original”
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composite sample are returned to the pool of unclassified samples. On the other
hand, if the “secondary” composite sample tests negative, then a composite sam-
ple formed from the remaining individual samples would have to test positive.
These individual samples are treated as belonging to an original (but smaller)
composite sample that tested positive, and the process continues.

The above procedures are modified for use in case of an action level. The modifi-
cation of the exhaustive retesting procedure is straightforward. Samples are tested
sequentially until the sum exceeds c (or, equivalently, until the average exceeds
c/k), then the remaining individual samples are composited.

The sequential retesting procedure was similarly modified so that the individual
samples are tested until the sum of the concentrations exceeds c. The remaining
samples are then composited. This scheme has been further modified. The total
amount of pollution in the un-retested individual samples can be calculated from
the retested samples, and the unretested samples need not be composited. The mod-
ified procedure tests individual samples sequentially until the remaining pollution
is less than c. This modified procedure can also be considered a modification of the
exhaustive retesting procedure.

The modification of the binary split retesting procedure for the action level case
is straightforward. A composite sample that exceeds the action level c/k for the
composite is split as nearly as possible into two composite samples which are tested,
and the procedure continues.

The entropy-based retesting procedure proceeds as described in strategy 4 except
that the composite sample must exceed c/k in order for them to be considered test-
ing positive for pollution.

10.4.3 Composite Sample-Forming Schemes

In order to assess the effect of spatial patterns on the relative costs of the retesting
strategies, various methods of forming the composite samples have been examined
by Bolgiano et al. (1989). These are chosen to determine if information on the spatial
structure can be used to reduce the amount of retesting required in a composite
sampling program.

1. Random order: Selecting and compositing observations at random ignores all
spatial structures. Different runs of this algorithm give different composite sam-
ples and different results.

2. Natural order: The data were perhaps collected or numbered in some systematic
manner that reflect its spatial structure. Composite samples are formed using the
data in the order it is received.

3. Circular sectors I: Composite samples (CSs) are formed based on the distance
from the center of the data. First, a value k is fixed for the number of individ-
ual samples in each composite. If k does not evenly divide the total number of
available samples, then the remainder (“left-over”) samples are grouped into a
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single circular CS located at the center of the data. Next, a circular ring of CSs
is formed using just enough CSs so that the remaining number of CSs can be
divided by 4. Finally, circular rings are formed with four CSs each.

4. Circular sectors II: CSs are formed in sectors as above, except that the “left-
over” samples are along the boundary of the region. First, a single circular CS is
formed. Then, rings of four CSs are formed. The “left-over” CSs are in the next
ring. Finally, the “left-over” samples are in the last ring.

5. Circular sectors III: CSs are formed in sectors as above. The “left-over” samples
are in the central circle. One CS is in the next ring. Then rings of four composite
samples are formed and finally the “left-over” CSs are in the last ring.

6. Vertical strips: A square grid is superimposed upon the study region so that on
average 10 cells would be necessary to form a single CS. This partitions the space
into vertical strips, and CSs are formed by proceeding up the first strip, down the
second strip, and so forth until all CSs are formed. The “left-over” samples, if
any, comprise the last CS.

7. Horizontal strips: This is the same as Algorithm 6, but with the roles of horizontal
and vertical interchanged.

Each of the above composite sampling schemes has been combined with the
retesting procedures and the routines are run on four data sets using several com-
posite sample sizes. The results also depend on the action level. Tables of output
are given in Appendix B of Bolgiano et al. (1989). After inspecting the output, the
graphs given in Section 6 of Bolgiano et al. (1989) were produced, using a simu-
lation based on the Dallas Lead study (see Isaaks, 1984; Flatman, 1984). Different
action levels can be thought of as different pollution levels. Low action levels cor-
respond to high pollution levels and high action levels to low pollution. That is, if a
data set had the same spatial pattern with twice the pollution level, the result would
be the same as using the current data with the action level divided by 2. (See Bol-
giano et al. (1989) for more details.) These algorithms are not thought to be optimal
in any sense, but they show that spatial patterns in the data can have a significant
effect on the results. The most important observation made in this study is that it is
more efficient to form composite samples using individual samples collected from
spatially contiguous locations. In general, it is more efficient to form composite
samples from relatively homogeneous individual samples. If spatial patterns cannot
provide sufficient information to identify similar individual samples, other methods
have to be devised. Use of ranked set sampling for this purpose is an available choice
and is described in the following section.

10.5 Compositing of Ranked Set Samples

10.5.1 Ranked Set Sampling

Ranked set sampling (RSS) involves the drawing of m random samples with m units
in each sample from a population. Then, the m units of each sample are ranked by a
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visual inspection or any other rough and inexpensive method not requiring the exact
measurements of the variable of interest. The unit with the smallest rank is quan-
tified from the first sample, the unit having the second smallest rank is quantified
from the second sample, and this process of quantification continues until the unit
with the largest rank is quantified from the mth sample. This procedure involves the
quantification of m units and, as such, it yields m measurements, one from each set
of the ordered sample. The whole procedure is repeated r times. It means, in other
words, that in each of the r cycles, m2 units are randomly selected from a population
and r measurements are obtained corresponding to each rank. This method of selec-
tion, thus, provides mr quantified values in total, though m2r units are randomly
selected from the population. These mr quantified values constitute a ranked set
sample. Takahasi and Wakimoto (1968) and Dell (1969) provide a mathematical
formulation for this sampling method introduced earlier by McIntyre (1952).

Let X11, . . . , X1m; X21, . . . , X2m; . . . ; Xm1, . . . , Xmm be independent random
variables all having the same cumulative distribution function (cdf) F(x). Further,
let Xi(1), . . . , Xi(m) denote the order statistics of Xi1, . . . , Xim (i = 1, . . . , m),
respectively. Let X1(1), . . . , Xi(i), . . . , Xm(m) denote the ranked set sample, where
Xi(i) denotes the i th order statistic (as no error in ranking is supposed here, there is
no difference between the judgment ordered and the actual ordered sample) in the
i th sample. The randomly drawn samples are shown below:

Set
1 X11 X12 · · · X1m

2 X21 X22 · · · X2m
...

...

m Xm1 Xm2 · · · Xmm

After the units in each row are ranked, they appear in the following arrangement:

Set
1 X1(1) X1(2) · · · X1(m)

2 X2(1) X2(2) · · · X2(m)

...
...

m Xm(1) Xm(2) · · · Xm(m)

Since the i th ranked unit in row i will be quantified, the quantified elements lie along
the diagonal as shown below:

Set
1 X1(1) ∗ · · · ∗
2 ∗ X2(2) · · · ∗
...

...

m ∗ ∗ · · · Xm(m)



10.5 Compositing of Ranked Set Samples 203

The mean of the ranked set sample (considering one cycle only) is denoted by
X̄(m) where

X̄(m) = 1

m

m∑

i=1

Xi(i).

For convenience, we represent Xi(i) by X(i :m). Then

X̄(m) = 1

m

m∑

i=1

X(i :m)

and

E[X̄(m)] = μ.

This shows that X̄(m) is an unbiased estimator of the population mean (μ). If the
whole procedure of drawing random samples is repeated r times, then the i th order
statistic from the i th sample in the j th cycle is denoted by X(i :m) j . The unbiased
estimator of the population mean (μ) is given by

X̄(m)r =

m∑
i=1

r∑
j=1

X(i :m) j

mr
and E(X̄(m)r ) = μ,

since
m∑

i=1

μ(i :m) = mμ,

where μ(i :m) represents the expected value of the i th order statistic.
The expression for the variance of X̄(m)r is given by

Var(X̄(m)r ) = 1

m2r

m∑

i=1

σ 2
(i :m),

where σ 2
(i :m) denotes the variance of the i th order statistic. Also,

Var(X̄(m)r ) = 1

mr

{
σ 2 − 1

m

m∑

i=1

(μ(i :m) − μ)2

}
,

where σ 2 denotes the population variance.
The RSS protocol requires the independent ordering of the randomly selected

units of each sample (set) separately with respect to the magnitude of the
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characteristic of interest without knowing their exact measurements. This require-
ment causes a problem in conducting a real trial in a field because the randomly
selected units may be so widely spaced that the judgmental ordering of them
becomes very difficult. With these facts in view, each set has to be formed on the
basis of the sampling units selected randomly from a smaller area instead of the
whole area under consideration. In order to implement it some locations are first
randomly selected on a target area and then a “square cross” or a “circular frame” is
placed at each such location. Quadrats of fixed size are either put at the marked posi-
tions on each square cross or placed randomly within a circle. (See Gore et al. (1992)
for a detailed discussion on the issue.)

Sometimes even the judgmental ordering of the randomly selected units becomes
difficult to be performed on the basis of the variable of interest (X). In order to
overcome this problem, the ordering is carried out on the basis of some other eas-
ily available variable (Y ) which is known as a concomitant variable. It helps in
accomplishing the judgmental ordering conveniently because it is supposed to be
correlated with the main variable of interest. To carry out the ordering m bivariate
samples of size m are drawn randomly first. The X associated with the smallest
ordered Y is quantified from the first sample, the X corresponding to the second
smallest Y is quantified from the second sample, and so on. Lastly, the X associated
with the largest Y is selected from the mth sample for the quantification. The whole
cycle is repeated r times to obtain mr quantified units of the variable X .

10.5.2 Relative Precision of the RSS Estimator of a Population
Mean Relative to Its SRS Estimator

We compare the variance of the mean of a ranked set sample with that of a mean
based on a random sample of mr observations and not with a random sample based
on m2r observations. It is so because only the cost of quantification is considered.
A random sample of size mr is obtained by randomly selecting one unit from each
sample of size m in each cycle and then the unit is quantified. The mean based on
the sample obtained by simple random sampling (SRS) is denoted by X̄ where

X̄ =

m∑
i=1

r∑
j=1

Xi j

mr
.

X̄ is also an unbiased estimator of the population mean (μ) with the variance

Var(X̄) = σ 2/mr.

The expression for computing the relative precision (RP) is given by
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rmRP = Variance of mean with random sampling

Variance of mean with ranked set sampling

= Var(X̄)

Var(X̄(m)r )

= σ 2/mr

1
mr

{
σ 2 − 1

m

m∑
i=1

(μ(i :m) − μ)2

}

= 1

1− 1
m

m∑
i=1

(τ(i)/σ )2
where τ(i) = μ(i :m) − μ.

The relative cost (RC) and the relative savings (RS) are computed as shown below:

RC = 1

RP
, RS = 1− RC, or RS = 1

m

m∑

i=1

(τ(i)

σ

)2
.

Here the sample size of each rank is constant and the expression for RP does not
appear to depend on the number of cycles considered. But the estimate of the rel-
ative precision would depend on m and r . McIntyre (1952) had conjectured that
for “typical unimodal distributions” RP would not be much less than m+1

2 under
the assumption of perfect ranking. However, Takahasi and Wakimoto (1968) have
shown that the RP is bounded below by 1 and above by (m + 1)/2 for all contin-
uous distributions with finite variances and the upper limit is realized only in case
of a rectangular distribution. Further, Dell and Clutter (1972) have shown that the
method of sampling provides an unbiased estimator of the population mean and the
variance of the estimator is smaller than or equal to that of the corresponding SRS
estimator even in the presence of error in ranking. But the magnitude of RP gets
diminished by the imperfect ranking. There is no gain due to RSS if a judgmental
ranking is the same as random ordering. Stokes and Sager (1988) have mentioned
that the amount of the improvement of RSS over SRS in the case of perfect ranking
is due to the fact that a ranked set sample consists of order statistics which are
independent whereas in case of a simple random sample, these are always positively
correlated. Patil et al. (1992) have surveyed the literature on the method of sampling
and outlined its new applications in environmental investigations.

10.5.3 Unequal Allocation of Sample Sizes

The magnitude of the relative precision of the RSS estimator of the population
mean relative to its SRS estimator also depends on the characteristics of the popu-
lation under consideration. As such, it could be increased by resorting to unequal
allocation keeping in view the nature of the population under consideration. To
deal with asymmetric distributions, McIntyre (1952) suggested to allocate sample



206 10 Spatial Structures of Site Characteristics and Composite Sampling

sizes for various subpopulations proportional to their standard deviations. Halls and
Dell (1966) applied the method and found considerable reduction in the magnitude
of variance of the sample mean. But contrary to this finding, Martin et al. (1980)
obtained either no gain or little gain by this unequal allocation of sample sizes in
their investigation.

In order to describe the method, let us suppose that r1, r2, . . ., rm denote the
number of times units having the rank 1, 2, . . . , m are quantified consecutively.
Here, r1 + r2 + . . .+ rm = n (total sample size), ri ≥ 1 for all i . The value of ri is
determined in proportion to the standard deviation of the i th group. If Ti denotes the
sum of the measurements for the units having the i th rank, then the RSS estimator
(X̄(m)u) of the population mean is given by

X̄(m)u = 1

m

m∑

i=1

Ti

ri
, E(X̄(m)u) = μ,

and

Var(X̄(m)u) = 1

m2

m∑

i=1

σ 2
(i :m)

ri
,

where σ 2
(i :m) denotes the variance of the i th order statistic. Note that Var(X̄(m)u) is

estimated, provided ri ≥ 2. If r1 = r2 = · · · = rm = r , the RSS design is said to
be balanced; otherwise, it is unbalanced. In the present situation, 0 ≤ RP ≤ m; see
Takahasi and Wakimoto (1968).

10.5.4 Formation of Homogeneous Composite Samples

RSS may also be utilized advantageously for forming more homogeneous com-
posite samples compared to those based on random groupings. With m samples
of size m, we form m composite samples by physically mixing the units of the
same rank. Likewise, we get mr composite samples on the basis of m2r units.
These samples, in turn, provide mr measurements. The standard deviation of these
measurements is expected to be smaller than that of the same number of measure-
ments obtained after quantifying the composite samples consisting of physically
mixed units selected randomly, m at a time, out of m2r available units in most of the
cases. For example, in case of 68 total units, 2 samples each of size 2 are randomly
selected 17 times (i.e., m = 2 and r = 17). Then the two units of each sample are
ordered as the small and the large. This results in 34 units for each of the 2 groups.
Out of these units, two units are mixed physically at a time in each group. This gives,
in fact, 17 composite samples in each group which need to be quantified. Thus, one
has to make 34 measurements altogether. Contrary to this, for the usual composite
sampling protocol based on random groupings, 2 units are randomly selected at a
time out of 68 units and physically mixed before resorting to quantification. This,
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Table 10.2 Sample size, mean, and standard deviation (SD) for individual samples, composite
samples, and composites of ranked samples for grid A

Set size Item Sample size Mean SD

Individual samples 184 200.72 902.9
2 Composite samples

(random compositing)
92 200.72 627.9

2 Composites of
ranked samples

92 200.72 618.4

Individual samples 180 183.8 870.7
3 Composite samples

(random compositing)
60 183.8 490.6

3 Composites of
ranked samples

60 183.8 470.4

Individual samples 176 187.8 880.2
4 Composite samples

(random compositing)
44 187.8 509.8

4 Composites of
ranked samples

44 187.8 321.5

also, yields 34 measurements. On comparing the standard deviations of these two
sets of composite samples it is expected that the standard deviation of the mea-
surements of the composite samples based on the ranked units should have smaller
value than that of those based on the random groupings in most of the cases. In
other words, the composite samples formed utilizing the RSS protocol are expected
to be more homogeneous than those based on random groupings. The results are
summarized for grids A and C in Table 10.2.



Chapter 11
Composite Sampling of Soils and Sediments

11.1 Detection of Contamination

11.1.1 Detecting PCB Spills

The US Environmental Protection Agency (EPA) has set reporting requirements for
polychlorinated biphenyl (PCB) spills and views PCB spills as improper disposal of
PCBs. The EPA has determined that PCB spills must be controlled and cleaned up.
Components of the cleanup process may include, among other things, sampling and
analysis to determine the materials spilled. The level of action required is depen-
dent on the amount of spilled liquid, PCB concentration, spill area and dispersion
potential, and potential human exposure. A sampling design is proposed by Boomer
et al. (1985) for use by EPA enforcement staff. The proposed design involves sam-
pling on a hexagonal grid which is centered on the spill site and extends just beyond
its boundaries. Compositing strategies, in which several samples are pooled and
analyzed together, are recommended.

In practice, the contaminated area from a spill will be irregular in shape. In order
to protect against underestimation of the spill area, sampling within a circular area
surrounding the contaminated area is recommended. The detection problem can be
modeled as follows: try to detect a circular area of uniform contamination whose
center is randomly placed within the sampling circle. Figure 11.1 illustrates this
model. Two general types of design are possible for this detection problem: grid
designs and random designs. Random designs have two disadvantages compared to
grid designs for this application. First, random designs are more difficult to imple-
ment in the field, since the resulting pattern is irregular. Second, grid designs are
more efficient for this type of problem than random designs. A grid design is certain
to detect a sufficiently large contaminated area which some random designs may
not. For example, the suggested design with a sample size of 19 has a 100% chance
of detecting a contaminated area of radius 2.8 ft within a sampling circle of radius
10 ft. By contrast, a design based on a simple random sample of 19 points has only
a 79% chance of detecting such an area.

Therefore, a grid design is recommended. A hexagonal grid based on equilat-
eral triangles has two advantages for this problem. First, such a grid minimizes the

G.P. Patil et al., Composite Sampling, Environmental and Ecological Statistics 4,
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Fig. 11.1 Randomly located area of residual contamination with the sampling circle (source:
Boomer et al. 1985)

Fig. 11.2 Location of sampling points in a 7-point grid (source: Boomer et al. 1985)

circular area certain to be detected. Second, some previous experience
(Mason, 1982; Matern, 1960) suggests that the hexagonal grid performs well for
certain soil sampling problems. The smallest hexagonal grid has 7 points, next 19
points, the third 37 points, as shown in Figs. 11.2, 11.3, and 11.4, respectively.
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Fig. 11.3 Location of sampling points in a 19-point grid. (source: Boomer et al. 1985)

In general, the grid has 3n2 + 3n + 1 points. To completely specify a hexagonal
grid, the distance s between adjacent points must be determined. The distance s
is chosen to minimize the size of the contaminated circle which is certain to be
sampled. Values of s so chosen, together with the number of sampling points and
the radius of the smallest circle certain to be sampled, are shown in Table 11.1.

11.1.2 Compositing Strategy for Analysis of Samples

Once samples are collected at a site, the goal of the analysis may be to determine
whether at least one sample has a PCB concentration above the allowable limit.
Thus, it is not important to determine precisely which samples are contaminated or
even exactly how many samples are contaminated. The cost of analysis can therefore
be substantially reduced by employing compositing strategies, in which groups of
samples are thoroughly mixed and evaluated in a single analysis. If the PCB level in
a composite is sufficiently high, it can be concluded that a contaminated sample is
present; if the level is sufficiently low, then all individual samples can be declared
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Fig. 11.4 Location of sampling points in a 37-point grid. (source: Boomer et al. 1985)

Table 11.1 Parameters of hexagonal sampling designs for a sampling circle of radius r feet

Number of points
Distance between
adjacent points, s(ft)

Radius of smallest circle
certain to be sampled

7 0.87r 0.5r
19 0.48r 0.28r
37 0.3r 0.19r

Source: Boomer et al. (1985)

clean. For intermediate levels, the constituent samples must be analyzed individually
to make a determination.

The applicability of compositing is potentially limited by the size of the individ-
ual specimens and by the sensitivity of the analytical method at low PCB levels.
First, the individual samples should be large enough so that composites can be
formed while leaving enough material for individual analyses if needed. The second
limiting factor is the detection limit of the analytical method. If the detection limit
is 1 part per million (ppm), and the assumed permissible level is 10 ppm, no more
than 10 specimens should be composited at a time.
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In compositing specimens, the location of the sampling points to be grouped
should be taken into account. Boswell and Patil investigated this problem with a
simulation study and have found that contiguous specimens should be composited,
if feasible, in order to maximize the potential reduction in the number of analyses
produced by the compositing strategy. Some possible compositing strategies are
indicated graphically in Figs. 11.5, 11.6, 11.7, and 11.8.

Fig. 11.5 Location of sample points in a 7 sample point plan with detail of a two-group composit-
ing design (source: Boomer et al. 1985)

11.2 Estimation of the Average Level of Contamination

11.2.1 Estimation of the Average PCB Concentration on the Spill
Area

In addition to detecting the presence of PCBs on the spill site, it may also be impor-
tant to estimate the average PCB concentration. Composite sampling has an advan-
tage over individual sample measurements in this problem, too. While maintaining
the same precision as that of the mean of all individual sample values (had they
been measured), the mean of the composite sample values estimates the average
PCB concentration at a substantially reduced cost of analysis.
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Fig. 11.6 Location of sample points in a 19 sample point plan with detail of a two-group com-
positing design (source: Boomer et al. 1985)

For n composites of size k, the average of the composite sample measurements
is an unbiased estimator of the population mean, with a standard error of σ/

√
(nk),

where σ is the population standard deviation, n is the number of composite sam-
ples, and k is the composite sample size (Rohde, 1976; Elder et al., 1980). Note
that the standard error of the composite sample estimator is the same as that of the
individual sample estimator computed from nk individual samples, but the number
of analytical measurements is n in the case of composite samples as opposed to nk
in the case of individual samples.

11.2.2 Onsite Surface Soil Sampling for PCB at the Armagh Site

A preliminary study was carried out (Gore et al., 1992) to evaluate the performance
of composite sample techniques for characterizing PCB concentration. Since sam-
pling and chemical analyses had already been carried out, the study reported here is
a retrospective one, in which compositing is “simulated” by averaging the recorded
measurements for individual samples. In the absence of measurement error, these
averages exactly reproduce the measurements on composite samples that would
have been obtained by physical compositing. However, measurement error may



11.2 Estimation of the Average Level of Contamination 215

Fig. 11.7 Location of sample points in a 19-sample point plan, with detail of a two-group com-
positing design (source: Boomer et al. 1985)

not be negligible for PCB concentrations, and further study should be necessary
to assess the impact of such error on the cost-efficiency of composite sample tech-
niques.

11.2.3 The Armagh Site

11.2.3.1 Location and Features

The Armagh compressor station is located in West Wheatfield Township, Indiana
County, about 1.25 miles south of US Route 22. The map in Fig. 11.9 shows the
location of the Armagh site in the State of Pennsylvania. The site includes one com-
pressor building along with several other buildings on 79 acres. There are two known
liquid pits. The surrounding area contains 64 residences within 1 mile of the station.
Some of these houses have private wells; however, a public water supply line was
recently installed. None of the private wells has been found to be contaminated as a
result of the Texas Eastern activities. There is one wetland situated within one-half
mile of the site. Richard Run, which flows to the south of the site, is classified as a
cold water fishery. There are no public recreational facilities near the station.
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Fig. 11.8 Location of sample points in a 37-sample point plan, with detail of a four-group com-
positing design (source: Boomer et al. 1985)

Fig. 11.9 Locations of the Pennsylvania sites
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11.2.3.2 Onsite Soils

Onsite soils are defined as being within the confines of the station site fencing and
are therefore accessible only by Texas Station personnel and authorized site visitors.
The areal extent of excavation is expected to be determined by the 10 parts per
million (ppm) PCB contour lines which are generated based upon the onsite soil
characterization data. The cleanup criterion for onsite soils is specified by an aver-
age overall PCB concentration of 5 ppm. The objective of the onsite surface soil
sampling was to characterize the presence of PCBs at the Armagh site. Sampling
locations around potential sources of contamination were selected for sampling in
phase I. As part of phase II sampling, samples were collected at points around each
phase I sampling location having a total PCB concentration greater than 10 ppm for
onsite surface soils.

11.2.3.3 Onsite Surface Soil Sampling

Potential sources of PCB had been identified, and a rectangular grid was laid out
about each such source. Four different onsite grids were identified by the alphabetic
codes “A” through “D.” Grid points were identified by a two-digit row number and
an alphabetic column code. Sampling of the surface soil was done at selected grid
points in two distinct phases. The second phase was undertaken to fill in locations
not covered during phase I. Grid “D” was not sampled during phase I, but only
during phase II. Phase II locations were generally farther away from the potential
PCB source, and the measured PCB concentrations tended to be lower during this
phase.

A total of 130 onsite surface soil samples were collected during phase I and 228
during phase II as follows.

Phase I Phase II

Grid A 78 samples 106 samples
Grid B 16 samples 16 samples
Grid C 36 samples 32 samples
Grid D 74 samples

The map in Fig. 11.10 shows the grids and sampling locations on the Armagh
site. The distance between consecutive rows as well as between consecutive columns
was 25 ft. For the purpose of computerization and to facilitate analysis using statis-
tical computer packages, the alphabetic column codes were converted into numeric
codes with A into 1, B into 2, and so on. Row and column codes for grids B, C , and
D were shifted to synchronize them with the codes of the grid A. This synchroniza-
tion enables plotting of all the sampled grid points on the same graph. Schematic
plots, which are not to the scale, showing grid points that were sampled in either
phase are given in Fig. 11.11a–g.
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Fig. 11.10 Grid layout and sampling locations for onsite surface soil sampling at the armagh site

Soil samples were taken from a 0 to 6 in. depth. After removing vegetation, rocks,
and other debris, the sample at each grid point was thoroughly mixed to obtain a
homogeneous sample for analysis and quantification. Duplicate and triplicate sam-
ples were taken at some locations, but these have not been included in the analysis.
The discrepancy between the measurements on primary, duplicate, and triplicate
samples can be useful in studying measurement errors and will be investigated sep-
arately in a subsequent report.

11.2.4 Simulating Composite Samples

11.2.4.1 Choice of the Composite Sample Size

Boswell and Patil (1990) have investigated strategies for composite sample for-
mation when samples are spatially correlated. After comparing four different
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Fig. 11.11 (a) Sampling locations on grid A, phase I; (b) sampling locations on grid B, phase I;
(c) sampling locations on grid C, phase I; (d) sampling locations on grid A, phase II; (e) sampling
locations on grid B, phase II; (f) sampling locations on grid C, phase II; and (g) sampling locations
on grid D, phase II
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compositing strategies for classification of individual samples, Boswell and Patil
arrived at the conclusion that, when there is spatial dependence among the sampling
locations, compositing samples from neighboring points, as nearly as possible in a
square region, increase the cost-efficiency of composite sampling. Due to the spatial
dependence, these samples are likely to exhibit greater homogeneity than randomly
selected samples.

In order to maximize within-composite homogeneity, it was decided that all com-
posites would be formed within a sampling phase and also within a grid. This may
also be desirable from the management and operational point of view. These consid-
erations led to the decision to composite individual samples taken from contiguous
locations belonging to the same grid and sampled in the same sampling phase.

11.2.4.2 Composite Sample Formation

After the composite sample size was determined through considerations described
above, it was necessary to identify the sampling locations to be composited. There is
considerable subjectivity involved since not all the grid points were included in the
sampling plan and the sampled grid is not exactly rectangular. However, precaution
was taken to avoid selection bias in the composite sample formation. First, even
though the PCB concentrations at the sampled locations were known, the formation
of composite samples was based only on the geographical positions of the sampling
locations. Second, a few alternative composite sample formation protocols were
implemented for comparison with that used for the analysis reported here. Since
the estimate of the mean PCB concentration does not depend on the compositing
protocol, the estimate of the variance was used as the criterion for this comparison.
Unbiased estimates of the population mean μ and the population variance σ 2 were
calculated. Relevant tabulation is given in Table 11.2.

We observe that composite sample estimates of the population mean are identical
to the corresponding individual sample estimates. Since individual samples from

Table 11.2 Unbiased estimates of μ and σ

Measurements of
Individual samples Composite samples

N X̄ Sx n μ σ

Phase I
Grid A 78 363.32 1355.6 20 363.32 1793.72
Grid B 16 64.56 40.0 4 64.56 36.12
Grid C 36 1075.14 2076.5 9 1075.14 2974.74

Phase II
Grid A 106 81.46 198.0 26 81.46 208.94
Grid B 16 26.01 23.3 4 26.01 36.46
Grid C 32 70.2 79.3 8 70.2 84.1
Grid D 74 36.59 91.1 19 36.59 97.28
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contiguous sample locations are composited, they are expected to be somewhat
homogeneous. As a consequence, the variation between composites is expected to
be larger than the variation within composites. The composite sample estimate of
the variance is accordingly larger than the individual sample estimate in most of the
cases. However, since the composite sample estimates involve 25% measurement
cost as compared to the individual sample estimate, composite sampling is preferred
to exhaustive testing. On the other hand, confidence intervals for population means
will be wider if computed from composite sample measurements rather than from
individual sample measurements. The conclusions drawn from composite sample
data will then be more conservative than those drawn from individual sample data.
In either case, composite sampling schemes perform better than exhaustive testing.

11.2.5 Locating Individual Samples with High PCB Concentrations

To illustrate the method described in Section 3.2, in case of the Armagh site, we note
that the highest PCB concentration in a composite sample was 4897.5 ppm. Since
the size of this composite was 4, the highest PCB concentration in an individual
sample cannot exceed 19,590 ppm. Exhaustive testing of the constituent samples
resulted in the highest PCB concentration in an individual sample, namely, 10,000.
Since there was a composite sample with PCB concentration of 3999.5 ppm, it could
contain an individual sample with PCB concentration exceeding 10,000 ppm. Upon
measuring every individual sample in this composite, it was indeed found to be the
case, as there was an individual sample with PCB concentration of 10,700 ppm.
This implies that no composite sample with a PCB concentration of 2675 ppm or
less can contain an individual sample with PCB concentration exceeding 10,700
ppm. Since there was no composite sample with a measurement exceeding 2675
ppm, the sampling location with the largest PCB concentration was identified. Note
that it required only 8 measurements in addition to the 90 composite sample mea-
surements.

Figure 11.12a–d shows a scatterplot of individual sample measurements plot-
ted against the simulated composite sample measurements. The two rays from the
origin indicate the upper and the lower bounds on the largest individual sample
measurement for every composite sample measurement. Thus, corresponding to
the composite sample with a measurement of 4897.5 ppm, the upper bound for an
individual sample measurement in this composite is 19,590 ppm, while the lower
bound for the same is 4897.5 ppm, which is the same as the composite sample
measurement. Since 4897.5 ppm was the largest composite sample measurement,
individual samples in this composite were measured separately, and an individual
sample with a PCB concentration of 10,000 ppm was identified. A horizontal line
through the point identifying this individual sample indicates that there is only one
composite which can possibly contain an individual sample with more than 10,000
ppm of PCB concentration. Exhaustive testing in this composite located an individ-
ual sample with a PCB concentration of 10,700 ppm. There is no other composite
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that can contain an individual sample with a PCB concentration exceeding 10,700
ppm, as is evident from Fig. 11.12b. The exhaustive testing of two composites have
thus identified the individual sample with the largest PCB concentration. This search
can easily be extended to identify more individual samples with high PCB concen-
tration. Figure 11.12b–d shows how exhaustive testing of only three composites
identify the individual samples with the four largest PCB concentrations. In other
words, with only 12 measurements in addition to the 90 measurements on the simu-
lated composite samples, we were able to identify the 4 individual samples with the
highest PCB concentrations.

Fig. 11.12 The sweep-out method for identifying the individual samples with extremely large
values

11.3 Estimation of Trace Metal Storage in Lake St. Clair
Post-settlement Sediments Using Composite Samples

During 1985, Canadian and the US agencies and institutions undertook a coop-
erative study of Lake St. Clair sediments (Rossman, 1988). The objectives of the
sediment sampling program were to describe the organic and metal contaminants
stored in the sediments and to provide information on the permanence of storage.
Sediment cores were collected from 36 locations within the lake (see Fig. 11.13).
Core samples were collected by inserting core liners as deeply as possible into the
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sediments. Penetration into the sands was 3–9 cm and into the silts and clays was
6–36 cm. Cores were extruded at 1 cm intervals to a depth of 10 cm and at 1–2 cm
intervals for sediment depths greater than 10 cm. After noting the sediment texture,
the intervals were stored frozen in polyethylene bottles. In the laboratory, frozen

Fig. 11.13 Stations at which cores were recovered during sampling of Lake St. Clair in 1985
source: Rossman 1988

Table 11.3 Mean coefficients of variation (mg/kg) for analysis of Lake St. Clair sediments

Element Coefficient of variation Limit of detection

Bi 8.3 0.054
Cd 18 1.8
Cr 4.5 4.8
Cu 3.4 2.4
Ni 4.3 5.4
Pb 8.0 7.4
Sb 21 0.047
Zn 5.0 4.8

Source: Rossmann, 1988)
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samples were weighed and freeze-dried without external heat. After weighing the
dried samples to determine water content, the samples were stored in polyethylene
bottles. These samples were then gently ground with a mortar and pestle. Compos-
ite samples were formed with subsamples of sediment from each section of a core
proportional to its contribution to the total mass of sediment in the core. Composite
samples were thoroughly mixed and stored in polyethylene bottles.

A 29 subsample of each composite was weighed into a 250 ml flask, spiked with
polonium-209, and extracted into 100 ml of hot (80◦C) 10 (v/v) hydrogen peroxide.
Each time the sample volume was reduced to 5–10 ml. When the reaction with the
hydrogen peroxide subsided, more hydrochloric acid was added to bring the vol-
ume to 50 ml. This process was repeated two more times during the 40-h extraction
period. After 40 h, the solution was allowed to evaporate to a volume of 5–10 ml.
This extraction technique dissolved all components of the sediment except silicate
minerals. The extract was then separated from the insoluble residue, and the filtered
extract was transferred into a 100-ml volumetric flask and brought to volume.

Cadmium, chromium, copper, nickel, lead, and zinc were analyzed by standard
lame techniques using an atomic absorption spectrophotometer. Quantification was
with standard curves. Bismuth and antimony were analyzed by flameless atomic
absorption. Except for cadmium and antimony, the coefficient of variation for each
metal was below 10% (Table 11.3). Detection limits are those obtained for the
ranges of concentration found in the samples. For the eight metals considered in the
study, a total of 288 analyses were done. Of these, only three results for composite
samples were below the detection limit. Thus the composite results were within the
certainty of the analysis. Analyses of the USEPA municipal-digested sludge and a
previously analyzed Lake Michigan sediment sample were used to monitor the qual-
ity of the analyses. All results were within the given USEPA range of acceptance or
were reasonably close to the previous results (Tables 11.4 and 11.5).

Table 11.5 Results of analysis of a standard lake mud during the Lake St. Clair study compared
with previous analysis of the standard lake mud (mg/kg)

Lake St. Clair study Previous studies

Standard Standard
Metal N Mean deviation Mean deviation

Bi 3 0.372 0.234 0.296 0.0240
Cd 3 5.74 0.0781 – –
Cr 3 54.7 0.131 56.2 0.17
Cu 3 40.1 0.0961 39.8 1.25
Ni 3 30.1 0.0709 36.3 1.55
Pb 3 68.4 2.33 79.0 1.80

3 77.7 0.687
Sb 3 0.451 0.0301 0.550 0.0328

0.520 0.0329
Zn 3 146 2.33 168 14

source: Rossmann (1988)



Chapter 12
Composite Sampling of Liquids and Fluids

12.1 Comparison of Random and Composite Sampling Methods
for the Estimation of Fat Content of Bulk Milk Supplies

The fat content of milk is determined on a composite sample which is formed from
samples using all deliveries during a specified period of time. Milk samples taken
at the time of collection are transported to the processing plant and assembled into
composites. Since it is a known fact that composite samples provide an unbiased
estimate of the population mean, the interest is in comparing the precision of com-
posite sample estimator with that of the individual sample estimator. An impor-
tant consequence of compositing is the loss of information on individual sample
measurements, and hence the loss of information on sample-to-sample variability
within a composite. While comparing between individual samples to locate any
differences, compositing may add a variance component to the analysis. Williams
and Peterson (1978) developed a method to provide a framework for assessing the
precision of sampling schemes through estimation of components of variation asso-
ciated with the sampling process. They identified four components: variance due
to real difference between collections from a supplier within a compositing period
(biological variance σ 2

d ), variance among samples taken from the same collection
(sample variance, σ 2

s ), variance among measurements on the same sample (testing
variance, σ 2

t ), and the variance associated with the formation of a composite sample
(compositing variance, σ 2

c ).

12.1.1 Experiment

Sixty-one herd milk supplies in three different creamery locations were sampled
during the trials. Samples were taken by the regular tanker drivers. The milk in the
bulk tanks was agitated for 1 min prior to pumping off and two samples were taken
(first after starting and second toward the end of pump off) from each delivery. On
arrival at the creamery samples were analyzed in duplicate for fat, and in addition,
each one was used in the formation of a 2-week composite. After each fortnightly
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interval, the two composite samples were analyzed in duplicates for fat. Fat content
was determined by the Milko Tester Automatic.

12.1.2 Estimation Methods

Testing variance σ 2
t could be estimated from the data for each collection and also

from the composite data. Since the composite data were more complete than the
individual collection data, a hierarchical orthogonal ANOVA was possible with the
data, from which testing variance was estimated. Sampling variance was estimated
for each herd collection. This involved the subtraction of the estimate of testing vari-
ance from an estimate of testing plus sampling variance. Compositing variance was
estimated as follows: in the hierarchical ANOVA of composite data, the expectation
of the mean square for between composites within herd-periods is given by

σ 2
t + 2(σ 2

c + σ 2
s /N̄ ),

where N̄ is the harmonic mean number of collections per herd-period. Compositing
variance can be estimated from this formula by inserting estimates of sampling and
testing variances. The estimate of testing variance used was the one from the com-
posite data. Estimates of the biological variability are based on the direct calculation
of day-to-day variation in fat percentage for each herd-period. The expectation of
this variance is

σ 2
d + σ 2

s /2+ σ 2
t /4

from which an estimate of biological variance (σ 2
d ) can be obtained by subtraction

of multiples of estimates of σ 2
s and σ 2

t .

12.1.3 Results

Estimates of testing, sampling, compositing, and biological variances for three loca-
tions are shown in Table 12.1. Two estimates of testing variance are presented for
each location, based on the variation between duplicate determinations of fat per-
centage for individual collections and composite samples, respectively. These val-
ues are small relative to the sampling and compositing components. The sampling
variances are somewhat smaller than the compositing variances, while both differ
between locations. The biological components of variability were about 10 times
as large as sampling or compositing components. Random and composite sampling
schemes are compared in Table 12.2.
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Table 12.1 Estimates of testing, sampling, compositing, and biological variances for three
locations

Testing variance ×10−4 Sampling variance ×10−4

Location
Individual
collections df

Composite
data df

No. of
obser-
vations Estimate

Compositing
variance
×10−4

Biologicala

variance
×10−4

A 1.24 1272 0.99 220 635 11.8 18.3 180
B 0.50 4342 1.60 468 2171 4.3 12.8 224
C 0.21 2532 0.74 360 1257 28.8 34.0 187
a Period 11 was excluded from this analysis for locations A and B as it gave large values that
differed very much from other periods
Source: Connolly and O’Connor (1981)

Table 12.2 Comparison of accuracy of random and composite sampling schemes for determina-
tion of fat percentage under a seven-collection per composite system

Variance for location under random sampling (×10−4)

Days sampled at random A B C

1 167 198 190
2 71 83 82
3 39 45 46
4 23 26 28
5 13 14 17
6 7 6 9
Composite method variance (×10−4) 21 15 39
Days sampled to give equivalent precision 4–5 4–5 3–4

Source: Connolly and O’Connor (1981)

12.1.4 Composite Compared with Yield-Weighted Estimate of Fat
Percentage

In addition to satisfying variability criteria, sampling methods should also be unbi-
ased. Fat percentage for a period can be estimated by the composite sampling
method, or if information is available in every collection, by a weighted mean of
the fat percentage for each collection, weighted by the milk yield in the collection.
In the current data, the difference and the ratio of the weighted to the composite
estimate were both analyzed in ANOVA which examined the effects of herds and
periods (Table 12.3). There was no consistency over locations. In addition to these
average effects, the difference between the methods varied significantly over herds
and periods for two of the locations.

12.2 Composite Sampling of Highway Runoff

Storm water runoff from highways is monitored by manual grab sampling or auto-
matic water quality samplers in conjunction with flow measuring instruments. Dis-
crete runoff samples can be used to characterize the changes in concentration of
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various pollutants through a storm, but are usually mixed in some way to form
a composite sample so that average concentrations can be used to calculate total
mass loadings of pollutants. Because runoff characteristics are continuously chang-
ing, sampling at discrete points is limited in accuracy. Small storms may pass
unsampled, peaks in concentration may occur between samples, or large storms
may exceed the container capacity of the sampler. For these reasons, it is desirable
to continuously accumulate a composite runoff sample for determination of total
pollutant loadings. Wullshleger et al. (1976) suggest four methods of combining
discrete samples to obtain a composite according to the time they were taken and
the flow rate or the volume they represent. Another method is to use a device that
continuously removes a fixed fraction of the storm water runoff proportional to
the flow rate and automatically accumulates it in a composite sample. Clark et al.
developed such a device and took samples from Interstate-5, I-5, in Seattle between
February and September 1979. A summary of the analysis of their data is given in
Table 12.3.

Table 12.3 Highway runoff water quality comparisons

1–5 sampling site in Seattle

Composite concentration

Average Range

Range of
discrete sample
concentrations

Average of
national
composites (2)

(1) (2) (3) (4) (5)

pH 6.1 5.1–6.9 4.5–7.1 –
Conductivity 87.0 μmho/cm 30.0–146.0 31.0–409.0 –
COD 137.0 75.0–211.0 8.0–914.0 147.0
TSS 145.0 43.0–320.0 30.0–1120.0 261.0
VSS 38.0 12.0–100.0 2.0–696.0 77.0
TOC 27.0 4.0–47.0 BDL–83.0 41.0
Pb 0.8 0.2–1.5 0.1–5.5 0.96
Zn 0.40 0.2–1.0 0.03–1.9 0.41
Cu 0.03 BDL–0.07 BDL–0.15 0.10
TKN 1.11 0.64–1.96 0.18–3.96 2.99
NO3−NO2−N 0.82 0.52–1.65 0.05–2.20 1.14
Total P 0.34 0.20–0.55 0.12–1.08 0.79

Note: BDL = below detectable limit. All concentrations in mg/l unless stated otherwise
Source: Clark et al. (1981)

A fully automated discrete sampling system was established with a mechanical
sampler. A composite sampler was also developed with the following considera-
tions:

1. The composite sampler must produce a representative sample, with the average
characteristics of the runoff from an entire storm

2. The resulting sample was to be used in calculating the entire storm amount, and
no other flow measuring device was being used
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3. The sample volume had to be sufficiently small to store
4. The sampler should sample solids in the storm water and must not be incapaci-

tated by litter and debris
5. The sampler should need minimal maintenance and should not require electrical

power
6. The cost of the composite sampler should be significantly lower than the con-

ventional discrete sampler

After it was developed, the composite sampler was tested and compared with
the conventional discrete sampler, and the following conclusions were drawn. The
composite sampler was capable of accurately removing a fixed amount of fraction of
the total flow in the channel proportional to the flow rate. Operation of the composite
sampling system was simple and required a minimal amount of maintenance. One
unit of the composite sampler costs $900 as opposed to a cost of $6440 for the
conventional discrete sampler. Figures 12.1, 12.2, and 12.3 show how composite
samples collected with the composite sampler performed in comparison with the
discrete sampler.

Fig. 12.1 Discrete vs. composite runoff volume (1 ft3 = 0.028 m3) (Source: Clark et al., 1981)
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Fig. 12.2 Discrete vs. composite results for COD (1 lb = 0.453 kg) (Source: Clark et al., 1981)

12.3 Composite Samples Overestimate Waste Loads

Schaeffer et al. (1983) have reported two case studies that attempt to make a com-
parison between grab and composite samples while evaluating wastewater treatment
plants. Wastewater treatment plant performance is monitored by the collection and
analysis of samples from the process stream for physical, chemical, and microbio-
logical constituents. Samples may be broadly classified as “grab” or “composite.”
A grab sample represents the composition of the flow at a given instant in time,
irrespective of the flow volume. A composite sample represents an average compo-
sition of the flow over time and may or may not be proportional to the flow. Flow
proportional (FP) sampling can be accomplished in one of the following ways: fixed
time with sample volume proportional to flow (VP) or fixed volume with time pro-
portional to flow (TP). Non-flow proportional (NFP) composites are usually taken
as a fixed volume at fixed times.

Schaeffer et al. have reported the results of the analysis of effluent samples at St.
Charles and Freeport. At St. Charles, all effluent samples were taken at the outlet of
the final chlorination process for clarified water. Grab samples were taken every
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Fig. 12.3 Discrete vs. composite lead (l lb = 0.453 kg) (Source: Clark et al., 1981)

Table 12.4 Freeport effluent concentrations and loads (the standard deviations (SD) are computed
directly from sample data as sc; variance correction for compositing, S2

w , and autocorrelation, τ ,
are not included)

Concentrations (ppm) Loads (ppm ×m3/s)

Parameter Maximum Mean Skew Maximum Mean Skew

N Minimum SD Kurtosis Minimum SD Kurtosis

Hourly grabs
NH3 18.0 12.8 0.3 4.3 2.5 0.0
167 9.4 1.8 3.1 1.2 0.8 2.0
TSS 1480.0 971.2 0.3 390.0 190.0 0.4
167 704.0 125.3 4.9 86.0 64.0 3.1

Daily time-proportioned composites
NH3 24.3 11.4 0.2 4.9 2.3 0.2
100 2.8 3.5 4.6 0.4 0.7 5.2
TSS 1158.0 862.3 0.1 316.5 172.1 0.2
99 658.0 102.9 2.8 81.5 40.2 3.9

Daily volume-proportioned composites
NH3 22.5 11.6 0.0 4.6 2.3 0.1
100 0.6 3.4 4.7 0.1 0.7 4.5
TSS 1222.0 884.8 0.0 314.6 176.6 0.1
99 674.0 116.2 2.9 81.2 41.6 3.5

Source: Schaeffer et al. (1983)
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Table 12.5 St. Charles effluent concentrations and loads (standard deviations (SD) are computed
directly from sample data as sc; variance corrections for compositing, s2

w , and autocorrelation, τ ,
are not included)

Concentrations (ppm) Loads (ppm ×m3/s)

Parameter Maximum Mean Skew Maximum Mean Skew

N Minimum SD Kurtosis Minimum SD Kurtosis

Hourly grabs
NH3 15.5 7.3 0.1 2.9 1.3 0.1
168 2.0 4.0 2.1 0.3 0.7 1.8
TSS-105 122.0 28.0 1.2 23.0 4.9 1.9
191 0.0 24.6 3.8 0.0 4.7 4.4
TSS-180 32.0 8.0 0.9 6.3 1.4 2.0
163 0.0 7.1 3.3 0.0 1.3 5.0

Daily time-proportioned composites
NH3 17.5 9.6 0.1 3.3 2.2 0.1
50 5.0 2.8 2.8 1.1 0.5 2.8
TSS-105 13.0 39.0 2.2 30.1 8.7 1.9
65

Daily volume-proportioned composites
NH3 17.5 12.6 0.0 4.3 2.8 0.8
63 6.0 3.0 2.3 1.7 0.5 4.3
TSS-105 99.0 42.0 0.6 24.1 9.5 0.4
66 7.0 22.5 3.2 1.1 5.1 3.3

Source: Schaeffer et al. (1983)

hour as well as every 24 h and composite samples were taken for 24 h per day.
Time proportional samples were taken with an ISCO sampler from the bottom of
the flume every 15 min, and flow proportional samples from the center of the flow
with a Lakeside Trembler sampler. At Freeport, samples were taken at the same
stream locations and in the same temporal pattern. The flow proportional composite
samples were collected using a BIF Sanitrol sampler.

Samples from both treatment plants were analyzed for total suspended solids
(TSS) and ammonia (NH3). Flows were monitored continuously at both facilities.
Table 12.4 summarizes the data for Freeport, and Table 12.5 the data for St. Charles.
The tables give the number of observations, the mean, standard deviation, skewness,
kurtosis, minimum, and maximum. Table 12.6 summarizes certain statistical infor-
mation developed from the analysis of the data.

Table 12.6 Composite pair differences – volume minus time-proportioned concentrations and
loads

Concentrations (ppm) Loads (ppm ×m3/s)

Parameter (N ) Mean t Mean t

Freeport NH3 (100) 0.24 1.97 0.05 2.00
Freeport TSS (99) 22.50 3.70 4.47 3.83
St. Charles NH3 (49) 2.99 9.42 0.65 9.00
St. Charles TSS (65) 2.54 0.90 0.71 1.08

Source: Schaeffer et al. (1983)



Chapter 13
Composite Sampling and Indoor Air Pollution

Asthma is one of the most common respiratory diseases. The occurrence of asthma
is associated with atopy. Many studies have reported an association between sensiti-
zation to dust mite allergens and asthma. Dermatophagoides mites and cats produce
a variety of allergens. Measurement of a specific allergen can be used to assess
allergen exposure. It has been proposed that greater than 10 μg of total allergen
per gram of dust should be regarded as high and represent a risk for acute attacks
of asthma in a majority of mite-allergic individuals, concentrations as low as 2 μ/g
should be regarded as moderate and represent a risk of sensitization, and less than
2 μg/g presents little risk for a majority of atopic individuals.

Quantification of specific allergens in dust from human dwellings provides
important information for determining allergen exposure. The fact that indoor aller-
gens are not equally distributed in the dust of human dwellings makes it difficult
to estimate allergen exposure with a high degree of certainty. A composite sample
may provide a more reliable estimate of indoor allergen exposure and minimize
error associated with unequal distribution of allergens on discrete objects. In many
applications, the use of composite samples has effectively reduced the number of
measurements necessary to provide reliable estimates of contamination. Likewise,
composite samples of household dust may provide useful information while mini-
mizing the sample collection effort and analytical test costs.

13.1 Household Dust Samples

Dust samples from three specific objects and composite samples from the same three
objects were collected from the living rooms and bedrooms of 15 homes by a single
technician using a special filter sampling device (ALK Laboratories, Inc., Milford,
CT) connected to a Red DevilTM vacuum (Model 503; Royal Appliances Mfg. Co.,
Cleveland, OH). Discrete and composite samples were collected from floor, furni-
ture (upholstery/bed), and window coverings in both the living room and a bedroom
of each home. Discrete samples were collected by vacuuming the specific objects
for 10 min. Composite samples were collected in a defined sequence by vacuuming
the three objects for 5 min each (see Table 13.1). In this way, the composites were
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Table 13.1 Sampling order used to form the composite samples

1 Living room U, W, F
2 Living room W, U, F
3 Living room F, U, W

4 Bedroom B, W, F
5 Bedroom W, B, F
6 Bedroom B, F, W

U=upholstery, W=window, F=floor, B=bed
Source: Lintner et al. (1992)

formed at the time of sample collection by allowing the vacuum cleaner to do the
physical mixing of the dust from several objects. An alternative to this would be
to collect separate dust samples from each discrete object and manually mix the
dust from each of the samples in the laboratory to form a composite. The reason for
forming composite samples is to estimate a patient’s overall exposure to allergen in
a specific indoor environment.

The results of this study seem to indicate that the actual measurement of a com-
posite sample will be approximately the average of the values that would be obtained
from separate measurements on discrete samples (see Tables 13.2 and 13.3). How-
ever, if an object has a significantly higher allergen content than other objects, the
composite sample measurement tends to be higher than the average of the discrete
sample measurements. Also, in order to effectively use composite sampling, only
items which are likely sources of allergen should be used to form a composite
sample.

Table 13.2 Comparison of mite allergen measurements from composite and discrete dust
samples

Allergen Comparison P value

DER I Bedroom vs. living room 0.12
Living room, composite vs. discretea 0.07
Bedroom, composite vs. discreteb 0.55

Der p I Bedroom vs. living room 0.01
Living room, composite vs. discretea 0.23
Bedroom, composite vs. discreteb 0.53

Der f I Bedroom vs. living room 0.57
Living room, composite vs. discretea 0.09
Bedroom, composite vs. discreteb 0.33

a Contrast for the living room composite:
composite = floor/4 + upholstery/2 + window/4

b Contrast for the bedroom composite:
composite = floor/3 + bed/3 + window/3

Source: Lintner et al. (1992)
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Table 13.3 Comparison of cat allergen measurements from composite and discrete dust samples
(signs test)

Allergen Comparison P value

Fel d I Bedroom, composite vs. discrete 0.75
Composite = floor/3 + bed/3 + window/3

Fel d I Living room, composite vs. discrete 0.55
Composite = floor/3 + bed/3 + window/3

Source: Lintner et al. (1992)



Chapter 14
Composite Sampling and Bioaccumulation

The human body, or any living organism for that matter, when exposed to a polluted
environment, accumulates contaminants in its tissue. It is, therefore, very useful
to sample tissue from a sample of such organisms under investigation, in order
to evaluate the amount of accumulation, called bioaccumulation, since biological
processes cause the accumulation of a particular contaminant in the organism. It
is a common observation that the tissue from a single member is not sufficient for
making measurement. It is therefore necessary for technological reasons to com-
posite the tissue samples extracted from several organisms so that a measurement is
possible.

Compositing tissue samples extracted from several selected organisms represents
an attempt to estimate the average concentration. If

X1, X2, . . . , Xk

represent the contaminant concentration of k tissue samples from k individual organ-
isms, then these samples can be pooled to obtain a single composite measurement:

Y =
k∑

i=1

wi Xi ,

where, for i = 1, . . . , k, wqi is the proportion of the contribution from the i th
individual to the composite. Rohde (1976) showed that the expected value and the
variance of Y are given by

E(Y ) = μ, Var(Y ) = σ 2/k + kσ 2
wσ 2,

where μ is population mean; σ 2 is population variance; σ 2
w is variance of the com-

positing proportions; and k is the number of individual samples in each composite.
If the wi ’s are all equal, wi ≡ 1/k, then the numerical value of Y is equal to

the average of the k sample values, that is, Y = X̄ . In this case, by analyzing only
one composite sample, an estimate of the mean of k individual samples is obtained.
However, due to compositing, the information on the individual sample variability
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is lost. This is true for a single composite sample. Replicate composite samples can
be used in bioaccumulation monitoring programs to obtain a more accurate estimate
of the population mean and to increase the precision of this estimate.

The comparison between a single composite and replicate individual samples can
be extended to replicate composite samples (see Rohde, 1976, 1979). The mean of
n composite sample values Y1, Y2, . . . , Yn is given by

Ȳ =
n∑

j=1

Y j/n.

The expected value and the variance of Ȳ are given by

E(Ȳ ) = μ, Var(Ȳ ) = σ 2/nk + kσ 2
wσ 2.

In particular, if the composite samples comprise samples of equal mass so that
wi ≡ 1/k and hence σ 2

w = 0, then

Var(X̄) = σ 2/k, Var(Ȳ ) = σ 2/nk,

where n is the number of replicate samples (individual or composite) used in the
estimate of the population variance (σ 2) and k is the number of individual samples
constituting each composite sample. In this case, it is easy to verify that

Var(X̄)

Var(Ȳ )
= n.

Thus, it can be seen that a collection of replicate composite tissue samples will
result in a more efficient estimate of the mean. It should also be noted that for
unequal proportions of composite samples, the variance of the composite sample
mean increases with σ 2

w and in extreme cases may even exceed the variance of the
individual sample mean. A table of values for σ 2

w that lead to such an increase is
given by Schaeffer and Janardan (1978). Using the Dirichlet model for compositing
probabilities, Rohde (1979) has shown that

Var(X̄)

Var(Ȳ )
= n + 1

2

as the increase in the precision that can be achieved at an additional cost of
compositing.
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14.1 Example: National Human Adipose Tissue Survey

The National Human Adipose Tissue Survey (NHATS) is an annual survey to col-
lect and analyze a sample of adipose tissue specimens from autopsied cadavers and
surgical patients. The primary objectives of NHATS include the following:

• To identify chemicals that are present in the adipose tissue of individuals in the
US population

• To estimate the average concentration levels of selected chemicals in adipose
tissue of individuals in the U.S. population and in various demographic subpop-
ulations

• To determine if any of the four factors (namely, geographic region, age, race, and
sex) affect the average concentration levels of selected chemicals detected in the
US population

Every year approximately 800–1200 adipose tissue specimens are collected using
a multistage sampling plan. First, the 48 contiguous states are stratified into four
geographic areas, which form four strata. Next, a sample of metropolitan statistical
areas (MSAs) is selected from every stratum with probabilities proportional to MSA
populations. Finally, several cooperators (hospital pathologists or medical examin-
ers) are chosen from every selected MSA and asked to supply a specified quota of
tissue specimens. The quota specifies the number of specimens needed in each of
the categories defined by the donor’s age, race, and sex. The categories are:

• Age groups: 0–14 years, 15–44 years, and 45+ years;
• Race: Caucasian and non-Caucasian; and
• Sex: male and female.

The sampling plans were designed to give unbiased and efficient estimates of the
average concentration levels of selected chemicals in the entire population and in
various subpopulations defined by the demographic variables described above. Lev-
els are characterized by the average or median chemical concentrations; prevalence
is the proportion of individuals with chemical concentrations exceeding specified
criterion levels.

14.2 Results from the Analysis of 1987 NHATS Data

The analysis was performed on data obtained from 48 composite samples formed
from 865 adipose tissue specimens from sampled cadavers and surgical patients.
Thus, each composite contained an average of 18 specimens. Not all of the chem-
icals provided sufficient data to perform a meaningful analysis. Two criteria were
used to determine which chemicals should be analyzed. First, a chemical must be
detected in at least 50% of the composites. Second, a minimum of 30 measurements
were considered necessary to achieve sufficient precision of the estimates. Thus, of
the 16 chemicals, there were 9 that met both criteria for performing the analyses.



242 14 Composite Sampling and Bioaccumulation

For each of the nine chemicals analyzed, Table 14.1 lists the estimated average
concentration in the entire population and in the three age groups.

Table 14.1 Estimated average concentrations (pg/g) with relative standard errors (%) for selected
dioxins and furans from FY87 NHATS composite samples

Entire Age group years
Compound nation 0–14 15–44 45+

Population percentages 100 23 46 31

Dioxins

2,3,7,8-TCDD 5.38 1.98 4.37 9.40
(6) (41) (12) (4)

1,2,3,7,8-PECDD 10.7 3.30 9.33 18.2
(4) (22) (7) (4)

1,2,3,4,7,8/ 75.1 23.4 70.9 120
1,2,3,6,7,8-HXCDD (4) (23) (6) (3)

1,2,3,7,8,9-HXCDD 11.7 6.13 10.8 17.1
(4) (18) (7) (4)

1,2,3,4,6,7,8-HPCDD 110 45.7 99.8 174
(3) (11) (5) (3)

1,2,3,4,6,7,8,9-OCDD 724 215 692 1150
(4) (17) (7) (5)

Furans

2,3,7,8-TCDF 1.88 1.97 1.45 2.45
(7) (11) (15) (7)

2,3,4,6,7,8-PECDF 9.70 1.87 8.00 18.0
(8) (100) (15) (8)

1,2,3,6,7,8-HXCDF 5.78 1.80 4.59 10.5
(13) (83) (26) (13)

Source: Orban et al. (1990)



Glossary and Terminology

Bayesian approach: Usually an optimal statistical procedure depends on the pop-
ulation parameters, which are often unknown. Assuming a prior distribution of the
unknown parameters, it is sometimes possible to predict a value of the parameter
and hence employ the near-optimal procedure. Prior experience, local knowledge,
and expert opinion usually lead to a prior probability distribution of the parameter(s)
of the random variable under observation. The method which uses the prior distribu-
tion of the parameter(s) to optimize the statistical decision is known as a Bayesian
approach to the concerned problem.

Binary factor: If a factor that is likely to affect the sample values has two possible
levels, then it is called a binary factor. That is, a binary factor affects the sample
values through its presence or absence in the samples.

Binary split retesting: After a composite sample tests positive, indicating that at
least one of the constituent individual sampling units possesses the trait, the compos-
ite sample is split into two composite subsamples, as equal in size as possible, and
each composite subsample is subjected to measurement. Each composite subsam-
ple that indicates the presence of the trait is similarly subjected to binary split and
subsequent measurement. The procedure continues until every individual sampling
unit that formed the original composite sample is classified.

Classification error: The error of misclassifying an individual sample. That is,
either classifying a sampling unit possessing the trait as not possessing it or classi-
fying a sampling unit not possessing the trait as possessing it.

Classification problem: The problem of classifying every (individual) sampling
unit into one of the two possible categories, usually identified by the “presence”
and “absence” of the trait, even if the measurement is not necessarily of the pres-
ence/absence type.

Cleanup evaluation: A statistical investigation to determine if a cleanup activity
has been effective in that whether or not a previously hazardous site is not hazardous
any more, after the cleanup activity was undertaken.
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Composite sample measurement: The measurement on the variable of interest
obtained from a composite sample. Note that, as in the case with individual sampling
units, a composite sample measurement need not be the same as the corresponding
composite sample value unless the measurement is made without error. Also, if the
composite sample is made homogeneous by mixing it thoroughly, then the com-
posite sample measurement is expected to be a simple or weighted average of the
constituent individual sample values, provided the measurement is made without
error.

Composite sample size: The number of individual sampling units that are used to
form a single composite sample.

Composite sample value: The value of the variable of interest for a composite
sample. If the composite sample is thoroughly mixed, then the composite sample
value is expected to be a simple or weighted average of the constituent individual
sample values.

Composite sampling: A sampling procedure where several individual sampling
units are selected and procured, but are not immediately subjected to measurement.
Composite samples are formed by pooling and physically mixing a predetermined
number of sampling units or subunits for making measurement.

Composite subsample: A composite sample formed from a subset of individual
samples that constituted a composite sample.

Conjugate prior distribution: If the posterior distribution of parameters belongs
to the same family of distributions as their prior distribution, then the prior distribu-
tion is called a conjugate prior distribution.

Continuous measurement: A measurement that gives the numerical value of the
variable of interest is called a continuous measurement.

Covariogram: Consider the spatial process {Z (s), s ∈ D}, where D ⊂ Rd .
Suppose

cov (Z (s1), (s2)) = C (s1 − s2)

depends only on the difference s1− s2 for all s1, s2 ∈ D. The function C(·) is called
a covariogram or a stationary covariance function.

Curtailed retesting: When a composite sample of size k has indicated the presence
of the trait, some form of retesting is employed. If the first k − 1 of the constituent
individual sampling units indicate the absence of the trait, then the kth individual
sampling units is classified as possessing the trait without actually making a mea-
surement on this sampling unit.

Data quality objectives (DQO) Process: A statistical procedure to ensure that the
data collection will be most effective in the sense of collecting maximal information
at a minimal cost.
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Entropy-based retesting: The procedure assumes a large collection of unclassified
individual sampling units. The procedure begins by forming a composite sample of
a predetermined size k. If the composite sample tests negative, then all its con-
stituent individual samples are classified as not possessing the trait. However, if this
composite sample tests positive, indicating that at least one constituent individual
sample possesses the trait, then the composite sample is split into two composite
subsamples as equal in size as possible, and subjected to measurement. If the first
of the two composite subsamples indicates the absence of the trait, then the second
is assumed to posses the trait and is, therefore, subjected to further binary split.
On the other hand, if the first composite subsample indicates the presence of the
trait, then the individual sampling units that form the other composite subsample
are not classified and are returned to the pool of unclassified individual sampling
units. Continuing in this way, each of the k individual sampling units used to form
the composite sample is either classified as not possessing the trait or is returned to
the pool of unclassified individual sampling units, except for exactly one individual
sampling unit that is classified as possessing the trait. At this stage, another com-
posite sample of size k is formed from the pool of unclassified individual sampling
units. The procedure continues until all the individual sampling units are classified.
Although this classification procedure is not hierarchical like the other classification
procedures, it is optimal in that it maximizes the entropy.

Equal and unequal allocations in ranked set sampling: In the ranked set sam-
pling protocol, the total sample size can be allocated to different ranks in several
ways. If all the ranks are selected with equal frequency, we call it an equal allocation;
otherwise, there is an unequal allocation.

Exhaustive retesting: This procedure begins by forming a composite sample of a
predetermined size k. If the composite sample tests negative, then all the k con-
stituent individual sampling units are classified as not possessing the trait. On
the other hand, if the composite sample tests positive, indicating that at least one
of the constituent individual sampling units possesses the trait, then every indi-
vidual sampling units is separately subjected to measurement and is classified
accordingly.

Identification of sample maximum: The procedure that identifies the individual
sampling unit having the largest measurement. This procedure identifies the sample
maximum with certainty, but the total number of measurements required to do so is
not fixed.

Individual sample measurement: The measurement on the variable of interest
obtained from an individual sampling unit. Note that an individual sample mea-
surement is different from the corresponding individual sample value unless the
measurement is made without error. Also note that, while every individual sample
has a value for the variable of interest, every individual sample may not provide a
measurement, since some individual sampling units are not necessarily subjected to
measurement.
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Individual sample value: The value of the variable of interest for an individual
sampling unit. Note that every individual sampling unit has a fixed value for the
variable of interest, even though only a few selected individual sampling units are
subjected to measurement.

Kriging: Kriging is a minimum-mean-squared-error method of spatial prediction
that (usually) depends on the second-order properties of the spatial process under
study. Matheron (1963) named this method after D. G. Krige, a South African
mining engineer who developed empirical methods for determining true ore-grade
distributions from distributions based on sampled ore grades (Krige, 1951).

Linear model for composited data: A linear model is used to express the relation-
ship between individual sample values and composite sample values.

Nugget effect: Suppose γ (h) is the semivariogram for a spatial process
{Z(s), s ∈ D}. That is, γ (h) = E[Z(s + h)− Z(s)]2. It is then easy to note that
γ (0) = 0. If γ (h)→ c0 �= 0 as h → 0, then c0 is called the nugget effect.

Optimal composite design: A design for forming composite samples from indi-
vidual sampling units in order to maximize the efficiency of the inference drawn
from the composite sample data.

Posterior distribution: The conditional probability distribution of population
parameters, given the observed value(s) of the random variable(s), is called the
posterior distribution of population parameters. The posterior distribution is derived
from the prior distribution of the parameters and the observed value(s) of the random
variable(s).

Prediction of sample maximum: The procedure that predicts the largest individ-
ual sample value. This procedure has a fixed number of measurements, but may fail
to identify the largest individual sample value with a positive probability. That is,
there is a positive, though usually small, probability that the predicted sample max-
imum is not the actual sample maximum in that there is some individual sampling
unit having a measurement larger than the predicted sample maximum.

Presence/absence measurement: A measurement that indicates the presence or
absence of the trait under study.

Prevalence: The proportion of (individual) sampling units that possess the trait
under study. Note that the prevalence is the true proportion in the population and
will differ from the observed proportion in any particular case.

Prior distribution: The belief, usually based on some prior information, local
knowledge, and expert opinion, about the possible variation in the values of pop-
ulation parameters is sometimes expressed in terms of a probability distribution of
these parameters. Such a postulated probability distribution of population parame-
ters is called their prior distribution.

Random weights: The composite sample value is a simple or weighted aver-
age of the constituent individual sample values. If the proportions of individual
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sampling units or subunits that are used to form a composite sample are not fixed,
then these proportions are treated as random variables. In this case, the composite
sample value is weighted average of the constituent individual sample values with
random weights.

Ranked set sampling: A method of sampling, where large samples are initially
selected for judgmentally ranking their members without involving costly labora-
tory procedures and are followed by subsequent quantification of a few individual
sampling units with selected ranks.

Retesting: After obtaining measurement on a composite sample, some or all of the
constituent individual sampling units may be subjected to measurement, either indi-
vidually or in the form of composite subsamples. This stage of measuring some or
all of the individual sampling units that have already been subjected to measurement
as part of a composite sample is called retesting.

Semivariogram: See Variogram.

Sequential retesting: This procedure begins by forming a composite sample of
a predetermined size k. If the composite sample tests negative, then every con-
stituent individual sampling unit is classified as not possessing the trait. On the
other hand, if the composite sample tests positive, indicating that at least one of the
constituent individual sampling units possesses the trait, then the individual sam-
pling units are sequentially subjected to measurement until an individual sampling
unit tests positive. At this stage, all the unclassified individual sampling units are
pooled into a single composite subsample, which is then measured for the trait. If
the trait is present in the composite subsample, then the same procedure is repeated,
until all the individual sampling units that formed the original composite sample are
classified.

Sill: Let C(·) be the covariogram of the spatial process {Z (s), s ∈ D} (see Covar-
iogram and Variogram). It is easy to establish that the semivariogram function
satisfies γ (h) = C(0) − C(h). If C (h) → 0 as ‖ h ‖→ ∞, then γ (h) → C(0).
The limit C(0) is then called the sill of the semivariogram.

Site characterization: Characterization of a (waste) site as hazardous or not
hazardous.

Spatial autocorrelation: Any dependence, as measured by a correlation coeffi-
cient, among sampling units that form a sequence of points on the sampling site in
a specific direction is called the spatial autocorrelation for the corresponding spatial
process. Note that the spatial autocorrelation usually depends on both the direction
and the spatial lag.

Spatial contiguity: When the locations of certain sampling units form a contiguous
set on the sampling site, we call these sampling units spatially contiguous. Spatial
contiguity usually ensures that the values of the concerned sampling units are close
to each other.
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Spatial structures: Any structure in the values of the variable of interest on the
sampling site as depending on the locations of sampling units.

Subsampling a composite sample: It is sometimes desired to investigate the
homogeneity of a composite sample. In such a case, a subsample is extracted from
the composite sample for making measurement. This procedure is called subsam-
pling of the composite sample.

Sweep-out method: A method used to identify the individual sampling unit having
the largest measurement. In this procedure, any individual sampling unit that is not
likely to have the largest measurement is eliminated from the potential search so as
to avoid unnecessary measurements.

Variogram: Consider the spatial process {Z (s), s ∈ D}, where D ⊂ Rd . Suppose

Var (Z (s1)− Z (s2)) = 2γ (s1 − s2)

depends only on the difference s1− s2 for all s1, s2 ∈ D. The function 2γ (·), which
is a function only of the difference s1 − s2, is called a variogram and γ (·) is called
a semivariogram of the spatial process {Z (s), s ∈ D}.
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horizontal strips, 201
natural order, 200
random order, 200
vertical strips, 201

uses, 198
Compositing of ranked set samples (RSS)

concomitant variable, 204
cumulative distribution function, 201–202
formation of homogeneous composite

samples
sample size and mean, 207
standard deviation (SD), 206–207

protocols, 203–204
quantified values, 202
relative precision

relative cost, 205
relative savings, 205
simple random sampling (SRS),

204–205
typical unimodal distributions, 205

unbiased estimator, 203
unequal allocation of sample sizes

asymmetric distributions, 205–206
Compositing strategy, samples analysis

cost of, 211
goal of, 211
method of, 211–213
parameters, 212
PCB level in, 211
37-sample point plan, 216

Contamination
average level estimation

Armagh site, 215–218
composite sample estimator, 214
individual sample estimator, 214
PCB concentration, 213–215, 217–222

individual samples with high PCB
concentrations, 221–222

PCB spills
compositing strategies, 209, 211–216,

218, 220
EPA requirements, 209
sampling design, 209, 211–212

residual, random designs, 209–210
sampling points location

grid designs, 209–212
hexagonal grid, 209–212
hexagonal sampling designs, 211–212
7-point grid, 210
19-point grid, 211
37-point grid, 212

simulating composite samples
choice of size, 218–220
formation, 220–221

Continuous response variables
Bernoulli distribution, 43
binary split retesting

distribution, 46
examples, 48
recurrence difference equation, 47–48

conclusions, 43–44
entropy-based retesting, 49
parameter values, 42
probability, 42
properties, 41
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quantitatively curtailed exhaustive retesting
item measurement, 45
relative cost, 45
relative savings, 42–43, 45–46

Cost analysis of composite sampling for
classification

continuous measurements, 53
expression, 49–50
false positives and negatives effects, 50–51
presence/absence measurements

binary split retesting, 52–53
exhaustive retesting, 51–52
sequential retesting, 52

procedure, 50
relative cost, 50

D
Data quality objectives (DQO) process, 2

false-negative errors, 177
false-positive errors, 177
indifference region of, 177
meteorological conditions, 177
statistical techniques, 178
steps of

decision rule, 177
design optimize, 178
inputs, 176
limits on uncertainty, 177–178
scope of study, 176–177
state problem, 176

toxic contaminant levels
survey of, 177

Dirichlet model, 240
Distribution

conditional, 90
posterior, 89, 91, 95
prior, 89–95
uniform, 92

Dorfman retesting scheme, 94–95
DQO process, see Data quality objectives

(DQO) process

E
Environmental protection agency (EPA), 175,

209, 224–225
Errors

strategic, 87–88
tactical, 87–88

Exhaustive retesting
Dorfman procedure, 12
See also Presence/absence measurements

Expected relative cost minimization
beta prior distribution, 94

with parameters, 95

decision-theoretic notation, 93
loss function, 93
optimal composite sample size, 95
risk function, 94
sample size, 94

Extreme values identification, 59–60

F
False-positive and negative errors, 177
Fat percentage estimation

composite and yield-weighted
comparison of, 229–230

yield-weighted, 229
Feasibility or infeasibility of composite

sampling, 6
Finite population, 4
Flow proportional (FP) sampling, 232, 234
Foliar analysis for composite samples

basal area, 132
effect of, 133–134
plots and treatment means, effects of, 133
statistical properties and requirements of,

132–133
used, 132

Fully confounded composites
case, 163
graph, inspection of, 164
industrial and agricultural water

quality, 161
inspection of, 163
“D-optimal”, 163–164
weights, 162

Fully segregated composites
findings, 159
graph, inspection of, 160
“D-optimal,” 159–160
rank characterization, 158
variance/covariance matrix, 159

G
Grab samples and composite sampling

frequency and comparison
sampling programs for effluents, 128
summary statistics for, 128

primer for manager and engineer, 129
sampling programs, 128–129
statistics for, 129–130
on volume proportional, 129

Group testing for laboratory procedures, 9

H
Hexagonal sampling designs, 212
Highway runoff, composite sampling

composite sampler, 230–233
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Highway runoff, composite sampling (cont.)
discrete sampler

comparison of, 231–233
discrete samples, 229–230
runoff volume, 231
water quality comparisons, 230

Household dust samples
allergen measurements

cat, 237
mite, 236

discrete, 235
sampling order, 236

Human populations, 3–4

I
Individual samples

integrity, 5
measurements, 10
retesting, 9–10
sampling design, 154–155
units, 3
variance, 5
“within-increment heterogeneity,” 5–6

Indoor air pollution, composite sampling
quantification of allergens, 235–237

L
Laboratory sample, 4
Linear model, 135
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compositing/subsampling

submodel, 140
matrices, 140–145
structural/sampling submodel,

139–140
binary factor effect

fully confounded composites, 161–164
fully segregated composites, 157–160
individual sampling design, 154–155
matrix form, 155–156
monitoring program, 153
permutation matrix, 156

complex sampling schemes, 146
mean in segmented populations,

147–150
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variance components in segmented
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hazardous waste material in, 148
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quality, 154
moments of x and y

random vector and matrix, 146

structural/sampling and compositing/
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motivation
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biological process, 136
measurement errors, 136
physical and chemical process, 136
population/lot/physical medium, nature

of, 136
sampling procedures, 136

segmented populations, sampling/
compositing scheme, 149, 151

M
MAC, see Maximum aliquot count (MAC)
Matrices, 140

block diagonal pattern, 141
compositing procedure, 141
compositing/subsampling procedures

constraints and yield, 145
unbiased procedures, 145
variance/covariance matrix, 145
weights, 145

fixed weights
compact form, 142
NHATS, 142–143
subsampling, 143
US EPA Office of Toxic Substance, 143
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cases, 143
cross-covariance matrix, 144
elementary matrix, 143–144

rows, grouping of, 142
Maximum aliquot count (MAC), 41
Maximum entropy, analysis of composite

sampling data
criteria for remediation, 76
decision rule, 77
hot spot detection, 76
modeling composite sampling using

principle
Cartesian product of sets, 78
model reasonable in practice, 78–79
probability distribution, 77
k-simplex, 78
uniform distribution, 78
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risk-based cleanup, 76

Mean and variance of samples
composite sample value, 97

normality of, 98
corollary, 100
estimation in presence of measurement

error
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k individual samples, 103
primary sampling units, 103

estimation of σ2
x and σ2

ε

composite sample measurements, 105
real number, 105–106
unbiased estimator, 105
variance components, 105

estimation without measurement error
sampling units, 101–102

individual sample values, 97
lemma and results

expectation of c′x, 99, 101
variance of c′x, 99–100
k-vector, 100–101

notation
composite sample size, 98–99
lowercase and uppercase boldface
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population

confidence intervals for, 221
unbiased estimates of, 220

population mean, confidence
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composite sample mean square, 109
normal distribution for, 109
unbiased estimator, 109

population variance estimation
composite sample measurements, 107
individual sample mean, 106–107
internally homogeneous composites,

formation of, 108
sample-to-sample variation,

106, 108
unbiased estimator, 107–108

precision level maintaining, 105
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random sampling, comparison
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fat percentage, 112–113
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Milk Tester Automatic, 112
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base saturation (BS), 112
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variance, analysis of, 109

Measurement error
hypergeometric distribution, 127
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singular normal distribution, 127
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Metals
analysis, 223–225
variation coefficient of, 223, 225
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Models
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moments, 119
Dirichlet distribution, 118, 120
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resources allocation
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standard error, 180

sampling
plan, 181–182
program cost, 179–182

size
computer calculations, 92
decision-theoretic notation, 93–94
Dorfman retesting scheme, 94
loss function, 93–94
regions of, 94–95
relative cost, 87–89, 91–95
risk function, 94–95
strategic error, 87–88
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total analytical effort, 179
total sampling effort, 179
variance components, 178–182

Overestimate waste loads, composite
sampling, 232

composite samples, 129
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Freeport effluent, 131, 233
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pair differences, 234
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total suspended solids (TSS), 131
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(PFOC)
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Polychlorinated biphenyl (PCB)
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measurement error, 214–215
phase I, 217–220
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rectangular grid, 217–220

schematic plots, 219
spills, 209

Population mean
confidence interval
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normal distribution for, 109
unbiased estimator, 109

tests of hypotheses
one-sample tests, 110–111
two-sample tests, 111–112

Presence/absence measurements
asymptotic relative cost, 11–12
binary split retesting

example, 22–23
groups of sizes, 20–21
optimal composite sample size, 19–20
relative cost, 19–20

costs, 40
curtailed binary split retesting

optimal composite sample size, 32
recursion formula, 31–32
relative cost, 32–33

curtailed exhaustive retesting, 23
curtailment, 24–25
optimal composite sample size, 24, 26
relative cost, 24, 26–27

curtailed sequential retesting, 28
number of tests, 27, 29
optimal composite sample size, 29–30
relative cost, 30–31

entropy-based retesting
asymptotic relative cost, 35, 37
Bernoulli trials, 33
binary splitting, 33
composite sample sizes, 34–35
relative cost, 36–38
sequential arrangement, 34
unchanging parameter, 33–34

exhaustive retesting
binomial model, 12
Dorfman procedure, 12
number of tests, 13
optimal composite size, 13–14
in presence of classification errors,

38–40
probabilities, 12
relative cost, 13–14
relative savings, 15
tabulation, 15

laboratory procedures
collecting and preparing samples, 11

sequential retesting, 17
asymptotic relative cost, 18
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Bernoulli random variables, 16
expected number of tests, 16
Sterrett procedure, 15–16

time duration, 41
Prevalence of polluted samples, 89

Bayesian updating
beta distribution, 90
closed-form formulas, 92
conditional pdf, 90
cost, 92
gamma function, 90
J-shaped distribution, 92
linear combinations, 92–93
predicted value, 91–92
probability mass function, 90
sampling stages, 93
second sampling stage, 91

Primary first-order compositing (PFOC), 57
Primary sampling unit, 4

R
Relative cost

computer calculations, 92
decision-theoretic notation, 93
exhaustive retesting, 87–89, 93
exhaustive testing, 88–89
minimization of, 93–95
strategic error, 87–88
tactical error, 87–88

Residual contamination area, 210
Respiratory diseases, asthma, 235

S
Samples

analysis method, detection limit of, 212
composite, 230–233

estimation, 214, 220–221
fat percentage, 229
and individual, comparison of, 221

composite sampling methods
effluent concentrations and loads,

233–234
estimation, 228
experiment, 227–228
flow proportional samples, 234
grab sample, 232, 234
hierarchical orthogonal ANOVA,

228–230
highway runoff, 229–232
milk fat content, 227–228
results, 228–229
sampler, 230–233
schemes precision, 227
statistical information, 234

time proportional samples, 234
variation, 227
waste loads, 232–234
wastewater treatment plant, 232–234

discrete, 230–233
estimator

composite, 214
individual, 214

exhaustive retesting of, 87, 89–90, 93
exhaustive testing of, 87–89
individual

exhaustive retesting, 222
exhaustive testing, 221–222
scatterplot, 221–222

maximum, value prediction, 56
assumptions, 57
extensive and comprehensive

monitoring, 57
PFOC, 57
sweep-out method, 58–59
water pollution monitoring, 57

prevalence
Bayesian updating, 90–93
conditional distribution of, 90
posterior distribution of, 89, 91, 95
predicted value of, 89, 91–93
prior distribution of, 89–95
true, 87, 89
uniform distribution of, 92

random and composite
comparison of, 229

sampling points location
compositing specimens, 213

Sampling
composite, 239–242
defined, 1
multistage, 241
plan

best, 181–182
least expensive, 181–182

program, 179–182
at site, 1
techniques, 3

Secondary sampling unit, 4
Sediment cores

recovery stations, 222–223
samples of, 222–223, 225

Sediment sampling program, 222–225
Spatial processes model

composite sampling
approaches, 189
covariance between, 189
individual sample values, 188
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Spatial processes model (cont.)
issues, 187
large-scale deterministic trend, 188
measurement and subsampling

error, 187
micro-scale stochastic process, 188
nugget effect, 189–190
polynomials, 189
small-scale and micro-scale

processes, 187
small-scale stochastic process, 188
used, 187
variogram, behavior of, 192

covariance function
and semivariogram, relationship

between, 186
cross-validation study

features, 191
kriging predictions, 191
mean squared error (MSE), 192
results, 193–195

data analysis
composite sample design, 198
cost-effective sampling, 195, 198
decomposition of, 191
features of, 191
Gaussian covariance model, 198
kriging predictions, 196
local contamination processes, 196
model explanation and model

empiricism, 197
nugget variance, 197
retrospective analysis, 195
sample semivariogram, 191

decomposition of data variability
cubic spline models, 192
estimated components, 193
proportions of, 192–193

defined, 183
d-dimensional Euclidean space, 183–184
effect of compositing upon sill

nugget variance, 195
spherical and Gaussian covariance

models, 195
intrinsically stationary, 185
micro-scale variation, 185
second-order stationary processes,

185–186
spatial autocorrelation function, 185
spatial autocovariance function, 186
stationarity levels

joint distribution, 188
mean and variances, 188

weak stationarity, 188
superfund sites, application

Dallas Lead and Palmerton Sites,
190–192, 195–196

variogram or semivariogram, 185–186
Standard deviations (SD), 233–234
Strategic error, 87–88
Subsampling of composite sample

aliquots or increments, 121
approaches, 123
assumptions of, 123
conclusions, 124
Dirichlet distribution, 122–123
exchangeable random

variables, 122
generalization, 121
individual proportions of, 121
several

composited estimator, 126
upper bound, 125

Sweep-out method for identification sample
maximum

application, site study, 60
analytical variability, 63
cleanup criteria, 61
composite sample size, 62
cost-effectiveness, 63
dilution problem, 63
illustration, 67
measurements, 68
number of extreme values, 68
onsite soils, 61
PCB analysis, 61–62
retested, 68
sample formation strategy,

63–64
simulated composite sample

measurements, 65–66
within-composite homogeneity, 63

consequences, 60
largest value, 58
sample values and size, 58
steps, 59

T
Tactical error, 87–88
Time proportional to flow (TP), 232
Tissue samples compositing, 239–242
Total suspended solids (TSS), 230, 233–234
Trace metal storage

estimation of
lake St. Clair sediments, 222–223
metal analyses, 223–225
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metal variation coefficient,
223, 225

municipal-digested sludge, 224
sediment cores, 222–225
standard lake mud, 225

TSS, see Total suspended solids (TSS)
Two-way composite sampling

design, 68
algorithm, 69–70
arrangement for, 69
artificial data set, 70–75
column composites, 69

V
Variation components

biological, 227–229
compositing, 227–229, 233–234
sample, 227–229
testing, 227–229

Volume proportional to flow (VP), 232

W
Wastewater treatment plant

Freeport, 233–234
St. Charles, 232, 234
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