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Preface

The majority of data sets collected by researchers in all disciplines are mul-
tivariate, meaning that several measurements, observations, or recordings are
taken on each of the units in the data set. These units might be human sub-
jects, archaeological artifacts, countries, or a vast variety of other things. In a
few cases, it may be sensible to isolate each variable and study it separately,
but in most instances all the variables need to be examined simultaneously
in order to fully grasp the structure and key features of the data. For this
purpose, one or another method of multivariate analysis might be helpful,
and it is with such methods that this book is largely concerned. Multivariate
analysis includes methods both for describing and exploring such data and for
making formal inferences about them. The aim of all the techniques is, in a
general sense, to display or extract the signal in the data in the presence of
noise and to find out what the data show us in the midst of their apparent
chaos.

The computations involved in applying most multivariate techniques are
considerable, and their routine use requires a suitable software package. In
addition, most analyses of multivariate data should involve the construction
of appropriate graphs and diagrams, and this will also need to be carried
out using the same package. R is a statistical computing environment that is
powerful, flexible, and, in addition, has excellent graphical facilities. It is for
these reasons that it is the use of R for multivariate analysis that is illustrated
in this book.

In this book, we concentrate on what might be termed the “core” or “clas-
sical” multivariate methodology, although mention will be made of recent de-
velopments where these are considered relevant and useful. But there is an
area of multivariate statistics that we have omitted from this book, and that
is multivariate analysis of variance (MANOVA) and related techniques such as
Fisher’s linear discriminant function (LDF). There are a variety of reasons for
this omission. First, we are not convinced that MANOVA is now of much more
than historical interest; researchers may occasionally pay lip service to using
the technique, but in most cases it really is no more than this. They quickly
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move on to looking at the results for individual variables. And MANOVA for
repeated measures has been largely superseded by the models that we shall
describe in Chapter 8. Second, a classification technique such as LDF needs
to be considered in the context of modern classification algorithms, and these
cannot be covered in an introductory book such as this.

Some brief details of the theory behind each technique described are given,
but the main concern of each chapter is the correct application of the meth-
ods so as to extract as much information as possible from the data at hand,
particularly as some type of graphical representation, via the R software.

The book is aimed at students in applied statistics courses, both under-
graduate and post-graduate, who have attended a good introductory course
in statistics that covered hypothesis testing, confidence intervals, simple re-
gression and correlation, analysis of variance, and basic maximum likelihood
estimation. We also assume that readers will know some simple matrix alge-
bra, including the manipulation of matrices and vectors and the concepts of
the inverse and rank of a matrix. In addition, we assume that readers will
have some familiarity with R at the level of, say, Dalgaard (2002). In addition
to such a student readership, we hope that many applied statisticians dealing
with multivariate data will find something of interest in the eight chapters of
our book.

Throughout the book, we give many examples of R code used to apply the
multivariate techniques to multivariate data. Samples of code that could be
entered interactively at the R command line are formatted as follows:

R> library("MVA")

Here, R> denotes the prompt sign from the R command line, and the user
enters everything else. The symbol + indicates additional lines, which are
appropriately indented. Finally, output produced by function calls is shown
below the associated code:

R> rnorm(10)

[1] 1.8808 0.2572 -0.3412 0.4081 0.4344 0.7003 1.8944

[8] -0.2993 -0.7355 0.8960

In this book, we use several R packages to access different example data sets
(many of them contained in the package HSAUR2), standard functions for the
general parametric analyses, and the MVA package to perform analyses. All of
the packages used in this book are available at the Comprehensive R Archive
Network (CRAN), which can be accessed from http://CRAN.R-project.org.

The source code for the analyses presented in this book is available from
the MVA package. A demo containing the R code to reproduce the individual
results is available for each chapter by invoking

R> library("MVA")

R> demo("Ch-MVA") ### Introduction to Multivariate Analysis

R> demo("Ch-Viz") ### Visualization

http://CRAN.R-project.org
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R> demo("Ch-PCA") ### Principal Components Analysis

R> demo("Ch-EFA") ### Exploratory Factor Analysis

R> demo("Ch-MDS") ### Multidimensional Scaling

R> demo("Ch-CA") ### Cluster Analysis

R> demo("Ch-SEM") ### Structural Equation Models

R> demo("Ch-LME") ### Linear Mixed-Effects Models

Thanks are due to Lisa Möst, BSc., for help with data processing and
LATEX typesetting, the copy editor for many helpful corrections, and to John
Kimmel, for all his support and patience during the writing of the book.

January 2011 Brian S. Everitt, London
Torsten Hothorn, München
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1

Multivariate Data and Multivariate Analysis

1.1 Introduction

Multivariate data arise when researchers record the values of several random
variables on a number of subjects or objects or perhaps one of a variety of
other things (we will use the general term“units”) in which they are interested,
leading to a vector-valued or multidimensional observation for each. Such data
are collected in a wide range of disciplines, and indeed it is probably reasonable
to claim that the majority of data sets met in practise are multivariate. In
some studies, the variables are chosen by design because they are known to
be essential descriptors of the system under investigation. In other studies,
particularly those that have been difficult or expensive to organise, many
variables may be measured simply to collect as much information as possible
as a matter of expediency or economy.

Multivariate data are ubiquitous as is illustrated by the following four
examples:

� Psychologists and other behavioural scientists often record the values of
several different cognitive variables on a number of subjects.

� Educational researchers may be interested in the examination marks ob-
tained by students for a variety of different subjects.

� Archaeologists may make a set of measurements on artefacts of interest.
� Environmentalists might assess pollution levels of a set of cities along with

noting other characteristics of the cities related to climate and human
ecology.

Most multivariate data sets can be represented in the same way, namely in
a rectangular format known from spreadsheets, in which the elements of each
row correspond to the variable values of a particular unit in the data set and
the elements of the columns correspond to the values taken by a particular
variable. We can write data in such a rectangular format as

1 
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Unit Variable 1 . . . Variable q
1 x11 . . . x1q
...

...
...

...
n xn1 . . . xnq

where n is the number of units, q is the number of variables recorded
on each unit, and xij denotes the value of the jth variable for the ith unit.
The observation part of the table above is generally represented by an n ×
q data matrix, X. In contrast to the observed data, the theoretical entities
describing the univariate distributions of each of the q variables and their
joint distribution are denoted by so-called random variables X1, . . . , Xq.

Although in some cases where multivariate data have been collected it may
make sense to isolate each variable and study it separately, in the main it does
not. Because the whole set of variables is measured on each unit, the variables
will be related to a greater or lesser degree. Consequently, if each variable
is analysed in isolation, the full structure of the data may not be revealed.
Multivariate statistical analysis is the simultaneous statistical analysis of a
collection of variables, which improves upon separate univariate analyses of
each variable by using information about the relationships between the vari-
ables. Analysis of each variable separately is very likely to miss uncovering
the key features of, and any interesting “patterns” in, the multivariate data.

The units in a set of multivariate data are sometimes sampled from a
population of interest to the investigator, a population about which he or she
wishes to make some inference or other. More often perhaps, the units cannot
really be said to have been sampled from some population in any meaningful
sense, and the questions asked about the data are then largely exploratory in
nature. with the ubiquitous p-value of univariate statistics being notable by
its absence. Consequently, there are methods of multivariate analysis that are
essentially exploratory and others that can be used for statistical inference.

For the exploration of multivariate data, formal models designed to yield
specific answers to rigidly defined questions are not required. Instead, meth-
ods are used that allow the detection of possibly unanticipated patterns in the
data, opening up a wide range of competing explanations. Such methods are
generally characterised both by an emphasis on the importance of graphical
displays and visualisation of the data and the lack of any associated proba-
bilistic model that would allow for formal inferences. Multivariate techniques
that are largely exploratory are described in Chapters 2 to 6.

A more formal analysis becomes possible in situations when it is realistic to
assume that the individuals in a multivariate data set have been sampled from
some population and the investigator wishes to test a well-defined hypothe-
sis about the parameters of that population’s probability density function.
Now the main focus will not be the sample data per se, but rather on using
information gathered from the sample data to draw inferences about the pop-
ulation. And the probability density function almost universally assumed as
the basis of inferences for multivariate data is the multivariate normal . (For
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a brief description of the multivariate normal density function and ways of
assessing whether a set of multivariate data conform to the density, see Sec-
tion 1.6). Multivariate techniques for which formal inference is of importance
are described in Chapters 7 and 8. But in many cases when dealing with
multivariate data, this implied distinction between the exploratory and the
inferential may be a red herring because the general aim of most multivariate
analyses, whether implicitly exploratory or inferential is to uncover, display,
or extract any “signal” in the data in the presence of noise and to discover
what the data have to tell us.

1.2 A brief history of the development of multivariate
analysis

The genesis of multivariate analysis is probably the work carried out by Francis
Galton and Karl Pearson in the late 19th century on quantifying the relation-
ship between offspring and parental characteristics and the development of
the correlation coefficient. And then, in the early years of the 20th century,
Charles Spearman laid down the foundations of factor analysis (see Chapter 5)
whilst investigating correlated intelligence quotient (IQ) tests. Over the next
two decades, Spearman’s work was extended by Hotelling and by Thurstone.

Multivariate methods were also motivated by problems in scientific areas
other than psychology, and in the 1930s Fisher developed linear discriminant
function analysis to solve a taxonomic problem using multiple botanical mea-
surements. And Fisher’s introduction of analysis of variance in the 1920s was
soon followed by its multivariate generalisation, multivariate analysis of vari-
ance, based on work by Bartlett and Roy. (These techniques are not covered
in this text for the reasons set out in the Preface.)

In these early days, computational aids to take the burden of the vast
amounts of arithmetic involved in the application of the multivariate meth-
ods being proposed were very limited and, consequently, developments were
primarily mathematical and multivariate research was, at the time, largely a
branch of linear algebra. However, the arrival and rapid expansion of the use
of electronic computers in the second half of the 20th century led to increased
practical application of existing methods of multivariate analysis and renewed
interest in the creation of new techniques.

In the early years of the 21st century, the wide availability of relatively
cheap and extremely powerful personal computers and laptops allied with
flexible statistical software has meant that all the methods of multivariate
analysis can be applied routinely even to very large data sets such as those
generated in, for example, genetics, imaging, and astronomy. And the appli-
cation of multivariate techniques to such large data sets has now been given
its own name, data mining , which has been defined as “the nontrivial extrac-
tion of implicit, previously unknown and potentially useful information from
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data.” Useful books on data mining are those of Fayyad, Piatetsky-Shapiro,
Smyth, and Uthurusamy (1996) and Hand, Mannila, and Smyth (2001).

1.3 Types of variables and the possible problem of
missing values

A hypothetical example of multivariate data is given in Table 1.1. The special
symbol NA denotes missing values (being Not Available); the value of this
variable for a subject is missing.

Table 1.1: hypo data. Hypothetical Set of Multivariate Data.

individual sex age IQ depression health weight

1 Male 21 120 Yes Very good 150
2 Male 43 NA No Very good 160
3 Male 22 135 No Average 135
4 Male 86 150 No Very poor 140
5 Male 60 92 Yes Good 110
6 Female 16 130 Yes Good 110
7 Female NA 150 Yes Very good 120
8 Female 43 NA Yes Average 120
9 Female 22 84 No Average 105

10 Female 80 70 No Good 100

Here, the number of units (people in this case) is n = 10, with the number of
variables being q = 7 and, for example, x34 = 135. In R, a “data.frame” is
the appropriate data structure to represent such rectangular data. Subsets of
units (rows) or variables (columns) can be extracted via the [ subset operator;
i.e.,

R> hypo[1:2, c("health", "weight")]

health weight

1 Very good 150

2 Very good 160

extracts the values x15, x16 and x25, x26 from the hypothetical data presented
in Table 1.1. These data illustrate that the variables that make up a set of
multivariate data will not necessarily all be of the same type. Four levels of
measurements are often distinguished:

Nominal: Unordered categorical variables. Examples include treatment al-
location, the sex of the respondent, hair colour, presence or absence of
depression, and so on.
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Ordinal: Where there is an ordering but no implication of equal distance
between the different points of the scale. Examples include social class,
self-perception of health (each coded from I to V, say), and educational
level (no schooling, primary, secondary, or tertiary education).

Interval: Where there are equal differences between successive points on the
scale but the position of zero is arbitrary. The classic example is the mea-
surement of temperature using the Celsius or Fahrenheit scales.

Ratio: The highest level of measurement, where one can investigate the rel-
ative magnitudes of scores as well as the differences between them. The
position of zero is fixed. The classic example is the absolute measure of
temperature (in Kelvin, for example), but other common ones includes
age (or any other time from a fixed event), weight, and length.

In many statistical textbooks, discussion of different types of measure-
ments is often followed by recommendations as to which statistical techniques
are suitable for each type; for example, analyses on nominal data should be
limited to summary statistics such as the number of cases, the mode, etc.
And, for ordinal data, means and standard deviations are not suitable. But
Velleman and Wilkinson (1993) make the important point that restricting the
choice of statistical methods in this way may be a dangerous practise for data
analysis–in essence the measurement taxonomy described is often too strict
to apply to real-world data. This is not the place for a detailed discussion of
measurement, but we take a fairly pragmatic approach to such problems. For
example, we will not agonise over treating variables such as measures of de-
pression, anxiety, or intelligence as if they are interval-scaled, although strictly
they fit into the ordinal category described above.

1.3.1 Missing values

Table 1.1 also illustrates one of the problems often faced by statisticians un-
dertaking statistical analysis in general and multivariate analysis in particular,
namely the presence of missing values in the data; i.e., observations and mea-
surements that should have been recorded but for one reason or another, were
not. Missing values in multivariate data may arise for a number of reasons;
for example, non-response in sample surveys, dropouts in longitudinal data
(see Chapter 8), or refusal to answer particular questions in a questionnaire.
The most important approach for dealing with missing data is to try to avoid
them during the data-collection stage of a study. But despite all the efforts a
researcher may make, he or she may still be faced with a data set that con-
tains a number of missing values. So what can be done? One answer to this
question is to take the complete-case analysis route because this is what most
statistical software packages do automatically. Using complete-case analysis
on multivariate data means omitting any case with a missing value on any of
the variables. It is easy to see that if the number of variables is large, then
even a sparse pattern of missing values can result in a substantial number of
incomplete cases. One possibility to ease this problem is to simply drop any
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variables that have many missing values. But complete-case analysis is not
recommended for two reasons:

� Omitting a possibly substantial number of individuals will cause a large
amount of information to be discarded and lower the effective sample size
of the data, making any analyses less effective than they would have been
if all the original sample had been available.

� More worrisome is that dropping the cases with missing values on one
or more variables can lead to serious biases in both estimation and infer-
ence unless the discarded cases are essentially a random subsample of the
observed data (the term missing completely at random is often used; see
Chapter 8 and Little and Rubin (1987) for more details).

So, at the very least, complete-case analysis leads to a loss, and perhaps a
substantial loss, in power by discarding data, but worse, analyses based just
on complete cases might lead to misleading conclusions and inferences.

A relatively simple alternative to complete-case analysis that is often used
is available-case analysis. This is a straightforward attempt to exploit the
incomplete information by using all the cases available to estimate quanti-
ties of interest. For example, if the researcher is interested in estimating the
correlation matrix (see Subsection 1.5.2) of a set of multivariate data, then
available-case analysis uses all the cases with variables Xi and Xj present to
estimate the correlation between the two variables. This approach appears to
make better use of the data than complete-case analysis, but unfortunately
available-case analysis has its own problems. The sample of individuals used
changes from correlation to correlation, creating potential difficulties when
the missing data are not missing completely at random. There is no guaran-
tee that the estimated correlation matrix is even positive-definite which can
create problems for some of the methods, such as factor analysis (see Chap-
ter 5) and structural equation modelling (see Chapter 7), that the researcher
may wish to apply to the matrix.

Both complete-case and available-case analyses are unattractive unless the
number of missing values in the data set is “small”. An alternative answer to
the missing-data problem is to consider some form of imputation, the prac-
tise of “filling in” missing data with plausible values. Methods that impute
the missing values have the advantage that, unlike in complete-case analysis,
observed values in the incomplete cases are retained. On the surface, it looks
like imputation will solve the missing-data problem and enable the investi-
gator to progress normally. But, from a statistical viewpoint, careful consid-
eration needs to be given to the method used for imputation or otherwise it
may cause more problems than it solves; for example, imputing an observed
variable mean for a variable’s missing values preserves the observed sample
means but distorts the covariance matrix (see Subsection 1.5.1), biasing esti-
mated variances and covariances towards zero. On the other hand, imputing
predicted values from regression models tends to inflate observed correlations,
biasing them away from zero (see Little 2005). And treating imputed data as
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if they were “real” in estimation and inference can lead to misleading standard
errors and p-values since they fail to reflect the uncertainty due to the missing
data.

The most appropriate way to deal with missing values is by a procedure
suggested by Rubin (1987) known as multiple imputation. This is a Monte
Carlo technique in which the missing values are replaced by m > 1 simulated
versions, where m is typically small (say 3–10). Each of the simulated com-
plete data sets is analysed using the method appropriate for the investigation
at hand, and the results are later combined to produce, say, estimates and con-
fidence intervals that incorporate missing-data uncertainty. Details are given
in Rubin (1987) and more concisely in Schafer (1999). The great virtues of
multiple imputation are its simplicity and its generality. The user may analyse
the data using virtually any technique that would be appropriate if the data
were complete. However, one should always bear in mind that the imputed
values are not real measurements. We do not get something for nothing! And
if there is a substantial proportion of individuals with large amounts of miss-
ing data, one should clearly question whether any form of statistical analysis
is worth the bother.

1.4 Some multivariate data sets

This is a convenient point to look at some multivariate data sets and briefly
ponder the type of question that might be of interest in each case. The first
data set consists of chest, waist, and hip measurements on a sample of men
and women and the measurements for 20 individuals are shown in Table 1.2.
Two questions might be addressed by such data;

� Could body size and body shape be summarised in some way by combining
the three measurements into a single number?

� Are there subtypes of body shapes amongst the men and amongst the
women within which individuals are of similar shapes and between which
body shapes differ?

The first question might be answered by principal components analysis (see
Chapter 3), and the second question could be investigated using cluster anal-
ysis (see Chapter 6).

(In practise, it seems intuitively likely that we would have needed to record
the three measurements on many more than 20 individuals to have any chance
of being able to get convincing answers from these techniques to the questions
of interest. The question of how many units are needed to achieve a sensible
analysis when using the various techniques of multivariate analysis will be
taken up in the respective chapters describing each technique.)



8 1 Multivariate Data and Multivariate Analysis

Table 1.2: measure data. Chest, waist, and hip measurements on
20 individuals (in inches).

chest waist hips gender chest waist hips gender

34 30 32 male 36 24 35 female
37 32 37 male 36 25 37 female
38 30 36 male 34 24 37 female
36 33 39 male 33 22 34 female
38 29 33 male 36 26 38 female
43 32 38 male 37 26 37 female
40 33 42 male 34 25 38 female
38 30 40 male 36 26 37 female
40 30 37 male 38 28 40 female
41 32 39 male 35 23 35 female

Our second set of multivariate data consists of the results of chemical analysis
on Romano-British pottery made in three different regions (region 1 contains
kiln 1, region 2 contains kilns 2 and 3, and region 3 contains kilns 4 and 5). The
complete data set, which we shall meet in Chapter 6, consists of the chemical
analysis results on 45 pots, shown in Table 1.3. One question that might be
posed about these data is whether the chemical profiles of each pot suggest
different types of pots and if any such types are related to kiln or region. This
question is addressed in Chapter 6.

Table 1.3: pottery data. Romano-British pottery data.

Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO BaO kiln

18.8 9.52 2.00 0.79 0.40 3.20 1.01 0.077 0.015 1
16.9 7.33 1.65 0.84 0.40 3.05 0.99 0.067 0.018 1
18.2 7.64 1.82 0.77 0.40 3.07 0.98 0.087 0.014 1
16.9 7.29 1.56 0.76 0.40 3.05 1.00 0.063 0.019 1
17.8 7.24 1.83 0.92 0.43 3.12 0.93 0.061 0.019 1
18.8 7.45 2.06 0.87 0.25 3.26 0.98 0.072 0.017 1
16.5 7.05 1.81 1.73 0.33 3.20 0.95 0.066 0.019 1
18.0 7.42 2.06 1.00 0.28 3.37 0.96 0.072 0.017 1
15.8 7.15 1.62 0.71 0.38 3.25 0.93 0.062 0.017 1
14.6 6.87 1.67 0.76 0.33 3.06 0.91 0.055 0.012 1
13.7 5.83 1.50 0.66 0.13 2.25 0.75 0.034 0.012 1
14.6 6.76 1.63 1.48 0.20 3.02 0.87 0.055 0.016 1
14.8 7.07 1.62 1.44 0.24 3.03 0.86 0.080 0.016 1
17.1 7.79 1.99 0.83 0.46 3.13 0.93 0.090 0.020 1
16.8 7.86 1.86 0.84 0.46 2.93 0.94 0.094 0.020 1
15.8 7.65 1.94 0.81 0.83 3.33 0.96 0.112 0.019 1
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Table 1.3: pottery data (continued).

Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO BaO kiln

18.6 7.85 2.33 0.87 0.38 3.17 0.98 0.081 0.018 1
16.9 7.87 1.83 1.31 0.53 3.09 0.95 0.092 0.023 1
18.9 7.58 2.05 0.83 0.13 3.29 0.98 0.072 0.015 1
18.0 7.50 1.94 0.69 0.12 3.14 0.93 0.035 0.017 1
17.8 7.28 1.92 0.81 0.18 3.15 0.90 0.067 0.017 1
14.4 7.00 4.30 0.15 0.51 4.25 0.79 0.160 0.019 2
13.8 7.08 3.43 0.12 0.17 4.14 0.77 0.144 0.020 2
14.6 7.09 3.88 0.13 0.20 4.36 0.81 0.124 0.019 2
11.5 6.37 5.64 0.16 0.14 3.89 0.69 0.087 0.009 2
13.8 7.06 5.34 0.20 0.20 4.31 0.71 0.101 0.021 2
10.9 6.26 3.47 0.17 0.22 3.40 0.66 0.109 0.010 2
10.1 4.26 4.26 0.20 0.18 3.32 0.59 0.149 0.017 2
11.6 5.78 5.91 0.18 0.16 3.70 0.65 0.082 0.015 2
11.1 5.49 4.52 0.29 0.30 4.03 0.63 0.080 0.016 2
13.4 6.92 7.23 0.28 0.20 4.54 0.69 0.163 0.017 2
12.4 6.13 5.69 0.22 0.54 4.65 0.70 0.159 0.015 2
13.1 6.64 5.51 0.31 0.24 4.89 0.72 0.094 0.017 2
11.6 5.39 3.77 0.29 0.06 4.51 0.56 0.110 0.015 3
11.8 5.44 3.94 0.30 0.04 4.64 0.59 0.085 0.013 3
18.3 1.28 0.67 0.03 0.03 1.96 0.65 0.001 0.014 4
15.8 2.39 0.63 0.01 0.04 1.94 1.29 0.001 0.014 4
18.0 1.50 0.67 0.01 0.06 2.11 0.92 0.001 0.016 4
18.0 1.88 0.68 0.01 0.04 2.00 1.11 0.006 0.022 4
20.8 1.51 0.72 0.07 0.10 2.37 1.26 0.002 0.016 4
17.7 1.12 0.56 0.06 0.06 2.06 0.79 0.001 0.013 5
18.3 1.14 0.67 0.06 0.05 2.11 0.89 0.006 0.019 5
16.7 0.92 0.53 0.01 0.05 1.76 0.91 0.004 0.013 5
14.8 2.74 0.67 0.03 0.05 2.15 1.34 0.003 0.015 5
19.1 1.64 0.60 0.10 0.03 1.75 1.04 0.007 0.018 5

Source: Tubb, A., et al., Archaeometry, 22, 153–171, 1980. With permission.

Our third set of multivariate data involves the examination scores of a
large number of college students in six subjects; the scores for five subjects are
shown in Table 1.4. Here the main question of interest might be whether the
exam scores reflect some underlying trait in a student that cannot be measured
directly, perhaps “general intelligence”? The question could be investigated by
using exploratory factor analysis (see Chapter 5).



10 1 Multivariate Data and Multivariate Analysis

Table 1.4: exam data. Exam scores for five psychology students.

subject maths english history geography chemistry physics

1 60 70 75 58 53 42
2 80 65 66 75 70 76
3 53 60 50 48 45 43
4 85 79 71 77 68 79
5 45 80 80 84 44 46

The final set of data we shall consider in this section was collected in a study
of air pollution in cities in the USA. The following variables were obtained for
41 US cities:

SO2: SO2 content of air in micrograms per cubic metre;
temp: average annual temperature in degrees Fahrenheit;
manu: number of manufacturing enterprises employing 20 or more workers;
popul: population size (1970 census) in thousands;
wind: average annual wind speed in miles per hour;
precip: average annual precipitation in inches;
predays: average number of days with precipitation per year.

The data are shown in Table 1.5.

Table 1.5: USairpollution data. Air pollution in 41 US cities.

SO2 temp manu popul wind precip predays

Albany 46 47.6 44 116 8.8 33.36 135
Albuquerque 11 56.8 46 244 8.9 7.77 58
Atlanta 24 61.5 368 497 9.1 48.34 115
Baltimore 47 55.0 625 905 9.6 41.31 111
Buffalo 11 47.1 391 463 12.4 36.11 166
Charleston 31 55.2 35 71 6.5 40.75 148
Chicago 110 50.6 3344 3369 10.4 34.44 122
Cincinnati 23 54.0 462 453 7.1 39.04 132
Cleveland 65 49.7 1007 751 10.9 34.99 155
Columbus 26 51.5 266 540 8.6 37.01 134
Dallas 9 66.2 641 844 10.9 35.94 78
Denver 17 51.9 454 515 9.0 12.95 86
Des Moines 17 49.0 104 201 11.2 30.85 103
Detroit 35 49.9 1064 1513 10.1 30.96 129
Hartford 56 49.1 412 158 9.0 43.37 127
Houston 10 68.9 721 1233 10.8 48.19 103
Indianapolis 28 52.3 361 746 9.7 38.74 121
Jacksonville 14 68.4 136 529 8.8 54.47 116
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Table 1.5: USairpollution data (continued).

SO2 temp manu popul wind precip predays

Kansas City 14 54.5 381 507 10.0 37.00 99
Little Rock 13 61.0 91 132 8.2 48.52 100
Louisville 30 55.6 291 593 8.3 43.11 123
Memphis 10 61.6 337 624 9.2 49.10 105
Miami 10 75.5 207 335 9.0 59.80 128
Milwaukee 16 45.7 569 717 11.8 29.07 123
Minneapolis 29 43.5 699 744 10.6 25.94 137
Nashville 18 59.4 275 448 7.9 46.00 119
New Orleans 9 68.3 204 361 8.4 56.77 113
Norfolk 31 59.3 96 308 10.6 44.68 116
Omaha 14 51.5 181 347 10.9 30.18 98
Philadelphia 69 54.6 1692 1950 9.6 39.93 115
Phoenix 10 70.3 213 582 6.0 7.05 36
Pittsburgh 61 50.4 347 520 9.4 36.22 147
Providence 94 50.0 343 179 10.6 42.75 125
Richmond 26 57.8 197 299 7.6 42.59 115
Salt Lake City 28 51.0 137 176 8.7 15.17 89
San Francisco 12 56.7 453 716 8.7 20.66 67
Seattle 29 51.1 379 531 9.4 38.79 164
St. Louis 56 55.9 775 622 9.5 35.89 105
Washington 29 57.3 434 757 9.3 38.89 111
Wichita 8 56.6 125 277 12.7 30.58 82
Wilmington 36 54.0 80 80 9.0 40.25 114

Source: Sokal, R. R., Rohlf, F. J., Biometry, W. H. Freeman, San Francisco,
1981. With permission.

What might be the question of most interest about these data? Very prob-
ably it is “how is pollution level as measured by sulphur dioxide concentration
related to the six other variables?” In the first instance at least, this question
suggests the application of multiple linear regression, with sulphur dioxide
concentration as the response variable and the remaining six variables being
the independent or explanatory variables (the latter is a more acceptable label
because the “independent” variables are rarely independent of one another).
But in the model underlying multiple regression, only the response is consid-
ered to be a random variable; the explanatory variables are strictly assumed
to be fixed, not random, variables. In practise, of course, this is rarely the case,
and so the results from a multiple regression analysis need to be interpreted
as being conditional on the observed values of the explanatory variables. So
when answering the question of most interest about these data, they should
not really be considered multivariate–there is only a single random variable
involved–a more suitable label is multivariable (we know this sounds pedantic,
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but we are statisticians after all). In this book, we shall say only a little about
the multiple linear model for multivariable data in Chapter 8. but essentially
only to enable such regression models to be introduced for situations where
there is a multivariate response; for example, in the case of repeated-measures
data and longitudinal data.

The four data sets above have not exhausted either the questions that
multivariate data may have been collected to answer or the methods of mul-
tivariate analysis that have been developed to answer them, as we shall see as
we progress through the book.

1.5 Covariances, correlations, and distances

The main reason why we should analyse a multivariate data set using multi-
variate methods rather than looking at each variable separately using one or
another familiar univariate method is that any structure or pattern in the data
is as likely to be implied either by “relationships” between the variables or by
the relative “closeness” of different units as by their different variable values;
in some cases perhaps by both. In the first case, any structure or pattern un-
covered will be such that it “links” together the columns of the data matrix,
X, in some way, and in the second case a possible structure that might be
discovered is that involving interesting subsets of the units. The question now
arises as to how we quantify the relationships between the variables and how
we measure the distances between different units. This question is answered
in the subsections that follow.

1.5.1 Covariances

The covariance of two random variables is a measure of their linear depen-
dence. The population (theoretical) covariance of two random variables, Xi

and Xj , is defined by

Cov(Xi, Xj) = E(Xi − µi)(Xj − µj),

where µi = E(Xi) and µj = E(Xj); E denotes expectation.
If i = j, we note that the covariance of the variable with itself is simply its

variance, and therefore there is no need to define variances and covariances
independently in the multivariate case. If Xi and Xj are independent of each
other, their covariance is necessarily equal to zero, but the converse is not
true. The covariance of Xi and Xj is usually denoted by σij . The variance of
variable Xi is σ2

i = E
(
(Xi − µi)2

)
. Larger values of the covariance imply a

greater degree of linear dependence between two variables.
In a multivariate data set with q observed variables, there are q variances

and q(q − 1)/2 covariances. These quantities can be conveniently arranged in
a q × q symmetric matrix, Σ, where
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Σ =


σ2
1 σ12 . . . σ1q

σ21 σ2
2 . . . σ2q

...
...

. . .
...

σq1 σq2 . . . σ
2
q

 .

Note that σij = σji. This matrix is generally known as the variance-covariance
matrix or simply the covariance matrix of the data.

For a set of multivariate observations, perhaps sampled from some popu-
lation, the matrix Σ is estimated by

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)>,

where x>i = (xi1, xi2, . . . , xiq) is the vector of (numeric) observations for the
ith individual and x̄ = n−1

∑n
i=1 xi is the mean vector of the observations.

The diagonal of S contains the sample variances of each variable, which we
shall denote as s2i .

The covariance matrix for the data in Table 1.2 can be obtained using the
var() function in R; however, we have to “remove” the categorical variable
gender from the measure data frame by subsetting on the numerical variables
first:

R> cov(measure[, c("chest", "waist", "hips")])

chest waist hips

chest 6.632 6.368 3.000

waist 6.368 12.526 3.579

hips 3.000 3.579 5.945

If we require the separate covariance matrices of men and women, we can use

R> cov(subset(measure, gender == "female")[,

+ c("chest", "waist", "hips")])

chest waist hips

chest 2.278 2.167 1.556

waist 2.167 2.989 2.756

hips 1.556 2.756 3.067

R> cov(subset(measure, gender == "male")[,

+ c("chest", "waist", "hips")])

chest waist hips

chest 6.7222 0.9444 3.944

waist 0.9444 2.1000 3.078

hips 3.9444 3.0778 9.344

where the subset() returns all observations corresponding to females (first
statement) or males (second statement).
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1.5.2 Correlations

The covariance is often difficult to interpret because it depends on the scales
on which the two variables are measured; consequently, it is often standardised
by dividing by the product of the standard deviations of the two variables to
give a quantity called the correlation coefficient , ρij , where

ρij =
σij
σiσj

,

where σi =
√
σ2
i .

The advantage of the correlation is that it is independent of the scales of
the two variables. The correlation coefficient lies between −1 and +1 and gives
a measure of the linear relationship of the variables Xi and Xj . It is positive
if high values of Xi are associated with high values of Xj and negative if high
values of Xi are associated with low values of Xj . If the relationship between
two variables is non-linear, their correlation coefficient can be misleading.

With q variables there are q(q − 1)/2 distinct correlations, which may be
arranged in a q×q correlation matrix the diagonal elements of which are unity.
For observed data, the correlation matrix contains the usual estimates of the
ρs, namely Pearson’s correlation coefficient, and is generally denoted by R.
The matrix may be written in terms of the sample covariance matrix S

R = D−1/2SD−1/2,

where D−1/2 = diag(1/s1, . . . , 1/sq) and si =
√
s2i is the sample standard

deviation of variable i. (In most situations considered in this book, we will
be dealing with covariance and correlation matrices of full rank, q, so that
both matrices will be non-singular, that is, invertible, to give matrices S−1 or
R−1.)

The sample correlation matrix for the three variables in Table 1.1 is ob-
tained by using the function cor() in R:

R> cor(measure[, c("chest", "waist", "hips")])

chest waist hips

chest 1.0000 0.6987 0.4778

waist 0.6987 1.0000 0.4147

hips 0.4778 0.4147 1.0000

1.5.3 Distances

For some multivariate techniques such as multidimensional scaling (see Chap-
ter 4) and cluster analysis (see Chapter 6), the concept of distance between
the units in the data is often of considerable interest and importance. So,
given the variable values for two units, say unit i and unit j, what serves
as a measure of distance between them? The most common measure used is
Euclidean distance, which is defined as
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dij =

√√√√ q∑
k=1

(xik − xjk)2,

where xik and xjk, k = 1, . . . , q are the variable values for units i and j,
respectively. Euclidean distance can be calculated using the dist() function
in R.

When the variables in a multivariate data set are on different scales, it
makes more sense to calculate the distances after some form of standardisa-
tion. Here we shall illustrate this on the body measurement data and divide
each variable by its standard deviation using the function scale() before
applying the dist() function–the necessary R code and output are

R> dist(scale(measure[, c("chest", "waist", "hips")],

+ center = FALSE))

1 2 3 4 5 6 7 8 9 10 11

2 0.17

3 0.15 0.08

4 0.22 0.07 0.14

5 0.11 0.15 0.09 0.22

6 0.29 0.16 0.16 0.19 0.21

7 0.32 0.16 0.20 0.13 0.28 0.14

8 0.23 0.11 0.11 0.12 0.19 0.16 0.13

9 0.21 0.10 0.06 0.16 0.12 0.11 0.17 0.09

10 0.27 0.12 0.13 0.14 0.20 0.06 0.09 0.11 0.09

11 0.23 0.28 0.22 0.33 0.19 0.34 0.38 0.25 0.24 0.32

12 0.22 0.24 0.18 0.28 0.18 0.30 0.32 0.20 0.20 0.28 0.06

...

(Note that only the distances for the first 12 observations are shown in the
output.)

1.6 The multivariate normal density function

Just as the normal distribution dominates univariate techniques, the multi-
variate normal distribution plays an important role in some multivariate pro-
cedures, although as mentioned earlier many multivariate analyses are carried
out in the spirit of data exploration where questions of statistical significance
are of relatively minor importance or of no importance at all. Nevertheless, re-
searchers dealing with the complexities of multivariate data may, on occasion,
need to know a little about the multivariate density function and in particular
how to assess whether or not a set of multivariate data can be assumed to
have this density function. So we will define the multivariate normal density
and describe some of its properties.
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For a vector of q variables, x> = (x1, x2, . . . , xq), the multivariate normal
density function takes the form

f(x;µ,Σ) = (2π)−q/2det(Σ)−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
,

where Σ is the population covariance matrix of the variables and µ is the
vector of population mean values of the variables. The simplest example of
the multivariate normal density function is the bivariate normal density with
q = 2; this can be written explicitly as

f((x1, x2); (µ1, µ2), σ1, σ2, ρ) =(
2πσ1σ2(1− ρ2)

)−1/2
exp

{
− 1

2(1− ρ2)
×((

x1 − µ1

σ1

)2

− 2ρ
x1 − µ1

σ1

x2 − µ2

σ2
+

(
x2 − µ2

σ2

)2
)}

,

where µ1 and µ2 are the population means of the two variables, σ2
1 and σ2

2

are the population variances, and ρ is the population correlation between the
two variables X1 and X2. Figure 1.1 shows an example of a bivariate normal
density function with both means equal to zero, both variances equal to one,
and correlation equal to 0.5.

The population mean vector and the population covariance matrix of a
multivariate density function are estimated from a sample of multivariate
observations as described in the previous subsections.

One property of a multivariate normal density function that is worth
mentioning here is that linear combinations of the variables (i.e., y =
a1X1 + a2X2 + · · · + aqXq, where a1, a2, . . . , aq is a set of scalars) are
themselves normally distributed with mean a>µ and variance a>Σa, where
a> = (a1, a2, . . . , aq). Linear combinations of variables will be of importance
in later chapters, particularly in Chapter 3.

For many multivariate methods to be described in later chapters, the as-
sumption of multivariate normality is not critical to the results of the analysis,
but there may be occasions when testing for multivariate normality may be of
interest. A start can be made perhaps by assessing each variable separately for
univariate normality using a probability plot . Such plots are commonly applied
in univariate analysis and involve ordering the observations and then plotting
them against the appropriate values of an assumed cumulative distribution
function. There are two basic types of plots for comparing two probability
distributions, the probability-probability plot and the quantile-quantile plot .
The diagram in Figure 1.2 may be used for describing each type.

A plot of points whose coordinates are the cumulative probabilities p1(q)
and p2(q) for different values of q with

p1(q) = P(X1 ≤ q),
p2(q) = P(X2 ≤ q),
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x1

x2

f(x)

Fig. 1.1. Bivariate normal density function with correlation ρ = 0.5.

for random variables X1 and X2 is a probability-probability plot, while a plot
of the points whose coordinates are the quantiles (q1(p), q2(p)) for different
values of p with

q1(p) = p−11 (p),

q2(p) = p−12 (p),

is a quantile-quantile plot. For example, a quantile-quantile plot for investi-
gating the assumption that a set of data is from a normal distribution would in-

against the quantiles of a standard normal distribution, Φ−1(p(i)), where usu-
ally

pi =
i− 1

2

n
Φ(x) =

∫ x

−∞

1√
2π
e−

1
2u

2

du.

This is known as a normal probability plot .

volveplotting theordered sample values of variable 1 (i.e.,x(1)1, x(2)1, . . . , x(n)1)
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Fig. 1.2. Cumulative distribution functions and quantiles.

For multivariate data, normal probability plots may be used to examine
each variable separately, although marginal normality does not necessarily im-
ply that the variables follow a multivariate normal distribution. Alternatively
(or additionally), each multivariate observation might be converted to a single
number in some way before plotting. For example, in the specific case of as-
sessing a data set for multivariate normality, each q-dimensional observation,
xi, could be converted into a generalised distance, d2i , giving a measure of the
distance of the particular observation from the mean vector of the complete
sample, x̄; d2i is calculated as

d2i = (xi − x̄)>S−1(xi − x̄),

where S is the sample covariance matrix. This distance measure takes into
account the different variances of the variables and the covariances of pairs of
variables. If the observations do arise from a multivariate normal distribution,
then these distances have approximately a chi-squared distribution with q
degrees of freedom, also denoted by the symbol χ2

q. So plotting the ordered
distances against the corresponding quantiles of the appropriate chi-square
distribution should lead to a straight line through the origin.

We will now assess the body measurements data in Table 1.2 for normal-
ity, although because there are only 20 observations in the sample there is
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really too little information to come to any convincing conclusion. Figure 1.3
shows separate probability plots for each measurement; there appears to be
no evidence of any departures from linearity. The chi-square plot of the 20
generalised distances in Figure 1.4 does seem to deviate a little from linearity,
but with so few observations it is hard to be certain. The plot is set up as
follows. We first extract the relevant data

R> x <- measure[, c("chest", "waist", "hips")]

and estimate the means of all three variables (i.e., for each column of the data)
and the covariance matrix

R> cm <- colMeans(x)

R> S <- cov(x)

The differences di have to be computed for all units in our data, so we iterate
over the rows of x using the apply() function with argument MARGIN = 1

and, for each row, compute the distance di:

R> d <- apply(x, MARGIN = 1, function(x)

+ t(x - cm) %*% solve(S) %*% (x - cm))

The sorted distances can now be plotted against the appropriate quantiles of
the χ2

3 distribution obtained from qchisq(); see Figure 1.4.

R> qqnorm(measure[,"chest"], main = "chest"); qqline(measure[,"chest"])

R> qqnorm(measure[,"waist"], main = "waist"); qqline(measure[,"waist"])

R> qqnorm(measure[,"hips"], main = "hips"); qqline(measure[,"hips"])
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Fig. 1.3. Normal probability plots of chest, waist, and hip measurements.
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R> plot(qchisq((1:nrow(x) - 1/2) / nrow(x), df = 3), sort(d),

+ xlab = expression(paste(chi[3]^2, " Quantile")),

+ ylab = "Ordered distances")

R> abline(a = 0, b = 1)
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Fig. 1.4. Chi-square plot of generalised distances for body measurements data.

We will now look at using the chi-square plot on a set of data introduced
early in the chapter, namely the air pollution in US cities (see Table 1.5). The
probability plots for each separate variable are shown in Figure 1.5. Here, we
also iterate over all variables, this time using a special function, sapply(),
that loops over the variable names:

R> layout(matrix(1:8, nc = 2))

R> sapply(colnames(USairpollution), function(x) {

+ qqnorm(USairpollution[[x]], main = x)

+ qqline(USairpollution[[x]])

+ })
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Fig. 1.5. Normal probability plots for USairpollution data.



22 1 Multivariate Data and Multivariate Analysis

The resulting seven plots are arranged on one page by a call to the layout
matrix; see Figure 1.5. The plots for SO2 concentration and precipitation
both deviate considerably from linearity, and the plots for manufacturing and
population show evidence of a number of outliers. But of more importance
is the chi-square plot for the data, which is given in Figure 1.6; the R code
is identical to the code used to produce the chi-square plot for the body
measurement data. In addition, the two most extreme points in the plot have
been labelled with the city names to which they correspond using text().

R> x <- USairpollution

R> cm <- colMeans(x)

R> S <- cov(x)

R> d <- apply(x, 1, function(x) t(x - cm) %*% solve(S) %*% (x - cm))

R> plot(qc <- qchisq((1:nrow(x) - 1/2) / nrow(x), df = 6),

+ sd <- sort(d),

+ xlab = expression(paste(chi[6]^2, " Quantile")),

+ ylab = "Ordered distances", xlim = range(qc) * c(1, 1.1))

R> oups <- which(rank(abs(qc - sd), ties = "random") > nrow(x) - 3)

R> text(qc[oups], sd[oups] - 1.5, names(oups))

R> abline(a = 0, b = 1)
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Fig. 1.6. χ2 plot of generalised distances for USairpollution data.
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This example illustrates that the chi-square plot might also be useful for
detecting possible outliers in multivariate data, where informally outliers are
“abnormal” in the sense of deviating from the natural data variability. Outlier
identification is important in many applications of multivariate analysis either
because there is some specific interest in finding anomalous observations or
as a pre-processing task before the application of some multivariate method
in order to preserve the results from possible misleading effects produced by
these observations. A number of methods for identifying multivariate outliers
have been suggested–see, for example, Rocke and Woodruff (1996) and Becker
and Gather (2001)–and in Chapter 2 we will see how a number of the graphical
methods described there can also be helpful for outlier detection.

1.7 Summary

The majority of data collected in all scientific disciplines are multivariate.
To fully understand most such data sets, the variables need to be analysed
simultaneously. The rest of this text is concerned with methods that have
been developed to make this possible, some with the aim of discovering any
patterns or structure in the data that may have important implications for
future studies and some with the aim of drawing inferences about the data
assuming they are sampled from a population with some particular probability
density function, usually the multivariate normal.

1.8 Exercises

Ex. 1.1 Find the correlation matrix and covariance matrix of the data in
Table 1.1.

Ex. 1.2 Fill in the missing values in Table 1.1 with appropriate mean values,
and recalculate the correlation matrix of the data.

Ex. 1.3 Examine both the normal probability plots of each variable in the
archaeology data in Table 1.3 and the chi-square plot of the data. Do the
plots suggest anything unusual about the data?

Ex. 1.4 Convert the covariance matrix given below into the corresponding
correlation matrix. 

3.8778 2.8110 3.1480 3.5062
2.8110 2.1210 2.2669 2.5690
3.1480 2.2669 2.6550 2.8341
3.5062 2.5690 2.8341 3.2352

 .

Ex. 1.5 For the small set of (10 × 5) multivariate data given below, find
the (10 × 10) Euclidean distance matrix for the rows of the matrix. An
alternative to Euclidean distance that might be used in some cases is what
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is known as city block distance (think New York). Write some R code to
calculate the city block distance matrix for the data.

3 6 4 0 7
4 2 7 4 6
4 0 3 1 5
6 2 6 1 1
1 6 2 1 4
5 1 2 0 2
1 1 2 6 1
1 1 5 4 4
7 0 1 3 3
3 3 0 5 1


.
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Looking at Multivariate Data: Visualisation

2.1 Introduction

According to Chambers, Cleveland, Kleiner, and Tukey (1983), “there is no
statistical tool that is as powerful as a well-chosen graph”. Certainly graphical
presentation has a number of advantages over tabular displays of numerical
results, not least in creating interest and attracting the attention of the viewer.
But just what is a graphical display? A concise description is given by Tufte
(1983):

Data graphics visually display measured quantities by means of the
combined use of points, lines, a coordinate system, numbers, symbols,
words, shading and color.

Graphs are very popular; it has been estimated that between 900 billion
(9×1011) and 2 trillion (2×1012) images of statistical graphics are printed each
year. Perhaps one of the main reasons for such popularity is that graphical
presentation of data often provides the vehicle for discovering the unexpected;
the human visual system is very powerful in detecting patterns, although the
following caveat from the late Carl Sagan (in his book Contact) should be
kept in mind:

Humans are good at discerning subtle patterns that are really there,
but equally so at imagining them when they are altogether absent.

Some of the advantages of graphical methods have been listed by Schmid
(1954):

� In comparison with other types of presentation, well-designed charts are
more effective in creating interest and in appealing to the attention of the
reader.

� Visual relationships as portrayed by charts and graphs are more easily
grasped and more easily remembered.

� The use of charts and graphs saves time since the essential meaning of
large measures of statistical data can be visualised at a glance.

DOI 10.1007/978-1-4419-9650-3_2, © Springer Science+Business Media, LLC 2011 
25  B. Everitt and T. Hothorn, An Introduction to Applied Multivariate Analysis with R: Use R!,
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� Charts and graphs provide a comprehensive picture of a problem that
makes for a more complete and better balanced understanding than could
be derived from tabular or textual forms of presentation.

� Charts and graphs can bring out hidden facts and relationships and can
stimulate, as well as aid, analytical thinking and investigation.

Schmid’s last point is reiterated by the legendary John Tukey in his ob-
servation that “the greatest value of a picture is when it forces us to notice
what we never expected to see”.

The prime objective of a graphical display is to communicate to ourselves
and others, and the graphic design must do everything it can to help people
understand. And unless graphics are relatively simple, they are unlikely to
survive the first glance. There are perhaps four goals for graphical displays of
data:

� To provide an overview;
� To tell a story;
� To suggest hypotheses;
� To criticise a model.

In this chapter, we will be largely concerned with graphics for multivari-
ate data that address one or another of the first three bulleted points above.
Graphics that help in checking model assumptions will be considered in Chap-
ter 8.

During the last two decades, a wide variety of new methods for display-
ing data graphically have been developed. These will hunt for special ef-
fects in data, indicate outliers, identify patterns, diagnose models, and gener-
ally search for novel and perhaps unexpected phenomena. Graphical displays
should aim to tell a story about the data and to reduce the cognitive effort
required to make comparisons. Large numbers of graphs might be required to
achieve these goals, and computers are generally needed to supply them for
the same reasons that they are used for numerical analyses, namely that they
are fast and accurate.

So, because the machine is doing the work, the question is no longer “shall
we plot?” but rather “what shall we plot?” There are many exciting possibil-
ities, including interactive and dynamic graphics on a computer screen (see
Cook and Swayne 2007), but graphical exploration of data usually begins at
least with some simpler static graphics. The starting graphic for multivariate
data is often the ubiquitous scatterplot , and this is the subject of the next
section.

2.2 The scatterplot

The simple xy scatterplot has been in use since at least the 18th century and
has many virtues–indeed, according to Tufte (1983):
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The relational graphic–in its barest form the scatterplot and its
variants–is the greatest of all graphical designs. It links at least two
variables, encouraging and even imploring the viewer to assess the
possible causal relationship between the plotted variables. It confronts
causal theories that x causes y with empirical evidence as to the actual
relationship between x and y.

The scatterplot is the standard for representing continuous bivariate data
but, as we shall see later in this chapter, it can be enhanced in a variety of
ways to accommodate information about other variables.

To illustrate the use of the scatterplot and a number of other techniques
to be discussed, we shall use the air pollution in US cities data introduced in
the previous chapter (see Table 1.5).

Let’s begin our examination of the air pollution data by taking a look at a
basic scatterplot of the two variables manu and popul. For later use, we first
set up two character variables that contain the labels to be printed on the two
axes:

R> mlab <- "Manufacturing enterprises with 20 or more workers"

R> plab <- "Population size (1970 census) in thousands"

The plot() function takes the data, here as the data frame USairpollution,
along with a “formula” describing the variables to be plotted; the part left of
the tilde defines the variable to be associated with the ordinate, the part right
of the tilde is the variable that goes with the abscissa:

R> plot(popul ~ manu, data = USairpollution,

+ xlab = mlab, ylab = plab)

The resulting scatterplot is shown in Figure 2.2. The plot clearly uncovers
the presence of one or more cities that are some way from the remainder, but
before commenting on these possible outliers we will construct the scatterplot
again but now show how to include the marginal distributions of manu and
popul in two different ways. Plotting marginal and joint distributions together
is usually good data analysis practise. In Figure 2.2, the marginal distributions
are shown as rug plots on each axis (produced by rug()), and in Figure 2.3
the marginal distribution of manu is given as a histogram and that of popul

as a boxplot. And also in Figure 2.3 the points are labelled by an abbreviated
form of the corresponding city name.

The necessary R code for Figure 2.3 starts with dividing the device into
three plotting areas by means of the layout() function. The first plot basically
resembles the plot() command from Figure 2.1, but instead of points the ab-
breviated name of the city is used as the plotting symbol. Finally, the hist()

and boxplots() commands are used to depict the marginal distributions. The
with() command is very useful when one wants to avoid explicitly extracting
variables from data frames. The command of interest, here the calls to hist()

and boxplot(), is evaluated “inside” the data frame, here USairpollution

(i.e., variable names are resolved within this data frame first).
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Fig. 2.1. Scatterplot of manu and popul.

From this series of plots, we can see that the outlying points show them-
selves in both the scatterplot of the variables and in each marginal distribu-
tion. The most extreme outlier corresponds to Chicago, and other slightly less
extreme outliers correspond to Philadelphia and Detroit. Each of these cities
has a considerably larger population than other cities and also many more
manufacturing enterprises with more than 20 workers.

2.2.1 The bivariate boxplot

In Figure 2.3, identifying Chicago, Philadelphia, and Detroit as outliers is un-
likely to invoke much argument, but what about Houston and Cleveland? In
many cases, it might be helpful to have a more formal and objective method
for labelling observations as outliers, and such a method is provided by the
bivariate boxplot , which is a two-dimensional analogue of the boxplot for uni-
variate data proposed by Goldberg and Iglewicz (1992). This type of graphic
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R> plot(popul ~ manu, data = USairpollution,

+ xlab = mlab, ylab = plab)

R> rug(USairpollution$manu, side = 1)

R> rug(USairpollution$popul, side = 2)
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Fig. 2.2. Scatterplot of manu and popul that shows the marginal distribution in
each variable as a rug plot.

may be useful in indicating the distributional properties of the data and in
identifying possible outliers. The bivariate boxplot is based on calculating “ro-
bust” measures of location, scale, and correlation; it consists essentially of a
pair of concentric ellipses, one of which (the “hinge”) includes 50% of the data
and the other (called the “fence”) of which delineates potentially troublesome
outliers. In addition, resistant regression lines of both y on x and x on y are
shown, with their intersection showing the bivariate location estimator. The
acute angle between the regression lines will be small for a large absolute value
of correlations and large for a small one. (Using robust measures of location,
scale, etc., helps to prevent the possible “masking” of multivariate outliers if
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R> layout(matrix(c(2, 0, 1, 3), nrow = 2, byrow = TRUE),

+ widths = c(2, 1), heights = c(1, 2), respect = TRUE)

R> xlim <- with(USairpollution, range(manu)) * 1.1

R> plot(popul ~ manu, data = USairpollution, cex.lab = 0.9,

+ xlab = mlab, ylab = plab, type = "n", xlim = xlim)

R> with(USairpollution, text(manu, popul, cex = 0.6,

+ labels = abbreviate(row.names(USairpollution))))

R> with(USairpollution, hist(manu, main = "", xlim = xlim))

R> with(USairpollution, boxplot(popul))
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Fig. 2.3. Scatterplot of manu and popul that shows the marginal distributions by
histogram and boxplot.
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the usual measures are employed when these may be distorted by the pres-
ence of the outliers in the data.) Full details of the construction are given in
Goldberg and Iglewicz (1992). The scatterplot of manu and popul including
the bivariate boxplot is shown in Figure 2.4. Figure 2.4 clearly tells us that
Chicago, Philadelphia, Detroit, and Cleveland should be regarded as outliers
but not Houston, because it is on the “fence” rather than outside the “fence”.

R> outcity <- match(lab <- c("Chicago", "Detroit",

+ "Cleveland", "Philadelphia"), rownames(USairpollution))

R> x <- USairpollution[, c("manu", "popul")]

R> bvbox(x, mtitle = "", xlab = mlab, ylab = plab)

R> text(x$manu[outcity], x$popul[outcity], labels = lab,

+ cex = 0.7, pos = c(2, 2, 4, 2, 2))
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Fig. 2.4. Scatterplot of manu and popul showing the bivariate boxplot of the data.

Suppose now that we are interested in calculating the correlation between
manu and popul. Researchers often calculate the correlation between two vari-
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ables without first looking at the scatterplot of the two variables. But scat-
terplots should always be consulted when calculating correlation coefficients
because the presence of outliers can on occasion considerably distort the value
of a correlation coefficient, and as we have seen above, a scatterplot may help
to identify the offending observations particularly if used in conjunction with
a bivariate boxplot. The observations identified as outliers may then be ex-
cluded from the calculation of the correlation coefficient. With the help of
the bivariate boxplot in Figure 2.4, we have identified Chicago, Philadelphia,
Detroit, and Cleveland as outliers in the scatterplot of manu and popul. The
R code for finding the two correlations is

R> with(USairpollution, cor(manu, popul))

[1] 0.9553

R> outcity <- match(c("Chicago", "Detroit",

+ "Cleveland", "Philadelphia"),

+ rownames(USairpollution))

R> with(USairpollution, cor(manu[-outcity], popul[-outcity]))

[1] 0.7956

The match() function identifies rows of the data frame USairpollution cor-
responding to the cities of interest, and the subset starting with a minus sign
removes these units before the correlation is computed. Calculation of the cor-
relation coefficient between the two variables using all the data gives a value
of 0.96, which reduces to a value of 0.8 after excluding the four outliers–a not
inconsiderable reduction.

2.2.2 The convex hull of bivariate data

An alternative approach to using the scatterplot combined with the bivariate
boxplot to deal with the possible problem of calculating correlation coeffi-
cients without the distortion often caused by outliers in the data is convex
hull trimming , which allows robust estimation of the correlation. The convex
hull of a set of bivariate observations consists of the vertices of the smallest
convex polyhedron in variable space within which or on which all data points
lie. Removal of the points lying on the convex hull can eliminate isolated
outliers without disturbing the general shape of the bivariate distribution. A
robust estimate of the correlation coefficient results from using the remaining
observations. Let’s see how the convex hull approach works with our manu

and popul scatterplot. We first find the convex hull of the data (i.e., the
observations defining the convex hull) using the following R code:

R> (hull <- with(USairpollution, chull(manu, popul)))

[1] 9 15 41 6 2 18 16 14 7
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R> with(USairpollution,

+ plot(manu, popul, pch = 1, xlab = mlab, ylab = plab))

R> with(USairpollution,

+ polygon(manu[hull], popul[hull], density = 15, angle = 30))
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Fig. 2.5. Scatterplot of manu against popul showing the convex hull of the data.

Now we can show this convex hull on a scatterplot of the variables using the
code attached to the resulting Figure 2.5.

To calculate the correlation coefficient after removal of the points defining
the convex hull requires the code

R> with(USairpollution, cor(manu[-hull],popul[-hull]))

[1] 0.9225

The resulting value of the correlation is now 0.923 and thus is higher compared
with the correlation estimated after removal of the outliers identified by using
the bivariate boxplot, namely Chicago, Philadelphia, Detroit, and Cleveland.
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2.2.3 The chi-plot

Although the scatterplot is a primary data-analytic tool for assessing the re-
lationship between a pair of continuous variables, it is often difficult to judge
whether or not the variables are independent–a random scatter of points is
hard for the human eye to judge. Consequently it is sometimes helpful to aug-
ment the scatterplot with an auxiliary display in which independence is itself
manifested in a characteristic manner. The chi-plot suggested by Fisher and
Switzer (1985, 2001) is designed to address the problem. Under independence,
the joint distribution of two random variables X1 and X2 can be computed
from the product of the marginal distributions. The chi-plot transforms the
measurements (x11, . . . , xn1) and (x12, . . . , xn2) into values (χ1, . . . , χn) and
(λ1, . . . , λn), which, plotted in a scatterplot, can be used to detect deviations
from independence. The χi values are, basically, the root of the χ2 statistics
obtained from the 2×2 tables that are obtained when dichotomising the data
for each unit i into the groups satisfying x·1 ≤ xi1 and x·2 ≤ xi2. Under inde-
pendence, these values are asymptotically normal with mean zero; i.e., the χi
values should show a non-systematic random fluctuation around zero. The λi
values measure the distance of unit i from the “center” of the bivariate distri-
bution. An R function for producing chi-plots is chiplot(). To illustrate the
chi-plot, we shall apply it to the manu and popul variables of the air pollution
data using the code

R> with(USairpollution, plot(manu, popul,

+ xlab = mlab, ylab = plab,

+ cex.lab = 0.9))

R> with(USairpollution, chiplot(manu, popul))

The result is Figure 2.6, which shows the scatterplot of manu plotted against
popul alongside the corresponding chi-plot. Departure from independence is
indicated in the latter by a lack of points in the horizontal band indicated on
the plot. Here there is a very clear departure since there are very few of the
observations in this region.

2.3 The bubble and other glyph plots

The basic scatterplot can only display two variables. But there have been
a number of suggestions as to how extra variables may be included on a
scatterplot. Perhaps the simplest is the so-called bubble plot , in which three
variables are displayed; two are used to form the scatterplot itself, and then the
values of the third variable are represented by circles with radii proportional
to these values and centred on the appropriate point in the scatterplot. Let’s
begin by taking a look at the bubble plot of temp, wind, and SO2 that is given
in Figure 2.7. The plot seems to suggest that cities with moderate annual
temperatures and moderate annual wind speeds tend to suffer the greatest air
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R> plot(blood_pcacor$sdev^2, xlab = "Component number",

+ ylab = "Component variance", type = "l", main = "Scree diagram")
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pollution, but this is unlikely to be the whole story because none of the other
variables in the data set are used in constructing Figure 2.7. We could try to
include all variables on the basic temp and wind scatterplot by replacing the
circles with five-sided “stars”, with the lengths of each side representing each
of the remaining five variables. Such a plot is shown in Figure 2.8, but it fails
to communicate much, if any, useful information about the data.

R> ylim <- with(USairpollution, range(wind)) * c(0.95, 1)

R> plot(wind ~ temp, data = USairpollution,

+ xlab = "Average annual temperature (Fahrenheit)",

+ ylab = "Average annual wind speed (m.p.h.)", pch = 10,

+ ylim = ylim)

R> with(USairpollution, symbols(temp, wind, circles = SO2,

+ inches = 0.5, add = TRUE))
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Fig. 2.7. Bubble plot of temp, wind, and SO2.
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R> plot(wind ~ temp, data = USairpollution,

+ xlab = "Average annual temperature (Fahrenheit)",

+ ylab = "Average annual wind speed (m.p.h.)", pch = 10,

+ ylim = ylim)

R> with(USairpollution,

+ stars(USairpollution[,-c(2,5)], locations = cbind(temp, wind),

+ labels = NULL, add = TRUE, cex = 0.5))
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Fig. 2.8. Scatterplot of temp and wind showing five-sided stars representing the
other variables.

In fact, both the bubble plot and “stars” plot are examples of symbol or
glyph plots, in which data values control the symbol parameters. For example,
a circle is a glyph where the values of one variable in a multivariate observation
control the circle size. In Figure 2.8, the spatial positions of the cities in
the scatterplot of temp and wind are combined with a star representation
of the five other variables. An alternative is simply to represent the seven
variables for each city by a seven-sided star and arrange the resulting stars in



38 2 Looking at Multivariate Data: Visualisation

a rectangular array; the result is shown in Figure 2.9. We see that some stars,
for example those for New Orleans, Miami, Jacksonville, and Atlanta, have
similar shapes, with their higher average annual temperature being distinctive,
but telling a story about the data with this display is difficult.

Stars, of course, are not the only symbols that could be used to represent
data, and others have been suggested, with perhaps the most well known being
the now infamous Chernoff’s faces (see Chernoff 1973). But, on the whole,
such graphics for displaying multivariate data have not proved themselves to
be effective for the task and are now largely confined to the past history of
multivariate graphics.

R> stars(USairpollution, cex = 0.55)
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Fig. 2.9. Star plot of the air pollution data.
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2.4 The scatterplot matrix

There are seven variables in the air pollution data, which between them gen-
erate 21 possible scatterplots. But just making the graphs without any coor-
dination will often result in a confusing collection of graphs that are hard to
integrate visually. Consequently, it is very important that the separate plots
be presented in the best way to aid overall comprehension of the data. The
scatterplot matrix is intended to accomplish this objective. A scatterplot ma-
trix is nothing more than a square, symmetric grid of bivariate scatterplots.
The grid has q rows and columns, each one corresponding to a different vari-
able. Each of the grid’s cells shows a scatterplot of two variables. Variable j
is plotted against variable i in the ijth cell, and the same variables appear in
cell ji, with the x- and y-axes of the scatterplots interchanged. The reason for
including both the upper and lower triangles of the grid, despite the seeming
redundancy, is that it enables a row and a column to be visually scanned to
see one variable against all others, with the scales for the one variable lined up
along the horizontal or the vertical. As a result, we can visually link features
on one scatterplot with features on another, and this ability greatly increases
the power of the graphic.

The scatterplot matrix for the air pollution data is shown in Figure 2.10.
The plot was produced using the function pairs(), here with slightly enlarged
dot symbols, using the arguments pch = "." and cex = 1.5.

The scatterplot matrix clearly shows the presence of possible outliers in
many panels and the suggestion that the relationship between the two aspects
of rainfall, namely precip, predays, and SO2 might be non-linear. Remem-
bering that the multivariable aspect of these data, in which sulphur dioxide
concentration is the response variable, with the remaining variables being ex-
planatory, might be of interest, the scatterplot matrix may be made more
helpful by including the linear fit of the two variables on each panel, and such
a plot is shown in Figure 2.11. Here, the pairs() function was customised by
a small function specified to the panel argument: in addition to plotting the
x and y values, a regression line obtained via function lm() is added to each
of the panels.

Now the scatterplot matrix reveals that there is a strong linear relationship
between SO2 and manu and between SO2 and popul, but the (3, 4) panel shows
that manu and popul are themselves very highly related and thus predictive
of SO2 in the same way. Figure 2.11 also underlines that assuming a linear
relationship between SO2 and precip and SO2 and predays, as might be the
case if a multiple linear regression model is fitted to the data with SO2 as the
dependent variable, is unlikely to fully capture the relationship between each
pair of variables.

In the same way that the scatterplot should always be used alongside the
numerical calculation of a correlation coefficient, so should the scatterplot
matrix always be consulted when looking at the correlation matrix of a set of
variables. The correlation matrix for the air pollution data is



40 2 Looking at Multivariate Data: Visualisation

R> pairs(USairpollution, pch = ".", cex = 1.5)
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Fig. 2.10. Scatterplot matrix of the air pollution data.

R> round(cor(USairpollution), 4)

SO2 temp manu popul wind precip predays

SO2 1.0000 -0.4336 0.6448 0.4938 0.0947 0.0543 0.3696

temp -0.4336 1.0000 -0.1900 -0.0627 -0.3497 0.3863 -0.4302

manu 0.6448 -0.1900 1.0000 0.9553 0.2379 -0.0324 0.1318

popul 0.4938 -0.0627 0.9553 1.0000 0.2126 -0.0261 0.0421

wind 0.0947 -0.3497 0.2379 0.2126 1.0000 -0.0130 0.1641

precip 0.0543 0.3863 -0.0324 -0.0261 -0.0130 1.0000 0.4961

predays 0.3696 -0.4302 0.1318 0.0421 0.1641 0.4961 1.0000

Focussing on the correlations between SO2 and the six other variables, we
see that the correlation for SO2 and precip is very small and that for SO2

and predays is moderate. But relevant panels in the scatterplot indicate that
the correlation coefficient that assesses only the linear relationship between
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R> pairs(USairpollution,

+ panel = function (x, y, ...) {

+ points(x, y, ...)

+ abline(lm(y ~ x), col = "grey")

+ }, pch = ".", cex = 1.5)
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Fig. 2.11. Scatterplot matrix of the air pollution data showing the linear fit of each
pair of variables.

two variables may not be suitable here and that in a multiple linear regres-
sion model for the data quadratic effects of predays and precip might be
considered.
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2.5 Enhancing the scatterplot with estimated bivariate
densities

As we have seen above, scatterplots and scatterplot matrices are good at
highlighting outliers in a multivariate data set. But in many situations an-
other aim in examining scatterplots is to identify regions in the plot where
there are high or low densities of observations that may indicate the pres-
ence of distinct groups of observations; i.e., “clusters” (see Chapter 6). But
humans are not particularly good at visually examining point density, and
it is often a very helpful aid to add some type of bivariate density estimate
to the scatterplot. A bivariate density estimate is simply an approximation
to the bivariate probability density function of two variables obtained from a
sample of bivariate observations of the variables. If, of course, we are willing
to assume a particular form of the bivariate density of the two variables, for
example the bivariate normal, then estimating the density is reduced to esti-
mating the parameters of the assumed distribution. More commonly, however,
we wish to allow the data to speak for themselves and so we need to look for
a non-parametric estimation procedure. The simplest such estimator would
be a two-dimensional histogram, but for small and moderately sized data sets
that is not of any real use for estimating the bivariate density function simply
because most of the “boxes” in the histogram will contain too few observa-
tions; and if the number of boxes is reduced, the resulting histogram will be
too coarse a representation of the density function.

Other non-parametric density estimators attempt to overcome the deficien-
cies of the simple two-dimensional histogram estimates by “smoothing” them
in one way or another. A variety of non-parametric estimation procedures
have been suggested, and they are described in detail in Silverman (1986) and
Wand and Jones (1995). Here we give a brief description of just one popular
class of estimators, namely kernel density estimators.

2.5.1 Kernel density estimators

From the definition of a probability density, if the random variable X has a
density f ,

f(x) = lim
h→0

1

2h
P(x− h < X < x+ h). (2.1)

For any given h, a näıve estimator of P(x− h < X < x+ h) is the proportion
of the observations x1, x2, . . . , xn falling in the interval (x− h, x+ h),

f̂(x) =
1

2hn

n∑
i=1

I(xi ∈ (x− h, x+ h)); (2.2)

i.e., the number of x1, . . . , xn falling in the interval (x− h, x+ h) divided by
2hn. If we introduce a weight function W given by
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W (x) =


1
2 |x| < 1

0 else,

then the näıve estimator can be rewritten as

f̂(x) =
1

n

n∑
i=1

1

h
W

(
x− xi
h

)
. (2.3)

Unfortunately, this estimator is not a continuous function and is not par-
ticularly satisfactory for practical density estimation. It does, however, lead
naturally to the kernel estimator defined by

f̂(x) =
1

hn

n∑
i=1

K

(
x− xi
h

)
, (2.4)

where K is known as the kernel function and h is the bandwidth or smoothing
parameter . The kernel function must satisfy the condition∫ ∞

−∞
K(x)dx = 1.

Usually, but not always, the kernel function will be a symmetric density func-
tion; for example, the normal. Three commonly used kernel functions are

rectangular,

K(x) =


1
2 |x| < 1

0 else.

triangular,

K(x) =

 1− |x| |x| < 1

0 else,

Gaussian,

K(x) =
1√
2π
e−

1
2x

2

.

The three kernel functions are implemented in R as shown in Figure 2.12.
For some grid x, the kernel functions are plotted using the R statements in
Figure 2.12.

The kernel estimator f̂ is a sum of “bumps” placed at the observations.
The kernel function determines the shape of the bumps, while the window
width h determines their width. Figure 2.13 (redrawn from a similar plot in
Silverman 1986) shows the individual bumps n−1h−1K((x−xi)/h) as well as

the estimate f̂ obtained by adding them up for an artificial set of data points
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R> rec <- function(x) (abs(x) < 1) * 0.5

R> tri <- function(x) (abs(x) < 1) * (1 - abs(x))

R> gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2)

R> x <- seq(from = -3, to = 3, by = 0.001)

R> plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1,

+ ylab = expression(K(x)))

R> lines(x, tri(x), lty = 2)

R> lines(x, gauss(x), lty = 3)

R> legend("topleft", legend = c("Rectangular", "Triangular",

+ "Gaussian"), lty = 1:3, title = "kernel functions",

+ bty = "n")
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Fig. 2.12. Three commonly used kernel functions.

R> x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5)

R> n <- length(x)

For a grid

R> xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01)

on the real line, we can compute the contribution of each measurement in x,
with h = 0.4, by the Gaussian kernel (defined in Figure 2.12, line 3) as follows:
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R> h <- 0.4

R> bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h))

A plot of the individual bumps and their sum, the kernel density estimate f̂ ,
is shown in Figure 2.13.

R> plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)),

+ type = "l", xlab = "x", lwd = 2)

R> rug(x, lwd = 2)

R> out <- apply(bumps, 2, function(b) lines(xgrid, b))
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00
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)

Fig. 2.13. Kernel estimate showing the contributions of Gaussian kernels evaluated
for the individual observations with bandwidth h = 0.4.

The kernel density estimator considered as a sum of “bumps” centred at
the observations has a simple extension to two dimensions (and similarly for
more than two dimensions). The bivariate estimator for data (x1, y1), (x2, y2),
. . . , (xn, yn) is defined as
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f̂(x, y) =
1

nhxhy

n∑
i=1

K

(
x− xi
hx

,
y − yi
hy

)
. (2.5)

In this estimator, each coordinate direction has its own smoothing parameter,
hx or hy. An alternative is to scale the data equally for both dimensions and
use a single smoothing parameter.

For bivariate density estimation, a commonly used kernel function is the
standard bivariate normal density

K(x, y) =
1

2π
e−

1
2 (x

2+y2).

Another possibility is the bivariate Epanechnikov kernel given by

K(x, y) =


2
π (1− x2 − y2) x2 + y2 < 1

0 else,

which is implemented and depicted in Figure 2.14 by using the persp function
for plotting in three dimensions.

According to Venables and Ripley (2002), the bandwidth should be chosen
to be proportional to n−1/5; unfortunately, the constant of proportionality
depends on the unknown density. The tricky problem of bandwidth estimation
is considered in detail in Silverman (1986).

Our first illustration of enhancing a scatterplot with an estimated bivari-
ate density will involve data from the Hertzsprung-Russell (H-R) diagram of
the star cluster CYG OB1, calibrated according to Vanisma and De Greve
(1972). The H-R diagram is the basis of the theory of stellar evolution and
is essentially a plot of the energy output of stars as measured by the loga-
rithm of their light intensity plotted against the logarithm of their surface
temperature. Part of the data is shown in Table 2.1. A scatterplot of the data
enhanced by the contours of the estimated bivariate density (Wand and Ripley
2010, obtained with the function bkde2D() from the package KernSmooth) is
shown in Figure 2.15. The plot shows the presence of two distinct clusters of
stars: the larger cluster consists of stars that have high surface temperatures
and a range of light intensities, and the smaller cluster contains stars with low
surface temperatures and high light intensities. The bivariate density estimate
can also be displayed by means of a perspective plot rather than a contour
plot, and this is shown in Figure 2.16. This again demonstrates that there are
two groups of stars.

Table 2.1: CYGOB1 data. Energy output and surface temperature of
star cluster CYG OB1.

logst logli logst logli logst logli

4.37 5.23 4.23 3.94 4.45 5.22
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Table 2.1: CYGOB1 data (continued).

logst logli logst logli logst logli

4.56 5.74 4.42 4.18 3.49 6.29
4.26 4.93 4.23 4.18 4.23 4.34
4.56 5.74 3.49 5.89 4.62 5.62
4.30 5.19 4.29 4.38 4.53 5.10
4.46 5.46 4.29 4.22 4.45 5.22
3.84 4.65 4.42 4.42 4.53 5.18
4.57 5.27 4.49 4.85 4.43 5.57
4.26 5.57 4.38 5.02 4.38 4.62
4.37 5.12 4.42 4.66 4.45 5.06
3.49 5.73 4.29 4.66 4.50 5.34
4.43 5.45 4.38 4.90 4.45 5.34
4.48 5.42 4.22 4.39 4.55 5.54
4.01 4.05 3.48 6.05 4.45 4.98
4.29 4.26 4.38 4.42 4.42 4.50
4.42 4.58 4.56 5.10

For our next example of adding estimated bivariate densities to scatter-
plots, we will use the body measurement data introduced in Chapter 1 (see
Table 1.2), although there are rather too few observations on which to base
the estimation. (The gender of each individual will not be used.) And in this
case we will add the appropriate density estimate to each panel of the scat-
terplot matrix of the chest, waist, and hips measurements. The resulting
plot is shown in Figure 2.17. The waist/hips panel gives some evidence that
there might be two groups in the data, which, of course, we know to be true,
the groups being men and women. And the Waist histogram on the diagonal
panel is also bimodal , underlining the two-group nature of the data.

2.6 Three-dimensional plots

The scatterplot matrix allows us to display information about the univariate
distributions of each variable (using histograms on the main diagonal, for
example) and about the bivariate distribution of all pairs of variables in a
set of multivariate data. But we should perhaps consider whether the use of
three-dimensional plots offers any advantage over the series of two-dimensional
scatterplots used in a scatterplot matrix. To begin, we can take a look at the
three-dimensional plot of the body measurements data; a version of the plot
that includes simply the points along with vertical lines dropped from each
point to the x-y plane is shown in Figure 2.18. The plot, produced with the
scatterplot3d package (Ligges 2010), suggests the presence of two relatively
separate groups of points corresponding to the males and females in the data.
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R> epa <- function(x, y)

+ ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2)

R> x <- seq(from = -1.1, to = 1.1, by = 0.05)

R> epavals <- sapply(x, function(a) epa(a, x))

R> persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y",

+ zlab = expression(K(x, y)), theta = -35, axes = TRUE,

+ box = TRUE)

x

y

K
(x, y)

Fig. 2.14. Epanechnikov kernel for a grid between (−1.1,−1.1) and (1.1, 1.1).

As a second example of using a three-dimensional plot, we can look at
temp, wind, and SO2 from the air pollution data. The points and vertical lines
versions of the required three-dimensional plot are shown in Figure 2.19. Two
observations with high SO2 levels stand out, but the plot does not appear to
add much to the bubble plot for the same three variables (Figure 2.7).

Three-dimensional plots based on the original variables can be useful in
some cases but may not add very much to, say, the bubble plot of the scat-
terplot matrix of the data. When there are many variables in a multivariate
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R> library("KernSmooth")

R> CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik))

R> plot(CYGOB1, xlab = "log surface temperature",

+ ylab = "log light intensity")

R> contour(x = CYGOB1d$x1, y = CYGOB1d$x2,

+ z = CYGOB1d$fhat, add = TRUE)
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Fig. 2.15. Scatterplot of the log of light intensity and log of surface temperature
for the stars in star cluster CYG OB1 showing the estimated bivariate density.

data set, there will be many possible three-dimensional plots to look at and
integrating and linking all the plots may be very difficult. But if the dimension-
ality of the data could be reduced in some way with little loss of information,
three-dimensional plots might become more useful, a point to which we will
return in the next chapter.
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R> persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,

+ xlab = "log surface temperature",

+ ylab = "log light intensity",

+ zlab = "density")
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Fig. 2.16. Perspective plot of estimated bivariate density.

2.7 Trellis graphics

Trellis graphics (see Becker, Cleveland, Shyu, and Kaluzny 1994) is an ap-
proach to examining high-dimensional structure in data by means of one-,
two-, and three-dimensional graphs. The problem addressed is how observa-
tions of one or more variables depend on the observations of the other vari-
ables. The essential feature of this approach is the multiple conditioning that
allows some type of plot to be displayed for different values of a given variable
(or variables). The aim is to help in understanding both the structure of the
data and how well proposed models describe the structure. An example of
the application of trellis graphics is given in Verbyla, Cullis, Kenward, and
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Fig. 2.17. Scatterplot matrix of body measurements data showing the estimated
bivariate densities on each panel.

Welham (1999). With the recent publication of Sarkar’s excellent book (see
Sarkar 2008) and the development of the lattice (Sarkar 2010) package, trel-
lis graphics are likely to become more popular, and in this section we will
illustrate their use on multivariate data.

For the first example, we return to the air pollution data and the temp,
wind, and SO2 variables used previously to produce scatterplots of SO2 and
temp conditioned on values of wind divided into two equal parts that we shall
creatively label “Light” and “High”. The resulting plot is shown in Figure 2.20.
The plot suggests that in cities with light winds, air pollution decreases with
increasing temperature, but in cities with high winds, air pollution does not
appear to be strongly related to temperature.

A more complex example of trellis graphics is shown in Figure 2.21. Here
three-dimensional plots of temp, wind, and precip are shown for four levels of
SO2. The graphic looks pretty, but does it convey anything of interest about
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R> library("scatterplot3d")

R> with(measure, scatterplot3d(chest, waist, hips,

+ pch = (1:2)[gender], type = "h", angle = 55))
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Fig. 2.18. A three-dimensional scatterplot for the body measurements data with
points corresponding to male and triangles to female measurements.

the data? Probably not, as there are few points in each of the three, three-
dimensional displays. This is often a problem with multipanel plots when the
sample size is not large.

For the last example in this section, we will use a larger data set, namely
data on earthquakes given in Sarkar (2008). The data consist of recordings of
the location (latitude, longitude, and depth) and magnitude of 1000 seismic
events around Fiji since 1964.

In Figure 2.22, scatterplots of latitude and longitude are plotted for three
ranges of depth. The distribution of locations in the latitude-longitude space
is seen to be different in the three panels, particularly for very deep quakes. In
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R> with(USairpollution,

+ scatterplot3d(temp, wind, SO2, type = "h",

+ angle = 55))
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Fig. 2.19. A three-dimensional scatterplot for the air pollution data.

Figure 2.23 (a tour de force by Sarkar) the four panels are defined by ranges
of magnitude and depth is encoded by different shading.

Finally, in Figure 2.24, three-dimensional scatterplots of earthquake epi-
centres (latitude, longitude, and depth) are plotted conditioned on earthquake
magnitude. (Figures 2.22, 2.23, and 2.24 are reproduced with the kind per-
mission of Dr. Deepayan Sarkar.)

2.8 Stalactite plots

In this section, we will describe a multivariate graphic, the stalactite plot,
specifically designed for the detection and identification of multivariate out-
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R> plot(xyplot(SO2 ~ temp| cut(wind, 2), data = USairpollution))
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Fig. 2.20. Scatterplot of SO2 and temp for light and high winds.

liers. Like the chi-square plot for assessing multivariate normality, described
in Chapter 1, the stalactite plot is based on the generalised distances of ob-
servations from the multivariate mean of the data. But here these distances
are calculated from the means and covariances estimated from increasing-
sized subsets of the data. As mentioned previously when describing bivariate
boxplots, the aim is to reduce the masking effects that can arise due to the
influence of outliers on the estimates of means and covariances obtained from
all the data. The central idea of this approach is that, given distances using,
say, m observations for estimation of means and covariances, the m+ 1 obser-
vations to be used for this estimation in the next stage are chosen to be those
with the m+1 smallest distances. Thus an observation can be included in the
subset used for estimation for some value of m but can later be excluded as m
increases. Initially m is chosen to take the value q+ 1, where q is the number
of variables in the multivariate data set because this is the smallest number
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R> pollution <- with(USairpollution, equal.count(SO2,4))

R> plot(cloud(precip ~ temp * wind | pollution, panel.aspect = 0.9,

+ data = USairpollution))
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pollution

tempwind
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pollution

tempwind

precip

pollution

tempwind

precip

pollution

Fig. 2.21. Three-dimensional plots of temp, wind, and precip conditioned on levels
of SO2.

allowing the calculation of the required generalised distances. The cutoff dis-
tance generally employed to identify an outlier is the maximum expected value
from a sample of n random variables each having a chi-squared distribution on
q degrees of freedom. The stalactite plot graphically illustrates the evolution
of the outliers as the size of the subset of observations used for estimation in-
creases. We will now illustrate the application of the stalactite plot on the US
cities air pollution data. The plot (produced via stalac(USairpollution)) is
shown in Figure 2.25. Initially most cities are indicated as outliers (a“*” in the
plot), but as the number of observations on which the generalised distances
are calculated is increased, the number of outliers indicated by the plot de-
creases. The plot clearly shows the outlying nature of a number of cities over
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R> plot(xyplot(lat ~ long| cut(depth, 3), data = quakes,

+ layout = c(3, 1), xlab = "Longitude",

+ ylab = "Latitude"))
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Fig. 2.22. Scatterplots of latitude and longitude conditioned on three ranges of
depth.

nearly all values of m. The effect of masking is also clear; when all 41 ob-
servations are used to calculate the generalised distances, only observations
Chicago, Phoenix, and Providence are indicated to be outliers.

2.9 Summary

Plotting multivariate data is an essential first step in trying to understand
the story they may have to tell. The methods covered in this chapter provide
just some basic ideas for taking an initial look at the data, and with software
such as R there are many other possibilities for graphing multivariate obser-
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Fig. 2.23. Scatterplots of latitude and longitude conditioned on magnitude, with
depth coded by shading.

vations, and readers are encouraged to explore more fully what is available.
But graphics can often flatter to deceive and it is important not to be seduced
when looking at a graphic into responding “what a great graph” rather than
“what interesting data”. A graph that calls attention to itself pictorially is al-
most surely a failure (see Becker et al. 1994), and unless graphs are relatively
simple, they are unlikely to survive the first glance. Three-dimensional plots
and trellis plots provide great pictures, which may often also be very informa-
tive (as the examples in Sarkar 2008, demonstrate), but for multivariate data
with many variables, they may struggle. In many situations, the most useful
graphic for a set of multivariate data may be the scatterplot matrix, perhaps
with the panels enhanced in some way; for example, by the addition of bivari-
ate density estimates or bivariate boxplots. And all the graphical approaches
discussed in this chapter may become more helpful when applied to the data
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R> plot(cloud(depth ~ lat * long | Magnitude, data = quakes,

+ zlim = rev(range(quakes$depth)),

+ screen = list(z = 105, x = -70), panel.aspect = 0.9,

+ xlab = "Longitude", ylab = "Latitude", zlab = "Depth"))

Longitude
Latitude

Depth

Magnitude

Longitude
Latitude

Depth

Magnitude

Longitude
Latitude

Depth

Magnitude

Longitude
Latitude

Depth

Magnitude

Fig. 2.24. Scatterplots of latitude and longitude conditioned on magnitude.

after their dimensionality has been reduced in some way, often by the method
to be described in the next chapter.
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Number of observations used for estimation
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Fig. 2.25. Stalactite plot of US cities air pollution data.
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2.10 Exercises

Ex. 2.1 Use the bivariate boxplot on the scatterplot of each pair of variables
in the air pollution data to identify any outliers. Calculate the correlation
between each pair of variables using all the data and the data with any
identified outliers removed. Comment on the results.

Ex. 2.2 Compare the chi-plots with the corresponding scatterplots for each
pair of variables in the air pollution data. Do you think that there is any
advantage in the former?

Ex. 2.3 Construct a scatterplot matrix of the body measurements data that
has the appropriate boxplot on the diagonal panels and bivariate boxplots
on the other panels. Compare the plot with Figure 2.17, and say which
diagram you find more informative about the data.

Ex. 2.4 Construct a further scatterplot matrix of the body measurements
data that labels each point in a panel with the gender of the individual,
and plot on each scatterplot the separate estimated bivariate densities for
men and women.

Ex. 2.5 Construct a scatterplot matrix of the chemical composition of
Romano-British pottery given in Chapter 1 (Table 1.3), identifying each
unit by its kiln number and showing the estimated bivariate density on
each panel. What does the resulting diagram tell you?

Ex. 2.6 Construct a bubble plot of the earthquake data using latitude and
longitude as the scatterplot and depth as the circles, with greater depths
giving smaller circles. In addition, divide the magnitudes into three equal
ranges and label the points in your bubble plot with a different symbol
depending on the magnitude group into which the point falls.
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Principal Components Analysis

3.1 Introduction

One of the problems with a lot of sets of multivariate data is that there are
simply too many variables to make the application of the graphical techniques
described in the previous chapters successful in providing an informative ini-
tial assessment of the data. And having too many variables can also cause
problems for other multivariate techniques that the researcher may want to
apply to the data. The possible problem of too many variables is sometimes
known as the curse of dimensionality (Bellman 1961). Clearly the scatterplots,
scatterplot matrices, and other graphics included in Chapter 2 are likely to be
more useful when the number of variables in the data, the dimensionality of
the data, is relatively small rather than large. This brings us to principal com-
ponents analysis, a multivariate technique with the central aim of reducing
the dimensionality of a multivariate data set while accounting for as much of
the original variation as possible present in the data set. This aim is achieved
by transforming to a new set of variables, the principal components, that are
linear combinations of the original variables, which are uncorrelated and are
ordered so that the first few of them account for most of the variation in all
the original variables. In the best of all possible worlds, the result of a principal
components analysis would be the creation of a small number of new variables
that can be used as surrogates for the originally large number of variables and
consequently provide a simpler basis for, say, graphing or summarising the
data, and also perhaps when undertaking further multivariate analyses of the
data.

3.2 Principal components analysis (PCA)

The basic goal of principal components analysis is to describe variation in a
set of correlated variables, x> = (x1, . . . , xq), in terms of a new set of uncor-
related variables, y> = (y1, . . . , yq), each of which is a linear combination of
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the x variables. The new variables are derived in decreasing order of “impor-
tance” in the sense that y1 accounts for as much as possible of the variation in
the original data amongst all linear combinations of x. Then y2 is chosen to
account for as much as possible of the remaining variation, subject to being
uncorrelated with y1, and so on. The new variables defined by this process,
y1, . . . , yq, are the principal components.

The general hope of principal components analysis is that the first few
components will account for a substantial proportion of the variation in the
original variables, x1, . . . , xq, and can, consequently, be used to provide a con-
venient lower-dimensional summary of these variables that might prove useful
for a variety of reasons. Consider, for example, a set of data consisting of
examination scores for several different subjects for each of a number of stu-
dents. One question of interest might be how best to construct an informative
index of overall examination performance. One obvious possibility would be
the mean score for each student, although if the possible or observed range of
examination scores varied from subject to subject, it might be more sensible
to weight the scores in some way before calculating the average, or alterna-
tively standardise the results for the separate examinations before attempting
to combine them. In this way, it might be possible to spread the students out
further and so obtain a better ranking. The same result could often be achieved
by applying principal components to the observed examination results and us-
ing the student’s scores on the first principal components to provide a measure
of examination success that maximally discriminates between them.

A further possible application for principal components analysis arises in
the field of economics, where complex data are often summarised by some kind
of index number; for example, indices of prices, wage rates, cost of living,
and so on. When assessing changes in prices over time, the economist will
wish to allow for the fact that prices of some commodities are more variable
than others, or that the prices of some of the commodities are considered
more important than others; in each case the index will need to be weighted
accordingly. In such examples, the first principal component can often satisfy
the investigator’s requirements.

But it is not always the first principal component that is of most interest
to a researcher. A taxonomist, for example, when investigating variation in
morphological measurements on animals for which all the pairwise correlations
are likely to be positive, will often be more concerned with the second and
subsequent components since these might provide a convenient description
of aspects of an animal’s “shape”. The latter will often be of more interest
to the researcher than aspects of an animal’s “size” which here, because of
the positive correlations, will be reflected in the first principal component.
For essentially the same reasons, the first principal component derived from,
say, clinical psychiatric scores on patients may only provide an index of the
severity of symptoms, and it is the remaining components that will give the
psychiatrist important information about the “pattern” of symptoms.
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The principal components are most commonly (and properly) used as a
means of constructing an informative graphical representation of the data (see
later in the chapter) or as input to some other analysis. One example of the
latter is provided by regression analysis; principal components may be useful
here when:

� There are too many explanatory variables relative to the number of obser-
vations.

� The explanatory variables are highly correlated.

Both situations lead to problems when applying regression techniques,
problems that may be overcome by replacing the original explanatory vari-
ables with the first few principal component variables derived from them.
An example will be given later, and other applications of the technique are
described in Rencher (2002).

In some disciplines, particularly psychology and other behavioural sciences,
the principal components may be considered an end in themselves and re-
searchers may then try to interpret them in a similar fashion as for the factors
in an exploratory factor analysis (see Chapter 5). We shall make some com-
ments about this practise later in the chapter.

3.3 Finding the sample principal components

Principal components analysis is overwhelmingly an exploratory technique for
multivariate data. Although there are inferential methods for using the sample
principal components derived from a random sample of individuals from some
population to test hypotheses about population principal components (see
Jolliffe 2002), they are very rarely seen in accounts of principal components
analysis that appear in the literature. Quintessentially principal components
analysis is an aid for helping to understand the observed data set whether or
not this is actually a “sample” in any real sense. We use this observation as
the rationale for describing only sample principal components in this chapter.

The first principal component of the observations is that linear combina-
tion of the original variables whose sample variance is greatest amongst all
possible such linear combinations. The second principal component is defined
as that linear combination of the original variables that accounts for a maxi-
mal proportion of the remaining variance subject to being uncorrelated with
the first principal component. Subsequent components are defined similarly.
The question now arises as to how the coefficients specifying the linear com-
binations of the original variables defining each component are found. A little
technical material is needed to answer this question.

The first principal component of the observations, y1, is the linear combi-
nation

y1 = a11x1 + a12x2 + · · ·+ a1qxq
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whose sample variance is greatest among all such linear combinations. Be-
cause the variance of y1 could be increased without limit simply by increasing
the coefficients a>1 = (a11, a12, . . . , a1q), a restriction must be placed on these
coefficients. As we shall see later, a sensible constraint is to require that the
sum of squares of the coefficients should take the value one, although other
constraints are possible and any multiple of the vector a1 produces basically
the same component. To find the coefficients defining the first principal com-
ponent, we need to choose the elements of the vector a1 so as to maximise
the variance of y1 subject to the sum of squares constraint, which can be
written a>1 a1 = 1. The sample variance of y1 that is a linear function of the
x variables is given by (see Chapter 1) a>1 Sa1, where S is the q × q sample
covariance matrix of the x variables. To maximise a function of several vari-
ables subject to one or more constraints, the method of Lagrange multipliers
is used. Full details are given in Morrison (1990) and Jolliffe (2002), and we
will not give them here. (The algebra of an example with q = 2 is, however,
given in Section 3.5.) We simply state that the Lagrange multiplier approach
leads to the solution that a1 is the eigenvector or characteristic vector of the
sample covariance matrix, S, corresponding to this matrix’s largest eigenvalue
or characteristic root . The eigenvalues λ and eigenvectors γ of a q× q matrix
A are such that Aγ = λγ; for more details, see, for example, Mardia, Kent,
and Bibby (1979).

The second principal component, y2, is defined to be the linear combination

y2 = a21x1 + a22x2 + · · ·+ a2qxq

(i.e., y2 = a>2 x, where a>2 = (a21, a22, . . . , a2q) and x> = (x1, x2, . . . , xq)) that
has the greatest variance subject to the following two conditions:

a>2 a2 = 1,

a>2 a1 = 0.

(The second condition ensures that y1 and y2 are uncorrelated; i.e., that the
sample correlation is zero.)

Similarly, the jth principal component is that linear combination yj = a>j x
that has the greatest sample variance subject to the conditions

a>j aj = 1,

a>j ai = 0 (i < j).

Application of the Lagrange multiplier technique demonstrates that the vector
of coefficients defining the jth principal component, aj , is the eigenvector of S
associated with its jth largest eigenvalue. If the q eigenvalues of S are denoted
by λ1, λ2, . . . , λq, then by requiring that a>i ai = 1 it can be shown that the
variance of the ith principal component is given by λi. The total variance
of the q principal components will equal the total variance of the original
variables so that
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q∑
i=1

λi = s21 + s22 + · · ·+ s2q,

where s2i is the sample variance of xi. We can write this more concisely as∑q
i=1 λi = trace(S).
Consequently, the jth principal component accounts for a proportion Pj

of the total variation of the original data, where

Pj =
λj

trace(S)
.

The first m principal components, where m < q account for a proportion P (m)

of the total variation in the original data, where

P (m) =

∑m
j=1 λj

trace(S)
.

In geometrical terms, it is easy to show that the first principal component
defines the line of best fit (in the sense of minimising residuals orthogonal to
the line) to the q-dimensional observations in the sample. These observations
may therefore be represented in one dimension by taking their projection
onto this line; that is, finding their first principal component score. If the
observations happen to be collinear in q dimensions, this representation would
account completely for the variation in the data and the sample covariance
matrix would have only one non-zero eigenvalue. In practise, of course, such
collinearity is extremely unlikely, and an improved representation would be
given by projecting the q-dimensional observations onto the space of the best
fit, this being defined by the first two principal components. Similarly, the
first m components give the best fit in m dimensions. If the observations fit
exactly into a space of m dimensions, it would be indicated by the presence
of q − m zero eigenvalues of the covariance matrix. This would imply the
presence of q−m linear relationships between the variables. Such constraints
are sometimes referred to as structural relationships. In practise, in the vast
majority of applications of principal components analysis, all the eigenvalues
of the covariance matrix will be non-zero.

3.4 Should principal components be extracted from the
covariance or the correlation matrix?

One problem with principal components analysis is that it is not scale-
invariant. What this means can be explained using an example given in Mardia
et al. (1979). Suppose the three variables in a multivariate data set are weight
in pounds, height in feet, and age in years, but for some reason we would like
our principal components expressed in ounces, inches, and decades. Intuitively
two approaches seem feasible;
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1. Multiply the variables by 16, 12, and 1/10, respectively and then carry
out a principal components analysis on the covariance matrix of the three
variables.

2. Carry out a principal components analysis on the covariance matrix of the
original variables and then multiply the elements of the relevant compo-
nent by 16, 12, and 1/10.

Unfortunately, these two procedures do not generally lead to the same result.
So if we imagine a set of multivariate data where the variables are of com-
pletely different types, for example length, temperature, blood pressure, or
anxiety rating, then the structure of the principal components derived from
the covariance matrix will depend upon the essentially arbitrary choice of units
of measurement; for example, changing the length from centimetres to inches
will alter the derived components. Additionally, if there are large differences
between the variances of the original variables, then those whose variances
are largest will tend to dominate the early components. Principal components
should only be extracted from the sample covariance matrix when all the
original variables have roughly the same scale. But this is rare in practise and
consequently, in practise, principal components are extracted from the correla-
tion matrix of the variables, R. Extracting the components as the eigenvectors
of R is equivalent to calculating the principal components from the original
variables after each has been standardised to have unit variance. It should be
noted, however, that there is rarely any simple correspondence between the
components derived from S and those derived from R. And choosing to work
with R rather than with S involves a definite but possibly arbitrary decision
to make variables “equally important”.

To demonstrate how the principal components of the covariance matrix of a
data set can differ from the components extracted from the data’s correlation
matrix, we will use the example given in Jolliffe (2002). The data in this
example consist of eight blood chemistry variables measured on 72 patients in
a clinical trial. The correlation matrix of the data, together with the standard
deviations of each of the eight variables, is

R> blood_corr

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1.000 0.290 0.202 -0.055 -0.105 -0.252 -0.229 0.058

[2,] 0.290 1.000 0.415 0.285 -0.376 -0.349 -0.164 -0.129

[3,] 0.202 0.415 1.000 0.419 -0.521 -0.441 -0.145 -0.076

[4,] -0.055 0.285 0.419 1.000 -0.877 -0.076 0.023 -0.131

[5,] -0.105 -0.376 -0.521 -0.877 1.000 0.206 0.034 0.151

[6,] -0.252 -0.349 -0.441 -0.076 0.206 1.000 0.192 0.077

[7,] -0.229 -0.164 -0.145 0.023 0.034 0.192 1.000 0.423

[8,] 0.058 -0.129 -0.076 -0.131 0.151 0.077 0.423 1.000
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R> blood_sd

rblood plate wblood neut lymph bilir sodium potass

0.371 41.253 1.935 0.077 0.071 4.037 2.732 0.297

There are considerable differences between these standard deviations. We can
apply principal components analysis to both the covariance and correlation
matrix of the data using the following R code:

R> blood_pcacov <- princomp(covmat = blood_cov)

R> summary(blood_pcacov, loadings = TRUE)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 41.2877 3.880213 2.641973 1.624584

Proportion of Variance 0.9856 0.008705 0.004036 0.001526

Cumulative Proportion 0.9856 0.994323 0.998359 0.999885

Comp.5 Comp.6 Comp.7 Comp.8

Standard deviation 3.540e-01 2.562e-01 8.511e-02 2.373e-02

Proportion of Variance 7.244e-05 3.794e-05 4.188e-06 3.255e-07

Cumulative Proportion 1.000e+00 1.000e+00 1.000e+00 1.000e+00

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

rblood 0.943 0.329

plate -0.999

wblood -0.192 -0.981

neut 0.758 -0.650

lymph -0.649 -0.760

bilir 0.961 0.195 -0.191

sodium 0.193 -0.979

potass 0.329 -0.942

R> blood_pcacor <- princomp(covmat = blood_corr)

R> summary(blood_pcacor, loadings = TRUE)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.671 1.2376 1.1177 0.8823 0.7884

Proportion of Variance 0.349 0.1915 0.1562 0.0973 0.0777

Cumulative Proportion 0.349 0.5405 0.6966 0.7939 0.8716

Comp.6 Comp.7 Comp.8

Standard deviation 0.6992 0.66002 0.31996

Proportion of Variance 0.0611 0.05445 0.01280

Cumulative Proportion 0.9327 0.98720 1.00000

Loadings:
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Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

[1,] -0.194 0.417 0.400 0.652 0.175 -0.363 0.176 0.102

[2,] -0.400 0.154 0.168 -0.848 0.230 -0.110

[3,] -0.459 0.168 -0.274 0.251 0.403 0.677

[4,] -0.430 -0.472 -0.171 0.169 0.118 -0.237 0.678

[5,] 0.494 0.360 -0.180 -0.139 0.136 0.157 0.724

[6,] 0.319 -0.320 -0.277 0.633 -0.162 0.384 0.377

[7,] 0.177 -0.535 0.410 -0.163 -0.299 -0.513 0.367

[8,] 0.171 -0.245 0.709 0.198 0.469 -0.376

(The “blanks” in this output represent very small values.) Examining the re-
sults, we see that each of the principal components of the covariance matrix
is largely dominated by a single variable, whereas those for the correlation
matrix have moderate-sized coefficients on several of the variables. And the
first component from the covariance matrix accounts for almost 99% of the
total variance of the observed variables. The components of the covariance
matrix are completely dominated by the fact that the variance of the plate
variable is roughly 400 times larger than the variance of any of the seven
other variables. Consequently, the principal components from the covariance
matrix simply reflect the order of the sizes of the variances of the observed
variables. The results from the correlation matrix tell us, in particular, that a
weighted contrast of the first four and last four variables is the linear function
with the largest variance. This example illustrates that when variables are on
very different scales or have very different variances, a principal components
analysis of the data should be performed on the correlation matrix, not on
the covariance matrix.

3.5 Principal components of bivariate data with
correlation coefficient r

Before we move on to look at some practical examples of the application of
principal components analysis, it will be helpful to look in a little more detail
at the mathematics of the method in one very simple case. We will do this
in this section for bivariate data where the two variables, x1 and x2, have
correlation coefficient r. The sample correlation matrix in this case is simply

R =

(
1.0 r
r 0.1

)
.

In order to find the principal components of the data we need to find the
eigenvalues and eigenvectors of R. The eigenvalues are found as the roots of
the equation

det(R− λI) = 0.

This leads to the quadratic equation in λ
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(1− λ)2 − r2 = 0,

and solving this equation leads to eigenvalues λ1 = 1 + r, λ2 = 1 − r. Note
that the sum of the eigenvalues is two, equal to trace(R). The eigenvector
corresponding to λ1 is obtained by solving the equation

Ra1 = λ1a1.

This leads to the equations

a11 + ra12 = (1 + r)a11,

ra11 + a12 = (1 + r)a12.

The two equations are identical, and both reduce to requiring a11 = a12. If
we now introduce the normalisation constraint a>1 a1 = 1, we find that

a11 = a12 =
1√
2
.

Similarly, we find the second eigenvector is given by a21 = 1√
2

and a22 = − 1√
2
.

The two principal components are then given by

y1 =
1√
2

(x1 + x2), y2 =
1√
2

(x1 − x2).

We can calculate the sample variance of the first principal component as

Var(y1) = Var

[
1√
2

(x1 + x2)

]
=

1

2
Var(x1 + x2)

=
1

2
[Var(x1) + Var(x2) + 2Cov(x1, x2)]

=
1

2
(1 + 1 + 2r) = 1 + r.

Similarly, the variance of the second principal component is 1− r.
Notice that if r < 0, the order of the eigenvalues and hence of the principal

components is reversed; if r = 0, the eigenvalues are both equal to 1 and any
two solutions at right angles could be chosen to represent the two components.
Two further points should be noted:

1. There is an arbitrary sign in the choice of the elements of ai. It is custom-
ary (but not universal) to choose ai1 to be positive.

2. The coefficients that define the two components do not depend on r, al-
though the proportion of variance explained by each does change with r.
As r tends to 1, the proportion of variance accounted for by y1, namely
(1 + r)/2, also tends to one. When r = 1, the points all align on a straight
line and the variation in the data is unidimensional.
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3.6 Rescaling the principal components

The coefficients defining the principal components derived as described in the
previous section are often rescaled so that they are correlations or covariances
between the original variables and the derived components. The rescaled co-
efficients are often useful in interpreting a principal components analysis. The
covariance of variable i with component j is given by

Cov(xi, yj) = λjaji.

The correlation of variable xi with component yj is therefore

rxi,yj =
λjaji√

Var(xi)Var(yj)
=

λjaji

si
√
λj

=
aji
√
λj

si
.

If the components are extracted from the correlation matrix rather than the
covariance matrix, the correlation between variable and component becomes

rxi,yj = aji
√
λj

because in this case the standard deviation, si, is unity. (Although for con-
venience we have used the same nomenclature for the eigenvalues and the
eigenvectors extracted from the covariance matrix or the correlation matrix,
they will, of course, not be equal.) The rescaled coefficients from a principal
components analysis of a correlation matrix are analogous to factor loadings,
as we shall see in Chapter 5. Often these rescaled coefficients are presented as
the results of a principal components analysis and used in interpretation.

3.7 How the principal components predict the observed
covariance matrix

In this section, we will look at how the principal components reproduce the
observed covariance or correlation matrix from which they were extracted. To
begin, let the initial vectors a1,a2, . . . ,aq, that define the principal compo-
nents be used to form a q × q matrix, A = (a1,a2, . . . ,aq); we assume that
these are vectors extracted from the covariance matrix, S, and scaled so that
a>i ai = 1. Arrange the eigenvalues λ1, λ2, . . . , λq along the main diagonal of a
diagonal matrix, Λ. Then it can be shown that the covariance matrix of the
observed variables x1, x2, . . . , xq is given by

S = AΛA>.

This is known as the spectral decomposition of S. Rescaling the vectors
a1,a2, . . . ,aq so that the sum of squares of their elements is equal to the

corresponding eigenvalue (i.e., calculating a∗i = λ
1
2
i ai) allows S to be written

more simply as
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S = A∗A∗>,

where A∗ =
(
a∗1 . . .a

∗
q

)
.

If the matrix A∗m is formed from, say, the first m components rather than
from all q, then A∗mA∗m

> gives the predicted value of S based on these m
components. It is often useful to calculate such a predicted value based on the
number of components considered adequate to describe the data to informally
assess the “fit” of the principal components analysis. How this number of
components might be chosen is considered in the next section.

3.8 Choosing the number of components

As described earlier, principal components analysis is seen to be a technique
for transforming a set of observed variables into a new set of variables that
are uncorrelated with one another. The variation in the original q variables
is only completely accounted for by all q principal components. The useful-
ness of these transformed variables, however, stems from their property of
accounting for the variance in decreasing proportions. The first component,
for example, accounts for the maximum amount of variation possible for any
linear combination of the original variables. But how useful is this artificial
variate constructed from the observed variables? To answer this question we
would first need to know the proportion of the total variance of the original
variables for which it accounted. If, for example, 80% of the variation in a
multivariate data set involving six variables could be accounted for by a sim-
ple weighted average of the variable values, then almost all the variation can
be expressed along a single continuum rather than in six-dimensional space.
The principal components analysis would have provided a highly parsimonious
summary (reducing the dimensionality of the data from six to one) that might
be useful in later analysis.

So the question we need to ask is how many components are needed to
provide an adequate summary of a given data set. A number of informal and
more formal techniques are available. Here we shall concentrate on the former;
examples of the use of formal inferential methods are given in Jolliffe (2002)
and Rencher (2002).

The most common of the relatively ad hoc procedures that have been sug-
gested for deciding upon the number of components to retain are the following:

� Retain just enough components to explain some specified large percentage
of the total variation of the original variables. Values between 70% and
90% are usually suggested, although smaller values might be appropriate
as q or n, the sample size, increases.

� Exclude those principal components whose eigenvalues are less than the
average,

∑q
i=1

λi

q . Since
∑q
i=1 λi = trace(S), the average eigenvalue is also

the average variance of the original variables. This method then retains
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those components that account for more variance than the average for the
observed variables.

� When the components are extracted from the correlation matrix,
trace(R) = q, and the average variance is therefore one, so applying the
rule in the previous bullet point, components with eigenvalues less than
one are excluded. This rule was originally suggested by Kaiser (1958), but
Jolliffe (1972), on the basis of a number of simulation studies, proposed
that a more appropriate procedure would be to exclude components ex-
tracted from a correlation matrix whose associated eigenvalues are less
than 0.7.

� Cattell (1966) suggests examination of the plot of the λi against i, the so-
called scree diagram. The number of components selected is the value of i
corresponding to an“elbow”in the curve, i.e., a change of slope from“steep”
to “shallow”. In fact, Cattell was more specific than this, recommending
to look for a point on the plot beyond which the scree diagram defines a
more or less straight line, not necessarily horizontal. The first point on the
straight line is then taken to be the last component to be retained. And
it should also be remembered that Cattell suggested the scree diagram in
the context of factor analysis rather than applied to principal components
analysis.

� A modification of the scree digram described by Farmer (1971) is the log-
eigenvalue diagram consisting of a plot of log(λi) against i.

Returning to the results of the principal components analysis of the blood
chemistry data given in Section 3.3, we find that the first four components
account for nearly 80% of the total variance, but it takes a further two com-
ponents to push this figure up to 90%. A cutoff of one for the eigenvalues
leads to retaining three components, and with a cutoff of 0.7 four components
are kept. Figure 3.1 shows the scree diagram and log-eigenvalue diagram for
the data and the R code used to construct the two diagrams. The former
plot may suggest four components, although this is fairly subjective, and the
latter seems to be of little help here because it appears to indicate retaining
seven components, hardly much of a dimensionality reduction. The example
illustrates that the proposed methods for deciding how many components to
keep can (and often do) lead to different conclusions.

3.9 Calculating principal components scores

If we decide that we need, say, m principal components to adequately repre-
sent our data (using one or another of the methods described in the previous
section), then we will generally wish to calculate the scores on each of these
components for each individual in our sample. If, for example, we have derived
the components from the covariance matrix, S, then the m principal compo-
nents scores for individual i with original q×1 vector of variable values xi are
obtained as
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R> plot(log(blood_pcacor$sdev^2), xlab = "Component number",

+ ylab = "log(Component variance)", type="l",

+ main = "Log(eigenvalue) diagram")
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Fig. 3.1. Scree diagram and log-eigenvalue diagram for principal components of the
correlation matrix of the blood chemistry data.

yi1 = a>1 xi

yi2 = a>2 xi
...

yim = a>mxi

If the components are derived from the correlation matrix, then xi would
contain individual i’s standardised scores for each variable.

R> plot(blood_pcacor$sdev^2, xlab = "Component number",

+ ylab = "Component variance", type = "l", main = "Scree diagram")
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The principal components scores calculated as above have variances equal
to λj for j = 1, . . . ,m. Many investigators might prefer to have scores with
mean zero and variance equal to unity. Such scores can be found as

z = Λ−1m A>mx,

where Λm is an m × m diagonal matrix with λ1, λ2, . . . , λm on the main
diagonal, Am = (a1 . . .am), and x is the q × 1 vector of standardised scores.
We should note here that the first m principal components scores are the same
whether we retain all possible q components or just the first m. As we shall
see in Chapter 5, this is not the case with the calculation of factor scores.

3.10 Some examples of the application of principal
components analysis

In this section, we will look at the application of PCA to a number of data
sets, beginning with one involving only two variables, as this allows us to
illustrate graphically an important point about this type of analysis.

3.10.1 Head lengths of first and second sons

Table 3.1: headsize data. Head Size Data.

head1 breadth1 head2 breadth2 head1 breadth1 head2 breadth2

191 155 179 145 190 159 195 157
195 149 201 152 188 151 187 158
181 148 185 149 163 137 161 130
183 153 188 149 195 155 183 158
176 144 171 142 186 153 173 148
208 157 192 152 181 145 182 146
189 150 190 149 175 140 165 137
197 159 189 152 192 154 185 152
188 152 197 159 174 143 178 147
192 150 187 151 176 139 176 143
179 158 186 148 197 167 200 158
183 147 174 147 190 163 187 150
174 150 185 152

The data in Table 3.1 give the head lengths and head breadths (in millimetres)
for each of the first two adult sons in 25 families. Here we shall use only the
head lengths; the head breadths will be used later in the chapter. The mean
vector and covariance matrix of the head length measurements are found using
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R> head_dat <- headsize[, c("head1", "head2")]

R> colMeans(head_dat)

head1 head2

185.7 183.8

R> cov(head_dat)

head1 head2

head1 95.29 69.66

head2 69.66 100.81

The principal components of these data, extracted from their covariance ma-
trix, can be found using

R> head_pca <- princomp(x = head_dat)

R> head_pca

Call:

princomp(x = head_dat)

Standard deviations:

Comp.1 Comp.2

12.691 5.215

2 variables and 25 observations.

R> print(summary(head_pca), loadings = TRUE)

Importance of components:

Comp.1 Comp.2

Standard deviation 12.6908 5.2154

Proportion of Variance 0.8555 0.1445

Cumulative Proportion 0.8555 1.0000

Loadings:

Comp.1 Comp.2

head1 0.693 -0.721

head2 0.721 0.693

and are
y1 = 0.693x1 + 0.721x2 y2 = −0.721x1 + 0.693x2

with variances 167.77 and 28.33. The first principal component accounts for a
proportion 167.77/(167.77 + 28.33) = 0.86 of the total variance in the original
variables. Note that the total variance of the principal components is 196.10,
which as expected is equal to the total variance of the original variables,
found by adding the relevant terms in the covariance matrix given earlier; i.e.,
95.29 + 100.81 = 196.10.
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How should the two derived components be interpreted? The first compo-
nent is essentially the sum of the head lengths of the two sons, and the second
component is the difference in head lengths. Perhaps we can label the first
component “size” and the second component “shape”, but later we will have
some comments about trying to give principal components such labels.

To calculate an individual’s score on a component, we simply multiply the
variable values minus the appropriate mean by the loading for the variable
and add these values over all variables. We can illustrate this calculation using
the data for the first family, where the head length of the first son is 191 mm
and for the second son 179 mm. The score for this family on the first principal
component is calculated as

0.693 · (191− 185.72) + 0.721 · (179− 183.84) = 0.169,

and on the second component the score is

−0.721 · (191− 185.72) + 0.693 · (179− 183.84) = −7.61.

The variance of the first principal components scores will be 167.77, and the
variance of the second principal component scores will be 28.33.

We can plot the data showing the axes corresponding to the principal
components. The first axis passes through the mean of the data and has slope
0.721/0.693, and the second axis also passes through the mean and has slope
−0.693/0.721. The plot is shown in Figure 3.2. This example illustrates that
a principal components analysis is essentially simply a rotation of the axes of
the multivariate data scatter. And we can also plot the principal components
scores to give Figure 3.3. (Note that in this figure the range of the x-axis and
the range for the y-axis have been made the same to account for the larger
variance of the first principal component.)

We can use the principal components analysis of the head size data to
demonstrate how the principal components reproduce the observed covariance
matrix. We first need to rescale the principal components we have at this point
by multiplying them by the square roots of their respective variances to give
the new components

y1 = 12.952(0.693x1 + 0.721x2), i.e., y1 = 8.976x1 + 9.338x2

and

y2 = 5.323(−0.721x1 + 0.693x2), i.e., y2 = −3.837x1 + 3.688x2,

leading to the matrix A∗2 as defined in Section 1.5.1:

A∗2 =

(
8.976 −3.837
9.338 3.688

)
.

Multiplying this matrix by its transpose should recreate the covariance matrix
of the head length data; doing the matrix multiplication shows that it does
recreate S:
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R> a1<-183.84-0.721*185.72/0.693

R> b1<-0.721/0.693

R> a2<-183.84-(-0.693*185.72/0.721)

R> b2<--0.693/0.721

R> plot(head_dat, xlab = "First son's head length (mm)",

+ ylab = "Second son's head length")

R> abline(a1, b1)

R> abline(a2, b2, lty = 2)
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Fig. 3.2. Head length of first and second sons, showing axes corresponding to the
principal components of the sample covariance matrix of the data.

A∗2(A∗2)> =

(
95.29 69.66
69.66 100.81

)
.

(As an exercise, readers might like to find the predicted covariance matrix
using only the first component.)

The head size example has been useful for discussing some aspects of prin-
cipal components analysis but it is not, of course, typical of multivariate data
sets encountered in practise, where many more than two variables will be
recorded for each individual in a study. In the next two subsections, we con-
sider some more interesting examples.
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R> xlim <- range(head_pca$scores[,1])

R> plot(head_pca$scores, xlim = xlim, ylim = xlim)
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Fig. 3.3. Plot of the first two principal component scores for the head size data.

3.10.2 Olympic heptathlon results

The pentathlon for women was first held in Germany in 1928. Initially this
consisted of the shot put, long jump, 100 m, high jump, and javelin events,
held over two days. In the 1964 Olympic Games, the pentathlon became the
first combined Olympic event for women, consisting now of the 80 m hurdles,
shot, high jump, long jump, and 200 m. In 1977, the 200 m was replaced by
the 800 m run, and from 1981 the IAAF brought in the seven-event heptathlon
in place of the pentathlon, with day one containing the events 100 m hurdles,
shot, high jump, and 200 m run, and day two the long jump, javelin, and
800 m run. A scoring system is used to assign points to the results from each
event, and the winner is the woman who accumulates the most points over
the two days. The event made its first Olympic appearance in 1984.
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Table 3.2: heptathlon data. Results of Olympic heptathlon, Seoul, 1988.

hurdles highjump shot run200m longjump javelin run800m score

Joyner-Kersee (USA) 12.69 1.86 15.80 22.56 7.27 45.66 128.51 7291
John (GDR) 12.85 1.80 16.23 23.65 6.71 42.56 126.12 6897
Behmer (GDR) 13.20 1.83 14.20 23.10 6.68 44.54 124.20 6858
Sablovskaite (URS) 13.61 1.80 15.23 23.92 6.25 42.78 132.24 6540
Choubenkova (URS) 13.51 1.74 14.76 23.93 6.32 47.46 127.90 6540
Schulz (GDR) 13.75 1.83 13.50 24.65 6.33 42.82 125.79 6411
Fleming (AUS) 13.38 1.80 12.88 23.59 6.37 40.28 132.54 6351
Greiner (USA) 13.55 1.80 14.13 24.48 6.47 38.00 133.65 6297
Lajbnerova (CZE) 13.63 1.83 14.28 24.86 6.11 42.20 136.05 6252
Bouraga (URS) 13.25 1.77 12.62 23.59 6.28 39.06 134.74 6252
Wijnsma (HOL) 13.75 1.86 13.01 25.03 6.34 37.86 131.49 6205
Dimitrova (BUL) 13.24 1.80 12.88 23.59 6.37 40.28 132.54 6171
Scheider (SWI) 13.85 1.86 11.58 24.87 6.05 47.50 134.93 6137
Braun (FRG) 13.71 1.83 13.16 24.78 6.12 44.58 142.82 6109
Ruotsalainen (FIN) 13.79 1.80 12.32 24.61 6.08 45.44 137.06 6101
Yuping (CHN) 13.93 1.86 14.21 25.00 6.40 38.60 146.67 6087
Hagger (GB) 13.47 1.80 12.75 25.47 6.34 35.76 138.48 5975
Brown (USA) 14.07 1.83 12.69 24.83 6.13 44.34 146.43 5972
Mulliner (GB) 14.39 1.71 12.68 24.92 6.10 37.76 138.02 5746
Hautenauve (BEL) 14.04 1.77 11.81 25.61 5.99 35.68 133.90 5734
Kytola (FIN) 14.31 1.77 11.66 25.69 5.75 39.48 133.35 5686
Geremias (BRA) 14.23 1.71 12.95 25.50 5.50 39.64 144.02 5508
Hui-Ing (TAI) 14.85 1.68 10.00 25.23 5.47 39.14 137.30 5290
Jeong-Mi (KOR) 14.53 1.71 10.83 26.61 5.50 39.26 139.17 5289
Launa (PNG) 16.42 1.50 11.78 26.16 4.88 46.38 163.43 4566

In the 1988 Olympics held in Seoul, the heptathlon was won by one of the
stars of women’s athletics in the USA, Jackie Joyner-Kersee. The results for
all 25 competitors in all seven disciplines are given in Table 3.2 (from Hand,
Daly, Lunn, McConway, and Ostrowski 1994). We shall analyse these data
using principal components analysis with a view to exploring the structure of
the data and assessing how the derived principal components scores (discussed
later) relate to the scores assigned by the official scoring system.

But before undertaking the principal components analysis, it is good data
analysis practise to carry out an initial assessment of the data using one or
another of the graphics described in Chapter 2. Some numerical summaries
may also be helpful before we begin the main analysis. And before any of these,
it will help to score all seven events in the same direction so that“large” values
are indicative of a “better” performance. The R code for reversing the values
for some events, then calculating the correlation coefficients between the ten
events and finally constructing the scatterplot matrix of the data is

R> heptathlon$hurdles <- with(heptathlon, max(hurdles)-hurdles)

R> heptathlon$run200m <- with(heptathlon, max(run200m)-run200m)

R> heptathlon$run800m <- with(heptathlon, max(run800m)-run800m)
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R> score <- which(colnames(heptathlon) == "score")

R> round(cor(heptathlon[,-score]), 2)

hurdles highjump shot run200m longjump javelin run800m

hurdles 1.00 0.81 0.65 0.77 0.91 0.01 0.78

highjump 0.81 1.00 0.44 0.49 0.78 0.00 0.59

shot 0.65 0.44 1.00 0.68 0.74 0.27 0.42

run200m 0.77 0.49 0.68 1.00 0.82 0.33 0.62

longjump 0.91 0.78 0.74 0.82 1.00 0.07 0.70

javelin 0.01 0.00 0.27 0.33 0.07 1.00 -0.02

run800m 0.78 0.59 0.42 0.62 0.70 -0.02 1.00

R> plot(heptathlon[,-score])

The scatterplot matrix appears in Figure 3.4.
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Fig. 3.4. Scatterplot matrix of the seven heptathlon events after transforming some
variables so that for all events large values are indicative of a better performance.
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Examination of the correlation matrix shows that most pairs of events are
positively correlated, some moderately (for example, high jump and shot) and
others relatively highly (for example, high jump and hurdles). The exceptions
to this general observation are the relationships between the javelin event and
the others, where almost all the correlations are close to zero. One explanation
might be that the javelin is a very “technical” event and perhaps the training
for the other events does not help the competitors in the javelin. But before
we speculate further, we should look at the scatterplot matrix of the seven
events shown in Figure 3.4. One very clear observation in this plot is that for
all events except the javelin there is an outlier who is very much poorer than
the other athletes at these six events, and this is the competitor from Papua
New Guinea (PNG), who finished last in the competition in terms of points
scored. But surprisingly, in the scatterplots involving the javelin, it is this
competitor who again stands out, but in this case she has the third highest
value for the event. It might be sensible to look again at both the correlation
matrix and the scatterplot matrix after removing the competitor from PNG;
the relevant R code is

R> heptathlon <- heptathlon[-grep("PNG", rownames(heptathlon)),]

R> score <- which(colnames(heptathlon) == "score")

R> round(cor(heptathlon[,-score]), 2)

hurdles highjump shot run200m longjump javelin run800m

hurdles 1.00 0.58 0.77 0.83 0.89 0.33 0.56

highjump 0.58 1.00 0.46 0.39 0.66 0.35 0.15

shot 0.77 0.46 1.00 0.67 0.78 0.34 0.41

run200m 0.83 0.39 0.67 1.00 0.81 0.47 0.57

longjump 0.89 0.66 0.78 0.81 1.00 0.29 0.52

javelin 0.33 0.35 0.34 0.47 0.29 1.00 0.26

run800m 0.56 0.15 0.41 0.57 0.52 0.26 1.00

The new scatterplot matrix is shown in Figure 3.5. Several of the cor-
relations are changed to some degree from those shown before removal of
the PNG competitor, particularly the correlations involving the javelin event,
where the very small correlations between performances in this event and the
others have increased considerably. Given the relatively large overall change
in the correlation matrix produced by omitting the PNG competitor, we shall
extract the principal components of the data from the correlation matrix after
this omission. The principal components can now be found using

R> heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE)

R> print(heptathlon_pca)

Standard deviations:

[1] 2.08 0.95 0.91 0.68 0.55 0.34 0.26

Rotation:
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R> plot(heptathlon[,-score], pch = ".", cex = 1.5)
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Fig. 3.5. Scatterplot matrix for the heptathlon data after removing observations
of the PNG competitor.

PC1 PC2 PC3 PC4 PC5 PC6 PC7

hurdles -0.45 0.058 -0.17 0.048 -0.199 0.847 -0.070

highjump -0.31 -0.651 -0.21 -0.557 0.071 -0.090 0.332

shot -0.40 -0.022 -0.15 0.548 0.672 -0.099 0.229

run200m -0.43 0.185 0.13 0.231 -0.618 -0.333 0.470

longjump -0.45 -0.025 -0.27 -0.015 -0.122 -0.383 -0.749

javelin -0.24 -0.326 0.88 0.060 0.079 0.072 -0.211

run800m -0.30 0.657 0.19 -0.574 0.319 -0.052 0.077

The summary method can be used for further inspection of the details:

R> summary(heptathlon_pca)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
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Standard deviation 2.079 0.948 0.911 0.6832 0.5462 0.3375

Proportion of Variance 0.618 0.128 0.119 0.0667 0.0426 0.0163

Cumulative Proportion 0.618 0.746 0.865 0.9313 0.9739 0.9902

PC7

Standard deviation 0.26204

Proportion of Variance 0.00981

Cumulative Proportion 1.00000

The linear combination for the first principal component is 2

R> a1 <- heptathlon_pca$rotation[,1]

R> a1

hurdles highjump shot run200m longjump javelin run800m

-0.4504 -0.3145 -0.4025 -0.4271 -0.4510 -0.2423 -0.3029

We see that the hurdles and long jump events receive the highest weight but
the javelin result is less important. For computing the first principal compo-
nent, the data need to be rescaled appropriately. The center and the scaling
used by prcomp internally can be extracted from the heptathlon_pca via

R> center <- heptathlon_pca$center

R> scale <- heptathlon_pca$scale

Now, we can apply the scale function to the data and multiply it with the
loadings matrix in order to compute the first principal component score for
each competitor

R> hm <- as.matrix(heptathlon[,-score])

R> drop(scale(hm, center = center, scale = scale) %*%

+ heptathlon_pca$rotation[,1])

Joyner-Kersee (USA) John (GDR) Behmer (GDR)

-4.757530 -3.147943 -2.926185

Sablovskaite (URS) Choubenkova (URS) Schulz (GDR)

-1.288136 -1.503451 -0.958467

Fleming (AUS) Greiner (USA) Lajbnerova (CZE)

-0.953445 -0.633239 -0.381572

Bouraga (URS) Wijnsma (HOL) Dimitrova (BUL)

-0.522322 -0.217701 -1.075984

Scheider (SWI) Braun (FRG) Ruotsalainen (FIN)

0.003015 0.109184 0.208868

Yuping (CHN) Hagger (GB) Brown (USA)

0.232507 0.659520 0.756855

Mulliner (GB) Hautenauve (BEL) Kytola (FIN)

1.880933 1.828170 2.118203

Geremias (BRA) Hui-Ing (TAI) Jeong-Mi (KOR)

2.770706 3.901167 3.896848
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or, more conveniently, by extracting the first from all pre-computed principal
components:

R> predict(heptathlon_pca)[,1]

Joyner-Kersee (USA) John (GDR) Behmer (GDR)

-4.757530 -3.147943 -2.926185

Sablovskaite (URS) Choubenkova (URS) Schulz (GDR)

-1.288136 -1.503451 -0.958467

Fleming (AUS) Greiner (USA) Lajbnerova (CZE)

-0.953445 -0.633239 -0.381572

Bouraga (URS) Wijnsma (HOL) Dimitrova (BUL)

-0.522322 -0.217701 -1.075984

Scheider (SWI) Braun (FRG) Ruotsalainen (FIN)

0.003015 0.109184 0.208868

Yuping (CHN) Hagger (GB) Brown (USA)

0.232507 0.659520 0.756855

Mulliner (GB) Hautenauve (BEL) Kytola (FIN)

1.880933 1.828170 2.118203

Geremias (BRA) Hui-Ing (TAI) Jeong-Mi (KOR)

2.770706 3.901167 3.896848

The first two components account for 75% of the variance. A barplot of
each component’s variance (see Figure 3.6) shows how the first two compo-
nents dominate.

R> plot(heptathlon_pca)
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Fig. 3.6. Barplot of the variances explained by the principal components (with
observations for PNG removed).
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The correlation between the score given to each athlete by the standard
scoring system used for the heptathlon and the first principal component score
can be found from

R> cor(heptathlon$score, heptathlon_pca$x[,1])

[1] -0.9931

This implies that the first principal component is in good agreement with the
score assigned to the athletes by official Olympic rules; a scatterplot of the
official score and the first principal component is given in Figure 3.7. (The
fact that the correlation is negative is unimportant here because of the arbi-
trariness of the signs of the coefficients defining the first principal component;
it is the magnitude of the correlation that is important.)

R> plot(heptathlon$score, heptathlon_pca$x[,1])
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Fig. 3.7. Scatterplot of the score assigned to each athlete in 1988 and the first
principal component.
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3.10.3 Air pollution in US cities

In this subsection, we will return to the air pollution data introduced in Chap-
ter 1. The data were originally collected to investigate the determinants of pol-
lution, presumably by regressing SO2 on the six other variables. Here, however,
we shall examine how principal components analysis can be used to explore
various aspects of the data, and will then look at how such an analysis can
also be used to address the determinants of pollution question.

To begin we shall ignore the SO2 variable and concentrate on the others,
two of which relate to human ecology (popul, manu) and four to climate (temp,
Wind, precip, predays). A case can be made to use negative temperature
values in subsequent analyses since then all six variables are such that high
values represent a less attractive environment. This is, of course, a personal
view, but as we shall see later, the simple transformation of temp does aid
interpretation.

Prior to undertaking the principal components analysis on the air pollution
data, we will again construct a scatterplot matrix of the six variables, but here
we include the histograms for each variable on the main diagonal. The diagram
that results is shown in Figure 3.8.

A clear message from Figure 3.8 is that there is at least one city, and
probably more than one, that should be considered an outlier. (This should
come as no surprise given the investigation of the data in Chapter 2.) On the
manu variable, for example, Chicago, with a value of 3344, has about twice as
many manufacturing enterprises employing 20 or more workers as the city with
the second highest number (Philadelphia). We shall return to this potential
problem later in the chapter, but for the moment we shall carry on with a
principal components analysis of the data for all 41 cities.

For the data in Table 1.5, it seems necessary to extract the principal com-
ponents from the correlation rather than the covariance matrix, since the six
variables to be used are on very different scales. The correlation matrix and
the principal components of the data can be obtained in R using the following
command line code:

R> cor(USairpollution[,-1])

manu popul wind precip predays negtemp

manu 1.00000 0.95527 0.23795 -0.03242 0.13183 0.19004

popul 0.95527 1.00000 0.21264 -0.02612 0.04208 0.06268

wind 0.23795 0.21264 1.00000 -0.01299 0.16411 0.34974

precip -0.03242 -0.02612 -0.01299 1.00000 0.49610 -0.38625

predays 0.13183 0.04208 0.16411 0.49610 1.00000 0.43024

negtemp 0.19004 0.06268 0.34974 -0.38625 0.43024 1.00000

R> usair_pca <- princomp(USairpollution[,-1], cor = TRUE)
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R> data("USairpollution", package = "HSAUR2")

R> panel.hist <- function(x, ...) {

+ usr <- par("usr"); on.exit(par(usr))

+ par(usr = c(usr[1:2], 0, 1.5) )

+ h <- hist(x, plot = FALSE)

+ breaks <- h$breaks; nB <- length(breaks)

+ y <- h$counts; y <- y/max(y)

+ rect(breaks[-nB], 0, breaks[-1], y, col="grey", ...)

+ }

R> USairpollution$negtemp <- USairpollution$temp * (-1)

R> USairpollution$temp <- NULL

R> pairs(USairpollution[,-1], diag.panel = panel.hist,

+ pch = ".", cex = 1.5)
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Fig. 3.8. Scatterplot matrix of six variables in the air pollution data.
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R> summary(usair_pca, loadings = TRUE)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.482 1.225 1.1810 0.8719 0.33848

Proportion of Variance 0.366 0.250 0.2324 0.1267 0.01910

Cumulative Proportion 0.366 0.616 0.8485 0.9752 0.99426

Comp.6

Standard deviation 0.185600

Proportion of Variance 0.005741

Cumulative Proportion 1.000000

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

manu -0.612 0.168 -0.273 -0.137 0.102 0.703

popul -0.578 0.222 -0.350 -0.695

wind -0.354 -0.131 0.297 0.869 -0.113

precip -0.623 -0.505 0.171 0.568

predays -0.238 -0.708 -0.311 -0.580

negtemp -0.330 -0.128 0.672 -0.306 0.558 -0.136

One thing to note about the correlations is the very high values for manu and
popul, a finding we will return to later. We see that the first three components
all have variances (eigenvalues) greater than one and together account for
almost 85% of the variance of the original variables. Scores on these three
components might be used to graph the data with little loss of information.
We shall illustrate this possibility later.

Many users of principal components analysis might be tempted to search
for an interpretation of the derived components that allows them to be “la-
belled” in some sense. This requires examining the coefficients defining each
component (in the output shown above, these are scaled so that their sums
of squares equal unity–“blanks” indicate near zero values). We see that the
first component might be regarded as some index of “quality of life”, with
high values indicating a relatively poor environment (in the authors’ opinion
at least). The second component is largely concerned with a city’s rainfall
having high coefficients for precip and predays and might be labelled as the
“wet weather” component. Component three is essentially a contrast between
precip and negtemp and will separate cities having high temperatures and
high rainfall from those that are colder but drier. A suitable label might be
simply “climate type”.

Attempting to label components in this way is common, but perhaps it
should be a little less common; the following quotation from Marriott (1974)
should act as a salutary warning about the dangers of overinterpretation:

It must be emphasised that no mathematical method is, or could be,
designed to give physically meaningful results. If a mathematical ex-
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pression of this sort has an obvious physical meaning, it must be at-
tributed to a lucky change, or to the fact that the data have a strongly
marked structure that shows up in analysis. Even in the latter case,
quite small sampling fluctuations can upset the interpretation; for ex-
ample, the first two principal components may appear in reverse order,
or may become confused altogether. Reification then requires consid-
erable skill and experience if it is to give a true picture of the physical
meaning of the data.

Even if we do not care to label the three components, they can still be used
as the basis of various graphical displays of the cities. In fact, this is often the
most useful aspect of a principal components analysis since regarding the
principal components analysis as a means of providing an informative view
of multivariate data has the advantage of making it less urgent or tempting
to try to interpret and label the components. The first few component scores
provide a low-dimensional “map” of the observations in which the Euclidean
distances between the points representing the individuals best approximate
in some sense the Euclidean distances between the individuals based on the
original variables. We shall return to this point in Chapter 4.

So we will begin by looking at the scatterplot matrix of the first three
principal components and in each panel show the relevant bivariate boxplot;
points are labelled by abbreviated city names. The plot and the code used to
create it are shown in Figure 3.9.

The plot again demonstrates clearly that Chicago is an outlier and suggests
that Phoenix and Philadelphia may also be suspects in this respect. Phoenix
appears to offer the best quality of life (on the limited basis of the six variables
recorded), and Buffalo is a city to avoid if you prefer a drier environment. We
leave further interpretation to the readers.

We will now consider the main goal in the researcher’s mind when col-
lecting the air pollution data, namely determining which of the climate and
human ecology variables are the best predictors of the degree of air pollution
in a city as measured by the sulphur dioxide content of the air. This ques-
tion would normally be addressed by multiple linear regression, but there is
a potential problem with applying this technique to the air pollution data,
and that is the very high correlation between the manu and popul variables.
We might, of course, deal with this problem by simply dropping either manu

or popul, but here we will consider a possible alternative approach, and that
is regressing the SO2 levels on the principal components derived from the six
other variables in the data (see Figure 3.10). Using principal components in
regression analysis is discussed in detail in Jolliffe (2002); here we simply give
an example. The first question we need to ask is “how many principal compo-
nents should be used as explanatory variables in the regression?” The obvious
answer to this question is to use the number of principal components that
were identified as important in the original analysis; for example, those with
eigenvalues greater than one. But this is a case where the obvious answer is
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R> pairs(usair_pca$scores[,1:3], ylim = c(-6, 4), xlim = c(-6, 4),

+ panel = function(x,y, ...) {

+ text(x, y, abbreviate(row.names(USairpollution)),

+ cex = 0.6)

+ bvbox(cbind(x,y), add = TRUE)

+ })
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Fig. 3.9. Bivariate boxplots of the first three principal components.

not necessarily correct and, Jolliffe (2002) gives an example where there are
13 original explanatory variables and therefore 13 principal components to
consider, of which only the first four have variances greater than one. But
using all the principal components as explanatory variables shows that, for
example, component 12, with variance 0.04, is a significant predictor of the
response. So, bearing this example in mind, we will regress the SO2 variables
on all six principal components; the necessary R code is given on page 92.
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R> out <- sapply(1:6, function(i) {

+ plot(USairpollution$SO2,usair_pca$scores[,i],

+ xlab = paste("PC", i, sep = ""),

+ ylab = "Sulphur dioxide concentration")

+ })
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Fig. 3.10. Sulphur dioxide concentration depending on principal components.
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R> usair_reg <- lm(SO2 ~ usair_pca$scores,

+ data = USairpollution)

R> summary(usair_reg)

Call:

lm(formula = SO2 ~ usair_pca$scores, data = USairpollution)

Residuals:

Min 1Q Median 3Q Max

-23.00 -8.54 -0.99 5.76 48.76

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.049 2.286 13.15 6.9e-15

usair_pca$scoresComp.1 -9.942 1.542 -6.45 2.3e-07

usair_pca$scoresComp.2 -2.240 1.866 -1.20 0.2384

usair_pca$scoresComp.3 -0.375 1.936 -0.19 0.8475

usair_pca$scoresComp.4 -8.549 2.622 -3.26 0.0025

usair_pca$scoresComp.5 15.176 6.753 2.25 0.0312

usair_pca$scoresComp.6 39.271 12.316 3.19 0.0031

Residual standard error: 14.6 on 34 degrees of freedom

Multiple R-squared: 0.67, Adjusted R-squared: 0.611

F-statistic: 11.5 on 6 and 34 DF, p-value: 5.42e-07

Clearly, the first principal component score is the most predictive of sul-
phur dioxide concentration, but it is also clear that components with small
variance do not necessarily have small correlations with the response. We leave
it as an exercise for the reader to investigate this example in more detail.

3.11 The biplot

A biplot is a graphical representation of the information in an n × p data
matrix. The “bi” reflects that the technique displays in a single diagram the
variances and covariances of the variables and the distances (see Chapter 1)
between units. The technique is based on the singular value decomposition of
a matrix (see Gabriel 1971).

A biplot is a two-dimensional representation of a data matrix obtained
from eigenvalues and eigenvectors of the covariance matrix and obtained as

X2 = (p1,p2)

(√
λ1 0
0
√
λ2

)(
q>1
q>2

)
,

where X2 is the“rank two”approximation of the data matrix X, λ1 and λ2 are
the first two eigenvalues of the matrix nS, and q1 and q2 are the corresponding
eigenvectors. The vectors p1 and p2 are obtained as



3.12 Sample size for principal components analysis 93

pi =
1√
λi

Xqi; i = 1, 2.

The biplot is the plot of the n rows of
√
n(p1,p2) and the q rows of

n−1/2(
√
λ1q1,

√
λ2q2) represented as vectors. The distance between the points

representing the units reflects the generalised distance between the units (see
Chapter 1), the length of the vector from the origin to the coordinates rep-
resenting a particular variable reflects the variance of that variable, and the
correlation of two variables is reflected by the angle between the two corre-
sponding vectors for the two variables–the smaller the angle, the greater the
correlation. Full technical details of the biplot are given in Gabriel (1981)
and in Gower and Hand (1996). The biplot for the heptathlon data omitting
the PNG competitor is shown in Figure 3.11. The plot in Figure 3.11 clearly
shows that the winner of the gold medal, Jackie Joyner-Kersee, accumulates
the majority of her points from the three events long jump, hurdles, and 200
m. We can also see from the biplot that the results of the 200 m, the hurdles
and the long jump are highly correlated, as are the results of the javelin and
the high jump; the 800 m time has relatively small correlation with all the
other events and is almost uncorrelated with the high jump and javelin results.
The first component largely separates the competitors by their overall score,
with the second indicating which are their best events; for example, John,
Choubenkova, and Behmer are placed near the end of the vector, representing
the 800 m event because this is, relatively speaking, the event in which they
give their best performance. Similarly Yuping, Scheider, and Braun can be
seen to do well in the high jump. We shall have a little more to say about the
biplot in the next chapter.

3.12 Sample size for principal components analysis

There have been many suggestions about the number of units needed when
applying principal components analysis. Intuitively, larger values of n should
lead to more convincing results and make these results more generalisable.
But unfortunately many of the suggestions made, for example that n should
be greater than 100 or that n should be greater than five times the number
of variables, are based on minimal empirical evidence. However, Guadagnoli
and Velicer (1988) review several studies that reach the conclusion that it is
the minimum value of n rather than the ratio of n to q that is most relevant,
although the range of values suggested for the minimum value of n in these
papers, from 50 to 400, sheds some doubt on their value. And indeed other
authors, for example Gorsuch (1983) and Hatcher (1994), lean towards the
ratio of the minimum value of n to q as being of greater importance and
recommend at least 5:1.

Perhaps the most detailed investigation of the problem is that reported in
Osborne and Costello (2004), who found that the “best” results from principal
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R> biplot(heptathlon_pca, col = c("gray", "black"))
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Fig. 3.11. Biplot of the (scaled) first two principal components (with observations
for PNG removed).

components analysis result when n and the ratio of n to q are both large. But
the actual values needed depend largely on the separation of the eigenvalues
defining the principal components structure. If these eigenvalues are “close
together”, then a larger number of units will be needed to uncover the structure
precisely than if they are far apart.

3.13 Canonical correlation analysis

Principal components analysis considers interrelationships within a set of vari-
ables. But there are situations where the researcher may be interested in
assessing the relationships between two sets of variables. For example, in psy-
chology, an investigator may measure a number of aptitude variables and a
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number of achievement variables on a sample of students and wish to say
something about the relationship between “aptitude” and “achievement”. And
Krzanowski (1988) suggests an example in which an agronomist has taken,
say, q1 measurements related to the yield of plants (e.g., height, dry weight,
number of leaves) at each of n sites in a region and at the same time may
have recorded q2 variables related to the weather conditions at these sites (e.g.,
average daily rainfall, humidity, hours of sunshine). The whole investigation
thus consists of taking (q1 + q2) measurements on n units, and the question of
interest is the measurement of the association between “yield” and “weather”.
One technique for addressing such questions is canonical correlation analysis,
although it has to be said at the outset that the technique is used less widely
than other multivariate techniques, perhaps because the results from such an
analysis are frequently difficult to interpret. For these reasons, the account
given here is intentionally brief.

One way to view canonical correlation analysis is as an extension of mul-
tiple regression where a single variable (the response) is related to a number
of explanatory variables and the regression solution involves finding the lin-
ear combination of the explanatory variables that is most highly correlated
with the response. In canonical correlation analysis where there is more than
a single variable in each of the two sets, the objective is to find the linear
functions of the variables in one set that maximally correlate with linear func-
tions of variables in the other set. Extraction of the coefficients that define
the required linear functions has similarities to the process of finding principal
components. A relatively brief account of the technical aspects of canonical
correlation analysis (CCA) follows; full details are given in Krzanowski (1988)
and Mardia et al. (1979).

The purpose of canonical correlation analysis is to characterise the inde-
pendent statistical relationships that exist between two sets of variables, x> =
(x1, x2, . . . , xq1) and y> = (y1, y2, . . . , yq2). The overall (q1 + q2) × (q1 + q2)
correlation matrix contains all the information on associations between pairs
of variables in the two sets, but attempting to extract from this matrix some
idea of the association between the two sets of variables is not straightfor-
ward. This is because the correlations between the two sets may not have a
consistent pattern, and these between-set correlations need to be adjusted in
some way for the within-set correlations. The question of interest is “how do
we quantify the association between the two sets of variables x and y?” The
approach adopted in CCA is to take the association between x and y to be the
largest correlation between two single variables, u1 and v1, derived from x and
y, with u1 being a linear combination of x1, x2, . . . , xq1 and v1 being a linear
combination of y1, y2, . . . , yq2 . But often a single pair of variables (u1, v1) is
not sufficient to quantify the association between the x and y variables, and
we may need to consider some or all of s pairs (u1, v1), (u2, v2), . . . , (us, vs)
to do this, where s = min(q1, q2). Each ui is a linear combination of the vari-
ables in x, ui = a>i x, and each vi is a linear combination of the variables y,
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vi = b>i y, with the coefficients (ai,bi) (i = 1 . . . s) being chosen so that the
ui and vi satisfy the following:

1. The ui are mutually uncorrelated; i.e., Cov(ui, uj) = 0 for i 6= j.
2. The vi are mutually uncorrelated; i.e., Cov(vi, vj) = 0 for i 6= j.
3. The correlation between ui and vi is Ri for i = 1 . . . s, where R1 > R2 >
· · · > Rs. The Ri are the canonical correlations.

4. The ui are uncorrelated with all vj except vi; i.e., Cov(ui, vj) = 0 for i 6= j.

The vectors ai and bi i = 1, . . . , s, which define the required linear combi-
nations of the x and y variables, are found as the eigenvectors of matrices
E1(q1 × q1) (the ai) and E2(q2 × q2) (the bi), defined as

E1 = R−111 R12R
−1
22 R21, E2 = R−122 R21R

−1
11 R12,

where R11 is the correlation matrix of the variables in x, R22 is the correlation
matrix of the variables in y, and R12 = R21 is the q1×q2 matrix of correlations
across the two sets of variables. The canonical correlations R1, R2, . . . , Rs are
obtained as the square roots of the non-zero eigenvalues of either E1 or E2.
The s canonical correlations R1, R2, . . . , Rs express the association between
the x and y variables after removal of the within-set correlation.

Inspection of the coefficients of each original variable in each canonical
variate can provide an interpretation of the canonical variate in much the same
way as interpreting principal components. Such interpretation of the canonical
variates may help to describe just how the two sets of original variables are
related (see Krzanowski 2010). In practise, interpretation of canonical variates
can be difficult because of the possibly very different variances and covariances
among the original variables in the two sets, which affects the sizes of the
coefficients in the canonical variates. Unfortunately, there is no convenient
normalisation to place all coefficients on an equal footing (see Krzanowski
2010). In part, this problem can be dealt with by restricting interpretation to
the standardised coefficients; i.e., the coefficients that are appropriate when
the original variables have been standardised.

We will now look at two relatively simple examples of the application of
canonical correlation analysis.

3.13.1 Head measurements

As our first example of CCA, we shall apply the technique to data on head
length and head breadth for each of the first two adult sons in 25 families
shown in Table 3.1. (Part of these data were used earlier in the chapter.) These
data were collected by Frets (1921), and the question that was of interest to
Frets was whether there is a relationship between the head measurements
for pairs of sons. We shall address this question by using canonical correla-
tion analysis. Here we shall develop the canonical correlation analysis from
first principles as detailed above. Assuming the head measurements data are
contained in the data frame headsize, the necessary R code is
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R> headsize.std <- sweep(headsize, 2,

+ apply(headsize, 2, sd), FUN = "/")

R> R <- cor(headsize.std)

R> r11 <- R[1:2, 1:2]

R> r22 <- R[-(1:2), -(1:2)]

R> r12 <- R[1:2, -(1:2)]

R> r21 <- R[-(1:2), 1:2]

R> (E1 <- solve(r11) %*% r12 %*% solve(r22) %*%r21)

head1 breadth1

head1 0.3225 0.3168

breadth1 0.3019 0.3021

R> (E2 <- solve(r22) %*% r21 %*% solve(r11) %*%r12)

head2 breadth2

head2 0.3014 0.3002

breadth2 0.3185 0.3232

R> (e1 <- eigen(E1))

$values

[1] 0.621745 0.002888

$vectors

[,1] [,2]

[1,] 0.7270 -0.7040

[2,] 0.6866 0.7102

R> (e2 <- eigen(E2))

$values

[1] 0.621745 0.002888

$vectors

[,1] [,2]

[1,] -0.6838 -0.7091

[2,] -0.7297 0.7051

Here the four linear functions are found to be

u1 = +0.73x1 + 0.69x2,

u2 = −0.70x1 + 0.71x2,

v1 = −0.68x3 − 0.73x4,

v2 = −0.71x3 + 0.71x4.

R> girth1 <- headsize.std[,1:2] %*% e1$vectors[,1]

R> girth2 <- headsize.std[,3:4] %*% e2$vectors[,1]
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R> shape1 <- headsize.std[,1:2] %*% e1$vectors[,2]

R> shape2 <- headsize.std[,3:4] %*% e2$vectors[,2]

R> (g <- cor(girth1, girth2))

[,1]

[1,] -0.7885

R> (s <- cor(shape1, shape2))

[,1]

[1,] 0.05374

R> plot(girth1, girth2)

R> plot(shape1, shape2)
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Fig. 3.12. Scatterplots of girth and shape for first and second sons.

The first canonical variate for both first and second sons is simply a
weighted sum of the two head measurements and might be labelled “girth”;
these two variates have a correlation of −0.79. (The negative value arises be-
cause of the arbitrariness of the sign in the first coefficient of an eigenvector–
here both coefficients for girth in first sons are positive and for second sons
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they are both negative. The correlation can also be found as the square root
of the first eigenvalue of E1 (and E2), namely 0.6217.) Each second canonical
variate is a weighted difference of the two head measurements and can be in-
terpreted roughly as head “shape”; here the correlation is 0.05 (which can also
be found as the square root of the second eigenvalue of E1, namely 0.0029).
(Girth and shape are defined to be uncorrelated bioth within and between
first and second sons.)

In this example, it is clear that the association between the two head
measurements of first and second sons is almost entirely expressed through
the “girth” variables, with the two “shape” variables being almost uncorre-
lated. The association between the two sets of measurements is essentially
one-dimensional. A scatterplot of girth for first and second sons and a similar
plot for shape reinforce this conclusion. Both plots are shown in Figure 3.12.

3.13.2 Health and personality

We can now move on to a more substantial example taken from Affifi, Clark,
and May (2004) and also discussed by Krzanowski (2010). The data for this
example arise from a study of depression amongst 294 respondents in Los An-
geles. The two sets of variables of interest were “health variables”, namely the
CESD (the sum of 20 separate numerical scales measuring different aspects of
depression) and a measure of general health and “personal” variables, of which
there were four: gender, age, income, and educational level (numerically coded
from the lowest “less than high school”, to the highest, “finished doctorate”).
The sample correlation matrix between these variables is given in Table 3.3.

Table 3.3: LAdepr data. Los Angeles Depression Data.

CESD Health Gender Age Edu Income

1.000 0.212 0.124 -0.164 -0.101 -0.158
0.212 1.000 0.098 0.308 -0.207 -0.183
0.124 0.098 1.000 0.044 -0.106 -0.180

-0.164 0.308 0.044 1.000 -0.208 -0.192
-0.101 -0.207 -0.106 -0.208 1.000 0.492
-0.158 -0.183 -0.180 -0.192 0.492 1.000

Here the maximum number of canonical variate pairs is two, and they can be
found using the following R code:
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R> r11 <- LAdepr[1:2, 1:2]

R> r22 <- LAdepr[-(1:2), -(1:2)]

R> r12 <- LAdepr[1:2, -(1:2)]

R> r21 <- LAdepr[-(1:2), 1:2]

R> (E1 <- solve(r11) %*% r12 %*% solve(r22) %*%r21)

CESD Health

CESD 0.08356 -0.04312

Health -0.03256 0.13338

R> (E2 <- solve(r22) %*% r21 %*% solve(r11) %*%r12)

Gender Age Edu Income

Gender 0.015478 -0.001483 -0.01813 -0.02224

Age -0.002445 0.147069 -0.03981 -0.01599

Edu -0.014915 -0.026019 0.02544 0.02508

Income -0.021163 0.013027 0.02159 0.02895

R> (e1 <- eigen(E1))

$values

[1] 0.15347 0.06347

$vectors

[,1] [,2]

[1,] 0.5250 -0.9065

[2,] -0.8511 -0.4222

R> (e2 <- eigen(E2))

$values

[1] 1.535e-01 6.347e-02 -8.760e-18 6.633e-19

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.002607 0.4904 -0.4617 0.79705

[2,] -0.980095 -0.3208 -0.1865 0.06251

[3,] 0.185801 -0.4270 -0.7974 -0.05817

[4,] -0.069886 -0.6887 0.3409 0.59784

(Note that the third and fourth eigenvalues of E2 are essentially zero, as we
would expect in this case.) The first canonical correlation is 0.409, calculated
as the square root of the first eigenvalue of E1, which is given above as 0.15347.
If tested as outlined in Exercise 3.4, it has an associated p-value that is very
small; there is strong evidence that the first canonical correlation is significant.
The corresponding variates, in terms of standardised original variables, are

u1 = +0.53 CESD − 0.85 Health

v1 = −0.00 Gender − 0.98 Age + 0.19 Education − 0.07 Income .
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High coefficients correspond to CESD (positively) and health (negatively)
for the perceived health variables, and to Age (negatively) and Education
(positively) for the personal variables. It appears that relatively older and
medicated people tend to have lower depression scores, but perceive their
health as relatively poor, while relatively younger but educated people have
the opposite health perception. (We are grateful to Krzanowski 2010, for this
interpretation.)

The second canonical correlation is 0.261, calculated as the square root
of the second eigenvalue, found from the R output above to be 0.06347; this
correlation is also significant (see Exercise 3.4). The corresponding canonical
variates are

u1 = −0.91 CESD − 0.42 Health

v1 = +0.49 Gender − 0.32 Age − 0.43 Education − 0.69 Income .

Since the higher value of the Gender variable is for females, the interpretation
here is that relatively young, poor, and uneducated females are associated with
higher depression scores and, to a lesser extent, with poor perceived health
(again this interpretation is due to Krzanowski 2010).

3.14 Summary

Principal components analysis is among the oldest of multivariate techniques,
having been introduced originally by Pearson (1901) and independently by
Hotelling (1933). It remains, however, one of the most widely employed meth-
ods of multivariate analysis, useful both for providing a convenient method
of displaying multivariate data in a lower dimensional space and for possibly
simplifying other analyses of the data. The reduction in dimensionality that
can often be achieved by a principal components analysis is possible only if the
original variables are correlated; if the original variables are independent of
one another a principal components analysis cannot lead to any simplification.

The examples of principal components analysis given in this chapter have
involved variables that are continuous. But when used as a descriptive tech-
nique there is no reason for the variables in the analysis to be of any particular
type. So variables might be a mixture of continuous, ordinal, and even binary
variables. Linear functions of continuous variables are perhaps easier to inter-
pret than corresponding functions of binary variables, but the basic objective
of principal components analysis, namely to summarise most of the“variation”
present in the original q variables, can be achieved regardless of the nature of
the observed variables.

The results of a canonical correlation analysis have the reputation of often
being difficult to interpret, and in many respects this is a reputation that
is well earned. Certainly one has to know the variables very well to have
any hope of extracting a convincing explanation of the results. But in some
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circumstances (the heads measurement data is an example) CCA can provide
a useful description and informative insights into the association between two
sets of variables.

Finally, we should mention a technique known as independent component
analysis (ICA), a potentially powerful technique that seeks to uncover hidden
variables in high-dimensional data. In particular, ICA is often able to separate
independent sources linearly mixed in several sensors; for example, in prenatal
diagnostics a multichannel electrocardiogram (ECG) may be used to record a
mixture of maternal and foetal electrical activity, including foetal heart rate
and maternal heart rate. However, the maternal ECG will be much stronger
than the foetal signal, and the signal recorded is also likely to be affected by
other sources of electrical interference. Such data can be separated into their
component signals by ICA, as demonstrated in Izenman (2008).

Similar mixtures of signals arise in many other areas, for example monitor-
ing of human brain-wave activity and functional magnetic resonance imaging
experiments, and consequently ICA has become increasingly used in such ar-
eas. Details of the methods are given in Hyvärinen (1999) and Hyvärinen,
Karhunen, and Oja (2001). Interestingly, the first step in analysing multivari-
ate data with ICA is often a principal components analysis. We have chosen
not to describe ICA in this book because it is technically demanding and
also rather specialised, but we should mention in passing that the method is
available in R via the add-on package fastICA (Marchini, Heaton, and Ripley
2010).

3.15 Exercises

Ex. 3.1 Construct the scatterplot of the heptathlon data showing the contours
of the estimated bivariate density function on each panel. Is this graphic
more useful than the unenhanced scatterplot matrix?

Ex. 3.2 Construct a diagram that shows the SO2 variable in the air pollution
data plotted against each of the six explanatory variables, and in each
of the scatterplots show the fitted linear regression and a fitted locally
weighted regression. Does this diagram help in deciding on the most ap-
propriate model for determining the variables most predictive of sulphur
dioxide levels?

Ex. 3.3 Find the principal components of the following correlation matrix
given by MacDonnell (1902) from measurements of seven physical char-
acteristics in each of 3000 convicted criminals:
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R =

Head length
Head breadth
Face breadth
Left finger length
Left forearm length
Left foot length
Height



1.000
0.402 1.000
0.396 0.618 1.000
0.301 0.150 0.321 1.000
0.305 0.135 0.289 0.846 1.000
0.339 0.206 0.363 0.759 0.797 1.000
0.340 0.183 0.345 0.661 0.800 0.736 1.000


.

How would you interpret the derived components?
Ex. 3.4 Not all canonical correlations may be statistically significant. An

approximate test proposed by Bartlett (1947) can be used to deter-
mine how many significant relationships exist. The test statistic for
testing that at least one canonical correlation is significant is Φ2

0 =
−
{
n− 1

2 (q1 + q2 + 1)
}∑s

i=1 log(1−λi), where the λi are the eigenvalues
of E1 and E2. Under the null hypothesis that all correlations are zero, Φ2

0

has a chi-square distribution with q1×q2 degrees of freedom. Write R code
to apply this test to the headsize data (Table 3.1) and the depression

data (Table 3.3).
Ex. 3.5 Repeat the regression analysis for the air pollution data described

in the text after removing whatever cities you think should be regarded
as outliers. For the results given in the text and the results from the
outliers-removed data, produce scatterplots of sulphur dioxide concentra-
tion against each of the principal component scores. Interpret your results.
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Multidimensional Scaling

4.1 Introduction

In Chapter 3, we noted in passing that one of the most useful ways of using
principal components analysis was to obtain a low-dimensional “map” of the
data that preserved as far as possible the Euclidean distances between the ob-
servations in the space of the original q variables. In this chapter, we will make
this aspect of principal component analysis more explicit and also introduce
a class of other methods, labelled multidimensional scaling , that aim to pro-
duce similar maps of data but do not operate directly on the usual multivariate
data matrix, X. Instead they are applied to distance matrices (see Chapter 1),
which are derived from the matrix X (an example of a distance matrix de-
rived from a small set of multivariate data is shown in Subsection 4.4.2), and
also to so-called dissimilarity or similarity matrices that arise directly in a
number of ways, in particular from judgements made by human raters about
how alike pairs of objects, stimuli, etc., of interest are. An example of a di-
rectly observed dissimilarity matrix is shown in Table 4.5, with judgements
about political and war leaders that had major roles in World War II being
given by a subject after receiving the simple instructions to rate each pair of
politicians on a nine-point scale, with 1 indicating two politicians they regard
as very similar and 9 indicating two they regard as very dissimilar. (If the
nine point-scale had been 1 for very dissimilar and 9 for very similar, then the
result would have been a rating of similarity, although similarities are often
scaled to lie in a [0, 1] interval. The term proximity is often used to encompass
both dissimilarity and similarity ratings.)

4.2 Models for proximity data

Models are fitted to proximities in order to clarify, display, and help under-
stand and possibly explain any structure or pattern amongst the observed or
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calculated proximities not readily apparent in the collection of numerical val-
ues. In some areas, particularly psychology, the ultimate goal in the analysis of
a set of proximities is more specific, namely the development of theories for ex-
plaining similarity judgements; in other words, trying to answer the question,
“what makes things seem alike or seem different?” According to Carroll and
Arabie (1980) and Carroll, Clark, and DeSarbo (1984), models for the analysis
of proximity data can be categorised into one of three major classes: spatial
models, tree models, and hybrid models. In this chapter and in this book, we
only deal with the first of these three classes. For details of tree models and
hybrid models, see, for example, Everitt and Rabe-Hesketh (1997).

4.3 Spatial models for proximities: Multidimensional
scaling (MDS)

A spatial representation of a proximity matrix consists of a set of n m-
dimensional coordinates, each one of which represents one of the n units in
the data. The required coordinates are generally found by minimising some
measure of “fit” between the distances implied by the coordinates and the ob-
served proximities. In simple terms, a geometrical model is sought in which the
larger the observed distance or dissimilarity between two units (or the smaller
their similarity), the further apart should be the points representing them in
the model. In general (but not exclusively), the distances between the points
in the spatial model are assumed to be Euclidean. Finding the best-fitting set
of coordinates and the appropriate value of m needed to adequately represent
the observed proximities is the aim of the many methods of multidimensional
scaling that have been proposed. The hope is that the number of dimensions,
m, will be small, ideally two or three, so that the derived spatial configuration
can be easily plotted. Multidimensional scaling is essentially a data reduction
technique because the aim is to find a set of points in low dimension that
approximate the possibly high-dimensional configuration represented by the
original proximity matrix. The variety of methods that have been proposed
largely differ in how agreement between fitted distances and observed prox-
imities is assessed. In this chapter, we will consider two methods, classical
multidimensional scaling and non-metric multidimensional scaling .

4.4 Classical multidimensional scaling

First, like all MDS techniques, classical scaling seeks to represent a proximity
matrix by a simple geometrical model or map. Such a model is characterised
by a set of points x1,x2, . . . ,xn, in m dimensions, each point representing
one of the units of interest, and a measure of the distance between pairs of
points. The objective of MDS is to determine both the dimensionality, m,
of the model, and the n m-dimensional coordinates, x1,x2, . . . ,xn, so that
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the model gives a “good” fit for the observed proximities. Fit will often be
judged by some numerical index that measures how well the proximities and
the distances in the geometrical model match. In essence, this simply means
that the larger an observed dissimilarity between two stimuli (or the smaller
their similarity), the further apart should be the points representing them in
the final geometrical model.

The question now arises as to how we estimate m, and the coordinate val-
ues x1,x2, . . . ,xn, from the observed proximity matrix. Classical scaling pro-
vides an answer to this question based on the work of Young and Householder
(1938). To begin, we must note that there is no unique set of coordinate values
that give rise to a set of distances since the distances are unchanged by shifting
the whole configuration of points from one place to another or by rotation or
reflection of the configuration. In other words, we cannot uniquely determine
either the location or the orientation of the configuration. The location prob-
lem is usually overcome by placing the mean vector of the configuration at
the origin. The orientation problem means that any configuration derived can
be subjected to an arbitrary orthogonal transformation (see Chapter 5). Such
transformations can often be used to facilitate the interpretation of solutions,
as will be seen later (and again see Chapter 5).

4.4.1 Classical multidimensional scaling: Technical details

To begin our account of the method, we shall assume that the proximity
matrix we are dealing with is a matrix of Euclidean distances, D, derived
from a raw n × q data matrix, X. In Chapter 1, we saw how to calculate
Euclidean distances from X; classical multidimensional scaling is essentially
concerned with the reverse problem: given the distances, how do we find X?
First assume X is known and consider the n× n inner products matrix, B

B = XX>. (4.1)

The elements of B are given by

bij =

q∑
k=1

xikxjk. (4.2)

It is easy to see that the squared Euclidean distances between the rows of X
can be written in terms of the elements of B as

d2ij = bii + bjj − 2bij . (4.3)

If the bs could be found in terms of the ds in the equation above, then the
required coordinate values could be derived by factoring B as in (4.1). No
unique solution exists unless a location constraint is introduced; usually the
centre of the points x is set at the origin, so that

∑n
i=1 xik = 0 for all k =

1, 2 . . .m. These constraints and the relationship given in (4.2) imply that the
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sum of the terms in any row of B must be zero. Consequently, summing the
relationship given in (4.2) over i, over j, and finally over both i and j leads
to the series of equations

n∑
i=1

d2ij = T + nbjj ,

n∑
j=1

d2ij = T + nbii,

n∑
i=1

n∑
j=1

d2ij = 2nT,

where T =
∑n
i=1 bii is the trace of the matrix B. The elements of B can now

be found in terms of squared Euclidean distances as

bij = −1

2

(
d2ij − d2i. − d2.j + d2..

)
,

where

d2i. =
1

n

n∑
j=1

d2ij ,

d2.j =
1

n

n∑
i=1

d2ij ,

d2.. =
1

n2

n∑
i=1

n∑
j=1

d2ij .

Having now derived the elements of B in terms of Euclidean distances, it
remains to factor it to give the coordinate values. In terms of its spectral
decomposition (see Chapter 3), B can be written as

B = VΛV>,

where Λ = diag (λ1, . . . , λn) is the diagonal matrix of eigenvalues of B and
V = (V1, . . . ,Vn) the corresponding matrix of eigenvectors, normalised so
that the sum of squares of their elements is unity, that is, ViV

>
i = 1. The

eigenvalues are assumed to be labelled such that λ1 ≥ λ2 ≥ · · · ≥ λn. When
D arises from an n × q matrix of full rank, then the rank of B is q, so that
the last n− q of its eigenvalues will be zero. So B can be written as

B = V1Λ1V
>
1 ,

where V1 contains the first q eigenvectors and Λ1 the q non-zero eigenvalues.
The required coordinate values are thus
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X = V1Λ
1
2
1 ,

where Λ
1
2
1 = diag

(
λ

1
2
1 , . . . , λ

1
2
q

)
.

Using all q-dimensions will lead to complete recovery of the original Eu-
clidean distance matrix. The best-fitting m-dimensional representation is
given by the m eigenvectors of B corresponding to the m largest eigenval-
ues. The adequacy of the m-dimensional representation can be judged by the
size of the criterion

Pm =

∑m
i=1 λi∑n
i=1 λi

.

Values of Pm of the order of 0.8 suggest a reasonable fit.
It should be mentioned here that where the proximity matrix contains

Euclidean distances calculated from an n × q data matrix X, classical scal-
ing can be shown to be equivalent to principal components analysis, with the
required coordinate values corresponding to the scores on the principal com-
ponent extracted from the covariance matrix of the data. One result of this
duality is that classical multidimensional scaling is also referred to as principal
coordinates–see Gower (1966). And the m-dimensional principal components
solution (m < q) is “best” in the sense that it minimises the measure of fit

S =
n∑
i=1

n∑
i=1

(
d2ij −

(
d
(m)
ij

)2)
,

where dij is the Euclidean distance between individuals i and j based on their

original q variable values and d
(m)
ij is the corresponding distance calculated

from the m principal component scores.
When the observed proximity matrix is not Euclidean, the matrix B is

not positive-definite. In such cases, some of the eigenvalues of B will be neg-
ative; correspondingly, some coordinate values will be complex numbers. If,
however, B has only a small number of small negative eigenvalues, a useful
representation of the proximity matrix may still be possible using the eigen-
vectors associated with the m largest positive eigenvalues. The adequacy of
the resulting solution might be assessed using one of the following two criteria
suggested by Mardia et al. (1979):

P (1)
m =

∑m
i=1 |λi|∑n
i=1 |λi|

,

P (2)
m =

∑m
i=1 λ

2
i∑n

i=1 λ
2
i

.

Again we would look for values above 0.8 to claim a “good” fit. Alternatively,
Sibson (1979) recommends one of the following two criteria for deciding on
the number of dimensions for the spatial model to adequately represent the
observed proximities:
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Trace criterion: Choose the number of coordinates so that the sum of the pos-
itive eigenvalues is approximately equal to the sum of all the eigenvalues.

Magnitude criterion: Accept as genuinely positive only those eigenvalues
whose magnitude substantially exceeds that of the largest negative eigen-
value.

If, however, the matrix B has a considerable number of large negative
eigenvalues, classical scaling of the proximity matrix may be inadvisable and
some other methods of scaling, for example non-metric scaling (see the next
section), might be better employed.

4.4.2 Examples of classical multidimensional scaling

For our first example we will use the small set of multivariate data X

[,1] [,2] [,3] [,4] [,5]

[1,] 3 4 4 6 1

[2,] 5 1 1 7 3

[3,] 6 2 0 2 6

[4,] 1 1 1 0 3

[5,] 4 7 3 6 2

[6,] 2 2 5 1 0

[7,] 0 4 1 1 1

[8,] 0 6 4 3 5

[9,] 7 6 5 1 4

[10,] 2 1 4 3 1

and the associated matrix of Euclidean distances (computed via the dist()

function) will be our proximity matrix

R> (D <- dist(X))

1 2 3 4 5 6 7 8 9

2 5.196

3 8.367 6.083

4 7.874 8.062 6.325

5 3.464 6.557 8.367 9.274

6 5.657 8.426 8.832 5.292 7.874

7 6.557 8.602 8.185 3.873 7.416 5.000

8 6.164 8.888 8.367 6.928 6.000 7.071 5.745

9 7.416 9.055 6.856 8.888 6.557 7.550 8.832 7.416

10 4.359 6.164 7.681 4.796 7.141 2.646 5.099 6.708 8.000

To apply classical scaling to this matrix in R, we can use the cmdscale()

function to do the scaling:

R> cmdscale(D, k = 9, eig = TRUE)
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$points

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -1.6038 -2.38061 -2.2301 -0.3657 0.11536 0.000e+00

[2,] -2.8246 2.30937 -3.9524 0.3419 0.33169 -2.797e-08

[3,] -1.6908 5.13970 1.2880 0.6503 -0.05134 -1.611e-09

[4,] 3.9528 2.43234 0.3834 0.6864 -0.03461 -7.393e-09

[5,] -3.5985 -2.75538 -0.2551 1.0784 -1.26125 -5.198e-09

[6,] 2.9520 -1.35475 -0.1899 -2.8211 0.12386 -2.329e-08

[7,] 3.4690 -0.76411 0.3017 1.6369 -1.94210 -1.452e-08

[8,] 0.3545 -2.31409 2.2162 2.9240 2.00450 -1.562e-08

[9,] -2.9362 0.01280 4.3117 -2.5123 -0.18912 -1.404e-08

[10,] 1.9257 -0.32527 -1.8734 -1.6189 0.90299 6.339e-09

[,7] [,8] [,9]

[1,] 1.791e-08 NaN NaN

[2,] -1.209e-09 NaN NaN

[3,] 1.072e-09 NaN NaN

[4,] 1.088e-08 NaN NaN

[5,] -2.798e-09 NaN NaN

[6,] -7.146e-09 NaN NaN

[7,] 3.072e-09 NaN NaN

[8,] 2.589e-10 NaN NaN

[9,] 7.476e-09 NaN NaN

[10,] 3.303e-09 NaN NaN

$eig

[1] 7.519e+01 5.881e+01 4.961e+01 3.043e+01 1.037e+01

[6] 2.101e-15 5.769e-16 -2.819e-15 -3.233e-15 -6.274e-15

$x

NULL

$ac

[1] 0

$GOF

[1] 1 1

Note that as q = 5 in this example, eigenvalues six to nine are essentially zero
and only the first five columns of points represent the Euclidean distance ma-
trix. First we should confirm that the five-dimensional solution achieves com-
plete recovery of the observed distance matrix. We can do this simply by com-
paring the original distances with those calculated from the five-dimensional
scaling solution coordinates using the following R code:

R> max(abs(dist(X) - dist(cmdscale(D, k = 5))))

[1] 1.243e-14
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This confirms that all the differences are essentially zero and that therefore the
observed distance matrix is recovered by the five-dimensional classical scaling
solution.

We can also check the duality of classical scaling of Euclidean distances and
principal components analysis mentioned previously in the chapter by com-
paring the coordinates of the five-dimensional scaling solution given above
with the first five principal component (up to signs) scores obtained by apply-
ing PCA to the covariance matrix of the original data; the necessary R code
is

R> max(abs(prcomp(X)$x) - abs(cmdscale(D, k = 5)))

[1] 3.035e-14

Now let us look at two examples involving distances that are not Eu-
clidean. First, we will calculate the Manhattan distances between the rows of
the small data matrix X. The Manhattan distance for units i and j is given
by
∑q
k=1 |xik − xjk|, and these distances are not Euclidean. (Manhattan dis-

tances will be familiar to those readers who have walked around New York.)
The R code for calculating the Manhattan distances and then applying clas-
sical multidimensional scaling to the resulting distance matrix is:

R> X_m <- cmdscale(dist(X, method = "manhattan"),

+ k = nrow(X) - 1, eig = TRUE)

The criteria P
(1)
m and P

(2)
m can be computed from the eigenvalues as follows:

R> (X_eigen <- X_m$eig)

[1] 2.807e+02 2.494e+02 2.289e+02 9.251e+01 4.251e+01

[6] 2.197e+01 -7.105e-15 -1.507e+01 -2.805e+01 -5.683e+01

Note that some of the eigenvalues are negative in this case.

R> cumsum(abs(X_eigen)) / sum(abs(X_eigen))

[1] 0.2763 0.5218 0.7471 0.8382 0.8800 0.9016 0.9016 0.9165

[9] 0.9441 1.0000

R> cumsum(X_eigen^2) / sum(X_eigen^2)

[1] 0.3779 0.6764 0.9276 0.9687 0.9773 0.9796 0.9796 0.9807

[9] 0.9845 1.0000

The values of both criteria suggest that a three-dimensional solution seems to
fit well.
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Table 4.1: airdist data. Airline distances between ten US cities.

ATL ORD DEN HOU LAX MIA JFK SFO SEA IAD

ATL 0
ORD 587 0
DEN 1212 920 0
HOU 701 940 879 0
LAX 1936 1745 831 1374 0
MIA 604 1188 1726 968 2339 0
JFK 748 713 1631 1420 2451 1092 0
SFO 2139 1858 949 1645 347 2594 2571 0
SEA 218 1737 1021 1891 959 2734 2408 678 0
IAD 543 597 1494 1220 2300 923 205 2442 2329 0

For our second example of applying classical multidimensional scaling to non-
Euclidean distances, we shall use the airline distances between ten US cities
given in Table 4.1. These distances are not Euclidean since they relate essen-
tially to journeys along the surface of a sphere. To apply classical scaling to
these distances and to see the eigenvalues, we can use the following R code:

R> airline_mds <- cmdscale(airdist, k = 9, eig = TRUE)

R> airline_mds$points

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

ATL -434.8 724.22 440.93 0.18579 -1.258e-02 NaN NaN NaN

ORD -412.6 55.04 -370.93 4.39608 1.268e+01 NaN NaN NaN

DEN 468.2 -180.66 -213.57 30.40857 -9.585e+00 NaN NaN NaN

HOU -175.6 -515.22 362.84 9.48713 -4.860e+00 NaN NaN NaN

LAX 1206.7 -465.64 56.53 1.34144 6.809e+00 NaN NaN NaN

MIA -1161.7 -477.98 479.60 -13.79783 2.278e+00 NaN NaN NaN

JFK -1115.6 199.79 -429.67 -29.39693 -7.137e+00 NaN NaN NaN

SFO 1422.7 -308.66 -205.52 -26.06310 -1.983e+00 NaN NaN NaN

SEA 1221.5 887.20 170.45 -0.06999 -8.943e-05 NaN NaN NaN

IAD -1018.9 81.90 -290.65 23.50884 1.816e+00 NaN NaN NaN

(The nineth column containing NaNs is omitted from the output.) The eigen-
values are

R> (lam <- airline_mds$eig)

[1] 9.214e+06 2.200e+06 1.083e+06 3.322e+03 3.859e+02

[6] -5.204e-09 -9.323e+01 -2.169e+03 -9.091e+03 -1.723e+06

As expected (as the distances are not Euclidean), some of the eigenvalues

are negative and so we will again use the criteria P
(1)
m and P

(2)
m to assess

how many coordinates we need to adequately represent the observed distance
matrix. The values of the two criteria calculated from the eigenvalues are
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R> cumsum(abs(lam)) / sum(abs(lam))

[1] 0.6473 0.8018 0.8779 0.8781 0.8782 0.8782 0.8782 0.8783

[9] 0.8790 1.0000

R> cumsum(lam^2) / sum(lam^2)

[1] 0.9043 0.9559 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684

[9] 0.9684 1.0000

These values suggest that the first two coordinates will give an adequate rep-
resentation of the observed distances. The scatterplot of the two-dimensional
coordinate values is shown in Figure 4.1. In this two-dimensional representa-
tion, the geographical location of the cities has been very well recovered by the
two-dimensional multidimensional scaling solution obtained from the airline
distances.

Our next example of the use of classical multidimensional scaling will in-
volve the data shown in Table 4.2. These data show four measurements on
male Egyptian skulls from five epochs. The measurements are:

mb: maximum breadth of the skull;
bh: basibregmatic height of the skull;
bl: basialiveolar length of the skull; and
nh: nasal height of the skull.

Table 4.2: skulls data. Measurements of four variables taken from
Egyptian skulls of five periods.

epoch mb bh bl nh epoch mb bh bl nh epoch mb bh bl nh

c4000BC 131 138 89 49 c3300BC 137 136 106 49 c200BC 132 133 90 53
c4000BC 125 131 92 48 c3300BC 126 131 100 48 c200BC 134 134 97 54
c4000BC 131 132 99 50 c3300BC 135 136 97 52 c200BC 135 135 99 50
c4000BC 119 132 96 44 c3300BC 129 126 91 50 c200BC 133 136 95 52
c4000BC 136 143 100 54 c3300BC 134 139 101 49 c200BC 136 130 99 55
c4000BC 138 137 89 56 c3300BC 131 134 90 53 c200BC 134 137 93 52
c4000BC 139 130 108 48 c3300BC 132 130 104 50 c200BC 131 141 99 55
c4000BC 125 136 93 48 c3300BC 130 132 93 52 c200BC 129 135 95 47
c4000BC 131 134 102 51 c3300BC 135 132 98 54 c200BC 136 128 93 54
c4000BC 134 134 99 51 c3300BC 130 128 101 51 c200BC 131 125 88 48
c4000BC 129 138 95 50 c1850BC 137 141 96 52 c200BC 139 130 94 53
c4000BC 134 121 95 53 c1850BC 129 133 93 47 c200BC 144 124 86 50
c4000BC 126 129 109 51 c1850BC 132 138 87 48 c200BC 141 131 97 53
c4000BC 132 136 100 50 c1850BC 130 134 106 50 c200BC 130 131 98 53
c4000BC 141 140 100 51 c1850BC 134 134 96 45 c200BC 133 128 92 51
c4000BC 131 134 97 54 c1850BC 140 133 98 50 c200BC 138 126 97 54
c4000BC 135 137 103 50 c1850BC 138 138 95 47 c200BC 131 142 95 53
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Table 4.2: skulls data (continued).

epoch mb bh bl nh epoch mb bh bl nh epoch mb bh bl nh

c4000BC 132 133 93 53 c1850BC 136 145 99 55 c200BC 136 138 94 55
c4000BC 139 136 96 50 c1850BC 136 131 92 46 c200BC 132 136 92 52
c4000BC 132 131 101 49 c1850BC 126 136 95 56 c200BC 135 130 100 51
c4000BC 126 133 102 51 c1850BC 137 129 100 53 cAD150 137 123 91 50
c4000BC 135 135 103 47 c1850BC 137 139 97 50 cAD150 136 131 95 49
c4000BC 134 124 93 53 c1850BC 136 126 101 50 cAD150 128 126 91 57
c4000BC 128 134 103 50 c1850BC 137 133 90 49 cAD150 130 134 92 52
c4000BC 130 130 104 49 c1850BC 129 142 104 47 cAD150 138 127 86 47
c4000BC 138 135 100 55 c1850BC 135 138 102 55 cAD150 126 138 101 52
c4000BC 128 132 93 53 c1850BC 129 135 92 50 cAD150 136 138 97 58
c4000BC 127 129 106 48 c1850BC 134 125 90 60 cAD150 126 126 92 45
c4000BC 131 136 114 54 c1850BC 138 134 96 51 cAD150 132 132 99 55
c4000BC 124 138 101 46 c1850BC 136 135 94 53 cAD150 139 135 92 54
c3300BC 124 138 101 48 c1850BC 132 130 91 52 cAD150 143 120 95 51
c3300BC 133 134 97 48 c1850BC 133 131 100 50 cAD150 141 136 101 54
c3300BC 138 134 98 45 c1850BC 138 137 94 51 cAD150 135 135 95 56
c3300BC 148 129 104 51 c1850BC 130 127 99 45 cAD150 137 134 93 53
c3300BC 126 124 95 45 c1850BC 136 133 91 49 cAD150 142 135 96 52
c3300BC 135 136 98 52 c1850BC 134 123 95 52 cAD150 139 134 95 47
c3300BC 132 145 100 54 c1850BC 136 137 101 54 cAD150 138 125 99 51
c3300BC 133 130 102 48 c1850BC 133 131 96 49 cAD150 137 135 96 54
c3300BC 131 134 96 50 c1850BC 138 133 100 55 cAD150 133 125 92 50
c3300BC 133 125 94 46 c1850BC 138 133 91 46 cAD150 145 129 89 47
c3300BC 133 136 103 53 c200BC 137 134 107 54 cAD150 138 136 92 46
c3300BC 131 139 98 51 c200BC 141 128 95 53 cAD150 131 129 97 44
c3300BC 131 136 99 56 c200BC 141 130 87 49 cAD150 143 126 88 54
c3300BC 138 134 98 49 c200BC 135 131 99 51 cAD150 134 124 91 55
c3300BC 130 136 104 53 c200BC 133 120 91 46 cAD150 132 127 97 52
c3300BC 131 128 98 45 c200BC 131 135 90 50 cAD150 137 125 85 57
c3300BC 138 129 107 53 c200BC 140 137 94 60 cAD150 129 128 81 52
c3300BC 123 131 101 51 c200BC 139 130 90 48 cAD150 140 135 103 48
c3300BC 130 129 105 47 c200BC 140 134 90 51 cAD150 147 129 87 48
c3300BC 134 130 93 54 c200BC 138 140 100 52 cAD150 136 133 97 51

We shall calculate Mahalanobis distances between each pair of epochs using
the mahalanobis() function and apply classical scaling to the resulting dis-
tance matrix. In this calculation, we shall use the estimate of the assumed
common covariance matrix S

S =
29S1 + 29S2 + 29S3 + 29S4 + 29S5

149
,
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Fig. 4.1. Two-dimensional classical MDS solution for airline distances. The known
spatial arrangement is clearly visible in the plot.

where S1,S2, . . . ,S5 are the covariance matrices of the data in each epoch.
We shall then use the first two coordinate values to provide a map of the data
showing the relationships between epochs. The necessary R code is:

R> skulls_var <- tapply(1:nrow(skulls), skulls$epoch,

+ function(i) var(skulls[i,-1]))

R> S <- 0

R> for (v in skulls_var) S <- S + 29 * v

R> (S <- S / 149)

mb bh bl nh

mb 20.54407 0.03579 0.07696 1.955

bh 0.03579 22.85414 5.06040 2.769

bl 0.07696 5.06040 23.52998 1.103

nh 1.95503 2.76868 1.10291 9.880
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R> skulls_cen <- tapply(1:nrow(skulls), skulls$epoch,

+ function(i) apply(skulls[i,-1], 2, mean))

R> skulls_cen <- matrix(unlist(skulls_cen),

+ nrow = length(skulls_cen), byrow = TRUE)

R> skulls_mah <- apply(skulls_cen, 1,

+ function(cen) mahalanobis(skulls_cen, cen, S))

R> skulls_mah

[,1] [,2] [,3] [,4] [,5]

[1,] 0.00000 0.09355 0.9280 1.9330 2.7712

[2,] 0.09355 0.00000 0.7490 1.6380 2.2357

[3,] 0.92799 0.74905 0.0000 0.4553 0.9360

[4,] 1.93302 1.63799 0.4553 0.0000 0.2253

[5,] 2.77121 2.23571 0.9360 0.2253 0.0000

R> cmdscale(skulls_mah, k = nrow(skulls_mah) - 1,

+ eig = TRUE)$eig

[1] 5.113e+00 9.816e-02 -5.551e-16 -1.009e-01 -7.777e-01

R> skulls_mds <- cmdscale(skulls_mah)

The resulting plot is shown in Figure 4.2 and shows that the scaling solu-
tion for the skulls data is essentially unidimensional, with this single dimension
time ordering the five epochs. There appears to be a change in the “shape”
of the skulls over time, with maximum breadth increasing and basialiveolar
length decreasing.

Our final example of the application of classical multidimensional scal-
ing involves an investigation by Corbet, Cummins, Hedges, and Krzanowski
(1970), who report a study of water voles (genus Arvicola) in which the aim
was to compare British populations of these animals with those in Europe to
investigate whether more than one species might be present in Britain. The
original data consisted of observations of the presence or absence of 13 charac-
teristics in about 300 water vole skulls arising from six British populations and
eight populations from the rest of Europe. Table 4.3 gives a distance matrix
derived from the data as described in Corbet et al. (1970).

The following code finds the classical scaling solution and computes the two
criteria for assessing the required number of dimensions as described above.

R> data("watervoles", package = "HSAUR2")

R> voles_mds <- cmdscale(watervoles, k = 13, eig = TRUE)

R> voles_mds$eig

[1] 7.360e-01 2.626e-01 1.493e-01 6.990e-02 2.957e-02

[6] 1.931e-02 9.714e-17 -1.139e-02 -1.280e-02 -2.850e-02

[11] -4.252e-02 -5.255e-02 -7.406e-02 -1.098e-01

Note that some of the eigenvalues are negative. The criterion P
(1)
m can be

computed by
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Fig. 4.2. Two-dimensional solution from classical MDS applied to Mahalanobis
distances between epochs for the skull data.

R> cumsum(abs(voles_mds$eig))/sum(abs(voles_mds$eig))

[1] 0.4605 0.6248 0.7182 0.7619 0.7804 0.7925 0.7925 0.7996

[9] 0.8077 0.8255 0.8521 0.8850 0.9313 1.0000

and the criterion P
(2)
m is

R> cumsum((voles_mds$eig)^2)/sum((voles_mds$eig)^2)

[1] 0.8179 0.9220 0.9557 0.9631 0.9644 0.9649 0.9649 0.9651

[9] 0.9654 0.9666 0.9693 0.9735 0.9818 1.0000

Here the two criteria for judging the number of dimensions necessary to
give an adequate fit to the data are quite different. The second criterion
would suggest that two dimensions is adequate, but use of the first would
suggest perhaps that three or even four dimensions might be required. Here
we shall be guided by the second fit index and the two-dimensional solution
that can be plotted by extracting the coordinates from the points element of
the voles_mds object; the plot is shown in Figure 4.3.

It appears that the six British populations are close to populations liv-
ing in the Alps, Yugoslavia, Germany, Norway, and Pyrenees I (consisting
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R> x <- voles_mds$points[,1]

R> y <- voles_mds$points[,2]

R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",

+ xlim = range(x)*1.2, type = "n")

R> text(x, y, labels = colnames(watervoles), cex = 0.7)
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Fig. 4.3. Two-dimensional solution from classical multidimensional scaling of the
distance matrix for water vole populations.

of the species Arvicola terrestris) but rather distant from the populations in
Pyrenees II, North Spain and South Spain (species Arvicola sapidus). This re-
sult would seem to imply that Arvicola terrestris might be present in Britain
but it is less likely that this is so for Arvicola sapidus. But here, as the two-
dimensional fit may not be entirely what is needed to represent the observed
distances, we shall investigate the solution in a little more detail using the
minimum spanning tree.

The minimum spanning tree is defined as follows. Suppose n points are
given (possibly in many dimensions). Then a tree spanning these points (i.e.,
a spanning tree) is any set of straight line segments joining pairs of points
such that

� o closed loops occur,
� every point is visited at least one time, and
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� the tree is connected (i.e., it has paths between any pairs of points).

The length of the tree is defined to be the sum of the length of its segments,
and when a set of n points and the lengths of all

(
n
2

)
segments are given, then

the minimum spanning tree is defined as the spanning tree with minimum
length. Algorithms to find the minimum spanning tree of a set of n points
given the distances between them are given in Prim (1957) and Gower and
Ross (1969).

The links of the minimum spanning tree (of the spanning tree) of the
proximity matrix of interest may be plotted onto the two-dimensional scaling
representation in order to identify possible distortions produced by the scaling
solutions. Such distortions are indicated when nearby points on the plot are
not linked by an edge of the tree.

To find the minimum spanning tree of the water vole proximity matrix, the
function mst from the package ape (Paradis, Bolker, Claude, Cuong, Desper,
Durand, Dutheil, Gascuel, Heibl, Lawson, Lefort, Legendre, Lemon, Noel,
Nylander, Opgen-Rhein, Schliep, Strimmer, and de Vienne 2010) can be used,
and we can plot the minimum spanning tree on the two-dimensional scaling
solution as shown in Figure 4.4.

The plot indicates, for example, that the apparent closeness of the popu-
lations in Germany and Norway, suggested by the points representing them
in the MDS solution, does not accurately reflect their calculated dissimilarity;
the links of the minimum spanning tree show that the Aberdeen and Elean
Gamhna populations are actually more similar to the German water voles than
those from Norway. This suggests that the two-dimensional solution may not
give an adequate representation of the whole distance matrix.

4.5 Non-metric multidimensional scaling

In some psychological work and in market research, proximity matrices arise
from asking human subjects to make judgements about the similarity or dis-
similarity of objects or stimuli of interest. When collecting such data, the
investigator may feel that realistically subjects are only able to give “ordinal”
judgements; for example, when comparing a range of colours they might be
able to specify with some confidence that one colour is brighter than another
but would be far less confident if asked to put a value to how much brighter.
Such considerations led, in the 1960s, to the search for a method of multidi-
mensional scaling that uses only the rank order of the proximities to produce
a spatial representation of them. In other words, a method was sought that
would be invariant under monotonic transformations of the observed proxim-
ity matrix; i.e., the derived coordinates will remain the same if the numerical
values of the observed proximities are changed but their rank order is not.
Such a method was proposed in landmark papers by Shepard (1962a,b) and
by Kruskal (1964a). The quintessential component of the method proposed in
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R> library("ape")

R> st <- mst(watervoles)

R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",

+ xlim = range(x)*1.2, type = "n")

R> for (i in 1:nrow(watervoles)) {

+ w1 <- which(st[i, ] == 1)

+ segments(x[i], y[i], x[w1], y[w1])

+ }

R> text(x, y, labels = colnames(watervoles), cex = 0.7)
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Fig. 4.4. Minimum spanning tree for the watervoles data plotted onto the classical
scaling two-dimensional solution.

these papers is that the coordinates in the spatial representation of the ob-
served proximities give rise to fitted distances, dij , and that these distances are

related to a set of numbers which we will call disparities, d̂ij , by the formula

dij = d̂ij + εij , where the εij are error terms representing errors of measure-
ment plus distortion errors arising because the distances do not correspond to
a configuration in the particular number of dimensions chosen. The disparities
are monotonic with the observed proximities and, subject to this constraint,
resemble the fitted distances as closely as possible. In general, only a weak
monotonicity constraint is applied, so that if, say, the observed dissimilarities,
δij are ranked from lowest to highest to give
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δi1j1 < δi2j2 < · · · < δiN jN ,

where N = n(n− 1)/2, then

d̂i1j1 ≤ d̂i2j2 ≤ · · · ≤ d̂iN jN .

Monotonic regression (see Barlow, Bartholomew, Bremner, and Brunk 1972)
is used to find the disparities, and then the required coordinates in the spatial
representation of the observed dissimilarities, which we denote by X̂(n×m),
are found by minimising a criterion, S, known as Stress, which is a function
of X̂(n×m) and is defined as

S(X̂) = min
∑
i<j

(d̂ij − dij)2/
∑
i<j

d2ij ,

where the minimum is taken over d̂ij such that d̂ij is monotonic with the
observed dissimilarities. In essence, Stress represents the extent to which the
rank order of the fitted distances disagrees with the rank order of the ob-
served dissimilarities. The denominator in the formula for Stress is chosen to
make the final spatial representation invariant under changes of scale; i.e.,
uniform stretching or shrinking. An algorithm to minimise Stress and so find
the coordinates of the required spatial representation is described in a second
paper by Kruskal (1964b). For each value of the number of dimensions, m,
in the spatial configuration, the configuration that has the smallest Stress is
called the best-fitting configuration in m dimensions, Sm, and a rule of thumb
for judging the fit as given by Kruskal is Sm ≥ 20%, poor, Sm = 10%, fair,
Sm ≤ 5%, good; and Sm = 0, perfect (this only occurs if the rank order of
the fitted distances matches the rank order of the observed dissimilarities and
event, which is, of course, very rare in practise). We will now look at some
applications of non-metric multidimensional scaling.

4.5.1 House of Representatives voting

Romesburg (1984) gives a set of data that shows the number of times 15 con-
gressmen from New Jersey voted differently in the House of Representatives
on 19 environmental bills. Abstentions are not recorded, but two congressmen
abstained more frequently than the others, these being Sandman (nine absten-
tions) and Thompson (six abstentions). The data are available in Table 4.4
and of interest is the question of whether party affiliations can be detected in
the data.

We shall now apply non-metric scaling to the voting behaviour shown in
Table 4.4. Non-metric scaling is available with the function isoMDS from the
package MASS (Venables and Ripley 2010, 2002)

R> library("MASS")

R> data("voting", package = "HSAUR2")

R> voting_mds <- isoMDS(voting)
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and we again plot the two-dimensional solution (Figure 4.5). The figure sug-
gests that voting behaviour is essentially along party lines, although there is
more variation among Republicans. The voting behaviour of one of the Re-
publicans (Rinaldo) seems to be closer to his Democratic colleagues rather
than to the voting behaviour of other Republicans.

Table 4.4: voting data. House of Representatives voting data; (R) is
short for Republican, (D) for Democrat.

Hnt Snd Hwr Thm Fry Frs Wdn Roe Hlt Rdn Mns Rnl Mrz Dnl Ptt
Hunt(R) 0
Sandman(R) 8 0
Howard(D) 15 17 0
Thompson(D) 15 12 9 0
Freylinghuysen(R) 10 13 16 14 0
Forsythe(R) 9 13 12 12 8 0
Widnall(R) 7 12 15 13 9 7 0
Roe(D) 15 16 5 10 13 12 17 0
Heltoski(D) 16 17 5 8 14 11 16 4 0
Rodino(D) 14 15 6 8 12 10 15 5 3 0
Minish(D) 15 16 5 8 12 9 14 5 2 1 0
Rinaldo(R) 16 17 4 6 12 10 15 3 1 2 1 0
Maraziti(R) 7 13 11 15 10 6 10 12 13 11 12 12 0
Daniels(D) 11 12 10 10 11 6 11 7 7 4 5 6 9 0
Patten(D) 13 16 7 7 11 10 13 6 5 6 5 4 13 9 0

The quality of a multidimensional scaling can be assessed informally by
plotting the original dissimilarities and the distances obtained from a mul-
tidimensional scaling in a scatterplot, a so-called Shepard diagram. For the
voting data, such a plot is shown in Figure 4.6. In an ideal situation, the
points fall on the bisecting line; in our case, some deviations are observable.

4.5.2 Judgements of World War II leaders

As the first example of the application of non-metric multidimensional scaling,
we shall use the method to get a spatial representation of the judgements of
the dissimilarities in ideology of a number of world leaders and politicians
prominent at the time of the Second World War, shown in Table 4.5. The
subject made judgements on a nine-point scale, with the anchor points of
the scale, 1 and 9, being described as indicating “very similar” and “very
dissimilar”, respectively; this was all the subject was told about the scale.
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R> x <- voting_mds$points[,1]

R> y <- voting_mds$points[,2]

R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",

+ xlim = range(voting_mds$points[,1])*1.2, type = "n")

R> text(x, y, labels = colnames(voting), cex = 0.6)

R> voting_sh <- Shepard(voting[lower.tri(voting)],

+ voting_mds$points)
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Fig. 4.5. Two-dimensional solution from non-metric multidimensional scaling of
distance matrix for voting matrix.

Table 4.5: WWIIleaders data. Subjective distances between WWII
leaders.

Htl Mss Chr Esn Stl Att Frn DGl MT- Trm Chm Tit

Hitler 0
Mussolini 3 0
Churchill 4 6 0
Eisenhower 7 8 4 0
Stalin 3 5 6 8 0
Attlee 8 9 3 9 8 0
Franco 3 2 5 7 6 7 0
De Gaulle 4 4 3 5 6 5 4 0
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Table 4.5: WWIIleaders data (continued).

Htl Mss Chr Esn Stl Att Frn DGl MT- Trm Chm Tit

Mao Tse-Tung 8 9 8 9 6 9 8 7 0
Truman 9 9 5 4 7 8 8 4 4 0
Chamberlin 4 5 5 4 7 2 2 5 9 5 0
Tito 7 8 2 4 7 8 3 2 4 5 7 0

The non-metric multidimensional scaling applied to these distances is

R> (WWII_mds <- isoMDS(WWIIleaders))

initial value 20.504211

iter 5 value 15.216103

iter 5 value 15.207237

iter 5 value 15.207237

final value 15.207237

converged

$points

[,1] [,2]

Hitler -2.5820 -1.75961

Mussolini -3.8807 -1.24756

Churchill 0.3110 1.46671

Eisenhower 2.9852 2.87822

Stalin -1.4274 -3.75699

Attlee -2.1067 5.07317

Franco -2.8590 0.07878

De Gaulle 0.6591 -0.20656

Mao Tse-Tung 4.1605 -4.57583

Truman 4.4962 0.29294

Chamberlin -2.1420 2.75877

Tito 2.3859 -1.00203

$stress

[1] 15.21

The two-dimensional solution appears in Figure 4.7. Clearly, the three fascists
group together as do the three British prime ministers. Stalin and Mao Tse-
Tung are more isolated compared with the other leaders. Eisenhower seems
more related to the British government than to his own President Truman.
Interestingly, de Gaulle is placed in the center of the MDS solution.
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R> plot(voting_sh, pch = ".", xlab = "Dissimilarity",

+ ylab = "Distance", xlim = range(voting_sh$x),

+ ylim = range(voting_sh$x))

R> lines(voting_sh$x, voting_sh$yf, type = "S")

5 10 15

5
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15

Dissimilarity

D
is

ta
nc

e

Fig. 4.6. The Shepard diagram for the voting data shows some discrepancies be-
tween the original dissimilarities and the multidimensional scaling solution.

4.6 Correspondence analysis

A form of multidimensional scaling known as correspondence analysis, which
is essentially an approach to constructing a spatial model that displays the
associations among a set of categorical variables, will be the subject of this
section. Correspondence analysis has a relatively long history (see de Leeuw
1983) but for a long period was only routinely used in France, largely due to
the almost evangelical efforts of Benzécri (1992). But nowadays the method
is used rather more widely and is often applied to supplement, say, a stan-
dard chi-squared test of independence for two categorical variables forming a
contingency table.

Mathematically, correspondence analysis can be regarded as either

� a method for decomposing the chi-squared statistic used to test for inde-
pendence in a contingency table into components corresponding to differ-
ent dimensions of the heterogeneity between its columns, or
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Fig. 4.7. Non-metric multidimensional scaling of perceived distances of World War
II leaders.

� a method for simultaneously assigning a scale to rows and a separate scale
to columns so as to maximise the correlation between the two scales.

Quintessentially, however, correspondence analysis is a technique for dis-
playing multivariate (most often bivariate) categorical data graphically by
deriving coordinates to represent the categories of both the row and column
variables, which may then be plotted so as to display the pattern of association
between the variables graphically. A detailed account of correspondence anal-
ysis is given in Greenacre (2007), where its similarity to principal components
and the biplot is stressed. Here we give only accounts of the method demon-
strating the use of classical multidimensional scaling to get a two-dimensional
map to represent a set of data in the form of a two-dimensional contingency
table.

The general two-dimensional contingency table in which there are r rows
and c columns can be written as
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y
1 . . . c

1 n11 . . . n1c n1·
2 n21 . . . n2c n2·

x
...

... . . .
...

...
r nr1 . . . nrc nr·
n·1 . . . n·c n

using an obvious dot notation for summing the counts in the contingency table
over rows or over columns. From this table we can construct tables of column
proportions and row proportions given by

Column proportions pcij = nij/n·j ,
Row proportions prij = nij/ni·.

What is known as the chi-squared distance between columns i and j is defined
as

d
(cols)
ij =

r∑
k=1

1

pk·
(pcki − pckj)2,

where
pk· = nk·/n.

The chi-square distance is seen to be a weighted Euclidean distance based on
column proportions. It will be zero if the two columns have the same values
for these proportions. It can also be seen from the weighting factors, 1/pk·,
that rare categories of the column variable have a greater influence on the
distance than common ones.

A similar distance measure can be defined for rows i and j as

d
(rows)
ij =

c∑
k=1

1

p·k
(prik − prjk)2,

where
p·k = n·k/n.

A correspondence analysis“map”of the data can be found by applying classical
MDS to each distance matrix in turn and plotting usually the first two coordi-
nates for column categories and those for row categories on the same diagram,
suitably labelled to differentiate the points representing row categories from
those representing column categories. The resulting diagram is interpreted by
examining the positions of the points representing the row categories and the
column categories. The relative values of the coordinates of these points reflect
associations between the categories of the row variable and the categories of
the column variable. Assuming that a two-dimensional solution provides an
adequate fit for the data (see Greenacre 1992), row points that are close to-
gether represent row categories that have similar profiles (conditional distribu-
tions) across columns. Column points that are close together indicate columns
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with similar profiles (conditional distributions) down the rows. Finally, row
points that lie close to column points represent a row/column combination
that occurs more frequently in the table than would be expected if the row
and column variables were independent. Conversely, row and column points
that are distant from one another indicate a cell in the table where the count
is lower than would be expected under independence.

We will now look at a single simple example of the application of corre-
spondence analysis.

4.6.1 Teenage relationships

Consider the data shown in Table 4.6 concerned with the influence of a girl’s
age on her relationship with her boyfriend. In this table, each of 139 girls has
been classified into one of three groups:

� no boyfriend;
� boyfriend/no sexual intercourse; or
� boyfriend/sexual intercourse.

In addition, the age of each girl was recorded and used to divide the girls into
five age groups.

Table 4.6: teensex data. The influence of age on relationships with
boyfriends.

Age

Boyfriend <16 16-17 17-18 18-19 19-20
No boyfriend 21 21 14 13 8

Boyfriend no sex 8 9 6 8 2
Boyfriend sex 2 3 4 10 10

The calculation of the two-dimensional classical multidimensional scaling so-
lution based on the row- and column-wise chi-squared distance measure can
be computed via cmdscale(); however, we first have to compute the necessary
row and column distance matrices, and we will do this by setting up a small
convenience function as follows:

R> D <- function(x) {

+ a <- t(t(x) / colSums(x))

+ ret <- sqrt(colSums((a[,rep(1:ncol(x), ncol(x))] -

+ a[, rep(1:ncol(x), rep(ncol(x), ncol(x)))])^2 *

+ sum(x) / rowSums(x)))

+ matrix(ret, ncol = ncol(x))

+ }

R> (dcols <- D(teensex))



4.7 Summary 131

[,1] [,2] [,3] [,4] [,5]

[1,] 0.00000 0.08537 0.2574 0.6629 1.0739

[2,] 0.08537 0.00000 0.1864 0.5858 1.0142

[3,] 0.25743 0.18644 0.0000 0.4066 0.8295

[4,] 0.66289 0.58581 0.4066 0.0000 0.5067

[5,] 1.07385 1.01423 0.8295 0.5067 0.0000

R> (drows <- D(t(teensex)))

[,1] [,2] [,3]

[1,] 0.0000 0.2035 0.9275

[2,] 0.2035 0.0000 0.9355

[3,] 0.9275 0.9355 0.0000

Applying classical MDS to each of these distance matrices gives the re-
quired two-dimensional coordinates with which to construct our “map” of the
data. Plotting those with suitable labels and with the axes suitably scaled
to reflect the greater variation on dimension one than on dimension two (see
Greenacre 1992) is achieved using the R code presented with Figure 4.8.

The points representing the age groups in Figure 4.8 give a two-dimensional
representation in which the Euclidean distance between two points represents
the chi-squared distance between the corresponding age groups (and similarly
for the points representing the type of relationship). For a contingency table
with r rows and c columns, it can be shown that the chi-squared distances
can be represented exactly in min r − 1, c− 1 dimensions; here, since r = 3
and c = 5, this means that the Euclidean distances in Figure 4.8 will actually
equal the corresponding chi-squared distances (readers might like to check
that this is the case as an exercise). When both r and c are greater than
three, an exact two-dimensional representation of the chi-squared distances
is not possible. In such cases, the derived two-dimensional coordinates will
give only an approximate representation, and so the question of the adequacy
of the fit will need to be addressed. In some of these cases, more than two
dimensions may be required to give an acceptable fit (again see Greenacre
1992, for details).

Examining the plot in Figure 4.8, we see that it tells the age-old story
of girls travelling through their teenage years, initially having no boyfriend,
then acquiring a boyfriend, and then having sex with their boyfriend, a story
that has broken the hearts of fathers everywhere, at least temporarily, until
their wives suggest they reflect back to the time when they themselves were
teenagers.

4.7 Summary

Multidimensional scaling and correspondence analysis both aim to help in
understanding particular types of data by displaying the data graphically.
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R> r1 <- cmdscale(dcols, eig = TRUE)

R> c1 <- cmdscale(drows, eig = TRUE)

R> plot(r1$points, xlim = range(r1$points[,1], c1$points[,1]) * 1.5,

+ ylim = range(r1$points[,1], c1$points[,1]) * 1.5, type = "n",

+ xlab = "Coordinate 1", ylab = "Coordinate 2", lwd = 2)

R> text(r1$points, labels = colnames(teensex), cex = 0.7)

R> text(c1$points, labels = rownames(teensex), cex = 0.7)

R> abline(h = 0, lty = 2)

R> abline(v = 0, lty = 2)
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Fig. 4.8. Correspondence analysis for teenage relationship data.

Multidimensional scaling applied to proximity matrices is often useful in un-
covering the dimensions on which similarity judgements are made, and corre-
spondence analysis often allows more insight into the pattern of relationships
in a contingency table than a simple chi-squared test.

4.8 Exercises

Ex. 4.1 Consider 51 objects O1, . . . , O51 assumed to be arranged along a
straight line with the jth object being located at a point with coordinate
j. Define the similarity sij between object i and object j as
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sij =



9 if i = j
8 if 1 ≤ |i− j| ≤ 3
7 if 4 ≤ |i− j| ≤ 6
· · ·

1 if 22 ≤ |i− j| ≤ 24
0 if |i− j| ≥ 25.

Convert these similarities into dissimilarities (δij) by using

δij =
√
sii + sjj − 2sij

and then apply classical multidimensional scaling to the resulting dissim-
ilarity matrix. Explain the shape of the derived two-dimensional solution.

Ex. 4.2 Write an R function to calculate the chi-squared distance matrices
for both rows and columns in a two-dimensional contingency table.

Ex. 4.3 In Table 4.7 (from Kaufman and Rousseeuw 1990), the dissimilarity
matrix of 18 species of garden flowers is shown. Use some form of multidi-
mensional scaling to investigate which species share common properties.
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5

Exploratory Factor Analysis

5.1 Introduction

In many areas of psychology, and other disciplines in the behavioural sciences,
often it is not possible to measure directly the concepts of primary interest.
Two obvious examples are intelligence and social class. In such cases, the re-
searcher is forced to examine the concepts indirectly by collecting information
on variables that can be measured or observed directly and can also realis-
tically be assumed to be indicators, in some sense, of the concepts of real
interest. The psychologist who is interested in an individual’s “intelligence”,
for example, may record examination scores in a variety of different subjects in
the expectation that these scores are dependent in some way on what is widely
regarded as “intelligence” but are also subject to random errors. And a soci-
ologist, say, concerned with people’s “social class” might pose questions about
a person’s occupation, educational background, home ownership, etc., on the
assumption that these do reflect the concept he or she is really interested in.

Both “intelligence” and “social class” are what are generally referred to as
latent variables–i.e., concepts that cannot be measured directly but can be as-
sumed to relate to a number of measurable or manifest variables. The method
of analysis most generally used to help uncover the relationships between the
assumed latent variables and the manifest variables is factor analysis. The
model on which the method is based is essentially that of multiple regression,
except now the manifest variables are regressed on the unobservable latent
variables (often referred to in this context as common factors), so that direct
estimation of the corresponding regression coefficients (factor loadings) is not
possible.

A point to be made at the outset is that factor analysis comes in two dis-
tinct varieties. The first is exploratory factor analysis, which is used to inves-
tigate the relationship between manifest variables and factors without making
any assumptions about which manifest variables are related to which factors.
The second is confirmatory factor analysis which is used to test whether a
specific factor model postulated a priori provides an adequate fit for the co-
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variances or correlations between the manifest variables. In this chapter, we
shall consider only exploratory factor analysis. Confirmatory factor analysis
will be the subject of Chapter 7.

Exploratory factor analysis is often said to have been introduced by Spear-
man (1904), but this is only partially true because Spearman proposed only
the one-factor model as described in the next section. Fascinating accounts of
the history of factor analysis are given in Thorndike (2005) and Bartholomew
(2005).

5.2 A simple example of a factor analysis model

To set the scene for the k-factor analysis model to be described in the next
section, we shall in this section look at a very simple example in which there
is only a single factor.

Spearman considered a sample of children’s examination marks in three
subjects, Classics (x1), French (x2), and English (x3), from which he calculated
the following correlation matrix for a sample of children:

R =
Classics
French
English

 1.00
0.83 1.00
0.78 0.67 1.00

 .

If we assume a single factor, then the single-factor model is specified as follows:

x1 = λ1f + u1,

x2 = λ2f + u2,

x3 = λ3f + u3.

We see that the model essentially involves the simple linear regression of each
observed variable on the single common factor. In this example, the under-
lying latent variable or common factor, f , might possibly be equated with
intelligence or general intellectual ability. The terms λ1, λ2, and λ3 which are
essentially regression coefficients are, in this context, known as factor load-
ings, and the terms u1, u2, and u3 represent random disturbance terms and
will have small variances if their associated observed variable is closely related
to the underlying latent variable. The variation in ui actually consists of two
parts, the extent to which an individual’s ability at Classics, say, differs from
his or her general ability and the extent to which the examination in Classics
is only an approximate measure of his or her ability in the subject. In practise
no attempt is made to disentangle these two parts.

We shall return to this simple example later when we consider how to
estimate the parameters in the factor analysis model. Before this, however, we
need to describe the factor analysis model itself in more detail. The description
follows in the next section.
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5.3 The k-factor analysis model

The basis of factor analysis is a regression model linking the manifest vari-
ables to a set of unobserved (and unobservable) latent variables. In essence the
model assumes that the observed relationships between the manifest variables
(as measured by their covariances or correlations) are a result of the relation-
ships of these variables to the latent variables. (Since it is the covariances or
correlations of the manifest variables that are central to factor analysis, we
can, in the description of the mathematics of the method given below, assume
that the manifest variables all have zero mean.)

To begin, we assume that we have a set of observed or manifest variables,
x> = (x1, x2, . . . , xq), assumed to be linked to k unobserved latent variables
or common factors f1, f2, . . . , fk, where k < q, by a regression model of the
form

x1 = λ11f1 + λ12f2 + · · ·+ λ1kfk + u1,

x2 = λ21f1 + λ22f2 + · · ·+ λ2kfk + u2,

...

xq = λq1f1 + λq2f2 + · · ·+ λqkfk + uq.

The λjs are essentially the regression coefficients of the x-variables on the
common factors, but in the context of factor analysis these regression coeffi-
cients are known as the factor loadings and show how each observed variable,
xi, depends on the common factors. The factor loadings are used in the inter-
pretation of the factors; i.e., larger values relate a factor to the corresponding
observed variables and from these we can often, but not always, infer a mean-
ingful description of each factor (we will give examples later).

The regression equations above may be written more concisely as

x = Λf + u,

where

Λ =

λ11 . . . λ1k
...

...
λq1 . . . λqk

 , f =

 f1
...
fq

 , u =

u1
...
uq

 .

We assume that the random disturbance terms u1, . . . , uq are uncorrelated
with each other and with the factors f1, . . . , fk. (The elements of u are spe-
cific to each xi and hence are generally better known in this context as specific
variates.) The two assumptions imply that, given the values of the common
factors, the manifest variables are independent; that is, the correlations of
the observed variables arise from their relationships with the common factors.
Because the factors are unobserved, we can fix their locations and scales arbi-
trarily and we shall assume they occur in standardised form with mean zero
and standard deviation one. We will also assume, initially at least, that the
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factors are uncorrelated with one another, in which case the factor loadings
are the correlations of the manifest variables and the factors. With these ad-
ditional assumptions about the factors, the factor analysis model implies that
the variance of variable xi, σ

2
i , is given by

σ2
i =

k∑
j=1

λ2ij + ψi,

where ψi is the variance of ui. Consequently, we see that the factor analysis
model implies that the variance of each observed variable can be split into
two parts: the first, h2i , given by h2i =

∑k
j=1 λ

2
ij , is known as the communality

of the variable and represents the variance shared with the other variables
via the common factors. The second part, ψi, is called the specific or unique
variance and relates to the variability in xi not shared with other variables. In
addition, the factor model leads to the following expression for the covariance
of variables xi and xj :

σij =
k∑
l=1

λilλjl.

We see that the covariances are not dependent on the specific variates in any
way; it is the common factors only that aim to account for the relationships
between the manifest variables.

The results above show that the k-factor analysis model implies that the
population covariance matrix, Σ, of the observed variables has the form

Σ = ΛΛ> + Ψ ,

where
Ψ = diag(Ψi).

The converse also holds: if Σ can be decomposed into the form given above,
then the k-factor model holds for x. In practise, Σ will be estimated by the
sample covariance matrix S and we will need to obtain estimates of Λ and Ψ
so that the observed covariance matrix takes the form required by the model
(see later in the chapter for an account of estimation methods). We will also
need to determine the value of k, the number of factors, so that the model
provides an adequate fit for S.

5.4 Scale invariance of the k-factor model

Before describing both estimation for the k-factor analysis model and how to
determine the appropriate value of k, we will consider how rescaling the x
variables affects the factor analysis model. Rescaling the x variables is equiv-
alent to letting y = Cx, where C = diag(ci) and the ci, i = 1, . . . , q are the
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scaling values. If the k-factor model holds for x with Λ = Λx and Ψ = Ψx,
then

y = CΨxf + Cu

and the covariance matrix of y implied by the factor analysis model for x is

Var(y) = CΣC = CΛxC + CΨxC.

So we see that the k-factor model also holds for y with factor loading matrix
Λy = CΛx and specific variances Ψy = CΨxC = c2iψi. So the factor loading
matrix for the scaled variables y is found by scaling the factor loading matrix
of the original variables by multiplying the ith row of Λx by ci and similarly
for the specific variances. Thus factor analysis is essentially unaffected by the
rescaling of the variables. In particular, if the rescaling factors are such that
ci = 1/si, where si is the standard deviation of the xi, then the rescaling is
equivalent to applying the factor analysis model to the correlation matrix of
the x variables and the factor loadings and specific variances that result can
be found simply by scaling the corresponding loadings and variances obtained
from the covariance matrix. Consequently, the factor analysis model can be
applied to either the covariance matrix or the correlation matrix because the
results are essentially equivalent. (Note that this is not the same as when
using principal components analysis, as pointed out in Chapter 3, and we will
return to this point later in the chapter.)

5.5 Estimating the parameters in the k-factor analysis
model

To apply the factor analysis model outlined in the previous section to a sample
of multivariate observations, we need to estimate the parameters of the model
in some way. These parameters are the factor loadings and specific variances,
and so the estimation problem in factor analysis is essentially that of finding Λ̂
(the estimated factor loading matrix) and Ψ̂ (the diagonal matrix containing
the estimated specific variances), which, assuming the factor model outlined in
Section 5.3, reproduce as accurately as possible the sample covariance matrix,
S. This implies

S ≈ Λ̂Λ̂
>

+ Ψ̂ .

Given an estimate of the factor loading matrix, Λ̂, it is clearly sensible to
estimate the specific variances as

ψ̂i = s2i −
k∑
j=1

λ̂2ij , i = 1, . . . , q

so that the diagonal terms in S are estimated exactly.
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Before looking at methods of estimation used in practise, we shall for the
moment return to the simple single-factor model considered in Section 5.2
because in this case estimation of the factor loadings and specific variances is
very simple, the reason being that in this case the number of parameters in
the model, 6 (three factor loadings and three specific variances), is equal to
the number of independent elements in R (the three correlations and the three
diagonal standardised variances), and so by equating elements of the observed
correlation matrix to the corresponding values predicted by the single-factor
model, we will be able to find estimates of λ1, λ2, λ3, ψ1, ψ2, and ψ3 such that
the model fits exactly. The six equations derived from the matrix equality
implied by the factor analysis model,

R =

λ1
λ2
λ3

 (λ1 λ2λ3 ) +

ψ1 0 0
0 ψ2 0
0 0 ψ3

 ,

are

λ̂1λ2 = 0.83,

λ̂1λ3 = 0.78,

λ̂1λ4 = 0.67,

ψ1 = 1.0− λ̂21,
ψ2 = 1.0− λ̂22,
ψ3 = 1.0− λ̂23.

The solutions of these equations are

λ̂1 = 0.99, λ̂2 = 0.84, λ̂3 = 0.79,

ψ̂1 = 0.02, ψ̂2 = 0.30, ψ̂3 = 0.38.

Suppose now that the observed correlations had been

R =
Classics
French
English

1.00
0.84 1.00
0.60 0.35 1.00

 .

In this case, the solution for the parameters of a single-factor model is

λ̂1 = 1.2, λ̂2 = 0.7, λ̂3 = 0.5,

ψ̂1 = −0.44, ψ̂2 = 0.51, ψ̂3 = 0.75.

Clearly this solution is unacceptable because of the negative estimate for the
first specific variance.

In the simple example considered above, the factor analysis model does
not give a useful description of the data because the number of parameters in
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the model equals the number of independent elements in the correlation ma-
trix. In practise, where the k-factor model has fewer parameters than there
are independent elements of the covariance or correlation matrix (see Sec-
tion 5.6), the fitted model represents a genuinely parsimonious description of
the data and methods of estimation are needed that try to make the covari-
ance matrix predicted by the factor model as close as possible in some sense to
the observed covariance matrix of the manifest variables. There are two main
methods of estimation leading to what are known as principal factor anal-
ysis and maximum likelihood factor analysis, both of which are now briefly
described.

5.5.1 Principal factor analysis

Principal factor analysis is an eigenvalue and eigenvector technique similar in
many respects to principal components analysis (see Chapter 3) but operating
not directly on S (or R) but on what is known as the reduced covariance
matrix , S∗, defined as

S∗ = S− Ψ̂ ,

where Ψ̂ is a diagonal matrix containing estimates of the ψi. The “ones” on
the diagonal of S have in S∗ been replaced by the estimated communalities,∑k
j=1 λ̂

2
ij , the parts of the variance of each observed variable that can be

explained by the common factors. Unlike principal components analysis, factor
analysis does not try to account for all the observed variance, only that shared
through the common factors. Of more concern in factor analysis is accounting
for the covariances or correlations between the manifest variables.

To calculate S∗ (or with R replacing S, R∗) we need values for the com-
munalities. Clearly we cannot calculate them on the basis of factor loadings
because these loadings still have to be estimated. To get around this seem-
ingly “chicken and egg” situation, we need to find a sensible way of finding
initial values for the communalities that does not depend on knowing the fac-
tor loadings. When the factor analysis is based on the correlation matrix of
the manifest variables, two frequently used methods are:

� Take the communality of a variable xi as the square of the multiple corre-
lation coefficient of xi with the other observed variables.

� Take the communality of xi as the largest of the absolute values of the
correlation coefficients between xi and one of the other variables.

Each of these possibilities will lead to higher values for the initial communality
when xi is highly correlated with at least some of the other manifest variables,
which is essentially what is required.

Given the initial communality values, a principal components analysis is
performed on S∗ and the first k eigenvectors used to provide the estimates of
the loadings in the k-factor model. The estimation process can stop here or
the loadings obtained at this stage can provide revised communality estimates
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calculated as
∑k
j=1 λ̂

2
ij , where the λ̂2ijs are the loadings estimated in the pre-

vious step. The procedure is then repeated until some convergence criterion
is satisfied. Difficulties can sometimes arise with this iterative approach if at
any time a communality estimate exceeds the variance of the corresponding
manifest variable, resulting in a negative estimate of the variable’s specific
variance. Such a result is known as a Heywood case (see Heywood 1931) and
is clearly unacceptable since we cannot have a negative specific variance.

5.5.2 Maximum likelihood factor analysis

Maximum likelihood is regarded, by statisticians at least, as perhaps the most
respectable method of estimating the parameters in the factor analysis. The
essence of this approach is to assume that the data being analysed have a
multivariate normal distribution (see Chapter 1). Under this assumption and
assuming the factor analysis model holds, the likelihood function L can be
shown to be − 1

2nF plus a function of the observations where F is given by

F = ln |ΛΛ> + Ψ |+ trace(S|ΛΛ> + Ψ |−1)− ln |S| − q.

The function F takes the value zero ifΛΛ>+Ψ is equal to S and values greater
than zero otherwise. Estimates of the loadings and the specific variances are
found by minimising F with respect to these parameters. A number of iterative
numerical algorithms have been suggested; for details see Lawley and Maxwell
(1963), Mardia et al. (1979), Everitt (1984, 1987), and Rubin and Thayer
(1982).

Initial values of the factor loadings and specific variances can be found in
a number of ways, including that described above in Section 5.5.1. As with
iterated principal factor analysis, the maximum likelihood approach can also
experience difficulties with Heywood cases.

5.6 Estimating the number of factors

The decision over how many factors, k, are needed to give an adequate rep-
resentation of the observed covariances or correlations is generally critical
when fitting an exploratory factor analysis model. Solutions with k = m and
k = m + 1 will often produce quite different factor loadings for all factors,
unlike a principal components analysis, in which the first m components will
be identical in each solution. And, as pointed out by Jolliffe (2002), with too
few factors there will be too many high loadings, and with too many factors,
factors may be fragmented and difficult to interpret convincingly.

Choosing k might be done by examining solutions corresponding to dif-
ferent values of k and deciding subjectively which can be given the most
convincing interpretation. Another possibility is to use the scree diagram ap-
proach described in Chapter 3, although the usefulness of this method is not
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so clear in factor analysis since the eigenvalues represent variances of principal
components, not factors.

An advantage of the maximum likelihood approach is that it has an associ-
ated formal hypothesis testing procedure that provides a test of the hypothesis
Hk that k common factors are sufficient to describe the data against the alter-
native that the population covariance matrix of the data has no constraints.
The test statistic is

U = N min(F ),

where N = n + 1 − 1
6 (2q + 5) − 2

3k. If k common factors are adequate to
account for the observed covariances or correlations of the manifest variables
(i.e., Hk is true), then U has, asymptotically, a chi-squared distribution with
ν degrees of freedom, where

ν =
1

2
(q − k)2 − 1

2
(q + k).

In most exploratory studies, k cannot be specified in advance and so a sequen-
tial procedure is used. Starting with some small value for k (usually k = 1),
the parameters in the corresponding factor analysis model are estimated using
maximum likelihood. If U is not significant, the current value of k is accepted;
otherwise k is increased by one and the process is repeated. If at any stage the
degrees of freedom of the test become zero, then either no non-trivial solution
is appropriate or alternatively the factor model itself, with its assumption of
linearity between observed and latent variables, is questionable. (This proce-
dure is open to criticism because the critical values of the test criterion have
not been adjusted to allow for the fact that a set of hypotheses are being
tested in sequence.)

5.7 Factor rotation

Up until now, we have conveniently ignored one problematic feature of the
factor analysis model, namely that, as formulated in Section 5.3, there is no
unique solution for the factor loading matrix. We can see that this is so by
introducing an orthogonal matrix M of order k × k and rewriting the basic
regression equation linking the observed and latent variables as

x = (ΛM)(M>f) + u.

This “new” model satisfies all the requirements of a k-factor model as previ-
ously outlined with new factors f∗ = Mf and the new factor loadings ΛM.
This model implies that the covariance matrix of the observed variables is

Σ = (ΛM)(ΛM)> + Ψ ,
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which, since MM> = I, reduces to Σ = ΛΛ>+Ψ as before. Consequently,
factors f with loadings Λ and factors f∗ with loadings ΛM are, for any or-
thogonal matrix M, equivalent for explaining the covariance matrix of the
observed variables. Essentially then there are an infinite number of solutions
to the factor analysis model as previously formulated.

The problem is generally solved by introducing some constraints in the
original model. One possibility is to require the matrix G given by

G = ΛΨ−1Λ

to be diagonal, with its elements arranged in descending order of magnitude.
Such a requirement sets the first factor to have maximal contribution to the
common variance of the observed variables, and the second has maximal con-
tribution to this variance subject to being uncorrelated with the first and so
on (cf. principal components analysis in Chapter 3). The constraint above
ensures that Λ is uniquely determined, except for a possible change of sign of
the columns. (When k = 1, the constraint is irrelevant.)

The constraints on the factor loadings imposed by a condition such as
that given above need to be introduced to make the parameter estimates in
the factor analysis model unique, and they lead to orthogonal factors that
are arranged in descending order of importance. These properties are not,
however, inherent in the factor model, and merely considering such a solution
may lead to difficulties of interpretation. For example, two consequences of a
factor solution found when applying the constraint above are:

� The factorial complexity of variables is likely to be greater than one re-
gardless of the underlying true model; consequently variables may have
substantial loadings on more than one factor.

� Except for the first factor, the remaining factors are often bipolar ; i.e.,
they have a mixture of positive and negative loadings.

It may be that a more interpretable orthogonal solution can be achieved using
the equivalent model with loadings Λ∗ = ΛM for some particular orthogonal
matrix, M. Such a process is generally known as factor rotation, but before
we consider how to choose M (i.e., how to “rotate” the factors), we need to
address the question “is factor rotation an acceptable process?”

Certainly factor analysis has in the past been the subject of severe criticism
because of the possibility of rotating factors. Critics have suggested that this
apparently allows investigators to impose on the data whatever type of solu-
tion they are looking for; some have even gone so far as to suggest that factor
analysis has become popular in some areas precisely because it does enable
users to impose their preconceived ideas of the structure behind the observed
correlations (Blackith and Reyment 1971). But, on the whole, such suspicions
are not justified and factor rotation can be a useful procedure for simplifying
an exploratory factor analysis. Factor rotation merely allows the fitted factor
analysis model to be described as simply as possible; rotation does not alter
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the overall structure of a solution but only how the solution is described. Ro-
tation is a process by which a solution is made more interpretable without
changing its underlying mathematical properties. Initial factor solutions with
variables loading on several factors and with bipolar factors can be difficult
to interpret. Interpretation is more straightforward if each variable is highly
loaded on at most one factor and if all factor loadings are either large and
positive or near zero, with few intermediate values. The variables are thus
split into disjoint sets, each of which is associated with a single factor. This
aim is essentially what Thurstone (1931) referred to as simple structure. In
more detail, such structure has the following properties:

� Each row or the factor loading matrix should contain at least one zero.
� Each column of the loading matrix should contain at least k zeros.
� Every pair of columns of the loading matrix should contain several vari-

ables whose loadings vanish in one column but not in the other.
� If the number of factors is four or more, every pair of columns should

contain a large number of variables with zero loadings in both columns.
� Conversely, for every pair of columns of the loading matrix only a small

number of variables should have non-zero loadings in both columns.

When simple structure is achieved, the observed variables will fall into mu-
tually exclusive groups whose loadings are high on single factors, perhaps
moderate to low on a few factors, and of negligible size on the remaining
factors. Medium-sized, equivocal loadings are to be avoided.

The search for simple structure or something close to it begins after an
initial factoring has determined the number of common factors necessary and
the communalities of each observed variable. The factor loadings are then
transformed by post-multiplication by a suitably chosen orthogonal matrix.
Such a transformation is equivalent to a rigid rotation of the axes of the origi-
nally identified factor space. And during the rotation phase of the analysis, we
might choose to abandon one of the assumptions made previously, namely that
factors are orthogonal, i.e., independent (the condition was assumed initially
simply for convenience in describing the factor analysis model). Consequently,
two types of rotation are possible:

� orthogonal rotation, in which methods restrict the rotated factors to being
uncorrelated, or

� oblique rotation, where methods allow correlated factors.

As we have seen above, orthogonal rotation is achieved by post-multiplying
the original matrix of loadings by an orthogonal matrix. For oblique rotation,
the original loadings matrix is post-multiplied by a matrix that is no longer
constrained to be orthogonal. With an orthogonal rotation, the matrix of
correlations between factors after rotation is the identity matrix. With an
oblique rotation, the corresponding matrix of correlations is restricted to have
unit elements on its diagonal, but there are no restrictions on the off-diagonal
elements.
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So the first question that needs to be considered when rotating factors
is whether we should use an orthogonal or an oblique rotation. As for many
questions posed in data analysis, there is no universal answer to this ques-
tion. There are advantages and disadvantages to using either type of rotation
procedure. As a general rule, if a researcher is primarily concerned with get-
ting results that “best fit” his or her data, then the factors should be rotated
obliquely. If, on the other hand, the researcher is more interested in the gen-
eralisability of his or her results, then orthogonal rotation is probably to be
preferred.

One major advantage of an orthogonal rotation is simplicity since the
loadings represent correlations between factors and manifest variables. This
is not the case with an oblique rotation because of the correlations between
the factors. Here there are two parts of the solution to consider;

� factor pattern coefficients, which are regression coefficients that multiply
with factors to produce measured variables according to the common factor
model, and

� factor structure coefficients, correlation coefficients between manifest vari-
ables and the factors.

Additionally there is a matrix of factor correlations to consider. In many cases
where these correlations are relatively small, researchers may prefer to return
to an orthogonal solution.

There are a variety of rotation techniques, although only relatively few
are in general use. For orthogonal rotation, the two most commonly used
techniques are known as varimax and quartimax .

� Varimax rotation, originally proposed by Kaiser (1958), has as its rationale
the aim of factors with a few large loadings and as many near-zero load-
ings as possible. This is achieved by iterative maximisation of a quadratic
function of the loadings–details are given in Mardia et al. (1979). It pro-
duces factors that have high correlations with one small set of variables
and little or no correlation with other sets. There is a tendency for any
general factor to disappear because the factor variance is redistributed.

� Quartimax rotation, originally suggested by Carroll (1953), forces a given
variable to correlate highly on one factor and either not at all or very low
on other factors. It is far less popular than varimax.

For oblique rotation, the two methods most often used are oblimin and pro-
max .

� Oblimin rotation, invented by Jennrich and Sampson (1966), attempts to
find simple structure with regard to the factor pattern matrix through a
parameter that is used to control the degree of correlation between the
factors. Fixing a value for this parameter is not straightforward, but Pett,
Lackey, and Sullivan (2003) suggest that values between about −0.5 and
0.5 are sensible for many applications.
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� Promax rotation, a method due to Hendrickson and White (1964), operates
by raising the loadings in an orthogonal solution (generally a varimax
rotation) to some power. The goal is to obtain a solution that provides
the best structure using the lowest possible power loadings and the lowest
correlation between the factors.

Factor rotation is often regarded as controversial since it apparently allows
the investigator to impose on the data whatever type of solution is required.
But this is clearly not the case since although the axes may be rotated about
their origin or may be allowed to become oblique, the distribution of the points
will remain invariant. Rotation is simply a procedure that allows new axes to
be chosen so that the positions of the points can be described as simply as
possible.

(It should be noted that rotation techniques are also often applied to the
results from a principal components analysis in the hope that they will aid
in their interpretability. Although in some cases this may be acceptable, it
does have several disadvantages, which are listed by Jolliffe (1989). The main
problem is that the defining property of principal components, namely that
of accounting for maximal proportions of the total variation in the observed
variables, is lost after rotation.

5.8 Estimating factor scores

The first stage of an exploratory factor analysis consists of the estimation
of the parameters in the model and the rotation of the factors, followed by
an (often heroic) attempt to interpret the fitted model. The second stage is
concerned with estimating latent variable scores for each individual in the
data set; such factor scores are often useful for a number of reasons:

1. They represent a parsimonious summary of the original data possibly use-
ful in subsequent analyses (cf. principal component scores in Chapter 3).

2. They are likely to be more reliable than the observed variable values.
3. The factor score is a“pure”measure of a latent variable, while an observed

value may be ambiguous because we do not know what combination of
latent variables may be represented by that observed value.

But the calculation of factor scores is not as straightforward as the calcula-
tion of principal component scores. In the original equation defining the factor
analysis model, the variables are expressed in terms of the factors, whereas
to calculate scores we require the relationship to be in the opposite direction.
Bartholomew and Knott (1987) make the point that to talk about “estimat-
ing” factor scores is essentially misleading since they are random variables
and the issue is really one of prediction. But if we make the assumption of
normality, the conditional distribution of f given x can be found. It is

N(Λ>Σ−1x, (Λ>Ψ−1Λ+ I)−1).
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Consequently, one plausible way of calculating factor scores would be to use
the sample version of the mean of this distribution, namely

f̂ = Λ̂
>

S−1x,

where the vector of scores for an individual, x, is assumed to have mean
zero; i.e., sample means for each variable have already been subtracted. Other
possible methods for deriving factor scores are described in Rencher (1995),
and helpful detailed calculations of several types of factor scores are given
in Hershberger (2005). In many respects, the most damaging problem with
factor analysis is not the rotational indeterminacy of the loadings but the
indeterminacy of the factor scores.

5.9 Two examples of exploratory factor analysis

5.9.1 Expectations of life

The data in Table 5.1 show life expectancy in years by country, age, and sex.
The data come from Keyfitz and Flieger (1971) and relate to life expectancies
in the 1960s.

Table 5.1: life data. Life expectancies for different countries by
age and gender.

m0 m25 m50 m75 w0 w25 w50 w75

Algeria 63 51 30 13 67 54 34 15
Cameroon 34 29 13 5 38 32 17 6
Madagascar 38 30 17 7 38 34 20 7
Mauritius 59 42 20 6 64 46 25 8
Reunion 56 38 18 7 62 46 25 10
Seychelles 62 44 24 7 69 50 28 14
South Africa (C) 50 39 20 7 55 43 23 8
South Africa (W) 65 44 22 7 72 50 27 9
Tunisia 56 46 24 11 63 54 33 19
Canada 69 47 24 8 75 53 29 10
Costa Rica 65 48 26 9 68 50 27 10
Dominican Rep. 64 50 28 11 66 51 29 11
El Salvador 56 44 25 10 61 48 27 12
Greenland 60 44 22 6 65 45 25 9
Grenada 61 45 22 8 65 49 27 10
Guatemala 49 40 22 9 51 41 23 8
Honduras 59 42 22 6 61 43 22 7
Jamaica 63 44 23 8 67 48 26 9
Mexico 59 44 24 8 63 46 25 8
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Table 5.1: life data (continued).

m0 m25 m50 m75 w0 w25 w50 w75

Nicaragua 65 48 28 14 68 51 29 13
Panama 65 48 26 9 67 49 27 10
Trinidad (62) 64 63 21 7 68 47 25 9
Trinidad (67) 64 43 21 6 68 47 24 8
United States (66) 67 45 23 8 74 51 28 10
United States (NW66) 61 40 21 10 67 46 25 11
United States (W66) 68 46 23 8 75 52 29 10
United States (67) 67 45 23 8 74 51 28 10
Argentina 65 46 24 9 71 51 28 10
Chile 59 43 23 10 66 49 27 12
Colombia 58 44 24 9 62 47 25 10
Ecuador 57 46 28 9 60 49 28 11

To begin, we will use the formal test for the number of factors incorporated
into the maximum likelihood approach. We can apply this test to the data,
assumed to be contained in the data frame life with the country names
labelling the rows and variable names as given in Table 5.1, using the following
R code:

R> sapply(1:3, function(f)

+ factanal(life, factors = f, method ="mle")$PVAL)

objective objective objective

1.880e-24 1.912e-05 4.578e-01

These results suggest that a three-factor solution might be adequate to account
for the observed covariances in the data, although it has to be remembered
that, with only 31 countries, use of an asymptotic test result may be rather
suspect. The three-factor solution is as follows (note that the solution is that
resulting from a varimax solution. the default for the factanal() function):

R> factanal(life, factors = 3, method ="mle")

Call:

factanal(x = life, factors = 3, method = "mle")

Uniquenesses:

m0 m25 m50 m75 w0 w25 w50 w75

0.005 0.362 0.066 0.288 0.005 0.011 0.020 0.146

Loadings:

Factor1 Factor2 Factor3
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m0 0.964 0.122 0.226

m25 0.646 0.169 0.438

m50 0.430 0.354 0.790

m75 0.525 0.656

w0 0.970 0.217

w25 0.764 0.556 0.310

w50 0.536 0.729 0.401

w75 0.156 0.867 0.280

Factor1 Factor2 Factor3

SS loadings 3.375 2.082 1.640

Proportion Var 0.422 0.260 0.205

Cumulative Var 0.422 0.682 0.887

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 6.73 on 7 degrees of freedom.

The p-value is 0.458

(“Blanks” replace negligible loadings.) Examining the estimated factor load-
ings, we see that the first factor is dominated by life expectancy at birth for
both males and females; perhaps this factor could be labelled “life force at

it “life force amongst the elderly”. The third factor from the varimax rotation
has its highest loadings for the life expectancies of men aged 50 and 75 and in
the same vein might be labelled “life force for elderly men”. (When labelling
factors in this way, factor analysts can often be extremely creative!)

The estimated factor scores are found as follows;

R> (scores <- factanal(life, factors = 3, method = "mle",

+ scores = "regression")$scores)

Factor1 Factor2 Factor3

Algeria -0.258063 1.90096 1.91582

Cameroon -2.782496 -0.72340 -1.84772

Madagascar -2.806428 -0.81159 -0.01210

Mauritius 0.141005 -0.29028 -0.85862

Reunion -0.196352 0.47430 -1.55046

Seychelles 0.367371 0.82902 -0.55214

South Africa (C) -1.028568 -0.08066 -0.65422

South Africa (W) 0.946194 0.06400 -0.91995

Tunisia -0.862494 3.59177 -0.36442

Canada 1.245304 0.29564 -0.27343

Costa Rica 0.508736 -0.50500 1.01329

Dominican Rep. 0.106044 0.01111 1.83872

El Salvador -0.608156 0.65101 0.48836

Greenland 0.235114 -0.69124 -0.38559

birth”. The second reflects life expectancies at older ages, and we might label



5.9 Two examples of exploratory factor analysis 151

Grenada 0.132008 0.25241 -0.15221

Guatemala -1.450336 -0.67766 0.65912

Honduras 0.043253 -1.85176 0.30633

Jamaica 0.462125 -0.51918 0.08033

Mexico -0.052333 -0.72020 0.44418

Nicaragua 0.268974 0.08407 1.70568

Panama 0.442333 -0.73778 1.25219

Trinidad (62) 0.711367 -0.95989 -0.21545

Trinidad (67) 0.787286 -1.10729 -0.51958

United States (66) 1.128331 0.16390 -0.68177

United States (NW66) 0.400059 -0.36230 -0.74299

United States (W66) 1.214345 0.40877 -0.69225

United States (67) 1.128331 0.16390 -0.68177

Argentina 0.731345 0.24812 -0.12818

Chile 0.009752 0.75223 -0.49199

Colombia -0.240603 -0.29544 0.42920

Ecuador -0.723452 0.44246 1.59165

We can use the scores to provide the plot of the data shown in Figure 5.1.
Ordering along the first axis reflects life force at birth ranging from

Cameroon and Madagascar to countries such as the USA. And on the third
axis Algeria is prominent because it has high life expectancy amongst men
at higher ages, with Cameroon at the lower end of the scale with a low life
expectancy for men over 50.

5.9.2 Drug use by American college students

The majority of adult and adolescent Americans regularly use psychoactive
substances during an increasing proportion of their lifetimes. Various forms
of licit and illicit psychoactive substance use are prevalent, suggesting that
patterns of psychoactive substance taking are a major part of the individual’s
behavioural repertory and have pervasive implications for the performance of
other behaviours. In an investigation of these phenomena, Huba, Wingard,
and Bentler (1981) collected data on drug usage rates for 1634 students in
the seventh to ninth grades in 11 schools in the greater metropolitan area of
Los Angeles. Each participant completed a questionnaire about the number of
times a particular substance had ever been used. The substances asked about
were as follows:

� cigarettes;
� beer;
� wine;
� liquor;
� cocaine;
� tranquillizers;
� drug store medications used to get high;
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Fig. 5.1. Individual scatterplots of three factor scores for life expectancy data, with
points labelled by abbreviated country names.
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� heroin and other opiates;
� marijuana;
� hashish;
� inhalants (glue, gasoline, etc.);
� hallucinogenics (LSD, mescaline, etc.);
� amphetamine stimulants.

Responses were recorded on a five-point scale: never tried, only once, a few
times, many times, and regularly. The correlations between the usage rates
of the 13 substances are shown in Figure 5.2. The plot was produced using
the levelplot() function from the package lattice with a somewhat lengthy
panel function, so we refer the interested reader to the R code contained in
the demo for this chapter (see the Preface for how to access this document).
The figure depicts each correlation by an ellipse whose shape tends towards
a line with slope 1 for correlations near 1, to a circle for correlations near
zero, and to a line with negative slope −1 for negative correlations near −1.
In addition, 100 times the correlation coefficient is printed inside the ellipse,
and a colourcoding indicates strong negative (dark) to strong positive (light)
correlations.

We first try to determine the number of factors using the maximum likeli-
hood test. The R code for finding the results of the test for number of factors
here is:

R> sapply(1:6, function(nf)

+ factanal(covmat = druguse, factors = nf,

+ method = "mle", n.obs = 1634)$PVAL)

objective objective objective objective objective objective

0.000e+00 9.786e-70 7.364e-28 1.795e-11 3.892e-06 9.753e-02

These values suggest that only the six-factor solution provides an adequate
fit. The results from the six-factor varimax solution are obtained from

R> (factanal(covmat = druguse, factors = 6,

+ method = "mle", n.obs = 1634))

Call:

factanal(factors = 6, covmat = druguse, n.obs = 1634)

Uniquenesses:

cigarettes beer

0.563 0.368

wine liquor

0.374 0.412

cocaine tranquillizers

0.681 0.522

drug store medication heroin

0.785 0.669



154 5 Exploratory Factor Analysis

drug store medication
cocaine

heroin
inhalants

hallucinogenics
tranquillizers

amphetamine
marijuana

hashish
cigarettes

liquor
beer
wine

dr
ug

 s
to

re
 m

ed
ic

at
io

n
co

ca
in

e
he

ro
in

in
ha

la
nt

s
ha

llu
ci

no
ge

ni
cs

tr
an

qu
ill

iz
er

s
am

ph
et

am
in

e
m

ar
iju

an
a

ha
sh

is
h

ci
ga

re
tte

s
liq

uo
r

be
er

w
in

e

1002120312322231516 9 121011
21100322728352819301112 7 5
2032100293236311522 8 10 6 7
312729100343239303024262018
23283234100375120371014 9 7
223536323710055323820261514
232831395155100394724292018
151915302032391005351484436
163022303738475310030373224
9 11 8 241020245130100444542

121210261426294837441006058
10 7 6 20 9 15204432456010062
11 5 7 18 7 14183624425862100

−1.0 −0.5 0.0 0.5 1.0

Fig. 5.2. Visualisation of the correlation matrix of drug use. The numbers in the
cells correspond to 100 times the correlation coefficient. The color and the shape of
the plotting symbols also correspond to the correlation in this cell.

marijuana hashish

0.318 0.005

inhalants hallucinogenics

0.541 0.620

amphetamine

0.005

Loadings:

Factor1 Factor2 Factor3 Factor4 Factor5

cigarettes 0.494 0.407

beer 0.776 0.112

wine 0.786

liquor 0.720 0.121 0.103 0.115 0.160
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cocaine 0.519 0.132

tranquillizers 0.130 0.564 0.321 0.105 0.143

drug store medication 0.255

heroin 0.532 0.101

marijuana 0.429 0.158 0.152 0.259 0.609

hashish 0.244 0.276 0.186 0.881 0.194

inhalants 0.166 0.308 0.150 0.140

hallucinogenics 0.387 0.335 0.186

amphetamine 0.151 0.336 0.886 0.145 0.137

Factor6

cigarettes 0.110

beer

wine

liquor

cocaine 0.158

tranquillizers

drug store medication 0.372

heroin 0.190

marijuana 0.110

hashish 0.100

inhalants 0.537

hallucinogenics 0.288

amphetamine 0.187

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6

SS loadings 2.301 1.415 1.116 0.964 0.676 0.666

Proportion Var 0.177 0.109 0.086 0.074 0.052 0.051

Cumulative Var 0.177 0.286 0.372 0.446 0.498 0.549

Test of the hypothesis that 6 factors are sufficient.

The chi square statistic is 22.41 on 15 degrees of freedom.

The p-value is 0.0975

Substances that load highly on the first factor are cigarettes, beer, wine, liquor,
and marijuana and we might label it “social/soft drug use”. Cocaine, tranquil-
lizers, and heroin load highly on the second factor–the obvious label for the
factor is “hard drug use”. Factor three is essentially simply amphetamine use,
and factor four hashish use. We will not try to interpret the last two factors,
even though the formal test for number of factors indicated that a six-factor
solution was necessary. It may be that we should not take the results of the
formal test too literally; rather, it may be a better strategy to consider the
value of k indicated by the test to be an upper bound on the number of factors
with practical importance. Certainly a six-factor solution for a data set with
only 13 manifest variables might be regarded as not entirely satisfactory, and
clearly we would have some difficulties interpreting all the factors.
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One of the problems is that with the large sample size in this example, even
small discrepancies between the correlation matrix predicted by a proposed
model and the observed correlation matrix may lead to rejection of the model.
One way to investigate this possibility is simply to look at the differences
between the observed and predicted correlations. We shall do this first for the
six-factor model using the following R code:

R> pfun <- function(nf) {

+ fa <- factanal(covmat = druguse, factors = nf,

+ method = "mle", n.obs = 1634)

+ est <- tcrossprod(fa$loadings) + diag(fa$uniquenesses)

+ ret <- round(druguse - est, 3)

+ colnames(ret) <- rownames(ret) <-

+ abbreviate(rownames(ret), 3)

+ ret

+ }

R> pfun(6)

cgr ber win lqr ccn trn dsm hrn

cgr 0.000 -0.001 0.014 -0.018 0.010 0.001 -0.020 -0.004

ber -0.001 0.000 -0.002 0.004 0.004 -0.011 -0.001 0.007

win 0.014 -0.002 0.000 -0.001 -0.001 -0.005 0.008 0.008

lqr -0.018 0.004 -0.001 0.000 -0.008 0.021 -0.006 -0.018

ccn 0.010 0.004 -0.001 -0.008 0.000 0.000 0.008 0.004

trn 0.001 -0.011 -0.005 0.021 0.000 0.000 0.006 -0.004

dsm -0.020 -0.001 0.008 -0.006 0.008 0.006 0.000 -0.015

hrn -0.004 0.007 0.008 -0.018 0.004 -0.004 -0.015 0.000

mrj 0.001 0.002 -0.004 0.003 -0.004 -0.004 0.008 0.006

hsh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

inh 0.010 -0.004 -0.007 0.012 -0.003 0.002 0.004 -0.002

hll -0.005 0.005 -0.001 -0.005 -0.008 -0.008 -0.002 0.020

amp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mrj hsh inh hll amp

cgr 0.001 0 0.010 -0.005 0

ber 0.002 0 -0.004 0.005 0

win -0.004 0 -0.007 -0.001 0

lqr 0.003 0 0.012 -0.005 0

ccn -0.004 0 -0.003 -0.008 0

trn -0.004 0 0.002 -0.008 0

dsm 0.008 0 0.004 -0.002 0

hrn 0.006 0 -0.002 0.020 0

mrj 0.000 0 -0.006 0.003 0

hsh 0.000 0 0.000 0.000 0

inh -0.006 0 0.000 -0.002 0

hll 0.003 0 -0.002 0.000 0

amp 0.000 0 0.000 0.000 0
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The differences are all very small, underlining that the six-factor model does
describe the data very well. Now let us look at the corresponding matrices for
the three- and four-factor solutions found in a similar way in Figure 5.3. Again,
in both cases the residuals are all relatively small, suggesting perhaps that use
of the formal test for number of factors leads, in this case, to overfitting. The
three-factor model appears to provide a perfectly adequate fit for these data.

5.10 Factor analysis and principal components analysis
compared

Factor analysis, like principal components analysis, is an attempt to explain a
set of multivariate data using a smaller number of dimensions than one begins
with, but the procedures used to achieve this goal are essentially quite different
in the two approaches. Some differences between the two are as follows:

� Factor analysis tries to explain the covariances or correlations of the ob-
served variables by means of a few common factors. Principal components
analysis is primarily concerned with explaining the variance of the observed
variables.

� If the number of retained components is increased, say from m to m+1, the
first m components are unchanged. This is not the case in factor analysis,
where there can be substantial changes in all factors if the number of
factors is changed.

� The calculation of principal component scores is straightforward, but the
calculation of factor scores is more complex, and a variety of methods have
been suggested.

� There is usually no relationship between the principal components of the
sample correlation matrix and the sample covariance matrix. For maximum
likelihood factor analysis, however, the results of analysing either matrix
are essentially equivalent (which is not true of principal factor analysis).

Despite these differences, the results from both types of analyses are fre-
quently very similar. Certainly, if the specific variances are small, we would
expect both forms of analyses to give similar results. However, if the specific
variances are large, they will be absorbed into all the principal components,
both retained and rejected, whereas factor analysis makes special provision
for them.

Lastly, it should be remembered that both principal components analy-
sis and factor analysis are similar in one important respect–they are both
pointless if the observed variables are almost uncorrelated. In this case, factor
analysis has nothing to explain and principal components analysis will simply
lead to components that are similar to the original variables.
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5.11 Summary

Factor analysis has probably attracted more critical comments than any other
statistical technique. Hills (1977), for example, has gone so far as to suggest
that factor analysis is not worth the time necessary to understand it and
carry it out. And Chatfield and Collins (1980) recommend that factor analysis
should not be used in most practical situations. The reasons for such an openly
sceptical view about factor analysis arise first from the central role of latent
variables in the factor analysis model and second from the lack of uniqueness of
the factor loadings in the model, which gives rise to the possibility of rotating
factors. It certainly is the case that, since the common factors cannot be
measured or observed, the existence of these hypothetical variables is open to
question. A factor is a construct operationally defined by its factor loadings,
and overly enthusiastic reification is not recommended. And it is the case that,
given one factor loading matrix, there are an infinite number of factor loading
matrices that could equally well (or equally badly) account for the variances
and covariances of the manifest variables. Rotation methods are designed to
find an easily interpretable solution from among this infinitely large set of
alternatives by finding a solution that exhibits the best simple structure.

Factor analysis can be a useful tool for investigating particular features of
the structure of multivariate data. Of course, like many models used in data
analysis, the one used in factor analysis may be only a very idealised approx-
imation to the truth. Such an approximation may, however, prove a valuable
starting point for further investigations, particularly for the confirmatory fac-
tor analysis models that are the subject of Chapter 7.

For exploratory factor analysis, similar comments apply about the size of
n and q needed to get convincing results, such as those given in Chapter 3
for principal components analysis. And the maximum likelihood method for
the estimation of factor loading and specific variances used in this chapter is
only suitable for data having a multivariate normal distribution (or at least a
reasonable approximation to such a distribution). Consequently, for the factor
analysis of, in particular, binary variables, special methods are needed; see,
for example, Muthen (1978).

5.12 Exercises

Ex. 5.1 Show how the result Σ = ΛΛ> + Ψ arises from the assumptions of
uncorrelated factors, independence of the specific variates, and indepen-
dence of common factors and specific variances. What form does Σ take
if the factors are allowed to be correlated?

Ex. 5.2 Show that the communalities in a factor analysis model are unaffected
by the transformation Λ∗ = ΛM.

Ex. 5.3 Give a formula for the proportion of variance explained by the jth
factor estimated by the principal factor approach.
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Ex. 5.4 Apply the factor analysis model separately to the life expectancies
of men and women and compare the results.

Ex. 5.5 The correlation matrix given below arises from the scores of 220 boys
in six school subjects: (1) French, (2) English, (3) History, (4) Arithmetic,
(5) Algebra, and (6) Geometry. Find the two-factor solution from a max-
imum likelihood factor analysis. By plotting the derived loadings, find an
orthogonal rotation that allows easier interpretation of the results.

R =

French
English
History
Arithmetic
Algebra
Geometry


1.00
0.44 1.00
0.41 0.35 1.00
0.29 0.35 0.16 1.00
0.33 0.32 0.19 0.59 1.00
0.25 0.33 0.18 0.47 0.46 1.00

 .

Ex. 5.6 The matrix below shows the correlations between ratings on nine
statements about pain made by 123 people suffering from extreme pain.
Each statement was scored on a scale from 1 to 6, ranging from agreement
to disagreement. The nine pain statements were as follows:
1. Whether or not I am in pain in the future depends on the skills of the

doctors.
2. Whenever I am in pain, it is usually because of something I have done

or not done,
3. Whether or not I am in pain depends on what the doctors do for me.
4. I cannot get any help for my pain unless I go to seek medical advice.
5. When I am in pain I know that it is because I have not been taking

proper exercise or eating the right food.
6. People’s pain results from their own carelessness.
7. I am directly responsible for my pain,
8. relief from pain is chiefly controlled by the doctors.
9. People who are never in pain are just plain lucky.

1.00
−0.04 1.00

0.61 −0.07 1.00
0.45 −0.12 0.59 1.00
0.03 0.49 0.03 −0.08 1.00
−0.29 0.43 −0.13 −0.21 0.47 1.00
−0.30 0.30 −0.24 −0.19 0.41 0.63 1.00

0.45 −0.31 0.59 0.63 −0.14 −0.13 −0.26 1.00
0.30 −0.17 0.32 0.37 −0.24 −0.15 −0.29 0.40 1.00


.

(a) Perform a principal components analysis on these data, and exam-
ine the associated scree plot to decide on the appropriate number of
components.

(b) Apply maximum likelihood factor analysis, and use the test described
in the chapter to select the necessary number of common factors.
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(c) Rotate the factor solution selected using both an orthogonal and an
oblique procedure, and interpret the results.
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Cluster Analysis

6.1 Introduction

An intelligent being cannot treat every object it sees as a unique entity
unlike anything else in the universe. It has to put objects in categories
so that it may apply its hard-won knowledge about similar objects
encountered in the past to the object at hand (Pinker 1997).

One of the most basic abilities of living creatures involves the grouping of
similar objects to produce a classification. The idea of sorting similar things
into categories is clearly a primitive one because early humans, for example,
must have been able to realise that many individual objects shared certain
properties such as being edible, or poisonous, or ferocious, and so on. And
classification in its widest sense is needed for the development of language,
which consists of words that help us to recognise and discuss the different
types of events, objects, and people we encounter. Each noun in a language,
for example, is essentially a label used to describe a class of things that have
striking features in common; thus animals are called cats, dogs, horses, etc.,
and each name collects individuals into groups. Naming and classifying are
essentially synonymous.

As well as being a basic human conceptual activity, classification of the
phenomena being studied is an important component of virtually all scientific
research. In the behavioural sciences, for example, these “phenomena” may
be individuals or societies, or even patterns of behaviour or perception. The
investigator is usually interested in finding a classification in which the items
of interest are sorted into a small number of homogeneous groups or clusters,
the terms being synonymous. Most commonly the required classification is one
in which the groups are mutually exclusive (an item belongs to a single group)
rather than overlapping (items can be members of more than one group). At
the very least, any derived classification scheme should provide a convenient
method of organizing a large, complex set of multivariate data, with the class
labels providing a parsimonious way of describing the patterns of similarities
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and differences in the data. In market research, for example, it might be useful
to group a large number of potential customers according to their needs in
a particular product area. Advertising campaigns might then be tailored for
the different types of consumers as represented by the different groups.

But often a classification may seek to serve a more fundamental purpose. In
psychiatry, for example, the classification of psychiatric patients with different
symptom profiles into clusters might help in the search for the causes of mental
illnesses and perhaps even lead to improved therapeutic methods. And these
twin aims of prediction (separating diseases that require different treatments)
and aetiology (searching for the causes of disease) for classifications will be
the same in other branches of medicine.

Clearly, a variety of classifications will always be possible for whatever is
being classified. Human beings could, for example, be classified with respect
to economic status into groups labelled lower class, middle class, and upper
class or they might be classified by annual consumption of alcohol into low,
medium, and high. Clearly, different classifications may not collect the same
set of individuals into groups, but some classifications will be more useful than
others, a point made clearly by the following extract from Needham (1965) in
which he considers the classification of human beings into men and women:

The usefulness of this classification does not begin and end with all
that can, in one sense, be strictly inferred from it–namely a statement
about sexual organs. It is a very useful classification because classify-
ing a person as man or woman conveys a great deal more information,
about probable relative size, strength, certain types of dexterity and
so on. When we say that persons in class man are more suitable than
persons in class woman for certain tasks and conversely, we are only
incidentally making a remark about sex, our primary concern being
with strength, endurance, etc. The point is that we have been able
to use a classification of persons which conveys information on many
properties. On the contrary a classification of persons into those with
hairs on their forearms between 3/16 and 1

4 inch long and those with-
out, though it may serve some particular use, is certainly of no general
use, for imputing membership in the former class to a person conveys
information on this property alone. Put another way, there are no
known properties which divide up a set of people in a similar way.

In a similar vein, a classification of books based on subject matter into
classes such as dictionaries, novels, biographies, and so on is likely to be far
more useful than one based on, say, the colour of the book’s binding. Such
examples illustrate that any classification of a set of multivariate data is likely
to be judged on its usefulness.
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6.2 Cluster analysis

Cluster analysis is a generic term for a wide range of numerical methods with
the common goal of uncovering or discovering groups or clusters of obser-
vations that are homogeneous and separated from other groups. Clustering
techniques essentially try to formalise what human observers do so well in
two or three dimensions. Consider, for example, the scatterplot shown in Fig-
ure 6.1. The conclusion that there are three natural groups or clusters of dots
is reached with no conscious effort or thought. Clusters are identified by the
assessment of the relative distances between points, and in this example the
relative homogeneity of each cluster and the degree of their separation makes
the task very simple. The examination of scatterplots based either on the orig-
inal data or perhaps on the first few principal component scores of the data is
often a very helpful initial phase when intending to apply some form of cluster
analysis to a set of multivariate data.

Cluster analysis techniques are described in detail in Gordon (1987, 1999)
in and Everitt, Landau, Leese, and Stahl (2011). In this chapter, we give a
relatively brief account of three types of clustering methods: agglomerative
hierarchical techniques, k-means clustering, and model-based clustering.
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Fig. 6.1. Bivariate data showing the presence of three clusters.
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6.3 Agglomerative hierarchical clustering

This class of clustering methods produces a hierarchical classification of data.
In a hierarchical classification, the data are not partitioned into a particular
number of classes or groups at a single step. Instead the classification consists
of a series of partitions that may run from a single “cluster” containing all
individuals to n clusters, each containing a single individual. Agglomerative
hierarchical clustering techniques produce partitions by a series of successive
fusions of the n individuals into groups. With such methods, fusions, once
made, are irreversible, so that when an agglomerative algorithm has placed
two individuals in the same group they cannot subsequently appear in different
groups. Since all agglomerative hierarchical techniques ultimately reduce the
data to a single cluster containing all the individuals, the investigator seeking
the solution with the best-fitting number of clusters will need to decide which
division to choose. The problem of deciding on the“correct”number of clusters
will be taken up later.

An agglomerative hierarchical clustering procedure produces a series of
partitions of the data, Pn, Pn−1, . . . , P1. The first, Pn, consists of n single-
member clusters, and the last, P1, consists of a single group containing all n
individuals. The basic operation of all methods is similar:

(START) Clusters C1, C2, . . . , Cn each containing a single individual.
(1) Find the nearest pair of distinct clusters, say Ci and Cj , merge Ci and

Cj , delete Cj , and decrease the number of clusters by one.
(2) If the number of clusters equals one, then stop; otherwise return to 1.

But before the process can begin, an inter-individual distance matrix or
similarity matrix needs to be calculated. There are many ways to calculate
distances or similarities between pairs of individuals, but here we only deal
with a commonly used distance measure, Euclidean distance, which was de-
fined in Chapter 1 but as a reminder is calculated as

dij =

√√√√ q∑
k=1

(xik − xjk)2,

where dij is the Euclidean distance between individual i with variable values
xi1, xi2, . . . , xiq and individual j with variable values xj1, xj2, . . . , xjq. (De-
tails of other possible distance measures and similarity measures are given in
Everitt et al. 2011). The Euclidean distances between each pair of individuals
can be arranged in a matrix that is symmetric because dij = dji and has zeros
on the main diagonal. Such a matrix is the starting point of many clustering
examples, although the calculation of Euclidean distances from the raw data
may not be sensible when the variables are on very different scales. In such
cases, the variables can be standardised in the usual way before calculating
the distance matrix, although this can be unsatisfactory in some cases (see
Everitt et al. 2011, for details).
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Given an inter-individual distance matrix, the hierarchical clustering can
begin, and at each stage in the process the methods fuse individuals or groups
of individuals formed earlier that are closest (or most similar). So as groups
are formed, the distance between an individual and a group containing several
individuals and the distance between two groups of individuals will need to
be calculated. How such distances are defined leads to a variety of different
techniques. Two simple inter-group measures are

dAB = min
i∈A

i∈B

(dij),

dAB = max
i∈A

i∈B

(dij),

where dAB is the distance between two clusters A and B, and dij is the
distance between individuals i and j found from the initial inter-individual
distance matrix.

The first inter-group distance measure above is the basis of single linkage
clustering, the second that of complete linkage clustering. Both these tech-
niques have the desirable property that they are invariant under monotone
transformations of the original inter-individual distances; i.e., they only de-
pend on the ranking on these distances, not their actual values.

A further possibility for measuring inter-cluster distance or dissimilarity is

dAB =
1

nAnB

∑
i∈A

∑
i∈B

dij ,

where nA and nB are the numbers of individuals in clusters A and B. This
measure is the basis of a commonly used procedure known as group average
clustering. All three inter-group measures described above are illustrated in
Figure 6.2.

Hierarchical classifications may be represented by a two-dimensional di-
agram known as a dendrogram, which illustrates the fusions made at each
stage of the analysis. An example of such a diagram is given in Figure 6.3.
The structure of Figure 6.3 resembles an evolutionary tree, a concept intro-
duced by Darwin under the term “Tree of Life” in his book On the Origin of
Species by Natural Selection in 1859, and it is in biological applications that
hierarchical classifications are most relevant and most justified (although this
type of clustering has also been used in many other areas).

As a first example of the application of the three clustering methods, single
linkage, complete linkage, and group average, each will be applied to the chest,
waist, and hip measurements of 20 individuals given in Chapter 1, Table 1.2.
First Euclidean distances are calculated on the unstandardised measurements
using the following R code:
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Fig. 6.2. Inter-cluster distance measures.

Fig. 6.3. Darwin’s Tree of Life.
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R> (dm <- dist(measure[, c("chest", "waist", "hips")]))

1 2 3 4 5 6 7 8 9 10

2 6.16

3 5.66 2.45

4 7.87 2.45 4.69

5 4.24 5.10 3.16 7.48

6 11.00 6.08 5.74 7.14 7.68

7 12.04 5.92 7.00 5.00 10.05 5.10

8 8.94 3.74 4.00 3.74 7.07 5.74 4.12

9 7.81 3.61 2.24 5.39 4.58 3.74 5.83 3.61

10 10.10 4.47 4.69 5.10 7.35 2.24 3.32 3.74 3.00

11 7.00 8.31 6.40 9.85 5.74 11.05 12.08 8.06 7.48 10.25

12 7.35 7.07 5.48 8.25 6.00 9.95 10.25 6.16 6.40 8.83

13 7.81 8.54 7.28 9.43 7.55 12.08 11.92 7.81 8.49 10.82

14 8.31 11.18 9.64 12.45 8.66 14.70 15.30 11.18 11.05 13.75

15 7.48 6.16 4.90 7.07 6.16 9.22 9.00 4.90 5.74 7.87

16 7.07 6.00 4.24 7.35 5.10 8.54 9.11 5.10 5.00 7.48

17 7.81 7.68 6.71 8.31 7.55 11.40 10.77 6.71 7.87 9.95

18 6.71 6.08 4.58 7.28 5.39 9.27 9.49 5.39 5.66 8.06

19 9.17 5.10 4.47 5.48 7.07 6.71 5.74 2.00 4.12 5.10

20 7.68 9.43 7.68 10.82 7.00 12.41 13.19 9.11 8.83 11.53

11 12 13 14 15 16 17 18 19

2

3

4

5

6

7

8

9

10

11

12 2.24

13 2.83 2.24

14 3.74 5.20 3.74

15 3.61 1.41 3.00 6.40

16 3.00 1.41 3.61 6.40 1.41

17 3.74 2.24 1.41 5.10 2.24 3.32

18 2.83 1.00 2.83 5.83 1.00 1.00 2.45

19 6.71 4.69 6.40 9.85 3.46 3.74 5.39 4.12

20 1.41 3.00 2.45 2.45 4.36 4.12 3.74 3.74 7.68

Application of each of the three clustering methods described earlier to
the distance matrix and a plot of the corresponding dendrogram are achieved
using the hclust() function:
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R> plot(cs <- hclust(dm, method = "single"))

R> plot(cc <- hclust(dm, method = "complete"))

R> plot(ca <- hclust(dm, method = "average"))

The resulting plots (for single, complete, and average linkage) are given in the
upper part of Figure 6.4.
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Fig. 6.4. Cluster solutions for measure data. The top row gives the cluster dendro-
grams along with the cutoff used to derive the classes presented (in the space of the
first two principal components) in the bottom row.

We now need to consider how we select specific partitions of the data (i.e.,
a solution with a particular number of groups) from these dendrograms. The
answer is that we “cut” the dendrogram at some height and this will give a
partition with a particular number of groups. How do we choose where to cut
or, in other words, how do we decide on a particular number of groups that is,
in some sense, optimal for the data? This is a more difficult question to answer.
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One informal approach is to examine the sizes of the changes in height in the
dendrogram and take a “large” change to indicate the appropriate number of
clusters for the data. (More formal approaches are described in Everitt et al.
2011) Even using this informal approach on the dendrograms in Figure 6.4, it
is not easy to decide where to “cut”.

So instead, because we know that these data consist of measurements on
ten men and ten women, we will look at the two-group solutions from each
method that are obtained by cutting the dendrograms at suitable heights. We
can display and compare the three solutions graphically by plotting the first
two principal component scores of the data, labelling the points to identify
the cluster solution of one of the methods by using the following code:

R> body_pc <- princomp(dm, cor = TRUE)

R> xlim <- range(body_pc$scores[,1])

R> plot(body_pc$scores[,1:2], type = "n",

+ xlim = xlim, ylim = xlim)

R> lab <- cutree(cs, h = 3.8)

R> text(body_pc$scores[,1:2], labels = lab, cex = 0.6)

The resulting plots are shown in the lower part of Figure 6.4. The plots of
dendrograms and principal components scatterplots are combined into a single
diagram using the layout() function (see the chapter demo for the complete
R code). The plot associated with the single linkage solution immediately
demonstrates one of the problems with using this method in practise, and
that is a phenomenon known as chaining, which refers to the tendency to
incorporate intermediate points between clusters into an existing cluster rather
than initiating a new one. As a result, single linkage solutions often contain
long “straggly” clusters that do not give a useful description of the data. The
two-group solutions from complete linkage and average linkage, also shown in
Figure 6.4, are similar and in essence place the men (observations 1 to 10)
together in one cluster and the women (observations 11 to 20) in the other.

6.3.1 Clustering jet fighters

The data shown in Table 6.1 as originally given in Stanley and Miller (1979)
and also in Hand et al. (1994) are the values of six variables for 22 US fighter
aircraft. The variables are as follows:

FFD: first flight date, in months after January 1940;
SPR: specific power, proportional to power per unit weight;
RGF: flight range factor;
PLF: payload as a fraction of gross weight of aircraft;
SLF: sustained load factor;
CAR: a binary variable that takes the value 1 if the aircraft can land on a

carrier and 0 otherwise.
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Table 6.1: jet data. Jet fighters data.

FFD SPR RGF PLF SLF CAR

82 1.468 3.30 0.166 0.10 no
89 1.605 3.64 0.154 0.10 no

101 2.168 4.87 0.177 2.90 yes
107 2.054 4.72 0.275 1.10 no
115 2.467 4.11 0.298 1.00 yes
122 1.294 3.75 0.150 0.90 no
127 2.183 3.97 0.000 2.40 yes
137 2.426 4.65 0.117 1.80 no
147 2.607 3.84 0.155 2.30 no
166 4.567 4.92 0.138 3.20 yes
174 4.588 3.82 0.249 3.50 no
175 3.618 4.32 0.143 2.80 no
177 5.855 4.53 0.172 2.50 yes
184 2.898 4.48 0.178 3.00 no
187 3.880 5.39 0.101 3.00 yes
189 0.455 4.99 0.008 2.64 no
194 8.088 4.50 0.251 2.70 yes
197 6.502 5.20 0.366 2.90 yes
201 6.081 5.65 0.106 2.90 yes
204 7.105 5.40 0.089 3.20 yes
255 8.548 4.20 0.222 2.90 no
328 6.321 6.45 0.187 2.00 yes

We shall apply complete linkage to the data but using only variables two
to five. And given that the variables are on very different scales, we will
standardise them to unit variance before clustering. The required R code for
standardisation and clustering is as follows:

R> X <- scale(jet[, c("SPR", "RGF", "PLF", "SLF")],

+ center = FALSE, scale = TRUE)

R> dj <- dist(X)

R> plot(cc <- hclust(dj), main = "Jets clustering")

R> cc

Call:

hclust(d = dj)

Cluster method : complete

Distance : euclidean

Number of objects: 22
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The resulting dendrogram in Figure 6.5 strongly suggests the presence of
two groups of fighters. In Figure 6.6, the data are plotted in the space of
the first two principal components of the correlation matrix of the relevant
variables (SPR to SLF). And in Figure 6.6 the points are labelled by cluster
number for the two-group solution and the colours used are the values of the
CAR variable. The two-group solution largely corresponds to planes that can
and cannot land on a carrier.

Call:

hclust(d = dj)

Cluster method : complete

Distance : euclidean

Number of objects: 22
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Again, we cut the dendrogram in such a way that two clusters remain and
plot the corresponding classes in the space of the first two principal compo-
nents; see Figure 6.6.

R> pr <- prcomp(dj)$x[, 1:2]

R> plot(pr, pch = (1:2)[cutree(cc, k = 2)],

+ col = c("black", "darkgrey")[jet$CAR],

+ xlim = range(pr) * c(1, 1.5))

R> legend("topright", col = c("black", "black",

+ "darkgrey", "darkgrey"),

+ legend = c("1 / no", "2 / no", "1 / yes", "2 / yes"),

+ pch = c(1:2, 1:2), title = "Cluster / CAR", bty = "n")
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Fig. 6.6. Hierarchical clustering (complete linkage) of jet data plotted in PCA space.
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6.4 K-means clustering

The k-means clustering technique seeks to partition the n individuals in a
set of multivariate data into k groups or clusters, (G1, G2, . . . , Gk), where Gi
denotes the set of ni individuals in the ith group, and k is given (or a possible
range is specified by the researcher–the problem of choosing the“true”value of
k will be taken up later) by minimising some numerical criterion, low values of
which are considered indicative of a“good”solution. The most commonly used
implementation of k-means clustering is one that tries to find the partition
of the n individuals into k groups that minimises the within-group sum of
squares (WGSS) over all variables; explicitly, this criterion is

WGSS =

q∑
j=1

k∑
l=1

∑
i∈Gl

(xij − x(l)j )2,

where x
(l)
j = 1

ni

∑
i∈Gl

xij is the mean of the individuals in group Gl on variable

j.
The problem then appears relatively simple; namely, consider every pos-

sible partition of the n individuals into k groups, and select the one with the
lowest within-group sum of squares. Unfortunately, the problem in practise is
not so straightforward. The numbers involved are so vast that complete enu-
meration of every possible partition remains impossible even with the fastest
computer. The scale of the problem immediately becomes clear by looking at
the numbers in Table 6.2.

Table 6.2: Number of possible partitions depending on the sample
size n and number of clusters k.

n k Number of possible partitions
15 3 2, 375, 101
20 4 45, 232, 115, 901
25 8 690, 223, 721, 118, 368, 580

100 5 1068

The impracticability of examining every possible partition has led to the
development of algorithms designed to search for the minimum values of the
clustering criterion by rearranging existing partitions and keeping the new
one only if it provides an improvement. Such algorithms do not, of course,
guarantee finding the global minimum of the criterion. The essential steps in
these algorithms are as follows:
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1. Find some initial partition of the individuals into the required number of
groups. (Such an initial partition could be provided by a solution from one
of the hierarchical clustering techniques described in the previous section.)

2. Calculate the change in the clustering criterion produced by“moving”each
individual from its own cluster to another cluster.

3. Make the change that leads to the greatest improvement in the value of
the clustering criterion.

4. Repeat steps (2) and (3) until no move of an individual causes the clus-
tering criterion to improve.

(For a more detailed account of the typical k-means algorithm see Steinley
2008)

The k-means approach to clustering using the minimisation of the within-
group sum of squares over all the variables is widely used but suffers from
the two problems of (1) not being scale-invariant (i.e., different solutions may
result from clustering the raw data and the data standardised in some way)
and (2) of imposing a “spherical” structure on the data; i.e., it will find clus-
ters shaped like hyper-footballs even if the “true” clusters in the data are of
some other shape (see Everitt et al. 2011, for some examples of the latter
phenomenon). Nevertheless, the k-means method remains very popular. With
k-means clustering, the investigator can choose to partition the data into a
specified number of groups. In practice, solutions for a range of values for the
number of groups are found and in some way the optimal or “true” number
of groups for the data must be chosen. Several suggestions have been made
as to how to answer the number of groups question, but none is completely
satisfactory. The method we shall use in the forthcoming example is to plot
the within-groups sum of squares associated with the k-means solution for
each number of groups. As the number of groups increases the sum of squares
will necessarily decrease, but an obvious “elbow” in the plot may be indicative
of the most useful solution for the investigator to look at in detail. (Compare
this with the scree plot described in Chapter 3.)

6.4.1 Clustering the states of the USA on the basis of their crime
rate profiles

The Statistical Abstract of the USA (Anonymous 1988, Table 265) gives rates
of different types of crime per 100,000 residents of the 50 states of the USA plus
the District of Columbia for the year 1986. The data are given in Table 6.3.

Table 6.3: crime data. Crime data.

Murder Rape Robbery Assault Burglary Theft Vehicle

ME 2.0 14.8 28 102 803 2347 164
NH 2.2 21.5 24 92 755 2208 228
VT 2.0 21.8 22 103 949 2697 181
MA 3.6 29.7 193 331 1071 2189 906
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Table 6.3: crime data (continued).

Murder Rape Robbery Assault Burglary Theft Vehicle

RI 3.5 21.4 119 192 1294 2568 705
CT 4.6 23.8 192 205 1198 2758 447
NY 10.7 30.5 514 431 1221 2924 637
NJ 5.2 33.2 269 265 1071 2822 776
PA 5.5 25.1 152 176 735 1654 354
OH 5.5 38.6 142 235 988 2574 376
IN 6.0 25.9 90 186 887 2333 328
IL 8.9 32.4 325 434 1180 2938 628
MI 11.3 67.4 301 424 1509 3378 800
WI 3.1 20.1 73 162 783 2802 254
MN 2.5 31.8 102 148 1004 2785 288
IA 1.8 12.5 42 179 956 2801 158
MO 9.2 29.2 170 370 1136 2500 439
ND 1.0 11.6 7 32 385 2049 120
SD 4.0 17.7 16 87 554 1939 99
NE 3.1 24.6 51 184 748 2677 168
KS 4.4 32.9 80 252 1188 3008 258
DE 4.9 56.9 124 241 1042 3090 272
MD 9.0 43.6 304 476 1296 2978 545
DC 31.0 52.4 754 668 1728 4131 975
VA 7.1 26.5 106 167 813 2522 219
WV 5.9 18.9 41 99 625 1358 169
NC 8.1 26.4 88 354 1225 2423 208
SC 8.6 41.3 99 525 1340 2846 277
GA 11.2 43.9 214 319 1453 2984 430
FL 11.7 52.7 367 605 2221 4373 598
KY 6.7 23.1 83 222 824 1740 193
TN 10.4 47.0 208 274 1325 2126 544
AL 10.1 28.4 112 408 1159 2304 267
MS 11.2 25.8 65 172 1076 1845 150
AR 8.1 28.9 80 278 1030 2305 195
LA 12.8 40.1 224 482 1461 3417 442
OK 8.1 36.4 107 285 1787 3142 649
TX 13.5 51.6 240 354 2049 3987 714
MT 2.9 17.3 20 118 783 3314 215
ID 3.2 20.0 21 178 1003 2800 181
WY 5.3 21.9 22 243 817 3078 169
CO 7.0 42.3 145 329 1792 4231 486
NM 11.5 46.9 130 538 1845 3712 343
AZ 9.3 43.0 169 437 1908 4337 419
UT 3.2 25.3 59 180 915 4074 223
NV 12.6 64.9 287 354 1604 3489 478
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Table 6.3: crime data (continued).

Murder Rape Robbery Assault Burglary Theft Vehicle

WA 5.0 53.4 135 244 1861 4267 315
OR 6.6 51.1 206 286 1967 4163 402
CA 11.3 44.9 343 521 1696 3384 762
AK 8.6 72.7 88 401 1162 3910 604
HI 4.8 31.0 106 103 1339 3759 328

Murder

10 50 100 600 1500

0
20

10
50 Rape

Robbery

0
60

0

10
0

60
0

Assault

Burglary

50
0

15
00

Theft

0 20 0 600 500 200 1000

20
0

10
00

Vehicle

Fig. 6.7. Scatterplot matrix of crime data.

To begin, let’s look at the scatterplot matrix of the data shown in Fig-
ure 6.7. The plot suggests that at least one of the cities is considerably dif-
ferent from the others in its murder rate at least. The city is easily identified
using
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R> subset(crime, Murder > 15)

Murder Rape Robbery Assault Burglary Theft Vehicle

DC 31 52.4 754 668 1728 4131 975

i.e., the murder rate is very high in the District of Columbia. In order to check
if the other crime rates are also higher in DC, we label the corresponding points
in the scatterplot matrix in Figure 6.8. Clearly, DC is rather extreme in most
crimes (the clear message is don’t live in DC).
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Fig. 6.8. Scatterplot matrix of crime data with DC observation labelled using a
plus sign.

We will now apply k-means clustering to the crime rate data after removing
the outlier, DC. If we first calculate the variances of the crime rates for the
different types of crimes we find the following:

R> sapply(crime, var)
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Murder Rape Robbery Assault Burglary Theft Vehicle

23.2 212.3 18993.4 22004.3 177912.8 582812.8 50007.4

The variances are very different, and using k-means on the raw data would not
be sensible; we must standardise the data in some way, and here we standardise
each variable by its range. After such standardisation, the variances become

R> rge <- sapply(crime, function(x) diff(range(x)))

R> crime_s <- sweep(crime, 2, rge, FUN = "/")

R> sapply(crime_s, var)

Murder Rape Robbery Assault Burglary Theft Vehicle

0.02578 0.05687 0.03404 0.05440 0.05278 0.06411 0.06517

The variances of the standardised data are very similar, and we can now
progress with clustering the data. First we plot the within-groups sum of
squares for one- to six-group solutions to see if we can get any indication of
the number of groups. The plot is shown in Figure 6.9. The only“elbow” in the
plot occurs for two groups, and so we will now look at the two-group solution.
The group means for two groups are computed by

R> kmeans(crime_s, centers = 2)$centers * rge

Murder Rape Robbery Assault Burglary Theft Vehicle

1 4.893 305.1 189.6 259.70 31.0 540.5 873.0

2 21.098 483.3 1031.4 19.26 638.9 2096.1 578.6

A plot of the two-group solution in the space of the first two principal compo-
nents of the correlation matrix of the data is shown in Figure 6.10. The two
groups are created essentially on the basis of the first principal component
score, which is a weighted average of the crime rates. Perhaps all the cluster
analysis is doing here is dividing into two parts a homogenous set of data. This
is always a possibility, as is discussed in some detail in Everitt et al. (2011).

6.4.2 Clustering Romano-British pottery

The second application of k-means clustering will be to the data on Romano-
British pottery given in Chapter 1. We begin by computing the Euclidean
distance matrix for the standardised measurements of the 45 pots. The result-
ing 45× 45 matrix can be inspected graphically by using an image plot, here
obtained with the function levelplot available in the package lattice (Sarkar
2010, 2008). Such a plot associates each cell of the dissimilarity matrix with
a colour or a grey value. We choose a very dark grey for cells with distance
zero (i.e., the diagonal elements of the dissimilarity matrix) and pale values
for cells with greater Euclidean distance. Figure 6.11 leads to the impression
that there are at least three distinct groups with small inter-cluster differences
(the dark rectangles), whereas much larger distances can be observed for all
other cells.
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R> n <- nrow(crime_s)

R> wss <- rep(0, 6)

R> wss[1] <- (n - 1) * sum(sapply(crime_s, var))

R> for (i in 2:6)

+ wss[i] <- sum(kmeans(crime_s,

+ centers = i)$withinss)

R> plot(1:6, wss, type = "b", xlab = "Number of groups",

+ ylab = "Within groups sum of squares")
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Fig. 6.9. Plot of within-groups sum of squares against number of clusters.

We plot the within-groups sum of squares for one to six group k-means
solutions to see if we can get any indication of the number of groups (see
Figure 6.12). Again, the plot leads to the relatively clear conclusion that the
data contain three clusters.

Our interest is now in a comparison of the kiln sites at which the pottery
was found.
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Fig. 6.10. Plot of k-means two-group solution for the standardised crime rate data.

R> set.seed(29)

R> pottery_cluster <- kmeans(pots, centers = 3)$cluster

R> xtabs(~ pottery_cluster + kiln, data = pottery)

kiln

pottery_cluster 1 2 3 4 5

1 21 0 0 0 0

2 0 12 2 0 0

3 0 0 0 5 5

The contingency table shows that cluster 1 contains all pots found at kiln site
number one, cluster 2 contains all pots from kiln sites numbers two and three,
and cluster three collects the ten pots from kiln sites four and five. In fact,
the five kiln sites are from three different regions: region 1 contains just kiln
one, region 2 contains kilns two and three, and region 3 contains kilns four
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R> library("lattice")

R> levelplot(as.matrix(pottery_dist), xlab = "Pot Number",

+ ylab = "Pot Number")
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Fig. 6.11. Image plot of the dissimilarity matrix of the pottery data.

and five. So the clusters found actually correspond to pots from three different
regions.

6.5 Model-based clustering

The agglomerative hierarchical and k-means clustering methods described in
the previous two sections are based largely on heuristic but intuitively reason-
able procedures. But they are not based on formal models for cluster structure
in the data, making problems such as deciding between methods, estimating

R> pottery_dist <- dist(pots <- scale(pottery[, colnames(pottery) != "kiln"],

+ center = FALSE))
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R> n <- nrow(pots)

R> wss <- rep(0, 6)

R> wss[1] <- (n - 1) * sum(sapply(pots, var))

R> for (i in 2:6)

+ wss[i] <- sum(kmeans(pots,

+ centers = i)$withinss)

R> plot(1:6, wss, type = "b", xlab = "Number of groups",

+ ylab = "Within groups sum of squares")
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Fig. 6.12. Plot of within-groups sum of squares against number of clusters.

the number of clusters, etc, particularly difficult. And, of course, without a
reasonable model, formal inference is precluded. In practise, these may not
be insurmountable objections to the use of either the agglomerative meth-
ods or k-means clustering because cluster analysis is most often used as an
“exploratory” tool for data analysis. But if an acceptable model for cluster
structure could be found, then the cluster analysis based on the model might
give more persuasive solutions (more persuasive to statisticians at least). In
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Fig. 6.13. Plot of the k-means three-group solution for the pottery data displayed
in the space of the first two principal components of the correlation matrix of the
data.

this section, we describe an approach to clustering that postulates a formal
statistical model for the population from which the data are sampled, a model
that assumes that this population consists of a number of subpopulations (the
“clusters”), each having variables with a different multivariate probability den-
sity function, resulting in what is known as a finite mixture density for the
population as a whole. By using finite mixture densities as models for cluster
analysis, the clustering problem becomes that of estimating the parameters of
the assumed mixture and then using the estimated parameters to calculate the
posterior probabilities of cluster membership. And determining the number of
clusters reduces to a model selection problem for which objective procedures
exist.

Finite mixture densities often provide a sensible statistical model for the
clustering process, and cluster analyses based on finite mixture models are also
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known as model-based clustering methods; see Banfield and Raftery (1993).
Finite mixture models have been increasingly used in recent years to clus-
ter data in a variety of disciplines, including behavioural, medical, genetic,
computer, environmental sciences, and robotics and engineering; see, for ex-
ample, Everitt and Bullmore (1999), Bouguila and Amayri (2009), Bran-
chaud, Cham, Nenadic, Andersen, and Burdick (2010), Dai, Erkkila, Yli-
Harja, and Lahdesmaki (2009), Dunson (2009), Ganesalingam, Stahl, Wi-
jesekera, Galtrey, Shaw, Leigh, and Al-Chalabi (2009), Marin, Mengersen,
and Roberts (2005), Meghani, Lee, Hanlon, and Bruner (2009), Pledger and
Phillpot (2008), and van Hattum and Hoijtink (2009).

Finite mixture modelling can be seen as a form of latent variable analysis
(see, for example, Skrondal and Rabe-Hesketh 2004), with “subpopulation”
being a latent categorical variable and the latent classes being described by
the different components of the mixture density; consequently, cluster analysis
based on such models is also often referred to as latent class cluster analysis.

6.5.1 Finite mixture densities

Finite mixture densities are described in detail in Everitt and Hand (1981),
Titterington, Smith, and Makov (1985), McLachlan and Basford (1988),
McLachlan and Peel (2000), and Frühwirth-Schnatter (2006); they are a fam-
ily of probability density functions of the form

f(x; p,θ) =
c∑
j=1

pjgj(x;θj), (6.1)

where x is a p-dimensional random variable, p> = (p1, p2, . . . , pc−1), and
θ> = (θ>1 ,θ

>
2 , . . . ,θ

>
c ), with the pj being known as mixing proportions and

the gj , j = 1, . . . , c, being the component densities, with density gj being
parameterised by θj . The mixing proportions are non-negative and are such
that

∑c
j=1 pj = 1. The number of components forming the mixture (i.e., the

postulated number of clusters) is c.
Finite mixtures provide suitable models for cluster analysis if we assume

that each group of observations in a data set suspected to contain clusters
comes from a population with a different probability distribution. The latter
may belong to the same family but differ in the values they have for the
parameters of the distribution; it is such an example that we consider in the
next section, where the components of the mixture are multivariate normal
with different mean vectors and possibly different covariance matrices.

Having estimated the parameters of the assumed mixture density, observa-
tions can be associated with particular clusters on the basis of the maximum
value of the estimated posterior probability

P̂(cluster j|xi) =
p̂jgj(xi; θ̂j)

f(xi; p̂, θ̂)
, j = 1, . . . , c. (6.2)
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6.5.2 Maximum likelihood estimation in a finite mixture density with
multivariate normal components

Given a sample of observations x1,x2, . . . ,xn, from the mixture density given
in Equation (6.1) the log-likelihood function, l, is

l(p,θ) =

n∑
i=1

ln f(xi; p,θ). (6.3)

Estimates of the parameters in the density would usually be obtained as a
solution of the likelihood equations

∂l(ϕ)

∂(ϕ)
= 0, (6.4)

where ϕ> = (p>,θ>). In the case of finite mixture densities, the likelihood
function is too complicated to employ the usual methods for its maximisation;
for example, an iterative Newton–Raphson method that approximates the
gradient vector of the log-likelihood function l(ϕ) by a linear Taylor series
expansion (see Everitt (1984)).

Consequently, the required maximum likelihood estimates of the parame-
ters in a finite mixture model have to be computed in some other way. In the
case of a mixture in which the jth component density is multivariate normal
with mean vector µj and covariance matrix Σj , it can be shown (see Everitt
and Hand 1981, for details) that the application of maximum likelihood results
in the series of equations

p̂j =
1

n

n∑
i=1

P̂(j|xi), (6.5)

µ̂j =
1

np̂j

n∑
i=1

xiP̂(j|xi), (6.6)

Σ̂j =
1

n

n∑
i=1

(xi − µj)(xi − µj)>P̂(j|xi), (6.7)

where the P̂(j|xi)s are the estimated posterior probabilities given in equation
(6.2).

Hasselblad (1966, 1969), Wolfe (1970), and Day (1969) all suggest an it-
erative scheme for solving the likelihood equations given above that involves
finding initial estimates of the posterior probabilities given initial estimates
of the parameters of the mixture and then evaluating the right-hand sides of
Equations 6.5 to 6.7 to give revised values for the parameters. From these,
new estimates of the posterior probabilities are derived, and the procedure is
repeated until some suitable convergence criterion is satisfied. There are po-
tential problems with this process unless the component covariance matrices
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are constrained in some way; for example, it they are all assumed to be the
same–again see Everitt and Hand (1981) for details.

This procedure is a particular example of the iterative expectation max-
imisation (EM) algorithm described by Dempster, Laird, and Rubin (1977) in
the context of likelihood estimation for incomplete data problems. In estimat-
ing parameters in a mixture, it is the “labels” of the component density from
which an observation arises that are missing. As an alternative to the EM algo-
rithm, Bayesian estimation methods using the Gibbs sampler or other Monte
Carlo Markov Chain (MCMC) methods are becoming increasingly popular–
see Marin et al. (2005) and McLachlan and Peel (2000).

Fraley and Raftery (2002, 2007) developed a series of finite mixture den-
sity models with multivariate normal component densities in which they allow
some, but not all, of the features of the covariance matrix (orientation, size,
and shape–discussed later) to vary between clusters while constraining others
to be the same. These new criteria arise from considering the reparameterisa-
tion of the covariance matrix Σj in terms of its eigenvalue description

Σj = DjΛjD
>
j , (6.8)

where Dj is the matrix of eigenvectors and Λj is a diagonal matrix with the
eigenvalues of Σj on the diagonal (this is simply the usual principal compo-
nents transformation–see Chapter 3). The orientation of the principal compo-
nents of Σj is determined by Dj , whilst Λj specifies the size and shape of the
density contours. Specifically, we can write Λj = λjAj , where λj is the largest
eigenvalue of Σj and Aj = diag(1, α2, . . . , αp) contains the eigenvalue ratios
after division by λj . Hence λj controls the size of the jth cluster and Aj its
shape. (Note that the term “size” here refers to the volume occupied in space,
not the number of objects in the cluster.) In two dimensions, the parame-
ters would reflect, for each cluster, the correlation between the two variables,
and the magnitudes of their standard deviations. More details are given in
Banfield and Raftery (1993) and Celeux and Govaert (1995), but Table 6.4
gives a series of models corresponding to various constraints imposed on the
covariance matrix. The models make up what Fraley and Raftery (2003, 2007)
term the “MCLUST” family of mixture models. The mixture likelihood ap-
proach based on the EM algorithm for parameter estimation is implemented
in the Mclust() function in the R package mclust and fits the models in the
MCLUST family described in Table 6.4.

Model selection is a combination of choosing the appropriate clustering
model for the population from which the n observations have been taken
(i.e., are all clusters spherical, all elliptical, all different shapes or somewhere
in between?) and the optimal number of clusters. A Bayesian approach is
used (see Fraley and Raftery 2002), applying what is known as the Bayesian
Information Criterion (BIC). The result is a cluster solution that “fits” the
observed data as well as possible, and this can include a solution that has only
one “cluster” implying that cluster analysis is not really a useful technique for
the data.
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Table 6.4: mclust family of mixture models. Model names describe
model restrictions of volume λj , shape Aj , and orientation Dj ,
V= variable, parameter unconstrained, E= equal, parameter con-
strained, I = matrix constrained to identity matrix.

Abbreviation Model
EII spherical, equal volume
VII spherical, unequal volume
EEI diagonal, equal volume and shape
VEI diagonal, varying volume, equal shape
EVI diagonal, equal volume, varying shape
VVI diagonal, varying volume and shape
EEE ellipsoidal, equal volume, shape, and orientation
EEV ellipsoidal, equal volume and equal shape
VEV ellipsoidal, equal shape
VVV ellipsoidal, varying volume, shape, and orientation

To illustrate the use of the finite mixture approach to cluster analysis, we
will apply it to data that arise from a study of what gastroenterologists in
Europe tell their cancer patients (Thomsen, Wulff, Martin, and Singer 1993).
A questionnaire was sent to about 600 gastroenterologists in 27 European
countries (the study took place before the recent changes in the political map
of the continent) asking what they would tell a patient with newly diagnosed
cancer of the colon, and his or her spouse, about the diagnosis. The respondent
gastroenterologists were asked to read a brief case history and then to answer
six questions with a yes/no answer. The questions were as follows:

Q1: Would you tell this patient that he/she has cancer, if he/she asks no
questions?

Q2: Would you tell the wife/husband that the patient has cancer (In the
patient’s absence)?

Q3: Would you tell the patient that he or she has a cancer, if he or she
directly asks you to disclose the diagnosis. (During surgery the surgeon
notices several small metastases in the liver.)

Q4: Would you tell the patient about the metastases (supposing the patient
asks to be told the results of the operation)?

Q5: Would you tell the patient that the condition is incurable?
Q6: Would you tell the wife or husband that the operation revealed metas-

tases?

The data are shown in a graphical form in Figure 6.14 (we are aware that
using finite mixture clustering on this type of data is open to criticism–it may
even be a statistical sin–but we hope that even critics will agree it provides
an interesting example).
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Applying the finite mixture approach to the proportions of ‘yes’ answers
for each question for each country computed from these data using the R code
utilizing functionality offered by package mclust (Fraley and Raftery 2010)

R> library("mclust")

by using mclust, invoked on its own or through another package,

you accept the license agreement in the mclust LICENSE file

and at http://www.stat.washington.edu/mclust/license.txt

R> (mc <- Mclust(thomsonprop))

best model: ellipsoidal, equal shape with 3 components

where thomsonprob is the matrix of proportions of “yes” answers to ques-
tions Q1–Q6 in the different countries (i.e., the proportion of filled dots in
Figure 6.14) available from the MVA add-on package. We can first examine
the resulting plot of BIC values shown in Figure 6.15. In this diagram, the
plot symbols and abbreviations refer to different model assumptions about
the shapes of clusters as given in Table 6.4.

The BIC criterion selects model VEV (ellipsoidal, equal shape) and three
clusters as the optimal solution. The three-cluster solution is illustrated graph-
ically in Figure 6.16. The first cluster consists of countries in which the large
majority of respondents gave “yes” answers to questions 1, 2, 3, 4, and 6 and
about half also gave a “yes” answer to question 5. This cluster includes all
the Scandinavian countries the UK, Iceland, Germany, the Netherlands, and
Switzerland. In the second cluster, the majority of respondents answer “no”
to questions 1, 4, and 5 and “yes” to questions 2, 3 and 6; in these countries
it appears that the clinicians do not mind giving bad news to the spouses of
patients but not to the patients themselves unless they are directly asked by
the patient about hispr her condition. This cluster contains Catholic countries
such as Spain, Portugal, and Italy. In cluster three, the large majority of re-
spondents answer “no” to questions 1, 3, 4, and 5 and again a large majority
answer “yes” to questions 2 and 6. In these countries, very few clinicians ap-
pear to be willing to give the patient bad news even if asked directly by the
patient about his or her condition.

6.6 Displaying clustering solutions graphically

Plotting cluster solutions in the space of the first few principal components
as illustrated earlier in this chapter is often a useful way to display clustering
solutions, but other methods of displaying clustering solutions graphically are
also available. Leisch (2010), for example, describes several graphical displays
that can be used to visualise cluster analysis solutions. The basis of a number
of these graphics is the shadow value, s(x), of each multivariate observation,
x, defined as



192 6 Cluster Analysis

2 4 6 8

−
10

0
−

50
0

number of components

B
IC

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●EII
VII
EEI
VEI
EVI

VVI
EEE
EEV
VEV
VVV

Fig. 6.15. BIC values for gastroenterologists questionnaire.

s(x) =
2d(x, c(x))

d(x, c(x)) + d(x, c̃(x))
,

where d(x, c(x)) is the distance of the observation x from the centroid of its
own cluster and d(x, c̃(x)) is the distance of x from the second closest cluster
centroid. If s(x) is close to zero, then the observation is close to its cluster
centroid; if s(x) is close to one, then the observation is almost equidistant
from the two centroids (a similar approach is used in defining silhouette plots,
see Chapter 5). The average shadow value of all observations where cluster i
is closest and cluster j is second closest can be used as a simple measure of
cluster similarity,

sij =
1

ni

∑
x∈Aij

s(x),

where ni is the number of observations that are closest to the centroid of
cluster i and Aij is the set of observations for which the centroid of cluster i is
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closest and the centroid of cluster j is second closest. The denominator of sij
is taken to be ni rather than nij , the number of observations in the set Aij ,
to prevent inducing large cluster similarity when nij is small and the set of
observations consists of poorly clustered points with large shadow values. For
a cluster solution derived from bivariate data, a neighbourhood graph can be
constructed using the scatterplot of the two variables, and where two cluster
centroids are joined if there exists at least one observation for which these two
are closest, and second closest with the thickness of the joining lines being
made proportional to the average value of the corresponding sij . When there
are more than two variables in the data set, the neighbourhood graph can be
constructed on some suitable projection of the data into two dimensions; for
example, the first two principal components of the data could be used. Such
plots may help to establish which clusters are “real” and which are not, as we
will try to illustrate with two examples.

The first example uses some two-dimensional data generated to contain
three clusters. The neighbourhood graph for the k-means five-cluster solution
from the application of k-means clustering is shown in Figure 6.17. The thicker
lines joining the centroids of clusters 1 and 5 and clusters 2 and 4 strongly
suggest that both pairs of clusters overlap to a considerable extent and are
probably each divisions of a single cluster.

For the second example we return to the pottery data previously met in the
chapter. From the k-means analysis, it is clear that these data contain three
clusters; Figure 6.18 shows the neighbourhood plot for the k-means three-
cluster solution in the space of the first two principal components of the data.
The three clusters are clearly visible in this plot.

A further graphic for displaying clustering solutions is known as a stripes
plot. This graphic is a simple but often effective way of visualising the distance
of each point from its closest and second closest cluster centroids. For each
cluster, k = 1, . . . ,K, a stripes plot has a rectangular area that is vertically
divided into K smaller rectangles, with each smaller rectangle, i, containing
information about distances of the observations in cluster i from the centroid
of that cluster along with the corresponding information about observations
that have cluster i as their second closest cluster. The explanation of how
the plot is constructed becomes more transparent if we look at an actual ex-
ample. Figure 6.19 shows a stripes plot produced with that package flexclust
(Leisch and Dimitriadou 2019) for a five-cluster solution on a set of data gen-
erated to contain five relatively distinct clusters. Looking first at the rectangle
for cluster one, we see that observations in clusters two and three have the
cluster one centroid as their second closest. These observations form the two
other stripes within the rectangle. Observations in cluster three are further
away from cluster one, but a number of observations in cluster three have
a distance to the centroid of cluster one similar to those observations that
belong to cluster one. Overall though, the stripes plot in Figure 6.19 suggests
that the five-cluster solution matches quite well the actual structure in the
data. The situation is quite different in Figure 6.20, where the stripes plot
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R> library("flexclust")

R> library("mvtnorm")

R> set.seed(290875)

R> x <- rbind(rmvnorm(n = 20, mean = c(0, 0),

+ sigma = diag(2)),

+ rmvnorm(n = 20, mean = c(3, 3),

+ sigma = 0.5 * diag(2)),

+ rmvnorm(n = 20, mean = c(7, 6),

+ sigma = 0.5 * (diag(2) + 0.25)))

R> k <- cclust(x, k = 5, save.data = TRUE)

R> plot(k, hull = FALSE, col = rep("black", 5), xlab = "x", ylab = "y")
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Fig. 6.17. Neighbourhood plot of k-means five-cluster solution for bivariate data
containing three clusters.
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R> k <- cclust(pots, k = 3, save.data = TRUE)

R> plot(k, project = prcomp(pots), hull = FALSE, col = rep("black", 3),

+ xlab = "PC1", ylab = "PC2")
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Fig. 6.18. Neighbourhood plot of k-means three-cluster solution for pottery data.

for the k-means five-group solution suggests that the clusters in this solution
are not well separated, implying perhaps that the five-group solution is not
appropriate for the data in this case. Lastly, the stripes plot for the k-means
three-group solution on the pottery data is shown in Figure 6.21. The graphic
confirms the three-group structure of the data.

All the information in a stripes plot is also available from a neighbour-
hood plot, but the former is dimension independent and may work well even
for high-dimensional data where projections to two dimensions lose a lot of
information about the structure in the data. Neither neighbourhood graphs
nor stripes plots are infallible, but both offer some help in the often difficult
task of evaluating and validating the solutions from a cluster analysis of a set
of data.
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R> set.seed(912345654)

R> x <- rbind(matrix(rnorm(100, sd = 0.5), ncol= 2 ),

+ matrix(rnorm(100, mean =4, sd = 0.5), ncol = 2),

+ matrix(rnorm(100, mean =7, sd = 0.5), ncol = 2),

+ matrix(rnorm(100, mean =-1.0, sd = 0.7), ncol = 2),

+ matrix(rnorm(100, mean =-4.0, sd = 1.0), ncol = 2))

R> c5 <- cclust(x, 5, save.data = TRUE)

R> stripes(c5, type = "second", col = 1)
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Fig. 6.19. Stripes plot of k-means solution for artificial data.

6.7 Summary

Cluster analysis techniques are used to search for clusters or groups in a priori
unclassified multivariate data. Although clustering techniques are potentially
very useful for the exploration of multivariate data, they require care in their
application if misleading solutions are to be avoided. Many methods of clus-
ter analysis have been developed, and most studies have shown that no one
method is best for all types of data. But the more statistical techniques covered
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R> set.seed(912345654)

R> x <- rbind(matrix(rnorm(100, sd = 2.5), ncol = 2),

+ matrix(rnorm(100, mean = 3, sd = 0.5), ncol = 2),

+ matrix(rnorm(100, mean = 5, sd = 0.5), ncol = 2),

+ matrix(rnorm(100, mean = -1.0, sd = 1.5), ncol = 2),

+ matrix(rnorm(100, mean = -4.0, sd = 2.0), ncol = 2))

R> c5 <- cclust(x, 5, save.data = TRUE)

R> stripes(c5, type = "second", col = 1)
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Fig. 6.20. Stripes plot of k-means solution for artificial data.

briefly in Section 6.5 and in more detail in Everitt et al. (2011) have definite
statistical advantages because the clustering is based on sensible models for
the data. Cluster analysis is a large area and has been covered only briefly
in this chapter. The many problems that need to be considered when using
clustering in practice have barely been touched upon. For a detailed discussion
of these problems, again see Everitt et al. (2011).
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R> set.seed(15)

R> c5 <- cclust(pots, k = 3, save.data = TRUE)

R> stripes(c5, type = "second", col = "black")
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Fig. 6.21. Stripes plot of three-group k-means solution for pottery data.

Finally, we should mention in passing a technique known as projection
pursuit. In essence, and like principal components analysis, projection pursuit
seeks a low-dimensional projection of a multivariate data set but one that
may be more likely to be successful in uncovering any cluster (or more ex-
otic) structure in the data than principal component plots using the first few
principal component scores. The technique is described in detail in Jones and
Sibson (1987) and more recently in Cook and Swayne (2007).
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6.8 Exercises

Ex. 6.1 Apply k-means to the crime rate data after standardising each vari-
able by its standard deviation. Compare the results with those given in
the text found by standardising by a variable’s range.

Ex. 6.2 Calculate the first five principal components scores for the Romano-
British pottery data, and then construct the scatterplot matrix of the
scores, displaying the contours of the estimated bivariate density for each
panel of the plot and a boxplot of each score in the appropriate place on
the diagonal. Label the points in the scatterplot matrix with their kiln
numbers.

Ex. 6.3 Return to the air pollution data given in Chapter 1 and use finite
mixtures to cluster the data on the basis of the six climate and ecology
variables (i.e., excluding the sulphur dioxide concentration). Investigate
how sulphur dioxide concentration varies in the clusters you find both
graphically and by formal significance testing.
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Confirmatory Factor Analysis and Structural
Equation Models

7.1 Introduction

An exploratory factor analysis as described in Chapter 5 is used in the early
investigation of a set of multivariate data to determine whether the factor
analysis model is useful in providing a parsimonious way of describing and
accounting for the relationships between the observed variables. The analysis
will determine which observed variables are most highly correlated with the
common factors and how many common factors are needed to give an ade-
quate description of the data. In an exploratory factor analysis, no constraints
are placed on which manifest variables load on which factors. In this chapter,
we will consider confirmatory factor analysis models in which particular man-
ifest variables are allowed to relate to particular factors whilst other manifest
variables are constrained to have zero loadings on some of the factors. A con-
firmatory factor analysis model may arise from theoretical considerations or
be based on the results of an exploratory factor analysis where the investigator
might wish to postulate a specific model for a new set of similar data, one in
which the loadings of some variables on some factors are fixed at zero because
they were “small” in the exploratory analysis and perhaps to allow some pairs
of factors but not others to be correlated. It is important to emphasise that
whilst it is perfectly appropriate to arrive at a factor model to submit to a
confirmatory analysis from an exploratory factor analysis, the model must be
tested on a fresh set of data. Models must not be generated and tested on the
same data.

Confirmatory factor analysis models are a subset of a more general ap-
proach to modelling latent variables known as structural equation modelling
or covariance structure modelling . Such models allow both response and ex-
planatory latent variables linked by a series of linear equations. Although
more complex than confirmatory factor analysis models, the aim of structural
equation models is essentially the same, namely to explain the correlations
or covariances of the observed variables in terms of the relationships of these
variables to the assumed underlying latent variables and the relationships pos-
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tulated between the latent variables themselves. Structural equation models
represent the convergence of relatively independent research traditions in psy-
chiatry, psychology, econometrics, and biometrics. The idea of latent variables
in psychometrics arises from Spearman’s early work on general intelligence.
The concept of simultaneous directional influences of some variables on others
has been part of economics for several decades, and the resulting simultaneous
equation models have been used extensively by economists but essentially only
with observed variables. Path analysis was introduced by Wright (1934) in a
biometrics context as a method for studying the direct and indirect effects
of variables. The quintessential feature of path analysis is a diagram show-
ing how a set of explanatory variables influence a dependent variable under
consideration. How the paths are drawn determines whether the explanatory
variables are correlated causes, mediated causes, or independent causes. Some
examples of path diagrams appear later in the chapter. (For more details of
path analysis, see Schumaker and Lomax 1996).

Later, path analysis was taken up by sociologists such as Blalock (1961),
Blalock (1963) and then by Duncan (1969), who demonstrated the value of
combining path-analytic representation with simultaneous equation models.
And, finally, in the 1970s, several workers most prominent of whom were
Jöreskog (1973), Bentler (1980), and Browne (1974), combined all these var-
ious approaches into a general method that could in principle deal with ex-
tremely complex models in a routine manner.

7.2 Estimation, identification, and assessing fit for
confirmatory factor and structural equation models

7.2.1 Estimation

Structural equation models will contain a number of parameters that need
to be estimated from the covariance or correlation matrix of the manifest
variables. Estimation involves finding values for the model parameters that
minimise a discrepancy function indicating the magnitude of the differences
between the elements of S, the observed covariance matrix of the manifest
variables and those of Σ(θ), the covariance matrix implied by the fitted model
(i.e., a matrix the elements of which are functions of the parameters of the
model), contained in the vector θ = (θ1, . . . , θt)

>.
There are a number of possibilities for discrepancy functions; for example,

the ordinary least squares discrepancy function, FLS, is

FLS(S,Σ(θ)) =
∑
i<j

∑
j

(sij − σij(θ))2,

where sij and σij(θ) are the elements of S and Σ(θ). But this criterion has
several problems that make it unsuitable for estimation; for example, it is not
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independent of the scale of the manifest variables, and so different estimates of
the model parameters would be produced using the sample covariance matrix
and the sample correlation matrix. Other problems with the least squares
criterion are detailed in Everitt (1984).

The most commonly used method of estimating the parameters in confir-
matory factor and structural equation models is maximum likelihood under
the assumption that the observed data have a multivariate normal distribu-
tion. It is easy to show that maximising the likelihood is now equivalent to
minimising the discrepancy function, FML, given by

FML(S,Σ(θ)) = log |Σ(θ)| − log |S|+ tr(SΣ(θ)−1)− q

(cf. maximum likelihood factor analysis in Chapter 5). We see that by varying
the parameters θ1, . . . , θt so that Σ(θ) becomes more like S, FML becomes
smaller. Iterative numerical algorithms are needed to minimise the function
FML with respect to the parameters, but for details see Everitt (1984) and
Everitt and Dunn (2001).

7.2.2 Identification

Consider the following simple example of a model in which there are three
manifest variables, x, xp, and y, and two latent variables, u and v, with the
relationships between the manifest and latent variables being

x = u+ δ,

y = v + ε,

xp = u+ δp.

If we assume that δ, δp, and ε have expected values of zero, that δ and δp are
uncorrelated with each other and with u, and that ε is uncorrelated with v,
then the covariance matrix of the three manifest variables may be expressed in
terms of parameters representing the variances and covariances of the residuals
and the latent variables as

Σ(θ) =

 θ1 + θ2
θ3 θ4 + θ5
θ3 θ4 θ4 + θ6

 ,

where θ> = (θ1, θ2, θ3, θ4, θ5, θ6) and θ1 = Var(v), θ2 = Var(ε), θ3 = Cov(v, u),
θ4 = Var(u), θ5 = Var(δ), and θ6 = Var(δp). It is immediately apparent that
estimation of the parameters in this model poses a problem. The two param-
eters θ1 and θ2 are not uniquely determined because one can be, for example,
increased by some amount and the other decreased by the same amount with-
out altering the covariance matrix predicted by the model. In other words, in
this example, different sets of parameter values (i.e., different θs) will lead to
the same predicted covariance matrix, Σ(θ). The model is said to be uniden-
tifiable. Formally, a model is identified if and only if Σ(θ1) = Σ(θ2) implies
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that θ1 = θ2. In Chapter 5, it was pointed out that the parameters in the ex-
ploratory factor analysis model are not identifiable unless some constraints are
introduced because different sets of factor loadings can give rise to the same
predicted covariance matrix. In confirmatory factor analysis models and more
general covariance structure models, identifiability depends on the choice of
model and on the specification of fixed, constrained (for example, two param-
eters constrained to equal one another), and free parameters. If a parameter is
not identified, it is not possible to find a consistent estimate of it. Establishing
model identification in confirmatory factor analysis models (and in structural
equation models) can be difficult because there are no simple, practicable,
and universally applicable rules for evaluating whether a model is identified,
although there is a simple necessary but not sufficient condition for identifi-
cation, namely that the number of free parameters in a model, t, be less than
q(q + 1)/2. For a more detailed discussion of the identifiability problem, see
Bollen and Long (1993).

7.2.3 Assessing the fit of a model

Once a model has been pronounced identified and its parameters estimated,
the next step becomes that of assessing how well the model-predicted co-
variance matrix fits the covariance matrix of the manifest variables. A global
measure of fit of a model is provided by the likelihood ratio statistic given
by X2 = (N − 1)FMLmin, where N is the sample size and FMLmin is the
minimised value of the maximum likelihood discrepancy function given in
Subsection 7.2.1. If the sample size is sufficiently large, the X2 statistic pro-
vides a test that the population covariance matrix of the manifest variables
is equal to the covariance implied by the fitted model against the alternative
hypothesis that the population matrix is unconstrained. Under the equality
hypothesis, X2 has a chi-squared distribution with degrees of freedom ν given
by 1

2q(q + 1)− t, where t is the number of free parameters in the model.
The likelihood ratio statistic is often the only measure of fit quoted for

a fitted model, but on its own it has limited practical use because in large
samples even relatively trivial departures from the equality null hypothesis
will lead to its rejection. Consequently, in large samples most models may be
rejected as statistically untenable. A more satisfactory way to use the test
is for a comparison of a series of nested models where a large difference in
the statistic for two models compared with the difference in the degrees of
freedom of the models indicates that the additional parameters in one of the
models provide a genuine improvement in fit.

Further problems with the likelihood ratio statistic arise when the observa-
tions come from a population where the manifest variables have a non-normal
distribution. Browne (1982) demonstrates that in the case of a distribution
with substantial kurtosis, the chi-squared distribution may be a poor approx-
imation for the null distribution of X2. Browne suggests that before using
the test it is advisable to assess the degree of kurtosis of the data by using
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Mardia’s coefficient of multivariate kurtosis (see Mardia et al. 1979). Browne’s
suggestion appears to be little used in practise.

Perhaps the best way to assess the fit of a model is to use the X2 statistic
alongside one or more of the following procedures:

� Visual inspection of the residual covariances (i.e., the differences between
the covariances of the manifest variables and those predicted by the fitted
model). These residuals should be small when compared with the values
of the observed covariances or correlations.

� Examination of the standard errors of the parameters and the correlations
between these estimates. If the correlations are large, it may indicate that
the model being fitted is almost unidentified.

� Estimated parameter values outside their possible range; i.e., negative vari-
ances or absolute values of correlations greater than unity are often an
indication that the fitted model is fundamentally wrong for the data.

In addition, a number of fit indices have been suggested that can sometimes
be useful. For example, the goodness-of-fit index (GFI) is based on the ratio
of the sum of squared distances between the matrices observed and those
reproduced by the model covariance, thus allowing for scale.

The GFI measures the amount of variance and covariance in S that is ac-
counted for by the covariance matrix predicted by the putative model, namely
Σ(θ), which for simplicity we shall write as Σ. For maximum likelihood esti-
mation, the GFI is given explicitly by

GFI = 1−
tr
(
SΣ̂−1 − I

)(
SΣ̂−1 − I

)
tr
(
SΣ̂−1SΣ̂−1

) .

The GFI can take values between zero (no fit) and one (perfect fit); in practise,
only values above about 0.9 or even 0.95 suggest an acceptable level of fit.

The adjusted goodness of fit index (AGFI) adjusts the GFI index for the
degrees of freedom of a model relative to the number of variables. The AGFI
is calculated as follow;

AGFI = 1− (k/df)(1−GFI),

where k is the number of unique values in S and df is the number of degrees
of freedom in the model (discussed later). The GFI and AGFI can be used to
compare the fit of two different models with the same data or compare the fit
of models with different data, for example male and female data sets.

A further fit index is the root-mean-square residual (RMSR), which is the

square root of the mean squared differences between the elements in S and Σ̂.
It can be used to compare the fit of two different models with the same data.
A value of RMSR < 0.05 is generally considered to indicate a reasonable fit.

A variety of other fit indices have been proposed, including the Tucker-
Lewis index and the normed fit index ; for details, see Bollen and Long (1993).
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7.3 Confirmatory factor analysis models

In a confirmatory factor model the loadings for some observed variables on
some of the postulated common factors will be set a priori to zero. Addi-
tionally, some correlations between factors might also be fixed at zero. Such a
model is fitted to a set of data by estimating its free parameters; i.e., those not
fixed at zero by the investigator. Estimation is usually by maximum likelihood
using the FML discrepancy function.

We will now illustrate the application of confirmatory factor analysis with
two examples.

7.3.1 Ability and aspiration

Calsyn and Kenny (1977) recorded the values of the following six variables for
556 white eighth-grade students:

SCA: self-concept of ability;
PPE: perceived parental evaluation;
PTE: perceived teacher evaluation;
PFE: perceived friend’s evaluation;
EA: educational aspiration;
CP: college plans.

Calsyn and Kenny (1977) postulated that two underlying latent variables,
ability and aspiration, generated the relationships between the observed vari-
ables. The first four of the manifest variables were assumed to be indicators
of ability and the last two indicators of aspiration; the latent variables, ability
and aspiration, are assumed to be correlated. The regression-like equations
that specify the postulated model are

SCA = λ1f1 + 0f2 + u1,

PPE = λ2f1 + 0f2 + u2,

PTE = λ3f1 + 0f2 + u3,

PFE = λ4f1 + 0f2 + u4,

AE = 0f1 + λ5f2 + u5,

CP = 0f1 + λ6f2 + u6,

where f1 represents the ability latent variable and f2 represents the aspiration
latent variable. Note that, unlike in exploratory factor analysis, a number of
factor loadings are fixed at zero and play no part in the estimation process.
The model has a total of 13 parameters to estimate, six factor loadings (λ1
to λ6), six specific variances (ψ1 to ψ6), and one correlation between ability
and aspiration (ρ). (To be consistent with the nomenclature used in Sub-
section 7.2.1, all parameters should be suffixed thetas; this could, however,
become confusing, so we have changed the nomenclature and use lambdas,
etc., in a manner similar to how they are used in Chapter 5.) The observed
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correlation matrix given in Figure 7.1 has six variances and 15 correlations,
a total of 21 terms. Consequently, the postulated model has 21− 13 = 8 de-
grees of freedom. The figure depicts each correlation by an ellipse whose shape
tends towards a line with slope 1 for correlations near 1, to a circle for correla-
tions near zero, and to a line with negative slope −1 for negative correlations
near −1. In addition, 100 times the correlation coefficient is printed inside the
ellipse and colour-coding indicates strong negative (dark) to strong positive
(light) correlations.

EA

CP

PFE

PTE

SCA

PPE

E
A

C
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P
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E

P
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E

S
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100 72 37 40 46 43

72 100 41 48 56 52

37 41 100 57 58 61

40 48 57 100 70 68

46 56 58 70 100 73

43 52 61 68 73 100

−1.0 −0.5 0.0 0.5 1.0

Fig. 7.1. Correlation matrix of ability and aspiration data; values given are corre-
lation coefficients ×100.

The R code, contained in the package sem (Fox, Kramer, and Friendly
2010), for fitting the model is

R> ability_model <- specify.model(file = "ability_model.txt")

R> ability_sem <- sem(ability_model, ability, 556)
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Here, the model is specified in a text file (called ability_model.txt in our
case) with the following content:

Ability -> SCA, lambda1, NA

Ability -> PPE, lambda2, NA

Ability -> PTE, lambda3, NA

Ability -> PFE, lambda4, NA

Aspiration -> EA, lambda5, NA

Aspiration -> CP, lambda6, NA

Ability <-> Aspiration, rho, NA

SCA <-> SCA, theta1, NA

PPE <-> PPE, theta2, NA

PTE <-> PTE, theta3, NA

PFE <-> PFE, theta4, NA

EA <-> EA, theta5, NA

CP <-> CP, theta6, NA

Ability <-> Ability, NA, 1

Aspiration <-> Aspiration, NA, 1

The model is specified via arrows in the so-called reticular action model
(RAM) notation. The text consists of three columns. The first one corresponds
to an arrow specification where single-headed or directional arrows correspond
to regression coefficients and double-headed or bidirectional arrows correspond
to variance parameters. The second column denotes parameter names, and the
third one assigns values to fixed parameters. Further details are available from
the corresponding pages of the manual for the sem package.

The results from fitting the ability and aspiration model to the observed
correlations are available via

R> summary(ability_sem)

Model Chisquare = 9.2557 Df = 8 Pr(>Chisq) = 0.32118

Chisquare (null model) = 1832.0 Df = 15

Goodness-of-fit index = 0.99443

Adjusted goodness-of-fit index = 0.98537

RMSEA index = 0.016817 90% CI: (NA, 0.05432)

Bentler-Bonnett NFI = 0.99495

Tucker-Lewis NNFI = 0.9987

Bentler CFI = 0.9993

SRMR = 0.012011

BIC = -41.310

Normalized Residuals

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.4410 -0.1870 0.0000 -0.0131 0.2110 0.5330

Parameter Estimates
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Estimate Std Error z value Pr(>|z|)

lambda1 0.86320 0.035182 24.5355 0.0000000

lambda2 0.84932 0.035489 23.9323 0.0000000

lambda3 0.80509 0.036409 22.1123 0.0000000

lambda4 0.69527 0.038678 17.9757 0.0000000

lambda5 0.77508 0.040365 19.2020 0.0000000

lambda6 0.92893 0.039417 23.5665 0.0000000

rho 0.66637 0.030955 21.5273 0.0000000

theta1 0.25488 0.023502 10.8450 0.0000000

theta2 0.27865 0.024263 11.4847 0.0000000

theta3 0.35184 0.026916 13.0715 0.0000000

theta4 0.51660 0.034820 14.8365 0.0000000

theta5 0.39924 0.038214 10.4475 0.0000000

theta6 0.13709 0.043530 3.1493 0.0016366

lambda1 SCA <--- Ability

lambda2 PPE <--- Ability

lambda3 PTE <--- Ability

lambda4 PFE <--- Ability

lambda5 EA <--- Aspiration

lambda6 CP <--- Aspiration

rho Aspiration <--> Ability

theta1 SCA <--> SCA

theta2 PPE <--> PPE

theta3 PTE <--> PTE

theta4 PFE <--> PFE

theta5 EA <--> EA

theta6 CP <--> CP

Iterations = 28

(Note that the two latent variables have their variances fixed at one, although
it is the fixing that is important, not the value at which they are fixed;
these variances cannot be free parameters to be estimated.) The z values test
whether parameters are significantly different from zero. All have very small
associated p-values. Of particular note amongst the parameter estimates is
the correlation between “true” ability and “true” aspiration; this is known as
a disattenuated correlation and is uncontaminated by measurement error in
the observed indicators of the two latent variables. In this case the estimate is
0.666, with a standard error of 0.031. An approximate 95% confidence interval
for the disattenuated correlation is [0.606, 0.727].

A path diagram (see Everitt and Dunn 2001) for the correlated, two-factor
model is shown in Figure 7.2. Note that the R function path.diagram()“only”
produces a textual representation of the graph, here in file ability_sem.dot.
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The graphviz graph visualisation software (Gansner and North 2000) needs to
be installed in order to compile the corresponding PDF file.

R> path.diagram(ability_sem)

Fig. 7.2. Ability path diagram.

The fit of the model can be partially judged using the chi-square statistic
described in Subsection 7.2.3, which in this case takes the value 9.256 with
eight degrees of freedom and an associated p-value of 0.321, suggesting that
the postulated model fits the data very well. (The chi-square test for the null
model is simply a test that the population covariance matrix of the observed
variables is diagonal; i.e., that the observed variables are independent. In
most cases, this null model will be rejected; if it is not, the model-fitting
exercise is a waste of time.) The various fit indices also indicate that the
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model is a good fit for the data. Also helpful in assessing the fit of the model
are the summary statistics for the normed residuals, which are essentially
the differences between corresponding elements of S and Σ̂(θ) but scaled so
that they are unaffected by the differences in the variances of the observed
variables. The normed residuals, r∗ij , are defined as

r∗ij =
sij − σ̂ij

(σ̂ij σ̂j
2 + σ̂2

ij)/n)1/2
.

Generally the absolute values of the normed residuals should all be less than 2
to claim that the current model fits the data well. In the ability and aspiration
example, this seems to be the case. (Note that with confirmatory factor models
the standard errors of parameters become of importance because they allow
the investigator to assess whether parameters might be dropped from the
model to find a more parsimonious model that still provides an adequate fit to
the data. In exploratory factor analysis, standard errors of factor loadings can
be calculated, but they are hardly ever used; instead an informal interpretation
of factors is made.)

7.3.2 A confirmatory factor analysis model for drug use

For our second example of fitting a confirmatory factor analysis model, we
return to the drug use among students data introduced in Chapter 5. In
the original investigation of these data reported by Huba et al. (1981), a
confirmatory factor analysis model was postulated, the model arising from
consideration of previously reported research on student drug use. The model
involved the following three latent variables:

f1: Alcohol use, with non-zero loadings on beer, wine, spirits, and cigarette
use.

f2: Cannabis use, with non-zero loadings on marijuana, hashish, cigarette,
and wine use. The cigarette variable is assumed to load on both the first and
second latent variables because it sometimes occurs with both alcohol and
marijuana use and at other times does not. The non-zero loading on wine was
allowed because of reports that wine is frequently used with marijuana and
that consequently some of the use of wine might be an indicator of tendencies
toward cannabis use.

f3: Hard drug use, with non-zero loadings on amphetamines, tranquillizers,
hallucinogenics, hashish, cocaine, heroin, drug store medication, inhalants,
and spirits. The use of each of these substances was considered to suggest a
strong commitment to the notion of psychoactive drug use.

Each pair of latent variables is assumed to be correlated so that these
correlations are allowed to be free parameters that need to be estimated. The
variance of each latent variance must, however, be fixed–they are not free
parameters that can be estimated–and here as usual we will specify that each
of these variances takes the value one. So the proposed model can be specified
by the following series of equations:
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cigarettes = λ1f1 + λ2f2 + 0f3 + u1,

beer = λ3f1 + 0f2 + 0f3 + u2,

wine = λ4f1 + λ5f2 + 0f3 + u3,

spirits = λ6f1 + 0f2 + λ7f3 + u4,

cocaine = 0f1 + 0f2 + λ8f3 + u5,

tranquillizers = 0f1 + 0f2 + λ9f3 + u6,

drug store medication = 0f1 + 0f2 + λ10f3 + u7,

heroin = 0f1 + 0f2 + λ11f3 + u8,

marijuana = 0f1 + λ12f2 + 0f3 + u9,

inhalants = 0f1 + 0f2 + λ15f3 + u11,

hallucinogenics = 0f1 + 0f2 + λ16f3 + u12,

amphetamines = 0f1 + 0f2 + λ17f3 + u13.

The proposed model also allows for non-zero correlations between each
pair of latent variables and so has a total of 33 parameters to estimate–17
loadings (λ1 to λ17), 13 specific variances (ψ1 to ψ13), and three correlations
between latent variables (ρ1 to ρ3). Consequently, the model has 91−33 = 58
degrees of freedom. We first abbreviate the names of the variables via

R> rownames(druguse) <- colnames(druguse) <- c("Cigs",

+ "Beer", "Wine", "Liqr", "Cocn", "Tran", "Drug",

+ "Hern", "Marj", "Hash", "Inhl", "Hall", "Amph")

To fit the model, we can use the R code

R> druguse_model <- specify.model(file = "druguse_model.txt")

R> druguse_sem <- sem(druguse_model, druguse, 1634)

where the model (stored in the text file druguse_model.txt) reads

Alcohol -> Cigs, lambda1, NA

Alcohol -> Beer, lambda3, NA

Alcohol -> Wine, lambda4, NA

Alcohol -> Liqr, lambda6, NA

Cannabis -> Cigs, lambda2, NA

Cannabis -> Wine, lambda5, NA

Cannabis -> Marj, lambda12, NA

Cannabis -> Hash, lambda13, NA

Hard -> Liqr, lambda7, NA

Hard -> Cocn, lambda8, NA

Hard -> Tran, lambda9, NA

Hard -> Drug, lambda10, NA

Hard -> Hern, lambda11, NA
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Hard -> Hash, lambda14, NA

Hard -> Inhl, lambda15, NA

Hard -> Hall, lambda16, NA

Hard -> Amph, lambda17, NA

Cigs <-> Cigs, theta1, NA

Beer <-> Beer, theta2, NA

Wine <-> Wine, theta3, NA

Liqr <-> Liqr, theta4, NA

Cocn <-> Cocn, theta5, NA

Tran <-> Tran, theta6, NA

Drug <-> Drug, theta7, NA

Hern <-> Hern, theta8, NA

Marj <-> Marj, theta9, NA

Hash <-> Hash, theta10, NA

Inhl <-> Inhl, theta11, NA

Hall <-> Hall, theta12, NA

Amph <-> Amph, theta13, NA

Alcohol <-> Alcohol, NA, 1

Cannabis <-> Cannabis, NA, 1

Hard <-> Hard, NA, 1

Alcohol <-> Cannabis, rho1, NA

Alcohol <-> Hard, rho2, NA

Cannabis <-> Hard, rho3, NA

The results of fitting the proposed model are

R> summary(druguse_sem)

Model Chisquare = 324.09 Df = 58 Pr(>Chisq) = 0

Chisquare (null model) = 6613.7 Df = 78

Goodness-of-fit index = 0.9703

Adjusted goodness-of-fit index = 0.9534

RMSEA index = 0.053004 90% CI: (0.047455, 0.058705)

Bentler-Bonnett NFI = 0.951

Tucker-Lewis NNFI = 0.94525

Bentler CFI = 0.95929

SRMR = 0.039013

BIC = -105.04

Normalized Residuals

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.0500 -0.8800 0.0000 -0.0217 0.9990 4.5800

Parameter Estimates

Estimate Std Error z value Pr(>|z|)

lambda1 0.35758 0.034332 10.4153 0.0000e+00



214 7 Confirmatory Factor Analysis and Structural Equation Models

lambda3 0.79159 0.022684 34.8962 0.0000e+00

lambda4 0.87588 0.037963 23.0716 0.0000e+00

lambda6 0.72176 0.023575 30.6150 0.0000e+00

lambda2 0.33203 0.034661 9.5793 0.0000e+00

lambda5 -0.15202 0.037155 -4.0914 4.2871e-05

lambda12 0.91237 0.030833 29.5907 0.0000e+00

lambda13 0.39549 0.030061 13.1559 0.0000e+00

lambda7 0.12347 0.022878 5.3971 6.7710e-08

lambda8 0.46467 0.025954 17.9038 0.0000e+00

lambda9 0.67554 0.024001 28.1468 0.0000e+00

lambda10 0.35842 0.026488 13.5312 0.0000e+00

lambda11 0.47591 0.025813 18.4367 0.0000e+00

lambda14 0.38199 0.029533 12.9343 0.0000e+00

lambda15 0.54297 0.025262 21.4940 0.0000e+00

lambda16 0.61825 0.024566 25.1667 0.0000e+00

lambda17 0.76336 0.023224 32.8695 0.0000e+00

theta1 0.61155 0.023495 26.0284 0.0000e+00

theta2 0.37338 0.020160 18.5210 0.0000e+00

theta3 0.37834 0.023706 15.9597 0.0000e+00

theta4 0.40799 0.019119 21.3398 0.0000e+00

theta5 0.78408 0.029381 26.6863 0.0000e+00

theta6 0.54364 0.023469 23.1644 0.0000e+00

theta7 0.87154 0.031572 27.6051 0.0000e+00

theta8 0.77351 0.029066 26.6126 0.0000e+00

theta9 0.16758 0.044839 3.7374 1.8592e-04

theta10 0.54692 0.022352 24.4691 0.0000e+00

theta11 0.70518 0.027316 25.8159 0.0000e+00

theta12 0.61777 0.025158 24.5551 0.0000e+00

theta13 0.41729 0.021422 19.4797 0.0000e+00

rho1 0.63317 0.028006 22.6079 0.0000e+00

rho2 0.31320 0.029574 10.5905 0.0000e+00

rho3 0.49893 0.027212 18.3349 0.0000e+00

lambda1 Cigs <--- Alcohol

lambda3 Beer <--- Alcohol

lambda4 Wine <--- Alcohol

lambda6 Liqr <--- Alcohol

lambda2 Cigs <--- Cannabis

lambda5 Wine <--- Cannabis

lambda12 Marj <--- Cannabis

lambda13 Hash <--- Cannabis

lambda7 Liqr <--- Hard

lambda8 Cocn <--- Hard

lambda9 Tran <--- Hard

lambda10 Drug <--- Hard
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lambda11 Hern <--- Hard

lambda14 Hash <--- Hard

lambda15 Inhl <--- Hard

lambda16 Hall <--- Hard

lambda17 Amph <--- Hard

theta1 Cigs <--> Cigs

theta2 Beer <--> Beer

theta3 Wine <--> Wine

theta4 Liqr <--> Liqr

theta5 Cocn <--> Cocn

theta6 Tran <--> Tran

theta7 Drug <--> Drug

theta8 Hern <--> Hern

theta9 Marj <--> Marj

theta10 Hash <--> Hash

theta11 Inhl <--> Inhl

theta12 Hall <--> Hall

theta13 Amph <--> Amph

rho1 Cannabis <--> Alcohol

rho2 Hard <--> Alcohol

rho3 Hard <--> Cannabis

Iterations = 31

Here the chi-square test for goodness of fit takes the value 324.092, which
with 58 degrees of freedom has an associated p-value that is very small; the
model does not appear to fit very well. But before we finally decide that the
fitted model is unsuitable for the data, we should perhaps investigate its fit in
other ways. Here we will look at the differences of the elements of the observed
covariance matrix and the covariance matrix of the fitted model. We can find
these differences using the following R code:

R> round(druguse_sem$S - druguse_sem$C, 3)

Cigs Beer Wine Liqr Cocn Tran Drug Hern

Cigs 0.000 -0.002 0.010 -0.009 -0.015 0.015 -0.009 -0.050

Beer -0.002 0.000 0.002 0.002 -0.047 -0.021 0.014 -0.055

Wine 0.010 0.002 0.000 -0.004 -0.039 0.005 0.039 -0.028

Liqr -0.009 0.002 -0.004 0.000 -0.047 0.022 -0.003 -0.069

Cocn -0.015 -0.047 -0.039 -0.047 0.000 0.035 0.042 0.100

Tran 0.015 -0.021 0.005 0.022 0.035 0.000 -0.021 0.034

Drug -0.009 0.014 0.039 -0.003 0.042 -0.021 0.000 0.030

Hern -0.050 -0.055 -0.028 -0.069 0.100 0.034 0.030 0.000

Marj 0.003 -0.012 -0.002 0.009 -0.026 0.007 -0.013 -0.063

Hash -0.023 0.025 0.005 0.029 0.034 -0.014 -0.045 -0.057

Inhl 0.094 0.068 0.075 0.065 0.020 -0.044 0.115 0.030



216 7 Confirmatory Factor Analysis and Structural Equation Models

Hall -0.071 -0.065 -0.049 -0.077 -0.008 -0.051 0.010 0.026

Amph 0.033 0.010 0.032 0.026 -0.077 0.029 -0.042 -0.049

Marj Hash Inhl Hall Amph

Cigs 0.003 -0.023 0.094 -0.071 0.033

Beer -0.012 0.025 0.068 -0.065 0.010

Wine -0.002 0.005 0.075 -0.049 0.032

Liqr 0.009 0.029 0.065 -0.077 0.026

Cocn -0.026 0.034 0.020 -0.008 -0.077

Tran 0.007 -0.014 -0.044 -0.051 0.029

Drug -0.013 -0.045 0.115 0.010 -0.042

Hern -0.063 -0.057 0.030 0.026 -0.049

Marj 0.000 -0.001 0.054 -0.077 0.047

Hash -0.001 0.000 -0.013 0.010 0.025

Inhl 0.054 -0.013 0.000 0.004 -0.022

Hall -0.077 0.010 0.004 0.000 0.039

Amph 0.047 0.025 -0.022 0.039 0.000

Some of these “raw” residuals look quite large in terms of a correlational scale;
for example, that corresponding to drug store medication and inhalants. And
the summary statistics for the normalised residuals show that the largest is
far greater than the acceptable value of 2 and the smallest is rather less than
the acceptable value of −2. Perhaps the overall message for the goodness-of-fit
measures is that the fitted model does not provide an entirely adequate fit for
the relationships between the observed variables. Readers are referred to the
original paper by Huba et al. (1981) for details of how the model was changed
to try to achieve a better fit.

7.4 Structural equation models

Confirmatory factor analysis models are relatively simple examples of a more
general framework for modelling latent variables and are known as either
structural equation models or covariance structure models. In such models,
observed variables are again assumed to be indicators of underlying latent
variables, but now regression equations linking the latent variables are incor-
porated. Such models are fitted as described in Subsection 7.2.1. We shall
illustrate these more complex models by way of a single example.

7.4.1 Stability of alienation

To illustrate the fitting of a structural equation model, we shall look at a study
reported by Wheaton, Muthen, Alwin, and Summers (1977) concerned with
the stability over time of attitudes such as alienation and the relationship of
such attitudes to background variables such as education and occupation. For
this purpose, data on attitude scales were collected from 932 people in two
rural regions in Illinois at three time points, 1966, 1967, and 1971. Here we
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Fig. 7.3. Drug use path diagram.

shall only consider the data from 1967 and 1971. Scores on the anomia scale
and powerlessness scale were taken to be indicators of the assumed latent
variable, alienation. A respondent’s years of schooling (education) and Dun-
can’s socioeconomic index were assumed to be indicators of a respondent’s
socioeconomic status. The correlation matrix for the six observed variables is
shown in Figure 7.4. The path diagram for the model to be fitted is shown
in Figure 7.5. The latent variable socioeconomic status is considered to affect
alienation at both time points, and alienation in 1967 also affects alienation
in 1971.
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Fig. 7.4. Correlation matrix of alienation data; values given are correlation coeffi-
cients ×100.

The scale of the three latent variables, SES, alienation 67, and alienation
71, are arbitrary and have to be fixed in some way to make the model identi-
fiable. Here each is set to the scale of one of its indicator variables by fixing
the corresponding regression coefficient to one. Consequently, the equations
defining the model to be fitted are as follows:

Education = SES + u1,

SEI = λ1SES + u2,

Anomia67 = Alienation67 + u3,

Powerlessness67 = λ2Alienation67 + u4,
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Anomia71 = Alienation71 + u5,

Powerlessness71 = λ3Alienation71 + u6,

Alienation67 = β1SES + u7,

Alienation71 = β2SES + β3Alienation67 + u8.

In addition to the six regression coefficients in these equations, the model
also has to estimate the variances of the eight error terms, u1, . . . , u8, and the
variance of the error term for the latent variables, SES. The necessary R code
for fitting the model is

R> alienation_model <- specify.model(

+ file = "alienation_model.txt")

R> alienation_sem <- sem(alienation_model, alienation, 932)

where the model reads

SES -> Educ, NA, 1

SES -> SEI, lambda1, NA

Alienation67 -> Anomia67, NA, 1

Alienation67 -> Powles67, lambda2, NA

Alienation71 -> Anomia71, NA, 1

Alienation71 -> Powles71, lambda3, NA

SES -> Alienation67, beta1, NA

SES -> Alienation71, beta2, NA

Alienation67 -> Alienation71, beta3, NA

Educ <-> Educ, theta1, NA

SEI <-> SEI, theta2, NA

SES <-> SES, delta0, NA

Anomia67 <-> Anomia67, theta3, NA

Powles67 <-> Powles67, theta4, NA

Anomia71 <-> Anomia71, theta5, NA

Powles71 <-> Powles71, theta6, NA

Alienation67 <-> Alienation67, delta1, NA

Alienation71 <-> Alienation71, delta2, NA

The parameter estimates are

R> summary(alienation_sem)

Model Chisquare = 71.532 Df = 6 Pr(>Chisq) = 1.9829e-13

Chisquare (null model) = 2131.5 Df = 15

Goodness-of-fit index = 0.97514

Adjusted goodness-of-fit index = 0.913

RMSEA index = 0.10831 90% CI: (0.086636, 0.13150)

Bentler-Bonnett NFI = 0.96644

Tucker-Lewis NNFI = 0.9226

Bentler CFI = 0.96904
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SRMR = 0.021256

BIC = 30.508

Normalized Residuals

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.2600 -0.2090 -0.0001 -0.0151 0.2440 1.3300

Parameter Estimates

Estimate Std Error z value Pr(>|z|)

lambda1 5.33054 0.430948 12.3693 0.0000e+00

lambda2 0.88883 0.043229 20.5609 0.0000e+00

lambda3 0.84892 0.041567 20.4229 0.0000e+00

beta1 -0.61361 0.056262 -10.9063 0.0000e+00

beta2 -0.17447 0.054221 -3.2178 1.2920e-03

beta3 0.70463 0.053387 13.1984 0.0000e+00

theta1 2.93614 0.500979 5.8608 4.6064e-09

theta2 260.93220 18.275902 14.2774 0.0000e+00

delta0 6.66392 0.641907 10.3814 0.0000e+00

theta3 4.02305 0.359231 11.1990 0.0000e+00

theta4 3.18933 0.284033 11.2288 0.0000e+00

theta5 3.70315 0.391837 9.4508 0.0000e+00

theta6 3.62334 0.304359 11.9048 0.0000e+00

delta1 5.30685 0.484186 10.9603 0.0000e+00

delta2 3.73998 0.388683 9.6222 0.0000e+00

lambda1 SEI <--- SES

lambda2 Powles67 <--- Alienation67

lambda3 Powles71 <--- Alienation71

beta1 Alienation67 <--- SES

beta2 Alienation71 <--- SES

beta3 Alienation71 <--- Alienation67

theta1 Educ <--> Educ

theta2 SEI <--> SEI

delta0 SES <--> SES

theta3 Anomia67 <--> Anomia67

theta4 Powles67 <--> Powles67

theta5 Anomia71 <--> Anomia71

theta6 Powles71 <--> Powles71

delta1 Alienation67 <--> Alienation67

delta2 Alienation71 <--> Alienation71

Iterations = 84

The value of the chi-square fit statistic is 71.532, which with 6 degrees of
freedom suggests that the model does not fit well. Jöreskog and Sörbom (1981)
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suggest that the model can be improved by allowing the measurement errors
for anomia in 1967 and in 1971 to be correlated. Fitting such a model in R
requires the addition of the following line to the code above:

Anomia67 <-> Anomia71, psi, NA

The chi-square fit statistic is now 6.359 with 5 degrees of freedom. Clearly the
introduction of correlated measurement errors for the two measurements of
anomia has greatly improved the fit of the model. However, Bentler (1982),
in a discussion of this example, suggests that the importance of the structure
remaining to be explained after fitting the original model is in practical terms
very small, and Browne (1982) criticises the tendency to allow error terms
to become correlated simply to obtain an improvement in fit unless there are
sound theoretical reasons why particular error terms should be related.

7.5 Summary

The possibility of making causal inferences about latent variables is one that
has great appeal, particularly for social and behavioural scientists, simply
because the concepts in which they are most interested are rarely measurable
directly. And because such models can nowadays be relatively easily fitted,
researchers can routinely investigate quite complex models. But perhaps a
caveat issued more than 20 years ago still has some relevance–the following is
from Cliff (1983):

Correlational data are still correlational and no computer program can
take account of variables that are not in the analysis. Causal relations
can only be established through patient, painstaking attention to all
the relevant variables, and should involve active manipulation as a
final confirmation.

The maximum likelihood estimation approach described in this chapter
is based on the assumption of multivariate normality for the data. When a
multivariate normality assumption is clearly untenable, for example with cate-
gorical variables, applying the maximum likelihood methods can lead to biased
results, although when there are five or more response categories (and the dis-
tribution of the data is normal) the problems from disregarding the categorical
nature of variables are likely to be minimised (see Marcoulides 2005). Muthen
(1984) describes a very general approach for structural equation modelling
that can be used when the data consist of a mixture of continuous, ordinal,
and dichotomous variables.

Sample size issues for structural equation modelling have been consid-
ered by MacCullum, Browne, and Sugawara (1996), and Muthen and Muthen
(2002) illustrate how to undertake a Monte Carlo study to help decide on
sample size and determine power.
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7.6 Exercises

Ex. 7.1 The matrix below shows the correlations between ratings on nine
statements about pain made by 123 people suffering from extreme pain.
Each statement was scored on a scale from 1 to 6, ranging from agreement
to disagreement. The nine pain statements were as follows:
1. Whether or not I am in pain in the future depends on the skills of the

doctors.
2. Whenever I am in pain, it is usually because of something I have done

or not done.
3. Whether or not I am in pain depends on what the doctors do for me.
4. I cannot get any help for my pain unless I go to seek medical advice.
5. When I am in pain, I know that it is because I have not been taking

proper exercise or eating the right food.
6. People’s pain results from their own carelessness.
7. I am directly responsible for my pain,
8. relief from pain is chiefly controlled by the doctors.
9. People who are never in pain are just plain lucky.

1.00
−0.04 1.00

0.61 −0.07 1.00
0.45 −0.12 0.59 1.00
0.03 0.49 0.03 −0.08 1.00
−0.29 0.43 −0.13 −0.21 0.47 1.00
−0.30 0.30 −0.24 −0.19 0.41 0.63 1.00

0.45 −0.31 0.59 0.63 −0.14 −0.13 −0.26 1.00
0.30 −0.17 0.32 0.37 −0.24 −0.15 −0.29 0.40 1.00


.

Fit a correlated two-factor model in which questions 1, 3, 4, and 8 are
assumed to be indicators of the latent variable Doctor’s Responsibility
and questions 2, 5, 6, and 7 are assumed to be indicators of the latent
variable Patient’s Responsibility. Find a 95% confidence interval for the
correlation between the two latent variables.

Ex. 7.2 For the stability of alienation example, fit the model in which the
measurement errors for anomia in 1967 and anomia in 1971 are allowed
to be correlated.

Ex. 7.3 Meyer and Bendig (1961) administered the five Thurstone Primary
Mental Ability tests, verbal meaning (V), space (S), reasoning (R), nu-
merical (N), and word fluency (W), to 49 boys and 61 girls in grade 8 and
again three and a half years later in grade 11. The observed correlation
matrix is shown below. Fit a single-factor model to the correlations that
allows the factor at time one to be correlated with the factor at time two.
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V S R N W V S R N W
V 1.00
S 0.37 1.00
R 0.42 0.33 1.00
N 0.53 0.14 0.38 1.00
W 0.38 0.10 0.20 0.24 1.00
V 0.81 0.34 0.49 0.58 0.32 1.00
S 0.35 0.65 0.20 −0.04 0.11 0.34 1.00
R 0.42 0.32 0.75 0.46 0.26 0.46 0.18 1.00
N 0.40 0.14 0.39 0.73 0.19 0.55 0.06 0.54 1.00
W 0.24 0.15 0.17 0.15 0.43 0.24 0.15 0.20 0.16 1.00
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The Analysis of Repeated Measures Data

8.1 Introduction

The multivariate data sets considered in previous chapters have involved mea-
surements or observations on a number of different variables for each object or
individual in the study. In this chapter, however, we will consider multivariate
data of a different nature, namely data resulting from the repeated measure-
ments of the same variable on each unit in the data set. Examples of such
data are common in many disciplines. But before we introduce some actual
repeated measures data sets, we need to make a small digression in order to
introduce the two different “formats”, the wide and the long forms, in which
such data are commonly stored and dealt with. The simplest way to do this
is by way of a small example data set:

R> ex_wide

ID Group Day.1 Day.2 Day.5 Day.7

1 1 1 15 15 10 7

2 2 1 10 9 11 12

3 3 1 8 7 6 9

4 4 2 11 8 13 7

5 5 2 11 12 11 11

6 6 2 12 12 6 10

We can pretend that these data come from a clinical trial in which individuals
have been assigned to two treatment groups and have a response variable of
interest recorded on days 1, 2, 5 and 7. As given in this table, the data are in
their wide form (as are most of the data sets met in earlier chapters); each row
of data corresponds to an individual and contains all the repeated measures for
the individual as well as other variables that might have been recorded–in this
case the treatment group of the individual. These data can be put into their
long form, in which each row of data now corresponds to one of the repeated
measurements along with the values of other variables associated with this
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particular measurement (for example, the time the measurement was taken)
by using the reshape() function in R. The code needed to rearrange the data
ex_wide into their long form is as follows:

R> reshape(ex_wide, direction = "long", idvar = "ID",

+ varying = colnames(ex_wide)[-(1:2)])

ID Group time Day

1.1 1 1 1 15

2.1 2 1 1 10

3.1 3 1 1 8

4.1 4 2 1 11

5.1 5 2 1 11

6.1 6 2 1 12

1.2 1 1 2 15

2.2 2 1 2 9

3.2 3 1 2 7

4.2 4 2 2 8

5.2 5 2 2 12

6.2 6 2 2 12

1.5 1 1 5 10

2.5 2 1 5 11

3.5 3 1 5 6

4.5 4 2 5 13

5.5 5 2 5 11

6.5 6 2 5 6

1.7 1 1 7 7

2.7 2 1 7 12

3.7 3 1 7 9

4.7 4 2 7 7

5.7 5 2 7 11

6.7 6 2 7 10

Here, varying contains the names of the variables containing the repeated
measurements. Note that the name of the variable consists of the name itself
and the time point, separated by a dot. This long form of repeated measures
data is used when applying the models to be described in Section 8.2, although
the wide format is often more convenient for plotting the data and computing
summary statistics.

So now let us take a look at two repeated measurement data sets that
we shall be concerned with in this chapter. The first, shown in its long form
in Table 8.1, is taken from Crowder (1998) and gives the loads required to
produce slippage x of a timber specimen in a clamp. There are eight speci-
mens each with 15 repeated measurements. The second data set, in Table 8.2
reported in Zerbe (1979) and also given in Davis (2003), consists of plasma
inorganic phosphate measurements obtained from 13 control and 20 obese pa-
tients 0, 0.5, 1, 1.5, 2, and 3 hours after an oral glucose challenge. These two
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data sets illustrate that although repeated measurements often arise from the
passing of time (longitudinal data), this is not always the case.

Table 8.1: timber data. Data giving loads needed for a given slip-
page in eight specimens of timber, with data in “long” form.

specimen slippage loads specimen slippage loads

spec1 0.0 0.00 spec5 0.7 12.25
spec2 0.0 0.00 spec6 0.7 12.85
spec3 0.0 0.00 spec7 0.7 12.13
spec4 0.0 0.00 spec8 0.7 12.21
spec5 0.0 0.00 spec1 0.8 12.98
spec6 0.0 0.00 spec2 0.8 14.08
spec7 0.0 0.00 spec3 0.8 13.18
spec8 0.0 0.00 spec4 0.8 12.23
spec1 0.1 2.38 spec5 0.8 13.35
spec2 0.1 2.69 spec6 0.8 13.83
spec3 0.1 2.85 spec7 0.8 13.15
spec4 0.1 2.46 spec8 0.8 13.16
spec5 0.1 2.97 spec1 0.9 13.94
spec6 0.1 3.96 spec2 0.9 14.66
spec7 0.1 3.17 spec3 0.9 14.12
spec8 0.1 3.36 spec4 0.9 13.24
spec1 0.2 4.34 spec5 0.9 14.54
spec2 0.2 4.75 spec6 0.9 14.85
spec3 0.2 4.89 spec7 0.9 14.09
spec4 0.2 4.28 spec8 0.9 14.05
spec5 0.2 4.68 spec1 1.0 14.74
spec6 0.2 6.46 spec2 1.0 15.37
spec7 0.2 5.33 spec3 1.0 15.09
spec8 0.2 5.45 spec4 1.0 14.19
spec1 0.3 6.64 spec5 1.0 15.53
spec2 0.3 7.04 spec6 1.0 15.79
spec3 0.3 6.61 spec7 1.0 15.11
spec4 0.3 5.88 spec8 1.0 14.96
spec5 0.3 6.66 spec1 1.2 16.13
spec6 0.3 8.14 spec2 1.2 16.89
spec7 0.3 7.14 spec3 1.2 16.68
spec8 0.3 7.08 spec4 1.2 16.07
spec1 0.4 8.05 spec5 1.2 17.38
spec2 0.4 9.20 spec6 1.2 17.39
spec3 0.4 8.09 spec7 1.2 16.69
spec4 0.4 7.43 spec8 1.2 16.24
spec5 0.4 8.11 spec1 1.4 17.98
spec6 0.4 9.35 spec2 1.4 17.78
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Table 8.1: timber data (continued).

specimen slippage loads specimen slippage loads

spec7 0.4 8.29 spec3 1.4 17.94
spec8 0.4 8.32 spec4 1.4 17.43
spec1 0.5 9.78 spec5 1.4 18.76
spec2 0.5 10.94 spec6 1.4 18.44
spec3 0.5 9.72 spec7 1.4 17.69
spec4 0.5 8.32 spec8 1.4 17.34
spec5 0.5 9.64 spec1 1.6 19.52
spec6 0.5 10.72 spec2 1.6 18.41
spec7 0.5 9.86 spec3 1.6 18.22
spec8 0.5 9.91 spec4 1.6 18.36
spec1 0.6 10.97 spec5 1.6 19.81
spec2 0.6 12.23 spec6 1.6 19.46
spec3 0.6 11.03 spec7 1.6 18.71
spec4 0.6 9.92 spec8 1.6 18.23
spec5 0.6 11.06 spec1 1.8 19.97
spec6 0.6 11.84 spec2 1.8 18.97
spec7 0.6 11.07 spec3 1.8 19.40
spec8 0.6 11.06 spec4 1.8 18.93
spec1 0.7 12.05 spec5 1.8 20.62
spec2 0.7 13.19 spec6 1.8 20.05
spec3 0.7 12.14 spec7 1.8 19.54
spec4 0.7 11.10 spec8 1.8 18.87

Table 8.2: plasma data. Plasma inorganic phosphate levels from 33
subjects, with data in “long” form.

Subject group time plasma Subject group time plasma

id01 control 1 4.3 id01 control 5 2.2
id02 control 1 3.7 id02 control 5 2.9
id03 control 1 4.0 id03 control 5 2.9
id04 control 1 3.6 id04 control 5 2.9
id05 control 1 4.1 id05 control 5 3.6
id06 control 1 3.8 id06 control 5 3.8
id07 control 1 3.8 id07 control 5 3.1
id08 control 1 4.4 id08 control 5 3.6
id09 control 1 5.0 id09 control 5 3.3
id10 control 1 3.7 id10 control 5 1.5
id11 control 1 3.7 id11 control 5 2.9
id12 control 1 4.4 id12 control 5 3.7
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Table 8.2: plasma data (continued).

Subject group time plasma Subject group time plasma

id13 control 1 4.7 id13 control 5 3.2
id14 control 1 4.3 id14 control 5 2.2
id15 control 1 5.0 id15 control 5 3.7
id16 control 1 4.6 id16 control 5 3.7
id17 control 1 4.3 id17 control 5 3.1
id18 control 1 3.1 id18 control 5 2.6
id19 control 1 4.8 id19 control 5 2.2
id20 control 1 3.7 id20 control 5 2.9
id21 obese 1 5.4 id21 obese 5 2.8
id22 obese 1 3.0 id22 obese 5 2.1
id23 obese 1 4.9 id23 obese 5 3.7
id24 obese 1 4.8 id24 obese 5 4.7
id25 obese 1 4.4 id25 obese 5 3.5
id26 obese 1 4.9 id26 obese 5 3.3
id27 obese 1 5.1 id27 obese 5 3.4
id28 obese 1 4.8 id28 obese 5 4.1
id29 obese 1 4.2 id29 obese 5 3.3
id30 obese 1 6.6 id30 obese 5 4.3
id31 obese 1 3.6 id31 obese 5 2.1
id32 obese 1 4.5 id32 obese 5 2.4
id33 obese 1 4.6 id33 obese 5 3.8
id01 control 2 3.3 id01 control 6 2.5
id02 control 2 2.6 id02 control 6 3.2
id03 control 2 4.1 id03 control 6 3.1
id04 control 2 3.0 id04 control 6 3.9
id05 control 2 3.8 id05 control 6 3.4
id06 control 2 2.2 id06 control 6 3.6
id07 control 2 3.0 id07 control 6 3.4
id08 control 2 3.9 id08 control 6 3.8
id09 control 2 4.0 id09 control 6 3.6
id10 control 2 3.1 id10 control 6 2.3
id11 control 2 2.6 id11 control 6 2.2
id12 control 2 3.7 id12 control 6 4.3
id13 control 2 3.1 id13 control 6 4.2
id14 control 2 3.3 id14 control 6 2.5
id15 control 2 4.9 id15 control 6 4.1
id16 control 2 4.4 id16 control 6 4.2
id17 control 2 3.9 id17 control 6 3.1
id18 control 2 3.1 id18 control 6 1.9
id19 control 2 5.0 id19 control 6 3.1
id20 control 2 3.1 id20 control 6 3.6
id21 obese 2 4.7 id21 obese 6 3.7
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Table 8.2: plasma data (continued).

Subject group time plasma Subject group time plasma

id22 obese 2 2.5 id22 obese 6 2.6
id23 obese 2 5.0 id23 obese 6 4.1
id24 obese 2 4.3 id24 obese 6 3.7
id25 obese 2 4.2 id25 obese 6 3.4
id26 obese 2 4.3 id26 obese 6 4.1
id27 obese 2 4.1 id27 obese 6 4.2
id28 obese 2 4.6 id28 obese 6 4.0
id29 obese 2 3.5 id29 obese 6 3.1
id30 obese 2 6.1 id30 obese 6 3.8
id31 obese 2 3.4 id31 obese 6 2.4
id32 obese 2 4.0 id32 obese 6 2.3
id33 obese 2 4.4 id33 obese 6 3.6
id01 control 3 3.0 id01 control 7 3.4
id02 control 3 2.6 id02 control 7 3.1
id03 control 3 3.1 id03 control 7 3.9
id04 control 3 2.2 id04 control 7 3.8
id05 control 3 2.1 id05 control 7 3.6
id06 control 3 2.0 id06 control 7 3.0
id07 control 3 2.4 id07 control 7 3.5
id08 control 3 2.8 id08 control 7 4.0
id09 control 3 3.4 id09 control 7 4.0
id10 control 3 2.9 id10 control 7 2.7
id11 control 3 2.6 id11 control 7 3.1
id12 control 3 3.1 id12 control 7 3.9
id13 control 3 3.2 id13 control 7 3.7
id14 control 3 3.0 id14 control 7 2.4
id15 control 3 4.1 id15 control 7 4.7
id16 control 3 3.9 id16 control 7 4.8
id17 control 3 3.1 id17 control 7 3.6
id18 control 3 3.3 id18 control 7 2.3
id19 control 3 2.9 id19 control 7 3.5
id20 control 3 3.3 id20 control 7 4.3
id21 obese 3 3.9 id21 obese 7 3.5
id22 obese 3 2.3 id22 obese 7 3.2
id23 obese 3 4.1 id23 obese 7 4.7
id24 obese 3 4.7 id24 obese 7 3.6
id25 obese 3 4.2 id25 obese 7 3.8
id26 obese 3 4.0 id26 obese 7 4.2
id27 obese 3 4.6 id27 obese 7 4.4
id28 obese 3 4.6 id28 obese 7 3.8
id29 obese 3 3.8 id29 obese 7 3.5
id30 obese 3 5.2 id30 obese 7 4.2



8.1 Introduction 231

Table 8.2: plasma data (continued).

Subject group time plasma Subject group time plasma

id31 obese 3 3.1 id31 obese 7 2.5
id32 obese 3 3.7 id32 obese 7 3.1
id33 obese 3 3.8 id33 obese 7 3.8
id01 control 4 2.6 id01 control 8 4.4
id02 control 4 1.9 id02 control 8 3.9
id03 control 4 2.3 id03 control 8 4.0
id04 control 4 2.8 id04 control 8 4.0
id05 control 4 3.0 id05 control 8 3.7
id06 control 4 2.6 id06 control 8 3.5
id07 control 4 2.5 id07 control 8 3.7
id08 control 4 2.1 id08 control 8 3.9
id09 control 4 3.4 id09 control 8 4.3
id10 control 4 2.2 id10 control 8 2.8
id11 control 4 2.3 id11 control 8 3.9
id12 control 4 3.2 id12 control 8 4.8
id13 control 4 3.3 id13 control 8 4.3
id14 control 4 2.6 id14 control 8 3.4
id15 control 4 3.7 id15 control 8 4.9
id16 control 4 3.9 id16 control 8 5.0
id17 control 4 3.1 id17 control 8 4.0
id18 control 4 2.6 id18 control 8 2.7
id19 control 4 2.8 id19 control 8 3.6
id20 control 4 2.8 id20 control 8 4.4
id21 obese 4 4.1 id21 obese 8 3.7
id22 obese 4 2.2 id22 obese 8 3.5
id23 obese 4 3.7 id23 obese 8 4.9
id24 obese 4 4.6 id24 obese 8 3.9
id25 obese 4 3.4 id25 obese 8 4.0
id26 obese 4 4.0 id26 obese 8 4.3
id27 obese 4 4.1 id27 obese 8 4.9
id28 obese 4 4.4 id28 obese 8 3.8
id29 obese 4 3.6 id29 obese 8 3.9
id30 obese 4 4.1 id30 obese 8 4.8
id31 obese 4 2.8 id31 obese 8 3.5
id32 obese 4 3.3 id32 obese 8 3.3
id33 obese 4 3.8 id33 obese 8 3.8

The distinguishing feature of a repeated measures study is that the re-
sponse variable of interest has been recorded several times on each unit in the
data set. In addition, a set of explanatory variables (covariates is an alterna-
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tive term that is often used in this context) are available for each; some of the
explanatory variables may have been recorded only once for each unit and so
take the same value for each of the repeated response values for that unit–
an example would be treatment group in a clinical trial. Other explanatory
variables may take different values for each of the different response variable
values–an example would be age; these are sometimes called time-varying co-
variates.

The main objective in such a study is to characterise change in the repeated
values of the response variable and to determine the explanatory variables
most associated with any change. Because several observations of the response
variable are made on the same individual, it is likely that the measurements
will be correlated rather than independent, even after conditioning on the
explanatory variables. Consequently, repeated measures data require special
methods of analysis, and models for such data need to include parameters
linking the explanatory variables to the repeated measurements, parameters
analogous to those in the usual multiple regression model, and, in addition,
parameters that account for the correlational structure of the repeated mea-
surements. It is the former parameters that are generally of most interest,
with the latter often being regarded as nuisance parameters. But providing
an adequate model for the correlational structure of the repeated measures
is necessary to avoid misleading inferences about the parameters that are of
most importance to the researcher.

Over the last decade, methodology for the analysis of repeated measures
data has been the subject of much research and development, and there are
now a variety of powerful techniques available. Comprehensive accounts of
these methods are given in Diggle, Heagerty, Liang, and Zeger (2003), Davis
(2003), and Skrondal and Rabe-Hesketh (2004). Here we will concentrate on
a single class of methods, linear mixed-effects models.

8.2 Linear mixed-effects models for repeated measures
data

Linear mixed-effects models for repeated measures data formalise the sensible
idea that an individual’s pattern of responses is likely to depend on many
characteristics of that individual, including some that are unobserved. These
unobserved variables are then included in the model as random variables,
that is, random effects. The essential feature of the model is that correlation
amongst the repeated measurements on the same unit arises from shared,
unobserved variables. Conditional on the values of the random effects, the
repeated measurements are assumed to be independent, the so-called local
independence assumption.

Linear mixed-effects models are introduced in the next subsection by de-
scribing two commonly used models, the random intercept and random inter-
cept and slope models, in the context of the timber slippage data in Table 8.1.
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8.2.1 Random intercept and random intercept and slope models for
the timber slippage data

Let yij represent the load in specimen i needed to produce a slippage of xj ,
with i = 1, . . . , 8 and j = 1, . . . , 15. If we choose to ignore the repeated
measures structure of the, data we could fit a simple linear regression model
of the form

yij = β0 + β1xj + εij . (8.1)

The model in Equation (8.1) can be fitted using the long form of the data in
association with the lm() function in R as follows:

R> summary(lm(loads ~ slippage, data = timber))

Call:

lm(formula = loads ~ slippage, data = timber)

Residuals:

Min 1Q Median 3Q Max

-3.516 -0.981 0.408 1.298 2.491

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.516 0.264 13.3 <2e-16

slippage 10.373 0.283 36.6 <2e-16

Residual standard error: 1.65 on 118 degrees of freedom

Multiple R-squared: 0.919, Adjusted R-squared: 0.918

F-statistic: 1.34e+03 on 1 and 118 DF, p-value: <2e-16

We see that the slippage effect is large and highly significant.
But such a model assumes that the repeated observations are independent

of one another which is totally unrealistic for most repeated measures data
sets. A more realistic model is the random intercept model , where by partition-
ing the total residual that is present in the usual linear regression model (8.1)
into a subject-specific random component ui that is constant over slippage plus
an error term εij that varies randomly over slippage, some correlational struc-
ture for the repeated measures is introduced. The random intercept model is

yij = (β0 + ui) + β1xj + εij . (8.2)

(The error terms and parameters in Equations (8.1) and (8.2) are, of course,
not the same.) The ui are assumed to be normally distributed with zero mean
and variance σ2

u, and the εij are assumed normally distributed with zero mean
and variance σ2. The ui and the εij are assumed to be independent of each
other and the xj . The subject-specific random effects allow for differences
in the intercepts of each individual’s regression fit of load on slippage. The
repeated measurements for each timber specimen vary about that specimen’s
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own regression line, and this can differ in intercept but not in slope from
the regression lines of other specimens. In the random-effects model, there
is possible heterogeneity in the intercepts of the individuals. In this model,
slippage has a fixed effect .

How does the random intercept model introduce a correlational structure
for the repeated measurements? First, the random intercept model implies
that the total variance of each repeated measurement is

Var(ui + εij) = σ2
u + σ2.

(Due to this decomposition of the total residual variance into a between-
subject component, σ2

u, and a within-subject component, σ2, the model is
sometimes referred to as a variance component model .) The covariance be-
tween the total residuals at two slippage levels j and jp in the same specimen
i is

Cov(ui + εij , ui + εijp) = σ2
u.

The covariance will be non-zero if the variance of the subject-specific random
effects is non-zero. (Note that this covariance is induced by the shared random
intercept; for specimens with ui > 0, the total residuals will tend to be greater
than the mean, and for specimens with ui < 0 they will tend to be less than
the mean.) It follows from the two relations above that the residual correlation
(i.e., the correlation between pairs of repeated measurements) is given by

Cor(ui + εij , ui + εijp) =
σ2
u

σ2
u + σ2

.

This is an intra-class correlation that is interpreted as the proportion of the
total residual variance that is due to residual variability between subjects. So
a random intercept model constrains the variance of each repeated measure to
be the same and the covariance between any pair of repeated measurements
to be equal. This is usually called the compound symmetry structure. These
constraints often are not realistic for repeated measures data. For example,
for longitudinal data, it is more common for measures taken closer to each
other in time to be more highly correlated than those taken further apart.
In addition, the variances of the later repeated measures are often greater
than those taken earlier. Consequently, for many such data sets, the random
intercept model will not do justice to the observed pattern of covariances
between the repeated measures.

A model that allows a more realistic structure for the covariances is the
random slope and intercept model that provides for heterogeneity in both
slopes and intercepts.

In this model, there are two types of random effects, the first modelling
heterogeneity in intercepts, ui1, and the second modelling heterogeneity in
slopes, ui2. Explicitly, the model is

yij = (β0 + ui1) + (β1 + ui2)xj + εij , (8.3)
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where the parameters are not, of course, the same as in (8.1). The two random
effects are assumed to have a bivariate normal distribution with zero means
for both variables, variances σ2

u1
and σ2

u2
, and covariance σu1u2

. With this
model, the total residual is ui1 + ui2xj + εij with variance

Var(ui1 + ui2xj + εij) = σ2
u1

+ 2σu1u2
xj + σ2

u2
x2j + σ2,

which is no longer constant for different values of xj . Similarly, the covariance
between two total residuals of the same individual,

Cov(ui1 + xjui2 + εij , ui1 + xjpui2 + εijp) = σ2
u1

+ σu1u2(xj + xjp) + σ2
u2
xjxjp ,

is not constrained to be the same for all pairs j and jp. The random intercept
and slope model allows for the repeated measurements to have different vari-
ances and for pairs of repeated measurements to have different correlations.

Linear mixed-effects models can be estimated by maximum likelihood.
However, this method tends to underestimate the variance components. A
modified version of maximum likelihood, known as restricted maximum like-
lihood , is therefore often recommended; this provides consistent estimates of
the variance components. Details are given in Diggle et al. (2003), Longford
(1993), and Skrondal and Rabe-Hesketh (2004).

Competing linear mixed-effects models can be compared using a likelihood
ratio test. If, however, the models have been estimated by restricted maximum
likelihood, this test can only be used if both models have the same set of fixed
effects (Longford 1993).

8.2.2 Applying the random intercept and the random intercept and
slope models to the timber slippage data

Before beginning any formal model-fitting exercise, it is good data analysis
practise to look at some informative graphic (or graphics) of the data. Here
we first produce a plot of the trajectories of each timber specimen over the
slippage levels; see Figure 8.1.

The figure shows that loads required to achieve a given slippage level in-
crease with slippage value, with the increase gradually leveling off; this ex-
plains the large slippage effect found earlier when applying simple linear re-
gression to the data.

We can now fit the two linear mixed-effects models (8.2) and (8.3) as
described in the previous subsection using the lme() function from the package
nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Development Core Team 2010):

R> timber.lme <- lme(loads ~ slippage,

+ random = ~1 | specimen,

+ data = timber, method = "ML")

R> timber.lme1 <- lme(loads ~ slippage,

+ random = ~slippage | specimen,

+ data = timber, method = "ML")
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R> xyplot(loads ~ slippage | specimen, data = timber,

+ layout = c(4, 2))
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Fig. 8.1. Plot of the eight specimens in timber data.

Similar to a linear model fitted using lm(), the lme() function takes a model
formula describing the response and exploratory variables, here associated
with fixed effects. In addition, a second formula is needed (specified via the
random argument) that specifies the random effects. The first model assigns
a random intercept to each level of specimen, while the second model fits a
random intercept and slope parameter in variable slippage for each level of
specimen.

First we can test the random intercept model against the simple linear
regression model via a likelihood ratio test for zero variances of the random-
effect parameters, which is applied by the exactLRT() function from RLRsim
(Scheipl 2010, Scheipl, Greven, and Küchenhoff 2008):



8.2 Linear mixed-effects models for repeated measures data 237

R> library("RLRsim")

R> exactRLRT(timber.lme)

Using restricted likelihood evaluated at ML estimators.

Refit with method="REML" for exact results.

simulated finite sample distribution of RLRT. (p-value

based on 10000 simulated values)

data:

RLRT = 0, p-value = 0.4419

We see that the random intercept model does not improve upon the simple
linear model. Nevertheless, we continue to work with the mixed-effects models
simply because the “observations”, due to their repeated measurement struc-
ture, cannot be assumed to be independent.

Now we can do the same for the two random-effect models

R> anova(timber.lme, timber.lme1)

Model df AIC BIC logLik Test L.Ratio

timber.lme 1 4 466.7 477.8 -229.3

timber.lme1 2 6 470.7 487.4 -229.3 1 vs 2 1.497e-08

p-value

timber.lme

timber.lme1 1

The p-value associated with the likelihood ratio test is very small, indicating
that the random intercept and slope model is to be preferred over the simpler
random intercept model for these data. The results from this model are:

R> summary(timber.lme1)

Linear mixed-effects model fit by maximum likelihood

Data: timber

AIC BIC logLik

470.7 487.4 -229.3

Random effects:

Formula: ~slippage | specimen

Structure: General positive-definite, Log-Cholesky param.

StdDev Corr

(Intercept) 3.106e-04 (Intr)

slippage 1.028e-05 0

Residual 1.636e+00

Fixed effects: loads ~ slippage

Value Std.Error DF t-value p-value
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(Intercept) 3.516 0.2644 111 13.30 0

slippage 10.373 0.2835 111 36.59 0

Correlation:

(Intr)

slippage -0.822

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.1492 -0.5997 0.2491 0.7936 1.5226

Number of Observations: 120

Number of Groups: 8

(Determining the degrees of freedom for the t-value given in this output is not
always easy except in special cases where the data are balanced and the model
for the mean has a relatively simple form; consequently, an approximation is
described in Kenward and Roger 1997) The regression coefficient for slippage
is highly significant. We can find the predicted values under this model and
then plot them alongside a plot of the raw data using the following R code:

R> timber$pred1 <- predict(timber.lme1)

The resulting plot is shown in Figure 8.2. Clearly the fit is not good. In
fact, under the random intercept and slope model, the predicted values for each
specimen are almost identical, reflecting the fact that the estimated variances
of both random effects are essentially zero. The plot of the observed values
in Figure 8.2 shows a leveling-off of the increase in load needed to achieve
a given slippage level as slippage increases; i.e., it suggests that a quadratic
term in slippage is essential in any model for these data. Including this as a
fixed effect, the required model is

yij = (β0 + ui1) + (β1 + ui2)xj + β2x
2
j + εij . (8.4)

The necessary R code to fit this model and test it against the previous random
intercept and slope model is

R> timber.lme2 <- lme(loads ~ slippage + I(slippage^2),

+ random = ~slippage | specimen,

+ data = timber, method = "ML")

R> anova(timber.lme1, timber.lme2)

Model df AIC BIC logLik Test L.Ratio p-value

timber.lme1 1 6 470.7 487.4 -229.33

timber.lme2 2 7 213.5 233.1 -99.77 1 vs 2 259.1 <.0001

The p-value from the likelihood ratio test is less than 0.0001, indicating that
the model that includes a quadratic term does provide a much improved fit.
Both the linear and quadratic effects of slippage are highly significant.
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R> pfun <- function(x, y) {

+ panel.xyplot(x, y[1:length(x)])

+ panel.lines(x, y[1:length(x) + length(x)], lty = 1)

+ }

R> plot(xyplot(cbind(loads, pred1) ~ slippage | specimen,

+ data = timber, panel = pfun, layout = c(4, 2),

+ ylab = "loads"))
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Fig. 8.2. Plot of the predicted values of the random intercept model for the timber
data.

We can now produce a plot similar to that in Figure 8.2 but showing
the predicted values from the model in (8.4). The code is similar to that
given above and so is not repeated again here. The resulting plot is shown in
Figure 8.3. Clearly the model describes the data more satisfactorily, although
there remains an obvious problem, which is taken up in Exercise 8.1.
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Fig. 8.3. Plot of the predicted values of the random intercept model including a
quadratic term for the timber data.

8.2.3 Fitting random-effect models to the glucose challenge data

Now we can move on to consider the glucose challenge data given in its long
form in Table 8.2. Again we will begin by plotting the data so that we get
some ideas as to what form of linear mixed-effect model might be appropriate.
First we plot the raw data separately for the control and the obese groups in
Figure 8.4. First, we transform the plasma data from long into wide form
and apply the parallel() function from package lattice to set up a parallel-
coordinates plot.

The profiles in both groups show some curvature, suggesting that a
quadratic effect of time may be needed in any model. There also appears
to be some difference in the shapes of the curves in the two groups, suggesting
perhaps the need to consider a group × time interaction. Next we plot the
scatterplot matrices of the repeated measurements for the two groups using
the code in Figure 8.5.
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R> x <- reshape(plasma, direction = "wide", timevar = "time",

+ idvar = "Subject", v.names = "plasma")

R> parallel(~ x[,-(1:2)] | group, data = x, horizontal = FALSE,

+ col = "black", scales = list(x = list(labels = 1:8)),

+ ylab = "Plasma inorganic phosphate",

+ xlab = "Time (hours after oral glucose challenge)")
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P
la

sm
a 

in
or

ga
ni

c 
ph

os
ph

at
e

Min

Max

1 2 3 4 5 6 7 8

control

1 2 3 4 5 6 7 8

obese

Fig. 8.4. Glucose challenge data for control and obese groups over time. Each line
represents the trajectory of one individual.

The plot indicates that the correlations of pairs of measurements made
at different times differ so that the compound symmetry structure for these
correlations is unlikely to be appropriate.

On the basis of these plots, we will begin by fitting the model in (8.4) with
the addition, in this case, of an extra covariate, namely a dummy variable
coding the group, control or obese, to which a subject belongs. We can fit the
required model using

R> plasma.lme1 <- lme(plasma ~ time + I(time^2) + group,

+ random = ~ time | Subject,

+ data = plasma, method = "ML")

R> summary(plasma.lme1)
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R> plot(splom(~ x[, grep("plasma", colnames(x))] | group, data = x,

+ cex = 1.5, pch = ".", pscales = NULL, varnames = 1:8))

Scatter Plot Matrix
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control

1
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8
obese

Fig. 8.5. Scatterplot matrix for glucose challenge data.

Linear mixed-effects model fit by maximum likelihood

Data: plasma

AIC BIC logLik

390.5 419.1 -187.2

Random effects:

Formula: ~time | Subject

Structure: General positive-definite, Log-Cholesky param.

StdDev Corr

(Intercept) 0.69772 (Intr)

time 0.09383 -0.7

Residual 0.38480

Fixed effects: plasma ~ time + I(time^2) + group

Value Std.Error DF t-value p-value

(Intercept) 4.880 0.17091 229 28.552 0.0000

time -0.803 0.05075 229 -15.827 0.0000

I(time^2) 0.085 0.00521 229 16.258 0.0000

groupobese 0.437 0.18589 31 2.351 0.0253

Correlation:
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(Intr) time I(t^2)

time -0.641

I(time^2) 0.457 -0.923

groupobese -0.428 0.000 0.000

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.771508 -0.548688 -0.002765 0.564435 2.889633

Number of Observations: 264

Number of Groups: 33

The regression coefficients for linear and quadratic time are both highly
significant. The group effect is also significant, and an asymptotic 95% confi-
dence interval for the group effect is obtained from 0.437±1.96×0.186, giving
[−3.209, 4.083].

Here, to demonstrate what happens if we make a very misleading assump-
tion about the correlational structure of the repeated measurements, we will
compare the results with those obtained if we assume that the repeated mea-
surements are independent. The independence model can be fitted in the usual
way with the lm() function

R> summary(lm(plasma ~ time + I(time^2) + group, data = plasma))

Call:

lm(formula = plasma ~ time + I(time^2) + group,

data = plasma)

Residuals:

Min 1Q Median 3Q Max

-1.6323 -0.4401 0.0347 0.4750 2.0170

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.85761 0.16686 29.11 < 2e-16

time -0.80328 0.08335 -9.64 < 2e-16

I(time^2) 0.08467 0.00904 9.37 < 2e-16

groupobese 0.49332 0.08479 5.82 1.7e-08

Residual standard error: 0.673 on 260 degrees of freedom

Multiple R-squared: 0.328, Adjusted R-squared: 0.32

F-statistic: 42.3 on 3 and 260 DF, p-value: <2e-16

We see that, under the independence assumption, the standard error for the
group effect is about one-half of that given for model plasma.lme1 and if
used would lead to a much stronger claim of evidence of a difference between
control and obese patients.
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We will now plot the predicted values from the fitted linear mixed-effects
model for each group using the code presented with Figure 8.5.
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Fig. 8.6. Predictions for glucose challenge data.

We can see that the model has captured the profiles of the control group
relatively well but not those of the obese group. We need to consider a further
model that contains a group × time interaction.

R> plasma.lme2 <- lme(plasma ~ time*group +I(time^2),

+ random = ~time | Subject,

+ data = plasma, method = "ML")

The required model can be fitted and tested against the previous model using

R> anova(plasma.lme1, plasma.lme2)
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Model df AIC BIC logLik Test L.Ratio p-value

plasma.lme1 1 8 390.5 419.1 -187.2

plasma.lme2 2 9 383.3 415.5 -182.7 1 vs 2 9.157 0.0025

The p-value associated with the likelihood ratio test is 0.0011, indicating that
the model containing the interaction term is to be preferred. The results for
this model are

R> summary(plasma.lme2)

Linear mixed-effects model fit by maximum likelihood

Data: plasma

AIC BIC logLik

383.3 415.5 -182.7

Random effects:

Formula: ~time | Subject

Structure: General positive-definite, Log-Cholesky param.

StdDev Corr

(Intercept) 0.64190 (Intr)

time 0.07626 -0.631

Residual 0.38480

Fixed effects: plasma ~ time * group + I(time^2)

Value Std.Error DF t-value p-value

(Intercept) 4.659 0.17806 228 26.167 0.0000

time -0.759 0.05178 228 -14.662 0.0000

groupobese 0.997 0.25483 31 3.911 0.0005

I(time^2) 0.085 0.00522 228 16.227 0.0000

time:groupobese -0.112 0.03476 228 -3.218 0.0015

Correlation:

(Intr) time gropbs I(t^2)

time -0.657

groupobese -0.564 0.181

I(time^2) 0.440 -0.907 0.000

time:groupobese 0.385 -0.264 -0.683 0.000

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.72436 -0.53605 -0.01071 0.58568 2.95029

Number of Observations: 264

Number of Groups: 33

The interaction effect is highly significant. The fitted values from this model
are shown in Figure 8.7 (the code is very similar to that given for producing
Figure 8.6). The plot shows that the new model has produced predicted values
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that more accurately reflect the raw data plotted in Figure 8.4. The predicted
profiles for the obese group are “flatter” as required.
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Fig. 8.7. Predictions for glucose challenge data.

We can check the assumptions of the final model fitted to the glucose chal-
lenge data (i.e., the normality of the random-effect terms and the residuals)
by first using the random.effects() function to predict the former and the
resid() function to calculate the differences between the observed data val-
ues and the fitted values and then using normal probability plots on each.
How the random effects are predicted is explained briefly in Section 8.3. The
necessary R code to obtain the effects, residuals, and plots is as follows:

R> res.int <- random.effects(plasma.lme2)[,1]

R> res.slope <- random.effects(plasma.lme2)[,2]
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The resulting plot is shown in Figure 8.8. The plot of the residuals is linear
as required, but there is some slight deviation from linearity for each of the
predicted random effects.

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 0 1 2

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Random intercepts

Theoretical Quantiles

E
st

im
at

ed
 r

an
do

m
 in

te
rc

ep
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−2 0 1 2

−
0.

10
0.

00
0.

05
0.

10

Random slopes

Theoretical Quantiles

E
st

im
at

ed
 r

an
do

m
 s

lo
pe

s
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●
●

●
●

●
●

●

●

●●

●●●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

−3 −1 1 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Residuals

Theoretical Quantiles
E

st
im

at
ed

 r
es

id
ua

ls

Fig. 8.8. Probability plots of predicted random intercepts, random slopes, and
residuals for the final model fitted to glucose challenge data.

8.3 Prediction of random effects

The random effects are not estimated as part of the model. However, having
estimated the model, we can predict the values of the random effects. Accord-
ing to Bayes’ Theorem, the posterior probability of the random effects is given
by

Pr(u|y,x) = f(y|u,x)g(u),

where f(y|u,x) is the conditional density of the responses given the random
effects and covariates (a product of normal densities) and g(u) is the prior
density of the random effects (multivariate normal). The means of this poste-
rior distribution can be used as estimates of the random effects and are known
as empirical Bayes estimates. The empirical Bayes estimator is also known as
a shrinkage estimator because the predicted random effects are smaller in
absolute value than their fixed-effect counterparts. Best linear unbiased pre-
dictions (BLUPs) are linear combinations of the responses that are unbiased
estimators of the random effects and minimise the mean square error.
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8.4 Dropouts in longitudinal data

A problem that frequently occurs when collecting longitudinal data is that
some of the intended measurements are, for one reason or another, not made.
In clinical trials, for example, some patients may miss one or more protocol
scheduled visits after treatment has begun and so fail to have the required
outcome measure taken. There will be other patients who do not complete
the intended follow-up for some reason and drop out of the study before the
end date specified in the protocol. Both situations result in missing values of
the outcome measure. In the first case, these are intermittent, but dropping
out of the study implies that once an observation at a particular time point
is missing, so are all the remaining planned observations. Many studies will
contain missing values of both types, although in practise it is dropouts that
cause the most problems when analysing the resulting data set.

An example of a set of longitudinal data in which a number of patients have
dropped out is given in Table 8.3. These data are essentially a subset of those
collected in a clinical trial that is described in detail in Proudfoot, Goldberg,
Mann, Everitt, Marks, and Gray (2003). The trial was designed to assess the
effectiveness of an interactive program using multimedia techniques for the
delivery of cognitive behavioural therapy for depressed patients and known
as Beat the Blues (BtB). In a randomised controlled trial of the program,
patients with depression recruited in primary care were randomised to either
the BtB program or to Treatment as Usual (TAU). The outcome measure
used in the trial was the Beck Depression Inventory II (see Beck, Steer, and
Brown 1996), with higher values indicating more depression. Measurements of
this variable were made on five occasions, one prior to the start of treatment
and at two monthly intervals after treatment began. In addition, whether or
not a participant in the trial was already taking anti-depressant medication
was noted along with the length of time they had been depressed.

Table 8.3: BtheB data. Data of a randomised trial evaluating the
effects of Beat the Blues.

drug length treatment bdi.pre bdi.2m bdi.3m bdi.5m bdi.8m

No >6m TAU 29 2 2 NA NA
Yes >6m BtheB 32 16 24 17 20
Yes <6m TAU 25 20 NA NA NA
No >6m BtheB 21 17 16 10 9
Yes >6m BtheB 26 23 NA NA NA
Yes <6m BtheB 7 0 0 0 0
Yes <6m TAU 17 7 7 3 7
No >6m TAU 20 20 21 19 13
Yes <6m BtheB 18 13 14 20 11
Yes >6m BtheB 20 5 5 8 12
No >6m TAU 30 32 24 12 2
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Table 8.3: BtheB data (continued).

drug length treatment bdi.pre bdi.2m bdi.3m bdi.5m bdi.8m

Yes <6m BtheB 49 35 NA NA NA
No >6m TAU 26 27 23 NA NA
Yes >6m TAU 30 26 36 27 22
Yes >6m BtheB 23 13 13 12 23
No <6m TAU 16 13 3 2 0
No >6m BtheB 30 30 29 NA NA
No <6m BtheB 13 8 8 7 6
No >6m TAU 37 30 33 31 22
Yes <6m BtheB 35 12 10 8 10
No >6m BtheB 21 6 NA NA NA
No <6m TAU 26 17 17 20 12
No >6m TAU 29 22 10 NA NA
No >6m TAU 20 21 NA NA NA
No >6m TAU 33 23 NA NA NA
No >6m BtheB 19 12 13 NA NA
Yes <6m TAU 12 15 NA NA NA
Yes >6m TAU 47 36 49 34 NA
Yes >6m BtheB 36 6 0 0 2
No <6m BtheB 10 8 6 3 3
No <6m TAU 27 7 15 16 0
No <6m BtheB 18 10 10 6 8
Yes <6m BtheB 11 8 3 2 15
Yes <6m BtheB 6 7 NA NA NA
Yes >6m BtheB 44 24 20 29 14
No <6m TAU 38 38 NA NA NA
No <6m TAU 21 14 20 1 8
Yes >6m TAU 34 17 8 9 13
Yes <6m BtheB 9 7 1 NA NA
Yes >6m TAU 38 27 19 20 30
Yes <6m BtheB 46 40 NA NA NA
No <6m TAU 20 19 18 19 18
Yes >6m TAU 17 29 2 0 0
No >6m BtheB 18 20 NA NA NA
Yes >6m BtheB 42 1 8 10 6
No <6m BtheB 30 30 NA NA NA
Yes <6m BtheB 33 27 16 30 15
No <6m BtheB 12 1 0 0 NA
Yes <6m BtheB 2 5 NA NA NA
No >6m TAU 36 42 49 47 40
No <6m TAU 35 30 NA NA NA
No <6m BtheB 23 20 NA NA NA
No >6m TAU 31 48 38 38 37
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Table 8.3: BtheB data (continued).

drug length treatment bdi.pre bdi.2m bdi.3m bdi.5m bdi.8m

Yes <6m BtheB 8 5 7 NA NA
Yes <6m TAU 23 21 26 NA NA
Yes <6m BtheB 7 7 5 4 0
No <6m TAU 14 13 14 NA NA
No <6m TAU 40 36 33 NA NA
Yes <6m BtheB 23 30 NA NA NA
No >6m BtheB 14 3 NA NA NA
No >6m TAU 22 20 16 24 16
No >6m TAU 23 23 15 25 17
No <6m TAU 15 7 13 13 NA
No >6m TAU 8 12 11 26 NA
No >6m BtheB 12 18 NA NA NA
No >6m TAU 7 6 2 1 NA
Yes <6m TAU 17 9 3 1 0
Yes <6m BtheB 33 18 16 NA NA
No <6m TAU 27 20 NA NA NA
No <6m BtheB 27 30 NA NA NA
No <6m BtheB 9 6 10 1 0
No >6m BtheB 40 30 12 NA NA
No >6m TAU 11 8 7 NA NA
No <6m TAU 9 8 NA NA NA
No >6m TAU 14 22 21 24 19
Yes >6m BtheB 28 9 20 18 13
No >6m BtheB 15 9 13 14 10
Yes >6m BtheB 22 10 5 5 12
No <6m TAU 23 9 NA NA NA
No >6m TAU 21 22 24 23 22
No >6m TAU 27 31 28 22 14
Yes >6m BtheB 14 15 NA NA NA
No >6m TAU 10 13 12 8 20
Yes <6m TAU 21 9 6 7 1
Yes >6m BtheB 46 36 53 NA NA
No >6m BtheB 36 14 7 15 15
Yes >6m BtheB 23 17 NA NA NA
Yes >6m TAU 35 0 6 0 1
Yes <6m BtheB 33 13 13 10 8
No <6m BtheB 19 4 27 1 2
No <6m TAU 16 NA NA NA NA
Yes <6m BtheB 30 26 28 NA NA
Yes <6m BtheB 17 8 7 12 NA
No >6m BtheB 19 4 3 3 3
No >6m BtheB 16 11 4 2 3
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Table 8.3: BtheB data (continued).

drug length treatment bdi.pre bdi.2m bdi.3m bdi.5m bdi.8m

Yes >6m BtheB 16 16 10 10 8
Yes <6m TAU 28 NA NA NA NA
No >6m BtheB 11 22 9 11 11
No <6m TAU 13 5 5 0 6
Yes <6m TAU 43 NA NA NA NA

To begin, we shall graph the data here by plotting the boxplots of each
of the five repeated measures separately for each treatment group. Assuming
the data are available as the data frame BtheB, the necessary code is given
with Figure 8.9.

Figure 8.9 shows that there is a decline in BDI values in both groups, with
perhaps the values in the BtheB group being lower at each post-randomisation
visit. We shall fit both random intercept and random intercept and slope
models to the data including the pre-BDI values, treatment group, drugs, and
length as fixed-effect covariates. First we need to rearrange the data into the
long form using the following code:

R> BtheB$subject <- factor(rownames(BtheB))

R> nobs <- nrow(BtheB)

R> BtheB_long <- reshape(BtheB, idvar = "subject",

+ varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"),

+ direction = "long")

R> BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4))

The resulting data frame BtheB_long contains a number of missing values,
and in applying the lme() function these will need to be dropped. But notice
it is only the missing values that are removed, not participants that have at
least one missing value. All the available data are used in the model-fitting
process. We can fit the two models and test which is most appropriate using

R> BtheB_lme1 <- lme(bdi ~ bdi.pre + time + treatment + drug +

+ length, random = ~ 1 | subject, data = BtheB_long,

+ na.action = na.omit)

R> BtheB_lme2 <- lme(bdi ~ bdi.pre + time + treatment + drug +

+ length, random = ~ time | subject, data = BtheB_long,

+ na.action = na.omit)

This results in

R> anova(BtheB_lme1, BtheB_lme2)

Model df AIC BIC logLik Test L.Ratio p-value

BtheB_lme1 1 8 1883 1912 -933.5

BtheB_lme2 2 10 1886 1922 -933.2 1 vs 2 0.5665 0.7533
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R> ylim <- range(BtheB[,grep("bdi", names(BtheB))],

+ na.rm = TRUE)

R> tau <- subset(BtheB, treatment == "TAU")[,

+ grep("bdi", names(BtheB))]

R> boxplot(tau, main = "Treated as Usual", ylab = "BDI",

+ xlab = "Time (in months)", names = c(0, 2, 3, 5, 8),

+ ylim = ylim)

R> btheb <- subset(BtheB, treatment == "BtheB")[,

+ grep("bdi", names(BtheB))]

R> boxplot(btheb, main = "Beat the Blues", ylab = "BDI",

+ xlab = "Time (in months)", names = c(0, 2, 3, 5, 8),

+ ylim = ylim)
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Fig. 8.9. Boxplots for the repeated measures by treatment group for the BtheB
data.

Clearly, the simpler random intercept model is adequate for these data. The
results from this model can be found using

R> summary(BtheB_lme1)

Linear mixed-effects model fit by REML

Data: BtheB_long

AIC BIC logLik

1883 1912 -933.5
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Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 7.206 5.029

Fixed effects: bdi ~ bdi.pre + time + treatment + drug + length

Value Std.Error DF t-value p-value

(Intercept) 5.574 2.2995 182 2.424 0.0163

bdi.pre 0.640 0.0799 92 8.013 0.0000

time -0.702 0.1469 182 -4.775 0.0000

treatmentBtheB -2.315 1.7152 92 -1.350 0.1804

drugYes -2.816 1.7729 92 -1.588 0.1156

length>6m 0.179 1.6816 92 0.106 0.9155

Correlation:

(Intr) bdi.pr time trtmBB drugYs

bdi.pre -0.683

time -0.232 0.019

treatmentBtheB -0.390 0.121 0.017

drugYes -0.074 -0.236 -0.022 -0.323

length>6m -0.244 -0.241 -0.036 0.002 0.157

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.68699 -0.50847 -0.06085 0.42067 3.81414

Number of Observations: 280

Number of Groups: 97

The effect of most interest in this study is, of course, the treatment effect,
and our analysis shows that this is not significant at the 5% level. The only
effect that is significant is time, the negative value of its regression coefficient
showing that the BDI values decline over the eight months of the study.

We now need to consider briefly how the dropouts may affect the analyses
reported above. To understand the problems that patients dropping out can
cause for the analysis of data from a longitudinal trial, we need to consider
a classification of dropout mechanisms first introduced by Rubin (1976). The
type of mechanism involved has implications for which approaches to analysis
are suitable and which are not. Rubin’s suggested classification involves three
types of dropout mechanisms:

� Dropout completely at random (DCAR). Here the probability that a pa-
tient drops out does not depend on either the observed or missing values of
the response. Consequently, the observed (non-missing) values effectively
constitute a simple random sample of the values for all subjects. Possible
examples include missing laboratory measurements because of a dropped
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test tube (if it was not dropped because of the knowledge of any measure-
ment), the accidental death of a participant in a study, or a participant
moving to another area. Intermittent missing values in a longitudinal data
set, whereby a patient misses a clinic visit for transitory reasons (“went
shopping instead” or the like) can reasonably be assumed to be DCAR.
Completely random dropout causes the least problems for data analysis,
but it is a strong assumption.

� Dropout at random (DAR). The dropout at random mechanism occurs
when the probability of dropping out depends on the outcome measures
that have been observed in the past but given this information is condi-
tionally independent of all the future (unrecorded) values of the outcome
variable following dropout. Here “missingness” depends only on the ob-
served data, with the distribution of future values for a subject who drops
out at a particular time being the same as the distribution of the future
values of a subject who remains in at that time, if they have the same
covariates and the same past history of outcome up to and including the
specific time point. Murray and Findlay (1988) provide an example of this
type of missing value from a study of hypertensive drugs in which the
outcome measure was diastolic blood pressure. The protocol of the study
specified that the participant was to be removed from the study when his
or her blood pressure got too large. Here blood pressure at the time of
dropout was observed before the participant dropped out, so although the
dropout mechanism is not DCAR since it depends on the values of blood
pressure, it is DAR, because dropout depends only on the observed part of
the data. A further example of a DAR mechanism is provided by Heitjan
(1997) and involves a study in which the response measure is body mass
index (BMI). Suppose that the measure is missing because subjects who
had high body mass index values at earlier visits avoided being measured
at later visits out of embarrassment, regardless of whether they had gained
or lost weight in the intervening period. The missing values here are DAR
but not DCAR; consequently methods applied to the data that assumed
the latter might give misleading results (see later discussion).

� Non-ignorable (sometimes referred to as informative). The final type of
dropout mechanism is one where the probability of dropping out depends
on the unrecorded missing values–observations are likely to be missing
when the outcome values that would have been observed had the pa-
tient not dropped out are systematically higher or lower than usual (cor-
responding perhaps to their condition becoming worse or improving). A
non-medical example is when individuals with lower income levels or very
high incomes are less likely to provide their personal income in an inter-
view. In a medical setting, possible examples are a participant dropping
out of a longitudinal study when his or her blood pressure became too
high and this value was not observed, or when their pain became intolera-
ble and we did not record the associated pain value. For the BDI example
introduced above, if subjects were more likely to avoid being measured if
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they had put on extra weight since the last visit, then the data are non-
ignorably missing. Dealing with data containing missing values that result
from this type of dropout mechanism is difficult. The correct analyses for
such data must estimate the dependence of the missingness probability on
the missing values. Models and software that attempt this are available
(see for example, Diggle and Kenward 1994), but their use is not routine
and, in addition, it must be remembered that the associated parameter
estimates can be unreliable.

Under what type of dropout mechanism are the mixed-effects models con-
sidered in this chapter valid? The good news is that such models can be shown
to give valid results under the relatively weak assumption that the dropout
mechanism is DAR (Carpenter, Pocock, and Lamm 2002). When the missing
values are thought to be informative, any analysis is potentially problematical.
But Diggle and Kenward (1994) have developed a modelling framework for
longitudinal data with informative dropouts, in which random or completely
random dropout mechanisms are also included as explicit models. The essen-
tial feature of the procedure is a logistic regression model for the probability of
dropping out, in which the explanatory variables can include previous values
of the response variable and, in addition, the unobserved value at dropout as
a latent variable (i.e., an unobserved variable). In other words, the dropout
probability is allowed to depend on both the observed measurement history
and the unobserved value at dropout. This allows both a formal assessment
of the type of dropout mechanism in the data and the estimation of effects
of interest, for example, treatment effects under different assumptions about
the dropout mechanism. A full technical account of the model is given in Dig-
gle and Kenward (1994), and a detailed example that uses the approach is
described in Carpenter et al. (2002).

One of the problems for an investigator struggling to identify the dropout
mechanism in a data set is that there are no routine methods to help, although
a number of largely ad hoc graphical procedures can be used as described in
Diggle (1998), Everitt (2002), and Carpenter et al. (2002).

We shall now illustrate one very simple graphical procedure for assessing
the dropout mechanism suggested in Carpenter et al. (2002). That involves
plotting the observations for each treatment group, at each time point, dif-
ferentiating between two categories of patients: those who do and those who
do not attend their next scheduled visit. Any clear difference between the
distributions of values for these two categories indicates that dropout is not
completely at random. For the Beat the Blues data, such a plot is shown in
Figure 8.10. When comparing the distribution of BDI values for patients who
do (circles) and do not (bullets) attend the next scheduled visit, there is no
apparent difference, and so it is reasonable to assume dropout completely at
random.
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R> bdi <- BtheB[, grep("bdi", names(BtheB))]

R> plot(1:4, rep(-0.5, 4), type = "n", axes = FALSE,

+ ylim = c(0, 50), xlab = "Months", ylab = "BDI")

R> axis(1, at = 1:4, labels = c(0, 2, 3, 5))

R> axis(2)

R> for (i in 1:4) {

+ dropout <- is.na(bdi[,i + 1])

+ points(rep(i, nrow(bdi)) + ifelse(dropout, 0.05, -0.05),

+ jitter(bdi[,i]), pch = ifelse(dropout, 20, 1))

+ }

Months

B
D

I

0 2 3 5

0
10

20
30

40
50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

Fig. 8.10. Distribution of BDI values for patients who do (circles) and do not
(bullets) attend the next scheduled visit.
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8.5 Summary

Linear mixed-effects models are extremely useful for modelling longitudinal
data in particular and repeated measures data more generally. The models
allow the correlations between the repeated measurements to be accounted
for so that correct inferences can be drawn about the effects of covariates of
interest on the repeated response values. In this chapter, we have concentrated
on responses that are continuous and conditional on the explanatory variables,
and random effects have a normal distribution. But random-effects models can
also be applied to non-normal responses, for example binary variables–see, for
example Everitt (2002) and Skrondal and Rabe-Hesketh (2004).

The lack of independence of repeated measures data is what makes the
modelling of such data a challenge. But even when only a single measure-
ment of a response is involved, correlation can, in some circumstances, occur
between the response values of different individuals and cause similar prob-
lems. As an example, consider a randomised clinical trial in which subjects
are recruited at multiple study centres. The multicentre design can help to
provide adequate sample sizes and enhance the generalisability of the results.
However, factors that vary by centre, including patient characteristics and
medical practise patterns, may exert a sufficiently powerful effect to make
inferences that ignore the “clustering” seriously misleading. Consequently, it
may be necessary to incorporate random effects for centres into the analysis.

8.6 Exercises

Ex. 8.1 The final model fitted to the timber data did not constrain the fitted
curves to go through the origin, although this is clearly necessary. Fit
an amended model where this constraint is satisfied, and plot the new
predicted values.

Ex. 8.2 Investigate a further model for the glucose challenge data that allows
a random quadratic effect.

Ex. 8.3 Fit an independence model to the Beat the Blues data, and com-
pare the estimated treatment effect confidence interval with that from the
random intercept model described in the text.

Ex. 8.4 Construct a plot of the mean profiles of the two treatment groups in
the Beat the Blues study showing also the predicted mean profiles under
the model used in the chapter. Repeat the exercise with a model that
includes only a time effect.

Ex. 8.5 Investigate whether there is any evidence of an interaction between
treatment and time for the Beat the Blues data.
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adjusted goodness of fit index, 205
airdist data, 112
ape, 121
apply(), 19
available-case analysis, 6

bandwidth, 43, 46
Best linear unbiased predictions, 247
bimodal, 47
biplot, 92
bivariate boxplot, 28
bivariate data, 27
bivariate density estimate, 42
bivariate density estimation, 45
bivariate Epanechnikov kernel, 46
bkde2D(), 46
boxplot(), 27
boxplots(), 27
BtheB data, 248, 251
BtheB_long data, 251
bubble plot, 34

canonical correlation analysis, 95
canonicaml correlation analysis, 96
characteristic root, 64
characteristic vector, 64
chi-plot, 34
chi-squared distance, 129
chi-squared distribution, 18
chiplot(), 34
city block distance, 24
classical multidimensional scaling, 106
cluster analysis, 7, 14
cmdscale(), 110, 130

common factors, 135
communality, 138
complete-case analysis, 5
compound symmetry, 234
confirmatory factor analysis, 135
confirmatory factor analysis models,

201
convex hull trimming, 32
cor(), 14
correlation coefficient, 14
correlation matrix, 6
correlations, 138
correspondence analysis, 127
covariance, 12
covariance matrix, 6, 13
covariance structure modelling, 201
crime data, 176
curse of dimensionality, 61
CYGOB1 data, 46

data mining, 3
depression data, 103
disattenuated correlation, 209
discrepancy function, 202
disparities, 122
dissimilarity, 105
dist(), 15, 110
distance, 14
dropout at random, 254
dropout completely at random, 253

eigenvalue, 64
eigenvector, 64
empirical Bayes estimates, 247
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Euclidean distance, 14
exactLRT(), 236
exam data, 9
exploratory factor analysis, 9, 63, 135

factanal(), 149
factor analysis, 6, 135
factor loadings, 70, 135, 136
factor pattern coefficients, 146
factor rotation, 144
factor structure coefficients, 146
fastICA, 102
fixed effect, 234
flexclust, 194

gardenflowers data, 134
Gaussian kernel, 43
generalised distance, 18
glyph plots, 37
goodness-of-fit index, 205

hclust(), 169
headsize data, 74, 96, 103
heptathlon data, 78
Heywood case, 142
hist(), 27
House of Representatives voting, 123
HSAUR2, viii
hybrid models, 106
hypo data, 4

image plot, 180
imputation, 6
intelligence, 135
intra-class correlation, 234

jet data, 171

kernel density estimators, 42–46
kernel function, 43
KernSmooth, 46

LAdepr data, 99
Lagrange multipliers, 64
latent, 255
latent variables, 135
lattice, 51, 153, 180, 240
layout(), 27, 171
levelplot(), 153
life data, 148, 149

linear combinations, 16, 61
linear mixed-effects models, 232
lm(), 39, 233, 236, 243
lme(), 235, 236, 251
local independence, 232
log-eigenvalue diagram, 72
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magnitude criterion, 110
mahalanobis(), 115
Mahalanobis distance, 115
Manhattan distances, 112
manifest variables, 135
MASS, 123
match(), 32
maximum likelihood factor analysis, 141
Mclust(), 188
mclust, 188, 189, 191
measure data, 7
minimum spanning tree, 120
missing completely at random, 6
missing values, 5
monotonic transformations, 121
multidimensional scaling, 14, 105
multiple conditioning, 50
multiple imputation, 7
multivariate normal, 2
multivariate normal density function, 16
multivariate normal distribution, 15
MVA, viii, 191

nlme, 235
non-ignorable, 254
non-metric multidimensional scaling,
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non-parametric estimation, 42
normal probability plot, 17
normed fit index, 205
normed residuals, 211
nuisance parameters, 232
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oblique rotation, 145
orthogonal rotation, 145
outliers, 27

pairs(), 39
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path diagram, 209
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path.diagram(), 209
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posterior probability, 247
pottery data, 8
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principal components analysis, 7, 61
principal coordinates, 109
principal factor analysis, 141
probability plot, 16
probability-probability plot, 16
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quantile-quantile plot, 16
quartimax, 146

random effects, 232
random intercept, 232
random intercept and slope, 232
random intercept model, 233
random slope and intercept model, 234
random variables, 2
random.effects(), 246
rectangular kernel function, 43
reduced covariance matrix, 141
repeated-measures data, 12
reshape(), 226
resid(), 246
restricted maximum likelihood, 235
RLRsim, 236
robust estimation, 32
root-mean-square residual, 205
rug(), 27

sapply(), 20
scale(), 15
scatterplot, 26
scatterplot matrix, 39
scatterplot3d, 47

sem, 207, 208
Shepard diagram, 124
similarity matrices, 105
single-factor model, 136
skulls data, 114
smoothing parameter, 43
social class, 135
spatial models, 106
specific variates, 137
spectral decomposition, 70
structural equation modelling, 6, 201
structural relationships, 65
subject-specific random component, 233
subset(), 13

teensex data, 130
text(), 22
timber data, 227
time-varying covariates, 232
trace criterion, 109
tree models, 106
Trellis graphics, 50
triangular kernel function, 43
Tucker-Lewis index, 205

unidentifiable, 203
unobserved, 255
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var(), 13
variance component model, 234
variance-covariance matrix, 13
varimax, 146
voting data, 124
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